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A R T I C L E I N F O A B S T R A C T

Following the general approach of Morse and Witten for the deformation of a bubble in contact with neighbour-
ing bubbles, we develop a model for contacting bubbles in two dimensions which can be solved analytically. The
force-displacement relations are derived by elementary methods; unlike the case of 3d, no logarithmic factors
arise in two dimensions. We also discuss the case of a uniform compression of a symmetric foam structure; the
(osmotic) compressibility depends on the number of contacts, as was shown in earlier work by Lacasse et al. Our
model, which is based on first principles, without any free parameters, may be extended to simulate 2d foams.

1. Introduction

In the theory of liquid foams [1,2] the idealized two-dimensional
model has played an important role. It can represent some real systems,
such as a layer of bubbles trapped between plates [3]. It also serves to
expose and illustrate many properties which are also characteristic of
three-dimensional foams, for which they may be much more difficult
to visualize and analyze. Theoretical results often take simpler forms in
two dimensions.

In the present case we seek to understand the interactions between
2d bubbles close to the wet (or jamming) limit, where they become cir-
cular and the structure loses its ability to resist a static stress (rigidity
loss transition [4]). This problem has not been studied intensely for as
long as that of the dry limit, where the 2d bubbles take the form of poly-
gons with curved sides; see Fig. 1.

Much of what has been advanced in describing wet foams has
been based on a simple ad hoc model in which 2d bubbles are rep-
resented by circles (or spheres in three dimensions) whose overlap is
resisted by a force which varies linearly with distance between the
centres of the circles [8–11]. This “Bubble Model”, used also exten-
sively in studies of the jamming transition for soft particles [12], has
been a valuable guide to general trends of foam properties, such as

energy or shear modulus. It is convenient for computation but it is
clearly unreliable in detail.

What then is the true nature of the interaction between contacting
bubbles? Morse and Witten [13] undertook to answer the question in
the case of three dimensions, in a now classic paper. They raised it in
the context of emulsions but for present purposes this makes no differ-
ence. The equilibrium properties of both bubbles and emulsion droplets
are generally well described in terms of incompressible fluids and a con-
stant surface tension.

The analysis of Morse and Witten was highly original and penetrat-
ing, but difficult to follow in detail, so that it is still poorly appreci-
ated even today. Only a few papers have addressed it, or developed it
further, e.g. [14–17]. The present paper arises from an attempt to thor-
oughly rework the Morse-Witten analysis, in the course of which it be-
came clear that the simpler two-dimensional case, hitherto neglected,
was worthy of attention. Empirical work on bubble interactions, based
on experimental data, exists only for quasi-two-dimensional emulsion
droplets [18].

The main qualitative result of Morse and Witten was surprising: that
the energy E associated with the deformation of two contacting bubbles
or a bubble contacting a wall, written as a function of the force F be-
tween them, involved the logarithm of F. To lowest order in
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Fig. 1. Examples of two-dimensional foam structures in the wet (near-circular bubbles)
and dry regimes (near polygonal bubbles), obtained using the software PLAT [5–7].

F, their result is

(1)

A corresponding result, confirmed by simulations [19] and related
theories [20,21], as well as experiments [16], may also be written in
terms of force and displacement, also involving a logarithm [20]. It de-
serves to stand among other canonical forms of force laws in nature,
such as that of Hertz for elastic particles [22], or Hooke's law.

What is the form of the corresponding interaction in two dimensions?
Can it be adapted and extended in the manner of Höhler and Cohen-Ad-
dad [17] to create a formalism of pairwise interactions, to model en-
ergy, elastic moduli, etc.? We address these questions here. Our initial
analysis of a single bubble subject to an applied force will be much more
direct and elementary than that used by Morse and Witten [13] for their
3d problem. A detailed review of the latter will be presented in a further
paper [23].

2. Single 2d bubble subject to a single contact force

The unperturbed bubble is taken to have radius R⁠0. Its area will be
conserved. This is a familiar condition, corresponding in practice to the
incompressibility of the contained gas, under the weak forces encoun-
tered in many situations where the Laplace pressure is many orders of
magnitude smaller than the bulk modulus of the gas, and where there is
no significant pressure gradient [2,24].

We wish to find the profile of the bubble under the action of a single
point force of magnitude F, but in order for equilibrium to be possible,
it must be opposed by another. Following the lead of Morse and Wit-
ten [13], we introduce an equal and opposite uniform body force via an
internal pressure gradient per area. In an experiment, with a
layer of bubbles or droplets confined between two parallel plates, this
body force could be implemented by simply by tilting the plates, as in
the experiments of Desmond et al. [18].

The profile of the deformed bubble, Fig. 2, will be expressed in (di-
mensionless) circular polar coordinates r and θ,

(2)
where δr(θ) is the (dimensionless) bubble displacement, see Appendix A.

For small radial displacement δr(θ), it is governed by the linear dif-
ferential equation

(3)

where f is a dimensionless force, given by f = F/γ, and γ is the sur

Fig. 2. Shape of a two-dimensional bubble in contact with a (dimensionless) point force f
acting on its surface at angle θ = 0. (a) The thick black line represents the undeformed cir-
cular bubble of the same area (radius r(θ) = const. = 1). The coloured lines show the dis-
placement δr(θ) in response to point forces f = 0.1,0.5,1.0. (b) Radial displacement δr(θ)
as a function of θ. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

face tension for a gas-liquid interface in 2d; see Appendix A. The
right-hand side is the pressure variation associated with the compensat-
ing force field mentioned above. The constant a will be specified below.

Eq. (3) is the 2d equivalent of Eq. (3) of Morse and Witten [13],
and may be obtained by linearising the full expression for curvature in
the circular polar coordinates, and writing the condition for local equi-
librium of the curved edge of the bubble, which involves surface ten-
sion (hence curvature) and pressure. This is the Laplace-Young law; see
Appendix A.

The general solution of Eq. (3) is elementary:

(4)

It includes two arbitrary constants c⁠1 and c⁠2 in addition to a.
The constant c⁠1 is determined by demanding that the centre of mass

is not shifted, as in the 3d solution derived by Morse and Witten [13].
The condition

(5)

then results in c⁠1 = f/(4π). Later we will represent the equilibrium
structure of a 2d foam in terms of a network of forces: their lines of ac-
tion will be taken to meet in a point for each bubble. This is justifiable,
to within a negligible order; the point is the centre of mass [23].
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Using the obvious symmetry of the problem we may apply the con-
dition at θ = π in order to determine c⁠2 = f/2.

Finally the arbitrary constant a, related to the internal pressure, is
determined by the condition of incompressibility, which is

(6)

This gives a = f/(2π), hence the full solution that we require is,

(7)

plotted in Fig. 2 for three different values of force f. Note that unlike
the situation in 3d [13], here the deformation is not singular where the
point force is applied.

A useful check is to consider force and surface tension at the point
where the force is applied (at θ = 0 in Fig. 2). Computation of the slope
of the bubble profile at this point shows that these are indeed in equi-
librium.

In Section 4 we will demonstrate the validity of the model for the
case of a bubble compressed between two plates, where an analytical
solution exists.

3. Introduction of a finite contact

In relation to foams the case of a point contact is not directly rel-
evant, but it can be adapted, following the lead of Morse and Witten.
This introduces a flat ‘cap’ as shown in Fig. 3, representing the line of
contact between two bubbles of equal pressure, with no change of the
force f, now distributed uniformly on it.

Since the internal pressure (dimensionless Laplace pressure) is equal
to unity, in lowest order, the corresponding estimate of the

Fig. 3. Sketch showing the flat ‘cap’ forming at the line of contact between two bubbles.
(For purpose of illustration we are showing the case of a large deformation.) Expressions
for cap length l and height h as a function of force f are given in Appendix B. In the 3d
case, part of the corresponding profile is unphysical, essentially because it violates the as-
sumption that δr is small (instead it diverges). In 2d this is not the case, for small f.

length of the cap is f. Appendix B includes the details of the derivation
of its position, by an elementary method. This leads to two important
conclusions, as follows. Firstly, the displacement at θ = 0 is found to be
linear in f to first order. Secondly, the change in area of the enclosed
curve, consequent upon introducing the cap, is of higher order, ,
than f, and need not be compensated.

It follows that, although we may have in mind the capped profile,
the original one can be used in what is to come, within a lowest or-
der approximation, in expressing displacement (with the centre of mass
fixed) as a function of angle.

4. Force-displacement relations for several contacts

We now consider how this theory may be applied to an assembly
of contacting bubbles, to arrive at a formalism similar to that used by
Höhler and Cohen-Addad in 3d [17], which consists of explicit relations
between force and displacement where all the contacts of a bubble are
coupled to each other, due to the conservation of the bubble volume.

The radial displacement δr(θ), Eq. (7), is a linear function in f, peri-
odic in 2π. We will write it as , with

(8)

Proceeding in parallel with the formulation of Morse and Witten (see
also [23]), the displacement at contact i is given by the following sum
over all contacts j that a bubble has,

(9)

Here g(θ⁠ij) takes the role of a Green's function (corresponding to Eq. (8)
of Morse and Witten [13]) and θ⁠ij is the angle between the vectors and

which point from the centre of the undeformed bubble to contacts i
and j, respectively.

As an illustration of the theory and the above relationship we will
consider the case of a bubble which is compressed between two parallel
plates, with contacts at angles 0 and π, as in Fig. 4. Its shape is described
by r(θ) = 1 + δr(θ) + δr(θ + π). For a deformation less than about 10
percent this turns out to be a very good approximation of the exact re-
sult, which consists of two semi-circles meeting both top and bottom
plates tangentially, separated by a rectangle. Fig. 4 (b) shows the devi-
ations from the exact shape for a deformation of 20%. Here the inden-
tations of the bubble at the two contacts are very pronounced, as is the
lateral bubble extension required for area conservation.

In order to obtain the force-displacement relationship it is sufficient,
due to symmetry, to compute the displacement of the contact at an-
gle 0 only, resulting in θ⁠11 = 0 and θ⁠12 = π. From Eq. (8) we then ob-
tain g(θ⁠11) = −3/2 and g(θ⁠12) = −1/2, resulting in δr⁠1 = −f⁠1/π by use
of Eq. (9). Using symmetry, we obtain δr⁠1 = δr⁠2 = −f/π. Re-instating
physical dimensions gives the force per contact as .

It is straightforward to compute the total energy of this bubble
without any approximations, since its shape consists of two semi-cir-
cles, separated by a rectangle (whose shorter sides make up the con-
tact). From this the force per contact is evaluated as

, which agrees with the expression
above to lowest order.

3



UN
CO

RR
EC

TE
D

PR
OOF

D. Weaire et al. Advances in Colloid and Interface Science xxx (2017) xxx-xxx

Fig. 4. Shape of a two-dimensional bubble in contact with two identical point forces f acting on its surface at angle θ = 0 and θ = π (solid line). The dashed line represents the unde-
formed circular bubble, the grey area marks the exact solution and the solid line the solution r(θ) = 1 + δr(θ) + δr(θ + π) (see Eq. (7)). (a) In the case of the 10% deformation (ratio of
distance between the tangents at top and bottom contacts to bubble diameter) the deviation between the result obtained for two point forces and the exact solution is only visible in the
form of a small indentation at the point contacts. (b) For a large deformation of 20% the model overestimates the lateral dimension of the bubble and leads to large indentations at the
point contacts.

5. Force-displacement relation for isotropic compression of a
foam

We may use the above equation to derive a force-displacement re-
lation for an isotropically compressed bubble (e.g. in the hexagonal
arrangement), as considered by Lacasse et al. [19]. We will here express
it in terms of the osmotic compressibility, by which we mean the com-
pressibility of a wet foam, allowing the liquid fraction to vary, while the
gas is, as assumed above, incompressible. This is related to the concept
of an osmotic pressure of a foam, which was introduced by Princen [25].

Let us consider the case of a uniform compression of a symmetric
structure, such as the hexagonal confinement as shown in Fig. 5, for
which Princen gave some analytical results in 1979 [25].

For a single bubble the number of contacts Z can take any integral
value; space filling structures require Z = 3 (triangular packing), Z = 4
(square) or Z = 6 (hexagonal) with Z = 2 corresponding to a linear
bubble chain.

Using the above relationship, Eq. (9), and imposing Z forces of mag-
nitude f, with all radial displacements δr⁠i set equal to δr we arrive at

Fig. 5. Example calculations for a bubble confined in a hexagonal box. The dashed line
shows the undeformed bubble, the solid line corresponds to the Morse-Witten solution

.

(10)

where Δθ = 2π/Z.
Evaluation of the sum results in

(11)

as shown in Appendix C. While in the bubble model the correspond-
ing equation is δr = f, here the osmotic compressibility varies approxi-
mately as the inverse of the contact number Z. More precisely, Eq. (11)
is the asymptotic form as Z tends to infinity; it agrees with the result
from Lacasse et al. in the limit of small compression [19]. This result is
at first surprising, if one is accustomed to thinking in terms of simple
pairwise forces. Those described in Section 4 are quite different.

The source of this scaling is the condition of incompressibility of the
contents of the bubbles which lies behind the displacement/force rela-
tion for different contacts. Corresponding rules may be expected to occur
more generally in other branches of material science, such as the theory
of granular materials, wherever the constituent materials have a rela-
tively low compressibility, as is commonly the case [26].

The example of a uniform compression of a symmetric structure is
relatively trivial because the identification of contacts is self-evident, in-
deed unvarying, for all values of liquid fraction. In general, and particu-
larly for a disordered foam, the elimination or creation of contacts (that
is, topological changes) present practical difficulties in the implementa-
tion of this method in the more general context of typical 2d foams. We
will address these elsewhere, in comparison with accurate simulations
using the PLAT software [7].

6. Conclusion

The 2d case has fulfilled our expectations of a simple and transpar-
ent theory of bubble interactions close to the wet limit. In particular,
the origin of the variation of compressibility with contact number, con-
tained in the work of Lacasse et al. [19], is clearly exposed.

In a further paper, initial results of simulations of extended 2d
foams, based on the interactions derived above, will be presented and
compared in detail with the results of the software PLAT [5-7,27]. These
will indicate the range of validity of this formulation, which should ex-
tend beyond the immediate vicinity of the wet limit, for many purposes.

4
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Modifications to deal with bubble polydispersity will also enable the
computation of both shear modulus and yield stress as a function of liq-
uid fraction for disordered foams. Of particular interest will be the vari-
ation of the average contact number with liquid fraction, close to the
wet limit. While recent extensive PLAT calculations show a linear vari-
ation, attributed to bubble deformation [28], in the bubble model the
average contact number increases with the square root away from this
limit [29].

Interactions in 3d are more subtle, and the subject of a forthcoming
review paper [23] whose purpose is partly didactic, as in the present pa-
per.

Acknowledgments

It is a great pleasure to have this opportunity to acknowledge our
many interactions with Dominique Langevin and her steadfast contribu-
tion to the community of foam research, including the Eufoam confer-
ence series.

We thank F Dunne and J Winkelmann for valuable assistance in
preparing this manuscript. Research is supported in part by a research
grant from Science Foundation Ireland (SFI) under grant number 13/
IA/1926. We also acknowledge the support of the MPNS COST Action
MP1305 ‘Flowing matter’ and the European Space Agency ESA MAP
Metalfoam (AO-99-075) and Soft Matter Dynamics (contract:
4000115113).

Appendix A. Derivation of differential equation for displacement
δr(θ), Eq. (2)

The curvature of a curve defined in polar coordinates R(θ) is given
by

(A.1)

where and . Writing R(θ) = R⁠0 + δR(θ) and linearis-
ing the expression for the curvature leads to

(A.2)

A free bubble immersed in water has a uniform curvature,
, and its radius is related to the difference between internal and exter-
nal pressure, p⁠i0 and p⁠e0, via the Laplace-Young equation. In two dimen-
sions this is given by γ/R⁠0 = p⁠i0 − p⁠e0, where γ is the surface tension of
a gas-liquid interface.

In the presence of an additional external force acting on the bubble,
e.g. due to a contact with a wall or another bubble, the Laplace-Young
equation takes the form

(A.3)

where we have adopted the notation p⁠i = p⁠i0 + δp⁠i and
p⁠e(θ) = p⁠e0 + δp⁠e(θ) from Morse and Witten [13]. Inserting the lin-
earised expression for the curvature, κ(θ) (Eq. (A.2)), then results in

(A.4)

For the case of a bubble subject to a force F at a single point (at
θ = 0) this force will need to be balanced via a uniform body force,
arising from an increase in internal pressure. Its gradient is given as

(Pascal's law), resulting in

, where the integration
constant A will later be chosen so as to maintain constant bubble area.

Inserting into the right hand side of Eq. (A.4) then results in

(A.5)

where we have introduced the dimensionless quantities
δr(θ) = δR(θ)/R⁠0, f = F/γ and a = R⁠0A/γ. Eq. (A.5) features as Eq. (3)
in the main text.

Appendix B. Description of capped shape as a function of force f

We refer to the sketch of Fig. 3 for the definition of cap length l and
height h and also for the definition of the angle θ⁠m.

At the end points of the cap, r(θ) cos(θ) is a maximum with respect to
θ. This leads to θ⁠m = fπ/(2π − f). The cap length is then given by l = 2
(1 + δr(θ⁠m)) sinθ⁠m ≃ f (1 − f/(2π)).

The cap height is given by . The change in area

of the enclosed curve is thus of order f⁠3.

Appendix C. Derivation of Eq. (11), .

Eq. (10) is of a kind familiar from numerical integration and we will
evaluate if by considering the integral . This may be approxi-
mated using the composite trapezoid rule as

(C.1)

where we took into account that g(0) = g(2π).
Since the left hand side vanishes by the condition of incompressibil-

ity, see Eq. (6), we arrive at

(C.2)

We can now write the right hand side in turn as an integral, and eval-
uate this as , neglecting higher
order terms. For our function g(θ), Eq. (8), this results in −2π and thus

.
Returning to our original equation, Eq. (10), this then gives

. Inserting Δθ = 2π/Z results in (see Eq. (11)), in
leading order in Z⁠ −1.
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