
                             Elsevier Editorial System(tm) for Colloids 

and Surfaces A: Physicochemical and Engineering Aspects 

                                  Manuscript Draft 

 

 

Manuscript Number: COLSUA-D-16-02286R1 

 

Title: Dynamics of a flexible fibre in a sheared two-dimensional foam: 

numerical simulations  

 

Article Type: SI: Eufoam 2016 

 

Keywords: fibre-laden foam 

papermaking 

tumbling motion 

bubble model 

 

Corresponding Author: Dr. Vincent J. Langlois, Dr 

 

Corresponding Author's Institution: Université Claude Bernard Lyon 1 

 

First Author: Vincent J. Langlois, Dr 

 

Order of Authors: Vincent J. Langlois, Dr; Stefan Hutzler, Pr. 

 

Manuscript Region of Origin: FRANCE 

 

Abstract: Recently there has been a renewed interest in using foamy 

suspensions of wood fibres as 

a carrier fluid in papermaking but there is a lack of fundamental 

understanding of the dynamics of such a three-phase system.  

In this article we propose a numerical model for the dynamics of an 

individual flexible fibre within a flowing foam, based 

on discrete-element methods. As is observed in a Newtonian shear flow, we 

observe that the fibre systematically experiences a tumbling instability: 

the disordered motion of bubbles 

cannot prevent the pseudo-periodical flip of the fibre. Our simulations 

show that the tumbling time decreases almost as the inverse of the strain 

rate. It also decays when the fibre 

length is increased, though for long enough fibres it reaches a constant 

value. Similarly the tumbling time is also surprisingly independent of 

the stiffness of the fibre. 

Because of their tumbling motion, long and flexible fibres spend most of 

the time in a coiled geometry. This would imply that using foam as a 

carrier fluid is not enough  

to keep fibres aligned with the flow. However, further refinements of the 

model will need to be considered to arrive at firm conclusions regarding 

alignment. 

 

 

 

 



Dear Editor,

We would like to thank the referee for his careful reading and constructive remarks. We tried
to follow his recommendations, and to answer his comments and concerns regarding the article.
The modifications we brought to the paper are listed below:

Reviewer #1

* General questions that seem not to be addressed are: Is there shear-banding or localisation? Does
it matter where between the side walls the fibre is placed? (I guess it shouldn’t, but I presume that
this was checked.)

Since no additional wall friction is added (see our previous study of the bubble model in Langlois
et al. [2008]), no shear-banding is observed. The average velocity profile is mostly undisturbed by
the presence of a unique fibre, and remains linear.

The initial y-position of the fibre is of no influence, except in the ’pathological’ case where it
comes in contact with one of the walls and remains there.

* lines 10-20 are not very clear on how the presence of the fibres affects these foam properties; it
would be useful to expand this section to give the reader more of a feel for the complexity of this
area of research and the way in which a foam interacts with fibres.

We have added to the introduction a more thorough description on the effects of fibres on the
foam, recently observed experimentally (l.15 to 21).

* lines 63 and 96: I find the use of the word ”spherical” misleading, since in a 2D experiment
bubbles are more discoidal than spherical and they are certainly treated here as discs. Once the
description of the bubble model is restricted to 2D, I suggest to use ”discs” exclusively.

In the simulations the bubbles are indeed treated as disks, though we had initially used the
term ”spheres” since these disks are meant to mimick a bubble raft made of roughly spherical
bubbles seen from above. However we agree that this can lead to some confusion and corrected
this to use exclusively ’disks’.

* line 68/71: W needs to be defined earlier, i.e. at line 68 not 71.
We modified the description of the geometrical properties to make them clearer (l.72 to 76).

* fig 1 (and the graphical abstract) shows a situation in which two non-adjacent fibre particles
are touching. This is not mentioned in the text, but raises interesting questions: is this behaviour
typical or (as fig 5 suggests) unusual (making it a poor choice for the graphical abstract)? Does
such a situation change the speed with which the fibre tumbles? What is the interaction, if any,
between non-adjacent fibre particles?

This type of collision can happen, but mostly for not very rigid fibres. Such a collision between
two non-adjacent fibre particles is treated as a bubble-bubble collision (that is, no attractive force),
as explained lines 117-119.

* lines 85-86: what is ”the” foam. If I understand correctly, the authors need to make clear that
here they mean ”a” real foam, not the one in the simulations.

This is indeed what we meant; we added this precision (l.91).

* lines 100-105: It would help to have an explanation of what equations (4) and (5) mean, rather
than expecting the reader to infer how they work, i.e. please expand upon their description as an
”elastic force” and a ”bending force”.

The elastic force is effectively a simple spring between adjacent particles, which tends to re-
store their distance to its equilibrium value l0. The bending force tends to realign each triplet of
adjacent particles. We added these precisions to the correspondong paragraph (l.114-121).
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* lines 107-108: is it the case that this interaction has both an elastic and a viscous component?
This should be explicit. And why are the same κ and cb used here?

We added this precision. The same values were chosen for sake of simplicity and to avoid
having too many control parameters. However, in the regime we are most interested in, the fibre
remains rather rigid and very few of these collisions happen.

* equations (6) and (7): is it assumed that the elastic force between adjacent particles is zero in
order to get the rest length (N − 1)l0? Surely this is rarely exact?

The factor (N − 1)l0 is indeed the equilibrium length of the fibre, but is only used here to
renormalize the actual spatial extension of a fibre at any given time, when it is not at equilibrium.

* fig 4: I found it hard to distinguish the two lines.
We have attempted to improve the difference between both curves.

* fig 6: can the authors make a conjecture about what sets τ0 = 20? Can they propose an expla-
nation of why τr decreases with N? As mentioned above, this paper is currently mostly a list of
results, but I think it could be made stronger with more explanations of this kind. * §3.4: surely
this section requires a comment on the result in eq. (10): the exponent on S is very small, and
within the error bars I could draw a horizontal line, so the influence of stiffness seems weak. In
particular, the statement in the conclusions that stiffness has an effect on the tumbling motion
seems bold. * §3.5: the results give the impression that the tumbling always occurs, but that for a
wide gap there are long periods without tumbling. These seem hard to reconcile, hence the authors’
use of ”abnormally”. Is this the only choice of parameters for which tumbling doesn’t happen?

Section 3.4 has been greatly expanded and now includes an additional figure. We performed
additional simulations and conclude that indeed the effect of stiffness on the tumbling time can be
considered as negligible. We have now included a more detailed discussion for the constant value
of the tumbling time for long enough fibres, which we predict from the dynamical shape of the
fibre and compare to theoretical predictions.

* the references need tidying up, for example to insert missing journal volumes.
The lacking information has been added to the bibliography.

References

V. J. Langlois, S. Hutzler, and D. Weaire. Rheological properties of the soft-disk model of two-
dimensional foams. Phys. Rev. E, 78:021401, 2008. doi: 10.1103/PhysRevE.78.021401.
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We propose a novel model for the dynamics of flexible fibres within a 

flowing foam. 

As in a newtonian fluid fibres experience a tumbling instability. 

The complex motion of bubbles does not allow fibres to align with the 

flow. 
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Dynamics of a flexible fibre in a sheared

two-dimensional foam: numerical simulations

Vincent J. Langloisa,∗, Stefan Hutzlerb

aLaboratoire de Géologie de Lyon, Université Claude Bernard Lyon 1 - ENS de Lyon -

CNRS, 2 rue R. Dubois, 69100 Villeurbanne, France
bSchool of Physics, Trinity College Dublin, The University of Dublin, Ireland.

Abstract

Recently there has been a renewed interest in using foamy suspensions of wood
fibres as a carrier fluid in papermaking but there is a lack of fundamental under-
standing of the dynamics of such a three-phase system. In this article we propose
a numerical model for the dynamics of an individual flexible fibre within a flow-
ing foam, based on discrete-element methods. As is observed in a Newtonian
shear flow, we observe that the fibre systematically experiences a tumbling in-
stability: the disordered motion of bubbles cannot prevent the pseudo-periodical
flip of the fibre. Our simulations show that the tumbling time decreases almost
as the inverse of the strain rate. It also decays when the fibre length is in-
creased, though for long enough fibres it reaches a constant value. Similarly
the tumbling time is also surprisingly independent of the stiffness of the fibre.
Because of their tumbling motion, long and flexible fibres spend most of the
time in a coiled geometry. This would imply that using foam as a carrier fluid
is not enough to keep fibres aligned with the flow. However, further refinements
of the model will need to be considered to arrive at firm conclusions regarding
alignment.

Keywords: Fibre-laden foams, papermaking, tumbling instability, bubble
model.

1. Introduction

The possibility of replacing water by a liquid foam as the carrier fluid for
wood fibres in papermaking has led to a renewed interest in the technique by the
paper industry. Although this idea was initially proposed in the 1970s (Smith
et al., 1974), quantitative investigations of the behaviour of fibre-laden foams5

have only begun quite recently. The use of a fibre-laden foam would considerably
reduce the water consumption and consequently the energy needed for the drying
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Email address: vincent.langlois@univ-lyon1.fr (Vincent J. Langlois)
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of the paper. Furthermore, the technique might enable improvement and better
control of the properties of the final fibre network: the same method could
then be applied to the manufacturing of other novel fibrous materials (e.g. for10

insulation, non-woven textiles, oil absorption, etc.).
In the papermaking framework, several experimental studies (Al-Qararah

et al., 2013, 2015b; Jäsberg et al., 2015; Haffner et al., 2017) have recently
investigated the influence of the fibres (depending on their physico-chemical
characteristics) on the properties of the wet foam used as carrier fluid: incor-15

porating fibres while mixing the foaming liquid produces a foam with smaller
bubbles and a higher liquid fraction than without fibres. Foam viscosity has
been found to increase with increased content of rough wood fibres, although
the foam still remains shear-thinning. This effect might not be observed when
using artificial smooth fibres such as viscose. Further work also addressed the20

alteration of local foam geometry in the presence of fibres and the slow-down in
foam coarsening (Whyte et al., 2017). The influence of the foam on the proper-
ties of the final dry fibre network has been studied by Al-Qararah et al. (2015a),
who showed that the pore size distribution in the paper sheet is more regular
if the fibres are deposited from a foam suspension rather than from classical25

water-based pulp.
Therefore it is important to investigate theoretically and numerically the dy-

namics of fibre-laden foams, in order to better understand the key parameters
that control the interactions between fibres and bubbles: how does the presence
of fibres affect the properties of the foam, and how can we use the foam carrier30

in order to tune the properties of the final fibre network?

In the past 20 years, the physics of liquid foams has known flourishing
progress (Weaire and Hutzler, 1999; Cantat et al., 2013), whether it deals with
the physico-chemical properties of the thin liquid films, the quasi-static prop-35

erties of a foam (bubble coarsening and ripening, drainage) or its dynamical
behaviour (influence of flow on topology, rheology). Also, since the pioneering
theoretical works of Jeffery (1922) on the dynamics of ellipsoidal particles, the
study of fibres in Newtonian fluid flows has been the subject of many experimen-
tal and numerical studies, with motivations as diverse as papermaking, water40

purification, dynamics of DNA molecules or microswimmers (Forgacs and Ma-
son, 1959; Yamamoto and Matsuoka, 1996; Ross and Klingenberg, 1997; Switzer
and Klingenberg, 2003; Subramanian and Koch, 2005; Gauger and Stark, 2006;
Lindström and Uesaka, 2007; Wandersman et al., 2010; Lindner and Shelley,
2015; Farutin et al., 2016). In particular, fibre suspensions have often been mod-45

elled by studying the interactions between a laminar simple shear or Poiseuille
flow and flexible rods modelled as strings of spherical (or circular) beads.

Here we propose to combine such a model for fibres with a model that de-
scribes a foam itself as a packing of soft spheres or disks (in 2D). This so-called
bubble model, or soft-sphere model was introduced by Durian (1995) in order50

to simulate mechanical properties of wet foams. As shown by Langlois et al.
(2008), this simplistic but computationally efficient approach is sufficient to re-
produce the basic features of the rheology of foams: existence of a yield stress,
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Herschel-Bulkley shear-thinning rheology, occurrence of shear-bands in a Hele-
Shaw cell, and it can also be appropriate for more complex geometries (Langlois,55

2014).

In this article we will consider the behaviour of a single fibre in a two-
dimensional (2D) foam under shear, as a preliminary study in order for further
investigations of the rheology of three-dimensional fibre-laden foams. The article60

is organized as follows: in section 2 we describe the implementation of the bubble
model and the modelling of the fibres; in section 3 we analyze the motion of
the fibre as a function of its length and stiffness, strain rate and channel width.
Finally we draw conclusions regarding the use of foam as a carrier fluid for
fibres.65

2. Numerical model

2.1. Bubble model

The 2D foam, as described by the bubble model (Durian, 1995; Langlois
et al., 2008), is a dense packing of circular bubbles. A small polydispersity in
bubble size is introduced to prevent crystallization of the bubbles, with each70

bubble radius Ri being chosen within a uniform distribution bounded by R0 ×
(1± 0.2), R0 being the average radius. The foam is produced by compressing a
sample of 2,000 to 10,000 bubbles between two side-walls, of length ℓ = 200R0

and made of fixed bubbles. The final state is obtained for a gap W between
these walls (see figure 1), defined by the packing fraction

∑

πRi
2/(Wℓ) = 0.9075

(the overlaps between bubbles being neglected). This corresponds to an effective
liquid fraction φ = 0.10. One of the side-walls is then moved tangentially at
a constant speed U , which defines the average strain rate as γ̇ = U/W . The
other side-wall is kept stationary. The dynamics of the foam are computed by
solving Newton’s second law for each individual bubble, using classical numerical80

techniques originally developed for Molecular Dynamics (Pöschel and Schwager,
2005). Periodic boundary conditions are applied in the streamwise direction.

Bubbles interact with one another through elastic and viscous forces. When
overlapping, two bubbles i and j, located respectively at ri and rj and of radii
Ri and Rj , repel each other via a linear elastic force. A bubble j then exerts on85

bubble i the force

Fr

ij = −κ
2R0

Ri + Rj
∆ij nij . (1)

where κ is the coefficient of elasticity (related to surface tension), nij is the
unit normal vector between bubbles i and j, defined by

nij =
rj − ri

|rj − ri|
, (2)

and the overlap ∆ij (see Fig.2) is given by ∆ij = (Ri +Rj)−|rj −ri|. The ratio
2R0/(Ri +Rj) in equation (1) takes into account that larger bubbles are easier90

to deform than smaller ones. In a real flowing foam, energy is dissipated by the
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Figure 1: Foam produced by the bubble model, containing a fibre represented by 25 connected
disks (appearing in blue), and close-up view of this fibre surrounded by bubbles. Fixed
streamwise velocities (0 and U , respectively) are imposed on the bubbles composing both
side-walls (full grey). Note that in the actual simulations the length of the cell is much longer
(ℓ about 100 bubble diameters).
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Figure 2: Overlap ∆ij between two contacting bubbles of radii Ri and Rj , located at ri and
rj , respectively.
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viscosity of the liquid within the films between bubbles. This is accounted for
in the bubble model by introducing a viscous force Fv acting on a bubble i in
contact with a bubble j:

Fv
ij = cb(vj − vi) (3)

where cb is a dissipation constant and vi and vj are the respective bubble95

velocities.
The two forces Fr

ij and Fv
ij allow us to define the dimensionless Deborah

number De = γ̇cb/κ, that relates the timescale of bubble dynamics τb = cb/κ
to the shear timescale 1/γ̇.

2.2. Particle model of the fibre100

Fb

L1N

Fe

Figure 3: Elastic (Fe) and bending (Fb) forces experienced by the disks representing the fibre,
whose shape is characterized by its end-to-end vector. Elastic forces tend to bring the fibre
length back to equilibrium and bending forces tend to keep the fibre straightened.

Following the seminal works of Yamamoto and Matsuoka (1993), we model
the deformable fibre as a string of N disks of radius Rf = 0.6R0. This model is
particularly appropriate within the bubble model, since the dynamics of these
fibre particles can be computed together with the dynamics of the bubbles.
Within the fibre, each particle exerts both an elastic and a bending force on105

its neighbours (see figure 3). Elasticity is modelled by adding linear springs
between each pair of adjacent fibre particles. The elastic force experienced by
a fibre particle i is then

Fe
i = −κ(li − l0)ni−1,i + κ(li+1 − l0)ni,i+1 (4)

with li = |ri − ri−1| and l0 = 1.8Rf the distance between two fibre particles at
equilibrium. This force tends to bring the fibre back to its equilibrium length110

L0 = (N − 1)l0. Discretizing the bending free energy of a continuous elastic
rod gives the following expression for the bending force acting on the particle i
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(Gauger and Stark, 2006; S lowicka et al., 2012):

Fb
i = S × κR0 ×

{

ǫi−1

li
ni−2,i−1

−

[

ǫi−1

li
ni−2,i−1 · ni−1,i +

ǫi
li+1

+
ǫi
li
ni−1,i · ni,i+1

]

ni−1,i

+

[

ǫi
li+1

ni−1,i · ni,i+1 +
ǫi
li

+
ǫi+1

li+1

ni,i+1 · ni+1,i+2

]

ni,i+1

−
ǫi+1

li+1

ni+1,i+2

}

(5)

with ǫi = l0 if 2 ≤ i ≤ N − 1 and ǫi = 0 for i = 1 or N . This force tends
to restore alignment of each triplet of adjacent fibre particles, and therefore115

straightens the fibre. The parameter S represents the dimensionless stiffness
of the fibre. Finally, the interaction between a fibre particle and a bubble, or
between two non-adjacent fibre particles, is treated as if it were a bubble-bubble
collision (with repulsive and dissipative forces, see equations (1) and (3)). We
will return to this treatment in section 4 where we discuss the modelling of fibre120

roughness.

In order to describe the shape of the fibre during the dynamics, we define its
end-to-end vector L1N (as illustrated in figure 3), whose normalized components
are noted as125

∆x(t) =
xN (t) − x1(t)

L0

and ∆y(t) =
yN (t) − y1(t)

L0

(6)

where the indices 1 and N correspond to both ends of the fibre. For instance,
when the fibre is perfectly aligned in the streamwise x-direction, we have ∆y = 0,
and if it is neither stretched nor compressed, ∆x = 1. Following S lowicka et al.
(2015), we also define the fractional compression of the fibre as

α(t) = 1 −
L(t)

(N − 1)l0
(7)

with L(t) = |L1N | the absolute distance between the two ends of the fibre. α130

can be seen as a measurement of the state of the coiling of the fibre. When the
fibre is coiled, we have α > 0, whereas at equilibrium α = 0 and when the fibre
is stretched α < 0.

2.3. Time integration

At a given iteration, all forces acting on each bubble/particle are computed.135

Overlaps between bubbles are found by using the linked cell algorithm (Pöschel
and Schwager, 2005). As in previous implementations of the model (Langlois
et al., 2008; Sexton et al., 2011; Langlois, 2014), an effective mass is assigned
to each bubble/particle and we use the Verlet algorithm (of fourth order of
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precision) (Pöschel and Schwager, 2005) to compute the position of each bub-140

ble/particle at the next iteration from Newton’s second law. The mass is chosen
so that the motion of each bubble remains overdamped and inertia is therefore
negligible in the dynamics: we set the ratio κmb/cb

2 = 1.5 × 10−2. In order to
compute accurately each collision between bubbles, the iterative timestep ∆t is
chosen 100 times smaller than the characteristic viscous timescale:145

∆t =
τv

100
with τv =

mb

cb
(8)

3. Dynamics of a fibre in a shear flow

3.1. Tumbling instability

0 100 200 300 400
strain γ

-1.5

-1

-0.5

0

0.5

1

1.5
∆x
α

Figure 4: Normalized streamwise component ∆x/l0 of the end-to-end vector and fractional
compression of the fibre as a function of strain, for N = 50, S = 1.0 and De = 1.0 × 10−3.
Most of the time the fibre is undeformed and oriented along the streamwise direction. Each
peak in alpha corresponds to the fibre flipping (which results in reversing its direction).

Let us first remark that the presence of a single fibre does not affect the
average linear velocity profile in the gap. We plot in figure 4 the streamwise
extension ∆x of the fibre as a function of strain γ = γ̇ × t, for a length N = 50,150

a strain rate De = 1.0 × 10−3 and a stiffness S = 1.0. In this example, we
can observe that the fibre spends most of the time in a straight configuration
(|∆x| ≃ 1 and α ≃ 0), during which it is roughly aligned with the direction of the
flow. However, it also experiences successive flips, during which it rapidly coils
(α > 0.5) before straightening again in the opposite direction. This tumbling155

motion, which is also observed for an individual fibre within a viscous Newtonian
flow (S lowicka et al., 2012, 2015), appears to be roughly periodic. Hence, the
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presence of the bubbles is not sufficient to channel the motion of fibre and
prevent this instability. The snapshots in figure 5 illustrates the successive
shapes taken by the fibre during one of these flips.

Figure 5: Successive snapshots of a fibre of length N = 50 undergoing a ‘flip’. The x-position
of the middle particle of the fibre is kept at 0 in this representation. Images are separated by
∆γ = 2.

160

3.2. Dependence on strain rate

A fibre flip is identified by the rapid change in sign of ∆x and we mark its
occurrence in time when ∆x = 0. The duration between two consecutive flips
defines the tumbling time Tt. The average tumbling time for a given strain rate
is computed over at least 50 flip events. Different from the case of a viscous165

shear flow in a Newtonian fluid, it is possible in a foam to define an internal
timescale, independently of the strain rate. We therefore rescale the tumbling
time with the internal timescale τb, while varying the strain rate γ̇ between
De = 5 × 10−5 and De = 1 × 10−2. It has been shown that the bubble model
represents accurately the Herschel-Bulkley rheology: τ = τy + A × γ̇1/2 over170

this range (Langlois et al., 2008). If we keep the length and stiffness of the
fibre fixed, respectively N = 50 and S = 1, we observe the variation shown
in figure 6. As theoretically predicted by Jeffery (1922) for rigid ellipsoids and
numerically observed by Yamamoto and Matsuoka (1993) for rigid particulate
rods in a Newtonian shear flow, we observe that the tumbling time decreases175

when γ̇ or De increase. However, these studies predict that the tumbling time
scales linearly with the inverse strain rate γ̇−1. In the case of a foam flow, the
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best fit to our data to a power law results in

Tt

τb
= 60.4 × De−0.85±0.03 (9)

which departs only slightly from the prediction (exponent −1) for slender ob-
jects.

10
-4

10
-3

10
-2

De

10
3

10
4

10
5

10
6

T
t / 

τ b

Figure 6: Tumbling time as a function of the dimensionless strain rate De, for a fibre of
length N = 50 and stiffness S = 1. The plain line represents the best fit by a power law
(see equation 9). The dashed line represents the best fit by an inverse function: Tt/τb =
12.4×De−1.

180

3.3. Influence of fibre length

Since the scaling of the tumbling time with the strain rate is close to an
inverse relationship, we now define the dimensionless tumbling time as τt =
γ̇×Tt. In figure 7, we plot this rescaled tumbling time as a function of the fibre
length, all other parameters being kept constant. As can be observed, the longer185

the fibre, the faster it tumbles, which differs from results obtained by Yamamoto
and Matsuoka (1993) for rigid fibers in the viscous shear flow of a Newtonian
fluid (in accordance with predictions by Jeffery (1922)) and by S lowicka et al.
(2012) for a single (but generally shorter) fibre in a Newtonian Poiseuille flow.
However, let us first note that the tumbling time quickly reaches a steady value190

τ0 ≃ 20 when the fibre length exceeds 50 particles. Furthermore, very short
fibres tend to exhibit chaotic dynamics with scarce random flips, which results
in a very large dispersion in measured tumbling times (see error bars in figure 7).
Let us insist on the fact that even if the tumbling time becomes independent of
the fibre length, the detailed dynamics of the fibre can still differ. This can be195

evidenced by plotting the fraction of time ξ that the fibre spends in a roughly
straight geometry, defined as α < 0.2 (i.e., a configuration is considered as

9
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Figure 7: Dimensionless tumbling time τt = γ̇Tt as a function of the length N of the fibre, for
De = 1.0×10−3 and stiffness S = 1.0. Vertical bars represent standard deviation of successive
tumbling times. The straight line is the period τ0 = 20.

straight if L/L0 > 0.8). As illustrated in figure 8, ξ is equal to 1 for very short
fibres (which behave like rigid elongated particles) and continuously decreases
with increasing fibre length. If, for short fibres, the flipping transition is almost200

instantaneous compared to the tumbling time, these two times become of the
same order as the fibre gets longer, until the latter spends most of the time in
a relatively coiled geometry.

In figure 9, we plot the orbits described by the two ends of the fibre in time,
normalized by their distance at equilibrium. The orbit is close to a circle for205

the shortest fibre, which behaves like a rigid object. It is then quickly flattened
in the transverse direction when the fibre gets longer. Let us remark, however,
that in this case the streamwise distance between the two ends of the fibre does
not represent the maximum streamwise extension of the fibre.

3.4. Influence of fibre stiffness210

In figure 10 we plot the variation of tumbling time as a function of the
dimensionless stiffness of a fibre made of N = 50 particles, for S = 0.02 to
S = 35. Considering the dispersion in observed tumbling times, we can conclude
that in the range that we consider here, the stiffness of the fibre does not affect
the tumbling time. This is partially consistent with the results of Yamamoto215

and Matsuoka (1993) which show that the tumbling time in a Newtonian fluid
becomes constant if the fibre is rigid enough. As in the case of the influence of
the fibre length, it is striking that the tumbling time remains almost invariant
although the detailed dynamics of the flipping motion is different, as illustrated

10
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fibre length (N)
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ξ

Figure 8: Fraction of the time, ξ, that the fibre spends in a relatively straight configuration
(α < 0.2), as a function of its length N (S = 1.0 and De = 1.0× 10−3 as in figure 7). Longer
fibres tend to spend more time in a coiled configuration while flipping.
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Figure 9: Transverse component versus streamwise component of the fibre end-to-end vector
for different lengths of the fibre, each component being normalized by the fibre length. The
longer the fibre, the flatter is the orbit.
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Figure 10: Tumbling time as a function of the dimensionless stiffness of the fibre, for a length
N = 50 and Deborah number De = 10−3. Within the considered range, the tumbling time
can be considered as independent of the fibre stiffness.

by figure 11 where we plot the standard deviation of the normalized transverse220

span of the fibre ∆y/L0. As can be seen, the average transverse extension of the
fibre during the tumbling motion increases when its stiffness: flexible fibres are
able to flip by taking sinuous shapes (which was called ‘snake turn’ by Forgacs
and Mason (1959)), while stiffer fibres can only flip like rigid rods. In all cases,
natural transverse velocity fluctuations of the bubbles constantly disturb the225

fibre from its straightened position aligned with the flow, which results in some
parts of the fibre being accelerated. In the flexible case, as shown in figure 11,
the typical transverse span is of the order of ∆y ∼ L0/10. This implies that
the relative velocity of both ends of the fibre is of the order of ∆v ∼ γ̇×L0/10.
In order to flip, the fastest end of the fibre needs to be displaced by a distance230

2L0, which leads to a normalized tumbling time

τt = γ̇Tt = γ̇ ×
2L0

∆v
∼ 20 (10)

which is consistent with the observations (figures 6 and 10). In the rigid limit,
the ends of the fibre undergo roughly circular orbits. In a Newtonian fluid, the
tumbling time should be equal to half the period predicted by Jeffery (1922) for
rigid ellipsoids of aspect ratio r: τJ = π× (r + 1/r). Extrapolating the effective235

aspect ratio r∗ of a cylindrical rods that behaves like an ellipsoidal rod of aspect
ratio r (Bretherton, 1962; Yamamoto and Matsuoka, 1993), we find r∗ = 35 for
a fibre of length N = 50, which corresponds to τJ = 110 ≫ τ0. Hence the
actual tumbling time that we observe in our simulations is much shorter than
predicted in a Newtonian fluid by Jeffery.240
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Figure 11: Standard deviation of the transverse span ∆y(t) of the fibre, normalized by the
equilibrium length L0, as a function of the stiffness S. Snapshots show the typical shape of
the fibre during a flip in the limits S ∼ 0.1 and S ∼ 20.
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3.5. Influence of gap width

Finally, we varied the width of the gap between the two side-walls, and
plotted the average tumbling time in figure 12. Let us note that the very large
dispersion for the widest gap is in fact due to a small number of abnormally
long times without any flip. However, considering the dispersion, it is difficult245

to assess that the width of the gap has any major influence on the tumbling
time. Interestingly, it is also observed that the tumbling motion still occurs even
when the width of the gap is smaller than the length of the fibre (if the latter
is sufficiently flexible).

0 50 100 150
width of the gap W/l

0

0

10

20

30

40

50

tu
m

bl
in

g 
tim

e 
  τ

t

Figure 12: Dimensionless tumbling time τt = γ̇Tt as a function of the width of the gap,
normalized by the equilibrium length of the fibre l0. Vertical bars represent standard deviation
of successive tumbling times. We cannot conclude any particular influence of the gap width
on the tumbling time.

4. Conclusion250

In this article we have presented the first model of a fibre-laden foam. By
combining the bubble model used in foam physics with a particulate model of a
fibre classically used in simulations of fibre suspensions, we have investigated the
dynamics of an individual flexible fibre within the shear flow of a 2D foam. Our
simulations show that the tumbling time decreases as a power law of the strain255

rate, close to the inverse relationship already observed for fibres in a Newtonian
shear flow. We also observe that the tumbling motion gets faster when the
fibre gets longer, but becomes constant when the fibre length exceeds 50 bubble
diameters. Interestingly, the tumbling time is also observed to be constant (with
γ̇Tt ≃ 20) when fibre stiffness is increased over 3 decades, though the detailed260

dynamics of the flipping motion is qualitatively different: short and rigid fibres
describe roughly circular orbits and remain straightened, while long and flexible
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fibres spend most of the time in a coiled geometry and become sinuous when
flipping. These results imply that using foam as a carrier fluid is not enough to
keep fibres aligned in the direction of the flow. With this same issue in mind,265

we shall address the dynamics and interactions of multiple fibres in suspension
within a foam, and the rheology of such a three-phase fluid, in a further article.

Recent experimental studies (Al-Qararah et al., 2015b) suggest that the
rheology of a fibre-laden foam can be affected by the surface properties of the
fibres (which can be either smooth or rough). This effect could readily be270

incorporated in our model by adding a tunable attractive force between the
fibre particles and adjacent bubbles, and between different fibres. Performing
2D experiments with model fibres in well-controlled flows would be useful to
help tuning these numerical ingredients. Finally, let us note that the model can
also conveniently be extended to non-homogeneous strain rates (e.g. for a pipe275

flow) and, by adding twisting forces, to a suspension of fibres in a 3D foam.
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Recently there has been a renewed interest in using foamy suspensions of 

wood fibres as 

a carrier fluid in papermaking but there is a lack of fundamental 

understanding of the dynamics of such a three-phase system.  

In this article we propose a numerical model for the dynamics of an 

individual flexible fibre within a flowing foam, based 

on discrete-element methods. As is observed in a Newtonian shear flow, we 

observe that the fibre systematically experiences a tumbling instability: 

the disordered motion of bubbles 

cannot prevent the pseudo-periodical flip of the fibre. Our simulations 

show that the tumbling time decreases almost as the inverse of the strain 

rate. It also decays when the fibre 

length is increased, though for long enough fibres it reaches a constant 

value. Similarly the tumbling time is also surprisingly independent of 

the stiffness of the fibre. 

Because of their tumbling motion, long and flexible fibres spend most of 

the time in a coiled geometry. This would imply that using foam as a 

carrier fluid is not enough  

to keep fibres aligned with the flow. However, further refinements of the 

model will need to be considered to arrive at firm conclusions regarding 

alignment. 

 

*Abstract


