
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/275409864

barelyMusician:	An	Adaptive	Music	Engine	For
Video	Games

Conference	Paper	·	February	2015

CITATIONS

2

READS

142

3	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Create	new	project	"ALICE:	Architecture	for	Location-Independent	Computing	Environments"	View

project

Social-Based	Routing	in	MANETs	View	project

Alper	Gungormusler

Google	Inc.

2	PUBLICATIONS			2	CITATIONS			

SEE	PROFILE

Natasa	Paterson

Trinity	College	Dublin

8	PUBLICATIONS			80	CITATIONS			

SEE	PROFILE

Mads	Haahr

Trinity	College	Dublin

70	PUBLICATIONS			1,881	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Alper	Gungormusler	on	29	April	2015.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/275409864_barelyMusician_An_Adaptive_Music_Engine_For_Video_Games?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/275409864_barelyMusician_An_Adaptive_Music_Engine_For_Video_Games?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Create-new-project-ALICE-Architecture-for-Location-Independent-Computing-Environments?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Social-Based-Routing-in-MANETs?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alper_Gungormusler?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alper_Gungormusler?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Google_Inc?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alper_Gungormusler?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Natasa_Paterson?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Natasa_Paterson?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Trinity_College_Dublin?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Natasa_Paterson?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mads_Haahr?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mads_Haahr?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Trinity_College_Dublin?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mads_Haahr?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alper_Gungormusler?enrichId=rgreq-c6f017bab29a6a0812b7c5f102e83ec5-XXX&enrichSource=Y292ZXJQYWdlOzI3NTQwOTg2NDtBUzoyMjM3MjE1MDg4NzIxOTJAMTQzMDM1MDc3Mjg4Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


barelyMusician:
An Adaptive Music Engine For Video Games

Alper Gungormusler1, Natasa Paterson-Paulberg1, and Mads Haahr1

1Trinity College Dublin, College Green, Dublin 2, Ireland

Correspondence should be addressed to Alper Gungormusler (gungorma@tcd.ie)

ABSTRACT
Aural feedback plays a crucial part in the field of interactive entertainment when delivering the desired
experience to the audience, particularly in video games. It is, however, not yet fully explored in the industry,
specifically in terms of interactivity of musical elements. In this paper, we present barelyMusician, an
extensible adaptive music engine that offers a new set of features for interactive music generation and
performance for highly interactive applications. barelyMusician is a comprehensive music composition tool,
capable of generating and manipulating audio samples and musical parameters in real-time in order to create
smooth transitions between musical patterns that portray varying emotional states and moods that may be
evident during gameplay. The paper presents the underlying approach, features and user interface, as well
as a preliminary evaluation through demonstrators.

1. INTRODUCTION
There has been a tremendous developmental curve in re-
gards to the technological aspects of the interactive en-
tertainment field in the last two decades—specifically in
the video game industry. While the main focus for many
years has been on improving visual fidelity, the matura-
tion of graphics technologies has led to developers focus-
ing on other game parameters in order to further engage
players in the game experience. In particular, audio is
known to have a dramatic effect on player immersion [1].

Visually, video games have traditionally included non-
interactive elements, such as fixed-camera cut-scenes,
but these are increasingly being replaced with interac-
tive sequences. Similarly, game music, not least in
high-budget mainstream products [2], has been modelled
on non-interactive (or linear) film music. Even though
many rich and sophisticated scores have been composed,
they tend to lack the main feature required; interactivity.
Unlike movies, video games as interactive applications
rarely follow a linear path, and more importantly offer
a great range of repeatability which makes dynamism—
hence, adaptivity—a must to have in terms of the audio
content, as it is in other parts of such applications. While
a few examples exist in the industry which try to achieve
good adaptivity in audio, the issue has not been solved
yet to an acceptable level particularly considering the
practical aspects. More specifically, existing technolo-

gies in the field, labeled as dynamic, generally rely on
the vertical approach [3]—layering and branching the
composition into segments. Thus, the resulting output
can be varied in an automated manner by certain event
triggering approaches. The idea is, however, still based
on pre-recorded audio loops which do not allow full dy-
namic flexibility after the offline creation process. More-
over, such approaches require a considerable amount of
resources and dependencies mainly due to the manual au-
thoring of the outcome.

While there is increasing interest to produce adaptive and
responsive aural feedback [4] as well as in interactive
sound synthesis in academic research and industry appli-
cations, achieving adaptive music compositions in real-
time remains an unsolved problem. There have been sev-
eral attempts in the industry to take the approach one step
further by introducing certain generative algorithms in
order to create the musical elements procedurally [3, 5].
However, these remained as specific solutions exclusive
only for those specific projects. Having considered this,
there is no generic approach, i.e., an all purpose solution
with such capabilities in the field.

To address the issues and the potential need stated above,
this paper proposes a practical approach for the develop-
ment of a middleware tool, an adaptive music engine,
which is capable of autonomously generating and ma-
nipulating musical structures in real-time to be used by

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
1



Gungormusler et al. An Adaptive Music Engine For Games

developers as well as designers. The proposed approach
treats the problem in an interactive manner, providing
a bridge between the low-level properties of a musical
sound and the high-level abstractions of a musical com-
position which are meant to be significant to the user.

2. BACKGROUND & RELATED WORK
Music as an art form has limitless possibilities for the
combination and permutation of different soundscapes to
create a compositional piece. Nevertheless, when con-
sidering the music theory, creating a musical composi-
tion is a highly structured and rather rule-based process
particularly when observing Western music in the 18th
and 19th centuries, or even more recently in such genres
as pop or jazz music. These types of compositions are
generally defined as a part of tonal music. That being
said, tonality in music could be described as a system of
musical patterns—an organisation of melodic intervals
and chords arranged in a hierarchical way to be perceived
by the listener as tonal music [6].

While it overlooks the artistic means of creation, achiev-
ing tonality in a musical piece is arguably straightfor-
ward, if one could treat the musical properties in a sys-
tematic way. Thus, it is fairly possible to produce a mu-
sically recognisable sequence of soundscapes just by fol-
lowing certain rules in the right order. It is expected that
this approach does not give the most fascinating and/or
inspiring outcome for a composer, but nonetheless, the
result will be an adequate musical piece that sounds
“good” to a typical Western listener [7]. The overall
structure of the composition should also be considered
at a macro level in order to provide an interesting and
meaningful outcome as a complete compositional piece.
Having considered this, a musical composition could be
thought of as different levels of organisation, similar to a
language form in linguistics [8]. Sectional form is com-
monly used in music theory to arrange and describe a
music composition in that manner. In sectional form, the
musical piece is made of a sequence of sections, which
are analogous to paragraphs in linguistics. Sections are
often notated by single letters such as A and B to make
them easier to read. Unlike paragraphs, sections might
occur more than once in a musical piece. In fact, it gen-
erally is not only preferred but also essential to commu-
nicate the musical message, i.e., the repetition of sections
can contribute to develop patterns of recognition which
can create perceived meaning and an emotional response
for the listener [9]. In popular music, sections are tradi-
tionally referred under specific names (rather than single

letters) such as verse, chorus and bridge.

Furthermore, each section in a piece consists of a certain
number of bars—also known as measures—to build up
the song structure. Likewise, each bar is made of a cer-
tain number of beats as punctual points, which are tradi-
tionally notated with time signatures on the musical staff.
For instance, the most common form, 4/4, claims that
each bar in the piece has four beats (numerator) which
are all quarter notes (denominator).

As a structural approach, such properties could be made
by certain algorithmic techniques used in tonal Western
music to automate the entire behaviour providing an ar-
tificially intelligent system. One early example of such
a system is the Iliac Suite (1956) by Hiller and Isaac-
son [10]. This computer generated piece used the mu-
sical rules of Baroque and twelve tone music to pro-
duce a notated score which was then performed by a an
acoustic string quartet. Recently, this approach has been
adopted for procedural music composition through algo-
rithmic techniques, such as Markov models, generative
grammars and genetic algorithms [11]. There also exist
a number of software solutions which simplify the de-
velopmental process by providing certain low-level ar-
chitectures to be used in the sound and music generation
process.

These algorithmic techniques can be used to create adap-
tive music generation systems. In fact, the term “adaptive
music”, which refers to the use of interactive elements in
real-time, has been introduced in the field long ago in-
cluding some successful examples in major video games
such as Monkey Island 2: LeChuck’s Revenge (1991) by
LucasArts [12]. This particular game features an inter-
active music streaming engine to seamlessly synchronise
the background music with the visual (on-screen) events
in the game. However, the idea somewhat failed to de-
velop further due to—arguably—two major reasons [13].
Firstly, there was low interest by both developers and
consumers in the area of research because of the great
focus on the technology behind the visual aspects such
as graphics and physics systems. Secondly, despite their
significant power, improvements and enhancements cre-
ated for the quality of digitized audio data in comput-
ers actually resulted in a negative impact on the devel-
opment, particularly when the industry shifted from ba-
sic MIDI representations to streamed—lossless—audio
data. While the quality of the output increased dramati-
cally, the huge amounts of streamed raw data could not
be modified or manipulated efficiently in real-time with

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 2 of 8



Gungormusler et al. An Adaptive Music Engine For Games

existing computational technologies. Hence, it was not a
desirable choice (nor a priority), in general, to spend the
limited resources to sophisticate audio elements in an ap-
plication early on. It is only recently that there has been
notable research done in the field [14].

One such example is AMEE [15, 16]—a real-time music
generation system which features an adaptive methodol-
ogy in accordance with the desired emotional character-
istics of a musical piece. The system is able to expres-
sively generate musical compositions in real-time with
respect to the selected properties—i.e., the perceived
moods—in an interactive manner. It furthermore features
an application programming interface written in Java for
external usage. However, one major drawback of the
approach is the lack of smooth transitions between the
different selections of musical pieces, which is said to
be left as future work. While the proposed version of-
fers an interactive way to modify the musical parameters
in real-time, the change in the output only occurs after
a period of time, more specifically, after the generated
musical block completes its playback. Additionally, its
quality of audio is currently limited to MIDI files, which
makes the system somewhat inadequate for use in prac-
tical applications. Besides, even if the MIDI information
is somehow converted to rich audio samples in real-time,
the approach lacks low-level soundscape manipulation
due to the absence of essential information such as au-
dio envelope properties.

To take the level of interactivity one step further, musical
parameters could be examined and treated in a specific
way to transform the musical pieces dramatically in real-
time. Livingstone et al. [19, 20] and Friberg et al. [21]
rather focus on the affective transformation of music in
order to create smooth transitions between the different
pieces in an effective way. They successfully transform
the musical piece in real-time by using certain mapping
methodologies between the perceived moods and musi-
cal parameters. A rule-based fitting algorithm is used in
order to “fix” the musical properties (mainly the pitches
of notes, hence the harmony), to a desired format which
is determined by the user. In return, they both rely on
either pre-existing audio tracks or pre-generated musical
patterns to produce the output. Thus, they lack the ability
to provide unique music generation in real-time.

In the game Spore (2008) by Maxis, most of the au-
dio content is generated in real-time using mainly two
dimensional cellular automata [17]. The concept is in-
spired from the unique yet sophisticated patterns which

could be found in Conway’s Game of Life (1970) exper-
iments [18]. While a significant amount of the musi-
cal parameters are pre-defined, hence static, the result-
ing compositions could arguably be perceived as much
more compelling than the other works reviewed in this
section. The main reason is because of the use of real au-
dio samples in order to offer a compatible audio output
that a typical video game player in the industry is used
to. On the other hand, the system is designed specifically
for this particular game only. Therefore, generalisation
of the architecture does not seem to be possible for later
applications.
The most recent work currently in the field is AUD.js by
Adam et al. [22]. The project is developed in Javascript
and focuses on a smooth adaptation of the musical pieces
in real-time. Based on Livingstone’s approach [19], the
system features two high-level parameters, namely “en-
ergy” and “stress”, to be controlled by the user and is
capable of making use of these values immediately in
the generation process. It features a small-scale library
of musical patterns to be selected on the fly. After the
pattern selection, the output is generated by relatively
primitive audio synthesis methods such as creating sine
waveforms with the specified pitch and volume. Hence,
it somewhat fails to produce sufficiently complex sound-
scapes as an output. Moreover, as in the previous exam-
ples, the system is not capable of generating the compo-
sition in real-time, which restricts its potential for wider
usage.
In conclusion, the recent works tend to have a trade-off
between the music generation and affective transition ca-
pabilities. Moreover, the final output is often not as com-
pelling as the other examples using the traditional ap-
proaches in the industry. In fact, they rarely focus on pro-
viding more sophisticated methodologies in terms of au-
dio production, or even to support multiple instruments
in their systems. In fairness, as academic works, those
issues are usually claimed as a future work to be aug-
mented later on. Nonetheless, there exist no examples in
the field that seem to progress the research further and
address the given limitations.

3. DESIGN & IMPLEMENTATION
A hybrid approach was proposed for the design of bare-
lyMusician, which combines real-time music generation
and affective musical mood transition capabilities into a
single yet powerful framework in order to take previ-
ous examples of adaptive music systems one step fur-
ther. The approach focuses on the practical aspects

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 3 of 8



Gungormusler et al. An Adaptive Music Engine For Games

of the composition and transformation techniques and
technologies. Hence, the design goal was to develop
a generic comprehensive framework that abstracted the
low-level musical properties and structures. This en-
ables the system to be used intuitively in creating gener-
ative dynamic music without the need for any advanced
knowledge of music theory. In addition, the system was
designed to provide an interactive way to modify the
high-level properties of the music composition process,
such as the transitions between various musical moods,
at runtime simply by triggering the corresponding func-
tions respectively through an application programming
interface and/or a graphical user interface.

3.1. Main Architecture
The main architecture of the system is loosely based on
Hoeberechts et al.’s pipeline architecture for real-time
music production [23]. The components of the architec-
ture is designed in a way that reflects a typical real-life
musical performance in order to divide the workload in
a meaningful manner with respect to the end-user. As
shown in Figure 1, Musician is the main component of
the architecture which is responsible for the management
and the communication between the other components in
the engine. Sequencer serves as the main clock of the en-
gine, i.e., it sends relevant signals to Musician whenever
an audio event occurs. Audio events are designed hierar-
chically in terms of common sectional forms as described
previously. That being said, Sequencer follows a quan-
tised approach in which it keeps track of highly grained
audio pulses1 to occur in the audio sampling rate. Count-
ing the pulses by a phasor [24], it sequences the beats,
bars and sections respectively.

Fig. 1: Main components and dependencies.

In each audio event, Musician passes that information to

1An audio pulse refers to the lowest level of quantisation for se-
quencing the elements in the audio thread. It could be seen as the
smallest significant interval for an audio element to be placed.

the Ensemble component, i.e., to the orchestra. Ensem-
ble creates the song structure using its generators with
respect to the current state of the sequencer. After the
macro-level generation, it passes the relevant informa-
tion to all its Performers for them to generate the actual
sequences of musical notes, such as melodic patterns and
chords. Each performer produces the next sequence for
the relevant bar using their generators to be played by In-
struments. However, the performers initially use abstract
structures of notes—only meta information—rather than
producing the concrete notes, so that, the notes can be
modified accordingly when necessary in order to offer
an adaptive outcome before they get played. Conduc-
tor takes that generated note sequence in each beat and
transforms the notes according to the musical parame-
ters determined by the user interactively. After the ad-
justment, the meta information gets converted to actual
notes and are written into the musical score by the per-
former. Finally, each instrument plays all the notes in its
performer’s score, i.e., generates the final output which
is audible to the user.

3.2. Hierarchical Music Composition
Generators in the engine jointly compose the musical
pieces in three levels of abstraction, as shown in Figure
2. Firstly, MacroGenerator generates the musical form
at macro level, i.e., it creates the main song structure
which is made of a sequence of sections. Whenever the
sequencer arrives to a new section, MesoGenerator gen-
erates the harmonic progression, i.e., a sequence of bars
for that section. Unlike the pipeline architecture, these
two levels are managed solely by the ensemble, hence,
the generations are unified for all the performers. Thus,
every performer in the ensemble obeys the same song
structure when composing their individual scores. That
being said, when a new bar arrives, each MicroGenera-
tor of each performer generates a meta note sequence for
that bar. The meta information of a note consists of a rel-
ative pitch index, relative offset (from the beginning of
the bar), duration and volume of that note.

ModeGenerator generates the musical scale for the cur-
rent state of the engine to be used when filling the musi-
cal score by the actual notes. The scale can be thought
of as the pitch quantisation of the notes to be played. It
is an array of ordered indices that represents the distance
from the key note, hence the scale, of the piece. In that
sense, the relative pitch index in a meta note refers to the
note in that specific index in the array of that scale.

For the generation phase in all levels, there are a number

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 4 of 8



Gungormusler et al. An Adaptive Music Engine For Games

Fig. 2: Generators structural diagram (example iterations
are given on the right).

of approaches and algorithms [25] which could be used
in the field such as stochastic systems, machine learn-
ing, cellular automata and state-based architectures. The
idea, is that our architecture lets the user decide what to
use to accomplish the desired task. Therefore, all the
generators are designed as abstract base classes to be
implemented depending on the real-time choices of the
user. This approach also promotes flexibility and encour-
ages the developer-user to combine different techniques
together, or use them interchangeably in the system even
in run time. The first version of barelyMusician includes
implementations of a number of different generators dis-
cussed above.

3.3. Rule-based Note Transformation
The Conductor component is used in order to achieve af-
fective smooth transitions when required by manipulat-
ing the generated composition in real-time. The interac-
tivity between the user and the interface is managed by
Musician using two high-level parameters, namely en-
ergy and stress2, which are meant to state the current
mood of the system. The user is able to modify those
parameters anytime to change the mood of the musical
piece accordingly. The parameters are directly mapped
to selected musical properties that are managed in the
component, as shown in Figure 3. Therefore any change
the user makes in the interface results in an immediate
response in low-level musical parameters of the engine.
This mechanism is achieved by using those parameters
effectively during the note transformation phase. Since
the transformation process is done in each sequenced
beat, the outcome is capable of reacting even to a minor
modification immediately in an adaptive manner.

The musical properties have been chosen with respect

2The terminology was adopted from the AUD.js [22] project.

Fig. 3: Note transformation diagram.

to Livingstone et al.’s extensive research and analysis on
emotion mapping [19]. While the selected parameters
strictly follow their results, not all the findings have been
used in this project in order to keep the design feasible
enough for the implementation.

The mapping is done in two steps; first the normalized
value of the relevant musical property is computed us-
ing the energy and stress values, then the value is scaled
according to the specified interval of that property (see
Table 1). For instance, to get the final tempo value for
the playback, the tempo multiplier is calculated using the
energy value. If the energy value is 1.0, then the tempo
multiplier is computed by 0.85+(1.0∗1.0)∗0.3 = 1.15.
Finally, the resulting tempo multiplier is used to scale the
initial tempo, say 120 BPM, resulting in 1.15∗120 = 138
BPM.

3.4. Audio Output Generation
Real-time sound synthesis and sampling techniques were
chosen to be used to generate the audible output—rather
than relying on more primitive technologies such as
MIDI—in order to achieve a sufficiently acceptable
quality of sound as would be seen in other practical
applications in the industry. More specifically, the de-
sired audio data is generated procedurally from scratch
or loaded from a pre-existing sound bank—sample by
sample—by the instruments in the composition phase.

Fig. 4: Instrument components and dependencies.

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 5 of 8



Gungormusler et al. An Adaptive Music Engine For Games

Musical property Interval ∆Energy ∆Stress
Tempo multiplier [0.85, 1.15] 1.0 -
Musical mode [0.0, 1.0] - 1.0
Articulation multiplier [0.25, 2.0] -1.0 -
Articulation variance [0.0, 0.15] 1.0 -
Loudness multiplier [0.4, 1.0] 1.0 -
Loudness variance [0.0, 0.25] 0.5 0.5
Pitch height [-2, 1] 0.25 -0.75
Harmonic curve [-1, 1] -0.75 -0.25
Timbre brightness [0.0, 1.0] 0.6 -0.4
Timbre tension [0.0, 1.0] 0.8 0.2
Note onset [0.25, 4.0] 0.5 0.5

Table 1: Mapping between the musical properties and the mood.

As shown in Figure 4, each instrument has a certain num-
ber of voices that generate the actual output. Voice com-
ponents are capable of creating the sound by their unit
generators either using sound synthesis techniques or us-
ing pre-existing sound samples as their audio data. The
sound is shaped by the Envelope component [26], when it
gets played by the instrument. Furthermore, after the cre-
ation process, the output can further be manipulated us-
ing AudioEffect components. Added audio effects, such
as filtering and reverberation, are applied to each voice
in the instrument to produce the final output data.

3.5. Limitations
Certain simplifications had to be made due to the limita-
tions (time and resource) and the broadness of the topic,
in order to make the research project feasible. One major
simplification that was made as a design choice is to re-
strict the music transformation process to micro level—
for notes only. In other words, musical form is built re-
gardless of the musical properties selected by the user
during run time to prevent the potential issues that might
occur by such complexity.

Moreover, it was decided to keep the key note of the
composition intact throughout the piece without any key
modulations. The main reason is the difficulty of pre-
serving the consonance of a particular musical pattern,
especially when the transformations take place. In fact,
even when the scale remains the same, unintended dis-
sonance is likely to occur in the piece when the key note
changes. Thus, the harmonic progressions are limited
to change only the musical mode of the piece without
changing the key note of the scale. On the other hand,
the key note could be changed manually anytime during

play if intended by the user.

3.6. Implementation Features
The engine was implemented in C# making full use of
the capabilities of the language in order to provide suffi-
cient functionality in terms of the needs of the potential
end-user. Unity3D game engine was chosen as the base
framework considering not only its popularity but also
portability and ease of use. An application programming
interface (API) was developed, namely BarelyAPI, that
enables a flexibility of the given features which can sub-
sequently be integrated into a third party system. More-
over, a graphical user interface was included as part of
the framework, so that, it allows an intuitive interaction
for users with various technical backgrounds. We are
currently preparing barelyMusician for release under an
open source license. Having said that, the system could
be used not only by developers but also audio designers
or even music composers themselves.

Furthermore, additional components such as a keyboard
controller and real-time audio recorder are provided in-
side the framework. One other supplementary feature
worth mentioning is that the audio events in the engine
are not only used internally but also could be accessed
externally by using the programming interface. That be-
ing said, custom event listener functions can be easily
registered to the sequencer to get relevant signals on each
pulse, beat, bar and section respectively. A congruency
between visual and audio elements in a virtual environ-
ment is very important for perception and emotional in-
volvement. Even though the functionality is provided as
an extra feature, its capabilities are powerful enough for
the engine to be used as the main motivation.

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 6 of 8



Gungormusler et al. An Adaptive Music Engine For Games

4. EVALUATION
Two applications of the music system have been devel-
oped in order to test and evaluate the musical capabilities
of the engine3. Firstly, a demo scene was developed with
a graphical interface in order to test the interactive results
of the engine. The second application involved the de-
velopment of a simple game scenario in order to observe
how the system—as is—could be used by a game devel-
oper. The development stage of these demonstrative ap-
plications was a crucial step in the project, as the whole
process made it possible to spot the flaws and missing
but desirable features clearly in terms of practical aspects
before the evaluation phase. Examples of such late fea-
tures include user input driven generators to provide a
broader interaction and flexibility to the prospective end-
user. Nevertheless, the current state of the engine is fully-
functional and ready-to-use in any third party interactive
system.

The primary focus of the evaluation was to assess the
level of interactivity and recognition of mood that the
user may experience when using the music generation
system. Informal findings gathered from a preliminary
qualitative user study based on the demo scene shows
that real-time modifications done by the user result in
clearly recognisable changes of the characteristics of the
songs, i.e., over 95% of the 22 participants were im-
mediately able to perceive the difference between set-
tings of mood selections during playback. On the other
hand, while such moods as depressive were spotted eas-
ily, some participants described others, such as angry,
using the word upset. Therefore, it may be of interest to
further study the abstraction of moods, especially the re-
naming and readjusting of values in order to clarify mood
description. Certain emotions are known to be more dif-
ficult to be perceived by the listener [19], hence, further
experimentation with different scenarios—e.g. with vi-
suals and a narrative support—might be beneficial in the
future to obtain more precise results. Nonetheless, the
main focus of the approach does not take into account
these specific abstractions, therefore, in terms of energy
and stress, it can be concluded that the resulting work
successfully generates interactive music with a smooth
transition between recognisable emotional states.

In terms of the quality of the produced output, while the
current state of the engine features a promising potential

3A sample footage of the demo scene can be accessed through
http://youtu.be/Qs3yDVtqt9s.

with its instrument architecture, more sophisticated au-
dio synthesis and processing techniques should also be
considered in order to achieve a musical outcome analo-
gous to non-generative traditional musical pieces. How-
ever, it can be argued that the current music engine can
produce acceptable compositions that in many ways are
comparable to simple tonal Western music.

5. CONCLUSIONS & FUTURE WORK
A novel approach was proposed in this paper for combin-
ing real-time music generation and affective transforma-
tion methodologies into a single cohesive framework to
be used in any type of interactive entertainment system
in academia or industry. Moreover, the proposed music
transformation method is unique in the field, as it allows
manipulation of a musical piece in real-time at the sound-
wave level.

We feel the work presented here constitutes an important
step for potential practical uses of an interactive music
system that responds to dynamic changes in higher level
parameters. While the core engine is functionally com-
plete, the resulting work should be considered only as an
initial step. One major area of future work is to add more
generators, instruments and audio effects to the engine.
Particularly, more sophisticated generators with various
capabilities would dramatically enhance the ease of use,
so that the users would not necessarily have to have any
musical background or programming skills while using
the engine. Additionally, certain psychoacoustic param-
eters, such as for reverberation, are planned to be added
to the system in order to further enrich the generated
output—hence, the overall experience. Last but not least,
augmenting the approach with spatialisation techniques
remains a potentially interesting research subject to be
studied in the future.

6. REFERENCES

[1] A. Robertson, “How ’the last of us’ sound de-
sign outshines gameplay”, July 2013 (accessed
10 October 2014), http://www.forbes.com/sites/
andyrobertson/2013/07/04/the-last-of-us-in-depth-
review-sound-design/.

[2] P. Vorderer and J. Bryant, Playing Video Games:
Motives, Responses, and Consequences, LEA’s
communication series, Lawrence Erlbaum Asso-
ciates, 2006.

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 7 of 8



Gungormusler et al. An Adaptive Music Engine For Games

[3] K. Larson, J. Hedges, and C. Mayer, “An adaptive,
generative music system for games”, Game Devel-
opers Conference, 2010.

[4] D. Valjalo, “Game music: The next genera-
tion”, August 2013 (accessed 10 October, 2014).
http://www.gamesindustry.biz/articles/2013-08-
12-game-music-the-next-generation.

[5] N. Fournel, “Procedural audio for video games:
Are we there yet?”, Game Developers Conference,
2010.

[6] A. Harper, Infinite Music: Imagining the Next Mil-
lennium of Human Music-Making. John Hunt Pub-
lishing Limited, 2011.

[7] D. Tymoczko, A Geometry of Music: Harmony and
Counterpoint in the Extended Common Practice.
Oxford Studies in Music Theory, Oxford Univer-
sity Press, USA, 2011.

[8] F. Lerdahl, R. Jackendo, and R. Jackendo, A Gen-
erative Theory of Tonal Music, MIT Press series
on cognitive theory and mental representation, MIT
Press, 1983.

[9] L. Meyer, Emotion and Meaning in Music. Phoenix
books, University of Chicago Press, 1956.

[10] G. Nierhaus, Algorithmic Composition: Paradigms
of Automated Music Generation. Mathematics and
Statistics, Springer, 2009.

[11] J. A. Maurer IV, “A brief history of algo-
rithmic composition”, 1999 (accessed on
10 October, 2014). http://ccrma.stanford.edu/
b̃lackrse/algorithm.html.

[12] M. Z. Land and P. N. McConnell, “Method and
apparatus for dynamically composing music and
sound eects using a computer entertainment sys-
tem”, May 24 1994. US Patent 5,315,057.

[13] Bush, Gershin, Klein, Boyd, and Shah, “The impor-
tance of audio in gaming: Investing in next genera-
tion sound”, Game Developers Conference, 2007.

[14] A. Berndt, R. Dachselt, and R. Groh, “A survey of
variation techniques for repetitive games music” in
Proceedings of the 7th Audio Mostly Conference: A
Conference on Interaction with Sound, pp. 61–67,
ACM, 2012.

[15] M. Hoeberechts, R. J. Demopoulos, and M. Katch-
abaw, “A flexible music composition engine”, Au-
dio Mostly, 2007.

[16] M. Hoeberechts and J. Shantz, “Realtime emo-
tional adaptation in automated composition” Audio
Mostly, pp. 1–8, 2009.

[17] K. Jolly, “Usage of pure data in spore and dark-
spore” in Pure Data Convention, Weimar, 2011.

[18] E. Berlekamp, J. Conway, and R. Guy, Winning
Ways for Your Mathematical Plays. No. v. 2, Taylor
& Francis, 2003.

[19] S. R. Livingstone and A. R. Brown, “Dynamic re-
sponse: Real-time adaptation for music emotion”,
in Second Australasian conference on Interactive
entertainment, Sydney, pp. 105–111, Creativity &
Cognition Studios Press, 2005.

[20] S. R. Livingstone, R. Muhlberger, A. R. Brown,
and W. F. Thompson, “Changing musical emotion:
A computational rule system for modifying score
and performance”, Computer Music Journal, vol.
34, no. 1, pp. 41–64, 2010.

[21] A. Friberg, “pdm: An expressive sequencer with
real-time control of the kth music-performance
rules”, Computer Music Journal, vol. 30, pp. 37–
48, Mar. 2006.

[22] F. K. Timothey Adam, Michael Haungs, “Procedu-
rally generated, adaptive music for rapid game de-
velopment”, in FDG 2014 Workshop Proceedings,
Foundation of Digital Games, 2014.

[23] M. Hoeberechts, R. Demopoulos, and M. Katch-
abaw, “Flexible music composition engine”, Nov.
15 2011. US Patent 8,058,544.

[24] S. Bokesoy, “Presenting cosmosf as a case study
of audio application design in openframeworks”,
in International Computer Music Conference Pro-
ceedings, vol. 2012, 2012.

[25] M. Edwards, “Algorithmic composition: computa-
tional thinking in music”, Communications of the
ACM, vol. 54, no. 7, pp. 58–67, 2011.

[26] R. Boulanger and V. Lazzarini, The Audio Pro-
gramming Book. MIT Press, 2011.

AES 56TH INTERNATIONAL CONFERENCE, London, UK, 2015 February 11–13
Page 8 of 8

View publication statsView publication stats

https://www.researchgate.net/publication/275409864

