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Abstract

Organic semiconductors offer several crucial advantages over their inorganic counter-

parts in electronic and spintronic applications. Besides offering structural advantages

such as variety and flexibility, organic semiconductors can be manufactured with cheaper

processes and at lower temperature. These promising potentials call for the develop-

ment of a complete theoretical framework, without any need for experimental input, for

description of charge and spin transport in these materials. A possible strategy can be

to employ a multi-scale method where electronic structure is calculated with ab-initio

methods and the information so obtained is used to construct a material specific model

Hamiltonian. This Hamiltonian can then be solved with statistical techniques to extract

transport-related quantities, like mobility, spin-diffusion length etc. Since, in a real de-

vice, the organic semiconductor will be attached to conducting electrodes, the interface

between the two systems will play a crucial role in the device functionality. Keeping

these in mind, in this thesis, we attempted to calculate several important properties and

parameters of organic crystals related to electron and spin transport, both for the bulk

material and at the interface.

A modification of the popular Density Functional Theory (DFT) method known

as constrained DFT (cDFT) has been used to calculate the charge transfer energies be-

tween a graphene sheet and a benzene molecule absorbed on it. We have computed these

energy values for several modifications of the system-configuration and have rational-

ized the results in terms of classical electrostatics. Next, we have developed a method,
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within the framework of calculations employing localized basis orbitals, to determine

the accurate forces when the energy of the system depends on a subspace population.

Such method, in conjunction with cDFT, has been used to evaluate the reorganization

energy of a pentacene molecule adsorbed on a flake of graphene. We have also developed

the excitonic DFT method for calculating the optical gap of materials with cDFT, by

confining certain number of electrons within a subspace of the Kohn-Sham eigenfunc-

tions. We have shown that this method predicts the optical gaps of organic molecules

with appreciable accuracy. We have also tried to extend this method to periodic solids.

As a step toward describing spin-related phenomena, we have extracted the

spin-orbit coupling matrix elements, which can be responsible for spin-relaxation in or-

ganic crystals, with respect to a set of maximally localized Wannier functions. We have

applied this on several materials and showed that the spin-orbit split band structures

calculated from the Wannier functions match those obtained directly with first principles

calculations. Since, in organic crystals, lattice vibrations play a major role at finite tem-

perature, we have extended the aforementioned work to include the effects of phonons.

To this end, we have calculated, with respect to the Wannier functions, the spin-phonon

coupling, namely the effect of various phonon modes on modification of spin-orbit cou-

pling. We have performed such calculation on a crystal of durene and showed that there

is no apparent correlation between the electron-phonon and the spin-phonon coupling

terms.
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Chapter 1
Introduction

The cornerstone of modern technology is the ability to process and store information

with machines. It would be hard to think of any aspect of life where one does not use

such technological advances. The most common format for processing and storing data

by machines is the binary format in which all the data are represented as combination of

two numbers (0 and 1) each occupying the storage space of one bit. In the basic electrical

circuit used in such technology, these two numbers can be represented as currents of

two different magnitudes, one high and one low. Devices, which can work with binary

data in form of electrical responses, are broadly classified as electronic devices.

1.1 Electronics

The field of electronics concerns the control and manipulation of electrons in devices

made of certain materials, which possess properties facilitating such actions. The sci-

ence and technology of electronics form one of the most ubiquitous and indispensable

backbones of modern life.

• Integrated circuits or ICs, made up of numerous transistors, are the primary com-

ponents of the processing units responsible for the logic operations of almost all
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16 1.1. ELECTRONICS

devices related to computing such as computers, mobile phones, tablets, calcula-

tors etc.

• LED lights, used extensively for their versatility and low energy consumption, are

electronic elements which, when activated, act as light sources.

• Traditional solar cells, which convert light into electric current, are essentially

large area photodiodes, namely they are electronic components in which light can

reach the sensitive part of the device resulting in the generation of an electrical

response.

• Sensors, which are used to detect physical (light, temperature, magnetic field,

gravity, vibration, motion, stretching, etc.) or chemical (toxins, glucose level, oxy-

gen level, hormones, nutrients, etc.) properties depend on electronic components

for their operations.

• Amplifiers, which increase the power of any electrical signal and find widespread

application in speakers, are made with electronic components.

Among the applications listed above, the first one, namely logic is probably

the most widely used. In this case, the basic principle of operation is that of detecting

the change in electric current in the device as a function of an external electric stimulus.

For instance, in a transistor the current between the source and the drain changes as the

gate voltage is changed and the detection of the change of the former as a function of the

latter forms the basis of logic operations. Fig. 1.1 shows the basic structure and working

principle of the simplest electronic device, a p-n junction diode [1]. It consists of an n-

type material, known as donor, which is rich in free electrons very weakly bound to the

ions, and a p-type material, known as acceptor, which has many vacancies in its valence

states, i.e. which, in other words is rich in free holes. When an initially charge-neutral

donor is brought into contact with an initially charge-neutral acceptor, the free electrons

from the former diffuse into the latter to fill the vacant positions, resulting in a negatively

charged acceptor and a positively charged donor. The migrated charges accumulated

near the interface of the two materials give rise to an electric field from the donor to the



17

acceptor and an associated potential called the barrier potential. This prevents further

charge transfer, creating what is known as a depletion region. Thus, in this condition

there is no current in the device. In the reverse bias condition a positive (negative)

potential is applied to the donor (acceptor), thus enhancing the barrier potential even

further and strengthening the condition of no charge flow. However, in the forward bias

condition, when one applies a positive bias voltage to the acceptor and a negative bias

voltage to the donor, one can create an electric field opposite to the one responsible for

the creation of the depletion layer. Thus, the bias reduces the width of the depletion

layer and the barrier potential. When the bias is strong enough, charge carriers overcome

the barrier potential and current flows through the p − n junction from the acceptor

region to the donor region. From the description presented above, it is clear that such

devices can be used as switch between two current states representing the two binary

numbers.

Considering the requisite properties, we see that, in order to qualify as a donor

or an acceptor, a material needs to have unique electronic properties which allow for

the desired control of electrons in them. These materials form the active component

of an electronic device. As such for the donor, one needs a material which is rich in

free electrons but not in free hole and for the acceptor one needs a material possessing

the exact opposite characteristics. This is done by choosing a crystal where the energy

difference between the highest occupied and the lowest empty electronic bands does

not vanish, as in metals nor is as large as in insulators. Such materials, which are

ubiquitous in almost all electronic devices are known as semiconductors [2]. In order to

create a donor material, a semiconductor is doped with impurities so that an additional

filled level is created very close to the conduction band just below it. Thus, the Fermi

level is now positioned between this additional level and the valence band, and at room

temperature, electrons can move into the conduction band giving rise to conduction. For

an acceptor material, the pristine semiconductor is doped to create an additional empty

level just above the valence band facilitating hole conduction at room temperature.
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donor donor donoracceptor acceptor acceptor

No Bias Reverse Bias Forward Bias

Potential

Figure 1.1: p−n junction diode: Top panel shows an unbiased p−n junction diode and

its depletion region. Bottom panel shows potential profile of the p − n junction under

different conditions of bias; (From left to right) zero bias, reverse bias and forward bias,

respectively.
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1.2 Spintronics

In general, a magnetic field is less effective than an electric one in producing electronic

motion. However, the magnetic properties of a material are associated with the spin

of an electron and consequently in many cases an electric stimulus can be replaced by

a magnetic one, provided that one exploits the spin degree of freedom, even if in an

indirect fashion, in the detection process. The resistance faced by a charge carrier is

independent of its spin in a non-magnetic material. However, if the material is magnetic,

then the resistance typically depends on the relative orientation of the carrier spin and

the local magnetization [3]. This inspires one to create the spin valve [4], which is a

prototypical device for the interesting sub-field of electronics known as spin-electronics or

spintronics [5]. The simplest spin valve consists of two layers of ferromagnetic materials

sandwiching a non-magnetic spacer [6]. Usually, one of the ferromagnets have a fixed

magnetization, while the magnetization of the other one is free to change. If both the

ferromagnets have the same orientation of magnetization (say, up), then electrons with

up (down) spin face very low (high) resistance in both of them. Here we invoke Mott’s

idea [3] that the current is carried by two parallel spin channels, one for up spin and one

for down. Thus, in presence of a voltage difference, a current comprising predominantly

up spin electrons will flow between the two layers. However, if the magnetizations of

the two ferromagnets are opposite of each other, then an electron with any spin will

face a high resistance in one layer and a low resistance in another layer. Now, if the

resistance of the spacer is not too high, then the three layers can be thought of as

resistors in series and for each spin channel, the net resistance will be the sum of the

individual contributions of the three layers. In the parallel configuration there will be

high current (because of the up spin electrons which face very low net resistance) but

in the anti-parallel configuration there will be very low current (because all electrons

face significant net resistance). Thus by knowing the magnetization direction of the

fixed layer and by measuring the current flow, one can determine the magnetization of

the free layer. This is smartly exploited in the read head of a hard disk drive, where

one layer is held fixed and the other one, the free layer, has a magnetization that can
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Figure 1.2: Schematic diagram showing a GMR based spin-valve where the spacer has

low resistance. The arrows denote spin direction of the carrier. If, as shown in the left

panel, both the ferromagnets have the same direction of magnetization (say up), then

carriers with up (down) spin face very small (large) resistance in both ferromagnets.

Therefore, a current comprising spin up carriers flows from one ferromagnet to the

other. However, if, as shown in the right panel, the ferromagnets have opposite spins,

then carriers of either spin will experience high resistance in one ferromagnet and low

resistance in the other one, resulting in low current. In the schematic diagram for

effective resistance, the top (bottom) series represents resistance faced by spin up (down)

carriers while the thin and the thick lines denote low and high resistance, respectively.

According to Mott’s idea, the two parallel resistors for the two spin channels determine

the effective resistance of the system.
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be altered by the stray magnetic field of the hard disk. Today spintronics has found

widespread application in the field of data storage as an integral component of the hard

disk drives.

One of the crucial points related to spin-valves is the choice of material used

as spacer. Historically, in giant magneto-resistance (GMR) [7, 8] devices, a metal was

used as spacer so that no additional resistive effect was introduced on the spin-polarized

charge carriers. In contrast, in the tunnelling magneto-resistance (TMR) case [9], an

insulator is used as spacer so that instead of spin injection into the spacer, spins tunnel

from one ferromagnet to the other. Yet another possibility is that of using semicon-

ductors [10, 11] as spacers. However, since semiconductors have considerable resistance,

which is equal for carriers of both spins, the net resistance of a spin-valve made with

semiconductor spacers, depends very weakly on spin. This conductivity mismatch prob-

lem can be circumvented by adding layers of spin-selective large barriers on both sides

of the semiconducting spacer [12]. The main motivation behind using semiconductors

as spacers is the idea of having a common platform for logic operations (which use semi-

conductor based devices) and information storage. Besides, the electronic properties of

semiconductors can be changed to a large extent as desired by tuning their electronic

structure, which is a decided advantage.

1.3 Organic Electronics

Although inorganic semiconductor materials have traditionally been at the centre of

focus for electronics and spintronics, a number of experimental and theoretical studies

have propelled attention and interest in semiconductors made up of organic materi-

als [13, 14, 15, 16]. Besides holding some key advantages related to properties and man-

ufacturing, organic materials come in an infinite variety of shapes, forms and electronic

structures which have endless possibilities for tuning and modification [17]. Organic

semiconductors (OSCs) can be classified in two broad categories:

1. Molecular crystals, which are made up of organic molecules of well defined
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structure and small molecular weight held together by Van der Waals interaction.

Typical examples include crystals made of tris(8-hydroxyquinolinato)aluminium

(abbreviated as Alq3), copper phthalocyanine (abbreviated as CuPC), rubrene,

durene, pentacene etc [18].

2. Organic polymers, which are mostly amorphous long chain-like molecules com-

posed of repeated units known as monomers. Polymers like polyfluorene, polypheny-

lene vinylene (PPV), polythiophene etc. fall under this category.

There are vast differences among the general properties of organic and inorganic

semiconductor materials. For example, the mobility of a conventional p-doped silicon

is about 450 cm2V−1s−1, whereas that of rubrene crystal, one of the best conductors

among the OSCs, is approximately 10 cm2V−1s−1 [19]. The differences in properties

between OSCs and their inorganic counterparts suggests that the goal for application

of organic electronics can not be that of displacing the existing inorganic counterparts

but can be one of creating a separate niche area of its own [20].

1.3.1 Structural Properties of OSCs

A common structural property shared by most organic semiconductors is the presence of

carbon σ and π bonds. The σ bonds are usually in the form of a planar sp2 structures.

The remaining pz orbitals, which are perpendicular to the plane containing the bond,

take part in forming π bonds between adjacent molecules (in crystal) or monomers (in

polymer). These π-bonds play significant roles in the charge conduction in OSCs. The

pz orbitals from adjacent units form two delocalized levels- a π bonding level which

contributes to the valence states and a π∗ antibonding level contributing to the conduc-

tion states. Therefore, these π orbitals are usually responsible for charge transport in

crystals or polymer.

Unlike typical inorganic semiconductors, which are held by covalent bonds

whose strength as a function of distance (R) goes as 1
R2 , the crystals or polymers in

an OSC are held by the much weaker van der Waals force whose distance-dependence
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goes as 1
R6 . Therefore, OSCs are much softer and more fragile compared to the inor-

ganic counterparts. Also, because of the weak bonding between individual units, charge

carriers tend to be more localized on individual molecules. Therefore, charge transport

in OSCs does not occur exclusively through delocalized band-like motion, but there

is usually a significant contribution of localized hopping of carriers from one unit to

another. This localization is also true for the neutral excitations, which are typically

tightly bound Frenkel excitons confined to individual molecules.

1.3.2 Advantages of going Organic

The biggest advantages that OSCs offer over their inorganic counterparts are their

mechanical flexibility, light weight and possibility of synthesis at low temperature [21].

Over the years, several low cost methods have been developed for fabricating OSC-

based devices. An important advantage of organic electronic devices is that they can

be manufactured at much lower temperature than that required for their inorganic

counterparts. Thus, their production requires much less power and expenses and incurs

less health-hazards. In particular, several possibilities for large area deposition and

patterning for organic semiconductors have been demonstrated [20]. One huge advantage

in organic electronics is the fact that organic thin films can be deposited on several

inexpensive substrates like plastic, glass or metal foils- without having to worry about

lattice matching conditions as with inorganic semiconductors.

1.3.3 Fabrication of Organic Electronic Devices

Thin films based on organic molecular crystals are formed usually with vapour-phase

deposition techniques [22, 23]. In the Vacuum Thermal Evaporation (VTE) method, the

source material is placed several centimeters below the substrate in a vacuum chamber.

Heating of the source results in deposition of the film on the substrate. It is possible to

deposit multiple layers with varied functionalities on the substrate and hence VTE is the

most widely used method in commercial production of display devices based on organic
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electronics. However, one of the biggest drawbacks of VTE is the difficulty experienced

in maintaining a uniform rate of deposition. In a promising alternative technique called

Organic Vapour Phase Deposition (OVPD) [24, 25], a hot walled vessel filled with an

inert gas is used to place the source in. On heating the source, the gas saturates with

the source material and deposits it on the cooled substrate. To manufacture an actual

device, it is usually required to locally pattern the deposition on the substrate. This

can be done at the time of deposition with Organic Vapour Jet Printing (OVJP) [26]

where the evaporated organic molecules pass through a nozzle before being deposited

on the substrate close to its tip. Several techniques [27, 28] are available for patterning

the organic film after deposition.

Polymeric thin films are usually deposited with solution based techniques where

the deposition takes place in the presence of a substrate (instead of being in vacuum

or in an inert gas) which is fully evaporated after deposition. In this case patterning is

possible with ink-jet printing [29, 30, 31] which promises unprecedented cost-effective

efficiency. More recently, several complimentary methods for solution based processing

have been proposed for molecular crystals as well [32, 33, 34].

1.3.4 Applications of Organic Electronics

Among the practical uses of organic electronic devices, Organic Light Emitting

Diode (OLED) [15, 35] in display panels is by far the most widespread. OLED-based

displays for phones, tablets and monitors are routinely manufactured in large scale -

creating a huge commercially successful industry. Unlike liquid crystal displays, OLED

displays function without a backlight and therefore have better power efficiency and can

show deeper black levels. Since OLED pixels emit light directly, they have a greater

contrast ratio and wider viewing angle compared to LCD screens. The response time

for an OLED-based display device can be 1000 times faster than that of their LCD

counterparts. Besides, OLEDs are thin, lightweight and flexible devices and therefore

enjoy multiple advantages in technological applications. In a typical bilayer OLED an

emissive layer and an absorptive layer of organic semiconductor are sandwiched between
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two electrodes- all deposited on a substrate. The cathode and the anode injects electrons

and holes into the semiconductor respectively. Since, in most cases the semiconductor

has better mobility for holes, an electron and a hole combine close to the emissive layer

to create a bound electron-hole pair, known as an exciton which eventually drops to a

lower energy state with emission of electromagnetic wave with frequency in the visible

spectrum.

Owing to the advantages of organic electronics, especially due to the cost ef-

fective fabrication technologies of large volume electronic devices, OSCs offer an alter-

native [36, 37] to their inorganic counterparts in photovoltaics. Even though there has

been no large commercial production of Organic Photovoltaic Cells (OPV cells), due

to two major drawbacks, (i) very low efficiency (10%) compared to silicon solar cells and

(ii) the possibility of environmental degradation, these are subjects of active research

in both the theoretical and experimental community. A typical OPV cell consists of

an electron donor and an electron acceptor layer between two electrodes. One usually

places additional blocking layers between the semiconductor and the electrodes. A pho-

ton from the sunlight excites an electron in the donor region. The resulting exciton

is broken up into a free electron-hole pair by the effective field of the semiconductor

heterojunction. The electron (hole) travels across the acceptor (donor) to be collected

at the metal electrode and to feed into the circuit, thereby generating current flow.

Field Effect Transistors (FETs) made of OSCs are a common reality. Even

though an Organic Field Effect Transistor (OFET) [38, 39, 40] is far from being us-

able in logic operations (due to low carrier mobility in organic crystals) it has promising

features for other applications namely, as backpane of OLED displays, imagers, mechan-

ical sensors, etc. An OFET follows the architecture of a Thin Film Transistor (TFT),

where the source and the drain electrodes are deposited on the semiconductor channel,

which is separated by an insulating layer from the gate electrode. As in any FET, a

voltage between the gate and the source electrodes drives a current between the source

and the drain.
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Property Organic Semiconductor Inorganic Semiconductor

Mechanical

Property

Higher mechanical flexibility, softer

structure, lighter weight

Less flexibility and softness,

heavier material

Production Easy and low-cost production
Expensive and labour intensive

production

Mobility Low mobility Much higher mobility

Variety
Large range of variety in structure

and property

Less variety in structure and

property

Temperature
Narrow window of optimum

temperature for operation

Wider window of optimum

temperature for operation

Spin

relaxation

time (T2)

Lower spin relaxation time Higher spin relaxation time

Table 1.1: Comparison of properties of organic semiconductors with the inorganic coun-

terparts.
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1.4 Organic Spintronics

As mentioned before, using inorganic semiconductors as spacer materials in spintronic

devices offers the advantage of having a single platform for processing and storage of

data. The ease of low-cost production of OSCs is a motivation enough to explore

the possibility of incorporating them in spintronic devices. A desirable quality for a

spacer material is that it should maintain the initial spin-polarization of the injected

carrier as much as it can. In other words, the scattering of spins inside the spacer

should be minimal. Since the main agents of spin scattering, namely spin-orbit coupling

and hyperfine interaction are both low in OSCs [19], organic materials usually have

very long spin-relaxation time, τs. This is a measure of the average time taken for

spin relaxation.1 This makes OSCs attractive candidates for research on spintronic

applications. There are several questions related to such research and they prove to

be challenging for experimentalists and theoreticians alike [41]. Since the mobility in

OSCs is much lower than that of typical inorganic semiconductors, it is debated whether

the transport of carriers from one ferromagnet to the other occurs by injection (as in

GMR) or by tunnelling (as in TMR). Recent experiments have shown definitive evidence

in support of spin-injection in CuPC [42] and Alq3 [43] crystals. Experiments have

also shown a negative magnetoresistance [44] in organic spin valves, i.e. the resistance

diminishing with increment of an applied magnetic field. This apparently surprising

experimental evidence has been explained [45] as the result of a renormalization of

the widened molecular states at the metal-OSC contact. Such states hold the key

to determining the spin-polarization of the injected current. This provides additional

challenge to the modelling of these molecular levels and thereby predicting the current.

Finally, a crucial question, which is yet to be answered is: which interaction, spin-

orbit coupling or hyperfine interaction, is responsible for spin-relaxation in OSCs? As

1Here, it is worth mentioning that the spin-relaxation time can pertain to two very distinct phenom-

ena. In the context of nuclear magnetic resonance, the longitudinal spin relaxation time, T1 is the time

needed for the spin to reach equilibrium with its surroundings. In contrast, the transverse relaxation

time, T2 is the time associated with relaxation of an injected spin from one configuration to the other.

In this thesis, we are interested mostly in T2.
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conflicting experimental evidence is currently present in support of both [46, 47], it is

conjectured that the relative dominance of one over the other depends on the specific

OSC used.

1.5 Theoretical Description

The above discussion points to the need for a complete theoretical description of charge

and spin transport in semiconductor devices made of organic materials. Since a typ-

ical organic electronic device consists of an OSC crystal sandwiched between metallic

electrodes, an ab initio theory (i.e. one for which the only required inputs are the exper-

imental conditions and the structure of the materials involved) for such a real Hybrid

Organic/Inorganic Device (HOID) would be of great interest. Of particular importance

will be a general transport theory for an HOID where the crystal ranges in length from

10-100 nm since this is the typical length-scale for exciton recombination [48] or spin

relaxation [19]. The unique structural properties of OSCs, which in many cases serve

as the advantages of organic electronics, make such theoretical description of transport

extremely difficult and challenging. This can be attributed to mainly two reasons:

1. Since OSCs are composed of well-separated and weakly interacting molecules,

charge carriers tend to be localized and the delocalized band-like transport seen in

covalently bonded inorganic semiconductors is not observed. In organic crystals,

charge transport likely occurs as a mixture of band-like transport and hopping

of localized carriers. The relative contribution of the two mechanisms depend

largely on the particular crystal and experimental conditions such as the temper-

ature. This makes it very difficult to formulate a general, computationally viable

framework valid across all regimes of transport in such materials [49].

2. The weak intermolecular attraction also results in the abundance of vibrational

modes at finite temperature. These vibrational motions play a crucial role in

defining the transport in such materials and renders popular ab initio methods like
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DFT in conjunction with the Non-equilibrium Green’s Function (NEGF) method

inadequate in their treatment.

In addition, in a real HOID, the effect of injection of charge/spin carrier from

the electrode into the OSC must be fully incorporated within the theoretical model.

Such injection in general depends heavily on the electronic structure at the interfacial

region between the metal and the crystal making the modelling of transport a multi-

faceted problem. The most promising general framework in this regard is to calculate

the accurate electronic structure of the system in question: including both the semi-

conductor crystal and the metal-organic interface. Then one can construct a model

Hamiltonian for the system, using parameters obtained from the electronic structure

calculations. By solving this model Hamiltonian, one can obtain the observables asso-

ciated with transport in the real HOID.

In the next chapter we will present a brief review of the existing models for

describing charge transport in OSCs in various limits. This provides an idea of the state

of the art in this area and also highlights the challenges present.





Chapter 2
Modelling Transport in Organics

Modelling charge transport in organic materials is as challenging as it is important. The

density functional theory+ Non-equilibrium Green’s Function (DFT+NEGF) scheme [50,

51], one of the most popular techniques for the theoretical description of transport,

proves to be inadequate in treating real organic devices for several reasons. This fully

quantum mechanical treatment is limited to devices comprising a few hundreds of atoms.

A real Hybrid Organic Inorganic Device (HOID) of 10-100 nm length can contain about

10,000-10,000,000 atoms rendering it computationally intractable for the DFT+NEGF

scheme. Secondly, this scheme is designed for phase-coherent transport. Although

inelastic effects can be included perturbatively, any system where the transport is dom-

inated by the vibrational degrees of freedom are off-limits for this method. Organic

crystals are typically composed of molecules loosely bound to each other by weak Van

der Waals’ force. This is in contrast with common inorganic semiconductors in which

the bond is typically a much stronger covalent bond. Since the molecules are weakly

bound, at finite temperature they vibrate with large amplitude about their equilibrium

position. This means that at finite temperature, organic semiconductors typically have

a large number of phonons in them. The electrons and the phonons influence each other

and their combined effect is described with a collective quasiparticle named polaron.

The interplay between ionic and electronic motion makes the theoretical modelling of

transport in organic semiconductors much more challenging and complicated than in

31
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their inorganic counterparts. Thus, the DFT+NEGF scheme is not a wise choice for

such systems. Furthermore, in organic crystals the nature and effects of impurities,

which play a crucial role in charge transport, are usually very different [52]. All these

differences suggest that the common methods used for describing transport in inorganic

semiconductors can not be used in their unmodified forms for organic crystals.

We begin this chapter with a very brief discussion of experimental observations.

This will help us to appreciate the merits and drawbacks of various state-of-the art

theoretical transport models that follow. Here we shall focus our attention mainly on

transport of charge because, once the mechanism of transport and a viable method

for its treatment are established, such method can be largely transferred to the spin-

dependent case with an appropriate change in the Hamiltonian. Finally we shall provide

a short description of the aims of a project proposed by Prof. Stefano Sanvito titled

QUantitative Electron and Spin Transport theory for organic crystals based devices

(QUEST), of which this thesis forms an integral part.

2.1 Experimental Results

The experimental investigation of charge transport in OSC is challenging due to the

difficulty in obtaining ultra-pure semiconductor crystals without defects. Early inves-

tigations involved mostly impure crystals and demonstrated activated transport [53],

i.e. one where the mobility increases with temperature. However, more sophisticated

measurements have attributed such behaviours mostly to the presence of defects. Exper-

iments with highly purified pentacene [54], tetracene, rubrene and functionalized pen-

tacene [55] have shown a temperature dependence of mobility that goes like µ ∼ T−n.

Since such relations are typical of delocalized band like transport, it is natural to think

of such transport to be prevalent in organic semiconductors also. However, electron spin

resonance experiment on a thin film of pentacene at room temperature have shown that

the carriers are localized within approximately 10 molecules [56]. Furthermore, a recent

experiment based on charge modulated spectroscopy (CMS) for pentacene showed sig-
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natures of charge localization despite displaying a reduction of mobility with increasing

temperature [57]. All these evidences seem to point, at least for highly purified and or-

dered organic crystals, to the apparently contradictory phenomenon of charge transport

with localized carriers where mobility decreases with increasing the temperature.

2.2 Band Like Transport

In any ideal periodic crystal structure, the energy eigenstates are delocalized Bloch

states, ψnk, characterized by their crystal momentum, k. A Bloch state can be expressed

as a linear combination of plane waves with wave numbers differing by translations in

the reciprocal lattice.

|ψnk〉 =
∑

G

Cn(k + G) |k + G〉 (2.1)

where G denotes reciprocal lattice vectors and |q〉 denotes a plane wave with wavenum-

ber q. This is discussed in detail in Section 3.1.

2.2.1 Inclusion of Phonons in the Model

As mentioned earlier, in organic crystals the vibrational degrees of freedom play an

important role in charge transport. In quantum mechanics, the lattice vibrations are

taken into account in terms of bosonic quasi-particles known as phonons (see Section 3.6

for a detailed account). Since the crystal in composed of weakly bonded molecular units,

we intend to use a tight-binding (TB) Hamiltonian which is written with respect to

localized basis orbitals (see observation 4 in section 3.1). The TB hamiltonian can be

modified in the following way to include both electrons and phonons
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Ĥ =
∑

m

εma
†
mam +

∑

m 6=n

γmna
†
man +

∑

mnQ

~ωQgQmn(b†Q + b−Q)a†man +
∑

Q

~ωQ(b†QbQ +
1

2
).

(2.2)

Here ωQ is the angular frequency of the phonon mode Q (here Q includes both the

phonon wavevector q and the branch λ), b†Q (bQ) is the creation (annihilation) operator

for phonon mode Q and gQmn is the electron-phonon coupling. In the above equation,

the first term corresponds to the on-site Hamiltonian, the second term is the hopping

term, the third term denotes the electron-phonon coupling Hamiltonian, while the fourth

one denotes the purely phononic part of the Hamiltonian. We can see that the terms in

the above equation can be regrouped in the following manner:

Ĥ =
∑

m

(
εm +

∑

Q

~ωQgQmm(b†Q + b−Q)

)
a†mam (2.3)

+
∑

m6=n

(
γmn +

∑

Q

~ωQgQmn(b†Q + b−Q)

)
a†man (2.4)

+
∑

Q

~ωQ

(
b†QbQ +

1

2

)
.

Except for the last term, which does not act on the electronic degrees of free-

dom, this looks like a TB hamiltonian with the onsite and hopping terms modified

due to the presence of phonons. The phononic terms modifying the on-site energy

and the hopping are known respectively as the Hosltein term and the Peirls term.

In Eq. (2.3), the electronic and phononic degrees of freedom are coupled. Therefore,

the goal here is to decoupled them to make further progress. By applying a canonical

transformation [58]
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H → H̃ = eSHeS
†

where

S =
∑

mn

Cmna
†
man,

Cmn =
∑

Q

gQmn(b†Q − b−Q) (2.5)

one can obtain, for low electron density the transformed Hamiltonian, written with

respect to the previous electronic creation and annihilation operators,

H̃ =
∑

mn

Ẽmna
†
man +

∑

Q

~ωQ(b†QbQ +
1

2
)

where,

Ẽmn = (eCEe−C)mn,

Emn = εmn −
∑

Q

~ωQ(gQg−Q)mn. (2.6)

It is important to note that unlike εmn or Emn which are numbers, Ẽmn is an

operator since it contains the phonon creation and annihilation operators. It is difficult

to proceed further with this exact Hamiltonian. However, one can approximate the

operator terms Ẽmn with their thermal averages 〈Ẽmn〉. This makes the electronic and

the phononic operators completely decoupled in the Hamiltonian of Eq. (2.6). Clearly,

the term proportional to 〈Ẽmn〉 for (m 6= n) acts as the modified hopping parameter

and gives a measure of the electronic bandwidth in presence of phonons. A calculation

of these terms for a given finite temperature shows that the presence of the non-local

electron-phonon coupling term results in a narrowing [58] of the polaronic bandwidth

compared to the bare electronic one. A similar thermal averaging of the phononic

operators can be performed in the context of transport calculation [59] and an expression

of mobility can be obtained from the Kubo formula under such approximations. This
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has been used successfully for modelling transport in ordered organic crystals at low

temperature [60, 61].

2.2.2 Drawback of this model: Dynamic Disorder

The narrowing of the bands due to the presence of phonons implies an increment of the

effective mass of charge carrier and consequently a reduction of the mobility. Therefore,

at sufficiently high temperature, the mean free path of the carrier becomes comparable

with intermolecular distances rendering the assumption of delocalized bandlike transport

inapplicable.

Looking at it from a slightly different perspective, one can see that replacing the

terms involving the phonon operators by their thermal averages is equivalent to assuming

that the onsite energy and hopping (which are numbers) of the zero temperature TB

Hamiltonian can be modified (replaced by other numbers) to take into account the effect

of phonons. In other words, we assume that at all instants the crystal is still periodic

and on average, it is sufficient to replace the tight binding Hamiltonian in absence of

phonons with another one with different parameters in order to describe the temperature

dependence of the mobility. However, at a high temperature the lattice sites oscillate

about their equilibrium positions with large amplitudes. Due to the presence of a large

number of phonon modes in the system, the thermal motion of the various sites are highly

uncorrelated resulting in a loss of general periodicity of the system [62]- a phenomenon

known as dynamic disorder. Thus, at each instant, the coupling between different

lattice sites varies largely and the Hamiltonian becomes disordered. Such a disordered

system can not be treated with a delocalized Bloch wave and thereby calls for new

theoretical approaches to modelling transport.
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2.3 Polaronic Hopping Transport

We have seen that dynamic disorder introduced by lattice vibrations makes a crystal non-

periodic and treatment of the system with delocalized Bloch states becomes inadequate.

Such disorder results in localization of the charge carrier over one or a few lattice sites.

Although it doesn’t take the dynamic disorder into account, a popular method for

treating transport of localized charge at a finite temperature T is through the hopping

of such localized charge carriers [63, 64] (small polaron) from one site m to another n.

The rate kET of such a charge transfer is given by Marcus’ theory [65]:

kET =
|γmn|2

~

√
π

λkBT
exp

[
−(λ+ ∆G0)2

4λkBT

]
(2.7)

where, kB is the Boltzman constant, λ, known as the re-organization energy is the

change in energy corresponding to the ionic re-arrangement following the charge transfer

and ∆G0 is the change in Gibbs’ free energy corresponding to the same. Since the on-

site energy in the TB picture (for the HOMO/LUMO) is a measure of charging energy

of the site and since the local electron-phonon coupling provides a measure of the mod-

ification of this on-site energy due to the lattice vibrations, the re-organization energy

can be thought of as an alternative way of charaterizing local electron-phonon coupling

strength. This description ignores the non-local electron-phonon coupling (Peierls term)

and the resulting dynamical disorder. It can be shown [49] that for a system without

dynamic disorder, for γ ≥ λ
2
, there can not be any localized small polaron at any tem-

perature and therefore the concepts of hopping and rate equation become moot. One of

the most important limitations of this approach is its prediction of thermally activated

transport- i.e. increment of mobility with temperature, which is in contrast with exper-

imental results on highly purified and ordered organic crystals, in which the mobility is

shown to decrease with temperature.
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2.4 Model with Dynamic Localization

The preceding paragraphs suggest that though at very low temperature, the transport in

a highly pure and ordered organic crystal can be considered to be band like, for a more

general case, an effective model for charge transport in pure organic crystals at finite

temperature should be able to predict a reduction in mobility with increment in tem-

perature without assuming transport through delocalized Bloch states. An interesting

procedure, developed by Troisi et al. [66, 67] solves this problem by using a semiclassical

time-dependent Hamiltonian which treats the electronic and ionic degrees of freedom

with quantum mechanical and classical approaches respectively. For the simplest case of

a one-dimensional periodic system with nearest neighbour interaction and one localized

orbital per site, the Hamiltonian takes the form:

H =
∑

j

[−γ + g(uj+1 − uj)] (|j〉 〈j + 1|+ |j + 1〉 〈j|) +
∑

j

1

2

(
mu̇2

j +Ku2
j

)
, (2.8)

where the time-dependent quantity uj denotes the displacement of the j-th site from the

equilibrium position at any instant, γ is the average hopping parameter between sites, g

is the electron-phonon coupling and m and K are the mass and the force constant of the

oscillator respectively. Clearly, here the first sum on the right hand side denotes the elec-

tronic Hamiltonian Hel (including electronic coupling with vibrations) and the second

term denotes purely vibrational Hamiltonian. By treating the classical displacements

{uj} as simple harmonic motion, their equation of motion can be expressed as

müj(t) = −Kuj(t)−
∂

∂uj
〈ψ(t)|Hel|ψ(t)〉 (2.9)

where |ψ(t)〉 is the state of the quantum system evolving through the Schrödinger equa-

tion.

|ψ̇(t)〉 = −iHel(t) |ψ(t)〉 . (2.10)
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Temperature enters into the model in terms of the distribution of the initial lat-

tice positions {uj(0)} and velocities {u̇j(0)} and of the initial wave function ψ(0). This

model does not assume the transport to be delocalized band like although it predicts

such transport at very low temperature. Studying the evolution of the wave function in

such system, one can notice that the initially localized wave function spreads across the

lattice due to the time-dependence of the effective transfer integrals. Most importantly,

calculating a temperature averaged diffusion coefficient (D) and the corresponding mo-

bility (µ = eD
kBT

), one can see that the mobility decreases with increasing temperature-

as is expected from experimental evidences. For a given temperature, in the limit of

large γ and low g, the modulation of effective transfer integral due to the vibrations is

much smaller than the average hopping and one reaches to the high mobility regime of

delocalized band like transport.

2.5 Methodology for QUEST

We have discussed some model-based approaches for investigating charge transfer in

organic crystals. The parameters required for such Hamiltonians are either obtained

from experimental data or calculated with ab initio methods. With this background,

we are now ready to briefly discuss the proposed methodology of the QUEST project.

QUEST aims to construct a computationally viable semiclassical model Hamiltonian of

a real Hybrid Organic Inorganic Device (HOID) with parameters obtained from first

principles calculations and to solve the Hamiltonian using statistical techniques to ob-

tain important properties related to charge and spin transport. Note that for a real

device, the presence of inorganic electrodes near the organic crystal requires a theo-

retical description of the interface adding significant complexity to the modelling of

transport. The description of the electrodes, which is not taken into account in any of

the model-Hamiltonian-based approached discussed above, is incorporated naturally in

the DFT+NEGF scheme. As such, QUEST aims to combine the best of both methods

into a unified framework for complete ab initio description of charge and spin transport

in real devices including the electrodes.
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Figure 2.1: Flowchart showing methodology for QUEST.

The main parameters required for the Hamiltonian at the interface are the

charge transfer energies and the transfer integrals. For a molecular crystal in the vicin-

ity of an inorganic electrode, the electrode-molecule charge transfer energies can not

be obtained from the frontier orbitals of the isolated molecule. Neither can they be

calculated directly from DFT. However, these can be obtained with cDFT and the cor-

responding shift can be incorporated into the scheme of further calculations with the

help of scissor operators [68]. For constructing the model Hamiltonian, one would also

need the transfer integrals between the relevant states of the electrode and the molecule.

These can be calculated [69] within the DFT+NEGF formalism by calculating the rele-

vant level-broadening (this is essentially the imaginary part of the embedding self-energy

of the electrode).

The Hamiltonian for transport inside the crystal must contain vibrational

modes as well as description of the electronic degrees of freedom. In this approach,

we adopt a classical description of the former and a quantum mechanical one for the

latter. The local and non-local coupling between the electrons and the vibrational nor-

mal modes can be calculated through DFT based calculations with finite differences. An

excellent basis set for such calculations is that formed by the Maximally Localized Wan-

nier Functions (MLWFs) [70]. These take into account only the energetically relevant

energy eigenstates, and thus allow one to limit the size of the calculation to a compu-

tationally tractable regime without losing crucial information. The various geometries

corresponding to molecular vibrations can be sampled with a Monte Carlo method at a
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given temperature (i.e. the weight function depends on the free energy, which, in turn

would depend on the temperature). For each geometry, one would get a Hamiltonian

similar to Eq. (2.8) (with parameters obtained from DFT calculations) and the net mo-

bility can then be calculated as a statistical average over different configurations from

Kubo formula. For the spin-transport, a similar approach can be adopted (one needs a

spin-dependent Kubo formula for this) provided that we include spin-dependent terms

like spin-orbit coupling, hyperfine interaction etc. in the Hamiltonian. Such model

Hamiltonians should (at least in principle) be able to calculate interesting observables

like spin-diffusion length or time in organic materials without any external input pa-

rameter. It is noteworthy that the existing calculations for spin-transport in organic

materials rely exclusively on parameters obtained from experiments [71].

2.5.1 First-Principles Calculations

One important message emerging from the previous discussion is that the ab initio

theoretical description of charge/spin transport in OSC-based devices must begin with

a first principles calculation of electronic structure from which various parameters for

further calculations are to be extracted. This is true not only for the QUEST workfow,

but also for all the formalisms mentioned above, though the required parameters may

vary. For charge/spin injection, this requires description of the electronic structure

at the interface. Such descriptions include an accurate account of the energy levels

relevant for electron transfer and energy associated with ionic relaxation following such

transfer. For the transport in the bulk crystal this requires representation of the crystal

Hamiltonian, including the spin dependent terms with respect to a suitable basis set- e.g.

the Wannier functions [72, 73] (note that for the spin independent terms this approach

has been recently employed successfully in ref. [61]). It is also necessary to calculate

the ionic vibrational modes and their couplings with the electrons. This thesis reports

calculations of such parameters through an ab initio approach based on DFT, which

is the most widely used first-principles theoretical method for calculating ground state

properties of materials [74, 75].
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2.6 Thesis Outline

This thesis explore the key areas mentioned below:

1. In the next chapter (Chapter 3) we discuss some of the relevant theoretical con-

cepts and methodologies used in this thesis. These create the platform for the

research presented in subsequent chapters.

2. The energy change corresponding to the transfer of electron from a conductor

to an adjacent organic molecule and vice-versa. Since a typical OSC contains

many weakly bound organic molecules, we have also explored how the presence

of nearby molecules affects such charge transfer energies. Chapter 4 contains a

detailed report on this.

3. Since the charge transfer from an electrode to a molecule is followed by the re-

laxation of the ionic coordinates of the molecule, such events have an associated

energy cost, known as reorganization energy. Such reorganization energy, which

is a measure of local electron-phonon coupling has been calculated with advanced

first-principles method taking the necessary forces into account. These are pre-

sented in Chapter 5.

4. The optical gap, which is a crucial quantity for applications related to OLEDs and

photovoltaics, have been calculated with a technique which involves much less

computational cost than the existing ones based on many body methods. This is

discussed in detail in Chapter 6

5. For calculations related to spin transport, we have reported a method for the

representation of the spin-orbit matrix elements of organic crystals with respect to

MLWFs. We have presented this method and supporting calculations in Chapter 7.

6. Finally, since the spin-diffusion at finite temperature depends on the coupling be-

tween such spin-orbit terms with the ionic oscillations, we employ the aforemen-

tioned method in conjunction with calculations of lattice vibration to determine

the spin-phonon coupling. This is discussed in Chapter 8.



Chapter 3
Theoretical Background

Since all the works presented in this thesis rely heavily on calculations of electronic

structures, we dedicate this chapter to briefly outlining the underlying theories and

techniques that form the basis of such calculations. The discussion begins with the

framework for treating independent electrons in periodic crystals. This is followed by

an outline of DFT, which is a widely used theory for treating the problem of interacting

electrons by mapping it onto an equivalent problem of noninteracting ones and of cDFT,

a slightly modified version of DFT which has been extensively employed in this thesis.

Next we have discussed the basic working principle of computational software based

on DFT and in particular of two softwares siesta and onetep with which all the

electronic structure calculations have been performed. Finally we discuss the theory of

lattice vibration and how these can be described from the results of a DFT calculation.

3.1 Energy Eigenstates of a Periodic Lattice

The Hamiltonians of a periodic lattice with lattice vectors R1, R2 and R3 obeys the

condition

H(r) = H(r + R), (3.1)

43
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where R = n1R1 + n2R2 + n3R3 and n1, n2, n3 are any integers.

The Bloch theorem states that in such a system, the energy eigenfunctions

have the form

ψk(r) = uk(r)eik.r where uk(r) = uk(r + R), (3.2)

which implies that

ψk(r + R) = uk(r + R)eik.reik.R = ψk(r)eik.R. (3.3)

A proof of this theorem can be found in chapter 8 of reference [76]. A number of very

important observations follow from Bloch’s theorem.

1. Observation 1: The free electron stationary states are momentum eigenstates of

the form

〈r|k〉 = ψfree,k(r) = eik.r. (3.4)

Clearly, in a periodic crystal these are not energy eigenstates. However, the energy

eigenstates of the crystal is expressible as a linear combination of the free particle

waves, namely

|ψ〉 =
∑

k

Ck |k〉 . (3.5)

Bloch’s theorem offers us important insights about the coefficients Ck. It says that

any particular |ψ〉 is composed only of |k〉 states differing by translations in the

reciprocal lattice. That is to say that, only one |k〉 state from each unit cell of the

reciprocal lattice contributes toward a Bloch state. Consequently that Bloch state

can be indexed by the corresponding k-vector of the first Brillouin zone (FBZ).

|ψm,k〉 =
∑

G

Cm(k + G) |k + G〉 , (3.6)
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where G = n1K1 +n2K2 +n3K3; K1, K2, K3 being the reciprocal lattice vectors.

The subscript “m”, which is known as the band index serves to remind that

corresponding to each “k”, there can be multiple Bloch states differing in energy.

2. Observation 2: in order to find out the allowed k values, one can apply the

Born-Von-Karman (BVK) periodic boundary condition on the lattice such that

the Bloch states have to obey the relation

ψ(r +NiRi) = ψ(r), (3.7)

where i = 1, 2, 3 and Ni is an integer denoting the BVK periodicity. It must be

noted that this periodicity, which is a periodicity of the energy eigenstate is differ-

ent from that of the Bloch theorem where the periodicity is in the Hamiltonian.

The BVK condition restricts the k-values to

k =
3∑

i=1

mi

Ni

Ki. (3.8)

Therefore, there are N1N2N3 = N possible values for the vector k and these form

a continuum for a crystal with BVK periodicity at infinity.

3. Observation 3: Since the Bloch states are indexed with the k vectors, one can

plot the energy eigenvalues against k and the resulting plot is known as the band-

structure. For a given k, one can have multiple energy eigenvalues corresponding

to Bloch states with different “m”s. These are known as bands.

4. Observation 4 (The Tight Binding Model): Instead of expressing the Bloch

states in terms of plane waves, we can write them out in terms of basis functions

localized at lattice points as

|ψnk〉 =
∑

µ,R

C ′µn(k,R) |φµ,R〉 (3.9)

where |φµ,R〉 is the µ-th orbital at the lattice site R and C ′µn(k,R) is a coefficient

of linear combination. Focusing on one band for the moment (thus suppressing

the band index ‘n’) we can write
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ψk(r + R) = 〈r + R|ψk〉 ,

=
∑

R′

∑

µ

C ′µ(k,R′) 〈r + R|φµ,R′〉 ,

=
∑

R′

∑

µ

C ′µ(k,R′) 〈r|φµ,R′−R〉 ,

=
∑

R′

∑

µ

C ′µ(k,R′ + R) 〈r|φµ,R′〉 .

Bloch’s theorem dictates that ψk(r + R) = eik.Rψk(r) (see Eq. (3.3)). Therefore,

one can write the equality

∑

R′

∑

µ

C ′µ(k,R′ + R) 〈r|φµ,R′〉 = eik.R
∑

R′

∑

µ

C ′µ(k,R′) 〈r|φµ,R′〉 . (3.10)

Hence,

C ′µ(k,R′ + R) = eik.RC ′µ(k,R′), (3.11)

which is possible when C ′µ(k,R) is expressible in the following form:

C ′µ(k,R) = Cµ(k)eik.R. (3.12)

So, bringing the band-index back, the Bloch state is now:

ψnk =
∑

R

eik.R

(∑

µ

Cµn(k) |φµ,R〉
)
, (3.13)

where the Bloch state is normalized over the unit cell. Note that the term inside

the parenthesis is a localized function. The Hamiltonian of this periodic system

can be written as

Ĥ =
∑

µ,ν,Rm,Rn

Vµ,ν(Rm −Rn) |φµ,Rm〉 〈φν,Rn| . (3.14)

Since, |ψnk〉 is the eigenket, it is related to the corresponding energy eigenvalue

En(k) with the following equation:
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Ĥ |ψnk〉 = En(k) |ψnk〉
∑

R′

eik.R
′∑

ν

Cνn(k) 〈φµ,R1 |Ĥ|φν,R′〉 = En(k)
∑

R

eik.R
∑

γ

Cγn(k) 〈φµ,R1 |φγ,R〉

∑

R′,ν

eik.(R
′−R1)Cνn(k) 〈φµ,R1 |Ĥ|φν,R′〉 = En(k)

∑

R,γ

eik.(R−R1)Cγn(k) 〈φµ,R1 |φγ,R〉

∑

ν

Cνn(k)Hµν(k) = En(k)
∑

γ

Cγn(k)Sµγ(k). (3.15)

Here we have defined

Hµν(k) =
∑

R

eik.(R−R1) 〈φµ,R1 |Ĥ|φν,R〉 , (3.16)

Sµν(k) =
∑

R

eik.(R−R1) 〈φµ,R1 |φν,R〉 . (3.17)

Note that due to the translational symmetry of the crystal, Hµν(k) and Sµν(k)

are the same for all R1. If these matrices are known, then Eq. (3.15), which is

a generalized eigenvalue problem representing the Schrödinger equation, can be

solved to find En(k) and Cνn(k).

3.2 Density Functional Theory

The density corresponding to a normalized N -electron state |Ψ〉 is given by

n(r) = N

∫
d3r2

∫
d3r3...

∫
d3rNΨ∗(r, r2, ..., rN)Ψ(r, r2, ..., rN) (3.18)

where Ψ(r, r2, ..., rN) is the wave-function corresponding to the aforementioned state

|Ψ〉. According to DFT, if |Ψ〉 is a ground state of the N -electron system then the above

equation is in principle invertible- i.e. the ground state density uniquely determines the

corresponding ground state(s).
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Let us consider the standard method of finding the ground state energy (E0)

by minimizing the expectation value of the Hamiltonian (Ĥ = T̂ + V̂ee + V̂ext) with

respect to the quantum state through variational principle.

E0 = min
|Ψ〉
〈Ψ|Ĥ|Ψ〉

= min
|Ψ〉
〈Ψ|T̂ + V̂ee + V̂ext|Ψ〉

= min
n

[
min
|Ψ〉→n

(
〈Ψ|T̂ + V̂ee|Ψ〉+ 〈Ψ|V̂ext|Ψ〉

)]

= min
n

[∫
drvext(r)n(r) + min

|Ψ〉→n
(FLL[n(r)])

]

= min
n
ELL[n(r), vext(r)]

(3.19)

Here, in the third line, the outer minimization is over all N -representable 1

densities and the inner minimization is over allN -particle states that produce the density

n(r). The term inside the large square bracket is a unique functional of density and

external potential [77, 78]- we call this the Levy-Lieb energy functional ELL[n(r), vext(r)].

This is true even if many degenerate ground states produce the same density; since they

all produce the same value for 〈Ψ|Ĥ|Ψ〉. The fourth equality in Eq. (3.19) defines

the Levy-Lieb universal functional FLL[n(r)] which is the same for all systems (i.e.

independent of external potential). It must be noted that in the search over n(r) (and

|Ψ〉) it is okay to include even those densities (and quantum states) that can not result

from the given (in fact any2) vext(r) because such densities (and quantum states) can

not minimize ELL[n(r), vext(r)] (or 〈Ψ|Ĥ|Ψ〉) anyway.

Thus we see that, given the ground state density n0(r) and the external poten-

tial vext(r), the ground state energyE0 is uniquely determined by E0 = ELL[n0(r), vext(r)].

Now let us go one step further. Let us assume, for a system of N electrons, that there

are two external potentials V̂ext1 and V̂ext2, differing by more than just a constant, that

1An N -representable density is one which can be obtained from any anti-symmetric state.
2densities which can be associated with the antisymmetric ground state of a Hamiltonian are called

v-representable
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produce the same ground state density n0(r). Let |Ψ0
1〉 and |Ψ0

2〉 be the ground states,

E0
1 and E0

2 be the associated energy eigenvalues of the Hamiltonians (say Ĥ1 and Ĥ2)

for the two different external potentials. Since, by definition |Ψ0
1〉 is the state producing

the lowest eigenvalue of Ĥ1, we have

E0
1 = 〈Ψ0

1|Ĥ1|Ψ0
1〉 < 〈Ψ0

2|Ĥ1|Ψ0
2〉 , (3.20)

following which we may write

E0
1 = 〈Ψ0

1|Ĥ1|Ψ0
1〉 < 〈Ψ0

2|Ĥ1|Ψ0
2〉

= 〈Ψ0
2|Ĥ2|Ψ0

2〉+ 〈Ψ0
2|Ĥ1 − Ĥ2|Ψ0

2〉

= E0
2 + 〈Ψ0

2|V̂ext1|Ψ0
2〉 − 〈Ψ0

2|V̂ext2|Ψ0
2〉

= E0
2 +

∫
drn0(r)vext1(r)−

∫
drn0(r)vext2(r). (3.21)

The last line is valid for any multiplicative V̂ext such that 〈r|V̂ext|r′〉 = vext(r)δ(r − r′).

Starting with E0
2 and following a similar method we could have arrived at

E0
2 < E0

1 +

∫
drn0(r)vext2(r)−

∫
drn0(r)vext1(r) (3.22)

By adding these two inequalities we get

E0
1 + E0

2 < E0
2 + E0

1 (3.23)

This contradiction proves that our initial assumption of two different external

potentials producing the same density is wrong. Therefore, the ground state density

of an N-electron system uniquely specifies the external potential, except for a trivial

additive constant. This is the celebrated first Hohenberg-Kohn (HK) theorem [79]. Since

the external potential for an N -electrons system completely specifies its Hamiltonian,

which in turn specifies all properties of the system, one can say that in principle the

ground state density uniquely determines all ground state and excited state properties
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of the system. This means we can write the quantum ground state and the ground state

energy as a functional of the ground state density alone:

|Ψ0〉 = |Ψ[n0(r)]〉 , (3.24)

E0 = ELL[n0(r), vext(r)] = E[n0(r)]. (3.25)

This automatically implies that for any density n′(r) which is not the ground state

density of vext(r)

E0 = ELL[n0(r), vext(r)] < ELL[n′(r), vext(r)]. (3.26)

This is the second Hohenberg-Kohn (HK) theorem. Since the ground-state density is the

one that produces a total of N electrons and minimizes ELL we can write a constrained

equation of minimization as follows:

∂

∂n(r)

[
ELL[n(r), vext(r)]− µL

(∫
d3rn(r)−N

)]

n(r)=n0(r)

= 0. (3.27)

Here, µL is the Lagrange Multiplier used to incorporate the condition of a fixed

numberN of total electrons. It can be proved that all N-representable densities are dense

enough for Eq. (3.27) to be valid. However, this implies that ELL[n(r), vext(r)] must be

defined for fractional particle numbers. So, the definition of ELL (as in Eq. (3.19)) must

be extended to include densities yielding fractional particle numbers and this is done as

follows through FLL,
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FLL[n(r)] = min
{|ΨN 〉,|ΨN+1〉}→n(r)

[
(1− η) 〈ΨN |T̂ + V̂ee|ΨN〉+ η 〈ΨN+1|T̂ + V̂ee|ΨN+1〉

]

where n(r) = (1− η) 〈ΨN |ΨN〉+ η 〈ΨN+1|ΨN+1〉 (3.28)

〈ΨN |ΨN〉 = N,

〈ΨN+1|ΨN+1〉 = N + 1,

and the total number of particles is non-integer.

∫
d3(r)n(r) = N + η [0 < η < 1]. (3.29)

Let us now consider a non-interacting N -electron system with some external

potential vsext(r). The formalism described so far is valid for this system with the Levy-

Lieb functional

Es
LL[n(r), vsext(r)] = min

|Ψ〉→n

(
〈Ψ|T̂ |Ψ〉+

∫
drvsext(r)n(r)

)
. (3.30)

As usual, the quantum ground-state |Ψs[n0(r)]〉 is a functional of the ground state

density. For the non-interacting system, the ground state wave function is known to

be the Slater determinant of the single particle wave functions φi(riσi)[n0(r)] which are

also uniquely determined by the electron density.

Ψs(r1σ1, ..., rNσN) =
1√
N !




φ1(r1σ1) · · · φN(r1σ1)
...

. . .
...

φ1(rNσN) · · · φN(rNσN)




(3.31)

where σ denotes the spin index. Clearly, the single particle energies (εi) and the cor-

responding wave-functions, φi(riσi), are obtained by solving the Schröedinger equation

for the non-interacting Hamiltonian:
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(
−1

2
∇2 + vsext(r)

)
φi(rσ) = εiφi(rσ). (3.32)

Then, denoting the occupation of the i-th single-particle state by Θi, the ground state

density n0(r) gives the ground state energy as

Es
0 = Es

LL[n0(r), vsext(r)]

= 〈Ψs[n0(r)]|T̂ |Ψs[n0(r)]〉+

∫
drvsext(r)n0(r)

=
∑

i

Θi

∑

σ

∫
d3rφ∗i (rσ)

(−i~∇)2

2m
φi(rσ) +

∫
d3rvsext(r)n0(r)

= T s[n0(r)] + V s[n0(r)]

(3.33)

Eq. (3.27) for the noninteracting system takes the form

∂T s[n0(r)]

∂n(r)
+ vsext(r) = µ. (3.34)

Then the KS scheme begins with the understanding that all N -representable densities

(i.e, densities for which ELL is valid) can be written as n(r) =
∑

i

∑
σ |φi(rσ)|2, namely

that they all correspond to a Slater determinant for some set of single particle eigen-

states. Thus, we can write the Levy-Lieb energy functional of the interacting electrons

as

ELL[n] = T s[n] + EH [n] + Eext[n] + Exc[n] (3.35)

where the first term on the right hand side is the kinetic energy of non-interacting

electrons of the same density n and is given by the first term on the right hand side

of Eq. (3.33). The second and the third terms on the right hand side of Eq. (3.35) are

the classical Coulomb energy (1
2

∫
dr
∫
dr′ n(r)n(r′)

|r−r′| ) and the energy due to the external

potential (
∫
drvext(r)n(r)) respectively. The last term Exc in the above equation denotes

the energy that is not contained in the other three terms and is called the Exchange-

Correlation (XC) energy. Note that T s[n] is not the full kinetic energy of the interacting
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system and hence Exc contains some contributions from the kinetic energy as well. For

this system the variational equation would take the following form

µL =
∂ELL[n0(r)]

∂n(r)

=
∂T s[n0(r)]

∂n(r)
+

∫
dr′

n(r′)

|r− r′| + vext(r
′) +

∂Exc[n0(r)]

∂n(r)

=
∂T s[n0(r)]

∂n(r)
+ vKS(r),

(3.36)

where the Kohn-Sham potential vKS(r) is defined as

vKS(r) =

∫
dr′

n(r′)

|r− r′| + vext(r
′) +

∂Exc[n]

∂n
. (3.37)

Comparing Eq. (3.36) with Eq. (3.34) we see that they would look identical

for vsext(r) = vKS(r). Thus the interacting system corresponding to Eq. (3.36) will have

the same electron density as a non-interacting system in an external potential vKS(r).

The latter is called the equivalent Kohn-Sham system of the former. Thus, if one knows

the exact vKS(r) for the interacting system one knows the full quadratic Hamiltonian

of the Kohn-Sham non-interacting system. From this Hamiltonian one can obtain the

single particle eigenstates (φi(rσ)) plugging vsext(r) = vKS(r) in Eq. (3.32)

(
−1

2
∇2 + vKS(r)

)
φi(rσ) = εiφi(rσ). (3.38)

Eq. (3.38) is known as the Kohn-Sham equation [80] corresponding to the

given interacting system and the electron density of the Kohn-Sham system is given

by
∑

σ

∑
i |φi(rσ)|2. Since this density is the same as that of the original interacting

system, one can find the energy of the interacting system from Eq. (3.35). It must be

noted that the last term on the right hand side of Eq. (3.35) must be a density functional

since all other terms in Eq. (3.35) are functionals of n(r). In many cases this term has

a small contribution to the total energy.
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It is interesting to note that since the ground state density of the Kohn-Sham

system uniquely determines vKS(r) which, in turn, uniquely determines the Kohn-Sham

orbitals φi(riσi) and since the ground state density of the Kohn-Sham system is same

as that (n(r)) of the interacting system, not only the Kohn-Sham potential but also all

the Kohn-Sham orbitals are unique functionals of n(r). Exploiting this relation, one

can minimize the energy directly as a functional of the Kohn-Sham orbitals (subject to

the condition of orthonormality of the orbitals) and obtain the Kohn-Sham equation

Eq. (3.38).

To conclude, the Kohn-Sham scheme can be roughly broken down as follows:

• Given the external potential vext(r) of the interacting system, start with an initial

guess for density n(r) and construct vKS(r).

• Obtain the density of the Kohn-Sham system either by diagonalizing the quadratic

Hamiltonian or by directly minimizing the energy functional of the Kohn-Sham

system.

• With the density so obtained, construct a new vKS(r) and repeat the procedure

until the density and the energy converge.

3.2.1 Band Gap Problem

One of the most important limitations of KS DFT is its inability to accurately predict

the electronic gap of extended systems [81, 82]. Let us take a closer look at this problem

here. We begin with the expression for a system with (N + η) particles (where N is an

integer and 0 ≤ η < 1). As mentioned in Eq. (3.28), this is expressed as superposition of

two states- one (|ΨN〉) with N particles and one (|ΨN+1〉) with N + 1 particles. In this

case ELL[n(r), vext(r)] is minimized such that n(r) = (1− η) 〈ΨN |ΨN〉+ η 〈ΨN+1|ΨN+1〉
corresponds to an FLL[n(r)] where |ΨN〉 and |ΨN+1〉 both are ground states (with the

corresponding number of particles) for the same vext(r) (see, for example, chapter 2.4

of ref. [83]). This means:
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EQ
0

Q(N � 1) (N + 1) (N + 2)N

Figure 3.1: Representative plot of ground state energy vs number of electrons

EN+η
0 = (1− η)EN

0 + ηEN+1
0 , (3.39)

where EQ
0 is the ground state energy of the system containing Q electrons. This es-

tablishes EQ
0 as a function of Q, as plotted in Fig. 3.1 which shows linear behaviour

between points with integral values of particle number where EQ
0 is not differentiable.

The fundamental gap of any N -particle system is defined as:

EFG = (EN+1
0 − EN

0 )− (EN
0 − EN−1

0 ). (3.40)

Note that for a non-interacting system, this is equal to the difference between the (N+1)-

th and the N -th eigenvalue. Since the KS system consists of non-interacting electrons,

the above statement is true for it (with KS eigenvalues denoted by εKS). Here, EFG is

∆KS = εKSN+1 − εKSN . (3.41)

Going back to the general case of interacting particles, since the plot of EQ
0

against Q is linear between any two integer points, EFG is equal to the derivative gap

EDG
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EDG =
∂EN

0

∂N

∣∣∣∣
N+

− ∂EN
0

∂N

∣∣∣∣
N−
, (3.42)

where, N+ and N− correspond to approaching the limit from the positive and negative

side respectively. Now we shall prove an important relation for the quantity
∂EN0
∂N

. If

nQ is the ground state density for the Q-particle system, then ELL[nQ(r)] = EQ
0 where

we have omitted the vext(r) parameter in the Levy-Lieb energy functional for simplicity.

We have [83]

∂EN
0

∂N
= lim

η→0

1

η
[EN+η

0 − EN
0 ]

= lim
η→0

1

η
[ELL[nN+η(r)]]− ELL[nN(r)]

= lim
η→0

1

η

[
ELL[nN(r)] +

∫
d3r

δELL[n]

δn

∣∣∣∣
n=nN

[nN+η(r)− nN(r)]− ELL[nN(r)]

]

= µL

[
lim
η→0

∫
1

η
d3r[nN+η(r)− nN(r)]

]

= µL

Where µL = δELL[n]
δn

∣∣∣∣
n=nN

has been previously encountered in Eq. (3.27). This

equates EDG to

EDG =
δELL[n]

δn

∣∣∣∣
nN+

− δELL[n]

∂n

∣∣∣∣
nN−

=

[
δTS[n]

δn

∣∣∣∣
nN+

− δTS[n]

δn

∣∣∣∣
nN−

]
+

[
δExc[n]

δn

∣∣∣∣
nN+

− δExc[n]

δn

∣∣∣∣
nN−

]

= ∆KS + ∆xc

The second equality follows from the fact that the external potential and the

Hartree potential have continuous density derivatives at all particle numbers. ∆KS is the

KS gap defined in Eq. (3.41) and ∆xc, which is known as the derivative discontinuity [84,

85], is a many-body correction. Standard XC-functionals used in DFT (such as Local
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Density Approximation or LDA, Generalized Gradient Approximation or GGA, etc.)

have ∆xc = 0, which implies that for such functionals:

EDG = ∆KS. (3.43)

Unfortunately, this does not mean that EFG can be calculated easily with these func-

tionals. In fact, for these functionals,
∂EN0
∂N

is not a straight line between integer points

and as a consequence EFG 6= EDG.

The following discussion closely follows that presented in Ref. [81]. In Fig. 3.2

a we show a representative plot of EN −EN0 vs N for a fixed number N0 for the exact

functional (showing perfectly linear behaviour between integer points) and for LDA

(showing convex behaviour between integer points). This plot holds true for a small

molecule. This convex behaviour of the curve for LDA precludes its EDG from being

the same as EFG. However, since the energy description is good at integer points, one

can expect reasonable results for ionization energy (I.E.) and electron affinity (E.A.)

calculated as total energy differences:

I.E. = EN−1
0 − EN

0

E.A. = EN
0 − EN+1

0

Now, let us focus on a finite system containing two unit cells each having an

E(N) − E(N0) vs N behaviour as in Fig. 3.2a Then, within the LDA framework, an

extra electron added to the system would be distributed equally between the two cells

because

(E
N+ 1

2
0 + E

N+ 1
2

0 ) < (EN
0 + EN+1

0 ) (3.44)

Extending this to the case of a finite system with M unit cells, we see that the

single added electron will be delocalized over all the M unit cells since
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M.E
N+ 1

M
0 < [(M − 1)EN

0 + EN+1
0 ] (3.45)

Fig. 3.2b shows the plot of E(N) − E(MN0) vs N for such a system with M

unit cells. Now, each cell has an excess of 1/M charge and for each cell, this corresponds

to the point N = (N0 + 1
M

) in Fig. 3.2a. Hence, in the plot for the whole system, even

the integer points are not captured properly any more. Therefore, a calculation based

on total energy difference will fail to produce the electron affinity (or ionization energy)

for this system. This delocalization error will keep increasing with M . Moving to a

bulk limit, Fig. 3.2c shows the same plot of E(N)−E(MN0) vs N for a system with M

unit cells where M → ∞. Obviously, for such a system the added electron delocalizes

over all unit cells resulting in infinitesimally small fractional charge per unit cell. So,

the equivalent point in Fig. 3.2a would be the point N = N + δ where δ → 0. Thus,

in Fig. 3.2c the plot between the points N = MN0 and N = MN0 + 1 would be a

straight line with the slope of
∂EN0
∂N

of Fig. 3.2a Thus, even though this plot will have

linear behaviour between integer points (a property of the exact functional), it will have

wrong values at the integer points.

The take home message from the preceding discussion is that LDA tends to

delocalize an added charge over all space available. Hence, if we run a bulk DFT

calculation on a very large supercell, LDA will spread the charge unphysically over the

entire supercell and the IE (EA) would converge to the Kohn-Sham HOMO (LUMO).

Thus for calculating the band gap of a periodic solid in terms of total energy difference

if we use too small a unit cell and add an excess unit charge to it, the extra charge is

artificially confined in the small unit cell (it must be noted that for such a calculation, an

unit extra charge is added to each unit cell of the periodic system)- leading to unphysical

scenario and inaccurate result for any XC-functional, including the exact one. However,

if we use too large a unit cell, LDA will delocalize the charge excess over the entire unit

cell giving rise to unphysical condition again (this would not happen with the exact

XC-functional). However, if one can somehow use a unit cell of just the right size- i.e.

the size in which an extra charge would be confined in an actual experiment- then even

with LDA one can get a good band gap in terms of total energy differences.
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Figure 3.2: (a)Representative plot of energy of a finite system as a function of electron

number for the exact XC functional and for LDA. (b) same plot as (a) but for a sys-

tem containing a finite number M of identical units as in the previous plot. Plot (c)

corresponding to the bulk limit, for M →∞.
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3.3 Constrained Density Functional Theory

DFT is a ground state theory. One possible way to access excited states with this

formalism is to perform the minimization of the energy functional subject to additional

conditions, for example, by fixing the number (Nc) of electrons in a given subpsace,

which is typically a spatial region, represented by a projection operator P̂. This can be

expressed as

Tr[P̂ρ̂] = Nc (3.46)

where ρ̂ is the density operator. Subject to this condition, the variational equation

Eq. (3.27) takes the form

∂

∂n(r)

[
ELL[n(r), vext(r)]− µ

(∫
d3rn(r)−N

)
+ Vc

(
Tr[P̂ρ̂]− Nc

)]

n(r)=n0(r)

= 0,

(3.47)

where Vc is the Lagrange multiplier corresponding to the condition of constraint Eq. (3.46).

Let us denote the term inside the square bracket of Eq. (3.47) as W [n(r), Vc].

For each value of Vc, one gets a unique ground state density from Eq. (3.47). In this sense,

W can be thought of as a function of Vc only: W [n0(r)[Vc], Vc] = W (Vc) (exceptions to

this can be constructed though [86]). By differentiating this function, we get

dW

dVc
=

∂W

∂n(r)

∂n(r)

∂Vc

∣∣∣∣
n(r)=n0(r)

+
∂W

∂Vc

=
∂W

∂Vc

= Tr[P̂ρ̂]− Nc, (3.48)

where, in the second equality one uses Eq. (3.47), i.e ∂W
∂n(r)

∣∣∣∣
n(r)=n0(r)

= 0. So, the ex-

tremum of W (Vc) reproduces the condition of constraint Eq. (3.46). Taking screening
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effects, i.e., the change in density due to change in Vc into account, it can be proved [86]

that the maximum of W (Vc) yields the stable ground state density of the system sub-

ject to the given constraint. Also, since Tr[P̂ρ̂] − Nc vanishes at this density, W gives

the total energy of this stable ground state. The method of cDFT aims to find this

maximum point [87, 88].

Note that for a given Vc, solving Eq. (3.47) amounts to finding the stationary

density, conserving the number of electrons, for an interacting system whose Hamilto-

nian contains an additional term VcP̂. Note that the HK theorem remains valid for

such modified Hamiltonian, even if the additional term is non-local [89]. To find this

stationary density, one invokes the KS formalism and, following a route similar to that

for arriving at Eq. (3.37) from Eq. (3.27), can show that the equivalent non-interacting

system having the same electron density is under a KS potential given by

vKS(r) =

∫
dr′

n(r′)

|r− r′| + vext(r
′) +

∂Exc[n]

∂n
+ VcP̂. (3.49)

By solving the KS equations with this vKS(r), one can find the desired density

for a given Vc. Thus, in cDFT, the Hamiltonians of the interacting system and of the

equivalent KS system are modified by addition of a term VcP̂ such that, for the value

of Vc which maximizes W (Vc), the ground state density of the modified Hamiltonian

corresponds to the density of that stable lowest-energy state of the original interacting

Hamiltonian which satisfies the constraint Eq. (3.46).

The iterative method for finding the maximum of W (Vc), until the attainment

of self-consistency for Vc is as follows:

1. Start with an initial guess for Vc.

2. With Vc in hand start with an initial density n(r) and construct the KS potential

vKS(r) according to Eq. (3.49).

3. Obtain a self-consistent density and vKS(r) like in regular DFT.
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4. Update Vc with some optimization method (e.g. Newton’s method, conjugate-

gradient etc.) and repeat the entire procedure with the new Vc.

3.4 Calculations based on the Kohn-Sham Scheme

The Kohn-Sham procedure maps an interacting many-body problem onto a non-interacting

single-particle problem. DFT-based computer programs are devoted to constructing and

solving the KS Hamiltonian iteratively to extract the ground-state energy and from that

other important quantities [90]. The two commonly used types of basis sets used for

the construction and solution of the KS Hamiltonian in periodic systems are:

1. Plane waves, with respect to which the KS states are written as in Eq. (3.6).

2. Localized orbitals, with respect to which the KS states are written as in Eq. (3.13).

In this thesis, we have only used methods of the second type and in all of these codes,

the system under investigation is always periodic (note that this is not a necessity for

a DFT-based code). Hence, even when solving for a molecule, the system is artificially

made periodic by repeating in space the unit cell. This is made large enough so that

the neighbouring cells do not interact much with each other.

Most of the physical properties for the systems of interest are related to the

valence electrons only; the core electrons do not contribute much. Hence, it is possible

to account for the effects of the core electrons on the valence ones with great accuracy by

replacing them with an effective screening potential added to the ionic potential. This

resultant potential, which is much weaker than the original ionic one is known as the

pseudopotential and can be thought to act on a set of pseudo valence wave functions.

This formalism efficiently serves the purpose, since, in the spatial region of interest (i.e.

outside the core region very close to the ion), the pseudopotential is essentially the same

as the ionic potential and same is true for the true valence wavefunctions and the pseudo

wavefunctions. In the core region, the true wave functions oscillate rapidly in space and
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hence, the charge density in that region is also oscillatory. In contrast, the pseudo wave

functions have no nodes in the core region and consequently the pseudo charge density is

smooth there. The smoothness is associated to the fact that the valence wave-functions

do not need to be orthogonal to the core ones. This is a desirable condition for practical

calculations. Since the KS energy functional depends on the density, which in turn

depends on the amplitude of the wave function at a point in space, it is usually desirable

to match the pseudo wave functions with the true valence wave functions outside the

core region. This match has to take place not only in spatial dependence but also in

absolute amplitude. In norm-conserving pseudopotentials [91], this condition is satisfied

by ensuring that inside the core region the spatially integrated square of the amplitude

of the pseudo wave function is the same as that of the true valence wave function. In all

DFT calculations reported in this thesis, such norm-conserving pseudopotentials have

been employed.

3.4.1 Exchange-Correlation Functional

If the XC-functional, Exc[n(r)] is known exactly, then the density obtained from the

KS equations is exactly equal to the ground state density of the interacting system and

from it, one can determine the precise ground state energy of such system. However,

this quantity, which must be a functional of density is only known within certain ap-

proximations. Below, we briefly discuss two such approximations, the Local Density

Approximation (LDA) and the Generalized Gradient Approximation (GGA). These are

the only XC-functionals used in this thesis.

Local Spin Density Approximation

In the LDA approximation, if, at a point r in space, the electron density is n(r), then

Exc[n(r)] is taken to be the XC energy of a fully interacting uniform electron gas with

density n(r). Thus, we may write
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Exc[n(r)] =

∫
d3rnε(n),

where ε(n) is the XC energy density of the uniform gas. This quantity is exactly

known as a sum of the exchange and the correlation contribution. LDA offers an exact

treatment for uniform density and is a good approximation for densities that vary slowly,

as in metals. Thus, one can expect LDA to work well for metals, for which the electron

density is close to homogeneous. On the other hand, for atoms, in which the density

is highly inhomogeneous and is expected to drop to zero continuously as one moves

away from the nucleus, the LDA is not expected to work so well [92]. The remarkable

usefulness of the LDA functional is usually attributed to a systematic error cancellation,

i.e., to the fact that it overestimates the correlation contribution and underestimates

the exchange one [93].

Generalized Gradient Approximation

In LDA, the XC functional at point r has only one argument, the density at point r.

Improvement on this can be achieved by including more terms of importance. In the

Generalized Gradient Approximation, besides n(r), the XC-functional Exc[n(r)] depends

on ∇n(r). Various flavours of GGA functional exist in the literature. In this thesis

we shall use the approximation proposed by Perdew, Burke and Ernzerhoff [94]. It

is also worth mentioning that several other approximations (e.g. meta GGA, hybrid

functionals) that are typically (but not always) more accurate and more computationally

expensive, have also been discovered.

DFT-based calculations are usually performed with software packages, devel-

oped over the years, that typically come with a large number of functionalities. In the

following we present a brief description of the working mechanism of siesta [95] and

onetep [96], the two DFT based softwares used in this thesis.
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3.4.2 siesta

The siesta software [95] solves the KS equations [Eq. (3.38)] by diagonalizing the ef-

fective single particle KS Hamiltonian written in terms of localized atomic orbitals

{|φν,R〉} [see Eq. (3.9)] which are eigenfunctions of the atomic pseudopotential and are

truncated to zero beyond a certain radius. The Hamiltonian operator consisting of the

non-interacting kinetic energy, non-local pseudopotential, local pseudopotential, Hartree

term and the exchange-correlation operator can be written in the aforementioned order

as

Ĥ = T̂ +
∑

I

V̂ KB
I +

∑

I

V̂ NA
I + V̂ H + V̂ xc. (3.50)

All these operators, and also the overlap 〈φµ,R1 |φν,R2〉 have a general matrix form with

respect to the basis orbitals. The matrix representation of a generic operator X̂ reads

Xµν(R1 −R2) = 〈φµ,R1 |X̂|φν,R2〉 (3.51)

where, for the overlap matrix, X̂ = Ŝ = 1̂.

If the eigenstates of the Hamiltonian are {|ψi〉} and the corresponding occu-

pation numbers are ni, then the density operator is defined as:

ρ̂ =
∑

i

ni |ψi〉 〈ψi| (3.52)

and the density matrix is defined in terms of the vector duals (|φ̃µ〉) of the basis vectors

such that 〈φ̃µ|φν〉 = δµν , and

ρµν(R1 −R2) = 〈φ̃µ,R1|ρ̂|φ̃ν,R2〉 . (3.53)

Then the real space representation of the charge density is determined as
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ρ(r) =
∑

µ,ν,R1,R2

〈r|φµ,R1〉 〈φ̃µ,R1 |ρ̂|φ̃ν,R2〉 〈φν,R2 |r〉

=
∑

µ,ν,R1,R2

ρµν(R1 −R2)φµ,R1(r)φ∗ν,R2
(r). (3.54)

The matrix elements of the first and the second terms (which are non-local

operators) of Eq. (3.50) along with the overlap (Sµν(R1 − R2)) are calculated in the

Fourier space. For example, the overlap matrix is determined as

Sµν(R) =

∫
dkφ∗µ(k)φν(k)e−ik.R (3.55)

where φµ(k) is the Fourier transform of φµ(R)

φ(k) =
1

(2π)3/2

∫
drφ(r)e−ik.R. (3.56)

The matrix elements of the local operators, namely the last three terms in

Eq. (3.50), are calculated from the corresponding functions, X(r) over a real space grid.

The density ρ(r) is used to calculate V H(r) [by solving Poisson equation; usually in

Fourier space] and V XC(r). Once the local functions are known over the grid points,

the matrix elements are

Xµν(R1 −R2) = 〈φµ,R1 |X̂|φν,R2〉 (3.57)

=

∫

r1

∫

r2

d3r1d
3r2 〈φµ,R1|r1〉 〈r1|X̂|r2〉 〈r2|φν,R2〉 (3.58)

=

∫

r

d3rX(r)φµ,R1(r)φν,R2(r) (3.59)

With the knowledge of the matrix elements 〈φµ,R1 |Ĥ|φν,R2〉 and 〈φµ,R1 |φν,R2〉
one can solve Eq. (3.15) to find the eigenvalues and eigenstates. Of course, the entire

process is repeated until the attainment of self-consistency.
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3.4.3 onetep

An alternative of diagonalizing the KS Hamiltonians can be a minimization of the KS

total energy as a function of the KS orbitals {ψi}:

E[{ψi}] = 2
∑

i

∫
d3r

(
− ~2

2m

)
ψi∇2ψi +

∫
Vion(r)n(r)d3(r) +

e2

2

∫
n(r)n(r′)

r− r′
d3rd3r′+

Exc[n(r)] + Eion({RI}) (3.60)

In this regard, an equivalent of the KS orbitals is the KS single particle density

matrix ρ(r, r′)

ρ(r, r′) =
∑

i

ψ∗i (r)ψi(r) (3.61)

Such KS density matrix can be written as

ρ(r, r′) = 〈r|ρ̂|r′〉

=
∑

α,β

〈r|φα〉 〈φα|ρ̂|φβ〉 〈φβ|r′〉

=
∑

α,β

φα(r)Kαβφ∗β(r′)

where {|φα〉} is a set of localized non-orthogonal generalized Wannier functions (NG-

WFs) and {|φα〉} is the set of corresponding duals such that 〈φα|φβ〉 = δβα. In onetep,

in order to maintain an order-N approach, the KS energy functional is minimized di-

rectly with respect to the density kernel Kαβ. During such density kernel minimization

three crucial conditions need to be satisfied [97]:

1. idempotency: ρ2(r, r′) = ρ(r, r′)

2. Normalization: 2
∫
d3rρ(r, r′) = N , which is the number of electrons in the system
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3. Compatibility: [ρ,H] = 0

In order to minimize the energy subject to these conditions, onetep follows

the Li-Nunes-Vanderbilt (LNV) minimization procedure in conjunction with penalty

functionals.

In DFT calculations using localized basis- the accuracy depends largely on the

size of the basis set. In order to improve over the minimal basis set (which offers fast but

inaccurate calculations) one needs to use larger basis- which increases computational

cost. onetep uses an alternative approach in which the NGWF basis is always the

minimal set but is iteratively optimized with a conjugate-gradient (CG) technique in a

loop external to that of the Kαβ minimization. This means that the NGWF basis set

is not unique to the atoms but depends on the entire system. Each NGWF is centred

on an atom and truncated to zero beyond a given localization radius (rloc). An NGWF

is expressed in terms of a set of spike-like highly localized psinc functions [98]: Dk(r),

centred at the k-th grid point of a dense spatial grid as

φα(r) =
∑

k

Dk(r)Ck,α (3.62)

The grid spacing can be controlled with a single quantity: the maximum ki-

netic energy of the plane waves which constitute the psinc functions through Fourier

transformation.

3.5 Löwdin Population Analysis

In many practical scenarios, it is important to determine the electronic population of

a subspace of interest. Very often, this subspace is a spatial region spanned by some

localized kets (these can be a subset of atomic orbitals used as the basis set) and is

expressed as a projection operator over these kets. One particularly important and

widely applied form of such population analysis is the Löwdin scheme [99] which we
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shall discuss here briefly.

Population of a subspace is typically calculated as a trace of density matrix.

However, matrix-trace of an operator does not have any physical meaning when the

corresponding basis set is non-orthogonal. Here, the trace is not necessarily invariant

under basis transformation). In the Löwdin scheme, this problem is circumvented by

constructing an orthogonal set of basis kets from the non-orthogonal one. Let us assume

we have a non-orthogonal set {|φi〉} of basis orbitals with overlap Sij = 〈φi|φj〉. The

overlap is a Hermitian and positive-definite matrix. This guarantees that it will have

a Hermitian and positive-definite inverse square root S−
1
2 . Let us define a new set of

orbitals {|φ̃i〉} such that

(φ̃1(r)φ̃2(r) · · · φ̃N(r)) = (φ1(r)φ2(r) · · ·φN(r))




S
− 1

2
11 · · · S

− 1
2

1N

...
. . .

...

S
− 1

2
N1 · · · S

− 1
2

NN


 (3.63)

Where the row matrices consist of wave functions corresponding to the afore-

mentioned orbitals.

Taking the hermitian conjugate we get:




φ̃1
∗
(r)

φ̃2
∗
(r)
...

φ̃1
∗
(r)




=




(S
− 1

2
11 )∗ · · · (S

− 1
2

N1)∗

...
. . .

...

(S
− 1

2
1N )∗ · · · (S

− 1
2

NN)∗







φ∗1(r)

φ∗2(r)
...

φ∗1(r)




(3.64)

These give us the relations:

φ̃i(r) =
∑

µ

φµ(r)S
− 1

2
µi (3.65)

and
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φ̃i(r)∗ =
∑

µ

(S
− 1

2
νi )∗φν(r) (3.66)

Thus the inner product of the newly formed orbitals will be

〈φ̃i|φ̃j〉 =
∑

µν

(S
− 1

2
νi )∗S

− 1
2

µj 〈φν |φµ〉

=
∑

µν

S
− 1

2
iν S

− 1
2

µj Sνµ

= δij

(3.67)

In the second line we have used the hermiticity property of S−
1
2 . Thus the new

set {|φ̃i〉} is orthonormal.

Defining a subspace projector as

P̂ = |φ̃i〉 〈φ̃i| , (3.68)

the population of the desired subspace is:

Tr[ρ̂P̂] =
∑

m

〈φ̃m|ρ̂P̂|φ̃m〉

=
∑

i,m

〈φ̃m|ρ̂|φ̃i〉 〈φ̃i|φ̃m〉

=
∑

i,m

〈φ̃m|ρ̂|φ̃i〉 δi,m

=
∑

i

〈φ̃i|ρ̂|φ̃i〉

=
∑

i

∑

µ,ν

S
− 1

2
iµ S

− 1
2

νi 〈φµ|ρ̂|φν〉

=
∑

µ,ν

〈φµ|ρ̂|φν〉
∑

i

S
− 1

2
νi S

− 1
2

iµ

(3.69)
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Here all the sums are over all space except for the sum over i which is over the

given subspace. Now, it must be kept in mind that the orbitals {|φ̃i〉} can in principle

be highly delocalized. Thus the operator defined in Eq. (3.68) is not guaranteed to be

good representation of projection over a certain spatially confined subspace.

3.6 Lattice Vibrations

We know from the kinetic theory of gases that at any finite temperature the molecules of

an ideal gas move with kinetic energy proportional to the temperature. It is not surpris-

ing that even for a solid, the ions should also execute some sort of movement, albeit with

some constraint at finite temperature. At any finite temperature, the ions constituting

a solid vibrate about their equilibrium position and in general the energy associated

with such vibration increases with temperature. The theoretical description of classical

lattice vibration presented in this thesis closely follows that found in Ref. [100]. Let us

consider a monoatomic 3-D Bravais lattice where the time-dependent displacement of

the atom of the Rj unit cell is given by u(Rj) =
∑

α=x,y,z

uα(Rj)α̂, α̂ being the unit vector

in the α-direction. The BVK boundary condition is applied on the lattice displacement

at all time:

u(Rj +NiRi) = u(Rj), i = 1, 2, 3 (3.70)

The potential energy can be expanded as a Taylor series about the equilibrium

point U0 = U [u(Rj) = 0], ∀j as

U ≈ U0 +
1

2

∑

R1,R2

∑

α,β

uα(R1)

[
∂2U

∂uα(R1)∂uβ(R2)

]
uβ(R2) (3.71)

The quantity in the square bracket constitutes the strength matrix D(R1 −R2) which

can be shown to follow the relation
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−M ü(Ri) =
∑

Rj

D(Rj −Ri)u(Rj) (3.72)

where M denotes mass. If we seek simple harmonic displacements of the lattice points

(keeping in mind that these are normal modes and more general vibrations can be

written out as linear combinations of them) then:

u(Ri) = εei(k.Ri−ωt) (3.73)

which gives

Mω2ε = D(k)ε (3.74)

where D(k), known as the dynamical matrix, is the Fourier transform of the strength

matrix such that

Dαβ(k) =
∑

Rj

Dαβ(Rj)e
−ik.Rj (3.75)

Since D(k) is a (3× 3) matrix for each of the N = (N1N2N3) values of k =
∑3

i=1
mi
Ni

Ki

(obtained from BVK boundary conditions), we know that it has three orthogonal eigen-

vectors ελk (λ = 1, 2, 3) and three corresponding eigenvalues Mω2
λk.

The displacement vector of the lattice point is then:

uλk(Ri, t) = ελke
i(k.Ri−ωλkt) (3.76)

Obviously, the phonon bandstructure, i.e. the plot of ωk vs k has three bands (λ =

1, 2, 3) each of which goes to zero at k = 0. However, it is to be noted that so far we

have been dealing with monoatomic basis- i.e. one ion per unit cell. For the general

case of ‘p’ ions per unit cell λ runs from 1 to p and consequently [100]

• We have 3pN normal modes- 3p branches and N k-points per branch.
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• For three of these branches, known as the acoustic branches, ωk → 0 as k → 0.

If all the atoms are of the same mass, then in an acoustic branch, the atomic

displacements of the atoms in any particular unit cell differ only slightly for k 6= 0

and become identical for k = 0. The remaining branches, which are known as the

optical branches, do not follow such property.

• It must be noted that for ‘p’ atoms per unit cell Eq. (3.76) is modified into

uλmk(Ri, t) = ελmke
i(k.Ri−ωλkt) (3.77)

where m = 1, ...., p gives the index of the atom in the unit cell. Clearly at k = 0

uλmk(Ri, t) = uλmk(Rj, t)∀i, j (3.78)

A quantum theory of lattice vibration proves helpful under many circum-

stances, especially in treating interaction of vibrations with other degrees of freedom like

electrons, photons etc. Going back to the monoatomic lattice basis for notational sim-

plicity, we write out the Hamiltonian in terms of the displacement û and the momentum

p̂ operators

Ĥ =
∑

Ri

p̂2(Ri)

2m
+

1

2

∑

Ri,Rj

∑

αβ

Dαβ(Ri,Rj)uα(Ri)uβ(Rj) (3.79)

Now, defining a new operator,

b̂λk =
1√
2N

∑

Ri

e−ik.R
[√

mωλk
~

û(Ri) + i

√
1

~mωλk
p̂(Ri)

]
(3.80)

the Hamiltonian can be written in a very simple formula

Ĥ =
∑

λk

~ωλk
(
b̂†λkb̂λk +

1

2

)
(3.81)

The operator b̂†λk (b̂λk) creates (annihilates) a phonon of the mode (λ,k), which is

responsible for a crystal vibration in the normal mode (λ,k). There is a phonon mode
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associated with each normal mode oscillation of the lattice and the distribution of the

phonons in the lattice determines the resultant lattice vibration as a linear combination

of the normal modes. The number of phonons in a particular mode determines the

amplitude of the corresponding normal mode harmonic oscillation.

Since the normal mode frequencies and eigenvectors can be obtained by diag-

onalizing the dynamical matrix, such calculations can be performed as post-processing

of DFT based electronic structure calculations. The strength matrix D(Ri −Rj) [see

Eq. (3.71)] is calculated from a successful DFT run (typically such functionality is built

into the DFT based software). The strength matrix is then transformed into Fourier

space to obtain the dynamical matrix D(k) [see Eq. (3.75)] which, in turn is diagonalized

to get the phonon modes and corresponding eigenvectors.



Chapter 4
Charge Transfer Energy of Molecule on

Substrate- Benzene Physisorbed on

Graphene Sheet

For the theoretical description of charge transfer in a real HOID, one of the most im-

portant quantities related to the interface is the charge transfer (CT) energy between

the inorganic electrode and the organic crystal. The calculation of CT energies is a

challenging task especially in the single molecule limit. This is because the interface

gives rise to physical effects that are hard to describe in a KS framework with common

XC-functionals. In this chapter, we use the cDFT approach to study the CT energies of

molecules adsorbed on a 2-dimensional (2D) metal in various configurations. It must be

noted that, in contrast to a regular 3D metal, in a 2D one the image charge induced on

the substrate is confined within a one-atom thick sheet. This means that in 2D, electron

screening is expected to be less efficient than in a standard 3D metal and the features of

the image charge formation in general more complex. In particular we consider here the

case of graphene, whose technological relevance is largely established. Most importantly

for our work, recently graphene has been used as template layer for the growth of or-

ganic crystals. It is then quite important to understand how such template layer affects

the CT energies of the molecules with the metal. As a first step, we consider a simple

75
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benzene molecule adsorbed on a sheet of graphene. Then, by investigating the effect of

the presence of additional molecules, we study the approaching to the molecular crystal

limit. Let us begin with the definition of the relevant energies for a molecule adsorbed

on a substrate at a distance d.

• E0(d): ground state total energy of the entire system consisting of the molecule

and the substrate.

• E+(d): energy of the system when the molecule contains one less electron and the

substrate contains one additional one.

• E−(d): energy of the system when the molecule contains one extra electron and

the substrate contains one extra hole.

• E+
CT (d) = E+(d)−E0(d): is the charge transfer energy for transferring an electron

from the molecule to the substrate.

• E−CT (d) = E0(d)−E−(d): is the charge transfer energy for transferring an electron

from the substrate to the molecule.

• ∆ECT (d) = E+
CT (d)− E−CT (d): is the charge-transfer energy gap of the system.

Under certain conditions, the CT energies can be related to the well-known

quasiparticle energies as we discuss below.

4.1 What Are the Quasiparticle Energies?

Let us begin with a discussion on the meaning of the quasiparticle (QP) energies. For

non-interacting electrons, the energy of each electron is a well defined quantity and the

energy eigenvalues of the system can be found simply by diagonalizing the quadratic

Hamiltonian. However, things are not so straightforward for interacting electrons, since

the very concept of individual electronic energies loses its strict validity. In this case,

the creation or annihilation of any electron in the system is invariably followed by
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a relaxation, which means that with the passage of time the particle will have finite

probability of being found in other energy states as well. Hence, unlike non-interacting

electrons, interacting electrons do not have energy eigenstates with infinite lifetime. This

concept is best represented with the help of the greater (lesser) Green’s function [101]

G> (G<). The quantity G>
ii(t, t

′) gives the inner product of two kets |α〉 and |β〉 where

• |α〉 is the final state of the system when we add an electron with quantum number

i at time t′ and evolve the system until time t.

• |β〉 is the final state of the system when we evolve the system until time t and

then add an electron with quantum number i

For non-interacting systems, if |i〉 is an energy eigenket of a time-independent

Hamiltonian, then G>
ii(t, t

′) is unity. This means that, if the Hamiltonian is time in-

dependent, then a particle added in an energy eigenstate will remain in that state

forever. However, for interacting systems containing a large number of particles, when

the quantum number |i〉 is coupled to infinitely many other quantum numbers by the

Hamiltonian, the initial state of an electron |i〉 will spread with time and distribute itself

over all such quantum numbers. In this case, G>
ii(t, t

′) is a decreasing function of |t− t′|
(going to zero in the limit |t− t′| → 0), signifying the fact that as time progresses, the

added particle has finite probability of being found in other states. In other words, the

particle has a finite lifetime in this quantum state. For a time-independent Hamiltonian

and stationary initial preparation, this is actually a function of (t − t′) and therefore

can be Fourier transformed. The Fourier transform, G>
ii(ω) is a measure (with a factor

of imaginary i) of the probability that a particle added in the quantum state i

has an energy ω. To be a little more pedantic, let us say

∆E=Total energy of the system after adding an electron with quantum number

i − Total energy of the system before adding an electron with quantum number i

Then iG>
ii(ω) is the probability that ∆E = ω. Clearly, for a system of inter-
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acting electrons, the phrase energy of the electron means change in the total energy of

the system after the removal (or addition) of the electron from the system.

A similar interpretation can be made for the lesser counterparts of the Green’s

function (G<), which act as a similar measure for quantities related to the removal of

an electron rather than the addition of one. A quantity more widely used in literature

for this purpose is a combination of the two Green’s functions. The spectral function

operator Â(ω) is defined as i[Ĝ>(ω) − Ĝ<(ω)]. The expectation value of this operator

with respect to a quantum number (say i), Aii(ω) gives the probability that a particle

with quantum number i added to or removed from the system has energy ω. As expected,

for a non-interacting system (or a system in which each particle is treated to be in a mean

field produced by all other particles), this quantity is unity for the energy eigenvalue and

zero for all other values. For a system of interacting electrons, these are usually smooth

functions peaked at some energy ελ. To distinguish these energies from the infinitely

long-lived particle energies of a non-interacting system (or a system treated at a mean

field level), these ‘ελ’s are called Quasiparticle (QP) energies. So, essentially these are

the most probable energies for added or removed particles in a many particle system.

For a molecule (or any finite system), the highest occupied and the lowest unoccupied

QP energies are known as HOMO (Highest Occupied Molecular Orbital) and LUMO

(Lowest Unoccupied Molecular Orbital), respectively.

We claim that for the charge transfer between a molecule and an infinitely large

substrate with zero band-gap, the charge transfer energy gap is a good approximation

for the quasiparticle gap of the molecule. If the substrate is infinite and metallic (or

semi-metallic) then we can say that an electron added to the substrate will have the

same energy as one removed from it- both given by the Fermi energy EF of the substrate.

In this case,
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∆ECT (d) = E+(d)− E0(d)− E0(d) + E−(d)

= E+(d) + E−(d)− 2E0(d)

= E0(d)− EHOMO(d) + EF + E0(d) + ELUMO(d)− EF − 2E0(d)

= ELUMO(d)− EHOMO(d)

This is actually the QP gap of the molecule physisorbed on the substrate at

a height d. However, it must be noted that such equivalence is fully maintained only

if the substrate is infinite and there is absolutely no coupling between the adsorbed

molecule and the adsorber. This amounts to saying that the interaction between the

excess charges in the molecule and in the substrate must be purely classical. In practice,

the electronic coupling is usually not strictly zero, which gives rise to effects of exciton

binding energy in the charge transfer energy calculated and therefore, the calculated

gap is not exactly equal to the quasiparticle gap anymore. However, these effects are

expected to be very small if the distance between the substrate and the molecule is not

too short.

4.2 Energy Level Renormalization

The treatment presented in this section closely follows Ref. [102]. Let us try to answer

the following question: “What happens to the electronic quasiparticle levels

of a molecule when it is brought close to a surface?” In a nutshell, there are

predominantly two effects:

1. The electronic levels, which, neglecting the electronic interactions within the

molecule were delta-like in a plot of energy vs probability of finding electron,

spread out in energy.

2. The peak of such function shifts in energy.
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These two effects are now discussed in some detail. Our discussion closely

follows that presented in Ref [102].

4.2.1 Level Broadening

The first effect can be easily shown without having to take any electronic interaction

into account. Let us consider a molecule with a single localized energy orbital |ε0〉 with

energy ε0 coupled to a substrate with energy levels given by a set of |k〉 (having energies

εk). We assume that these levels are discrete but closely spaced. Since the Hamiltonian

is quadratic, we can write it in first quantization as a simple tight-binding model

ĥ =
∑

k

εk |k〉 〈k|+ ε0 |ε0〉 〈ε0|+
∑

k

(Tk |k〉 〈ε0|+ T ∗k |ε0〉 〈k|), (4.1)

where Tk is the coupling between the molecule and the substrate. Let |λ〉 be an eigenket

of this Hamiltonian. Now, the atomic occupation n0 can be defined as the sum (over all

occupied eigenkets) of the probability of finding an electron in the state |ε0〉. Thus,

n0 =
∑

λ:ελ≤εF

| 〈ε|λ〉 |2

=

∫ εF

−∞

dω

2π

∑

λ

2πδ(ω − ελ)| 〈ε0|λ〉 |2

=

∫ εF

−∞

dω

2π
〈ε0| 2πδ(ω − ĥ) |ε0〉 .

This can be shown to be equal to

n0 = −2 lim
η→0+

∫ εF

−∞

dω

2π
Im

1

ω − ε0 − Σem(ω) + iη
=

∫ εF

−∞

dω

2π
A00(ω)

where the embedding self-energy Σem(ω) modifies the molecular occupation for the cou-

pling between the substrate and the molecule. This term vanishes for Tk = 0. In this

expression, one can notice the useful observable A00(ω) called the molecular spectral
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Figure 4.1: Diagram showing the distribution of the continuum of substrate states and

molecular spectral function for (a) zero coupling (Tk = 0) and (b) finite coupling (Tk 6= 0)

between the two entities. Figure adapter from [102]

function, which gives the probability that an electron in the molecular level has an en-

ergy ω. If we approximate Σem(ω) to be independent of ω, then this wide-band limit

approximation(WBLA) leads to

n0 =

∫ εF

−∞

dω

2π

Γ

(ω − ε0)2 + Γ2/4

where Γ is the imaginary part of Σem. In WBLA, the real part of Σem vanishes. In the

case of isolated molecule, Γ = 0 and one recovers the expected result

A00isolated(ω) = δ(ω − ε0)

Physically, this means that the sharp molecular level of an isolated molecule transforms

into a probability distribution of finite width. There is no broadenning when Tk = 0. It

is worth noting that this result is derived from the Hamiltonian Eq. (4.1), which is true

for non-interacting electrons.

4.2.2 Shifting of the Energy Levels

Unlike the broadening, the shift of the molecular levels in the presence of a substrate

has to do with the interaction between the electrons in the molecule and the substrate.
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We shall first discuss an extremely simplified model that describes this phenomenon and

then discuss what approximate terms are required to obtain these effects in calculation

with an effective Hamiltonian.

Let us assume the model Hamiltonian Ĥ to be composed of three terms: one

for the molecule, Ĥmol, one for the substrate, Ĥsub, and one term for interaction between

the two, Ĥint.

If we assume the substrate to be a one-dimensional chain comprising N sites

with nearest-neighbour hopping and zero onsite energy then

Ĥsub = T
N−1∑

j=1

(d̂†j d̂j+1 + d̂†j+1d̂j).

We model the molecule as a two level (a and b) system with onsite energy ε0 and hopping

T0. Hence

Ĥmol = ε0
∑

i=a,b

d̂†i d̂i + T0(d̂†ad̂b + d̂†bd̂a)

As for the interaction term, let us deal only with a physisorbtion situation and omit

any overlap term between the orbitals of the molecule and the substrate. Let us also

assume that for the substrate, the interaction is limited to its first ‘r’ sites. So, we write

an interaction term of the form

Ĥint = U

(∑

i=a,b

n̂i − 1

)(∑

j≤r

n̂j −N r

)
.

Here, 1 and N r are the ground state values of the number of electrons in the molecule

and the first r sites of the substrate respectively. Clearly, there is no chemical coupling

between the substrate and the molecule and if the number of electrons in either the

molecule or the first r sites of the substrate equals the ground state value, then there is

no interaction between them.

Let ĉλi be the set of operators that diagonalizes the quadratic Hamiltonian

Ĥsub; i.e. Ĥsub =
∑

λ ελĉ
†
λĉλ. The eigenkets of Ĥsub can be given by |Ψsub〉 = ĉ†λM ...ĉ

†
λ1
|0〉 =

|λ1...λM〉, where |0〉 is the vacuum level. Similarly, let ĉH,L be the operators that bring

Ĥmol into the quadratic form (εH ĉ
†
H ĉH + εLĉ

†
LĉL). Since we have assumed that the
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molecule contains one electron in the ground state, the energies εH and εL can be inter-

preted as the HOMO and LUMO energy respectively. Since the number operator for

the molecule
∑

i=a,b d̂
†
i d̂i commutes with the total Hamiltonian Ĥ = Ĥmol + Ĥsub + Ĥint,

each many-body eigenket of Ĥ must have a definite number of electrons in the molecule.

Evidently, the eigenkets of Ĥ containing M electrons in the substrate and a single elec-

tron in the molecular HOMO is given by |Ψ〉 = ĉ†H |Ψsub〉. Note that there is no effect

of Ĥint on this state since it contains one electron in the molecule. The ground state

of Ĥ satisfying these conditions is |Ψ0〉 = ĉ†H |Ψsub,0〉 where |ψsub,0〉 is the ground state

of Ĥsub containing M electrons. It must also be mentioned that |Ψsub〉 is not an eigen-

ket of Ĥ since this ket is obtained by removing the HOMO electron from |Ψ〉 and not

allowing any relaxation. Keeping in mind that for such a state
∑

i=a,b n̂i = 0, the net

Hamiltonian acting on this state can be given by Ĥ−sub = Ĥsub − U(N̂r −N r) since the

part (Ĥ − Ĥ−sub) has no effect on |Ψsub〉. Although |Ψsub〉 is an eigenket of Ĥsub it is not

so for N̂r an consequently is not one for Ĥ−sub or H either.

We can now calculate the lesser and greater components of the Green’s function

of the HOMO level for the many-body state |Ψ0〉 corresponding to energy E0,

G<
HH(t, t′) = i 〈Ψ0| ĉ†He−i(Ĥ−E0)(t′−t)ĉH |Ψ0〉 , (4.2)

= i 〈Ψsub,0| e−i(Ĥ
−
sub−E0)(t′−t) |Ψsub,0〉 , (4.3)

and

G>
HH(t, t′) = 0.

Thus the spectral function of the same level is given by

AHH(ω) = 2π 〈Ψsub,0| δ(ω − E0 + Ĥ−sub) |Ψsub,0〉 .

In order to evaluate such expression we need to expand |Ψsub,0〉 over a complete set of

M electron eigenkets |λ−1 ...λ−M〉 of Ĥ−sub

|Ψsub,0〉 =
1

M !

∑

λ1...λM

|λ−1 ...λ−M〉 〈λ−1 ...λ−M |Ψsub,0〉 .
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Figure 4.2: Diagram (a) shows molecular HOMO spectral function (in log scale) as a

function of energy. Multiple peaks appear as the interaction parameter is increased.

The sharp levels have been artificially broadened by using small finite η in Eq. (4.4)(b)

Shows the charge density for different U at different sites of the substrate. Figure

adapted from [102]

.

This gives us

AHH(ω) = − 2

M !

∑

λ1...λM

Im
| 〈λ−1 ...λ−M |Ψsub,0〉 |2

ω − E0 + ε−λ1 + ...+ ε−λM + UN r + iη
(4.4)

Here ε−λ are the eigenvalues of ĥ−sub, which is the single-particle Hamiltonian

counterpart of Ĥ−sub =
∑

i,j 〈i| ĥ−sub |j〉 d̂†i d̂j + UN r

Fig. 4.2(a) shows a plot of ln(AHH) vs energy with varying U for a large

N(=25) and for r=3 and M=5. Both the predicted effects can be seen from this figure.

Since the HOMO electron can now scatter with electrons of the substrate, the plot of

ln(AHH) is no longer a single sharply defined peak but it contains many peaks. Clearly,
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these peaks originate from the fact that the state |Ψsub,0〉 is now coupled to the states

|λ−1 ...λ−M〉. Each such coupling results in a peak of AHH(ω) as can be seen from Eq. (4.4).

If |Ψsub,0〉 is coupled to an infinite number of states, all such peaks will close in to form a

continuum. We can also notice that the peak of ln(AHH) shifts rightward as U increases,

indicating an upward energy shift of the HOMO as the molecule approaches the surface.

A similar treatment on ALL(ω) reveals that, as a result of the proximity of the substrate,

the single sharply peaked LUMO level of the isolated molecule splits into many peaks

and also shifts toward lower energy. Thus, the presence of the substrate essentially

raises the energy of the HOMO and and lowers that of the LUMO levels respectively,

resulting in a reduction of the quasiparticle gap.

The reason for such realignment of the HOMO can be appreciated in Fig. 4.2(b)

which shows a plot of the the ground-state density of Ĥ−sub on the substrate as a function

of its sites. For U = 0, the state |Ψsub,0〉, which has the same density in the substrate

sites as that of the state |Ψ0〉 is an eigenket of Ĥ−sub. The density of the metallic sites is

what it would be in the presence of the HOMO electron and any value of U (since, in the

presence of the HOMO electron, the interaction Hamiltonian is zero anyway). From the

plot, one can see that this is more or less symmetric with respect to the sites. However,

as U increases, asymmetry sets in and the electron density increases in the first few

sites: i.e. in the sites which are coupled to the molecule. Thus, the charge density in

the first few substrate sites is always greater in absence of the HOMO electrons than

what it would have been in the presence of the same. This image charge is actually

the result of the electrostatic attraction between the positive charge in the molecule

(due to the absence of the HOMO electron) and the electrons of the substrate. Clearly,

this attraction lowers the energy of the system in the absence of the molecular HOMO

electron, thereby resulting in an upward energy shift of the HOMO level.
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4.3 The Quasiparticle Equation

We have previously defined the QP energies as the peaks of the spectral function. How-

ever, the same energies can be obtained by diagonalizing a first quantization operator,

which serves as an effective hamiltonian (ĥeff ) in a single particle picture for the many

electron system. In order to do this, one needs to introduce the self-energy operator

Σ̂(t, t′). This is a first quantization operator representing all the effects of electronic

interactions. If the system Hamiltonian in Fock space is time-independent, then this

operator becomes a function of the time difference only Σ̂(t, t′) = Σ̂(t − t′) and as a

consequence can be Fourier transformed into energy space, Σ̂(ω) [102]. Then one can

write the effective Hamiltonian as ĥeff = ĥ+Σ̂(ω) where ĥ is the non-interacting single-

electron Hamiltonian. Then, the eigenvalues εnk and eigenkets |ψnk〉 of this operator

will follow the equation

(ĥ+ Σ̂(εnk)) |ψnk〉 = εnk |ψnk〉∫
dr′ 〈r| ĥ+ Σ̂(εnk) |r′〉 〈r′|ψnk〉 = εnk 〈r|ψnk〉 ,

h(r)ψnk(r) +

∫
dr′Σ(r, r′; εnk)ψnk(r′) = εnkψnk(r), (4.5)

where we have assumed h(r) to be local in space. At variance with non-interacting

systems, the energy eigenvalues εnk are complex numbers with the real part representing

the QP energy (i.e. position of peak of spectral function) and the imaginary part

representing the width of the peak (the imaginary part, along with other quantities

also acts as a measure of the rate of decay of a particle added to or removed from the

corresponding state: in other words, the lifetime for that quantum state). A complex

εnk is thus a signature of the relaxation process mentioned earlier. Now, unlike ĥ, in

practice Σ̂ is not written out in any exact form. It can be written as a perturbation

series with infinitely many terms, different terms signifying different processes in the

interaction. It would be worth investigating which terms of such series are essential to

obtain a proper approximation of the self-energy so as to get acceptable values for the
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QP energies. Within a broad classification, the self energy can be written as sum of

three different terms

Σ̂ = Σ̂H + Σ̂F + Σ̂C

Σ̂H or the Hartree term describes the classical mean field (i.e. an approximation

in which an electron interacts with the average classical field of all the other electrons

in the system). The expectation value of this term with respect to position eigenket

is local in space. In contrast, Σ̂F , the Fock term describes the mean-field exchange

interaction, which is ignored in the Hartree approximation. Finally, Σ̂C , the Correlation

term, comprises all the contributions beyond the mean field approximation, i.e. all the

effects associated due to individual interactions. The first two terms are local in time

and consequently, in Fourier space they are independent of energy. The only self energy

term, that is nonlocal in time is the correlation term.

In order to get an idea about which of the infinite number of terms defining the

perturbative expansion of the self-energy are required to appreciate the level-realignment

of the molecule as a function of its distance from a surface, one can compare the QP en-

ergies calculated with different self-energy approximations with the exact ones obtained

from Eq. (4.4). In Fig. 4.3 one can compare the exact value of the molecular spectral

function against those calculated with the help of two different self-energy approxima-

tions: the Hartree-Fock (HF) and the second-Born [103] (SB) approximation. It is clear

that with the HF approximation, which assumes the self-energy Σ = ΣH + ΣF to be en-

ergy independent, the QP levels do not change with changing U . The spectral function

calculated non-selfconsistently from the second-Born approximation for the self-energy,

which includes a couple of terms beyond HF and therefore takes correlation explicitly

into account, shows the trend of decreasing QP gap with increment of U . Clearly, in

order to see the renormalization of the energy levels, one needs to include self-energy

terms with correlation effects (i.e. terms which depend on energy).

One popular self-energy approximation for solving this QP equation is the GW -

approximation. One typically approximates the self energy as Σ(1, 2) = iG(1, 2)W (1+, 2)1

1an index i in the parenthesis denotes the combined spatial and temporal coordinate (ri, ti). The
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360 13. Applications of MBPT to equilibrium problems

Figure 13.1 Spectral function of the molecule in the Hartree–Fock and in the non-self-
consistent (non-SC) second-Born approximation compared with the exact spectral function
as obtained from (6.101) and (6.102). The chain has N = 15 sites and M = 5 electrons
(M/N = 3), the bare HOMO–LUMO gap is ϵL − ϵH = 2 and the infinitesimally small
positive constant η = 0.04. All energies are in units of |T |.

we need only to calculate the bubble diagram. From (13.16) we have

Σ>
c,αα(ω) = −i2U2

∑

jj′≤r

∫
dω1

2π

dω2

2π
G>

αα(ω − ω1 + ω2)G
>
jj′(ω1)G

<
j′j(ω2), (13.27)

Σ<
c,αα(ω) = −i2U2

∑

jj′≤r

∫
dω1

2π

dω2

2π
G<

αα(ω − ω1 + ω2)G
<
jj′(ω1)G

>
j′j(ω2). (13.28)

The greater/lesser Hartree–Fock G of the molecule can be obtained using the fluctuation–
dissipation theorem (6.94) with spectral function (13.26). The Fermi function f(ω−µ) is zero
for ω = ϵL and one for ω = ϵH and hence

G>
HH(ω) = 0, G<

HH(ω) = 2πiδ(ω − ϵH),

G<
LL(ω) = 0, G>

LL(ω) = −2πiδ(ω − ϵL),

from which it follows that Σ>
c,HH = Σ<

c,LL = 0. The greater/lesser G of the metal has the

form (6.48) and (6.49). Using the eigenstates |λ⟩ of ĥmet with eigenvalues ϵλ and taking into

Figure 4.3: Diagram showing the molecular HOMO and molecular LUMO for different

values of U calculated with three separate techniques.Figure adapted from [102]

where G is the single particle Green’s function and W is the screened interaction (which

physically signifies the interaction among two electrons taking into account the effects

due to all other electrons in the system). Such self-energy can be evaluated by solv-

ing a set of five coupled equations, known as Hedin equation [104]. The self-energy so

calculated is then used to compute the QP energies. It has been shown [105] that the

QP energies obtained from the GW approximation match the exact ones excellently.

However, this method for calculating the QP energies is extremely resource consuming

and so it is usually limited to small systems.

4.3.1 DFT and quasiparticle energies

As mentioned before, there is no reason to believe that the single particle Kohn-Sham en-

ergy eigenvalues represent the precise single-particle quasiparticle energies of interacting-

electron systems. For some metals and weakly correlated materials, the band structure

obtained from the DFT KS eigenvalues agree remarkably well with the exact one. For

index i+ denotes an infinitesimal positive shift δ in the time coordinate, i.e. i+ = (ri, ti + δ)
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example, Fig. 4.4 shows the bands structure and density of states of graphene calculated

with DFT. These results are quite accurate due to the weak correlation in graphene.

Also, the Fermi energy of graphene, which is obtained to be 4.45 eV with regular DFT

agrees with experimental inverse work function.

However, from a theoretical point of view, with the exception of the KS HOMO,

which for an exact XC functional equals the QP HOMO [106] (negative of the ionization

energy), no other KS eigenvalue has any physical significance. This means that, strictly

speaking, even for an isolated molecule, the QP gap can not be precisely determined

directly from the KS eigenvalues obtained with an exact functional.

In our case, the situation is even more challenging since, a) we do not have

access to the exact XC functional, and b) as discussed in the preceding section, for

molecule adsorbed on a metal substrate one requires an excellent description of electronic

correlation, which is absent in HF theory, to capture the effects of level renormalization

in an effective single-particle theory. In the model described in section 4.2.2, the level

renormalization of the molecule upon adsorbtion is seen to be caused solely by the

non-local interaction Ĥint. Commonly used XC-functionals, LDA and GGA, do not

include any non-local correlation effect. Hence, the KS eigenvalues obtained with such

functionals exhibit virtually no shift upon adsorption (much like the HF eigenvalues in

Fig. 4.3) [105]. It is possible to use a Generalized Kohn-Sham (GKS) scheme (noting

that the GKS HOMO and LUMO can be related to the QP counterparts) with non-local

XC-functional to investigate this level renormalization [107].

When the molecule is charged, an opposite image charge forms on the substrate

near the molecule and exerts Coulomb attraction. This attraction is the reason for the

level renormalization, i.e. for the difference in the energy of the added charge in an

isolated molecule and in an adsorbed molecule. Since this Coulomb attraction is not

present until the molecule is charged, expecting an exact calculation of the energy levels

of the adsorbed uncharged molecule amounts to expecting the theoretical tool to know

about the response of the substrate to the addition/removal of an electron, which has not

been added/removed yet! This is not impossible [108, 107]. But it requires an advanced
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Figure 4.4: Diagram showing band structure of pristine graphene along high symmetry

directions along with the density of states. From this figure it is evident that graphene

has a zero band gap at the ‘K’ point.

level of theory since non-local correlation terms must be taken into account. As soon

as the molecule is actually charged, a simple Coulomb interaction between the molecule

and the image charge easily captures much of the effects encoded in the complicated

correlation in the uncharged case. This motivates the possibility of a straightforward

calculation, based on total energy differences for calculating the level-renormalization

without having to worry about the correlation interactions.

4.4 Computational Details

In this work, by using cDFT implemented in the software siesta [95], we calculate the

charge transfer energy between a graphene sheet and a benzene molecule physisorbed

on it. In order to do this for a given distance d between the molecule and the substrate

we need to run three different calculations:

1. a regular DFT calculation in order to determine the ground state total energy,
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E0(d), and the charge distribution on each subsystem (i.e. on the molecule and

on the graphene sheet)

2. a cDFT calculation with the constraint that the graphene sheet contains one extra

electron and the molecule lacks an electron. This gives the energy E+(d).

3. a cDFT calculation with the graphene containing one less electron and the molecule

containing an additional one. This gives the energy E−(d).

The charge transfer energy for removing an electron from the molecule and

placing it on the graphene sheet is then E+
CT(d) = E+(d) − E0(d). Similarly, that

for a transfer of an electron from the graphene sheet to the molecule is E−CT(d) =

E0(d) − E−(d). Since in each run the total charge of the system is zero, hence this

approach does not require any monopole correction. However, we have to keep in mind

that this method is best used when the two subsystems are well separated so that the

amount of charge localized on each subsystem is a well-defined quantity. Thus, we shall

concentrate on the case of weak physisorption, where the atomic orbitals of the two

entities are sufficiently far apart. In other words, for the model Hamiltonian, we shall

assume any hopping term between the molecule and substrate orbitals to vanish.

For our calculations, we use a CDFT implementation [109] on the popular

DFT package siesta [95], which adopts a basis set formed by linear combinations of

atomic orbitals (LCAO). Hence, instead of real space, the charge is actually constrained

through a projection over a specified set of basis orbitals. Because of the use of localized

basis orbitals, the amount of empty space between the molecule and the sheet (or above

the molecule) does not does not require much additional computational time. While

forming unit cells, we have kept sufficient space above the molecule to ensure negligible

interaction between the periodic structures. We use the Löwdin projection scheme for

all calculations. Throughout this work we adopt double-zeta polarized basis orbitals

with an energy cutoff of 0.02 Ry. The calculations are performed with norm-conserving

pseudopotentials and the local density approximation (LDA) has been used for the

exchange-correlation functional. A mesh cutoff of 300 Ry has been used for the real-

space grid. In all calculations we impose periodic boundary conditions with different
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(a)
(b)

(c)

Benzene

Ghost

Atoms

Benzene Graphene
Graphene

Ghost

Atoms

Figure 4.5: A schematic diagram showing the different energy calculations for counter-

poise corrections

Figure 4.6: Top view of (a) Hollow, (b) Stack, (c) Top and (d) Away configurations.

Yellow atoms are carbon atoms belonging to benzene ring while grey ones are those of

the graphene sheet.

cell-sizes. The k-space grid is varied depending on the size of the unit cell. For instance,

an in plane 5x5 k-grid has been used for a 13x13 unit cell in real space. Note that, the

results presented in this chapter are obtained with non spin-polarized calculations.
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4.5 Results

4.5.1 Equilibrium Heights

We begin this section with the discussion of the equilibrium height for benzene molecule

adsorbed on graphene. We look for the height for which the interaction energy ∆Eint =

EBenz+Gr − (EBenz + EGr) is minimum.

These calculations are performed with regular DFT. However, in order to avoid

basis set superposition error in the calculation of the interaction energy, we made use of

ghost atoms [110], while calculating EBenz and EGr. In normal calculation using siesta,

the total number of basis sets used in calculating EBenz+Gr is greater than that used in

calculating EBenz or EGr.

∆Eint = EB+G
Benz+Gr − (EB

Benz + EG
Gr)

Where the superscript denotes the basis orbitals employed in the calculation. Clearly,

this leads to artificial stabilization of the composite system compared to the isolated

one. In order to eliminate such error, we need to use the same basis orbitals for each

of the three calculations. Hence, for all the calculations we shall use the orbitals of

the composite system (for that particular height). As shown in Fig. 4.5 this corrected

interaction energy is obtained by subtracting the sum of (a) and (b) from (c),namely,

∆Ecorrected
int = EB+G

Benz+Gr − (EB+G
Benz + EB+G

Gr ).

We perform this procedure for two different orientations of the benzene molecule

with respect to the sheet: the hollow configuration, in which all the carbon atoms of the

benzene ring are placed exactly above those of graphene, and the stack configuration, in

which alternate carbon atoms of the benzene molecule are placed directly above carbons

of the graphene sheet [c.f. Fig. 4.6(a,b)]. A plot of the interaction energy as a function

of height is plotted in Fig. 4.7. For a hollow configuration, the above procedure gives an

equilibrium height of 3.4 Å, while for a stack configuration the height is 3.25 Å. These

results are in fair agreement with other studies [111].
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Figure 4.7: Plot of interaction energy as a function of distance between the graphene

sheet and benzene molecule for (a) Hollow and (b) Stack configuration. The lowest

energies are attained at 3.4 Åand 3.25 Årespectively.

4.5.2 Dependence of the CT Energies on the Cellsize

We then study the dependence of the charge transfer energies on the size of the graphene

unit cell used for creating our periodic structure. This is done by analyzing the charge

transfer gap, E+
CT(d)− E−CT(d), as a function of the unit cell size (see Fig. 4.8)

If the molecule is very close to the graphene sheet, after transferring an electron,

the image charge on the sheet is strongly attracted by the oppositely charged molecule

and thereby remains highly localized. However, as we move the molecule farther away

from the graphene sheet, the attraction diminishes due to the distance resulting in a

delocalization of the image charge, which spreads uniformly all over the sheet in the

limit of infinite distance. For a small unit cell, the image charge on the graphene sheet

is forcefully confined into a region smaller than required. This accounts for some extra

energy in the charge-transfer states [i.e., for an overestimation of E−(d) and E+(d)],

which, in turn, results in higher charge transfer energies. Therefore, it is expected

that for a smaller distance between the graphene and the molecule, the limit of infinite

graphene sheet is obtained with a smaller unit cell. This effect can be clearly seen

from Fig. 4.8 in which we show the variation of the CT energies with increasing cell

size. Clearly, for the shorter distance 3.4 Å, a converged energy gap is obtained with a
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Figure 4.8: E+
CT − E−CT for different unit cell size of graphene sheet. The results are

shown for two different heights: 3.4 Å and 6.8 Å.

smaller cell size. From the figure it is quite clear that for both heights, results with a

13× 13 cell are sufficiently converged.

4.5.3 CT Energies as a Function of the Distance

Next we study the converged charge transfer energies as a function of the distance

between the sheet and the molecule. In order to compare our results with the gap

expected in the limit of infinite height, we need first to find the ionization energy, IMOL,

and the electron affinity (AMOL) of isolated benzene. We found the quasiparticle energy

gap to be 11.02 eV, in good agreement with other studies [112, 113]. In addition to

this, we also determine the Fermi level of graphene, WF , which is found to be 4.45

eV. In Fig. 4.9(a) we show the change in the charge transfer energy gap by varying the

height of a benzene placed in a hollow configuration. As expected, when the molecule

is very close to the surface, after the transfer of an electron there is considerably large

attraction between the image charge on the plane and the opposite excess charge on

the molecule. This results in an extra stabilization of the system and a reduction

in magnitude of E+(d) and E−(d). Hence, in such cases the charge transfer energies

have lower magnitude. However, as the molecule moves away from the sheet, the charge

transfer energies keep increasing and the charge transfer energy gap ultimately saturates
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at the HOMO-LUMO gap of the isolated molecule in the limit of infinite distance. For

large separation, the electronic coupling can be expected to be low and consequently the

contribution of exciton binding to the charge-transfer gap is small. In Fig. 4.9(b,c,d,e)

we show the excess charge-density, ∆ρ, in different parts of the system after transferring

one electron. ∆ρ is defined as ρ(CDFT)−ρ(DFT), where ρ(DFT) and ρ(CDFT) are the charge

densities of the system before and after the charge transfer, respectively. Clearly, due

to the stronger Coulomb attraction, the charge is more localized in the case of a shorter

height, namely 3.4 Å, than for a larger one. In this context, it is worth mentioning

that our result for the charge-transfer gap of benzene adsorbed in a stack configuration

on graphene at equilibrium height of 3.25 Å is 8.91 eV. This is in good agreement

(within about 4%) with the quasiparticle gap obtained by a G0W0 study on the same

system [114], suggesting the excitonic effects probably plays a minor role here.

4.5.4 Effect Of Defects

It is known that, actual graphene samples always display lattice imperfections [115]. In

order to determine the effect of such structural defects on the CT energies, we consider a

reference system, where a Stone-Wales defect (in which a single C-C bond is rotated by

a right angle) is present in the graphene sheet. We have calculated E±CT for two different

positions of the molecule with respect to the defect on the sheet, namely the top position,

in which the molecule is placed right above the defect and the away position, in which

it is placed above the sheet far from the defect. Our findings are listed in Tab. 4.1.

in which we enlist the charge transfer energies for the top and away configuration of

benzene on a graphene sheet with Stone-Wales defect and also those for the hollow and

stack configuration of benzene on a defectless sheet of graphene - all for the same height

(3.4 Å) between graphene and benzene. The later two are presented for the purpose of

comparison. From the results, it is evident that the small structural change in pristine

graphene due to presence of such defect does not alter the CT energies of the molecule.

One does not expect the image charge distribution on graphene to be hugely affected

by presence of SW defect. Besides, the density of states (DOS) of graphene remains
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Figure 4.9: Panel (a) shows the charge transfer energy gap of a benzene molecule as a

function of its height from the graphene sheet, plotted along with the QP gap of the

isolated molecule. Panels (b) and (c) show the excess charge in different parts of the

system after the transfer of an electron from the molecule to the sheet for d = 3.4 Å.

Panels (d) and (e) show the same plot but for d = 6.8 Å. In both cases, red and blue

denote isosurfaces of positive and negative net charge, respectively.
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Figure 4.10: DOS of pristine graphene and of a graphene sheet with one SW defect.

The PDOS for the atoms near the SW defect are plotted on the same graph. These

calculations are performed with a supercell of 200 atoms.

Configuration E+
CT(d)(eV ) E+

CT(d)(eV )

Top 4.30 -4.78

Away 4.34 -4.83

Hollow 4.32 -4.81

Stack 4.33 -4.81

Table 4.1: E+
CT and E−CT for various aforementioned configurations of benzene ph-

ysisorbed on graphene.

almost completely unchanged near its Fermi energy after the introduction of such defect

as can be seen in Fig. 4.10, which shows that the partial density of states (PDOS) of

the atoms affected by the SW defect have no significant presence near the Fermi level.

Thus, after charge transfer, the electron added to (or removed from) the graphene sheet

has the same energy that it would have in the absence of the defect. In this context,

it is noteworthy that a G0W0 study [114] has concluded that altering the structure of

pristine graphene by introducing dopant (which raises the Fermi level of graphene by

1 eV) also has minor effect on the QP gap of benzene, reducing it by less than 3%.
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4.5.5 Effect of the Presence of Other Benzene Molecules

In real interfaces between organic crystals and substrates, the molecule is usually not

isolated but found in proximity of other similar molecules. Hence, we investigate the

effect of the presence of other benzene molecules near the one under consideration.

To this end we selected three representative configurations. In the first one (DB1),

the graphene sheet has two benzene molecules above it, one at 3.4 Å and another at

6.8 Å. We calculate the charge transfer energies of the middle benzene (3.4 Å from

the sheet). The charge excess on different parts of the system, after transferring one

electron to the sheet, is displayed in Fig. 4.11 (top panel). The second configuration

(DB2) investigated is identical to the first one but we calculate the charge transfer

energies of the molecule, which is farther from the graphene sheet, namely at a distance

of 6.8 Å. For this configuration, the excess charge after a similar charge transfer is shown

in Fig. 4.11(middle panel). In the third configuration (LB), we use multiple benzene

molecules in the same plane. The molecules are in close proximity with each other

although their atomic orbitals do not overlap. CT energies are calculated with respect

to one benzene molecule keeping the others neutral and an isovalue plot for similar

charge transfer is shown in Fig. 4.11 (bottom panel). The CT energies are shown in

Tab. 4.2. In order to facilitate comparison, we also present the E±CT values for the cases

of a single benzene adsorbed on graphene at 3.4 Å (SB1) and 6.8 Å (SB2) in the hollow

configuration. We find that the presence of another molecule nearby does not bring

about any significant change in the charge transfer energies. This is evident from the

results presented in Tab. 4.2. However, in both cases one can see a slight reduction in

the absolute value of the charge transfer energies and this can be explained in terms

of simple classical effects. For the case of DB1, when one transfers an electron from

the middle benzene to the graphene, the charge neutral and polarized topmost benzene

can be thought of as a dipole with its moment pointing away from the other molecule.

Hence, in principle, the presence of this dipole should lower the potential at the site of

the other molecule and the sheet both. However, since the potential due to a dipole is

inversely proportional to the square of the distance, this effect is more pronounced at

the site of the middle benzene than at that of the graphene sheet. A similar effect can
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Figure 4.11: The left and right panels show respectively the side view and the top view

of the isovalue of ∆ρ(r) after transferring one electron from the molecule to the sheet.

The top, middle and bottom plots correspond to the HM1, HM2 and HL configurations

respectively (see main text).
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Configuration E+
CT(d)(eV ) E+

CT(d)(eV )

DB1 4.12 -4.76

LB 4.27 -4.62

SB1 4.32 -4.81

DB2 4.73 -5.64

SB2 4.95 -5.72

Table 4.2: E+
CT and E−CT for various configurations of the benzene molecule on pristine

and defective graphene.

be observed for electron transfer from the graphene sheet to the middle benzene. Thus,

the charge transfer energies of the molecule decrease due to the presence of another

benzene on top of it. A similar effect is present in the case LB. For the case of DB2, the

system consisting of the topmost benzene (from which we transfer charge) and the sheet

can be thought of as a capacitor. The work, W , done to transfer Q charge from one

plate to another of a capacitor is given by Q2

2C
, where C is the capacitance proportional

to the dielectric constant of the medium between the capacitor plates. Hence, instead

of vacuum (as in SB2), if we have another benzene molecule in the intermediate space,

the molecule acts as a dielectric resulting in a reduction of W . Therefore, the charge

transfer energies for DB2 are smaller than those for SB2.

4.5.6 Classical Image Charge Model

It is worth checking how our results for the renormalization of molecular levels with

change of the height compares with classical electrostatics. Let us imagine an infinite

substrate plane of relative permittivity ε in the x-y plane and a point charge q at a

distance z above it. Due to presence of the point, some bound surface charge, σb(r),

will be induced on the substrate. Considering a linear dielectric, this must be given by

σb(r) = P(r).n̂ = ε0χeE(r).n̂ = ε0χeEz(r),

where P(r) and E(r) denote the electrical polarization and the electric field respectively

and χe is the electric susceptibility of the substrate. Here, n̂ denotes the unit normal
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Figure 4.12: −E+
CT (circles) and −E−CT (squares) for different heights of the molecule

from the substrate. The CDFT results are seen to agree well with the classically calcu-

lated curve given in red. The horizontal lines mark the same quantities for an isolated

molecule (gas-phase quantities). The continuous thin line shows the position of the

classically calculated level curve for adsorption on a perfect metal ε =∞

pointing out of the surface. All quantities are referred to on the surface, with r the

planar radial coordinate.

Now, there are two distinct charge distributions generating Ez(r). The com-

ponent due to the point charge is given by

E1
z (r) = − 1

4πε0

qz

(r2 + z2)3/2
,

while that due to the bound charge distribution itself is given by

E2
z (r) = −σb(r)

2ε0
.

By combining the three equations together we obtain

σb(r) = ε0χe[−
1

4πε0

qz

(r2 + z2)3/2
]− σb(r)

2ε0
.
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By solving for σb(r) one has

σb(r) = − 1

2π

(
χe

χe + 2

)
qz

(r2 + z2)3/2
.

The field at point P=(r=0,φ=0,z) due to this surface charge distribution is in

the z-direction. Its magnitude is given by:

F =
1

4πε0

∫ ∞

0

σb(r)2πrdr

(r2 + z2)3/2
cosθ,

where θ is the angle between the two straight lines joining P with (r = 0, φ = 0, z = 0)

and P with (r, φ = 0, z = 0). The integration gives us

F =
1

4πε0

(
χe

χe + 2

)
.
q2

4z2

Hence, the work done for bringing the point charge from an infinite distance

to a height d above the surface is

W (d) = −
∫ d

∞
Fdz = − 1

4πε0

(
χe

χe + 2

)
.
q2

4z
.

Clearly, this is the work done by the induced image charge to bring one electron

from an infinite distance to the position of the molecule. However, in reality, the image

charge will not confine itself strictly to a 2D plane and will form a lump on top of the

surface instead. In order to account for such non-planar image-charge distribution, one

can introduce a small modification to the above expression [116] and approximate W (d)

at a height d as

W (d) = − 1

4πε0

(
χe

χe + 2

)
q2

4(d− d0)
,

= − 1

4πε0

(
ε− 1

ε+ 1

)
q2

4(d− d0)
,

where d0 is the distance between the centre of mass of the image charge and

the substrate plane. Now,
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E−CT =-Energy for transferring one electron from substrate to molecule

=-(Energy for transferring one electron from infinity to molecule + EF ).

Hence, one can conclude that

E−CT = -LUMO of the isolated molecule -W (d)− EF .

A similar argument for the HOMO level shows an elevation of same magnitude

due to the presence of the substrate. In Fig. 4.12 we plot the CT energies and show that

they compare quite well with the two curves calculated with the classical approximation

with an effective dielectric constant of 2.4 [117] for graphene. For the latter calculation,

we have used an approximate value d0 = 1.7 Å, which is a good estimate for smaller

distances. It is worth noting that for higher distances, though the actual value of d0

should be much less, the overall effect of d0 is very small and almost negligible.

Summary

We have used the method of cDFT implemented in siesta to calculate the CT energies

of benzene molecule adsorbed on a sheet of graphene. We have shown that this energy

depends on the distance between the molecule and the graphene sheet. If the molecule

is very close to the graphene sheet, the Coulomb interaction between the two entities

is large after the transfer of charge. This leads to a very localised image charge on the

graphene sheet and a considerable reduction of the CT energy gap from the quasipar-

ticle gap of the isolated molecule. However, as the distance increases, this gap keeps

increasing and finally becomes equal to the isolated quasiparticle gap of benzene at infi-

nite separation. We have also shown that the presence of simple structural defect, such

as Stone-Wales defect on graphene does not significantly alter the CT energies. Also,

the presence of another benzene molecule close to the one under consideration affects

the CT energies only weakly.



Chapter 5
Constrained DFT with accurate ionic forces

applied to the reorganization energy of

graphene-adsorbed pentacene

5.1 Introduction

In many flavours of electronic structure theory calculations, such as cDFT [87, 88],

DFT+U [118, 119], DFT+DMFT [120, 121], wave function-embedding methods [122,

123], various perturbative approaches in quantum chemistry [124] etc., the population of

a particular subspace is important and the total energy depends explicitly on it. Thus,

the ability to properly define and to calculate the population of a subspace is of great

importance. This is exemplified by the sustained efforts in recent years toward the devel-

opment of physically-motivated orbitals such as MLWF [125], nonorthogonal localized

molecular orbital (NOLMO) [126], muffin-tin orbital (MTO) [127], natural bond orbitals

(NBO) [124] etc., which are typically tuned for population analysis. Such population

analysis through projection on subspaces has received a great deal of attention in recent

years [128, 129] ranging from studies on tensorially correct scheme of projection [130]

to effects of choice of projection for DFT+U [131] and DFT+DMFT [132] methods.

105
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The trace of a matrix will not be invariant if the basis set is non-orthogonal.

Therefore if an operator is written with respect to a non-orthogonal basis, the trace will

not represent any physically meaningful quantity. Hence, for non-orthogonal orbitals,

the population of a subspace cannot be calculated simply as the sum of the elements of

density matrix over the orbitals spanning the subspace and one requires advanced tools

for population analysis. When the energy of the system depends on such population, the

problem presents additional challenges. If terms in the total energy are constructed from

orbitals (e.g. atomic) that are tied to atomic centres then, when those orbitals move

explicitly with ionic position, Pulay terms1 arise in the Hellmann-Feynman forces. This

is true regardless of whether the orbitals are orthonormal or not. What is less known, but

which has been identified in the past with some progress [133], is that additional Pulay

terms must be considered in cases where the degree of orbital nonorthogonality affects

the total-energy. This occurs, whenever the energy depends on a nonorthogonality-

respecting multi-centre projection of the density or Kohn-Sham density-matrix. It also

occurs when using orthonormalised orbitals built from an underlying non-orthogonal

set, since an ionic movement will typically break the orthornormality and render the

orthonormalisation futile. Here we show that if we use the tensorially correct method

of treating the population as a contraction of the density operator over kets and duals

localized in the subspace [133], then we can have a simple and exact expression for the

force without any need of constructing orthogonal orbitals.

An accurate population analysis treatment, with related forces, enables us

to study reorganisation effects in large, constrained systems, such as those relevant to

charge-transfer excitations in photovoltaic active layers, in heterogeneous photocatalysis,

the reorganisation effect on the magnetic coupling of magnetic dimers, etc. In what

follows we will focus on a particularly challenging example related to this thesis, namely

that of calculating the reorganization energy of a molecule adsorbed on a surface.

1Terms containing derivatives of the orbitals themselves.
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5.2 Physical Problem Investigated

The ionic coordinates of any system depends on its electronic occupation. If an electron

is removed from a neutral system, such as in photoemission spectroscopy, its ionic coor-

dinates readjust to the new geometry due to the local electron-phonon coupling [63, 64].

Figure 5.1 shows two parabolic curves corresponding to the energy of a neutral system

and the same system after the removal of an electron, as a function of some generic

atomic coordinate. For the neutral system, λ0 is the difference in energy between the

ground state geometry and the ground state geometry of the charged configuration [49].

In contrast, λ+ is the same quantity but for the system with one less electron. Then,

the re-organization energy, λ, of the system corresponding to removal of one electron is

defined as:

λ = λ0 + λ+. (5.1)

This quantity holds paramount importance in charge transport calculations.

In the semi-classical Marcus’ theory approach [65], in the high temperature regime, the

probability per unit time of an electron hopping is computed according to Fermi’s golden

rule as [134, 135]

kET =
| 〈i| Ĥ |f〉 |2

~

√
π

λkBT
exp

[
−(λ+ ∆G0)2

4λkBT

]
, (5.2)

where Ĥ is the Hamiltonian, |i〉 and |f〉 are the initial and final electronic states respec-

tively, ∆G0 and λ are the change in Gibbs’ free energy and the reorganization energy

associated with the charge transfer, respectively. Thus we see that the re-organization

energy is an important ingredient for the calculation of the hopping. In this work we

calculate the re-organization energy of a pentacene molecule, that, in the crystal form,

is a well known organic semiconductor. Due to its high HOMO level, pentacene is a

p-type semiconductor [136] and has high hole-mobility [137]. Thus, the re-organization

energy for ionization is of great interest.
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This has been subject of several theoretical and experimental studies in the

past [138, 139, 140]. In a recent experimental work [141], it has been shown that

the reorganization energy of a molecule increases upon adsorption on a surface. The

theoretical approach can be either that of directly calculating the energy difference

from the adiabatic potential energy surface or one of indirectly calculating the various

normal modes that constitute the reorganization energy [142]. In this work we adopt

the former approach. For an isolated pentacene, an electron removal can be simulated

with regular DFT and therefore does not require the aforementioned force corrections.

However, when the molecule is adsorbed on a substrate whose Fermi level lies above the

HOMO of the molecule, the application of cDFT becomes necessary. cDFT can simulate

the photoemission event of removing an electron from the system and constraining the

extra charge to the subspace of the orbitals of the molecule. cDFT has been widely

applied to study charge transfer in organics [143, 144, 145, 146] and, in particular has

been used to simulate removal or addition of electrons from adsorbed molecule in the

context of calculating charge transfer energies [109, 147]. In this chapter we use cDFT

in conjunction with self-consistent forces to calculate the re-organization energy of a

pentacene molecule adsorbed on a flake of graphene. A very similar system, consisting

of a film of weakly bound pentacene molecules adsorbed on highly oriented pyrolytic

graphite (HOPG) has been the subject of several theoretical and experimental studies

[141, 148, 149].

5.3 Method

5.3.1 Theory

As mentioned earlier, in cDFT one tries to find the ground state of the system subject to

constraining a fixed number of electrons in a desired subspace C. This has the following

mathematical form,
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Figure 5.1: Schematic diagram of the energy as a function of the ionic coordinates for

a charged and a neutral system. The re-organization energy is defined as λ0 + λ+.

Tr[ρ̂P̂] = Nc (5.3)

where ρ̂ is the density operator, P̂ is projection operator on the subspace and Nc is

the number of electrons one wishes to constrain to the subspace. In order to find the

density corresponding to this constrained ground state one finds the stationary point of

W [ρ, Vc] [87], where Vc is a Lagrange multiplier and

W [ρ, Vc] = E[ρ] + Vc

(
Tr[ρ̂P̂]− Nc

)
. (5.4)

The stationary point of this function yields the ground state density of the

system subject to the given constraint. At the stationary point, W [ρ, Vc] = E[ρ], since

the quantity in the brackets in Eq. (5.4) vanishes. Clearly, E[ρ] is not stationary at this

density and hence Hellmann-Feynman theorem cannot be applied to E[ρ] at the cDFT

ground state. However, it can be applied to W [ρ, Vc] to find the force,

Fi = −dW
dRi

= −∂W
∂Ri

, (5.5)

where the index “i” incorporates the index of an ion and a spatial direction. At the

stationary point, since
(

Tr[ρ̂P̂]− Nc

)
= 0, the above equation reduces to:
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Fi = −∂E[ρ]

∂Ri

− Vc
∂

∂Ri

Tr[ρ̂P̂]. (5.6)

The first term on the right hand side, Fi(DFT ), is the contribution from regular DFT [150],

while the second term, Fi(cDFT ), represents the extra force due to the constraint. We

devote the rest of the theory subsection to finding an exact expression for this term.

5.3.1.1 Population Analysis

In the widely used implementation of the Löwdin population analysis, a set of orthogonal

functions {φ̃µ(r)}, for the given subspace are generated for the non-orthogonal basis

function φµ(r) and the population is given by (see eq. (3.69))

Tr[ρ̂P̂] =
∑

µ,ν

〈φµ|ρ̂|φν〉
∑

i∈C

S
− 1

2
νi S

− 1
2

iµ ,

where Sµi is an element of S, the overlap matrix of the full system with µ being the basis

vector index from all space and i being that from the given subspace, C. Note that for

non-zero overlap between the non-orthogonal basis functions within the subspace and

those outside it, the functions φ̃i(r) are in principle delocalized over the entire system.

Clearly, the above equation produces terms like ∂
∂Rj

(S
−1/2
νi ) in the expression for the

forces. Such terms are difficult to calculate. One possible exact expression for such

terms requires diagonalizing the overlap matrix and therefore is incompatible with linear

scaling concepts [151]. Also, this treatment can not be applied in case of complex valued

projectors. Attempts have been made to approximate S by a diagonal matrix by using

special linear combination of atomic orbitals as the projectors [133] although, as pointed

out in the same paper, this is not possible in all situations.

For our population analysis, we define the subspace population as a tensor

contraction over {|ϕm〉}, which is the set of non-orthogonal projectors spanning the

subspace and {|ϕm〉} which is the set of bi-orthogonal compliments. These are known

as duals of the projectors such that 〈ϕm|ϕm′〉 = δmm′ and P̂ =
∑

m |ϕm〉 〈ϕm| [130]. Then

the projector and its dual are related by [152]
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|ϕm〉 = |ϕm′〉Om′m, (5.7)

where Om′m is the (m′,m)-th element of the matrix O−1 and O is the square overlap

matrix within the subspace with matrix elements Omn = 〈ϕm|ϕn〉2. These duals are

localized in the spatial region of interest. Then, the trace in Eq. (7.12), which essentially

gives the number of electrons in the selected subspace can be written as,

Tr[ρ̂P̂] = 〈ϕm| ρ̂ |ϕm〉 ,

= 〈ϕm| ρ̂ |ϕm′〉Om′m. (5.8)

This trace is obtained with a proper contraction of the contravariant and co-

variant indices and hence represents a tensorially invariant and physically meaningful

occupancy [153].

5.3.1.2 Evaluation of Force

Inserting Eq. (5.8) in Eq. 5.6 we obtain

Fi =Fi(DFT ) − Vc
[
〈∂ϕm
∂Ri

|ρ̂|ϕm′〉Om′m + 〈ϕm|ρ̂|
∂ϕm′

∂Ri

〉Om′m + 〈ϕm|ρ̂|ϕm′〉
∂Om′m

∂Ri

]
.

(5.9)

The first and the second term in the square bracket on the right-hand side

represent the force due to the change in the projectors as a result of the ionic displace-

ments, while the third term represents that due to a change in the mutual overlap of

the projectors. If the projectors are localized orbitals centred on the atoms, then the

third term is exclusively due to the relative motion of the atoms corresponding to the

2note that unlike S, which is the overlap of the basis orbitals over all space, O is overlap of projectors

over the desired subspace.
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subspace. For orthogonal basis functions, if orthonormality is preserved under ionic

motion, this term will vanish. Now we evaluate the three terms in the square bracket.

The first term gives,

〈∂ϕm
∂Ri

|ρ̂|ϕm′〉Om′m =

= 〈∂ϕm
∂Ri

|ρ̂|φα〉 〈φα|ϕm′〉Om′m =

=Tr[X̂ρ̂], (5.10)

where the operator X̂ is defined as X̂ = |ϕm′〉Om′m 〈∂ϕm
∂Ri
|. Similarly, the second term

within the square bracket in Eq. (5.9) is Tr[X̂†ρ̂]. For evaluating the third term we shall

use the following matrix identity for a generic matrix M,

0 =
d

dR
[MM−1],

=
dM

dR
M−1 + M

d(M−1)

dR
,

= M−1dM

dR
M−1 +

d(M−1)

dR
,

Then
d(M−1)

dR
= −M−1dM

dR
M−1. (5.11)

This, explicitly reads as ∂
∂Ri

Mm′m = −Mm′µ ∂Mµν

∂Ri
Mνm. Using such an identity

for the overlap matrix O, the third term of Eq. (5.9) can be rewritten as

〈ϕm|ρ̂|ϕm′〉
∂Om′m

∂Ri

=

= −〈ϕm|ρ̂|ϕm′〉Om′µ

[
〈∂ϕµ
∂Ri

|ϕν〉+ 〈ϕµ|
∂ϕν
∂Ri

〉
]
Oνm =

= −〈ϕµ|
∂ϕν
∂Ri

〉Oνm 〈ϕm|ρ̂|ϕm′〉 〈ϕm
′|ϕµ〉+ c.c. =

= −Tr[X̂†ρ̂P̂] + c.c. (5.12)

Now, by bringing all the terms together, the additional force due to the con-

straint is,
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Fi(cDFT ) =

=− Vc
(

Tr[X̂ρ̂] + Tr[X̂†ρ̂]− Tr[X̂†ρ̂P̂]− Tr[X̂ρ̂P̂]
)

=− 2VcRTr
[
ρ̂X̂(1̂− P̂)

]
. (5.13)

The additional force (Fi(cDFT)) in a cDFT calculation arises due to change

in population (Tr[ρ̂P̂]) of the cDFT subspace due to movement of atoms. So, orbital

movements which do not change the subspace population, should not contribute to F c
i .

This is the interpretation for the subtraction of the term ρ̂X̂P̂ from the term ρ̂X̂. Noting

that X̂P̂ contains a projection of the orbital derivative
(
∂ϕm
∂Ri

)
over the cDFT subspace,

we can say that only those Pulay terms, for which the orbital derivative goes beyond

the cDFT subspace and results in variation of the population, should contribute. This

is why the projection inside the cDFT subspace (the ρ̂X̂P̂ term) is subtracted from the

total Pulay term (the ρ̂X̂ term).

This expression for the force under a charge constraint has been implemented

in the linear-scaling code onetep [96]. For a DFT calculation, onetep optimizes

the non-orthogonal generalized Wannier functions (NGWFs) with conjugate-gradients

method and within each iteration of such optimization, it minimizes [98] the KS energy

functional with respect to the density kernel Kαβ. This constructs the single-particle

density matrix as ρ(r, r′) = φα(r)Kαβφ∗β(r′) [97](see section 3.4.3). Thus, for a geometry

optimization in presence of a constraint of the form in Eq. 5.3, one needs to run the

following optimization loops in the order shown in Fig. 5.2.

1. optimization of the system geometry

2. optimization of the NGWFs {φµ}

3. optimization of the cDFT Lagrange multiplier Vc

4. optimization of the density kernel Kαβ
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Figure 5.2: Relative position of the optimization loops in a onetep calculation involving

atomic relaxation in presence of constrained charges.

5.3.2 Procedure for the Calculation

The scheme we follow for calculating the reorganization energy of a pentacene molecule

adsorbed on a flake of graphene is highlighted bellow:

1. Optimize the geometry of the neutral system and calculate the GS energy with a

DFT run. This gives the geometry G1 and the energy E1NEUT.

2. Run cDFT for pentacene with a unit positive charge with geometry G1 to obtain

the energy E1POS.

3. Run a constrained geometry optimization to find the nuclear coordinates for the

charged pentacene and the corresponding energy. This gives us a geometry G2

and an energy E2POS.

4. Run DFT on neutral pentacene with geometry G2 to find the energy E2NEUT of

the neutral system in the geometric configuration corresponding to the charged

state.
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The reorganization energy λ is then given by

λ = λ0 + λ+,

= (E2NEUT − E1NEUT) + (E1POS − E2POS). (5.14)

The calculations have been performed with the PBE [94] exchange-correlation

functional and norm-conserving pseudopotentials with the onetep code. The switching

from siesta to onetep package is primarily motivated by the fact that our desired

population analysis (see Eq. 5.8) is already implemented in onetep. The NGWF radius

is set to 9 Å. It was found that a very high plane-wave cutoff energy of 1500 eV is

needed to avoid small changes in energy due to the eggbox effect. cDFT optimization is

performed with a conjugate-gradient technique with the convergence threshold of 10−5

for the Lagrange multiplier gradient. This translates to an error of < 4x10−4% in the

population of the pentacene molecule. Geometry relaxation is performed with a quasi-

Newton method [154] using a Broyden-Fletcher-Goldfarb-Shanno algorithm [155] with

Pulay corrected forces and an energy convergence threshold of 2.5× 10−6 eV per atom.

Some additional features employed in our calculations are as follows.

Ensemble DFT. For a system with a large number of eigenstates in the vicin-

ity of the Fermi level, the occupation numbers of these states are ill-conditioned. In other

words, significant fluctuations in these occupation numbers and in the electron density

can occur with a tiny change in energy and therefore the number of self-consistent steps

necessary for locating the converged ground state can be large. In order to circum-

vent this problem, we employ the finite temperature ensemble DFT (EDFT) formal-

ism [156, 157] which, instead of minimizing the energy of the system aims of minimizing

the Helmholtz free energy

A[T, {εi}, {|ψi〉}] =
∑

i

fi〈ψi| −
1

2
∇2|ψi〉

+

∫
drvn(r)ρ(r) + J [ρ] + Exc[ρ

α, ρβ]− TS[{fi(εi)}]. (5.15)

Here S[{fi}] is the entropy of the system given by
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S[{fi}] = −kB
∑

i

[filnfi + (1− fi)ln(1− fi)] (5.16)

and the occupation number fi(εi) is that of the ith KS state and follows the

Fermi-Dirac distribution

fi(εi) =

(
1− exp

[
εi − µ
kBT

])−1

. (5.17)

We use a temperature of 300K for our calculations.

Correction for periodic boundary conditions. Since onetep uses fast

Fourier transform to solve the Poisson’s equation, it always uses periodic boundary

condition. For isolated systems it does so by constructing artificial periodic replicas

of the simulation cell. This gives rise to undesired interactions between the unit cells.

In order to correct this, we use the Martyna-Tuckerman scheme [158] of replacing the

Coulomb interaction from the periodic images of the simulation cell with a minimum

image convention technique. This essentially adds a screening potential term to cancel

the Coulomb interactions from neighbouring cells [159]. We use a Martyna-Tuckerman

convergence parameter [158] of 7.0 in our calculations.

Dispersion correction. Dispersion interactions, which are poorly accounted

for in the popular XC-functionals, are expected to be present between the pentacene

molecule and the graphene flake. Hence use an empirical correction Edisp(rij) on the

total energy in the form of a damped London term summed over all pairs of atoms (i,j)

with interatomic distance of rij

Edisp(rij) = −
∑

ij,i>j

fdamp(rij)
C6,ij

r6
ij

, (5.18)

where the damping term is given by [160]

fdamp(rij) = (1− exp(−cdamp(rij/R0.ij)
7))4 (5.19)



117

The parameters we use have been obtained and implemented previously by

fitting a set of 60 complexes with significant dispersion [161].

5.4 Results

5.4.1 Test of the Forces on Isolated Pentacene

In order to show the role and necessity of the term due to the change in the overlap of the

projectors spanning the subspace, (−VC 〈ϕm|ρ̂|ϕm′〉 ∂Om′m/∂Ri), in the expression for

the forces [see Eq. (5.9)], we first present some tests on a very simple system consisting

of a single isolated pentacene molecule. Starting from some commong initial geometry,

we run three independent relaxations:

1. A No constraint (DFT) run, i.e. a regular relaxation where the force is Fi =

Fi(DFT ).

2. Adding a constant constraining potential Vc to the entire space and relaxing with-

out force correction for the change in overlap. This means that, in the expres-

sion for force, the last term in Eq. (5.9) is ignored.

3. Adding a constant constraining potential Vc to the entire space and relaxing with

force correction, i.e. with force given by Eq. (5.9).

A constant constraining potential on the full Kohn-Sham space should in prin-

ciple have no other effect than giving rise to a rigid shift of all the energy levels, and

therefore should not affect the geometry optimization in any way. In this case, a full

set of atomic pseudo orbitals for the initial geometry of the neutral pentacene molecule

were used as projector orbitals. As a result, we may expect some deviation from perfect

potential uniformity to arise in the constraining potential in the Kohn-Sham space of

the molecule, and even more so as its geometry evolves. Therefore, at convergence we

expect the behaviour of the third run to be similar to that of the first run since they are
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Figure 5.3: Maximum displacement, change in energy per atom and maximum force

plotted against the iteration number in a geometry relaxation calculation. The black,

blue and red curves show the plots for a regular DFT run, a constrained run with prop-

erly corrected forces and one without the proper correction for forces respectively. The

constrained calculations are performed with a constant potential of 1 eV (left column)

and 2.5eV (right column), respectively. Please see main text for details on the force

terms.
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Projector Analysis Population

Atomic orbitals Summed 171.56

Atomic orbitals Unified 100.74

Optimized NGWFs Summed 172.72

Optimized NGWFs Unified 102.11

Table 5.1: Number of electrons on the pentacene molecule for different choice of projec-

tors and for different methods of population analysis. An isolated pentacene molecule

has 102 valence electrons. Please see text in section 5.4.2.1 for definition ‘Summed’ and

‘Unified’.

both subjected to the correct forces, and a similar (but not identical) potential modulo

a constant shift. However, we can expect the behaviour of the second run, which does

not have the correct force, to differ more substantially from those of the other two. In

Fig. 5.3 we plot the maximum displacement, the change in energy per ion and the max-

imum force as a function of the iteration for the aforementioned calculations performed

with two different Vc (1eV and 2.5 eV). We are particularly interested in the behaviour of

the maximum force since this is a property of the current iteration and does not depend

explicitly on the results of the previous iteration. For the 1eV constraining potential, the

three calculations differ only slightly since the correction term in the expression for the

force is small. However, for Vc = 2.5eV , especially for the maximum force, we see that

the behaviour of the calculation with the incorrect force (red line) differs significantly

from the other two, which are more similar.

5.4.2 Reorganization Energy of Graphene Adsorbed Pentacene

In this section we present and discuss our results concerning the reorganization energy

of pentacene molecules adsorbed on a flake of graphene. The pentacene is positioned

above the graphene flake at its centre and is oriented parallel to it. We have performed

our calculations with two different shapes and sizes of hydrogen-passivated graphene

flake, one with 358 atoms (hereafter referred to as the smaller flake) another with 474
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Figure 5.4: The left panel shows the system of interest- pentacene molecule adsorbed

on a graphene flake. The right panel shows an isovalue plot of the HOMO of the neutral

system. As is evident from the figure, the HOMO is mostly confined to the graphene

flake.

atoms (hereafter referred to as the larger flake). The geometry of the smaller flake

has been relaxed in isolation. However, for the larger flake we use the geometry of an

infinite graphene sheet so that the positions of the carbon atoms are symmetric with

each other. The system is shown in the left hand side panel of Fig. 5.4, while the right

hand side panel shows a plot of the highest occupied molecular orbital (HOMO) of the

entire system. Since this energy level is mostly confined to the graphene flake, simply

running a DFT calculation with one less electron is not an option here as that would

remove an electron from the graphene flake. Thus we use cDFT to constrain a unit

positive charge on the pentacene.

5.4.2.1 Population Analysis

In the cDFT calculations, we intend to remove one electron from the pentacene molecule.

It is therefore necessary to carry out a population analysis for the uncharged ground

state to find the number of electrons in the molecule and to define the constraining
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potential. This population depends on the choice of projectors used to represent the

subspace assigned to the molecule. In onetep it is possible to use as projectors the

atomic pseudo orbitals generated from a self-consistent pseudo-atomic solver or the

optimized NGWFs from a previous successful run (in our case, a DFT run for the

same system since that does not require specification of any projector). In both cases

only the NGWFs associated with the relevant atoms, which, in our case are all the

atoms of pentacene, are considered. Once the choice of projectors is made, onetep

allows predominantly two kinds of population analysis on the set of target atoms. The

first technique (the ‘Summed’ analysis) essentially calculates the populations on each

individual atom and then sums them up. Namely this population is defined as

N =
∑

I

∑

mI ,m
′
I

〈ϕmI | ρ̂ |ϕm′I 〉O
m′ImI , (5.20)

where “I” is an atom in the desired set and Om′ImI are the elements of the inverse of

the overlap matrix of projectors |ϕmI 〉 and |ϕm′I 〉 belonging only to atom I. The second

one (the ‘Unified’ technique) calculates the population of the entire subspace directly as

N =
∑
m,m′
〈ϕm| ρ̂ |ϕm′〉Om′m, where the sum is over all the orbitals of the given subspace

and the inverse overlap matrix is constructed accordingly [153]. the ‘Unified’ technique

is expected to be much more reliable since the other one double-counts the population

shared by the projectors belonging to different atoms. This is clearly seen in Fig. 5.5,

which shows a plot of 〈r|P̂|r〉 for the neutral pentacene molecule adsorbed on graphene

flake. For the ‘Summed’ scheme (top panel) we see significant positive value of 〈r|P̂|r〉 in

the interstitial region between the atoms indicating the aforementioned double-counting.

As expected, this is not present in the plot for the Unified scheme (bottom panel).

5.4.2.2 Calculation of the Reorganization Energy

In Tab. 5.1 we tabulate the populations calculated with the different techniques and

projectors on the pentacene molecule, which is adsorbed on a flake of graphene. Noting

that an isolated pentacene molecule has 102 valence electrons we see that the combi-

nation of optimized NGWFs with the Unified scheme is the most accurate and we use

this for further calculations. Once the population, N, of the molecule is determined, we
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Figure 5.5: Plot of 〈r|P̂|r〉 for the pentacene molecule adsorbed on graphene in the

neutral state. The top and the bottom panels correspond respectively to the ‘Summed’

analysis, which calculates population on individual atoms separately before adding them

up, and the ‘Unified’ analysis, which calculates population of the entire subspace as

a whole, respectively. In the case of the Summed method, significant brightness in

the interstitial space between atoms indicates double-counting in the region of orbital

overlap. Clearly, this is not the case with the Unified method.
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Figure 5.6: Plot of isovalues of the charge density after removal of an electron from the

molecule with cDFT. Blue and red colors denote positive and negative charge densities

respectively.

calculate the target population for the cDFT calculation as
(
N ∗ 101

102

)
. Fig 5.6 shows

the plot of charge density on the system after removal of an electron from the molecule.

As seen in the picture, a molecule with a net positive charge induces a negative charge

in the region of the graphene flake immediately beneath the molecule. This is the image

charge.

The main problem with such calculation is the existence of multiple local min-

ima, differing only slightly in energy, in the landscape of energy vs geometry. The local

minimum to which a structural relaxation converges depends largely on the initial ge-

ometry. Therefore we find the re-organization energy corresponding to the two local

minima (one for the uncharged system and another for the charged system). As the

opposite image charge formed on the flake results in a Coulomb attraction between

the molecule and the flake, in the charged state geometry G2, the molecule is closer
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Cutoff energy flake λ0 λ+ λ ∆Vc

900 eV none 28.91 26.67 55.58 N.A.

900 eV smaller 22.53 20.08 42.61 52.24

900 eV larger 18.75 19.62 38.37 50.13

1500 eV none 29.41 26.42 55.83 N.A.

1500 eV smaller 21.09 20.25 41.34 35.22

1500 eV larger 19.65 23.20 42.85 35.48

Table 5.2: Re-organization energies (corresponding to local minima in the geometry) of a

pentacene molecule as a function of cutoff-energy and size of graphene flake. ∆Vc denotes

the difference in the cDFT Lagrange multipliers corresponding to the two different

geometries. All energies are in meV. The smaller and the larger flakes contain 358 and

474 atoms, respectively.

Figure 5.7: Pentacene molecule with arrows showing directions of in-plane displacement

of the atoms. The arrow lengths denote magnitudes of displacement in arbitrary unit.

The left and the right figures correspond to an isolated pentacene and one on a graphene

flake respectively.
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to the flake than in the uncharged geometry G1. We also notice that the directions of

the in-plane displacements of the atoms of the pentacene molecule upon charging are

very similar for the isolated molecule and the molecule adsorbed on the graphene flake

as can be seen from Fig. 5.7. Also, the average bond-length of the relaxed pentacene

molecule is smaller for the charged molecule, for both the isolated and the adsorbed

molecule indicating a shrinking of the molecule on electron emission. This change in

average bond-length is larger for the isolated pentacene compared to the adsorbed one

as indicated by the arrow lengths of Fig. 5.7. This can be attributed to the steric effects

due to the presence of graphene. However, as mentioned earlier, one must keep in mind

that these properties can, in principle, be specific to the pair of local geometry minima

pertaining to the calculation. For a different pair of minima, these values could be dif-

ferent in principle. We also note that since the Lagrange multiplier, Vc, gives a measure

of the elevation of the molecular level, the difference between the lagrange multipliers

corresponding to the two geometries can serve as an approximation for the reorganiza-

tion energy. Also, since this an object that is local to the molecule, it is free from the

errors that may accrue due to small inaccuracies across the large graphene flake.

In Tab. 5.2 we summarize our results for the reorganization energy for two

different cutoff-energies and different sizes of the graphene flake. We have also included

the re-organization energy of an isolated pentacene molecule (flake=none) for compar-

ison. Note that our results for isolated pentacene matches with that obtained with

MP2 method in a earlier theoretical study [138]. As mentioned in Eq. (5.1) here, λ0,

λ+ and λ refer to the reorganization energy of the uncharged molecule, the positively

charged molecule and the total reorganization energy, respectively. We see that the re-

organization energy of an isolated molecule is generally greater than that of the same on

graphene. This can be attributed to steric effects for the latter case- i.e. the fact that an

adsorbed molecule has less freedom for ionic relaxation. It is worth noting that we have

tried to analyse the different contributions due to Hartree, exchange and correlation,

pseudpotentials, and kinetic energy to the reorganization energy, but that the relatively

small reorganisation energy turns out to be the remnant of the substantial cancellation

of large variations in these individual terms. It is noteworthy that experimental stud-
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ies [141, 148] on a rather different system of graphene-adsorbed pentacene, namely a thin

film of pentacene deposited on HOPG, conversely exhibits an increase in reorganization

energy with respect to the isolated pentacene molecule. This points to the possibility

that intermolecular relaxation in the film contributes to the reorganization energy and

more than compensates for the effects of steric hindrance.

5.5 Conclusion

In this chapter we have presented an accurate method for calculating self-consistent

forces in conjunction with constrained DFT in first principles calculations employing

non-orthogonal localized basis orbitals. We have shown that using a tensorially invari-

ant population analysis for the desired subspace of cDFT automatically leads to an

exact expression for force on the atoms. We have implemented this expression for force

in the DFT based code onetep and have shown that the contribution to the force

arising from the change in mutual overlap of the non-orthogonal projector orbitals of

the subspace exerts significant influence on geometry relaxation. In order show a novel

practical application of such forces, we calculate the re-organization energy of a pen-

tacene molecule adsorbed on a flake of graphene. Since the geometry of such system

has a huge number of local minima closely related in energy, the re-organization energy

can only be calculated over such local minima, which depend largely on the initial ge-

ometry of the calculation. However, we show that for the local minima obtained in our

calculations, the reorganization energy of the molecule adsorbed on a graphene flake is

typically smaller than that of the isolated molecule, a fact that is consistent with the

steric effect associated with an adsorbed molecule.



Chapter 6
Excitonic DFT: A Constrained DFT Based

Approach For Simulation of Neutral

Excitations

In materials used for optoelectronic applications, the optical gap is a crucial quantity.

This is essentially the lowest energy required for a neutral excitation such that the

system, without any exchange of electrons, exists in an excited state of the Hamiltonian.

Typically, such excitation is associated with the promotion of one or more electrons from

their valence energy levels to higher energy states. This results in the creation of a bound

electron-hole pair, known as an exciton. The optical gap corresponds to the minimum

energy needed for creating such exciton.

6.1 Background

Here we review some of the basic concepts and theoretical tools related to description

of neutral excitations in quantum systems. Most of the treatments presented in this

section closely follow those of two lectures given by Prof. Neepa Maitra at a summer

school on “Teaching the Theory in Density Functional Theory” at the headquarters of

127
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CECAM at Lausanne in June, 2017.

6.1.1 The Concept of Exciton

Let the time-dependent Hamiltonian of a system be given by

Ĥ(t) = Ĥ0 + δV̂ (t), (6.1)

where Ĥ0 is the time-independent part and δV̂ (t) is a small time-dependent perturba-

tion. The response function is defined as the rate of change in density for a change in

the potential.

χ(rt, r′t′) =
δn(r, t)

δV (r′, t′)
, (6.2)

which is a measure of the change in density at point (r, t) for a change in the potential,

V (r′, t′), at point (r′, t′). The change in the density is given by

δn(r, t) =

∫ ∞

0

dt′
∫
d3r′χ(rt, r′t′)δV (r′, t′). (6.3)

Let the system be initially in its ground state

|Ψ(t = 0)〉 = |Ψ0〉 . (6.4)

We now move to the interaction picture in which the ket state and the operator

are given respectively by
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|ΨI(t)〉 = eiĤ0t |Ψ(t)〉 , (6.5)

and

ÔI(t) = eiĤ0tÔe−iĤ0t. (6.6)

Within this formalism the Schrödinger equation is written as

i
∂

∂t
|ΨI(t)〉 = δV̂ I(t) |ΨI(t)〉 . (6.7)

By solving this equation to approximation in first order, we obtain

|ΨI(t)〉 = |Ψ0〉 − i
∫ t

0

dt′δV̂ I(t′) |Ψ0〉 . (6.8)

Then, the expectation value of some arbitrary Hermitian operator Ô(t) is given by

〈Ô(t)〉 = 〈ΨI(t)|ÔI(t)|ΨI(t)〉 ,

≈ 〈Ψ0|ÔI(t)|Ψ0〉 − i
∫ t

0

dt′ 〈Ψ0|
[
ÔI(t), δV̂ I(t′)

]
|Ψ0〉 , (6.9)

where the first term in Eq. (6.9) is just 〈Ô(t = 0)〉 and the second term gives the change

in 〈Ô〉 to the first order in δV̂ I . Here we enter the linear response regime by assuming

that the change of an observable due to a change in the external potential follows a

linear relation.

We are interested in calculating such second term for the density operator n̂(r).

This is given by

n(r, t)− n(r, 0) = δn(r, t) = −i
∫ t

0

dt′ 〈Ψ0|
[
n̂I(r, t), δV̂ I(t′)

]
|Ψ0〉 , (6.10)

= −i
∫ t

0

dt′
∫
d3r′δV (r′, t′) 〈Ψ0|

[
n̂I(r, t), n̂I(r′, t′)

]
|Ψ0〉

(6.11)
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The last equality follows from the definition

δV̂ (t′) =

∫
δV (r′, t′)n̂(r′)d3r′ (6.12)

Thus we can finally obtain an expression for our response function, namely

χ(rt, r′t′) = −iΘ(t− t′) 〈Ψ0|
[
n̂I(r, t), n̂I(r′, t′)

]
|Ψ0〉 . (6.13)

Let us now denote the full set of the many-body state kets of Ĥ0 as {|ΨJ〉}
and the set of eigenvalues as {EJ}. Then, the first term in the commutator on the right

hand side of Eq. (6.13) gives

〈Ψ0|eiĤ0tn̂(r)e−iĤ0teiĤ0t′n̂(r′)e−iĤ0t′ |Ψ0〉 =
∑

J

〈Ψ0|eiĤ0tn̂(r)e−iĤ0t|ΨJ〉 〈ΨJ |eiĤ0t′n̂(r′)e−iĤ0t′|Ψ0〉

=
∑

J

ei(E0−EJ )(t−t′) 〈Ψ0|n̂(r)|ΨJ〉 〈ΨJ |n̂(r′)|Ψ0〉 .

(6.14)

The second term of the commutator can be evaluated likewise. This shows

that χ(rt, r′t′) is actually a function of (t− t′), i.e. χ(rt, r′t′) = χ(r, r′, t− t′). As such,

χ can be Fourier transformed into energy space as

χ(r, r′, ω) =

∫
d(t− t′)χ(r, r′, t− t′)eiω(t−t′)

=
∞∑

J=1

〈Ψ0|n̂(r)|ΨJ〉 〈ΨJ |n̂(r′)|Ψ0〉
ω − (EJ − E0) + i0+

+ c.c. (6.15)

Note that χ(r, r′, t−t′) and consequently χ(r, r′, ω) are properties of the unper-

turbed Hamiltonian and do not depend on δV̂ (t)1. The poles of Eq. (6.15) are located

1This suggests that if the unperturbed Hamiltonian is translation invariant, then χ(r, r′, ω) = χ(r−
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at the energies (EJ − E0) that, by definition, are the excitation energies of the system.

A Fourier space equivalent of Eq. (6.3) indicates that the poles of χ(r, r′, ω) correspond

to significant changes in density brought about by the perturbation. In other words, if

χ(r, r′, ω) has a pole at ωα, then the ground-state system can be excited by supplying

it with an energy of ωα, resulting in significant change in density.

Within the QP framework, the excited states of the system typically correspond

to states in which one or more electrons have been promoted from their valence levels to

some excited state. The lowest excitation would be that of exciting an electron from the

highest occupied level to the lowest available empty level. Such promotion of an electron

leaves behind a hole in the valence space. Thus, the excitation can be thought of as the

creation of an interacting electron-hole pair [see Appendix C], known as exciton. The

coupling between the hole and the promoted electron results in energy gain and, as a

consequence, the lowest excitation energy, known as the optical gap, is typically lower

than the QP gap. The latter is the difference in addition and removal energies, both

referring to systems with net charge and therefore lacking the aforementioned electron-

hole coupling. The state of the art for finding the energies associated with such neutral

excitations typically follows the route of finding the poles of χ(r, r′, ω).

6.1.2 State-of-the art

The most popularly used method for finding the poles of Eq. (6.15), at least for finite

systems, is to use time-dependent density functional theory (TDDFT). To this end, one

considers an equivalent KS system whose density ns(r, t) is the same as that (n(r, t))

of the interacting system at all time. The response function of such a non-interacting

r′, ω), i.e. the density response function is a function of difference in coordinates and can undergo

Fourier transform into momentum space χ(r− r′, ω)→ χ(q, ω). See section 15.5.1 of Ref. [102]. Then,

with the help of the convolution theorem, the complicated Eq. (6.3) reduces, in momentum space, to

δn(q, ω) = χ(q, ω)δV (q, ω).
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system is given by

χs(r, r
′, ω) =

∑

j,k

(fj − fk)δσj ,σk
φ∗k(r)φj(r)φ∗j(r

′)φk(r
′)

ω − (εk − εj) + i0+
+ c.c (6.16)

where |φi〉,fi and εi are respectively the state-ket, occupation and energy eigenvalue

of the i-th level. The poles of this function are at the excitation energies of the KS

non-interacting system. However, the response functions for the two different systems

are related (see, for example, appendix D of Ref. [92]) by

χ(r, r′, ω) = χs(r, r
′, ω) +

∫
d3r1d

3r2χs(r, r1, ω)

[
1

|r1 − r2|
+ fxc(r1, r2, ω)

]
χ(r2, r

′, ω)

(6.17)

where fxc(r1, r2, ω) is the Fourier transform of

fxc(r1t1, r2t2) =
δVxc(r1t1)

δn(r2t2)
(6.18)

Now, in general,Vxc(r1t1) is a functional of the density n(t′) at all times t′ < t1

and also of the initial many body state [Ψ0 = Ψ(t = 0)] and of the initial KS state

[Φ0 = Φ(t = 0)]. Thus,

Vxc(r1t1) = Vxc[n(t′ < t1),Ψ0,Φ0](r1t1) (6.19)

However, if the initial many-body state is the ground state, then the initial

state dependence is redundant as ground state density uniquely specifies the ground

state. Also, because of the one-to-one correspondence between the external potential

Vext(t) and n(t), one can write, if Ψ0 = ΨGround State, then

Vxc(rt) = Vxc[n(t)](rt) (6.20)

To uncomplicate matters, even in the general case, in most calculations one

uses the adiabatic approximation which amounts to neglecting all memory and using

the Vxc that we would have had if the system was in a ground state.

V Adiabatic
xc [n,Ψ0,Φ0](rt) = V Ground State

xc [n(t)](rt) (6.21)



133

In terms of computational resources, TDDFT is a relatively expensive method.

Unlike regular DFT, which scales as O(N3) with size of system, TDDFT, in the stan-

dard form, shows a scaling of O(N4) [162]. This limits the system size treatable with

TDDFT to a significant level. Additionally, TDDFT usually comes with significant

memory overhead. Also, within the adiabatic approximation Eq. (6.21), beyond which

the computational expenses and complications are even higher, TDDFT can only de-

scribe single excitations [163, 164, 165]. This is one major drawback of the adiabatic

approximation.

The many-body based approach of solving the Bethe-Salpeter equations within

the GW approximation [166, 167] yields accurate values for the neutral excitation en-

ergies. However, this method, which scales as O(N6) [168] with system size, is signifi-

cantly expensive. Besides, within the adiabatic approximation, i.e. approximating the

kernel to be frequency-independent, this method is also unable to treat double excita-

tions [169, 170].

Here, we note that, just like any other property of an interacting system, the

excited state energies are uniquely specified by the ground state density, which has a one

to one mapping with the Hamiltonian. One can prove the existence of a variational DFT,

with a minimum principle and an equivalent non-interacting Kohn-Sham (KS) excited

state, for an individual excited state of the interacting system [171]. Additionally, it

is noted that [172, 173] every extremum of the Levy-Lieb energy functional ELL[n(r)]

corresponds to a stationary state density and one can find equivalent non-interacting

systems corresponding to them [174]. Motivated by the aforementioned observations,

over the years, several first-principles methods based on regular (time-independent)

DFT have been proposed and developed for calculating these energies. For example,

in the ∆SCF-DFT formalism [174, 175], instead of filling up the lowest KS orbitals

according to the aufbau principle, a self-consistent procedure is executed keeping on

or more of the lowest KS orbitals empty and filling up equal number of higher energy

KS orbitals. The ensemble DFT [176, 177, 178] approach finds the energy of an

ensemble state where the individual electronic levels are filled in accordance with some

weight function. The excitation energy is then found as a linear combination of two
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different ensemble energies. In the constricted variational DFT [179, 180] method,

which comes in several different flavours, the occupied and the virtual (unoccupied)

KS ground state orbitals undergo a variational unitary transformation to form a new

set of occupied and virtual orbitals corresponding to the excited state, which gives the

excited state energy of the system. In the maximum overlap method [181, 182],

the initial “guess” KS orbitals must lie within the basin of attraction of the desired

excited state. Then, the occupied orbitals in each successive iteration of the SCF cycle

are chosen such that their overlap with the old occupied set of orbitals is maximum.

All these methods have their own strengths and weaknesses in terms of computational

expenses and ease of implementation and convergence. One must note that, particularly

in quantum-chemistry, a commonly used computational method for treatment of excited

states is the coupled cluster formalism [183].

6.2 The Excitonic DFT Method

Here we introduce our excitonic DFT method, which is a computationally inexpensive,

generally applicable, easy to converge ab initio, cDFT-based formalism for calculating

excitation energies. This has been implemented within the onetep software for calcu-

lation of the energies presented in this chapter. Previously (see section 3.3), we have

introduced cDFT as a method for determining the ground-state energy of a system sub-

ject to confining a given number of electrons, Nc, in a desired subspace. The condition

for the constraint can be given by [see Eq. (5.3)]

Tr[ρ̂P̂ ] = Nc,

where P̂ is a projection operator onto the desired subspace, whose population is given by

the left-hand side of the above equation. Then, the ground state of the system subject

to the above constraint is given by the stationary point of [see Eq. (5.4)]
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W [ρ, Vc] = E[ρ] + Vc

(
Tr[ρ̂P̂]− Nc

)
.

In cDFT, typically the subspace given by P̂ is a user-defined spatial region,

creating distinct and spatially separated source and drain regions within the system for

simulating charge transfer excitations [184]. In this work, in order to access excitations

not limited to such charge separated states, we go beyond the condition of spatial con-

finement of charge and define the subspace in terms of KS eigenstates. Thus, our method

promotes cDFT to a fully ab initio method without the need for user-specification of

subspace. In this work, for a neutral system with N electrons, we propose to obtain

the energy of the lowest excited state by confining (N − 1) electrons within the sub-

space spanned by the valence KS orbitals of the ground state calculation. We define the

projector over this subspace as

P̂ = ρ̂0,

=
∑

i

fi |ϕi〉 〈ϕi| ,

where ρ̂0 is the ground state density operator, |ϕi〉 is the i-th KS orbital and fi, which

denotes the occupation number of the KS orbital, equals 0 for unoccupied states and 1

for occupied states2.

It is interesting to note that the KS many-body excited state, obtained from

the cDFT treatment, is orthogonal to the ground state. This is because the excited

state is a Slater determinant composed of single-particle KS orbitals, the highest one of

which is, by construction, orthogonal to each KS single-particle orbital composing the

many-body KS ground state.

If the lowest unoccupied state is degenerate, then the occupation numbers will

be ill-conditioned (see, for example, section (5.3.2)) for these single-particle states. Also,

if there are a large number of unoccupied states in the vicinity of the lowest one, the

2We use materials which are insulator in the ground state
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convergence will be unstable for the cDFT calculation, in which the promoted electron

needs to occupy such state. Under these circumstances one needs to employ ensemble

DFT for the cDFT run at a finite temperature.

The above formalism has been implemented within the onetep code and it

is used to calculate the optical gaps for both singlet and triplet excitations. These

excitations correspond to states with S = 0 and S = 1 respectively and they require the

use of spin-polarized cDFT. Consequently, the condition for constraint is modified as

Tr[ρ̂σP̂ ] = Nσ
c , (6.22)

where σ denotes the desired spin of electron.

In many-body theory methods for determining QP gap (e.g. the GW scheme),

we have remarked that the gap is calculated by a clever manipulation of the properties

related to the inter-particle interaction in the charge neutral state, without actually

adding/removing one electron. In contrast, in the cDFT formalism, one actually sim-

ulates the charge transfer in order to find the approximate QP gap in terms of energy

difference. A similar difference can be appreciated, in the context of calculation of op-

tical gaps, between the many-body based method (i.e, the solution of Bethe-Salpeter

equation (see Appendix C)), TDDFT and our cDFT treatment. In the first two, with-

out technically creating any excitation, one tries to find the excitation energies from the

poles of certain quantities. Whereas, in the latter, one simulates the promotion of an

electron in the KS system in order to evaluate the approximate energy change in the

equivalent interacting system. This ensures the computational efficiency of such method

compared to TDDFT and the many-body procedure. Also, since cDFT does not rely

on adiabatic approximation, one can, in principle, access states corresponding to double

excitations by promoting two electrons from the ground state KS system.
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6.3 Results

6.3.1 Optical gap of Molecules

Here we present the triplet (i.e. corresponding to an excited state with spin quantum

number S = 1) and singlet (i.e. corresponding to an excited state with spin quantum

number S = 0) optical gaps of several molecules calculated with the excitonic DFT

formalism. However, before presenting the results, we want to specify some terminology.

The KS Slater determinant, which is the state including all the electrons, is referred to

as the KS many-body state in order to distinguish from the single-particle KS orbitals.

The KS many-body quantum state is a non-interacting state different from the quantum

state of the interacting many-body system.

The requirement that the singlet excited state has to be an eigenstate of Ŝ2

with spin-quantum number zero prompts one to make certain approximations in its

treatment. In the following, we discuss such approximations in detail.

The Sum Method

The non-interacting KS many-body state must be expressible as a single Slater determi-

nant. For example, considering a simple two-orbital two-electron model (TOTEM) [185]

in a singlet ground state, i.e. one with a spinor like 1√
2

(|1 ↑〉 |2 ↓〉 − |1 ↓〉 |2 ↑〉), the RKS

many-body wave-function is given by

S=0ΨGS =
1√
2
ϕa [|1 ↑〉 |2 ↓〉 − |1 ↓〉 |2 ↑〉] , (6.23)

where ϕa denotes the KS spatial level. Let us see how an equivalent expression will look

for an excited state, where one electron has been promoted to a higher level. In the

restricted KS (RKS) scheme, where the spatial orbital is independent of the spin, the

energy eigenstate for the singlet excitation with one electron in the lower spatial level a
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and another electron in the higher spatial level b can be written as3

S=0Ψ
(RKS)
ms=0 (1, 2) =

1√
2

[ϕa(1)ϕb(2) + ϕb(1)ϕa(2)]⊗ [↑ (1) ↓ (2)− ↓ (1) ↑ (2)].

=
1√
2



∣∣∣∣∣∣
ϕa↑(1) ϕa↑(2)

ϕb↓(1) ϕb↓(2)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
ϕb↑(1) ϕb↑(2)

ϕa↓(1) ϕa↓(2)

∣∣∣∣∣∣


 . (6.24)

S=0Ψ
(RKS)
ms=0 (1, 2) is an eigenstate of Ŝ2 and Ŝz with S = 0 and ms = 0. As

shown in Eq. (6.24), this can be written as a normalized sum of two SDs. These two

SDs, which are energy degenerate with an energy of,say SDE
(RKS)
ms=0 , are eigenstates of Ŝz

with an eigenvalue of 0, but they are not eigenstates of Ŝ2. Let us denote the first (say)

SD as SDΨ
(RKS)
ms=0 .

The RKS triplet state, in contrast, is three-fold degenerate. The three triplet

(S = 1) states, with Ŝz eigenvalues of −1, 0 and 1 are given by

S=1Ψ
(RKS)
ms=−1(1, 2) =

∣∣∣∣∣∣
ϕa↓(1) ϕa↓(2)

ϕb↓(1) ϕb↓(2)

∣∣∣∣∣∣
, (6.25)

S=1Ψ
(RKS)
ms=0 (1, 2) =

1√
2



∣∣∣∣∣∣
ϕa↑(1) ϕa↑(2)

ϕb↓(1) ϕb↓(2)

∣∣∣∣∣∣
−

∣∣∣∣∣∣
ϕb↑(1) ϕb↑(2)

ϕa↓(1) ϕa↓(2)

∣∣∣∣∣∣


 and (6.26)

S=1Ψ
(RKS)
ms=1 (1, 2) =

∣∣∣∣∣∣
ϕa↑(1) ϕa↑(2)

ϕb↑(1) ϕb↑(2)

∣∣∣∣∣∣
. (6.27)

Note that S=1Ψ
(RKS)
ms=−1(1, 2) and S=1Ψ

(RKS)
ms=1 (1, 2) are single SD wave-functions

and hence can, in principle, be accessed within the KS framework. In fact, one can expect

a cDFT excited state calculation with spin=-1 (spin=1 ) to converge to S=1Ψ
(RKS)
ms=−1(1, 2)

(S=1Ψ
(RKS)
ms=1 (1, 2)). However, one can not expect a single KS cDFT calculation to converge

3The number in the bracket is the particle index. So, |ϕas1(i)〉 is the state ket of the i-th particle

with spin s1 in the spatial orbital ϕa.
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Figure 6.1: A schematic diagram of the different Slater determinant states presented

within a restricted treatment. The state in the centre is the ground state singlet from

Eq. (6.23). The other states, clockwise from top left, are the triplet state of Eq. (6.27),

the second Slater determinant of Eq. (6.26), the first Slater determinant of Eq. (6.26)

and the triplet state of Eq. (6.25), respectively.

to any of the states S=0Ψ
(RKS)
ms=0 (1, 2) and S=1Ψ

(RKS)
ms=0 (1, 2). An excited state cDFT cal-

culation with spin=0 can actually be expected to converge to one of their constituent

degenerate SDs. Now, by expanding the respective Slater determinants, the energy

eigenvalue S=0E
(RKS)
ms=0 of the RKS open-shell singlet can be expressed as [186]

〈S=0Ψ
(RKS)
ms=0 (1, 2)|Ĥ|S=0Ψ

(RKS)
ms=0 (1, 2)〉

= 2× 〈SDΨ
(RKS)
ms=0 |Ĥ|SDΨ

(RKS)
ms=0 〉 − 〈S=1Ψ

(RKS)
ms=0 (1, 2)|Ĥ|S=1Ψ

(RKS)
ms=0 (1, 2)〉

= 2× 〈SDΨ
(RKS)
ms=0 |Ĥ|SDΨ

(RKS)
ms=0 〉 − 〈S=1Ψ

(RKS)
ms=1 (1, 2)|Ĥ|S=1Ψ

(RKS)
ms=1 (1, 2)〉 , (6.28)

where the last relation follows from the degeneracy of the RKS triplet states. In explicit

energy notations

S=0E
(RKS)
ms=0 = 2×SD E

(RKS)
ms=0 −S=1 E

(RKS)
ms=1 . (6.29)

Note that these energies pertain to non-interacting systems. At this point, we
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make a simplifying assumption. We use Eq. (6.29), which is derived for a restricted

non-interacting KS system, to evaluate the singlet excited state energy of an interacting

many-body system

S=0EIms=0 = 2×SD EIms=0 −S=1 EIms=1. (6.30)

Here, as denoted by the superscript I, each energy term corresponds to an

interacting system, obtained from an equivalent unrestricted KS system whose density

and spin density equal those of the interacting system. Then, the task of determining the

triplet and singlet optical gaps boils down to running the three following first principles

calculations.

1. An unconstrained DFT calculation to determine the ground state energy E0,

2. a cDFT calculation with (spin=1), confining (N − 1) electrons to the valence

subspace of the previous calculation to obtain the energy S=1EIms=1 corresponding

to the triplet interacting state, and

3. a cDFT calculation with (spin=0), again confining (N−1) electrons to the valence

subspace of the DFT run to find the energy SDEIms=0.

Then we use Eq. (6.30) to find the energy S=0EIms=0 corresponding to the excited singlet

state. The triplet and the singlet optical gaps are then calculated as

S=1EOG =S=1 EIms=1 − E0 (6.31)

and

S=0EOG =S=0 EIms=1 − E0, (6.32)

respectively. For our excitonic DFT calculations, the constraining potential is always

applied on one spin channel (we use up).
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It is interesting to note that the (spin=1) cDFT calculation (see step 2 above)

gives the exact same energy as an unconstrained DFT calculation with (spin=1). This is

not too surprising since the KS single-particle orbitals are mutually orthogonal. There-

fore, unless there is much relaxation among the low-lying states, in an unconstrained

DFT calculation, we can expect that to accommodate two unpaired electrons with up-

spin, one of them will be promoted out of the subspace spanned by the KS orbitals of all

other electrons. In other words, we expect the excited state, obtained by promoting one

up-spin electron out of the valence subspace (i.e., the KS state accessed by the cDFT

calculation with spin=1), to be the lowest excited state where the two most energetic

electrons have the same spin (i.e., the KS state accessed by the unconstrained DFT

calculation with spin=1). This equality also suggests that in the unconstrained excited

state, there is little relaxation among the lowest N/2 KS states (compared to their

ground-state positions) and consequently, the lowest (N − 1) electrons in the excited

state stay within the valence subspace of the ground state. Thus, this equality offers a

validation of our cDFT approach.

The implementation of the excitonic DFT method in code onetep [96] has

been used, with PBE exchange-correlation functional [94] to calculate the optical gaps

for the 28 closed-shell organic molecules, which constitute the well known Thiel’s set [187].

The structure of the molecules can be found in Fig. (6.2), (6.3) and (6.4). The calcu-

lations are performed using norm-conserving pseudopotentials with a plane-wave cutoff

energy of 1500 eV and a radius of 14.0 Å for the NGWF basis functions. In Fig. 6.5,

we show a scatter plot of the singlet and triplet optical gaps calculated with our cDFT-

based method against those obtained with TDDFT and PBE functional in Ref. [188]

(for singlet transition) and in Ref. [189] (for triplet transition). The TDDFT results

are generally in agreement with experimental values [see the supporting information in

Ref. [190]]. The green straight line in Fig. 6.5 represents x = y, namely the perfect

match between cDFT and TDDFT results. Note that, as expected, the triplet optical

gaps show much better match between the cDFT and the TDDFT results. This is be-

cause, being SDs (for ms 6= 0), the KS triplet excited states are directly accessed by

the cDFT procedure. However, Fig. 6.5 also shows that, in spite of the approximate
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Figure 6.2: Structure of the molecules investigated in this chapter: (1)Acetamide,

(2)Acetone, (3)Adenine, (4)Benzene, (5)Butadiene, (6)Cyclopentadiene, (7)Cyclo-

propene, (8)Cytosine, (9)Ethene, (10)Formaldehyde, (11)Formamide, (12)Furan.

Colour code: Yellow-Carbon, Red-Oxygen, Turquoise-Hydrogen, Blue-Nitrogen.



143

Figure 6.3: Structure of the molecules investigated in this chapter: (13)Hex-

atriene, (14)Imidazole, (15)Naphthalene, (16)Norbornadiene, (17)Octatetracene,

(18)p-Benzoquinone, (19)Propanamide, (20)Pyrazine, (21)Pyridazine, (22)Pyridine,

(23)Pyrimidine, (24)Pyrrole. Colour code: Yellow-Carbon, Red-Oxygen, Turquoise-

Hydrogen, Blue-Nitrogen.
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Figure 6.4: Structure of the molecules investigated in this chapter: (25)s-Tetrazine,

(26)s-Triazine, (27)Thymine, (28)Uracil. Colour code: Yellow-Carbon, Red-Oxygen,

Turquoise-Hydrogen, Blue-Nitrogen.
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Figure 6.5: A scatter plot of the optical gap of molecules obtained with the excitonic

DFT method and with linear response TDDFT. The blue dots and the red triangles

denote singlet and triplet gaps, respectively. The green straight line stands for (x = y)

formula, the singlet optical gaps are also calculated by cDFT with appreciable accuracy.

A plot of the difference in charge density between the excited state and the

ground state provides a good approximation for the exciton charge density. In Fig. 6.6

we show such plots for a representative molecule propanamide. A difference in charge

density between the lumo and the homo orbital would be a crude approximation for

the exciton density in the KS system if the promotion of electron is not followed by

a relaxation of the energy levels. We see that such plot, as shown in the panel (a)

of Fig. 6.6 is in good agreement with the exciton density plots of the singlet and the

triplet state obtained with our calculations, as shown in panel (b) and (c), respectively.

However, the singlet exciton charge density is less pronounced than the lumo-homo
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density difference, as expected due to exciton binding. The singlet exciton density is also

less pronounced than the triplet counterpart, as expected from Pauli exclusion principle.

The Spin Projection Correction Method

Eq. (6.30), which is used for calculating the singlet excitation energies, is an interacting

many-body approximation of Eq. (6.29), which is true for an RKS system. However,

we are operating under an UKS framework here. For the actual interacting many-

body system, the three operators Ĥ, Ŝ2 and Ŝz commute with each other. Therefore,

the energy eigenstates can always be chosen as eigenstates of Ŝ2 and Ŝz. For each

eigenvalue of Ŝ2, there are always (2S + 1) degenerate eigenstates differing in their Ŝz

eigenvalues. In UKS DFT, in addition to the total electron density, the spin-density is

also identical for the KS system and the interacting system. However, even though for

the UKS system, Ŝz and Ĥ still commute, the operator Ŝ2 does not commute with the

KS Hamiltonian. Thus, the KS energy eigenstate does not have to be an eigenstate of

Ŝ2. This is known as spin contamination [191], meaning that the KS eigenstates are a

linear combination of eigenstates of Ŝ2 (note that this statement is true for the KS state,

not for the true interacting state). Within the KS formalism, it is impossible to have Ŝ2

commuting with the Hamiltonian, if one enforces the spin-density of the KS system to

match that of the interacting one [192]. Therefore, in a ground state UKS calculation

employing the hypothetical exact XC-functional, the self-consistent field (SCF) cycle

will converge to a non-interacting state with the same electron density and spin-density

as those of the interacting many-body system but can have a different value for 〈Ŝ2〉.

At this stage, it is important to note that, even though for the actual interact-

ing system, Ŝ2 commutes with Ĥ, this is not necessarily true for the interacting system

accessible by the approximate density functional. Thus, we essentially have three dif-

ferent systems: 1) the non-interacting KS system, 2) the interacting system described

by the approximate XC-functional such that its ground state density and spin-density

match those of the UKS system (for these two systems, the energy eigenstate is not

necessarily an eigenstate of Ŝ2), and 3) the actual many-body system that we want
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(a)

(c)

(b)

Figure 6.6: Plot of exciton charge density for the propanamide molecule. (a) shows

the difference in charge density between the KS lumo and homo orbital of the ground

state. (b) and (c) show respectively the singlet and triplet exciton density obtained with

the excitonic DFT method.
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to be describe but whose properties are not accessible with the approximate density

functionals.

Within the UKS formalism, where the single particle orbitals are spin-dependent,

the equivalent of Eq. (6.24) would be

S=0Ψ
(RKS)
ms=0 (1, 2) =

1√
2



∣∣∣∣∣∣
ϕa↑(1) ϕa↑(2)

ϕb′↓(1) ϕb′↓(2)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
ϕb↑(1) ϕb↑(2)

ϕa′↓(1) ϕa′↓(2)

∣∣∣∣∣∣


 . (6.33)

where a and b are single particle orbitals occupied by electrons with spin up, while a′

and b′ are those occupied by electrons with spin down. Not only do the two constituent

SDs correspond to different energies, the state S=0Ψ
(UKS)
ms=0 (1, 2) is not even an eigenstate

of Ŝ2. So, strictly speaking, Eq. (6.30) is not valid for an UKS system.

Strictly speaking, the energy of the excited interacting state with (S = 0,ms =

0) is not accessible with the pristine UKS DFT formalism even with the exact XC-

functional. This is because the KS orbitals have no physical meaning. They merely form

a non-interacting many-body state, which, when determined with the hypothetical exact

XC-functional, has the same density as that of the ground state of the real interacting

system. A spin-contaminated UKS wave function does not necessarily mean that the

corresponding interacting wave-function is spin contaminated. So, even if we manage

to cure for the spin-contamination in the UKS wave-function by finding the desired

eigenfunction of Ŝ2 as a linear combination of energy eigenfunctions, there is no formal

reason to expect that the same linear combination will cure any spin-contamination

present in the interacting wave function.

Here we would like to present calculations, performed with an alternative ap-

proximation for accessing the singlet many-body excited state.

We know that the many-body energy eigenstate described by the approximate

XC-functional is not necessarily an eigenstate of Ŝ2. However, within the LDA, the

value of this 〈Ŝ2〉 can be calculated [193, 194] from the two-particle density matrix.

In the spin-projection correction scheme, this information can be used to estimate the
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spin-contamination 〈S2〉c of the many-body state [195, 196]. Let the contaminated

many-body state |Ψc〉 be a linear combination of two states, |SΨ〉 and |S+1Ψ〉. Then,

we have

|Ψc〉 = (1− a) |SΨ〉+ a |S+1Ψ〉 , (6.34)

and therefore

Ec = (1− a)ES + aES+1

⇒ ES =
Ec − aES+1

1− a , (6.35)

where the subscript c refers to the contaminated state. Eq. (6.34) gives us,

〈S2〉c = (1− a)S(S + 1) + a(S + 1)(S + 2),

a =
〈S2〉c − S(S + 1)

2(S + 1)
. (6.36)

For our probelm, S = 0, so that the contaminated state is expressed as a

linear combination of a triplet and a singlet. From an UKS calculation with (spin=0),

we calculate 〈S2〉 in terms of two-particle density matrix in accordance with ref. [193]

and find a from Eq. (6.36). This, with the knowledge of Ec and ES+1, evaluated with

cDFT calculations with (spin=0) and (spin=1), respectively, is then used to calculate

the energy ES of the singlet interacting state within the approximate XC-functional

from Eq. (6.35). The cDFT singlet optical gap corresponding to this treatment is

plotted against the results obtained with TDDFT in the scatter plot of Fig. (6.7). For

the sake of comparison, in the same graph, we plot the singlet gaps obtained from the

sum method as well. Interestingly, the results obtained with the sum method are in

better agreement with the TDDFT results, than those obtained with the correction

through spin-projection. We attribute this to possible errors in finding 〈S2〉 through the

approximate formalism.
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Figure 6.7: A scatter plot of the optical gap of molecules obtained with the excitonic

DFT method and with linear response TDDFT. The blue dot and the red triangle rep-

resent singlet gaps obtained with the sum method and with spin-projection correction,

respectively. The green straight line stands for x = y
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Correction to the XC-Energy

Before concluding this section, we would like to briefly touch upon an additional scheme

of further correction that we have tried. In Eq. (6.30), we find the energy of a singlet

state from a linear combination of energies. Since this singlet state should be non

spin-polarized, we attempt to remove contributions of spin-polarization from the linear

combination. As post-processings on the cDFT (ms = 0) and (ms = 1) excited state

runs, we estimate the non spin-polarized XC energy contribution to these systems, from

the density matrices obtained with spin-polarized calculations, by setting a local copy

of the spin-polarization to zero at all points. This gives us the non-spin polarized XC

contribution due to the density matrix obtained with spin-polarization. Then, the spin-

polarization corrected energy is estimated as

S=0Ecorrected =
[
2×SD EIms=0(Total)−S=1 EIms=1(Total)

]

−
[
2×SD EIms=0(XC Pol)−S=1 EIms=1(XC Pol)

]

+
[
2×SD EIms=0(XC Non-Pol)−S=1 EIms=1(XC Non-Pol)

]
(6.37)

where the terms “Total”, “XC Pol” and “XC Non-Pol” refer to the total energy, the

XC contribution with polarization and the XC contribution without polarization respec-

tively, the latter being obtained from the post-processing procedure mentioned above.

The singlet gaps so calculated are plotted in the scatter plot Fig. 6.8.

6.3.2 Optical gap of Periodic System

Finally, as a more ambitious attempt of extending this method, we try to mention our

ongoing work on the calculation of the optical gap of periodic solids. However, for this,

one must address the problems arising due to unphysical charge delocalization caused

by commonly used approximate XC-functionals. Earlier, we have discussed this in the

context of error in band-gap (see section 3.2.1). In a large system (for a periodic system,

when the unit cell is large) an added charge is unphysically delocalized due to the nature
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Figure 6.8: A scatter plot of the optical gap of molecules obtained with the excitonic

DFT method and with linear response TDDFT. The cDFT gaps are obtained with the

sum method. The the red triangle and the blue dot represent singlet gaps obtained

with and without the correction with XC-functional, respectively. The green straight

line stands for x = y
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of the approximate XC-functional. This is responsible for lowering the energy of the

charged system and consequently to reducing the energy gap. In contrast, if, for the

periodic system, we use a unit cell that is too small, then the added charge will be

artificially confined, resulting in an unphysically large gap. If the size of the unit cell

is “just right” for containing the added charge, then we can expect reliable results. In

a work from 2010, Chan and Ceder [197] used this idea and estimated the size of such

a cell in order to calculate the band gap by introducing the ∆-sol method. In the ∆-

SCF technique, which is widely used for the case of molecules, an electron is added

to/removed from an N -electron system and the fundamental gap is calculated as in

Eq. (3.40), namely as,

EFG = (EN+1
0 − EN

0 )− (EN
0 − EN−1

0 ). (6.38)

The argument of the aforementioned paper is the following. If the value of N ,

from (to) which an electron is removed (added) is chosen to be the number of electrons

present within the size of the exchange-correlation hole, then that unit-cell volume of

is comparable to the screening length of the added charge and the cell size is “just

right” for containing it. Thus, with this desired value of N = N∗, the band gap can be

evaluated with the standard ∆-SCF method. XC-functionals, like LDA or GGA, give

quite accurate results for the size of the exchange-correlation hole and in most cases,

this is not very sensitive to the pair distribution function, which is a material specific

property. Therefore, the same N∗ can be used to calculate the band-gap of a wide range

of solids. Based on computational tests on a variety of solids, the authors of Ref. [197]

have found this value of N∗.

Since a similar delocalization error is present in the case of the creation of

an exciton within LDA/GGA approximations, we intend to test the applicability of

the aforementioned method for the calculation of optical gaps of solids. Here, one must

note that the screening length and consequently the value of N∗ is, in principle, different

for an added charge and an exciton. However, in materials with low exciton-binding

energy, i.e. in materials for which the optical gap is very close to the electronic gap,
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Compound Singlet gap (eV) Triplet gap (eV) ∆-sol gap (eV)

GaAs 1.53 1.44 1.5

ZnS 3.77 3.61 3.6

AlN 5.37 5.26 5.3

Table 6.1: Singlet and triplet optical gaps calculated at 300 K with the excitonic DFT

method. For comparison, we also show electronic band-gaps calculated with the ∆-sol

procedure in ref. [197]. For our calculation we use the values of N∗ reported in the same

paper.

one can expect the two ‘N∗’s to be similar. Thus, one can use the value of N∗ reported

in Ref. [197] and calculate the optical gap of solids known to have low exciton binding

energy.

Since onetep performs a Γ− point calculation, all the energy eigenvalues can

essentially be thought of as molecular levels and therefore only the lowest transitions

are accessible. Here, we limit ourselves to solids with direct band-gap (in order to

obtain the lowest band-gap of materials with indirect band gap, one must ensure that

the levels pertaining to the valence band maximum and conduction band minimum are

both accurately sampled). So far, we have obtained the optical gaps of GaAs, ZnS and

AlN with our method at a temperature of 300 K with the LDA functional and the results

are shown in Tab. (6.1) along with the band gaps calculated with the ∆-sol method of

Chan and Ceder [197]. Note that the finite temperature calculations are performed with

the ensemble DFT formalism [156]. Note that for these materials, the exciton binding

energy is known to be very small [198, 199, 200] and consequently, their optical gaps

should be very similar to the electronic band gaps.

Before concluding our discussion on single particle excitations, we note that,

so far our proposed method simulates only the lowest energy excitations of a given spin

state. However, in principle, excitations of higher energy can be simulated by employing

multiple constraints, each containing one Lagrange multiplier Vc. For example, if P̂0 and

P̂1 denote the projectors for the valence subspaces of the ground state, obtained with

regular DFT and the first excited state, obtained with excitonic DFT, respectively, then
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the energy of the second excited state can be found by confining N − 1 electrons within

the subspace of P̂0 using a Lagrange multiplier V 1
c and, separately, confining N − 1

electrons within the subspace of P̂1 using a multiplier V 2
c . In general, the total-energy

of the Ith excited state system of a given spin symmetry will be found at the stationary

point of

W = E [ρ̂] +
I∑

i

V i
c

(
Tr
[
ρ̂P̂i−1

]
− (N − 1)

)
. (6.39)

6.3.3 Double Excitation of Beryllium

Finally, we explore the ability of the excitonic DFT method to calculate energies related

to double excitations, something that is not accessible by TDDFT within the adiabatic

approximation. To this end, we choose the Beryllium (Be) atom for which, within a

quasiparticle picture, a double excitation amounts to excitation of two electrons from

the 2s level to the 2p level [207]. To calculate this within the excitonic DFT framework,

we run three calculations (noting that, for Be, the 1s2 electrons are core electrons within

the pseudopotential approximation):

1. A regular DFT calculation to calculate the ground state energy E0.

2. A charge neutral cDFT calculation with spin=0 confining 0 electrons in the valence

subspace of the DFT run to obtain the doubly excited singlet state energy EDE
s=0.

3. A charge neutral cDFT calculation with spin=1 confining 0 electrons in the valence

subspace of the DFT run to obtain the double excited triplet state energy EDE
s=1.

Then the singlet and triplet double excitation energies are calculated simply

as (EDE
s=0 − E0) and (EDE

s=1 − E0), respectively. Note that since our method is rooted in

promoting an integer number of electrons out of the ground state valence KS subspace,

at least in its current form, we can only access states which are pure (i.e. purely single

excitonic, purely double excitonic etc.) in character. In Fig. 6.9 we plot the single and

double excitation energies of Be atom calculated with different XC-functionals. The
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Figure 6.9: Plot of excitation energies for Beryllium. The top left, top right, bottom left

and bottom right panels correspond to singlet single excitation, triplet singlet excitation,

singlet double excitation and triplet double excitation respectively. The plots contain

results obtained with the excitonic DFT method employing GGA-based XC-functionals

like PBE [94], RPBE [201] and hybrid functionals like PBE0 [202], B3LYP [203] and

B1PW91 [204]. For the single excitation, we also include results obtained with PBE

functional from TDDFT calculations. Here TD-PBE and TDA-PBE refer to TDDFT

calculations with linear response and Tam-Dancoff approximation [205], respectively.

The plots also contain experimental values [206] of the excitation energy.
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excitation energies so obtained agree well with those calculated with ensemble DFT in

ref. [177], for all four excitations. However, note that although, for the singlet double

excitation, our results agree well with experimental values, such agreement is not present

in the case of triplet double excitation. For the triplet case, the 2s2 → 2p2 excitation

energy is higher than the singlet one, contrary to what is expected from Hund’s rule.

We suspect that this is because the experimental triplet is not a pure double excitation

but contains contribution from one or more single excitations.

6.4 Conclusion

In this chapter, we have presented excitonic DFT, an approximate method for obtaining

the optical gap of materials in a computationally inexpensive way. As an approximation

to the many-body excited state, we promote an electron of the KS system outside the

valence subspace of the ground state. Then the optical gap is simply determined as

the difference in energy between the aforesaid excited state and the ground state. In

order to access the excited singlet state energy, we use the ‘sum method’ where the

excited state is expressed as a linear combination of Slater determinants. By applying

this method on 28 organic molecules, for which TDDFT results are available, we see

that despite major approximations, this method produces remarkably good results. We

propose the possibility of extension of this method to include periodic systems. This

can be accomplished by creating an exciton within a unit cell commensurate with the

size of the exciton. To demonstrate this, we show results for calculation of optical gaps

on 3 direct band gap solids. Finally, we note that unlike TDDFT or BSE with kernels

independent of frequency, the excitonic DFT technique can be used to access double

excitations, as shown with calculations on an isolated Beryllium atom. As such, this

method appears to be a promising technique, offering several advantages over the other

existing methods, for calculation of optical gaps and it would be useful and interesting

to extend it to the treatment of more exotic systems.





Chapter 7
Calculation of the Spin-Orbit Coupling

Terms from Maximally Localized Wannier

Functions

As mentioned earlier, the goal of the quest project is to construct and solve a tight-

binding Hamiltonian, including spin degrees of freedom, for a molecular crystal. For

the prospect of using OSCs in spintronic applications it would be important to study

spin-relaxation in such crystals.

In an organic semiconductor (OSC) the unwanted spin-relaxation can be caused

by the presence of paramagnetic impurities, by SO coupling and by hyperfine interac-

tion. In general paramagnetic impurities can be controlled to a very high degree of

precision and they can be almost completely eliminated from an OSC during the chemi-

cal synthesis [208]. The hyperfine interaction instead is usually considered small. This is

because there are only a few elements typically present in organic molecules with abun-

dant isotopes barring nuclear spins. The most obvious exception is hydrogen. However,

most of the OSC crystals are π-conjugated and the π-states, responsible for the extremal

energy levels, and hence for the electron transport, are usually delocalized. This means

that the overlap of the wave function over the H nuclei has to be considered small. Fi-

159
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nally, also the SO coupling is weak owing to the fact that most of the atoms composing

organic compounds are light.

As such, since all the non-spin-conserving interactions are weak in OSCs, it

is not surprising that there is contradictory evidence concerning the interaction mostly

responsible for spin-diffusion in organic crystals. Conflicting experimental evidence ex-

ists supporting either the SO coupling [209, 210] or the hyperfine interaction [211, 212],

indicating that the dominant mechanism may depend on the specific material under

investigation. For this reason it is important to develop methods for determining the

strength of both the SO and the hyperfine coupling in real materials. These can even-

tually be the basis for constructing effective Hamiltonians to be used for the evaluation

of the relevant thermodynamics quantities (e.g. the spin diffusion length). Here we

present one of such methods for the case of the SO interaction.

The SO interaction is a relativistic effect arising from the electronic motion

in the nuclear potential. In the reference frame of the electron, the nucleus moves and

creates a magnetic field, which in turn interacts with the electronic spin. This is the

spin-orbit coupling [213]. Since the SO interaction allows the spin of an electron to

change direction during the electron motion, it is an interaction responsible for spin

relaxation. The SO coupling operator is given by [214]

V̂SO =
∑

k

V̄ SO
l (k)L̂(k) · Ŝ, (7.1)

where Ŝ is the spin operator, L̂(k) is the angular momentum operator corre-

sponding to the k-th atom and V̄ SO
l (k) is a scalar term depending on the orbital angular

momentum quantum number l. Thus V̄ SO
l (k)L̂(k).Ŝ is the term responsible for SO cou-

pling due to the relative motion of the k-th ion about the electron. The SO matrix

elements evaluated in the siesta code are,
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V SO
ij,s1,s2

= 〈φs1i |
∑

k

V̄ SO
l (k)L̂(k) · Ŝ|φs2j 〉 , (7.2)

where |φsi 〉, the i-th spin-polarized siesta atomic orbital with spin s, is given

by,

|φsi 〉 = |φsni,li,Mi
〉 = |Rni,li〉 ⊗ |li,Mi〉 ⊗ |s〉 . (7.3)

Note that here, each orbital is denoted with a unique i, i.e. i contains both

the index of the unit cell and the index of the orbital within the unit cell. Then, ni, li,

Mi and s denote the principal, azimuthal, magnetic and spin quantum number of the

real orbital1, respectively. The three terms on the right-hand side of Eq. (7.3) denote

respectively the radial part, the real spherical harmonic and the spinor for the atomic

orbital. The term V̄ SO
l (k) is very short ranged. Hence, for computational simplicity,

in the siesta implementation of the SO coupling [215], all the terms for which |φs1i 〉,
V̄ SO
l (k) and |φs2j 〉 are not on the same atom are taken to be zero (on-site approximation).

7.1 Maximally-Localized Wannier Functions

The computational applicability and success of the TB model depends largely on the

basis set employed. So far, we have two possible complete basis sets at our disposal.

• The Bloch states, which are typically delocalized over the entire crystal and there-

fore are not suitable for a tight-binding method, which requires a localized basis

set.

• The localized atomic orbital basis set of siesta. However, choosing this basis set

amounts to working with a TB model with large dimensions and high computa-

tional demand. In many practical scenarios, the number of energy eigenstates that

1in siesta the complex spherical harmonics are linearly combined to form real spherical harmonics.
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contribute toward interesting phenomena (typically the valence bands at the top

and conduction bands at the bottom) are much smaller than the total number of

states available from first principles calculations. Thus, if one can work with only

the states of interest (disregarding all others), one can reduce the dimensionality

of the problem and greatly save computational resources. Unfortunately, this is

not a viable option with atomic basis functions.

Let us look at the example of a 100 nm long 1 dimensional crystal of triarylamine

molecules, which is a known organic semiconductor. The relaxed distance be-

tween two molecules is 4.8 Å. Thus, the crystal will contain 208 molecules. In a

siesta calculation with the standard double-zeta polarized basis set each molecule

contains 3, 164 orbitals producing 658, 112 basis functions for the entire crystal.

We can see that neither the Bloch states nor the atomic orbitals are ideal

for the construction of an effective TB model and one has to look for some alternate

option. This alternate ideal basis set should be made of localized functions spanning

the subspace of the desired Bloch states only. In order to satisfy this criterion, one

uses the Wannier functions [73]. For a set of N ′ isolated Bloch states, |ψmk〉 (these

for instance can be the KS eigenstates of a crystal), one can obtain the associated N ′

Wannier functions from the definition,

|wnR〉 =
V

(2π)3

∫

BZ

[
N ′∑

m=1

Uk
mn |ψmk〉

]
e−ik·Rdk , (7.4)

where |wnR〉 is the n-th Wannier vector centred at the lattice site R, V is the

volume of the primitive cell and the integration is performed over the first Brillouin

zone (BZ). In Eq. (7.4) Uk is a unitary operator that mixes the Bloch states and hence

defines the specific set of Wannier functions. Clearly, to uniquely specify the set of

Wannier functions, one needs a unique defintion for the unitary operator. A particularly

convenient gauge choice for Uk is made by minimizing the Wannier functions spread,

which is given by

Ω =
∑

n

[
〈wn0| r2 |wn0〉 − | 〈wn0| r |wn0〉 |2

]
. (7.5)
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The resulting Wannier functions are known as Maximally-Localized Wannier

Functions (MLWFs) [125, 70] and a procedure for the construction of MLWFs is imple-

mented in the package wannier90 [216]. wannier90 takes as input the Bloch states

ans constructs the MLWFs by minimizing Ω. In the following, we describe a method

for obtaining the SO coupling matrix elements with respect to these MLWFs.

7.2 Method

7.2.1 General idea

Here we describe the idea behind our method, which is general and does not depend on

the specific implementation used for calculating the band structure. In the absence of

SO coupling a Wannier function of spin s1 is composed exclusively of Bloch states with

the same spin, s1. By moving from a continuos to a discrete k-point representation the

spin-polarized version of Eq. (7.4) becomes [70]

|ws1nR〉 =
1

N

∑

k

∑

m

U s1
mn(k) |ψs1mk〉 e−ik·R . (7.6)

Note that this represents either a finite periodic lattice comprising N unit cells or a

sampling of N uniformly distributed k-points in the Brillouin zone of an infinite lattice.

Here the Bloch states, which are normalized within each unit cell according to the

relation 〈ψs1mk|ψs2nk′〉 = Nδm,nδk,k′δs1,s2 , obey to the condition ψpk(r1) = ψpk(rN+1), where

ψpk(rm) denotes the Bloch function for the p-th band at the wavevector k and position

rm.

The projection of a generic Bloch state onto a MLWF in the absence of SO
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coupling can be written as

〈ψs1qk′ |ws2nR2
〉 =

=
1

N

∑

k

∑

m

U s2
mn(k) 〈ψs1qk′ |ψs2mk〉 e−ik·R =

=
1

N

∑

k

∑

m

U s2
mn(k)e−ik.RNδq,mδk,k′δs1,s2 =

= U s2
qn(k′)e−ik

′·Rδs1,s2 .

(7.7)

Hence a generic SO matrix element can be expanded over the MLWF basis set as

〈ws1mR1
|VSO |ws2nR2

〉

=
1

N2

∑

p,q

∑

k1,k2

〈ws1mR1
|ψs1pk1

〉 (VSO)s1,s2pk1,qk2
〈ψs2qk2

|ws2nR2
〉

=
1

N2

∑

p,q

∑

k1,k2

U∗(s1)
pm (k1)eik1·R1(VSO)s1,s2pk1,qk2

· U s2
qn(k2)e−ik2·R2 ,

(7.8)

where

(VSO)s1,s2pk1,qk2
= 〈ψs1pk1

|VSO |ψs2qk2
〉 . (7.9)

It must be noted that in the absence of SO coupling, the Bloch states are spin-

degenerate, i.e. there are two states corresponding to each spatial wave-function, one

with spin up, |ψ↑(r)〉 = |ψ(r)〉⊗|↑〉, and one with spin down, |ψ↓(r)〉 = |ψ(r)〉⊗|↓〉. The

same is true for the Wannier functions, i.e. one has always the pair |w↑(r)〉 = |w(r)〉⊗|↑〉,
|w↓(r)〉 = |w(r)〉 ⊗ |↓〉. In the presence of SO coupling, spin mixing occurs and each

Bloch and Wannier state is, in general, a linear combination of both spin vectors. Since

the Bloch states (or the Wannier ones) obtained in the absence of SO coupling form a

complete basis set in the Hilbert space, the SO coupling operator can be written over

such basis provided that one takes both spins into account. Therefore we use such

spin-degenerate states as our basis for all calculations.

7.2.2 Numerical Implementation

The derivation leading to Eq. (7.8) is general and the final result is simply a matrix

transformation of the SO operator from the basis of the Bloch states to that of the
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Wannier ones. Note that both basis sets are those calculated in the absence of SO

coupling, i.e. we have assumed that the spatial part of the basis function is not modified

by the introduction of the SO interaction. For practical purposes we now we wish

to re-write Eq. (7.8) in terms of a localized atomic-orbital basis set, i.e. we wish to

make our method applicable to first-principles DFT calculations implemented over local

orbitals. In particular all the calculations that will follow use the Siesta package, which

expands the wave-function and all the operators over a numerical atomic-orbital basis

sets, {|φsµ,Rj
〉}, where |φsµ,Rj

〉 denotes the µ-th atomic orbital (µ is a collective label for

the principal and angular momentum quantum numbers) with spin s belonging to the

cell at the position Rj. Siesta uses scalar relativistic pseudopotentials to generate the

spin-orbit matrix elements with respect to the basis vectors and truncates the range of

the SO interaction to the on-site terms [215]. For a finite periodic lattice comprising N

unit cells, a Bloch state is written with respect to atomic orbitals as

|ψpk〉 =
N∑

j=1

eik·Rj

(∑

µ

Cµp(k) |φµ,Rj
〉
)
, (7.10)

where the coefficients Cµp(k) are in general C-numbers. This state is normalized over a

unit cell with the allowed k-values being m
N

K, where K is the reciprocal lattice vector

and m is an integer.

Hence, the SO matrix elements written with respect to the spin-degenerate

Bloch states calculated in absence of SO interaction are

〈ψs1pk1
|VSO |ψs2qk2

〉 =

=
∑

j,l

ei(k2·Rl−k1·Rj) ·
∑

µ,ν

C∗s1µp (k1)Cs2
νq(k2) 〈φs1µ,Rj

|VSO |φs2ν,Rl
〉 . (7.11)

As mentioned above Siesta neglects all the SO matrix elements between atomic orbitals

located at different atoms. This leads to the approximation

〈φs1µ,Rj
|VSO |φs2ν,Rl

〉 = 〈φs1µ |VSO |φs2ν 〉 δRj ,Rl
, (7.12)

so that Eq. (7.11) becomes

〈ψs1pk1
|VSO |ψs2qk2

〉 =

=
∑

j

ei(k2−k1)·Rj ·
∑

µ,ν

C∗(s1)
µp (k1)C(s2)

νq (k2) 〈φs1µ |VSO |φs2ν 〉 .
(7.13)
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This can be further simplified by taking into account the relation

N∑

j=1

ei(k1−k2)·Rj = Nδk1,k2 , (7.14)

which leads to the final expression for the SO matrix elements

〈ψs1pk1
|VSO |ψs2qk2

〉

= N
∑

µ,ν

C∗(s1)
µp (k1)C(s2)

νq (k1) 〈φs1µ |VSO |φs2ν 〉 δk1,k2 .
(7.15)

With the result of Eq. (7.15) at hand we can now come back to the expression

for the SO matrix elements written over the MLWFs computed in absence of spin-orbit

[see Eq. (7.8)]. In the case of the Siesta basis set this now reads

〈ws1mR1
|VSO |ws2nR2

〉

=
1

N

∑

p,q,µ,ν

∑

k

C∗s1µp (k)Cs2
νq(k)U∗(s1)

pm (k)U s2
qn(k) · eik·(R1−R2) 〈φs1µ |VSO |φs2ν 〉 .

(7.16)

Finally, we go back to the continuous representation (N → ∞), where the sum over k

is replaced by an integral over the first Brillouin zone

〈ws1mR1
|VSO |ws2nR2

〉

=
V

(2π)3

∑

p,q,µ,ν

∫

BZ

C∗s1µp (k)Cs2
νq(k)U∗s1pm (k)U s2

qn(k) · eik·(R1−R2) 〈φs1µ |VSO |φs2ν 〉 dk .
(7.17)

To summarize, our strategy consists in simply evaluating the SO matrix ele-

ments over the basis set of the MLWFs constructed in the absence of SO interaction.

These are by definition spin-degenerate and they are in general easy to compute since

associated to well-separated bands. Our procedure thus avoids to run the minimization

algorithm necessary to fix the Wannier’s gauge over the SO-split bands, which in the

case of OSCs have tiny splits. Our method is exact in the case the MLWFs form a com-

plete set describing a particular bands manifold. In other circumstances they constitute

a good approximation, as long as the SO interaction is weak, namely when it does not

change significantly the spatial shape of the Wannier functions.



167

7.2.3 Workflow

The following procedure is adopted when calculating the SO-split band structures from

the MLWFs Hamiltonian. The results are then compared to the band structure obtained

directly from Siesta including SO interaction.

1. We first run a self-consistent non-collinear spin-DFT Siesta calculation and ob-

tain the band structure.

2. From the density matrix obtained at step (1), we run a non self-consistent single-

step Siesta calculation including SO coupling. This gives us the matrix elements

〈φs1µ |VSO |φs2ν 〉. The band structure obtained in this calculation (from now on

this is called the SO-DFT band structure) will be then compared with that ob-

tained over the MLWFs. Note that we do not perform the Siesta DFT calcula-

tion including spin-orbit interaction in a self-consistent way. This is because the

SO interaction changes little the density matrix so that such calculation is often

not necessary. Furthermore, as we cannot run the MLWF calculation in a self-

consistent way over the SO interaction, considering non-self-consistent SO band

structure at the Siesta level allows us to compare electronic structures arising

from identical charge densities.

3. Since the current version of Wannier90 implemented for Siesta works only with

collinear spins, we run a regular self-consistent spin-polarized Siesta calculation.

This gives us the coefficients Cs
µn(k), which are spin-degenerate for a non-magnetic

material, C↑µn(k) = C↓µn(k).

4. We run a Wannier90 calculation to construct the MLWFs associated to the band

structure computed at point (3). This returns us the unitary matrix, U s
pm(k), the

Hamiltonian matrix elements 〈ws1mR1
|H0 |ws2nR2

〉 (H0 is the Kohn-Sham Hamilto-

nian in absence of SO interaction) and the phase factors 2 eik·R. For a non-

magnetic material the matrix elements of H0 satisfy the relation 〈ws1mR1
|H0 |ws2nR2

〉 =

〈wmR1 |H0 |wnR2〉 δs1,s2 .
2The correctness of the elements Us

pm(k) and eik·R is easily verified by ensuring that the following
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5. From 〈φs1µ |VSO |φs2ν 〉 and the Cs
µn(k)’s we calculate the matrix elements 〈ψs1pk|VSO |ψs2qk〉

by using Eq. (7.15).

6. Next we transform the SO matrix elements constructed over the Bloch functions,

〈ψs1pk|VSO |ψs2qk〉, into their Wannier counterparts, 〈ws1mR1
|VSO |ws2nR2

〉, by using

Eq. (7.17).

7. The final complete Wannier Hamiltonian now reads

〈ws1mR1
|H |ws2nR2

〉 = 〈ws1mR1
|H0 + VSO |ws2nR2

〉 , (7.19)

and the associated band structure can be directly compared with that computed

at point (2) directly from Siesta.

7.3 Results and Discussion

We now present our results, which are discussed in the light of the theory just described.

7.3.1 Plumbane Molecule

We start our analysis by calculating the SO matrix elements and then the energy eigen-

values of a plumbane, PbH4, molecule [see figure 7.1(a)]. Due to the presence of lead,

the molecular eigenstates change significantly when the SO interaction is switched on.

For this non-periodic system the key relations in Eq. (7.15) and Eq. (7.8) reduce to

〈ψs1p |VSO |ψs2q 〉 =
∑

µ,ν

C∗s1µp C
s2
νq 〈φs1µ |VSO |φs2ν 〉 (7.20)

relation is satisfied

〈wmR1
|wnR2

〉 =
∑

p

∫

FBZ

dk 〈wmR1
|ψpk〉 〈ψpk|wnR2

〉

=
∑

p

∫

FBZ

dkU∗pm(k)Upn(k)eik·(R1−R2)

= δm,nδR1,R2
.

(7.18)
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Figure 7.1: Atomic structure of (a) a plumbane molecule, (b) a chain of lead atoms and

(c) a chain of methane molecules. We have also calculated the electronic structure of a

chain of C atoms, which is essentially identical to that presented in (b). Color code: Pb

= grey, H = light blue, C = yellow.

and

〈ws1m |VSO |ws2n 〉 =
∑

p,q

U∗s1pmU
s2
qn 〈ψs1p |VSO |ψs2q 〉 , (7.21)

respectively, where now the vectors ψsn are simply the eigenvectors with quantum number

n and spin s.

In Table 7.1 we report the first 10 energy eigenvalues of plumbane, calculated

either with or without SO coupling. These have been computed within the LDA (local

density approximation) and a double-zeta polarized basis set. The table compares re-

sults obtained with our MLWFs procedure to those computed with SO-DFT by Siesta.

Clearly in this case of a heavy ion the SO coupling changes the eigenvalues apprecia-

bly, in particular in the spectral region around -13 eV. Such change is well captured

by our Wannier calculation, which returns energy levels in close proximity to those

computed with SO-DFT by Siesta. In order to estimate the error introduced by our

method, we calculate the Mean Relative Absolute Difference (MRAD), which we define

as 1
N

∑ |εsi−εwi |
|εsi |

for a set of N eigenvalues (i = 1, ..., N), where εsi and εwi are the i-th

eigenvalues calculated from Siesta and the MLWFs, respectively. Notably the MRAD

is rather small both in the SO-free case and when the SO interaction is included. Most

importantly, we can report that our procedure to evaluate the SO matrix elements over

the MLWFs basis clearly does not introduce any additional error.
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NonSO SO

Siesta MLWF Siesta MLWF

-33.93534 -33.93521 -33.93532 -33.93521

-33.93530 -33.93521 -33.93528 -33.93521

-13.02511 -13.02507 -14.69573 -14.69568

-13.02511 -13.02507 -14.69573 -14.69568

-13.02510 -13.02506 -12.64301 -12.64298

-13.02509 -13.02506 -12.64301 -12.64298

-13.02320 -13.02315 -12.64166 -12.64162

-13.02318 -13.02315 -12.64165 -12.64162

-5.75256 -5.75251 -5.75255 -5.75251

-5.75245 -5.75251 -5.75245 -5.75251

MRAD=4.320× 10−6 MRAD=3.998× 10−6

Table 7.1: The 10 lowest energy eigenvalues of a plumbane molecule calculated with (SO)

and without (NonSO) spin-orbit interaction. The first and third columns correspond to

the SO-DFT Siesta calculation, while the second and the fourth to the MLWFs one.

The MRAD for both cases is reported in the last row.
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Before discussing some of the properties of the SO matrix elements associated

to this particular case of a finite molecule, we wish to make a quick remark on the

Wannier procedure adopted here. The eigenvalues reported in Table 7.1 are the ten with

the lowest energies. However, in order to construct the MLWFs we have considered all

the states of the calculated Kohn-Sham spectrum. This means that, if our Siesta basis

set describes PbH4 with N distinct atomic orbitals, then the MLWFs constructed are

2N (the factor 2 accounts for the spin degeneracy). In this case the original local orbital

basis set and the constructed MLWFs span the same Hilbert space and the mapping is

exact, whether or not the SO interaction is considered.

In most cases, however, one wants to construct the MLWFs by using only a

subset of the spectrum, for instance the first N ′ eigenstates. Since in general the SO

interaction mixes all states, there will be SO matrix elements between the selected N ′

states and the remaining N − N ′. This means that a MLWF basis constructed only

from the first N ′ eigenstates will not be able to provide an accurate description of the

SO-split spectrum. In the case of light elements, i.e. for a weak SO potential, one

may completely neglect the off-diagonal SO matrix elements. This means that the SO

spectrum constructed with the MLWFs associated to the first N ′ eigenstates will be

approximately equal to the first N ′ eigenvalues of the MLWFs Hamiltonian constructed

over the entire N -dimensional spectrum. Such property is particularly relevant for

OSCs, for which the SO interaction is weak.

We now move to discuss a general property of the MLWF SO matrix elements,

namely the relations 〈wsm|VSO |wsm〉 = 0 and R[〈wsm|VSO |wsn〉] = 0. This means that

the SO matrix elements for the same spin and the same Wannier function vanish, while

those for the same spin and different Wannier functions are purely imaginary. This

property can be understood from the following argument. The SO coupling operator is

VSO =
∑

Rj
VRj

LRj
· S, where VRj

is a scalar potential independent of spin, and LRj

is the angular momentum operator corresponding to the central potential of the atom

at position Rj. Here S is the spin operator and the sum runs over all the atoms. By

now expanding S in terms of the Pauli spin matrices one can see that for any vector

|γsi 〉 = |γi〉 ⊗ |s〉, which can be written as a tensor product of a spin-independent part,
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|γi〉, and a spinor |s〉, the following equality holds

〈γs1m |L · S |γs2n 〉 =
1

2

[
〈γm| L̂z |γn〉 δs1↑δs2↑ + 〈γm| L̂− |γn〉 δs1↑δs2↓+

〈γm| L̂+ |γn〉 δs1↓δs2↑ + 〈γm| − L̂z |γn〉 δs1↓δs2↓
]
. (7.22)

Eq. (7.22) can then be applied to both the Kohn-Sham eigenstates and the MLWFs,

since they are both written as |γsi 〉 = |γi〉 ⊗ |s〉.

Now, the atomic orbitals used by Siesta have the following form

|φi〉 = |Rni,li〉 ⊗ |li,Mi〉 , (7.23)

where |Rn,l〉 is a radial numerical function, while the angular dependence is described by

the real spherial harmonic, 3 |l,M〉. It can be proved that the real spherical harmonics

follow the relation

〈l,Mi| L̂z |l,Mj〉 = −iMiδMi,Mj
. (7.24)

Since any Kohn-Sham eigenstate, |ψs1p 〉, can be written as |φi〉 ⊗ |s1〉, Eq. (7.22)

implies that only the terms in L̂z (or −L̂z) contribute to the matrix element between

same spins, 〈ψs1p |L ·S |ψs1p 〉. Equation (7.24) together with the fact that the Kohn-Sham

eigenstates are real for a finite molecule further establishes that R[〈ψp| L̂z |ψq〉] = 0. As

a consequence 〈ψm| L̂z |ψm〉 = 0. Finally, by keeping in mind that the unitary matrix

elements transforming the Kohn-Sham eigenstates into MLWFs are real for a molecule,

we have also

〈ws1m |L · S |ws1n 〉 = ±〈wm| L̂z |wn〉 =

=
∑

p 6=q

UpmUqn 〈ψp| L̂z |ψq〉 ,
(7.25)

which has to be imaginary. Thus we have R 〈ws1m |VSO |ws1n 〉 = 0 and 〈ws1m |VSO |ws1m 〉 = 0

since VSO must have real expectation values.

3The real spherical harmonics are constructed from the complex ones, |l,m〉, as |l,M〉 = 1√
2
[|l,m〉+

(−1)m |l,−m〉] and |l,−M〉 = 1
i
√
2
[|l,m〉 − (−1)m |l,−m〉]. For M = 0 the real and complex spherical

harmonics coincide.
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Figure 7.2: Bandstructure of a 1D Pb chain calculated (a) with Siesta and (b) by

diagonalizing the Hamiltonian matrix constructed over the MLWFs. Black and red

lines are for the bands obtained with and without SO coupling, respectively. The σ, σ∗

and π bands are identified in the picture.

7.3.2 Lead Chain

Next we move to calculating the SO matrix elements for a periodic structure. In par-

ticular we look at a 1D chain of Pb atoms with a unit cell length of 2.55 Å, which is

the DFT equilibrium lattice constant obtained with the LDA. Note that free-standing

mono-dimensional Pb chains have never been reported in literature, although there are

studies of low-dimensional Pb structures encapsulated into zeolites [217]. Here, how-

ever, we do not seek at describing a real compound, but we rather take the 1D Pb

mono-atomic chain as a test-bench structure to apply our method to a periodic struc-

ture with a large SO coupling. Also in this case we have constructed the MLWFs by

taking the entire bands manifold and not a subset of it. For the DFT calculations we
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have considered a simple s and p single-zeta basis set, which in absence of SO interac-

tion yields three bands with one of them being doubly degenerate [see Fig. 7.2(a)]. The

doubly-degenerate relatively-flat band just cuts across the Fermi energy, EF, and it is

composed of the py and pz orbitals orthogonal to the chain axis (π band). The other

two bands are sp hybrid (σ bands). The lowest one at about 25 eV below EF has mainly

s character (σ band), while the other one mainly px (σ∗ band).

Spin-orbit coupling lifts the degeneracy of the p-type band manifold, which is

now composed of three distinct bands. In particular the degeneracy is lifted only in the

π band at the edge of the 1D Brillouin zone, while it also involves the σ one close to the

Γ point (after the band crossing). When the same band structure is calculated from the

MLWFs we obtain the plot of Fig. 7.2(b). This is almost identical to that calculated

with SO-DFT demonstrating the accuracy of our method also for a periodic system.

It must be noted that for a periodic structure the Bloch state expansion coeffi-

cients, Cµp(k), and the elements of the unitary matrix U are complex and consequently

the diagonal elements of VSO with respect to Wannier functions are not zero in general.

However, as expected 〈ws1mR|VSO |ws2nR′〉 tends to vanish as the separation |R −R′| in-

creases. Furthermore, it is clear from Eq. (7.22) that the SO matrix elements for the

Wannier functions should obey the spin-box anti-hermitian relation

〈ws1mR|VSO |ws2nR′〉 = −〈ws2mR|VSO |ws1nR′〉∗ . (7.26)

These two properties can be appreciated in Fig. 7.3, where we plot the real [panel

(a)] and imaginary [panel (b)] part of 〈ws1m0|VSO |ws2nR〉 for some representative band

combinations, m and n, as a function of R.

7.3.3 Carbon Chain

Next we look at the case of a 1D mono-atomic carbon chain with a LDA-relaxed in-

teratomic distance of ∼ 1.3 Å. This has the same structure and electron count of the

Pb chain, and the only difference concerns the fact that the SO coupling in C is much

smaller then that in Pb. In this situation we expect that an accurate SO-split band
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Figure 7.3: The SO matrix elements of a chain of lead atoms calculated with respect to

some representative Wannier functions and plotted as a function of the site index, i.e.

of the distance between the Wannier function. Panels (a) and (b) show the real and

imaginary components respectively.
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structure can be obtained even when the MLWFs are constructed only for a limited

number of bands and not for the entire band manifold as in the case of Pb. This time

the DFT band structure is calculated at the LDA level over a double-zeta polarized

(DZP) Siesta basis set, comprising 13 atomic orbitals per unit cell. In contrast, the

MLWFs are constructed only from the first four bands, which are well isolated in energy

from the rest and again describe the sp bands with σ and π symmetry. Since the SO in-

teraction in carbon is small (the band split is of the order of a few meV) it is impossible

to visualize the effects of the SO interaction in a standard band plot as that in Fig. 7.2.

Hence, in Fig. 7.4 we plot the difference between the band structure calculated in the

presence and in the absence of SO coupling. In particular we compare the bands calcu-

lated with SO-DFT by Siesta (left-hand side panels in Fig. 7.4), with those obtained

with the MLWFs scheme described here (right-hand side panels in Fig. 7.4). In the

figure we have labelled the bands in order of increasing energy and neglecting the spin

degeneracy. Thus, for instance, the ψ1 and ψ2 bands correspond to the two lowest σ

spin sub-bands (note that the band structure of the linear carbon chain is qualitatively

identical to that of the Pb one and we can use Fig. 7.2 to identify the various bands).

We note that the lowest σ bands, defined as ψ1 and ψ2, do not split at all due

to the SO interaction, exactly as in the case of Pb. This contrasts the behaviour of both

the π (ψ3 through ψ6) and σ∗ (ψ7 and ψ8) bands, which instead are modified by the

SO interaction. Notably the changes in energy of the eigenvalues is never larger then

8 meV and it is perfectly reproduced by our MLWFs representation. This demonstrates

that truncating the bands selected for constructing the MLWFs is a possible procedure

for materials where SO coupling is weak. However, we should note that the truncation

still needs to be carefully chosen. Here for instance we have considered all the 2s and 2p

bands and neglected those with either higher principal quantum number (e.g. 3s and

3p) or higher angular momentum (e.g. bands with d symmetry originating from the

p-polarized Siesta basis), which appear at much higher energies. Truncations, where

one considers only a particular orbital of a given shell (say the pz orbital in an np shell),

need to be carefully assessed since it is unlikely that a clear energy separation between

the bands takes place.
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Figure 7.4: Difference, ESO − ENSO, between the band structure of chain of carbon

atoms calculated with, ESO, and without, ENSO, considering SO interaction. The bands

are labelled in increasing energy order without taking into account spin degeneracy.

For instance the bands ψ1 and ψ2 are the two spin sub-bands corresponding to the σ

band (see Fig. 7.2 for notation). The left-hand side panels show results for the SO-DFT

calculations performed with Siesta, while the right-hand side one, those obtained from

the MLWFs.
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7.3.4 Methane Chain

As a first basic prototype of 1D organic molecular crystal we perform calculations for

a periodic chain of methane molecules. We use a double-zeta polarized basis set and a

LDA-relaxed unit cell length of 3.45 Å (the cell contains only one molecule). Similarly

to the previous case, the MLWFs are constructed over only the lowest 4 bands (8 when

considering the spin degeneracy). When compared to the bands of the carbon chain,

those of methane are much narrower. This is expected, since the bonding between the

different molecules is small. In Fig. 7.5 we plot the difference between the eigenvalues

(1D band structure) calculated with, ESO, and without, ENSO, including SO interaction.

When SO interaction is included the spin-degeneracy is broken and one has

now eight bands. These are labeled as ψm in Fig. 7.5 in increasing energy order. Again

we find no SO split for the lowermost band and then a split, which is significantly

smaller than that found in the case of the C chain. This is likely to originate from the

crystal field of the C atoms in CH4, which is different from that in the C chain (the C-C

distance is different and there are additional C-H bonds). Again, as in the previous case,

we find that our MLWFs procedure perfectly reproduces the SO-DFT band structure,

indicating that in this case of weak SO interaction band truncation does not introduce

any significant error.

7.3.5 Triarylamine Chain

Finally we perform calculations for a real system, namely for triarylamine-based molecu-

lar nanowires. These can be experimentally grown through a photo-self-assembly process

from the liquid phase [218], and have been subject of numerous experimental and theo-

retical studies [219, 220]. In general, triarylamines can be used as materials for organic

light emitting diodes, while their nanowire form appears to possess good transport and

spin properties, making it a good platform for organic spintronics [221]. Triarylamine-

based molecular nanowires self-assemble only when particular radicals are attached to

the main triarylamine backbone and here we consider the case of C8H17, H and Cl rad-
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Figure 7.5: Difference, ESO − ENSO, between the band structure of chain of methane

molecules calculated with, ESO, and without, ENSO, considering SO interaction. The

bands are labelled in increasing energy order without taking into account spin degen-

eracy. The left-hand side panels show results for the SO-DFT calculations performed

with Siesta, while the right-hand side one, those obtained from the MLWFs. The inset

shows an isovalue plot of one of the four MLWFs with the red and blue surfaces denoting

positive and negative isovalues, respectively. All the MLWFs have similar structure and

they resemble those of the isolated methane molecule because of the small intermolecular

chemical bonding owing to the large separation.
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Figure 7.6: Structure of the triarylamine molecule (upper picture) and of the

triarylamine-based nanowire investigated here. The radicals associated to the triary-

lamine derivative are C8H17, H and Cl, respectively. Colour code: C=yellow, H=light

blue, O=red, N=grey, Cl=green.

icals, corresponding to the precursor 1 of Ref. [218] (see upper panel in Fig. 7.6). The

nanowire then arranges in such a way to have the central N atoms aligned along the

wire axis (see Fig. 7.6).

In general self-assembled triarylamine-based molecular nanowires appear slightly

p-doped so that charge transport takes place in the HOMO-derived band. This is well

isolated from the rest of the valence manifold and has a bandwidth of about 100 meV

(see figure Fig. 7.7 for the band structure). Such band is almost entirely localized on

the pz orbital of the central N atoms (pz is along the wire axis), a feature that has

allowed us to construct a pz-sp
2 model with the spin-orbit strength extracted from

that of an equivalent mono-atomic N chain. The model was then used to calculate

the temperature-dependent spin-diffusion length of such nanowires [222]. Here we wish

to use our MLWFs method to extract the SO matrix elements of triarylamine-based

molecular nanowires in their own chemical environment, i.e. without approximating the

backbone with a N atomic chain.

For this system we use a 1D lattice with LDA-optimized lattice spacing of 4.8 Å

and run the DFT calculations with double-zeta polarized basis and the LDA functional.

The MLWFs are constructed by using only the HOMO-derived valence band, i.e. we

have a single spin-degenerate Wannier orbital. We can then drop the band index and
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Figure 7.7: Band structure of the 1D triarylamine-based nanowire constructed with the

precursor 1 of Ref. [218]. This is plotted over the 1D Brillouin zone (Z=π/a with a the

lattice parameter). The Fermi level is marked with a dashed black line and it is placed

just above the HOMO-derived valence band (in red). The lower panel is a magnification

of the valence band. Note the bandwidth of about 100 meV and the fact that the band

has a cosine shape, fingerprint of a single-orbital nearest-neighbour tight-binding-like

interaction. Only the HOMO band is considered when constructing the MLWFs.
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Figure 7.8: Plot of (Ewith SO − Ewithout SO) as a function of k in arbitrary unit over a

Brillouin zone for the highest occupied band of a 1-d chain of triarylamine derivatives.

The blue and the red points correspond to calculations with Siesta and Wannier90

respectively.

write the SO matrix elements as

〈ws10 |VSO |ws2R 〉 =
V

(2π)3

∫
dkU∗(k)U(k)e−ik.R 〈ψs1k |VSO |ψs2k 〉

=
V

(2π)3

∫
dke−ik.R 〈ψs1k |VSO |ψs2k 〉 ,

(7.27)

or in a discrete representation of the reciprocal space

〈ws10 |VSO |ws2R 〉 =
1

N

∑

k

U∗(k)U(k)e−ik.R 〈ψs1k |VSO |ψs2k 〉

=
1

N

∑

k

e−ik.R 〈ψs1k |VSO |ψs2k 〉 ,
(7.28)

where the second equality comes from the unitarity of the gauge transformation, U(k).

In Fig. 7.8 we plot the difference between the band structure computed by

including SO interaction and those calculated without. Notably our MLWFs band

structure is almost identical to that computed directly with SO-DFT, again demon-

strating both the accuracy of our method and the appropriateness of the drastic band

truncation used here. In this particular case the SO band split is maximized half-way

between the Γ point and the edge of the 1D Brillouin zone, where it takes a value of
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Figure 7.9: SO matrix elements of a triarylamine-based nanowire calculated with respect

to the Wannier functions obtained from the HOMO band. Panels (a) and (b) correspond

to matrix elements calculated between for same and different spins, respectively.

approximately 80 µeV. Clearly such split is orders of magnitude smaller than the value

that one can possibly calculate by a direct construction of the MLWFs from the SO-

splitted band structure. Note also that the SO split of the valence band is calculated

here approximately a factor ten smaller than that estimated previously for a N atomic

chain [222], indicating the importance of the details of the chemical environment in

these calculations.

Finally we take a closer look at the calculated SO matrix elements. As men-

tioned earlier, in the Siesta on-site approximation [215] only the matrix elements cal-

culated over orbitals centred on the same atom do not vanish. As a consequence the

components 〈ws1R |VSO |ws2R′〉 drop to zero as |R − R′| gets large. This can be clearly

appreciated in Fig. 7.9(a) and Fig. 7.9(b), where we plot the SO matrix elements for

same and different spins, respectively.

From Fig. 7.9(a) we can observe that R 〈ws10 |VSO |ws1R 〉 vanishes for all R. This
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can be understood in the following way. In general any expectation value of VSO,

〈ψsk|VSO |ψsk〉, has to be real. This is in fact anti-symmetric with respect to k, i.e we

have 〈ψs0+k|VSO |ψs0+k〉 = −〈ψs0−k|VSO |ψs0−k〉, where k = 0 denotes the Γ point of the

Brillouin zone. Additionally, eik·R satisfies the relation ei(0+k)·R =
[
ei(0−k)·R]∗. Hence,

by performing the k-sum over first Brillouin zone we can write

R 〈ws10 |VSO |ws1R 〉 = R
∑

k

e−ik.R 〈ψs1k |VSO |ψs1k 〉 = 0 , (7.29)

where 〈ws10 |VSO |ws10 〉 is the expectation value of VSO and must be real. This implies

〈ws10 |VSO |ws10 〉 = 0 . (7.30)

We can also see from Fig. 7.9(b) that for triarylamine the matrix elements

〈ws1R |VSO |ws2R 〉 are almost zero for s1 6= s2. This follows directly from Eq. (7.22). In fact

in the particular case of triarylamine nanowires the Wannier functions are constructed

from one band only. As such, in order to have a non-zero matrix element, 〈ws1R |VSO |ws2R 〉,
we must have non-zero values for 〈wR| L̂± |wR〉. Therefore, the band under consideration

must contain an appreciable mix of components of both the |l, p〉 and |l, p+ 1〉 complex

spherical harmonics for some l and p. As mentioned earlier, the triarylamine HOMO

band is composed mostly of pz N orbitals. Hence, it has to be expected that the

〈ws1R |VSO |ws2R 〉 matrix elements are small.

7.3.6 3D structures: FCC lead and PhBr2C6Br2

So far we have discussed only 1-dimensional nanowire-like objects. Now we move to

the more general case of bulk 3-D crystals. A crucial point to be noted for treating

bulk crystals is that in wannier90, the direct lattice points, where the MLWFs are

calculated, are the lattice points of the Wigner-Seitz cell about the cell R = 0. Typically,

one should expect the number of such lattice points to be the same as the number of

k-points in the reciprocal space. However, in a 3-D crystal, it is possible to have lattice

points, which are equidistant from the R = 0 cell and (say) n number of other cells. This

means that such lattice point is shared by Wigner-Seitz cells of n+ 1 cells. In this case,
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Figure 7.10: Band structure of FCC lead. Left and right columns show eigenvalues

obtained with siesta and with our method respectively. Red and black lines are for the

bands obtained with and without SO coupling, respectively.

this degenerate lattice point is taken into consideration by wannier90 but a degeneracy

weight of 1/(n+ 1) is attached with it and consequently in further calculations (such as

band structure interpolation), its contribution carries a factor of 1/(n+ 1).

First, as a quick test case, we treat a bulk system with appreciable SO split,

a FCC crystal of Pb atoms. The left hand side and the right hand side panels of

Fig. 7.10 show the bandstructure of this crystal calculated with siesta and with respect

to MLWFs, respectively. The black and the red lines denote bands in absence and in

presence of SO coupling, respectively. The match between the siesta and the MLWF

plots confirm the applicability of our method for 3D bulk systems.

We note that for the procedure of construction of MLWFs, we typically work

with a subset of Bloch states of interest (the highest occupied/lowest unoccupied bands

and those in their vicinity). We are mostly interested in the matrix elements and

eigenvalues corresponding to these bands only. Now, we know that for a diagonal matrix,

the non-zero diagonal matrix elements are its eigenvalues. Therefore, if we take an

m × m submatrix of an n × n diagonal matrix (m < n), then each eigenvalue of the
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Figure 7.11: Figure shows a representative structure of the full m ×m matrix and its

n × n submatrix for n = 3 and m = 6. The p and 7 symbols stand for the diago-

nal and off-diagonal elements of submatrix, respectively, while the × and X symbols

are for diagonal and off-diagonal elements situated outside the submatrix, respectively.

Roughly speaking, if × << p, then one can expect the big matrix to have n (here

n = 3) eigenvalues, which are close to the eigenvalues of the submatrix

submatrix will be present in the set of eigenvalues of the larger matrix. However, this

is not the case if the n × n matrix is not diagonal. In this case, in general there is

no reason to believe that the matrix and the submatrix will have even one common

eigenvalue. Relating this observation with the physical problem at hand, we see that if

we are interested only in a particular subset of the Bloch states, expressing the non SO

Hamiltonian with respect to this subset does not change the relevant eigenvalues since

the non SO Hamiltonian is diagonal with respect to the Bloch states. However, for the

full SO Hamiltonian expressed in terms of the non-SO Bloch states, the presence of off-

diagonal terms means that the eigenvalues of a submatrix will in general not be present

in the set of those of the full matrix. Roughly speaking, if the off-diagonal terms present

outside the submatrix are small compared to the diagonal terms of the submatrix, the full

matrix has ‘m’ eigenvalues which differ only slightly from eigenvalues of the submatrix

[See Fig. (7.11)]. Appendix A contains more details on this. For the matrix of V̂SO,

represented in terms of the Bloch states of the non-SO Hamiltonian, in general the

elements of the submatrix of interest are comparable to those outside it and therefore

the above condition is not satisfied. Hence, eigenvalues of the submatrix are typically

very different from all eigenvalues of the full matrix. In order to obtain the accurate
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eigenvalues of V̂SO from the MLWF representation, it is then necessary to construct

MLWFs for the full set of bloch states. This is done for the organic crystal of PhBr2C6Br2

(See Fig. 7.12 for structure), which is known to produce high phosphoresence due to

relatively high intermolecular heavy-atom interaction [223]. Fig. 7.13(a) and (b) show

the bandstructure of V̂SO calculated with siesta and MLWFs respectively, where the

MLWFs construction has been performed over the entire space.

For the full hamiltonian Ĥfull = Ĥnon SO + ĤSO, this is slightly different. Here,

for the full matrix, the off-diagonal terms are much smaller than the diagonal terms and

consequently, for most organic crystals, all the eigenvalues are only slightly different

from the diagonal elements. Now, since the off-diagonal terms outside the submatrix

are typically much smaller than the diagonal elements of the submatrix, the eigenvalues

of the submatrix will have less inaccuracy compared to the relevant eigenvalues of the

full matrix. In this case, it can be shown that (see Fig [A.3] of Appendix A), larger the

difference in dimension between the submatrix and the full matrix, larger will be the

deviation of the submatrix eigenvalues compared to the corresponding ones of the full

matrix. So, for a small system (e.g. carbon or methane chain), a subset of eigenvalues

of Ĥfull can be found from the relevant submatrix with good level of accuracy. How-

ever, for a system with a large basis set (say, durene) the Ĥfull eigenvalues obtained by

diagonalizing only a submatrix is likely to be inaccurate.

7.4 Conclusion

We have presented an accurate method for obtaining the SO matrix elements between

the MLWFs constructed in absence of SO coupling. Our procedure, implemented within

the atomic-orbital-based DFT code Siesta, allows one to avoid the construction of the

Wannier functions over the SO-split band structure. In some cases, in particular for

organic crystals, such splits are tiny and a direct construction is numerically impossi-

ble. The method is then put to the test for a number of materials systems, going from

isolated molecules, to atomic nanowires, to 1D molecular crystals and finally to 3D crys-
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(b)(a)

Figure 7.12: Structure of PhBr2C6Br2. Panel (a) and (b) shows structure of the individ-

ual molecular unit and of the crystal respectively. Color code: Yellow- Carbon, Blue-

Hydrogen, Green-Oxygen, Red- Bromine.

tals. When the entire band manifold is used for constructing the MLWFs the mapping

between Bloch and Wannier orbitals is exact and the method can be used for both light

and heavy elements. In contrast for weak spin-orbit interaction one can construct the

MLWFs on a subset of the states in the band structures without much loss of accuracy in

the resulting split, provided that the full basis set is small. As such our scheme appears

as an important tool for constructing effective spin Hamiltonians for organic materials

to be used as input in a multiscale approach to the their thermodynamic properties.
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Figure 7.13: Band structure of V̂SO for the organic crystal of PhBr2C6Br2. The left and

the right column show results calculated with siesta and from MLWFs respectively.

The MLWFs have been constructed over Bloch states from the entire space containing

442 bands. Thus, for our case of non-collinear spin, the SO matrix has a dimension of

884x884. For such a large basis set, in order to keep the computation simple, only a

(2x2x2) k-point grid has been considered. The match between the two plots show that

with the proposed method the matrix elements of V̂SO can be calculated accurately with

respect to MLWFs for a 3 dimensional organic crystal.





Chapter 8
Calculation of Spin Phonon Coupling with

respect to Wannier Functions

As mentioned earlier, in an actual organic crystal the atoms vibrate about their equilib-

rium positions and the strength of such vibrations increases with increasing temperature.

As expected, such vibrations, which are Bosonic particles named phonons, change the

potential felt by the electrons at any instant. Therefore, in order to describe the motion

of electrons accurately, one needs to incorporate the coupling between electrons and

phonons into the Hamiltonian.

Since the TB Hamiltonian operator Ĥ is a function of the ionic positions,

vibrational motions give rise to a change in Ĥ. Additionally, since the MLWFs, which

are the basis functions with respect to which we want to express the Hamiltonian,

are constructed from the Bloch states, which themselves depend on ionic coordinates,

lattice vibrations result in a change of the MLWFs as well. Therefore, the change in

the Hamiltonian matrix elements, i.e. in the onsite and hopping energies, is a combined

effect of

1. change in Ĥ due to ionic motions, and

2. change in the MLWF basis functions due to ionic motions.

191
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Hence, in the TB picture, the change in the onsite/hopping energy of a lattice

site for some atomic displacement will be given by

∆εnm = 〈wfn|Ĥf |wfm〉 − 〈win|Ĥ i|wim〉 , (8.1)

where wim (wfm) and Ĥ i (Ĥf ) are the initial (final) MLWF and Hamiltonian operator,

respectively. Eq. (8.1) corresponds to change in onsite or hopping energy depending on

whether the MLWFs are located on the same site or on different sites. Since any general

lattice vibration can be expanded as a linear combination of normal mode vibrations,

one is typically interested in calculating changes in such energies due to vibrations

along normal mode coordinates. To quantify the rate of such change, one can define

an electron-phonon coupling parameter gλmn for some phonon mode λ as the rate of

change (∆εmn) of the corresponding energy term of the Hamiltonian with respect to

displacement ∆Qλ pertaining to that phonon mode, namely

gλmn =
∂εmn
∂Q

∣∣∣∣
Q→Q+∆Qλ

, (8.2)

where Q is an index denoting the geometry of the system. Here Q→ Q+∆Qλ indicates

that the partial derivative is to be taken with respect to the atomic displacement along

the phonon eigenvector corresponding to the mode λ.

We note that this coupling constant is fundamentally different from the con-

ventionally used electron-phonon coupling constant, which, for, say the onsite energy

corresponding to the m-th basis vector is written as

αλmm =
∂
(
〈φim|Ĥf − Ĥ i|φim〉

)

∂Q

∣∣∣∣
Q→Q+∆Qλ

. (8.3)

Here, only the Hamiltonian operator is changed and this change is evaluated

with respect to the fixed basis set corresponding to the equilibrium structure. Hence,

unlike the coupling term defined in Eq. (8.2), these coupling elements do not correspond

to the change in on-site or hopping energies of the crystal due to atomic movements.

For the remaining of this paper, unless stated otherwise, electron-phonon coupling will
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denote the first description, i.e. gλmn of Eq. (8.2). The effect of such coupling on charge

transport has been the subject of many previous investigations [224, 60, 225, 61] .

In a similar way, the SO matrix elements of a crystal with respect to ML-

WFs also depend on the ionic coordinates. Once the spin-orbit coupling elements

〈ws1mR|V̂SO|ws2nR′〉 are known in terms of the MLWFs, it is possible to determine the

spin-phonon coupling terms following a prescription similar to that for electron-phonon

coupling presented in Eq. (8.2).

gs1s2(λ)
m,n =

∂εs1s2(SO)mn

∂Q

∣∣∣∣
Q→Q+∆Qλ

, (8.4)

where εs1s2(SO)mn is the SO matrix element between the MLWFs |ws1m 〉 and |ws2n 〉, Q de-

notes the atomic positions and ∆Q refers to infinitesimal displacement of the coordinates

along the λ-th phonon mode. As noted earlier, a change in atomic coordinates results

in a change in the MLWFs and such change must be taken into account while calcu-

lating difference in SO elements ∆εs1s2(SO)mn. We use the same symbol g to denote both

the electron-phonon and the spin-phonon coupling. They can be distinguished by the

presence or absence of the superscript for the spin indices. It must be noted that, in

existing literature, the term ‘spin-phonon’ coupling has been used to denote different

effects, most importantly, in the study of multiferroics to denote the modulation of

phonon frequencies due to changes in magnetic ordering [226, 227, 228, 229, 230]

In a practical calculation, both for electron-phonon and spin-phonon coupling,

each atom i of the unit cell is given a tiny displacement ∆Qλe
i
λ along the direction

of the corresponding phonon eigenvector, ei
λ, and the electron-phonon (spin-phonon)

coupling is calculated as ∆εmn/∆Qλ (∆εs1s2(SO)mn/∆Qλ), i.e. from finite difference. If

∆Qλ is too large then, the harmonic approximation, which is the basis of this approach,

breaks down. In contrast, if ∆Qλ is too low, then the quantity will have significant

numerical error. Hence, for any system studied, one must evaluate the coupling term

for a range of ∆Qλ and from a plot of coupling terms vs ∆Qλ, choose the most suitable

value of ∆Qλ. It is important to note that the coupling terms so defined have the

dimension of Energy/Length. This is consistent with the definition of the coupling
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term used in the Hamiltonian of Eq. (2.8) which is a prototype Hamiltonian for the

proposed Monte-Carlo calculations of the transport properties. However, various other

definitions and dimensions for the electron-phonon coupling can be found in existing

literature [231, 232, 61, 64].

The spin-diffusion in an organic crystal at finite temperature will depend on

the spin-phonon coupling and therefore the spin-phonon matrix elements are needed for

any multiscale calculation of spin-relaxation length and time in OSCs. In this chapter

we present our calculation of spin-phonon coupling in terms of MLWFs, with the help of

the siesta software. We begin with the simplest non-trivial periodic system, namely a

1D chain of Pb atoms with 2 atoms per unit cell, before moving to a system of practical

interest, namely a crystal of durene molecules.

8.1 One Dimensional Pb Chain

A linear chain of Pb atoms with a diatomic unit cell has 6 phonon modes for each

wave-vector, q. For simplicity, we restrict our calculations to the Γ-point i.e. q = 0,

so that equivalent atoms in all unit cells have the same displacements with respect

to their equilibrium positions. This makes the 3 acoustic modes, for which the Γ-

point frequency and the relative displacement between the atoms of unit cell is zero,

redundant. We, therefore, are left with 3 modes of vibration as shown in the bottom

panel of Fig. 8.1. The MLWFs are constructed by omitting the lowest two bands (made

up mostly of s-orbitals) and retaining the remaining 6 valence bands1. This gives us 6

MLWFs per unit cell, 3 centred on each atom. For each of the three modes, we evaluate

the coupling matrix elements between the MLWFs of the same unit cell for a range of

∆Qλ. Analysing these results we find that ∆Qλ = 0.03 is an acceptable value for such

fractional displacement.

The top panel of Fig. 8.1 shows the MLWFs corresponding to the first atom

1We have not presented the band strucutre of this system. However, since the present system has

two atoms per unit cell, its bands can be obtained by a double band-folding of those shown in Fig. (7.2)
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Figure 8.1: The unit cell of the Pb chain containing two atoms. The figures in the top

panel show an isovalue plot of the three MLWFs (from left to right: |w1,0〉, |w2,0〉 and

|w3,0〉) centred on the first atom. Figures in the bottom panel indicate the directions

of the atomic motion corresponding to the three phonon modes (mode 1, mode 2 and

mode 3 from left to right).
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of the unit cell in the equilibrium geometry. From this figure one can see that |w1,0〉,
|w2,0〉 and |w3,0〉 resemble the pz, px and py orbitals of the first atom, respectively. By

symmetry, |w4,0〉, |w5,0〉, |w6,0〉 can be associated with the pz, px and py orbitals located

on the second atom. However, it is important to note that such similarity between the

MLWFs and the orbital angular momentum eigenstates does not imply equality between

them. To appreciate this point, note that

• 〈wi,0|wj,0〉 = 0,∀i 6= j but this is not necessarily true for 〈pm,1|pn,2〉 where |pm,1〉
and |pn,2〉 are orbital angular momentum eigenkets centred on the first and the

second atom, respectively.

• When an atom is displaced from its equilibrium position, the p orbitals (e.g. the

basis orbitals of siesta) experience a rigid shift only, but do not change in shape.

In contrast, the MLWFs change in shape along with being displaced.

• Most importantly, in the on-site SO approximation used in siesta, the hopping

term for SO coupling, i.e. the SO matrix element between two orbitals located on

two different atoms, is always zero. As for the on-site term, the SO matrix element

between two orbitals of the same atom is independent of the position of the other

atom. Thus, in terms of the siesta basis set, with the on-site SO approximation,

the spin-phonon coupling matrix is always zero. This is not the case with the

MLWFs. Even when used in conjunction with the on-site SO approximation of

siesta, the spin-phonon coupling is typically non-zero for an MLWF basis owing

to the change in the basis functions themselves.

Before calculating the spin-phonon coupling, let us take a brief look at the

electron-phonon coupling matrix elements for the 3 phonon modes. The non-zero matrix

elements are presented in Tab. 8.1 for each normal mode. It is interesting to note that

the change in overlap between the associated ‘p’ orbitals due to the atomic displacements

corresponding to the normal modes can be intuitively expected to have the same trend as

the electron-phonon coupling matrix elements with respect to the MLWFs. For example,

for atomic motion along mode 3, 〈py,1|pz,2〉 will be zero at any instant since |pz,2〉 will
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Mode Element value(meV/Å)

Mode 1 [w3|w4] -0.85

Mode 2 [w1|w4] 4.03

[w2|w5] -1.51

[w3|w6] -1.51

Mode 3 [w2|w4] -0.85

Table 8.1: The non-zero electron-phonon coupling matrix elements for the Γ-point

phonon modes of the lead chain with a diatomic unit cell. [wµ|wν ] denotes the electron-

phonon coupling matrix between the MLWFs |wµ〉 and |wν〉. It must be kept in mind

that the matrix elements are real and all other non-zero matrix elements can be found

from the relation [wµ|wν ] = [wν |wµ]. Please see Fig. 8.1 for diagram of the modes and

the MLWFs.

always have equal overlap with the positive and negative lobe of |py,1〉. Keeping in mind

that modes 1, 2 and 3 correspond to motions in the directions y, z and x respectively,

we can convince ourselves that:

• ∆ 〈pz,1|pz,2〉mode:2 > ∆ 〈pz,1|px,2〉mode:3

• ∆ 〈pz,1|px,2〉mode:3 = ∆ 〈px,1|pz,2〉mode:3 = ∆ 〈py,1|pz,2〉mode:1

• ∆ 〈px,1|py,2〉mode:1 = ∆ 〈px,1|pz,2〉mode:2 = ∆ 〈py,1|pz,2〉mode:3 = 0

where ∆ denotes change of the overlap.

Now we proceed to present our results for the spin-phonon coupling. Unlike

electron-phonon coupling matrix elements, the spin-phonon counterparts are not neces-

sarily real valued. For each mode, the non-zero spin-phonon coupling matrix elements

are tabulated in Tab. 8.2. By denoting the spin-phonon matrix element between |ws1µ 〉
and |ws2ν 〉 as [ws1µ |ws2ν ], all other non-zero spin-phonon matrix elements can be found

from the relations
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Mode Element Value(meV/Å)

Mode 1 [w↑1|w↑5] (0.0,-0.07)

[w↑2|w↑4] (0.0,0.07)

[w↑2|w↓6] (-0.19,0.0)

[w↑3|w↓5] (0.19,0.0)

Mode 2 [w↑1|w↓5] (0.05,0.0)

[w↑2|w↓4] (-0.05,0.0)

[w↑1|w↓6] (0.0,-0.05)

[w↑3|w↓4] (0.0,0.05)

Mode 3 [w↑1|w↑6] (0.0,0.07)

[w↑3|w↑4] (0.0,-0.07)

[w↑2|w↓6] (0.0,-0.19)

[w↑3|w↓5] (0.00,0.19)

Table 8.2: Spin-phonon coupling matrix elements for the Γ-point phonon modes of lead

chain with diatomic unit cell. [ws1µ |ws2ν ] denotes the complex spin-phonon coupling ma-

trix element between the MLWFs |ws1µ 〉 and |ws2ν 〉. The other non-zero matrix elements

can be found from the relations in Eq. (8.5). The phonon modes and MLWFs are shown

in Fig. 8.1

.
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[w↑µ|w↓ν ] = −[w↓µ|w↑ν ]∗,

[w↑µ|w↓ν ] = [w↓ν |w↑µ]∗,

=[w↑µ|w↑ν ] = −=[w↓µ|w↓ν ]. (8.5)

Also, from the symmetry of the MLWFs, it is easy to show that

[w↑1|w↑5]Mode1 = −[w↑2|w↑4]Mode1, (8.6)

[w↑1|w↑6]Mode3 = −[w↑3|w↑4]Mode3. (8.7)

We have noted that in the on-site approximation, the spin-phonon coupling

(according to our definition) of the Pb chain should be zero in the siesta basis. How-

ever, not limiting oneself to such approximation, one can determine some analytical

expression for these coupling elements in terms of the change in orbital overlaps. Such

calculations have been presented in Appendix B. It is interesting to note that the

analytical expressions calculated in this way share many qualitative similarities with

those presented in Tab. 8.2. We summarize the findings of this section by noting that

the spin-phonon couplings matrix elements corresponding to the two equivalent normal

modes show the expected symmetry. We have also seen that the non-zero spin-phonon

coupling for the inequivalent mode is in general smaller than those of the equivalent

modes.

8.2 Durene Crystal

Finally we are in the position to discuss the spin-phonon coupling in a real organic

crystal, namely durene. For the electron-phonon or spin-phonon coupling calculations,

one needs to make sure that the construction of MLWFs converges to a global minimum

(otherwise the various displaced geometries may correspond to different local minima

resulting in the description of different energy landscapes). Typically, a MLWF calcu-

lation with dense k-mesh is likely to converge to a local minimum and a calculation
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(a) (b)

Figure 8.2: Band structure of the durene crystal. Panel (a) shows all the occupied

and many unoccupied bands. MLWFs are constructed from the 4 highest occupied

bands, which are plotted in black. Panel (b) shows the magnified structure of these 4

bands plotted with siesta (green line) and obtained from the MLWFs computed with

wannier90 (red circle).

with sparse k-mesh has higher probability of giving the global minimum (Γ-point cal-

culation always converges to the global minimum). However, a sparse k-mesh means

small period for the BVK boundary condition, i.e. a poorer description of the crystal.

In our calculation, we use a 4× 4× 4 k-grid and construct MLWFs from the the top 4

valence bands. This enables the calculation to converge to a global minimum (indicated

by zero or negligible imaginary elements in the Hamiltonian matrix). In Fig. 8.2(a)

we show a plot of the bandstructure of durene (within a large energy window) and in

Fig. 8.2(b), the bandstructure corresponding to the 4 bands from which we construct

MLWFs. These are plotted with siesta and with respect to the MLWFs.

Since the durene unit cell contains 2 molecules, the 4 valence bands give us 4

MLWFs per unit cell such that each molecule has 2 MLWFs centred on it. In Fig. 8.3 we

show an isovalue plot of the 4 MLWFs corresponding to R = 0. We see that unlike |w3,0〉
and |w4,0〉, which are situated on the same molecule, |w1,0〉 and |w2,0〉 are on different but

equivalent molecules displaced by a primitive lattice vector a2. Thus, |w1,0〉 and |w2,R′〉
will be on the same molecule for R′ = −a2, where {a1, a2, a3} is the set of primitive
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(b)

(c) (d)

(a)

Figure 8.3: Isovalue plots for MLWFs of the four topmost valence bands of a durene

crystal. Panels (a),(b),(c) and (d) correspond to |w1,0〉, |w2,0〉, |w3,0〉 and |w4,0〉 respec-

tively.
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vectors. This means that for our tight-binding picture 〈w1,0|Ĥ|w2,0〉 corresponds to a

non-local (hopping) matrix element, whereas 〈w1,0|Ĥ|w2,R′〉 is a local (on-site) energy

term. In the following, we shall calculate the electron-phonon and spin-phonon coupling

corresponding to various modes of the durene crystal and compare

1. The relative contribution of the different modes,

2. For each mode, the relative contribution of the local and non-local terms.

Since the unit cell contains two molecules, each with 24 atoms (48 atoms in the

unit cell), a Γ-point phonon calculation will give us 144 modes, 141 of which will be non-

trivial. Among these, 12 will be predominantly intermolecular modes (3 translational

and 9 rotational) and the remaining ones will be of predominantly intramolecular nature.

Here we shall consider only the phonon modes with an energy less than 75 meV, as the

modes with higher energy are accessible only at high temperature. Thus, we take into

account 25 modes, of which the first 12 are intermolecular (these are lower in energy)

and the rest are symmetry inequivalent intramolecular2.

In order to compare the contributions of the different phonon modes and of the

local and non-local coupling terms, we calculate the following effective electron-phonon

coupling terms,

GL
λ =

∑

m,n

|gλmn|2 (where m and n are on same molecule),

and

GN
λ =

∑

m6=n

|gλmn|2 (where m and n are on different molecules), (8.8)

where the superscripts L and N stand for Local and Non-local, respectively.

Note that in this calculation, the contributions from the MLWFs of degenerate direct

lattice points have been multiplied by their corresponding weight factors. Fig. 8.4 shows

2The phonon spectrum is calculated with FHI-AIMS. Calculation courtesy: Dr. Carlo Motta
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Figure 8.4: Histogram plot of the effective electron-phonon coupling as a function of

phonon eigenvalue. The local and the non-local contributions are denoted by green and

red bars, respectively.
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a histogram plot of theGλ terms as function of the phonon energy eigenvalues. It must be

kept in mind that the coupling matrix elements are strongly dependent on the MLWFs.

Therefore, constructing Wannier functions from a different set of Bloch states can in

principle result in completely different values for Gλ. We see that in our case, most

of the modes with high Gλ(= GL
λ + GN

λ ) are located at high phonon energies. Also,

the electron-phonon couplings for modes with lower Gλ are dominated by the non-local

contributions, while those with higher Gλ are dominated by local contributions.

For the spin-phonon coupling, we can define the spin-dependent Gλ terms, i.e.

the effective spin-phonon couplings as,

G
L(s1s2)
λ =

∑

m,n

|gs1s2(λ)
mn |2 (where m and n are on same molecule),

and

G
N(s1s2)
λ =

∑

m6=n

|gs1s2(λ)
mn |2 (where m and n are on different molecules). (8.9)

In Fig. 8.5, we plot these effective spin-phonon coupling terms, separately de-

noting the local and non-local contributions. The top and the bottom panels correspond

to (s1 =↑, s2 =↑) and (s1 =↑, s2 =↓) respectively. As expected, the spin-phonon terms

are extremely small, owing to the small atomic masses in the crystal. As in the case of

electron-phonon interaction, the effective spin-phonon coupling terms are dominated by

non-local contributions for low G
(s1s2)
λ = G

L(s1s2)
λ + G

N(s1s2)
λ and by local contributions

for high Gλ. We also see that the spin-phonon coupling (for same spin, as well as for

different spins) is very small for the first few modes, which represent intermolecular

motions. This is fully consistent with the short-ranged nature of SO coupling. An im-

portant message emerging from these results is that phonon modes having high effective

electron-phonon coupling do not necessarily have high effective spin-phonon coupling,

and vice-versa.

In conclusion, we have seen that in general both the electron-phonon and the

spin-phonon coupling constants are dominated by the local coupling terms, though,
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Figure 8.5: Histogram plot of the effective spin-phonon coupling as a function of phonon

eigenvalue. The top panel corresponds to the case of same spins, while the bottom one

corresponds to that of different spins. The local and the non-local contributions are

denoted by green and red bars respectively.
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modes with very small effective coupling tend to have larger relative contribution from

non-local modes. However, no apparent correlation can be seen between the effective

coupling constants pertaining to various phonon modes for the electron-phonon coupling

with those for the spin-phonon coupling.

8.3 Approximated Wannier Basis Set

Before concluding this chapter we would like to discuss a problem, and a proposed solu-

tion thereof, pertaining to the construction of a Hamiltonian for the proposed calculation

of thermodynamic quantities. Working with the MLWF basis, we have seen that (see

section 7.3.6) the calculation of the SO matrix elements obtained only from a set of

bands of interest can result in loss of information, since there is no guarantee that the

SO matrix terms between such band and those ignored will be negligible. For example,

the SO matrix calculated with respect to a subset of MLWFs is not guaranteed to yield

the exact SO split of energy eigenvalues. The accurate remedy for this problem is to

construct Wannier functions from all bands as we have shown in the previous chapter for

the crystal of PhBr2C6Br2 (see section 7.3.6). However, this poses two major problems,

1. One of the main motivations behind using MLWF basis over the localized atomic

orbitals (e.g. basis orbitals of siesta) is that of being able to downsize the problem.

If one ends up using the same number of MLWFs as atomic basis functions, then

that purpose is totally lost.

2. A more serious problem arises for calculation of spin-phonon coupling. Obtaining

MLWFS from the full band structure typically converges to a local minimum for

the MLWFs. This makes comparison of SO matrix elements for two different

geometries (one grounds state geometry and one obtained by displacing atoms

along phonon eigenvectors) unjustified, since it is possible that the two geometries

have converged to two different local minima.

In order to resolve these issues we settle for a middle ground compromising
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between inaccuracy and computation. We use different BVK boundary conditions for

the bands of interest (primary bands) and the other bands (secondary bands).

• For primary bands we use the regular BVK condition of

ψP (r) = ψP (r +NiRi), (8.10)

where i = 1, 2, 3; Ri is the lattice vector in ‘i’ direction. Thus each band allows

N1N2N3 = N values for k.

• For each secondary band we use essentially a Γ point boundary condition

ψΓ
m(r) = ψΓ

m(r + Ri). (8.11)

Thus, in this new vector space each primary band contributes N states but

each secondary band contributes one state only. The set of Bloch states for this new

space is obtained from that of the full space by considering k = 0 to be the only states

of the secondary bands.

Dividing the infinite crystal into an infinite sum of supercells each composed

of N units, the two types of states look like3 (also see Eq. (3.13)):

|ψP,k〉 =
+∞∑

l=−∞

N−1∑

j=0

eik.(jR+lNR)
∑

µ

Cµ,P (k) |φµ,(jR+lNR〉 ,

=
+∞∑

l=−∞

N−1∑

j=0

eijk.R
∑

µ

Cµ,P (k) |φµ,(jR+lNR〉 , (8.12)

|ψΓ
m〉 =

+∞∑

l=−∞

N−1∑

j=0

∑

ν

Cν,m(0) |φν,(jR+lNR〉 , (8.13)

(This is written in 1D form to avoid notational complexity.)

The relevant matrix elements take the form:

3Note that l is index of the supercell, j is the index of the lattice point within the supercell and

i =
√
−1
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〈ψΓ(s1)
m |V̂SO|ψs2P,k〉 =

+∞∑

l=−∞

Nδk,0

[∑

µ,ν

C(s1)∗
ν,m (0)C

(s2)
µ,P (k) 〈φs1ν |V̂SO|φs2µ 〉

]
, (8.14)

〈ψΓ(s1)
m |V̂SO|ψΓ(s2)

n 〉 =
+∞∑

l=−∞

N

[∑

µ,ν

C(s1)∗
ν,m (0)C(s2)

µ,n (0) 〈φs1ν |V̂SO|φs2µ 〉
]
, (8.15)

〈ψs1P,k1
|V̂SO|ψs2Q,k2

〉 =
+∞∑

l=−∞

Nδk1,k2

[∑

µ,ν

C
(s1)∗
ν,P (k1)C

(s2)
µ,Q (k2) 〈φs1ν |V̂SO|φs2µ 〉

]
. (8.16)

This is essentially a block diagonal matrix with one non-zero block containing

the k = 0 parts of all the bands (primary as well as secondary ones) and the other

non-zero block containing the k 6= 0 parts of the primary bands. On diagonalization,

the first block gives the exact Γ point eigenvalues of V̂SO. The second block gives the

k 6= 0 eigenvalues that one would obtain if one restricts oneself within the primary

bands only.

For a set of bands defined only at k = 0, construction of MLWFs amounts to

a mere unitary rotation of the states and does not have any additional advantage. So,

for the secondary bands, we skip this procedure and leave the bands intact. However,

from the primary bands, we construct the Wannier functions so that the space spanned

by {|ψP,k〉} ∀P,k is now spanned by the set of corresponding MLWFs {|wm,R〉} ∀m,R.

The SO terms between the secondary band states and the MLWFs are now

〈ψΓ(s1)
m |V̂SO|wm,Ri

〉 =
1

N

∑

k

∑

P

e−ik.RiU
(s2)
Pm (k) 〈ψΓ(s1)

m |V̂SO|ψs2P,k〉 ,

=
1

N

∑

P

U
(s2)
Pm (0) 〈ψΓ(s1)

m |V̂SO|ψs2P,0〉 ,

= 〈ψΓ(s1)
m |V̂SO|wm,Rj

〉 [∀i, j].
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The final matrix is then written with respect to a basis set consisting of the

Γ-point eigenstates of the secondary bands and all MLWFs calculated from the pri-

mary bands. Clearly, this matrix will have the same eigenvalues as those of the matrix

obtained with respect to Bloch states [see Eq. (8.14)-Eq. (8.16)].

8.4 Conclusion

In this chapter, starting from our method of obtaining SO matrix elements developed in

the previous chapter, we have presented calculations of spin-phonon coupling in periodic

systems, corresponding to various normal modes. For a linear Pb chain, the spin-phonon

matrix elements expressed with respect to MLWFs share many qualitative similarities

with those obtained analytically with respect to atomic basis sets. For the durene

crystal, we have obtained both the electron-phonon and spin-phonon coupling elements

with respect to MLWFs obtained from the top four valence bands. We have shown that

in general, both couplings are dominated by local contributions although the modes with

very small net effective coupling tend to have larger non-local contribution. In terms

of net effective coupling, the relative contribution of the different modes for electron-

phonon coupling generally do not show much correlation with those of spin-phonon

coupling. As a final point for this section, we have proposed a competent basis set for

expressing the Hamiltonian for further calculations. This basis set contains the MLWFs

obtained from the bands of interest, over the full range of allowed k-points in accordance

with BVK boundary conditions, and the Γ-point eigenstates for all other bands.





Chapter 9
Conclusion

Owing to the high degree of mechanical flexibility, light weight and ease of synthesis and

patterning, organic semiconductors have emerged as promising candidates with several

interesting prospects for application in electronic and spintronic devices. A plethora of

experimental and theoretical studies have been devoted to the study of their proper-

ties and potential applications. Therefore, it is imperative that a complete theoretical

framework will be of great value for the study of charge and spin transport in such ma-

terial. Such a theoretical treatment should ideally follow the first-principles approach,

i.e., it should not rely on experimental data. Not only will it solidify our understanding

of their transport properties, it will also help us in selecting and discovering organic

semiconducting materials customized for specific applications. This thesis takes a step

toward such goal.

With the vision of constructing and solving an effective Hamiltonian to com-

pute transport-related observables, we calculate, starting with first principles techniques

based on density functional theory (DFT), several parameters that are of interest for

such an approach. Besides being important for the construction of the final Hamiltonian,

many of these quantities are significant in their own rights as they represent important

properties of these materials.

Since a typical organic electronic device will have conducting electrodes in

211
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contact with an organic crystal, which is composed of several weakly bound molecular

units, it is crucial to investigate the charge transfer between a conducting surface and

a molecule adsorbed on it. With the help of constrained density functional theory, we

calculate the energy cost of such charge transfer. Taking a step toward the simulation of

a real device, we investigate the effect on the charge transfer energies of defects present

in the conducting surface and also of other molecules present in the vicinity of the one

under consideration. We also show that the results obtained in this way match, with a

high level of accuracy, those obtained analytically with a classical electrostatic model.

Charge transfer between a molecule and a substrate results in relaxation of

the ionic coordinates of the molecule and therefore, has an energy cost known as reor-

ganization energy associated with it. The calculation of such energy terms requires a

formalism for the accurate evaluation of the forces within the framework of constrained

DFT. For efficient computation such formalism must be able to take into account the

forces arising from the change in orbital overlaps as a result of the ionic motion, without

having to resort to matrix diagonalization. In this thesis, we develop a novel method

for such calculation and apply it to a problem requiring extremely high accuracy in the

convergence namely for obtaining the re-organization energy of a pentacene molecule

adsorbed on a flake of graphene.

Optoelectronic devices operate on the basis of creation and annihilation of a

bound electron-hole pair, known as exciton. Therefore, the first-principles calculation

of the optical gap of a material, which is the energy associated with creation of an

excitonic state, is fundamentally important. We develop a technique, called excitonic

DFT, rooted in the constraind DFT method, for calculating the optical gap of molecules.

This method is computationally much more efficient than the existing standard schemes

like TDDFT or methods based on a many-body approach. Excitonic DFT is then used

for calculating the optical gap of several organic molecules. We also extend our approach

to the evaluation of the optical gap of periodic solids. Finally, we show that this can be

used to access double excitations.

Shifting the attention from charge to spin transport, we treat the spin-orbit
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interaction, which is thought to be responsible for spin-relaxation in organic crystals.

Since the basis functions typically used in first principles calculation are highly inefficient

from our proposed effective Hamiltonian approach, we develop a method for calculating

the spin-orbit matrix elements with respect to a different set of basis functions, known

as the Maximally Localized Wannier Functions (MLWFs). We then apply this technique

to several systems, starting from simple molecules, to 1-dimensional model systems to

real organic crystals. We test the accuracy of the spin-orbit matrix elements obtained

in this way by comparing the associated energy eigenvalues to those obtained directly

with calculations based on DFT.

Finally, keeping in mind that real organic devices are expected to work at finite

temperature, where the crystal vibrations affect the electronic properties, we extend the

aforementioned formalism to include interaction between electronic spin with ionic oscil-

lations. There parameters, known as spin-phonon coupling, are calculated for the model

system of a 1-dimensional chain of lead atoms and then for an important organic crys-

tal, namely durene. Such studies include the dependence of the spin-phonon coupling

on the different normal modes and also a comparison of such terms with the electron-

phonon coupling. In the case of durene we see that the for both the electron-phonon and

spin-phonon interactions, the local coupling terms dominate over the non-local ones.

The work presented in this thesis can point to several possible future works.

• The obvious future direction indicated by this work is that of constructing the

model Hamiltonian and calculating transport properties of real devices. Since

we have obtained the ab-initio description of several electronic structural prop-

erties, for interfaces and bulk material both, it would be interesting to take this

one step ahead by extracting quantities like mobility, spin-relaxation time, I − V
characteristics etc. from the resulting Hamiltonian.

• We have found the SO coupling matrix elements with respect to MLWFs. Another

possible contributor to spin-relaxation in organic crystals is hyperfine interaction.

It would be worth trying to find the coupling matrix elements of this form some

DFT based software that takes core electrons directly into account.
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• In this thesis, we have proposed a way of calculating optical gaps of solids. We are

in the process of probing this further by applying the technique to various solids.

We have seen that the excitonic DFT method, which assumes a certain level of

equivalence between the KS system and the interacting system, is fundamentally

different from the TDDFT method, which makes a linear-response approximation

for calculating optical gaps. It would be interesting to further probe the ramifica-

tions of such difference in assumption.

• We have shown that the charge transfer energy of a molecule adsorbed on a surface

depends on the dielectric constant of the surface. The plot of CT energies as a

function of distance between the molecule and the substrate shows good agree-

ment with the plot calculated from classical electrostatic considerations with the

knowledge of the dielectric constant. It might be interesting to see if such a plot

can be used as a tool for estimating dielectric constants of materials.

• In the spin-phonon coupling calculation, we have obtained the coupling matrix

elements with respect to changing MLWF basis functions. It would be worth

comparing these results with spin-phonon coupling matrix elements calculated

with respect to a fixed basis set.

In closing, we would like to say that this thesis contains several interesting

advances, both in terms of development of methods and of calculation of material prop-

erties. We hope that the research presented here will prove to be helpful in future

endeavours in the direction of theoretical treatments of transport in organic semicon-

ductors.



Appendix A
Dependence of the Eigenvalue on Matrix

Size and the Off-Diagonal Elements

In this appendix we discuss some general trends related to eigenvalues of a matrix and

those of its submatrices. For a diagonal matrix, the eigenvalues of any submatrix are

contained in the set of eigenvalues of the original matrix. However, this is not the case for

a non-diagonal matrix where, due to the presence of the off-diagonal elements, typically

all eigenvalues of any submatrix differ from all the eigenvalues of the full matrix. Here

we shall show how such difference correlates with

• The off-diagonal elements outside the submatrix.

• The dimension of the full matrix.

In a (50 × 50) matrix, we define the (1,1) element as 10.0, all other diagonal

elements to 8.0 and all off-diagonal elements of a (4×4) submatrix of the top left corner

(i.e. a submatrix containing the element (1,1)) to 0.051. Keeping these elements fixed,

we vary all other elements of the matrix- i.e. the off-diagonal elements outside the

submatrix from x = 0.0 to x = 1.0 and note the difference in the highest eigenvalue

1Note that for the complete hamiltonian Ĥfull = Ĥnon SO + ĤSO expressed with respect to the bloch

states of Ĥnon SO, the diagonal elements are typically much larger than the off diagonal ones
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


10.0 0.05 x x x ... x

0.05 8.0 x x x ... x

x x 8.0 x x ... x

x x x 8.0 x ... x

x x x x 8.0 ... x
...

...
...

...
...

. . .
...

x x x x x ... 8.0




Figure A.1: Figure shows a representative structure of the matrix mentioned in the text.

The red block in the top left corner is the submatrix

of the submatrix (the submatrix remains the same2) and the full matrix. The matrix

is shown is Fig. (A.1). We see that this difference, which is zero for x = 0.0 increases

rapidly with increasing x. Thus, diagonalizing only a selected submatrix will

result in large error in the eigenvalues (compared to the corresponding ones

of the full matrix), if the off-diagonal elements outside the submatrix are

large. Fig A.2, which shows a log-log plot of the eigenvalue difference with variation

of x, confirms the above statement.

Next, keeping the dimension and the elements of the submatrix unchanged,

we increase the dimension of the full matrix from 4 to 2000. All diagonal and the

off-diagonal matrix elements outside the submatrix are kept fixed at 8.0 and 0.001

respectively. Fig A.3 shows a semi-log graph of the difference in the highest eigenvalue

between the submatrix and the full matrix as a function of the dimension of the full

matrix. The figure shows that, if the submatrix has the same dimension, larger

the dimension of the full matrix, larger will be the eigenvalue difference.

2The results of this test, i.e. the trend of the plot A.2, remains the same even if ‘x’ equals all

off-diagonal matrix elements of the full matrix, instead of equalling all off-diagonal matrix elements

outside the submatrix.
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Figure A.2: Variation in the difference of the highest eigenvalue of a 50× 50 matrix and

its 4×4 submatrix with the change in off-diagonal elements outside the submatrix. The

submatrix, which is kept fixed, contains the largest diagonal element of the full matrix.
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Figure A.3: Variation in the difference of the highest eigenvalue of a 50× 50 matrix and

its 4 × 4 fixed submatrix with the change in dimension of the full matrix. All the off-

diagonal elements outside the submatrix are of the same value. The submatrix contains

the largest diagonal element of the full matrix.



Appendix B
Spin-phonon coupling matrix elements of a

Pb chain calculated with respect to ‘p’

orbitals

As mentioned earlier, in the on-site interaction for the spin-orbit approximation used

in siesta, the spin-phonon matrix, as defined in Eq. (8.4), vanishes. However, without

ignoring the hopping SO terms, one can obtain an analytic expressions for the SO

coupling with respect to the atomic orbital basis and from these a qualitative comparison

of the different spin-phonon terms can be made.

We are interested in SO terms for which the two p-orbitals are situated on

neighbouring atoms of the same cell and both nuclei contribute to the coupling. Note

that this means that the SO operator acting on an orbital is the result of two effects:

the relative rotation (about the electron) of the nucleus of the same atom and that of

the nucleus of the neighbouring atom. Denoting the |pm〉 orbital of atom ‘i’ with spin s1

as |ps1m(i)〉 and the orbital angular momentum operator for atom i as L̂(i) we can write:
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〈ps1m(1)| ˆVSO|ps2n (2)〉 = (B.1)

=
(
V̄ SO
l 〈ps1m(1)| L̂(1) · Ŝ

)
|ps2n (2)〉+ 〈ps1m(1)|

(
L̂(2) · Ŝ |ps2n (2)〉 V̄ SO

l

)
(B.2)

The operator L̂(i) · Ŝ, in the 2× 2 spin basis reads

1

2


 L̂z(i) L̂−(i)

L̂+(i) −L̂z(i)


 .

Keeping in mind that

• pz = p1,0

• px = 1√
2

[p1,1 − p1,−1]

• py = − i√
2

[p1,1 + p1,−1]

• L̂± |pl,m〉 =
√
l(l + 1)−m(m± 1) |pl,m±1〉

• 〈pl,m| L̂± =
√
l(l + 1)−m(m∓ 1) 〈pl,m∓1|1

• L̂z |pl,m〉 = m |pl,m〉

with ~ = 1, we can see that

1.

〈p↑x(1)|V̂SO|p↑z(2)〉 = V̄ SO
l

[
〈px(1)|L̂z(1)|pz(2)〉+ 〈px(1)|L̂z(2)|pz(2)〉

]

= −iV̄ SO
l 〈py(1)|pz(2)〉

= 〈p↑z(1)|V̂SO|p↑x(2)〉

Note that for an oscillation along the x or z-direction (i.e. mode 3 or mode 2 of

Fig. 8.1), this should not change. Hence, the corresponding spin-phonon coupling

1L̂− and L̂+ are the hermitian conjugate of each other.
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should be zero. However, this is not necessarily true for motion along the y-

axis. Hence, for motion along mode 3, this spin-phonon coupling term should be

imaginary.

2.

〈p↑x(1)|V̂SO|p↓y(2)〉 = V̄ SO
l

[
〈px(1)|L̂−(1)|py(2)〉+ 〈px(1)|L̂−(2)|py(2)〉

]
=

= −V̄ SO
l [〈pz(1)|py(2)〉+ i 〈px(1)|pz(2)〉] =

= 〈p↑y(1)|V̂SO|p↓x(2)〉

Both terms should remain unchanged for motion along the z-direction. However,

for motion along x (y)-direction, the first (second) term should remain unchanged.

Hence, this spin-phonon coupling term should be real (imaginary) for oscillation

along y (x) direction.

3.

〈p↑z(1)|V̂SO|p↓z(2)〉 = V̄ SO
l

[
〈pz(1)|L̂−(1)|pz(2)〉+ 〈pz(1)|L̂−(2)|pz(2)〉

]
=

= V̄ SO
l

[√
2 〈p1,1(1)|Pz(2)〉+ 〈Pz(1)|p1,−1(2)〉

√
2
]

=

= V̄ SO
l [〈px(1)|pz(2)〉 − i 〈py(1)|pz(2)〉

+i 〈pz(1)|py(2)〉 − 〈pz(1)|px(2)〉] =

= 0

4.

〈p↑x(1)|V̂SO|p↓z(2)〉 = V̄ SO
l

[
〈px(1)|L̂−(1)|pz(2)〉+ 〈px(1)|L̂−(2)|pz(2)〉

]
=

= V̄ SO
l [−〈pz(1)|pz(2)〉 − 〈px(1)|px(2)〉+ i 〈px(1)|py(2)〉]

From symmetry, the imaginary part should be zero at the equilibrium position

or for movement purely along the x, y or z axis. So, this spin-phonon coupling

matrix element should be reaal.

5.

〈p↑x(1)|V̂SO|p↑y(2)〉 = V̄ SO
l

[
〈px(1)|L̂z(1)|py(2)〉+ 〈px(1)|L̂z(2)|py(2)〉

]
=

= −iV̄ SO
l [〈py(1)|py(2)〉 − 〈px(1)|px(2)〉]
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For motion along the z-direction, the change in the first term of the right-hand

side should cancel that in the second term. So, for such motion, the change of this

quantity should be zero.

6.

〈p↑z(1)|V̂SO|p↑z(2)〉 = V̄ SO
l

[
〈pz(1)|L̂z(1)|pz(2)〉+ 〈pz(1)|L̂z(2)|pz(2)〉

]
=

= 0

7.

〈p↑x(1)|V̂SO|p↑x(2)〉 = V̄ SO
l

[
〈px(1)|L̂z(1)|px(2)〉+ 〈px(1)|L̂z(2)|px(2)〉

]
=

= i [〈px(1)|py(2)〉 − 〈py(1)|px(2)〉]

This should always be zero from symmetry requirement.

8.

〈p↑x(1)|V̂SO|p↓x(2)〉 = V̄ SO
l [−〈pz(1)|px(2)〉+ 〈px(1)|pz(2)〉] = 0



Appendix C
The Response Function and the Exciton

We have previously introduced the concept of greater (lesser) Green’s functionG>
ij(t, t

′)
(
G<
ij(t, t

′)
)
,

which can be interpreted as a propagator for the electron (hole) from (j, t′) to (i, t). In a

similar way, it is possible to define a two particle greater Green’s functionG>(r1t1, r2t2, r3t3, r4t4),

which propagates two indistinguishable particles from (r1t1, r2t2) to (r3t3, r4t4). Such

propagation can be expressed as combination of three kinds of propagations

1. Propagation of one particle from (r1t1) to (r3t3) and another particle from (r2t2)

to (r4t4) without interacting with each other.

2. Propagation of one particle from (r1t1) to (r4t4) and another particle from (r2t2)

to (r3t3) without interacting with each other.

3. All propagations which take into account the interactions between the particles

under consideration.

In the Keldysh space, the two particle Green’s function can be expressed as

G2(1, 2; 3, 4) = G(1; 3)G(2; 4)−G(1; 4)G(2; 3)

+

∫
G(1; 1′)G(3′; 3)Kr(1

′, 2′; 3′, 4′)G(4′; 4)G(2; 2′), (C.1)
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where the number i denotes the point (ri, zi) in the Keldysh space, zi being the complex

time argument. The integral on the right-hand side is to be carried out over all the

primed indices. In Eq. (C.1) Kr is a term accounting for all interactions among the

two particles. The negative of the last two terms is collectively called the two particle

XC-function and is denoted by L(1, 2; 3, 4).

L(1, 2; 3, 4) = −[G2(1, 2; 3, 4)−G(1; 3)G(2; 4)]. (C.2)

L(1, 2; 3, 4) follows a Dyson-like equation, known as the Bethe-Salpeter equa-

tion

L(1, 2; 3, 4) = G(1; 4)G(2; 3) +

∫
G(1; 1′)G(3′; 3)K(1′2′; 3′4′)L(4′2; 2′4), (C.3)

where K(1, 2; 3, 4) can be defined from the self-energy Σ as

K(1, 2; 3, 4) = − δΣ(1; 3)

δG(4; 2)
. (C.4)

The diagramatic expansion for L(1, 2; 1, 2) looks as follows

L(1, 2; 1, 2)

+=  +   +=  +   +

=  +   + +=  +   +=  +   +

=  +   +

= 1 2

=  +   +

+=  +   +=  +   +

=  +   + +=  +   +=  +   +

=  +   +

1 2 1

1’

3’ 2’

4’

2

=

1
2

=  +   +

+=  +   +=  +   +

=  +   + +=  +   +=  +   +

=  +   +

1 2 1

1’

3’ 2’

4’

2

=

1
2

+ ….1 2
1’

3’

1
1

1’
1’

3’

24’2

=  +   +

=  +   +

=  +   + +=  +   +=  +   +

=  +   +

± 1 2 1 2

1’

3’

4’

2’

+=

(C.5)
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where the striped square and the grey circle denote K(1′2′; 3′4′) and L(4′2; 2′4)

respectively. The first term in Eq. (C.5) is G(1; 2)G(2; 1). Since either z1 > z2 or

z2 > z1, in real time, one of the two Green’s functions corresponds to the lesser Green’s

function, while the other corresponds to the greater one (from the Langreth’s rules [233]).

Therefore, the first term essentially denotes a non-interacting particle-hole propagator.

All the other terms in the infinite series can be interpreted as particle-hole propagators

corresponding to various levels of interaction.

It can be shown that the above series (sum of polarization diagrams joined

by Coulomb interaction) represents the density response function χ(1; 2) as well (see

Section (11.7) of Ref. [102]). Thus we have

L(1, 2; 1, 2) = χ(1, 2). (C.6)

The discussions here shows that L(1, 2; 1, 2) and therefore, χ(1, 2) acts as an in-

teracting particle-hole propagator in the same way as G>(G<) acts as the particle (hole)

propagator. This is the physical justification behind the exciton being an interacting-

particle hole pair.
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[91] D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials,”

Phys. Rev. Lett., vol. 43, pp. 1494–1497, Nov 1979.

[92] R. Martin, Electronic Structure: Basic Theory and Practical Methods. Cambridge

University Press, 2004.

[93] O. V. Gritsenko, P. R. T. Schipper, and E. J. Baerends, “Exchange and correlation

energy in density functional theory: Comparison of accurate density functional

theory quantities with traditional hartreefock based ones and generalized gradient

approximations for the molecules li2, n2, f2,” The Journal of Chemical Physics,

vol. 107, no. 13, pp. 5007–5015, 1997.

[94] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation

made simple,” Phys. Rev. Lett., vol. 77, pp. 3865–3868, Oct 1996.



237

[95] J. M. Soler, E. Artacho, J. D. Gale, A. Garca, J. Junquera, P. Ordejn, and

D. Snchez-Portal, “The siesta method for ab initio order- n materials simulation,”

Journal of Physics: Condensed Matter, vol. 14, no. 11, p. 2745, 2002.

[96] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, “Introducing

onetep: Linear-scaling density functional simulations on parallel computers,” J.

Chem. Phys., vol. 122, no. 8, p. 084119, 2005.

[97] P. D. Haynes, C.-K. Skylaris, A. A. Mostofi, and M. C. Payne, “Density kernel

optimization in the onetep code,” J. Phys. Condens. Matter, vol. 20, no. 29,

p. 294207, 2008.

[98] P. D. Haynes, C.-K. Skylaris, A. A. Mostofi, and M. C. Payne, “Density kernel

optimization in the onetep code,” Journal of Physics: Condensed Matter, vol. 20,

no. 29, p. 294207, 2008.

[99] P. Lwdin, “On the nonorthogonality problem connected with the use of atomic

wave functions in the theory of molecules and crystals,” J. Chem. Phys., vol. 18,

no. 3, pp. 365–375, 1950.

[100] H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter

Physics: An Introduction. Oxford Graduate Texts, OUP Oxford, 2004.

[101] A. Fetter and J. Walecka, Quantum Theory of Many-particle Systems. Dover

Books on Physics, Dover Publications, 2003.

[102] G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-Body Theory of Quan-

tum Systems. Cambridge: Cambridge University Press, 2013.

[103] A. R. Holt, “On the simplified second born approximation,” Journal of Physics

B: Atomic and Molecular Physics, vol. 5, no. 1, p. L6, 1972.

[104] K. Held, C. Taranto, G. Rohringer, and A. Toschi, “Hedin equations, gw,

gw+dmft, and all that,” arXiv:1109.3972 [cond-mat.mtrl-sci], 2011.



238 BIBLIOGRAPHY

[105] K. S. Thygesen and A. Rubio, “Renormalization of molecular quasiparticle levels

at metal-molecule interfaces: Trends across binding regimes,” Phys. Rev. Lett.,

vol. 102, p. 046802, 2009.

[106] J. F. Janak, “Proof that eni= in density-functional theory,” Phys. Rev. B, vol. 18,

p. 7165, 1978.

[107] D. A. Egger, Z.-F. Liu, J. B. Neaton, and L. Kronik, “Reliable energy level align-

ment at physisorbed moleculemetal interfaces from density functional theory,”

Nano Letters, vol. 15, no. 4, pp. 2448–2455, 2015.

[108] Z.-F. Liu, D. A. Egger, S. Refaely-Abramson, L. Kronik, and J. B. Neaton, “En-

ergy level alignment at molecule-metal interfaces from an optimally tuned range-

separated hybrid functional,” The Journal of Chemical Physics, vol. 146, no. 9,

p. 092326, 2017.

[109] A. M. Souza, I. Rungger, C. D. Pemmaraju, U. Schwingenschloegl, and S. Sanvito,

“Constrained-dft method for accurate energy-level alignment of metal/molecule

interfaces,” Phys. Rev. B, vol. 88, p. 165112, Oct 2013.

[110] R. Dovesi, B. Civalleri, C. Roetti, V. R. Saunders, and R. Orlando, “Ab initio

quantum simulation in solid state chemistry,” Reviews in Computational Chem-

istry, vol. 21, pp. 1–125, 2005.

[111] Y.-H. Zhang, Kai-GeZhou, Ke-FengXie, JingZeng, H.-L. Zhang, and Y. Peng,

“Tuning the electronic structure and transport properties of graphene by non-

covalent functionalization: effects of organic donor, acceptor and metal atoms,”

Nanotechnology, vol. 21, p. 065201, 2010.

[112] K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, and S. Iwata, Hand- book

of HeI Photoelectron Spectra of Fundamental Organic Molecules. Japan Scientific

Societies Press, 1981.

[113] J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. S. III, S. Nandi, and G. B.

Ellison, “Atomic and molecular electron affinities: Photoelectron experiments and

theoretical computations,” Chem. Rev., vol. 102, p. 231282, 2002.



239

[114] V. Despoja, I. L. , D. J. Mowbray, and L. M. , “Quasiparticle spectra and exci-

tons of organic molecules deposited on substrates: G0w0-bse approach applied to

benzene on graphene and metallic substrates,” Phys. Rev. B, vol. 88, p. 235437,

2013.

[115] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov ACS Nano, vol. 5, p. 26,

2001.

[116] N. D. Lang and W. Kohn, “Theory of metal surfaces: Work function,” Phys. Rev.

B, vol. 3, no. 4, p. 1215, 1971.

[117] B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of

graphene at finite doping,” New Journal of Physics, vol. 8, no. 12, p. 318, 2006.

[118] V. I. Anisimov, J. Zaanen, and O. K. Andersen, “Band theory and mott insulators:

Hubbard u instead of stoner i,” Phys. Rev. B, vol. 44, pp. 943–954, Jul 1991.

[119] B. Himmetoglu, A. Floris, S. de Gironcoli, and M. Cococcioni, “Hubbard-corrected

dft energy functionals: The lda+u description of correlated systems,” Int. J.

Quantum Chem., vol. 114, no. 1, pp. 14–49, 2014.

[120] V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar,

“First-principles calculations of the electronic structure and spectra of strongly

correlated systems: dynamical mean-field theory,” J. Phys. Condens. Matter,

vol. 9, no. 35, p. 7359, 1997.

[121] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A.

Marianetti, “Electronic structure calculations with dynamical mean-field theory,”

Rev. Mod. Phys., vol. 78, pp. 865–951, Aug 2006.

[122] S. J. Bennie, M. Stella, T. F. M. III, and F. R. Manby, “Accelerating wavefunction

in density-functional-theory embedding by truncating the active basis set,” J.

Chem. Phys., vol. 143, no. 2, p. 024105, 2015.

[123] P. Sherwood, A. H. de Vries, S. J. Collins, S. P. Greatbanks, N. A. Burton,

M. A. Vincent, and I. H. Hillier, “Computer simulation of zeolite structure and



240 BIBLIOGRAPHY

reactivity using embedded cluster methods,” Farad. Discuss., vol. 106, pp. 79–92,

1997.

[124] F. WEINHOLD and C. R. LANDIS, “Natural bond orbitals and extensions of

localized bonding concepts,” Chem. Educ. Res. Pract., vol. 2, pp. 91–104, 2001.

[125] N. Marzari and D. Vanderbilt, “Maximally localized generalized wannier functions

for composite energy bands,” Phys. Rev. B, vol. 56, pp. 12847–12865, Nov 1997.

[126] L. Peng, F. L. Gu, and W. Yang, “Effective preconditioning for ab initio ground

state energy minimization with non-orthogonal localized molecular orbitals,”

Phys. Chem. Chem. Phys., vol. 15, pp. 15518–15527, 2013.

[127] O. K. Andersen, T. Saha-Dasgupta, R. W. Tank, C. Arcangeli, O. Jepsen, and

G. Krier, “Developing the MTO Formalism,” in Electronic Structure and Physical

Properties of Solids. The Use of the LMTO Method (H. Dreyssé, ed.), vol. 535 of
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