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ABSTRACT 
Purpose: Typically tools that map non-RDF data into RDF format rely on the technology native to the source of the data when data 
transformation is required. Depending on the data format, data manipulation can be performed using underlying technology, such as 
RDBMS for relational databases or XPath for XML. For CSV/Tabular data there is no such underlying technology, and instead it requires 
either a transformation of source data into another format or pre/post-processing techniques. In this paper we evaluate the state of the art in 
CSV uplift tools. Based on this evaluation, a method that incorporates data transformations into uplift mapping languages by means of 
functions is proposed and evaluated. 
Design/methodology/approach: In order to evaluate the state of the art in CSV uplift tools we present a comparison framework and have 
applied it to such tools. A key feature evaluated in the comparison framework is data transformation functions. We argue that existing 
approaches for transformation functions are complex – in that a number of steps and tools are required. Our proposed method, FunUL, in 
contrast, defines functions independent of the source data being mapped into RDF, as resources within the mapping itself.  
Findings: The approach was evaluated using two typical real world use cases. We have compared how well our approach and others (that 
include transformation functions as part of the uplift mapping) could implement an uplift mapping from CSV/Tabular into RDF. This 
comparison indicates that our approach performs well for these use cases. 
Originality/value: This paper presents a comparison framework and applies it to the state of the art in CSV uplift tools. Furthermore, we 
describe FunUL, which unlike other related work, defines functions as resources within the uplift mapping itself, integrating data 
transformation functions and mapping definitions. This makes the generation of RDF from source data transparent and traceable. 
Moreover, since functions are defined as resources, these can be reused multiple times within mappings.  
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1. INTRODUCTION 
Significant amounts of data on the Web still resides in formats other than the Resource Description Framework (RDF) (Klyne et al., 2004) 
data model, currently being advocated by the W3C community as the means to enable data exchange on the Web, and a variety of 
innovative applications, such as data integration and others (Hitzler et al., 2009). CSV/Tabular data (even though the delimiter is different, 
for conciseness we refer to such data as CSV data for the rest of this paper) is commonly used for data exchange on the Web, but the 
semantics of the data are not made explicit in the data format. In contrast, RDF provides one means to publish data and its meaning. 

The process of converting data into RDF is called uplift. As many solutions have been proposed to uplift CSV data into RDF, we have 
developed a framework to compare these. For this comparison framework, we have drawn inspiration from a similar framework to evaluate 
the mapping of relational databases into RDF presented in Hert et al. (2011). We have applied our comparison framework to those state-of-
start uplift tools that have support for CSV data. 

One of the key features evaluated in our framework is the support for transformation functions, as data manipulation is typically needed 
during the uplift process (Purohit et al., 2016). These functions can be used to capture both domain knowledge (e.g., transforming units) 
and other, more syntactic, data manipulation tasks (e.g., transforming values to create valid IRIs). For some data formats this can be more-
or-less straightforward. For example, with uplift tools for relational databases, such as R2RML (Das et al., 2012) implementations, one can 
rely on SQL to provide the necessary transformation functions, whereas with RML (Dimou et al., 2014), an R2RML extension with support 
for various data formats, XPath is used to transform XML data and JSONPath is used for JSON data. In many cases, however, relying on 
underlying technology to undertake data transformations might not be possible (Debruyne and O’Sullivan, 2016). One such case is for CSV 
data, where there is no such underlying technology. The general approach to manipulate CSV data is the transformation of source data into 
another format or the use of pre/post-processing techniques. The use of these techniques, however, increases complexity – in relation to the 
number of steps and tools involved – and renders the data process pipeline less transparent and traceable. 

One example of data transformation is the conversion of years. A historical dataset might use BCE/CE notation to refer to years, but an 
RDF representation of this data may use the datatype xsd:gYear, from the XML Schema specification (Biron and Malhotra, 2004), for 
representing years in a Gregorian calendar. The year “31 BCE” in the dataset would thus need to be transformed into "-
30"^^xsd:gYear.  

To overcome these problems, we have, in previous work (Junior, A. C. et al., 2016a; Junior, A. C. et al., 2016b), proposed a method to 
include data transformations by the way of functions into Uplift Mapping Languages in a generic, reusable and amenable way, defined as 
FunUL. We adapt the definition of Uplift Mapping Language from (Bizer and Seaborne, 2004) and define it as a declarative language for 
mapping non-RDF data sources into RDF vocabularies and OWL ontologies.  

FunUL allows data transformation and uplift of data into RDF to happen in a single unified step. In addition, function definitions are 
reusable, making it possible to use the same function multiple times with different parameters; and traceable, since mapping and function 
definitions are specified in the same file. It is also possible to annotate the functions with provenance information, descriptions of the 
transformation and other useful metadata.  

FunUL draws inspiration and generalizes ideas from our previous work, R2RML-F (Debruyne and O’Sullivan, 2016), which incorporates 
functions into R2RML by extending the db2triples [1] R2RML processor. FunUL has been implemented in RML, which also extends 



db2triples. This RML extension can apply functions to all input data formats supported by RML, including CSV, since our functions are 
data source technology independent, 

Our previous FunUL evaluation (Junior, A. C. et al., 2016b) used our RML extension in a real world dataset. However, RML is not a W3C 
Recommendation, whereas R2RML is.  Moreover, db2triples – and its extensions - are not fully compliant with R2RML’s specification, as 
it does not support named graphs for example. For these reasons, we have developed a new implementation that is fully compliant with the 
R2RML specification. This implementation has support for CSV data and is used for the evaluations described in this paper. 

This paper thus extends upon results presented in the aforementioned previous works. The evaluation (using a new implementation) is 
applied to two real world datasets, and is presented through a comparison of our approach with the only other approach that we have 
identified to include data transformation functions as part of the mapping itself, which is KR2RML (Slepicka et al., 2015). 

The remainder of this paper is organized as follows: in Section 2 presents the state-of-the-art in CSV uplift. Section 3 shows a comparison 
and discussion of the tools presented in Section 2. Section 4 presents a method to incorporate functions into mapping languages called 
FunUL. The evaluation is presented in Section 5. Section 6 concludes the paper. 

2. STATE-OF-THE-ART IN CSV UPLIFT  
Many solutions have been proposed to uplift CSV data into RDF. This section briefly introduces some of the tools in the state of the art that 
have support for CSV data.  

Uplift techniques can be described at a high level as to the type of approach that they support: mapping languages and additional software 
support. Mapping Languages are declarative languages used to express customized mappings defining how non-RDF data should be 
represented in RDF. An uplift engine is usually associated with a mapping language, being a software processor that uses the mapping file 
and the input data to generate an RDF dataset. Additional Software Support represents applications that have an interface or API where it 
is possible to convert data into RDF. Some uplift tools have support for both approaches. Table 1 shows a brief description of each tool and 
the support provided by them. 

Table 1 

A framework that allows for a more detailed comparison of these tools is presented in the next section. 

3. COMPARING THE STATE-OF-THE-ART IN CSV UPLIFT 
In this section, we present a comparison framework to evaluate the state-of-the-art in CSV uplift systems, which was presented in Section 
2. Hert et al. (2011) proposed a comparison framework to evaluate relational databases to RDF tools on a feature-by-feature basis. We have 
adapted this framework into the CSV uplift context by proposing 2 new features. One specific feature for CSV data: filtering; and a second 
feature for the whole uplift process: reusability. The features of the comparison framework are enumerated as follows; with new features 
annotated with (N): 

• F1: M:N Relationships. A CSV dataset may contain column-related information. In this case, two columns are mapped as resources. 
An uplift tool should support the definition of relationships between resources. 

• F2: Additional Data. In some cases, it is necessary to provide additional information about resources or the RDF data that will be 
generated (e.g. provenance information). This feature allows the definition of new additional data to be generated during the uplift 
process. 

• F3: Select. A dataset may contain attributes that should not be a part of the RDF representation. This feature allows the selection of 
attributes or columns from a CSV dataset to be converted into RDF. 

• F4: Filter (N). A dataset may contain invalid information or specific information that should not be part of the RDF representation. A 
mapping language should support the definition of filters to decide whether particular information is valid to the RDF representation. 
For relational databases, this feature is available through SQL queries with a WHERE clause (specifying conditions). R2RML, for 
instance, prescribes that Term Maps applied on a NULL value do not generate an RDF term. In other words, for R2RML, a NULL 
value is an indicator that no information should be generated. 

• F5: Literal to IRI. This feature allows the transformation of literals from a dataset into valid IRI’s for the RDF representation. For 
example, a dataset may contain a literal for an ISSN number that needs to be transformed into a valid IRI. 

• F6: Vocabulary Reuse. The vocabulary used in an RDF dataset can be created, generated automatically based on the source data, or 
existing vocabularies can be reused when defining the RDF representation. This feature allows the reuse of such existing vocabularies. 

• F7: Transformation Functions. Some attributes may require a different representation in RDF (e.g. different unit measurements). 
Data transformation functions allow data to be manipulated and transformed before generating RDF triples. 

• F8: Datatypes. CSV data does not contain datatypes. Every value in a CSV file is of type string. This feature allows the attribution of 
XML datatypes to attributes when mapping data into RDF. This feature does not evaluate the use of specific datatypes. 

• F9: Named Graphs. Named graphs are RDF datasets identified using an IRI (Hitzler et al., 2009). Applications should support the 
generation of RDF into specific named graph.  

• F10: Blank Nodes. Blank nodes are RDF statements with no RDF IRI reference (Hitzler et al., 2009). This feature allows the 
generation of blank nodes. 

• F11: Reusability (N). This feature allows the serialization of the uplift process for further reuse. 



In order to evaluate the tools presented in Table , we have analyzed papers, documentation and tested a working implementation against 
the features defined in the comparison framework. In other words, we have used the information and implementation available to define a 
simple uplift process covering the feature. In the analysis of F1, for example, we would examine the paper, documentation and execute the 
tool trying to define a mapping relating two different resources. We note that we were unable to evaluate xR2RML. The mapping language 
has support for multiple data formats, but the available implementation only supports relational and NoSQL databases. Table 2 presents our 
comparison framework applied to CSV uplift tools. 

Table 2 

 

3.1 Discussion 
This section discusses the state-of-the-art in CSV uplift using our comparison framework. The discussion is structured according to each 
feature. If an uplift tool is not mentioned then the tool supports the feature.  

• F1 M:N Relationships. DataOps does not have support for the definition of relationships between related resources. OpenRefine 
supports this feature by creating a new IRI with an existing IRI value, as it is not possible to select existing IRI resources. DataLift has 
support for this feature but it can be very complex, due to its modular design, to redefine the RDF dataset after the direct mapping 
process. Top Braid Composer supports this feature through SPARQL CONSTRUCT queries. Overall, this feature is supported by 
most tools but some offer more amenable ways to define M:N relationships, as with RML, where identified mapping definitions may 
have references to other mapping definition.  

• F2 Additional Data. Vertere-RDF and DataOps have no support for this feature. DataOps allows one to define predicates but subjects 
have to come from the dataset. As with F1, it might be complex to use this feature with some tools, for example, in OpenRefine, it is 
necessary to define nodes, types, predicates and values manually using a web interface. 

• F3 Select. All analyzed tools have support for the selection of attributes from CSV datasets.  

• F4 Filter. RML supports filters depending on the source data. For example, XPath is used for XML. For CSV data, however, RML 
does not support filters, as there is no such underlying technology. SML, DataOps, CSV2RDF and OpenRefine have no support for 
filters when applied to CSV datasets. KR2RML can be used for data cleaning and data manipulation. Hence, filters can be applied by 
the use of transformation functions. DataLift supports this feature using SPARQL CONSTRUCT queries. Virtuoso uploads data into a 
relational database in a first step. A second step allows the definition of R2RML mappings, where SQL queries with WHERE 
statements can be used to support this feature. RDF-Tabular and csv2rdf have partial support. For example, it is possible to apply 
regular expression to string types, other validation are also available for other datatypes. The tools, however, do not cover other filter 
options, such as comparing or combining different values from a dataset. Vertere-RDF also has partial support using regular 
expressions. Tarql partially supports this feature by defining a filter to skip rows. Note that all the values in the row will be skipped. A 
bad row is defined using SPARQL filters. For example, if an attribute has a minimum value of 10 in the RDF representation, the 
following filter can be applied FILTER (?value >= 10). Generally, most tools that support this feature rely on other 
technologies, such as SPARQL CONSTRUCT queries, data transformation functions or regular expressions. 

• F5 Literal to IRI. This feature is supported by all applications. Some tools have complex ways of defining such transformations. For 
example, in Datalift, you need to select an option menu. Inside this option, it is necessary to define the dataset, options for reference 
source data and the data to be modified. RML, as a R2RML extension, on the other hand, has a simpler approach where a template 
Term Map can be used to define an IRI. 

• F6 Vocabulary Reuse. All analyzed tools have support for the reuse of RDF vocabularies and OWL ontologies. 

• F7 Transformation Functions. As with F4, RML has support for some transformation function depending on the underlying 
technology used for data processing. No underlying technology is available when converting CSV data. Therefore, transformation 
functions are not supported for this data format. SML and Vertere-RDF have partial support for functions. User-defined functions 
require extending the tool. KR2RML have support for user-defined functions as Python scripts. DataOps, CSV2RDF, Tarql have no 
support for transformation functions. DataLift has partial support relying on SPARQL construct queries for this feature. Virtuoso 
relies on SQL queries for this feature as the data is imported into a relational database. Tarql also supports some transformation 
functions through SPARQL queries. KR2RML is the only tool with support for user-defined transformation functions as part of the 
mapping language. 

• F8 Datatypes. DataOps has partial support as it is possible to define only basic XML datatypes, for example, the 
xsd:dateTimeStamp and others are not supported. All other tools have support for all XML datatypes. Together with XML 
datatypes, some tools allow the definition of custom datatypes, such as OpenRefine and RML.  

• F9 Named Graphs. The specifications for RML, SML and xR2RML have support for named graphs but their implementations do 
not. Top Braid Composer Maestro Edition supports this feature by exporting RDF data into a specific existing named graph. 
KR2RML has a triple store integrated that allows one to publish data into a specific named graph or existing ones. KR2RML is the 
only mapping language to support this feature.  

• F10 Blank Nodes. DataOps is the only tool that does not support this feature. In some applications the definition of blank nodes is 
straightforward, such as in RML and SML. However, using DataLift or Top Braid Composer the definition of blank nodes is more 



complex with the use of SPARQL construct queries to refine the dataset. Only one tool has no support for this feature, as most RDF 
datasets would rely on blank nodes to represent complex data structures.  

• F11 Reusability. KR2RML allows the serialization of the process as an extended R2RML mapping. In this sense, the mapping 
contains extra predicates with structured information, making it difficult to create or modify the mapping without their editor. Virtuoso 
and Top Braid Composer support this feature partially as parts of the process, such as SPIN functions for Top Braid Composer 
Maestro Edition, are reusable but not the whole process. DataLift and OpenRefine do not support the serialization of the uplift 
process. All mapping languages are reusable, as it is possible to use the same mapping file multiple times with new or updated data.  

As can be seen, KR2RML is the tool with support for most features, with partial support for reusability. As mentioned before, the whole 
process can be serialized and reused using their editor, but several problems can be observed with the mapping. First, to reuse the mapping, 
you must load the data again into the editor. Second, the creation of mappings is difficult without their editor as structured information is 
stored as a string, requiring parsing of the mapping and the string. Finally, the data transformation functions are not reusable. It is not 
possible to use the same function, as functions in KR2RML do not have names nor parameters. In this sense, a function update could 
become difficult and prone to error  – which is discussed further in Section 5.  

The comparison framework we have used allows for discussion of features needed for the uplift of data into RDF. In this paper, we focus in 
particular on tools with support for CSV files. A key feature analyzed by our comparison framework is data transformation functions. As 
shown in our discussion, there is no underlying technology for CSV data. In this paper, we define a method to allow data transformation 
functions to be incorporated into current uplift mapping languages. The analysis and definition of approaches to deal with other problems 
identifiable through our comparison framework is left as future work. In the next section, a method to incorporate functions as part of uplift 
mapping languages called FunUL is presented. Note that in the rest of the paper Feature numbers will be included in the text (e.g. F1, F4) 
when talking about a particular feature. 

4. FunUL – METHOD TO INCORPORATE FUNCTIONS INTO UPLIFT MAPPING 
LANGUAGES 
FunUL is a method to incorporate data transformation by way of functions into uplift mapping languages. The method defines functions as 
part of the mapping in a generic, traceable, reusable and transparent way. These functions can be used to capture both domain knowledge 
(e.g., transforming units) and other data manipulation tasks (e.g., transforming values to create valid IRIs).  

The definition of functions as part of the mapping allows data transformation and uplift into RDF to happen in a single unified step. 
Furthermore, functions are defined independently of the data mapping, making it possible to call the same function multiple times with 
different parameters. These characteristics make the uplift process into RDF more traceable, transparent and reusable. In addition, because 
functions are part of the mapping, it is possible to annotate them with provenance information, such as creator, creation date, and other 
information, such as descriptions of the transformation defined in the function and other metadata. It is also possible to discern that a 
certain RDF value was generated by a certain function. Moreover, functions can be shared between different mappings.  

In FunUL, functions have a name and a body. Each function declaration must have exactly one function name and one function body. 
Function names are unique. Function bodies define a function using a standardized programming language. In this sense, a function body 
has a signature and a set of parameters. The definition of parameters is optional. Every function defined in a function body must have a 
return statement.  

A function can perform data transformation and indirectly some data validation tasks. An example of data validation is a function defined 
to verify if a certain value is valid in the RDF representation. Considering that an uplift engine does not generate triples when it encounters 
NULL values as objects, which is the case for R2RML processors, a function that performs data validation would return a NULL value 
when validation fails. Section 5.1.1 shows an example of such case.  

An example was already mentioned in Section 1, where a dataset may contain years using BCE/CE notation. The RDF representation, 
however, uses the XML datatype xsd:gYear. Using our method, a function would be defined to perform such transformation. The name 
of this function could be yearTransformation. The function body would have the transformation needed in a standard programming 
language.  

The method also includes notions for calling and passing parameters to functions. A function call refers to a function. Parameters are 
optional and can be passed as references to values from the input data or as fixed values. The possibility of using parameters values allows 
the declaration of generic functions. For example, to call the function yearTransformation, there would be a reference to the function 
and a list of parameters, the year to be transformed (see Section 5.1.1). 

The method does not rely on a specific implementation or editor. Functions in our method can perform complex data transformation, are 
reusable, as they can be called multiple times, and work with any data type. 

4.1 FunUL Method Implementation 
The FunUL implementation described in this section refers to our RML extension and to our new implementation. These implementations 
extend R2RML’s vocabulary by introducing constructs for describing functions, function calls and parameter bindings. As mentioned 
before, one implementation was presented and evaluated in previous work, the RML extension [2], where functions can be applied for all 
input data formats supported by RML – CSV, XML, JSON and HTML. Our new implementation [3] is fully compliant with R2RML’s 
specification, supporting F9 Named Graphs. Additionally, it has support for relational databases and CSV data. A specification of the 
method is also available [4]. 



Figure 1 shows an extended diagram with properties of term maps from R2RML and our method definitions (prefixed “rrf”). The class 
rrf:Function defines a function. A function definition has two properties defining the name, rrf:functionName, and the 
function body, rrf:functionBody. A function is called using the property rrf:functionCall. This property refers to a 
rrf:Function using the property rr:function. Parameters are defined using rrf:parameterBindings, which is an RDF 
Collection of term maps. Examples of function definitions and function calls can be seen in Section 5.1.1. 

Figure 1 
 

In R2RML, a Term Map generates RDF terms. An RDF term can be an IRI, a blank node or a literal. Term Maps can be values of a 
constant, a column or a template (see Das et al. (2012)). To implement FunUL, we define a Function Valued Term Map. A function call 
generates an RDF Term based on the function return statement defined in the function body. For example, a function can be defined to 
convert years in BCE/CE notation to use xsd:gYear XML datatype. A function call would refer to this function with a parameter value, 
the year. The return statement of this function would be used to generate the triples. 

Analyzing the features from our comparison framework defined in Section 3, our RML extension has support for features F4 Filters and F7 
Transformation Functions. F4 is supported with the use of functions. By extending RML, feature F9 Named Graphs is still not supported by 
this implementation. We note that RML’s specification, by extending R2RML, supports named graphs. Therefore, it would be possible to 
implement named graphs in a RML processor. Our new implementation, an R2RML processor with support for relational databases and 
CSV data, does support F9 Named Graphs, as mentioned before, and therefore, supports all features defined in our comparison framework. 

These implementations load functions using Java’s Nashorn [5] JavaScript engine available in the javax.script package. JavaScript 
was chosen (even though functions in our method could be defined in any programming language) because it is freely available, widely 
used and its specification is an ISO standard. Any errors loading or executing the function are reported back to the user. Currently there is 
no support for monitoring functions, relying on Nashorn and the Java Runtime Environment to handle any problems related to memory 
management and correctness of the code.  

5. EVALUATION 
In this section, we compare our method with that of KR2RML using two real world use cases, the Seshat Use Case and the Ordnance 
Survey Ireland Use Case. This comparison evaluated how well both approaches could implement the required mappings. In this evaluation, 
we use our new implementation. 

5.1 The Seshat Use Case 
The first use case comes from a project called Seshat: Global History Databank (Turchin et al., 2015). This international project led by the 
Evolution Institute (USA) and the University of Oxford is developing a knowledge base to describe human societies over the last 15,000 
years as a set of time series. This knowledge base is structured according to a social sciences “codebook” or schema specified by an 
editorial board of domain experts in structured natural language and re-engineered into an OWL ontology by knowledge engineers at 
Trinity College Dublin (Brennan et al., 2016). The codebook specifies over 1,000 data variables of interest cover topics such as social 
complexity measures, warfare, technology, ritual and so on. Two main units of data collection and analysis are specified – the Polity 
(society) and the Natural Geographical Area (NGA) but 22 distinct units of collection are currently used and this number continues to 
expand as the project matures. Each variable is not modeled as a simple value or object instance and is subject to uncertainty, temporal and 
geographical bounds for its validity. All of this must be explicitly modeled in the final OWL representation. 

The initial data collection effort (2011 – 2016) used a wiki structured according to the codebook. The natural language codebook or a sub-
set was used as a template for each wiki page to be completed describing a single unit of analysis, typically a temporally bounded Polity 
(human society). Within Seshat there is a hierarchical distribution of effort between teams of research assistants (typically about 10-15 
active at any one time in 3-5 data collection locations) who manually research and enter data, Seshat researchers who evolve the codebook 
and direct the data collection effort to particular geo-temporal entities based (typically 20 qualified to at least PhD level) and over 60 
external domain experts who validate data (drawn from the worldwide pool of domain experts, typically full professors). At present the 
dataset contains over 120,000 expert-curated “facts” but each one of these is qualified in terms of uncertainty, disagreement, academic 
sources so that it may require 100 triples to describe it fully. The current collection effort is focused on an initial 30 NGAs distributed 
across the globe to maximize the distribution of societies examined. These facts form time series at a sample rate of 100 years that describe 
all human societies in the 30 NGAs from approximately 10,000 BC to the industrial revolution. The current wiki MySQL DB is over 4GB, 
with 1081 pages describing units of collection such as Polities and NGAs. Each page typically has over 1000 variables describing the 
Polity.  

To facilitate data collection and analysis the pages use structured natural language with a well-defined syntax for describing variables, 
values, uncertainty, temporal bounds and annotations. In May 2014, Trinity College Dublin developed a web scraper tool that is aware of 
this syntax and can either validate a page to detect syntactic errors (for use by the RAs during data entry) or dump the page as a TSV file. A 
bulk export mode is also available whereby the entire wiki or scoped sub-sets can be dumped into a TSV file. The TSV files are then used 
by statisticians to model human societies based on the data in the wiki. Although not designed with this purpose in mind, these TSV files 
can provide a starting point for uplifting the wiki into RDF based on the new Seshat OWL Ontology. 

5.1.1 Our approach 
One of the issues in the uplift of the Seshat dataset into RDF is that predicates in the data differ from the predicates defined in the OWL 
ontology. Another issue was already mentioned in Section 1. Years in the dataset follow a BCE/CE notation, but the ontology uses the 



XML datatype xsd:gYear. Another example of transformation would be the use of a split function. In the dataset, some values are stored 
in one attribute, but the ontology defines different predicates for each part of the value. Listing 1 shows a fragment of the dataset. 
NGA,Polity,Variable,Value From,Value To,Date From,Date To 
Latium,ItRomPr,RA,Edward A L Turner,,, 
Latium,ItRomPr,Expert,Garrett Fagan,,, 
Latium,ItRomPr,Peak Date,117 CE,,, 
Latium,ItRomPr,Duration,31 BCE - 284 CE,,, 
Latium,ItRomPr,Polity territory,4500000,,14CE, 

Listing 1: Fragment of the Seshat dataset 

Transformation functions can be defined to overcome these issues. “RA” and “Expert” have specific predicates so it is possible to use a 
function to evaluate if it the triple should be generated. The function to do so, using our method, is defined in Listing 2. This function 
performs a data validation task, returning NULL when the triple should not be generated. For example, a mapping to generate the predicate 
seshat:ra for the Seshat dataset, would call this function with parameters rr:column "Variable", rr:constant "RA" and 
rr:column "Value From". In this sense, the triple will be generated only when the attribute “Variable” has value “RA”.  

<#Check> 
 rrf:functionName "check" ; 
 rrf:functionBody """  
     function check(var1, var2, value) { 
       if(var1 == var2) {  
          return value;  
       }  
       return null; 
     }  
""" ; . 

Listing 2: Function to check if a value should be generated 

For the attribute “Peak Date”, the value needs to be transformed to use the XML datatype xsd:gYear. This function is shown in Listing 
3. As functions are resources in the same RDF file, it is possible to reuse it many times. Note that the mapping will define the datatype 
xsd:gYear - as it is shown in Listing 6 with the use of the predicate rr:datatype. 

<#YearTransformation> 
 rrf:functionName "yearTransformation" ; 
 rrf:functionBody """  
     function yearTransformation (year) { 
        year = year.trim();  
        if(year.indexOf("BCE") > -1){  
            return String(parseInt("-" + year.replace("BCE", "")) + 1); 
        } 
        return year.replace("CE", "").trim(); 
     } 
""" ; . 

Listing 3: Function to transform the year  

For the attribute “Duration”, one would need to split the value first and then apply the data transformation. As it is shown in Listing 4, in 
our implementation, it is possible to call other functions inside a function. This function only applies the year transformation function for a 
specific attribute, in this case “Duration”. For the last line of the dataset showed in Listing 1, we reuse the function used for the attribute 
“Peak Date”. Note that this function deals with blank spaces as well – in the dataset, not all year values are separated by spaces. For 
example, we have the value “117 CE” with a space, and then “14CE”. 
<#SplitAndYearTransformation> 
 rrf:functionName "splitAndYearTransformation" ; 
 rrf:functionBody """  
    function  
       split(variable, value, check, index, separator) { 
          if(variable == check) {  
          var str = value.split(separator)[index].trim(); 
          return yearTransformation(str);  
        } 
        return null; 
     } 
""" ; . 

Listing 4: Function to split a value and transform the year  

Listing 5 shows how to call a function using our method. This function has five parameters, two parameters come from the dataset using 
rr:column, the others are constants, rr:constant. In this sense, the function called is generic and could be reused for other 
parameters.  
<#DurationBeginning> 
 rr:logicalTable [ 
    rr:tableName "data" ; 
 ] ; 
 
 rr:subjectMap [  
    rr:termType rr:BlankNode;  



    rr:class owltime:DateTimeDescription  
 ]; 
 
 rr:predicateObjectMap [ 
    rr:predicate owltime:year; 
    rr:objectMap [  
      rr:termType rr:Literal; 
      rr:datatype xsd:gYear; 
      rrf:functionCall [ 
        rrf:function <#SplitAndYearTransformation> ;  
        rrf:parameterBindings (  
          [ rr:column "Variable" ] 
          [ rr:column "Value From" ] 
          [ rr:constant "Duration" ] 
          [ rr:constant "0" ] 
          [ rr:constant "-" ] 
       ) ; 
      ] ; 
    ]; 
 ]. 

Listing 5: Mapping with a function call to yearTransformation 

The output of the uplift process using these functions applied to the dataset showed in Listing 1 can be in Listing 6. 
@base         <http://dacura.cs.tcd.ie/data/seshat> . 
@prefix xsd:  <http://www.w3.org/2001/XMLSchema#> . 
@prefix time: <http://www.w3.org/2006/time#> . 
<seshat/ItRomPr> <#RA> "Edward A L Turner" . 
<seshat/ItRomPr> <#Expert> "Garrett Fagan" . 
<seshat/ItRomPr> <#peakDate> _:lLA98YAitY . 
_:lLA98YAitY a <#TemporalInstantVariable> . 
_:lLA98YAitY <#definiteValue> _:TERpMusPG9 . 
_:TERpMusPG9 a <#Instant> . 
_:TERpMusPG9 <#atDateTime> _:P3qgpVj36x . 
_:P3qgpVj36x a time:DateTimeDescription . 
_:P3qgpVj36x time:year "117"^^xsd:gYear . 
_:P3qgpVj36x time:unitType time:unitYear . 
<seshat/ItRomPr> <#duration> _:awMl8Sww0N . 
_:awMl8Sww0N a <#DurationVariable> . 
_:awMl8Sww0N <#definiteValue> _:HzsjbPE9RU . 
_:HzsjbPE9RU a <#Interval> . 
_:HzsjbPE9RU <#hasBeginning> _:wUMzVkWduq . 
_:wUMzVkWduq a time:DateTimeDescription . 
_:wUMzVkWduq time:unitType time:unitYear . 
_:wUMzVkWduq time:year "-30"^^xsd:gYear . 
_:HzsjbPE9RU <#hasEnd> _:B1hn2AyEdl . 
_:B1hn2AyEdl a time:DateTimeDescription . 
_:B1hn2AyEdl time:year "284"^^xsd:gYear . 
_:B1hn2AyEdl time:unitType time:unitYear . 
<seshat/ItRomPr> <#territory> _:IL9hDo2Izd . 
_:IL9hDo2Izd a <#TerritoryVariable> . 
_:IL9hDo2Izd a <#Instant> . 
_:IL9hDo2Izd <#definiteValue> "4500000"^^xsd:unsignedLong . 
_:IL9hDo2Izd <#atDateTime> _:kzsZr2yrBX . 
_:kzsZr2yrBX a time:DateTimeDescription . 
_:kzsZr2yrBX time:unitType time:unitYear . 
_:kzsZr2yrBX time:year "14"^^xsd:gYear . 

Listing 6: Seshat’s use case RDF output 

5.1.2 KR2RML’s approach 
For this comparison, we will use KR2RML’s editor to define a function similar to the one presented in Listing 2. Functions in KR2RML 
are defined in Python. This function generates a specific predicate when the attribute “Variable” has the value “RA”. The function exported 
as a KR2RML mapping is shown in Listing 7. One can see that – next to the RDF file – structured information is contained as a literal in 
the file. In KR2RML, three things need to be parsed: the RDF file, the structured information in the literal, and finally the functions in 
Python. 
@prefix km-dev: <http://isi.edu/integration/karma/dev#> .  
_:node1afgfa0n8x1 a km-dev:R2RMLMapping ;  
  ... 
  km-dev:hasWorksheetHistory """[{  
  ... 
  {              
    \"name\": \"transformationCode\",              
    \"type\": \"other\",              
    \"value\": \"return getValue(\\\"Value From\\\") if getValue(\\\"Variable\\\") == \\\"RA\\\" else \\\"\\\"\"          
  },  
  ... 
}]""" . 

Listing 7: Function check in a KR2RML mapping 



5.1.3 Discussion 
In both approaches data transformation functions can be defined within mapping definitions, but KR2RML’s functions are not reusable. It 
is possible to reapply a function by accessing all used functions using the editor, but it is not possible to call the same function multiple 
times. In this sense, a function needs to be implemented for every possible parameter value. In contrast, functions in our method can be 
reused many times with different parameters. More specifically, for example, in our method we call the function defined in Listing 2 twice, 
with different parameters. Firstly, with the constant parameter “RA” to create a specific predicate. The same function is called a second 
time to define the predicate for the value “Expert”. In KR2RML, another function, similar to the one defined in Listing 7, needs to be 
defined for the second case, changing the value “RA” to “Expert”. As mentioned before, this characteristic makes function updates 
complex and prone to error. Other problems with functions in KR2RML include, as can be seen in Listing 7, the definition of other 
structured information together with functions as strings. This requires the mapping file to be parsed three times. Furthermore, the mapping 
file becomes complex and the mapping language heavily dependent on its editor.  

Another issue encountered when creating mappings for the Seshat dataset using KR2RML is the use of functions to create predicates. 
KR2RML only allows functions to be applied to input data. Classes and properties in KR2RML are defined from ontologies that need to be 
imported into the editor. In this sense, to define predicates from the dataset, it is necessary to import the RDF vocabulary. This vocabulary 
allows one to use RDF Reification. In this sense, one can define a node of type rdf:Statement, and then use the properties 
rdf:subject, rdf:predicate and rdf:object to define triples. However, the use of this vocabulary increases mapping 
complexity. In contrast, our approach allows the use of functions to create subjects, predicates and objects directly. 

5.2 The Ordnance Survey Ireland (OSi) Use Case 
Our second use case was provided by Ireland’s national mapping agency, the Ordnance Survey Ireland (OSi) [6]. In 2014, OSi delivered a 
newly developed spatial data storage model known as Prime2 (Prime2, 2014). With Prime2, OSi moved from a traditional map-centric 
model towards an object-oriented model from which various types of mapping and data services can be produced. Prime2 and the 
associated workflows furthermore incorporated governance practices to cope with evolution of spatial objects in their model. The system 
currently holds information of over 45,000,000 spatial objects (road segments, buildings, fences, etc.), of which some have more than one 
representation. These objects are stored in an Oracle Spatial and Graph database [7].  

The OSi furthermore aims to leverage user engagement with their geospatial information (and derived maps), which has a legal weight in 
Ireland. One of the initiatives they launched is called GeoHive [8], allowing one easy access to publically available spatial data. An 
ongoing project has made the OSi data available as Linked Data, which requires the uplift of this data into RDF (see Debruyne et al. (2016) 
for more information about the OSi Linked Data Platform). 

5.2.1 Our approach 
One of the use cases provided by the OSi is in relation to centroids. In the dataset, geometries are represented as polygons using the Well-
Known Text (WKT) markup language. As a requirement, in the RDF representation, together with polygons from the dataset, the centroid 
of these must be expressed. Centroids can give a better clue of the size or location of a building with respect to streets, for example. Listing 
8 shows a fragment of the OSi dataset.  
GUID,FIRST_COUNTY,FIRST_CONTAE,FIRST_PROVINCE,FIRST_TD_ENGLISH,FIRST_TD_GAEILGE,GEOM 
"2AE1962A07E013A3E055000000000001","DUBLIN","Baile Átha Cliath","Leinster","CORK GREAT","POLYGON ((-6.1172386044796 
53.2106905753062, -6.11424909966871 53.207979467197, -6.10861907330405 53.2111812425034, -6.10377172584186 
53.2108334615519, -6.10277870491329 53.2107728977641, -6.10501756498507 53.2184440038722, -6.1195203311062 
53.2159055411092, -6.1172386044796 53.2106905753062))" 
"2AE1962A07E113A3E055000000000001","DUBLIN","Baile Átha Cliath","Leinster","CORK LITTLE","POLYGON ((-6.12181623793855 
53.2218888252828, -6.1195203311062 53.2159055411092, -6.10501756498507 53.2184440038722, -6.10762054241042 
53.2273511279793, -6.11036323642191 53.2257671814042, -6.10862377470503 53.2237584373442, -6.11796597954464 
53.2224646519635, -6.12181623793855 53.2218888252828))" 
"2AE1962A07E713A3E055000000000001","DUBLIN","Baile Átha Cliath","Leinster","CORRAGEEN","POLYGON ((-6.36241459852623 
53.2515671670277, -6.36013382263472 53.2500325570601, -6.35795924791704 53.2521491523323, -6.36119357565768 
53.2534862178303, -6.36053907014501 53.2553230424802, -6.36241459852623 53.2515671670277))" 

Listing 9: Fragment of the OSi dataset 

Many libraries are available with support for the calculation of centroids from polygons. In this use case, we have used two libraries: Turf 
[9], a JavaScript library for spatial analysis; and Terraformer [10], another JavaScript library geo toolkit. Turf is used to calculate the 
centroid of polygons and Terraformer is used to parse objects from WKT format into GeoJSON and vice versa. Turf’s library uses 
GeoJSON in the analysis and manipulation of geospatial data. The RDF output uses the WKT format. We have modified the Terraformer 
library so that it could be used and referred to within the R2RML processor JavaScript engine. This modification added a global variable 
instantiating a Terraformer object. The Turf library was not modified. The function definition using our approach is shown below. The first 
three lines of the function body load the aforementioned libraries into R2RML’s JavaScript engine. 
<#Centroid> 
 rrf:functionName "centroid" ; 
 rrf:functionBody """  
     load("turf.min.js"); 
     load("terraformer.js"); 
     load("terraformer-wkt-parser.js"); 
 
     function centroid(polygon) { 
       var centroid = turf.centroid(Terraformer.WKT.parse(polygon)); 
       return Terraformer.WKT.convert(centroid.geometry); 
     } 
""" ; . 



Listing 10: Function definition for calculating centroids 

A function call to the function defined in Listing 10 is shown in Listing 11. In this mapping the original value of the attribute GEOM is 
also used to create another triple. This object of this triple has the datatype geo:wktLiteral and subjects have the type class 
geo:Geometry from GeoSPARQL (Perry and Herring, 2012). GeoSPARQL defines a vocabulary for representing geospatial data in 
RDF, and an extension of the SPARQL query language for processing geospatial data. 
<#TMCentroid> 
  rr:logicalTable [ 
    rr:tableName "data" ; 
  ] ; 
 
  rr:subjectMap [ 
    rr:class geo:Geometry ; 
    rr:termType rr:BlankNode ; 
    rr:column "GUID" ; 
  ] ; 
 
  rr:predicateObjectMap [ 
    rr:predicate geo:asWKT ; 
    rr:objectMap [ 
      rr:column "GEOM" ; 
      rr:datatype geo:wktLiteral ; 
    ] ; 
  ] ; 
 
  rr:predicateObjectMap [ 
    rr:predicate geo:point ; 
    rr:objectMap [ 
      rrf:functionCall [ 
        rrf:function <#Centroid> ; 
        rrf:parameterBindings ( 
          [ rr:column "GEOM" ]  
        ) ; 
      ] ; 
    ] ; 
  ] ;. 

Listing 11: Mapping with a function call to centroid 

The RDF output of the mapping shown in Listing 11 using the data from Listing 12 is shown below. 
@prefix geo: <http://www.opengis.net/ont/geosparql#> . 
[] a geo:Geometry ; 
  geo:asWKT "POLYGON ((-6.1172386044796 53.2106905753062, -6.11424909966871 53.207979467197, -6.10861907330405 
53.2111812425034, -6.10377172584186 53.2108334615519, -6.10277870491329 53.2107728977641, -6.10501756498507 
53.2184440038722, -6.1195203311062 53.2159055411092, -6.1172386044796 53.2106905753062))"^^geo:wktLiteral ; 
  geo:point "POINT (-6.1101707291855405 53.21225816990057)". 
 
[] a geo:Geometry ; 
  geo:asWKT "POLYGON ((-6.12181623793855 53.2218888252828, -6.1195203311062 53.2159055411092, -6.10501756498507 
53.2184440038722, -6.10762054241042 53.2273511279793, -6.11036323642191 53.2257671814042, -6.10862377470503 
53.2237584373442, -6.11796597954464 53.2224646519635, -6.12181623793855 53.2218888252828))"^^geo:wktLiteral ; 
  geo:point "POINT (-6.11298966673026 53.22222568127934)". 
 
[] a geo:Geometry ; 
  geo:asWKT "POLYGON ((-6.36241459852623 53.2515671670277, -6.36013382263472 53.2500325570601, -6.35795924791704 
53.2521491523323, -6.36119357565768 53.2534862178303, -6.36053907014501 53.2553230424802, -6.36241459852623 
53.2515671670277))"^^geo:wktLiteral; 
  geo:point "POINT (-6.360448062976135 53.252511627346124)". 

Listing 13: OSi’s use case RDF output 

5.2.2 KR2RML’s approach 
We have applied the same approach to KR2RML, relying on the Python package Shapely [11] to calculate centroids from polygons. 
Shapely is a library for manipulation and analysis of planar geometric objects based on GEOS [12]. KR2RML’s engine uses Jython [13], a 
Java implementation of the Python programming language, to execute data transformation functions. However, the Jython implementation 
used in KR2RML has no support for some functions used by the Shapely package. In this regard, we have defined a python script that uses 
Shapely to calculate centroids and a python function within KR2RML that calls this script. Listing 14 shows the KR2RML mapping with 
the Python transformation function to execute the script shown in Listing 15. 
@prefix km-dev: <http://isi.edu/integration/karma/dev#> . 
 
_:node1bb66l8d0x1 a km-dev:R2RMLMapping ; 
    ... 
    km-dev:hasWorksheetHistory """[ { 
    ... 
    { 
       \"name\": \"transformationCode\", 
       \"type\": \"other\", 
       \"value\": \"import commands\\nreturn commands.getoutput('python shapely-function.py \\\\\\\"' + 
getValue(\\\"GEOM\\\") + '\\\\\\\"')\\n\" 



            }, 
    ... 
    } 
]""" . 

Listing 14: Function to call a script that calculates centroids in a KR2RML mapping 
import sys 
from shapely.wkt import loads as load_wkt 
print load_wkt(sys.argv[1]).centroid.wkt 

Listing 15: Using the shapely library to calculate centroids 

5.2.3 Discussion 
Both approaches can be used to calculate centroids from polygons. However, as mentioned before, functions in KR2RML have no 
signatures or parameters and therefore, they are not reusable. This requires the definition of a new function for every time centroids need to 
be calculated. In contrast, our approach defines function as resources that can be referred to. 

Other issues, not related to the use of functions, were found when using the KR2RML’s editor. One issue is the definition of datatypes. The 
OSi dataset requires specific datatypes from geospatial vocabularies, such as geo:wktLiteral, as can be seen in the R2RML mapping 
shown in Listing 11 and, therefore, in the RDF output shown in Listing 13. KR2RML supports different datatypes - as an R2RML 
extension - but its editor does not. The editor only allows the definition of XML datatypes. As mentioned before, the serialization of 
KR2RML mappings uses strings to define structure information together with mapping definitions, what makes the mapping file complex 
and the creation and editing of mappings without the editor troublesome. Another problem is the definition of blank nodes. First, all blank 
nodes defined using the editor need a class type, which is not always the case when data is being uplifted. Second, when defining a certain 
number of blank nodes, the editor would give an error saying that the serialization of the mapping was not possible. A final remark is about 
the graph visualization, where mapping complex RDF structures are difficult because of the data centric approach, where a graph 
representing the mapping definition is shown together with the source data represented as a table. 

6. CONCLUSION 
In this paper, a comparison framework to evaluate uplift tools applied to CSV datasets was presented. Relying on one of the features – 
transformation functions – evaluated by this framework, we described FunUL. FunUL is a method to incorporate functions into uplift 
mapping languages. The general approach for data transformation during the uplift process of CSV data into RDF relies on converting the 
source data into another format or on pre/post-processing techniques. In contrast, functions in our method are defined as part of the 
mapping, integrating transformation functions and mapping definitions. This makes the uplift process, in regard to data transformations, 
transparent and traceable. The evaluation applied the method to two real world use cases and compared the use of functions as part of the 
mapping to KR2RML, the only other uplift tool identified to have this feature. This evaluation showed that even though the whole process 
can be serialized using KR2RML, their functions are not reusable, which can make function updates complex and prone to error. 
Furthermore, KR2RML’s mappings are stored as strings, which makes the mapping file complex (i.e., parsing the RDF file and parsing the 
strings that relate fields to functions), relying heavily on their editor and making the creation and editing of mappings difficult using other 
tools. Finally, KR2RML only allows the use of functions to the input data. In contrast, FunUL define functions as resources that can be 
used multiple times, with different parameters – what facilitates function updates – and it does not rely on a specific editor. Additionally, 
functions can be applied in the creation of subjects, predicates and objects. Other problems with the KR2RML editor, not related to 
function definitions, were also identified for the presented use cases. Examples of such problems are the definition of blank nodes and 
datatypes. 

Future work includes extending the method to better describe functions. One example of an ontology developed to semantically declare and 
describe functions is presented in Meester et al. (2016), called the Function ontology. R2RML-F can fetch functions published on the Web 
using Linked Data principles, which indicates that it would be possible to do the same with functions declared using the Function ontology 
or other technologies. Future work also includes the use of other programing languages to define functions as part of the mapping and 
additional experiments and use cases, such as the use of functions to generate provenance information during the uplift process (see Dimou 
et al. (2016)). A limitation of having function definitions within the mapping is the domain knowledge required from users in the definition 
of functions within mappings.  

Notes 
                                                                    

1. https://github.com/antidot/db2triples 
2. https://github.com/CNGL-repo/RMLProcessor(Accessed March 2017) 
3. https://opengogs.adaptcentre.ie/debruync/r2rml(Accessed March 2017) 
4. https://www.scss.tcd.ie/~crottija/funul/(Accessed March 2017) 
5. https://blogs.oracle.com/nashorn/(Accessed March 2017) 
6. https://www.osi.ie (Accessed March 2017) 
7. https://www.oracle.com/database/spatial/(Accessed March 2017) 



                                                                                                                                                                                                                                           

8. http://www.geohive.ie(Accessed March 2017) 
9. http://turfjs.org/(Accessed March 2017) 
10. http://terraformer.io/(Accessed March 2017) 
11. https://github.com/Toblerity/Shapely (Accessed March 2017) 
12. https://trac.osgeo.org/geos/(Accessed March 2017) 
13.http://www.jython.org/(Accessed March 2017) 
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