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Summary

Plant breeding is the art of utilizing genetic diversity and selecting the best genotypes

using the most efficient methods. The conventional way to improve populations in

perennial ryegrass (Lolium perenne), the most important forage grass in Ireland,

is through recurrent selection. However, despite breeding for nearly a century, the

rate of genetic improvement in perennial ryegrass is still in its infancy compared

to cereals. With a need to accelerate genetic progress, marker assisted recurrent

selection quickly became a promising approach. Initial mapping for quantitative

trait loci (QTL) was done in a bi-parental population (linkage mapping), but most

of the success was limited to identifying QTLs, with little success in practically

using these QTLs in the breeding programme. This was mainly due to inconsistent

QTLs, mapping in bi-parental populations, and significant markers failing to explain

a large proportion of phenotypic variance. To overcome these limitations genome

wide association studies (GWAS) that take account of historical recombination were

proposed. This reduced the limitations of mapping in bi-parental populations and

enabled QTL to be identified directly in breeding populations; however, GWAS was

ineffective for complex traits controlled by many loci with relatively small effect.

The next advancement in using markers in breeding came with genomic prediction.

In genomic prediction all markers are simultaneously used to estimate allelic effects

and generate breeding values. This thesis investigates the use of molecular markers

and genomic information to accelerate genetic gains for key traits in the forage

perennial ryegrass. Results are described and discussed in three chapters, with

chapter two focusing on GWAS and chapter three and four focusing on genomic

prediction methodology.

In chapter two a panel consisting of eight full-sib families was used in a GWAS.

Full-sib families from a single breeding programme were used to ensure that the

alleles were present at the frequency needed to have sufficient statistical power to
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identify associations. However, GWAS using mixed model failed to identify variants

associated with heading and aftermath heading after correcting for multiple testing

and population structure. This was put down to low levels of linkage disequilibrium

(LD) in the population and the correlation of the trait (heading date) with popula-

tion structure. However, marker-trait associations were identified within each family

using single marker analysis, which takes advantage of linkage present within fam-

ilies. Many of these identified markers were proximal to genes controlling heading

date.

Chapter three is a study to predict crown rust resistance using genome-wide mark-

ers in a large perennial ryegrass population. In this study the ability of markers

to predict crown rust resistance (Puccinia coronata f. sp lolli) was evaluated us-

ing two prediction models and various factors influencing predictive ability were

investigated. Predictive ability for crown rust resistance was high, but largely re-

sulted from markers capturing genetic relationships. Using GWAS a small panel of

markers were identified that were able to achieve higher predictive ability than the

same number of randomly selected marker. Higher predictive ability over random

markers indicates they are in LD with QTL for crown rust resistance rather than

simply capturing relationship among families. This is relevant because accuracy due

to genetic relationships will decay rapidly over generations whereas accuracy due to

LD will persist, which is advantageous for practical breeding applications.

In chapter four a restricted population was utilised to develop genomic prediction

equations for forage yield in tetraploid perennial ryegrass. Half-sib families were

evaluated for yield in both simulated grazing management and conservation man-

agement over two years and maternal parents were genotyped using a genotyping-

by-sequencing strategy. Genomic predictive abilities for traits ranged from 0.03 for

summer yield to 0.30 for spring yield. Genomic prediction for both yield under

grazing (calculated as economic value of a plot) and yield under first cut silage was

promising. In particular predictive abilities of 0.22 were obtained for both first-cut

silage and the economic value of a plot. Based on these results and the fact that

we can complete multiple cycles of indirect selection with DNA markers relative to

conventional genotypic selection means we can potentially more than double the

rate of genetic gain using genomic prediction.

In summary the potential for genomic prediction to reduce the length of time it takes
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to complete a single cycle of selection from six years to one year makes it particularly

attractive for forage breeding. This will lead to increases in the rate of genetic gain

for economically important traits. Our results for both crown rust resistance and

forage yield were promising and on the back of this genomic prediction is now being

implemented in the Teagasc tetraploid forage breeding programme.
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Chapter 1

General introduction
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1.1 Perennial ryegrass for agriculture

Perennial ryegrass (Lolium perenne L.) is an economically important forage species

in northwest Europe and around temperate regions of the world [83]. It has many

desirable characteristics for a forage species, such as high water soluble carbohydrate

values, crude protein content and dry matter yield, making it a highly valued forage

species [37]. Because of its perennial nature, it has long growing seasons often pro-

viding more green feed compared to annual forage species, and its nutritive values

are higher, making it cheaper and a better feed [164, 181]. It grows well on rich loam

and clay soils, but growth rates are slow in acid rich soils and under drought condi-

tions [7, 181]. Perennial ryegrass belongs to the family Poaceae, sub-family Pooideae

and naturally occurs as a diploid species (2x) with seven pairs of chromosomes, but

tetraploid (4x) varieties have also been created by doubling the chromosomes using

colchicine treatment [131].

Perennial ryegrass is an out crossing species with a high degree of self-incompatibility

(SI). The gametophytic SI system is found in perennial ryegrass and is controlled

by independent multiallelic loci called S and Z loci [40]. This two locus system is

found in other major forage species such as Lolium multiflorum, Festuca praten-

sis and Dactylis aschersoniana and is reviewed by [11]. Because of SI, modern

crop improvement techniques such as hybrid breeding are not popular in perennial

ryegrass and recurrent selection has remained the method of choice for population

improvement. Breeding for diploid species dates back to the 1920s and the use of

tetraploids for pasture began in the 1960s [83]. In general, tetraploid varieties tend

to have larger leaves and tillers with higher water soluble carbohydrate content com-

pared to diploids. Tetraploids have high yields with upright growth habit, making

them suitable for grazing, but they have low sward density, dry matter and persis-

tency compared to diploids. Diploid varieties have a high level of tolerance to biotic

and abiotic stress and are well suited for different management regimes. To take

advantage of traits from both ploidies, mixtures of diploid and tetraploid ryegrass

seeds are often used for pasture establishment [83].
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1.2 Traits for improvement

Forage breeding is relatively recent and there is a substantial amount of genetic

variation present within forages such as ryegrass, offering great potential for trait

improvement [28]. Traits considered to be improved are mainly driven by market

needs and often depend on the location varieties are breed for. Traits such as

seasonal and total dry matter yield, tolerance to diseases and nutritive value of the

species are considered important all over the world [186]. In the beginning of forage

breeding, the main focus was given to improving yield and persistency of the species

[187], but later on attention was given towards others traits such as heading and

aftermath heading, biotic and abiotic stress tolerance and seed yield [83]. However,

increasing the combined number of selected traits in breeding programmes generally

doesn’t improve the genetic gain for each individual trait [34]. Hence, breeders

always choose a few uncorrelated traits which are most economically important for

breeding. A brief overview of the key traits for perennial ryegrass are discussed

below.

Heading date is one of the most economically important traits for perennial rye-

grass. Heading is considered as a time point at which the flowering structure (the

spike in Lolium) emerges from the leaf sheath. When heading occurs, digestibility

of forage decreases, as a result of lignin and cellulose deposition in the stems. The

leaf to stem ratio is also significantly reduced, which in turn effects nutritive value

and persistency of the sward [90]. Based on heading date, perennial ryegrass pop-

ulations can be classified into early, intermediate and late varieties. Most breeding

programmes select for intermediate and late heading varieties to extend vegetative

growth and avoid aftermath heading which is highly associated with early heading

varieties [192]. Aftermath heading is repeated heading which occurs later in the

growing season after primary heading. It can decrease persistency and nutritive

value of the swards [192]. Dry matter digestibility, water soluble carbohydrates

and crude protein content are the principal measures of nutritive value of forage.

Increasing nutritive value increases ruminant digestion and total energy available,

which improves animal performance [164]. Disease resistance is another important

trait for improvement, because disease infestation can reduce palatability, yield and

nutritive value of forage [100, 106]. One of the major diseases in perennial ryegrass

is crown rust, caused by Puccinia coronata f. sp lolli [140]. Severe crown rust infec-
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tion in susceptible varieties can negatively influence yield and lead to a poor quality

forage. Loss in dry matter yield up to 56% has been reported in susceptible vari-

eties [141]. Direct impact assessment of crown rust infection on animal performance

is difficult, but reports suggest that low dry matter yield and poor quality forage

which is highly associated with crown rust infection as a negative effect on animal

performance [26, 100, 164]. Although disease pressure in Ireland is moderate, con-

tinuous monitoring and selecting for disease resistance is essential in the breeding

programme. If the disease is not monitored continuously there are high chances of

losing resistances to one or more pathogens [34, 187].

Dry matter yield per unit of nitrogen input is the most important trait for perennial

ryegrass and is measured in every breeding cycle, as well as during variety evaluation

trials [34, 83]. Yield measurements are critical and generally undertaken later in

the breeding cycle due to low correlation between spaced plants and swards [80].

Yields are always measured in swards and seasonal yields are more important than

annual yield, as the economic value of grass will change during the growing season

[49]. Fresh matter and dry matter yield are highly correlated, so indirect selection

for fresh matter yield can significantly improve dry matter yield in the population

[35].

1.3 Traditional forage breeding

In the beginning of forage breeding, natural variation in ecotypes was used to im-

prove varieties. But to improve breeding pools by introducing breeding material

from another programmes or another hemisphere, existing accessions were crossed.

These varieties made a huge improvement in yield and persistency [83, 187]. Im-

portant traits in perennial ryegrass are quantitative in nature and are controlled

by many genes with small effect, so the effective way for population improvement

is by recurrent selection [16, 34, 187]. Recurrent selection is a breeding method

used to increase the frequency of favourable alleles in the population by repeated

selection of best performing plants. Each cycle of selection is completed when a

new population is formed from crossing best plants from an existing population.

Multiple cycles of selection are needed to improve the overall population. The aim

of recurrent selection is to complete a cycle of selection as early as possible. This
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can be achieved by implementing two methods (i) phenotypic recurrent selection (ii)

genotypic recurrent selection [37]. The best method is usually determined based on

the traits considered to improve.

1.3.1 Phenotypic recurrent selection

In phenotypic recurrent selection superior plants are selected based on the pheno-

typic value of individual plants. Phenotypic recurrent selection begins with the

establishment of populations as spaced plants and evaluation of individual plants

for the trait of interest (Figure 1.1). Best performing plants are selected based on

the phenotypic values and are recombined to create a new population for the next

cycle(s) of selection. Crossing can be done either by (i) open pollination of selected

plants and bulking the harvest seeds (producing half-sibs) or (ii) pair-cross selected

plants and bulking of the seeds in isolations (producing full-sibs) (Figure 1.1). Using

full-sibs as parents for the next cycle of selection doubles the theoretical genetic gain,

but also increases time and cost associated with each cycle compared to half-sibs

[34]. Phenotypic recurrent selection is the simplest and shortest breeding system

and is often useful to improve traits which have high correlation between spaced

plants and swards such as heading date, disease resistance and quality. Generally,

phenotypic recurrent selection is based on data from unreplicated trials and single

environments, so traits with higher heritability can be improved using phenotypic

recurrent selection [34]. But dry matter yield and persistency has poor correlation

between spaced plants and swards and would require replicated, multi year data to

make selection decisions [35]. Hence, phenotypic recurrent selection is not suitable

for improving yields, which is by far the most economically important trait.

1.3.2 Genotypic recurrent selection

Genotypic recurrent selection assigns genetic merit for individual plants based on

the performance of progeny. Evaluation can be carried out either as half-sib or

full-sib families. Based on phenotypic information, best performing plants from the

spaced plant nursery are selected and crossed to produce full-sib and half-sib seeds.

Full-sib seeds are produced by pair-crossing selected plants and bulking seeds from

each pair-cross in isolation. Half-sib seeds are produced by polycrossing selected

plants in isolation in multiple replicates. Seeds from matching maternal parents are
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Polycross
selected plants

Paircross
selected plants

Year1

Year 3

Year 4

Establish spaced
plant nursery of
1000 plants

Evaluate each plant for
the trait of interest

Bulk harvest open
pollinated seed of 50
to 100 selected plants

Recombine 50 to
100 selected

plants in isolation

Year 2 & 3

Figure 1.1: Phenotypic recurrent selection using uniparental (polycross) and biparental

control (pair-crosses) in perennial ryegrass with time scale needed to complete one cycle

of selection. Figure adopted from Conaghan et al. [34].

harvested and combined. Seeds grown from each maternal parent represent each

half-sib family. These families are evaluated for yield under sward conditions. Best

performing families are crossed in three ways to produce new parents for next cycle

of selection or for development of synthetic cultivars. Crossing can be done by using

(i) saved parental clones of the best performing families, (ii) plants from randomly

grown seeds of original crosses, or (iii) selected plants from full-sib or half-sib families

(Figure 1.2 and 1.3) [19, 34]. Synthetic cultivars are further evaluated for yield before
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being released as commercial varieties. Genotypic recurrent selection offers inclusion

of replicated, multi location trials, which are suitable for traits such as yield, which

has low heritability and has a high degree of genotype environment interaction.

Selection is based on the performance of progeny under sward conditions, which is

useful to improve yields.

Genetic gains using recurrent selection remained low for economically important

traits such as yield, persistency and quality, despite breeding for nearly 100 years

[187]. Although there has been an improvement in seasonal yields (summer and

autumn), it was mainly due to improvements in secondary traits such as aftermath

heading and crown rust resistance [19, 155]. Some of the reasons for poor genetic

gains are due to longer breeding cycles, as each cycle of selection takes up to three

to five years and synthetic cultivar evaluation trials takes place every 10 years.

Thus it takes almost 15 years to releasing new synthetic cultivars. Both phenotypic

and marker information suggests that there is a great amount of genetic variation

within and between perennial ryegrass populations, but recurrent selection is long

and inefficient and takes many generations to capture a greater amount of genetic

variation [28]. But with the help of genomic tools, breeders can now accelerate

genetic gains by speeding up the selection cycle.

1.4 Genomic assisted breeding

Genomic assisted breeding is an indirect selection process, where molecular markers

linked to the trait of interest is used to predict breeding values, rather than actual

phenotype. One approach is marker assisted recurrent selection (MARS), where

quantitative trait loci (QTL) are searched in the genome and markers linked to

QTLs due to genetic linkage are used to predict phenotypes. MARS was based on

mapping QTL in a bi-parental population using a method known as linkage map-

ping. But after developing high density single nucleotide polymorphisms (SNPs),

genome wide association studies (GWAS) became a major tool for QTL detection

over linkage mapping and genomic selection replaced MARS. In perennial ryegrass

hundreds of QTLs were mapped for morphology, physiology and stress related loci

in bi-parental mapping populations and were reviewed by Shinozuka et al. [160].

Despite mapping large number of QTLs, when it comes to practical context of using
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Year 1

Year 2 & 3

Year 4

Year 5

Establish plots of spaced plants,
swards or seeded rows of 100 half-

sib families

Evaluate on a plant or plot
basis for the trait interest

Pair-cross 200
genotypes

established from
random seed of 5 to
20 selected families
to produce 100 new
full-sib families

Polycross saved
parental clones of
10 to 20 selected

families

Paircross 200
genotypes

established from
selected plants of 5
to 20 selected

families to produce
100 new full-sib

families

Pair-cross 200
genotypes established
from random seed or
selected plants of

previous recombination
to produce 100 new
half-sib famileis

Year 6

Multiply F1 families
in isolation for
seed increase, if

needed

Year 5 Year 5

Multiply F1 families
in isolation for
seed increase, if

needed

Multiply F1 families
in isolation for
seed increase, if

needed

Figure 1.2: Genotypic recurrent selection using full-sib families, figure illustrates the

time scale needed to complete one cycle of selection. Figure adopted from Conaghan et

al. [34].

these QTLs, MARS suffers from huge drawbacks [19]. Reasons for lack of suc-

cess are due to difficulty in identifying reliable QTL-marker links in a bi-parental

mapping population, that can be easily transmitted to breeding material. Another

reason is the small population size with limited markers, resulting in large interval

QTLs [14, 19, 89]. Dense genotyping opened up the prospect for GWAS, where
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Year 1

Year 2 & 3

Year 4

Year 5

Establish plots of spaced plants,
swards or seeded rows of 100 half-

sib families

Evaluate on a plant or plot
basis for the trait interest

Polycross 100
genotypes

established from
random seed of 5 to
20 selected families
to produce 100 new
half-sib families

Polycross saved
parental clones of
10 to 20 selected

families

Polycross 100
genotypes

established from
selected plants of 5
to 20 selected

families to produce
100 new half-sib

families

Polycross 100
genotypes established
from random seed or
selected plants of

previous recombination
to produce 100 new
half-sib famileis

Figure 1.3: Genotypic recurrent selection using half-sib families, figure illustrates the

time scale needed to complete one cycle of selection. Figure adopted from Conaghan et

al. [34].

marker-trait association can be identified in same breeding population that is used

for selection purpose. In using genome wide markers, linkage disequilibrium (LD)

between markers persist, this will enable identifying SNPs which are in LD with

causative QTL. GWAS can overcome some of the limitations caused by linkage

mapping. But implementing in perennial ryegrass has its own challenges, due to low

levels of LD and structure within population. For instance, in perennial ryegrass F2

families, GWAS for heading date was only able to explain 20% of variation, despite

of using nearly one million markers and a large population size [61]. Also MARS

is a two step process, only markers passing the significance threshold are used for

predicting, this results in accounting for only a fraction of the additive variance for
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the trait and tends to overestimate marker effects [12]. One way to overcome this

limitation, is by using all markers simultaneously in the prediction model without

any prior selection.

1.4.1 Genomic prediction

Genomic prediction was proposed to capture total additive variance using genome

wide markers without prior selection of markers [123]. Genomic prediction relies on

the assumption that using genome wide markers, QTL will be in LD with at least

a few markers population wide, so marker effects can be estimated consistently.

Genomic prediction combines marker data with phenotypes to predict genomic es-

timated breeding values (GEBVs). This avoids the need for sub-setting markers

and will facilitate capturing small effect QTLs, which are usually missed by MARS

[46, 89]. Most of the economically important traits in perennial ryegrass are quan-

titative in nature [16]. They are either controlled by many small effect QTLs or

a mixture of large and small effect QTLs. Genomic prediction is ideal for traits

with quantitative inheritance and can accelerate genetic gains in traits which are

expensive, inconsistent and time consuming to phenotype [89]. It is well established

in dairy cattle breeding where it has been shown to reduce the breeding cycle from

5 to 6 years to 1.5 years, but is still in early phase in plant breeding [89, 144]. To

implement genomic prediction, we need a training population which is genotyped

with high density markers and phenotyped for the traits of interest. A prediction

model is developed on a training population using the phenotypic and genotypic

information. The breeding population (population under selection) is only geno-

typed and GEBVs are estimated using the model trained previously. GEBVs do

not provide any information about the underlying QTL, but give criteria for select-

ing plants [114]. As a result of using high density markers for predictive modeling,

a large number of markers (p) need to be estimated compared to number of indi-

viduals (n). Classical multiple linear regression cannot handle large the ”p”, small

”n” problem. To counter this, many statistical methods have been proposed for

genomic prediction, which are reviewed by Lorenz et al. [114] and de los Campos et

al. [43]. Some models are suited for quantitative traits while others perform well for

traits that fall between quantitative and qualitative inheritance [114]. But the most

commonly used models in plants are known as (1) genomic best linear unbiased pre-

diction (G-BLUP) and (2) ridge regression BLUP (RR-BLUP). G-BLUP is similar
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to a traditional BLUP model but instead of pedigree relationship, genomic relation-

ship is used as covariance in a mixed model. RR-BLUP is a penalized regression

model, which imposes shrinkage on marker effects pushing to zero and reducing the

variance of all estimates. It assumes that the variance of markers is equal and can

simultaneously estimate many more marker effects. Marker effects are estimated

on a training population and those effects are multiplied to marker genotypes from

breeding population to estimate GEBVs. Both G-BLUP and RR-BLUP use a mixed

model approach and are considered statistically similar [114]. RR-BLUP was ini-

tially proposed for MARS [183], but Meuwissen et al. [123] used it for genomic

prediction, by fitting all markers as a random effect. Both models are well suited for

quantitative traits with small effects [147]. RR-BLUP and G-BLUP models assume

that traits are controlled by many loci with small effect (infinitesimal model) and

captures only additive genetic variance.

Accuracy of genomic prediction can be assessed based on predictive ability, which is

the Pearson’s correlation coefficient of true phenotypic value and estimated breeding

value. Cross validation is the preferred method to estimate correlation. Factors such

as LD within the population, marker density, training population size, relationships

between training and test set and genetic architecture of the trait can influence pre-

dictive ability. These factors are also interrelated with each other. Extent of LD

within a population can determine the marker density and training population re-

quired for achieving maximum predictive ability. But useful LD in the population is

largely dependent on the past effective population size (Ne). Lower effective popula-

tion size leads to long range LD in the population due to rapid genetic drift. Based

on previously observed LD patterns [8, 63], effective population size for perennial

ryegrass is assumed to be very large and appropriately 10,000 according to Hayes et

al. [77]. To capture LD between adjacent markers, for perennial ryegrass with large

Ne, we need a very large training population and almost a million markers [77]. But

empirical studies have shown that as we increase marker density and training pop-

ulation size, predictive ability increases but not linearly. Predictive ability doesn’t

show any improvement after reaching certain marker density and population size

[29, 61, 148]. The level at which marker density and training population reaches its

threshold depends on the degree of relationship between training and test set. In a

population with low levels of LD, predictive ability can still reach maximum if there

is a relationship between the training and test set. Habier et al. [73] demonstrated
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by simulation, even in the absence of LD in the population predictive ability was

non zero, because of markers capturing genetic relationship [73, 112]. Using a lower

marker density and smaller training population, predictive ability was high in several

plant species [72, 148]. Complexity of genetic architecture is inversely proportional

to predictive ability, as the QTL number increases, we see lower predictive ability.

For example, traits like heading date can be predicted more accurately compared

to crown rust or yield [60, 61, 72]. Factors like genetic architecture and LD within

the population cannot be easy controlled. Designing the training population in such

a way that the relationship and LD persists longer within the training and breed-

ing population, can impact on marker density and number of individuals needed to

phenotype and genotype to achieve maximum predictive ability.
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1.5 Objectives of this thesis

The overall goal of this thesis was to investigate the use of molecular markers to

accelerate genetic gain for economically important traits in perennial ryegrass. This

thesis focuses on using GWAS to identify markers significantly associated with

QTL, and on using genome-wide markers to generate Genomic Estimated Breeding

Values (GEBVs) for traits of agronomic importance.

The specific objectives of this thesis were to:

1. Investigate the potential of using GWAS to identify molecular markers for

heading date and crown rust resistance that could be utilized in marker assisted

recurrent selection strategies (chapter 2 and chapter 3).

2. Investigate the accuracy of using genome-wide markers to generate breed-

ing values and evaluate factors affecting predictive ability (chapter 3).

3. Evaluate genome-wide selection for predicting forage yield under both

grazing and conservation managements in a tetraploid perennial ryegrass breeding

population (chapter 4).
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Abstract

Heading and aftermath heading are important traits in perennial ryegrass because

they impact forage quality. So far, genome-wide association analyses in this ma-

jor forage species have only identified a small number of genetic variants associ-

ated with heading date that overall explained little of the variation. Some possible

reasons include rare alleles with large phenotypic effects, allelic heterogeneity, or

insufficient marker density. We established a genome-wide association panel with

multiple genotypes from multiple full-sib families. This ensured alleles were present

at the frequency needed to have sufficient statistical power to identify associations.

We genotyped the panel via partial genome sequencing and performed genome-wide

association analyses with multi-year phenotype data collected for heading date, and

aftermath heading. Genome wide association using a mixed linear model failed to

identify any variants significantly associated with heading date or aftermath head-

ing. Our failure to identify associations for these traits is likely due to the extremely

low linkage disequilibrium we observed in this population. However, using single

marker analysis within each full-sib family we could identify markers and genomic

regions associated with heading and aftermath heading. Using the ryegrass genome

we identified putative orthologs of key heading genes, some of which were located

in regions of marker-trait associations. Given the very low levels of LD, genome

wide association studies in perennial ryegrass populations are going to require very

high SNP densities. Single marker analysis within full-sibs enabled us to identify

significant marker-trait associations. One of these markers anchored proximal to a

putative ortholog of TFL1, homologues of which have been shown to play a key role

in continuous heading of some members of the rose family, Rosaceae.

Keywords: aftermath heading, flowering, genome wide association, heading,

Lolium perenne, perennial ryegrass, single marker analysis
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2.1 Introduction

Perennial ryegrass (Lolium perenne L.) is an important forage species grown in

temperate regions of the world where it underpins the dairy and livestock sectors.

This is due to a high palatability and digestibility [120]. It also displays relatively

rapid establishment and has long growing seasons with relatively high yields in

suitable environments [184]. With 38% of global land area available for agriculture,

70% is assigned as pastoral agricultural land [68]. In Europe alone 76 million hectares

is used as permanent pasture [64] and in Ireland 80% agricultural land (3.4 million

hectares) is used for pasture, hay and silage where perennial ryegrass is the preferred

species [134].

Heading date is a trait that can have a large effect to the use of perennial ryegrass

as a forage [121]. Heading has an impact on digestibility, biomass production, per-

sistency and nutritional value [85, 164, 192]. The stem and inflorescence formation

significantly reduces tiller formation and affects the persistency, digestibility and nu-

tritional value [177]. Perennial ryegrass belongs to the same sub-family (Pooideae)

as several other important grain cereals such as barley, oats, rye and wheat [47, 186].

Heading in situations outside of seed production is unwanted as it negatively impacts

forage quality by increasing the stem to leaf ratio. Extending the vegetative period

would greatly enhance its utility as a forage [27, 66]. Aftermath heading is mainly

associated with early heading genotypes, and these tend to show lower persistency

and perenniality. There has been limited work done on the genetic control of af-

termath heading, and only a single quantitative trait loci (QTL) has been mapped

onto linkage group (LG) 6 in an experimental mapping population [192].

In perennial ryegrass, heading is mainly controlled by three main pathways, namely

the vernalization pathway, the photoperiod pathway and the circadian clock. To

date many QTL mapping studies have been carried out in perennial ryegrass and

major loci involved in the floral transition have been identified [2, 5, 6, 9, 22, 92,

160, 162, 163, 167, 192]. QTL for heading date have been detected on all seven LGs

of perennial ryegrass, with analogous regions on LG4 and LG7 being linked with

large affect QTL across multiple populations [92]. Although genes underlying some

of these QTL have been proposed [6, 92] none have been cloned to date.

In addition to within family based QTL analysis, we can also map QTL in pop-
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ulations using genome wide association analysis (GWAS). This offers the benefit

of being able to take advantage of historical recombination to more precisely map

the QTL region. In the case of a very rapid decay of linkage disequilibrium (LD),

the causative quantitative trait nucleotide (QTN) may be elucidated. However, this

does necessitate the need for a high marker density. A recent GWAS study of head-

ing date in perennial ryegrass identified markers affecting heading date across 1,000

F2 families [61]. However, the variation explained by the combined marker set was

extremely small. LD only extended to very short distances in the study popula-

tion, and despite using in excess of 0.9 million SNPs the marker density may be

insufficient. Alternatively, rare variants affecting the trait may have resulted in low

statistical power to identify associations.

Here, we have developed an association mapping population of 360 individuals com-

ing from six full-sib families with contrasting primary heading dates. Multiple indi-

viduals from each full-sib family were selected to ensure any allele will be present at

a frequency suitable for association analysis. However, the low levels of LD across

families restricted GWAS at our marker density, and so we performed single marker

analysis within each full-sib family separately. Anchoring markers to the perennial

ryegrass GenomeZipper [137, 166] allowed us to identify regions containing clus-

ters of associated markers, some of which co-located with genes having a known

involvement in controlling heading and aftermath heading.

2.2 Material and methods

2.2.1 Plant material and phenotypic data

The association population consisted of 360 individual plants from six full-sib F2

families (60 individuals selected at random from each family) (Table 2.1). Plants

were established in the glasshouse and then transplanted into the field in a spaced

plant nursery in 2013 at Oak Park, Carlow, Ireland in two replicates. Each replicate

consisted of 30 blocks with 2 individuals from each full-sib family within a block.

The number of days to heading from April 1st was monitored in 2014 and 2015 for

each plant. An individual plant was considered as headed, when three or more heads

had emerged from the leaf sheath. In the same population aftermath heading was
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visually scored in the year 2015 on a scale of 1 (no aftermath heading) to 9 (intense

aftermath heading) as described in Fe et al. [62]. Using the R package lme4 [10]

variance components were estimated for heading date using genotype, year, and the

genotype by year interaction as random effects. Best linear unbiased predictions

(BLUPs) were calculated and used for subsequent analysis.

2.2.2 Genotyping full-sib families

We used a genotyping-by-sequencing approach that followed the protocol developed

by Elshire et al. [57]. Briefly, genomic DNA was isolated from each individual,

digested with ApeKI, samples were grouped into libraries, amplified, and sequenced

on an Illumina HiSeq 2000. After sequencing, adaptor contamination was removed

with Scythe [20] with a prior contamination rate set to 0.40. Sickle [97] was used

to trim reads when the average quality score in a sliding window (of 20 bp) fell

below a phred score of 20, and reads shorter than 40bp were discarded. The reads

were demultiplexed using sabre [96] and data from each sample was aligned to the

perennial ryegrass reference genome[23] using BWA [107]. The Genome Analysis

Tool Kit (GATK) [45] was used to identify putative variants across the full-sib

families, and also within each full-sib family. Only genotype calls with a phred

score of 30 (GQ, Genotype Quality), and only variant sites with a mean mapping

quality of 30 were retained. In the case of the SNP set across all full-sib families,

we used a minimum minor allele frequency threshold of 5%. When identifying SNP

set within each full-sib family we used a minimum minor allele frequency threshold

of 10%.

2.2.3 Genome wide association and linkage disequilibrium (LD) analy-

sis

A mixed linear model implemented in the R package GAPIT (Genomic Association

and Prediction Integrated Tool) [111] was used to perform an association analysis.

The mixed model accounts for population structure and family relatedness using

principal component analysis (PCA) and a kinship matrix calculated by GAPIT with

available input genotypic data. To account for multiple testing during association

analysis, false discovery rate (FDR) [13] with an α level of 0.05 was used as a

threshold. To assess the extent of LD across the full-sib populations we identified
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SNPs located within a single genomic scaffold, and calculated the inter SNP distance

and the squared correlation of the allele counts in Plink 1.9 [30], based on the

maximum likelihood solution to the cubic equation [69].

2.2.4 Pipeline for single marker analysis

A SNP panel was developed for each full-sib family, using a 10% of minor allele

frequency, and subsequent analyis was performed on each of the six full sib families

independently. SNPs segregating in a 1:1 ratio were selected, that is homozygous in

parent one and heterozygous in parent two. A X2 test was used to eliminate SNPs

that deviated significantly from a 1:1 segregation. We then performed a Kruskal-

Wallis test using R [172] on each marker to check for association with heading date.

Using the GenomeZipper [23, 137] we established a putative order for these markers

along the genetic map. The median Kruskal-Wallis test statistic was calculated for

bins represented by gaps between markers on the genetic linkage map.

2.2.5 Protein datasets and phylogenetic analysis

The query proteins for key heading genes was obtained from Arabidopsis thaliana,

rice and barley using the uniport database [39]. The complete protein sets from

perennial ryegrass [23], Arabidopsis [99], Brachypodium[179], barley[38], rice[142],

Sorghum [135] and maize [158] were gathered from PLAZA 3.0 [143] and combined

into single file to build a BLASTp database. Using each query we performed a

BLASTp with an evalue of 10e-10 and parsed the results for hits with at least 60%

coverage and 50% identity. The sequences were aligned using MUSCLE [56], an

alignment program implemented in MEGA 6.06 [169]. The phylogenetic analysis was

carried out using the Maximum Likelihood method based on the JTT matrix-based

model in MEGA 6.06 [95, 169]. Bootstrap values after 100 replicates are shown next

to the branches. Initial tree(s) for the heuristic search were obtained automatically

by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances

estimated using a JTT model, and then selecting the topology with superior log

likelihood value. The tree is mid-point rooted, drawn to scale, with branch lengths

measured in the number of substitutions per site.
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2.3 Results and Discussion

2.3.1 Phenotypic variation for heading date and aftermath heading

The 360 genotypes were planted in two replicates at Oak Park, Carlow, Ireland,

and were scored for days to heading in both 2014 and 2015. This was scored as

the number of days from April 1st until three spikes had emerged on a single plant.

In all families, days to heading follows a normal statistical distribution. Plants are

generally assigned to one of three groups for heading, these are early (head in first

half of May), intermediate (head in second half of May), and late (head in first half

of June). The full-sib families G15, G16, and G17 were all developed from late

heading parents (Table 2.1) and this is evident in the phenotypic distributions for

these families (Figure 2.1). Only G11 had an early heading parent, and G12 and

G18 involved intermediate heading parents. Scores for heading date were strongly

correlated between 2014 and 2015, with a Pearson’s product-moment correlation

of 0.82 with a 95% confidence interval of (0.79, 0.84). Variance components were

calculated using lme4 [10] with genotype, year, and the genotype by year interaction

as random effects. From this, we calculated heritability on a line mean basis to be

0.91.

Table 2.1: Full-sib family structure

Parent1 Parent2 Crosses

G11 Pastour Genesis Late X Early

G12 Solomon Tyrella Inter X Late

G15 Profit X Hercules Jumbo X Tyrone Late X Late X Late X Late

G16 AberAvon Twystar Late X Late

G17 Tyrconnell Majestic Late X Late

G18 AberSilo Shandon Inter X Inter

Aftermath heading was scored only in September 2015 using a visual assessment

on a scale of 1 (no aftermath-heading) to 9 (extensive aftermath heading). The

Pearson’s product-moment correlation between replicates was 0.68 and a 95% con-

fidence interval of (0.61, 0.73). The difference in aftermath heading scores between

replicates was not significant(F(1,685) = 3.385, MSE=21.522, P = 0.07) at α = 0.05.
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The population mean, sd, and median scores for aftermath heading were 2.7, 2.7

and 1, respectively.

G11 G12 G15 G16 G17 G18

3
0

4
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5
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Figure 2.1: Phenotype distribution of heading date in six full-sib families. Box-plots

representing heading date in full-sib families with y-axis showing days to heading and

families on x-axis.

We only have a single years data for aftermath heading, however, a recent study of

1453 F2 families of perennial ryegrass determined heritibalities for aftermath heading

that were in line with those determined for heading date [62]. The distribution of

scores within each full-sib family, we see that one family (G18) has more variation

and a higher propensity for aftermath heading. Taking this family in isolation

we looked at the association between heading date and aftermath heading. Using

aftermath heading as a response variable in linear regression, we can see that earlier

heading individuals tend to have higher aftermath heading.
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2.3.2 Genome wide association analysis

We used a genotyping by sequencing approach to characterize variation in the as-

sociation panel. Data were aligned to the reference genome [23] and variants were

identified across the entire 360 genotypes (Table 2.2). Only variants present in at

least 70% of samples and at a minor allele frequency of 5% were retained. This

left 51,846 SNPs for association analysis with the traits heading date and aftermath

heading. We corrected for population structure using principal component analysis

and the kinship matrix (Figure 2.2). The purpose of including 60 genotypes from

each of six full-sib families was to inflate the allele frequencies to ensure we had

adequate statistical power for association studies. It is possible that many traits in

perennial ryegrass may be controlled by rare alleles with large effects, but in order

to detect associations an allele must be present in high enough frequency. Within

our association panel the rarest allele would, in theory, be present in 30 individuals

(each full-sib family is the result of a single pair cross followed by seed multiplication

in isolation plots).

Table 2.2: Markers used at different stages of pipeline

Family Genotyped markers Filtered markers Chi-square Tagged to zipper

All 51,846 - - -

G11 27,934 15,315 7070 2174

G12 59,524 28,606 15,564 4228

G15 77,499 32,805 19,425 4424

G16 62,948 29,263 15,563 3421

G17 63,516 27,007 14,315 3523

G18 17,701 6021 3075 1225

We did not find any markers significantly associated with heading date or aftermath

heading after correcting for multiple testing (FDR < 0.05). Heading date is a highly

heritable trait [62], and one that can be phenotyped very precisely. It was therefore

initially surprising that we did not identify any significant associations. Genome

wide association studies can fail for many reasons, including a lack of statistical

power due to many rare alleles with large effects or allelic heterogeneity. However,

to avoid this problem we have used multiple genotypes (60) from each of six full

sib families. Another possible explanation is that heading date (and aftermath
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heading) is highly correlated with population structure, meaning any correction for

population structure will result in false negatives.

(a) (b)

Figure 2.2: QQ-plots for (a) heading and (b) aftermath heading

Designing populations to remove any population structure is complicated for a trait

like heading date as synchronization of heading is required for cross pollination.

Another possible explanation is that the marker density is insufficient to ensure we

always have a marker in LD with a QTL. The six F2 families were developed from

pair-crosses of 12 genotypes taken from a recurrent selection program. When we

evaluated the extent of LD in the population, we observed that on average across

the genome it decayed very rapidly (Figure 2.3). Based on this, our marker density

is not sufficient, even considering that our genotyping approach is focused on the

non-repetitive and gene-rich fractions of the genome. In this case it is likely that

full re-sequencing of the gene space and regions up and downstream is required to

capture alleles associated with a trait. A recent GWAS study in perennial ryegrass

using almost 20 times the number of markers (∼ 1 million SNPs), did identify

significant SNPs for heading. Some SNPs were in close proximity with key heading

genes like CONSTANS (CO) and PHYTOCHROME C (PHYC ), but the sum of

the variances explained by all significant markers was only 20.3% [61].

We have now established that, in general, marker numbers in the region of 50,000

are going to be unsuitable for GWAS in perennial ryegrass. We believe that our

inability to find any significant associations with heading date and aftermath heading

was due to low marker density and the extremely low LD in the population. Our

population is made up of six full-sib families, and within each family a much higher



24

0.0

0.1

0.2

0.3

0.4

0 50000 100000 150000 200000
inter marker distance (bp)

R
2

LD decay

Figure 2.3: Extent of linkage disequilibrium (LD) measured as the squared correlation

of allele counts (y-axis), based on the maximum likelihood solution to the cubic equation.

The x-axis shows inter marker distance in bp. LD estimates were sorted according to

inter-marker distance, and divided into bins of 1000 estimates. Each point on the plot

represents the mean R2 and mean inter-marker distance of 1000 measurements.

LD is expected. An alternative approach would be to perform single marker analysis

within each full-sib family. There are only 60 genotypes per full-sib family, however,

using this approach there is sufficient SNP density to perform a simple marker-trait

association analysis within each family separately. This would not enable us to

locate the regions directly affecting a phenotype, but would allow us to identify

markers linked to QTL.
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2.3.3 Single marker analysis in full-sib families

The original genotypes used in the pair-crosses that generated the six full-sib families

were not available for genotyping. We redid the SNP calling on each full-sib family

in isolation, and filtered out variants with a minor allele frequency of less than 10%.

We only selected SNPs that were segregating in a 1:1 ratio, corresponding to sites

that were homozygous in parent one and heterozygous in parent two. This was

done because there are only 60 genotypes present in each full-sib family, and so

any markers that segregate into more than two marker classes would have a limited

number of individuals in each class. A Kruskal-Wallis test was performed on each

marker to identify if they were significantly associated with heading date. We then

used the perennial ryegrass GenomeZipper [23, 137] to generate a putative order for

the markers according to the linkage map upon which the GenomeZipper is based.

These data were used to generate heatmaps for each linkage group showing the

Kruskal-Wallis test statistic (Figure 2.4-2.6 and Figure S2.1-2.4).

In general the strongest marker-trait associations were identified in the families G11

and G12, particularly on LG4 and LG7 (Figure 2.5 and 2.6). The three families G15,

G16, and G17 were all the result of crosses between late heading plants, and these

three full-sib families showed the smallest range in days to heading (Figure 2.1).

Only G11 was from a cross between an early and late heading populations (Table

2.1). The PCA shows a separation according to the categorization of parental days

to heading on the first principal component, which accounts for 7.8% of the varia-

tion. The two full-sib families involving crosses between parents falling into different

heading categories (G11 and G12) are separated from the others on PC1 (Figure

2.7). We identified many markers associated with days to heading, particularly on

LG4 and LG7 (Figure 2.5 and 2.6). This was not too surprising, considering that

many studies in experimental cross-populations have identified large effect QTL on

the same linkage groups [2, 5, 6, 9, 22, 92, 160, 162, 163, 167, 192].

G18 was the only family that showed a large amount of variation for this trait. Single

marker analysis identified markers significantly associated with aftermath heading

anchored onto different LGs using the GenomeZipper (Table 2.3). In particular we

identified markers in five scaffolds anchored to LG6 in a region covering 35.9 to 56.0

cM (Table 2.3). We also identified markers in two scaffolds on LG2 at 80.4 and 84.2

cM, and markers in two scaffolds anchored to LG1 at 31.5 and 31.2 cM. The recent
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Figure 2.4: Heatmap illustrates regions associated with heading over six full-sib fam-

ilies on perennial ryegrass LG2. A Kruskal-Wallis test was performed on each marker

to identify significant regions for heading. Using the perennial ryegrass genome zipper

[23, 137] we identified a putative gene order for markers on LG2. These data were used to

construct the heatmap for each family. A perennial ryegrass transcriptome-based genetic

linkage map upon which GenomeZipper was based was used as reference to construct

LG2 [137, 166] and placed above the heatmap. Each bar in the heatmap represents

region between two genetic markers from the linkage map. The median Kruskal-Wallis

test statistic was calculated for markers binned between markers on the genetic linkage

map and used to construct the heatmap. Putative orthologs of LpPRR37 and LpTFL1,

were identified in the phylogenetic analysis and placed onto LG2 using genetic positions

from genome zipper. The genetic positions of these orthologs were extrapolated over

the heatmap. Color of the heatmap illustrates the test-statistic of the Kruskal-wallis

analysis from 0 to 21.

release of an annotated draft assembly of the perennial ryegrass genome [23] enables
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Figure 2.5: Heatmap illustrates regions associated with heading over six full-sib fam-

ilies in perennial ryegrass LG4. Similar methodology was used as described in Figure

2.4. Putative orthologs of LpVRN1, LpPHYA, LpPHYB and LpPHYC, were identified

in the phylogenetic analysis and placed onto LG4 using genetic positions from genome

zipper. The genetic positions of these orthologs were extrapolated over the heatmap as

bars. Color of the heatmap illustrates the test-statistic of the Kruskal-wallis analysis

from 0 to 22.

us to identify putative orthologs of key heading genes from model species. Using

the GenomeZipper we can locate these on the genetic map and relate them to the

marker-trait associations identified above.
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Figure 2.6: Heatmap illustrates regions associated with heading over six full-sib fam-

ilies in perennial ryegrass LG7. Similar methodology was used as described in Figure

2.4. Putative orthologs of LpCO and LpFT, were identified in the phylogenetic analysis

and placed onto LG7 using genetic positions from genome zipper. The genetic positions

of these orthologs were extrapolated over the heatmap. Color of the heatmap illustrates

the test-statistic of the Kruskal-wallis analysis from 0 to 15.

2.3.4 Identifying putative orthologs of key heading genes

Work in model species has identified various genetic pathways controlling heading

date (Figure 2.8)[3]. Key genes acting within these pathways have also been charac-

terized. We used the perennial ryegrass genome [23] to identify putative perennial

ryegrass orthologs to these regulators of heading date. We used protein sequences

from Arabidopsis, barley and rice as queries (Table 2.4) to search the perennial rye-

grass protein set, and protein sets from Arabidopsis thaliana [99], Brachypodium

distachyon [179], Hordeum vulgare [38], Zea mays [158], Sorghum bicolor [135], and
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Figure 2.7: Principal component analysis (PCA) of 360 perennial ryegrass individuals,

genotyped using 51,846 SNPs. The first two principal components explained 14.8% of

total variation. Components are colored according to family (color coding is listed in

figure legend).

Oryza sativa [142]. Only matches with a minimum query coverage of 60% and a min-

imum identity of 50% were retained for further analysis. The proteins were aligned

with an alignment program MUSCLE and phylogenetic trees were built for each of

18 candidate genes. Using phylogenetic trees is the preferred method to establish

orthology relationships [67]. Using this approach we were able to identify putative

perennial ryegrass orthologs to eleven of these genes (Table 2.4). We also queried

the perennial ryegrass GenomeZipper to identify putative locations for these genes

on the genetic map, and relate the locations to markers we anchored as described

above.

We identified putative orthologs of the important photo-receptor proteins

PHYA (ms 13514|ref0035067-gene-0.0mRNA), PHYB (ms 4484|ref0039062-gene-
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Table 2.3: Single marker analysis for aftermath heading

Scaffold Position Test statistic p-value q-value LG cM

7674 27953 16.05 6.15x10−05 0.045 1 57.5

7094 37030 15.46 8.39x10−05 0.045 3 60.4

9166 29048 14.26 0.00015 0.045 3 28.8

4946 43369 13.69 0.00021 0.045 4 0

4946 43375 13.69 0.00021 0.045 4 0

444 103726 13.08 0.00029 0.045 2 84.2

444 103736 12.69 0.00036 0.045 2 84.2

444 103741 12.69 0.00036 0.045 2 84.2

8926 31874 12.55 0.00039 0.045 6 40.8

8309 12264 12.51 0.00040 0.045 1 31.5

8309 12267 12.51 0.00040 0.045 1 31.5

4418 6989 12.43 0.00042 0.045 1 31.2

1397 62074 12.41 0.00042 0.045 4 34.0

4165 42625 12.31 0.00044 0.045 6 55.2

9166 29013 12.23 0.00046 0.045 3 28.8

9166 29061 12.23 0.00045 0.045 3 28.8

4418 6933 12.18 0.00048 0.045 1 31.2

16758 8509 12.03 0.00052 0.045 5 26.4

9159 27424 11.91 0.00055 0.045 6 44.5

500 65053 11.63 0.00064 0.045 6 35.9

444 103718 11.58 0.00066 0.045 2 84.2

444 103742 11.58 0.00066 0.045 2 84.2

19325 5681 11.52 0.00068 0.045 1 13.0

5444 49105 11.51 0.00068 0.045 1 17.2

498 2811 11.51 0.00069 0.045 3 41.8

498 2853 11.51 0.00069 0.045 3 41.8

5379 10675 11.41 0.00072 0.046 3 28.8

4265 21824 11.33 0.00076 0.047 6 56.0

14987 7423 11.15 0.00084 0.048 4 45.3

0.0mRNA), PHYC (ms 2801|ref0025790-gene-0.3mRNA) and CRYTOCHROME 2

(CRY2) (ms 4185|ref0010917-gene-0.1mRNA) (Figure 2.8) (Figure S2.5 and S2.6)
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Figure 2.8: Schematic view of genetic pathway controlling heading. Genes promot-

ing heading were shown by arrows and genes acting as repressor shown as lines with

bars. External factors like day light and extended cold periods were represented with

respective symbols. Pathways were mentioned in grey boxes and genes shown in red

were considered as key regulators in heading.

and located these on the genetic map via the GenomeZipper (Figure 2.5 and Fig-

ure S2.4). The three Phytochromes, A, B, and C are anchored onto LG4 at dif-

ferent locations. All three are in locations where markers significantly associated

with days to heading in one or more full-sib families. CRY2 is located on LG6

at 52.5 cM, in a region where we identified a cluster of markers between 35.9 and

56 cM that were associated with aftermath heading in G18 (Table 2.3). We also

identified putative orthologs to PSEUDO RESPONSE REGULATOR PROTEIN

37 (PRR37) (ms 13366|ref0021945-gene-0.0mRNA) and SUPRESSOR OF OVER-

EXPRESSION OF CO 1 (SOC1) (ms 6002|ref0025562-gene-0.0mRNA) that play

important roles in the central circadian clock (Figure S2.7 and S2.8) (Figure 2.4).

Another important photoperiodic pathway gene is CO, which directly regulates the

key floral activator FT (Figure 2.8), and we have found a putative ortholog to CO

(ms 5059|ref0019898-gene-0.1mRNA) (Figure S2.9) in perennial ryegrass that an-

chored onto LG7 at 43.5cM (Figure 2.6).

Both the regulation of CO and stability of photoreceptors is controlled by GI-

GANTEA (GI) that is generally believed to be single copy, with a highly con-

served role across the angiosperms [126]. We identified a putative ortholog to GI

(ms 1276|ref0038679-gene-0.4mRNA) (Figure S2.10) in our analysis that anchored
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onto LG3 at 29.3cM [68] (Figure S2.2). A scaffold with markers significantly associ-

ated with aftermath heading in G18 was anchored to LG3 at 28.8 cM. In addition to

genes from the photoperiodic pathway, we identified a putative ortholog of the barley

VERNALIZATION 1 (VRN1) (ms 312|ref002704-gene-0.1mRNA) protein that is in-

volved in the vernalization pathway (Figure S2.11). The VRN1 protein is anchored

on LG4 at 31.4cM (Figure 2.5) in a region with markers significantly associated with

days to heading. This was most evident in the full-sib family G11 that was gener-

ated from crossing early and late heading populations. It has already been shown

that a dominant mutation in VRN1 promoter region is responsible for changes in

growth habit of winter wheat to spring wheat [115]. The vernalisation and the pho-

toperiod pathway influence heading by acting on the key floral pathway integrator

FT (Figure 2.8).

2.3.5 Perennial ryegrass orthologs of FT and TFL1

Floral transition is controlled by FLOWERING LOCUS T (FT) and TERMINAL

FLOWERING 1 (TFL1), which are genes that have functionally diverged from a

common ancestor MOTHER OF FT AND TFL1 (MFT) [98]. FT promotes heading

whereas TFL1 represses heading. In Arabidopsis the FT/TFL1 gene family consists

of six members: FT, TFL1, MFT, BROTHER OF FT (BFT), CENTRORADIALIS

(CEN), and TWIN SISTER OF FT (TSF). They share high sequence similarity but

do have different roles in floral transition [102]. Using the Arabidopsis FT protein as

a query we found perennial ryegrass proteins with sequence similarity to FT/TFL1

family proteins (Figure 2.9). We also identified similar proteins in Brachypodium

and barley. A phylogenetic analysis using the maximum likelihood method divided

the proteins into two distinct groups, one group with the floral inducers FT and

TSF and another group with the floral inhibitors TFL1, CEN and BFT (Figure 2.9)

[136].

Apart from floral transition, Arabidopsis FT also mediates stomatal opening

[101]. Likewise, TFL1 is also involved in meristematic development and peren-

nial heading [182]. We identified a putative perennial ryegrass ortholog of FT

(ms 13332|ref0029013-gene-0.0mRNA) (Figure 2.9) that was anchored to LG7 at

43.6cM, in a region with markers significantly associated with heading (Figure 2.6).

FT was anchored to the same genetic position (43.6cM), as a previously mapped
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Figure 2.9: Phylogenetic analysis of FT/TFL1 gene family using Arabidopsis FT as

query. Bootstrap values after 100 replicates were shown next to the branches. The anal-

ysis involved 90 amino acid sequences. All positions containing gaps and missing data

were eliminated. There were a total of 83 positions in the final dataset. Evolutionary

analyses were conducted in MEGA 6.06 [169]. All the associated Lolium proteins are in

red and Arabidopsis proteins were highlighted.
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genetic marker, LpVRN3 [137]. LpVRN3 was designed on a sequence that shared

100% identity (alignment length of 80.4%) with the transcript we identified as ortho-

logus to FT. Two genes from the FT/TFL gene family have previously been mapped

in perennial ryegrass [166]. Both were mapped in the same experimental population

used as the backbone to the GenomeZipper. Using the available genome data we can

now better identify the putative perennial ryegrass orthologs to these genes. Based

on our phylogenetic anlaysis, the genetic marker previously labeled as LpFT is more

likely to be an ortholog of TSF (ms 9269|ref0005840-gene-0.0mRNA) (Figure 2.9).

TSF is the closest sequence homologue of FT and they have overlapping roles in

promoting heading, however it does have a distinct role to play under short day

conditions [193]. TSF was anchored to LG7 at 57.2cM (Figure 2.6) in a region with

markers significantly associated with heading date, particularly in family G11.

The Arabidopsis floral inhibitors, TFL1, BFT and CEN were grouped in a branch

separate to FT. We identified putative perennial ryegrass orthologs of TFL1

(ms 821|ref0016245-gene-0.0mRNA) clustering with barley TFL1 (Figure 2.9) that

was anchored on the GenomeZipper to LG2 at 79.8cM (Figure 2.4). Previously

a perennial ryegrass gene with sequence homology to TFL1 was anchored to LG5

at 27.5cM using a transcriptome based genetic map [166], however, our phylogen-

tic analysis suggests that this is more likely an ortholog of BFT. In Arabidopsis

BFT shares highest sequence similarity to TFL1 and functions similar to TFL1 in

meristematic development to repress heading [194]. Interestingly, on LG2 mark-

ers we identified in single marker analysis for aftermath heading, were located on

the GenomeZipper at 80.8cM and 84.2cM. These markers were next to putative

perennial ryegrass ortholog of TFL1.

In perennial ryegrass, TFL1 is characterized as a repressor of heading and a regulator

of axillary meristem identity [91]. When LpTFL1 was overexpressed in Arabidop-

sis, plants displayed a delayed heading phenotype and extended vegetative growth

[91]. In perennial ryegrass expression level of LpTFL1 was observed in leaves, in-

florescence, roots, stem and apex. It was found that after a period of cold (pri-

mary induction), expression levels of LpTFL1 reduced, allowing plants to prepare

for heading. As the day length and temperature increases (secondary induction),

LpTFL1 is upregulated in the apex to promote tillering [91]. Unlike annual grasses

that flower once in the season and die after seed production, perennial ryegrass

continues to grow even after seed production by maintaining at least one tiller in a
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vegetative phase. It was shown that tillering in ryegrass is mainly controlled by spa-

tiotemporal regulatory mechanism, by activating certain genes to repress heading

in vernalized tillers [188]. Interestingly, mutations in homologues of TFL1 in rose

(RoKSN ) and woodland strawberry (FvKSN ) (both Rosoideae members of the rose

family Rosaceae) have been shown to be responsible for continuous heading pheno-

types in these species [87]. The putative ortholog of TFL1 identified here, which

co-locates with variants for aftermath heading, is an interesting candidate gene for

further study of this important forage quality trait.

2.4 Conclusions

In this study we did not detect any SNPs significantly associated with heading

and aftermath heading in a genome-wide association analysis, most likely due to the

rapid decay of LD we observed in the population and due to the fact that population

structure and heading date are confounded. However, using single marker analysis

within each full-sib family we did identify linked markers, some in regions containing

putative orthologs of key heading genes. Interestingly, in a family segregating for

aftermath heading, SNPs were anchored proximal to a putative ortholog of TFL1,

homologues of which have recently been shown to play a key role in continuous

heading/ aftermath heading of some Rosaceae species [87].

List of abbreviations GWAS: genome wide association study, QTL: quantitative

trait loci, LD: linkage disequilibrium, LG: linkage group.
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Supplementary files
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Figure S2.1: Heatmap of perennial ryegrass LG1 over six full-sib families. A Kruskal-

Wallis test was performed on each marker to identify significant regions for heading.

Using the perennial ryegrass genome zipper [23, 137] we identified a putative gene order

for markers on LG1. These data were used to construct the heatmap for each family. A

perennial ryegrass transcriptome-based genetic linkage map upon which GenomeZipper

was based was used as reference to construct LG1 [137, 166] and placed above the

heatmap. Each bar in the heatmap represents region between two genetic markers from

the linkage map. The median Kruskal-Wallis test statistic was calculated for markers

binned between markers on the genetic linkage map and used to construct the heatmap.

Color of the heatmap illustrates the test-statistic of the Kruskal-wallis analysis.
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Figure S2.2: Heatmap of perennial ryegrass LG3 over six full-sib families. Similar

methodology was used as described in Figure S2.2. Putative ortholog of LpGI, was

identified in the phylogenetic analysis and placed onto LG3 using genetic positions from

genome zipper. The genetic positions of these orthologs were extrapolated over the

heatmap. Color of the heatmap illustrates the test-statistic of the Kruskal-wallis anal-

ysis.
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Figure S2.3: Heatmap of perennial ryegrass LG5 over six full-sib families. Similar

methodology was used as described in Figure S2.2. Color of the heatmap illustrates the

test-statistic of the Kruskal-wallis analysis.
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Figure S2.4: Heatmap of perennial ryegrass LG6 over six full-sib families. Similar

methodology was used as described in Figure S2.2. Putative ortholog of LpCRY2 was

identified in the phylogenetic analysis and placed onto LG6 using genetic positions from

genome zipper. The genetic positions of these orthologs were extrapolated over the

heatmap. Color of the heatmap illustrates the test-statistic of the Kruskal-wallis anal-

ysis.
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Figure S2.5: Phylogenetic tree of candidate heading genes PHYA, PHYB and PHYC.

The evolutionary history was inferred by using the Maximum Likelihood method based

on the JTT matrix-based model [95]. The tree is mid-point rooted, drawn to scale, with

branch lengths proportional to the number of substitutions per site. All positions con-

taining gaps and missing data were eliminated. Evolutionary analyses were conducted in

MEGA 6.06 [169]. All the associated Lolium and Arabidopsis proteins were highlighted.
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Figure S2.6: Phylogenetic tree of candidate heading gene CRY2. The evolutionary

history was inferred by using the Maximum Likelihood method based on the JTT matrix-

based model [95]. The tree is mid-point rooted, drawn to scale, with branch lengths

proportional to the number of substitutions per site. All positions containing gaps and

missing data were eliminated. Evolutionary analyses were conducted in MEGA 6.06

[169]. All the associated Lolium and Arabidopsis proteins were highlighted.
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Figure S2.7: Phylogenetic tree of candidate heading gene PRR37. The evolutionary

history was inferred by using the Maximum Likelihood method based on the JTT matrix-

based model [95]. The tree is mid-point rooted, drawn to scale, with branch lengths

proportional to the number of substitutions per site. All positions containing gaps and

missing data were eliminated. Evolutionary analyses were conducted in MEGA 6.06

[169]. All the associated Lolium and rice proteins were highlighted.
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Figure S2.8: Phylogenetic tree of candidate heading gene SOC1. The evolutionary

history was inferred by using the Maximum Likelihood method based on the JTT matrix-

based model [95]. The tree is mid-point rooted, drawn to scale, with branch lengths

proportional to the number of substitutions per site. All positions containing gaps and

missing data were eliminated. Evolutionary analyses were conducted in MEGA 6.06

[169]. All the associated Lolium and Arabidopsis proteins were highlighted.
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Figure S2.11: Phylogenetic tree of candidate heading gene VRN1. The evolutionary

history was inferred by using the Maximum Likelihood method based on the JTT matrix-

based model [95]. The tree is mid-point rooted, drawn to scale, with branch lengths

proportional to the number of substitutions per site. All positions containing gaps and

missing data were eliminated. Evolutionary analyses were conducted in MEGA 6.06

[169]. Associated Lolium and barley proteins were highlighted.
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Abstract

Genomic selection (GS) can accelerate genetic gains in breeding programmes by

reducing the time it takes to complete a cycle of selection. Puccinia coronata f. sp

lolli (crown rust) is one of the most widespread diseases of perennial ryegrass and

can lead to reductions in yield, persistency and nutritional value. Here, we have used

a large perennial ryegrass population to assess the accuracy of using genome wide

markers to predict crown rust resistance and to investigate the factors affecting

predictive ability. Using these data, predictive ability for crown rust resistance

in the complete population reached a maximum of 0.52. Much of the predictive

ability resulted from the ability of markers to capture genetic relationships among

families within the training set, and reducing the marker density had little impact

on predictive ability. Using permutation based variable importance measure and

genome wide association studies (GWAS) to identify and rank markers enabled the

identification of a small subset of SNPs that could achieve predictive abilities close

to those achieved using the complete marker set. Using a GWAS to identify and

rank markers enabled a small panel of markers to be identified that could achieve

higher predictive ability than the same number of randomly selected markers, and

predictive abilities close to those achieved with the entire marker set. This was

particularly evident in a sub-population characterised by having on-average higher

genome-wide linkage disequilibirum (LD). Higher predictive abilities with selected

markers over random markers indicates they are in LD with QTL for crown rust

resistance rather than simply capturing relationships among families. Accuracy due

to genetic relationships will decay rapidly over generations whereas accuracy due to

LD will persist, which is advantageous for practical breeding applications.

Keywords: genomic selection, crown rust, perennial ryegrass, genetic relationship,

GWAS
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3.1 Introduction

Perennial ryegrass (Lolium perenne L.) is the predominant forage species grown in

temperate regions of the world [83]. Puccinia coronata f. sp lolli (crown rust)

is one of the most widespread diseases of perennial ryegrass and can lead to a

reduction in forage nutritive value, yield and persistency [140, 141, 177]. Poor

quality, rust infected swards can impact animal performance and well-being [106,

138, 164]. Developing resistant cultivars is the most viable option for disease control

and it has been shown that resistance to crown rust is conferred by both quantitative

and qualitative inheritance [79, 100, 122, 146]. As an obligate out-crossing species,

perennial ryegrass germplasm has high variation for disease resistance that can be

utilized to develop resistant cultivars [70, 121, 146]. Phenotypic recurrent selection

is typically used to develop cultivars with improved resistance and selection is often

carried out on spaced plants [70, 100, 146, 185]. There is a high correlation between

spaced plants and swards for disease resistance and indirect selection for disease

resistance on spaced plants can improve resistance in sward conditions [54]. However,

with the advancements in molecular marker development over the last decade, efforts

to use marker assisted breeding strategies have been pursued. One such strategy

involves identifying quantitative trait loci (QTL) in bi-parental mapping populations

and using markers to efficiently backcross the QTL into elite breeding material [32].

Although QTLs explaining significant phenotypic variation for crown rust resistance

were mapped onto linkage group (LG) 1-5 and 7 [51–53, 129, 130, 157, 174], it is

unclear if any of these QTLs were successfully introduced into breeding material.

Genome wide association studies (GWAS) are another approach to identify markers

linked to QTL. In this case breeding populations can directly be used to identify

marker-trait associations, although identified markers tended to explain a small

proportion of the total additive genetic variance, resulting in smaller genetic gains

[75, 81, 89].

Genomic selection (GS) was first proposed by Meuwissen et al. [123], as a method

to capture complete additive genetic variance using genome wide markers. GS is a

form of marker assisted breeding, which accounts for all marker effects across the

entire genome to calculate genomic estimated breeding values (GEBVs), which are

used to select individual plants for advancement [89]. Use of genome-wide markers

will include small effect loci and is ideal for complex traits with low to moderate
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heritability. In GS, a training population is genotyped with genome wide markers

and phenotyped for the trait under selection and models to predict breeding values

from marker data are developed. Implementing GS for complex traits like yield and

quality is a primary objective of many perennial ryegrass breeding programmes. In

contrast to yield and quality traits, the cost (labour and time) of phenotyping for

disease resistance is much lower. However, it is important that any GS approaches

targeting yield and quality improvements also ensure adequate disease resistance

is maintained, particularly where multiple rounds of marker based selections are

performed between field evaluations. Opportunities for GS in perennial ryegrass

were first reviewed by Hayes et al. [77], and the earliest empirical study was done

by Fè et al. [61] for heading date, which confirmed the superiority of GS over

marker assisted selection. Later Fè et al. [60], Grinberg et al. [72] and Byrne et al.

[21] reported high predictive ability for important agronomical traits in perennial

ryegrass. In particular, predictive ability for crown rust reached up to 0.58 [60] when

genotypes and phenotypes were evaluated on F2 families. In this study, we evaluated

predictive ability for crown rust resistance on individual plants in a large perennial

ryegrass population, and assessed factors contributing to predictive ability, such as

training population size and marker density. We also performed a GWAS to identify

a small to moderately sized panel of markers with good predictive ability for crown

rust resistance.

3.2 Material and methods

3.2.1 Plant material, phenotyping and genotyping

The training population consists of 30 diploid perennial ryegrass families that have

been described previously Byrne et al. [21]. Each family consists of 60 genotypes

making up a population of 1800 individuals. The complete population consists of

ten cultivars, eight full-sib families, eight half-sib families and four ecotypes. Plants

were established in a glasshouse and later transplanted to the field in 2013 at Oak

Park, Carlow, Ireland (52◦ 51′ 34.2”N 6◦ 55′ 03.0”W ). Plants were grown in two

replicates in a partially balanced incomplete block design. Each block consists of

60 test genotypes and 5 check genotypes and was surrounded by a 1.5m sward

consisting of a four way mix of crown rust susceptible perennial ryegrass cultivars.
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Crown rust was recorded in the years 2014 and 2015 as mean percentage disease score

on each plant. Briefly, percentage disease score was obtained by combining scores of

percentage of leaves with infection and average percentage of infection on diseased

leaves. Scoring was done at multiple time points in September to November without

any harvest cuts between scorings (Table 3.1). We are trying to develop genomic

models to identify plants with good resistance to crown rust across the season, and

we decided to use all time points for constructing a quantitative summary for crown

rust resistance. To do this we calculated AUDPC for each spaced plant in both

years. Using multiple time point data, we generated area under disease progress

curve (AUDPC) as follows:

Ak =

Ni−1∑
i=1

(yi + yi+1)

2
(ti+1 − ti) (3.1)

where yi is the extent of infection (percentage disease score) at ith observation and

ti is the time point at ith observation. Ni is the number of individuals in the data

set.

Variance components for crown rust were estimated using an R package called lme4

(linear mixed-effects models using ’eigen’ and S4) [10]. Broad sense heritability was

estimated as follows:

H2 =
σ2
g

(σ2
g) + (σ2

g∗yr)/2 + (σ2
res)/4

(3.2)

where σ2
g is the total genetic variance among individuals, σ2

g∗yr is the variance associ-

ated with genotype by year interaction and σ2
res is residual variance. With genotype

and block within replicate as random effects and year and checks as fixed effects,

conditional modes (BLUPs) were calculated in lme4 and used as input for genomic

prediction.

Genotyping was done using genotyping by sequencing (GBS) approach described by

Elshire et al. [57]. and detailed in Byrne et al. [21]. Briefly, genomic DNA was

extracted from leaf samples and GBS libraries were prepared using the restriction

enzyme ApeKI, libraries were amplified and sequenced on an Illumina Hiseq2000.

Panels of SNPs were identified in the complete population, as well as in all sub

populations separately (half-sibs, full-sibs, ecotypes, cultivars). Individuals with
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missing marker information and phenotypic data were eliminated from the analysis

giving a final population for analysis of 1582 individuals.

3.2.2 Genomic prediction models

We used two statistical models for genomic prediction, ridge regression best linear

unbiased prediction (rrBLUP) [123] and random forest [17]. rrBLUP is a mixed

model approach, which was initially proposed for GS. We used an R package called

rrBLUP [58] for fitting the mixed model as follows

y = µ+Xg + ε (3.3)

where µ is the overall mean, X is the marker matrix, g is the matrix of marker effects,

ε is a vector of residual effects and y is a vector of conditional modes for crown

rust. Random forest is a machine-learning tool, in which series of regression trees

were grown independently to the largest extent possible using subsets of bootstrap

samples. At each split of the tree, a random subset of variables is selected to identify

the best split. We implemented random forest using the R package randomForest

[110], setting the number of variables at each split to 1/3 of the total variables,

and using a terminal node size of five and minimum of 500 trees per forest. We

also used random forest to rank variables using the variable importance measure.

Its a permutation based measure in which variables are ranked based on the mean

decrease in accuracy. The top 100 selected variables are used for the model developed

on the training set using rrBLUP and predicted in the test set.

3.2.3 Cross validation scheme

We evaluated genomic prediction models using Monte-Carlo cross-validation by ran-

domly assigning plants into training (70%) and test (30%) sets. Predictive ability

and bias were assessed in the complete population and in each sub-population. Pre-

dictive ability (rp) was determined as the Pearson’s correlation coefficient between

observed phenotypic value and predicted phenotype over 100 iterations. Bias was

evaluated by regressing observed phenotypic value on predictions. We reduced train-

ing population size and marker density in order to identify the impact of training
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population size and marker number on predictive ability. To compare predictive

ability for traits with contrasting genetic architecture we compared heading date,

a highly heritable trait, with crown rust. Predictive ability for heading date has

already been shown to be high (0.81) in this population [21]. We re-analyzed data

for heading date according to methods described above and made a comparison with

crown rust. To evaluate the impact of leaving related material out of the training

set we also performed cross validation by leaving one family out. In this approach

one complete family (up to 60 individuals) is left out of the training set and only

used for testing. This was repeated so that each family in turn is used as a test

set.

3.2.4 Genome wide association

A mixed linear model (MLM) was also used for association mapping, implemented

in the R package rrBLUP [58]. Population structure and family relatedness was

accounted for in the mixed model using principal component analysis and a kinship

matrix calculated by rrBLUP from the input genotypic data. We accounted for

multiple testing using false discovery rate (FDR) and markers passing an α level

0.05 threshold were considered statistically significant.

3.3 Results and discussion

3.3.1 Phenotypic analysis for crown rust

The mean percentage disease score for crown rust infection in the population in-

creased over time in both evaluation years as infection levels accumulated (Ta-

ble 3.1). In both years, evaluations were carried out in the period from Septem-

ber to November during a time when disease pressure tends to be at its greatest

[54, 159]. The highest mean percentage disease score was seen in late October 2015

and was more than double the highest mean percentage disease score from 2014

(Table 3.1).

In addition to plant health and level of host resistance, crown rust infection is influ-

enced by various environmental factors, such as temperature, relative humidity, and
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Table 3.1: Mean percentage disease score for crown rust resistance at different time

points (TP) in Year1 (2014) and Year2 (2015).

Time point/Dates Mean SD min max

Year 1

TP1 (13/10/14) 3.1 6.1 0 40

TP2 (20/10/14) 5.2 7.6 0 45

TP3 (29/10/14) 9.6 10.8 0 60

TP4 (10/11/14) 9.8 8.7 0 45

Year 2

TP1 (21/09/15) 2.0 4.4 0 32

TP2 (05/10/15) 11.2 10.0 0 60

TP3 (19/10/15) 19.9 9.0 0 63

light [149, 150, 156]. The latency period is reduced and spore production increased

as temperature increases [149], and it has been shown that when temperatures ex-

ceed 25◦C, the susceptibility of previously resistant cultivars can be increased [150].

It has already been shown that there is variability within pathogen populations, and

different races can be found within and between locations. It is also possible that

the composition of a pathogen population can change over short periods of time

and plants that are resistant at one point in time will become susceptible as the

pathogen population shifts or evolves.

AUDPC values ranged from 0 to 1371 and the Pearson correlation co-efficient be-

tween replicates within years was moderate (0.69 in 2014 and 0.59 in 2015). However,

the Pearson correlation co-efficient between years was low (0.28), and there was a

significant genotype by year interaction (F(1761) = 3.025, MSE = 60676, p = 0.0001).

The broad sense heritability for crown rust infection was moderate (0.36), which is in

line with previous estimates of heritability calculated in other populations [62, 146].

Overall there is a good phenotypic variation for crown rust infection among and

within the 30 families/cultivars/ecotypes making up the entire population (Figure

3.1). Plants were placed into one of four categories (sub-populations) based on mat-

ing type or origin, these were (i) full-sib families, (ii) half-sib families, (iii) cultivars,

and (iv) ecotypes. In general the ecotypes were more susceptible to crown rust in-

fection than cultivars or breeding material (Figure 3.1), which presents a challenge

for the incorporation of ecotypes into breeding programmes. The broad-sense her-
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itability calculated in each sub-population varied between 0.17 in the cultivars to

0.44 in the full-sib families.
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Figure 3.1: Phenotypic variation for crown rust resistance in complete population,

grouped according to sub-population types: cultivars (CS), ecotypes (ES), full-sibs

(FS) and half-sibs (HS). Broad sense heritability (H2) in complete population and sub-

populations is highlighted over the figure.

Crown rust infection is typically evaluated in breeding programmes by growing

spaced plants or potted plants from a population and visually scoring the level

of crown rust infection. A mean score is assigned to each family and used to aid

selection of the top performing families from which to construct the synthetic culti-

vars. During construction of synthetics a spaced plant nursery may be established

to evaluate heading date and crown rust resistance before selecting individual geno-

types from which to construct synthetics (within family selection). In practice, this

has a time cost of 2 to 3 years (establishment, evaluation, selection and recombin-

ing), and using molecular markers offers an opportunity to reduce this to one year

in those selection cycles where GEBVs are predicted. This depends on our ability
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to accurately predict traits such as crown rust from genomic data.

3.3.2 Predicting crown rust resistance with genomic data

We evaluated two algorithms for prediction of crown rust infection from genomic

data, rrBLUP and random forest. The mean predictive ability after cross-validation

within the complete population was 0.52 using rrBLUP and 0.49 using random for-

est (Figure S3.1). rrBLUP was computationally faster and consistently gave higher

predictive abilities with lower bias, and therefore results from all further analysis

are only reported for rrBLUP. The predictive ability of 0.52 is in line with previ-

ous estimates reported in perennial ryegrass where predictions were based on mean

genotypes and phenotypes of F2 families [60]. Using the broad sense heritability

of 0.36 as an upper limit on predictive ability, the accuracy of prediction is 0.87.

Predictive ability did not differ depending on whether the equations were developed

using phenotypes from the last time point scored or the AUDPC values incorpo-

rating all time points. This indicates that a single scoring each year would have

sufficed. However, the importance of evaluating crown rust in more than one year

was emphasised by the low correlation between scores in 2014 and 2015.

When we calculate the predictive ability within each of the sub-populations (culti-

vars, half-sib families, full-sib families, and ecotypes), the highest predictive ability

for crown rust was obtained using plants from full-sib families (0.54) and the lowest

predictive ability for crown rust was obtained with the plants from the ecotypes

(0.24) (Figure 3.2). Generally, traits with higher heritability achieve higher predic-

tive abilities [128, 189], and we see that here where crown rust measurements taken

in the full-sib families had the highest broad-sense heritability and the highest pre-

dictive ability. In general, there was a good correlation between predictive ability

and both phenotypic variance and heritability. This relationship between phenotypic

variance and predictive ability has been observed previously [86, 128].

We also evaluated the predictive ability using a leave-one-family-out cross validation

scheme. The complete population is comprised of 30 families/cultivars/ecotypes,

each with up to 60 individual genotypes. The predictive ability was assessed in

the complete population by selectively leaving one family out of the training set and

using it for testing. In addition to crown rust we also evaluated predictive ability for

heading date phenotypes previously reported [21]. The predictive ability for both
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Figure 3.2: Predictive ability in different population types. Complete population
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axis, predictive ability (left) and bias (right) on y-axis. Crown rust is in red and heading

date in blue.

crown rust (rp=0.02, min=-0.36, max=0.36) and heading date (rp=0.29, min=-

0.14, max=0.65) varied greatly depending on which family was left out, and having

related material in the training set (shared parentage) greatly improved predictive

ability.

3.3.3 Effect of training population size and marker density on predictive

ability

As we reduced the number of individuals in the training population we saw a decrease

in predictive ability and an increasingly upward bias in the variance of predictions

for both crown rust resistance and heading date (Figure 3.3). The drop in predictive

ability was more pronounced as we reduced the training population size for crown

rust resistance than it was for heading date.

The predictive ability for crown rust resistance when using 90% of the population

as a training set was 0.52 and the predictive ability was 0.38 when using just 10%

of the population. Irrespective of the trait, as the training population size increased

there was an increase in predictive ability which is consistent with similar corre-

lations between training population size and predictive ability reported previously
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for perennial ryegrass [60, 61] and other crops [86, 113, 148, 171]. Useful linkage

disequilibrium (LD) only extends over short distances in perennial ryegrass and it

has been suggested that this is the result of a very large past effective population

size, which is likely larger than that of humans [77]. This impacts both the size

of the reference population and marker density required to achieve high accuracies

when predicting traits from genomic data. The fact that we are able to achieve

high predictive abilities with relatively small training populations is likely a result

of strong genetic structure and differentiation in our diverse population and the use

of the marker data to capture genetic relationships [73].

The limited LD also affects the number of markers required to obtain high predictive

accuracies, and given the extent of LD in the broader perennial ryegrass population,

marker numbers in excess of one million have been suggested for achieving high ac-

curacies [77]. When we reduced marker number in the complete population and the

various sub-populations we observed very little impact on the predictive ability for

either trait (Table 3.2). But due to limited number of individuals and markers in

ecotypes, the effect of marker density on predictive ability was not assessed in this

sub-population. Reducing the marker set to 5% of the total available had virtually

no impact on predictive ability in all cases. This would support our observation

that much of the predictive ability can be derived from markers capturing genetic
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relationships. When marker number dropped below 5% (10878) predictive ability

for both traits in the complete population began to drop. However, even with 0.05%

(109) of markers the mean predictive ability was 0.30 for crown rust resistance and

0.52 for heading date. Knowing the contribution of genetic relationships to predictive

ability is important because it will change over generations. In contrast, predictive

ability due to LD has greater persistence over generations and is therefore prefer-

ential [73]. Schemes for implementing genomic selection in perennial ryegrass that

pursue a reduction in effective population size from the outset have been proposed.

Such schemes would lead to an increase in the extent of LD and ensure that predic-

tive ability due to LD can be captured using a reasonable number of markers and a

reference population size that is feasible in breeding programmes.

3.3.4 Identifying SNPs associated with crown rust resistance

The cost of genotyping impacts the number of selection candidates that can be

evaluated and therefore impacts the selection intensity. Different approaches to low

density SNP genotyping for genomic selection have been proposed. These include

variable selection methods to identify a small subset of markers in strong LD with

the trait [195] or using a small random subset of markers to impute from low-to-high

density [74]. Until a chromosome scale assembly of the perennial ryegrass genome

becomes available the latter remains a challenge. We used both permutation based

variable importance measures and GWAS analysis to identify a subset of markers

capable of predicting crown rust resistance. Using permutation based variable im-

portance measures we were able to rank markers by mean decrease in accuracy and

select the top ranked markers for use in genomic prediction. In the case of GWAS

we ranked SNPs based on significance and again selected the top ranked markers

for use in genomic prediction. All variable importance measures and GWAS were

identified and ranked in the training set and used to predict phenotypes in the test

set via cross-validation. When we used the top 100 ranked markers from the per-

mutation based variable importance measures, the mean predictive ability of 100

iterations was 0.42 (ranging from 0.36 to 0.48). When we used the top 100 ranked

markers from the GWAS analysis, the mean predictive ability of 100 iterations was

0.36 (ranging from 0.25 to 0.44). In both cases the mean predictive ability with se-

lected markers is higher than the predictive ability with random markers, which was

0.28 (ranging from 0.18 to 0.39). The lower predictive ability using GWAS marker
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selection is not surprising considering that we corrected for population structure

using a kinship matrix, and we are more reliant on identifying markers in LD with

the trait. As discussed above, the predictive ability of these markers is expected to

be more persistent over subsequent generations. Using GWAS selected markers it is

clear to see that they are superior to randomly selected markers up to the point, be-

yond which adding more markers does not improve predictive ability in either case

(Figure 3.4). The ability of a GWAS within each sub-population to identify and

select a small set of SNPs with excellent predictive ability varied, and in some cases

was little better than random SNP selection (Figure 3.5). The GWAS on plants

originating from IBERs bred cultivars identified a small set of twenty SNPs with

77% of the predictive ability achieved with 20,000 SNPs. The power of a GWAS to

identify markers with high predictive ability was much greater within the population

made up of IBERs plants than within cultivars, and full-sib families where twenty

SNPs could only achieve 46% and 48% of the predictive ability with 20,000 SNPs,

respectively. On average LD is higher within the sub-population with IBERs plants,

which may explain the greater ability to identify markers associated with crown-rust

resistance.

In order to characterise the markers associated with crown rust resistance we redid

the GWAS analysis without division of genotypes into training and testing sets.

We carried out GWAS using the complete population and found 55 markers sig-

nificantly associated with crown rust resistance after correction for multiple testing

(Table S3.1). Using the perennial ryegrass genome [23] as a reference, we located 29

significant markers within 22 genomic scaffolds that contained 50 predicted genes.

Using the Genome Zippper [23, 137], we anchored ten scaffolds onto LG2, 3, 4,

5 and 7 (Table S3.3). Similarly, we did GWAS on IBERS material and found 24

markers associated with crown rust resistance (Table S3.2). All markers were lo-

cated within 16 genomic scaffolds containing 44 predicted genes. Out of 16 scaffolds

we were able to place seven scaffolds onto LG3, 5 and 7 (Table S3.3,S3.4). We

found five common scaffolds between the complete population and the IBERS and

only two of these scaffolds were mapped, onto LG3. On LG3 five markers were

anchored within 60.4-61.21 cM. Genes present on these scaffolds were coding for

domains including Mon1, Aquaporin, DUF1635, Nucleoredoxin, Beta-glucan export

ATP-binding/permease protein, BRASSINOSTEROID INSENSITIVE 1-associated

receptor kinase 1, Alpha N-terminal protein methyltransferase 1. The gene func-
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Figure 3.4: Predictive ability of selected markers versus random markers in complete

population. Markers were selected based on the ranking from genome wide association

studies and compared with random markers of similar size.

tion of these domains plays a key role in ATP-binding, membrane proteins, enzyme

catalysis and pathogen-associated molecular pattern (PAMP)-triggered immunity

(PTI) (Table S3.5, S3.6, S3.7, S3.8) [139].

Using small subsets of trait associated markers may be an effective strategy for

within-family prediction of traits such as heading date, crown rust resistance and

some quality traits. Predicting heading date from markers would enable plants to

be matched in heading date to ensure sufficient cross-pollination when construct-

ing synthetic cultivars [21]. Combining these with markers to predict crown rust

resistance would also avoid the inclusion of plants with high levels of susceptibil-

ity, and furthermore prediction models can be based on multi-year evaluations. It is

clear from the phenotypic data presented here that there is substantial within family

variation for crown rust resistance. Opportunities already exist to genotype small

to moderate sized marker panels in 1000s of samples at low cost [25]. Using these

approaches small fragments (200-300bp) are amplified and sequenced at hundreds

of loci. These amplicons can be used as short haplotypes in marker aided selection
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were selected based on the ranking from genome wide association studies in Cultivars,

Full-sibs and IBERS material and compared with random markers of similar size.

strategies. Initially, we will develop the assay to target loci in linkage with QTL for

heading date [21] and crown rust resistance, and a suite of loci with a good distribu-

tion throughout the genome. Once high yielding families are identified in field trials,

within family selection can be performed with this molecular marker assay to select

plants for synthetics with synchronized flowering time and acceptable crown rust re-

sistance. We plan to expand the assay to include loci linked to QTL associated with

quality traits, allowing a breeding scheme where among-family selection is based on

yield evaluations in the field and within-family selection for quality, heading date

and crown rust resistance is based on markers.
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3.4 Conclusions

Our findings show that predicting crown rust resistance in perennial ryegrass can

be achieved with high accuracy using AUDPC scores on spaced plants. However,

there was no difference in predictive ability when equations were developed using

phenotypes from the last time-point scored or the AUDPC values. This means that

scoring at a single time point was adequate to evaluate the crown rust suscepti-

bility of the spaced plants and calculating AUDPC was unnecessary. Much of the

predictive ability comes from markers capturing genetic relationships among the

families, highlighted by the observation that there was no drop in predictive ability

when going from the entire marker set down to only 5% (10,878) of the marker set.

Accuracy due to genetic relationships will decay rapidly over generations whereas

accuracy due to LD will persist. Using a GWAS we attempted to identify and rank

markers in LD with QTL. This enabled a small panel of markers to be identified that

had higher predictive ability than the same number of randomly selected markers,

and had predictive abilities close to those achieved with the entire marker set.

List of abbreviations GS: genomic selection; GWAS: genome wide association

study; LD: linkage disequilibrium; AUDPC: area under disease progress curve; QTL:

quantitative trait locus; GEBV: genomic estimated breeding value
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Table S3.1: List of markers associated with crown rust resistance based on genome

wide association studies in complete population

marker chrom pos (-log10p) p-value

scaffold4630ref0024910 NA 20804 7.941769608 1.00E-09

scaffold2543ref0034320 NA 48546 7.311879805 2.29E-09

scaffold322ref0033181 NA 103294 7.128888413 2.95E-09

scaffold2543ref0034320 NA 48293 7.097824221 3.08E-09

scaffold19449ref0033434 NA 799 7.056263718 3.27E-09

scaffold745ref0048287 NA 126827 6.968761236 3.70E-09

scaffold4630ref0024910 NA 20880 6.841750463 4.45E-09

scaffold4566ref0015013 NA 56827 6.738381996 5.18E-09

scaffold4630ref0024910 NA 20797 6.544374232 6.94E-09

scaffold10537ref0014202 NA 14951 6.534674878 7.04E-09

scaffold3061ref0020001 NA 19424 6.417930836 8.43E-09

scaffold1959ref0042697 NA 51699 6.277526822 1.05E-08

scaffold10537ref0014202 NA 14952 6.274204153 1.06E-08

scaffold165ref0012847 NA 21652 6.241120127 1.12E-08

scaffold745ref0048287 NA 126873 6.161191063 1.27E-08

scaffold4576ref0045556 NA 2201 6.152848062 1.29E-08

scaffold3049ref0007382 NA 30526 6.075206319 1.46E-08

scaffold16787ref0028195 NA 6376 6.005295262 1.64E-08

scaffold4448ref0017406 NA 51686 5.918343404 1.90E-08

scaffold1959ref0042697 NA 51682 5.913685214 1.91E-08

scaffold41003ref0040763 NA 731 5.89101557 1.99E-08

scaffold176ref0043339 NA 61013 5.863611873 2.08E-08

scaffold322ref0033181 NA 103268 5.829832889 2.21E-08

scaffold15267ref0023130 NA 6908 5.809996767 2.28E-08

scaffold5403ref0046155 NA 46603 5.809241394 2.28E-08

scaffold12079ref0011165 NA 15633 5.765243739 2.47E-08

scaffold6898ref0036069 NA 47774 5.714738327 2.69E-08

scaffold10240ref0008205 NA 25006 5.689459688 2.81E-08

scaffold3232ref0030065 NA 66830 5.658335868 2.97E-08
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Table S3.2: List of markers associated with crown rust resistance based on genome

wide association studies in IBERS

marker chrom pos (-log10p) p-value

scaffold165ref0012847 NA 32653 7.154076371 2.8475E-09

scaffold13324ref0046917 NA 97792 6.985229661 3.61571E-09

scaffold237ref0040978 NA 109547 6.869525112 4.273E-09

scaffold13324ref0046917 NA 97791 6.834872487 4.49465E-09

scaffold1052ref0009181 NA 30902 6.716013897 5.35654E-09

scaffold1326ref0023230 NA 175102 6.555063165 6.82702E-09

scaffold2467ref0011548 NA 167776 6.545575638 6.92662E-09

scaffold2467ref0011548 NA 167780 6.425233 8.33895E-09

scaffold15267ref0023130 NA 102811 6.378657866 8.96823E-09

scaffold2543ref0034320 NA 172296 6.328177961 9.70986E-09

scaffold5403ref0046155 NA 61950 6.203242357 1.18526E-08

scaffold13324ref0046917 NA 97793 6.0815543 1.44495E-08

scaffold176ref0043339 NA 181764 5.864719152 2.07744E-08

scaffold4870ref0016801 NA 6337 5.863728591 2.08095E-08

scaffold48168ref0018173 NA 127401 5.832090144 2.19663E-08

scaffold165ref0012847 NA 32668 5.646030106 3.03786E-08

scaffold322ref0033181 NA 140884 5.588431859 3.36589E-08

scaffold2543ref0034320 NA 172290 5.452009907 4.30957E-08

scaffold4398ref0019381 NA 13496 5.138549 7.79103E-08

scaffold2712ref0010036 NA 172297 5.070353988 8.90466E-08

scaffold4398ref0019381 NA 13493 5.021706637 9.80588E-08

scaffold6131ref0028460 NA 112091 4.962099377 1.10496E-07

scaffold2543ref0034320 NA 172291 4.945148952 1.14342E-07

scaffold4398ref0019381 NA 13495 4.733071063 1.77243E-07
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Table S3.3: List of genomic scaffolds where all the significant markers from genome

wide association studies were located in the complete population. Scaffolds were placed

onto linkage groups with the aid of the Genome Zipper

marker LG cM no of markers

scaffold 6898 ref0036069 2 99.0 - 103.6 1

scaffold 3232 ref0030065 2 80.3 - 80.4 1

scaffold 2543 ref0034320 3 60.4 - 61.2 2

scaffold 5403 ref0046155 3 60.4 - 61.2 1

scaffold 4630 ref0024910 4 64.6 - 65.3 3

scaffold 745 ref0048287 4 50.7 - 51.8 2

scaffold 4576 ref0045556 4 55.1 - 55.4 1

scaffold 1959 ref0042697 5 9.1 - 11.0 2

scaffold 4566 ref0015013 5 31.7 - 32.8 1

scaffold 4448 ref0017406 7 44.7 - 45.3 1

scaffold 322 ref0033181 NA NA 2

scaffold 10537 ref0014202 NA NA 2

scaffold 19449 ref0033434 NA NA 1

scaffold 3061 ref0020001 NA NA 1

scaffold 165 ref0012847 NA NA 1

scaffold 3049 ref0007382 NA NA 1

scaffold 16787 ref0028195 NA NA 1

scaffold 41003 ref0040763 NA NA 1

scaffold 176 ref0043339 NA NA 1

scaffold 15267 ref0023130 NA NA 1

scaffold 12079 ref0011165 NA NA 1

scaffold 10240 ref0008205 NA NA 1
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Table S3.4: List of genomic scaffolds where all the significant markers from genome

wide association studies were located in the complete population. Scaffolds were placed

onto linkage groups with the aid of the Genome Zipper

marker LG cM no of markers

scaffold 1052 ref0009181 3 39 1

scaffold 4398 ref0019381 3 43.3 3

scaffold 6131 ref0028460 3 60.4 1

scaffold 2543 ref0034320 3 60.4 - 61.2 3

scaffold 5403 ref0046155 3 60.4 - 61.2 1

scaffold 4870 ref0016801 5 31.7 - 32.8 1

scaffold 237 ref0040978 7 44.7 - 45.3 1

scaffold 165 ref0012847 NA NA 2

scaffold 13324 ref0046917 NA NA 3

scaffold 1326 ref0023230 NA NA 1

scaffold 2467 ref0011548 NA NA 2

scaffold 15267 ref0023130 NA NA 1

scaffold 176 ref0043339 NA NA 1

scaffold 48168 ref0018173 NA NA 1

scaffold 322 ref0033181 NA NA 1

scaffold 2712 ref0010036 NA NA 1
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Abstract

Forage yield is the most important trait in perennial ryegrass breeding. In produc-

tion systems where animals are at pasture for up to 300 days per year it is important

that forage yield meets feed demand throughout that time. The value of forage at

different times during the year can be captured and used as an index to aid selection.

In this study we have evaluated genomic prediction as a means of accelerating the

rate of genetic gain for forage yield to meet the feed demand. Tetraploid half-sib

families were evaluated for forage yield in both simulated grazing and conservation

management regimes over two years, and their maternal parents were genotyped.

Linkage disequilibrium in the population above background levels extended over

large cM distances. Marker-based heritabilities for traits varied from 0.07 to 0.27,

and genomic predictive abilities for traits ranged from 0.03 to 0.30. Predictive abil-

ities of 0.22 were achieved for both first cut silage under conservation management

and economic value under simulated grazing management. Our results indicate that

genomic prediction for both yield under grazing (calculated as economic value of

a plot) and yield under first cut silage in tetraploid perennial ryegrass is promis-

ing, and that the ability to complete multiple cycles of indirect selection with DNA

markers relative to conventional genotypic selection will result in increased genetic

gains.

Keywords: Genomic selection, linkage disequilibrium, Lolium perenne, tetraploid,

yield
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4.1 Introduction

Perennial ryegrass (Lolium perenne) arguably is the most important grass species in

Ireland and around temperate regions of the world [83]. Yield is an important trait

for perennial ryegrass, to provide a natural low-cost feed for ruminants [84, 187].

High yielding cultivars produce more herbage, making it a relatively cheap and high

quality feed for animals. However, grass growth is uneven throughout the year,

with excess of grass growth during the summer and a growth deficit in spring and

autumn in a typical grazing system. To compensate the feed demand in spring and

autumn, surplus yields from summer are often harvested and stored as silage. Silage

production is an expensive process and decreases the overall profitability of the farm

[133]. Developing cultivars with increased yield in spring and autumn will increase

the overall grazing period and thus decrease the feed cost [127, 187].

McEvoy et al. [117, 119] introduced the pasture profit index (PPI), to identify and

rank cultivars that will be profitable at farm level. The PPI assigns economic values

for key traits such as dry matter yields (spring, summer and autumn yields), first

and second silage cut, dry matter digestibility and persistency. The PPI was based

on simulating a spring-calving dairy farm model over a period of 12 months. Net

profits per hectare were calculated for the model farm and by simulating a change

in each trait separately, the effect of change on the model farm was calculated. The

difference between the change in net margin per hectare (before and after simulating

change) divided by change in trait is considered as the economic value of the trait

[117, 119]. Currently ryegrass cultivars produce around 17 t/ha in Europe and there

is a potential to increase forage yield up to 25 t/ha [83]. However, genetic gain for

annual dry matter yield is about 0.3 to 0.5% per year [116, 187] and these rates of

genetic improvement are significantly lower compared to cereals, which are 1.0 to

1.5% per year [132]. Some of the reasons for these poor genetic gains compared to

cereals were due to (i) longer breeding cycles in forage crops, with each selection

cycle taking up to three to five years, (ii) inability to exploit heterosis, as in hybrid

crops, and (iii) selecting for multiple traits, which are not correlated or negatively

correlated with forage yield [28, 82].

With the development of molecular markers, marker assisted selection (MAS) looked

like a promising approach to speed up the selection cycle and thus increase ge-
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netic gain for economically important traits in perennial ryegrass [32]. Studies have

mapped quantitative trait loci (QTL) linked to yield in bi-parental mapping popula-

tions on all linkage groups [59, 160, 176]. However, multiple inconsistent QTLs were

detected due to high G x E interactions and MAS would be ineffective for improving

complex traits [14, 32]. With the development of high density genotyping panels,

genome wide association studies (GWAS) became a popular choice for QTL iden-

tification in breeding material, but its use has been limited due to the requirement

of additional steps in marker selection and validation, potential overestimation of

marker effects and the ability to explain only a small proportion of variance [12, 32].

Meuwissen et al [123] proposed an approach to integrate all markers simultane-

ously in the model to estimate breeding values. This approach is known as genomic

prediction or genome wide selection. To implement genomic prediction, initially a

training population is established which is genotyped with high density markers and

phenotyped for the trait under evaluation. Using both genotypic and phenotypic

information, marker effects are estimated to predict genomic estimated breeding

values (GEBVs) in the selection population [81, 89]. Because of the high density

of markers used for predictive modeling, it is possible to capture marker effects

consistently across the population, making predictions more reliable [44]. Genomic

prediction revolutionized animal breeding and continues to be successfully applied

[124], but it is still in an early phase in plant breeding.

Previous studies have demonstrated the potential of genomic prediction in diploid

perennial ryegrass populations [21, 60, 61, 72]. A prediction accuracy of 0.22 was

reported for total yield in diploid perennial ryegrass families [72]. While, these

results are encouraging with high accuracy for most of the traits, no study has yet

explored the potential of genomic prediction in tetraploid perennial ryegrass families.

In this study, we aim to evaluate genomic prediction for forage yield under both

conservation and simulated grazing management in a tetraploid perennial ryegrass

population, and to develop genomic prediction models for the economic value.
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4.2 Material and methods

4.2.1 Plant material and experimental design

The tetraploid breeding material used in this study were developed from a commer-

cial cultivar, which has been on the Irish recommended list since 2012. The cultivar

was developed by intercrossing 75 plants from four full-sib families. A set of 120

plants from the cultivar was planted out in a polycross nursery and allowed to cross

pollinate. This was replicated seven times. Seeds from matching maternal parents

were harvested and bulked, producing half-sib families. Out of 120 half-sib families,

109 families produced enough seeds for a replicated field trial and two managements

were planted out in a partially balanced incomplete block design with seven blocks

within each replicate for measuring yield in 2015 and 2016 at Oak Park, Carlow,

Ireland

Yield was measured as fresh weight under two management schemes, (i) simulated

grazing management (SGM) with seven harvest cuts per year (each cut every four

weeks from March to October) (Table 4.1) and (ii) conservation management (CM)

with four harvest cuts per year (Table 4.1). For CM only first cut (May) was used

for model development, due to its economical importance. The experiment was

carried out with two controls, Kintyre and Abergain in each block. Each plot size

was 6 x 1.5 m and harvested approximately at 4 cm above the ground using a plot

harvester.

4.2.2 Phenotyping and data analysis

In SGM, yield data was collected from seven harvest cuts in two years. Total yield

in each year was the sum of all seven harvest cuts. We estimated economic value of

the plot (EV) using weightings from the PPI [117, 119]. Cuts in SGM were divided

into spring yield (cuts 1 and 2), summer yield (cuts 3, 4 and 5) and autumn yield

(cuts 6 and 7) (Table 4.1). Yields in spring, summer and autumn were multiplied by

e0.16, 0.04 and 0.11 respectively [117]. The EV was calculated by summing spring,

summer and autumn values. Under CM, yield data of the first harvest cut was used

for the analysis. In total five traits from SGM (total yield, EV, spring, summer and

autumn yields) and one trait from CM (first silage cut) were used for further analysis.
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Table 4.1: Forage yield measured under simulated grazing management (SGM) and

conservation management (CM) was collected during the dates mentioned below in the

table.

Management Year 1 (2015) Year 2 (2016)

SGM

Cut 1 09/04 to 10/04 14/03 to 15/03

Cut 1 29/04 to 01/05 18/04 to 19/04

Cut 3 21/05 to 22/05 12/05 to 13/05

Cut 4 10/06 to 19/06 07/06 to 08/06

Cut 5 15/07 to 17/06 04/07 to 05/07

Cut 6 10/08 to 12/08 04/08 to 05/08

Cut 7 07/09 to 08/09 14/09 to 21/09

CM

Cut 1 21/05 to 22/05 12/05 to 13/05

Phenotypic analysis was carried out in two stages. In stage one, grand mean and

mean of controls in each block was calculated and the difference was considered as

the adjusted control. The difference between the adjusted control and the mean of

each plot value is the adjusted mean. In stage two, adjusted means were used to fit

a mixed model with genotype as a random effect, and year and replicate as fixed

effects, to obtain conditional modes (also called best linear unbiased predictions,

BLUPs) for all six traits. The repeatability (broad sense heritability) for each trait

was calculated as follows:

v2 =
σ2
g

(σ2
g + σ2

res/r)
(4.1)

The variance components for genotype and residuals were estimated based on analy-

sis of variance (ANOVA) and r is the replicates per genotype. Marker-based narrow

sense heritability was estimated based on marker data, genotypic and residual vari-

ance were computed using a mixed model, based on restricted maximum likelihood

estimates. The repeatability and marker-based heritability were calculated using

the R package heritability [103].
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4.2.3 Genotyping and variant calling

DNA was extracted from leaf samples of maternal genotypes using standard cetyl

trimethyl ammonium bromide (CTAB) method [50]. A genotyping by sequencing

(GBS) approach was used for library preparation and was carried out as a service

by LGC Genomics, Berlin, Germany. Sequence reads were quality filtered, de-

multiplexed and aligned to a reference perennial ryegrass genome [23]. After de-

multiplexing, genotype calling was done according to Li et al [109] where all three

heterozygous states were called as heterozygous. Briefly, for each SNP a minimum

of 11 reads were required to call a homozygote (i.e AAAA). If fewer than 11 reads

were present, the genotype was considered as missing to avoid misclassifying a triplex

heterozygote (i.e AAAT) as homozygous. To call a SNP heterozygous, two reads

per allele was set as the threshold and a minor allele frequency (MAF) for the given

SNP set to be greater than 0.10, otherwise it was considered as a missing genotype.

Any SNPs with less than 5% MAF and missing data points greater than 50% were

eliminated. These filtering resulted in 45,569 genome wide markers.

4.2.4 Linkage disequilibrium and population structure

To determine linkage disequilibrium (LD) we obtained genetic positions for 26,333

markers using GenomeZipper [23, 137]. All heterozygous markers were marked as

missing values and marker loci containing more than 50% missing genotype values

were removed. MAF was calculated on these markers and markers with less than

5% MAF were removed, reducing the dataset to 1,029 markers. The extent of LD

in the population was estimated on these 1,029 markers using PLINK 1.9 [30] and

there are various approaches to set a threshold to determine the extent of LD in the

population. The most common approach is to use an r2 threshold value of 0.1 or 0.2,

but recently published literature used a different approach to set a threshold value

based on background LD [1, 18, 178, 180]. LD was assessed for linked loci (located

on the same linkage group) and unlinked loci (located on different linkage groups),

as an r2 value between pairs of markers. Background LD, which is the level of

disequilibrium between unlinked loci was determined based on the distribution of r2

values. Unlinked r2 values were log transformed to approximate normally distributed

variables, and then a parametric 95th percentile of the distribution was considered

as the background LD [18]. Intersection of background LD value with the loess fit
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curve is considered as the extent of LD in each linkage group [18, 175, 180].

Structure in the population was assessed using fastStructure [145], based on mark-

ers with genetic positions (26,333 markers). The program fastStructure determines

the optimum number of subpopulations using a model based Bayesian algorithm.

Models were run with a varying number of clusters (K) from K = 1 to 10. The best

fit model was selected based on marginal likelihood values using Python chooseK.py

script implemented in fastStructure. In addition, principal component analysis

(PCA) was performed using prcomp function in R [173] and the first two com-

ponents were visualized using an R package ggfortify [170].

4.2.5 Genomic prediction models and cross validations

We evaluated four statistical models for genomic prediction: Genomic best linear

unbiased prediction (GBLUP), ridge regression BLUP (rrBLUP), random forest re-

gression and support vector regression. GBLUP is a widely used genomic prediction

model for estimating marker effects [58]. GBLUP is a mixed linear model, in which

covariance among individuals is the realized genetic relationship estimated using

genome wide markers. The mixed model can be expressed as follows:

y = µ+Xu+ ε (4.2)

where y is the vector of input phenotypic values, µ is the overall mean, X is the

marker matrix, u ∼ N(0, Iσ2
e) represents the realized genetic relationship matrix

calculated from genome wide markers, ε is a vector of residual effects. rrBLUP is

also a mixed linear model, but covariance among markers is considered to be zero.

In the mixed model equation, u ∼ N(0, Iσ2
e) is the vector of markers effects. Both

GBLUP and rrBLUP rely on the assumption that the trait is controlled by many

genes with small effects (infinitesimal model). We used an R package rrBLUP to

implement GBLUP and rrBLUP [58].

Random forest regression is an ensemble learning algorithm, in which a series of re-

gression trees are grown to the largest extent possible with a subset of bootstrapped

samples. At each split of the tree, a random subset of variables is selected to identify

the best split. This is repeated for each of the bootstrap samples and finally trees

are averaged. We used an R package randomForest [110], setting the number of
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variables at each split to 1/3 of the total variables, and using a terminal node size

of five and minimum of 500 trees per forest.

Support vector regression is a supervised learning method, in which input variables

are initially mapped into multi-dimensional feature space using non-linear mapping

and then a linear model is developed within this feature space [41]. We used an

R package e1071 [125] for implementing support vector regression, using linear re-

gression model with cost of constraint violation (C) as 1 and epsilon (ε) insensitive

regression as 0.1.

Cross-validation was performed by assigning 80% of the population as training set

and assigning 20% of the population as test set. Predictive ability was measured as

the Pearson correlation coefficient of true phenotypic value and predicted phenotype

(GEBVs) of the test set averaged over 1,000 iterations. We assessed predictive

ability for EV, total yield and first silage cut using conditional modes. In addition,

predictive ability was estimated for spring, summer and autumn yields.

4.3 Results and discussion

4.3.1 Phenotypic analysis

The production environment defines the breeding goals and in Ireland perennial

ryegrass is utilised in production systems that are predominantly based on grazing

for up to 300 days in a year. While forage yield is one of the important trait selected

for in breeding programmes; the value of any additional yield differs depending on

the time of year. Overall, there is a large amount of variation in forage yield across

the different cuts under SGM, and also between years (Figure 4.1) (Table 4.2). In

SGM, yield measured in the second year was slightly lower than the first year and

a moderate correlation was observed between years. Under CM, yields were similar

in both the years, but correlation between years was very low (Table 4.2). Previous

studies have highlighted the significant G x E interaction for forage yield, making

the trait complicated to measure [33, 187]. Weather has a large impact on the year

to year yield differences and is the primary contributor for G x E interactions [33].

Yield differences between years may also be caused by cultivar persistence [24, 33].

The change in the persistence, tolerance to grazing, and susceptibility to disease can
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all lower the yields in second or subsequent years [33, 187].
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Figure 4.1: Phenotypic description of seven harvest cuts evaluated for two years under

grazing management. Boxplot on the X-axis represents each cut and is matched with

the closest cut in year 2. Scale on the Y-axis represents kilograms of yield produced per

plot.

Table 4.2: Summary statistics of yields produced in each year under grazing and

conservation management. In grazing management, total yield in each year was the

sum of seven harvest cuts and in conservation management, the first silage cut is the

value of a single harvest cut. Correlation is between two years for each trait

Trait Year Average SD Min Max Correlation

Total yield Year 1 55.0 2.3 48.7 63.8 0.54

Year 2 52.7 2.3 46.7 58.4

First silage cut Year 1 31.7 1.9 24.7 35.6 0.14

Year 2 31.5 2.8 17.7 38.7

Perennial ryegrass cultivars, perform differently under different managements [71,
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116, 118]. This is due to a high degree of genetic independence between yield of

reproductive growth, which primarily contributes to the silage yield and the yield of

vegetative growth which primarily contributes to grazing yield [187]. In this study

we have managed the population under two managements (SGM and CM), and

we observed that the ranking of families differed between the two managements.

When we ranked the families in each management and compared them there were

only three families (K20, K65 and K142) in common across the top 20 of SGM and

CM.

Forage yield is highly variable throughout the year [48, 187], with yields that cannot

meet the annual demand in spring and autumn. The relative value of yield at

different times of the year has been captured in the PPI [117, 119], which was

developed in Ireland to place an economic value on cultivars. The PPI is primarily

aimed at helping producers select new cultivars when reseeding pastures but also

serves as a selection index for breeders developing new cultivars for Irish production

systems. We have used the weightings for spring, summer, and autumn growth to

assign an economic value to a family on a plot basis. These values are being used

to develop genomic prediction models for EV.

4.3.2 Genotyping, linkage disequilibrium and population structure

In total, 45,569 markers were identified in this population and we were able to

place 26,333 markers onto the seven linkage groups of perennial ryegrass using the

GenomeZipper [23, 137]. Markers were evenly distributed across all seven linkage

groups with the least number of markers on linkage group five and highest number

of markers on linkage group four. We conclude from this that the markers are well

distributed and are suitable for genome wide selection. The placement of markers on

the linkage map also enabled us to estimate long range LD in this population.

We estimated background LD by determining pairwise LD between markers on

different linkage groups, and based on the 95th percentile of pairwise r2 values

we determined background LD to be 0.064. LD between the linked loci (markers

on the same linkage group) was estimated for all the seven linkage groups. The

extent of LD (above background) in linkage group 1 to 7 varied from 2.5cM to

10cM (Figure 4.2, Figure S4.1-S4.6). Extent of LD is population specific and is

considered to be extremely low in broad collections of perennial ryegrass, due to
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large past effective population size [77]. Because we have a restricted population,

we see much higher levels of LD. In linkage group 1, the median r2 value was 0.017

with 23% of pairs of markers above the background LD and 16% of pairs of markers

above the r2 value 0.1. Considering 0.064 as the base value, the LD in linkage

group 1 extended to 10cM (Figure 4.2). Similar results were obtained for other

linkage groups (Figure S4.1 - S4.6). It has already been demonstrated in many

plant studies that predictive ability can be largely dependent on markers capturing

genetic relationships between individuals [148, 175]. Similar observations have been

made in cattle and sheep, where decreases in prediction accuracy were observed after

correction for population structure [42, 152]. This is relevant because accuracy due

to genetic relationships will decay rapidly over generations whereas accuracy due to

LD will persist longer.

Figure 4.2: Extent of linkage disequilibrium (LD) on linkage group 1, estimated as r2

value over the distance (cM). Red line represents the smoothing curve fitting using loess

curve. Blue line shows the 95th percentile of unlinked loci (background LD)

Absence of population structure simplifies methodologies for genomic prediction. It

was envisaged that the design of this population would mean it was free of population

structure and this was confirmed. The optimum number of clusters in the population
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were determined based on marginal likelihood values. When K varied from 1 to 10,

marginal likelihood values ranged from -0.8249 to -0.8387, with K=1 generating

the highest value. This suggests a lack of population structure that was supported

by the PCA plot, which also lacked evidence of clear groupings (Figure 4.3). One

of the main challenges with implementing genomic prediction in perennial ryegrass

is that useful LD only extends over short distances resulting from a very large

past effective population size. This impacts the size of the reference population

and number of markers needed to achieve high predictive accuracies. Seeking out

inflated LD has already been suggested as an approach to implementing genomic

prediction in outbred forage species such as perennial ryegrass [77].

−0.3

−0.2

−0.1

0.0

0.1

−0.2 −0.1 0.0 0.1
PC1

P
C

2

Figure 4.3: Principal component analysis for complete population based on 45569

markers. A lack of population structure was evident because of absence in groupings

4.3.3 Estimates of repeatability and marker-based heritabilities

We calculated repeatability and marker-based heritability for all the traits (Table

4.3). Marker-based heritability is an estimation of narrow sense heritability and

calculates the proportion of the variance explained only by additive effects, whereas

repeatability (broad-sense heritability) accounts for additive and non-additive (dom-

inance and epistatic) effects [103, 190]. Marker-based heritability is calculated using



88

a mixed model to explain the phenotypic variance by accounting for genetic related-

ness and within genotype variability using replicated plot data [103]. Marker-based

heritability for all the traits ranged from 0.07 to 0.27 (Table 4.3). Generally, heri-

tability estimates are population specific and can depend on the evaluation environ-

ments. This makes it difficult to compare estimates of heritability across studies.

Most of the studies in perennial ryegrass estimated yield related traits to be of low

to moderate (0.20 to 0.50) heritability, and these statements agree with our results

[61, 65, 72, 88].

Table 4.3: Repeatability (v2) and marker-based heritability (h2) for first silage cut

(harvest cut under conservation management), EV (economic value for each plot esti-

mated based on pasture profit index), total yield (sum of seven cuts measured under

simulated grazing management), spring yield (sum of cut 1 and 2 measured under sim-

ulated grazing management), summer yield (sum of cut 3, 4 and 5 measured under

simulated grazing management) and autumn yield (sum of cut 6 and 7 measured un-

der simulated grazing management). Repeatability is based on phenotypic values and

Heritability is based on markers with confidence interval (CI) of 95%.

Trait Repeatability (v2) Heritability (h2) CI (h2)

First silage cut 0.36 0.12 0.06 - 0.25

EV 0.43 0.27 0.18 - 0.39

Total yield 0.43 0.25 0.16 - 0.38

Spring yield 0.22 0.16 0.08 - 0.28

Summer yield 0.20 0.07 0.02 - 0.22

Autumn yield 0.42 0.19 0.10 - 0.31

4.3.4 Genomic prediction for yield

In this study we evaluated accuracy of genomic prediction using genotypes of mater-

nal plants and phenotypes collected on half-sib progeny. This is an ideal evaluation

of the potential of genomic prediction for forage yield as it focuses on the additive

genetic variation which is relevant for predicting parental breeding values during

synthetic cultivar development. We evaluated genomic prediction for forage yield

traits measured under two different managements, SGM and CM. Under CM first

cut silage is the trait of greatest importance and we obtained a maximum mean

predictive ability of 0.22. The marker-based estimate of narrow-sense heritability
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for this trait was 0.12, giving a prediction accuracy for 1st cut silage of 0.63. Under

SGM we determined predictive abilities for total yield, spring yield, summer yield,

autumn yield and EV based on weightings in the PPI. Predictive ability for these

traits ranged from 0.03 (summer yield) to 0.30 (spring yield) (Table 4.4). The low

predictive ability for summer yield corresponded to the low estimate of marker-based

heritability of 0.07. The relationship between prediction accuracy and heritability

has already been shown in other studies, with low heritable traits having low pre-

dictive ability in many crops species [104, 105, 153]. We evaluated four statistical

models (rrBLUP, GBLUP, random forest and support vector regression) to develop

the genomic prediction models and for most traits rrBLUP/GBLUP gave the highest

values (Table 4.4). GBLUP and rrBLUP both rely on the assumption that genetic

control of the trait follows an infinitesimal model and are considered as statistically

similar [78, 123]. In only one case (spring yield) did random forest outperform other

models and one case (summer yield) where support vector regression outperformed

other models (Table 4.4). This is similar to findings from other studies where in

general GBLUP or rrBLUP outperformed other models [4, 72].

Table 4.4: Comparing mean predictive ability using four genomic prediction models

for first silage cut (first harvest cut under conservation management), EV (economic

value for each plot estimated based on pasture profit index), total yield (sum of seven

cuts measured under simulated grazing management), spring yield (sum of cut 1 and 2

measured under simulated grazing management), summer yield (sum of cut 3, 4 and 5

measured under simulated grazing management) and autumn yield (sum of cut 6 and

7 measured under simulated grazing management). Values in the bracket represent the

median predictive ability for each trait

Trait rrBLUP GBLUP RF SVR

First silage cut 0.22 (0.23) 0.22 (0.23) 0.21 (0.22) 0.18 (0.19)

EV 0.22 (0.24) 0.22 (0.23) 0.16 (0.17) 0.18 (0.18)

Total yield 0.16 (0.16) 0.16 (0.17) 0.11 (0.11) 0.12 (0.13)

Spring yield 0.28 (0.30) 0.28 (0.30) 0.30 (0.32) 0.29 (0.32)

Summer yield 0.03 (0.03) 0.03 (0.04) 0.05 (0.05) 0.07 (0.08)

Autumn yield 0.16 (0.16) 0.16 (0.16) 0.12 (0.13) 0.09 (0.10)

There has been one other study in perennial ryegrass (although with diploid types)

that investigated predictive ability for forage yield using half-sib families [72]. In
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that study, prediction accuracies were generally low for the conservation cut (second

cut). However, they obtained prediction accuracies of up to 0.275 for total yield in

year one, which compares favorably to the predictive ability of 0.16 obtained here

for total yield based on conditional modes calculated from two years data. Another

very similar study to the one presented here was carried out recently on Alfalfa and

included a similarly sized training population of 125 half-sib families [4]. In that case

predictive abilities of 0.32 were achieved for forage yield. Of particular interest in

this study was the development of prediction models based on forage yield weighted

according to economic value across the season. The marker-based heritability for

this trait was 0.27 and we achieved a predictive accuracy of 0.22. When calculating

EV, forage yield in spring (cuts 1 and 2) is awarded the highest value and predictive

accuracy for spring yield was 0.30.

Our results on genomic prediction for forage yield and weighted forage yield (pre-

sented as EV) in a tetraploid perennial ryegrass breeding population are encourag-

ing. These were achieved with a modestly sized training population that had been

developed to (i) be free from population structure and (ii) to have inflated linkage

disequilibrium. The fact that we are able to achieve good predictive abilities with

relatively small training populations is likely a result of the inflated LD we observe

in this population and that the testing material is closely related to the training

material. The predictive ability was moderate (0.22) for the EV calculated from the

PPI values for spring, summer, and autumn yield. Considering the marker-based

heritability for this trait as 0.27 the relative selection efficiency of indirect selection

with markers vs. conventional genotypic selection is 0.42. This is assuming identical

selection intensities, however, it would be expected that higher selection intensities

could be achieved with genomic prediction. Considering that we can complete five

cycles of genomic prediction in the same time it takes to do a single cycle of geno-

typic selection, there is a 2.1 fold greater efficiency for genomic prediction. This

assumes no degradation in the predictive accuracy over generations. This is in gen-

eral agreement with a very similar study carried out in alfalfa [108]. That study also

had a small training population made up of half-sib families, and without population

structure. Furthermore, as pointed out by Li et al. [108], we should not expect large

decreases in accuracy over generations because of the complex nature of forage yield

that is likely to be controlled by thousands of loci.
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4.4 Conclusions

This is the first report on genomic prediction for forage yield in tetraploid peren-

nial ryegrass families. Our results indicate that indirect selection with genome wide

markers for both yield under grazing (calculated as EV) and first cut silage is promis-

ing, and that the ability to complete multiple cycles of selection with genomic pre-

diction relative to conventional genotypic selection will result in increased genetic

gains.

List of abbreviations LD: linkage disequilibrium; GEBV: genomic estimated

breeding value; PPI pasture profit index; EV economic value of the plot; SGM:

simulated grazing management; CM: conservation management
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Supplementary files

Figure S4.1: Extent of linkage disequilibrium (LD) on linkage group 2, estimated as

r2 value over the distance (cM). Red line represents the smoothing curve fitting using

loess curve. Blue line shows the 95th percentile of unlinked loci (background LD)

Figure S4.2: Extent of linkage disequilibrium (LD) on linkage group 3, estimated as

r2 value over the distance (cM). Red line represents the smoothing curve fitting using

loess curve. Blue line shows the 95th percentile of unlinked loci (background LD)
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Figure S4.3: Extent of linkage disequilibrium (LD) on linkage group 4, estimated as

r2 value over the distance (cM). Red line represents the smoothing curve fitting using

loess curve. Blue line shows the 95th percentile of unlinked loci (background LD)

Figure S4.4: Extent of linkage disequilibrium (LD) on linkage group 5, estimated as

r2 value over the distance (cM). Red line represents the smoothing curve fitting using

loess curve. Blue line shows the 95th percentile of unlinked loci (background LD)
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Figure S4.5: Extent of linkage disequilibrium (LD) on linkage group 6, estimated as

r2 value over the distance (cM). Red line represents the smoothing curve fitting using

loess curve. Blue line shows the 95th percentile of unlinked loci (background LD)

Figure S4.6: Extent of linkage disequilibrium (LD) on linkage group 7, estimated as

r2 value over the distance (cM). Red line represents the smoothing curve fitting using

loess curve. Blue line shows the 95th percentile of unlinked loci (background LD)



Chapter 5

General discussion
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5.1 General discussion

Conventional plant breeding is largely the art of utilizing natural genetic variation

and selecting the best genotypes using the most efficient methods. The typical ap-

proach to improve populations in perennial ryegrass is by recurrent selection. Cur-

rently, there are two recurrent selection methods used for population improvement

in forage grasses, phenotypic and genotypic recurrent selection. Genotypic recurrent

selection is the standard breeding system for improving forage yield where breeding

values for yield are determined by evaluating either half-sib or full-sib progeny in

swards. Phenotypic recurrent selection can be used to improve traits, where there

is good agreement between phenotypes scored on spaced plants and phenotypes

scored in swards [34]. Genetic gains for economically important traits such as for-

age yield, dry matter digestibility and plant/genotype persistency have generally

been low. Annual genetic gains of 0.3 to 0.5% for forage yield have been reported

[55, 82, 116, 187] and no improvements in digestibility and persistency [116]. This is

significantly lower than the rates of genetic gain achieved in cereals, where gains of

1.0 to 1.5% per year have been achieved [132]. Reasons include; (i) a longer breed-

ing cycles in forage crops, with each selection cycle taking five to six years, (ii) an

inability to exploit heterosis, (iii) selection for multiple traits, which can be poorly

correlated or even negatively correlated and (iv) due to the out-breeding nature of

perennial ryegrass [28, 82]. In this thesis I have looked at various approaches to use

molecular markers and genomic information to increase the rate of genetic gain for

traits especially crown rust resistance and forage yield.

Indirect selection based on molecular markers (marker assisted recurrent selection

or MARS) was identified as a promising approach to improve the rate of genetic

gain per unit time and cost [14]. The goal of MARS is to improve the overall

population performance by improving the frequency of favorable alleles [34]. The

success of MARS depends on how proximal the marker is to the QTL [14, 31]. The

linked markers are used to select seedlings that have the desired allelic combination,

thereby reducing the time it takes to complete a cycle of selection. In perennial rye-

grass, marker-trait associations have typically been identified in bi-parental mapping

populations. However, there are few reports of these markers being used in practical

breeding. MARS has had some success in other crops such as rice, maize, soybean

and wheat [154, 191]. For example, cyst nematode resistance in soybean was initially
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screened in glasshouse trials, which took up to 30 days. Using MARS reduced this

to 1-2 days, and at a greatly reduced cost [36]. MARS can be successful, especially

for traits controlled by few QTLs, each with large effects [14]. In perennial ryegrass

economically important traits, especially forage yield are quantitative in nature,

and controlled by many genes with relatively small effects. Therefore there is little

opportunity to improve such traits with MARS. As mentioned by Conaghan and

Casler [34], population size required to introduce one QTL into breeding material is

four, but for 10 QTLs the population size required is 1,048,576, making it impracti-

cal. The identified QTLs may not even segregate in the breeding material, because

the QTL has been identified in a bi-parental population and may already be at a

high frequency in breeding material. Furthermore, the number of QTLs identified

for the trait doesn’t represent all the major QTLs present in the breeding material.

Because of this the focus has shifted from identifying QTL in bi-parental popula-

tions to identifying QTL directly in breeding material. This results in marker-trait

associations that are much more useful in practical breeding.

GWAS overcomes many limitations of bi-parental mapping by identifying QTL seg-

regating in the breeding material. This takes the advantage of historical recom-

binations to identify marker-trait associations. The success of GWAS depends on

the marker being in LD with a QTL and the QTL allele must be at a high enough

frequency in the population to be detected and its effect estimated. GWAS for

discovery of markers in perennial ryegrass (for MARS) is challenging because the

extent of LD is low and allelic diversity is very high. This indicates a very large

past effective population size (Ne) [77], requiring higher marker density and large

population sizes to detect marker-trait associations. In Chapter 2 we attempted to

overcome the challenges of rare alleles by using a number of full-sib families in an

association mapping analysis. We identified no significant marker trait associations

for heading date, which we put down to challenges identifying significant associ-

ations when correcting for population structure, and also low levels of LD across

the full-sib families. However, we were able to identify marker-trait associations

when focusing on single marker analysis within each family where we observe long

range LD. Many markers were proximal to genes controlling heading date (Chapter

2). Interestingly, another study I contributed to during the course of my PhD used

variable importance measures to identify markers capable of predicting heading date

in the complete training population and succeeded in identifying markers that were
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within or proximal to genes with known involvement in heading date [21]. In this

case no correction for population structure was performed and markers were sim-

ply ranked based on their predictive ability. It was clear from the results that this

approach did identify markers in LD with QTL for heading date. The initial exper-

iment described above were carried out on full-sib families, which are a subset of

larger population of spaced plants consisting full and half sib families, cultivars and

ecotypes. When data for the complete population was available we did association

analysis for crown rust resistance. As we reported above, heading date correlates

quite well with family structure in this population, therefore GWAS for heading

date was avoided. A marker density of 200,000 and a genome wide association panel

of 1582 individuals was used for GWAS and we were able to identify 29 markers

linked to crown rust resistance (Chapter 3). However, the total phenotypic variance

accounted by these significant markers was very low (7%) (Chapter 3). Another

study in perennial ryegrass reported GWAS for heading date using a similar size of

population but the marker density was five times higher. Even with much higher

marker density the overall phenotypic variance explained by the significant markers

was very low (20%) [61]. The reasons for this so called ”missing heritability” in

plants was explained by Brachi et al. [15]. The most likely explanation is stringent

thresholds imposed by multiple testing and the control of traits by rare alleles. An

allele has to be present in high enough frequency for it effect to be accurately esti-

mated. Strategies to overcome many of the problems associated with GWAS have

been implemented in other species, however, they required the development of spe-

cific experimental populations. These include Multi-parent Advanced Generation

InterCrosses (MAGIC) and nested association mapping (NAM) populations. Pro-

ducing such populations in self-incompatible outbreeding species such as perennial

ryegrass is extremely challenging.

Using GWAS to identify marker-trait associations when traits are controlled by

thousands of loci with small effect, such as forage yield, is unlikely to be successful.

The next innovation in using markers in breeding was suggested by Meuwissen et al.

[123] and is referred to as genomic prediction. Here all markers are used simultane-

ously to predict breeding values. The major difference between genomic prediction

and MARS is that markers do not have to cross significant thresholds to be used as

predictors of breeding value . In recent years, genomic prediction has been success-

fully implemented in dairy cattle, which has reduced progeny testing from 6 years
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to 1.5 years [94, 124]. Its potential has already been demonstrated in annual crops

[29, 165, 175], perennial trees [105] and in forage grasses [4, 21, 60, 61, 72, 108].

In chapter 3, we developed genomic prediction models for crown rust resistance in a

large spaced plant population. Results were encouraging with high predictive ability

for crown rust resistance (0.52). Genomic prediction for crown rust resistance was

previously investigated in perennial ryegrass families. In that case predictions were

based on mean genotypes and phenotypes of F2 families, and similar predictive abil-

ities were observed [60]. Genomic prediction relies on using high density markers

to ensure all QTL (even small effect QTL) are in LD with at least one marker and

all markers are used to predict accurate breeding values [123]. To achieve this in

perennial ryegrass we need very large marker densities given the low levels of LD

we observed in this population. However, with only 10,000 markers we were still

able to achieve a high predictive ability for crown rust resistance (Chapter 3). This

was mainly due to markers capturing genetic relationships among families. While

predictive ability due to LD will persist over many generations, predictive ability

due to capturing genetic relationships is expected to decay rapidly. Habier et al. [73]

demonstrated using simulations that markers capturing genetic relationship signif-

icantly contributes to predictive ability. However predictive ability decreased after

a few generations due to the decay in genetic relationships. In animal breeding,

when marker effects were estimated from one breed (Jersey) of animals, and used

to estimate effects in another breed (Holstein) lower accuracies were reported [76].

This was mainly due to lack of genetic relationship between the breeds. Similar

observations were reported in our study, when predicting allelic effects in a family

of unrelated individuals to the training set, predictive ability was mostly zero or

negative depending upon the relationship with the training set (Chapter 3). Other

studies in perennial ryegrass also assessed the influence of genetic relationship on

predictive ability, by predicting allelic effects between material from different breed-

ing programmes which lead to a loss in predictive ability [21, 61]. In order to predict

with high accuracy over several generations (required in practice), predictive ability

due to capturing markers in LD with QTL is more important than markers capturing

genetic relationships. Given the low levels of LD in perennial ryegrass, high marker

densities are required, which increases the overall cost of genotyping and limits our

ability to increase selection intensity with genomic prediction. An alternative may

be a two step approach similar to MARS where we identify a subset of markers
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predictive of a trait and use these to generate GEBVs. Genotyping opportunities

exist for targeted sequencing of 100s of loci at low cost. Genotyping in Thousands

by sequencing (GT-seq) is one method, where Campbell et al. [25] reported that

2068 individuals can be genotyped at 192 targeted loci at a cost of $ 3.98 per sample

including DNA isolation and PCR. These approaches will be most beneficial if the

markers are based on GWAS ranking, as the predictive ability of these markers will

be mainly due to LD with QTL. When we ranked markers based on GWAS signif-

icant values (although ignoring significance thresholds) and used these to develop

genomic prediction models we observed good predictive ability (Chapter 3). The

selected top markers based on the GWAS ranking achieved higher predictive ability

compared to a similar number of random markers. While this approach may be

possible for traits such as crown rust resistance or quality traits, it is unlikely to be

successful for more complex traits such as forage yield.

Genomic prediction will be most beneficial in forage breeding for phenotypes where

the correlation between measurements taken on single plants and measurements

taken in swards is low. This makes within family selection difficult [161]. Forage

yield has poor agreement between spaced plants and swards, and is generally mea-

sured as the mean of full- or half-sib progeny grown in swards. Due to high G x

E interactions selection decisions are always made after multi-year replicated field

trials. Hence, forage yield is the perfect target for implementing genomic predic-

tion. In chapter 4, we evaluated the potential of genomic prediction for forage yield

traits in tetraploid perennial ryegrass families. In this study we evaluated accuracy

of genomic prediction using genotypes of maternal plants and phenotypes collected

on half-sib progeny. This is an ideal evaluation of the potential of genomic predic-

tion for forage yield as it focuses on the additive genetic variation which is relevant

for predicting parental breeding values during synthetic cultivar development. Us-

ing maternal parents have a genotyping advantages over pooled plants. It is easier

to genotype a single plant than a pooled plants, as it requires higher sequencing

depth to represent true allele frequency of pooled plants. As discussed previously

Ne presents challenges for genomic prediction in that we require large reference pop-

ulations and very high marker densities. Collecting forage yield data (in swards)

from large reference populations is challenging. For example, the Teagasc breeding

programme has the capacity to evaluate approximately 250 full-sib or half-sib fam-

ilies in two managements with two replications in each. Expanding this to 1000s of
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families is not feasible. The approach proposed by Hayes et al. [77] was to seek a

reduction in Ne from the outset and operating the breeding programme as a closed

system. This would lead to increase in LD and higher accuracies using genomic

prediction. In chapter 4 we took advantage of a population that had many of these

characteristics. The tetraploid half-sib families we used were developed from a com-

mercial cultivar. The cultivar was developed by intercrossing 75 plants from four

full-sib families and a set of 120 plants from the cultivar were polycrossed to produce

half-sib families. Forage yield was evaluated on these half-sib families under both

simulated grazing management and conservation management over two years. For-

age yield is highly variable throughout the year and the relative value of the yield at

different times of the year has been captured in pasture profit index (PPI) [117, 119].

The PPI was developed in Ireland to place an economic value on cultivars and assist

breeders as a selection index for developing new cultivars for Irish production sys-

tem. We estimated economic value of the plot using weightings from the PPI. The

aim was to evaluate genomic prediction for forage yield traits. Predictive ability for

traits ranged between 0.03 and 0.30. It is likely that the restricted population and

higher LD we observed have led to our reasonable predictive ability despite such a

small reference population. However, predictive ability for summer yield was low

and this correlated with low marker-based heritability for this trait. Grinberg et

al. [72] also evaluated forage yield in (diploids) perennial ryegrass, using a limited

number of families (254) as the reference population. Overall, the predictive abilities

were also high reaching up to 0.31. A study in alfalfa used a training population

size of 100 [108] and another study with two training populations of 124 and 154

families [4] to predict forage yield. Both studies reported good predictive ability for

forage yield. Although, predictive ability for forage yield is not as high as crown rust

resistance or heading date these results are still promising. Selection based on field

evaluations takes up to six years, whereas indirect selection with molecular markers

takes 1 year. Because of this, there is huge potential to complete multiple cycles

of selection with genomic prediction in the same time it takes to complete a single

cycle using conventional selection. Therefore even with predictive abilities of 0.22

for economic value of a plot the relative selection efficiency of genomic prediction

over conventional selection is 2.1 (Chapter 4).

Having markers in LD is beneficial for long term use of genomic prediction. For

medium heritability traits not conforming to the infinitesimal model, it is possible
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to capture LD relationships using approaches such as variable selection and GWAS,

potentially identifying smaller, more manageable marker sets for practical applica-

tion. However, for lower heritability traits, and those with characteristics closer to

the infinitesimal model, LD can be artificially inflated by using a restricted popula-

tion. This will also work for less complex traits.

5.2 Implementing genomic prediction in peren-

nial ryegrass breeding

Implementation of genomic prediction in forage breeding schemes such as those out-

lined in Chapter 1 require modifications to the programme to really take advantage

of genomic prediction. Genomic prediction accuracy can be increased when Ne is

small and seeking a reduction in Ne has already been proposed as an approach to

implement genomic prediction in forage breeding [77]. Using a restricted population

with limited number of founder lines is the potential solution for increasing accu-

racy. We were able to achieve good predictive ability with modest size of training

population when we used such an approach in tetraploid perennial ryegrass (Chap-

ter 4). Therefore, the emphasis should be on re-designing breeding programmes

that are pre-disposed to having higher LD from the outset. Predictive accuracies

can be improved (and updated) over time by generating new families and carrying

out field evaluations. Based on the results of this thesis, I propose a strategy for a

genetic improvement scheme for perennial ryegrass, based on implementing genomic

prediction in a restricted population (Figure 5.1).

In this scheme, genomic prediction is used to select plants to recombine to produce

an improved population. The scheme begins with establishing a spaced plant nurs-

ery of 1000 plants and 200 plants are selected for polycross using the breeders visual

preference. The maternal plants are genotyped using a GBS approach. After re-

combining selected plants, the seed of half-sib families is used to establish replicated

field trial and evaluated for traits such as yield, disease resistance and persistency.

Genomic prediction model can be trained using genotypic information from mater-

nal parents and phenotypes collected on the half-sib progenies. Initially phenotypic

records are used for selection of the 20 best performing families (among family se-

lection). Seeds (e.g. 1,500) from these families are germinated and genotyped to
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generate GEBVs. Selections are made based on GEBVs and 150 plants (10%) are

recombined to produce the next generation. This process is repeated until the pop-

ulation exceeds the performance required. New phenotypes can be generated while

this is ongoing and as data is available it can be incorporated to update models and

improve accuracy of genomic prediction.

5.3 Next generation phenotyping in forage breed-

ing

Apart from genomic prediction there are other innovations which may lead to in-

creased genetic gain in breeding programmes. Application of new phenotyping tech-

niques can significantly improve estimation of breeding values. One example is mea-

suring normalized difference vegetative index (NDVI) on swards repeatedly across

growing season using an unmanned aerial vehicle. NDVI has been used for a long

time as a predictor of green biomass and seems to be correlated well with grain yield

in cereals. I propose that, measured NDVI can be used as secondary trait for forage

yield and included in a multivariate genomic prediction model for predicting yields.

It was already demonstrated that a multivariate genomic prediction model is better

and gives high accuracy compared to an univariate models [93]. A similar approach

was performed in wheat, where Sun et al. [168] and Rutkoski et al. [151] included

NDVI as a secondary trait in a multivariate model and the predictive ability was

improved by 70% for grain yield compared to the univariate model. This approach

can also be extended to persistency by phenotyping swards using an image sens-

ing camera. The only challenge to implement this method is that the secondary

traits should be highly heritable and correlate well with the target trait. Although,

no study has yet reported the heritability estimates of NDVI and image sensing in

perennial ryegrass, considering the results from cereals I am very optimistic that

this approach will be beneficial for low heritable traits in perennial ryegrass.
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Figure 5.1: A proposed genomic prediction scheme for perennial ryegrass. (i) Selection

cycle begins with the establishment of a spaced plant nursery of 10,000 plants. (ii) About

600 plants are selected for a polycross based on survivals to produce half-sib families. (iii)

These 600 maternal parents are genotyped for GBS markers. (iv) Half-sib families are

established in replicated plots and evaluated for forage yields, disease resistance, quality

and persistency. (v) Data from the phenotypic information and genotyped maternal

parents is used for genomic prediction model development. (vi) Initial selections are

based on the phenotypic information to select best families and then random seeds from

these selected families are germinated and genotyped, to select best plants within each

family. (vii) Based on the ranking of GEBVs, about 150-200 plants are selected and

recombined and in the next cycle recombined seeds are germinated and genotyped to

select best plants. This process can be repeated for multiple cycles. New phenotype

data can be added to update models and improve predictive accuracy
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5.4 Conclusions

Genomic prediction can reduce the length of time it takes to complete a single cycle

of selection from six years to one year, and therefore increase the rate of genetic gain

for economically important traits. Our results for crown rust resistance and forage

yield were encouraging. I have reported on the first use of genomic prediction for

economic value of a plot in a tetraploid perennial ryegrass population. Results were

encouraging and on the back of these genomic prediction is now being implemented

in the tetraploid forage breeding programme.
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