
SalNet360: Saliency Maps for omni-directional images
with CNN

Rafael Monroy∗ , Sebastian Lutz∗ , Tejo Chalasani∗ , Aljosa Smolic

{monroyrr,lutzs,chalasat,smolica}@scss.tcd.ie

Trinity College Dublin, Ireland

Abstract

The prediction of Visual Attention data from any kind of media is of valuable

use to content creators and used to efficiently drive encoding algorithms. With

the current trend in the Virtual Reality (VR) field, adapting known techniques

to this new kind of media is starting to gain momentum. In this paper, we

present an architectural extension to any Convolutional Neural Network (CNN)

to fine-tune traditional 2D saliency prediction to Omnidirectional Images (ODIs)

in an end-to-end manner. We show that each step in the proposed pipeline

works towards making the generated saliency map more accurate with respect

to ground truth data.

Keywords: saliency, omnidirectional image (ODI), convolutional neural

network (CNN), virtual reality (VR)

1. Introduction

The field of Virtual Reality (VR) has experienced a resurgence in the last

couple of years. Major corporations are now investing considerable efforts and

resources to deliver new Head-Mounted Displays (HMDs) and content in a field

that is starting to become mainstream.

One of the applications for VR headsets is the displaying of so-called Omni-

directional Images (ODIs). These images portray an entire scene as seen from

∗These authors contributed equally to this work.

Preprint submitted to Elsevier Signal Processing Journal: Image Communications September 19, 2017

ar
X

iv
:1

70
9.

06
50

5v
1 

 [
cs

.C
V

] 
 1

9 
Se

p 
20

17



a static point of view, and when viewed through a VR headset, allow for an

immersive user experience. The most common method for storing ODIs is by

applying equirectangular, cylindrical or cubic projections and saving them as

standard two-dimensional images [1].

One of the many directions of research in the VR field is Visual Attention,

the main goal of which is to predict the most probable areas in a picture the

average person will look at, by analysing an image. This kind of information is

collected by performing experiments with subjects looking at pictures while an

eye-tracker, together with the Inertial Measurement Unit of the headset, records

the location in the image the user is looking at [2]. By collecting this data from

several subjects, it is possible to create a saliency map that highlights the regions

where most people looked at. Knowing which portions in an image are the

most observed can be used, for example, to drive compression and segmentation

algorithms [3][4].

Earlier works on image saliency made use of manually-designed feature maps

that relate to salient regions and when combined in some form produce a final

saliency map [5][6][7]. With the advent of deep neural networks, GPU-optimised

code and availability of vast amounts of annotated data, research efforts in

computer vision tasks such as recognition, segmentation and detection have been

focused on creating deep learning network architectures to learn and combine

features maps automatically driven by data [8][9][10]. As evident from the MIT

Saliency Benchmarks [11], variants of Convolutional Neural Networks (CNNs)

are the top-performing algorithms for generating saliency maps in traditional

2D images. Good techniques for transfer learning[12] made sure that CNNs can

be used for predicting user gaze even with a relatively small amount of data

[13][14][15][16].

Saliency prediction techniques originally designed for traditional 2D images

cannot be directly used on ODIs due to the heavy distortions present in most

projections and a different nature in observed biases. De Abreu et al. [17]

demonstrated that removing the centre bias present on most techniques for

traditional 2D images significantly improves the performance when estimating

2



saliency maps for ODIs.

A recent effort to attract attention to the problem of creating saliency maps

for ODIs was presented in the Salient360! Grand Challenge at the ICME 2017

Conference[18]. Participants were provided with a series of ODIs (40 in total)

for which head- and eye-tracking ground truth data was given in the form of

saliency maps. The details on how the dataset was built are described by Rai

et al. [2]. Twenty-five paired images and ground truth were later provided to

properly evaluate the submissions to the challenge. In the presented paper we

follow the experimental conditions of the challenge, i.e. we used the initial 40

images to train the proposed CNN and the results we present were calculated

using the 25 test images.

The approach we present is similar to that of De Abreu et al. [17] in that

the core CNN to create the saliency maps can be switched once better networks

become available. We start with the premise that the heavy distortions near the

poles in an equirectangular ODI negatively affect the final saliency map and the

nature of the biases near the equator and poles differs from those in a traditional

2D image. To address these issues, we make the following contributions:

• Subdividing the ODI into undistorted patches.

• Providing the CNN with the spherical coordinates for each pixel in the

patches.

This paper is organised as follows. Section 2 enlists work related to saliency

maps for traditional 2D images and ODIs. Then, Section 3 describes the pipeline

and the required pre- and post-processing steps. The end-to-end trainable CNN

architecture we use here is then described in Section 4. Results are presented

in Section 5. Finally, in Section 6 ideas for future research opportunities and

conclusions are provided.

2. Previous work

Until the advent of CNNs, most saliency models relied on extracting feature

maps, which depict the result of decomposing the image, highlighting a particu-

3



lar characteristic. These feature maps are then linearly combined by computing

a series of weights to be applied to each map. Features like those presented

by Itti and Koch [5] were initially based on knowledge of the low-level human

vision, e.g. color, orientation and frequency responses.

The catalogue of features used to calculate saliency maps has increased over

the years, including for example, global features [6], face detection features [19],

location bias features [20] and others. Judd et al.[7] created a framework and

model that combined many of these features to compute saliency maps.

The MIT Saliency Benchmark was later developed by Bylinskii et al., allow-

ing researchers to submit and compare their saliency computation algorithms

[11].

With the increasing availability of VR headsets, saliency computation meth-

ods specifically tailored for ODIs have started to surface. Due to the fact that

ODIs describe, in actuality, a sphere, saliency models designed for traditional 2D

images cannot be directly used. Bogdanova et al. analyse the sphere depicted

in an ODI, creating low-level vision feature maps based on intensity, colour and

orientation features [21].

In recent years, the interest in CNNs has grown and most of the top-

performing submissions in the MIT Saliency Benchmark system correspond to

CNN-based approaches. One of the first methods to use CNNs for saliency was

presented by Vig et. al. [22], which used feature maps from convolution layers

as the final features of a linear classifier. Kümmerer et. al. [12] published an

extension of this approach to use CNNs as feature extractors. They extended

their approach in [23], where they use the VGG [24] features to predict saliency

with no fine-tuning. Instead they only train a few readout layers on top of the

VGG layers. The method developed by Liu et. al. [13] used a Multi-Resolution

CNN, where the network was trained with image regions centred on fixation

and non-fixation eye locations at several scales. Another approach using CNNs

to extract features was shown by Li et. al. [25], where they obtained features

from convolutional layers at several scales and combined them with handcrafted

features which were trained on a Random Forest. One of the first end-to-end

4



Figure 1: ODI Saliency Detection Pipeline.

trained CNNs for saliency prediction was introduced by Pan et. al. [16]. Similar

work from Kruthiventi et al. [15] added a novel Location Biased Convolutional

Layer, which allowed them to model location dependent patterns.

As CNNs are becoming more complex and sophisticated in other Computer

Vision domains, these advances are being transferred to saliency prediction ap-

plications, for example, the method proposed by Pan et. al. [26], introducing

adversarial examples to train their network. The work of Liu et. al. [27] in-

troduces a deep spatial contextual LSTM to incorporate global features in their

saliency prediction.

The amount of published research focusing on CNNs applied to ODIs is

at the moment very small. De Abreu et. al. [17] uses translated versions of

the ODI as input to a CNN trained for traditional 2D images to generate an

omnidirectional saliency map.

3. Method

In this section we detail the pipeline used to obtain the saliency map for a

given ODI. Fig. 1 shows a diagram with the complete pipeline. Our method

takes an ODI as input and splits it into six patches using the pre-processing

steps described in 3.1. Each of these six patches is sent through the CNN, the

details of which we delve into in Section 4. The output of the CNN for all the

5



(a) Full ODI (b) Nadir view

Figure 2: Example of distortions present in equirectangular ODIs.

patches are then combined using the post-processing technique mentioned in

Section 3.2

3.1. Pre-processing

Mapping a sphere onto a plane requires introducing heavy distortions to the

image, which are most evident at the poles. When looking at those distorted

areas in the ODI, it becomes very hard to identify what they are supposed

to be depicting. Fig. 2 gives an example of the distortions observed on an

equirectangular ODI. From Fig. (2a) alone, it is not possible to recognise the

object on the table. Once the nadir view is undistorted as seen in Fig. (2b), it

is clear that the object in question is a cake.

In order to reduce the effect of these distortions on saliency estimation, we

divide the ODI into equally-sized patches by rendering viewing frustums with

a field of view of (FOV) approximately 90 degrees each. This field of view was

selected to keep distortions low, cover the entire sphere with six patches and

have a similar FOV to that of the Oculus Rift, which was used to create the

dataset (approximately 100 degrees).

By specifying the field of view per patch and its resolution, it is possible

to calculate the spherical coordinates of each pixel in the patch. These are

then used to find the corresponding pixels in the ODI by applying the following

equations:

6



x

y

z

θ

ϕ

(a) Spherical Coordinates

x

y

z

(b) Sliding frustum

Figure 3: Spherical coordinates definition and sliding frustum used to create the patches.

x = sw

(θ + π
2

2π

)
(1)

y = sh

(
1 − φ+ π

2

π

)
(2)

Where θ and φ are the spherical coordinates of each pixel, see Fig. 3a. The

variables sw and sh correspond to the ODI’s width and height respectively. A

graphical representation of how patches look like when sampling the sphere can

be seen in Fig. 3b.

The process of generating patches is also applied during training, which will

be discussed in Section 4.2. During the saliency map computation six patches

with fixed views are generated. Two of these views are oriented towards the

nadir and zenith, the other four are pointed towards the horizon but rotated

horizontally to cover the entire band at the sphere’s equator. Fig. 4 illustrates

such partitions when applied to an equirectangular ODI.

3.2. Post-processing

As previously mentioned, the CNN takes the six patches and their spherical

coordinates as inputs. As result, the CNN generates a saliency map for each of

7



Figure 4: Patches extracted from the ODI.

these patches. Consequently, they have to be combined to a single saliency map

as output. For that, we project each pixel of each patch to the equirectangular

ODI, using their per-pixel spherical coordinates. We apply forward-projection

with nearest-neighbour interpolation for simplicity. In order to fill holes and

smooth the result, we apply a Gaussian filter with a kernel size of 64 pixels. This

kernel size was selected because it was found to give the best results in terms

of correlation with the ground truth. Such processing is efficient and sufficient,

as we do not compute output images for viewing, but estimate saliency maps.

4. SalNet360

Since ODIs depict an entire 360-degree view, their size tend to be consider-

ably large. This factor, together with the current hardware limitations, prohibits

using them directly as inputs in a CNN without heavily down-scaling the ODI.

Deep CNNs need large amounts of data to avoid over-fitting. The deeper the

network is, the better its accuracy in general [16], but that also means the pa-

rameter space increases accordingly. Since training data consisted of only 40

images, the resulting amount of data would not be enough for properly training

a CNN.

8



Figure 5: Network Architecture.

To address this problem we generated one hundred patches (paired colour

image and ground truth saliency map) per ODI by placing the viewing frustum

to random locations. The saliency maps per patch are used as labels in the

CNN. Fig. 5 illustrates the architecture of the proposed network.

Our network consists of two parts, the Base CNN and the refinement archi-

tecture. The Base CNN is trained to detect saliency maps for traditional 2D

images. It has been pre-trained using the SALICON dataset [28]. The second

part is a refinement architecture that is added after the Base CNN. It takes

a 3-channel feature map as input: the output saliency map of the Base CNN

and the spherical coordinates per pixel as two channels. This combination of

the Base CNN and the Saliency Refinement has been trained as will be dis-

cussed in Section 4.2. Omnidirectional saliency maps differ from traditional 2D

saliency maps in that they are affected by the view or position of the users head.

Combining the spherical coordinates of each pixel as extra input provides the

network in the second stage the information to highlight or lower the already

computed salient regions depending on their placement in the ODI. We delve

into the details of network architecture and training in the next subsections.

9



Table 1: Network parameters.

Layer Input depth Output depth Kernel size Stride Padding Activation

conv1 3 96 7×7 1 3 ReLU

pool1 3 3 3×3 2 0 -

conv2 96 256 5×5 1 2 ReLU

pool2 256 256 3×3 2 0 -

conv3 256 512 3×3 1 1 ReLU

conv4 512 256 5×5 1 2 ReLU

conv5 256 128 7×7 1 3 ReLU

conv6 128 32 11×11 1 5 ReLU

conv7 32 1 13×13 1 6 ReLU

deconv1 1 1 8×8 4 2 -

merge - - - - - -

conv8 3 32 5×5 1 2 ReLU

pool3 32 32 3×3 2 0 -

conv9 32 64 3×3 1 2 ReLU

conv10 64 32 5×5 1 2 ReLU

conv11 32 1 7×7 1 3 ReLU

deconv2 1 1 4×4 2 1 -

4.1. Network Architecture

The architecture of our Base CNN was inspired by the deep network intro-

duced by Pan et. al. [16] and shares the same layout as the VGG CNN M

architecture from [29] in the first three layers. This allowed us to initialise the

weights of these layers with the weights that have been learned on the Ima-

geNet classification task. After the first three layers, four more convolution

layers follow, each of them followed by a Rectified Linear Unit (ReLU) activa-

tion function. Two max-pooling layers after the first and second convolution

layers reduce the size of the feature maps for subsequent convolutions and add

some translation invariance. To upscale the final feature map to a saliency map

with the same dimensions as the input image, a deconvolution layer is added at

the end. As will be discussed in Section 4.2, we train our whole network in two

stages. In the first stage only this Base CNN is trained on traditional 2D im-

ages with the help of an Euclidean Loss function directly after the deconvolution

layer. In our final network, however, this loss function is moved to the end of

our refinement architecture and the output of the deconvolution layer is merged

with the 2-channel per-pixel spherical coordinates as input to the second part

of our architecture, the Saliency Refinement.

As has been stated above, our architecture does not use the entire ODI at the

10



same time. Instead, the ODI is split into patches and for each of these patches

the saliency map is calculated individually. The idea of the second part of our

architecture, the Saliency Refinement, is to take the saliency map generated

from the Base CNN and refine it with the information on where in the ODI this

patch is located. For example, this allows us to model the strong bias towards

the horizon that the ground truth saliency maps for ODIs show. The whole

Saliency Refinement stage consists of four convolution layers, one max-pooling

layer after the first convolution and one deconvolution layer at the end. All

activation functions are ReLUs and the loss function at the end is Euclidean

Loss. Our full architecture is visualised in Fig. 5 and the hyperparameters for

all layers are presented in Table 1.

We experimented with different activation layers and different loss functions

in the network, however, we found that using ReLUs and Euclidean Loss yielded

the best metrics on the dataset.

4.2. Training

We performed training in two stages. In the first stage we only train the

first part of the network, the Base CNN. The first three layers are initialised

using pre-trained weights from VGG CNN M network from [29]. We then use

SALICON data [28] to train the first part of the network. The data (both images

and their saliencies) is normalised by removing the mean of pixel intensity values

and re-scaling the data to a [-1,1] interval. We also scale all the images and

saliency maps to 360x240 resolution and split the dataset into two sets of 8000

images for training and 2000 images for testing. The network is then trained for

20,000 iterations using the stochastic gradient descent method and with batch

size of four.

For the second stage of the training we add the Saliency Refinement part to

the network and use the dataset we created with ODIs from [2]. As described in

Section 3.1, 100 patches are randomly sampled per ODI to generate a dataset

of 4000 images, their ground truth saliency and spherical coordinates. We pre-

process all the images using the same techniques we used for the first stage

11



of training. The weights for the Base CNN are initialised using the weights

we obtained from the first stage training. We started with a base learning

rate of 1.3e-7 and reduced it by 0.7 after every 500 iterations. The network

is trained for 22,000 iterations with a 10% split for test data and the rest of

the images are used for training. The batch size is set to be five while the test

error is monitored every 100 iterations to look for divergence. We present our

experiments and results in the next section.

5. Results

In this section we describe the experiments and results that indicate that

our method enhances a CNN trained with traditional 2D images and allows

it to be applied to ODIs. Before we discuss the actual numbers, we provide a

short introduction to each of the metrics used to evaluate the generated saliency

maps.

5.1. Performance measures

Bylinskii et al. [30] differentiate between two types of performance metrics

based on their required ground truth format. Location-based metrics need a

ground truth with values at discrete fixation locations, while distribution-based

metrics consider the ground truth and saliency maps as continuous distributions.

Four metrics were used to evaluate the results of our system: the Kullback-

Leibler divergence (KL), the Pearson’s Correlation Coefficient (CC), the Nor-

malized Scanpath Saliency (NSS) and the Area under ROC curve (AUC). Both

the KL and the CC are distribution-based metrics, whereas the NSS and AUC

are location-based. In the case of the former two metrics, the predicted saliency

map of our approach is normalised to generate a valid probability distribution.

For further details on these metrics, we refer to Bylinskii et al. [30].

5.2. Experiments

In order to test the improvements obtained from our proposed method, we

defined three scenarios to be compared. The first one consists of applying our

12



Table 2: Comparison of the three experimental scenarios.

∗ indicates a significant improvement in performance compared to the Base CNN (t-test,

p < 0.01).

KL CC NSS AUC

Base CNN 1.597 0.416 0.630 0.648

Above + Patches 0.625 0.474 0.566 0.659

Above + Spherical Coords. 0.458* 0.548* 0.755* 0.701*

Base CNN, see Fig. 5 while taking the entire ODI as input by downscaling it to a

resolution of 800×400 pixels. The predicted saliency map is then upscaled to the

resolution of the original image. In our second scenario, we divide the ODI in six

undistorted patches as described in Section 3.1 and run these patches separately

through the Base CNN. Afterwards we recombine the predicted saliencies of

these patches to form the final saliency map. Finally, the third scenario consists

of the whole pipeline as described in Section 3, where the spherical coordinates

of the patches are also considered by the CNN during inference.

The results of our experiments can be seen in Table 2, where we show the

average KL, CC, NSS and AUC for the 25 test images. As can be seen from the

table, only running the entire ODI through the Base CNN gives relatively poor

results compared to the later scenarios. By dividing the ODI into patches and

using them individually before being recombined, our results are improved in

most of the metrics. After adding in the spherical coordinates to the inference

of each patch, the results clearly improve considerably in all the metrics.

A visual example of the results of the three scenarios can be seen in figure

6. In the top row from left to right, the input ODI and a blended version of

the ODI and ground truth are shown. In the bottom row again from left to

right the predicted saliency maps blended into the input ODI for each scenario

are presented. The first scenario on the far left (Base CNN only) predicted two

big salient centres, which are not found in the ground truth map. The second

scenario improved on these predictions by finding salient areas that also cover

salient areas in the ground truth. However, it still predicts two highly salient

areas in wrong locations and introduced some salient areas of low impact at

13



Figure 6: Comparison of the three experimental scenarios. Top row: On the left the input

ODI, on the right the ground truth saliency map blended with the image.

Bottom row: From left to right, the result of the three experimental scenarios: Base CNN,

Base CNN + Patches, Base CNN + Patches + Spherical Coords.

the bottom part of the image that are incorrectly labelled as salient. Finally,

the third scenario clearly covers all the salient areas in the ground truth and

removes the incorrectly labelled salient regions at the bottom of the image that

the second scenario introduced. It is, however, too generous in the amount of

area that the salient regions cover, which seems to be the main issue in this

scenario.

In Fig. 8, some of the best-performing results are shown. As a comparison,

two of the lowest-performing results are shown in Fig. 9. A summary of the re-

sults of all images can be seen in Table 3. Fig. 7 provides a visual representation

of the values obtained for each metric.

5.3. Issues

As can be seen on the predicted saliency maps in Figs. 8 and 9, the merging

of the predicted patches leaves a distinct pattern in the final saliency map,

leaving in some cases a lattice-like pattern. We tried to mitigate this issue by

applying a Gaussian Blur, but it is still noticeable in some of the results and

consequently has a negative effect on the KL and CC scores. In the saliency

prediction of the individual patches in both figures, another set of artefacts can

also be observed. We speculate that these line patterns stem from the addition

of the spherical coordinates, because these predictions correspond to the patches

14



Table 3: Individual results for each ODI. The two best and worst results have been highlighted

in green and red respectively.

Image index KL CC NSS AUC

1 0.589 0.507 0.749 0.702

8 0.484 0.655 1.055 0.772

16 0.249 0.610 0.396 0.629

19 0.384 0.512 0.739 0.693

20 0.618 0.497 0.787 0.729

26 0.276 0.596 0.686 0.684

48 0.622 0.266 0.616 0.702

50 0.479 0.590 0.983 0.746

60 0.273 0.671 0.459 0.663

65 0.475 0.531 0.817 0.737

69 0.433 0.686 1.064 0.769

71 0.404 0.388 0.522 0.662

72 0.459 0.271 0.353 0.609

73 0.364 0.536 0.690 0.695

74 0.385 0.656 0.589 0.663

78 0.514 0.581 0.903 0.716

79 0.360 0.818 1.303 0.779

85 0.351 0.714 0.975 0.751

91 0.498 0.628 0.892 0.700

93 0.496 0.488 0.761 0.694

94 0.583 0.468 0.871 0.763

95 0.455 0.624 0.894 0.703

96 0.582 0.722 1.270 0.808

97 0.471 0.369 0.371 0.626

98 0.652 0.309 0.126 0.529

Mean 0.458 0.548 0.755 0.701

Std. Dev. 0.112 0.144 0.286 0.062

15



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 8 16 19 20 26 48 50 60 65 69 71 72 73 74 78 79 85 91 93 94 95 96 97 98

KL

Score Average

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 8 16 19 20 26 48 50 60 65 69 71 72 73 74 78 79 85 91 93 94 95 96 97 98

CC

Score Average

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 8 16 19 20 26 48 50 60 65 69 71 72 73 74 78 79 85 91 93 94 95 96 97 98

NSS

Score Average

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 8 16 19 20 26 48 50 60 65 69 71 72 73 74 78 79 85 91 93 94 95 96 97 98

AUC

Score Average

Figure 7: Plots for each of the metrics applied to the test ODIs.

that show the poles. However, when recombining the patches and applying the

post-processing steps discussed above, these artefacts are no longer noticeable.

We expect that increasing the amount of training data could help alleviate some

of the issues.

6. Conclusions

We showed in Section 5, that dividing an omnidirectional image into patches

and adding a Saliency Refinement architecture that takes into consideration

spherical coordinates to an existing Base CNN can considerably improve the

results in omnidirectional saliency prediction. We envision several potential

improvements that could be made to increase performance. Our network was

trained using the Euclidean Loss function, which is a relatively simple loss func-

tion that is applicable to a wide variety of cases, such as saliency prediction. It

tries to minimise the pixel-wise difference between the calculated saliency map

and the ground truth. However, to optimise based on any of the performance

metrics mentioned in 5.1, custom loss functions could be used. In this way, the

network would be trained to specifically minimise in regards to the KL, CC or

16



(a) Image index: 69, KL: 0.433, CC: 0.686, NSS: 1.064, AUC: 0.769

(b) Image index: 79, KL: 0.360, CC: 0.818, NSS: 1.303, AUC: 0.779

Figure 8: Two of the best-performing examples. Top row: From left to right: Input image, six

extracted patches, ground truth blended with input image. Bottom row: From left to right:

Predicted saliency map, predicted saliency maps from each patch, ground truth saliency map.

NSS.

As mentioned in Section 5.3, one of the bigger issues that affect our results

are the artefacts that are created when recombining the patches to create the

final saliency map. Instead of just using Gaussian Blur to remove these artefacts,

a more sophisticated process could be implemented since these artefacts always

appear in the same way and location.

In most Deep Learning applications, improvements are often made by mak-

ing the networks deeper. Our network is based on the Deep Convolutional

Network by Pan et. al. [16], but compared to the current state-of-the-art in

other Computer Vision tasks e.g. classification and segmentation, this network

17



(a) Image index: 72, KL: 0.459, CC: 0.271, NSS: 0.353, AUC: 0.609

(b) Image index: 98, KL: 0.652, CC: 0.309, NSS: 0.126, AUC: 0.529

Figure 9: Two of the lowest-performing examples. Top row: From left to right: Input image,

six extracted patches, ground truth blended with input image. Bottom row: From left to right:

Predicted saliency map, predicted saliency maps from each patch, ground truth saliency map.

is still relatively simple. We are confident that updating the Base CNN to recent

advances will improve the results in omnidirectional saliency.

Finally, as with all Deep Learning tasks, a large amount of data is needed

to achieve good results. Unfortunately there is currently only a relatively small

amount of ground truth saliency maps available, and even less data for omni-

directional saliency. It is our hope that more data will become available in the

future which can be used to get better results.

In this work, we present an end-to-end CNN that is specifically tailored for

estimating saliency maps for ODIs. We provide evidence which indicates that

part of the discrepancies found when using CNNs trained on traditional 2D im-

18



ages is due to the heavy distortions found on the projected ODIs. These issues

can be addressed by dividing the ODI in undistorted patches before calculat-

ing the saliency map. Furthermore, in addition to the patches, biases due to

the location of objects on the sphere can be considered by using the spherical

coordinates of the pixels in the patches before computing the final saliency map.

Acknowledgement

The present work was supported by the Science Foundation Ireland under

the Project ID: 15/RP/2776 and with the title V-SENSE: Extending Visual

Sensation through Image-Based Visual Computing.

19



References

[1] M. Yu, H. Lakshman, B. Girod, A framework to evaluate omnidirectional

video coding schemes, in: IEEE Int. Symposium on Mixed and Augmented

Reality, 2015.

[2] Y. Rai, J. Gutirrez, P. Le Callet, A dataset of head and eye movements for

omni-directional images, in: Proceedings of the 8th International Confer-

ence on Multimedia Systems, ACM, 2017.

[3] L. Itti, Automatic foveation for video compression using a neurobiological

model of visual attention, in: IEEE Transactions on Image Processing,

Vol. 13, 2004.

[4] B. C. Ko, J.-Y. Nam, Object-of-interest image segmentation based on hu-

man attention and semantic region clustering, in: Journal of Optical Soci-

ety of America A, Vol. 23, 2006.

[5] L. Itti, C. Koch, A saliency-based mechanism for overt and covert shift of

visual attention, in: Vision Research, Vol. 40, 2000.

[6] A. Torralba, A. Oliva, M. Castelhano, J. Henderson, Contextual guidance

of eye movements and attention in real-world scenes: The role of global

features in object search, in: Psychological Review, Vol. 113, 2006.

[7] T. Judd, K. Ehinger, F. Durand, A. Torralba, Learning to predict where

humans look, in: ICCV, 2009.

[8] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with

deep convolutional neural network, in: Advances in neural information

processing systems, 2012, pp. 1097–1105.

[9] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for

accurate object detection and semantic segmentation, in: CVPR, 2014, pp.

580–587.

20



[10] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for seman-

tic segmentation, in: CVPR, 2015, pp. 3431–3440.

[11] Z. Bylinskii, T. Judd, A. Borji, L. Itti, A. O. F. Durand, A. Torralba, Mit

saliency benchmark, http://saliency.mit.edu/results_mit300.html.

[12] M. Kümmerer, L. Theis, M. Bethge, Deep gaze i: Boosting saliency predic-

tion with feature maps trained on imagenet, in: International Conference

on Learning Representations, 2015.

[13] N. Liu, J. Han, D. Zhang, S. Wen, T. Liu, Predicting eye fixations using

convolutional neural networks, in: CVPR, 2015.

[14] M. Cornia, L. Baraldi, G. Serra, R. Cucchiara, A deep multi-level network

for saliency prediction, in: CoRR, 2016.

[15] S. Kruthiventi, K. Ayush, R. Babu, Deepfix: A fully convolutional neu-

ral network for predicting human eye fixations, in: IEEE Transactions on

Image Processing, 2017.

[16] J. Pan, E. Sayrol, X. G. i Nieto, K. McGuinness, N. O’Connor, Shallow

and deep convolutional networks for saliency prediction, in: CVPR, 2016.

[17] A. D. Abreu, C. Ozcinar, A. Smolic, Look around you: Saliency maps for

omnidirectional images in vr applications, in: QoMEX, 2017.

[18] Salient360!: Visual attention modeling for 360◦ images grand challenge,

http://www.icme2017.org/grand-challenges/, accessed: 2017-06-06.

[19] M. Cerf, J. Harel, W. Einhauser, C. Koch, Predicting human gaze using

low-level saliency combined with face detection, in: Advances in Neural

Information Processing Systems, Vol. 20, 2008.

[20] B. W. Tatler, The central fixation bias in scene viewing: Selecting an op-

timal viewing position independently of motor biased and image feature

distribution, in: Journal of Vision, Vol. 7, 2007.

21



[21] I. Bogdanova, A. Bur, H. Hugli, Visual attention on the sphere, in: IEEE

Transactions on Image Processing, Vol. 17, 2008.

[22] E. Vig, M. Dorr, D. Cox, Large-scale optimization of hierarchical features

for saliency prediction in natural images, in: CVPR, 2014.

[23] M. Kümmerer, T. S. Wallis, M. Bethge, Deepgaze ii: Reading fixa-

tions from deep features trained on object recognition, in: arXiv preprint

arXiv:1610.01563, 2016.

[24] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, in: CoRR, Vol. abs/1409.1556, 2014.

[25] G. Li, Y. Yu, Visual saliency detection based on multiscale deep cnn fea-

tures, in: IEEE Transactions on Image Processing, Vol. 25, 2016.

[26] J. Pan, C. Canton, K. McGuinness, N. O’Connor, J. Torres, E. Sayrol,

X. G. i Nieto, Salgan: Visual saliency prediction with generative adversarial

networks, in: ArXiv, 2017.

[27] N. Liu, J. Han, A deep spatial contextual long-term recurrent convolutional

network for saliency detection, in: arXiv preprint arXiv:1610.01708, 2016.

[28] M. Jiang, S. Huang, J. Duan, Q. Zhao, Salicon: Saliency in context, in:

CVPR, 2015.

[29] K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil

in the details: Delving deep into convolutional nets, in: British Machine

Vision Conference, 2014.

[30] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, F. Durand, What do different

evaluation metrics tell us about saliency models?, in: ArXiv, 2016.

22


