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Summary

Distributed computing systems are moving towards increasingly autonomous operation and manage-
ment, in which their interacting components can organise, regulate, repair and optimise themselves
without human intervention. The emerging �eld of autonomic distributed computing addresses the
challenge of how to design and build distributed computing systems that can manage, heal and op-
timise themselves given high-level objectives. Adaptive software provides some of the functionality
required for building autonomic computing systems, as it allows system behaviour or structure to be
changed at run-time to ful�l the high-level objectives. Self-adaptive software is a subclass of adaptive
software that autonomously executes adaptation logic, code concerned with monitoring for adaptation
conditions and triggering adaptation actions. This thesis proposes that self-adaptive components are
a useful building block for autonomic computing systems, as they can autonomously adapt their struc-
ture and behaviour at run-time to ful�l speci�ed goals. It also shows how decentralised coordination
of self-adaptive components can establish autonomic properties for distributed systems in dynamic
and uncertain environments, such as wireless ad-hoc networks or peer-to-peer systems.

Self-adaptive software requires programming support for the speci�cation of its adaptation logic in
order to avoid tangling adaptation-speci�c code with functional code. Re�ective techniques can help
modularise adaptation logic, but existing self-adaptive systems based on re�ection only support the
speci�cation of adaptation logic that executes synchronously with program execution, even though
events triggering adaptive behaviour are often temporally orthogonal to program execution. Also,
although it is known that self-adaptive software can evolve and learn its adaptive behaviour over time
through the use of information relating to past adaptive behaviour, none of the existing models have
the ability to learn improved adaptive behaviour online. Finally, the use of decentralised coordination
models to build distributed systems with autonomic properties from self-adaptive components has
not been addressed by existing systems. Current re�ective programming models for building adaptive
software lack support for the separate speci�cation of application-level adaptation logic that can learn
and optimise a component's adaptive behaviour.

The K-Component model is a component framework for building self-adaptive distributed systems
that addresses the aforementioned problems. Adaptation logic for components is speci�ed in a declar-
ative programming language and encapsulated at run-time as a set of re�ective programs that are
scheduled asynchronously to program execution. The re�ective programs operate on an architecture
meta-model and reason about adaptation conditions using events that provide feedback regarding the
state of components and connectors. Adaptation logic can be speci�ed using if-then rules or the event-
condition-action paradigm and the unsupervised learning of adaptive behaviour is also supported using

vi



reinforcement learning. Collaborative reinforcement learning is introduced as a decentralised coordi-
nation model that can coordinate the adaptive behaviour of groups of connected components for the
purpose of establishing system-wide autonomic properties in dynamic and uncertain environments. A
further contribution of this thesis is an asynchronous model of re�ection for adaptive software that
decouples the execution of re�ective code from base-level code.

This work reviews existing models of self-adaptive software from the areas of re�ective systems,
dynamic software architecture and autonomic computing. It describes the programming model for K-
Components, its architecture meta-model, a contract description language, a model of asynchronous
re�ection and collaborative reinforcement learning. As an evaluation of the model, a load balancing
application demonstrates how autonomic distributed systems properties can emerge from the decen-
tralised coordination of self-adaptive components using collaborative reinforcement learning. The
K-Component model has been implemented as an extension to CORBA in C++.

vii



Contents

Acknowledgements v

Summary vi

List of Figures xiii

List of Tables xvi

Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Self Adaptive Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Architectural Re�ection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Adaptation Contract Description Language . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Asynchronous Re�ection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 K-Components as Autonomic Components . . . . . . . . . . . . . . . . . . . . 7

1.3 Coordinating Self-Adaptive Components . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Feedback and Decentralised Coordination . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Collaborative Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Contributions of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Towards Autonomic Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2 Background and Related Work 13
2.1 Coordination and Consensus in Decentralised Environments . . . . . . . . . . . . . . . 13
2.2 Adaptation and Autonomic Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Self-Adaptive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Requirements for a Self-Adaptive, Autonomic System . . . . . . . . . . . . . . . . . . . 15

2.3.1 State Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Adaptation Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Adaptation Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Decision Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.5 Evaluating and Updating the Decision Policy . . . . . . . . . . . . . . . . . . . 20
2.3.6 Coordination of Adaptive Behaviour . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Techniques for Building Self-Adaptive Systems . . . . . . . . . . . . . . . . . . . . . . 22

viii



2.4.1 Dynamic Software Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Re�ective, Self-Adaptive Software . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Review of Existing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 QuO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 OpenORB v2 and OpenCOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.3 Accord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.4 A Self-Organising, Consensus-Based Software Architecture . . . . . . . . . . . . 41
2.5.5 A Decentralised Software Architecture . . . . . . . . . . . . . . . . . . . . . . 44
2.5.6 Control Theoretic Approaches to Building Autonomic Systems . . . . . . . . . 46
2.5.7 Other Related Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Feature-Based Comparison of the Reviewed Systems . . . . . . . . . . . . . . . . . . . 51
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 3 The K-Component Model 54
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Asynchronous Re�ection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Asynchronous Re�ection for Self-Adaptive Software . . . . . . . . . . . . . . . 58
3.3.2 Rei�cation Categories for Self-Adaptive Software . . . . . . . . . . . . . . . . . 59
3.3.3 Weakening Consensus between Meta Models and the Base-Level . . . . . . . . 59

3.4 Component Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.1 Re�ective Component Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 De�nition of a Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Connector Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.1 Connectors for Decentralised Environments . . . . . . . . . . . . . . . . . . . . 63
3.5.2 De�nition of a Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Architectural Re�ection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.1 Architectural Re�ection and Dynamic Software Architectures . . . . . . . . . 66
3.6.2 A Self-Adaptive Architectural Style for Decentralised Systems . . . . . . . . . . 67
3.6.3 De�nition of the Architecture Meta Model . . . . . . . . . . . . . . . . . . . . 67
3.6.4 ArchRe�ect MOP and ArchEvents . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Adaptation Contract Description Language . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7.1 ACDL Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7.2 Example Adaptation Contract in the ACDL . . . . . . . . . . . . . . . . . . . . 71
3.7.3 ACDL Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7.4 Adaptation Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.7.5 Feedback Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.7.6 Reinforcement Learning Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

ix



Chapter 4 Collaborative Reinforcement Learning 83
4.1 Decentralised Coordination and Autonomic Computing . . . . . . . . . . . . . . . . . 83
4.2 Collaborative Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Coordinating the Solution to Discrete Optimisation Problems . . . . . . . . . . 86
4.2.2 Connected States for Delegating DOPs . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.3 Distributed Model-Based Reinforcement Learning . . . . . . . . . . . . . . . . 87
4.2.4 Local System Model and Advertisement . . . . . . . . . . . . . . . . . . . . . . 88
4.2.5 Decay of the Local System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.6 The CRL Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.7 Feedback, Convergence and Decentralised Coordination in CRL . . . . . . . . . 91
4.2.8 CRL in the ACDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Chapter 5 The K-Component Programming Model and Framework 94
5.1 Overview of CORBA Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Distributed System Architecture based on CORBA . . . . . . . . . . . . . . . . 98
5.2.2 K-IDL Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.3 K-IDL to Extended IDL Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.4 Extended IDL to C++ Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 C++ Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.1 Object Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 KOM Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.3 Component Naming Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.4 KBind Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.5 Component Creation and Deletion . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.6 Component Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Incoming and Outgoing C++ Connectors . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.1 Tie Class as an Incoming Connector and a CORBA Servant . . . . . . . . . . . 111
5.4.2 Connector Creation and Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.3 Connector Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.4 Exception Handling in K-Components . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.5 Comments on the Programming Model . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Adaptation Contracts in the ACDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.1 ACDL to C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5.2 Proxies and Pluggable Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 K-Component Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.6.1 Con�guration Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.7 ArchRe�ect MOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.7.1 Automatic Generation of the AMM Con�guration Graph . . . . . . . . . . . . 127
5.7.2 KOM Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

x



5.7.3 Component Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.7.4 Recon�gurable Connectors and the Recon�guration Protocol . . . . . . . . . . 129
5.7.5 Adaptation Contract Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.7.6 Feedback Event Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.8 Asynchronous Re�ection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Chapter 6 Evaluation 140
6.1 Evaluation Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2 Decentralised Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.1 Properties of Decentralised Load Balancing . . . . . . . . . . . . . . . . . . . . 142
6.2.2 Design of the Decentralised File Storage System . . . . . . . . . . . . . . . . . 142
6.2.3 File Storage K-Component and Load Balancing Adaptation Contract . . . . . 143
6.2.4 Overview of Load Balancing using CRL . . . . . . . . . . . . . . . . . . . . . . 146
6.2.5 De�nition of the Load Balancing Application as a CRL System . . . . . . . . . 146

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3.1 Hardware and Software Con�guration . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.2 CRL Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.3 Experiment 1: Balance Load Over Homogeneous Components . . . . . . . . . . 152
6.3.4 Experiment 2: Adapt Load Balancing Behaviour to Exploit the Introduction of

a File Server with Increased Load Capacity . . . . . . . . . . . . . . . . . . . . 154
6.3.5 Experiment 3: Adapt the CRL Parameters to Optimise Load Balancing Be-

haviour for the File Server Scenario . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3.6 Experiment 4: Adapt System Load Balancing Behaviour to Exploit Two Storage

Servers in the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.7 Experiment 5: Exploitation of a Single File Server by Three Load Generators . 156
6.3.8 Experiment 6: Self-Adaptive Load Generator that Discovers and Exploits a

Server External to the System . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3.9 Other Optimisation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3.10 Feedback and System Properties using CRL . . . . . . . . . . . . . . . . . . . . 164
6.3.11 Reducing Uncertainty in Action Selection in Dynamic Environments . . . . . . 165
6.3.12 Assumptions of CRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4 K-Component Performance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.4.1 Experiment 7: Performance Comparison with CORBA . . . . . . . . . . . . . 166
6.4.2 Experiment 8: Recon�guring Connectors . . . . . . . . . . . . . . . . . . . . . 167
6.4.3 Other K-Component Performance Measurements . . . . . . . . . . . . . . . . . 169

6.5 Analysis of K-Components as Autonomic Components . . . . . . . . . . . . . . . . . . 170
6.5.1 K-Components and the Requirements for an Autonomic Component . . . . . . 171

6.6 ACDL as a Programming Language for Autonomic Components . . . . . . . . . . . . 172
6.6.1 Action Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.6.2 Learning Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xi



6.7 Comparison with Existing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Chapter 7 Conclusion 177
7.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Appendix A Abbreviations 192

Appendix B ArchRe�ect, ArchEvents and Con�guration Interfaces 193

Appendix C XML Schemas 195

xii



List of Figures

1.1 Feedback in the growth and formation of peer-to-peer networks. . . . . . . . . . . . . 9
1.2 Positve feedback and the emergence of structure in peer-to-peer networks. . . . . . . 9
1.3 CRL agent-agent model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Internal and external adaptation using an Adaptation Manager. . . . . . . . . . . . . . 14
2.2 Reinforcement learning model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Client-server interactions in QuO middleware. . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Meta models in OpenORB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5 Component frameworks in OpenORB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Autonomic component model in Accord. . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7 Updating con�guration views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.8 Closed-loop control systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.9 Hinnelund's model of an autonomic computing system as a control system. . . . . . . 47

3.1 A K-Component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Dynamic software architecture recon�guration. . . . . . . . . . . . . . . . . . . . . . . 56
3.3 The component model and an adaptation contract. . . . . . . . . . . . . . . . . . . . 61
3.4 Connector style for decentralised environments. . . . . . . . . . . . . . . . . . . . . . 63
3.5 Abstract model of interaction between component binding and AMM transfer. . . . . 66
3.6 ArchRe�ect MOP uses the con�guration graph and the KOM registry. . . . . . . . . . 68
3.7 Reinforcement learning policy in K-Components. . . . . . . . . . . . . . . . . . . . . . 78

4.1 DOP and delegation actions in MDPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Operation of CRL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 Advertisement of agent ni's connected state value to the caches in agents nj and nk. . 88
4.4 Decay of cached Qi(sc, a) entries over time . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Connected states 'x' and 'y' between components A, B and C. . . . . . . . . . . . . . . 92

5.1 K-Component programming model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 CORBA and the K-Component model. . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 K-IDL compiler output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4 AMM-DOM con�guration graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5 Class diagram of component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiii



5.6 KOM creator registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.7 Server-side AddRef. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.8 Server-side Release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.9 Component creation and registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.10 Component deletion and deregistration. . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.11 Class diagram of the outgoing connector. . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.12 Class diagram of an incoming connector. . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.13 Class diagram of a client-side CORBA proxy. . . . . . . . . . . . . . . . . . . . . . . 113
5.14 Outgoing connector creation and registration. . . . . . . . . . . . . . . . . . . . . . . . 113
5.15 Incoming connector creation and registration. . . . . . . . . . . . . . . . . . . . . . . 113
5.16 Outgoing connector deletion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.17 Incoming connector deletion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.18 Monitoring from a contract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.19 Architectural adaptation action execution from a contract. . . . . . . . . . . . . . . . 118
5.20 Component adaptation action execution with con�ict resolution. . . . . . . . . . . . . 119
5.21 Component adaptation action execution with a reward model (and no con�ict resolution).119
5.22 Adaptation contract initialisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.23 KOM packaged component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.24 The con�guration manager and sub-components. . . . . . . . . . . . . . . . . . . . . . 125
5.25 Con�guration manager startup and shutdown. . . . . . . . . . . . . . . . . . . . . . . . 125
5.26 Automatic construction of the AMM and registration of remote feedback events. . . . 127
5.27 Deregister a client's feedback event manager and feedback events. . . . . . . . . . . . . 127
5.28 Component replacement operation in an adaptation contract. . . . . . . . . . . . . . . 129
5.29 Client-side binding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.30 Client-side unbinding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.31 Connector recon�guration operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.32 Adaptation contract manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.33 Component adaptation action execution with con�ict resolution. . . . . . . . . . . . . 133
5.34 Component adaptation action execution with reward model. . . . . . . . . . . . . . . . 134
5.35 Component feedback state synchronisation between components and AMM. Event eval-

uation and noti�cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.36 Connection manager cleanup thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.37 Contention for the AMM in the implementation of asynchronous architectural re�ection.138

6.1 Pseudo-Code of LoadBalance Contract and FileStorage Component . . . . . . . . . . . 145
6.2 Decentralised load balancing decisions in CRL. . . . . . . . . . . . . . . . . . . . . . . 146
6.3 The FileStorage MDP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4 Component topology used in experiments. . . . . . . . . . . . . . . . . . . . . . . . . 150
6.5 Experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.6 Experiment 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.7 Experiment 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xiv



6.8 Experiment 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.9 Experiment 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.10 Experiment 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.11 Percentage of successful action executions performed by components in experiments 2

and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.12 Experiment 7. Comparison of round-trip invocation times with CORBA. . . . . . . . . 166
6.13 Self-healing connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xv



List of Tables

2.1 Comparison of techniques used by reviewed systems. . . . . . . . . . . . . . . . . . . . 51
2.2 Comparison of state models and adaptation actions. . . . . . . . . . . . . . . . . . . . 52
2.3 Comparison of decision policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4 Comparison of coordination models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Example FileStorage component in K-IDL. . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Example action policy in the ACDL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Example predicate descriptor for a feedback state. . . . . . . . . . . . . . . . . . . . . 72
3.4 Predicates on component feedback states. . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 C++ Translation of Extended IDL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 KBind Interface provided by every component. . . . . . . . . . . . . . . . . . . . . . . 108
5.3 C++ runtime with a deployed component. . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 Header �le for an adaptation contract in C++. . . . . . . . . . . . . . . . . . . . . . . 116
5.5 Rei�cation categories and the causal connection. . . . . . . . . . . . . . . . . . . . . . 138

6.1 K-IDL De�nition for the FileStorage component. . . . . . . . . . . . . . . . . . . . . . 144
6.2 ACDL de�nition of the CRL load balancing policy. . . . . . . . . . . . . . . . . . . . . 144
6.3 Experiment 1, 2: Homogeneous Component Experimental Settings. . . . . . . . . . . . 152
6.4 Experiment 2: File Server Component Settings. . . . . . . . . . . . . . . . . . . . . . . 154
6.5 Experiments 3 to 6: Homogeneous Component Settings. . . . . . . . . . . . . . . . . . 154
6.6 Experiments 3 to 6: File Server Component Settings. . . . . . . . . . . . . . . . . . . . 156
6.7 Rule-based policy for a self-recon�guring connector to a FileStorage component. . . . 159
6.8 Ratio of forward to store actions in experiments 1 to 6. . . . . . . . . . . . . . . . . . 164
6.9 Round-trip invocation times (in milliseconds). Performance comparison with CORBA. 167
6.10 Connector rebinding times using rule-based policy. . . . . . . . . . . . . . . . . . . . . 167
6.11 ECA policy that rebinds a connector when FileStorage is full. . . . . . . . . . . . . . 168
6.12 Predicate descriptor for a FileStorage feedback event. . . . . . . . . . . . . . . . . . . 168
6.13 Connector rebinding times using an ECA policy. . . . . . . . . . . . . . . . . . . . . . 168
6.14 Connector binding times (no contract). . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.15 Connector binding times (with contract). . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.16 Connector unbinding times (no contract). . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.17 Connector unbinding times (with contract). . . . . . . . . . . . . . . . . . . . . . . . . 170

xvi



6.18 Component loading/unloading times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.19 Comparison state models and adaptation actions. . . . . . . . . . . . . . . . . . . . . 175
6.20 Comparison of coordination models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.21 Comparison of decision policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.1 Glossary of Key Abbreviations used in the Thesis . . . . . . . . . . . . . . . . . . . . . 192

B.2 The ArchRe�ect MOP operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
B.4 The ArchEvents interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
B.6 The Con�guration interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

C.1 Feedback Event XML Schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
C.2 AMM-DOM Con�guration Graph XML Schema. . . . . . . . . . . . . . . . . . . . . . 197

xvii



Chapter 1

Introduction

�The reasonable man adapts himself to the world; the unreasonable one persists in trying
to adapt the world to himself. Therefore all progress depends on the unreasonable man�

George Bernard Shaw, Maxims for Revolutionists: Reason, Man and Superman (1903)

This thesis presents self-adaptive components as a building block for autonomic systems and shows
how their decentralised coordination can establish and maintain autonomic properties in distributed
systems that operate in dynamic and uncertain environments. Collaborative reinforcement learning is
introduced as a decentralised, self-organising, coordination model that enables properties such as self-
healing and self-optimisation to be established in decentralised distributed systems composed of self-
adaptive components. This chapter motivates the work, introduces the self-adaptive component model
and collaborative reinforcement learning, presents its contributions and �nally outlines a roadmap for
the thesis.

1.1 Motivation

As networked computing becomes pervasive in everyday life in the developed world, with easy ac-
cess to PCs, smartphones and wireless networks, seamless networked services require more complex
and larger scale distributed infrastructures. Due to the increased cost and complexity of managing
such infrastructures manually, distributed computing systems are moving towards more autonomous
operation and management.

Autonomic computing addresses the area of autonomous self-managing software systems. It o�ers
a vision of future distributed systems as seas of interacting, autonomous components that organise,
regulate and optimise themselves without human intervention. However, with increasing system size
and complexity the ability to build autonomously managed distributed systems using existing pro-
gramming languages, design techniques and management infrastructures is limited (van Renesse et al.,
2003; De Wolf and Holvoet, 2003; Montresor et al., 2003; Ardaiz et al., 2003; Andrzejak et al., 2003).
Top-down design techniques such as problem decomposition and modularisation result in distributed
system architectures that become unwieldy and impractical with increasing system size, as they re-
quire too much global knowledge (van Renesse et al., 2003; De Wolf and Holvoet, 2003; Montresor
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et al., 2003; Ardaiz et al., 2003; Andrzejak et al., 2003). Distributed applications that operate in
dynamic and uncertain environments with no support for global knowledge, such as peer-to-peer and
mobile ad-hoc networks, require new mechanisms to enable them to reason about their own behaviour
and autonomously manage themselves without recourse to traditional top-down or centralised tech-
niques. The motivation behind this work is to provide support for building distributed systems with
self-managing properties in such decentralised environments using bottom-up techniques.

The construction of self-managing distributed systems presents a number of challenges. Firstly, a
self-managing distributed system requires the design and integration of self-management functionality
at many di�erent levels, including the component, middleware and software architecture levels. Sec-
ondly, a decentralised system requires coordination between its components to enable them to organise
themselves into a self-managing system.

The speci�cation of system-wide properties is a good starting point for the construction of self-
managed distributed systems, as the system can use them to reason about system behaviour and
can strive to actively establish and maintain them using self-management actions. Minsky describes
system-wide properties as regularities in a system (Minsky, 2003) and examples include deadlock-
freedom, fault tolerance and load-balanced. System-wide properties may be formal properties of the
system determined at design time or attributes of the system that are established and maintained at
run-time. Existing design time techniques that can introduce system-wide properties into distributed
systems do so in a top-down manner, decomposing system behaviour and making it amenable to
formal analysis (Montresor et al., 2003). These include constraints in software architectures (Allen,
1997; Oreizy et al., 1999) and formal models such as π-calculus (Milner, 1999). Systems based on these
methodologies typically rely on centralised or consensus-based approaches to establish and maintain
system-wide properties, and are implemented using techniques such as group communication protocols
(Ellis and Gibbs, 1989; Hayden, 1997) or centralised con�guration managers in dynamic software
architectures (Garlan and Schmerl, 2002; Moreira et al., 2001). Both centralised and consensus-based
techniques require a large amount of communication overhead to establish agreement on the value
of shared variables (van Renesse et al., 2003), and as a consequence of both the physical limits of
network latency (Khare and Taylor, 2004) and network dynamism (Montresor et al., 2003) they are
not viable for decentralised environments.

We see autonomic properties of a distributed system as system-wide properties that contribute to
its self-management. In particular, we de�ne an autonomic property of a distributed system as:

�An autonomic property of a distributed system is a property that contributes to its
autonomous management or desired operation and is actively maintained by the system
itself at run-time�

The goal of autonomic computing systems is to establish, verify and maintain such autonomic proper-
ties in dynamic environments with minimal external intervention. Commonly cited autonomic prop-
erties in the literature include self-healing, self-optimisation, self-protection and self-con�guration
(Ganek and Corbi, 2003; Kephart and Chess, 2003), often known collectively as self-star properties
(Strunk and Ganger, 2003). The �eld of autonomic computing draws its inspiration from complexity
science (Prigogine and Stengers, 1984; Waldrop, 1992; Holland, 1996; Wolfram, 2002), and in particu-
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lar the human body's autonomic nervous system. Throughout this thesis, the de�nition of autonomic
computing is taken from Kephart (Kephart and Chess, 2003) as follows:

�[Autonomic computing systems are] computing systems that can manage themselves
given high-level objectives1�

Autonomic computing is a new area of research, and while there are few reference architectures for
autonomic systems it is envisioned that autonomic computing systems will be decentralised systems
composed of interacting autonomic elements (Kephart and Chess, 2003; Ganek and Corbi, 2003).
Autonomic elements are de�ned by Kephart in (Kephart and Chess, 2003) as entities that:

�manage their internal behavior and their relationships with other autonomic elements
in accordance with policies that humans or other elements have established.�

In distributed systems, an autonomic element can vary from a process to an agent to a component.
As this thesis deals with distributed systems composed of components, the discussion is constrained
to autonomic components instead of the more general autonomic elements.

Kephart also states that autonomic components monitor their execution context and environment,
plan actions that should be taken and execute self-management actions where necessary. Ganek makes
similar claims about autonomic components, in that they �continuously monitor [component behavior]
through 'sensors' and make adjustments through 'e�ectors'� (Ganek and Corbi, 2003). Many of these
features are found in existing re�ective middleware systems (Blair et al., 2001; Capra et al., 2003), re-
�ective component models (Moreira et al., 2001; David and Ledoux, 2003) and auto-adaptive systems
(Atighetchi, 2003; Kon et al., 2001), although these existing systems only provide self-management
functionality at speci�c layers in a distributed system such as the application, middleware or archi-
tecture level.

At present there are no programming models with support for building autonomic components or
decentralised systems with system-wide autonomic properties. The speci�cation and implementation
of autonomic components presents the challenges of how to specify their functional behaviour, how to
specify their self-managing behaviour and how to integrate the component model with a distributed
programming model. This work introduces a component model, called K-Components, for building
components with autonomic properties. K-Components is based on the Common Object Request
Broker Architecture (CORBA) (Henning and Vinoski, 1999) standard.

This thesis also addresses the problem of how to self-organise components in a decentralised system
in order to establish autonomic properties for the system. It investigates the relationship between
the autonomic behaviour provided at the component-level and the set of autonomic properties that
can emerge at the system-level. In particular, it introduces a model for coordinating the adaptive
behaviour of components for the purpose of establishing system-wide autonomic properties. The
model is a decentralised optimisation technique called collaborative reinforcement learning (CRL)
that can be used to build coordination models that and can establish and maintain certain autonomic
properties in decentralised systems composed of K-Components.

1High level objectives are generally supplied by humans and can be measured and veri�ed using some metric, e.g.,
balance load over a group of servers or maintain a service level agreement.
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1.2 Self Adaptive Components

Adaptive software techniques enable the construction of components with many of the features of
autonomic components identi�ed by Kephart and Ganek, including the important ability to adapt
system behaviour or structure at run-time in order to accomplish speci�ed goals. Self-adaptive software
(Oreizy et al., 1999; Dowling and Cahill, 2001b) is a subclass of adaptive software that contains its own
adaptation logic (Dowling and Cahill, 2001b), code concerned with a system's self-adaptive behaviour.
Self-adaptive components can dynamically recon�gure their structure and behaviour in response to
identi�ed states such as faults or sub-optimal operation and, as such, represent a natural model for
building self-managing components.

The dynamic recon�guration of a component-based distributed system is di�cult due to depen-
dencies that exist between components as well as dependencies between components and their execu-
tion environment (Kon et al., 1999; Moazami-Goudarzi, 1999; Wermelinger, 2000; Blair et al., 2000;
Georgiadis, 2002; Almeida, 2001; Whisnant et al., 2003; Sadjadi and McKinley, 2004). A software
pattern commonly found in existing self-adaptive and auto-adaptive2 systems is the separation of
recon�guration-management functionality from system functionality (Atighetchi, 2003; Garlan and
Schmerl, 2002; Ranganathan and Campbell, 2003; Dowling and Cahill, 2001b). Existing systems pro-
vide mechanisms for monitoring system states, or a representation of them, for speci�ed conditions
and executing adaptation actions that maintain adaptation consistency (Moazami-Goudarzi, 1999;
Blair et al., 2001), i.e., they do not a�ect the integrity of the running system. Adaptation actions can
vary from changing implementation strategies, planning ahead, and changing current beliefs about
the state of the system to recon�guring the system structure.

Techniques such as re�ection (Smith, 1984; Maes, 1987) and dynamic software architectures (Allen
et al., 1998; Kramer and Magee, 1998; Moazami-Goudarzi, 1999; Oreizy et al., 1999) provide principled
means for building self-adaptive software as they can provide an open implementation (Kiczales et al.,
1997) and guarantee adaptation consistency (Moazami-Goudarzi, 1999; Wermelinger, 2000; Almeida,
2001) respectively. Architectural re�ection (Cazzola et al., 2000; Moreira et al., 2001; Cuesta et al.,
2002b) represents a powerful synthesis of these techniques for building adaptive and self-adaptive dis-
tributed systems. This work adapts previous models of architectural re�ection to support distributed
systems in decentralised environments.

1.2.1 Architectural Re�ection

Dynamic software architectures are an e�ective technique for building recon�gurable software (Oreizy
et al., 1999; Moazami-Goudarzi, 1999; Garlan and Schmerl, 2002; Dashofy et al., 2002; Moreira et al.,
2001; Wermelinger, 2000), as they provide models that preserve system consistency during recon�g-
uration. A system is said to maintain adaptation consistency if it satis�es some structural integrity
requirements, if the components in the system are in mutually consistent states, and any applica-
tion state invariants hold (Moazami-Goudarzi, 1999). The K-Component model enables a system's
structure to be represented as a type of dynamic software architecture, an architecture meta-model.

2The term self-adaptive is favoured over auto-adaptive as it is a commonly used term in the area of complex adaptive
systems.
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The model provides components as a building block for constructing applications as compositions of
components. Components encapsulates their implementation behind a strongly-typed interface and
connectors to abstract and instrument a component's external interactions with other components.
Components can be instrumented for adaptation by a subsystem by allowing programmers to specify
feedback states, feedback events and adaptation actions on components.

In contrast to existing software architecture models of distributed systems that employ a system-
wide architecture (Luckham, 1996; Medvidovic et al., 2000; Allen, 1997; Magee et al., 1995), the
software architecture of a distributed system built using K-Components is decentralised (Khare, 2003),
i.e., distributed among nodes in the system. Each K-Component in the decentralised system maintains
a local software architecture and a partial view of the system that covers directly connected components
on neighbouring nodes.

Re�ection provides a principled way of constructing self-adaptive systems (Dowling and Cahill,
2001b) and separating recon�guration functionality from component functionality (Blair et al., 2000).
A system that supports architectural re�ection rei�es its software architecture, i.e., its representation
as a con�guration graph of components and connectors, as an architecture meta-model (Blair et al.,
2001). The architecture meta-model is a causally connected representation of the system's software
architecture and recon�guration operations performed on the architecture meta-model are re�ected
in the system's base-level, i.e., the actual components and connectors of the system. The architecture
meta-model is not only concerned with the architectural features it rei�es but also with an associated
set of architectural constraints, describing how and when to safely recon�gure the software architecture
(Blair et al., 2001). Recon�guration of the architecture meta-model, or in general any meta-level, must
be managed to ensure system consistency and integrity at runtime (Moazami-Goudarzi, 1999; Blair
et al., 2001; Wermelinger, 2000). In particular, ongoing computation and communication must be
managed during recon�guration, and this can be realised using a recon�guration protocol.

A feature of existing approaches to architectural re�ection for compiled programming languages
is the requirement to explicitly specify the distributed system's software architecture using an archi-
tecture de�nition language (Allen, 1997; Cuesta et al., 2002b; Garlan and Schmerl, 2002; Moazami-
Goudarzi, 1999). In K-Components, the architecture meta-model is constructed automatically and
dynamically as components bind to one another and exchange software architecture descriptions. The
architectural features rei�ed in the architecture meta-model are the components, connectors, feedback
states and actions in the system. Feedback states and actions are used by re�ective programs to
monitor and adapt components at runtime.

The causal connection between base-level and meta-level is a combination of an implementation link
and a representation link. Rei�cation of architectural events, including component creation/deletion,
connector creation/deletion and connector binding/unbinding, from the base-level to the meta-level
is implemented at intercession points in components and connectors. However, the rei�cation of
component feedback states is implemented via a representational link, providing a lesser form of
consistency in the causal connection between the base-level and meta-level.
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1.2.2 Adaptation Contract Description Language

In a system that supports architectural re�ection, programmers can write re�ective programs that
encapsulate an application's self-adaptive behaviour by operating on the system's architecture meta-
model. The re�ective programs can reason about the state of components and connectors, perform
adaptation actions on components and recon�gure the system by manipulating its architecture meta-
model. In K-Components, an adaptation contract description language (ACDL) is provided to al-
low developers to declaratively specify re�ective programs that encapsulate a system's self-adaptive
behaviour. The ACDL separates the speci�cation of a system's self-adaptive behaviour from the
speci�cation of its components' behaviour.

The term adaptation logic (Dowling and Cahill, 2001b) is used in this thesis to describe the policies,
rules, goals or constraints that specify the self-adaptive behaviour of a system or component. In the
ACDL, adaptation logic uses feedback states, de�ned on components and connectors, and feedback
events to monitor components and connectors for conditions under which adaptation actions are
triggered. Adaptation logic can be characterised as being re�ective, as it reasons about the state of
the system and can modify the system.

Adaptation logic can be speci�ed using if-then rules or the event-condition-action (ECA) paradigm
in the ACDL. This approach is useful where programmers can make reasonable assumptions about
potential changes in the software's domain, are able to identify the events that are of interest, and
how best to handle those changes i.e., what adaptation action to take. However, these approaches
are unsuitable where the outcome of some adaptation action cannot always be predicted, such as in
dynamic or uncertain environments, or where the space of possible events and adaptation actions is
large. In such cases, there is a requirement for the online learning of adaptive behaviour. Collaborative
reinforcement learning (CRL) is introduced in section 4.2.6 as a technique for the online learning self-
adaptive behaviour and is supported in the ACDL.

1.2.3 Asynchronous Re�ection

Existing adaptive systems built using re�ective programming languages execute adaptation logic as
re�ective code at rei�cation points in base-level code (Moreira et al., 2001) or as externally supplied
operations (Garlan and Schmerl, 2002; Liu et al., 2004). Existing, compiled re�ective programming
models only support the execution of re�ective code synchronously with program execution at rei�ca-
tion points (Schaefer, 2001; Chiba, 1995), even though events that trigger adaptive or self-managing
behaviour are often temporally orthogonal to program execution. Ganek claims that an autonomic
system should be able to continuously monitor and adapt its components (Ganek and Corbi, 2003),
but these existing re�ective programming models do not provide �rst-class support for continuously
executed re�ective code. Native support to allow the continuous or periodic execution of re�ective code
in re�ective programming models would help programmers meet Ganek's requirement for autonomic
systems.

Asynchronous re�ection is presented here as a technique that decouples the execution of a system's
re�ective behaviour from the execution of the system's base-level behaviour. Re�ective code is encap-
sulated in autonomous programs whose execution is interleaved with the base-level program. In the
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K-Component model, the base-level program is concerned with service provision and asynchronous
re�ective programs are concerned with the monitoring, planning and adaptation of the system. A
performance advantage of asynchronous re�ection over the traditional synchronous model is that it
allows programmers to con�gure the execution-overhead of re�ective code. In self-adaptive systems,
this means that programmers can con�gure the trade-o� between the extra overhead of executing
re�ective code and the responsiveness of the system to adaptation conditions. A system that supports
asynchronous re�ection can ful�l the requirement identi�ed by Ganek of being able to continuously
monitor the system i.e., components and connectors, for self-management conditions.

1.2.4 K-Components as Autonomic Components

The autonomic properties that can be supported by applications built using the K-Component model
are constrained by both the set of states and events that can be monitored and the range of adaptation
actions that can be performed. The K-Component model provides support for reasoning about the
state of application-level components, but support for lower-layer events concerning middleware oper-
ation, the operating system and network adapters must be explicitly provided by wrapping legacy code
as K-Components or reengineering the software as K-Components. The availability of middleware and
lower-layer system events can help provide a more accurate model of an application's execution and
communication context, and hence better support for building applications with autonomic properties.

The K-Component model supports di�erent types of adaptation actions in the ACDL, including
the dynamic recon�guration of components and connectors by modifying an architecture meta-model
and adaptation actions de�ned on components. Dynamic recon�guration at the architecture level can
be used to build self-optimising and self-healing applications by recon�guring connections to faulty
or poorly performing components. The ACDL does not yet support self-con�guring or self-protecting
adaptation actions, however, although this could be provided by extending the K-Component frame-
work and ACDL compiler to generate code that makes use of discovery and security services.

1.3 Coordinating Self-Adaptive Components

Decentralised systems composed of autonomic components do not necessarily possess system-wide
autonomic properties, as system-wide properties require coordination between components to enable
components to take self-management decisions that are optimal for the system rather than for them-
selves. For autonomic distributed systems, Kephart notes that

�System self management will arise at least as much from the myriad interactions
among autonomic elements as it will from the internal self-management of the individual
autonomic elements� (Kephart and Chess, 2003)

Much research in distributed systems has been concerned with building multi-agent systems that
share control of a single model, i.e., a consensus-based approach to building distributed systems. In
decentralised systems, however, it will not always be possible for agents to establish consensus over
the current value of a variable. As a result, there has been a recent trend towards using decentralised
algorithms and decentralised control techniques to engineer both large-scale and dynamic distributed

7



systems (Dorigo and Caro, 1999; Andrzejak et al., 2003; Ardaiz et al., 2003; De Wolf and Holvoet, 2003;
Khare, 2003; Montresor et al., 2003; Boutilier et al., 2003), with areas such as peer-to-peer (Clarke
et al., 2002) and ad-hoc networks (Curran and Dowling, 2004) producing noticeable achievements. A
common pattern for decentralised system architectures is to model them as a collection of frequently
similar, coordinating agents where each agent gathers information on its own, maintains a local, partial
view of the system, takes independent decisions on how to behave and communication between agents
is localised (Kennedy and Eberhart, 2001) or through some shared environment (Bonabeau et al.,
1999).

A commonly cited example of a complex distributed system with decentralised control comes from
the world of biology - the socially intelligent colony of ants (Bonabeau et al., 1999). Without any
central co-ordination (since there is no ant in a social insect colony with the equivalent organisational
power of a system architect!), the colony displays emergent behaviours (e.g., �nding optimal foraging
paths) and structures (e.g., organised piles of dead ants appear around the nest site). Individual ants
do not have a global view of the colony and intelligent global behaviour and functionality emerges
solely from local interactions (Bonabeau et al., 1999). The bene�ts of the decentralised approach
to building distributed systems include the possibility of establishing system-wide properties such as
self-regulation, self-con�guration, self-optimisation, the lack of centralised points of failure or attack
(Montresor et al., 2003), improved scalability as well as possible evolution of the system through
evolving the local rules of the agents (Holland, 1996).

This thesis takes the view that large-scale3 distributed systems with autonomic properties require
decentralised coordination for their construction, with local coordination rules between components
producing global autonomic properties. Coordination models can be found in multi-agent systems, but
are primarily concerned with managing the inter-agent activities of agents collected in a con�guration
(Kielmann, 1996) and not with establishing system-wide properties. Examples of computer systems
with decentralised control and coordination models where emergent system-wide properties are the
result of locally speci�ed rules can be found in Cellular Automata (Wolfram, 2002), self-stabilising
distributed systems (Dijkstra, 1974), and bird �ocking behaviour in Boids (Reynolds, 1987). A further
requirement is that coordination models should be robust enough to establish system-wide autonomic
properties in both predicted and unforeseen environmental conditions. This work investigates feed-
back as a speci�c decentralised control mechanism to build coordination models for self-adaptive
components.

1.3.1 Feedback and Decentralised Coordination

In self-organising biological systems it has been discovered that

�positive and negative feedback [are] the basic modes of interaction between components
in self-organising systems� (Camazine et al., 2003)

Positive feedback is a mechanism that promotes changes in a system. When initial changes or
�uctuations occur in a system, for whatever reason, positive feedback reinforces those changes in the

3On a scale comparable with autonomic systems from the world of biology.
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same direction as the original �uctuation. Negative feedback, however, acts as a break or regulator
on changes in the system that deviate from some optimal state.

Number of Peers JoinLeave

+ve Feedback-ve Feedback

Figure 1.1: Feedback in the growth and formation of peer-to-peer networks.

random network scale-free network

growth & preferential

attachment

Figure 1.2: Positve feedback and the emergence of structure in peer-to-peer networks.

Examples of both positive and negative feedback can be seen in the formation and growth of P2P
networks (see �gure 1.1). As more peers join a P2P network more resources become available, and the
attractiveness of the system to prospective users increases, resulting in even more peers joining the
network. This phenomenon has also been called a network e�ect (Ripeanu, 2001). However, as more
peers join the network, structural limitations of the network come into play and the performance of
the network may degrade (Ripeanu et al., 2002). The poor performance of the system acts as negative
feedback to both prospective and existing peers and leads to peers leaving the network. This negative
feedback places a limit on the scale of the network.

Positive feedback can also cause the emergence of structure in systems. In the Gnutella P2P
network a scale-free network topology emerged from an initially random topology (Ripeanu et al., 2002)
through peers favouring certain (stable, high connectivity and high bandwidth) peers as neighbours
over other candidates, in a process known as preferential attachment (Barabási, 2002). Gnutella
shows how peers joining a network can reinforce changes in peer connection distribution, causing an
unstructured (or random) network topology to self-organise into a scale-free network topology (see
�gure 1.2).

Feedback is a type of information �ow in a self-organising system. There are di�erent types of
possible information �ow for feedback in decentralised distributed systems. One type of information
�ow is direct communication where components send feedback information directly to one another.
Another type of information �ow is stigmergic communication where components do not communicate
directly, but rather communicate feedback information to one another via a shared environment.

K-Components supports direct communication of feedback between connected components using
connectors and by feedback events. Feedback events can also be communicated indirectly via shared
K-Components to simulate stigmergic communication. On receiving feedback from a component,
each K-Component takes an independent decision on how to update its view of the world and what
adaptation actions (if any) to take. Typically when feedback is interpreted as negative feedback, it
will trigger adaptation actions that serve to bring the value of some system state to within a desired
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range, whereas feedback perceived as positive feedback will usually trigger adaptation actions that
serve to increase changes in a system state in the same direction as the previous change.

The ACDL can be used to de�ne coordination models between components based on positive
and negative feedback. Decentralised coordination models can be designed to establish and maintain
self-organising system-wide properties over groups of partially connected components. Coordination
models based on feedback are the main building block for self-organising component-based decen-
tralised systems with autonomic properties presented here.

1.3.2 Collaborative Reinforcement Learning

This thesis introduces a decentralised coordination model called Collaborative Reinforcement Learning
(CRL) that establishes and maintains system-wide properties by solving decentralised optimisation
problems. CRL is based on a goal-driven, unsupervised learning model called Reinforcement Learning
(RL) (Sutton and Barto, 1998; Kaelbling et al., 1996).

In RL, an agent attempts to optimise its interaction with an environment by associating actions
with system states. The agent associates actions with system states in a trial-and-error manner and
the outcome of an action is observed as a reinforcement that, in turn, causes an update to the agent's
action-value policy using a reinforcement learning strategy (Sutton and Barto, 1998). There is support
in the ACDL specifying adaptation logic as a RL policy. States are represented as component feedback
states, actions are represented as adaptation actions and reinforcements are calculated using a reward
model provided by components.

The goal of a RL agent is to maximise the total reinforcements (reward) it receives over a time
horizon by selecting optimal actions. Agents may take actions that give a poor payo� in the short
term in the anticipation of a higher payo� in the longer term. In general, actions may be any decisions
that an agent wants to learn how to make, while states can be anything that may be useful in making
those decisions. As action selection is probabilistic, there is some trial and error in the selection of
actions and RL is not a suitable technique for learning adaptive behaviour for the classes of distributed
system that are intolerant to suboptimal action selection, such as real-time distributed systems.

CRL extends RL with a coordination model that is based on a variant of swarm intelligence
algorithms (Kennedy and Eberhart, 2001) where agents interact locally with their neighbours and col-
lectively learn from their successes. CRL does not make use of system-wide knowledge, and individual
agents only know about and interact with their neighbours (Dowling et al., 2004). CRL can perform
system optimisation over a group of decentralised agents for the purpose of establishing and maintain-
ing system-wide properties. CRL solves system optimisation problems by specifying how individual
agents solve discrete optimisation problems (DOP) using RL, advertise their results (their estimated
cost of solving the DOP) to their neighbours, cache the results advertised by neighbours and delegate
the solution to a DOP to a neighbour by initiating the start of a new DOP on a neighbouring agent
(see �gure 1.3).

CRL agents are designed to learn in dynamic environments where there is a requirement for
continually updating both cached DOP costs advertised by neighbours as well as local environmental
knowledge, such as neighbour availability. In CRL each agent's cache of estimated DOP costs for its
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Figure 1.3: CRL agent-agent model.

neighbours decays over time to model the fact that such information is only valid for a certain period
of time. Decay acts as negative feedback on cached costs in CRL. The rate of decay is con�gurable,
with higher rates for more dynamic network topologies.

As a result of the decay model in CRL, there is a requirement for a continual �ow of information in
the system to maintain accurate knowledge of both system structure and estimated DOP costs. CRL
supports the advertisement by agents of estimated DOP costs to neighbouring nodes as well as the
initialisation of new DOPs by actors external to the system. Advertisement of DOP costs can provide
positive feedback to neighbours and cause agents to converge on similar behaviours. Homogeneous
components with converged local behaviours can perform the collective behaviour required for the
establishment and maintenance of system-wide properties.

1.4 Contributions of Thesis

This thesis identi�es self-adaptive components as building blocks for autonomic components and CRL
as a mechanism for building decentralised systems with system-wide properties. Feedback models
based on component and connector feedback states, as well as feedback events, can be used to build
coordination models, such as CRL, that can enable the establishment of system-wide autonomic
properties. The motivation for this work is to provide support for building decentralised systems with
autonomic properties.

The main contributions of the thesis are the K-Component model, its support for building auto-
nomic software and CRL for the construction of decentralised systems with autonomic system prop-
erties. The K-Component model contributes a programming model for building self-adaptive systems
that includes a component model and an adaptation contract description language. It also includes
a model of asynchronous re�ection that enables the speci�cation of adaptation logic that is executed
asynchronously to program execution, as well as a model for learning self-adaptive behaviour online
based on reinforcement learning. Di�erent coordination models can be built using K-Components and
CRL has been designed and implemented as a decentralised coordination model for K-Components.

The contributions are evaluated in the context of a decentralised �le storage application that
can self-optimise its storage behaviour by load balancing �les at the system-level without the use of
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global information, and automatically adapt and optimise its operation to changes in the system's
environment, such as the introduction of a �le storage server with increased storage capability. A
self-healing property of the application at the component-level is also demonstrated by the automatic
identi�cation and recon�guration of faulty connectors. The evaluation shows how CRL can enable an
application to establish autonomic system properties without recourse to centralised techniques.

1.5 Towards Autonomic Distributed Systems

Given the previous de�nitions of an autonomic property of a system, an autonomic component and
the lack of a widely accepted de�nition of an autonomic distributed computing system, we attempt to
provide a de�nition here. Firstly, we consider a distributed computing system to be a decentralised
system. Secondly, the autonomic properties of a decentralised system can only be externally observ-
able, since its constituent autonomic components have partial views of the system. Although partial
views can sometimes be representative of the system as a whole, we cannot make that assumption in
the general case.4

We de�ne an autonomic decentralised computing system as follows:

�An autonomic distributed computing system has externally observable system-wide
autonomic properties, that are established and maintained solely by the coordination and
adaptation of its autonomic components that execute using only a partial view of the
system, and without reference to the system-wide autonomic property�

1.6 Roadmap

The structure of the remainder of the thesis is as follows: Chapter 2 presents a survey of background
material and related research in the �eld. It highlights the achievements and limitations of existing
work in self-adaptive systems, as well as recent decentralised approaches to building distributed sys-
tems. Chapter 3 introduces the main concepts of the K-Component model, including the component
model, architectural re�ection, asynchronous re�ection and the ACDL. Chapter 4 describes CRL,
including how to specify a CRL policy in the ACDL. Chapter 5 presents the implementation of the K-
Component model in CORBA. Chapter 6 evaluates K-Components as a building block for autonomic
components and CRL as a decentralised coordination model for establishing autonomic properties
using a decentralised load balancing application. Chapter 7 presents conclusions and future work.

4For example, in routing protocols for ad-hoc networks, tra�c �ows can only be observed by actors external to the
system and not by the individual routing agents in the system (Curran and Dowling, 2004). Individual routing agents
make local routing decisions using local information and do not use system-wide information to inform routing decisions.
A routing agent cannot make assumptions about system tra�c levels based on local, observed tra�c levels.
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Chapter 2

Background and Related Work

�The point of philosophy is to start with something so simple as not to seem worth stating,
and to end with something so paradoxical that no one will believe it.�

Bertrand Russell

This chapter introduces the problem domain and reviews existing self-adaptive and autonomic com-
ponent models, as well as models for coordinating components in decentralised environments. A set
of requirements for self-adaptive autonomic systems are developed and used as a guide to review a
number of existing systems, each of which is representative of systems found in the di�erent research
areas that in�uenced the design of the K-Component model. A brief description of other related
systems is also included. Finally, a comparison of the features and limitations of the reviewed systems
is presented.

2.1 Coordination and Consensus in Decentralised Environments

The limitations of existing coordination techniques in decentralised systems provide the signi�cant
motivation for the development of CRL. We adopt Khare's model of a decentralised system as a sys-
tem where every distributed agent manages their own local model of the system and the environment
is characterised by uncertainty and dynamism. Analyses by Khare (Khare, 2003), van Renesse (van
Renesse et al., 2003) and Montresor (Khare, 2003; Montresor et al., 2003) have identi�ed the unsuit-
ability of existing coordination techniques for decentralised systems, including centralised coordination
models (Mikic-Rakic and Medvidovic, 2004) and consensus-based coordination models (Milner, 1999).
Centralised coordination requires a single server that manages a global model of the system and the
components in the system coordinate their behaviour using the global model. This technique is not
viable in dynamic environments where access to the server is not always possible or decentralised
environments where no global model of the system is available. In consensus-based models, a group of
distributed components share control of a model. Techniques have been developed to ensure consistent
updates to replicated copies of the shared model, e.g., group communication protocols. Consensus-
based techniques, however, produce communication overhead when establishing agreement on changes
to the shared model that limit their scalability (van Renesse et al., 2003) and their potential use in
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Figure 2.1: Internal and external adaptation using an Adaptation Manager.

building autonomic distributed systems in decentralised environments. Van Renesse characterises the
limitations of applying consensus-based techniques to large-scale systems in (van Renesse et al., 2003):

�traditional consensus protocols [...] have costs linear in system size [...]. With as few
as a few hundred participants, such a solution would break down.�

2.2 Adaptation and Autonomic Computing

According to Flake (Flake, 2000), the adaptation of a system is an internal process that is driven by
changes in the system's external environment:

�Adaptation is a feedback process in which external changes in an environment are
mirrored by compensatory internal changes in an adaptive system.�

As a computing system's environment changes over time, an autonomic computing system is presented
with the challenge of optimally adapting its structure and behaviour to the new environment (Jann
et al., 2003). The adaptation of software is driven by both predictable and unpredictable changes
in the software's environment that naturally occur over time. Both longer-term requirements, such
as the evolution1 of software to meet new user requirements, and shorter-term requirements, such as
the runtime adaptation of a system to overcome partial failures or sub-optimal operation, necessitate
the adaptation of computing systems (Moreira et al., 2001). The ability to self-adapt to a changing
environment is a fundamental property of autonomic computing systems that heal, optimise, protect
and con�gure themselves. Over time, an adaptation process can require the constant regeneration of
a system's structure.

2.2.1 Self-Adaptive Systems

It is important to make the distinction between adaptable and self-adaptive systems. Adaptable
systems can be adapted to a particular deployment environment (Czarnecki and Eisenecker, 2000),

1Evolution has been described as a type of long-term adaptation process (Kennedy and Eberhart, 2001).
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whereas self-adaptive systems adapt themselves to their operating environment2 without manual inter-
vention (Oreizy et al., 1999). Adaptable systems support their adaptation by an external actor (Wer-
melinger, 2000) using either a procedural or declarative interface (Blair et al., 2001). Self-adaptive
systems, however, are subject to internal adaptation, triggered by monitored changes in either the
system's internal state or the environment's state (Oreizy et al., 1999). Self-adaptive systems possess
adaptation logic. Adaptation logic is the code that monitors a representation of the system's internal
state and its environment and can perform conditional adaptation of the system in response to changes
in system or environmental state. Adaptation logic is by nature re�ective. Self-adaptive systems can
be either closed or open dynamic systems. For closed dynamic systems, both the complete system
behaviour and the behaviour that describes adaptations are speci�ed at build time. Open dynamic
systems, on the other hand, allow system behaviour to evolve after build time and are necessary
if unanticipated adaptations are to be performed at run-time. Techniques for implementing open
dynamic systems include dynamic linking mechanisms, dynamic object technology (including class
loaders) and dynamic programming languages (Oreizy et al., 1999). Self-adaptive systems require no
intervention from external actors, and can adapt themselves transparently to clients of the system, if
desired. Figure 2.1 shows a schema of an architecture that supports both its external and internal
adaptation.

Laddaga provides a de�nition for self-adaptive software in (Laddaga, 2000) that closely resembles
the properties Ganek ascribes to autonomic components (see section 1). He de�nes self-adaptive
software as:

�Software that evaluates and changes its own behaviour when the evaluation indicates
that it is not accomplishing what it is intended to do, or when better functionality or
performance is possible.�

2.3 Requirements for a Self-Adaptive, Autonomic System

Autonomic distributed systems require support for their runtime adaptation (Jann et al., 2003), e.g.,
in order to adapt the system to optimise the use of its resources (Nowicki et al., 2004). Systems adapt
their structure or behaviour to a changing environment by performing adaptation actions (Sadjadi
and McKinley, 2004). Adaptation actions should not a�ect the integrity of the running system. For
a system that supports runtime adaptation to also be self-adaptive, it must also provide a decision
making component that contains a decision policy that maps observed system states, describing the
operating status of the system, onto adaptation actions. The e�ectiveness of decision policies should
be both evaluated and updated over time in order to improve the self-adaptive behaviour of the system.
Finally, in the case of system-wide adaptation of a component-based system, a coordination model is
required to manage the collective adaptation of components, e.g., to maintain some system property.
The minimum set of features a self-adaptive component model should provide in order to enable the

2A system's operating environment consists of the system's own software, the software subsystems that it uses
(e.g., middleware, operating system, networking subsystem, etc), the software systems it collaborates with to perform
its functions, and �nally the and the system's users and their expectations of the software. This contrasts with the
conventional understanding of the more general term environment in the domain of arti�cial intelligence, where the
environment of an agent is everything that is external to the agent but can in�uence its behaviour or state.
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construction of autonomic distributed applications for dynamic and uncertain environments is:

1. a set of system states whose values can be observed at runtime by a decision making component

2. a set of adaptation actions that can be executed by a decision making component to adapt the
system at runtime, and indirectly its environment

3. mechanism(s) to ensure that adaptation actions maintain the integrity and consistency of the
running system

4. a decision making component that associates adaptation actions with system states in a partic-
ular context using a decision policy

5. a mechanism or technique to automatically evaluate and update the decision policy over time

6. a decentralised coordination model to manage the collective adaptation of a group of components

2.3.1 State Monitoring

System state describes any runtime information that can be used by a software system to inform itself
about its current operation. System state can be used as a basis for making adaptation decisions, but
generally needs to be extracted, evaluated and abstracted prior to it being processed by the decision
making component of the system (Hinnelund, 2004). This is due to the fact that raw system state may
exist in many di�erent formats and is found at many di�erent levels in a distributed system, including
within application components, at middleware-level, in the local neighbourhood or even distributed
throughout the system. While an application will generally be able to monitor its internal state,
system software must be instrumented to make its state information available to decision making
components at higher levels. Research is ongoing into the problems of how to identify, acquire and
model relevant state information in autonomic distributed systems (IBM, 2004; Birman et al., 2003).

System state information can also be used to build state-based models that describe system oper-
ation, i.e., the dynamic behaviour of the system. One potential problem with state-based models of
large systems is that they are susceptible to the state explosion problem. For example, if we want to
model the dynamic state of a system with state size n, when a new component containing m states is
added to the system, the system state size increases to m× n. However, in a decentralised system of
components with equal state size, each component only needs to model its m internal states and i×m

states for its i neighbouring components, where i ¿ n. The number of states that each component
models does not increase with system size. Decentralised systems o�er the possibility of distributing
the system's state space over multiple components in a network, o�ering the possibility of solving the
state explosion problem.

Systems can improve their decision making capability by describing dynamic system operation
using an abstract state model. The use of an abstract model of the system's state is also useful as it
enables the execution of �virtual� adaptation experiments that may help predict the e�ect of executing
an adaptation action (Whisnant et al., 2003). A state model can also make use of historical state as
a basis for adaptation decisions, but a useful alternative to this approach, commonly used by control
systems (Dutton et al., 1997), is to have system states satisfy the Markov property i.e., the state that
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describes the system at a particular instance in discrete time is su�cient to determine all aspects
of the future behaviour of the system when combined with knowledge of the system's future input
(Barto et al., 1990). When system state satis�es the Markov property, the problem of evaluating the
future state of the system after executing adaptation actions does not require historical information
and, as a result, is more tractable. Finally, state-based models of the dynamic behaviour of a system,
e.g., using time-dependent variables, enables the possibility of learning the dynamic behaviour of the
system by formulating the learning problem as a search in the abstractly de�ned state space (Barto
et al., 1990).

2.3.2 Adaptation Actions

A self-adaptive system needs a set of adaptation actions that can be executed to adapt the system at
runtime to its changing environment. Adaptation actions can be intrusive, i.e., they can a�ect ongoing
computation, communication or software dependent on the software being adapted, or non-intrusive
in that they can always be safely executed concurrently with ongoing computation, i.e., they are either
thread-safe or re-entrant. An example of an intrusive adaptation action is replacing a component in a
software architecture that has existing clients, and an example of a non-intrusive adaptation action is
a component changing its belief about the current operating state of the system. Intrusive adaptation
actions generally operate on a representation of the system in a recon�guration manager rather than
directly on the system itself in order to meet adaptation consistency requirements (see section 2.3.3).

Adaptation actions can be performed at many levels in a distributed system, including the mid-
dleware (Duran-Limon and Blair, 2002; Atighetchi, 2003), component (Li, 2000; Moreira et al., 2001;
David and Ledoux, 2003) and software architecture levels (Moazami-Goudarzi, 1999; Moreira et al.,
2001; Garlan and Schmerl, 2002; Georgiadis, 2002; Dashofy et al., 2002). Depending on the system,
it is often desirable for adaptation actions at lower levels to be transparent to higher levels (Almeida,
2001; Sadjadi and McKinley, 2004), such as making adaptation of middleware in response to changes
in network connectivity, energy demands and security policies transparent to applications. In other
cases it is more desirable for higher-levels to be aware of adaptations at lower levels (Blair et al.,
2000), e.g., adapting an application to changing levels of QoS of network connections provided by the
middleware (Sadjadi and McKinley, 2004).

Adaptation actions are internal to a system (Georgiadis, 2002) when the entity performing the
adaptation is both co-located with and part of the same administrative domain as the entity being
adapted. Adaptation actions are external to a system (Georgiadis, 2002) when the entity performing
the adaptation is either a remote system or part of a di�erent administrative domain. In heterogeneous
distributed systems, components are not always part of the same administrative domain and security
issues must be considered when allowing components perform adaptation actions on other components
that reside outside of the original component's administrative domain (Khare and Taylor, 2004).

2.3.3 Adaptation Consistency

A set of system consistency requirements for adaptation actions were de�ned by Mozami-Goudarzi
in (Moazami-Goudarzi, 1999), which state that a system is said to preserve adaptation consistency
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requirements if:

1. the system meets the structural integrity requirements

2. the entities in the system are in mutually consistent states

3. the application state invariants are true

Firstly, the structural integrity requirements of a system determine the structure of a system in
terms of the static relationships between its components and how components may be connected
together. For example, the structural integrity requirements for replacing a component in the Rapide
system (Luckham and Vera, 1995) require that the new component provides the same interfaces as
the component it is replacing. Secondly, components in a distributed system must be in mutually
consistent states in order to successfully interact with one another. Components are said to be
in mutually consistent states if, after each interaction, the components involved make transitions
to well-de�ned states. Most existing systems meet the mutually consistent state requirement by
introducing the notion of a recon�guration-safe state (Moazami-Goudarzi, 1999; Wermelinger, 2000)
that must be reached before adaptation can occur. The recon�guration-safe state should be reachable
in �nite, ideally bounded, time. In order to meet this requirement, many systems make assumptions
about interactions �nishing in �nite or bounded time (Moazami-Goudarzi, 1999; Wermelinger, 2000).
Thirdly, application state invariants are properties that hold over the components that make up an
application. Some systems attempt to re-establish application invariants automatically (Moazami-
Goudarzi, 1999; Almeida, 2001), often by transferring state from old to replacement components,
while other systems leave the responsibility to the application developer.

Not all adaptation actions have the same adaptation consistency requirements. Non-intrusive
adaptation actions have lower adaptation consistency requirements than intrusive adaptation actions,
while intrusive adaptation actions may sometimes have di�erent consistency requirements at runtime.
Some systems provide support for specifying di�erent implementation strategies for performing an
adaptation action where an implementation strategy performs the same adaptation action with dif-
ferent adaptation consistency levels (Georgiadis, 2002). For example, adapting multimedia streaming
bindings to changing QoS at the network-level does not require full adaptation consistency support
(Blair et al., February 2000), as dropped frames that may occur during adaptation do not gener-
ally threaten the integrity of a multimedia application. Adaptation actions on e-commerce systems,
however, would generally require support for full adaptation consistency.

2.3.4 Decision Policy

A self-adaptive system contains at least one decision making component that uses some decision
policy to take adaptation actions based on observed system states and the �context� of the system,
where context can be any external information used to inform the decision policy. The decision
policy represents the adaptation logic in a self-adaptive system. The task of deciding on the optimal
adaptation action to execute, given the system state and context is essentially a planning problem:
how do we �nd an optimal decision policy for performing adaptation actions, given a (hopefully
complete and correct) model of the system state, a set of available adaptation actions and a means
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of evaluating the result of adaptation actions? The set of system states and adaptation actions
determine, to a large extent, the ability of the decision making component to self-repair, self-protect
or self-optimise a component or system's operation. In this thesis, context information is treated as
regular system state information, internal or external to a system, used to inform the decision policy.

Many existing systems provide programming support for the separate speci�cation of a system's
decision policy. This helps achieve a separation between component programming and adaptation logic
programming (Dowling and Cahill, 2001b), improving system maintenance and understandability.
Di�erent models that have been used to specify a system's decision policy include:

1. Decision trees (Liu et al., 2004; Roman, 2003)

2. Constraints in Architecture De�nition Languages (ADLs) (Georgiadis, 2002; Moazami-Goudarzi,
1999)

3. Event-Condition-Action (ECA) paradigm (Efstratiou et al., 2002a; David and Ledoux, 2003; Adi
et al., 2003)

4. Timed Automata (Blair et al., February 2000)

5. Finite State Machines (Technologies, 2002; Neema et al., 2002)

6. Fuzzy Control Model (Li, 2000)

7. Utility Function Policies (White et al., 2004)

The �rst �ve techniques are action policies that specify which action to take when the system is
in a particular state, while a fuzzy control model produces a probabilistic policy for optimal action
selection and utility function policies specify the relative desirability of alternative states in the system
(White et al., 2004). Some self-adaptive systems attempt to de�ne a complete strategy for the decision
policy, i.e., specify all potential adaptation actions that could occur in all possible system states. Such
a system contains the implicit assumption that it can predict both the outcome of an adaptation
action and the future performance of the adapted system. However, de�ning a complete strategy
quickly becomes infeasible as the space of possible system states and adaptation actions increases.
For complex, instrumented distributed systems with N states and M possible adaptation actions,
programmers cannot be expected to handle the N ×M possible combinations or be able to accurately
predict the outcome of executing some adaptation action.

Georgiadis distinguishes between 1st party and 3rd party (Georgiadis, 2002) decision policy im-
plementations. In the �1st party con�guration�, the decision making functionality is a part of each
component in the distributed system, while in the �3rd party con�guration� the decision making com-
ponent is an independent, external component. Decentralised, self-adaptive systems always have 1st

party decision policies, as the dynamism of decentralised environments prevents external decision
making components from maintaining consistent views of the components in the system. The decision
making functionality in 1st party con�gurations can be scheduled to run asynchronously to computa-
tion in the components or, as in existing re�ective systems, synchronously coupled with the execution
of base-level operations on the component (David and Ledoux, 2003).
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2.3.5 Evaluating and Updating the Decision Policy

In an autonomic or self-adaptive system, the result of adaptation actions should be evaluated to help
understand the most e�ective adaptation actions to take given a particular system state and its history.
The outcome and e�ectiveness of adaptation actions may be known instantaneously or not until some
unknowable time in the future. Many existing systems require an administrator to manually evaluate
the system's performance and update the system's decision policy using an administrator interface
that allows policies to be plugged-in/out at runtime (David and Ledoux, 2003).

Examples of metrics used by existing systems to evaluate the performance of adaptation actions
include:

• recon�guration performance (Almeida, 2001). The aggregate system performance over a given
time period after an adaptation action is performed can be used as a metric for evaluating the
action. This metric requires knowledge of the expected system performance if no adaptation
action were taken, and as such is less suitable for uncertain environments where this knowledge
is generally not available.

• utilisation of system resources (Andrzejak et al., 2003; White et al., 2004). The di�erence in
the utilisation level of system resources after performing an adaptation action can be used as a
metric for evaluating the action. This technique is not viable for decentralised environments as
it assumes the availability of global knowledge about resource utilisation levels.

The automated evaluation of autonomic system performance in decentralised environments is chal-
lenging as new metrics and techniques are required to evaluate system properties. How does a system
evaluate its self-healing, self-optimising or self-protecting performance? This challenge can be ad-
dressed by a decentralised system that uses local performance metrics to learn a new, improved
decision policy online.

Learning a Decision Policy

Learning a decision policy for adaptation actions provides systems with �exibility and robustness as
it enables them to deal with uncertainty by updating decision policies to re�ect a changing, uncertain
environment. Learning is studied by computer scientists interested in developing software for domains
that evolve and adapt over time. A wide range of techniques and mathematical theories for learning
have been developed to handle tasks such as pattern classi�cation, prediction, and adaptive control
of dynamical systems (Sutton, 1988; Barto et al., 1990). In these techniques, learning is usually
formulated as a search in an abstractly de�ned state space (Barto et al., 1990). Sequential decision
making is a useful technique for evaluating the result of actions, whose e�ects have both short- and
long-term consequences (Barto et al., 1990). Decision making tasks can be formulated in terms
of a dynamical system whose behaviour emerges over time under the in�uence of a decision making
component (Barto et al., 1990). Such decision making tasks can also be formulated as Markov Decision
Processes. Stochastic dynamic programming (Barto et al., 1990) and reinforcement learning (Sutton
and Barto, 1998) are widely used techniques for solving these tasks.
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The goal of a self-adaptive system that learns its decision policy is to enable its decision making
component to select adaptation actions that maximise the set of rewards accrued over a period of
time, where a reward represents a scalar metric that quanti�es the success of the adaptation action
and is supplied by the decision making component's environment. The main challenge when designing
such a system is credit assignment (Sutton, 1988). Given the state of the system and an action taken
while the system is in that state, how can a system know whether that action was �good� or not in the
context of delayed rewards? A decision making component should be able to take adaptation actions
that produce sub-optimal rewards in the short-term but more optimal rewards in the longer term.

There may also be more than one decision making component in a system. Decentralised, 1st

party decision making components can take adaptation actions on components that produce local
rewards and learn a locally optimal decision policy over time. However, the decentralised decision
making components may not produce a global decision policy that is optimal for the system, such as
maximising utilisation of system resources. The problem of learning an optimal decision policy for a
decentralised system is addressed in the next section on coordination models.

2.3.6 Coordination of Adaptive Behaviour

The problem of taking guaranteed globally optimal adaptation decisions in a distributed system re-
quires complete information about the state of all components in the system and an optimal decision
policy. A coordination model that implements the optimal decision policy can be data-driven or
control-driven but requires support for strong consensus among components on the actions to be
taken.

In existing dynamic software architectures the monitoring of system state and execution of adap-
tation actions is typically coordinated by a global con�guration manager3 (Allen et al., 1998; Wer-
melinger, 2000; Moazami-Goudarzi, 1999; Garlan and Schmerl, 2002; Georgiadis, 2002; Mikic-Rakic
and Medvidovic, 2004), a centralised component in the distributed system that monitors component
and connector states and coordinates the execution of adaptation actions on these components and
connectors. The centralised con�guration manager approach is not viable for decentralised distributed
systems, due to its reliance on global state for the coordination of system adaptations.

A decentralised coordination model for adapting system behaviour requires the coordination of the
self-adaptive behaviour of components without the use of global state or consensus-based distributed
control. Decentralised coordination models cannot achieve strong consensus on the optimal adaptation
actions to execute, but can achieve near-optimal decision policies through the localised coordination
of components (Curran and Dowling, 2004; Jelasity et al., 2003). Decentralised coordination models
allow components to share their local models with neighbouring components to reduce uncertainty
about shared system states. Given a dense enough neighbourhood and accurate shared information,
components can converge on common views of the system. Homogeneous components with converged
local models of system state can perform the collective adaptive behaviour required to establish system-
wide autonomic properties.

3Also known as a con�gurer (Georgiadis, 2002), con�gurator (Wermelinger, 2000), recon�guration manager
(Moazami-Goudarzi, 1999), architecture manager (Garlan and Schmerl, 2002) and deployer component (Mikic-Rakic
and Medvidovic, 2004).
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2.4 Techniques for Building Self-Adaptive Systems

This section reviews some well-known techniques for building self-adaptive software, including dynamic
software architectures (Shaw and Garlan, 1996), re�ection (Smith, 1984; Maes, 1987) and reinforce-
ment learning (Kaelbling et al., 1996; Sutton and Barto, 1998). These techniques have been applied to
existing self-healing and autonomic systems that can adapt themselves to changes in their underlying
environment (Garlan and Schmerl, 2002; Blair et al., 2002; White et al., 2004; Whisnant et al., 2003;
Hinnelund, 2004).

2.4.1 Dynamic Software Architectures

Dynamic software architectures have been used to explicitly model distributed systems as a recon-
�gurable graph of connected components. Architecture De�nition Languages (ADLs) are typically
used to specify a system as a directed, acyclic graph of components and connectors (Medvidovic and
Taylor, 2000), with components as nodes and connectors as edges in the graph. In a software archi-
tecture, a component is an encapsulated, composable unit of computation and a connector is a �rst
class entity that implements the interaction model for connected components. Component models
generally specify the set of services a component o�ers via one or more provided interfaces as well as
the services it uses as one or more required interfaces (Medvidovic and Taylor, 2000).

Architectural styles (Medvidovic and Taylor, 2000) or constraints (Moreira et al., 2001) are used
to specify the properties of a software architecture (Georgiadis, 2002), and can be used to specify
adaptation logic as rules for transforming the architecture from one con�guration to another and
the conditions under which the transformation is triggered (Moazami-Goudarzi, 1999). An architec-
tural style is de�ned by Shaw as: �a set of design rules that identify the kinds of components and
connectors that may be used to compose a system or sub-system, together with local or global con-
straints on the way the composition is done� (Shaw et al., 1995). Most existing architectural styles
are consensus-based and use global constraints, making them inappropriate for decentralised systems.
The adaptation actions supported by architectural styles are based on software architecture re-writing,
i.e., the transformation of a software architecture from one valid con�guration to another (Moazami-
Goudarzi, 1999; Georgiadis, 2002). The recon�guration of software architectures generally involves the
execution of primitive recon�guration operations at the level of a software architecture's components
and connectors (Dashofy et al., 2002), such as replace_component or rebind_connection. There
are di�erent models for performing architectural adaptation (Moazami-Goudarzi, 1999; Wermelinger,
2000; Blair et al., 2001; Almeida, 2001) that meet the adaptation consistency requirements de�ned in
section 2.3.3.

Dynamic software architecture approaches to building self-healing and autonomic software have
been proposed by Schmerl and Garlan in (Garlan and Schmerl, 2002), Mikic-Rakic in (Mikic-Rakic
and Medvidovic, 2004), Dashofy in (Dashofy et al., 2002) and White in (White et al., 2004). These
approaches, however, are based on consensus-based architectural styles that use a global architectural
recon�guration manager, i.e., the architecture manager in (Garlan and Schmerl, 2002), the deployer
in (Mikic-Rakic and Medvidovic, 2004), architecture evolution manager in (Dashofy et al., 2002) and
the registry/sentinel in (White et al., 2004). A decentralised alternative to these consensus-based
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architectural styles has been developed by Khare in (Khare, 2003) and is discussed in section 2.5.5.

2.4.2 Re�ective, Self-Adaptive Software

Techniques such as re�ection, e.g., object-oriented (Maes, 1987) or architectural re�ection (Cazzola
et al., 1999), have been used to automate the construction of meta models that can be used by
a decision making component to adapt a system's structure or behaviour. In re�ective systems,
the meta models of the system are causally connected to the actual system objects/components are
generally accessible via an interface to them called a Meta Object Protocol (MOP) (Kiczales et al.,
1991). Meta objects can be adapted using the MOP and updates to the meta objects are re�ected in
the base objects. A MOP provides a system with openness that enables the examination of the state
of a system and the modi�cation of its structure or behaviour (Blair et al., 2002).

Re�ective systems provide built-in support for the runtime manipulation of the system's causally-
connected meta-model (Redmond, 2003). This allows the unconstrained recon�guration of systems
(Blair et al., 2002), e.g., architectural re�ection supports the unconstrained recon�guration of a sys-
tem's software architecture, while re�ective object-based systems support the unconstrained recon�g-
uration of their objects and object models (Redmond, 2003). Re�ective systems require additional
integrity management infrastructure to meet adaptation consistency requirements.

Re�ective object-oriented programming languages have been used to build self-adaptive software
(Dowling et al., 2000). However, re�ective object-oriented programming languages were designed to
open up a language's object model rather than build self-adaptive software. An implementation feature
of existing compiled languages, such as Iguana/C++ (Schaefer, 2001) and OpenC++ (Chiba, 1995),
is that re�ective code can generally only be inserted and executed at rei�cation points in the object
model, such as object invocation or creation. When these languages are used to build self-adaptive
systems (Dowling et al., 2000), the re�ective code performing the adaptive behaviour is executed
synchronously with program execution. This has the limitation of tightly coupling the execution of
adaptation logic with the program execution, even though events triggering adaptive behaviour are
often temporally orthogonal to program execution.

2.4.3 Reinforcement Learning

Reinforcement learning (RL) is a single-agent, unsupervised learning technique that has been used
to build systems that can adapt and optimise their operation in an uncertain environment. Self-
adaptive systems such as network routing protocols (Littman and Boyan, 1993; Peshkin and Savova,
2002), where each routing agent adapts its routing policy based on local information, and a tra�c
engineering application (Pendrith, 2000) have been built using RL.
In a typical RL model (Kaelbling et al., 1996; Sutton and Barto, 1998), an autonomous agent interacts
with its environment by:

• observing the current system state

• selecting and executing one action from the set of available actions in that state

• observing the outcome of the action as a transition to a (possibly new) system state
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• receiving a reinforcement as a scalar value that returns an immediate evaluation of the result of
executing the action

Agent

Environment

action (a
t
)

r
t+1

st+1

reward (r
t
)

state (s
t
)

Figure 2.2: Reinforcement learning model.

Actions cause the system to make a state transition, and a reinforcement is received from the envi-
ronment (see �gure 2.2).

The goal of reinforcement learning is to maximise the total reinforcements an agent receives over
a time horizon by selecting optimal actions. Agents may take actions that give a poor payo� in the
short term in the anticipation of higher payo� in the medium/longer term. Agents may also take
actions in a trial-and-error manner in order to explore its environment for more optimal actions. In
general, actions may be any decisions that an agent wants to learn how to make, while states can be
anything that may be useful in making those decisions.

The environment of an RL agent is usually modelled as a Markov decision process (MDP) (Kael-
bling et al., 1996; Sutton and Barto, 1998). A MDP consists of:

• a set of states, S = {s1, s2, . . . , sN}

• a set of actions, A = {a1, a2, . . . , aM}

• a reinforcement function R : S×A → R. The reinforcement is determined stochastically. R(s, a)

is the expected instantaneous reinforcement from action a in state s.

• a state transition distribution function: P : S ×A → Π(S), where Π(S) is the set of probability
distributions over the set S. We write P (s′|s, a) for the probability of making a transition from
state s to state s′ using action a.

The system may contain start and terminal states. An absorbing MDP is one where from every non-
terminal state it is possible to eventually enter a terminal state. The goal of an RL agent that models
its environment as a MDP is to optimise its interaction with its environment by learning an optimal
policy.

De�nition of an Optimal Policy

A decision policy (or policy) de�nes an action to take given the current state (Sutton and Barto,
1998), where A(s) is the set of actions that can be taken given the current state s:

π : s ∈ S → a ∈ A(s) (2.1)
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In a RL problem described as a MDP, a policy represents the behaviour of an agent, given the
current state of the environment. The policy needs to address the credit assignment problem, so it
considers the future consequences of each action, as well as their immediate outcome. The optimal
policy, π∗4, is the optimal set of actions to take from a given state, so as to maximise the reward
accrued over a speci�ed period of time. One such optimal policy is the discounted model that takes
the long-term rewards into account, but rewards, r, received in the future are geometrically discounted
according to discount factor 0 < γ ≤ 1. E is the sum of expected rewards (Sutton and Barto, 1998):

E
{
rt + γrt+1 + γ2rt+2 + ... |st = s, π

}

This model allows a convergent sum with consideration of rewards into the future, while favouring
rewards received in the near future. Given this model for expected future reward, a value function,
V , is de�ned as the expected performance of an agent if it starts with a particular state and executes
the policy (Sutton and Barto, 1998):

V π(s) = E
{
rt + γrt+1 + γ2rt+2 + ... |st = s, π

}

A state-action function, Q, can also be de�ned that calculates the expected performance of an agent
if it starts in the state s and executes action a, and follows the policy thereafter (Sutton and Barto,
1998):

Qπ(s, a) = E
{
rt + γrt+1 + γ2rt+2 + ... |st = s, at = a, π

}

The optimal value function, V ∗, is de�ned as the expected performance of an agent if it starts with
a particular state and executes an optimal policy (Kaelbling et al., 1996). For instance, using the
in�nite-horizon discounted model (Kaelbling et al., 1996), V ∗ is the policy that maximises the reward:

V ∗(s) = max
π

E

( ∞∑
t=0

γtrt |s0 = s, π

)

From dynamic programming (Bellman, 1957), it is shown that V ∗(s) can also be represented as:

V ∗(s) = max
a

(
R(s, a) + γ

∑

s′∈S

P (s′|s, a)V ∗(s′)

)
(2.2)

This is the solution to the Bellman Equations (Bellman, 1957). Note that by solving this equation,
the solution does not require knowledge of the policy π. Maximising the reward (i.e., the right-hand
side of 2.2) over the set of actions will follow an optimal policy.

An alternative representation for the optimal policy is the optimal state-action function, Q∗, that
represents the value of executing a certain action and following the optimal policy thereafter:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′) (2.3)

With this notation, V ∗(s) = maxa Q∗(s, a). Thus, by maximising Q(s, a) over the set of actions
A, an optimal action-value policy can be followed. The optimal action-value policy for an agent can

4The * indicates the policy is optimal
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be found by solving the Bellman equations, although this is computationally expensive for a large
number of states and/or actions.

Given a state model and a reward model for executing actions, the optimal policy π∗(s) can be
expressed using the optimal state-action function (Sutton and Barto, 1998):

π∗(s) = max
a

Q∗(s, a)

or using the optimal value function (Sutton and Barto, 1998):

π∗(s) = V ∗(s, a)

Learning Strategies in RL

Reinforcement learning algorithms are used to update an agent's policy. RL strategies can be either
model-free or model-based.

Model-based learning methods (Moore and Atkeson, 1993; Kaelbling et al., 1996) build an internal
model of the environment, as a state transition model P : S × A → Π(S), and calculate the optimal
policy based on this model, whereas model-free methods do not use an explicit model and learn directly
from experience. Model-based methods are known to learn in many settings much faster than model-
free methods, since they can reuse information stored in their internal models (Appl and Brauer, 2002).
In general, model-based methods have been less popular in RL because of their slower execution times
and greater storage costs, especially as the state size grows. However, in distributed systems where
acquiring real-world experience is expensive, the model-based approach has a distinct advantage over
model-free methods as much more use can be made of each experience. Model-based learning requires
that the state transition model and possibly the reward model are updated throughout the execution
of the learning algorithm.

In many practical applications, however, either the state transition model is not fully known or
the environment is non-Markovian. In these cases, the methods of temporal di�erence (Sutton, 1988;
Sutton and Barto, 1998) and Q-learning (Watkins and Dayan, 1992) are able to obtain the optimal
policy through executing actions and receiving rewards from the environment. Q-learning is a popular
model-free learning algorithm that attempts to estimate the optimal policy using the function Q∗.
The current estimate for the optimal policy is represented as Q(s, a). When an action a is taken from
state s, resulting in new state s′ and reinforcement r, the Q-learning rule is used to update the policy:

Q(s, a) := (1− α)Q(s, a) + α
(
r + γ max

a′
Q(s′, a′)

)

The parameter α represents a rate of learning. It can be proven that these Q(s, a) values will
converge to the optimal values Q∗(s, a) if each action is executed su�ciently often in each state, and
the α parameter is gradually reduced.
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Distributed Reinforcement Learning

RL is a useful technique to build single-agent systems that can adapt their behaviour to optimise their
operation in a static environment. As such it represents a promising approach to building systems that
learn their autonomic behaviour. Distributed autonomic systems that wish to learn their autonomic
behaviour require a distributed learning technique. Distributed reinforcement learning techniques
have been developed to enable groups of independent agents to solve collective problems. Existing
techniques use extensions to RL such as global reinforcement signals (Crites and Barto, 1998), shared
global policies for agents (Mariano and Morales, 2000) and algorithms for coordinated reinforcement
learning (Guestrin et al., 2002). While the �rst two techniques rely on centralised, global information,
the coordinated reinforcement learning is a distributed technique that enables agents to coordinate
on a shared representation of a policy by message passing. The algorithms, however, require strong
consensus on a coordination graph of agents to determine globally optimal actions, and they have
a �computational cost (that) is linear in the number of new 'function values' introduced� (Guestrin
et al., 2002), meaning they are not application for large-scale distributed systems. The algorithms
are also not suitable for decentralised environments, due to their requirement for strong consensus on
shared state.

A more promising area of research for decentralised multi-agent RL systems has been the develop-
ment of partitioned value functions. Schneider has investigated applying distributed value functions
to a power grid (Schneider et al., 1999) and Stone applied Team-Partitioned, Opaque-Transition RL
(Stone, 2000) to the RoboCup soccer problem. However, neither of these techniques address dis-
tributed systems speci�c issues such as changing availability of nodes and the cost of using network
links. They also do not explicitly address the problem of dynamic environments, and how agents
should adapt individually and collectively to changes in their environment. The development of dis-
tributed reinforcement learning techniques to solve system optimisation problems in decentralised
distributed systems is an open research problem.

2.4.4 Analysis

Although it is also known that self-adaptive software can improve the e�ectiveness of its decision policy
over time through the use of information relating to past adaptive behaviour, none of the existing
self-adaptive component models provide support for exploiting such information.

The use of decentralised coordination models to manage the adaptive behaviour of components in
a distributed system has not been addressed by existing self-adaptive component models or autonomic
systems. In a decentralised system, self-adaptive components are limited to monitoring local state
information and states in their local environment. In the next section we review previous work on
coordination models for self-organising and decentralised software architectures by Georgiadis (see
section 2.5.4) and Khare (see section 2.5.5) respectively.
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2.5 Review of Existing Systems

The following sections of this chapter present detailed reviews of systems related to K-Components,
with the reviews discussing how the systems meet the autonomic requirements presented in section 2.3.
The systems reviewed were chosen either because of how their model for self-adaptive software can be
used to build autonomic systems, how self-adaptive behaviour can be speci�ed, updated or even learnt
by the running system, and their ability to coordinate components in decentralised environments. The
choice of the technologies and techniques used to build the systems was also a deciding factor, with
re�ection and declarative programming techniques in�uencing the inclusion of OpenORB (Blair et al.,
2001) and QuO (Atighetchi, 2003), respectively.

The systems reviewed include a representative sample of the techniques from the di�erent research
areas that in�uenced K-Component's model of autonomic computing systems. OpenORB and QuO
have concentrated on support for the construction of QoS-adaptive software where systems can adapt
themselves to changes in the QoS provided by the underlying middleware or system. Accord is a
recent self-adaptive component model targeted at building distributed autonomic applications and
it is also reviewed. In the area of decentralised coordination of components, Georgiadis supports
the construction of self-organising software architectures, while Khare provides an architectural style
for decentralised environments. We also review Hinnelund's model of autonomic systems as control
systems (Hinnelund, 2004) as it supports the learning of autonomic behaviour using machine learning.
Finally, we present a short overview of other related systems.

2.5.1 QuO

Quality Objects (QuO) 3.0 is a CORBA-compliant middleware framework for building distributed
applications that can adapt themselves to changes in their environment (Atighetchi, 2003). In par-
ticular, QuO was designed to support QoS-adaptive applications, e.g., multimedia applications that
adapt the number of frames in a video transmission to the QoS of its network connection, but can be
used to build other types of self-adaptive applications, such as the self-protecting application presented
in (Atighetchi, 2003) that responds to events such as intrusion detection or TCP stack probes.

QuO supports the construction of self-adaptive client-server applications. Figure 2.3 shows the
�ow of control in a remote method invocation from a client to a server using the QuO middleware.
Compared to a standard CORBA remote invocation using an ORB (Henning and Vinoski, 1999),
it involves extra components, including a delegate object (that wraps the stub or skeleton object),
contract object(s) that monitor state information encapsulated in system condition (syscond) objects
and a mechanism/property manager that manages con�guration information for the various com-
ponents. The delegate and contract objects together encapsulate the adaptation logic for a QuO
application. Although clients and servers can take independent adaptation decisions, system adapta-
tion is consensus-based in QuO.

Quality Description Languages

QuO supports the separate speci�cation of the adaptation logic for a client-server CORBA application
using Quality Description Languages (QDLs). It also provides runtime objects that monitor middle-
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Figure 2.3: Client-server interactions in QuO middleware.

ware/system states and can be used in the QDLs (Technologies., 2002). The QDLs are the Contract
Description Language (CDL) and the Aspect Structure Language (ASL). The CDL allows the speci-
�cation of application-independent QoS contracts encapsulated in contract objects at runtime, while
application-speci�c self-adaptive behaviour is speci�ed in the ASL as QoS-adaptive behaviour and is
encapsulated in a QuO delegate at runtime (see �gure 2.3, adapted from (Technologies., 2002)).

A QoS contract in CDL speci�es the QoS expected by the client, the level of QoS the servant
expects to provide and adaptation actions to take if the QoS level moves outside the speci�ed states.
It allows the de�nition of QoS states (or regions) and adaptation actions to be executed in response
to changes in QoS states. An application developed in QuO can provide a QoS contract that is
either evaluated synchronously (in-line) with CORBA operation invocations using the delegate or
asynchronously (out-of-band) using autonomous contract objects. A QuO contract consists of

• a set of nested states5, each representing a possible state of QoS, where each state is either active
or not

• a set of transitions indicating the adaptation action to execute on a state (or region) change

• references to system condition objects for measuring and controlling QoS

• callback objects that notify either the application-level client or the server object and are passed
as parameters to the contract where they are used in transitions

As mentioned previously, the ASL is used to specify adaptation logic that is woven into delegates in a
QuO client-server application. A delegate is a wrapper for a client-side proxy or server-side skeleton
object. The delegate object intercedes in remote method invocations and executes adaptation logic
that can monitor the state of QoS contracts and take adaptation actions such as making alternative
method calls, calling alternative remote objects or invoking additional pre- or post-behaviour for a
remote method. A delegate can only be generated for a CORBA interface in an IDL �le(s) for which
there is some speci�ed adaptation logic in an ASL �le(s) and where the dependent contracts are

5States were introduced in QuO 3.0 and can be used as an alternative to regions from earlier versions of QuO
(Technologies, 2002). Regions can be modelled as states.
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speci�ed in a CDL �le(s). The term advice, from aspect-oriented programming (Loyall, 1998), is used
to describe adaptation logic and it can be inserted either before, after, inplaceof or onexception at the
following join-points in delegates:

• methodEntry - the entry point where the method is called

• preMethodContractEval - the point where the state of the contract is evaluated before making
the remote method invocation

• methodCall - calling of a remote method, i.e., call to the proxy or skeleton

• postMethodContractEval - the point where the state of the contract is evaluated after returning
from a two-way remote method invocation

• methodReturn - when returning from the delegate method

QuO also provides a library of reusable QoS objects, called quosket objects, that can be used to
instrument a client-server QuO application. Each quosket has an IDL interface, a contract describing
the qosket's states, sysconds and adaptation logic, written in both the CDL and ASL, and some
implementation code for the interfaces. Delegate objects can merge a quosket with application-speci�c
adaptation logic, i.e., adaptive behaviour that is speci�c to the user of the QuO delegate. A code
generator, quogen, is provided to compile both CDL and ASL speci�cations to either Java or C++.

State Monitoring

QuO provides feedback to an application about the state of the underlying middleware through system
condition interfaces to resources and mechanisms. Sysconds monitor runtime information relating to
the system's QoS and expose the state information they acquire using various interfaces to system
resources, mechanisms and managers, including:

• ValueSC interface - store values for a syscond

• Probe interface - sysconds accept probing from the QuO kernel about its values

• Monitor interface - sysconds that poll in order to perform some action periodically

• SlidingWindowCounterSC interface - sysconds monitor the number of events that occur within
a time window

Sysconds provide state information relating to the underlying system and middleware, and they can
be grouped together to support the speci�cation of application speci�c system state information that
can be monitored at runtime.

The QDLs also support the speci�cation of higher-level state information to abstract QoS val-
ues acquired from sysconds. In the CDL, programmers can de�ne their own states and conditions
(predicates) that determine state transitions (Technologies, 2002). The state clause syntax is:

state <name> [ until ( <predicate> ) ] ( <predicate> -> <state name>, ... )

{ <nested regions or states> }
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Predicates are Boolean expressions that consist of syscond object names and constants that are
compared using relative operators (i.e., <, >, <=, >=, ==, <>, !=, and /=) and logical operators
(i.e., and, or, and not). There is no support for application-level object state information in predicates.
The until clause can prevent state transitions from occurring too rapidly, reducing hysteresis but at
the cost of guaranteeing that the system is always in the correct state.

Adaptation Actions

Adaptation actions are supported as both application level operations and middleware or system level
operations in the QDLs. QuO does not provide system support for intrusive adaptation actions, such
as the replacement of server objects with alternative implementations. Developers must specify their
adaptation actions in the QDLs.

Adaptation actions can be speci�ed in the CDL as methods to be executed in state transition
statements. The adaptation action is described in a transition statement body as a list of methods
to be invoked when the state transition is triggered. Each method must be de�ned on a callback
or a syscond object. Adaptation actions can be performed by synchronous or asynchronous decision
policies. The contract waits for synchronous callbacks to �nish before it can be evaluated again, while
asynchronous callbacks are spawned as separate threads and the contract does not care whether they
�nish or not.

transition <from_region> -> <to_region> {

synchronous { <method_call> ... }

asynchronous { <method_call> ... }

}

Adaptation actions can also be speci�ed in the ASL as advice. Advice is code that gets inserted
at a pointcut in the delegate. ASL supports the following types of advice code:

• Function calls of the form, <fn>(<args>)

• Assignment statements of the form, <var> = <expression>, where <expression> can be any nor-
mal arithmetic expression, consisting of arithmetic operators, scoped identi�ers, parentheses,
constants, and function calls.

• Embedded Java or C++ code, of the form java_code #{ ... }# and cplusplus_code #{ ...

}#, respectively.

• Exception Throw of the form, throw <exceptiontype>, where <exceptiontype> is an IDL de�ned
exception.

The ASL supports the conditional execution of advice by associating advice with di�erent states (or
regions) in the delegate's associated contract. Here is an example region (or state) designator where
di�erent advice is called depending on whether the contract associated with the ASL, after evaluation,
is in region A1 or region A2:

region A {

region A1 { <advice> }

region A2 { <advice> }

}
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Adaptation Consistency

In the QDLs, it is the developer's responsibility to manage adaptation consistency for the callback
and syscond methods that executed as adaptation actions. QuO does not provide system support for
intrusive adaptation actions, and as such the existing published material on QuO does not explicitly
discuss the adaptation consistency implications of adapting outgoing and incoming method invoca-
tions, e.g., by replacing a call to a server object with a method de�ned on an alternative server object.
However, it is assumed that method invocation consistency (Almeida, 2001) can be easily maintained
by delegates for actions such as server replacement as they have a single application-level thread that
can safely wait for outstanding computation and communication to complete before calling a method
on an alternative server object. Method invocation consistency meets the structural integrity and
mutual consistency requirements, but QuO does not address the maintenance of application state
invariants.

Decision Policy

As mentioned previously, the QDLs are used to specify an application's adaptation logic. QuO sup-
ports the execution of both synchronous and asynchronous 1stparty decision policies (Technologies,
2002). Synchronous policies are executed in the path of object interactions, while asynchronous poli-
cies are implemented as autonomous objects that monitor system or middleware state and execute
adaptation actions independently of and asynchronously to object interactions. Both synchronous and
asynchronous decision policies can be speci�ed using the CDL, while ASL is generally used to specify
application-speci�c, synchronous decision policies.

In the CDL, programmers can de�ne a system's adaptation logic in a contract as a state machine,
with conditions on state transitions and adaptation actions executed on a transition (Technologies,
2002; Neema et al., 2002):

contract <name> ( <args> ..)

{

<vars..>

state <name> <until_clause> ( <predicate> -> <state_name, ..} |

transition <transition_description> { <behaviour> ...} |

};

A contract can take both syscond objects and callback objects as parameters, in order to invoke
methods on them as adaptation actions.

In ASL, the adaptation logic is speci�ed as a behaviour description. A behaviour description
associates a set of disjoint regions with adaptation actions. Only one region can be valid at any
time. When a contract is evaluated it returns the current active region, and any adaptation actions
associated with that region are executed.

Evaluating and Updating the Decision Policy

The performance and QoS provided by QuO applications can be evaluated online by system adminis-
trators using a GUI to the QuO kernel, (Java version only (Technologies, 2002)). The GUI provides
frames to visualise the status of syscond objects that support the Probe interface and the active states
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(or regions) of contracts. QuO C++ does not provide any support for the online updating of adapta-
tion logic. To update a system's adaptation logic, a programmer has to write a new or modi�ed QDL
program, recompile, test and deploy the new application.

Coordination of Adaptive Behaviour

QuO supports the coordination of adaptive behaviour by allowing clients and the server to coordinate
on a single, shared model of system state, e.g., by monitoring a shared syscond or quosket object. QuO
applications are client-server based, and there is no support for the speci�cation of a QuO application
as a software architecture or a decentralised system. As such QuO provides applications with no system
support for building coordination models based on distributed consensus or decentralised techniques.

Summary

QuO enables the construction of QoS-adaptive distributed applications. The speci�cation of a system's
decision policy is supported in the declarative QDLs. At the middleware and system levels, QuO
provides syscond objects for monitoring system state. The execution of non-intrusive adaptation
actions at the application and middleware levels is supported, but QuO does not provide system
support for system recon�guration adaptation actions.

QuO has many similarities with K-Components, including asynchronous monitoring behaviour
that provides similar self-adaptive functionality to asynchronous re�ection. The use of declarative
contracts to specify adaptation logic is similar to K-Components but there is no support for monitoring
application object state and the separation of adaptation logic from application objects is achieved
using aspect-oriented programming techniques (Pal et al., 2000) rather than re�ection.

QuO has several limitations that hamper its adoption for writing autonomic distributed applica-
tions. The development of QoS-adaptive applications is di�cult as programmers have to familiarise
themselves with many novel abstractions in both the CDL and ASL. Also, more complex self-adaptive
applications quickly become di�cult to specify and maintain as the number of states and adaptation
actions grows. QuO also only supports the construction of client-server applications, and the updating
of a system's adaptation logic requires system re-compilation and re-deployment. QuO is not suitable
for the construction of decentralised autonomic applications due to its lack of support for building
decentralised systems.

2.5.2 OpenORB v2 and OpenCOM

OpenORB v2 is a re�ective, dynamically recon�gurable middleware platform built on top of Open-
COM (Blair et al., 2001), an open, adaptable implementation of Microsoft's Component Object Model
(COM) (Microsoft, 2002) in C++. The goal of OpenORB is to support both distributed applications
that can adapt to a changing middleware environment, by re�ecting changes in the underlying mid-
dleware environment in the application's con�guration, and also to provide a middleware that dynam-
ically adapts its con�guration to changes in the requirements and resource usage of its applications.
OpenORB has the dual aim of adapting to meet application-level QoS requirements and improving
overall middleware performance (Blair et al., 2003). The goal of maintaining QoS requirements, such
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as timeliness or capacity requirements, in a changing and unpredictable network environment is similar
to the autonomic computing goal of establishing and maintaining autonomic properties at runtime.

An OpenORB v2 middleware con�guration is built using OpenCOM components and runs in
a single address space. In OpenCOM, components implement interfaces, have outgoing connectors
(called receptacles that represent explicit dependencies on other services) and are connected together at
run-time. Outgoing connectors can be recon�gured at runtime. An OpenCOM address space provides
a runtime for managing component con�gurations, and the runtime is used to manage OpenORB
con�gurations.

Adaptation logic is provided in OpenORB v2 by Component Frameworks (CFs) that monitor
middleware state information and can perform adaptation actions on OpenCOM components in a
middleware con�guration. CFs were de�ned by Szyperski as �collections of rules and interfaces that
govern the interaction of a set of components plugged into them� (Szyperski, 1998). CFs in OpenORB
encapsulate the monitoring code, adaptation actions and adaptation consistency management code
for collections of related OpenCOM components representing di�erent middleware con�gurations (see
�gure 2.5). CFs follow a meta-level manager/managed pattern with a CF adopting the manager role
and its plug-ins adopting the managed role. A CF architecture is layered, with a higher-level CF being
responsible for lower layers. In OpenORB, CFs can be added, removed and replaced by higher-level
CFs, so long as this is allowed by the policies of the top-level CF. Examples of manager/managed CFs
include ResourceManager/Resource CFs and TaskManager/Task CFs in (Blair et al., 2003).

State Monitoring

Both OpenCOM and OpenORB o�er facilities for monitoring state information about a running sys-
tem both in terms of its structure and its ongoing behaviour. The OpenCOM run-time provides
facilities for introspecting the con�guration of components in an OpenCOM address space. It pro-
vides di�erent meta models to access information about the con�guration of components, including
the IMetaInterception, IMetaArchitecture and IMetaInterface models. Each OpenCOM component
supports these interfaces as well as other component management interfaces, ILifeCycle and IRe-
ceptacles, for creating and deleting both components and connections at runtime. The IOpenCOM
interface is a procedural interface for acquiring information from the OpenCOM run-time about its
components and connections.

OpenORB v2 is built using OpenCOM and IMetaInterception, IMetaArchitecture and IMetaInter-
face act as a MOP to the underlying middleware con�guration. IMetaArchitecture and IMetaInterface
provide structural re�ection for introspecting and modifying the underlying middleware architecture
meta-model and interface meta-models for components, while IMetaInterception provides behavioural
re�ection (Blair et al., 2002) for introspecting and modifying behavioural aspects of components in
the system (see �gure 2.4). OpenORB v2 also provides separate support for the monitoring of com-
ponent state in CFs. CFs that act as managers maintain management state information about their
con�guration of plug-ins and monitor events emitted by those plug-ins. Two di�erent styles of QoS
management component for monitoring state information supported by OpenORB are event collectors
and monitors (Blair et al., 2002). Event collectors generate QoS events in response to observations
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of underlying functional components, while monitors represent higher-level policy components that
collect QoS events and report violations of QoS contracts to interested parties.

Adaptation Actions

In an OpenCOM address space, the IOpenCOM interface is a procedural interface that can be used
for executing intrusive adaptation actions that recon�gure the system's software architecture, such as
creating/deleting components and connecting/disconnecting components. OpenCOM also supports
procedural interfaces, IMetaInterception and IInterceptor, that allow the creation and deletion of
interceptors and their attachment/detachment to/from methods de�ned on interfaces.

At the OpenORB level, there is support for adaptation actions through both CFs and MOPs. These
higher-level services use the lower-level OpenCOM adaptation actions when performing adaptations of
the OpenORB middleware. In OpenORB, the IMetaInterception, IMetaArchitecture and IMetaInter-
face meta-level interfaces can be used to perform arbitrary manipulation of OpenORB's constituent
components, although this form of unconstrained recon�guration can easily violate the adaptation
consistency of the system (Blair et al., 2001). As an alternative, CFs provide plug-in operations to
add, remove and replace managed components from a running system that also maintain adaptation
consistency. CFs constrain the scope of dynamic recon�guration by providing di�erent possible con-
�gurations and encapsulating rules for adapting con�gurations. In CFs, a management component
provides access control, speci�ed as layer composition policies at the top-level CF, to allow or disallow
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a CF adaptation action on the basis of the current state information (layer composition information
and meta-data) in the to-be-inserted CF. OpenORB provides two di�erent patterns for management
components in order to improve code reusability. Strategy selector components are designed to select
an appropriate adaptation strategy based on the feedback they receive from monitors, while strategy
activator components are reusable components that implement a particular strategy. Examples of CFs
supported at the middleware level in OpenORB include a resource CF, a communication CF and the
binding CF (Blair et al., 2001) (see �gure 2.5).

Adaptation Consistency

At the OpenCOM level, adaptation consistency requirements for intrusive adaptation actions are met
by providing per-receptacle locks that maintain method invocation consistency. When a recon�gu-
ration of an outgoing connector is requested to the OpenCOM runtime, the runtime competes with
threads performing operations on the connector for the lock on the connector. When the OpenCOM
runtime acquires the lock, it can be sure that there are no outstanding invocation requests on the
connector, ensuring mutual consistency, and can recon�gure the connector. When a component has
to be deleted, the OpenCOM runtime acquires the locks for all connectors on the component before
deleting it. Connectors are unlocked after the completion of recon�guration actions.

However, when adapting OpenORB in an unconstrained manner using MOPs, the adaptation con-
sistency requirements of the system may not be met (Blair et al., 2001). As mentioned previously,
related groups of components are managed as con�gurations in CFs. CFs encapsulate the adaptation
actions and adaptation consistency management code for adapting collections of related OpenCOM
components that make up valid middleware con�gurations. A layer composition policy controls re-
con�guration of a top-level CF. This layer composition policy is implemented as a component that
validates proposed layer composition operations, such as the insertion or removal of CFs and can help
maintain structural integrity when dynamically recon�guring OpenORB.

OpenORB supports the speci�cation of QoS-adaptive applications, and can thus help maintain
application state invariants speci�ed as QoS requirements. OpenORB does not, however, provide
support for the automated transfer of state between old and replacement components to maintain
application state invariants and requires application developers to handle this problem.

Decision Policy

OpenORB v2 supports the development of 1stparty decision policies as CF management components
provided by an OpenORB developer. There is no declarative programming support for decision policies
in OpenORB v2, although the previous version, OpenORB v1, provided a scripting language for the
speci�cation of QoS management logic as timed automata (Blair et al., February 2000). In OpenORB
v2, monitors and strategy selector management components encapsulate the higher-level policy for
adapting an OpenORB con�guration, while event collectors and strategy activators encapsulate the
lower-level mechanisms for monitoring and adapting the CF (Blair et al., 2002). The management
components act as timed automata interpreters at runtime (Blair et al., 2002).
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Evaluating and Updating the Decision Policy

The decision policy in a management component in an OpenORB system is open to inspection and
adaptation through rei�cation of the management components, providing a kind of re�ective tower
(Blair et al., February 2000). The authors discuss in (Blair et al., February 2000) how a meta-manager
could be developed by monitoring the behaviour of the management component to detect the number
of adaptation actions performed by the management component.

An OpenORB application's decision policy can be updated at runtime by dynamically inserting
and removing management components in a CF. Managed components provide events about system
state and do not need to know in advance that they will be managed, enabling new management
components to be introduced at runtime without a�ecting system integrity.

Coordination of Adaptive Behaviour

OpenORB supports limited coordination of the adaptive behaviour of clients and servers. The binding
framework supports coordination on the adaptation of client and server binding types to ensure con-
sensus on the updated binding types to be used by clients and servers running on di�erent OpenORB
instances. OpenORB applications are client-server based, and there is no support for the speci�cation
of an OpenORB application as a software architecture or a decentralised system. As such OpenORB
provides applications with no system support for building coordination models based on distributed
consensus or decentralised techniques.

Summary

OpenORB v2 is built using OpenCOM and supports the construction of self-adaptive distributed
applications/middleware systems using re�ective techniques. It is representative of a larger class
of re�ective, self-adaptive systems and also of many QoS-adaptive systems. OpenORB supports
the speci�cation of a system's adaptation logic using a CF model that monitors system states and
executes adaptation actions that maintain adaptation consistency in conjunction with OpenCOM.
The decision policy is realised as a management component that can be introspected and updated by
an administrator at runtime.

OpenORB applications can be engineered to provide many autonomic properties at the client-server
level, such as self-healing (Blair et al., 2002), as self-adaptive system behaviours. Similar to QuO,
however, the applications will become di�cult to specify and maintain as both the number of system
states to monitor and number of adaptation actions that can be performed increases. OpenORB is
not suitable for building decentralised, autonomic systems due to its client-server centric model and
the lack of support for building decentralised coordination models.

2.5.3 Accord

Accord is a recent component-based programming model and framework, designed to support the
development of autonomic applications (Liu et al., 2004; Liu and Parashar, 2004). The framework
allows the development of �autonomic components�6 (Liu et al., 2004) and distributed systems with

6The authors do not provide a de�nition for an autonomic component.
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autonomic properties are built by dynamically composing and managing components. The goal of
Accord is to enable the organisation, interaction and coordination of autonomic components in a
distributed system that can be managed at runtime using high-level rules. The authors identify
challenges inherent in the construction of large-scale autonomic distributed applications including
heterogeneity and dynamism in the availability and state of components, services and infrastructure.
They also note the presence of uncertainty due to dynamism, failures and incomplete knowledge of
the system.

The Accord programming framework attempts to support the construction of distributed applica-
tions that meet these autonomic challenges and are able to manage themselves using minimal human
intervention. Accord is built on the AutoMate middleware (Agarwal et al., 2003), a middleware for
self-managing Grid applications. The four main concepts that make up an autonomic application
built using Accord are:

• an application context that describes a common semantic view of the application

• the autonomic components

• a set of rules and mechanisms for the dynamic composition of autonomic components

• an agent infrastructure to support rule enforcement that realises the dynamic composition and
self-managing behaviour

Figure 2.6 shows the structure of an Accord component with its three types of ports: a functional
port, a control port and an operational port. The functional port describes the operations provided
by and used by a component. The control port is a set of tuples (σ, ξ) where σ is the set of actuators
and sensors in the component and ξ is the constraint set for the sensors/actuators that uses state,
context information and policies to determine when and how the sensors/actuators are accessed and
by whom. The operational port allows the dynamic insertion/removal of rules specifying adaptation
logic and manages existing rules.

Rule agents are assigned to each component and manage the component by monitoring its state and
context, and storing rules (adaptation actions) that can be �red to invoke operations on the component
via the three ports. Two types of rule supported in the rule agent are behaviour rules that de�ne
the functional behaviour of the components, and interaction rules that coordinate the interactions
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between components, and between components and their environments. All binding and interactions
between components are managed using interaction rules instead of the more traditional proxies or
connectors found in many existing distributed component models. This produces components that do
not make independent decisions about which components to connect to, as their binding information
is encapsulated in their associated rule agent.

Rule agents can also cooperate to ful�l application objectives and interact with each other using a
decentralised reactive tuple-space from the coordination infrastructure for Accord called Rudder (Liu
and Parashar, 2004). The reactive tuple-space provides context-aware agents that manage compo-
nents, monitor and analyse system state, support agent coordination, the execution of composition
rules and the creation of application work�ows. Tuple-space-speci�c behaviours can be programmed
using the event-condition-action paradigm.

Accord supports the composition of autonomic components as �an organisation of components and
the interactions among these components� (Liu et al., 2004) based on the composition of functional
ports (provides and uses interfaces). Dynamic composition of systems in Accord involves delaying
until runtime decisions about which components are composed together and how and when they
interact. The composed components that make up an autonomic application are described in a
work�ow graph where both nodes (components) and edges (interactions) can be added, removed
and updated dynamically. This is similar to how dynamic software architectures model a system
as a con�guration graph with nodes as components and connectors as edges. A composition agent
manages dynamic composition by maintaining global knowledge of the work�ow and decomposing
the work�ow (con�guration) into a set of interaction rules that are injected into the appropriate rule
agents. The rule agents then execute the rules to con�gure their components and establish their
interaction relationships.

State Monitoring

Accord supports the monitoring of component states using sensors de�ned in the control port of a
component. Agents in Accord are able to monitor component states by polling a component's control
ports. No abstract representation of a component's state model is presented in existing publications
(Liu et al., 2004; Liu and Parashar, 2004). Similarly, there is no available model for the tuple-space
described in Rudder (Liu and Parashar, 2004; Li and Parashar, 2004).

Adaptation Actions

Actuators in the control port of components can be used to modify the state of the component at
runtime and can be used by agents to dynamically adapt components. Composition agents can adapt
the set of components in an application work�ow. This can involve using rule agents to change
interaction rules and adapt the connections between components or between components and their
environments. Accord supports the following intrusive adaptation actions, executed and managed by
composition agents and rule agents:

• the addition/deletion/replacement of components in work�ows by a composition agent;
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• establishing/deleting/changing interaction relationships by rule agents and managed by compo-
sition agents.

Adaptation Consistency

Accord only allows the replacement of a component with a component whose functional ports are type
compatible, thus maintaining structural integrity requirements. The recon�guration process is man-
aged by a composition agent that ensures that the component being replaced is in a recon�guration-safe
state before it is replaced, thus ensuring mutual consistency requirements. On recon�guration, the old
component transfers its rule set to the new component and noti�es dependent components to update
their interaction rules. This helps maintain application state invariants concerning the component's
interactions. There is also the possibility that multiple rules will be triggered concurrently, so in
Accord con�icting rules are resolved by associating a priority with rules, where low priority rules are
forced to wait for locks held by rules with higher priority.

Decision Policy

The di�erent agents in Accord, e.g., con�guration and context agents, encapsulate decision policies
for monitoring and adapting managed components. Con�guration agents are centralised entities that
encapsulate a 3rd party decision policy for an application work�ow (Liu and Parashar, 2004; Li and
Parashar, 2004), and they interact with the rule agents for the components in the work�ow to perform
recon�gurations. Components also contain a 1st party decision policy in the form of interaction rules
in the rule agent. The interaction model for components de�nes how and when components interact.
They are speci�ed as a set of if-then statements (Liu and Parashar, 2004; Li and Parashar, 2004),
with conditions being receipt of messages or predicates on component state and adaptation actions
being operations on a port on the local component or the sending of a message to a remote component.
An example of a rule in (Liu et al., 2004) is

C1 IF terminationMsg is received THEN invoke stop;

C3 IF isResourcedBalanced()==false THEN send loadMsg to DSM;

where DSM is a remote component. In the interaction rule C1, a local stop operation is invoked if a
terminationMsg is received from a remote component. In the interaction rule C3, a loadMsg is sent to
the remote component DSM if a local method isResourceBalanced() evaluates to false.

Evaluating and Updating the Decision Policy

The interaction relationships for components in a work�ow can be updated at runtime by external
components, such as a con�guration agent, inserting new interaction rules dynamically to rule agents.
There is no mechanism provided for the automated evaluation and updating of interaction rules at
runtime, and Accord requires an administrator to manually evaluate the behaviour of the system and
insert/remove/replace the appropriate interaction rules using the con�guration agent.
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Coordination of Adaptive Behaviour

In Accord, the centralised coordination of the adaptation of work�ows is supported by a composition
agent. Accord, through Rudder, also supports the de�nition and execution of decentralised coordina-
tion models speci�ed as programmable reactive behaviours in a tuple-space. A reactive tuple consists
of a condition for triggering some reactive behaviour, the reactive behaviour itself and a guard for
de�ning the execution semantics of the reactive behaviour, e.g., execute immediately and once. There
are no decentralised coordination models presented, however.

Summary

The Accord model is designed to support the construction of autonomic applications, such as Grid ap-
plications, in closed, distributed environments. The use of centralised composition agents to bootstrap
the dynamic composition model is a reasonable approach for a closed system, where all components are
under the same administrative domain, but it is not viable for heterogeneous, decentralised systems.
Aspects of the model resemble dynamic software architectures where work�ows are equivalent to con-
�guration graphs and interaction rules provide similar functionality to connectors with encapsulated
binding information.

The accord model is representative of the existing autonomic component models, including IBM's
autonomic component model (Kephart and Chess, 2003). Similar to other autonomic component
models, much of the work on Accord is early in development. There is no de�nition provided for an
autonomic component and Accord's context model has not been speci�ed (Liu et al., 2004; Liu and
Parashar, 2004). In addition to this, the languages used to specify components, the interaction rules
and the work�ow con�guration have not been de�ned in published material. The implementation of
Accord is also at an early stage, and at the time of publication of (Liu et al., 2004) the dynamic
composition model had not been implemented. The reactive tuple-space model o�ers the potential of
building decentralised autonomic applications, but it does not support any decentralised coordination
model yet.

2.5.4 A Self-Organising, Consensus-Based Software Architecture

Georgiadis, Magee and Kramer introduced the notion of self-organising software architectures for dis-
tributed systems in (Georgiadis, 2002; Georgiadis et al., 2002). They de�ne a self-organising software
architecture as �one in which components automatically con�gure their interaction in a way that is
compatible with an overall architectural speci�cation� (Georgiadis et al., 2002). Rather than de�ne
a software architecture as a con�guration of components using an ADL, a self-organising software
architecture is speci�ed using local architectural constraints on how components are composed, rather
than the more usual global constraints. Component state is also used to in�uence self-organisation
via attribute objects de�ned on components.

The component model is heavily in�uenced by Darwin (Magee et al., 1995), a software architec-
ture model. In the component model, the provided and required interfaces of each component are
managed by Port objects. Each component contains a component manager that stores local archi-
tectural constraints that should help achieve the desired global architectural style. The component
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manager manages its component via its Port objects and maintains a local view of the state of the
software architecture con�guration. When a port on a component in the software architecture is
bound/unbound to another component, an event is generated. These events are broadcast to all com-
ponent managers in the network that independently update their view of the system con�guration.
The totally ordered delivery of these events provides distributed consensus on the current view of
the system con�guration at any instant in time. On receipt of a component insertion/removal event
or a component attribute change event, every component manager in the system evaluates its local
system con�guration view against its local constraints. This may result in the execution of adaptation
actions, such as binding/unbinding components, to satisfy its constraints.

State Monitoring

The state of the software architecture con�guration is monitored by component managers using events
generated by ports binding/unbinding to/from components. Each component manager maintains a
local model of its view of the software architecture con�guration in the form of a directed graph of
components and a descriptor for each component type in the graph (Georgiadis, 2002).

Adaptation Actions

The self-organising software architecture model supports intrusive internal and external adaptation
actions by component managers. Internal adaptation actions are limited to bind/unbind/rebind actions
that operate on required ports on a component manager's local component. External adaptation
actions involve the noti�cation of changes to the software architecture con�guration graph to other
components, either as a result of component addition/removal, attribute changes on components or
because of internal adaptation actions. The external adaptation actions presented in (Georgiadis,
2002) are join/leave/attrib adaptation actions that operate on components. External adaptation
actions update the local view of the software architecture at the components in the system.

Each component manager independently executes adaptation actions to maintain its local archi-
tectural constraints. A selector function implements the architectural constraints as a constraint
satisfaction algorithm:

ap
i

selector(p) : G −→ G′

where actions ap
i are internal adaptation actions (bind/unbind/rebind) involving a port p at node i,

and G is the con�guration graph for the software architecture that is re-written after the adaptation
action.

Adaptation Consistency

In order to maintain adaptation consistency in the distributed software architecture, the self-organising
architecture has to provide adaptation consistency for both internal adaptation actions and external
adaptation actions. Georgiadis provides atomic adaptation actions: actions that either succeed, re-
sulting in the modi�cation of the state of all components involved in the adaptation, or fail, in which
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case there are no state changes in any component. Furthermore, adaptation actions result in the
execution of external adaptation actions that broadcast all state changes to all component managers
that then update their local views. In order to maintain adaptation consistency of these external
adaptation actions, a totally ordered broadcast scheme is used. There is no system support for the
maintenance of application state invariants.

Decision Policy

The model supports a 1stparty decision policy described by a set of con�guration rules that capture
local architectural constraints as: <required-port, selector, action-list>. The required port is
the port to which the rule applies, selector functions are associated with ports and contain the
adaptation logic that is executed when a con�guration view changes, and �nally the action-list is
a set of available internal adaptation actions. In the current implementation, there is no declarative
programming support for specifying con�guration rules and adaptation logic can be provided as Java
classes.

Evaluating and Updating the Decision Policy

There is no support for the evaluation of the decision policy. Some limited support for updating
the decision policy dynamically is provided by the ability to dynamically update adaptation logic
encapsulated in load selector functions using Java's dynamic class loading capabilities. This facility,
however, does not provide guarantees of minimal disruption to the system.

Coordination of Adaptive Behaviour

The coordination model is an example of a consensus-based architectural style (Khare and Taylor,
2004) where local changes are atomically broadcast to ensure that all components have correct local
views of the system architecture (Georgiadis, 2002). This impacts, however, on the scalability of the
system and is not a viable approach for decentralised systems (see section 2.1).
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Summary

Although the work presented here is a software architecture that organises itself through local architec-
tural constraints, it does not provide a model for building decentralised systems, as the coordination
model is consensus-based, requiring components to broadcast local changes to all other components
in order to maintain common views on the system. Additionally, there is the assumption that net-
work partitions do not occur, since the atomic broadcast mechanism is used to maintain a consistent
view of the architecture. There is also the problem of stabilisation on architecture con�gurations,
since after each component manager receives an event indicating that the con�guration view has
changed, they may individually decide to issue more recon�guration requests to satisfy their archi-
tectural constraints. These recon�guration requests may generate cascading recon�guration requests
from component managers. There is no guarantee that recon�guration requests will stop at any future
moment in time.

The self-organisation of a software architecture to preserve system-wide architectural properties is
similar to how autonomic systems could self-organise to preserve system-wide autonomic properties
(Minsky, 2003). Georgiadis' model, however, is not suitable for the construction of decentralised auto-
nomic systems as it uses consensus-based coordination techniques to preserve architectural properties.

2.5.5 A Decentralised Software Architecture

Khare attempts to cope with uncertainty and disagreement in distributed systems by adopting a
decentralised approach to specifying software architectures that uses local constraints on con�gurations
of components and connectors to induce desired system-wide properties (Khare and Taylor, 2004). An
example of an induced property in a decentralised system is near optimal estimates by agents of global
or shared variables. Khare's model for decentralised software architectures is motivated by temporal
and trust problems associated with establishing consensus in large-scale, open distributed systems.

He introduces new capabilities to Representational State Transfer (REST), an architectural style
used to describe the World Wide Web (Fielding, 2001), in order to support the construction of decen-
tralised systems, including asynchronous event noti�cation, a routing proxy to support independent
extension of components owned by 3rd parties, enforced serialisation of updates to a resource, de-
cision functions to select the current value of a shared resource and techniques to estimate current
representations based on past ones (Khare, 2003; Khare and Taylor, 2004). The styles are combined
to present a new architectural style for decentralised systems designed to handle uncertainty found
in distributed systems, including uncertainty due to message loss, network congestion, message delay
and disagreement.

Khare's decentralised architectural style allows independent agents to make their own non-intrusive
adaptation decisions based on local estimates of shared views or states of the system, instead of
attempting to achieve consensus (or simultaneous agreement as he calls it) on the state of the system.
In his model of a consensus-free system, the true value of a global view or state is replaced by local
estimates (or opinions), due to the fact that the actual value cannot be known. As a solution to
this problem, the model has an approach described by 'BASE' properties: to �rely solely on Best-
e�ort network messaging; to Approximate the current value of remote resources; to be Self-centred
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in deciding whether to trust other (agents') opinions; and E�cient when using network bandwidth�
(Khare and Taylor, 2004). Components use these properties to try to establish a best estimate of the
value of a global state.

The model introduced in his thesis, however, does not support the construction of self-adaptive or
autonomic software. The prototype system developed using Khare's model does not demonstrate the
kind of self-adaptive behaviour described in the previously reviewed systems. It is an Automarket car
auction system that demonstrates how agents in the system can provide local estimates of the global
auction price of vehicles and adapt their interpretation of the types of vehicles that are for sale.

State Monitoring

Instead of using references to shared or global state, Khare uses end-to-end estimator functions to
monitor the value of a shared variable/resource/structure. The estimator functions are decentralised
decision functions that estimate the value of the shared state. In order to reduce the uncertainty of
the estimator functions, he proposes that local agents use both their own estimate of the value of the
shared state and the opinions of several di�erent agents to improve the estimated of the value of the
shared state. In his model in (Khare, 2003), estimator functions are modelled as simple caches at
di�erent levels in the system. The estimator function uses local values in the cache to estimate the
value of some remote state.

Adaptation Actions

The adaptation actions presented in Khare's example system in (Khare and Taylor, 2004) are non-
intrusive adaptation actions that are limited to setting the price of goods in a car market. There are
no intrusive adaptation actions, such as architectural adaptation actions, presented in his model.

Adaptation Consistency

As Khare's model does not support intrusive adaptation actions, there are no adaptation consistency
requirements.

Decision Policy

The 1st party decision policy presented in (Khare and Taylor, 2004) is not based on associating a
particular adaptation action with system state, but rather with estimating the value of a shared
resource. Decentralised decision functions may use components such as a Predictor component, to
predict the current state from past data, or an Assessor component, to allow agents to collaborate when
estimating the value of a shared variable, to adapt estimates. Detailed discussion of implementation
strategies for these components or how to adapt estimates is lacking in (Khare, 2003; Khare and
Taylor, 2004).

Evaluating and Updating the Decision Policy

Khare suggests that a predictor component can be used to learn how to estimate the value of a shared
resource or variable, although he doesn't present details on how such a predictor component would
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work.

Coordination of Adaptive Behaviour

Khare abandons the notion of being able to achieve complete consensus in decentralised systems. In
large scale distributed systems, there are physical and logical limits that make a strong form of con-
sensus for read/write variables impractical and ultimately impossible, and he claims existing solutions
attempt to resolve these problems by assuming network latency is negligible and that independent
agencies are reliable. In Khare's model of a decentralised system, agents store local models that esti-
mate the actual value of the shared or global variable. The estimated value may be improved by an
Assessor component that coordinates with trusted neighbouring agents who provide feedback on their
estimates of the value.

When a group of agents share information about their estimates and converge on similar models,
Khare describes the system as having the induced (or emergent) property of approximate agreement
about their views of the system. In a system with approximate agreement between decentralised
agents, their internal models should still be in agreement for a signi�cant percentage of time, and
approximate agreement can be used to coordinate the adaptive behaviour of the agents.

Summary

Khare presents a novel model of a decentralised architectural style that adds components to a REST
system to handle sources of uncertainty, centralised, and decentralised control in distributed systems.
In particular, he suggests replacing the consensus model for establishing the value of shared variables,
found in existing consensus-based distributed control models, with estimated variables. The model
has similarities with CRL, in that it makes use of caches to store local views of estimated variables
and allows independent agents to share feedback information relating to estimated variables to help
improve their estimations of the true value of the variable. However, the software architecture model is
not dynamic and the model does not support the construction of self-adaptive or autonomic software.

2.5.6 Control Theoretic Approaches to Building Autonomic Systems

The possibility of modelling self-adaptive and autonomic systems as closed control systems has recently
been investigated independently by Hinnelund (Hinnelund, 2004), Taylor (Taylor and Tofts, 2004) and
Li (Li, 2000). Control engineering is a �eld of engineering concerned with optimising the performance
of engineered artefacts with respect to measures such as energy usage, reliability and velocity of
mechanical motion (Dutton et al., 1997). In control engineering, a controller typically attempts to
maintain system operation within some given region in the face of externally supplied disturbances by
reacting to monitored changes in the system and by anticipating future changes in the system. When
designing control systems, engineers ensure that they avoid properties such as too slow convergence,
oscillation, or chaotic behaviour (Taylor and Tofts, 2004).

In control systems, outputs of a system are measurable quantities to be controlled and inputs
are manipulable. A control system can be either a closed-loop regulatory system (see �gure 2.8) or
an open-loop regulatory system that contains no feedback loop (Dutton et al., 1997). Taylor sees
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autonomic systems as examples of closed-loop control systems (Taylor and Tofts, 2004). Inputs that
cannot be controlled directly are called disturbance inputs. Relationships between inputs and outputs
can be linear or non-linear, with linear systems being favoured over non-linear systems due to their
predictability.

State Monitoring

A state-space model can be used to describe a control system that has more than one input and/or
output. The size of the state-space should be tractable. The monitoring of system states is equivalent
in control systems terms to soliciting feedback from system operation in order to guide the adaptive
behaviour of the system (Dutton et al., 1997). State information in control systems usually satis�es
the Markov property (Dutton et al., 1997), as the decision making components generally make deci-
sions without recourse to historical information (Hinnelund, 2004; Dutton et al., 1997). Techniques
have been developed, such as estimators and observers (Dutton et al., 1997), to handle situations
where measurements of system state cannot be made directly and must be computed from available
measurement data.

In Hinnelund's model (see �gure 2.9) there is no support for an abstract model of system state.
He provides a sample autonomic system in (Hinnelund, 2004) that implements a service work�ow. In
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the system, sensor data originates in sensors and arrives via state processing (compute) nodes at the
command centre. The states available in this implementation consist of states for sensor mode and
network mode at sensor nodes, states for the current con�guration, the connection quality, and for
the network stress at state processing nodes.

Adaptation Actions

In a control system, adaptation actions are performed by e�ecting actuators (see �gure 2.8). Hinnelund
does not provide a formal model for actuators or system adaptation actions. In his sample system
presented, the adaptation actions recon�gure the connections in a work�ow con�guration.

Adaptation Consistency

In Hinnelund's Master's dissertation, he does not present a model for intrusive adaptation actions, so
he does not explicitly treat the adaptation consistency problem. In his sample system, the adaptation
actions are intrusive and system integrity is maintained using type-safe recon�guration operations.
He also meets the mutual consistency requirements by only adapting stateless component connections
in the work�ow and managing outstanding communication. The system does not have to deal with
maintaining application state invariants.

Decision Policy

In control systems, the comparator and controller subsystems make up the decision making component
of a control system. The relationship between the inputs and outputs is typically captured using
mathematical models and manifested in the comparator and controller subsystems.

In Hinnelund's model, each node has a decision making component called a learner that encap-
sulates a 1st party decision policy. The decision making component uses a feedback mechanism of
rewards from a global system critic to �nd an optimal decision policy using machine learning. A
learner's decision policy maps observed system states onto control outputs, while system knowledge
is implicitly stored by the critic in the form of a reward model.

In Hinnelund's sample work�ow system, there is homogeneity in the decision policy among learners
in the system. The work�ow system consists of sensors, state processing nodes and a command centre.
The optimisation goals of the system are to maximise the amount of data delivered to the command
centre and also minimise the age of the data. Each learner has a set of possible con�guration actions
(e.g., set sensor coverage area, set work�ow routing to shortest delay), some system states to monitor,
(concerned with acquiring sensor information), and a decision policy that is updated by receiving
rewards for taking actions.

Evaluating and Updating the Decision Policy

In the model, a reward provides evaluative feedback on the success of an adaptation action in achieving
the optimisation goals of the system and is used by the learner to improve the decision policy.
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The critic's reward model is based on a linear model:

r = c.α− (1− α)p

where r is the reward, the coverage c is the union of the areas reaching the command centre, discounted
by the delay in data reaching it, while p is the total number of packets sent and α is a bias parameter
towards maximising sensor coverage or minimising communication costs.

Hinnelund provides a model for learning adaptive behaviour based on an iterative policy search
algorithm, a RL learning algorithm, see section 2.4.3. The algorithm is run over a series of episodes
where each state-action pair (s, a) visited produces a reward by a centralised system critic after each
episode. The value function used in his experiments for learning the decision policy is:

Q(s, a) =

∑

i ∈ zs,a

r(i)

‖zs,a‖

It calculates the mean reward produced by the episodes with the state-action pair (s, a), where r(i)

is the reward received in episode i and zs,a is the set of episodes where (s, a) was visited. The best
policy is determined using

πb
N (s) = max

a
Q(s, a)

As Hinnelund notes, the rate of exploration must be low for this algorithm to converge and should be
inversely proportional to the number of nodes in the system and the time units used.

Coordination

Although there is no explicit support for coordination between decision making components in Hin-
nelund's system, he noted that a correlation may exist between the decision policies on nodes. When
a change of behaviour in one node a�ects the expected distribution of rewards over state-action pairs
in other nodes, Hinnelund states that it �causes implicit collaboration to form among node types as
the policy is being improved�.

Summary

The use of control systems theory to build autonomic systems is a recent and immature area of
research. Hinnelund presents a vision of what a model for building autonomic systems as control
systems may look like, although he does not provide a complete system model for building autonomic
applications. The iterative policy search algorithm, however, represents a �rst step towards building
components that can learn autonomic behaviour. The system developed uses components that depend
on a centralised system critic to supply rewards. As such, additional support is required for the
decentralised coordination of both components and learners to enable the construction of decentralised
systems that can learn autonomic behaviours.
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2.5.7 Other Related Systems

The research areas of re�ection, self-adaptive systems and dynamic software architectures have pro-
duced an extensive number of systems that have either in�uenced the design of the K-Component
model or have features in common with K-Components.

Fractal is a self-adaptive component model (David and Ledoux, 2003) that separates out a com-
ponent's adaptation concerns into a meta-level adaptation policy. A component's adaptation logic is
speci�ed using the event-condition-action paradigm and meta-level programs reason about adaptation
conditions by registering interest in and monitoring context events that provide feedback regarding
the state of components and connectors. Context events can be generated locally or remotely by a
context awareness service and are used as a trigger for self-adaptive behaviour. Fractal is implemented
in Java and is based on the more traditional synchronously scheduled re�ection programs that operate
on MOPs.

Marmol is a meta-level framework that uses architectural re�ection to build dynamic architectures
that express their dynamism at the meta-level (Cuesta et al., 2002b,a). It provides an ADL, called
PiLar, that can be used to explicitly specify a consensus-based dynamic coordination architecture.
Pilar consists of both a declarative structural language and an imperative dynamic language that
de�nes adaptation logic for the architecture.

Kon's automatic dependency management model for components has in�uenced the design of com-
ponent dependency management in the K-Component model (Kon, 2000). His component con�gurator
manages incoming and outgoing dependencies between components and enables the asynchronous de-
livery of events between components. He does not provide a speci�cation language, however, for
components. The Rapide component model, however, does contain a component speci�cation lan-
guage, where components specify their service provision and service requirements using provides and
requires interfaces respectively. These interfaces are used for synchronous communication, and in and
out actions are available for the communication of asynchronous events between components (Luck-
ham and Vera, 1995; Luckham, 1996). Rapide, however, has no support for connectors as �rst-class
entities and does not provide a mapping to standard programming languages such as Java or C++
(Medvidovic and Taylor, 2000).

The K-Component framework is built on top of CORBA middleware and has to handle adapta-
tion consistency problems when recon�guring CORBA applications. There has been existing work
on dynamically recon�gurable CORBA systems by Almeida (Almeida, 2001) and Sadjadi (Sadjadi
and McKinley, 2004) that address adaptation consistency issues when recon�guring CORBA-based
applications.

K-Component's model of asynchronous re�ection is conceptually closest to Brazier's model of
re�ective agents that reason about their own behaviour and other agents' behaviour (Brazier and
Treur, 1999). She states that re�ective agents must be able to perform reasoning (Brazier and Treur,
2000) about:

• the external world

• the agent's interaction with the external world
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Reviewed System Techniques
QuO Aspect-Oriented Programming (AOP)
OpenORB Arch. Re�ection, O-O Re�ection, Component Frameworks
Accord Not Speci�ed
Georgiadis Dynamic Software Architecture
Khare None
Hinnelund Iterative Policy Search using a Centralised Critic

Table 2.1: Comparison of techniques used by reviewed systems.

• the agent's internal processes

• other agents' internal processes

• interaction between agents

• agent speci�c tasks

However, Brazier's model is not aimed at building self-adaptive or autonomic software, but at describ-
ing how re�ection provides a model for autonomous agents reasoning about their goals and constructing
plans in a social, multi-agent context. She does not present a programming model for asynchronous
re�ection.

Architectural approaches to self-healing and autonomic computing have been followed by Gar-
lan (Garlan and Schmerl, 2002), and White et al. (White et al., 2004) respectively. Both of these
approaches are based on centralised management services to support the adaptation of system com-
ponents and are not suitable for decentralised environments. However, White's model includes the
interesting notion of a utility function decision policy that can be used to compute the optimal ac-
tion to take given the system state. In (Chess et al., 2004), a utility function decision policy is used
by a centralised resource arbiter to optimise resource allocation among nodes in a closed distributed
system. The approach has similar system optimisation goals to CRL, but the utility function is a
centralised optimisation technique.

IBM's autonomic computing model is based on the notion of autonomic elements that each contain
exactly one autonomic manager (Kephart and Chess, 2003; IBM, 2004). An autonomic element could
be a resource like a database, server or software application. The model, however, is aimed at building
autonomic distributed systems in closed environments that reside in a single domain of administration.
The model uses a model of centralised control, using services such as resource arbiters, policy repository
and resource managers, to guide the autonomic behaviour of managed computing elements.

2.6 Feature-Based Comparison of the Reviewed Systems

This section provides a feature-based comparison of the di�erent models presented in this chapter with
respect to various features, including the six requirements for a self-adaptive autonomic component
model in section 2.3.

The �rst set of features that are compared are the techniques used to support self-adaptive be-
haviour by the di�erent models (see table 2.1) . The support for monitoring system state, the type of
adaptation actions supported by the system, and the adaptation consistency of those actions are often
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State Model Adaptation Actions
Supported

Adaptation
Consistency

QuO Middleware, System State Intrusive, Non-Intrusive, In-
ternal

√

OpenORB AMM, Middleware, System
State

Intrusive, Non-Intrusive, In-
ternal

√

Accord Component State Intrusive, Non-Intrusive, In-
ternal, External

Not Speci�ed

Georgiadis Software Architecture State,
Component State

Intrusive, Non-Intrusive, In-
ternal

√

Khare Application State using Es-
timator Functions

Non-Intrusive N/A

Hinnelund Component State Non-Intrusive, Internal, Ex-
ternal

Not Speci�ed

Table 2.2: Comparison of state models and adaptation actions.

Decision Policy
(DP)

Decl-Prog DP Exec. DP Evaluation DP Updates

QuO Action Policy,
Rules, ECA

√ Async/Sync Sys-Admin,
GUI

X

OpenORB Action Policy,
Rules, ECA

X Sync Sys-Admin Manager Comps

Accord Action Policy,
Rules

√ Async Sys-Admin Composition
Agt

Georgiadis Action Pol-
icy, Arch-
Constraints

X Async Sys-Admin Selector Fns

Khare Estimator Func-
tion

X Async/Sync X X

Hinnelund Learning Policy
with Critic

X Sync Critic/Learner Iterative Policy
Search

Table 2.3: Comparison of decision policies.

a product of the technique(s) used to build the system (see table 2.2). The state models refer to the
set of subsystems from which each system can use state information in making adaptation decisions.
Systems that support intrusive adaptation actions provide better support for building autonomic ap-
plications as they can adapt their structure to a changing environment. Intrusive adaptation actions
should maintain adaptation consistency.

The second set of features (see table 2.3) covers the type of decision policy supported, whether
the decision policy is scheduled to execute synchronously or asynchronously and how the decision
policy can be evaluated and updated. Hinnelund's model is the only system that evaluates and learns
decision policy autonomously. This feature is very useful when building large, autonomic systems
where the set of available adaptation actions and system states may be too large for the speci�cation
of decision policies as action policies.

The �nal set of features compared (see table 2.4) are the types of system support for the coor-
dination of components supported by the di�erent systems. Khare's coordination model is the only
technique that is suitable as a starting point for the construction of decentralised autonomic systems.
It provides a model that describes how agents can induce agreement on the value of some unknowable
variable through local views of the system and estimator functions. This is called emergent consensus
as agreement between agents on their partial views of the system emerges from their interaction.
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Centralised Distributed Consensus Emergent Consensus
QuO √ X X
OpenORB Limited X X
Accord √ X X
Georgiadis X Local Arch. Constraints X
Khare X X Decentralised Arch. Style
Hinnelund X X X

Table 2.4: Comparison of coordination models.

2.7 Summary

This chapter reviewed a number of models that support the construction of self-adaptive and auto-
nomic computing systems. We also presented models for learning autonomic behaviour and for the
decentralised coordination of components. Most of the self-adaptive systems reviewed provide support
for the speci�cation of self-adaptive behaviour as action policies and those that allow intrusive adap-
tation actions provide infrastructural support for maintaining adaptation consistency. Hinnelund's
model is of interest as it addresses the problem of learning a decision policy using a reward model for
adaptation actions. Decision policies that encapsulate a system's adaptation logic are executed either
synchronously or asynchronously, with no existing re�ective system providing support for specifying
general adaptation logic that is executed asynchronously. Khare's model addresses the problem of co-
ordinating agents in decentralised systems by providing a model for estimating the value of shared or
global variables, although the model is not designed for building self-adaptive or autonomic systems.

None of the existing architectures addresses all the challenge problems of the learning of self-
adaptive behaviour and the coordination of self-adaptive components to establish system-wide auto-
nomic properties in dynamic, uncertain environments. These issues are addressed by the K-Component
Model presented in the following two chapters.

53



Chapter 3

The K-Component Model

"Re�ection ... slackens the intentional threads which attach us to the world and thus
brings them to our notice; it alone is consciousness of the world [because it reveals that
world as strange and paradoxical.]"

Maurice Merleau-Ponty, Phenomenology of Perception (1945)

This chapter describes the K-Component model that addresses four of the six requirements for a self-
adaptive, autonomic component model identi�ed in section 2.3. These include the provision of a state
model to describe the operating state of a system, adaptation actions to adapt the system at runtime,
a decision making component that uses a decision policy to determine the adaptive behaviour of the
system and a mechanism to automatically evaluate and update the decision policy over time. The
maintenance of system integrity and consistency during adaptation is dealt with in the implementation
of the K-Component model in chapter 5 and the requirement for a decentralised coordination model
is addressed by the collaborative reinforcement learning algorithm in the next chapter.

The K-Component model is described in this chapter as a programming model and architecture
for building autonomic systems based on self-adaptive component software. The features of the pro-
gramming model include component speci�cation in K-IDL, a component description language that
extends CORBA's IDL (OMG, Dec. 2002), and adaptation logic speci�cation in the adaptation con-
tract description language (ACDL). The architecture consists of a set of management components
and a framework used to generate components, connectors and adaptation contracts from K-IDL and
ACDL. The main abstractions of the K-Component model and the motivation behind the design de-
cisions are discussed, independent of its implementation as a distributed computing platform. In the
review of existing self-adaptive and autonomic software models in the previous chapter, the shortcom-
ings of existing architectures in building autonomic distributed systems were highlighted. The model
presented in both of the following chapters addresses these shortcomings.

3.1 Introduction

The K-Component model provides a programming model and architecture that enables the construc-
tion of a self-adaptive system that can monitor the state of its operation and environment, and perform
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Figure 3.1: A K-Component.

conditional adaptation of its structure or behaviour, e.g., to self-heal or self-optimise the system. A
K-Component is a runtime with a single address space (see �gure 3.1) where components reside and
dependencies between components, whether internal or external to the runtime, are managed using
connectors. The eight basic concepts that make up the K-Component model are:

1. components

2. connectors

3. the architecture meta-model (AMM)

4. feedback states

5. adaptation actions

6. feedback events

7. adaptation contracts

8. asynchronous re�ection

In addition to these concepts, a con�guration manager is deployed in each K-Component runtime to
provide thread management and con�guration services.
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Architectural re�ection is used to reify the structure of components and connectors in a K-
Component runtime as an AMM. An AMM captures the dynamic representation of the K-Component
as a con�guration graph, with interface/component pairs as labelled nodes and connectors as edges
(see �gure 3.2). Components are provided as a unit of composition that encapsulate their implementa-
tion behind a strongly-typed interface and specify all their explicit dependencies as required interfaces.
Connectors are runtime objects that mediate communication between components and provide recon-
�guration functionality. Feedback states provide runtime information about the operating status of
components, i.e., states de�ned on component interfaces, and connectors. Feedback events are de�ned
as predicates on feedback states and support the asynchronous communication of changes in feed-
back state between K-Components. Adaptation actions are provided as both architectural adaptation
actions that recon�gure the AMM and component-speci�c adaptation actions.

Autonomous re�ective programs, called adaptation contracts, operate on the AMM and reason
about adaptation conditions using feedback regarding the state of components and connectors. Adap-
tation contracts implement a 1st party decision policy for a component in the K-Component runtime.
Its adaptation logic is speci�ed declaratively in the adaptation contract description language (ACDL).
Adaptation logic in adaptation contracts can be speci�ed as an action policy, using if-then rules or
the ECA paradigm, or as a learning policy using RL or CRL. An asynchronous implementation of com-
putational re�ection interleaves the execution of adaptation contracts with system operation, enabling
adaptation contracts to continuously monitor and a�ect system operation.

3.2 Objectives

The goal of the K-Component model is two-fold: to provide a self-adaptive component model and
support the construction of coordination models for building autonomic distributed systems in de-
centralised environments. Existing models for building autonomic distributed systems assume the
availability of system-wide information to guide the autonomic behaviour of components and are of-
ten designed to operate in closed environments (White et al., 2004; Liu and Parashar, 2004; Nowicki
et al., 2004).

In considering the inclusion of support for self-adaptation in a software system, the requirements
from section 2.4.1 need to be addressed by the K-Component model in order to be able to build
distributed autonomic systems. These include monitoring system states to gather information about

56



system operation, providing adaptation actions that maintain system integrity, providing a 1st party
decision policy that can itself be evaluated and updated at run-time and supporting a decentralised
coordination model to establish and maintain system-wide properties. In addition to meeting these
requirements, the K-Component model builds on previous work in building self-adaptive software
using compiled re�ective programming languages (Dowling et al., 2000) and addresses the limitation
of re�ective code being executed synchronously with program execution.

A further objective of the K-Component model is to provide a programming model that simpli�es
the construction of self-adaptive software by a programmer. The speci�cation of explicit dependencies
between components enables the automated generation of the AMM and the provision of a declarative
programming language allows programmers to express adaptation logic at a high level, enabling the
clearer expression of their intentions.

The evaluation of K-Components as a model for building autonomic distributed systems is per-
formed in chapter 6. A set of experiments investigate the autonomic capabilities of the system built
using K-Components to evaluate if it is able to:

• self-heal a component in the case of a failure of one of its connections

• self-optimise a component by adapting its internal behaviour in response to changes in its feed-
back state or a feedback state in a component or connector it uses

• self-optimise system performance in a changing, decentralised environment using CRL.

3.3 Asynchronous Re�ection

Asynchronous re�ection is a model of computational re�ection where autonomous re�ective programs
reason about and act upon a system asynchronously to the operation of the system. Asynchronous
re�ection is a goal-directed process that is not separable from the system on which it is operating.
Its essential characteristics are observation and outputs (new knowledge, system adaptation, plans of
action, etc). Ideally, it should be able to acquire new knowledge, store that new knowledge and in
turn re�ect on that new knowledge, leading to towers of re�ection.

Synchronous Re�ective Systems

Computational re�ection has been used to design open and extensible re�ective programming lan-
guages as well as open and extensible meta-level architectures. Re�ective object-oriented program-
ming languages were designed to provide open implementations of the programming languages so that
programmers could modify the languages' object model (Schaefer, 2001), for example to support the
transparent addition of fault-tolerance (Killijian and Fabre, 2000), concurrency (Haraszti et al., 2001)
and persistence (Haraszti et al., 2001) to programs.

In existing compiled, re�ective object-oriented programming languages, such as Iguana v2 (Schae-
fer, 2001) and OpenC++ v2 (Chiba, 1995), the execution of re�ective code is tightly-coupled with
program execution. Re�ective code is executed synchronously with program execution at rei�cation
(intercession) points in the programming language's object model. This adds an often substantial �xed
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overhead to request processing at the various rei�cation points in the object model where re�ective
code is executed (Dowling et al., 2000).

Synchronous re�ective programming languages generally realise the causal connection between the
base level and meta-level as an implementation link. Re�ective code can only be inserted/removed
at the rei�cation points and is generally executed by an application thread, i.e., it is executed syn-
chronously with program execution.

Existing compiled, re�ective object-oriented programming languages also do not reify, or make
available for monitoring, state information concerning entities external to the application, even though
this state information is useful when monitoring an application's dependencies or environment for
adaptation conditions. They also support the unconstrained adaptation of applications and do not
provide the recon�guration management infrastructure necessary to maintain application consistency
during recon�guration.

However, when considering re�ection for building self-adaptive software, designers must also han-
dle conditions that require the adaptation of software arising due to changes in the application's
dependencies or environment. As the occurrence of external adaptation conditions is often orthogo-
nal to system operation in autonomous components in a distributed application, an application that
supports computational re�ection for self-adaptation should be able to identify adaptation conditions
in its environment independent of normal program execution. A computer system that performs
computational re�ection for adaptation should re�ect asynchronously on its operation.

3.3.1 Asynchronous Re�ection for Self-Adaptive Software

Re�ection for adaptation has more similarities with the theory of intelligent agents (Wooldridge and
Jennings, 1995) than the more traditional use of synchronous re�ection for building open and extensible
languages or meta-level architectures. Intelligent agents are characterised by autonomy, social ability,
reactivity and proactiveness (Wooldridge and Jennings, 1995). Autonomy and proactiveness allow
a decision making agent to reason about a system's operation and adapt the system's operation to
meet some programmer supplied goal. K-Component's model of asynchronous re�ection is closest
to Brazier's model of agents that perform re�ective reasoning about their own behaviour and other
agents' behaviour (Brazier and Treur, 1999, 2000).

A system that supports asynchronous re�ection requires at least one autonomous re�ective pro-
gram dedicated to reasoning about the system and acting upon the system. In a self-adaptive system
built using asynchronous re�ection, the re�ective program can be a decision making component that
monitors the system for adaptation conditions and performs adaptation actions. Asynchronous re-
�ective computation adds overhead to application processing time, but it is a programmer-de�ned
amount of overhead as re�ective program are con�gured to be executed periodically at a sampling
time interval, tc. In self-adaptive systems, a trade-o� can be found between the extra overhead of
re�ective computation and the responsiveness of the system to adaptation conditions.
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3.3.2 Rei�cation Categories for Self-Adaptive Software

The aspects of a system or language's internal representation that are made explicit in meta models
are called the rei�cation categories of the system. Re�ective computation for adaptation requires the
rei�cation of semantic information about potential adaptation conditions in the system, so a re�ective
component can monitor the system for adaptation conditions. In K-Components, the AMM is rei�ed,
allowing the observation and manipulation of the system as a con�guration graph of components and
connectors. However, additional semantic information about a system is also rei�ed for observation
in the AMM:

• feedback states de�ned on components and connectors

• feedback events de�ned as predicates on component feedback states

Feedback states are designed to provide information about the operating status of a component or
connector. Feedback state values can be observed, but not modi�ed, by re�ective programs. This is
because they represent concrete metrics describing component or connector operation. Re�ection on
the feedback states of components is performed by re�ective programs. Feedback events, however, are
designed to provide asynchronous noti�cation about changes in the value of a component's feedback
state, when its predicate is matched.

3.3.3 Weakening Consensus between Meta Models and the Base-Level

Asynchronous re�ection can loosen the requirement for full consistency between meta models and
the base-level for particular rei�cation categories. In K-Components, the causal connection between
base-level and meta models is a combination of an intercession link from base-level code and a rep-
resentation link from the meta models. Similar to synchronous re�ective systems, rei�cation of ar-
chitectural events, including component creation/deletion, connector creation/deletion and connector
binding/unbinding, from the base-level to the AMM is performed at intercession points in component
and connector objects. However, the rei�cation of feedback state values for components and connec-
tors is performed by a thread that periodically synchronises the value of feedback states of components
and connectors in the runtime with cached values. The feedback event manager also receives feedback
events from remote components and uses them to update the values of the cached feedback states.
The caching of feedback event values is useful for systems operating in decentralised environments, as
it provides them with a local, estimated model of the operating status of remote components.

Re�ection on feedback states is implemented as a representation link. Re�ective programs can
query feedback state values using an interface, called the ArchRe�ect MOP, but there is no guarantee
of consensus between AMM and component or connector values for the feedback states. The AMM
caches the last observed value of a component's feedback state and queries may return stale values
for the component feedback state. This lesser form of consensus, between the AMM representation
of feedback state values and their actual values, only guarantees that the cached values in the AMM
will never be more out-of-date than either the sampling time interval or the elapsed time since the
last received feedback event. The CRL algorithm, introduced in chapter 4, operates on these cached,

59



estimated feedback state values and also provides a collaborative feedback model to help improve the
accuracy of the cache. This is further discussed in chapter 4.

3.4 Component Model

A software component is de�ned by Szyperski as:

�a unit of composition with contractually speci�ed interfaces and explicit context de-
pendencies only. A software component can be deployed independently and is subject to
composition by third parities (Szyperski, 1998).�

Components in the K-Component model specify the services they provide and the services they require
as interfaces. The support for �provides� and �uses� (or required) interfaces allows the de�nition of de-
pendencies between components (Luckham and Vera, 1995; Dowling and Cahill, 2001b; Kalibera and
Tuma, 2002). Kon showed in (Kon, 2000), how the explicit management of inter-component dependen-
cies is necessary to maintain adaptation consistency in dynamically recon�gurable component-based
systems. A component speci�cation language, K-IDL1, is used to describe a component interface as:

component <name> {

provides <Interface>;

[uses <Interface> <uname>;]*

[state <sname>;]*

[action <aname>;]*

};

A component de�nes a single provided interface, provides <Interface>, to describe the functional-
ity it o�ers. It also de�nes zero or more uses interfaces, uses <Interface> <uname>, that represent
the interfaces required by the component to meet its contractual obligations. Uses interfaces make
explicit the dependencies of the component on other components and <uname> maps to a connector
object de�ned as a member variable in the component. A component can also de�ne zero or more com-
ponent feedback states, state <sname>, that are implemented by component providers and should
provide feedback on the operating state of the component at runtime. Finally, components can de-
�ne zero or more actions, action <aname>, that represent adaptation actions and are implemented
by the component provider. Actions can be invoked by re�ective programs at runtime to adapt the
component's operation.

Components only provide a single interface. There is no support for composite components that
provide more than one interface. This support is not provided in the model, since such a composite
component can be built in K-Components as a con�guration of connected components. Both provides

and uses interfaces of components are compiled into connector objects that are encapsulated in a
component instance. The connectors mediate all communication between components, and there is

1K-IDL syntax was in�uenced by IDL-3 in the CORBA Component model (OMG, 1999).
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no support for shared memory between components. Each component is responsible for managing its
own state.

Component feedback states are de�ned in the component interface using K-IDL but they are not
part of the public interface of the component and are only observable by external K-Components using
feedback events. Component feedback state simpli�es the modelling of a decision policy for adapting
components, as feedback state describes the operating state of a component at a particular point in
time. Feedback state that describes time dependent properties of a component is particularly useful.
For example, feedback states can be used to model components as dynamical systems (De Wolf and
Holvoet, 2003) and feedback states can be used to provide performance metrics for a component.
These performance metrics can be used to evaluate adaptation actions that were performed on a
component. Component feedback state is represented as a scalar. This provides a uniform state
model for describing component operation that helps the construction of a decision policy that can
reason about component operation.

Adaptation actions are also de�ned on the component in K-IDL, but again they are not part of
the public interface of the component and can only be invoked by adaptation contracts using the
ArchRe�ect MOP. Component adaptation actions are implemented by the component provider, typ-
ically as �ne-grained adaptation actions that only adapt the component on which they are de�ned,
e.g., to change the implementation strategy for an internal algorithm to improve component perfor-
mance (Kiczales et al., 1997; Dowling et al., 2000). Adaptation actions provide a declarative interface
that accepts a strategy as a parameter, indicating some strategy for executing the adaptation action.
Adaptation actions can also supply evaluative feedback in the form of a scalar reward to the adapta-
tion contract to indicate the success or otherwise of the adaptation action. Evaluative feedback can
be used to evaluate and improve the performance of a decision policy for the component.

3.4.1 Re�ective Component Model

In the K-Component model, components are units of computation and do not re�ect on their own
operation. Adaptation contracts are provided as autonomous, re�ective programs that re�ect asyn-
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chronously on the operation of a component (see �gure 3.3). The goal of an adaptation contract is
to optimise the component's operation by adapting the component's structure and behaviour to a
changing environment.

Components can be re�ected upon by adaptation contracts as they reify aspects of their represen-
tation in the AMM. A component's provided and uses interfaces are rei�ed in the AMM as nodes and
edges in the con�guration graph, respectively. A component's feedback states and adaptation actions
are also rei�ed for observation and execution, respectively. The value of a component's feedback states
can be monitored and its adaptation actions can be executed at runtime using the ArchRe�ect MOP
(see section 3.6.4). Component instances in the AMM can also be introspected, inserted, removed and
replaced at run-time.

3.4.2 De�nition of a Component

A de�nition of a component is provided for completeness. Later de�nitions of connectors, the AMM
and adaptation contracts are also provided. These de�nitions are required, as they are referenced by
de�nitions of decision policies in this chapter and the next chapter.

De�nition 3.1: A component interface is ii = {interface, Ui, Fi, Ai}, ii ∈ Ik ∈ I, where

• ii is a component interface, Ik is the set of component interfaces in the runtime k and I is
the set of all component interfaces in all runtimes in the system.

• interface is strongly typed and de�nes the provided services.

• Ui = Ø ∨ {interface1, ..., interfaceM}, a �nite set of zero or more required interfaces.

• Fi = Ø ∨ {f1, .., fN}, a �nite set of set of zero or more component feedback states.

• Ai = Ø ∨ {a1, .., aO}, a �nite set of zero or more component adaptation actions.

De�nition 3.2: A component instance, or simply a component, is ci = {ii, id, Lci}, where

• ci is the component and ci ∈ Ck, Ck is the set of components in the runtime k and Ck ∈ C,
where C is the set of all components in the system.

• id is the identi�er for the component in runtime k.

• Lci ∈ Lk, the set of outgoing connectors (see section 3.5.2) encapsulated in ci.

Re�ective Operations on Components

The operations that can be executed by clients of a component are de�ned in the component interface.
There are also a set of mostly introspection functions de�ned on every component that are used to
re�ect on component operation:

• getProvides(ci) → {interface}, gets the provided interface for ci.

• getConnector(ci × id) → Ø ∨ li ∈ Lci , gets the connector identi�ed by id deployed in ci.

• getConnector(ci × interface) → Ø∨ {l0, .., li} ⊆ Lci , gets all the connector objects deployed in
ci that implement interface.
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• feedback : (ci × fj) → R, gets the value of feedback state fj on ci as a scalar.

• ID : ci → id, returns the unique identi�er for ci.s

• action(ci × aj × strategy) → {r}, strategy, r ∈ R, executes adaptation action aj on ci with an
optional strategy parameter represented as a scalar and returns a scalar reward, r, indicating
the success of the adaptation action.

• passive : ci → true ∨ false, returns true if ci has no ongoing computation and has no ongoing
communication with other components, i.e., it is passive (Wermelinger, 2000).

3.5 Connector Model

The connector abstraction is important in distributed systems as it abstracts the communication
protocol and encapsulates the interaction protocol between communicating components. According
to Fielding (Fielding, 2001):

�A connector is an abstract mechanism that mediates communication, coordination, or
cooperation among components.�

Connectors support the explicit, dynamic binding of one component to another. Connectors of-
ten also support the dynamic unbinding of a connection to a component. Recon�gurable connectors
are connectors that support binding and unbinding operations, and have been used as a mechanism
to build adaptive software, such as dynamic software architectures (Wermelinger, 2000; Moazami-
Goudarzi, 1999). Recon�gurable connectors allow the adaptation of the connections between com-
ponents at runtime. Adapting connections between components is often preferable to adapting the
behaviour of the components to one another as it allows us to treat components as pluggable black-box
entities.

3.5.1 Connectors for Decentralised Environments

A model of connectors for use in decentralised environments has to address a number of issues not
encountered by existing models for recon�gurable connectors in a client-server environment (Wer-
melinger, 2000; Moazami-Goudarzi, 1999). A well-known problem with the client-server paradigm
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in decentralised environments is that the interaction protocol provided by standard RPC connectors
assumes tight coupling between components that are subject to frequent changes in availability due
to network dynamism (Khare, 2003). Ideally, RPC connectors should be able to identify and adapt to
conditions such as component unavailability, suboptimal connection quality and any other factor that
can a�ect optimal system operation. However, they are not able to identify adaptation conditions
that are inherently asynchronous events, such as failures (e.g., component or connection failure may
occur while connectors are idle) and component feedback state changes (that may require adaptation
actions).

Another feature of the client-server paradigm is that recon�gurable systems were often motivated
by the need to change the implementation strategy of a server (Kiczales et al., 1997; Zinky et al., 1997;
Almeida, 2001; Sadjadi and McKinley, 2004), e.g., to improve performance for its clients. In these
systems, servers (or a 3rd party decision making server) often taken recon�guration decisions on behalf
of clients and can even initiate client recon�guration (Almeida, 2001). However, in decentralised,
autonomic systems we can expect that recon�gurations may be motivated by other conditions, such
as the availability of better versions of services in the client's locality or the change of availability of a
server due to network dynamism. In decentralised environments, there is more information available
to clients to determine its optimal service than to centralised servers that have only as partial view of
the system. As a result, in a decentralised environment, the responsibility for determining adaptation
conditions and performing recon�gurations is shifted from the server-side to the client-side, i.e., the
agents.

A di�erent style of connector is required for decentralised environments that addresses these prob-
lems. In K-Components, the connector model provides recon�gurable RPC-style connectors for inter-
component communication and feedback events to communicate asynchronous adaptation conditions
between components (see �gure 3.4). The asynchronous event style complements the RPC-based in-
teraction protocol by providing the implicit signalling of adaptation conditions between connected
components.

The RPC connector consists of a recon�gurable client-side outgoing connector and a recon�gurable
server-side incoming connector. Recon�gurable outgoing connectors can support self-healing and self-
optimisation by enabling clients to rebind from unavailable or suboptimally functioning components
to alternative component implementations. Support is provided in K-Components for outgoing con-
nectors to change their communication protocol at runtime by dynamically loading stubs for remote
services. Incoming connectors are also recon�gurable and can be rebound to a di�erent component
implementation at runtime. The recon�guration operations are designed to meet the structural in-
tegrity and mutual consistency requirements from section 2.3.3, by implementing a recon�guration
protocol that provides RPC-consistency (Almeida, 2001) between connectors and components during
recon�guration. RPC-consistency ensures that before a connector is recon�gured, all communication
through the connector has terminated or is blocked before the recon�guration operation is initiated.

64



3.5.2 De�nition of a Connector

In K-Components, connectors are runtime objects generated from provides and uses interfaces in
a component de�nition. Outgoing connectors are rei�ed and represented in the AMM as edges in
the con�guration graph, whereas incoming connectors are implicitly represented in the component
interface and are represented in the AMM as a node in the con�guration graph.

Connectors are encapsulated inside components, and the main di�erence between outgoing and
incoming connector objects is that incoming connectors are encapsulated in the croot component, i.e.,
a component that represents the runtime, whereas outgoing connectors can be encapsulated in any
component (see �gure 3.4). Incoming connectors are deployed in croot as they represent the provides
interface to an independently deployable and repluggable component, and there is no support for
nested or composite components. Both types of connector provide a �xed set of feedback states
concerning information about connection operation status and performance.

De�nition 3.3: a connector is li = {io, ci, wj , id, Fli , stub}, li ∈ Lk ∈ L, where

• li is a connector, Lk is the set of connectors in runtime k and L is the set of all connectors
in the system.

• io ∈ {incoming, outgoing}, the connector is either an incoming connector or an outgoing
connector.

• if (io = outgoing) then ci ∈ CK ∧ ci /∈ wj , else ci = crootk
, where ci ∈ CK ∧ ci /∈ wj , ci is

the component in which li is deployed and is not the same as the target component.

• wj =< ij , cj >, ij ∈ Ik ∧ cj = Ø∨ cj ∈ C, wj is a component interface/component pair that
represents the target interface and component instance of the connector. The component
cj may or may not be resident in the connector's runtime k.

• id is the identi�er for the connector in runtime k.

• stub ∈ {LIB, .., IIOP}, is the current transport used by connector li.

• Fli = {status, f1, .., fN}, where status is a feedback state indicating the status of the
connection to the target component and Fli is the set of other connector feedback states
de�ned on li. In the current implementation, only the status feedback state is supported.

Re�ective Operations on Connectors

A set of introspection and recon�guration functions are de�ned on connectors that can be used to
re�ect on, and adapt, connector operation:

• getTarget(li) → Ø∨ cj , the current component to which the connector is bound or NULL if the
connector isn't bound.

• getSource(li) → ci, the current component in which the connector is deployed.

• getInterface(li) → interface, the public interface provided by the connector.

• ID(li) → Ø ∨ id, returns the unique identi�er for l.
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• feedback(li × fj) → R, gets the value of feedback state fj on li as a scalar.

• bind(li, cj) → li, binds the connector li the component cj if getInterface(li) = getProvides(cj).

• unbind(li) → li, where source(lj) = ci

3.6 Architectural Re�ection

Architectural re�ection is concerned with the observation and manipulation of the con�guration graph
of a software architecture and its constituent nodes and edges (Dowling and Cahill, 2001b). A sys-
tem that supports architectural re�ection rei�es its architectural features as an AMM that can be
inspected and modi�ed at run-time. Modi�cations of the AMM result in modi�cations of the software
architecture itself, and the architecture is therefore re�ective.

In K-Components, the AMM is modelled as a typed, directed con�guration graph of components
and connectors. A MOP called ArchRe�ect can be used by re�ective programs to monitor and adapt
the AMM at runtime.

3.6.1 Architectural Re�ection and Dynamic Software Architectures

AMMs and dynamic software architectures share similar features and goals. They both aim to support
the construction of dynamically adaptable software and they both provide an explicit representation of
the system's con�guration that is constructed dynamically, as client components discover and bind to
services provided by other components, and can be safely manipulated at runtime. One main di�erence
is that dynamic software architectures require the explicit de�nition of their software architecture using
an ADL (Medvidovic and Taylor, 2000). Architectural re�ection, however, automatically generates
the AMM from both connection information in component descriptions and architectural events,
such as connectors binding and unbinding components to and from one another (see �gure 3.5). As
such Medvidovic classi�es architectural re�ection as an implicit con�guration language (Medvidovic
and Taylor, 2000) and not an ADL. Architectural re�ection, however, also causally connects a K-
Component's AMM to the components and connectors in its runtime, so that changes in the AMM
result in changes in the underlying components and connectors, making the system re�ective. A
registry of active components and connectors, called the KOM registry, provides the causal connection
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from the AMM to the actual components and connectors (see �gure 3.6). Components represented in
an AMM that are external to its runtime cannot be explicitly adapted though, as this would require
support for external adaptation actions, introducing access control and authorisation issues that are
not addressed in this thesis.

3.6.2 A Self-Adaptive Architectural Style for Decentralised Systems

The K-Component AMM is designed to enable the construction of self-adaptive software in decen-
tralised systems. In contrast to existing models of distributed systems that manage global software
architectures for distributed systems using consensus-based techniques (Allen, 1997; Medvidovic et al.,
2000; Georgiadis, 2002; Ardaiz et al., 2003; Mikic-Rakic and Medvidovic, 2004), there is no explicit
representation of the system-wide software architecture as it is partitioned amongst the K-Components
in the system. The software architecture of a distributed K-Component application is decentralised.
Each K-Component runtime manages its local software architecture as an AMM that describes its
partial view of the system. This partial view is limited to the internal components and connectors
deployed in K-Component runtime and the external components connected to components in the run-
time. External components update the local AMM by transferring their descriptions on connector
binding (see �gure 3.5).

To support self-adaptation, K-Components supports the speci�cation of adaptation logic for mon-
itoring and recon�guring the AMM (see section 3.7). Recon�gurations are constrained to performing
type-safe connector binding and component replacement operations. To support the communication
of adaptation conditions between K-Components, an event-based architectural style allows the asyn-
chronous communication of feedback events between connected K-Components. Two K-Components
are connected when a component residing in one K-Component is bound to a component residing in
the other K-Component. Feedback events enable the construction of coordination protocols between
connected K-Components in decentralised environments.

In summary, the decentralised architectural style for K-Components partitions the system's soft-
ware architecture across AMMs in the di�erent K-Component runtimes, provides support for con-
strained self-adaptation through AMM monitoring and recon�guration and supports the coordination
of components using an event-based architectural style.

3.6.3 De�nition of the Architecture Meta Model

The basic element of the AMM is a con�guration graph of component interfaces, components and
connectors. They are rei�ed in the AMM as a typed, directed con�guration graph, where component
interfaces are the nodes, components are the type labels of nodes and connectors are edges.

De�nition 3.4: the AMM con�guration graph for the K-Component in runtime k is
Mk = {crootk

, Lk,Wk}, where

• Mk is the AMM in runtime k and Mk ∈M, the set of all AMMs in the system

• crootk
is the root component associated with runtime k

• Lk = {l1, .., lM} is the set of connectors in runtime k
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Figure 3.6: ArchRe�ect MOP uses the con�guration graph and the KOM registry.

• Wk = {< i1, c1 >, ..., < iN , cN >}, where i1..N ∈ Ik ∧ (cj = Ø ∨ cj ∈ C, j = 1..N) ∧ (∀wi ∈
Nk : wk ∈ lk ∈ Lk). Wk is the set of component interface/component pairs that represent
nodes in the graph. Each component/interface pair is the target of some connector in the
AMM, and cj may or may not be resident in runtime k. Where the component entry in a
node pair is empty, the connector to that node is not bound to a component.

3.6.4 ArchRe�ect MOP and ArchEvents

The ArchReflect MOP is a meta-level interface that allows the introspection and adaptation of the
AMM and its components and connectors (see �gure 3.6). ArchRe�ect uses the AMM's con�guration
graph and the KOM registry to call the re�ection operations de�ned on components and connectors
from sections 3.4.2 and 3.5.2, respectively. A set of architectural adaptation operations are de�ned
in ArchRe�ect that allow the binding of connectors to components, the unbinding of connectors from
components and the replacing of components.

ArchEvents is an interface that allows the updating of the set of components and connectors
registered in the AMM (see �gure 3.6). The ArchEvents interface is called by code in component
and connector hooks de�ned at architectural rei�cation points such as creation, deletion, binding and
unbinding. The ArchEvents interface is a facade that delegates the registration and deregistration
operations to the AMM's con�guration graph and the KOM registry. ArchEvents represents the
synchronous re�ection interface to the AMM.

Internal AMM Operations

There are two internal introspection operations de�ned on the AMM to acquire references to com-
ponents and connector objects using a logical identi�er. They are used by implementations of the
operations de�ned in ArchRe�ect and ArchEvents interfaces.

• getComponent(id) → ci, ci ∈ Ck, returns a reference to ci using id.
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• getConnector(id) → Ø∨ li, whereli ∈ Lk, returns a reference to the connector object in runtime
k.

ArchRe�ect MOP: Architectural Adaptation Operations

The ArchRe�ect MOP provides introspection and adaptation operations on the AMM. The re�ective
operations de�ned on components and connectors can be invoked using ArchRe�ect, but there are also
a set of architectural adaptation actions, bind/unbind/replace, de�ned on ArchRe�ect that manipulate
the AMM's con�guration graph of components and connectors. The architectural adaptation actions
meet the structural integrity and mutual consistency parts of the adaptation consistency requirements
from section 2.3.3. Structural integrity constraints are maintained by the type-safe rebinding of
connectors to components i.e., a component needs to provide the interface expected by a connector
for a bind operation to succeed. To ensure mutual consistency during architectural adaptation, each
connector implements a recon�guration protocol that ensures connectors and components are passive
before recon�guration (see section 5.3). The maintenance of application state invariants, through
automating component state transfer to a replacement component, is not supported by the model,
but can be achieved through programmers providing a copy constructor that is used to instantiate
the replacement component.

• bind(li × cj) → li, where getProvides(cj) = getProvides(Target(li)), binds a connector
to a component and ensures structural consistency by only binding the connector to a type-
compatible component.

• unbind(li) → li, unbinds a connector from its target component.

• replace(ci × cj) → cj ,where ci ∈ Ck ∧ (getProvides(ci) = getProvides(cj) ∧ (Passive(li) ∧
Passive(ci)), replaces an old component ci with a replacement component cj and preserves
structural consistency by ensuring the replacement component is type-compatible. It also meets
the mutual consistency requirement by ensuring that the old component, its outgoing and its
incoming connector are passive (Wermelinger, 2000) before recon�guration starts. Passive(li)

implements recon�guration protocol that ensures li, which is the incoming connector for ci,
meets the RPC-consistency requirements from section 3.5.1.

ArchEvents Interface: Registration/Deregistration Operations

Components and connectors are rei�ed in the AMM by interceding in component and connector cre-
ation and synchronously registering component and connector instances in the AMM. The registration
and deregistration operations that are de�ned on the ArchEvents interface are:

• registerConnector(Mk × li) → Mk, registers a connector with the AMM.

• deregisterConnector(Mk × li) → Mk, deregisters a connector from the AMM.

• registerLocalComponent(Mk × ci) → Mk, registers a local component with the AMM.

• deregisterLocalComponent(Mk × ci) → Mk, deregisters a local component from the AMM.
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• registerRemoteComponent(Mk×ii) → Mk, registers a remote component with the AMM using
a its component descriptor.

• deregisterRemoteComponent(Mk× ii) → Mk, deregisters a remote component from the AMM.

The feedback event registration and deregistration operations are also de�ned on ArchEvents, but the
implementation of the operations is delegated to the AMM. Feedback events elocal and eremote are
de�ned in section 3.7.5.

• registerLocalFeedbackEvent(Mk × elocal) → Mk, registers a local feedback event object with
the AMM.

• deregisterLocalFeedbackEvent(Mk × elocal) → Mk, deregisters a local feedback event object
from the AMM.

• registerRemoteFeedbackEvent(Mk × eremote) → Mk, registers a remote feedback event object
with the AMM.

• deregisterRemoteFeedbackEvent(Mk × eremote) → Mk, deregisters a remote feedback event
object from the AMM.

3.7 Adaptation Contract Description Language

In K-Components the language used to specify a system's self-adaptive behaviour is separate from
the programming language used for component programming. The Adaptation Contract Description
Language (ACDL) is a declarative language for specifying adaptation logic for components and con-
nectors in a runtime. This section is not intended to be a programming manual for the ACDL, but
rather to describe its main concepts and discuss design decisions taken in developing the features of
the language.

3.7.1 ACDL Overview

The ACDL provides programmers with a few high level abstractions with which they can specify
a K-Component's self-adaptive behaviour. The abstractions are intended to allow programmers to
declaratively specify self-adaptive behaviour as conditions on component or connector feedback state
that trigger the execution of adaptation actions.

The main abstraction used to encapsulate adaptation logic in the ACDL is the adaptation contract.
An adaptation contract is used to de�ne a decision policy. A decision policy performs operations to
monitor system state and contains conditions under which adaptation actions are performed. The
ACDL provides component and connector feedback states, adaptation actions, feedback events and
handlers as the abstractions a programmer can use to reason about adaptation conditions and perform
adaptation actions on components and connectors.

Decision policies can be written in adaptation contracts as action policies or learning policies. An
action policy can be described using both if-condition-then-action rules and the event-condition-
action (ECA) paradigm. If-then rules de�ne predicates on feedback states that when matched
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cause the execution of adaptation actions. The ECA approach is based on declaring feedback events
and handlers that get executed when the event is raised. Reinforcement learning and collaborative
reinforcement learning policies can also be de�ned in the ACDL. These unsupervised learning policies
require the de�nition of a reward model for adaptation actions in components, as well as the de�nition
of a system's (or component's) self-adaptive behaviour as a Markov Decision Process.

3.7.2 Example Adaptation Contract in the ACDL

In this section an example of a self-adaptive �le storage component is introduced to give an overview
of the programming model for the ACDL, and some examples of its expressiveness. The component,
FileStorage, provides an interface, File, and a component state load and is de�ned in table 3.1.
An implemented and more complete version of this example is discussed in chapter 6.

// IDL
typedef sequence<octet> BinaryFile;
interface File {

double submit(in string name, in BinaryFile contents);
Binaryfile retrieve(in string name);

};
// K-IDL
component FileStorage {

provides File;
uses File n1;
state load;

};

Table 3.1: Example FileStorage component in K-IDL.

handler repair_connector {
component S2 = discover(FileStorage);
connector c1(FileStorage::file::c_n1);
rebind_connector(c1, S2);
jitter(10000);

}
outgoing storageNotification (FileStorage::File::c_n1) {

connector c1(FileStorage::File::c_n1);
if (poll_state(c1,status)==CONNECTOR_BROKEN) {

repair_connector();
}
state load(FileStorage);
predicate high_load(f:\\repository\predicates\repair_connector.xml);
event adapt_high_load(load, high_load, Low, repair_connector);

}

Table 3.2: Example action policy in the ACDL.

71



<?xml version='1.0' encoding='utf-8' ?>
<dsg:cb-values xmlns:dsg='http://www.dsg.cs.tcd.ie'

xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:schemaLocation='http://www.dsg.cs.tcd.ie

F:\\repository\\Schemas\\KEventDesc.xsd'>
<dsg:unary-op dsg:op-name='12' dsg:value1='10'/>

</dsg:cb-values>

Table 3.3: Example predicate descriptor for a feedback state.

The self-adaptive behaviour for FileStorage is de�ned in table 3.2 using the ACDL. The table
contains both a handler, containing a modular unit of reusable adaptation logic, and an adaptation
contract that speci�es both an if-then rule and de�nes an event-condition-action. The handler,
repair_connector, rebinds a connector by �rstly acquiring a reference to a component that imple-
ments the component interface FileStorage using a discovery service. Then it acquires a reference to
a connector from the AMM using the connector identi�er, FileStorage::File::c_n1. The connector
is then rebound to the newly discovered component and the jitter operation ensures that no further
recon�guration operation is attempted for 10000 msec if the rebind_connector operation successfully
completes.

The adaptation contract is then de�ned as a contract that will be associated with an outgoing
connector, outgoing, and an identi�er for the outgoing connector, FileStorage::File::c_n1, is
speci�ed as a parameter. In the contract, a reference to a connector object is then acquired from the
AMM using the same declaration as in the handler code, and its status is monitored for a broken
connection. If the connection is broken, the handler is invoked, attempting to rebind the connector to
a new component. A feedback event is also de�ned as a predicate on the component state load, and
invokes the handler if the predicate is matched. The predicate for event noti�cation (see table 3.3) is
matched when the value of the component state load increases above 10, as op-name '12' corresponds
to the greater-than predicate.

This example program written in the ACDL shows how action policies encapsulate adaptation
logic for a component and can be speci�ed declaratively as rules and ECAs. The ACDL syntax is
similar to C++ and it separates the speci�cation of a component's self-adaptive behaviour from the
component implementation code.

3.7.3 ACDL Features

This section introduces the di�erent constructs and features in the ACDL that can be used by action
policies.

ACDL Modules

The ACDL supports the declaration and de�nition of adaptation contracts and handlers as modular
units of adaptation logic. An adaptation contract is associated with a single connector in the runtime.
The syntax for declaring an adaptation contract is:

[outgoing | incoming] <contract_name> (<connector_id>){
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[statement]*

};

A contract can be de�ned on either an incoming or outgoing connector to a component, and is de�ned
as either incoming or outgoing.
Handlers are reusable functions that contain adaptation logic and can be executed in response to
feedback events being raised or called from an adaptation contract.

handler <handler_name>() {

[statement]*

}

ACDL Variables

The ACDL supports the declaration of variables that represent connectors, components, and compo-
nent states in both adaptation contracts and handlers:

connector <connector_name>(<connector_id>);

component <component_name>(<component_id>);

state <state_name>(<component_name>);

A component identi�er, <component_id>, is used to identify the component in the runtime, where
<component_id> represents the component's class name or the component's unique identi�er generated
by the runtime. A connector identi�er, <connector_id>, is of the form

<component_id>::<uses_interface>::<connector_name>

and <state_name> refers to a state declared on a component interface.
The ACDL also supports the de�nition of feedback events in adaptation contracts. Noti�cation
conditions for feedback events are de�ned in a predicates descriptor �le, de�ned in XML:

predicate <pred_comp_state_xml>(XML_File);

event <event_name>(<state_name>,<pred_comp_state_xml>,Priority,<handler_name>);

Standard ACDL Functions

The ACDL supports the monitoring of component feedback states in both handlers and adaptation
contracts. Feedback state queries can be executed using:

double poll_state(<state_name>);

The ACDL supports the execution of adaptation actions in both handlers and adaptation contracts.
Component adaptation actions are executed using:

double action(<action_id> [, strategy]);

void resolve_invoke(<action_id> [, Priority [, strategy]);
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where <action_id> is of the form <component_id>::<action_name> and double is a scalar reward
supplied by either the AMM or a component indicating the success of the action. A strategy is a scalar
that can also be passed as a parameter to an adaptation action. It is used by component adaptation
actions to supply information about how the component adaptation action should be executed, e.g.,
which adaptation strategy to perform. There are two di�erent ways of invoking component de�ned
actions, via the AMM using action and via a con�ict resolver component using resolve_invoke.
Component de�ned actions invoked using action return a double (a scalar) as a result. This value
is used by learning policies as a model for a reward. The resolve_invoke method does not return
a scalar, as it executes the adaptation action asynchronously by placing an invocation request in
the queue of a con�ict resolver component (see section 5.7.5). The con�ict resolver is an autonomous
component that stores a queue of adaptation actions, traverses the queue looking for con�icting actions
and then resolves any con�icts and executes the actions. It uses the Priority parameter to resolve
con�icts between adaptation contracts stored in its queue, but not yet invoked. Other architectural
re�ection operations are de�ned in the ArchRe�ect MOP and have the following signature:

double ArchReflect::<operation_name>([param[, param]*]);

A jitter declaration is also provided in the ACDL that prevents adaptation actions from being
executed for a programmer speci�ed period of time. This can be used to help dampen overly frequent
adaptations in �gray-zones�, the borderline areas where a system switches from one con�guration to
another. In setting the jitter time, there is a trade-o� between reducing the potential for system
hysteresis and the lack of certainty that the system is in the optimal con�guration. A jitter operation
can also be encapsulated inside the a catch section of a try-catch statement, and if an exception is
thrown the user-supplied function object, <fn_object>, is executed. In this case, the jitter statement
can be used to specify the conditions under which recon�guration operations that fail are retried, e.g.,
retry the recon�guration operation a �xed number of times or after a speci�ed timeout.

jitter(<millisecs>[, <fn_object>]);

Standard ACDL Features

The ACDL also supports standard language features such as expressions, primitive types, logical
operators, conditionals. Exception handling is also required as many errors cannot be checked at
compile time and require handling at runtime.

try { [statement]* } catch { [statement]*}

double | string | bool

&& | || | ! | > | >= | < | <= | between

if <condition> { [statement]* } [else { [statement]* } ]

There is no support for while loops in the ACDL, as adaptation contracts should complete execution
in bounded time to avoid locking shared resources inde�nitely.
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3.7.4 Adaptation Contracts

An adaptation contract is a set of declarations, expressions, monitoring operations and adaptation ac-
tions de�ned in the ACDL. Adaptation contracts provide a 1st party decision policy for components in
the runtime and are compiled into autonomous, re�ective programs concerned with monitoring, adapt-
ing and coordinating components. Adaptation contracts are examples of software agents (Wooldridge
and Jennings, 1995) and have similar goals to autonomic management components found in other sys-
tems, such as Kephart's autonomic manager (Kephart and Chess, 2003). Adaptation contracts aim
to reduce the amount of component management actions that must be performed by administrators,
thus meeting one of the goals of autonomic computing.
Adaptation contracts are associated with connectors in the runtime, as connectors provide intercession
points at which they can be initialised, started and stopped. An adaptation contract is associated
with either an incoming or an outgoing connector by declaring it using the keyword incoming or
outgoing and passing a connector identi�er as a parameter to its constructor. If an adaptation
contract is associated with an incoming connector, it is e�ectively associated with a single component
in the runtime, as there is only a single incoming connector per component. The adaptation contract
is initialised and started when the incoming connector is created. Components, however, may have
many outgoing connectors and, therefore, many outgoing contracts. An outgoing adaptation contract
is associated with an outgoing connector, again, by passing a connector identi�er as a parameter to
its constructor. Outgoing connectors, however, may load and unload di�erent adaptation contract
objects at runtime as adaptation contract objects are created and destroyed on connector binding and
unbinding operations. When an outgoing connector binds to a remote component, it dynamically loads
a proxy to the remote object as a shared library. Adaptation contract objects are typically deployed in
these proxies and are loaded and started when the outgoing connector binds to the remote component.
When the connector unbinds from the remote component, the adaptation contract object is shutdown
and destroyed. This way, adaptation contract objects can be replugged to update the self-adaptive
behaviour of a K-Component at runtime. An adaptation contract is de�ned as either of the following:

incoming <contract_name> (<connector_id>) { ....}

outgoing <contract_name> (<connector_id>) { ....}

In an adaptation contract, a programmer can declare variables that refer to components, connectors
and component feedback states in the AMM, as well declare variables using the primitive types sup-
ported. The references to the component and connector instances are untyped. They refer to a generic
component and connector types de�ned in the K-Component framework. This prevents ACDL pro-
grammers from invoking methods de�ned on the public interface of components or connectors, which
would require component programmers to handle concurrent access to components by adaptation
contracts, breaking the separation of concerns. Programmers can, however, adapt a K-Component by
executing adaptation actions de�ned on the ArchRe�ects MOP.

De�nition 3.5: an adaptation contract for component cj in runtime k is nij = {li,Mk, Policyi},
where
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• nij is the adaptation contract i associated with connector lifrom the set of adaptation
contracts, Nk, in runtime k.

• li is either an incoming or outgoing connector for component cj , i.e., getTarget(li) →
cj ∨ getSource(li) → cj

• Mk is the AMM in runtime k and Mk ∈M.

• Policyi is the set of decision policies de�ned in nij i.e., all the adaptation logic de�ned in
the contract.

Adaptation contracts are registered using the con�guration interface (see �gure 3.1) with the adap-
tation contract manager, an autonomous singleton that is responsible for managing the lifecycle of
adaptation contracts:

• registerAdaptationContract(Nk × nij) → Nk, registers an adaptation contract with the adap-
tation contract manager.

• unregisterAdaptationContract(Nk × nij) → Nk, registers an adaptation contract with the
adaptation contract manager.

3.7.5 Feedback Events

Feedback events are used to specify an ECA policy in the ACDL. A feedback event is de�ned as a
predicate on the value of a component feedback state and an associated handler. Feedback events
are raised when their predicate is matched, and this triggers the execution of a handler that contains
adaptation logic. A feedback event de�nition consists of a component feedback state, a predicate
de�ned on the feedback state, a priority and a handler. The ACDL supports the de�nition of feedback
events and the declaration of predicates in adaptation contracts, using the following syntax:

predicate <pred_comp_state>(<XML_file>);

event <event_name>(<state_name>,<pred_comp_state>,Priority,

<handler_name>[, <connector_id>]);

A predicate contains the conditions under which a feedback event is raised. They are de�ned externally
to the ACDL in a XML predicate descriptor that contains a set of predicates on the value of the
component feedback state. The list of predicates on component feedback states that are supported
is de�ned in table 3.4. Predicates can be de�ned on the current value of a feedback state, as well as
changes in the value of a feedback state, e.g., value-changed and rate-of-change. Two of the predicates
provide custom support for the speci�cation of a CRL policy in the ACDL. These are the speci�cation
of a rate of decay for cached component feedback states values and an advertisement predicate that
periodically noti�es registered clients of the current value of a feedback state.

Feedback event communication is managed by a feedback event manager, a component deployed
in every K-Component runtime. Feedback event managers act as both producers and consumers of
feedback events and are connected using an asynchronous event style (see section 3.5.1). Feedback
events that refer to remote components are known as remote feedback events, while feedback events
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Predicate Type Parameters
LESS-THAN Unary value

GREATER-THAN Unary value
EQUALS Unary value

NOT-EQUALS Unary value
IS-TRUE Unary boolean
DECAY Binary (td,scaling_factor)

VALUE-CHANGED Binary (boolean,old_value)
INSIDE-RANGE Binary (value,value)

OUTSIDE-RANGE Binary (value,value)
RATE-OF-CHANGE Binary (rate,old_value)
ADVERTISEMENT Binary (period,timeout)

Table 3.4: Predicates on component feedback states.

that refer to local components are known as local feedback events. The following de�nitions of local
and remote feedback events are provided, as they are required for the de�nition of a CRL policy in
4.2.8:

De�nition 3.6: A remote feedback event registration object is
eremotek

= {fij , pk, FMk, lci}, eremotek
∈ Eremotek

where

• Eremotek
is the set of remote feedback events de�ned in runtime k.

• fij is a component feedback state fi de�ned on a remote component cj that is de�ned in
Mk, cj /∈ Ck ∧ cj ∈ Wk ∈ Mk.

• pk ∈ Pk is a predicate on component feedback state fij .

• FMk is a reference to the local feedback manager used for event noti�cation.

• lci is the outgoing connector deployed in ci ∈ Ck that is used to register the event in the
remote feedback event manager containing the component cj .

De�nition 3.7: A local feedback event registration object is
elocalk = {fij , pk, priority, handlerij}, elocalk ∈ Elocalk where

• Elocalk is the set of feedback events de�ned in runtime k.

• fij is a component feedback state i de�ned on a local component, cj ∈ Ck.

• pk ∈ Pk is a predicate on component feedback state fcj .

• priority ∈ {low, normal, high, system}.

• handlerij is a handler de�ned in adaptation contract nij in runtime k.

De�nition 3.8: A remote feedback noti�cation object sent by FMk is
enotifyk

= {fij , FMo, v}, enotifyk
∈ Enotifyk

where

• Enotifyk
is the set of feedback noti�cation objects that can be sent by feedback manager,

FMk, in runtime k.

• FMo is the remote feedback manager to which the feedback noti�cation object, enotifyk
, is

sent when the event is raised.
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• fij is the component feedback state on cj ∈ Ck to which the feedback noti�cation object
refers.

• v ∈ Z, the value of the component feedback state, fij .

3.7.6 Reinforcement Learning Policy
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Figure 3.7: Reinforcement learning policy in K-Components.

Reinforcement learning (RL), introduced in section 2.4.3, is an unsupervised learning technique that
can be used to enable an adaptation contract to learn its self-adaptive behaviour at runtime. There
is declarative support in the ACDL for specifying a RL policy in an adaptation contract.
In the model for the RL policy, the adaptation contract represents the RL agent that attempts
to optimise its interaction with its environment (see �gure 3.7). The environment of the agent is
modelled as a Markov Decision Process (MDP) that consists of states actions, and provides a reward
model. In K-Components the environment of an adaptation contract consists of the AMM and its
constituent components and connectors. States, actions and rewards in a RL model for an adaptation
contract are de�ned in terms of components and connectors. The goal of the RL policy is to learn
an optimal decision policy for an adaptation contract. RL policies are useful for components in a
decentralised system, as they allow components to cope with uncertainty in their environment by
enabling components to learn a decision policy for how to adapt and optimise their behaviour in their
environment.

MDP in the ACDL

In order to de�ne a RL policy in the ACDL, the RL problem has to be de�ned as a MDP. A MDP
is de�ned as a set of states, actions, a state transition model and a reward model. There is a natural
mapping between MDP states and the component feedback states in the K-Component model. Com-
ponent feedback states can be used to de�ne MDP states that de�ne the dynamic behaviour of the
component, but designers should ensure that component feedback states used as MDP states satisfy
the Markov Property.

Component feedback states are represented as scalars, but MDP states are represented as booleans
in a system, with only one of the MDP states in the system evaluating to true at any given time. A
component programmer that wishes to model behaviour of a component as a MDP using component
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feedback states can represent the scalar as a boolean, i.e., as a 1 or 0, but has to ensure that the
constraint of only a single active feedback state at any given time is met. This constraint cannot be
enforced at compile-time in the ACDL.

It may also be the case that a programmer wishes to de�ne the dynamic behaviour of a component
in terms of the value of a single component feedback state, e.g., partition the values of the feedback
state into regions, each of which represents a MDP state. As a result of this potential need, the ACDL
allows a programmer to de�ne a MDP state as a variable in an adaptation contract. A MDP state can
then be de�ned as a predicate on the feedback state of a component or a connector using the format:

rl_state <rl_state_name>(<state_name> [,predicate]);

The set of states in the MDP consists of predicates on the feedback state(s) of the adaptation contract's
associated component. Predicates can be de�ned using the predicate's descriptor, from section 3.7.5,
or left empty. An empty predicate indicates that the component feedback state will be represented as
a boolean, whereby the predicate is matched if the value of the feedback state is 1, otherwise it is not
matched.

De�nition 3.9: A MDP state is de�ned as si = {fij , p} where

• si ∈ Si is a MDP state that represents a predicate on the value of a component feedback state
fij . The state should satisfy the Markov Property.

• Si is the set of all states de�ned in the MDP, for which only a single state can be active at any
instant in time.

• p is a predicate on component feedback state fij . Only one predicate from the set of predicates,
Pi, de�ned on the component feedback states in the MDP should match at any given time.

Actions are also a required part of the MDP. In the ACDL, the set of adaptations actions de�ned on
the adaptation contract's associated component as well as the architectural adaptation actions can be
included as actions in the MDP. A state transition model is also required for the MDP. This can be
provided as a state transition distribution function or not provided, and learnt by a model-free RL
algorithm.

Reward Model

A reward model is required by a RL policy. In the ACDL, the reward model is used as a metric to
quantify the success of adaptation actions. Rewards (or reinforcements) are typically represented as
scalars and are supplied by the environment of an adaptation contract after the execution adaptation
action:

double reward = ArchReflect::action(<actionID>);

The reward model for a K-Component, Rk, consists of the set expected rewards for executing all
adaptation actions A in all system states S.
A reward for executing an adaptation action has to be calculated using some information about the
dynamic behaviour of the system. A reward model for a component adaptation action has to be
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speci�ed by the component programmer. Typically rewards are generated from component feedback
state values that describe the dynamical state of the component. For example, consider a component
that has a feedback state that describes the operating state of the component as optimal, suboptimal
or failed and an adaptation action to modify the behaviour of the component. The adaptation action
may be invoked by an adaptation contract and in order to calculate the reward for its execution, it can
�rstly observe the feedback state of the component (as optimal, suboptimal or failed), secondly execute
the adaptation action code, and then �nally observe the feedback state of the component again. Any
change in the operating state of the component from before the execution of the adaptation action code
to after the execution of the adaptation action code can be used to calculate a reward. The reward
is calculated as a scalar and is passed as a return value to the adaptation contract that invoked the
adaptation action. Components can also support a null adaptation action that returns a reward in
the case where no adaptation action is taken. Null adaptation actions are necessary for learning
policies that repeatedly execute adaptation actions, since the optimal policy is often not to adapt a
component.

De�nition of a MDP

There is no support for de�ning a MDP in the ACDL. However, MDPs are de�ned as part of a RL
policy and a de�nition is included here as a prerequisite for the de�nition of a RL policy.

De�nition 3.10: A MDP is mdpi = {nij , Si, Ai, Rk, Ti} where

• mdpi is a MDP in adaptation contract nij in runtime k.

• Si = {s1, ..., sN}, where Si is the set of MDP states in mdpi.

• A state si is si = {fij , pj}, where pj ∈ Pi is a predicate on a component feedback state fij .
A state is active if the predicate for its component feedback state is matched.

• Ai is the set of available adaptation actions in adaptation contract nij . This includes the
set of component adaptation actions de�ned on ci and the set of architectural adaptation
actions de�ned on Mk.

• Rk is the reward model in runtime k is a function Rk : S ×A → R. R(s, a) is the expected
instantaneous reinforcement from action a in state s.

• Ti is the state transition distribution function, Si × Ai → Π(Si), de�ned on mdpi. Π(Si)

is the set of probability distributions over the set Si of component feedback states de�ned
on ci.

The actions that are available in the di�erent MDP states can be limited by de�ning a constraint:

• AvailableActions : si → A(si), A(si) ⊆ Ai, s ∈ Si

Such a function is useful to enable component providers determine the current state when building a
reward model, Ri : Si × Ai → R, for a component adaptation action a. Given a state s, calculated
using a component feedback state de�ned on ci, the set of adaptation actions available in s can be
constrained to the set of component adaptation actions, Ai, de�ned on ci. This enables the provider
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of the component to calculate the value R(s, a) in adaptation action a, since it can observe the current
active MDP state s by examining the value of the component feedback states, Fi.

De�nition of a RL Policy

A RL policy is de�ned in an adaptation contract using the following format:

ListStates <list_states> = {<rl_state_name1>,..,<rl_state_nameN>};

ListActions <list_actions> == {<actionID1>,...,<actionIDN>};

rl_policy <agent_name>(<list_states>,<list_actions>,RLAlgorithm);

start_mdp(<agent_name>, <num_trials>=infinite);

A RL policy is de�ned as a MDP and a RL algorithm. There is no support for constraining the set
of actions allowed in particular states or the explicit de�nition of a state transition model. A state
transition probability matrix is provided by default and must be updated by the learning algorithm.
A RL policy can be executed by a call to start_mdp in an adaptation contract. The behaviour of an
adaptation contract executing an RL policy is as follows: the adaptation contract observes its set of
states for the current MDP state and then calculates the adaptation action to execute using its policy.
After executing the adaptation action, the system makes a state transition and the adaptation contract
receives a reward, which is then used by a RL algorithm to optimise its policy. The adaptation contract
again observes its current state and follows its policy thereafter until the MDP reaches a terminal state
or the speci�ed number of trials has been exceeded. An example of a learning policy in an adaptation
contract is provided in chapter 6.

De�nition 3.11: A reinforcement learning policy is RLi = {mdpi, algRL,maxTrials} where

• RLi ∈ Policyi is the reinforcement learning policy de�ned in adaptation contract nij .

• algRL is the reinforcement learning algorithm.

• maxTrials is the maximum number of times actions should be attempted until the RL policy
terminates.

3.8 Summary

This chapter has presented the K-Component model at an abstract level. The K-Component model
provides a structured model for building self-adaptive software that operates in a decentralised en-
vironment. The model uses architectural re�ection to reify the structure of a K-Component as an
architecture meta-model. Information concerning adaptation conditions in components and connectors
is available in the architecture meta-model in the form of component and connector feedback states.
Re�ective programs, called adaptation contracts, can be written that are concerned with monitoring
feedback states, identifying adaptation conditions and adapting the components and connectors at
runtime. An asynchronous model of re�ection is used to execute adaptation contracts asynchronously
to system operation. This enables adaptation contracts to continuously and proactively reason about
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and adapt system operation. This is particularly useful in the case where adaptation conditions arise
in sources external to the system.

A declarative programming language, the ACDL, is used to aid programmers in the speci�cation
of the decision policy for an adaptation contract. The decision policy can be speci�ed as an action
policy or a learning policy. Action policies can be declared using rule-based or event-condition-action
approaches. However, when the space of states and actions is too large for programmers to handle or
where programmers cannot know in advance the likely a�ects of adaptation actions, a RL policy can
be de�ned to help adaptation contracts learn their self-adaptive behaviour.

The autonomic properties that can be supported by applications built using the K-Component
model are constrained by both the set of feedback states and feedback events that can be monitored
and the range of adaptation actions that can be performed on components and connectors. The ACDL
supports two di�erent types of adaptation actions, architectural adaptation actions that recon�gure
the architecture meta-model and component adaptation actions de�ned on component interfaces.
Architectural adaptation actions are useful for recon�guring connections to faulty or poorly performing
components. Component adaptation actions can be used to adapt the behaviour of a component,
e.g., to optimise component performance by changing the implementation strategy of an internal
algorithm in the component. The availability of a reward model for component adaptation actions
and architectural adaptations is used as the basis for evaluating adaptation actions and learning a
decision policy.

While K-Components can be used to build self-adaptive components, the construction of auto-
nomic distributed systems using self-adaptive components requires that those components coordinate
their self-adaptive behaviour to meet system-wide goals. The next chapter addresses the problem of
coordinating K-Components in order to establish and maintain system-wide properties in decentralised
systems.
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Chapter 4

Collaborative Reinforcement Learning

�The irreversibility [of time] is the mechanism that brings order out of chaos.�

Ilya Prigogine, Order Out of Chaos (1984)

This chapter describes one of the main contributions of this thesis, the collaborative reinforcement
learning (CRL) algorithm. CRL addresses the requirement of a distributed autonomic system for a
coordination model that can establish and maintain system properties in decentralised environments.
CRL is an extension to RL for decentralised multi-agent systems and provides a decentralised coordi-
nation model similar to those found in swarm intelligence algorithms (Kennedy and Eberhart, 2001),
where agents collectively learn from the successes of their neighbours. In CRL, individual agents
maintain a local, partial model of the system that includes information about their neighbouring
agents. The system properties of the algorithm are a product of the collective behaviour of agents
that coordinate using converged local models.

This chapter represents a change in style from the previous chapter. The terminology used to
describe CRL algorithm is consistent with the terminology from the RL literature (Sutton and Barto,
1998; Kaelbling et al., 1996; Littman and Boyan, 1993; Sutton, 1988; Barto and Mahadevan, 2003).
In particular, the term agent is used to describe autonomous decision making entities in a system that
executes and learn a 1st party decision policy.

4.1 Decentralised Coordination and Autonomic Computing

Carriero and Gelernter provide a de�nition for coordination in (Gelernter and Carriero, 1992):

�Coordination is the process of building programs by gluing together active pieces�

where active pieces can be processes, autonomous objects, agents or applications. Coordination
is the logic that binds independent activities together into a collective activity. Coordination models
have been developed to describe the �glue� that connects computational activities. They can be based
on centralised or decentralised coordination models. A system built using a centralised coordination
model is a multi-agent system where the behaviour of its agents is controlled either by an active
manager component or by a predetermined design or plan followed by the agents in the system
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(Goldin and Keil, 2007). A system built using a decentralised coordination model is a self-organising
multi-agent system (Goldin and Keil, 2007), whose system-wide structure or behaviour is established
and maintained solely by the interactions of its agents that execute using only a partial view of the
system.

Coordination models are necessary for the construction of autonomic distributed systems as they
organise the autonomic and self-adaptive behaviour of individual autonomous components towards
system goals. A lack of coordination among autonomous components in a distributed system can lead
to interference between the di�erent components' adaptive or autonomic behaviour, con�icts over
shared resources, suboptimal system performance and hysteresis e�ects (Efstratiou et al., 2002b). For
example, a distributed system that is composed of autonomic components, where components optimise
their behaviour towards component goals is not necessarily optimised at the system-level, as there is the
possibility that con�icting greedy decisions taken by components may result in sub-optimal resource
utilisation or performance at the system-level. In the problem of decentralised resource allocation
in autonomic systems, Boutilier motivates a decentralised approach to coordination in autonomic
computing by stating that (Boutilier et al., 2003)

�the reasoning required to support optimal resource allocation is necessarily distributed,
thus requiring some form of cooperative negotiation among the computing elements that
have con�icting needs for critical resources.�

In order to optimally adapt a system to a changing environment the components must respond
to changes in a coordinated manner, but in decentralised environments, the coordination mechanism
cannot be based on centralised or consensus-based techniques for the reasons outlined in section 2.1.

Increasingly, researchers are investigating decentralised coordination approaches to establish and
maintain system properties (Dorigo and Caro, 1999; Andrzejak et al., 2003; Ardaiz et al., 2003; De Wolf
and Holvoet, 2003; Khare, 2003; Montresor et al., 2003; Dowling et al., 2004; Boutilier et al., 2003).
Decentralised control is based on de�ning local coordination or control models for components that
have only partial views of the system, support only localised interaction and have no global knowledge.

Components typically store locally a partial, estimated model of the system and interaction pro-
tocols de�ned between neighbouring components enable them to collectively improve the accuracy of
their local, estimated models (Khare and Taylor, 2004; Curran and Dowling, 2004). This can, under
certain conditions, result in convergence between the estimated models on a common view of the sys-
tem or environment (Jelasity et al., 2003). Components that have converged models can coordinate
their behaviour using their local models to perform collective adaptive behaviour that can establish
and maintain system-wide properties. These system properties emerge from the local interaction be-
tween neighbouring components and with no explicit representation of system properties on the level
of the individual component (Dorigo and Caro, 1999; Dowling et al., 2004; Andrzejak et al., 2003;
Ardaiz et al., 2003).

Decentralised coordination techniques have been developed that are based on cooperation (Boutilier
et al., 2003; Khare and Taylor, 2004) and competition (Panagiotis et al., July-August 2002) between
components. Both approaches are typically evaluated by how they optimise some system property,
such as an autonomic property of the system.
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Some problems associated with decentralised models include the uncertain outcome of control
actions on components, as their e�ect may not be observable until some unknowable time in the
future. Also, optimal decentralised control is known to be computationally intractable (De Wolf
and Holvoet, 2003), although systems can be developed where system properties are near-optimal
(Littman and Boyan, 1993; Caro and Dorigo, 1998; Jelasity et al., 2003; Curran and Dowling, 2004),
which is often adequate enough for certain classes of system. Finally, the design of decentralised
coordination models is di�cult, as there is no existing methodology to help translate a set of top-down
requirements for system properties to a speci�cation of the local coordination or control algorithms.
As a result, experimentation plays a crucial role in verifying the establishment and maintenance of
system properties (Dowling et al., 2005).

4.2 Collaborative Reinforcement Learning

CRL is an algorithm that can be used to build decentralised coordination models. CRL can be used
to build decentralised systems with autonomic properties, such as the ability to adapt and optimise
system behaviour to a changing environment. CRL models the desired system behaviour as a set of
system optimisation problems that are solved by decentralised agents that learn how to interact with
their environment using reinforcement learning (RL) (Sutton and Barto, 1998; Kaelbling et al., 1996)
and coordinate their behaviour using positive and negative feedback. CRL agents are autonomous
programs that store a view of their local environment as a cache of recent observations of their
neighbours and their states. The set of agents in a CRL system is dynamic, with agents leaving and
joining the system at runtime. Every agent has a dynamic set of neighbours, de�ned by the set of
other agents found within its locality, where the de�nition of a locality is system-speci�c, but is often
determined by some physical system limitation, e.g., the number of directly connected peers in a P2P
system or the communication range in wireless networks. In K-Components, CRL agents are modelled
as adaptation contracts (see section 4.2.8).

CRL extends RL with feedback models for its local view of the environment, including a negative
feedback model that decays an agent's local cache and a collaborative feedback model that allows
agents to exchange the values of their states. In a system of homogeneous RL agents, collaborative
feedback enables agents to share state information that can increase convergence between local models.
Since action selection by RL agents is based on their local system models, i.e., the agent's policy,
collaborative feedback can, in certain circumstances, increase the probability of a group of agents
taking the same or related actions. The collaborative feedback process can produce positive feedback
in action selection probability over a group of CRL agents. Positive feedback is a mechanism that
reinforces changes in system structure or behaviour in the same direction as the initial change and can
cause the emergence of collective behaviour in a group of agents (Camazine et al., 2003; Bonabeau
et al., 1999). In CRL, the positive feedback process continues until negative feedback, produced either
by constraints in the system or the decay model, causes agent behaviour to adapt so that agents in
the system converge on stable policies.

A typical evaluation criterion for system optimisation techniques is the amount of time required un-
til the distributed policies converge to produce collective behaviour that meets the system optimisation
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Figure 4.1: DOP and delegation actions in MDPs.

goals (Crites and Barto, 1998). However, in open, decentralised systems, the system's environment is
dynamic and another evaluation criterion is the collective adaptation agility of agents (Li, 2000). Since
optimal system behaviour may change with a changing environment, the collective adaptation agility
of agents describes the ability of a group of agents to collectively adapt their behaviour to changes in
their environment in order to continue to meet the system optimisation criteria.

4.2.1 Coordinating the Solution to Discrete Optimisation Problems

In CRL, system optimisation problems are decomposed into a set of discrete optimisation problems
(DOPs) (Dorigo and Caro, 1999) that are solved by collaborating RL agents. There are many au-
tonomic properties in distributed systems that can be naturally discretized into DOPs that can be
distributed amongst agents in a distributed system, such as resource allocation over a group of servers
(Ardaiz et al., 2003; Nowicki et al., 2004) and locating replicated resources in a service-oriented net-
work (Andrzejak et al., 2003).

In a multi-agent system, the solution to each DOP is initiated at some starting agent in the network
and terminated at some (potentially remote) agent in the network. Agents can either attempt to solve
each DOP locally or �nd a neighbour that can solve the DOP. Each agent uses its own policy to
decide probabilistically on which action to take to attempt to solve a DOP. Local decisions produce
near-optimal system behaviour, although due to network dynamism and the lack of global knowledge,
optimal system behaviour cannot be guaranteed. In CRL there are 3 types of action de�ned that can
be executed by a CRL agent to solve a DOP (see �gure 4.1). These are:

1. DOP actions, Api , try to solve the DOP locally at the agent

2. delegation actions, Adi , are coordination actions that delegate the solution of the DOP to a
neighbouring agent

3. discovery actions are coordination actions that an agent can execute in any state to attempt to
�nd new neighbours.

An agent is more likely to delegate a DOP to a neighbour when it either cannot solve the problem
locally or when the estimated cost of solving it locally is higher than the estimated cost of a neighbour
solving it. In CRL, a group of agents coordinate their solution to a set of DOPs by taking independent
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decisions about when to try to discover new neighbours and when to delegate the solution to a DOP
to a neighbour, with the goal of optimising the solution to the set of DOPs at the system level.

4.2.2 Connected States for Delegating DOPs

In heterogeneous distributed systems, agents typically possess di�erent capabilities for solving a given
DOP. In the K-Component model, these capabilities are expressed via contractually speci�ed inter-
faces. However, in RL the only abstractions available to an agent are states, actions and rewards.
To model the di�ering capabilities of agents, CRL allows newly discovered agents to negotiate the
establishment of connected states with their neighbours. For example, agents may exchange device
capability information and use this information to determine whether or not they are able to establish
a connected state. Connected states represent the contractual agreement between neighbouring agents
to support the delegation of DOPs from one to the other.

Connected states map an internal state on one agent to an external state on at least one neigh-
bouring agent. An internal state on one agent can be connected to external states on many di�erent
neighbouring agents. An agent's set of connected neighbours represents its partial-view of the system.

In CRL, for every neighbour, nj , with whom agent ni shares a connected state, there exists a
delegation action aj ∈ Adi that represents an attempt by ni to delegate the solution to a DOP to nj

(see �gure 4.1). If the delegation action is successful, ni makes a state transition to its connected state
s, terminating the MDP at ni, and nj initiates a new MDP to handle the DOP. For the case where
an internal state on an agent maps to more than one external state, a delegation action may initiate
a new MDP at more than one agent. Apart from an agent's capabilities, run-time factors, such as the
agent's available resources and the quality of its network connections, also a�ect the ability of agents
to solve a given DOP. These capabilities can be modelled in the agent's reward model.

4.2.3 Distributed Model-Based Reinforcement Learning

State transitions in CRL may be to a local state on the current agent or to a remote state on a
neighbouring agent, via a connected state (see �gure 4.2). In distributed systems, when estimating
the cost of the state transition to a remote state on a neighbouring agent we also have to take
into consideration the network connection cost to the neighbouring agent. For this reason, we use
a distributed model-based reinforcement learning algorithm that includes both the estimated optimal
value function for the next state at agent nj , Vj(s′), and the connection cost, Di(s′|s, a) ∈ R where
a∈ Adi , to the next state when computing the estimated optimal state-action policy as Qi(s, a) at
agent ni (see equation 4.5).

In the distributed model-based RL algorithm, the reward model consists of two parts. Firstly, a
MDP termination cost, R(s, a) ∈ R, provides agents with evaluative feedback on either the perfor-
mance of a local solution to the DOP or the performance of a neighbour solving the delegated DOP.
Secondly, a connection cost model, Di(s′|s, a), provides the estimated network cost of the attempted
delegation of the DOP from a local agent to a neighbouring agent. The connection cost for a transi-
tion to a state on a neighbouring agent should re�ect the underlying network cost of delegating the
DOP, while the connection cost for a transition to a local state after a delegation action should re�ect
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the cost of the failed delegation of the DOP. The connection cost model requires that the environ-
ment supplies agents with information about the cost of distributed connections as rewards. Ideally
a middleware will provide support for monitoring connection quality, such as in (Atighetchi, 2003).

4.2.4 Local System Model and Advertisement

In CRL, each agent maintains a local model of its partial view of the system in a cache, Cachei, that
stores V -values for connected external states on neighbours. The cache consists of a table of Q-values,
for all delegation actions, ad, at connected state s in agent ni, and the last observed Vj(s) for the
causally-connected state s at agent nj , i.e., the cache stores the estimated cost of a neighbour nj

solving the DOP. A Cachei entry is a pair (Qi(s, aj), rj), where rj is the cached Vj(s) value.
Observations for Vj(s) can come in two forms. Firstly, an agent can execute a delegation action,

ad, at connected state s in agent ni and receive Vj(s) as a synchronous reply from agent nj . Alterna-
tively, and more commonly, agent ni is informed of changes to Vj(s) at agent nj using advertisement
(see �gure 4.3). When the agent ni receives a Vj(s) advertisement from neighbouring agent nj for a
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connected state s, it updates rj in (Qi(s, aj), rj). Examples of implementation strategies for V -value
advertisement in distributed systems include periodic noti�cation/broadcast/multicast, conditional
noti�cation/broadcast/multicast, and piggybacking advertisement in request/acknowledgement pack-
ets.

4.2.5 Decay of the Local System Model

Similar to RL, CRL models are based on MDP learning methods that require complete observability
(Kaelbling et al., 1996), however at any given agent in a decentralised system the set of system-wide
states are only partially observable. To overcome problems related to partially observable environ-
ments, state transition and connection cost models can be built to favour more recent observations
using a �nite-history-window (Kaelbling et al., 1996), and cached Vj values become stale using a de-
cay model (Dorigo and Caro, 1999). In CRL, Vj information is decayed over time in the absence of
new advertisements of Vj (see �gure 4.4) values by a neighbour as well as after every recalculation
of Qi values. The absence of Vj advertisements amounts to negative feedback and allows the use of
a cleanup updater to remove cache entries, actions and agents with stale values in the system. The
rate of decay is con�gurable, with higher rates more appropriate for distributed systems with more
dynamic network topologies.

4.2.6 The CRL Algorithm

The CRL algorithm can be used to solve system optimisation problems in a multi-agent system, where
the system optimisation problem can be discretized into a set of DOPs, modelled as absorbing MDPs,
in the following schema:

• A dynamic set of agents N = {n1, n2, . . . , nM}, often corresponding to nodes in a distributed
system.

• Each agent ni has a dynamic set, Vi, of neighbours where Vi ⊂ N and ni /∈ Vi.

• Each agent ni has a �xed set of states Si, where Si ⊆ S and S is the system-wide set of states.

• Agents have both internal and external states.
Int : N → P(S) is the function that maps from the set of agents to a non-empty set of internal
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states that are not visible to neighbouring agents.
Ext : N → P(S) is the function that maps from the set of agents to a set of externally visible
states. The relationship between internal and external states is the following:

Int(ni) ⊂ Si

Ext(ni) ⊂ Si

∧ Int(ni) ∪ Ext(ni) = Si

Int(ni) ∩ Ext(ni) = {}
(4.1)

• We de�ne a set of connected states between agents ni and nj as:

Cninj = Int(ni) ∩ Ext(nj) where nj ∈ Vi (4.2)

s ∈ Cninj is a connected state where an internal state s at ni corresponds to an external state s at
nj .

• Each agent ni has a dynamic set of actions:

Ai = Adi
∪ Api

∪ {discovery} (4.3)

where Ai ⊆ A, Adi
are the set of delegation actions, Api

are the set of DOP actions. The
discovery action updates the set of neighbours, Vi, for agent, ni, and queries if discovered
neighbouring agent nj provides the capabilities to accept a delegated MDP from ni. If it does,
Adi is updated to include a new delegation action that can result in a state transition to s ∈ Cninj

and the delegation of a MDP from ni to nj .

• There are a �xed set of state transition models, Pi(s′|s, a), that model the probabilities of making
a state transition from state s to state s′ under action a.

• Di : Si ×Adi ×Si → R is the connection cost function that observes the cost for the attempted
use of a connection in a distributed system. Di(s′|s, a) is the connection cost model at agent ni

that describes the estimated cost of making a transition from state s to state s′ under delegation
action a.

• We de�ne a cache at ni as Cachei = {(Qi(s, aj), rj) : rj ∈ R ∧ aj ∈ Adi}. The value rj in the
pair (Qi(s, aj), rj) corresponds to the last advertised Vj(s) received by agent ni from agent nj .
For each nj ∈ Vi, Cachej is updated by a Vj advertisement for a connected state. The update
replaces the rj element of the pair (Qi(s, aj), rj) in Cachei with the newly advertised Vj value.

• Decay(rj) → R is the decay model that updates the rj element in Cachei,

Decay(rj) = rj .ρ
td (4.4)

where td is the amount of time elapsed since the last received advertisement for rj from agent
nj and ρ is a scaling factor that sets the rate of decay.

• A cleanup updater is available at each agent, ni, to remove stale elements from its set of neigh-
bours, Vi, delegation actions, Adi , connected states, Cninj and its Cachei. When a (Qi(s, aj), rj)

entry in the cache drops below a speci�ed threshold, the cleanup updater removes the delega-
tion action aj from Adi , the stale connected state s from Cninj , and the pair (Qi(s, aj), rj) from
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Cachei. If after removing s, Cninj
= {} for some neighbour nj of ni, then nj is removed from

Vi.

• The distributed model-based reinforcement learning algorithm is:

Qi(s, a) = R(s, a) +

∑

s′ ∈ Si

Pi(s′|s, a).

(Di(s′|s, a) + Decay (Vj(s′))) (4.5)

where a ∈ Ad. If a /∈ Ad, this defaults to the standard model-based reinforcement learning
algorithm (Kaelbling et al., 1996) with no connection costs or decay function. R(s, a) is the MDP
termination cost, P (s′|s, a) is the state transition model that computes the probability of the action
a resulting in a state transition to state s′, Di(s′|s, a) is the estimated connection cost and Vj(s′) is
rj ∈ Cachei if a ∈ Ad, and Vi(s′) otherwise. Note that rewards that are received in the future are not
discounted since agents do not learn about state transitions after successful delegation to neighbouring
agent.

• The value function at agent ni, Vi, can be calculated using the Bellman optimality equation
(Bellman, 1957):

Vi(s) = max
a

[Qi(s, a)]

4.2.7 Feedback, Convergence and Decentralised Coordination in CRL

Adaptation of system behaviour in CRL is a feedback process in which a change in the policy of
any agent, or a change in the system's environment as well as the passing of time causes an update
to the policy of one or more agents (see equation 4.5). In CRL, changes in an agent's environment
provide feedback into the agent's state transition model and connection cost model, while changes in
an agent's policy provides collaborative feedback to the cached V values of its neighbouring agents
using advertisement. Time also provides (negative) feedback to an agent's cached V values using the
decay model. As a result of the di�erent feedback models in CRL, agents can utilise more information
when learning a policy in a distributed system.

Agents can share information about their operation using collaborative feedback and their shared
environment. This enables agents to learn from the behaviour of other agents and ultimately for
agents to converge on similar policies. If agents converge on similar policies then, by virtue of the fact
that agents with converged policies execute similar actions when they observe similar states in their
environment, the behaviour of the agents can become coordinated in a shared environment.

4.2.8 CRL in the ACDL

K-Components provides support for an implementation of the CRL algorithm as a CRL policy in the
ACDL. Similar to the RL policy in section 3.7.6, an agent is modelled as an adaptation contract and
states are de�ned as predicates on component feedback states. Actions in CRL are di�erent as there are
three di�erent types of actions: DOP actions, delegation actions and discovery actions. DOP actions
and delegation actions can be implemented as component adaptation actions, while a discovery action
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Figure 4.5: Connected states 'x' and 'y' between components A, B and C.

requires support for a discovery service to �nd new K-Components at runtime. Delegation actions use
connectors de�ned on a component to forward the solution to a MDP to a connected component.

CRL also introduces several new abstractions to RL. These include connected states, a cache of
V -values for connected states on neighbouring agents, a decay model for the values in the cache, an
advertisement function, and a connection cost model. Connected states are established when one
component binds to another and updates its local AMM to include the description of the target
component. Component feedback states represent the connected states between the components. The
connected states between components A, B and C in �gure 4.5 are component feedback state x (an
internal state at component A) and component feedback state y (an external state at components B
and C). The AMM acts as the cache, Cachei, of recently advertised values of component feedback
states. The cached values of component feedback states can be decayed by specifying decay on a
component feedback state in the ACDL. A decay de�nition contains the component feedback state, a
scaling factor and the unit of time used to calculate the time di�erence. Also, the connection cost for
a connected state can either be static or supplied by instrumented connectors as a status value that
is available for monitoring as a feedback state on all connectors.

Advertisement functions can be implemented using RPC connectors, as well as speci�ed in the
ACDL using feedback events. In the ACDL, an advertisement feedback event can be de�ned as a
component feedback state with an advertisement predicate that de�nes an advertisement period and
a timeout (the current time left until the next advertisement), see table 3.4. A CRL policy has
a default advertisement function based on RPC connector connectors if no advertisement feedback
event is de�ned. In the ACDL, a CRL policy can be de�ned in an adaptation contract in the following
format:

advertisement <ad_name>(<internal_state>,<external_state>,<seconds>);

decay <decay_name>(<state_name>, <scaling_factor>, <td>=1000ms);

crl_policy <rl_agent_name>(<agent_name>, <decay_name>, <ad_name>=NONE);

De�nition 4.1: A collaborative reinforcement learning policy in runtime k is
CRLi = {RLi,Mk, Eremotek

}, where

• CRLi ∈ Policyi is the collaborative reinforcement learning policy that can be implemented
in an adaptation contract acij .
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• CRLi ∈ CRL, where CRL de�nes the CRL system, i.e., the set of all CRL agents in the
distributed system.

• Mk is the AMM that stores cachei of DOP connection costs from component ci to connected
components.

• Eremotek
is the set of remote feedback events that implement the advertisement function

that specify the period for the asynchronous advertisement of V -values and also the set of
feedback events that implement a decay function for a feedback state, de�ning the rate of
degradation for the V -values cached in the AMM.

4.3 Summary

This chapter presented the CRL algorithm, a decentralised optimisation technique that addresses
the requirement from section 2.3 for a coordination model that can establish and maintain system
properties in a decentralised system.

The CRL algorithm extends RL with collaborative feedback and a decay model, and also de�nes
di�erent actions for coordinating the solution to distributed problems including delegation, DOP and
discovery actions. The model of decay is useful for decentralised environments as it provides negative
feedback on an agent's local, partial view of the system, requiring agents to constantly regenerate
their view of the system. Advertisements update an agent's view of the system, providing collaborative
feedback between agents. Collaborative feedback and coordination actions enable agents to coordinate
their behaviour to optimise the solution to DOPs in a decentralised, multi-agent environment. Agents
coordinate their behaviour so that the actions that each individual agent takes to solve a DOP produce
near-optimal system behaviour. In chapter 6, it is shown how CRL can be used to build autonomic
decentralised systems that adapt and optimise system behaviour to a changing environment using
positive and negative feedback.

The next chapter describes the prototype implementation of the K-Component model.
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Chapter 5

The K-Component Programming
Model and Framework

�Idealism increases in direct proportion to one's distance from the problem�

John Galsworthy

This chapter describes a prototype implementation of the K-Component framework and programming
model. The programming model and language mappings are described, and the main architectural
components and their interfaces are discussed. Other implementation issues that are considered to be
relevant to the prototype and the thesis are also covered.

This chapter is structured in a manner that roughly corresponds to the development lifecycle for
a K-Component application. In section 5.2, the programming model for K-Components is described.
This includes an overview of how to develop and deploy a K-Component, the language mappings
for K-IDL and the ACDL, how to implement a component in section 5.3, incoming and outgoing
connector implementations in section 5.4 and how to specify a component's adaptation logic in the
ACDL in section 5.5. The implementation of a CRL policy in the ACDL is described, although an
implementation of the actual algorithm is only presented later in chapter 6.

From section 5.6 until the end of the chapter, the services and data structures in the K-Component
framework are discussed, including a description of the con�guration manager, feedback event man-
ager, AMM and adaptation contract manager. The main application programming interfaces used
by component and adaptation contract developers are also described, including the con�guration in-
terface, the ArchRe�ect MOP and the ArchEvents interface. Other infrastructural services that are
key to the framework are also described, including KOM and the con�guration graph based on the
extensible mark-up language (XML) document object model (DOM).

5.1 Overview of CORBA Mapping

Although the K-Component model is designed to be independent of the underlying distributed object
computing platform, the implementation of the K-Component model, described in this chapter, has
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been developed on a CORBA platform. CORBA is a distributed object computing middleware that is
based on the client-server paradigm (OMG, Dec. 2002), and was chosen as an implementation platform
due to the extensive research community working on re�ective middleware architectures. This section
describes the high-level mapping of K-Component concepts, such as the component model, connectors
and the AMM to implementation structures built on top of CORBA's client-server model. The most
notable di�erence between the development of CORBA programs and K-Components is that CORBA
programs are generally either a client or a server program, while K-Components are developed as
multi-threaded components that typically operate as both a client and server program. The main
dependency between the current implementation and CORBA is that connectors and components
use CORBA data-types (C++ mappings of IDL data-types) generated from the KIDL-compiler (see
section 5.2.2).

The K-Component model extends CORBA's IDL-2 syntax, used to de�ne interfaces to CORBA
objects, as it does not support the speci�cation of dependencies between CORBA objects1. The K-
Component model provides K-IDL to specify component interfaces with explicit dependencies between
components. K-Components also models dependencies between components at runtime using the
AMM, while CORBA does not specify a model for managing runtime dependencies between CORBA
objects. The AMM in K-Components is implemented in two parts: the con�guration graph and
the KOM registry. The con�guration graph is implemented using the XML DOM (W3C, 1999) as
a directed, con�guration graph of components and connectors. The KOM registry stores the list of
active components and connectors and provides the mapping from components and connectors in the
con�guration graph to the actual components and connectors in the runtime. KOM is a component
model for C++ objects that was developed to support the AMM.

In CORBA, CORBA objects are typically incarnated as servants by registering the servant with
the Portable Object Adapter (POA), and creating a globally unique identi�er for the new object
called the interoperable object reference (IOR). In K-Components, a component is identi�ed using a
kref identi�er (see section 5.3.3), that contains an embedded IOR to locate the component. However,
the component is not implemented as a servant, as components can be replaced at runtime and this
would invalidate the published IOR. Instead, the component's incoming connector is incarnated as a
servant, registered with the POA using an Object ID (generated by the POA) sand explicitly activated.
The incoming connector is generated by the K-IDL compiler as a modi�ed, templated Tie class (see
section 5.4). The remote representation of a component using the incoming connector enables the
replacement of component objects without the invalidation of the published IOR for a component, as
the IOR to the servant remains valid even after the component is replaced. The incoming connector's
POA-generated Object ID is also stored in the AMM, allowing it to be deregistered from the POA
and K-Component runtime when necessary. The component itself is typically implemented as a KOM
object. On the client-side, outgoing connectors use a CORBA stub to bind to remote components.

Finally, the K-Component runtime is similar to a CORBA server in that it can host many servants,
although its implementation re�ects the multi-threaded nature of K-Components. It is implemented

1Although IDL-3, part of the CORBA component model, supports the speci�cation of explicit dependencies between
components, its C++ mapping di�ers from K-IDL's mapping (OMG, 1999). Also the goals of the CORBA component
model are di�erent to those of the K-Component model. The CORBA component model is designed as a relatively
heavyweight component model for enterprise computing, in contrast to the K-Component model's self-adaptive compo-
nent model.
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Figure 5.1: K-Component programming model.

as an active object that provides multiple threads for the di�erent programs, including client threads,
a CORBA server thread, adaptation contract threads and management threads.

5.2 Programming Model

K-Components provides a distributed programming model based on CORBA, that includes a K-IDL
compiler for generating stubs, skeletons, component and connector implementation classes from both a
component de�nition, the K-Component framework and the Orbacus/C++ libraries (Concepts, 2001).
Orbacus is a CORBA-compliant ORB for C++ that is owned by IONA Technologies (Technologies,
2003). The objectives of the programming model include reducing the complexity of developing self-
adaptive software and improving the maintainability of self-adaptive software. To help achieve these
objectives, a component's public behaviour is speci�ed and maintained separately from its adaptation
logic. Component programming is based on K-IDL and C++, while adaptation logic programming
uses the ACDL. As well as the compiler for K-IDL �les, a compiler has been implemented for ACDL
�les that is used to generate adaptation contract classes.
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Figure 5.1 illustrates the development lifecycle for a K-Component. The steps involved in specify-
ing, implementing and deploying a K-Component are as follows:

1. De�ne a component interface in K-IDL and save as a .kidl �le. A component developer speci�es
a component interface and any IDL constructs, such as IDL interfaces, structs and typedefs,
required by the component in K-IDL.

2. The K-IDL compiler pre-processes and compiles the .kidl �le to generate stubs, skeleton, connec-
tor and component classes in C++ (see �gure 5.3). The pre-processor phase maps component
interfaces into an extended version of IDL and the compilation phase then takes the extended
IDL, compiles it and generates output classes in C++. The compiler also generates a component
descriptor in XML that is stored in the Repository. The Repository is a local storage area for
K-Component speci�c �les.

3. The component programmer implements the component interface class to provide an implemen-
tation for the component.

4. The adaptation logic programmer speci�es the server-side adaptation logic for the component
in the ACDL. The ACDL compiler produces C++ adaptation contract classes as output.

5. The programmer writes a runtime, similar to a CORBA server (Henning and Vinoski, 1999),
in which the component can be deployed. A project is de�ned as a make�le or a visual C++
project, includes the runtime, component and adaptation contract classes and is built as an
executable.

The steps involved in specifying, implementing and deploying a client to a remote component are as
follows:

1. The client programmer uses the client and proxy C++ classes produced by the K-IDL compiler
to build two separate projects. The �rst project is a client component that uses a connector
to bind to the component and use its services. The second project is the proxy for the remote
component that encapsulates the CORBA stubs required to bind to the server component.

2. The adaptation logic programmer can specify client-side adaptation logic in the ACDL that is
associated with the proxy for the remote component. The adaptation contract classes that are
generated from the ACDL �le are included in a project de�nition with the proxy component
and built as a packaged shared library for Linux, or as a packaged dynamically linked library
(DLL) for Windows32 platforms.

3. The programmer writes a runtime that includes the client component. A client application is
built as a project that includes the runtime and client component. The packaged proxy compo-
nent is loaded dynamically by the client when it binds to the server component. On binding,
the adaptation contract in the proxy component is initialised and started. On unbinding, the
contract is stopped and the library is unloaded.
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5.2.1 Distributed System Architecture based on CORBA

The K-Component distributed system architecture is illustrated in �gure 5.2. For purpose of clarity,
the feedback event manager, con�guration manager and the AMM have been omitted.

The server component is deployed in a K-Component runtime and can have an adaptation contract
associated with it that is initialised by the component's incoming connector. The incoming connector
is generated by the compiler as a modi�ed, templated Tie class (see section 5.4). A Tie class is a
C++ class template that is used to incarnate a servant (Henning and Vinoski, 1999), but is modi�ed
in K-Components to also play the role of the incoming connector.

The client component is also deployed in a runtime and it uses a dynamically loadable CORBA
proxy component to communicate with the server component. The proxy component is loaded dy-
namically from a shared library in the Repository when the client attempts to bind to the server
component. An adaptation contract, concerned with reasoning about connections to remote compo-
nents, can be packaged along with the proxy in the shared library. The outgoing connector initialises
the adaptation contract when it loads the proxy (see �gure 5.29). As clients can have multiple out-
going connectors, client components may have multiple adaptation contracts concurrently reasoning
about their operation and the operation of their outgoing connections. The shared library for the
proxy is loaded dynamically using KOM (see section 5.3.2). When the client unbinds from the server,
the associated adaptation contract is stopped and the shared library may be unloaded.

5.2.2 K-IDL Compiler

This section describes the mapping of K-IDL to IDL and then to C++. The mapping should address
several requirements:

• The mapping should be clear and easy to understand.

• It should remain as close to CORBA as possible to maintain familiarity with CORBA program-
mers.
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Figure 5.3: K-IDL compiler output.

• It should enforce as many constraints of the programming model as possible, e.g., restricting
authorisation to invoke adaptation actions de�ned on components.

The K-IDL compiler compiles component de�nitions in K-IDL and generates C++ classes that can
be used to implement a K-Component distributed application. The compiler has two phases, a pre-
processor phase that maps K-IDL component de�nitions into an extended version of IDL, and a
compilation phase that maps the extended IDL into C++ and generates component descriptors in
XML. The K-IDL compiler is implemented as an extension to the Orbacus/C++ IDL compiler, version
4.1.1 (Concepts, 2001).

The compiler generates four distinct groups of C++ classes from a .kidl �le (see �gure 5.3): server-
speci�c classes, client-speci�c classes, proxy-speci�c classes and �nally classes that are common to the
three other groups. The extensions to the Orbacus/C++ compiler include:

• generation of the empty component server implementation class <component_name>_imp.h,.cpp
�les.

• generation of the <component_name>_skel_tie.h �le that includes a modi�ed Tie template
class that acts as the servant and class for incoming connector objects on a component server.

• generation of an outgoing connector class in <component_name>_CConnector.h,.cpp �les.

• generation of the proxy class in the <component_name>_ORBAdaptor.h,.cpp �les. The proxy
class is packaged in a shared library.

• generation of a <component_name>_Component.h,.cpp, �le that contains a component class
that extends both the templated class Component<> from the K-Component framework and
also the class <component_name>KC. The component class is extended by component server
implementation classes, connector classes and proxy classes.

The compiler also generates a component descriptor in XML from a component interface speci�ed
in K-IDL. The component descriptor is used by the AMM to build the XML representation of the
con�guration graph of components and connectors (see �gure 5.4). The con�guration graph is repre-
sented using the AMM Document Object Model (W3C, 1999) (AMM-DOM), as it is implemented as

99



k-component

is-remote

Object-id

provides

state

value

class-name

kref

k-connector

id

interface

k-connector

k-architecture (C
root

)

id

interface

k-component

k-connector

id

interface

id

action

Object-id

Object-id

Figure 5.4: AMM-DOM con�guration graph.

100



a DOM object using Apache's XML DOM Parser, Xerces-C++ (Project, Dec 2003). The component
descriptor is stored in the Repository, from where it can be located and loaded at runtime. The con-
�guration graph is automatically generated from component, connector and architecture descriptors
at runtime (see section 5.7.1).

A component descriptor contains information required by the AMM to locate and operate on the
component. The id attribute is a unique identi�er used to �nd the component instance in the KOM-
Registry. The kref attribute is also a unique identi�er for the component and is used to locate the
component. The is-remote attribute is used to determine whether or not the component is local
or not. The provides attribute describes the interface provided by the component and class-name

de�nes the class name that is used to implement the component. The component descriptor also
contains the list of connectors, actions and feedback states de�ned on the K-IDL interface, as well as
the cached values of the feedback states for remote components.

A connector is represented in the AMM-DOM by the interface it implements, the unique iden-
ti�er, id, and an Object-id that is used by the con�guration manager to shutdown an incoming
connector if necessary

5.2.3 K-IDL to Extended IDL Mapping

K-IDL is mapped to an extended version of IDL by a pre-processor implemented using Lex, Yacc
and C++. The pre-processor is part of the compiler, also implemented using Lex, Yacc and C++.
A component interface is mapped to an IDL interface that inherits from the KBind interface and
implements the provided interface. The <component_name> is modi�ed by appending �KC� to it,
allowing the modi�ed IDL compiler to identify the interface as a component. An implementation for
the operations in the KBind interface (see section 5.3.4) is generated by the compiler for both the
component implementation class and the Tie class.

component <component_name> {

provides <interface_name>;

};

is mapped to

interface <component_name>KC_impl : KBind, <interface_name> {

};

The mapping for a uses declaration in a component de�nition is problematic as IDL does not provide
support for specifying required interfaces2. The mapping represents the only part of the K-IDL to IDL
mapping that does not conform to IDL. Any uses declarations from K-IDL are left unchanged in the
IDL mapping. The addition of the uses declaration required extending the Orbacus IDL compiler.

Feedback states de�ned on a component interface are mapped onto operations on the component's
interface in IDL. The operations are pre�xed with k_state so that the compiler can identify the
state polling operations and generate the implementation to the method poll_state (see table 5.1)

2Although IDL-3 for the CORBA Component Model supports the speci�cation of �uses� interfaces on components
(OMG, 1999).
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that takes as a string the name of the feedback state and delegates to the requested feedback state
operation. For example:

state load;

is mapped to
double k_state_load();

Adaptation actions are also mapped onto operations on the component's interface in IDL. The opera-
tions are pre�xed with k_action so that the compiler can identify the component adaptation actions
and generate the implementation to the method action (see table 5.1) that takes as a string the name
of the component adaptation action and delegates to the requested action operation. For example:

action store;

is mapped to
double k_action_store(in short strategy);

5.2.4 Extended IDL to C++ Mapping

The uses declaration is non-standard IDL and is mapped to a client-side connector object, encapsu-
lated as a protected member variable in the component implementation class. Thus,

uses <interface_name> <connector_name>;

is mapped to C++ to the protected member variable

<interface_name>_CConnector* c_<connector_name>;

where <interface_name>_CConnector* is the outgoing connector class generated by the modi�ed
compiler and c_<connector_name> is a protected member variable in the <component_name>KC_impl
class.

As in the standard IDL-to-C++ mapping (Henning and Vinoski, 1999), IDL interfaces are mapped
to C++ classes. In K-Components, the component implementation class extends both the CORBA
skeleton class and a templated component class in the K-Component framework, (see table 5.1). The
templated component class extends the base class for all components and connectors, the Object

class (see �gure 5.5). The Object class provides common behaviours for connectors and components
allowing them to be queried about the interface they provide, their class and their unique identity in
the runtime. Namespaces are used to prevent con�icts with CORBA's base Object class.

The action operations in IDL have a non-standard C++ mapping. They are mapped to protected
methods both in the base CORBA classes and the component implementation class. This hides com-
ponent adaptation actions from 3rd party components. Component adaptation actions can, however,
be invoked by ArchReflect and ConflictResolver singletons, as they are both friend classes of the
component implementation class.

An abridged version of the extended IDL to C++ mapping for the component implementation
class is illustrated in table 5.1. Two methods in this class that merit discussion are poll_state and
action. These methods are used by ArchReflect and ConflictResolver to invoke feedback state
monitoring operations and adaptation actions. They are re�ective operations that take the name of
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class <component_name>KC_impl : virtual public POA_<component_name>KC,
virtual public Component< <component_name>KC>
virtual public PortableServer::RefCountServantBase {

friend class ArchReflect;
friend class ConflictResolver;
protected:
<interface_name>_CConnector* c_<connector_name>;
CORBA::Double k_<state_name>;
...
...
public:
// KBind Operations
...
// Reflective Operations
CORBA::Double poll_state(const char* state_name) {

...
if (!strcmp(<state_name>,state_name))
return <state_name>();

...
}
CORBA::Double action(const char* action_name);
...
// Public IDL Operations
virtual void buffer(const char* filename, BinaryFile& contents);
virtual BinaryFile* retrieve(const char* filename);
protected:
CORBA::Double action(const char* action_name, CORBA::Short strategy);
...
virtual CORBA::Double k_<state_name>();
CORBA::Double k_<action_name>(CORBA::Short strategy);

};

Table 5.1: C++ Translation of Extended IDL.

the state or action as a parameter, resolve the name to a target method and delegate the request to
the appropriate method, if one exists with the supplied name. The compiler generates the necessary
code to perform the delegation:

Feedback States

Component programmers have to implement feedback state methods as thread-safe methods, so that
di�erent adaptation contract threads can safely invoke feedback state methods.

double k_<state_name>();

is mapped to
CORBA::Double k_<state_name>();

Adaptation Actions

Component programmers have to implement adaptation action methods as thread-safe methods, so
that di�erent adaptation contract threads can safely invoke adaptation action methods. Another
constraint on adaptation action implementations is that they must complete in bounded time as they
often lock structures shared with application-level components and connectors that must eventually
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be released.
double k_<action_name>(in short strategy);

is mapped to
CORBA::Double k_<action_name>(CORBA::Short strategy);

5.3 C++ Component

In K-Components, a component is any class that extends the templated class Component<> from the
K-Component framework. Both CORBA objects, called server components, and proxy objects, called
proxies, are components in K-Components. Components can be packaged as KOM objects (see section
5.3.2) so that they can be loaded from shared libraries at runtime. The class Component<> provides
the following operations:

• init(const char* name, <component_name>KC* ref) used to initialise the component, e.g.,
in a proxy component it initialises the ORB.

• void remove_component() can be called by an incoming connector object to request that a
component instance terminate its computation and communication with other components, and
delete itself.

A CORBA server component is implemented as a class in C++ (see �gure 5.5). The server component
implementation class is generated by the K-IDL compiler and is called <component_name>KC_impl.

The developer must provide an implementation for all pure virtual methods inherited from the CORBA
skeleton class POA_<component_name>KC. The compiler generates the implementation for the infras-
tructural operations, such as those de�ned in KBind and CORBA::Double poll_state(const char*)

and CORBA::Double action(const char* action_name, CORBA::Short strategy).
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5.3.1 Object Class

All component and connector objects are instances of the base Object class. The Object class
provides operations common to both components and connectors, including get_id, get_interface,
block_for_reconfig and reconfig_complete (see �gure 5.5). Every connector and component
object has a unique identi�er. The unique identi�er is used to store references to all connectors and
components as Object instances in the KOM registry.

Both connector and component objects are subject to recon�guration, and block_for_reconfig

and reconfig_complete are used by the recon�guration protocol implementation (see section 5.7.4).

5.3.2 KOM Objects

Components can be created as KOM objects. KOM is a platform-independent, non-distributed com-
ponent model for C++ objects that was developed speci�cally for the K-Component model. KOM
enables the creation and deletion of objects at runtime from dynamically linked libraries, external
to the K-Component runtime's address space. KOM supports the creation/deletion of C++ objects
from explicitly loaded DLLs in Win32 and shared libraries in Linux (see �gure 5.6). It requires oper-
ating system support for the explicit linking of libraries of runtime, e.g., LoadLibrary in Win32 and
dlopen in Linux, and the execution of functions at entry points to DLLs and shared libraries, i.e.,
GetProcAddress and dlsym for Win32 and Linux, respectively. It supports the transparent loading
of shared libraries using the component naming scheme and the creation of KOM objects from the
shared library using creator objects. As KOM provides the ability to load and unload objects at
runtime using dynamically linked libraries, it must deal with authorisation and admission control for
dynamically loadable code. KOM's solution is to ensure the code base is located inside a trusted local
storage area, the Repository.

Component packaged in

Shared Library

K-Component Runtime

DllExport
creator<Interface,Component>*

Interface_get();

Connector

Interface

Component

+create()

-load_library()

-get_creator()
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+delete()

-<<static object>>

creator

Interface, Component

Figure 5.6: KOM creator registration.

Creator Objects

In Win32, memory allocated in a DLL cannot be deleted by a process external to that DLL. This
means that objects created in a DLL cannot be deleted by any service resident in the runtime address
space, as the DLL resides in a di�erent address space. As a solution to this problem, a creator
object is used to manage object creation/deletion from the DLL. The creator object is a static object
that is created in the DLL when it is explicitly loaded and it is deleted when the DLL is unloaded
(see �gure 5.6). The creator class is a templated class and each creator object is responsible for the
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creation/deletion of objects of a single type. Creator objects are registered with the KOM registry so
that they can be used to create and delete objects in the DLL.

5.3.3 Component Naming Scheme

Connectors use a component reference called a kref to bind to components. In K-Components, a
kref can denote a component either a local KOM object or a remote CORBA object, and have the
following format:

protocol://RemoteAddr//LocalAddr//Interface/ClassName/CompID

where

• protocol is either LIB or IOR indicating that the component is either a local KOM object or a
remote CORBA object.

• RemoteAddr is the stringi�ed Interoperable Object Reference (IOR) (Henning and Vinoski, 1999)
if the component provides the implementation for a CORBA object and empty if the component
is a non-distributed object in a local library.

• LocalAddr is the name of the shared library that represents either a KOM component or the
proxy to the remote component. As the shared library should be deployed in the Repository,
clients can resolve its location using only the library name.

• Interface is the name of the interface provided by the component.

• ClassName is the name of the component class that implements the provided Interface.

• CompID is a unique identi�er for the component generated by the runtime.

A kref is generated by an incoming connector in the current prototype and is distributed to clients in
text �les, (see table 5.3). The kref serves two main purposes in K-Components. Firstly, it is used by
the KOM registry to identify component instances in the runtime, so that they can be introspected
and adapted. Secondly, it is used as an object reference to bind to remote objects or load KOM
objects if the component is not already loaded in the runtime. If the component is a KOM object,
an instance can be created by loading the local library from LocalAddr. If the component is remote,
the IOR embedded in the kref can be used to bind to the CORBA component. IORs refer to exactly
one object instance, are strongly typed, can be persistent and can be nil. One performance problem
with embedding stringi�ed IORs in a kref is that they typically vary in length from 200 to 800 bytes,
although there is no upper limit on their size (Henning and Vinoski, 1999).
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AMM-DOM
Tie<IncomingConnector>

inc_invocation_count

store(KFeedbackMgr_ptr,ListEvts)

dec_invocation_count

string get_comp_desc_xml(CompID)

AddRef(KFeedbackMgr_ptr,ListEvts,isDynamic)

register_event_remote(KFeedbackMgr_ptr,this,ListEvts)

ArchReflect

register_event_remote(KFeedbackMgr_ptr,this,ListEvts)

Component

AddRef(KFeedbackMgr_ptr,ListEvts,isDynamic)

string get_comp_desc_xml(CompID)

xml_CompDescriptor

xml_CompDescriptor

Figure 5.7: Server-side AddRef.

AMM-DOM
Tie<IncomingConnector>

unregister_event_remote(KFeedbackMgr_ptr,this,ListEvts)

inc_invocation_count

remove(KFeedbackMgr_ptr,ListEvts)

dec_invocation_count

ArchReflect

unregister_event_remote(KFeedbackMgr_ptr,this,ListEvts)

Release(KFeedbackMgr_ptr)

Figure 5.8: Server-side Release.

5.3.4 KBind Interface

The KBind interface de�nes a set of behaviours provided by every CORBA component and is described
in table 5.2. It allows the registration of feedback events by clients on servers and the transfer
of component descriptions from servers to clients. The operations supported include a registration
service, AddRef(), that allows clients to register feedback events and a reference to the feedback
manager CORBA object with the server and receive a stringi�ed component descriptor as a return
value. Release() allows a client to deregister its feedback events and its reference to the feedback
manager with the component server.
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// KBind Interface is implemented by every Component
KBind {

string k_meta_AddRef(
in KFeedbackMgr kref, in KEventRegistrationList list_events,
in boolean isDynamic) raises (AlreadyRegistered);

short k_meta_Release(in KFeedbackMgr kref)
raises (NotRemovable, NotRegistered);

ReConnection k_meta_heartbeat();
};

Table 5.2: KBind Interface provided by every component.

The order in which the KBind operations are invoked when a client's outgoing connector binds to
a server is illustrated in �gure 5.7, and unbinding from a component server in �gure 5.8. It follows
the sequence:

1. bind(): the client attempts to bind to the remote component. Before returning control to the
client, the AddRef() operation is invoked on the server.

2. AddRef(): the registers its set of feedback events with the remote component's AMM as well as
a reference to its feedback event manager. The AddRef method does not maintain a reference
count of the number of connected clients.

3. unbind(): the client attempts to unbind from the remote component. Before returning control
to the client, Release() operation is invoked on the server.

4. Release(): the client is deregistered, removing its feedback event manager reference and any
registered feedback events.

The heartbeat() operation allows the Connection Manager (see �gure 5.36) to ping a server to see
if it is still available. This is useful in decentralised environments where connections are frequently
dropped due to host unavailability or migration. If a heartbeat() fails a user de�ned number of
times, the Connection Manager sets the value of the status feedback state in a connector to be an
error. In the prototype, the code that implements the KBind operations in the incoming and outgoing
connector class as well as the component implementation class is generated by the compiler.

5.3.5 Component Creation and Deletion

Components can be created as either normal objects, e.g., instantiated as CORBA objects, or using
KOM (see section 5.3.2). Components are identi�ed using a kref (see section 5.4.3). Similarly
components can be deleted either as normal C++ objects or using KOM. When components are
created and deleted the AMM has to be updated, including the con�guration graph, AMM-DOM,
and the KOM registry (see �gures 5.9, 5.10). When KOM objects are created, they are automatically
added to the AMM, while ordinary C++ objects require explicit registration/deregistration using
the ArchEvents interface. CORBA objects also have to be registered with the AMM along with a
reference to its ObjectID to enable the con�guration manager to shutdown the object if necessary.
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KOM RegistryServerMain

key=in_connector._kcomp_to_str(orb,if_name,comp_name)()

ArchEvents AMM-DOM

register_component(kref,Connector*,if_name,id,xml_comp_desc)()

set_comp_poa_id(in_connector,ObjectId_var)()

register_servant(Component*,Connector*,POA_ptr,ObjectId_var)()

register_servant(Component*,Connector*,POA_ptr,ObjectId_var)()

register_component(kref,Connector*,Component*,"",isRemote=false)()

Figure 5.9: Component creation and registration.

KOM Registry

unregister_component(kref)()

ServerMain ArchEvents AMM-DOM

unregister_servant(Connector*)()

unregister_servant(Connector*)()

unregister_component(id)()

Figure 5.10: Component deletion and deregistration.

Generally components are created as KOM objects, rather than CORBA objects, as they are platform
independent and easily repluggable.

5.3.6 Component Runtime

Component programmers have to write a runtime in which to deploy component server objects. A
sample, edited runtime can be found in table 5.3. A runtime is a C++ application that contains an
application thread, ServerMain in the above example, that is started by the con�guration manager
after calling configuration_manager::init. ServerMain also acts as the root component for the
AMM.

In the ServerMain::run method, there are several changes in progamming style to standard
CORBA. The incoming connector acts as the servant and it must be explicitly activated by a POA,
so that it can be shutdown if necessary by the con�guration manager (see section 5.6.1).

The incoming connector (or servant) also provides a method, _kcomponent_to_string, to create
a component reference, kref. The method uses the object_to_string method on the ORB interface
to create a stringi�ed IOR that is inserted in the kref. It also uses the component's class name and
the proposed name of the proxy's shared library, used by KOM, to generate a kref.
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...
class ServerMain : public Main
{
public:

int initialise(int argc, char* argv[]) {
// ORB initialisation here

}
virtual void run() {
...
COMPONENT_NAMEKC_impl* comp = new COMPONENT_NAMEKC_impl(rootPOA);
POA_COMPONENT_NAMEKC_tie<COMPONENT_NAMEKC_impl> in_connector(comp);
...
// Store ObjectID from POA's active object.
// Explicit activation of servant.
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId("COMPONENT_NAME");
cm_poa->activate_object_with_id(oid, &in_connector);

...
CORBA::String_var kref =
in_connector.

_kcomponent_to_string(orb, "COMPONENT_NAME_impl", "COMPONENT_NAMELibrary");
configuration_manager::register_connector(&in_connector, 0, "files");
configuration_manager::register_component(kref.in(),

&in_connector, comp, "", false, false);
configuration_manager::register_servant(comp, &in_connector, cm_poa, oid);
...
orb -> run();
configuration_manager::deregister_servant(comp);

}
private:

CORBA::ORB_ptr orb;
int argc_;
char** argv_;

};
int main(int argc, char* argv[]) {

JTCInitialize initialize;
ServerMain* sm = new ServerMain;
sm->initialise(argc, argv);
int res = configuration_manager::init(argc, argv, sm);
return configuration_manager::shutdown();

}

Table 5.3: C++ runtime with a deployed component.

5.4 Incoming and Outgoing C++ Connectors

The compiler generates both incoming an outgoing connector objects from component de�nitions in K-
IDL. Incoming connector objects are instances of a modi�ed Tie class, while C++ outgoing connector
objects are instances of a K-Component speci�c connector class.

The outgoing connector class <component_name>KC_CConnector is generated from a uses interface
de�nition in extended IDL. Instances of this class are outgoing connector objects. The class conforms
to the interface to <component_name>KC_Component by extending it, but it overrides its methods to
provide connector speci�c behaviours. The outgoing connector objects use a dynamically loadable
proxy component that provides CORBA IIOP stubs as transport. The proxy component is loaded
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from the Repository on connector binding using KOM. Class diagrams for the outgoing and incoming
connectors are shown in �gure 5.11 and �gure 5.12, respectively.

Connector

<name>

+inc_invoke_count()

+dec_invoke_count()

+ongoing_communication()

+link()

+relink()

+unlink()

+get_target()

+get_source()

Connector

Component

<name>

<name>_CConnector

+get_interface()

+get_class()

+get_id()

+block_for_reconfig()

+reconfig_complete()

Object

1

-<name>_ORBAdapter

1

Figure 5.11: Class diagram of the outgoing connector.

5.4.1 Tie Class as an Incoming Connector and a CORBA Servant

A servant class is used to create and incarnate CORBA objects that can be accessed by remote clients
(Henning and Vinoski, 1999). In Orbacus, there are two possible servant classes that can be used to
incarnate CORBA objects, the <name>_impl class and a Tie class <name>_tie. The K-IDL compiler
generates both of these classes, but the Tie class is used to incarnate the CORBA object. The Tie
class generated was modi�ed from the Orbacus compiler to be an incoming connector object (see
�gure 5.12):

template<class T> class POA_<name>_tie : virtual public POA_<name>KC,

virtual public Connector, virtual public JTCMonitor {

...

};

A Tie class is a C++ template that is used to instantiate a concrete servant. The implementation
of all methods in the Tie servant is delegated to the component instance, (called the tied object in
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Figure 5.12: Class diagram of an incoming connector.

CORBA terminology). The Tie class implements the Object Adapter pattern (Gamma et al., 1995)
where the Tie class plays the role of the adapter object and the component instance is the adaptee
object. Incarnating a servant involves creating a new CORBA object, registering the servant with the
Root POA (Henning and Vinoski, 1999), and creating a reference for the new object.

5.4.2 Connector Creation and Deletion

The connector constructor requires that programmers supply an identi�er for the connector, a reference
to its encapsulating component and an optional reference to its target component (see �gure 5.14 and
�gure 5.15):

<component_name>_CConnector* c

= new <component_name>_CConnector(const char* id, Object* src, const char* kref);

The base Object class for the creator stores stringi�ed names for the uses interface, the connector
class and its id. A connector object is identi�ed using the fully quali�ed connector_id:
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+init()

<name>_ORBAdapter

+init()

<name>KC_Component

CORBA::<name>
Component

Object

Figure 5.13: Class diagram of a client-side CORBA proxy.

<Component>::<Interface>::<connector_id>

This identi�er is used in the ACDL to acquire a reference to the connector object. When connectors
are deleted, they are also deregistered from the AMM (see �gure 5.16 and �gure 5.17).

AMM-DOMConnector

new Connector(string id, Object* src, string kref)()

register_connector(Connector*, Object*,"Component::Uses::<name>",id)()

KOMRegistryArchEvents

add_connector(id,kref,"Component::Uses::<name>")()

register_outgoing(id,Connector*)()

Figure 5.14: Outgoing connector creation and registration.

ServerMain AMM-DOM KOMRegistryArchEvents

add_connector(id,kref,"Component::Provides::<name>")()

register_connector(in_connector,0,"Component::Provides::<name>",id)()

register_incoming(id, Connector*)()

Figure 5.15: Incoming connector creation and registration.
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AMM-DOMConnector

delete()

unregister_connector(Connector*)()

KOMRegistryArchEvents

remove_connector(id,comp_uses)()

Proxy

Release()

Connector

unregister_contract(contract_)()

unregister_contract(contract_)()

Release()

CreatorAdaptContractMgr

shutdown(contract_))()

unlink()

unregister_outgoing(Connector*)()

Remote

Runtime
Runtime DLL

Figure 5.16: Outgoing connector deletion.

AMM-DOMConnector

delete()

unregister_connector(Connector*)()

KOMRegistryArchEvents

remove_connector(id,"Component::Provides::<name>")()

unregister_contract(contract_)()

unregister_contract(contract_)()

AdaptContractMgr

shutdown(contract_))()

unlink()

unregister_outgoing(Connector*)()

Figure 5.17: Incoming connector deletion.

5.4.3 Connector Binding

Connectors can bind to a remote component using either the connector constructor or the bind(const
char* kref) method de�ned on all connectors. Connectors can unbind from a remote component
using the unbind() method. Connectors can be bound to components by adaptation contracts that
call the bind operation de�ned on the ArchReflect MOP and is used to acquire a reference to the
connector from the KOM registry and kref is the component reference:

double ArchReflect::bind_connector(const char* connector_id, const char* kref);

5.4.4 Exception Handling in K-Components

There are three di�erent types of exceptions that can typically be thrown in a K-Component applica-
tion:
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• ANSII C++ exceptions

• CORBA/C++ exceptions

• K-Component exceptions

A hierarchy of K-Component-speci�c exception classes are de�ned in the K-Component framework.
The framework is designed to provide a uniform exception handling framework to the programmer. To
this end, CORBA exceptions that are thrown in component proxies are wrapped in K-Component ex-
ceptions before being propagated to the application level. This enables programmers to write the same
error-handling client code for components that reside in both local libraries and remote CORBA com-
ponents. Some of the base exception classes in the hierarchy include KComponentReferenceException,
KConnectorException, KAMMException and KRegistrationException. All these exceptions have
many subtypes, e.g.,
KComponentReferenceException has subtypes KHostNotFound and KLibraryNotFound.

5.4.5 Comments on the Programming Model

The runtime provides thread management services and application programs are encapsulated in a
managed thread object to conform to the JTC threading management model (see section 5.6.1). K-
Component application programmers are restricted to the creation of threads that conform to the
threading model.

The use of templates in the design of component and connector classes enables the framework
to perform runtime type checking on KOM objects loaded from libraries, using the dynamic_cast

operator (Stroustrup, 2000). This helps meet the goal of maintaining system integrity by ensuring
that KOM objects created at runtime are the expected type.

5.5 Adaptation Contracts in the ACDL

When a component programmer has �nished implementing a component, a client component and
runtimes for both, an adaptation logic programmer can specify a system's adaptive behaviour on both
the client and server side using the declarative ACDL. This section explains how ACDL contracts,
types, operators, expressions, adaptation actions, monitoring operations and policies are mapped to
C++ constructs by the ACDL compiler. The mapping should address several requirements:

• The ACDL should remain as close to C++ (without the pointers) as possible to maintain
familiarity with C++ programmers.

• The mapping should enforce as many constraints of the programming model as possible at
compile time, e.g., �ag type-incompatible recon�guration requests as errors at compile time.

• The generated C++ should not produce any compilation errors and runtime errors should be
handled by exceptions and not result in serious system errors, such as program failure.
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5.5.1 ACDL to C++

The ACDL is mapped to C++ using a compiler written based on the tool ANTLR version 2.4 for
C++ (ANTLR, 2003). The following section introduces the mapping for ACDL to C++ code that can
then be included in a component project and built. Firstly, the simplest mappings for the ACDL are
the declaration of identi�ers, operators and primitive types. Identi�ers, primitive types and operators
are mapped unchanged to the generated C++ code.

...
namespace KC {
class public contract : public Object, public JTCMonitor, public JTCThread {
public:

contract();
~contract();
virtual void validate();
virtual int init(Connector* c,

const char* dll_name, int sampling_time_interval);
virtual int shutdown();
virtual void run();

};
extern "C" {

ACDL_API creator_base<contract>* contract_get();
}
}

Table 5.4: Header �le for an adaptation contract in C++.

Adaptation Contracts and Handlers

The two main modular units of ACDL code are adaptation contracts and handlers. They are mapped
to a class that extends the framework's contract class and a function, respectively. Instances of
subclasses of the contract class are autonomous objects that run in their own thread of control and
are managed by the adaptation contract manager. In ACDL to C++ mappings presented in this
section, error checking code has been omitted for purpose of improving code readability. A simple
contract

[incoming | outgoing] <contract_name> (<connector_id>){

[statement]*

};

maps to a C++ class that extends the K-Component framework class, contract:

class contract_<contract_name> : public contract {

...

};

The base contract class for all generated adaptation contract classes is summarised in table 5.4.
The method init is called by an incoming or outgoing connector when the contract is loaded. It is
used to provide a reference to the associated connector object, register all feedback events declared in
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Figure 5.18: Monitoring from a contract.

the contract, and load all the predicate descriptors into predicate member variables. The validate

method contains other adaptation logic declared in the contract, such as if-then adaptation action
rules and is called by the run method. The shutdown method is called to deregister the contract with
the adaptation contract manager and force the thread to exit. Finally, the contract_get function
is exported from the DLL by de�ning ACDL_API as _declspec(dllexport) in the header �le. This
allows objects in the runtime create instances of the contract_storage class at runtime without
knowledge of the contract_storage type. The contract_get function returns a creator object
that is used to create and delete instances of the contract_storage object at runtime (see �gure
5.7.2).
A handler maps to a function de�nition that is referenced as a function pointer by
configuration_manager::register_event_local(...). Thus,

handler <handler_name>() {

}

maps to:

void callback_<handler_name>(double val, const char* params)

{

}

A reference to a handler function can be stored as a C++ function pointer with a locally registered
feedback event, as part of an event-condition-action de�nition, and invoked when the feedback event
is raised.

States and Actions

Adaptation contracts can monitor component feedback states by calling poll_state that returns the
value of the component feedback state cached in the AMM (see �gure 5.18).

double poll_state(<comp_id>, <state_name>);
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Figure 5.19: Architectural adaptation action execution from a contract.

maps to
double ArchReflect::poll_state(<comp_id>, <state_name>);

Component adaptation actions and architectural adaptation actions can also be executed from adap-
tation contracts.
There are two ways to execute component adaptation actions. Either the ConflictResolver can
queue requests to execute adaptation actions from adaptation contracts (see �gure 5.20), and exe-
cute them after checking for con�icts, or adaptation actions can be executed directly on components
allowing contracts to receive a reward from the components for executing the action. Architectural
adaptation actions are performed directly on the AMM (see �gure 5.19).

Both architectural and component adaptation actions are assumed to �nish in bounded time. An
ACDL action :

double action(<action_id>[, Priority[, strategy]]);

maps to

double ArchReflect::action(const char* action_id,

Priority=None, CORBA::Short strategy);

Feedback Events

Feedback events and predicates can also be de�ned in the ACDL as follows:

predicate <pred_comp_state>(<XML_file>);

event <event_name>(<state_name>,<pred_comp_state>,Priority,<handler_name>);

A predicate de�nition maps to, in e�ect, a reference to an XML �le containing the predicate. In the
ACDL mapping, it is mapped to a member variable of type string in the contract:

118



Adaptation

Contract

Adaptation

Contract

Configuration

Manager

ArchReflect

MOP

KOM Registry

2. Queue

Actions

4. Find Component in Registry 5. Invoke Action

3. Resolve Conflicts,

Execute Actions

Conflict Resolver

1. Component

Adaptation

Actions

Component

Figure 5.20: Component adaptation action execution with con�ict resolution.

Adaptation

Contract

Adaptation

Contract

Configuration

Manager

ArchReflect

MOP

Registry

2. Find Component in Registry

and Invoke Action

3. Invoke Action

1. Component

Adaptation

Actions

Component

Figure 5.21: Component adaptation action execution with a reward model (and no con�ict resolu-
tion).
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Figure 5.22: Adaptation contract initialisation.

string pred_comp_state;

std::ifstream f_pred_comp_state Storage(�<XML_file>�);

f_pred_comp_state > > pred_comp_state;

and it is initialised in the initmethod of the contract in C++ (see �gure 5.22) along with the feedback
event. The method init is called when the contract is started and it registers the feedback event
with the AMM. When a client attempts to bind a connector to a remote component, the connector
checks the AMM to see if any feedback events have been registered for it, and if they have, they are
then registered with the remote component using the KBind interface AddRef operation. The AddRef
operation is also used to register a reference to the feedback event manager for the K-Component.

virtual void init(..) {

...

std::ifstream xml_pred_com_state("F:\\Repository\\ref\\<XML_file>.xml");

xml_pred_com_state > > pred_com_state;

configuration_manager::register_event_local(connector_->get_interface(),

<state_name>,pred_com_state.c_str(), Priority, <fn_ptr_handler_name> );

...

}

States, Connectors and Components

The de�nitions of state, connectors and components:

state <state_name>(<component_id>);

maps to:

string <state_name> = resolve_kref::get_class_name(<component_id>);
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<state_name>.append("::");

<state_name>.append("<state_name>");

A connector de�nition is mapped to a stringi�ed connector_id from section 5.4.3. The string is used
to identify the connector object uniquely in ArchReflect operations.

connector <connector_name>(<connector_id>);

maps to:

string <connector_name>("<connector_id>");

A component de�nition is mapped to a stringi�ed representation of either its kref or a component_id.
So,

component <component_name>(<kref>);

maps to (for kref):

std::ifstream ior_file_component_name

Storage("F:\\Repository\\ref\\<component_id>.kref");

string component_name;

ior_file_component_name > > component_name;

and (for component_id)

component <component_name>(<component_id>);

maps to:

string <component_name>("<component_id>");

Architectural Adaptation Actions and Jitter

There are two architectural adaptation actions de�ned. The �rst, rebind_connector, unbinds an
existing connector from its target component and then binds it to a di�erent target component. It
uses the connector identi�er and kref to identify the connector and the component in ArchRe�ect.
ArchRe�ect subsequently uses the KOM registry to acquire a reference to the connector object and
then calls the unbind and bind operations on the connector object (see section 5.7.4).

rebind_connector(<connector_id>,<component_id>);

maps to:

ArchReflect::rebind_connector(<connector_id>,<component_id>);

The second architectural adaptation action allows the replacement of components:

replace_component(<component_id>,<component_id>);
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maps to:

ArchReflect::replace_component(<component_id>,<component_id>);

The jitter operation in the ACDL is used to prevent adaptation actions from being executed too
frequently. In the current implementation it causes the adaptation contract object to sleep for a user
de�ned period of time. The sleep operation is de�ned in a base class of the adaptation contract,
JTCThread.

jitter(<milliseconds>);

maps to:

sleep(<milliseconds>);

RL and CRL Policies

The RL policy contains a number of declarations that

rl_state <rl_state_name>(<state_name> [,predicate]);

maps to the struct

struct rl_state {

rl_state(string s, string p) { ...}

string state_name;

string predicate;

boolean is_feedback_state;

};

The RL policy contains a number of declarations that are used by RL. Note that actions cannot
take a priority as a parameter, as they are invoked directly on components in order to receive a
reward, rather than being invoked via the con�ict resolver that doesn't supply a reward. There is
only one RLAlgorithm supported in the current implementation, a model-based RL algorithm based
on dynamic programming (Sutton and Barto, 1998).

ListStates = {<rl_state_name1>,..,<rl_state_nameN>};

ListActions = {<actionID1>,...,<actionIDN>};

rl_policy <agent_name>(ListStates,ListActions,RLAlgorithm);

maps to:

const char* ListStates[] = { �<rl_state_name1>�, ..., �<rl_state_nameN>�};

const char* ListActions[] = { �<actionID>�, ...,�<actionIDN>�};

rl_policy agent_name(ListStates, ListActions);
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where rl_policy is a subclass of a class MDP that stores the set of rl_state structs, states and actions
in the MDP. The MDP class also contains a mode of the state transition counts. A RL policy is started
execution using

start_mdp(<agent_name>, <num_trials>);

that maps to a method de�ned on the MDP class:

void start_mdp(rl_policy& rl, int num_trials=-1);

CRL extends RL with decay:

decay <decay_name>(<state_name>, <scaling_factor>, <td>);

Decay is implemented as a local feedback event, and a function is inserted in contract::init that
creates the predicate descriptor for the decay declaration using the configuration interface:

string <decay_name> = configuration_manager::

create_decay_descriptor("<decay_name>",<scaling_factor>,<td>);

The local feedback events for decay and advertisement are generated from the ACDL code below,
where the handler function decay_state_name updates <state_name> using the decay predicate: :

predicate <decay_name>(<decay_file>);

event event_<decay_name>(<state_name>,<decay_name>,low,<decay_state_name>);

CRL also extends RL with advertisement. Advertisement is implemented in the feedback event man-
ager. An advertisement is de�ned as a predicate on an external component feedback state and it is
registered with the feedback event manager using the configuration interface, also specifying the
internal component feedback state. Similar to decay, the predicate on the remote component feed-
back state is registered as a feedback event by the feedback event manager, and if the feedback event
is raised, the updated value for the internal component feedback state is updated with the newly
advertised value for the external component feedback state. So,

advertisement <ad_name>(<internal_state>,<external_state>,<seconds>);

is mapped to

string <ad_name> = configuration_manager::

create_advertisement_descriptor("<ad_name>",<seconds>);

configuration_manager::register_advertisement

(�<internal_state>�,�<ad_name>�, �<external_state>�);

5.5.2 Proxies and Pluggable Contracts

Client-side adaptation contracts are packaged with proxies to remote components and loaded dynam-
ically as clients bind to components (see �gure 5.23). They are unloaded when a client unbinds from
a remote component, thus unplugging the adaptation contract. In this way the adaptation logic for a
component's connection can be replaced along with the old proxy to the remote component.
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Figure 5.23: KOM packaged component.

5.6 K-Component Framework

The AMM consists of several components - the AMM-DOM, a XML DOM representation of the con-
�guration graph of components and connectors, and the KOM registry of references to component
and connector objects. The Registry provides the representational link from the AMM in the con�g-
uration graph to the actual component and connector objects. The main interfaces that are used to
access and update the AMM are the ArchEvents interface in the con�guration manager that is used
to reify architectural events in the application level and ArchReflect MOP that is used by adaptation
contracts to monitor and recon�gure the AMM.

5.6.1 Con�guration Manager

A con�guration manager is a singleton deployed in every K-Component runtime that provides boot-
strapping and management services. It provides services such as a thread manager, an adaptation
contract manager and a con�guration service for initialisation and termination of the meta-level fa-
cilities (see �gure 5.24). The con�guration manager provides the following standard interfaces to
components and connectors:

• Configuration interface to startup/shutdown both services and application threads

• ArchEvents interface to register and deregister components and connectors to/from the AMM

The con�guration manager implements a threading model that must be followed by all threads in a
K-Component runtime, including application-level components. The common threading model allows
a thread manager component to provide services to start, stop and terminate application and meta-
level threads. The con�guration manager also contains the adaptation contract manager and feedback
event service that are discussed in section 3.7.
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Figure 5.24: The con�guration manager and sub-components.
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Figure 5.25: Con�guration manager startup and shutdown.
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The con�guration manager also provides a facade interface, called ArchRe�ect, that uses the
AMM and KOM registry services when updating the AMM or searching for component and connector
instances.

Con�guration Interface

The configuration interface is used by application programmers to initialise the runtime, launch
application threads, register/deregister adaptation contracts and shutdown the runtime (see �gure
5.25). The main service provided by configuration interface is thread management. The threading
model is provided by the package JThreads 2.0.1 (Concepts, 2000), a framework that provides a
Java-like API for writing multi-threaded programs in C++. Applications are started as a JThread
object from the mainline by passing the application thread object to configuration::init(). The
con�guration manager and the main thread of control can then wait for the application thread to exit
by calling configuration_manager::shutdown(), which also stops all other system threads before
allowing the runtime to exit. Some of the limitations of the JThreads implementation include the lack
of a guarantee on which thread will be woken up after a thread yields the processor, so theoretically
there is potential for starvation and the lack of support for thread suspension.

ArchEvents Interface

The ArchEvents interface provides operations that allow the synchronous rei�cation of events that
occur at the application level. The ArchEvents interface is a facade interface implemented by the
con�guration manager that provides update operations to the AMM that are called by components
and connectors. The calls to ArchEvents such as register_component and register_connector

are in code generated by the K-IDL compiler that is located in intercession points in components and
connectors, e.g., in the connector constructor.

5.7 ArchRe�ect MOP

The ArchReflectMOP represents the interface used by adaptation contracts to asynchronously re�ect
on the operating state of components and connectors using feedback states. ArchReflect is a facade
interface implemented by the con�guration manager that provides re�ective operations to adaptation
contracts (see �gure 5.24). The monitoring operations in ArchReflect only use the con�guration
graph, while adaptation operations use both the con�guration graph and the KOM registry. On
AMM update events, such as component/connector creation/deletion or connector binding/unbinding,
the ArchReflect MOP updates both the con�guration graph and the KOM registry, ensuring that
consistency between them is maintained. For updates to the AMM with remote components (either
incoming or outgoing), only the con�guration graph is updated. Updates are performed on component
binding by transferring component descriptions (see �gure 5.26).
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Figure 5.26: Automatic construction of the AMM and registration of remote feedback events.
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Figure 5.27: Deregister a client's feedback event manager and feedback events.

5.7.1 Automatic Generation of the AMM Con�guration Graph

The AMM con�guration graph is represented as a XML-DOM object, built using Apache Xerces for
C++. A default DOM object that contains a karchitecture element is created when the AMM is
initialised on startup. The DOM object is updated as components and connectors are created, and
connectors bind to components and unbind from components. Component descriptions are generated
by the K-IDL compiler (see section 5.2) and on component creation they are loaded from the Reposi-
tory. When a connector binds to a remote component, the component description can be either loaded
from the Repository, if available, or received from the remote component on calling AddRef (see �gure
5.26). The DOM object is then updated with the new component description.
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5.7.2 KOM Registry

When an update is performed on the AMM, it needs to be re�ected in the base-level components
and connectors. Since the con�guration graph only provides a representation of the components and
connectors, a mechanism is required to re�ect updates to component and connector objects. The
causal connection between the AMM and the components and the connectors in a K-Component
runtime is implemented using a Registry of Object instances.

The Registry is a store for references to component, connector and creator objects. It provides a
lookup interface that can, given an identi�er, return a reference to an active component, connector or
creator object. Components are stored in the Registry in a multi_map data structure.

The Registry stores references to components and connectors and it is updated using the ArchEvents
interface and can be queried using the ArchReflect interface.

The Registry of objects is de�ned as:

• Ok = {o1, ..., oN}, where oi = {id, ki}, where ki is a reference to an object that may be a
component, ci, or a connector, li, and id is a stringi�ed identi�er.

The Registry also stores a list of creator objects for KOM objects. As creator objects are responsible
for creating and deleting objects from shared libraries, they need to keep track of the objects they've
created. The Registry of creator objects is de�ned as:

• Fk = {{creator0, C0, d0, id}, ..., {creatorM , CM , dM}}, where creatori is the shared library's
creator object used to create all component objects, Oi ∈ Ci, from the shared library di ∈ Dk,
where Dk is the set of all explicitly loaded libraries in the runtime's address space.

The Registry provides a lookup service to retrieve references to component, connector or creator
objects. The lookup service provides the representational link between the component and connector
identi�ers in the con�guration graph and the KOM object references in the Registry.

5.7.3 Component Replacement

Components can be replaced by adaptation contracts that call the replace component operation de�ned
on the ArchRe�ect MOP:

double ArchReflect::replace_component(const char* CompID, const char* kref);

The component replacement operation has to guarantee structural integrity, ensure interacting com-
ponents are in mutually consistent states and maintain application invariants (see �gure 5.28). In
K-Components, a recon�guration protocol has been implemented that meets the structural integrity
and mutual consistency requirements:

1. invoke a block_for_reconfiguration method on the incoming connector that needs to be in
a consistent state before the component can be replaced.
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Figure 5.28: Component replacement operation in an adaptation contract.

2. Call remove on the component, that forces the incoming connector to wait for ongoing compu-
tation and communication in the component's outgoing connectors to �nish. The component
does this by calling the unbind method on all its connectors. The threading model assumes
that no new threads of control are allowed to be initiated in the component while it is being
replaced. There is an assumption here that both component computation and interactions end
in bounded �nite time.

3. The component is deleted and a new component is created, possibly as a KOM object. The
reference to the old component is replaced with the new component in the incoming connector.

In the K-Component recon�guration protocol for component replacement, only the component being
replaced is forced to a recon�guration safe state prior to being replaced. Components that initiate
communication with a component under recon�guration are blocked at the incoming connector, but
they can take their own decisions as to whether they will wait for the component to be replaced or
to rebind to a di�erent component that provides the same service. State transfer between the old
component and the new component can be facilitated by infrastructure, but it requires the presence
of a copy constructor for the component.

5.7.4 Recon�gurable Connectors and the Recon�guration Protocol

Connector objects provides binding (see �gures 5.29, 5.7) and unbinding (see �gures 5.30, 5.8) opera-
tions that can be called from adaptation contracts (see �gure 5.31).

Connector unbind operations can be invoked by adaptation contracts in a di�erent thread of control
from a component handling requests from clients. The recon�guration of a component's connectors
must be thread-safe and not a�ect system integrity. Ongoing computation and communication in
connectors, as well as state information at the component-level and middleware-level should be in a
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Figure 5.29: Client-side binding.
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mutually consistent state with a server before connectors are unbound. At the middleware level, the
transport protocol for the CORBA proxy is the stateless (OMG, Dec. 2002) that allows connections
to be broken without a�ecting system integrity. At the component-level, however, registered feedback
events and references to feedback event managers at servers mean that the client must inform the
server of disconnection in order to enable the server to deregister feedback events and the feedback
event manager reference on connection unbinding (see �gure 5.8). Recon�gurable CORBA bindings
that meet the adaptation consistency requirements from section 2.4.3 have been demonstrated in
previous projects (Almeida, 2001; Batista et al., 2003; Sadjadi and McKinley, 2004), and a similar
approach is followed in K-Components.

In K-Components, a recon�guration protocol that is based on a RPC-consistency model is sup-
ported (Almeida, 2001). The recon�guration protocol ensures that a connector has reached a safe
state before it can be recon�gured. A connector is considered to enter a recon�guration safe state
when it has no ongoing computation or communication. There is no attempt to drive the source or
target component to a safe state. An assumption of the recon�guration protocol is that interactions
between components �nish in bounded time (Wermelinger, 2000; Moazami-Goudarzi, 1999), enabling
the recon�guration protocol to lock connectors before recon�guration is performed.

The recon�guration protocol has to ensure that no new communication is initiated on a connector
that is going to be recon�gured. Connector operations inc_invoke_count and dec_invoke_count

are called as pre-operations and post-operations on all public methods de�ned on the connector.
They are used to increment and decrement a reference counter that indicates the presence of ongoing
communication in connectors, as well as a means to block a connector from initiating communica-
tion. The recon�guration protocol blocks a component from invoking an operation on a connector
that is being recon�gured by locking a synchronisation object using block_for_reconfiguration

method. This causes components that enter inc_invoke_count to wait until recon�guration has
completed, and the recon�guration protocol has noti�ed the component's thread by invoking the
reconfiguration_complete method. Synchronisation functionality comes from the JTCThreads
package (Concepts, 2000).

Finally, the recon�guration protocol avoids circular referencing problems associated with other
component models, such as COM (Microsoft, 2002), as connectors only wait for ongoing communica-
tion to terminate before they can be recon�gured. Components do not maintain reference counts for
connected clients. It is the responsibility of adaptation contracts in a�ected clients to identify broken
or dangling connectors to components and to recon�gure the connectors to bind to an appropriate
component.

5.7.5 Adaptation Contract Manager

Each K-Component runtime has an adaptation contract manager that is responsible for managing the
list of active adaptation contract threads, and synchronising their interaction with the AMM. It is
responsible for starting and stopping adaptation contracts.
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Figure 5.33: Component adaptation action execution with con�ict resolution.

Con�ict Resolver and Adaptation Action Rewards

The con�ict resolver is an autonomous, singleton component that stores a queue of adaptation actions,
traverses the queue looking for con�icting actions and then resolves any con�icts and executes the
actions. The adaptation actions are sent to the con�ict resolver by adaptation contracts using a design
based on the Active Object Pattern (Lavender and Schmidt, 1995), which decouples adaptation action
requests from adaptation action execution allowing the con�ict resolver, which resides in its own thread
of control, to decide on which actions to execute. The priority parameter is used by a con�ict resolver
to resolve con�icting adaptation actions. The default policy of the con�ict resolver for resolving
con�icts is to execute the action with the highest priority and drop all action requests with lower
priorities. If two or more action requests have the same, highest priority, then the �rst action in the
queue is executed.

5.7.6 Feedback Event Manager

The feedback event manager is a singleton component deployed in every K-Component runtime that
acts as both a producer and consumer of feedback events. A SyncMgr thread in the feedback event
manager is responsible for identifying raised events and notifying them to the appropriate feedback
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Figure 5.34: Component adaptation action execution with reward model.

event manager. Feedback events can be noti�ed at any time and there is no assumption of any ordering
on events or synchronisation of managers using global clocks.

Feedback events are de�ned in adaptation contracts and are registered with the AMM. Feedback
events that refer to remote components, remote feedback events, require a two-part registration pro-
cess. Firstly, the feedback event is registered with the AMM in the local runtime when its adaptation
contract is loaded and initialised. The registered event consists of the target component feedback
state, a predicate descriptor, event priority and a handler to execute when the event is raised. Sec-
ondly, the feedback event is registered with the AMM in the remote runtime. This is done by adding a
feedback event registration phase to the binding of the outgoing connector to the remote component.
Feedback events are associated with outgoing connectors, in order to be identi�ed for the registration
phase, by specifying the connector as a parameter to the adaptation contract de�nition (see section
3.7.3).

The feedback event manager also provides a SyncMgr thread that performs several tasks. These
include the synchronisation of feedback states between components and connectors and the AMM, the
matching of predicates de�ned on events and the noti�cation of feedback events. When a predicate for a
remote feedback event is matched, the SyncMgr for the remote runtime noti�es the local feedback event
manager of the updated value of the component feedback state, which the local feedback event manager
uses to update the local AMM. When the SyncMgr in the local runtime is next scheduled it raises
the local feedback event, registered in the �rst part of the registration process. Its associated handler
for the event is then executed. Feedback events can be given a priority, to enable the resolution of
con�icting adaptation actions requested by di�erent handlers. The default con�ict resolution strategy
is to not execute the lower priority con�icting actions.

Feedback noti�cation comes in the form of CORBA data objects that do not contain references
to components or connectors. The feedback event consumer part of the feedback event manager
is implemented as a CORBA callback mechanism. Distributed callbacks were favoured over the
CORBA Event service due to their ability to provide a lightweight service suitable for decentralised
environments. However, distributed callbacks su�er from a number of problems such as callback
persistence and tight coupling of clients and servers (Henning and Vinoski, 1999).

Clients register a reference to their feedback event manager with the incoming connector at the
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server when a client binds to a server and calls AddRef(FeedbackEvtMgr_ptr p, ..). Orbacus/C++
provides an implementation of is_equivalent(CORBA::Object) that can be used to compare object
references and test for duplicates3. Clients are noti�ed of feedback events using the one-way operation:

oneway void k_meta_event_notification(in KEvent k_event)

One-way operations are suitable for decentralised environments as they have �re-and-forget se-
mantics. Feedback event managers are not concerned whether the events are delivered or not, as it is
the responsibility of every client to reason about its own operation, not the responsibility of a server
to manage the client's view of the network.

In a decentralised environment, the availability of clients and servers is subject to frequent change,
invalidating references to feedback event managers. A clean-up thread, the Connection Manager (see
�gure 5.36), is provided that uses the AMM-DOM to periodically call heartbeat operations on feed-
back event manager references. If a user-de�ned count of sequential heartbeats fails, the Connection
Manager indicates that a client has dropped its connection and the connection is cleaned up.

Another potential problem that one might think could occur with callbacks is if the client of
a feedback event executes handler code that in turn calls the server component and forms some
dependency on its inconsistent state (Szyperski, 1998). This problem does not arise, however, as
servers execute callbacks as one-way operations, i.e. the server doesn't block waiting for the callback
to return allowing dependencies to arise on inconsistent state. Another restriction that prevents this
problem is that handler code for feedback events is restricted to accessing and updating the AMM using
adaptation contract threads. These mechanisms prevents the occurrence of the cyclic dependency and
self-recursion problems associated with callbacks.

3The CORBA speci�cation does not require all ORBs to support is_equivalent operation under all circumstances,
e.g., when objects are indirected through a proxy (Henning and Vinoski, 1999).
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enum EventPriority { Low, Normal, High, System};

struct KEventRegistration {

string name;

string interf;

string cb_conditions; // XML Descriptor

EventPriority priority;

};

typedef sequence<KEventRegistration> KEventRegistrationList;

struct KEvent {

string name;

double value;

EventPriority priority;

};

typedef sequence<KEvent> KEvents;

struct ConnectionStatus {

...

};

interface KFeedbackMgr {

oneway void k_meta_event_notification(in KEvent k_event);

ConnectionStatus k_meta_heartbeat(in string connector_name);

void deactivate();

...

};

5.8 Asynchronous Re�ection

One of the challenges when implementing the asynchronous re�ection model is the requirement for syn-
chronisation between adaptation contracts and application threads when accessing the shared AMM.
Many existing re�ective programming languages do not address the problem of synchronised access
to the shared meta-level as re�ective code is executed in a single-threaded environment synchronously
with program execution (Schaefer, 2001). There is contention in K-Components for the shared AMM
structure (see �gure 5.37), although this is reduced by specifying methods as either const (read-only)
or modi�er methods in C++.

In order to prevent possible thread starvation, adaptation contracts yield the processor at entry
and exit points. Yield points can be speci�ed in components by programmers to reduce the amount of
time until adaptation contracts are scheduled. For component programming, this allows programmers
to specify at speci�c points where re�ective code should be scheduled to execute. For example, when
an exception is thrown in the base-level, the programmer may yield the processor to increase the
responsiveness of adaptation contracts in reasoning about the system and �xing problem that caused
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the exception.

Rei�cation Categories in the AMM

Rei�cation
Category

Re�ective
Operations

Rei�cation Meta-Base
Consensus

Con�guration
Graph

Introspect,
Recon�gure

Intercession Strong

Component Introspect, Action,
Replace

Intercession Strong

Connector Introspect,
Recon�gure

Intercession Strong

Component
Feedback State

Introspect Feedback Event
Manager

Periodic Sync

Table 5.5: Rei�cation categories and the causal connection.

K-Components provides the AMM as a meta-level software architecture that rei�es several aspects
of the system, known as rei�cation categories. Architectural rei�cation categories represent architec-
tural features that can be introspected and/or modi�ed by the programmer. The con�guration graph
and the individual components and connectors can be both introspected and modi�ed at runtime,
while component feedback states can only be introspected at runtime, (see table 5.5).

Adaptation Agility

The sampling time interval for observations, tc, is con�gurable by changing the sleep time for the
SynMgr thread (see �gure 5.35) on calling configuration_manager::init(..). The scheduling
time interval for adaptation contracts, also con�gurable by setting a sleep time for each contract,
a�ects the adaptation agility (Li, 2000) of the application. There is a trade-o� between con�guring
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the responsiveness of the adaptation contracts in reacting to adaptation conditions and minimising
the execution overhead of re�ective code. Asynchronous re�ection can allow programmers to con�gure
this trade-o�. The scheduling time interval for adaptation contracts a�ects the adaptation agility (Li,
2000) of the application. There is a trade-o� between con�guring the responsiveness of the adaptation
contracts in reacting to adaptation conditions and minimising the execution overhead of re�ective
code.

5.9 Summary

This chapter described the implementation of a prototype of the K-Component model, with emphasis
on the programming model used to write components and their adaptation logic. The model builds
on the Orbacus/C++ ORB and compiler to allow programmers to de�ne self-adaptive components
in K-IDL and implement them in C++. The ACDL compiler is implemented using ANTLR and the
adaptation contract classes output are included in either proxies or runtime projects, where adaptation
contract objects are initialised by connector objects.

The programming model hides much of the complexity involved in specifying adaptation logic for
components through the support of the ACDL. There are however, some programming restrictions
in the model. In particular, applications must be speci�ed as JThread objects and threads must be
registered with the con�guration manager to enable clean shutdown of the runtime.

The AMM is implemented using both the AMM-DOM, that stores the con�guration graph of
components and connectors, and the KOM registry, that stores references to actual connector and
component objects. The KOM model allows objects to be loaded at runtime from libraries allowing
the construction of systems that can evolve at runtime without the requirement for restarting or
recompiling the system. It also enables adaptation contracts to be replugged at runtime.

In the next chapter, the K-Component model is evaluated by building a decentralised FileStorage
application that can adapt and optimise itself to a changing environment. A self-adaptive FileStorage
component is also evaluated that demonstrates self-healing behaviour.
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Chapter 6

Evaluation

"Annual income 20 pounds, annual expenditure nineteen nineteen six,
result happiness.
Annual income 20 pounds, annual expenditure twenty pounds, ought and six,
result misery."

Mr Micawber in David Copper�eld by Charles Dickens, (1850)

This chapter reports on the evaluation of CRL, the K-Component model, and the implementation of
the K-Component model against the objectives and requirements for autonomic distributed comput-
ing systems introduced in Chapters 1 and 2. The objective in evaluating CRL is to show that it can
be applied to coordinate the self-adaptive behaviour of K-Components in order to establish and main-
tain autonomic properties in a decentralised system. At the component-level, the performance of the
self-adaptation of K-Components in the face of changes in their environment is evaluated. The evalu-
ation also demonstrates that K-Components provide a structured and modular approach to specifying
autonomic behaviour of components by means of the ACDL. The K-Component programming model
is also evaluated through analysis of the expressive power, features and restrictions of the ACDL as
a language for specifying autonomic behaviour as decision policies. The �nal part of the evaluation
compares the features provided by K-Components with existing architectures supporting self-adaptive
software introduced in Chapter 2.

6.1 Evaluation Objectives

A number of requirements for distributed autonomic computing systems were introduced in Chapters
1 and 2. In this chapter, the K-Component model and CRL are evaluated by comparison with how
well they ful�l these objectives. The goals of the evaluation come under two main areas:

1. The establishment of autonomic system properties in a decentralised system using CRL and
K-Components.

2. K-Components and the ACDL as a model for specifying and implementing self-adaptive com-
ponents that can exhibit autonomic properties.
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The �rst evaluation criteria is addressed by an implementation and evaluation of a decentralised, �le
storage system in section 6.2 using K-Components and CRL. A set of experiments are described in sec-
tion 6.3, assessing how system-wide autonomic properties are realised using CRL and K-Components.
The goal in evaluating CRL is to demonstrate the autonomic properties of systems built using CRL and
the general applicability of the technique for building autonomic systems, rather than an exhaustive
evaluation of how tuning CRL parameters a�ects a system's operation.

The second evaluation goal is addressed by analysis of the K-Component model as a model for build-
ing autonomic components. Firstly, a performance evaluation of K-Components relative to CORBA is
presented in section 6.4, then an evaluation of the ACDL as a declarative language for specifying auto-
nomic behaviour using di�erent decision policies is undertaken in section 6.6 and �nally a feature-based
comparison of K-Components with existing models for building self-adaptive and autonomic systems
is described in section 6.7.

6.2 Decentralised Load Balancing

In this section K-Components and collaborative reinforcement learning are applied to the area of
adaptive load balancing (Schaerf et al., 1995). Load balancing is the problem of e�ciently using the
resources in a distributed system to process load(s) generated by some node(s). It is an example of a
distributed decision problem, and previous solutions for decentralised environments have been based
on numerical performance measures and decentralised optimisation. Existing load balancing systems
for decentralised environments (Schaerf et al., 1995; Jelasity et al., 2003; Montresor et al., 2002; Rao,
2003; Othman et al., 2001) have been mostly peer-to-peer systems that contain important di�erences
from the system described in this section. Firstly, they are not built using a component model, as they
are usually implemented as (overlay) routing protocols. Secondly they exploit the bidirectionality of
network connections to transfer load between neighbouring peers, whereas connectors in component
models are typically directed. Thirdly and �nally, they are often not adaptive (Jelasity et al., 2003;
Rao, 2003), in that they make design assumptions about the environment, such as the existence of a
random topology (Jelasity et al., 2003). Metrics used to evaluate these schemes are often based on
system properties such as the amount of load transferred between nodes (Rao, 2003), optimal use of
system resources (Schaerf et al., 1995) and the equalization of load distributions (Othman et al., 2001;
Jelasity et al., 2003).

The convergence between load levels at di�erent components in a load balancing system (or load
equalisation) is a widely-used valid metric for the evaluation of a load balancing system (Montresor
et al., 2002), although in dynamic, uncertain environments where the availability of components and
network connections is in constant �ux, the ability of agents to adapt their policies to discover better
solutions as the environment changes is an important goal for the load balancing system (Dowling
et al., 2005). Experiments 1 to 6 in this chapter address CRL's ability to perform adaptive optimisation
in the decentralised load balancing system. The other evaluation criteria used for the decentralised �le
storage application is the establishment of system-wide autonomic properties using only local knowl-
edge at the component level. Desirable autonomic properties of the system include the optimisation
of an unpredictable set of system resources through adaptive load balancing, and the recon�guration
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of the system to recover from errors or to exploit newly discovered resources.

6.2.1 Properties of Decentralised Load Balancing

Load balancing is an interesting evaluation problem for an autonomic computing system as the au-
tomated load balancing of resources helps a distributed system to optimise its performance. In a
decentralised autonomic system, resource consumption and balancing decisions are taken at the com-
ponent level and autonomic properties should be established at the system level. The load balancing
system in this chapter addresses two di�erent properties of decentralised systems:

• Uncertainty: each component does not have up-to-date information about the current load
levels at other components in the network, so load balancing decisions are taken locally with
uncertainty about the outcome of the action.

• Dynamism: Components join and leave the system and the storage capabilities of components
change frequently. Load balancing agents should be able to adapt their decision policies to a
dynamic environment.

6.2.2 Design of the Decentralised File Storage System

The load balancing application presented in this chapter has been implemented as a prototype and is
not designed to provide features required by real-world �le storage systems, but rather to demonstrate
the ability of a decentralised system, based on K-Components and CRL, to load-balance �les without
recourse to centralised coordination or global knowledge. The implemented system makes several
assumptions to simplify the problem domain:

• Each component is considered a manager of a set of �le storage resources1. In the system, every
K-Component provides a �xed amount of secondary storage space that can be used to store �les.
Each K-Component has an in-memory bu�er of unlimited size that is used to store �les until
either the �le is stored locally or it is forwarded to a connected component.

• Load (or �les in the system) is generated by clients external to the system and each load is of
�xed size2. Two di�erent models for generating load that are investigated are a peak model and
a more linear model.

• Adaptation contracts, based on CRL, decide whether �les in a component's bu�er should be
stored locally or forwarded to a connected component. Once a �le is stored locally, it can only
be removed by the client that requests the �le. There is also no support for replication of �les in
the system and if a component fails, the �les stored at that component and forward references
to other �les are lost.

1Kephart's model of an autonomic management component includes a role as a manager of a set of resources (Kephart
and Chess, 2003).

2This assumption simpli�es the extraction of numerical performance measures from the system. In real-world in-
strumented distributed systems the extraction of numerical performance measures is an open problem being addressed
by the autonomic computing research community, e.g., IBM's Autonomic Toolkit (IBM, 2004).
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• K-Components operate in a trusted environment where they are expected to supply honest
rewards and adaptation contracts, and are not expected to follow greedy policies that may be
detrimental to the interests of the system as a whole.

• The information available to an adaptation contract when selecting a load balancing operation
is based on prior experience and advertisements received from its connected components. The
contract does not make use of design-time knowledge, e.g., about the capacity levels of its local
resources or the arrival rate/size of �les received, in order to improve load balancing performance.

6.2.3 File Storage K-Component and Load Balancing Adaptation Contract

The �le storage system is composed of FileStorage components (see table 6.1) that provide an IDL
interface allowing clients to submit and retrieve �les from the system. The implementation of the
FileStorage component makes use of private methods to store �les to the component's local storage
area and forward �les to a connected component.

The component's interface includes three connectors to other components in the system in order
to enable �les to be forwarded to remote components. Three was chosen as the outgoing degree for
the FileStorage component in order to increase the number of network paths in the system and to
improve the ability of components to discover less lightly loaded components in the system.

Four states and fours actions are de�ned on the FileStorage component interface and they are
used by the adaptation contract to load balance �les that are in the component's bu�er. The compo-
nent's load state provides feedback on the current load level for the component's �le storage, while
the buffered state provides feedback on the current number of �les in the component's bu�er. The
component programmer updates the values for these states upon receiving �les, forwarding �les, and
storing �les to persistent storage. The actions store and forward0..2 are also de�ned on the compo-
nent interface. There are three forward actions de�ned on components, each of which load balances
�les to one of the three components connected to each component. Both store and forward actions
can be executed by the adaptation contract to attempt to store or forward a �le in the component's
bu�er.

The states and actions de�ned on the component are used by the adaptation contract in table 6.2
to specify the problem of determining the optimal storage location for �les in the component's bu�er
as a CRL policy. Each �le that is received by a component results in the value of its bu�ered state
being incremented and a MDP for the CRL problem is started by the if-then rule being matched
(see table 6.2). A decay model for cached Q-values for the forwarded state is also speci�ed, but no
advertisement function is speci�ed as it is implemented as a synchronous RPC function in the load
balancing system. This can be seen in the pseudo-code for the submit method of the FileStorage

component in �gure 6.1.
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// IDL
typedef sequence<octet> BinaryFile;
interface File {

double submit(in string name, in BinaryFile contents);
Binaryfile retrieve(in string name);

};
// K-IDL
component FileStorage {

provides File;
uses File n0; // 3 connectors to other File Storage Components.
uses File n1;
uses File n2;
state load; // Current load level of file storage at the component.
state buffered; // File in Buffer.
state stored; // File Stored.
state forwarded;// File Forwarded.
action forward0;
action forward1;
action forward2;
action store;

};

Table 6.1: K-IDL De�nition for the FileStorage component.

incoming LoadBalance(){
ListStates crl_states = {FileStorage::buffered,

FileStorage::forwarded, File Storage::stored};
ListActions crl_actions = {FileStorage::store, FileStorage::forward0,

FileStorage::forward1, FileStorage::forward2};
decay fs_decay(forwarded, 1.01);
crl_policy lb(crl_states,crl_actions, fs_decay); //RPC Advertisement
if (ArchReflect::poll_event(FileStorage::buffered) > 0)

start_mdp(lb); // until MDP termination
};

Table 6.2: ACDL de�nition of the CRL load balancing policy.
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1. File Recvd

submit()  {  //lock component

  buffered++;

  add_file_to_buffer(..);

  set_state(buffered);

  return calc_reward_using_current_load();

  //unlock component

}

retrieve()  {  //lock component

  if (get_file(..))

     buffered--; return file;

  else return error;

}

forwardX() {   //lock component

  try { RewardForwarded = c_nX->submit(..); }

  catch (..) { return RewardFailedForward; }

  set_state(forwarded);   //unlock component

  return RewardForwarded;

}

store()  {   //lock component

  try { RewardStored = add_file_to_storage(..); }

  catch (..) { return RewardFailedStore; }

  set_state(stored); //unlock component

  return RewardStored;

}

validate() {

    if (ArchReflect::poll_event

                (FileStorage::buffered)> 0)

      start_mdp(lb, _max_num_trials);

  }

2. Contract Scheduled

contract  LoadBalance

start_mdp(lb) {

    exec_action = get_boltzman_qvalue(lb);

    reward = ArchReflect::action(exec_action);

    learning_algorithm(exec_action, reward,..);

  }

component FileStorage

3a.Forward

3b.Store

3. <<action executed by AMM is either forward to a connector or store locally>>

4. File Retrieved

Figure 6.1: Pseudo-Code of LoadBalance Contract and FileStorage Component
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6.2.4 Overview of Load Balancing using CRL

Figure 6.2 provides an illustrative guide to the normal operation of the �le storage system. Firstly, a
�le is received by component A and placed in its bu�er. The CRL decision policy in the adaptation
contract for component A computes that a connected component C that has a lower total advertised
load cost (the advertised cost plus the connection cost) than A's local storage cost and, with high
probability, executes a delegation action de�ned on Component A that forwards the �le to component
C. An adaptation contract for component C subsequently stores the �le locally at component C. In
e�ect, each component solves a discrete optimisation problem to decide whether to attempt to store
or forward the �le.
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Figure 6.2: Decentralised load balancing decisions in CRL.

6.2.5 De�nition of the Load Balancing Application as a CRL System

This section de�nes the load balancing application more formally as a CRL system. The load balancing
problem is described as a Markov Decision Process with three states (see �gure 6.3): K, L and F. In the
K-IDL de�nition of the FileStorage Component, states K, L and F correspond to the states buffered,
stored and forwarded, respectively. State K is the start state for the MDP and indicates that there
is a �le in the component's bu�er that should be either stored locally or forwarded to a connected
component. States L and F are terminal states of the MDP. The goal of the adaptation contract, a
CRL agent, is to select the store/forward action that optimises the system problem of load balancing
the �le in the system. The adaptation contract terminates the MDP by successfully executing a store
or forward action, and making a transition to the terminal state stored or forwarded, respectively.
There is only a single forwarded state that is reached if any of the forward actions (forward0..2) is
successfully executed.

After the execution of an action by the adaptation contract, the distributed reinforcement learning
algorithm from CRL is used to update the adaptation contract's policy. The �le storage application
is formally de�ned as a CRL system below:

• An adaptation contract ni has a MDP that consists of a set of states Si = {K, L, F} corre-
sponding to states de�ned on the �le storage component ci, where K indicates that a �le is in

146



store

forwardFile
0..2

failedForward or

failedStore

K
F

L

(a) MDP at an Adaptation Contract

K
F

L

K
F

L

Initiate

New MDP

forwardFile
i

(b) Connected States

Figure 6.3: The FileStorage MDP.

a bu�er waiting to be handled, F indicates that a �le has been successfully sent to a connected
component for storage and L indicates that the �le has been stored locally at component ci.

• The external and internal states are: Ext(ni) = {K} and Int(ni) = {L,F}. {K} is the start
state of the MDP and the terminal states are {L, F}.

• The connected states are Cninj = {K,F}, where a state transition to state F at contract ni

initiates a new MDP at state K for contract nj (see �gure 6.3).

• The actions available at ni are Ai = {forward0, forward1, forward2} ∪ {store}. The set of
delegation actions is Adi = {forward0, forward1, forward3} where the component, ci, asso-
ciated with ni has three connected (or neighbour) components, c0, c1 and c2, and the action
forwardj(cj) represents an attempted submit operation on component cj . A DOP action,
Api = {store}, is also available that represents the store action de�ned on component ci.
An additional discover action is provided to allow the discovery of components, but it is im-
plemented as a static naming service and is, therefore, not included in the MDP or learning
strategy.

• Advertisement updates are implemented as synchronous responses to forward actions that re-
turn V values to clients. An adaptation contract ni receives Vj advertisements over a connector
lij , updates rj in its Cachei for Qi(s, aj). It also recalculates the Qi(s, aj) value using the
advertisement received.

• The distributed RL algorithm used in CRL is based on model-based reinforcement learning and
requires a state transition model. The state transition model is implemented as a statistical
model of the estimated probability of a store or forward0..2 action succeeding, similar to the
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model in (Curran and Dowling, 2004). In order to build the statistical model, the success (or
otherwise) of store and forward0..2 actions executed by each adaptation contract are sampled.
The sampled success/failure events are used to estimate the probability of a future attempted
store/forward0..2 action being successful. The estimated probability of an action succeeding,
Est (P (s′|K, a)) , given the current state K is calculated using:

Est (P (s′|K, a)) =
cS

cA
(6.1)

where cA is the number of attempted store/forward0..2 actions and cS is the number of success-
ful store/forward0..2 actions that have been executed. A state transition model is maintained
for every possible action in state K as:

� the probability of a forwardi action succeeding: pijS = Pi(F |K, aj),
aj ∈ {forward0, forward1, forward2}

� the probability of a forwardi action not succeeding: pijF = Pi(K|K, aj) = 1−Pi(F |K, aj),
aj ∈ {forward0, forward1, forward2}

� the probability of a store action succeeding: pstore = Pi(L|K, store)

� the probability of a store action not succeeding: pfull = 1− Pi(L|K, store)

� for all other state transitions and all actions, Pi(s′|s, a) = 0

• For the purposes of the experiments in this thesis, it is assumed that the cost of a connection
for all connectors in the system is equal, although in many distributed systems this would not
generally be the case. As a consequence, the connection costs for the load balancing experiment
are set to a �xed value for all connectors. The following are the connection cost models for the
delegation actions:
Di(F |K, a) = rS ∈ R, where a ∈ {forward0, forward1, forward2}
Di(K|K, a) = rF ∈ R, where a ∈ {forward0, forward1, forward2}
Di(s′|s, a) = 0, where a /∈ {forward0, forward1, forward2}
The values for rS and rF are set to di�erent static values for the experiments in section 6.3.

• The MDP termination costs describe a reward model for terminating a MDP after executing a
store or forward0..2 action. There are two MDP termination cost models for the single non-
terminal state, K, in the MDP. The �rst reward model, R(K, store), for the store action is
implemented as a load function that returns a reward based on the value of the component's
load feedback state, i.e., the current load at the component. The higher the load at the com-
ponent, the lower the reward received for terminating the MDP using a store action. For the
forward0..2 actions the MDP termination cost is a �xed value rC to re�ect the assumed �xed
cost associated with forwarding the �le. The
R(K, store) = Load(ci, fload) → {Low, Med, High, Peak} ∈ R
R(K, aj) = rC , where a ∈ {forward0, forward1, forward2}
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The load function in the application is designed to linearly scale the reward for four di�erent pos-
sible levels of load at a component: { Low, Med, High,Peak} . Scaling the reward produced for
store actions to the di�erent levels of load at the component can be used to encourage adaptation
contracts to exploit storage space when there is low load at the component and also to encour-
age the forwarding of �les to other components when the load level is high. The range of these
four levels and the rewards received for store actions are con�gured by the CRL system designer.

• The decay model, Decay(rj) = rj .ρ
td, is designed to degrade cached values for the load state

of connected components. Depending on the expected level of network dynamism, di�erent
values for ρ could produce better load balancing behaviour and be obtained through tuning and
experimentation.

• Given state K at component ci and actions a ∈ Ai, the Qi values for the store and forward0..2

actions are calculated using distributed model-based reinforcement learning:

Vi(K) = max
a

Qi(K, a)

Substituting the forward and store actions into the above formula, the Q-values for the di�erent
actions are:

Qi(K, store) = Load(ci) + pstore (Vi(L)) + pfull (Vi(K))

Qi(K, aj) = rC+pijS (Decay(Vi(F )) + rS)+pijF (Vi(K) + rF ) , aj ∈ {forward0, forward1, forward2}

• When the Q-values have been calculated, the action that is executed by the adaptation contract
is selected using the softmax selection strategy, Boltzmann action selection (Sutton and Barto,
1998). This allows suboptimal actions to be selected, albeit with a con�gurable probability by
modifying the temperature T , and thus allowing exploration of suboptimal actions in order to
discover less loaded components.

P (K, a) =
e−(Qi(K,a))/T

∑
a e−(Qi(K,a))/T

, a ∈ Ai (6.2)

6.3 Experiments

The experiments described in this section are based on a set of adaptive components that attempt to
globally optimise resource usage in a decentralised �le system without the use of global knowledge, and
loosely follow the goals of those de�ned in (Schaerf et al., 1995). The experiments di�er, however, from
those in (Schaerf et al., 1995), as they address the issue of demonstrating how the system adapts and
optimises itself to exploit resources that are dynamically added to and removed from the system. All
of the experiments, except one, are based on a peak load model (Montresor et al., 2002), where a single
load generator supplies load to the system. The peak load generator model has the characteristics of
streaming tra�c, such as multimedia tra�c (Fitzpatrick, 2001), where constant bit-rate tra�c stems
from a �xed small number of sources and the experiments investigate the load balancing behaviour of
the �le storage system under di�erent conditions.

149



c
i

c20

c4

c17

c5

c13

c9

c8

c12

c16

c1 Connections for c
i

c
i+2 c

i+3

c
i+4

Figure 6.4: Component topology used in experiments.

In the experiments, the choice of topology for the �le storage system is important as it is a potential
source of variability and bias in experimental results. An important requirement for the experiments is
to ensure that no global state is used, explicitly or implicitly, by the components in the system, and the
topology should be completely decentralised. Given these requirements, the topology chosen for the
experiments is a uniform grid topology with 20 K-Components (see �gure 6.4), where each component
has an incoming and outgoing connectivity degree of three. The maximum network distance (in terms
of number of hops) is 5. This uniform topology is preferable to a random topology as the experiments
are easily reproducible and it is not untypical of con�gurations found in grid computing environments
(Nowicki et al., 2004). Scale-free and adaptive topologies were also possible con�gurations, but were
not chosen as scale-free topologies have implicit structural knowledge of node capabilities.

In the uniform topology, each node is implemented as a single �le storage component that is
deployed in its own K-Component. A simple discovery service is used by components to lazily bind
connectors to other components and generate the �xed network topology. The experiments are all
based on the following topology:

• A group of 20 K-Components with local persistent storage for P �xed-size �les and an unlimited
in-memory bu�er. The provision of a bu�er of unlimited size enables clients to set a high rate for
�le arrivals, although a limit on the bu�er size is that it should not exceed the memory capacity
of the hardware used in the experimental setup.

• Every component, ci : i = 1..20, in the topology has outgoing connectors bound to the compo-
nents at positions {i + 2, i + 3, i + 4}. For example, in �gure 6.4 c1 is connected to components
c3..5. Components from c17..20 have wrap-around connections to components from c1..4. There
is a total of 60 connectors in the topology.

• The system has a set of Y load generating clients.

• λS is the client �le storage rate that is set to 1500 milliseconds for experiments 1 and 2 and 500
milliseconds for subsequent experiments. The goal is not to approximate a �le arrival rate for a
real-life �le storage system, but rather to simulate the operation of a generic �le storage system
that stores constant bit-rate streaming tra�c from a �xed small number of sources.
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• λR is the client �le retrieval rate that is set to 200 milliseconds for all experiments.

6.3.1 Hardware and Software Con�guration

For the experiments, the following con�guration of software and hardware was used:

• A client machine: 1 GHz Pentium III processor, 512 MB RAM, Windows XP. The load gener-
ating client(s) were executed on the client machine.

• A server machine: 3 GHz Pentium IV, 1 GB RAM, Windows XP. Both machines are connected
to each other via a 100 Mbit/second Ethernet. The average ping response time measured
by Windows XP is 0 milliseconds, making it negligible for the results presented. The 20 K-
Components were all executed on the server machine, as this enabled use of the system clock
for timing events in the experiments.

• The system clock for the server machine, time_t from the standard C runtime library, is used
to generate time information for experimental events. In win32 programs based on time_t, the
margin of error of the system timer can be up to 10-15 milliseconds (DiLascia, June, 2004),
which accounts for some of the minor oscillations in the timing patterns in the experiments but
is considered acceptable for the purpose of the experiments in this thesis.

• K-Components, including Orbacus 4.1.1 (Concepts, 2001) for C++, JTC 2.01 (Concepts, 2000)
and Xerces-C++ 2.4 (Project, Dec 2003).

6.3.2 CRL Parameter Tuning

There is a set of parameters and functions in CRL that can be tuned to a�ect the performance of the
system in a given environment. The wide range of di�erent possible con�gurations for the parameters
prevents a more thorough evaluation of the e�ect of tuning the parameters in this thesis, where the
concern is to demonstrate that CRL can establish system-wide properties without recourse to global
state. The set of con�gurable parameters includes:

• Advertisement implementation strategy. Alternative approaches to advertising load costs in-
clude (1) RPC, (2) noti�cation, (3) a hybrid RPC+Noti�cation approach. For the experiments
presented here, an RPC advertisement function was provided as there is a large amount of
tra�c in the system and a reduced need for asynchronous noti�cation of load changes. RPC
advertisements are supplied as return values to store and forward actions.

• Rate of Decay. The rate of decay, ρ, and unit time td, seconds in the experiments in this thesis,
are con�gured to match expected changes in component availability. For dynamic networks with
a large amount of tra�c available to sample, cached V-values can be decayed more rapidly than
in stable networks where there are less frequent events used to update the state transition model
(see equation 6.1).

• Temperature. Increasing the value for the temperature T in Boltzman-Action selection increases
the frequency with which sub-optimal load balancing actions are taken by adaptation contracts.
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While this can produce sub-optimal system behaviour, it has the bene�t of allowing adaptation
contracts to discover changes in component load levels.

• Connection Cost Model. A static, con�gurable cost model is used in the experiments, but in
decentralised systems such as MANETs a dynamic connection cost function that uses system
services to calculate estimated connection costs would provide more accurate information about
action costs to the CRL system.

• State Transition Model. The state transition model is a simple model of the probability of a
store or forwardi action succeeding based on sampling previous executions of the actions.

• A maximum cost, MaxCost, is de�ned for all experiments. Its value is set to -80.

• MDP Termination Cost Model. The reward model for a successful store action is designed by
the component provider as a function Load(ci, fload) → {Low, Med, High, Peak} ∈ R. In the
experiments, the following ranges are assigned to the di�erent load levels, where MaxLoad is
the storage capacity of the component:

Low < MaxLoad/4, Med <= MaxLoad/2, High <= MaxLoad× 3/4 < Peak

6.3.3 Experiment 1: Balance Load Over Homogeneous Components

Storage
Capacity

ρ rS rF rC T Low Med High Peak

15 1.05 -1 -10 -2 2.5 -2 -3 -8 -15

Table 6.3: Experiment 1, 2: Homogeneous Component Experimental Settings.

The goal of this experiment is to show how components can establish the system property of balancing
a peak load among a group of components to make optimal use of (an unknown quantity of) system
resources. In this experiment, a group of homogeneous components, with equal storage capacity of
15, are connected according to the topology in �gure 6.4 and con�gured according to the settings in
table 6.3. A single (peak) load generator sends �le storage requests to component c1 at a �le arrival
rate, λ = 1500 ms.

The values for Load(ci, fload) → R, and rC , are con�gured to ensure a high probability of storage
actions being taken, relative to forwarding actions, when a �le is received by a component. These
values were: Low = −2, Med = −3, High = −8, Peak = −15, and rC = −2. The connection costs
are set to rS = −1 and rF = −10. Cached Q-values for forward actions decay at a relatively high
rate, with ρ = 1.05. The temperature parameter, T , is set to 2.5 to produce a greedy action selection
policy, where more optimal actions are selected with higher probability.

As can be seen from the system load levels in �gure 6.5, CRL balances resource usage among the
group of components in the system. In fact, only 10 of the 20 components store the 150 �les sent to the
system, and store actions are always favoured over forward actions by contracts when a �le arrives in
a component's bu�er and the component has spare local storage space. This is because even though
the reward model may indicate forward actions should be favoured when a component's load becomes
high, i.e., when a store action's reward is Load(ci, fload) → Peak, the cached Q-values for forward
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Figure 6.5: Experiment 1.
Component and system load levels for homogeneous components with capacity=10 with a client

generating a peak load of 150, with λ = 1500 ms.
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actions at state K also decay quickly over time while store actions are being executed, resulting in
a lower probability of forward actions being taken. When a component's local storage space is full,
however, the contract forwards the �le to a connected component with the lowest estimated load.
Components at positions 3, 6, 8, 10, 11, 14, 15, 16, 17 and 19 do not receive any requests to store load
and are unused in the experiment.

Also, minor oscillations in the system load can be seen in the system load graph in �gure 6.5 (and
in the other system load graphs in this chapter). This is due in part to the minor timing errors in
win32, and contention between components for access to a shared log �le. The unit of time used in
all experiments in section 6.3 is seconds.

6.3.4 Experiment 2: Adapt Load Balancing Behaviour to Exploit the In-
troduction of a File Server with Increased Load Capacity

Storage
Capacity

ρ rS rF rC T Low Med High Peak

200 1.05 -1 -10 -2 2.5 -2 -3 -8 -15

Table 6.4: Experiment 2: File Server Component Settings.

The goal of this experiment is to show how components can adapt and learn to exploit the introduction
of a �le server with increased storage capacity. The homogeneous components are con�gured again
according to the settings in table 6.3, with storage capacity of 15 units, and a single �le server with
increased storage capacity (200 units) is placed at component position c20 in the grid. The total
load sent by a single load generator that interacts with the component c1, and at a �le arrival rate
λ = 1500 ms, is increased to 200 units.

The reward model for store actions were set to Low = −2, Med = −3, High = −8, Peak = −15,
and rC = −2. The connection costs are set to rS = −1 and rF = −10. Cached Q-values for forward

actions decay at a rate of ρ = 1.05. The temperature T is again set to 2.5.
As can be seen from �gure 6.6, load is again balanced over the components in the system and the

use of system resources is exploited, including the newly introduced �le server. This experiment shows
how adaptation contracts are able to learn to exploit the superior storage capabilities of the single
�le server in the system. The objectives of adapting and optimising adaptation contract policies to a
changed environment are met.

6.3.5 Experiment 3: Adapt the CRL Parameters to Optimise Load Bal-
ancing Behaviour for the File Server Scenario

Storage
Capacity

ρ rS rF rC T Low Med High Peak

10 1.05 -1 -10 -2 2.5 -2 -3 -8 -15

Table 6.5: Experiments 3 to 6: Homogeneous Component Settings.
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Figure 6.6: Experiment 2.
Component and system load levels for single server with capacity=200, homogeneous component

capacity = 15. Total load from single generator=200. λ = 1500 ms.
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Storage
Capacity

ρ rS rF rC T Low Med High Peak

100 1.05 -2 -7 -3 2.5 0 -1 -3 -5

Table 6.6: Experiments 3 to 6: File Server Component Settings.

The goal of this experiment is to show how tuning the CRL parameters and the reward model param-
eters for the �le server (see table 6.6) optimises the system behaviour of the load balancing application
to more quickly exploit the single �le server component. Similar to experiment 2, a single �le server,
but with lower �le storage capacity (100 units), is placed at component position c20. The settings
for the homogeneous components are left unchanged from the values in experiments 1 and 2, but
their storage capacity is reduced to 10 (see table 6.5). Again, a single load generator interacts with
the component c1, but in this experiment at a faster �le arrival rate, λ = 500 ms, and, similar to
experiment 2, it generates a total load of 200. The �le arrival rate is increased to demonstrate the
scalability of the K-Component model to increased tra�c levels. Connection costs and decay are set
to the same values as in experiments 1 and 2.

The reward function for the store action in the �le server component, Load(ci, fload) → Peak, is
tuned to increase the probability of �les being stored by the �le server component. The values were
set to Low = 0, Med = −1, High = −3, Peak = −5, and rC = −3. The connection costs for the �le
server component were set to rS = −2 and rF = −7 to increase the cost of forwarding a �le.

As can be seen from the results in �gure 6.7 (where the scale changes due to the increased arrival
rate), the system displays improved adaptability in learning to exploit the �le server at position c20.
This experiment demonstrates how the CRL and reward model parameters can be tuned to optimise
system performance and properties.

6.3.6 Experiment 4: Adapt System Load Balancing Behaviour to Exploit
Two Storage Servers in the System

The goal of this experiment is to show how the system can adapt its behaviour to exploit the intro-
duction of a second �le server component in the topology. In this experiment, two servers with �le
storage capacity (100 units) are placed at component positions c6 and c20. The �le server component
settings are con�gured to the same values as those used in experiment 3 (see table 6.6), and the
homogeneous components have the same settings as in experiment 3 (see table 6.5). Again, a single
load generator interacts with the component c1, generating an increased total load of 250, and as can
be seen in �gure 6.8, the system learns to exploit the superior storage capabilities of both �le servers.
This demonstrates that the system can automatically adapt and optimise its behaviour to a change
in its environment.

6.3.7 Experiment 5: Exploitation of a Single File Server by Three Load
Generators

The goal of this experiment is to show how the system continues to meet its system optimisation
goals of maximal resource usage and load equalisation for a more linear load distribution. In this
experiment, the number of client load generators is increased to three to produce a more linear load
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Figure 6.7: Experiment 3.
Component and system load levels for single server component with capacity=100, homogeneous

component capacity = 10. Total load from single generator=200. λ = 500 ms.
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Figure 6.8: Experiment 4.
Component and system load levels for two �le server components with capacity=100, homogeneous

component capacity = 10. Total load from single generator=250. λ = 500 ms.
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model. The three clients send 80 �le storage requests each, with a total load of 240, to the components
at positions c1, c2 and c3. The experimental settings are the same as in experiment 3 (see tables 6.6
and 6.5), with the single �le server at c20. As can be seen in �gure 6.9, the system is able to adapt
its load balancing behaviour to forward most requests from all three load generators to the �le server
and exploit its superior storage capacity. This demonstrates that the system properties continue to
be maintained with increasing numbers of load generators.

6.3.8 Experiment 6: Self-Adaptive Load Generator that Discovers and
Exploits a Server External to the System

The goal of this experiment is to show how a load generator developed as a K-Component can use
recon�gurable connectors and a component discovery service to exploit a component external to the
load balancing system when the load generator's original connector to the system (at component c1) is
broken. The discovered component then binds to existing components in the system and balances its
load with the existing components in the system. The con�guration of components (single �le server
at c20) and the experimental settings are the same as in experiment 3 (see tables 6.6 and 6.5)

outgoing storage (FileStorage::File::c_n1) {
connector c1(FileStorage::File::c_n1);
if (poll_state(c1,status)==CONNECTOR_BROKEN) {

component S2 = discover(FileStorage);
rebind_connector(c1, S2);
jitter(10000);

}
}

Table 6.7: Rule-based policy for a self-recon�guring connector to a FileStorage component.

During the course of this experiment, a single load generator sends �les to the component c1, but
at time t=128, the connection to c1 is broken. The load generator contains an adaptation contract
(see table 6.7) that identi�es the broken connection, discovers a new component c21 (capacity=100),
rebinds its connector to the new �le server component and starts sending �les to c21. The new
component c21 then binds its connectors to components c3..5 and starts storing �les locally from time
t=140. It stores most of the subsequent �les received locally, but several are forwarded to other
components, including c1 and c20.

While the connector was being recon�gured, a total of nineteen �les that the load generator would
have attempted to send to a connected component were not sent. During connector recon�guration,
the load generator connector is blocked waiting for recon�guration and as nineteen �les were not
dropped, this indicates that component discovery and connector recon�guration lasted approximately
9.5 seconds (19×500ms = 9.5 seconds). A limitation of the implementation of the �le storage system
exposed by this experiment is that many of the �les were not retrieved after connector recon�guration
as c21 receives requests to retrieve �les from the system, but does not have forward references to �les
sent originally to c1.
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(b) System Load Levels for Three Client Model

Figure 6.9: Experiment 5.
Three clients generating a dispersed load to c1, c2 and c3. Component and system load levels, single

server component with capacity=100, homogeneous component capacity = 10. Total load from
single generator=240. λ = 500 ms.
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Figure 6.10: Experiment 6.
Single, adaptive load generator identi�es broken connection to c1 at time t=120, discovers and binds

to new component c21 (capacity=100) and starts sending �les to c21 at time t=140. Server
component c20 has capacity=100, homogeneous component capacity = 10. Total load from single

generator=300. λ = 500 ms.
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6.3.9 Other Optimisation Criteria

Another system property of the load balancing system is the number of times a �le is forwarded
before it is stored at a component. The �le storage system should try to minimise this value. Table
6.8 shows the total number of times �les were forwarded in each of the experiments and the ratio
of successful forward/store actions. The load balancing system is not optimal for experiment 1 as
it doesn't minimise the total number of messages required to balance the load in the system. For
experiments 2 and 3, where the load is received at c1 and mostly stored at c20, a network distance
of 5 hops (see �gure 6.4) the forward/store action ratio is considerably improved. For experiment 3
the forward/store ratio produces only .25 more forward actions than the optimal 5 forwards/store if
all �les were stored in the server at c20. For the two-server experiment, where a server is placed at
c6 at a network distance of two hops from the source of the load c1, the forward/store ratio improves
to a ratio of 4.75. For experiment 6, the forward/store ratio is considerably lower at 2.6933, as the
load generator recon�gures to connect directly to �le server c21, where 100 of the 300 �les sent to the
system are stored without producing any forward actions.

The load balancing system can also be evaluated by its performance at optimising properties
at the component-level instead of the system level. The percentage of attempted action executions
(store or forward0..2) performed by each component in experiments 2 and 3 are illustrated in �gure
6.11. In experiment 2, only component c1 shows a deterioration in the percentage of successful action
executions performed, as all other components successfully execute every store or forward action they
attempt. However component c1 after time 100 repeatedly and unsuccessfully attempts to execute
store actions that fail as it has no spare storage space. The reason why c1 tends to prefer store actions
over forward actions (that will ultimately successfully forward the component to the �le server at c20)
is that the relative strength of the advertisements by c20 degrade over the 5 hops from c20. At each
hop, an additional connection cost of rF = −2 and a MDP termination cost of rC = −3 are added
to the advertisement. The MaxCost level for both store and forward0..2 actions at c1 is reached
after time 100 and failed store actions do not update the policy (MaxCost for the action has been
reached), so they are repeatedly attempted and fail. The same reasons can be used to explain the
increased failure of actions at c1 from time 100 in experiment 2. However, setting the temperature
T to 2.5 ensures that with some probability (20% in the case of experiment 2), component c1 will
attempt a forward action. This way, load can continue to be balanced, even though component c1 is
not performing optimally.
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Figure 6.11: Percentage of successful action executions performed by components in experiments 2
and 3.
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Store Requests by Load
Generator

No. of Forwarded Re-
quests (Cyclic)

Forwarded/Stored Ratio

Experiment 1 150 1050 (36) 7
Experiment 2 200 1361 (286) 6.805
Experiment 3 200 1048 (155) 5.24
Experiment 4 250 1188 (192) 4.752
Experiment 5 240 1227 (202) 5.1125
Experiment 6 300 808 (88) 2.6933

Table 6.8: Ratio of forward to store actions in experiments 1 to 6.

6.3.10 Feedback and System Properties using CRL

In the experiments presented in this chapter, the CRL agents, i.e., the adaptation contracts, learn to
collectively balance load between connected components in the system using di�erent feedback models,
including evaluative feedback (Sutton and Barto, 1998) from the execution of load balancing actions,
environmental feedback from the state transition models and collaborative feedback (Dowling et al.,
2005) as advertised load costs. Negative feedback is also provided by the decay of cached load costs.

Evaluative feedback is received by CRL agents as rewards after executing store and forward

actions. Agents use these rewards to update their policy using a distributed reinforcement learning
algorithm. The state transition model helps agents learn an improved policy, i.e., learn the optimal
load balancing action in the experiments, by building a stochastic model that provides environmental
feedback as an estimate of the probability of an action succeeding.

In CRL an agent provides collaborative feedback to its neighbours through advertisement, e.g.,
by advertising a change in its load value. Advertisement in K-Components can be implemented
using both RPC connectors and feedback events. The caching of a neighbour's advertised load costs
reduces the amount of control tra�c generated in the system, and in K-Components the cache is
implemented as component feedback state values stored in the AMM. Cached load costs are used
by the distributed reinforcement learning algorithm but these are only estimations of a neighbour's
current cost. In the experiments, adaptation contracts made load balancing decisions based only
on estimations of the value of loads of their neighbours, rather than their true, in fact unknowable,
values. This looser form of consensus introduces some problems relating to the use of stale data in
decision making, e.g., loads may be forwarded to the wrong component due to stale cache information,
but CRL helped improve the accuracy of cached estimates through both advertisement and decay of
cached information. Advertisement also produced positive feedback in load balancing action selections
in experiments 3 to 6. When actions were taken to balance �les to the �le servers, this increased the
probability that other adaptation contracts would perform similar load balancing actions that sent
load to a �le server. This form of collaborative feedback helps improve the ability of the agents in the
system to collectively learn and adapt to changes in the system.

The demonstrated ability of the �le storage system to adapt its load balancing behaviour to changes
in its environment, such as the appearance of a server with increased storage capability, is a function
of the di�erent feedback models in CRL. Negative feedback, in the form of decay, ensures that the
probability agents of selecting actions learnt in the past will degrade over time if there is an absence
of further actions or advertisement, while collaborative and environmental feedback help improve the
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collective learning of policies in the system.

6.3.11 Reducing Uncertainty in Action Selection in Dynamic Environ-
ments

In the experiments, collaborative feedback helped reduce the amount of uncertainty in an agent's
decision making by enabling neighbours to share their cached, partial view of the load in the system.
Cascading advertisements help properties in the system, such as the presence of a �le server, propagate
further than their single hop neighbours. In the case where a group of agents collectively learn similar
actions, such as forwarding �les to the single �le server in experiments 2, 3 and 5, we can say that the
agents establish a weak form of emergent consensus on the optimal actions to perform in the system.
The consensus is weak in that most, but not necessarily all, of the agents learn to perform actions
that forward �les to the �le server. This system property can be clearly seen in the experimental
results. The establishment of emergent consensus between a group of agents helps them overcome
the uncertainty inherent in dynamic environments and can provide a mechanism for establishing
collective, autonomic behaviour in decentralised systems, such as the collective forwarding of �les to
the �le servers demonstrated in the experiments.

6.3.12 Assumptions of CRL

CRL makes several assumptions about decentralised environments that do not always hold for real
systems. Firstly, there is an assumption that every agent in the system is trusted, as advertisements
received from neighbours are used to update the agent's policy without examination of the source of
advertisement to establish whether or not that source is a trusted sender of advertisements. CRL also
makes assumptions about the semantics of its tuneable parameters that may not always hold true.
In the load balancing experiments, each component has a common reward model for the execution of
store and forward actions, based on their shared view of a component's storage capabilities. In e�ect,
every agent in the load balancing system has a common reward model. CRL would be ine�ective in
the load balancing system if there was a lack of consensus by components on their reward models, or
on how to calculate its local storage levels, or what constitutes a unit of storage space. In the case
where there is no advance consensus between agents on the CRL model's parameters, agents would
�rst have to establish consensus on the values (and possibly meaning) of each parameter, before they
attempt to perform system optimisation.

6.4 K-Component Performance Testing

The experimental setup used for the experiments presented in this section is the same as in section
6.3.1. Experiments are performed on the FileStorage component de�ned in section 6.1 using adaptation
contracts written using rule-based and ECA policies. The unit of time for the performance �gures is
milliseconds unless stated otherwise.
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6.4.1 Experiment 7: Performance Comparison with CORBA

This experiment measures the performance of end-to-end K-Components invocations relative to the
performance of the underlying CORBA transport protocol and provides a guide to the overhead
introduced by asynchronous re�ection during normal operation invocations. The benchmark tests
performed are based on invocations of the submit operation provided by the FileStorage component,
with a 1 Kb �le passed as a parameter. The results from table 6.9 show that invocation times for
operations using K-Component connectors introduce overhead of approximately two hundred percent
to standard CORBA invocations based on Orbacus v4.1.1. The Orbacus round-trip invocation times
are comparable with results from the Open CORBA Benchmarking paper (Tuma and Buble, 2001)3.
There is no statistical di�erence between the average connector invocation times when adaptation
contracts are installed and when they are not installed, indicating asynchronous re�ection in K-
Components introduces low overhead to normal component operation. In �gure 6.12, however, the
minimal overhead introduced by asynchronous re�ection is visualised by the spikes in invocation time
that occur periodically (for connectors with an adaptation contract) at invocation numbers 56, 110,
154, 208 and 242. These spikes are caused by context switches to and from the adaptation contract
being evaluated and can be seen in the higher standard deviation of the invocation times for connectors
with a contract. They correspond to the sampling time interval, tc, that is set to 100 msec for all the
experiments.
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Figure 6.12: Experiment 7. Comparison of round-trip invocation times with CORBA.

3In the Open CORBA Benchmarking paper, a con�guration using Orbacus 4.01, Linux 2.2.16, Intel Pentium 166
MHz, 64 MB RAM produced median round-trip times of 0.00027 seconds for static, null invocations. The increased
overhead in the round-trip time for the submit operation can be accounted for by the marshalling/unmarshalling of the
1Kbyte �le sent as a parameter.
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Connector Round-
Trip Invocation
Time (With Con-
tract)

Connector Round-
Trip Invocation
Time (No Con-
tract)

CORBA Round-
Trip Invocation
Time

Average Time 6.37 6.51 2.10
Maximum Time 19.47 16.00 7.88
Minimum Time 3.91 3.91 1.17

Standard Deviation 1.99 1.58 0.98

Table 6.9: Round-trip invocation times (in milliseconds). Performance comparison with CORBA.

Broken Connector
Identi�cation

Rebind Connector Adaptation Agility Time

Average Time 2430 56 2486
Maximum Time 3810 114 3924
Minimum Time 2060 10 2070

Table 6.10: Connector rebinding times using rule-based policy.

6.4.2 Experiment 8: Recon�guring Connectors

The goal of this experiment is to demonstrate how a self-adaptive K-Component, with a single deployed
FileStorage component of storage capacity 15, can recon�gure a connector to adapt to changes in the
K-Component's internal state as well as changes in state external to the K-Component, (see �gure
6.13).

CompA
failed

CompB

CompC
rebind

Figure 6.13: Self-healing connection.

Connector Recon�guration on an Internal K-Component Adaptation Event

This experiment provides performance measurements for the self-healing connector described in ex-
periment 6. The adaptation contract (see table 6.7) de�nes a rule-based policy that describes how to
identify a fault in a connector, as a CONNECTOR_BROKEN status state on a connector object, and how to
recon�gure the connector to use a di�erent version of the connector's target component. The discover
operation simulates the automatic discovery of an alternative target component. Performance �gures
for this contract are provided in table 6.10. A particular feature required by this adaptation con-
tract is jitter control, in order to prevent the K-Component from attempting to repeatedly attempt
to recon�gure the connection if recon�guration fails. A total adaptation agility time can be de�ned
for the self-healing connector as the sum of the time required to identify the broken connection, the
average thread scheduling time, time taken to discover the new target component and the time taken
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handler rebind_FileStorage {
component S2 = discover(FileStorage);
connector c1(FileStorage::File::c_n1);
if (poll_state(c1,status)==CONNECTOR_BROKEN){

rebind_connector(c1, S2);
}

}
outgoing storageNotification (FileStorage::File::c_n1) {

state load(FileStorage);
predicate is_full(StateFull.xml);
event adapt_high_load(load, is_full, Low, rebind_FileStorage);

}

Table 6.11: ECA policy that rebinds a connector when FileStorage is full.

<?xml version='1.0' encoding='utf-8' ?>
<dsg:cb-values xmlns:dsg='http://www.dsg.cs.tcd.ie'

xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:schemaLocation='http://www.dsg.cs.tcd.ie

F:\\repository\\Schemas\\KEventDesc.xsd'>
<dsg:unary-op dsg:op-name='12' dsg:value1='10'/>

</dsg:cb-values>

Table 6.12: Predicate descriptor for a FileStorage feedback event.

to rebind the connector.

Connector Recon�guration on Feedback Events from an External K-Component

The goal of this experiment is to demonstrate how a self-adaptive K-Component, with a single deployed
component, can register a remote feedback event containing the is_full predicate with a remote
component, how the remote component determines when the is_full predicate is matched, noti�es
the feedback event to the client component, that then executes an associated rebind_FileStorage

handler for the feedback event, (see table 6.11). The rebind_FileStorage handler recon�gures the
connector to use a di�erent target component. The performance measurements are provided in ta-
ble 6.13. In this example the predicate for event noti�cation (see table 6.12) is matched when the
component's storage level increases above 10, since op-name '12' corresponds to the greater-than

predicate. The feedback event noti�cation time is measured from when the client component sends a
submit request that causes the server component's load to increase above 10 to when the noti�cation
event received triggers the execution of the associated event handler.

The results show improved adaptation agility properties to the identi�cation of the broken con-

Feedback Event Noti-
�cation Time

Rebind Connector Adaptation Agility Time

Average Time 810 589 1399
Maximum Time 2670 1660 4330
Minimum Time 293 260 553

Table 6.13: Connector rebinding times using an ECA policy.
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Connector
Binding

Proxy Load Load Library AddRef Update
AMM

Average Time 118 12.8 8.9 22.4 26.1
Maximum Time 148 13.6 9.4 96.4 29.4
Minimum Time 114 1.2 8.3 13.6 24.6

Table 6.14: Connector binding times (no contract).

Connector
Binding

Proxy Load Load Library AddRef Update
AMM

Average Time 109 24.8 19.8 19.5 24.5
Maximum Time 227 118.0 113 51.3 25.2
Minimum Time 66 13.6 8 13.9 23.1

Table 6.15: Connector binding times (with contract).

nector experiment. This is because the time taken to identify a broken connector after the attempted
invocation of an operation on a connector is determined by the time taken by the Orbacus ORB to
throw a Transient exception, i.e., the cause of the failed operation is unknown to the ORB (Henning
and Vinoski, 1999). The Transient exception is caught by the ORB adapter proxy and is rethrown
as a K-Component exception. The connector catches this exception, sets its status to broken, and
rethrows the exception to the application level. This method of identifying and adapting to broken
connectors is not ideal, as application programmers have to explicitly account for the fact that oper-
ations on connectors may fail and could succeed if they are retried, as an adaptation contract may
repair them after the Transient exception is thrown.

6.4.3 Other K-Component Performance Measurements

A set of measurements were taken to perform more �ne-grained investigation of the performance of
connector binding and unbinding, as well as component loading and unloading in K-Components.

Connector Creation and Binding/Unbinding Time

The connection setup involves a number of steps, including the explicit dynamic loading of a compo-
nent's library from disk, the creation of component and contract objects using entry points in the DLL
and the starting of contract threads. The results obtained have been averaged over 10 experimental
runs.

Connector binding to remote components involves a number of steps (see table 6.14), including
the explicit dynamic loading of the stub to the remote component, provided as a shared library, from
disk. The instantiation of the stub and contract objects from the shared library using entry points,
accessed using the system call GetProcByAddress, and the starting of contract threads also make up
part of the connector binding time. Finally, on binding to a remote component, a connector registers
its feedback event manager IOR and feedback events using the AddRef operation.

Connector unbinding involves a connector calling Release on the KBind interface of the remote
component, unloading its proxy and unloading the library for the proxy.

The results obtained in tables 6.14, 6.15, 6.16 and6.17 have been averaged over 10 experimental
runs.
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Connector Unbinding Unload Proxy Release Unload Library
Average Time 126 40 31.4 7.6
Maximum Time 572 248 99.7 7.9
Minimum Time 263 10 9.9 2.6

Table 6.16: Connector unbinding times (no contract).

Connector Unbinding Unload Proxy Release Unload Library
Average Time 166 77.1 2.34 0.872
Maximum Time 574 312.0 8.91 2.220
Minimum Time 19 7.3 1.06 0.615

Table 6.17: Connector unbinding times (with contract).

Component Loading/Unloading Time

For completeness, the component loading/unloading performance �gures for component replacement
are presented in table 6.18. In the experiments, the component was in a passive state prior to the
execution of the component replacement operation. As can be seen by comparing the load library
times in table 6.14 with the component load times, the performance of component loading/unloading
is comparable with dynamic linked library loading/unloading times for Win32.

Component Load Component Unload
Average Time 65 73
Maximum Time 253 310
Minimum Time 11 5

Table 6.18: Component loading/unloading times.

6.5 Analysis of K-Components as Autonomic Components

As shown in experiment 8, a K-Component can automatically identify and recon�gure a broken
connector as well as adapt itself in response to feedback events that describe a change in its external
environment. These are just two examples of simple autonomic behaviours that can be explicitly
programmed in K-Components. The automatic repair of broken connections is an example of a self-
healing autonomic property for K-Components, while the adaptation of a K-Component in response
to external feedback events can be used to self-optimise a component's operation. For example, a
self-optimising component could de�ne a feedback event as a predicate on some expected service
level by a remote component and if the remote component cannot meet the expected service level,
the noti�cation of feedback events can be used to trigger the automatic recon�guration of the client
component to use a di�erent component, if available, that meets its desired level of service.

Asynchronous re�ection provides autonomy to decision policies in the K-Component model. It
enables re�ective programs to reason asynchronously about the component's operation using feedback
states and adapt their structure using architectural re�ection. It enables the pro-active adaptation of
a component to a changing environment, orthogonal to computational activity in the component. This
is an important characteristic for autonomic components, as it enables components to self-optimise
and self-heal during idle processor time.
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The di�erent autonomic component behaviours that can be programmed using the K-Component
model are constrained by the set of feedback states that can be monitored and the range of adaptation
actions that can be performed on components and connectors. Feedback states and feedback events
can be de�ned on components, however the only support for a system feedback state is the status
state de�ned on connectors. While K-Components provides support for reasoning about the state
of application-level components and the status of connectors, there is no support for lower-layer
events concerning the underlying middleware or operating system. Such support could be provided
by repackaging the lower-level software as K-Components. Autonomic components require complete
and accurate information about their operation to guide their self-adaptive behaviour, and future
autonomic components will require access to information about the operating state of lower-level
system software. This can be achieved through the instrumentation of system software with component
models such as K-Components.

K-Components supports two di�erent types of adaptation actions that can be used to realise
autonomic behaviours: architectural adaptation actions that can recon�gure the K-Component's ar-
chitecture meta-model and component actions. Architectural adaptation actions are useful for recon-
�guring connections to faulty or poorly performing components, while component actions can be used
to perform �ne-grained adaptation to the behaviour of a component, e.g., change the implementation
strategy of some internal algorithm, or request the component to perform any action. Architectural
adaptation actions make use of KOM to provide K-Components with the platform independent ability
to load and unload, at runtime, components written in C++. The runtime evolution of components
in an autonomic computing system requires such a facility to be able to evolve system behaviour,
e.g., to meet changed user requirements or to adapt to a changed external environment. However, the
K-Component's AMM is constrained to support only static interfaces, de�ned at component design
time. There is no support for dynamic interfaces in the AMM, as they would introduce additional
system integrity management problems to the system (Dowling and Cahill, 2001a).

6.5.1 K-Components and the Requirements for an Autonomic Component

In chapter 2, a set of features were identi�ed that a self-adaptive component model should provide
in order to enable the construction of autonomic distributed applications. These are a state model
to describe runtime component operation, adaptation actions that can safely adapt the component,
a decision making entity that encapsulates the component's self-adaptive behaviour as a decision
policy, techniques to evaluate and update the decision policy over time, and a decentralised coordi-
nation model to support system-wide adaptation of groups of components. In K-Components, these
requirements are met by providing:

1. User-de�ned states can be de�ned on a component in K-IDL and a connector status state is also
supported to reason about connector operation. The values of these states can be monitored
at runtime by an adaptation contract to reason about the operation of the component and its
connectors, and possibly trigger its adaptation.

2. A set of architectural adaptation actions are supported that enable the recon�guration of the
K-Component by an adaptation contract at runtime. User-de�ned actions can also be de�ned
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on a component in K-IDL to adapt component operation at runtime.

3. The integrity and consistency of architectural adaptation actions is guaranteed by providing a
RPC-consistency recon�guration protocol that ensures that connectors and components have
reached a recon�guration safe-state before adaptation at runtime. Component developers have
to ensure that component actions maintain application integrity and are at a minimum thread-
safe.

4. Adaptation contracts are decision making agents that encapsulate a decision policy for adapting a
K-Component. The ACDL supports the declarative speci�cation of decision policies and di�erent
types of decision policies supported include rule-based policies, ECA policies, RL policies and
CRL policies.

5. Decision policies can be updated in two di�erent ways in K-Components. Action policies that
are encapsulated in adaptation contracts can be automatically loaded and unloaded at runtime
when a contract is associated with a proxy to a remote component. When a connector binds to
a remote component, the contract is loaded and started automatically and when the connector
unbinds from the remote component the contract is unloaded. In the case of the learning
decision policies, RL and CRL, their policies are evaluated and updated continuously during
system operation.

6. CRL provides a distributed reinforcement learning algorithm that allows a component to co-
ordinate changes in its self-adaptive behaviour with its connected components. CRL provides
advertisements and decay as mechanisms that update a K-Component's partial view of a wider
system, and delegation actions enable the coordination of solutions to decentralised problems,
such as the load balancing application in this chapter.

6.6 ACDL as a Programming Language for Autonomic Com-
ponents

The ACDL provides a declarative programming model for developers with which they can specify
decision policies describing the self-adaptive behaviour of K-Components. The syntax is based on
C++ syntax and, as such, should be familiar to existing CORBA/C++ developers. The following
discussion covers the expressive power of the di�erent policies that can be speci�ed using the ACDL,
as well as the distributed systems considerations when designing a policy and the available techniques
for evaluating and updating the policies.

6.6.1 Action Policies

Rule-based action policies can be used to reason about and adapt local components and connectors in
a K-Component. A rule-based action policy is encapsulated in an adaptation contract and scheduled
to run periodically. It evaluates rules consisting of conditions on component or connector state and
performs any associated actions if a rule is matched. Rules are speci�ed as if-then statements in the
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ACDL. Rule-based policies, however, are not suitable for reasoning about remote components due to
the increased network tra�c produced from periodic polling of remote components.

Event-condition-action policies are designed to support reasoning about remote, connected compo-
nents, and the conditional adaptation of a K-Component based on the state of a remote component.
Feedback events can be de�ned as predicates on the remote component's state and associated handlers
that are executed if the predicate is matched. Feedback events are registered with remote compo-
nents on binding, and if they are matched, the updated remote component state value(s) is noti�ed
to the source K-Component. This noti�cation can result in the execution of an associated handler
that can contain actions (or a rule policy) to adapt the K-Component. The ACDL also supports the
speci�cation of ECA policies based on local components in a K-Component.

Both rule-based and ECA policies have equal expressive power in that they can reason about
the state of a K-Component using feedback states and perform conditional actions. Both policies,
however, su�er from scalability problems. As the number of feedback states and actions available
in a K-Component grows, it becomes increasingly di�cult to specify policies that handle all possible
internal and remote states or be able to accurately predict the outcome of executing some action,
particularly in dynamic environments.

In K-Components, there is no support for the automated evaluation of how well action policies
meet some high-level self-management objective. Similar to existing systems (see chapter 2) the
evaluation of the performance of a K-Component's self-adaptive behaviour can be performed by a
system administrator observing its operation. Action policies can be updated in a running system, by
binding and unbinding connectors and updating their associated adaptation contracts. This requires
implementing new adaptation contracts, and dynamically loading them into the system as shared
libraries. To summarise, action policies are useful for designing lightweight, autonomic components
that operate in known or static environments and require relatively stable self-adaptive behaviours.

6.6.2 Learning Policies

A RL policy can be used to learn to associate component feedback states with component actions
or architectural adaptation actions in order to maximise reinforcements (rewards) supplied by the
component. Component providers implement a reward model that supplies reinforcements based on
the state of the component, the action executed and the outcome of the action, which is generally
determined by observing state changes in the component. Similarly for architectural adaptation ac-
tions, a reward model must also be provided, although this requires modi�cation to the K-Component
framework, as architectural adaptation actions are provided by the ArchRe�ect MOP.

Learning policies are useful where the space of component states and adaptation actions is large,
and also where the outcome of an adaptation action cannot be predicted by the adaptation contract
designer. Reward models can be used as a basis for evaluating adaptation actions and used to update
and learn a decision policy over time.
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Automated Evaluation of Actions

Reward models are designed by component providers to provide evaluative feedback on adaptation
actions, thus enabling a policy to automatically learn more optimal actions over time. Reinforcement
learning in the ACDL provides such support for the unsupervised learning of a policy. Reward models
can be based on simple models such as the success or failure of architectural adaptation actions or
runtime measurements made by a component, e.g., a connector's recon�guration performance or the
current load at a component. Typically, a component programmer evaluates the outcome of actions at
runtime by observing changes in a component's internal state or the state of its environment. It can
then supply a reinforcement to the learning agent that is based on the observation. For example, in
the FileStorage component, when a store or forwardi action is performed on a component and the
�le is successfully stored or forwarded, the component returns a reinforcement that re�ects the success
or otherwise of the action. Learning policies are useful for uncertain environments where properties,
such as the probability of action success, may not be known at design time, but may be adapted to
at runtime.

CRL as a Decentralised Learning Policy

Where learning policies need to operate on state that is external to a K-Component, CRL can be used
as it model's a K-Component's local view of the system as a cache and provides advertisement and
decay for updating that local view. The cache is provided in K-Component as component feedback
state values stored in the AMM. The cache provides a K-Component with an estimated model of the
state of its immediate, connected components. In CRL, the distributed RL learning algorithm uses
the cached values for remote component states, as well as the connection cost model and the MDP
termination cost model to learn an optimal policy for some system optimisation problem. Decay of
the cache provides negative feedback to a K-Component's local view of the system, and enables a
learning policy to adapt to changes in its environment.

In general, learning policies are useful for designing autonomic components that operate in dy-
namic environments where the result of self-management actions cannot be known at design time and
where there is inherent uncertainty when a component interacts with its environment. CRL provides
abstractions that allow components to collectively learn self-management policies in decentralised
environments, by providing a component with a local, partial view of the system with its cache, col-
laborative feedback for updating the cache through advertisement and decay for providing negative
feedback on the local view. Delegation actions enable agents to coordinate the solution to distributed
problems by transferring the responsibility for solving discrete optimisation problems between agents.

6.7 Comparison with Existing Systems

A feature-based comparison of K-Components is presented in tables 6.19, 6.20 and 6.21. As can be seen
in table 6.19, K-Components provides similar capabilities to existing self-adaptive middleware systems
such as QuO and OpenORB for reasoning about distributed component operation using models of
component state, although it provides less support for reasoning about system state. This could
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be provided, however, by re-engineering existing system software as K-Components. K-Components
also provides support for architectural adaptation similar to functionality provided by Georgiadis'
software architecture and OpenORB. This functionality guarantees system consistency through a
RPC recon�guration protocol.

State Model Adaptation Actions
Supported

Adaptation
Consistency

K-Components AMM, Connector State Intrusive, Non-Intrusive, In-
ternal

√

QuO Middleware, System State Intrusive, Non-Intrusive, In-
ternal

√

OpenORB AMM, Middleware, System
State

Intrusive, Non-Intrusive, In-
ternal

√

Accord Component State Intrusive, Non-Intrusive, In-
ternal, External

Not Speci�ed

Georgiadis Software Architecture State,
Component State

Intrusive, Non-Intrusive, In-
ternal

√

Khare Application State using Es-
timator Functions

Non-Intrusive N/A

Hinnelund Component State Non-Intrusive, Internal, Ex-
ternal

Not Speci�ed

Table 6.19: Comparison state models and adaptation actions.

Centralised Distributed Coordination Decentralised Coordination
K-Components √ √ √
QuO √ X X
OpenORB Limited X X
Accord √ X X
Georgiadis X Local Arch. Constraints X
Khare X X Decentralised Arch. Style
Hinnelund X X X

Table 6.20: Comparison of coordination models.

K-Components, however, allows the construction of more types of coordination models and decision
policies than existing systems. In particular, K-Components is the only system that provides support
for the construction of centralised, distributed and decentralised coordination models (see table 6.20).
K-Components is also the only system that supports both action and learning policies to encapsulate
a system's self-adaptive behaviour (see table 6.21). K-Components is also the only re�ective system
that supports executing a decision policy asynchronously to system operation. Finally, CRL is also
the only decentralised learning policy supported by any of these systems.

6.8 Summary

This chapter described an evaluation of the work presented in this thesis. In section 6.1, the objectives
of the evaluation of K-Components and CRL as building blocks for autonomic systems were outlined.
Each objective introduced was investigated and evaluated using experiments on a decentralised, load-
balancing �le system implemented using K-Components and CRL, as well as self-adaptation experi-
ments on a K-Component.

175



Decision Policy
(DP)

Decl-Prog DP Exec. DP Evalua-
tion

DP Updates

K-Comps Rule-Based,
ECA,
Learning Policy

√ Async Component/
Contract

CRL

QuO Rule-Based,
ECA

√ Async/Sync Sys-Admin,
GUI

X

OpenORB Rule-Based,
ECA

X Sync Sys-Admin Manager
Component

Accord Rule-Based √ Async Sys-Admin Composition
Agent

Georgiadis Rule-Based,
Arch-
Constraints

X Async Sys-Admin Selector
Functions

Khare Estimator Func-
tion

X Async/Sync X X

Hinnelund Learning Policy
with
Critic

X Sync Critic/Learner Iterative
Policy Search

Table 6.21: Comparison of decision policies.

The experiments were divided into di�erent scenarios, focussing on di�erent system properties of
the load balancing application that emerge from locally speci�ed behaviour at K-Components as well
as the self-adaptive performance of K-Components. Some performance measurements for architectural
events such as component loading and unloading as well as connector binding, unbinding and rebinding
were presented. A performance comparison of K-Components with CORBA was used to investigate
the extra overhead introduced by connectors and asynchronous re�ection.

An analysis of the K-Component model as a model for building autonomic components is also
presented. It includes an evaluation of the capabilities and limitations of the ACDL for de�ning
autonomic component and system behaviour. Finally, a feature-based comparison of the K-Component
model with existing systems shows how the K-Component model provides more extensive support than
existing systems for developing self-adaptive components and decentralised system software.
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Chapter 7

Conclusion

"Where I am, I don't know, I'll never know, in the silence you don't know, you must go
on, I can't go on, I'll go on."

Samuel Beckett, The Unnameable (1958)

This thesis described the design and implementation of a self-adaptive component model called K-
Components and showed how the decentralised coordination of self-adaptive components can establish
and maintain autonomic properties in distributed systems that operate in dynamic and uncertain
environments. CRL was introduced as a decentralised optimisation technique that can be used to build
decentralised coordination models, and its ability to establish and maintain autonomic properties was
evaluated using a load balancing application developed using K-Components and CRL.

In this chapter, the contents of this thesis are summarised, an overview of the objectives of the
thesis are presented and how they were ful�lled, and the contribution of this thesis to the state of the
art is outlined. To conclude, future research ideas for the work presented in this thesis are discussed.

7.1 Thesis Summary

Chapter 1 provides background for the autonomic computing paradigm and motivates the use of
bottom-up techniques to engineer autonomic computing systems. The K-Component model and CRL
are then introduced, and features of K-Components such as the component and connector models,
architectural re�ection, and asynchronous re�ection are discussed. Then, background to CRL and the
di�erent feedback models it provides to tailor its learning properties to decentralised environments are
presented. Finally, the objectives of the thesis are stated and a de�nition of an autonomic computing
system is provided.

Chapter 2 starts with a description of the limitations of existing consensus-based approaches to
building autonomic computing systems in decentralised environments, and then a set of requirements
for a self-adaptive, autonomic system is developed. The related work in the �eld is then reviewed, in
terms of the requirements presented for a self-adaptive, autonomic system. The review highlights the
achievements and limitations of existing work in self-adaptive systems, as well as recent decentralised
approaches to building distributed systems.
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Chapter 3 describes the K-Component model the main concepts of the K-Component model,
including the component model, connectors, architectural re�ection, asynchronous re�ection and the
ACDL. An example of a self-adaptive component is provided and the main features of the ACDL
discussed. Chapter 4 describes the CRL algorithm, including the di�erent feedback models in CRL
and how to specify a CRL policy in the ACDL.

Chapter 5 presents the implementation of the K-Component model. It describes the language
mappings for K-IDL and the ACDL and the K-Component framework in detail. A description of how
K-Components are built using CORBA is also provided. Chapter 6 evaluates both K-Components and
CRL as building blocks for autonomic computing systems using a decentralised load balancing, �le
storage application. The application exhibits autonomic properties of adaptive, system optimisation
to a changed environment and self-healing in the presence of broken network connections. Performance
measurements for K-Components and a feature-based comparison of K-Components with the reviewed
systems are also provided.

7.2 Contributions

This thesis addressed the problem of developing self-adaptive components that can coordinate their
operation to exhibit autonomic properties in uncertain and dynamic environments. The main con-
tributions of this thesis are the K-Component model and CRL. The thesis identi�es self-adaptive
components as a building block for autonomic components and collaborative reinforcement learning
as a coordination technique for building decentralised systems with autonomic properties. The K-
Component model contributes a programming model for building self-adaptive systems that includes
a component model and the adaptation contract description language. Self-adaptive behaviour can be
speci�ed in the ACDL as rule-based, ECA and learning policies. A model of asynchronous re�ection
enables the execution of adaptation logic asynchronously to program execution, and the continuous
monitoring of components. The model meets the six requirements for a self-adaptive autonomic com-
puting system presented in Chapter 2, i.e., K-Components provides a state model for components, a
set of architectural adaptation actions and component adaptation actions, mechanisms to ensure sys-
tem integrity during architectural adaptation, adaptation contracts as autonomous decision making
components, mechanisms to update an adaptation contract's decision policy over time and CRL as a
decentralised coordination model to manage collective system adaptation behaviour.

A decentralised �le storage application was developed using K-Components and CRL that can
self-optimise to a changing environment without the use of global information, and self-heal by re-
con�guring faulty connections at the component-level. The application shows how CRL can establish
system-wide autonomic properties, such as the adaptation and optimisation of the system to a changed
environment and near-optimally balanced load over a group of connected components, in dynamic and
uncertain environments.
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7.3 Future Work

The scope of the di�erent domains covered by this thesis has led to many interesting research questions
that could not be fully investigated in this thesis due to their lack of immediate relevance, or their
potential to open up larger research problems. A number of areas of potential future research have
been identi�ed for the K-Component model and CRL and are described below.

CRL Research Questions

In decentralised systems, the lack of a global view of the system generally prevents system designers
from making prior assumptions about system properties. One alternative to making design time
assumptions about system properties is to attempt to infer global properties from local observations.
One potential approach would be to attempt to automate the tuning of parameters in CRL based
on local observations. This approach is interesting to help cater for special cases, but in the general
case there is the potential that errors in inferring global properties could propagate throughout the
system leading to chaotic system behaviour. A possible way of ensuring that automated tuning of
parameters meets the system objective(s) is to establish consensus on estimated local models of the
system properties. Converged, estimated models o�er a potentially interesting basis for designing
algorithms to automate the tuning of CRL and reward model parameters to solve the optimisation
problem at hand.

Also, decentralised systems may often require the optimisation of more than one system property.
Multiple objective functions can be used to describe optimisation problems where there is more than
one competing objective function, and further work is required on how to specify systems with many,
possibly con�icting, optimisation goals in CRL.

In CRL, there is an assumption that every agent in the system is trusted. However, in open,
distributed systems this will not always be the case. Future development of CRL could involve the
development of local trust models of agents that have been encountered in the past. The trust models
would, in e�ect, be a memory of previous interaction with those agents and trusted agents could also
collaborate by sharing trust models of other agents. The reinforcement learning algorithm must also
take into account the trust models when calculating the optimal policy and mechanisms could be
developed to adjust the advertised function to take account of a neighbouring agent's trust pro�le.

K-Components

In K-Components, future work could involve migrating the framework to the web services platform
where �rewall traversal should not hamper the construction of large scale systems, as is currently the
case with CORBA. There is scope for further research in simplifying the programming model. The K-
Component model extends the CORBA programming model and provides a challenging programming
environment. Adaptation contract programmers have to consider the interaction between adaptation
contracts and component operation when de�ning action policies and designers of learning policies
have to build a reward model, as well as model the dynamic behaviour of the component as a MDP. A
simpler, declarative programming model could reduce development time for self-adaptive components.
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The ACDL could also be integrated with more system support services for decentralised envi-
ronments. For example, decentralised agents require service discovery capabilities to both bootstrap
their operation and to update their view of available resources in their locality. The current version of
K-Components does not provide support for decentralised service discovery and the addition of decen-
tralised service discovery support, e.g., Universal Plug-and-Play for LANs or a service discovery engine
for mobile ad hoc networks, would enable easier development of autonomic computing applications
using K-Components.
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Appendix A

Abbreviations

ACDL Adaptation Contract Description Language
ADL Architecture De�nition Language
AMM Architecture Meta-Model
CRL Collaborative Reinforcement Learning
DOP Discrete Optimisation Problem
DP Decision Policy
ECA Event-Condition-Action
K-IDL Extended Interface De�nition Language for K-Components
MDP Markov Decision Process
MOP Meta-Object Protocol
P2P Peer-to-Peer
RL Reinforcement Learning

Table A.1: Glossary of Key Abbreviations used in the Thesis
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Appendix B

ArchRe�ect, ArchEvents and
Con�guration Interfaces

The ArchRe�ect, ArchEvents and con�guration interfaces are de�ned in tables B.2, B.4 and B.6,
respectively.

ArchReflect Interface
double bind_connector(const char* ConnectorID, const char* CompID)
double bind_connector(int ConnectorID, const char* CompID)
double rebind_connector(const char* ConnectorID, const char* CompID)
double rebind_connector(int ConnectorID, const char* CompID)
double replace_component(const char* CompID,const char* kref)
double replace_component(int CompID,const char* kref)
KOM::ObjectID* get_component(const char* CompID)
KOM::ObjectID* get_component(int CompID)
KOM::ObjectID* get_connector(const char* ConnectorID)
KOM::ObjectID* get_connector(int ConnectorID)
double action(const char* ActionID, Priority e, CORBA::Short strategy)
void resolve_invoke_component_action(int op_id, const char* targetID,
const char* CompID, Priority e, long jitter, CORBA::Short strategy, void* any)
double poll_state(const char* StateID)

Table B.2: The ArchRe�ect MOP operations.
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ArchEvents Interface
double register_component(const char* CompID, KOM::Object*, bool is_remote)
double deregister_component(const char* CompID)
double deregister_component(int CompID)
double register_connector(const char* ConnectorID, KOM::Object&)
double deregister_connector(const char* ConnectorID)
double deregister_connector(int ConnectorID)
void register_event_local(const char* EvtID, const char* predicate, EvtHandler&)
void register_event_remote(CORBA::FeedbackMgr_ptr p, const char* ConnectorID,
ListEvtRegistration&)
void deregister_event_local(const char* EvtID)
void deregister_event_remote(ListEvtRegistration& listEvts)
double bind_connector(const char* ConnectorID, const char* CompID)
double bind_connector(int ConnectorID, const char* CompID)
double unbind_connector(const char* ConnectorID)
double unbind_connector(int ConnectorID)

Table B.4: The ArchEvents interface.

Configuration Interface
double register_contract(KOM::Object* ContractID)
double deregister_contract(KOM::Object* ContractID)
void register_event_local(const char* if_name,
const char* EvtID, const char* predicate, EvtHandler&)
void register_event_remote(CORBA::FeedbackMgr_ptr p, const char* ConnectorID, ListEvtReg-
istration&)
void deregister_event_local(const char* if_name, const char* EvtID)
void deregister_event_remote(ListEvtRegistration&)
void synchronise_feedback_states_with_meta_level()
CORBA::FeedbackMgr_ptr get_feedback_mgr()
char* get_comp_xml_desc(const char* CompID)
void register_advertisement(const char* int_s, const char* ad_xml, const char* ext_s);

Table B.6: The Con�guration interface.
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Appendix C

XML Schemas
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<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.dsg.cs.tcd.ie"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:dsg="http://www.dsg.cs.tcd.ie"
elementFormDefault="qualified">

<!-- definition of root element -->
<xs:element name="cb-values" type="dsg:conditions"/>

<!-- definition of attributes -->
<xs:attribute name="value1" type="xs:double"/>
<xs:attribute name="value2" type="xs:double"/>

<!-- definition of complex elements-->
<xs:element name="unary-op" type="dsg:unary"/>
<xs:element name="binary-op" type="dsg:binary"/>

<!-- definition of complex types -->
<xs:complexType name="conditions">
<xs:all>

<xs:element ref="dsg:unary-op" minOccurs="0"/>
<xs:element ref="dsg:binary-op" minOccurs="0"/>

</xs:all>
</xs:complexType>
<xs:complexType name="unary">
<xs:attribute ref="dsg:op-name"/>
<xs:attribute ref="dsg:value1"/>

</xs:complexType>
<xs:complexType name="binary">
<xs:attribute ref="dsg:op-name"/>
<xs:attribute ref="dsg:value1"/>
<xs:attribute ref="dsg:value2"/>

</xs:complexType>
</xs:schema>

Table C.1: Feedback Event XML Schema.
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<?xml version="1.0" encoding="UTF-8"?>
<!-- KComponents-->
<xs:schema targetNamespace="http://www.dsg.cs.tcd.ie"

xmlns:dsg="http://www.dsg.cs.tcd.ie"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<!-- definition of root element -->
<xs:element name="karchitecture" type="dsg:architecture"/>

<!-- definition of attributes -->
<xs:attribute name="component-id" type="xs:integer"/>
<xs:attribute name="component-name" type="xs:string"/>
<xs:attribute name="connector-name" type="xs:string"/>
<xs:attribute name="kref" type="xs:string"/>
<xs:attribute name="poa-id" type="xs:string"/>
<xs:attribute name="connector-id" type="xs:integer"/>
<xs:attribute name="is-remote" type="xs:boolean"/>
<xs:attribute name="cyclic" type="xs:boolean" default="false"/>
<xs:attribute name="event" type="xs:string"/>
<xs:attribute name="value" type="xs:double"/>

<!-- definition of complex elements -->
<xs:element name="kcomponent" type="dsg:component"/>
<xs:element name="kconnector" type="dsg:connector"/>

<!-- definition of complex types -->
<xs:complexType name="event">

<xs:attribute ref="dsg:event"/>
<xs:attribute ref="dsg:value"/>

</xs:complexType>
<xs:complexType name="component">
<xs:sequence>
<xs:element name="provides" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="state" type="dsg:event" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="action" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="dsg:kconnector" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute ref="dsg:component-id" use="required"/>
<xs:attribute ref="dsg:component-name"/>
<xs:attribute ref="dsg:kref" use="required"/>
<xs:attribute ref="dsg:is-remote"/>
<xs:attribute ref="dsg:poa-id"/>

</xs:complexType>
<xs:complexType name="connector">

<xs:sequence>
<xs:element ref="dsg:kcomponent" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
<xs:attribute ref="dsg:connector-id" use="required"/>
<xs:attribute ref="dsg:connector-name" use="required"/>
<xs:attribute ref="dsg:cyclic" default="false"/>

</xs:complexType>
<xs:complexType name="architecture">

<xs:sequence>
<xs:element ref="dsg:kcomponent" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="dsg:kconnector" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute ref="dsg:component-id" use="required"/>
<xs:attribute ref="dsg:kref" use="required"/>

</xs:complexType>
</xs:schema>

Table C.2: AMM-DOM Con�guration Graph XML Schema.
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