
 

 

 

Feature Extraction for Spam Classification 
 

by 

 

 

Michael Davy 

 

 

 

 

A dissertation submitted to the University of Dublin 

in partial fulfilment of the requirements for the degree of 

 

Masters of Science in Computer Science 

 

 

Department of Computer Science, 

University of Dublin, Trinity College 

 

 

 

 

 

September, 2004 

 



 

Declaration 
 

I declare that the work described in this dissertation is, except where 

otherwise stated, entirely my own work and has not been submitted as an 

exercise for a degree at this or any other university. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signature of Author:        

________________________________ 

           Michael Davy. 

       Wednesday, 08 September 

2004 

 

   ii



 

 

Permission to Lend and/or Copy 
 

I agree that Trinity College Library may lend or copy this dissertation upon 

request. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signature of Author:        

________________________________ 

           Michael Davy. 

       Wednesday, 08 September 

2004 

   iii



Acknowledgements 
I would like to thank my supervisor, Pádraig Cunningham for his help and 

guidance throughout. I would also like to thank Sarah Jane Delaney and 

Gavin O’Gorman for their help in developing and testing the system. 

Apologies to my friends who must think I have disappeared off the face of 

the planet. Finally I would like to thank my fellow students who have made 

the whole year an enjoyable and memorable experience.   

   iv



Abstract 
E-mail has emerged as one of the primary means of communication used in 

the world today. Its rapid adoption has left it ripe for misuse and abuse. This 

came in the guise of Unsolicited Commercial E-mail (UCE) or as it is 

otherwise known Spam.  

 

For a time spam was considered only a nuisance but due mainly to the 

copious amounts of spam being sent it has progressed from being a 

nuisance to become a major problem. The volume of spam has reached 

epidemic proportions with estimates of up to 80% of all e-mail sent actually 

being spam.  

 

Spam filtering offers a way to curb the problem. Identifying and removal of 

spam from the e-mail delivery system allows end-users to regain a useful 

means of communication. A lot of research in spam filtering has been 

centred on more sophistication in the classifiers used. This thesis begins to 

investigate the impact of applying more sophistication to lower layers in the 

filtering process, namely extracting information from e-mail.  

 

Several types of obfuscation are discussed which are becoming ever more 

present in spam in order to try confuse and circumvent the current filtering 

processes. The results obtained by removing certain types of obfuscation 

show to improve the classification process.  

 

The main theory under investigation was the impact of pair tokens on the 

classification process. It is quite reasonable to think that pairs of tokens will 

offer more value than single tokens alone. For example “enlarge your” 

seems to suggest more information than single tokens alone. Results 

obtained show conclusively that pair tokens offer no value and in fact 

increase error over three independent data sets. 
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1 Introduction 

1.1 Background Information 

The cornerstone of modern life is communication; from morning to evening 

we expect to be able to communicate instantly with others. E-mail has 

progressed rapidly from its original beginnings as a communication medium 

for academics to its current role as one of the most widely used methods of 

communication throughout the world. The notion of sending a conventional 

letter to a person in another country seems like something from the dark 

ages. Practically everyone who uses the internet seems to have an e-mail 

account. Business has leveraged this technology as a communication 

channel for its employees (it’s rare to find any company which does not 

have an internal e-mail system). 

 

E-mail account are given away free and can be checked from anywhere in 

the world at any time. Its popularity is due to the fact that it’s fast, cheap 

and reliable. The e-mail delivery system was designed to be open, meaning 

that anyone could connect to a server and start sending e-mail.  

 

With such a wide user base it was only a matter of time this resource was 

exploited. As can be seen in other forms of communication, when a return 

on investment is attainable, advertisements appear; television commercials, 

radio announcements, news paper advertisements (some newspapers seem 

to consist of 90% advertisements and 10% content). 

 

A new menace was released into the world, one that would start as a 

nuisance but would soon grow to be a major problem. Unsolicited 

Commercial E-mail (UCE) or as it’s more commonly known “Spam”. 

Personally I define spam as ‘Unsolicited or unwanted commercial e-mail’. 

Unsolicited is important, if you never asked for it then I consider it spam, 
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alternatively you “opt-in” to receive the e-mail in which case I do not 

consider it spam.  

 

Spam tends not to originate from large businesses; rather it normally 

comes from very small businesses and from individuals who are trying to 

make some money from gullible people. The reason these people choose 

spam as their advertisement medium is because it’s so cheap. It costs 

practically nothing to send spam compared with an advertisements 

campaign on television or a newspaper. Because it’s so cheap, they need a 

miniscule return rate, for example, if 1,000,000 spam is sent out, if 5 

people respond and buy the product then the campaign costs are covered 

and the business could be in profit! 

 

Large or more established companies typically do not send spam as it 

would damage their reputation. They tend to stick to the more mainstream 

communication channels such as radio, billboards, television etc… 

 

Spam typically advertises small, easily transferable goods and services such 

as Viagra or Software. There are other flavours of spam including: scam 

spam and pornography spam. The later advertises membership to a 

website offering pornographic images. The former is a little bit more 

devious.  

 

The best known scam spam are 419’ers, scam spam is where the spam 

sender (a spammer) tries to trick gullible individuals out of money by 

promising them more money in return for their ‘initial investment’. This type 

of spam allegedly originated from a group of Nigerian spammers who send 

out this type of spam to millions of e-mail accounts. The revenue expected 

from this type of scam in 2003 was $2,000,000,000 [ePrivacy03]. 

 

The problem that has emerged is not that spam exists or that gullible 

individuals are being ripped-off, rather it is the volume at which spam is 
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being sent. Figures of 80% of all e-mail which is actually spam, taking 

MSN™ as an example, they block 2,400,000,000 spam messages a day! 

Companies have to purchase additional servers and storage to cope with 

the pressure on their e-mail systems. A figure of $25.5BN is expected to be 

spent by companies around the world in purchasing this additional 

equipment. All figures quoted were obtained from [ePrivacy03]. 

 

1.2 Hypothesis under Investigation 

This thesis investigates the spam filtering process. A lot of current research 

is centred around the classification stage developing more elaborate and 

advanced classifiers but little work has been done in the stages that lead up 

to the classification process. These stages extract the information from the 

e-mail or spam ready for use in the classification process. “A worker is only 

as good as their tools” and in the same way a classifier is only as good as 

the features it works with. Better features extracted should result in a more 

accurate classification. 

 

This thesis investigates the new methods used by spammers in order to 

circumvent modern spam filters by disrupting the tokenising and 

classification processes. The removal of obfuscation and inclusion of other 

non-token features may help to increase classification accuracy.   

 

The use of pair tokens should offer more information to the classifier. For 

example the feature “click here” offers more information than “click” or 

“here” individually.  

1.3 Document Roadmap 

The rest of this chapter presents an overview of the remainder of the 

thesis. 
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In chapter two spam sending techniques are discussed with particular 

attention paid to the types of obfuscation used to disguise spam and web 

bugs used to track the success of a campaign.  

 

In chapter three spam filtering techniques are discussed focusing on the 

current popular methods of filtering spam including rule based and content 

based filtering. 

  

In chapter four, the apparatus is presented. Each stage in the process is 

examined and explained. Methods in the system for dealing with 

obfuscation are discussed.  

 

In chapter five, the experiments conducted and results obtained are 

discussed. The results are displayed diagrammatically and a short 

discussion on what was noted given. 

 

In chapter six, conclusions are drawn on the results obtained from the 

experiments. Discussion is given on other related work in the spam arena. 

Finally future work is presented. 

 

The reader is directed to the glossary in order to familiarise themselves 

with the names and phrases used commonly when discussing spam. 
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2 Spamming Techniques 

It is becoming ever easier to start spamming. Websites offer clients all the 

necessary tools in order to send “Bulk e-mail”. Not only this, they also offer 

lists containing millions of valid e-mail addresses.  

 

If worried about legal reprimands, the spam sender (spammer) can conceal 

their identity easily with the use of open relays, open proxies and even 

zombies. The later is a new trend where spammers team up with virus 

writers so that infected machines act as spam relays – all unbeknownst to 

the owner of the machine. 

 

Spam itself has mutated in order to have the same impact it did in previous 

years. This mutation was caused by the introduction of filtering systems 

which separate spam from legitimate e-mail and delete it. It never reaches 

the end-user thus the return rate on the spam campaign may drop. 

 

The mutations were made in order to try to circumvent spam filters. The 

inventive ways in which spammers have mutated spam is impressive. This 

leads the author to think that there is still a large incentive to spam – why 

bother spend time and resources if it’s all futile.  

 

Below a description of some of the mutation techniques noted while 

investigating spam.  

 

 

2.1 Beating the filters 

Spammers have to continually try to circumvent filters. In the past when 

the types of filters used were simple rule based systems it was often quite 

easy to circumvent these. This was due to the fact that with rule based 

systems constant updating of rules was required. Often this task fell to 
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administrators and end-users; they simply did not have the time or the 

expertise to construct effective new rules.  

 

A common rule was that if an e-mail contained a certain word then it was 

considered a spam. Spammers simply replaced such words with a synonym 

or misspelled the word. The latter is not as disastrous as one might think. 

Readers generally can still understand a piece of text even if spelling 

mistakes are strewn across the text [Rawlinson76].  “stlil esay to 

uednrstand”  

 

With the advent of more sophisticated filtering techniques such as Bayesian 

based filtering the changes the spammer needed to make became more 

sophisticated. 

2.1.1 Obfuscations 

In order to try and disguise certain words and phrases that may be used to 

easily distinguish spam from legitimate e-mail, spammers have resorted to 

obfuscating these words in order to try and confuse filters. Some of the 

more prominent methods of obfuscation are described below. 

2.1.1.1 Added Punctuation 

A common type of obfuscation is where punctuation is used in between 

every letter of a word. For example the word Viagra is obfuscated to V-i-a-

g-r-a. For the human reader this is still perfectly legible but for classifiers 

this obfuscated version of the word is considered a completely different 

feature. The feature may not be recognised as a strong indication that the 

e-mail is spam. 

 

With Bayesian classifiers this is a particular problem. Not only does it cause 

error rates to increase but it also means an increase in the space required 

to store all previously seen features. It may be argued that these types of 

features are more descriptive of spam as they occur more commonly in 
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spam. If a generic identification of this form of obfuscation is available then 

this should help increase filtering accuracy without the need to store all 

obfuscated versions of a particular word. 

2.1.1.2 Misspelling 

Features such as “porn” are becoming very strong indicators of spam. This 

means that the accuracy of filters using these features is becoming ever 

more accurate. In an effort to combat this and circumvent the filter, 

spammers have resorted to misspelling words.  

 

Surprisingly the legibility of the spam remains high! A study [Rawlinson76] 

has shown that misspelled words do not dramatically impact on the 

legibility of a given text. Spammers also tend to substitute letters with 

similar looking numbers (for example the letter “I” is often replaced with 

the number 1). Taking the feature “porn” some common misspellings of it 

include “p0rn”, “pron” and “pr0n”. 

 

Misspelled words have a similar affect to classifiers as added punctuation 

obfuscated words have. The number of possible features increases and the 

accuracy of the classification decreases.  

 

Again there is an argument to keep these misspelled words as features as 

they are more descriptive of spam in general. Many people do not use 

correct and complete English when constructing an e-mail. Most do not 

even use a spellchecker. These subtle spelling mistakes may provide to be 

quite useful. Note this is in contrast to spammers deliberately trying to 

obfuscate words by replacing letters with similar looking digits or 

punctuation. 

 

If there was a way to spot the use of such obfuscation methods then this 

may prove useful. With the use of regular expressions or examining the 

   7



constituent characters of a word it should be possible to detect misspellings 

such as “p0rn” (note the use of zero rather than the letter o).  

2.1.1.3 Effectiveness of Obfuscation 

The introduction of obfuscation could actually help to increase accuracy of 

filters. The presence of obfuscation could be used as a feature when 

determining if an e-mail is legitimate or spam. 

2.1.2 Salad 

With the advent of more sophisticated filtering techniques such as Machine 

Learning and in particular Bayesian and hash based filtering, spammers 

needed to change their spam in order for it to circumvent the filters. They 

began inserting random text into their spam in order to circumvent these 

classifiers. This random text is commonly known as salad. 

 

The effect that salad has on a spam is that it will introduce a number of 

words which should confuse the classification process with the result that 

spam is not as distinctive from legitimate e-mail. It’s should be harder for 

the classifier to distinguish legitimate e-mail from spam resulting in 

diminished accuracy of the classifier. In addition there is extra storage 

requirement for some classifiers as they will need to store the number of 

occurrences of these salad words. 

 

The salad the spammer introduces will typically be selected very carefully. 

It can not be words or phrases typically found in spam otherwise this would 

not make spam less distinctive. They generally used either words from a 

dictionary, quotations from novels, quotations or indeed content from a 

website.  

 

The result should be that the spam begins to resemble legitimate e-mail 

when considered by the classifier. Below a discussion is given on the two 
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types of salad that seem to be popular in spam in corpora collected for 

these experiments. 

 

2.1.2.1 Random Character Salad 

This kind of salad is just a sequence of random characters. The sequences 

are meaningless but are considered as words by classifiers. The random 

characters introduce randomness into each spam. The characters are often 

found at the end of the subject line and are normally hidden in the 

message body as white space (white text on white background) or as HTML 

tags. This type of countermeasure is normally directed towards hash based 

classifiers but may be effective against some Bayesian classifiers. 

 

T<kmrkcygdiboudjb>he o<kexxwqdewrdhfbs>n<ktcgsdocqmwjir>ly<kmxdwjobcxhjh> 

so<kgsagfwtfaqdw>lut<kvnoibncgsltsvd>ion

Random Character Tag Salad  

<font size=1 color=fffff>ixrr  f aoamy zaqr  wolfgang cutesy discus astor folksy 

frsnbpoybvcacgaarpnfb yqprnbhijjpvmco qhtl buchanan dividend dybuilding </font> 

 
Random Character Salad (Hidden text) 

Figure 1 - Random Character Salad 

 

Hash based classifiers classify a new case based upon whether a hash of 

the new instance matches any know hash of a spam. If so, the new case is 

assigned the classification of spam. Hashes used are generally 

cryptographic hashes such as SHA-1. The Achilles-heal of this genre of 

classifier is that the hash algorithms obey the strict avalanche effect 

[Feistel73] [WebsTav85] which states that a single bit change in input will 

cause at least half of the output digest bits to change.  

 

Hashes of known spam could be distributed to multiple peers creating a 

collective of known spam. The task of classification then becomes quite 
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simple. There is little chance of false positives since each unique input text 

will hash to a unique and distinct output value (i.e. multiple copies of the 

same spam will has to the same value).  

 

The problem is that in order to circumvent these filters, the spammer needs 

to only make subtle changes in the spam. The introduction of randomness 

in each spam effectively means that each spam will hash to a different 

value. Even though a collection of spam will look practically identical they 

will differ in their random salad values and will thus each have different 

hash values. The effectiveness of the hash is reduced dramatically. Any 

spam with randomness within it will bypass the filter. Further work on this 

area has been to develop a fuzzy hash algorithm. This type of algorithm 

would not display the strict avalanche effect, thus would not be susceptible 

to the above problems. 

 

Random character salad is used in order to try to bypass Bayesian 

classifiers. The addition of the random characters should help to neutralise 

the probability that the e-mail will be classified as spam. This is due to the 

fact that this salad may contain features that occur often in the user’s 

legitimate e-mail. The spammer would have to guess a feature that occurs 

in legitimate e-mail and doing this for millions of users may not be feasible 

[Cumming04]. 

  

2.1.2.2 Random Word Salad 

Another type of salad that is becoming more prevalent in spam is the 

addition of random words at the end of the message body or in HTML 

comments. In the early adoption of this technique spammers would just 

use random words but it is becoming more common for the addition of 

portions of text, such as excerpts from novels or even quotations. 
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B<flyer>ecau<weapon>s<tub>e you can add mor<maritime>e <belate>to your 

l<almaden>if<serpent>e.

Random Word Tag Salad  

hiphopnbenzspeak egotist deferring combustion scandal rhombohedral seder ucla 

altogether amperage debonair dionysian politic frustrate checkbook arizona cadaverous

 Random Word Salad (found at bottom of spam) 

Figure 2 - Random Word Salad 

 

The affect of this type of salad is the same as the affect random characters 

has on hash based classifiers. With the introduction of randomness to the 

spam, the effectiveness of the hash to classify future spam will diminish 

rapidly. As mentioned above the use of a fuzzy hash algorithm may help in 

combating salad. 

 

Bayesian classification relies on dissimilarity between features found in 

spam and features found in legitimate e-mail. With the introduction of 

random words, chosen from a source that is itself not related to the spam, 

it may affect the accuracy of the Bayesian classifier. If a spammer can 

correctly guess words which are indicative of legitimate e-mail then this 

may alter the classification process. Guessing the correct features to affect 

a large population may not be feasible [Cumming04]. 

 

2.1.2.3 Effectiveness of Salad 

Salad can be used to circumvent hash based filtering techniques but 

whether or not it can be used to defeat Bayesian based filters is another 

question. In regards to hash based filtering random salad will randomise 

the hash value for each spam. This means that each spam will have a 

different hash value, negating the benefits of hash based filtering. 
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For Bayesian based filtering it may cause no decrease in filter performance. 

The only way that random salad would impact on Bayesian type filters is if 

the random salad were to contain legitimate features. With Bayesian filters, 

a list of spam features and a list of legitimate e-mail features are 

maintained. The spammer would need to append sufficient amounts of your 

individual legitimate e-mail features. 

 

In order to get this to work they would need to either obtain your list of 

legitimate e-mail features or train their spam against your Bayesian filter. 

Dr John Graham-Cummings gives a good explanation of the process in a 

talk he gave to the Spam Conference [Cumming04]. Salad should lower the 

probability of the spam being classified as spam but this seems not to be 

the case.  

 

2.1.3 Web Bugs 

A web bugs (also known as: web beacons, pixel tag or clear gif) is an 

image which is normally very small, that is placed in and e-mail or on a 

website and is used to monitor the behaviour of the recipient of the e-mail 

or the visitors to a website. 

 

In its most simple form, a web bug is a one pixel by one pixel image. Users 

rarely notice its existence. When browsing a website the image is normally 

downloaded when browsing a HTML page. Within the source of the web 

page there is an img tag calling the web bug, for example. 

<img src=”http://mydomain.tld/images/myBug.gif”> 

 

Figure 3 - Simplistic Web Bug 

 

To the casual observer this may seem to give no information at all, but 

combined with the fact that a HTTP server will log all activity to the website 
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it becomes a valuable tool. When your browser loads the web bug it must 

contact the server and download the image. The HTTP server will log your 

IP address and may also log other information such as the browser used 

and the time you downloaded the image.  

 

With e-mail, web bugs are more intrusive. They work in e-mail because of 

the growing trend of HTML styled e-mail. Rather than sending plain text e-

mails, many people opt to send HTML styled e-mail because they offer 

more formatting power, allowing italics, bold, and coloured fonts. The most 

popular MUAs all allow for HTML styled e-mail and in addition to sending 

styled e-mail they are able to parse and display HTML styled e-mail. It is for 

this reason that web bugs work in e-mail. Not only does the MUA display 

the HTML, it does it automatically. Preview panes automatically render the 

HTML, activating the web bug without you even opening the e-mail. 

 

With ordinary web bugs placed in a spam, spammers can detect what 

proportion of their spam has been opened and from what IP. This is useful 

since they can determine what percentage of their spam has reached its 

intended audience.  If a spammer has sent out 2, 000,000 spam and there 

are 1,000,000 downloads of the web bug then they know that half of their 

spam list are active, or that only half of their spam have reached their 

destination. 

 

A more sophisticated form of web bugs has begun to appear in spam. The 

spammer can not only gather passive intelligence such as your email 

reading habits, IP address, operating system, and browser, but can actually 

verify your e-mail address. Instead of a URL pointing to some static content 

such as a gif or jpeg, the URL points to some dynamic content. Typically 

the server runs a CGI, which will take some predefined parameters. HTTP 

allows for information to be sent via the GET and POST commands, 

spammers have hard coded into each spam a web bug which has as its 

argument the e-mail address to which the spam was sent. 
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 For example the following web bug contained in a spam sent to 

joe@bloggs.com. The web bug contained within the spam has as its 

argument the e-mail address joe@bloggs.com. When the MUA displays the 

e-mail it will load the web bug from mydomain.tld where a program running 

on the web server will validate that joe@bloggs.com is a valid e-mail 

address and has opened the spam. 

A <img src=”http://mydomain.tld/haverst.pl?email=joe@bloggs.com”>

B <img src=”http://mydomain.tld/haverst.pl?email=3dfa21d76b3c4d”>

 

Figure 4 - Advanced Web Bugs 

Web bugs such as A are somewhat easy to spot, so spammers are now 

trying to conceal this by using a hash of your e-mail instead, shown in B.  

 

The spammer now knows that the e-mail account is active and that the 

spam is successfully being delivered (i.e. no spam filtering taking place, or 

if there is, then the spam has circumvented it). They can then continue to 

send spam to this address and sell the address on to other spammers. This 

verified accounts cost more than unverified addresses.  

2.1.3.1 Web Bugs in the Work Place 

An interesting aside to the use of web bugs is in their use within an 

organisation. Administrators can spam their own mail-server with a 

specially prepared message containing web bugs. Since the web bug does 

not need to be on the same server as the one delivering the content, they 

could place the web bug on their own corporate web server. This could be 

used to track which employees are viewing unsuitable material during office 

hours. A suitably enticing subject may be enough to catch an unproductive 

employee (e.g. “Play games which behind your bosses back” or something 

along those lines). 
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3 Spam Filtering 

There are many ways to deal with spam. Filtering is a highly popular 

technique. It involves selecting and removing spam from legitimate e-mail. 

Discussed below are some of the filtering techniques. 

 

3.1 Human Filtering  

For most people the only spam filtering is done by hand. When presented 

with an inbox crammed full of spam, the general reaction is to select all the 

spam and delete it. A human is able to determine in a fraction of a second 

whether or not an e-mail is spam or legitimate.  

 

This technique has the advantage of high accuracy, with a low rate of false 

positives but it has some serious problems. Human filtering is time 

consuming and extremely tedious. Most end-users do not want to wade 

through their inbox looking for spam and deleting it by hand.  

 

In addition this scheme is not 100% effective. Users may accidentally 

delete a legitimate e-mail when purging the inbox of spam. This is known 

as a spam-spasm. With the overwhelming amount of spam compared to 

legitimate e-mail it’s not uncommon for users to accidentally select 

legitimate e-mail when selecting groups of spam for deletion.  

 

From my own personal experience, the number of spam received per day is 

sometimes as much as 50:1 (50 spam messages for every one legitimate 

message). The trend is for this ratio to rise. The ease at which spam can be 

sent means that more spammers are starting up [Judge03]. A conservative 

estimate would state that half of all e-mail sent per day is in fact spam!  

 

With the growing popularity of spamming, automated methods are required 

to regain a useful e-mail system.  
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3.2 Rule Based Spam Filtering 

The first automated filtering techniques to be discussed are those which 

use a set of rules to classify e-mail as spam or legitimate e-mail. These 

techniques used to be in vogue but have of late been superseded by the 

techniques discussed later in this chapter. 

 

The rule based filtering techniques can be applied at either the MTA level or 

the MUA level. First discussed will be the MUA level filtering techniques 

then discuss the MTA level filters. 

 

3.2.1 MUA Rule Based Filters 

Most e-mail clients (MUA) have some sort of feature for categorising e-mail 

based on a set of rules determined by the user. These rules can be 

constructed to examine an e-mail message’s body for keywords or phrases 

given by the end-user. A common use of such rules is to categorise newly 

arrived e-mail into a specific folder. For example, some users have a folder 

for work e-mails. A rule could be setup to transfer newly arrived e-mail that 

contain the word “job” into the work folder.   

 

The same technique can be applied to categorising spam from legitimate e-

mail messages. The user could create a folder called spam and define a 

number rules that would transfer a newly arrived e-mail to the spam folder 

if it triggered them. Such rules could look for specific words in the content 

of the e-mail, or look for punctuation being used in the subject of the e-

mail, or note the content type of the e-mail. 

 

While this technique does work well, it does have a serious problem. The 

rule set needs constant updating and refinement. This is because most 

spammers know that this kind of filtering is popular, so in order to 

circumvent the filtering they use obfuscation techniques. Some common 

obfuscation used is misspelling words. For example if you had a rule which 
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said “Any e-mail with the word “Free” in the subject line, put in the spam 

folder”. Obfuscating the word “Free” may result in “F*R*E*E” which will 

bypass this rule and will end up in the user’s inbox. 

 

Not only are spammers circumventing the rules by obfuscation, legitimate 

e-mail could also be incorrectly classified because of a rule with is too 

restrictive. For example “Any e-mail which does not have an Attachment 

should be put in spam folder”. Clearly this is too general and will cause a lot 

of false positive results. 

3.2.1.1 Whitelist 

Another MUA level rule based filtering technique is that of whitelists. A 

whitelist is a list containing a collection of contacts from which you will 

accept e-mail messages from. If an e-mail arrives but does not come from 

one of the contacts in the whitelist then it is rejected (placed in spam 

folder). While this technique is effective for some users it is clear to see it 

has faults.  

 

Any mail sent by a stranger will simply be incorrectly classified as a spam – 

in other words it’s a false positive! In all but a few scenarios it’s 

inconceivable to know a priori all contacts that will send you an e-mail.  

 

There a slight variation on this scheme that incorporates a challenge 

response mechanism to allow users to be added to a user’s whitelist. The 

basic scenario is that when a stranger sends a message to you, the 

MTA/MUA will automatically respond with a challenge and until such time 

when the stranger responds with the correct answer to the challenge, the 

e-mail is not delivered. This challenge is normally just a request for the 

stranger to reply to the challenge (The challenge contains some redundant 

and random information which will not allow spammers to circumvent it).  
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Again there are noticeable flaws in using this technique. Firstly the 

MTA/MUA needs to have new software incorporated to it – a daunting 

challenge itself with the scale of the internet. Next the extra processing 

involved in sending a challenge for every e-mail received by a stranger is 

not negligible. Finally, users simply may not respond to the challenge! 

Either by lack of motivation or by being uneducated (not everyone who 

uses e-mail is a computer scientist). These count as false positives and 

reduce the effectiveness of the communication channel. 

 

One technique that was starting to become more evident at the time of 

writing was spammers forging sender information to be from the same 

domain as the intended recipient. Most whitelist tend to contain a lot of 

addresses from other people on the same domain. As an example, suppose 

a spammer wanted to spam joe@bar.com they would simply forge the 

sender information to show that the mail came from mary@bar.com. This 

may be enough to circumvent the whitelist. The chances that users on the 

same domain communicate with each other is much higher, thus the 

chances of there being an entry in the whitelist becomes higher. 

3.2.1.2 Blacklist 

The antipode of the whitelist, a blacklist contains lists of known spammers. 

Essentially when you get a spam, you add the sender of the spam to the 

blacklist. The entire domain of the sender of the spam can be added to the 

blacklist. Newly arrived e-mails are checked, if their sender is on the 

blacklist the e-mail is automatically classified as spam. 

 

As with whitelist there are flaws with blacklists also. The major problem 

stems from the fact that spammers tend to forge header information in 

their spam. The sender information is generally forged, meaning that 

perhaps innocent people are added to a blacklist but more importantly the 

effect the blacklist will have is diminished dramatically. Since the spammer 
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can easily forge the sender information they can circumvent the blacklist 

with ease. 

 

3.2.2 MTA Rule Based Filtering 

Some of the techniques described for MUA rule based filtering can be 

applied at the MTA level. Filtering at this level can achieve some economies 

of scale but also contributes some problems. Since spam by its nature is 

sent in bulk, blocking the sender can dramatically reduce the number of 

spam needed to be stored and delivered. 

 

3.2.2.1 Distributed Blacklist 

Blacklist at the MUA level only work for a single user. If applied at the MTA 

level a single blacklist could work for all users in a domain or sub domain. 

This would reduce the burden on each user maintaining their own blacklist.  

 

Real-time black lists (block lists) commonly known as RBLs are emerging as 

a strong anti-spam technology. The idea is simple; a central repository 

keeps track of Internet Service Providers which are known to have spam 

activity on their networks. In other words, a list of ISPs’ who are known to 

allow spammers use their network to connect to the internet and send 

spam are listed in a repository.  

 

An MTA can be configured to consult this repository when a new e-mail has 

been presented for delivery. When a host connect and tries to get an e-mail 

delivered its IP (Internet Protocol) is recorded and checked to see if it is in 

the repository. If the host’s IP is listed in the repository then the delivery of 

e-mail is refused, otherwise deliver proceeds as normal.  
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The central repository is maintained constantly and the IP of ISPs’ may be 

added or removed if they are found to have harboured spammers or 

removed spammers from their network. 

 

The principle behind this scheme is that ISPs that are known to harbour 

spammers are punished, while ISPs who do not encourage spamming are 

left unaffected. This scheme aims at penalising ISPs for allowing spammers 

to use their networks. This should force the ISP to increase security and not 

encourage spamming on its network. In addition it only affects mail 

delivery, other internet services are unaffected. 

 

This is a good approach but it does have some problems. The first problem 

is that the central repository must be maintained and it must be maintained 

by an unbiased organisation. One could imagine a scenario where a rival 

could persuade the maintainer to add its competitor to the block list. The 

competitor’s reputation would be damaged and it could loose business.  

 

A common scheme is where system administrators will report the IP of a 

host it has received spam from. The maintainer should verify the fact that 

the IP in question did indeed send the spam and then add it to the block 

list. There are a couple of suppliers of RBL in the market today and the 

‘aggressiveness’ of the maintainer to add an IP to the list is different 

between each provider (some will add an IP address quicker than others). 

 

The major problem with RBL and related technologies is that it punishes 

legitimate users as well as spammers. Blocking all mail from an ISP is 

draconian and heavy handed solution. Only a small minority of the users of 

the ISP have caused the problem yet every user of the ISP is punished!  

   

Other types of RBL have emerged where they are more selective on what is 

stored in the central repository. Some store IP addresses of open proxies, 

which spammers use to conceal their identities when sending spam. Others 
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store the dynamic IP addresses typically assigned to dial-up users in an 

effort to reject mail from unusual sources. These are a step in the right 

direction in the author’s opinion. 

3.3 Content Based Spam Filtering 

Spam will typically have distinctive content, which should be easy to 

distinguish from legitimate e-mail. In the previous ontology of spam 

filtering techniques, only parts of the content were examined, if at all. In 

the case of real-time block lists the e-mail may never be examined.  

 

Categorising e-mail based on its content seems like a logical progression 

from simplistic rule based approaches. This would help reduce error rates 

as legitimate e-mail would not be blocked even if the ISP from which it 

originated is on a real-time block list. In addition the presence of a single 

word (such as Viagra) should not alone cause the e-mail to be classified as 

spam. 

 

With the aid of Machine Learning techniques, rule sets would only need 

occasional refinement and in most cases the refinement is automated, 

meaning less hassle for end-users (most non computer science end-users 

typically do not care about how the spam filter works). As the spam 

changes over time, the machine learning techniques could help track the 

changes, automatically adjusting itself to increase accuracy against the new 

variant of spam. 

 

Machine Learning has brought a lot of new techniques to the problem of 

spam classification. A full taxonomy of all the techniques and their 

theoretical background is beyond the scope of this paper. Discussed below 

are the most prominent techniques that are currently making a serious 

impact on spam classification. 
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3.3.1 Content Hash Based Filtering 

It soon became apparent that the content of spam was quite similar. In 

addition the same message is sent in bulk, often in groups of one million 

spam e-mails at a time. Being able to quickly identify spam using a short 

hand notation would be a succinct advantage. The ideal choice of this 

short-hand notation was a hash (also known as a message digest).   

 

A hash of the content of the spam was computed, resulting in typically a 

128 bit (or 160bit) representation of the spam. When a new e-mail arrives 

its hash can be compared to a list of know spam hashes. If there is a match 

then the e-mail can be deleted without fear.  

 

The true strength of this technique only becomes apparent when we 

introduce a distribution mechanism for known spam hashes. A similar 

concept to the RBL approach, distributing known spam hash values allows a 

MTA or MUA to delete a spam without it ever having received it before.  

 

Anti-Spam has often been described as an arms race with spammers. As 

new techniques are developed to combat spam, spammers will try to 

circumvent these. In this case the spammers attacked the short-hand 

notation. A hash algorithm such as SHA-1 obeys the strict avalanche effect. 

This states that for every 1 bit of change in input at least half the bits in the 

digest should be affected.  

 

The strength underpinning the distributed hash technique was that spam 

content was the same. In order to circumvent the hash based filters 

spammers started to introduce some random variables into spam. Typically 

this would be random characters placed either in the body or on the subject 

line. The result was that each and every spam now had a unique hash 

value. When the hash of a spam was computed, its hash would not match 

that of any known spam since it contains some random variables. Due to 

the strict avalanche affect, the output was completely different for each 
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spam which has some random content. Efforts are underway to make fussy 

hash algorithms which would not be as prone to random variables in the 

content of the spam.  

 

3.3.2 Bayesian Filtering 

Examining spam and legitimate e-mail it becomes clear that the style and 

language used is quite different. Words that occur frequently in spam do 

not occur frequently in legitimate e-mail. This fact allows us to use some 

statistical tools to help classify spam from legitimate e-mail.  

 

An early, influential paper on the topic was [Graham02]. In his paper 

Graham described an algorithm for using Bayesian statistics (used in a very 

much simplified manner) to identify spam with an extremely high accuracy. 

The idea was to construct a probability for each word, on whether it was 

indicative of a spam.  

 

A high probability indicated that this word was normally present in spam 

but not present in legitimate e-mail and vice versa. Combining the 

probabilities for each word in a given e-mail it was possible to calculate the 

probability for an entire e-mail on whether it was a spam. A threshold could 

be set, so that any e-mail with a spam probability lower than this threshold 

would not be classified as spam. Any e-mails which exceeded this threshold 

would be marked as spam. 

 

The Bayesian probabilities of each word being indicative of spam were 

based on corpora of legitimate and spam e-mail being stored by the user. 

By examining both the size of the corpora and frequency of each word 

within the two corpora the Bayesian probabilities could be calculated. 

Bayesian statistics allow us to infer probabilities about future events by 

looking at past events (The probability that X will happen given that Y has 

happened). This exactly matches what we are trying to do in spam 
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classification. Based on the information contained in the corpora, we will try 

to infer a probability about whether a new instance of e-mail presented to 

the system is a spam or a legitimate e-mail. 

 

In the arsenal of weapons against spammers, Bayesian statistics based 

filters are one of the ‘big guns’. Since their introduction, Bayesian filters 

have proven to be highly effective in filtering spam, offering impressive 

accuracy of up to 99.999% - rule based filters do not offer such a high 

accuracy rate.  

 

In any arms race, if your competitor has developed a devastating new 

weapon, you must react to either develop a better weapon or find a way to 

reduce the effectiveness of their weapon. Spammers had to invest some 

time and effort in order to try and circumvent Bayesian filters. 

 

The problem spammers faces was that their spam contained words which 

were very indicative of spam, thus carried a high probability. When the 

calculation of the probabilities of all the words in a given e-mail was done, 

spam contained a lot of high probability words, thus increasing the 

probability being calculated for the entire e-mail. 

 

Spammers began to realise that their spam was not reaching its intended 

target because of Bayesian filters. Some began to include very neutral 

words in their spam in order to lower the overall probability. Words such as 

“hello” occur frequently in both legitimate and spam e-mail. They also 

began to obfuscate the words in their spam which had high probabilities, 

such as “Viagra” was obfuscated to something like “V-i-a-g-r-a”.   

 

The goal was to lower the probability of their spam to such an extent that it 

is lower than the threshold, thus will not be classified as spam and allowed 

to the user’s inbox. This trend is happening in more types of spam and with 

different variations of methods to lower the spam probability of the 
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message. Some have resorted to adding in some quotes by famous authors 

at the end of each spam. 

3.3.3 Instance Based Filtering 

Instance based learning is quite different to the other types of machine 

learning. It does not construct a model of some target function from the 

examples provided, rather it stores the examples and only generalises when 

a new instance is presented to the system for classification. The instance is 

compared against all the stored examples to find its similarity with them. 

From this metric a classification can be assigned. 

 

K-Nearest Neighbour is one of the most used and theoretically easy to 

comprehend, instance based machine learning. Training data presented to 

the system is stored. When a new instance is presented, its similarity to 

each of the training data instances is calculated. The K training instances 

which are nearest to the new instance are selected and can participate in 

classifying the new instance. A commonly used approach is that the 

classification that occurs most commonly in the K nearest neighbours is 

assigned to the new instance (The mode of the classifications in the K 

nearest neighbours). 

 

Instance based learning is called a lazy learner since it does not process the 

training data until a new instance has to be classified. This can mean a 

significant overhead at runtime, but has the advantage of a dynamic target 

function – it changes for each new instance presented for classification.  

 

Its use in anti-spam technology is not widespread due to the fact that 

instances need to be stored. This can lead to a large overhead in storage. 

In addition the lazy approach to generalising means that most processing is 

done at classification time (on-line). When dealing with a large volume of e-

mail, this processing overhead can be too high. An eager learner which 

   25



does most of its processing at training time (off-line) can be much more 

efficient when dealing with large volume of e-mail. 

3.4 Impact of Anti-Spam 

The fact that spammers are reacting to filtering is proof that it is making an 

impact. The time and effort spammers need to invest is greater now that it 

was in the past. This will increase the costs associated with sending spam 

and will hopefully reduce the problem of spam. 

 

3.4.1 A World Without Spam? 

Anti-spam sole objective is to stop spam, or at least make it manageable. 

Spammers’ sole objective is to deliver messages to as many people as 

possible for as little money as possible. I do fear that as one avenue is 

made more difficult for spammers, they will choose the path of least 

resistance and move to another communication medium in order to send 

their message.  

 

We have already begun to see spammers teaming up with virus creators. 

Computers are infected with a virus and then become an open relay for 

spammers. These are called zombies. The owners of the computer typically 

do not know their computer has been compromised. Spammers can 

command the computer remotely to begin sending spam.  

 

This is a worrying trend and shows that spammers will go to extraordinary 

lengths in order to save money and still deliver their marketing message. 
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4 Apparatus 

4.1 System 

The system is composed of several different subsystems each of which has 

a specific role or function. Raw data is input to the system in the form of 

Eudora MBX files. These are processed and each e-mail is stored in an 

internal object representation. 

 

Once the e-mails have been stored in an internal representation they can 

then modified by the text processing subsystem. Its role is to remove 

obfuscation and construct non-token features. The processed e-mails can 

then be tokenised, which is done in the tokenise subsystem. Its role is to 

break up an e-mail into its features and count occurrences. The tokenised 

e-mail information is stored in a new data structure which can be used by 

the next subsystem.  

 

Classification is the last subsystem; its role is to assign classification to an 

e-mail being presented to it. The classifiers will assign classifications to new 

instances based on generalisations from their training data. Two forms of 

classifier have been implemented; one being an eager learner (Bayesian) 

while the other is a lazy learner (K-Nearest Neighbour).  

 

Surrounding and controlling the ensemble of subsystems is a validation 

system. Its role is to conduct the experiments and collect results. A K-fold 

cross validation system was implemented. It will conduct the experiment K 

times then collect the results from each run. Finally it will calculate the 

arithmetic mean of the results. In the system the validation measures the 

error rate of the classifier. It also collects the false positive and false 

negative rates. Below a detailed description of some of the subsystems in 

the system is given. 
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4.2 Mail Input 

4.2.1 Corpora 

In order to conduct the experiments a collection of both spam and 

legitimate e-mail must be gathered. These corpora are used both in training 

and in testing the proposed classification techniques. A number of 

collections were used; this was in order to try to prevent local anomalies 

overfitting the classification techniques.  

 

Each data set consisted of a corpus of spam and a corpus of legitimate e-

mail. The tests were run of three data sets. The collection consists of 

archived e-mail from at least two distinct end-users. 

 

4.2.2 Eudora MBX files 

Most users tend to use Microsoft Outlook (or Microsoft Outlook Express) but 

this presented a problem. A proprietary file format is used by both. It is not 

an open standard thus it is impractical to collect mailbox files from users 

who used these MUAs. 

 

There are projects underway on sourceforge.net to make a conversion tool 

in order to allow users to switch from Microsoft Outlook/Outlook Express to 

another MUA allowing them to import all their old messages. LibPst is a part 

of the [ol2mbox] project and is a tool that will convert Microsoft Outlook 

PST files into maildir UNIX standard. Using LibPst it was possible to convert 

from PST files to Eudora MBX file format. 

 

The Eudora MUA by Qualcomm software is a client which uses the standard 

mbox file format when storing e-mail messages on the user’s hard disk. It is 

quite straightforward to read and parse this file format as Eudora does 

much of the parsing itself. Attachments are automatically stripped from the 
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e-mail and stored on disk. This means less time would need to be spent 

developing complex MIME parsing classes. 

 

In addition to the above advantages Eudora allows a user to import old 

messages from a Microsoft Outlook PST file. This would allow me to convert 

e-mails stored in PST files to the much more manageable Eudora MBX file 

format (mbox format). However this process was never foolproof and often 

fraught with complications and errors. Encrypted PST folders could not be 

read by Eudora and sometimes the import feature simply did not work. 

Manual manipulation was often needed for satisfactory construction of MBX 

files. 

4.2.3 Spam Collection 

In order to be as accurate as possible, wild spam was collected for use in 

experiments. Wild spam is spam collected directly by myself at a number of 

e-mail accounts. This is in contrast to second hand spam which is defined 

as spam contributed by other people (they forward or bounce the spam to 

you). An example of second hand spam is that of the spam corpus in the 

spam archive. 

 

The reason for using wild spam in preference to second-hand spam is due 

to the fact that the header information may be lost. In addition the act of 

forwarding the spam may introduce some anomalies that could affect the 

results obtained. In addition wild spam requires less parsing to remove 

redundant information. 

 

In addition the use of recently collected spam was used in each of the three 

data sets. Newer spam is harder to classify due to the obfuscation 

techniques employed by spammers. Using only new spam should be more 

of a challenge than using older – possibly easier to identify – spam. 
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4.3 Text Processing 

Noise is defined as being obfuscated and malformed material present in 

spam. This was a cause for concern when designing the system. It may 

seriously affect the tokenisation and the performance of the classifiers. A 

method of removing as much noise from the corpus before the 

classification stage would be advantageous.  

 

Regular expressions offer a lot of power when dealing with certain types of 

noise. Throughout the system regular expression have been used to 

identify, remove and replace noise in the data before it is tokenised. This 

should help to improve tokenisation and the performance of the 

classification since better features are being considered. 

4.3.1 HTML Removal 

One type of noise where this power (regular expressions) can be leveraged 

is dealing with HTML comment salad. A simplistic regular expression could 

be constructed in order to identify all HTML comments. Since HTML 

comments are not displayed to the end-user its complete removal should 

not cause any damage. 

 

Within the system a text removal method was developed. It took a supplied 

regular expression which it used to search for matches. Once a match is 

found, the match is removed from the text. The output of the method is the 

input text with all the matches of the regular expression removed. In the 

case of HTML comment salad this would identify all HTML comments and 

remove them completely from the e-mail. 

 

4.3.2 HTML Replacement 

The vast majority of spam is HTML (MIME type text/html). Within the HTML 

there is a lot of noise in the form of comment salad, tag salad, word 
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obfuscation, random word and random character salad. Below is an 

example of each: 

<B>Che<!--  benthic -->ap V<!--  bounty -->ia<!--  coffey -->g<!--  physik -->ra<FONT 

COLOR="#FF0000"> 

HTML comment Salad 

<CENTER><P><FONT size=+0><B>GET<!k> Y<!r>OU<!d>R <!u>UN<!y>I<!b>

VE<!j>R<!m>S<!n>I<!q>T<!y>Y<!c> D<!v>I<!c>P<!l>L<!b>O<!t>MA</B><BR> 

Tag Salad 

Now What are you wai.ting for? Here's anoth.er pi.ck - Another pote.ntial big

N_._E_._W_._S  V-i-a-g-r-a is Lousy??? 

Obfuscation 

lhqvea rbvxts jwmdjh ftgibb yxilhy lbffde wyqjvg hnsmha idnkdx kyhvbp ethdsa qgbxvw 

ewkocb gybqyj cbqgua 

Random Character Salad 

faulkner squawroot cathy catapult registrar stephanie dictate crumble cambrian kingdom

cartograph, genesis. anaesthesia. scion 

 

Random Word Salad (found at end of spam). 

Table 1 - Types of Noise in Spam 

Tag salad works due to the fact that the HTML parser used to display HTML 

messages to the end-user, simple ignores tags it does not understand. This 

allows spammers to introduce tag salad without fear of the spam not being 

displayed to the end-user. 

 

Many argue that HTML tags offer valuable features when classifying spam. 

Although they do offer some value, most of the tags in their original state 

offer limited value as features.  

 

   31



As part of the system, a text replacement method which will take a regular 

expression and some replacement text was developed. Anywhere in the 

given e-mail where the regular expression matches, the replacement text is 

substituted for the original text. As an example any type of font tag was 

replaced with a single feature called FONT.  

4.3.2.1 Web Bugs Replacement 

As discussed in previous chapters’ spammers are now using web-bugs as a 

way to get some feedback from their spam campaigns.  

 

The existence of web bugs should allow spam to be identified more easily. 

When processing the body of an e-mail regular expression can be used to 

look for image tags. Then replace the entire tag with a simple token (IMG). 

While loosing information on the domain from which the web bug was to 

run from this should not be disastrous since the presence of web-bugs in 

legitimate e-mail is not that common, thus make e-mails containing them 

more suspicious of being spam.  

 

In addition, when considering a URL the domain part is now commonly an 

IP address. This is especially prevalent in the more risqué and scam 

categories of spam. The reason is that most of this category of spam is 

selling illegal material, thus there are very few ISPs that will allow this kind 

of material to be sent over their network. The spammers resort to using 

open relays or even Zombies.  

4.3.2.2 URL 

URLs may give some information but it can be a lengthy process in order to 

try and extract this it. There is little information to be gleamed by 

examining a URL. In fact they are normally a source of randomness. The 

only information that is collect in the system from URLs is whether their 

domain is DNS based (e.g. http://www.cs.tcd.ie) or IP based (e.g. 

http://134.226.0.1). 
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For anchor tags and other URLs in the body of the e-mail being processed 

they are replaced with another token. Within the system, the text 

replacement method is used to replace any DNS based URL with the 

feature LINKDNS and similarly with the IP based URL, it is replace with the 

feature LINKIP.  

 

4.3.3 Obfuscation and De-Obfuscation 

Spammers are using obfuscation to evade many types of filters. Fortunately 

the presence of obfuscation is often a strong indicator of spam. Most (if not 

all) legitimate e-mail does not use obfuscation. There are two main types of 

obfuscation used by spammers, the first being to add random punctuation 

in between the letters of certain words. These words tend to be words such 

as ‘Viagra’ which will normally be a strong indicator of spam.  

 

The second type of obfuscation is replacing certain letters with digits or 

punctuation that looks similar to it. Research [Rawlinson76] has shown that 

misspelled text is clearly legible. This seems to be true for obfuscated text 

also. Removal of this type of obfuscated text does not occur in the system 

as its role is not to disrupt the tokenisation process.  

 

Since its presence is a strong indication of spam the system should have a 

feature that corresponds to whether or not obfuscation is present. In 

addition obfuscation is normally directed at trying to disrupt the tokenising 

process as well as any classification process. Its removal is beneficial to 

both, thus the system was developed to include a solution that will remove 

obfuscation (de-obfuscate) before tokenisation is done.  
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4.3.3.1 Added Punctuation 

In the system, when processing the body of an e-mail a method is run that 

checks for obfuscation of words by the added punctuation method. The 

approach is to first identify that obfuscation is present and then remove it.  

 

It uses a simple regular expression to find occurrences of obfuscated words 

and then removes the punctuation between the letters. The obfuscation 

removal takes place in the BodyProcessor class which is part of the 

textprocessing package.  

 

For example the feature “V-i-a-g-r-a” is first selected by the regular 

expression then the token is stripped of any punctuation and finally 

replaced with token “Viagra”. The obfuscation remover will deal with any 

punctuation used between the letters of the word as well as any number of 

punctuation symbols used. As another example the feature 

“V**I**A**G**R**A” is again replaced with “VIAGRA” and as you can see 

case is preserved as it may be useful in the later stages of classification. 

4.3.3.2 Misspelling 

A rather simple way to detect type of obfuscation was developed in the 

system. A regular expression is used to identify the presence of words 

which contain a digit in the middle of them. If the token consists of all 

digits then it is not considered a misspelling, similarly if there are no digits 

then it is considered a valid token. When there are one or more digits in the 

token then it is considered a misspelling. The token is not altered in any 

way but a counter keeping track on the number of misspelled tokens in a 

given e-mail body. A non-token feature is created, resulting in 

“OBFUSCATION” if there were any matches found or “NOOBFUSCATION” if 

there were no matches found on the regular expression. 
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4.3.4 Random Character Words 

As regards the random character salad generated by spammers, it’s clear 

that this randomness can be useful to us when classifying. When selecting 

the Z best features, the Information Gain value for each candidate feature 

is calculated. Random strings of characters tend to produce comparatively 

high information gain values. This may be due to the fact that they are 

extremely uncommon in other spam or legitimate e-mail respectfully.  

4.4 Feature Selection 

E-mails are represented by a vector containing all the features found in that 

particular e-mail. Considering the corpus as a whole, each e-mail is 

represented by a vector of all N features found in the corpus. The vector 

attributes count the number of times a particular feature was found in the 

e-mail. 

{ a1(xi), a2(xi), a3(xi) … aN(xi) }  

Equation 1 - Feature Vector 

Here e-mail xi which is represented by the feature vector containing 

attribute a1 to aN where ar(xi) denotes the value of the rth attribute of 

instance xi. If, for example attribute a1 represents the feature “Viagra” in 

the e-mail then a1(xi) is the frequency of that feature in the e-mail xi. 

 

The number of features found in the entire corpus is N. Thus each of the M 

e-mails in the corpus can be represented by a feature vector of the N 

features. 

E-Mail Feature Vector 

Xi { a1(xi), a2(xi), a3(xi) … aN(xi) } 

Xi+1 { a1(xi+1), a2(xi+1), a3(xi+1) … aN(xi+1) } 

Xi+2 { a1(xi+2), a2(xi+2), a3(xi+2) … aN(xi+2) } 

… … 

XM { a1(xM), a2(xM), a3(xM) … aN(xM) } 

Table 2 - Feature Vectors 
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With such a large state space reduction techniques are inevitable. The 

dimensionality of the space without some form of reduction would be 

impractical to work with. Reduction techniques allow us to reduce the size 

of the state space without affecting accuracy.  

 

In the case of spam filtering the number of attributes could run into the 

hundreds of thousands. Most of the attributes offer little real value when 

classifying so their removal should not affect the accuracy of the classifier. 

The saving in memory and processing far outweighs the possible loss of 

accuracy. 

 

Information Gain is the measure the reduction in entropy. The Entropy 

measures the impurity of a set of examples. Low entropy follows a uniform 

probability distribution. High entropy follows a varied distribution. 

Information gain is used in decision trees when deciding on which attribute 

to sort on next.  

 

Information gain values were used to rank the features. Choosing the top Z 

features will select the features with the lowest Information Gain value. All 

e-mails are then considered using only these features. Typically a value of 

600 or 700 is used for Z.  

 

This reduces the state space dramatically. Going from a situation where 

each e-mail was considered using N features to a situation where they are 

considered using Z (a small number) of attributes. Information Gain allows 

us to do this without impacting disastrously on the accuracy of the 

classification process. 
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4.5 Classification 

4.5.1 Bayesian 

The Bayesian implementation is the exact algorithm as described in 

[Mitchel97] shown in the following equation. No alterations or modification 

have been made to the algorithm.  

  

{ }
( ) ( )

, 1

arg max
j

Z

NB j i j
v spam legit i

v P v P
∈ =

= ∏ a v  

Equation 2 - Naive Bayesian Classifier 

 

4.5.2 K-Nearest Neighbour 

The K-Nearest Neighbour classifier is quite intuitive. It holds a list of 

examples which it uses to classify new cases presented to it.  

 

When a new case is presented to it, the distance (d) between the new case 

and all the examples held by the classifier is calculated. The distance used 

in practically all Nearest Neighbour classifiers is the Euclidean distance, 

given in the formula below. 

 

 ( ) ( )( )2 2
1 2 1 2d x x y y= − + −  

Equation 3 - Euclidean Distance 2 Dimensional Space 

 

For an N dimensional space, point’s p and q: 

 

 ( )2

0

N

i i
i

d p q
=

= −∑  

Equation 4 - Euclidean Distance N Dimensional space 
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With the distance calculated, the examples are ranked according to the 

distances. The K examples which are nearest (lowest distance) to the case 

which we are trying to classify are used in assigning a classification to the 

case.  

 

A majority voting scheme is often used, whereby the mode of the 

classifications of the K-nearest Neighbours is calculated and assigned to the 

instance presented for classification using the algorithm below given in 

[Mitchel97]: 

 

Given a query instance to classify xq and x1 … xk denote the k training 

instances that are nearest to xq 

    

 ( ) ( )( )
1

arg max ,
k

q i
v V i

f x vδ
∈ =

← ∑
)

f x  

where if and where ( ), 1a bδ = a b= ( ),a bδ 0= otherwise. 

Equation 5 - K-Nearest Neighbour Classification Algorithm 

 

A variation on the K-nearest Neighbour algorithm, proposed by 

[Androutsopoulos03] is that instead of selecting the K nearest instances, 

the algorithm selects the K nearest distances. All instances that are within 

the K nearest distances are used when calculating the mode. 

 

One further addition made to the above algorithm was in the case of a tie – 

that is there were an equal number of ‘spam’ and ‘legitimate’ classifications 

in the eligible instances. In the system the value of K is incremented and 

the algorithm is run again. This is repeated until a majority of a certain 

classification is reached. In the worst case scenario, K-nearest neighbour 

considers all instances, which is similar to a distance weighting scheme with 

a weight of 1 for all instances.  
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4.6 Validation 

4.6.1 K-Fold Cross Validation 

Ideally infinite training and testing data would be available but this is not a 

reality. While it is fairly easy to collect copious amounts of spam relatively 

easily, assembling a large corpus of legitimate e-mail is more troublesome. 

People in general do not wish to publish private and potentially confidential 

e-mails – which does beg the question, why send confidential material via 

e-mail since it’s not secure.  

 

Limited amounts of data were available, thus it was critical that the most 

information be extracted from the data as possible. Machine Learning has 

techniques for making the most efficient use of a limited data. The system 

has employed a technique called K-Fold cross validation. This technique not 

only handles the problem of limited training data but also helps stop 

overfitting.  

 

This process basically stratifies the input data. In each run of the cross fold 

validation 10% of the spam data and 10% of the legit data is used for 

testing. The other 90% of both spam and legit data is used for training. In 

each run a different 10% of the data is used for testing. 
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Spam 
Test 1

Train 1

 

Figure 5 - Stratification in K-Fold Process 

At the end of the K repetitions the arithmetic mean of the results obtained 

in each of the K runs is calculated. This represents a much closer 

approximation to the real value that any of the individual results. The mean 

value should also aid in the fight against over-fitting. Phenomena in one 

part of the input data should not affect all K runs.  

 

In the system this technique is implemented in the KFoldCrossValidation 

class. Its responsibility is to conduct the experiments K times, collect the 

results and compute the arithmetic mean.  

 

Calculating the arithmetic mean of the error rates for each of the runs to 

find an estimate of the true error rate for that particular configuration of 

the classifier can be done. 

Train 10

Test 

10

 

  

…
 

…
 

…
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4.7 Design and Implementation 

The framework which has been developed was designed for the sole 

purpose of spam classification. It is therefore not as general as some of the 

other text classification frameworks available.  

4.7.1 Java 

Developing the framework using Java was advantageous as it has a lot of 

advantages. It is platform independent meaning that the system can run 

the platform on any Operating System that has a Java Virtual Machine.  

 

Regular expressions are supported by Java. Thus allowing the full use of 

regular expressions within the system (most prominently in the removal of 

obfuscation and noise from the cases). Support for strings is also present in 

Java which allowed for easy modelling and construction of features for use 

in the classification process. 

 

While Java is somewhat slower than other languages its benefits matched 

the requirements for this project. 

 

4.7.2 Packages 

There are a number of packages in the apparatus. Each package contains 

classes that correspond to different phases in the classification process; 

from extracting the raw information right through to the collection of 

results from the classifiers. The overall structure is given in Figure 6.  

   41



 

Figure 6 - Package View of System 

4.7.2.1 Extractor and Container 

This package contains most of the classes that are involved with extracting 

the features from the raw data and storing the data in an internal 

representation. Raw data means the Eudora MBX files stored on disk. 

Internally in the system, the raw data is stored in objects of class 

MailContainer. 

 

 

 

 

 

Figure 7 - Extractor Process 

From their raw state, each e-mail (spam and legit) needed to represent as 

an object within the system. A class was developed that would read in the 

file contents and parse it. The result would be a list containing objects 

which stored all the information for a single e-mail. A container class called 

MailContainer was used to store information for each e-mails header and 

Container 
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body information. At the end of this process a list of MailContainer objects 

was created, each object representing an e-mail in the MBX file. 

 

This representation was only the first stage in the process. Further 

refinement was needed. The raw e-mail contained a lot of noise (salad, 

obfuscation etc…). Processing was needed to remove this noise from the 

data. The CaseBuilder class was constructed to orchestrate the removal of 

the noise and to convert from raw data to an information, which is then 

stored in a new container object Case.   

Case 
MailContainer 

CaseBuilder

 

Figure 8 - Case Builder Process 

A class called CaseBuilder was developed which would take the list of 

MailContiner objects and iterate through them. Each iteration would involve 

the following steps.  

 

First a MailContainer object would be retrieved from the list of 

MailContainer objects. The body of the e-mail would be retrieved from the 

object using a getter method. The body is raw e-mail data and is 

represented as an array of Strings. 

 

Next the body would be passed to an instance of the BodyProcessor class 

where it would undergo noise reduction and removal. This would include 

salad removal, obfuscation removal and obfuscation replacement. Once 

MailContainer 
… …

Case 
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processed, the body is then returned to the CaseBuilder object that invoked 

the processing. 

 

Next the body is tokenised, resulting in a table of words and their 

frequency within the e-mail. This is done in the Tokeniser and PairTokeniser 

class, depending on which configuration the system is in. The table is 

stored in a HashMap object and this is returned to the invoking 

CaseBuilder. 

 

The CaseBuilder will then construct a new Case object to hold the 

information obtained from the raw data. The Case object will hold the table 

produced by tokenisation and also the classifications of the e-mail (spam or 

legitimate). It is important to note that the classification of the cases is 

known a priori since we are dealing exclusively with e-mails from the 

corpora (which have already been classified).   

 

The information in now in a state where it can be used by the feature 

selection and classification packages of the system. 

 

4.7.2.2 Text Processing 

This package contains the main proportion of experimental classes. Its role 

is to aid in transforming the raw e-mail message into an internal 

representation within the system which can be used for classifying spam 

from legitimate e-mails. 

 

Processing raw e-mail body text into a form that can be tokenised is the 

role fulfilled by BodyProcessor. The class contains a number of methods 

designed to remove noise from the body of the e-mail (in the form of salad 

and obfuscation) introduced by spammers in order to try circumvent spam 

filters. 

 

   44



Regular expressions are used to identify obfuscation and methods within 

this class allow for removal or replacement of obfuscated words. This class 

also produces the non-token features such as the token produced by 

replacing HTML font tags with the token “FONT “. The output of this class is 

a String which contains the cleaned body of the e-mail along with some 

non-token features. 

 

Tokeniser and PairTokeniser take the output from the BodyProcessor and 

convert from a String to a table containing each distinct token in the e-mail 

body and its frequency. Tokeniser simply tokenises on white space 

characters.  

 

PairTokeniser groups two adjacent tokens together. When an e-mail is 

being tokenised, pairs of tokens are joined together with a reserved 

character (^). These new tokens are treated the same in the rest of the 

application as ordinary (single word) tokens. Below is an example where 

the input String is being tokenised into pair tokens. 

 

Figure 9 - Pair Token Process 

StopWordRemover, as its name implies, is a class that is responsible for the 

removal of stopwords. Stopwords are common English language words 

such as “the” or “as”. Their presence does not help in classifying e-mails as 

they occur too often. Removing them will allow for a reduction in the state 

space. 

The quick brown fox… 
quick^brow

The quick brown fox… 
The^quick 

The quick brown fox… 
brown^fox 

Pair 
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The class reads a list of stopwords provide by the user in a file. It then will 

remove any occurrence of the stopwords from the body of each e-mail. 

This should result in more accuracy as the retained words are all more 

descriptive of the true classification of the e-mail. 

 

While in this initial version of the system the header information was not 

included but provisions have been made for doing so in later evolutions of 

the system. The HeaderProcessor class will be used to do any processing of 

e-mail headers before they are tokenised and the information stored in 

Case objects. 

4.7.2.3 Feature Select 

This package contains the class responsible for doing the feature selection 

in the system. Feature selection is essential since it will reduce the 

dimensionality of the state space. This will save processing time and 

resources such as memory.  

 

The FeatureSelect class is responsible for selecting the best features to use. 

It uses Information Gain [Quinlan86] to rank all the candidate features. 

Then the top Z features can be selected. Features can be anything, from 

single word tokens to the percentage of white-space in the e-mail.  

 

For each and every feature its Information Gain value is computed and 

stored. A sorting algorithm is run in descending order. The top Z features 

correspond to the 0 – Z indexes on the sorted features. 

 

4.7.2.4 Classify 

NearestNeighbour is the class where the K-Nearest Neighbour classifier is 

implemented. It is essentially the same as that presented by 

[Androutsopoulos03] with one slight variation.  
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When the mode can not be calculated, (i.e. number of neighbours of one 

classification equals the number of neighbours for the opposing 

classification) K is incremented and the process run again. This is recursive 

until a K value is reached where the mode can be calculated. 

 

Bayesian is the class where the Bayesian classifier is implemented. It is 

based on an algorithm given in [Mitchel97] where it was used to classify 

documents and the algorithm has not been modified in any way.  
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5 Experiments and Evaluation 

In this chapter the experiments conducted and the results obtained from 

them will be discussed. The data used in the experiments and any insight 

that could be extracted from the results will also be discussed. 

 

5.1 Corpora 

The experiments were run over three data sets each collected from 

different sources. Finding corpora of legitimate e-mail is a challenging task 

and was fortunate that some of my colleagues agreed to let their archived 

e-mail be used in these experiments. For obvious reasons the corpora can 

not be made publicly available. 

 

Spam for all three data sets was collected from a personal e-mail account 

which has been operational for a number of years. Spam accretes at that 

account at the rate of about 60 per day. Most users do not archive spam 

plus testing the system with up-to-date spam, which could include all the 

obfuscation techniques under investigation, is beneficial. In each data set a 

different random selection of spam was used. 

 

Data set one (DS1) consisted of a corpus of spam, described above and a 

corpus of legitimate e-mail. The legitimate e-mail came from an archive of 

e-mail from my final year in DCU. It consisted of 200 e-mails which ranged 

from personal e-mail to e-mails sent to the class mailing list (and 200 

spam).  

 

Data set two (DS2) consisted of a corpus of spam as described above and a 

corpus of legitimate e-mail provided by a colleague. The legitimate corpus 

is an archive of my colleague’s final year e-mail. It consists of 168 e-mails 

which again contained both personal and mailing list e-mails (and 200 

spam). 
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Data set three (DS3) consisted of a corpus of spam and legitimate e-mail 

collected during my Masters programme. It consists of 500 e-mails, which 

are mostly personal e-mail, with a small proportion of e-mails sent to the 

class mailing list (and 200 spam). 

 

5.2 Baseline 

Before any experimentation and evaluation can begin, a baseline 

measurement is needed in order to compare future results with. The 

baseline setup for these series of experiments was to run the classifier with 

just a standard tokenisation. Every feature was a token, which represented 

a single word from the body of the message. No obfuscation removal or 

non-token features were considered. 
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Figure 10 - 3-NN vs. Bayesian Baseline Error 

   49



The graph above shows the error rate achieved for both Bayesian and 3-NN 

classifiers (0.2 represents an error rate of 20%). The results show that over 

all three data sets, Bayesian classification achieves a higher accuracy. The 

exact cause of the disparity is unclear and further investigation of this will 

need to be conducted in the future. 

 

Error is a cumulative figure calculated by combining both false positive and 

false negative values and dividing by the number of instances (n).  

 

 
( )FP FN

n
+

 

Equation 6 - Error 

 

The corresponding false positive and false negative values for each of the 

data sets and classifier are presented below. 

 

 3-NN Bayesian 

Data Set FP FN FP FN 

1 0.007 0.20475 0.0285 0.031 

2 0.214722 0.054167 0.030278 0.039167 

3 0.2563 0.0084 0.0977 0.0616 

Table 3 - False Positive + False Negative for Baseline 

 

With 3-NN, the number of false positives far outweighs the number of false 

negatives. False positives are far more harmful than false negatives thus 

the 3-NN performance is not optimal. Bayesian results are better since they 

disparity is much less severe. In all three data sets under the Bayesian 

classifier, the proportion of FP to FN is roughly similar.  
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Ideally what should be seen as the following techniques are applied is a 

reduction in error in total, with a much lower error rate of false positives 

than false negatives. 

 

5.3 Stopword Removal 

The first experiment was studying if removal of stopwords would affect the 

error rates of the classification. In information retrieval, it is normal to 

remove stopwords from the document. Stopwords are words which occur 

very frequently and offer no real description about the document. 
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Figure 11 - 3-NN Baseline vs. Stopword 

 

Examining the results obtained from the 3-NN classifier its clear to see a 

reduction in error when stopwords were removed. The table below will 
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summarise the impact made by the removal of stopwords in the 3-NN 

classifier.  

 

 

 

Data Set Baseline Error Stopword Error 

1 0.21175 0.17875 

2 0.268888889 0.190277778 

3 0.2647 0.227 

Table 4 - 3-NN Error Rate Baseline vs. Stopword 
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Figure 12 - Bayesian Baseline vs. Stopword 

 

Results from the Bayesian classifier also indicate a reduction in error. The 

following table summarises the results. 
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Data Set Baseline Error Stopword Error 

1 0.0595 0.05375 

2 0.069444444 0.065555556 

3 0.1593 0.01521 

Table 5 - Bayesian Baseline Error vs. Stopword Error 

 

The False Positive and False Negative values for each of the cumulative 

error figures are given by the table below. 

 

 3-NN Bayesian 

Data Set FP FN FP FN 

1 0.001 0.17775 0.02625 0.0275 

2 0.1675 0.022778 0.027778 0.037778 

3 0.2195 0.0075 0.0858 0.0663 

Table 6 - False Positive + False Negative for Stopword 

 

While there has been a reduction in the error for both classifiers, the 

majority of errors tend to be false positives. As these are more costly than 

false negatives, a reduction in the number of false positives would be 

advantageous.  

 

 

 

5.4 Obfuscation 1 

This experiments deals with the replacement of certain HTML tags with 

custom tokens. Image tags are replaced with the token “IMG”, font tags 

are replaced with “FONT” and URLs are replaced with “LINKDNS” or 

“LINKIP”. Spaces represented by “&nbsp;” are replaced by an actual space 

and finally any other HTML escape is replaced with a space.  
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3-NN Baseline vs Obfuscation 1
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Figure 13 - 3-NN Baseline vs. Obfuscation 1 

 

The results obtained from the 3-NN classifier above show a decrease in 

error when using the obfuscation 1 setup. The decrease is apparent over all 

three data sets and in some cases is quite significant. The table below 

summarises the results obtained. 

 

Data Set Baseline Error Obfuscation 1 Error 

1 0.21175 0.0162 

2 0.268888889 0.178055556 

3 0.2647 0.2397 

Table 7 - 3-NN Baseline Error vs. Obfuscation 1 Error 
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Bayesian Baseline vs Obfuscation 1
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Figure 14 - Bayesian Baseline vs. Obfuscation 1 

 

The results obtained from the Bayesian classifier show a different result. In 

Data Sets one and two, error increased significantly while in Data Set 3 

error reduced significantly. Below is a table summarising the figures. 

 

 

Data Set Baseline Error Obfuscation 1 Error 

1 0.0595 0.0705 

2 0.069444444 0.092777778 

3 0.1593 0.1271 

Table 8 - Bayesian Baseline Error vs. Obfuscation 1 Error 

 

 

The breakdown of false positive and false negative that constitute the error 

values in the data above is given in the following table. 
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 3-NN Bayesian 

Data Set FP FN FP FN 

1 0.0175 0.1445 0.04275 0.05 

2 0.115278 0.062778 0.017222 0.075556 

3 0.2226 0.0171 0.0494 0.0777 

Table 9 - False Positive + False Negative for Obfuscation 1 

 

 

 

 

5.5 Obfuscation 2 & 2(i) 

Obfuscation 2 was an aggressive removal of HTML from the body of the e-

mail. All HTML comments were removed followed by any HTML tags. A 

regular expression was used that would match against an opening angle 

bracket then any amount of text, then a closing angle bracket. The result 

was that anything of the form <text> was removed where text could be 

anything. 

 

Finally in an effort to reduce text such as “buy!this!now” to “buy this now”, 

the regular expression would look for words of length 3 or greater followed 

immediately by punctuation. It would then replace the punctuation with a 

space. 

 

In the experiment Obfuscation 2(i) the removal of HTML tags was switched 

off to see the affect it would have on the results. Removing all HTML tags is 

quite severe and a lot of information is lost. This can lead to ambiguity 

when classifying spam from legitimate e-mail. It still removed all HTML 

comments and the punctuation replacement was also left in place. 

 

The results obtained from running Obfuscation 2 and Obfuscation 2(i) is 

presented on the graphs below. 
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Figure 15 - 3-NN Baseline vs. Obfuscation 2 

 

As can be seen in the diagram, Obfuscation 2 results in a dramatic increase 

in error rates compared with the baseline. This could be due to massive 

amounts of information being lost in removal of HTML tags. Obfuscation 

2(i) supports this since the inclusion of HTML tags (not HTML Comments) 

reduces the error values significantly. The table below summarises the 

results obtained. 

 

Data Set Baseline error Obfuscation 2  Obfuscation 2(i) 

1 0.21175 0.281 0.20175 

2 0.268888889 0.349444444 0.285555556 

3 0.2647 0.3138 0.2544 

Table 10- 3-NN Baseline Error vs. Obfuscation 2 + Obfuscation 2(i) 
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Figure 16 - Bayesian Baseline vs. Obfuscation 2 

 

The results obtained from the Bayesian classifier show a similar trend with 

one exception. In Data Set 1, Obfuscation 2(i) results in a colossal increase 

in error. This could be due to a phenomena localised in the Data Set as it 

does not tally with the remaining two sets of results. The table below 

summarises the results obtained. 

 

Data Set Baseline Error Obfuscation 2 Obfuscation 2(i)

1 0.0595 0.11675 0.07825 

2 0.069444444 0.130277778 0.115833333 

3 0.1593 0.1196 0.1071 

Table 11 - Bayesian Baseline Error vs. Obfuscation 2 + Obfuscation 2(i) 

 

Finally the proportion of false positives and false negatives for each error 

values is given the following two tables. 
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 3-NN Bayesian 

Data Set FP FN FP FN 

1 0.04125 0.23975 0.023 0.09375 

2 0.348611 0.000833 0.0425 0.087778 

3 0.3134 0.0004 0.0524 0.0672 

Table 12 - False Positive + False Negative for Obfuscation 2 

 

 

 

 3-NN Bayesian 

Data Set FP FN FP FN 

1 0.0145 0.18725 0.02475 0.0535 

2 0.211944 0.073611 0.028333 0.0875 

3 0.2295 0.0249 0.0707 0.0364 

Table 13 - False Positive + False Negative for Obfuscation 2(i) 

 

 

 

 

5.6 Obfuscation 3 

Obfuscation 3 involved removing obfuscated. Spammers often try to hide 

certain words such as “Viagra” by adding punctuation between each letter 

(“V-i-a-g-r-a”). The system incorporated a way to detect these tokens and 

to remove the added punctuation, so, for example “F-r-e-e” would be 

reduced to “Free”. 

 

A more challenging task was where the obfuscation is not added after each 

letter but after a group of letters. For example “Via-gra” or “Vi-ag-ra”. In 
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the system additional methods were developed to identify and try to 

remove the punctuation.  

 

A problem that occurred while testing was what to do with tokens such as 

“click!here” these are obviously two separate words, ideally the punctuation 

would be replaced by a space. The system was unable to distinguish 

between the two so the punctuation was removed and the two words 

concatenated. In the previous setup the punctuation was replaced with a 

space, but the same applied to punctuation added between letters in a 

word. 
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Figure 17 - 3-NN Baseline vs. Obfuscation 3 

The results obtained from the Nearest Neighbour classifier show a marginal 

reduction in error. The following table summarises the results. 

 

Data Set Baseline Error Obfuscation 3 Error 

1 0.21175 0.199 

2 0.268888889 0.253888889 

3 0.2647 0.2365 

Table 14 - 3-NN Baseline Error vs. Obfuscation 3 Error 
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Figure 18 - Bayesian Baseline vs. Obfuscation 3 

Results obtained from the Bayesian classifier are not so promising. They 

show a substantial increase in error in two of the Data Sets and a decrease 

in the third.  

 

Data Set Baseline Error Obfuscation 3 Error 

1 0.0595 0.0685 

2 0.069444444 0.112222222 

3 0.1593 0.115 

Table 15 - Bayesian Baseline Error vs. Obfuscation 3 Error 

 

The following is the False Positive and False Negative Error values. 

 

 3-NN Bayesian 

Data Set FP FN FP FN 

1 0.01875 0.18025 0.023 0.0455 

2 0.156944 0.096944 0.025556 0.086667 

3 0.2214 0.0151 0.0638 0.0512 
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Table 16 - False Positive + False Negative for Obfuscation 3 

5.7 Obfuscation 4 

This configuration tested the idea of non-token features. A simplistic non-

token feature was developed which basically was a count on the different 

classes of characters in the body of the e-mail. The hypothesis was that 

spam would contain a lot more punctuation than legitimate e-mail.  

 

A character counter would count the number of occurrences of 

alphanumeric characters, white space characters and non-alphanumeric 

characters. It would then make a feature depending on the percentage of 

the e-mail that was alphanumeric, white space or non-alphanumeric.  
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Figure 19 - 3-NN Baseline vs. Obfuscation 4 

 

 

The inclusion of this non-token feature appears to have made a distinct 

impact on the error values for Data Set one and two. In data set three it 

made a marginal increase in error. 
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Data Set Baseline Error Obfuscation 4 Error 

1 0.21175 0.13975 

2 0.268888889 0.21966667 

3 0.2647 0.2669 

Table 17 - 3-NN Baseline Error vs. Obfuscation 4 Error 
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Figure 20 - Bayesian Baseline vs. Obfuscation 4 

 

Results obtained from the Bayesian classifier show a reduction in error over 

all three Data Sets.  

 

Data Set Baseline Error Obfuscation 4 Error 

1 0.0595 0.04775 

2 0.069444444 0.061111111 

3 0.1593 0.1528 

Table 18 - Bayesian Baseline Error vs. Obfuscation 4 Error 
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The following is the False Positive and False negative results for 

Obfuscation 4. 

 3-NN Bayesian 

Data Set FP FN FP FN 

1 0.03825 0.1015 0.01625 0.0315 

2 0.185 0.034167 0.033333 0.027778 

3 0.2599 0.007 0.0983 0.0545 

Figure 21 - False Positive + False Negative for Obfuscation 4 

 

 

5.8 Obfuscation 5 

This experiment was to test the impact of just identifying the presence of 

obfuscation. Its presence alone should signify that the e-mail is a spam, 

since legitimate e-mail does not need to be obfuscated (unless you have 

some strange friends).  

 

The system indicated the presence of obfuscation by constructing a non-

token feature. The feature should a strong candidate in the feature 

selection process and should help to easily classify spam from legitimate e-

mail. 

 

   64
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Figure 22 - 3-NN Baseline vs. Obfuscation 5 

 

There is no difference between the values obtained in the baseline 

experiments and those obtained in the Obfuscation 5 experiments. This is 

also the case in the Bayesian classifier results shown below. After 

examining the log files produced it’s clear that the non-token features used 

to describe the presence of obfuscation in an e-mail did not appear in the 

top Z features. 
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Figure 23 - Bayesian Baseline vs. Obfuscation 5 

 

This may be to errors in the implementation of the obfuscation 

identification module within the system. Further investigation is needed to 

deduce the exact cause. 

 

 

 

5.9 Pair Tokens 

Pair Token instinctively should hold more information than single features 

alone. The pair token “Hot teens” holds more descriptive information than 

“hot” or “teens” alone.  

 

A simple pair token generator was developed which concatenated adjacent 

tokens. While more advanced methods of creating pair-tokens are available 

this crude version should show if the premise holds any value.  It should be 
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noted that in the pair token experiment, both single token feature and pair 

token features were put forward for feature selection. 

3-NN Baseline vs Pair-Tokens

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3

Data Set

Er
ro

r Baseline
Pair-Tokens

 

 

Figure 24 - 3-NN Baseline vs. Pair Tokens 

The results from the Nearest Neighbour classifier were not promising. They 

show a significant increase in error over all three Data Sets when 

considering pair tokens. 

 

Data Set Baseline Error Pair Token Error  

1 0.21175 0.21675 

2 0.268888889 0.300555556 

3 0.2647 0.2719 

Table 19 3-NN Baseline Error vs. Pair Token Error 
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Figure 25 - Bayesian Baseline vs. Pair Tokens 

A similar result was obtained when considering the Bayesian classifier. It 

too shows a increase in error when compared with the baseline figures.  

 

Data Set  Baseline Error Pair Token Error 

1 0.0595 0.0615 

2 0.069444444 0.072222222 

3 0.1593 0.1682 

Table 20 - Bayesian Baseline Error vs. Pair Token Error 

 

The False Positive and False Negative values constituting the Error values 

presented above are as follows. 
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 3-NN Bayesian 

Data Set FP FN FP FN 

1 0.01475 0.202 0.03125 0.03025 

2 0.251667 0.048889 0.03 0.042222 

3 0.2641 0.0078 0.1025 0.0657 

Table 21 - False Positive + False Negative for Pair Token 

 

In other experiments conducted (not presented) pair tokens have shown 

advantageous when dealing with a small Z value (i.e. small number of 

features).  

 

Comparing the FP and FN values with those obtained from the Baseline 

experiments an increase in FP is noted in all bar one of the results. Similarly 

a decrease in FN is noted. This leads the author to believe that the pair 

tokens chosen by the feature selection process are over-fitting, causing 

previously true negatives to become false positives.  
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6 Conclusion 

In this chapter the results obtained from the experiments are discussed. 

Later future work and trends which may have an impact on spam 

classification are detailed. 

 

6.1 Experiment Results 

Having conducted the experiments and compiled the results, drawing 

conclusions has not been an easy process. In order to understand exactly 

why certain experiments produced the results they did, detailed 

investigation into the classification process must be conducted. The scope 

of this thesis was to investigate if different features impacted on the results 

of the classification process. Digressing from the original hypothesis of the 

thesis is outside scope of the investigation thus detailed investigation has 

been postponed to future work. 

  

Removal of stopwords has shown an increase in performance with 

Information Retrieval systems. The increase in accuracy in spam 

classification is not that much of a surprise when stopwords were removed 

from e-mails. Words which occur frequently in both spam and legitimate e-

mail do not offer a lot of information. Their removal helps to reduce the 

memory overhead needed and improves performance. 

 

Obfuscation 1 experiment looked at the affect of replacing some HTML tags 

with custom features. This configuration seems to favour the Nearest 

Neighbour classifier but not the Bayesian classifier when dealing with the 

two smaller corpora (DS1 and DS2). There are a number of possible 

reasons why this is the case. HTML tags which look quite different from 

each other are replaced with, one and the same, custom feature. This may 

allow the Nearest Neighbour algorithm performs better due to higher 
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clustering of spam instances (different URLs will not mean that two spam 

are different). The seemingly poor performance of the Bayesian classifier 

may be due to the fact that these new features may have the same affect 

as stopwords. They can occur frequently in both corpora. On the larger 

Data Set (DS3) Bayesian and Nearest Neighbour classification improved 

using obfuscation 1 configuration.  

 

Obfuscation 2 was an aggressive removal of HTML from the body of e-

mails. It too showed poor performance over the two smaller corpora. The 

Nearest Neighbour classifier did not perform well when all the HTML tags 

were removed. This was due to too much information being lost. Removing 

the HTML left too little information remaining in the raw text introducing 

ambiguity. In the configuration of Obfuscation 2(i) HTML tags were not 

removed (HTML comments were still removed). This shows an 

improvement in the performance compared with the performance of 

Obfuscation 2. 

  

With the Bayesian classifier a similar pattern emerges. HTML tags do offer 

valuable information, the results confirm this. The removal of HTML 

comments can also improve performance. Information lost through the 

removal of HTML comments does not affect the performance as greatly as 

that of removal of all HTML tags. 

 

Obfuscation 3 was the replacement of obfuscated words with the original 

word. This improved the performance of Nearest Neighbour, showing about 

a 2% improvement over all three data sets. With Bayesian an increase in 

error is shown in two Data Sets while in the larger Data Set an 

improvement is shown. The poor performance of Bayesian classifier could 

be due, in part, to the large number of stopwords present in the top Z 

features. With the larger corpus size the number of candidate features 

increases and the selection of stopwords should be less likely. In addition 

its important to note the respective age of each of the data sets; data set 1 
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& 2 are both contain legitimate e-mail from one year ago where as data set 

3 is from this current year(Autumn 03 – Summer 04). 

 

Obfuscation 4 was to study the impact of a non-token features on the 

performance of classifiers. The non-token feature was a character count 

which considered the number of alphanumeric, white space and non-

alphanumeric characters in the body of an e-mail. For each a percentage 

was calculated and this was used in creating the feature. 

 

This configuration showed improvement over all Data Sets and on both 

classifiers. Spam normally contains excessive use of punctuation, especially 

if obfuscation is involved, similarly with white space. Measuring the 

percentage of the e-mail that consisted of punctuation or white space 

seems a logical development. The constructed non-token features regularly 

occurred in the selected features. This shows that even simple non-token 

features can have a positive impact on accuracy. 

 

Obfuscation 5 was another non-token feature, it checked for the presence 

of obfuscation. This experiment was not a success, as the results obtained 

matched exactly with baseline figures. The most likely cause of this would 

be a fault in the implementation. This will be investigated in future work. 

 

Finally pair tokens, which promised to offer much more information, seem 

to actually decrease accuracy. Over all Data Sets and on both classifiers an 

increase in error was noted. This increase could be due overfitting caused 

by the actual pair tokens produced. For example concatenation of HTML 

tags “<tr>^<td” while a valid feature might not offer as much information 

as say “buy^Viagra”. The later normally only occurs in spam while the 

former can occur in both spam and legitimate e-mail. 

 

From the results obtained the following conclusions can be made. Stopword 

removal is worthwhile and has shown to increase accuracy. Certain types of 
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obfuscation removal are valuable, while others increase error dramatically. 

A combination of Obfuscation 1, 4 and 2(i) could help decrease error 

further. The exact combination is still under investigation. It is also unclear 

whether or not stopwords should be removed before constructing pair 

tokens. Certain stopwords when concatenated with other tokens can be 

very useful pair tokens. For example “for^FREE” or “a^pill” or “one^inch”. 

 

The experiments conducted show that there is scope to investigate the 

stages prior to classification. A lot of work seems to involve developing 

more advanced classifiers. Development of pre-processing engines which 

can remove obfuscation, remove stopwords and construct non-token 

features are advantageous.  

6.2 Other Approaches and Trends 

Other technologies such as Sender Policy Framework [SPF03] offer a new 

approach to anti-spam. Their aim is to attach identity to e-mail; a similar 

thread of work is being done by Microsoft in their caller identity project 

[Microsoft04]. Both need widespread adoption in order to succeed. 

Microsoft may have enough power in order to roll out such measures but 

the majority of MTAs on the internet do not run Microsoft products. I do 

admire the SPF solution, but only as a first stage filtering process and even 

then I can envision problems with users configure MTAs and MUAs 

incorrectly. One of the only reliable methods of filtering spam is content 

based spam filtering.  There have already been reports that spam senders 

are using SPF, much faster than legitimate senders have [theRegister04].  

 

Would the world be a better place with no spam? The burden on e-mail 

may subside but spammers will try other forms of communication to send 

their advertisements. The author believes that mobile technology and 

devices is the next target. Since they are or are becoming ubiquitous it is 

only a matter of time before some person tries to exploit this.  
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“Just because there is a police force does not mean there is no crime” – 

Anon. This is particularly true in the case of spam. Anti-spam measures 

have been deployed for years yet spam is still a problem. Bill Gates 

(Microsoft) claimed he (Microsoft) will solve the problem of spam in two 

years, the author and many others are very sceptical. There will not be a 

panacea for e-mail spam, it will slowly reach a plateau and then begin to 

subside as new more profitable communication medium are exploited.  

6.3 Future Work 

This thesis is a starting place for future research. It has investigated a few 

theories about spam classification. A platform has been developed on future 

experiments can be conducted and data has been collected which can be 

used in future experiments.  

 

There are numerous other avenues to investigate. The use of Part of 

Speech tagging in identifying spam is something that could help increase 

accuracy of classifiers. More advanced pair token generators have been 

used in other spam classification systems. Investigating and improving pair 

token generation could lead to better results. More advanced obfuscation 

removal and identification techniques are also a good research area.  

 

Header information was not included when extracting information from 

spam in these experiments. Header information can reveal a lot of 

information. Exploiting this should lead to much better results. 

 

SMTP proxies are a good idea and developing one which could be used to 

conduct experiments on is a research goal. Having real world data is a 

serious advantage when doing spam classification. With such a system 

instantaneous results could be collected.  
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Glossary 

 

Deobfuscate: Removal or replacement of obfuscation introduced by 

spammers.  

 

Error: This corresponds to the number of misclassifications there were on 

a given set of instances. If the size of the input set is N then the error is 

the sum of the false positives and false negatives divided by the size of the 

input set. See Equation 6 - Error for the mathematical formula. 

 

False Negative (FN): A false negative is when a classifier incorrectly 

identifies an instance as being negative. In this case a false negative is 

when a spam is classified as being a legitimate e-mail. 

 

False Positive (FP): A false positive refers to when a classifier incorrectly 

identifies an instance being positive. In this case a false positive is when a 

legitimate e-mail is classified as a spam. As one can expect this is a serious 

problem. Loss of information due to false positives can be catastrophic.  

 

Mode: The mode is the value that appears most often in the sample.  

 

MUA: Mail utility application. This is sometimes known as the mail client. It 

is a piece of software which allows the end-user to compose and read e-

mail. Some common MUAs are Microsoft Outlook, Microsoft Outlook 

Express, Eudora and Mutt. 

 

MTA: Mail Transfer Application. This is the piece of software which runs on 

servers. Its role is to transfer e-mail, received from other MTAs or from 

MUAs to its destination.  
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Phishing:   A form of spam scam whereby the spammers send you an e-

mail claiming to be from a Bank or similar. The e-mail normally asks for 

your account details.  

 

Second Hand Spam: This is spam that is submitted to a corpus by 

individuals. These individuals will forward spam they receive to the archive. 

It is stored in the archive, where other individuals can use and download 

the spam – normally for spam filtering exercises. 

 

Spam-Spasm:  When a user accidentally deletes a legitimate e-mail when 

purging the inbox of spam. It normally happens where there is a lot of 

spam in the inbox. 

 

Stopwords: A list of common or general terms (e.g., prepositions, and 

articles). These are often removed from text as the value of using these 

words to classify or search for documents is practically nil. This is due to 

the fact that they occur so frequently in documents/e-mails. The removal of 

stopwords is highly common in information retrieval tasks. 

 

True Negative (TN): A true negative is where a classifier correctly 

identifies an instance as being negative. In this case a true negative is 

when the classifier correctly identifies a legitimate e-mail. Again this is ideal 

since we want legitimate e-mail to make it through the filtering process. 

 

True Positive (TP): A true positive is where a classifier correctly identifies 

an instance as being positive. In this case a true positive is when the 

classifier correctly identifies a spam (i.e. given the input is a spam the 

classifier should identify it as a spam). Once the classifier has identified the 

spam we can filter them out.  

 

Web-Beacon: Another term for a web bug. See page 12 for more details 
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Wild Spam: defined as spam collected by myself from active e-mail 

accounts. This is in contrast to Second Hand Spam which is spam that is 

received by others and forwarded to a corpus. I would consider 

SpamArchive.org as containing Second Hand Spam. 

 

Zombie: A Zombie is a term for hosts which have been compromised by 

crackers/spammers which are being used for the sole purpose of relaying 

spam. Zombies generally have a high bandwidth connection to the internet 

(DSL or Cable) as this is needed when sending large numbers of spam. The 

owner of the zombie host generally does not know their host has been 

compromised. A Trojan is a common way of infecting unsuspecting hosts.  
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