
Supporting Visual Diagnosis of
Performance Problems in Multi-Core and

Parallel Software

Roman Atachiants

Thesis submitted for the Degree of Doctor of Philosophy

School of Computer Science & Statistics

Trinity College

University of Dublin

29 September 2015

Declaration

I declare that this thesis has not been submitted as

an exercise for a degree at this or any other uni-

versity and it is entirely my own work. Wherever

there is published or unpublished work included,

it is duly acknowledged in the text.

I agree to deposit this thesis in the University’s open

access institutional repository or allow the library

to do so on my behalf, subject to Irish Copyright

Legislation and Trinity College Library conditions

of use and acknowledgement.

Abstract

The shift towards multicore processing has led to a much wider population of de-

velopers being faced with the challenge of exploiting parallel cores to improve soft-

ware performance. Debugging and optimising parallel programs is a complex and

demanding task. Tools which support development of parallel programs should pro-

vide salient information to allow programmers of multicore systems to diagnose and

distinguish performance problems. Appropriate design of such tools requires a sys-

tematic analysis of the problems which might be identified, and the information used

to diagnose them.

In this dissertation we present a general framework aimed to support designers of

parallel performance analysis tools. The framework consists of several major compo-

nents including: general advice for tool developers, a parallel performance problem

taxonomy, an observational model for “data-to-problem” mapping, a deeper analysis

of a data locality problem identification and a visualisation tool which we have used

to evaluate the effectiveness of the approach.

First, with the aim of identifying issues, emerging practices and design oppor-

tunities for support, we present in this dissertation a qualitative study in which we

interviewed a range of software developers, in both industry and academia. We then

perform a systematic analysis of the data and identify several cross-cutting themes.

These analysis themes include the practical relevance of the probe effect, the signif-

icance of orchestration models in development and the mismatch between currently

available tools and developers’ needs. We also identify an important characteristic of

parallel programming, where the process of optimisation goes hand in hand with the

process of debugging, as opposed to clearer distinctions which may be made in tra-

ditional programming. We conclude with reflection on how the study can inform the

design of software tools to support developers in the endeavour of parallel program-

Page ii

ming.

Next, building on the literature, we put forward a potential taxonomy of parallel

performance problems, and an observational model which links measurable perfor-

mance data to these problems. We present a validation of this model carried out with

parallel programming experts, identifying areas of agreement and disagreement. This

is accompanied with a survey of the prevalence of these problems in software devel-

opment. From this we can identify contentious areas worthy of further exploration,

as well as those with high prevalence and strong agreement, which are natural candi-

dates for initial moves towards better tool support.

Finally, in order to explore the design space and how the framework can be used

in the design of visualisations to support performance optimisation, the specific case

of data locality is examined in more detail, and a prototype visualisation to support

the diagnosis of data locality problems is introduced. Furthermore, an empirical eval-

uation of the visualisation was performed and the results are discussed as we reflect

on the implications for the support of multicore performance analysis.

Page iii

Dedication

Dedicated to the memory of my teacher, advisor, col-

league and dear friend, Bernard Tollet (1973-2015) who

inspired, supported and encouraged me to pursue the

Ph.D

Acknowledgements

Immeasurable appreciation and deepest gratitude for the help and support are ex-

tended to the following persons, who in one way or another have contributed in mak-

ing this study possible.

First and foremost I would like express my sincere gratitude to my research ad-

visor and HCI specialist, Dr. Gavin Doherty for the continuous support throughout

my Ph.D study as well as his patience, motivation, and enthusiasm. His continuous

support and guidance helped me not only complete this dissertation but also deepen

my knowledge of Human Computer Interaction. I could not have asked for a better

research advisor.

Besides my research advisor, I would like to thank Dr. David Gregg whose domain

expertise in Computer Architecture has proven to be an invaluable asset and made this

study possible. He has always been there to listen and give advice.

I would like to thank LERO, IBM Research and Science Foundation Ireland for pro-

viding me with an opportunity to pursue my Ph.D. I extend thanks to my fellow lab

mates, especially to my dear friend Oscar Cassetti and Drs. Erwan Moreau, Stephan

Schlögl, Bérenger Arnaud, Kim Jarvis, Liliana Mamani Sanchez for their help and en-

couragement.

This study would not be possible without over one hundred participants who took

part in multiple experiments. Their time and insights were indispensable for complet-

ing the study.

I extend my gratitude to Dr. Marco La Civita, Prof. Mikhail Kosov and Prof. Ed-

uard Hoenkamp for their letters of recommendation which allowed me to enrol in the

Ph.D in the first place, and who also inspired me and encouraged me to continue my

studies.

I would also like to thank my girlfriend, Victoria, for taking care of me, for her

Page v

reassurance, her proof reading skills and excellent cooking ability. Her support helped

me to stay sane and focused.

In addition, I would like to thank my family: Tatiana, Ruslan and my young

brother Allan for their patience and confidence in my abilities.

Page vi

Related Publications

• Roman Atachiants, David Gregg, Kim Jarvis, and Gavin Doherty. 2014. Design

considerations for parallel performance tools. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems (CHI ’14). ACM, New York, NY,

USA, 2501-2510. DOI:10.1145/2556288.2557350. Honorable Mention Award.

• Roman Atachiants, David Gregg and Gavin Doherty. 2015. An Observational

Model for Identifying Parallel Performance Problems. IEEE Transactions on Soft-

ware Engineering (TSE). Under Revision.

• Roman Atachiants, David Gregg and Gavin Doherty. Visualising Data Locality

Performance for Parallel Programming. 2016. Submitted for Publication.

Page vii

Contents

1 Introduction 1

1.1 Microprocessor Evolution . 1

1.2 Parallel Programming . 3

1.3 Addressing the Challenges . 6

2 Related Work 10

2.1 Empirical Software Engineering . 10

2.2 Parallel Performance Analysis Tools . 14

2.3 Software Visualisation . 17

2.4 Existing Tools . 23

2.4.1 Tools from Hardware Manufacturers 23

2.4.2 Generic Operating System Tools 25

2.4.3 Concurrency Visualisation Tools 27

2.4.4 Platform-Specific Profilers . 28

2.4.5 Hybrid CPU/GPU Profilers . 30

2.5 Concluding Remarks . 32

3 Research Overview 34

3.1 Research Questions . 36

3.2 Understanding the Programmer . 37

3.3 Modelling the Diagnosis . 39

3.4 Visualising the Performance . 41

4 Understanding the Programmer 43

4.1 Methodology . 43

4.2 Interview Analysis Process . 45

Page viii

CONTENTS

4.3 Themes, Categories and Codes . 48

4.4 Developing parallel software . 57

4.4.1 Context for development . 57

4.4.2 Understanding . 58

4.4.3 Orchestration . 63

4.5 Discussion . 68

4.6 Concluding Remarks . 72

5 Modelling the Diagnosis 74

5.1 Problem Taxonomy . 75

5.1.1 Scope of taxonomy . 77

5.1.2 A Taxonomy of Parallel Performance Problems 80

5.1.3 Problem Importance . 92

5.2 Problems in the Wild . 93

5.2.1 Methodology . 94

5.2.2 Results . 95

5.3 Observational Model . 98

5.3.1 Cross-Validation . 99

5.4 Discussion . 102

5.4.1 Familiar and Frequent Problems 105

5.4.2 Less-Known but Frequent . 108

5.4.3 Less-known and Infrequent . 112

5.4.4 Threats to Validity . 113

5.4.5 Model Applications . 114

5.5 Concluding Remarks . 116

6 Analysing Data Locality 118

6.1 CPU, Memory and Caches . 118

6.2 Applying the Observational Model . 122

6.3 Diagnosis Process . 125

6.4 Data Collection . 128

6.5 Measuring the Performance Impact . 129

6.5.1 Parallel Implementations . 129

Page ix

CONTENTS

6.5.2 Lost Cycles . 133

6.6 Data Modelling . 136

6.7 Data Processing System . 139

6.8 Concluding Remarks . 142

7 Visualising the Performance 144

7.1 visualisations to Support Data Locality Analysis 144

7.1.1 Greenlight View . 146

7.1.2 Timeline View . 146

7.1.3 Thread View . 147

7.2 Experimental Design . 148

7.2.1 Research Questions and Potential Formats 148

7.2.2 Methodology . 151

7.2.3 Tasks . 155

7.3 Results . 163

7.4 Qualitative Analysis and Discussion . 166

7.4.1 Limitations . 169

7.5 Concluding Remarks . 170

8 Conclusions and Future Work 172

Page x

List of Tables

1.1 The evolution of Intel processors in the past 35 years. 3

4.1 A table of participants with their years of experience, main activity and

the type of organisation. 44

4.2 A non-exhaustive set of techniques for understanding and the percent-

age of interviewees who were talking about the subject. 59

4.3 A non-exhaustive set of orchestration models and the percentage of in-

terviewees who were talking about the subject. 64

5.1 Taxonomy of parallel performance problems. 80

5.2 Familiarity and frequency for performance problems. Participants who

stated that they encountered ‘never’, ‘once’, ‘occasionally’ or ‘regularly’

also stated that they are familiar with the problem. 97

6.1 Example Time Scale of System Latencies [59] 121

7.1 Participants, with years of experience in the domain (Junior/Senior or

Veteran), self-assessed expertise levels in parallel programming and high-

est education level. 154

Page xi

List of Figures

1.1 Historical evolution of the clock speed, amount of transistors and num-

ber of cores per CPU. 2

1.2 Abstract representation of serial computing, where a problem is broken

up into smaller pieces that are executed serially. 4

1.3 Abstract representation of parallel computing, where a problem is bro-

ken up in smaller pieces that are executed in parallel by several process-

ing units. 5

2.1 The hierarchy of cognitive design elements for software exploration by

Storey et al. [156] . 21

2.2 Illustration of CodeCity, an integrated environment for software anal-

ysis. This tool represents various packages as city blocks and classes

as city buildings and allows the user to map and visualise various soft-

ware metrics such as complexity or length. 22

2.3 Intel VTune Amplifier 2015 . 23

2.4 AMD CodeXL . 24

2.5 Microsoft Windows Performance Analyzer 26

2.6 Microsoft Visual Studio Concurrency Visualizer 28

2.7 YourKit Java Profiler . 29

2.8 Redgate ANTS Performance Profiler . 30

2.9 NVIDIA Nsight . 31

3.1 An overview of the research process. 35

3.2 The radial tree representing all the categories, sub-categories and indi-

vidual codes that emerged during the analysis of the interviews. 38

Page xii

LIST OF FIGURES

3.3 An example of the levels of agreement between experts on various “mea-

surable observations” of two performance problems. 41

4.1 The interview data collection and interview analysis process. 46

4.2 Open and Axial coding dataset, used during the procedure of applying

labels and seeking relationships between codes. 47

4.3 A snippet of the summarised analysis, showing various statistics about

each sub-category along with major category and an open code. 48

4.4 Categories and Codes related to the ”environment“ theme. 49

4.5 Categories and Codes related to the ”people“ theme. 50

4.6 Categories and Codes related to the ”understanding“ theme. 51

4.7 Categories and Codes related to the ”orchestrating“ theme. 52

4.8 Categories and Codes related to the ”resources“ theme. 53

4.9 Categories and Codes related to the ”goal/problem“ theme. 54

4.10 Categories and Codes related to the ”techniques“ theme. 55

4.11 Categories and Codes related to the ”tools“ theme. 56

4.12 Sample graph for measuring scalability of the same algorithm for dif-

ferent workloads [72]. 71

5.1 The professional (years of) experience distribution of the developers

who participated in the problem frequency/familiarity study. 95

5.2 The distribution of self-assessed expertise of the developers who par-

ticipated in the problem frequency/familiarity study. 96

5.3 Levels of experts’ agreement on observations related to the “Lock con-

tention” problem. 102

5.4 Quadrant plot of parallel performance problems mapped against Fa-

miliarity and Frequency. 103

5.5 Levels of experts’ agreement on observations related to the “Cache Lo-

cality” problem. 106

5.6 Levels of experts’ agreement on observations related to the “Alternating

sequential/parallel execution” problem. 107

5.7 Levels of agreement on observations related to the “Chains of data de-

pendencies, too little parallelism” problem. 108

Page xiii

LIST OF FIGURES

5.8 Levels of experts’ agreement on observations related to the “True shar-

ing of updated data” problem. 109

5.9 Levels of agreement on observations related to the “Undersubscription”

problem. 110

5.10 Levels of agreement on observations related to the “Oversubscription”

problem. 111

5.11 Levels of agreement on observations related to the “Badly-behaved

spinlocks” problem. 112

5.12 Levels of agreement on observations related to the “False data sharing”

problem. 113

5.13 Levels of agreement on observations related to the “TLB Locality” prob-

lem. 114

6.1 Conceptual representation of a generic dual-core processor. 120

6.2 Conceptual representation of the NUMA interconnect architecture. . . . 122

6.3 Data locality problem diagnosis tree. 127

6.4 Function performing matrix multiplication, parallelized with an outer

parallel for loop, a common construct that can be found in many paral-

lel programming libraries such as Microsoft Parallel Programming Li-

brary or Intel Threading Building Blocks. 130

6.5 Data representations of cache misses over time that occurred due to an

experimental run of a parallel matrix multiplication program. 130

6.6 The average number of instructions executed for each clock cycle. 131

6.7 The clock cycles wasted due to L2 and L3 cache misses. 131

6.8 Function performing matrix multiplication, parallelized with an outer

parallel for loop, a common construct that can be found in many paral-

lel programming libraries such as Microsoft Parallel Programming Li-

brary or Intel Threading Building Blocks. 132

6.9 Data representations of cache misses over time that occurred due an

experimental run of a parallel matrix multiplication program. 133

6.10 Five facets of the SWARM data model used to store the performance

data for the delivery to the client applications and post-processing trans-

formation. 137

Page xiv

LIST OF FIGURES

6.11 Horizons, a basic performance analytics system that leverages SWARM

model as its underlying data provider. 139

6.12 The architectural schema presenting the cloud-based data processing

system we built as a common foundation for data storage and delivery. . 140

6.13 A single horizon timeline, representing a rendered time series of CPU

usage events for a single program on the process scale. 141

7.1 Greenlight View for global performance assessment. 146

7.2 Timeline View supports identification of time intervals where a data

locality issue might be present . 147

7.3 Thread View for identifying threads exhibiting poor data locality symp-

toms. 148

7.4 Data PAL timeline representation of performance of two matrix multi-

plication implementations used for the experiment. 155

7.5 Simple program to perform large matrix multiplication used to generate

visualisation data - this version has poor data locality. 156

7.6 Simple program to perform large matrix multiplication used to generate

visualisation data - this version has good data locality. 156

7.7 Data PAL timeline representation of performance of parallel and se-

quential particle system implementations 157

7.8 Simple program to process several million particles used to generate

visualisation data - this version is parallelised. 158

7.9 Simple program to process several million particles used to generate

visualisation data - this is a serial version. 159

7.10 Data PAL timeline representation of performance of two in-memory

database schemas . 159

7.11 Simple program to process several million user accounts used to gener-

ate visualisation data - this version has poor data locality. 160

7.12 Simple program to process several million user accounts used to gener-

ate visualisation data - this version has better data locality 161

7.13 Data PAL timeline representation of performance of a pair of programs

consisting of two loops each . 162

Page xv

LIST OF FIGURES

7.14 Simple program to illustrate different program phases - this version

uses floating-point numbers. 162

7.15 Simple program to illustrate different program phases - this version

uses integers. 163

7.16 Independent Factorial ANOVA for 2-way interaction of treatment type

and experience on correctness . 164

7.17 Independent Factorial ANOVA for 2-way interaction of treatment type

and participants’ experience on the self-assessed confidence level of the

answers. 165

Page xvi

Chapter 1 Introduction

1.1 Microprocessor Evolution

As computers become more prevalent in modern society, the tasks that computers may

perform have also become increasingly complicated. In order to cope with this com-

plexity, programmers develop ever more computationally demanding algorithms and

applications. Likewise the volume of data processed by computers has also increased

enormously. These factors together have led to ever expanding demands on micro-

processor performance. In order to cope with this growing demand for computational

power, hardware manufacturers continually increased the clock frequency of their

central processing units (CPUs). However, this approach meant that the power con-

sumption of each CPU also trended upwards. This strategy of increasing frequency

eventually became less viable, as the power required to improve performance intro-

duced a range of difficulties, such as excessive heat generation and leakage current.

An alternative strategy for increasing the number of instructions per second that a

CPU can process is to put multiple processors (cores) on the same chip. Many modern

personal computers now have two or more cores that enable multiple tasks (threads)

to be executed simultaneously. This concerns not only servers and supercomputers,

but also concerns any possible variety of computers: from smart-phones and game

consoles to laptops and tablets.

Figure 1.1 depicts the historical evolution of the commodity CPUs. While the clock

speed per core has stabilised around 3 GHz, the number of cores increases steadily,

thus the total number of transistors on each CPU is effectively following Moore’s law,

the observation by Gordon Moore, co-founder of Intel, who predicted back in 1965

that the number of transistors per square inch on integrated circuits would double

Page 1

CHAPTER 1. INTRODUCTION

every year for the foreseeable future.

1

10

100

1000

10000

1995 1997 1999 2001 2003 2005 2007 2009 2011

Transistors (in millions) Clock Speed (in MHz) Cores

Figure 1.1 – Historical evolution of the clock speed, amount of transistors and number of
cores per CPU.

On modern servers it is already very common to have more than 10 cores per CPU.

For example, Intel Xeon E5 has 18 cores per socket with hyper-threading technology

that effectively doubles the amount of cores for the operating system and applications.

The table 1.1 shows the evolution of Intel processors for the past three decades. It is

interesting to note that the cache and memory evolution seems to evolve slower than

the total number of the transistors.

While the sheer number of transistors keeps increasing and doubling roughly ev-

ery three years, as Moore’s law predicts, the speed of the main memory while growing,

is growing significantly slower than the computational capability of the CPUs. This

rising disparity between the speed of the main memory and the CPU is commonly

known as the memory wall [172]. While back in the 1980’s a simple access to memory

would be equivalent to a single CPU cycle, today the same access would cost between

50-300 cycles depending on the architecture, and this number is rising. This problem

has been acknowledged and has been addressed over the past 20 years through vari-

ous strategies, including the design of more data-aware processors and optimisation

of the compilers that we use [29].

In the near future, computers are expected to have even more cores - the trend

towards “many-core” computing. A many-core processor is a multi-core processor in

which the number of cores is large enough that traditional multiprocessor techniques

Page 2

CHAPTER 1. INTRODUCTION

Processor Date Clock Threads Level 1 Level 2 Level 3

8086 1978 8 MHz 1
Intel 286 1982 12.5 MHz 1
Intel 386 DX 1985 20 MHz 1
Intel 486 DX 1989 25 MHz 1 8 KB
Pentium 1993 60 MHz 1 16 KB
Pentium Pro 1995 200 MHz 1 16 KB 256/512 KB
Pentium 2 1997 266 MHz 1 32 KB 256/512 KB
Pentium 3 1999 500 MHz 1 32 KB 512 KB
Xeon 2001 1.7 GHz 1 8 KB 512 KB
Pentium M 2003 1.6 GHz 1 64 KB 1 MB
Xeon X5355 2006 2.67 GHz 4 4 x 32 KB 2 x 4 MB
Xeon X7460 2008 2.67 GHz 6 6 x 32 KB 3 x 3 MB 16 MB
Xeon X7560 2010 2.26 GHz 16 8 x 64 KB 8 x 256 KB 24 MB
Xeon E7-8870 2011 2.4 GHz 20 10 x 64 KB 10 x 256 KB 30 MB
Xeon E7-8870 v2 2013 2.3 GHZ 30 15 x 32 KB 15 x 256 KB 30 MB
Xeon E7-8870 v3 2015 2.1 GHz 36 18 x 32 KB 18 x 256 KB 45 MB

Table 1.1 – The evolution of Intel processors in the past 35 years.

are no longer efficient. While with a small number of cores, performance gains can

be achieved simply by running different programs simultaneously; with many cores,

performance gains will only be achieved through the use of parallel programming.

One of the technologies that could lead us to the thousands of cores per CPU are

known as three dimensional integrated circuits (3D IC) where the cores are no longer

simply located next to each other on a horizontal pane, but stacked vertically, which

significantly reduces the electric power requirements along with heat and increased

efficiency.

1.2 Parallel Programming

In order to take advantage of the multi-core and many-core hardware of today and

tomorrow, programmers are faced with a need to parallelise their code and distribute

work across multiple processors. This process of parallelisation is complex and re-

quires application programmers to think about many possible outcomes and situa-

tions that may occur.

Traditionally, software has been written for serial computation, where a problem is

broken down into a discrete series of instructions and those instructions are executed

Page 3

CHAPTER 1. INTRODUCTION

sequentially, one after another by a single processor. This leads to a single instruction

being executed at a time and the programmer can safely assume that the previous

instruction has completed before the new instruction begins execution. This process

is illustrated in the Figure 1.2.

Problem

Problem
Sub-Problem

Sub-Problem

Sub-Problem

Sub-Problem

Ins
tru

ctio
n

Processor

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Processor

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Processor

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Processor

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Processor

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Figure 1.2 – Abstract representation of serial computing, where a problem is broken up
into smaller pieces that are executed serially.

On the other hand, parallel computing is the simultaneous use of multiple compu-

tational units (processors) to solve a computational problem. In order to be effectively

parallelised, the computational problem should be able to:

• Be broken apart into discrete sub-tasks, pieces of work that can be computed

simultaneously.

• Execute multiple program instructions at any moment in time, as depicted in the

Figure 1.3.

• Be solved in less time with multiple compute resources than with a single com-

pute resource.

The compute resources can vary, but usually are a single computer with multiple

processors (CPUs), a single processor with multiple cores or an arbitrary number of

such computers connected by some kind of network to be able to communicate to-

gether for coordination purposes.

As the programmers seek to develop parallel applications, they encounter several

major challenges. Those challenges are present on both: multi-core CPUs and GPUs,

Page 4

CHAPTER 1. INTRODUCTION

Problem

Problem
Sub-Problem

Sub-Problem

Sub-Problem

Sub-Problem

Ins
tru

ctio
n

Processor

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Processor

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Processor

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Processor

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Processor

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Ins
tru

ctio
n

Figure 1.3 – Abstract representation of parallel computing, where a problem is broken up
in smaller pieces that are executed in parallel by several processing units.

and the programmers themselves must address them in their applications. Such chal-

lenges are the reasons why compiler-based solutions from vendors will have limited

success in creating a scalable parallel code base for many applications, as argued by

Wen-mei Hwu, Parallel Computing Institute Chief Scientist of the University of Illi-

nois. He contends that one of the main challenges in parallel programming is the high

engineering effort required in the implementation of efficient parallel algorithms with

high levels of parallelism and good data locality.

A sparse matrix-vector multiplication kernel is a good example of such a problem

where there is ample parallelism in the algorithm, but little data to reuse due to the

Page 5

CHAPTER 1. INTRODUCTION

vector set being simply too large to be stored in the memory, resulting in computation

limited by the memory accesses.

This example is widely used in research on parallel performance tuning, while

having a very simple implementation consisting of just a few lines of code. How-

ever, the reality is that even ordinary programmers have to deal with parallel systems

with orders of magnitude of larger complexity than this matrix multiplication exam-

ple. Numerous levels of indirection in the real systems while hiding the complexity

might also obfuscate in-memory data layouts that are crucial for designing efficient

and highly parallel algorithms.

Currently, the parallel programmer needs to determine layout arrangements of

data, allocate memory and temporary storage, arrange pointers, perform index calcu-

lation, and orchestrate data movement in order to make use of the on-chip memory

resources to support data re-use.

The programmer also has to decompose work into tasks, organise threads to per-

form the tasks, perform thread index calculations to access data in different levels of

the memory hierarchy, determine data sharing patterns, and check data bounds. Many

parameters of these arrangements need to be determined for each hardware platform.

All such tasks are complicated and error prone, moreover the implementation also

depends greatly on the target hardware platform and unfortunately there is not much

compiler technology available today to address these challenges.

In this thesis, we aim to provide insights that will lower the engineering effort

required for understanding the vast complexity of information involved in the process

of parallel programming and identifying performance problems. We hope to provide

insights to allow ordinary developers to effectively identify potential problems and

support the processes of parallelisation and further performance tuning.

1.3 Addressing the Challenges

A programmer seeking to parallelise a program has to overcome the challenges of

synchronisation, non-determinism and orchestration that a programmer writing an

equivalent sequential program would not face. Additionally, the very process of par-

allelising may introduce bugs, deadlocks and race conditions into the program. On

Page 6

CHAPTER 1. INTRODUCTION

top of that, when looking at a program it is not necessarily obvious what its parallel

performance will be.

For over two decades, a great deal of research effort has been directed at tools

for improving the performance of parallel applications and over 200 now defunct,

parallel-programming languages saw the light in the 1990s [112]. However, twenty

years later, concurrency bugs are still extremely common and theoretical performance

is often very difficult to achieve [145]. According to the 2011 UBM TechWeb Survey of

275 software engineers or managers of development teams, 32% of participants spend

6+ hours in a month finding data races or deadlock conditions and 69% spend 6+

hours in a month tuning the performance of their applications 1.

In this thesis, we aim to address the challenges in parallel programming by in-

vestigating how tools for parallel programmers can be designed in order to support

programmers more effectively. In particular, we aim to ease the engineering effort

required for the implementation of efficient parallel algorithms by providing visuali-

sation tools to support both expert and ordinary programmers in the task of designing

and optimising parallel programs. In order to even consider building effective tools

to support and ease the engineering effort, we must first understand the needs of pro-

grammers in the field, how they currently cope with the problems and the tools they

use. Hence, we present a field study of the challenges faced by parallel programmers.

In addition to the fieldwork, this thesis also presents a taxonomy of parallel per-

formance problems constructed during our investigation of the problem space, as to

our surprise, no extensive taxonomy existed, while there are a multitude of perfor-

mance tools. This raises questions on the validity of existing performance tools and

how effectively they can support the performance problem diagnosis without a (semi-

)comprehensive analysis of the problem space to base the design upon.

One of the problems we will explore in the following chapters of this thesis is

the so-called ‘data locality’ problem. This problem, induced by the ‘memory wall’,

is intimately intertwined with parallelism [84] and is one of the key issues in paral-

lel programming with modern and widespread architectures [119]. When developers

build parallel software, performance is usually one of the key goals, yet data local-

ity is often just as important as parallelism for performance. For example, accessing

1Parallel programming landscape: http://www.danysoft.com/free/Intelparallelprog.pdf

Page 7

CHAPTER 1. INTRODUCTION

data in main memory can take hundreds of times longer than accessing the same data

from the first level cache [70]. Thus, the programmer needs to be able to identify data

locality problems when they arise in parallel programs. In addition, parallel threads

executing on different cores often share the same data in one or more levels of cache

which can improve locality. Equally, the threads may end up competing to keep their

own data within the cache. The result can be complex interactions which cause subtle

locality problems that may be difficult for the developer to identify.

Taking the parallel sparse matrix-vector multiplication implementations as a base-

line for our data locality investigation, we examine the necessary information for the

construction of effective displays that allow diagnosis of data locality problems. This

comes with its own set of challenges, as we will need to look into low-level hardware

performance counters and find a way of extracting useful metrics which we can later

display. We present a model that brings together both analytical and technical aspects

and allows us to identify interesting metrics, among thousands we can potentially

collect, for each of the performance problems in our taxonomy.

Finally, we present an interactive visualisation tool for data locality identification,

having performed a significant amount of fieldwork and analytical work in order to

simply answer the question of what to show on the screen?, along with an evaluation of

the tool using a set of parallel programs exhibiting performance issues with regard to

data locality.

In this thesis we will be building towards a general framework for tool designers

and consider many different aspects related to this - from understanding field prac-

tices to effective visualisation metaphors and ways of collecting and analysing rele-

vant hardware performance data.

While the research aspirations are challenging, it is incumbent on us to distil the

process into three major research questions. In this thesis, each chapter goes into more

detail on each research question, but we use them to fundamentally guide the process

of the research. The questions can be summarised in three words: understand, model

and visualise.

• RQ 1: How do people conceptualise parallel programs?

• RQ 2: Can we perform a comprehensive and systematic analysis of the infor-

mation involved in understanding and improving the performance of parallel

Page 8

CHAPTER 1. INTRODUCTION

programs?

• RQ 3: To what extent can a visualisation effectively support programmers in

the task of optimising parallel programs?

In the Chapter 3 we give further details on each research question and present an

overview of how we have addressed each question. Answering to these three research

questions allowed us to create a general framework that can be used to design various

support tools for ordinary developers and aid them in the process of parallel perfor-

mance problem diagnosis. Understanding how programmers conceptualise parallel

programming, knowing the problems that can occur and the information important

to diagnose those problems were crucial questions that required an answer prior to

the creation of any software artefact to support programmers.

Page 9

Chapter 2 Related Work

The work presented in this thesis is situated at the intersection of program compre-

hension, software visualisation, software optimisation and empirical software en-

gineering. Software visualisation is often used in research to aid program compre-

hension, thus those issues go in pair. However, research in software optimisation, and

in particular for concurrent programs, is primarily focused on low-level engineering

issues and is an area that has been under-explored from the human-computer interac-

tion perspective.

In this chapter we selected, what we consider seminal and relevant papers which

have allowed us to build towards a general framework that can be used to design

various support tools for ordinary developers and aid them in the process of parallel

performance problem diagnosis. The selection of the work presented in this chapter is

relatively narrow and aligned closely with our research questions.

We first examine the domain of empirical software engineering which aims to un-

derstand and model the way programmers work; this includes the way they make

sense of their code and software architecture, the metaphors, the way they test and

debug the code or the differences between novices and experts. Understanding these

things is important, as in our research we aim to support ordinary developers.

Next, we will look at the tools that programmers have at their disposal already.

This includes algorithmic skeletons, taxonomies, performance prediction tools and a

variety of visual analysis tools. Understanding how the existing tools function and

how they can be used or improved is crucial for building effective support tools of

any kind.

Finally, as we aim to create visual support tools, we need to understand the field

of software visualization and performance visualisation in particular.

Page 10

CHAPTER 2. RELATED WORK

2.1 Empirical Software Engineering

While the practice of parallel programming for ordinary developers has not been

widely studied from a HCI perspective, the scientific computing and software engi-

neering communities have grappled with the problems associated with parallel pro-

gramming for some time.

Much work has been carried out within the Software Engineering community with

the aim of understanding and modelling the way programmers work and how their

work-flows can be improved. One of the methodologies applied is to look at how

complex strategies can be modelled in a series of simple observations, giving a bet-

ter understanding of the daily practices of software developers and the architectural

choices they face [87, 52, 14].

The practice of software engineering has been examined in various contexts, as the

organisational environment can vary drastically. If one considers crowd-sourced soft-

ware development, where a program is developed by a potentially unknown number

of developers, in a distributed fashion, it presents challenges of task decomposition,

coordination and planning [155], while video game development, typically conducted

by a team of seasoned veterans under one roof presents another set of challenges and

pipeline-like organisation [28]. Likewise, in multi-core software development, both

the characteristics of the software being developed, and the development context will

have an impact.

Over the past twenty years many studies have been carried out on novice pro-

grammers and identified the positive and negative aspects of today’s programming

systems [128]. Some of the research was closely related to program maintenance and

can potentially be applied to performance analysis tools. While testing and debug-

ging are two very complex areas for novice programmers, some researchers claim that

programming tools should support source-level debugging with data visualisation to

be more effective [22].

Using an appropriate concrete metaphor, a familiar analogy explaining how the

programming system works, can have a positive effect on the usability [107] and also

maximises transfer of knowledge if the metaphor is close to a real-world system [150].

Expert programming can be considered an opportunistic activity [58], however

Page 11

CHAPTER 2. RELATED WORK

some research indicates that expert programmers use intricate plans and strategies

in order to schedule and prioritise their activities [13]. Planning is common among

novice programmers and the absence of good planning strategies results in wrong

assumptions and more bugs [21]. Programming tools should also consider locality;

related components should be physically close [20, 153] and hidden dependencies re-

duce understanding [58].

For both novice and expert programmers, the ability to test partial solutions is an

important feature [128]. Incremental running and testing, a programming strategy

where the code is iteratively tested while new code is being written, has been found

to be an effective debugging strategy [60], and it has been observed that developers

perform better when such a strategy is adopted [56, 58, 131].

In addition, there have been attempts to understand how programmers work from

a sense-making perspective, applying information foraging [133] to understand how

developers debug [94, 132]. Various empirical studies and models have attempted to

understand and help answer questions posed by developers [87, 52]. These studies

have employed a variety of methodologies, including observations of pairs of pro-

grammers given sample tasks [148], and questionnaire-based studies [93, 122].

Prabhu et al. [134] present an extensive survey of software practices in compu-

tational science. They conclude that current programming systems and tools do not

meet the requirements for scientific computing. They indicate that most tools assume

that programmers would invest time and energy to learn and master a particular sys-

tem, which turned out not to be the case with programmers wanting results immedi-

ately. They found that most scientists understand the importance of parallel program-

ming in the context of scientific computing and many scientists spend a significant

amount of time and energy programming. Despite this effort, most scientists seem to

be unsatisfied with the performance of their programs and believe that the improve-

ment of performance will significantly improve their research and, in some cases, al-

low larger experiments or enable fundamentally new research avenues. The survey

concluded that overall the needs of computational scientists were under-served and

new tools and techniques were needed to unlock the potential of high-performance

computing.

In another study, Hannay et al. conducted an online survey of approximately two

Page 12

CHAPTER 2. RELATED WORK

thousand scientists in order to study software engineering practices in the scientific

community [64]. Their study found that for “software testing” and “software verifica-

tion” scientists assign on average a higher level of importance compared to the level of

their own understanding of these concepts. Scientists seem to care a great deal about

the correctness of their code, but feel they lack knowledge of software engineering

practices to verify it. Additionally, their findings suggest that informal learning from

peers was more important to scientists than formal education in an academic institu-

tion or formal training at the work place, they postulate that this may be due to the

lack of appropriate formal training. Their study also confirmed the hypothesis that

the majority of scientists use desktop computers most of the time for developing and

use scientific software as opposed to supercomputers or clusters.

A classroom study conducted across a number of universities compared different

programming models across a variety of representative applications [74]. It is worth

noting that most of these studies use novices as the study participants rather than

experienced programmers. The study compared shared memory (multi-core) and

message passing (distributed) implementations of two problems, written by novice

programmers. They found that the message passing development effort, measured in

lines of code, was statistically greater but resulted in more correct programs. On the

other hand, shared memory programs were smaller and easier to write but were more

error-prone.

Luff conducted an experiment comparing developers’ performance using vari-

ous parallel programming models (actor model, transactional memory and standard

shared memory threading with locks) while keeping the programming language and

environment (IDE) the same [102]. The results were inconclusive and showed no sig-

nificant difference in any objective measurement between those models.

A study conducted by Eccles et al. [45] had novice and expert programmers both

categorising different parallel algorithms, using a card sorting method. They found

that novices and experts used a different classification scheme: novice programmers

organised problems around the problem domain while expert programmers organ-

ised problems around communication granularity and overhead. This difference in

classification could identify a set of concepts which delineate novices from experts

[145]. They concluded that the best way of organising parallel programming material

Page 13

CHAPTER 2. RELATED WORK

and libraries is around the expert classification scheme, and postulate that it would

result in a more usable parallel software.

A wide variety of prior literature related to program maintenance focuses on de-

bugging, with a particular emphasis on novice versus expert differences [110]. Most

research agrees that reading and understanding code is the most common debugging

method [43, 165], although this is not always feasible for very large programs [88]. Fix

et al. [49] found that experts had more sophisticated mental models than novices, and

so were able to use them more effectively to debug programs.

A study by Pancake [127] attempted to determine a correlation between mental

models and the effectiveness of visualisations for parallel debuggers. It demonstrated

that it is possible to implement various conceptual models using any programming

language, however program development becomes significantly easier and more re-

liable when the language has support for expressing the desired model. The same

correlation applies to the debugger visualisation models.

Fleming [144] conducted an exploratory think-aloud study in which he observed

15 programmers debugging a multi-threaded server application which was seeded

with a defect. He claimed that the programmers who succeeded used a previously un-

documented failure-trace strategy while debugging, and using such a strategy made

the programmers more likely to succeed. The strategy involved modelling interac-

tions between various threads in the program in order to find a failure trace (i.e. the

interaction that led to a failure). He also postulated that cognitive strain may have

been an important barrier as the failure-trace strategy was modelled internally. In

addition, it is claimed that the inherent concurrency of parallel programming makes

managing hypotheses regarding the cause of a bug more difficult.

2.2 Parallel Performance Analysis Tools

As will be argued later in the thesis, within parallel program development, the dis-

tinction between performance problems and bugs is much less clear than in traditional

software development. However, the vast majority of parallel performance problems

would receive only the broadest categorisation under existing taxonomies. Within

Beizer’s taxonomy [15] for example, in contrast to the detailed breakdown of other

Page 14

CHAPTER 2. RELATED WORK

categories of problem, the Performance category contains only throughput inadequate,

insufficient users, response time delay and performance parasites, with the first three of

these being more phenotype rather than genotype classifications.

When developers and researchers talk about parallel performance, they talk about

it in the context of a particular algorithm, system or model. A multitude of effective

design patterns have been recorded and studied in the literature, such as parallel for

loops, concurrent containers, pipelines or map-reduce. These can be thought of as

“algorithmic skeletons” [35, 162, 39, 6]. Such algorithmic skeletons can help reduce

parallel programming errors as part of a “concurrency toolbox” with which program-

mers can construct the abstraction required to solve their problems and simplify the

process of application development [25].

Recent years have seen widely accessible libraries providing various implemen-

tations of such skeletons becoming available, such as OpenMP, Microsoft Parallel

Patterns Library (PPL), java.util.concurrent library or Intel Threading Building Blocks

(TBB) [138, 143].

Those algorithmic skeletons represent general reusable solutions to commonly oc-

curring problems within a particular context in software design - such solutions are

known as design patterns. Design patterns are formalised best practices that the pro-

grammers use to solve common problems during the design phase. While the term

algorithmic skeletons is in fact used for design patterns related to parallel programming,

design patterns are widely used in other areas of computer science. Particularly, they

have gained popularity in the field after the work of Gamma et al. [54] where some

of the design patterns related to object-oriented programming were catalogued and

explained.

In the Chapter 5 of this thesis, we present a model for parallel performance prob-

lem diagnosis, with the aim of supporting the design of effective performance analysis

tools for parallel programming. Such tools can be seen as providing two types of ca-

pability - automation or performance prediction, intended to process the raw data and

provide the developer with useful cues for action, and visual displays to be presented

to the developer to support their own diagnosis and decision making.

A number of approaches to automatic performance prediction of parallel programs

have been developed. For example, T. Fahringer in his recent book introduced novel

Page 15

CHAPTER 2. RELATED WORK

approaches to estimate various parameters that are critical for a well-performing par-

allel program, such as work distribution, computation time or cache misses [47]. An-

other example is combining user-selectable features for automated performance de-

tection. This can be accomplished by using a hybrid system that allows a user to select

a non-functional property (e.g. performance) and its features. For example, the per-

formance of a database depends on whether a search index or encryption is used and

how both features operate together, as the interaction of both features may lead to

an unexpected behaviour while their individual presence may not [147]. Many other

approaches exist and automatic performance prediction is an active field of research.

However, accurately modelling and predicting performance becomes increasingly dif-

ficult for large-scale applications, since system complexity increases as well with its

size [79, 173, 101].

Most bug/performance prediction algorithms have been developed, tested and

verified in an academic setting. However, a recent case study by Lewis et al. [98]

of a deployment of prediction algorithms within Google, concluded that while many

developers are excited about having a new tool to help them in achieving better code

performance, barriers remain in making them useful for developers. One of the main

critiques of prediction algorithms is the lack of actionable messages, the presence of

which might support wider adoption of automatic prediction tools. In addition, many

performance problems occur only under specific input conditions, and automated

profiled inputs do not generally cover all possible code paths [121, 81, 63, 177].

An important aspect of tool support for multi-core programming is understand-

ing performance data. Given the volume and complexity of this data, visualisation is

an important design direction as it leverages capacities and bandwidth of the visual

system to quickly assess and understand large volumes of data. Visualising the be-

haviour of parallel programs is a very complex task, as the behaviour of the programs

themselves is often complex. The area of effective visualisation techniques for parallel

programs is still relatively unexplored within parallel programming research and has

usability implications [145]. However, the need to form a scientific body of research,

develop human-centered models, and target production level applications and their

developers has been recognised [106].

Numerous tools to ease the engineering effort involved in the creation, debugging

Page 16

CHAPTER 2. RELATED WORK

and optimisation of parallel programs have been created, starting as early as the 1980’s

with the Poker environment [151, 152], allowing programmers to write and debug the

first portable (cross-compiled) parallel programs.

Other tools, such as ParaGraph and ParaDyn have been developed to visualise be-

haviour of parallel software [65, 114]; most of the tools have been developed for the

High-Performance Computing domain, and target distributed systems such as HPC

clusters. While previous work has identified a number of broad issues and goals for

tools to support programmers in understanding the performance of their programs,

only a relatively small proportion of the literature deals specifically with the perfor-

mance problems of multi-threaded programs.

With regard to tools, existing systems can be seen as providing answers to two

main issues: between the ’topology’ of software (e.g.: source-code hierarchy, mem-

ory layout, etc) and the mapping of such topology into the visualisation, as well as

the issue of synchronisation. The topology issue requires that spatial relationships in

programs be understood. The synchronisation issue requires various events occurring

within the processor to be correlated [30]. While some existing visualisations are po-

tentially useful, there is a need for analysis of how such tools can aid in the diagnosis

of problems [12].

Many commercial tools, such as Intel R© VTune, AMD R© CodeAnalyst, Windows

Performance Analyzer, GProf, IBM Rational PurifyPlus and others [5, 3, 7, 113] have

incorporated performance analysis approaches that combine performance prediction

metrics used in automated prediction and many different visual displays that present

the information to end-user developers. However, according to a recent survey, a sig-

nificant number of developers do not use any software tool at all: at least 25% for each

type of tool surveyed, including memory and performance tuning tools. Significantly,

66% of the developers surveyed do not use any concurrency tool 1.

2.3 Software Visualisation

It is important to understand the information visualisation field prior to designing

a tool or advising information visualisation designers as we intended to do during

1The Parallel Programming Landscape: http://www.danysoft.com/free/Intelparallelprog.pdf

Page 17

CHAPTER 2. RELATED WORK

the project. This section is intended as a brief and general literature overview of the

information visualisation field, since it is not possible to provide a comprehensive ac-

count of the field in merely a few pages. Below we describe the origins of the field

and point out the most prominent collection of resources and continue with a few

selected resources that relate to visualisations of performance of algorithms and pro-

grams within traditional and multi-core computing, including high performance and

distributed computing.

In the data visualisation domain, there are two commonly accepted types of visu-

alisations, namely explanatory visualisation and exploratory visualisation [99]:

• Explanatory visualisation consists of data visualisations that are used to transmit

information or a point of view from the visualisation designer to its reader, they

have a specific “story” that they intend to transmit.

• Exploratory visualisation is used by the designer for self-informative purposes

to discover patterns, trends or sub-problems within the dataset.

We examine the field of information visualisation (InfoVis) and data analytics, as

related to our research in parallel performance visualisation. InfoVis is an interdis-

ciplinary field that has emerged from computing and graph-making, motivated by

the need to visually represent increasingly large data-sets found in the sciences, as

well as digital communications and records, to enhance how humans can analyse and

learn from this information [100]. The field of data visualisation is relatively new and

rapidly growing, driven by the latest developments in information and communica-

tions technologies, but tracing its origins to early mapping and graphing techniques

[51, 163].

There are a number of books which aim to provide an overview of the new field

of information visualisation and data analytics (e.g. [33, 83, 108, 154, 175]), along with

numerous books for practitioners and designers (e.g. [99, 109, 116, 139]) and university

courses around the world.

While there are numerous definitions of information visualisation, one of the most

prominent is by Card et al. who state that InfoVis is “The use of computer-supported,

interactive, visual representations of abstract data to amplify cognition” and also pro-

vides a useful survey of the origins of the domain [27]. Card et al. also identified

Page 18

CHAPTER 2. RELATED WORK

several streams of overlapping interest which concurrently contributed to the growth

of the domain:

• Data graphics, which focused on the usage of graphs and maps to visually rep-

resent data, including setting guidelines and examples of good design [163, 164]

• Statistics and visualisation, which focused on the distilling and analysing multi-

variate and large datasets [34].

• Scientific visualisation, a research agenda on visualisation and computer graph-

ics involving computational scientists and engineers, visualisation scientists and

engineers, systems support personnel, artists, and cognitive scientists [111].

• User-interface research, which explored ways to help users to analyse large amounts

of data, with a focus on usability and its cognitive amplification [27].

• Computer graphics and artificial intelligence, where researchers, informed by

principles like those developed by Bertin and Tufte, sought to automate data

transformation processes, as well as creating graphical and other visual repre-

sentations [90].

Over the last decade and a half, numerous researchers have tried to apply some

of the InfoVis concepts in order to visualise performance of various algorithms and

systems. Early in 1993, Waheed and Rover described several issues that needed to be

addressed to make performance visualisation of parallel systems possible and effec-

tive, namely: development of techniques into a concrete methodology for evaluating,

optimising and predicting performance; rendering paradigms to display logical struc-

ture and behaviour; and integration methods in a performance analysis environment

[167].

Unfortunately to date, most of the issues have been researched separately and are

rarely brought together and evaluated as a whole. Performance prediction, for exam-

ple, has made tremendous progress during the recent years, energised by a widespread

adoption of multi-core processors [101, 173] and the performance, measured in cycles

per instruction (CPI) can be predicted relatively accurately, even on complex server

workloads [11] and different approaches to predicting are being proposed and im-

proved [79]. Such research, however, has not been brought into commercial tools and

has not been studied extensively from a user interaction perspective.

Page 19

CHAPTER 2. RELATED WORK

Some performance visualisation designs and considerations have been informed

by the insights from research carried out on human factors, as mentioned earlier (e.g.

[126, 65, 67, 66]).

Understanding software architecture is a crucial step towards building and main-

taining software. However, software architecture is a conceptual and intangible entity,

which can be difficult to comprehend and reason about; visual mappings can help to

reduce the cognitive effort involved. The need of visualising the structure of a soft-

ware system becomes particularly evident when the software system grows to entail

a huge number of modules and procedures related in a complex fashion [55].

Research in software visualisation attempts to answer a multitude of questions

posed by various stakeholders. In a world where most of the successful companies

rely heavily on software, visualising software systems is important not only for soft-

ware architects and engineers involved in its development but also testers, project

managers and even customers.

Storey et al. [156] conducted a comprehensive analysis of cognitive models in-

volved in the program comprehension process and describe a hierarchy of cognitive

issues and their implications for design that should be considered during the design

of software exploration tools, including software visualisation systems. Figure 2.1

illustrates the categorisation of cognitive design elements for software exploration.

Amongst the different cognitive models, Storey et al. present two fundamental ones:

• Bottom-up comprehension model where the program understanding involves

reading the program statements and constructing higher level abstractions.

• Top-down comprehension model requiring the domain knowledge of the pro-

gram or previous exposure to the structure of the program. The maintainer

(reader) of the program formulates a series of hypotheses and validates or rejects

them by reading the source code or visualising the structure of the program.

In her paper Storey states that it is essential to determine which comprehension

model (top-down, bottom-up or hybrid) is best supported by the tool, while some

research also suggests that people are using either model depending on certain cues.

The implications of this work have been extremely influential on the state of the recent

research [125, 55, 105, 160]

Page 20

CHAPTER 2. RELATED WORK

Figure 2.1 – The hierarchy of cognitive design elements for software exploration by Storey
et al. [156]

Software itself is created, complex, abstract, and difficult to observe, to help pro-

grammers understand it, software visualisation uses various visual representations to

make software more visible [32]. Roman and Cox [141] defined program visualisation

as a mapping from programs to graphical representations. Advocates of visualisation

point to the important role visual communication plays in our lives, to the very high

bandwidth of the human visual system and our ability to detect visual patterns.

Several research surveys have been conducted in order to understand the current

trends and the state of research related to software visualisation.

• A research survey performed by Koschke [89] on the use of software visualisa-

tion in the fields of software maintenance, reverse engineering and re-engineering

Page 21

CHAPTER 2. RELATED WORK

synthesised the work performed by 82 researchers. Koschke’s survey showed

that the vast majority of researchers believe that visualisation is very important

to their domain. The survey also raises several concerns, including an improved

understanding of the needs of viewers (programmers). Koschke calls for more

modelling of visual understanding and experimentation with different kinds of

visualisations. He also highlight that the most significant challenges in software

visualisation arise in maintenance (debugging and optimisation), reverse engi-

neering and re-engineering.

• A research survey of software software architecture visualisation conducted by

Ghanam and Carpendale [55] highlights some of the trends in the research com-

munity. Such trends include the use of the third dimension in order to reduce

the visual complexity. Another trend consists of exploring and using real-world

metaphors (e.g. “cities”) as means to amplify cognition. However, the authors

call for experimental validation of various metaphors as there is little or no em-

pirical evidence for the added benefits of metaphors in software architecture

visualisation.

Figure 2.2 – Illustration of CodeCity, an integrated environment for software analysis.
This tool represents various packages as city blocks and classes as city buildings and al-
lows the user to map and visualise various software metrics such as complexity or length.

• A research survey conducted by T. Khan et al. [85] on the visualisation and evo-

Page 22

CHAPTER 2. RELATED WORK

lution of software architecture summarises the state of the research and various

visual techniques used to display the software architecture hierarchies. It also

highlights the importance of software metrics as an ideal abstraction as they en-

capsulate, summarise and provide essential quality information about the source

code [92]. The survey highlights an essential aspect of software visualisation be-

ing the evolution of the software and some important works ([168], Figure 2.2) in

the domain which combine software metrics, hierarchical structure, metaphors

and effective temporal visualisation to gain a better understanding of the archi-

tecture and its evolution. Khan calls for forward collaboration between the re-

searchers, experts and the industry, tailoring tools to meet specific requirements

and conduct comprehensive evaluations of software visualisation systems.

2.4 Existing Tools

In this section we analyse some of the most widely used tools in the industry and

review some of the advantages and disadvantages of each tool based on its capabil-

ities or design language used. The analysis of the tools below is not intended to be

comprehensive, but to be focused on on the subject of this thesis and the pros and

contras of various tools represent advantages and disadvantages from the standpoint

of ordinary programmers.

2.4.1 Tools from Hardware Manufacturers
Hardware manufacturers such as Intel or AMD provide performance analysis tools

that are closely-tied to their respective microprocessors. The tools make use of hard-

ware performance counters, also known as hardware counters, which are a set of

special-purpose registers built directly into the CPUs. They store hardware-related

activities such as cache misses or power information. Some of the tools that fit into the

category include:

• Intel VTune Amplifier (Figure 2.3), a commercial application for software per-

formance analysis created by Intel. This tool contains many advanced features

that allow in-depth analysis of Intel-manufactured CPUs as it is able to collect

Page 23

CHAPTER 2. RELATED WORK

Figure 2.3 – Intel VTune Amplifier 2015

low-level information from the hardware performance counters present on the

CPU itself.

• AMD CodeXL (Figure 2.4), a software development tool suite created by AMD.

The suite features a CPU profiler, both GPU debugger and a GPU profiler, along

with a static OpenCL kernel analyser. The CPU profiler can be used to iden-

tify and improve performance of applications or drivers for AMD-manufactured

CPUs. The profiler features instruction-based sampling and CPU hardware per-

formance counters.

Advantages of Tools from Hardware Manufacturers

• Features hardware event sampling and allows to find specific tuning opportuni-

ties such as cache misses, branch mispredictions or even power measurement.

• Integrates expert knowledge of the engineers who have designed microproces-

sors. For example, VTune features various metrics based on low-level measure-

ment, for example, the tool has integrated formulas which allow it to assess the

Page 24

CHAPTER 2. RELATED WORK

Figure 2.4 – AMD CodeXL

performance impact of cache misses at a particular level, as measured by an ap-

proximate number of the CPU cycles wasted due to the cache misses.

• Often have simple timeline visualisations that allow identification of load bal-

ancing and synchronisation issues.

Disadvantages of Tools from Hardware Manufacturers

• At least some of the advanced features are not present on other platforms due to

hardware incompatibilities and the support of such hardware is limited.

• Expert-oriented tools which require extensive training and manufacturer-specific

vocabulary (eg: Intel QPI, AMD ISB).

• Visualisations seem to be a second-class citizen and built on-top of existing per-

formance analysis metrics.

Page 25

CHAPTER 2. RELATED WORK

2.4.2 Generic Operating System Tools

Operating system vendors such as Microsoft or various third parties provide generic

trace analysis tools which take operating system events or various log files and al-

low interactive analysis or querying of the information contained in the log files. One

of the tools that fits into this category is Microsoft Windows Performance Analyzer

(Figure 2.5), a tool that creates graphs and interactive data tables based on the data

provided by the underlying Windows subsystem, namely Event Tracing for Windows

(ETW). This tool is generic in design and can plot any time-series of precise or sam-

pled events provided by the subsystem. It features deep integration with Windows

platform, querying and comparative analysis visualisations.

Figure 2.5 – Microsoft Windows Performance Analyzer

Advantages of Generic Operating System Tools

• Rely on an external and standardised data collection mechanisms. For exam-

ple in Windows, such a mechanism is built-in to the Windows Kernel and al-

Page 26

CHAPTER 2. RELATED WORK

lows tracing of operating system events with a single command, which is very

straightforward for novices to get started.

• Designed to support the process of data exploration and allow generation of

common time-series graphs such as line charts, timelines or area charts.

• Have standard features for exploring large datasets such as zooming. For exam-

ple Windows Performance Analyzer allows row/column-based brushing and

linking with visualisation and a data table dynamically linked together.

Disadvantages of Generic Operating System Tools

• Generic in nature, such tools do not provide generic visualisations or specific

expert knowledge on the visualisations as it allows advanced analysis of any

kind of performance data.

• Operating system event tracing mechanisms do not usually provide extensive

sampling of hardware performance counters at the date of writing this analysis,

which makes it impossible to identify lower-level performance problems such

as poor data locality or false sharing.

2.4.3 Concurrency Visualisation Tools

This category represents tools designed specifically for the purpose of concurrency or

multi-threaded analysis, be it for debugging or performance analysis purposes. Some

of the tools that fit into the category include:

• Microsoft’s Concurrency Visualizer (Figure 2.6), an optional extension to Mi-

crosoft Visual Studio 2013 and later, the Microsoft’s flagship integrated develop-

ment editor (IDE). The Concurrency Visualizer uses the ETW subsystem, similar

to the WPA described above, however the tool is designed to help program-

mers examine the performance of multi-threaded applications. The tool pro-

vides graphical, tabular and textual data to depict the relationships between the

threads in the application and the system as a whole. The Concurrency Visual-

izer can be used to locate, amongst others: performance bottlenecks, CPU un-

derutilisation, thread contention, cross-core thread migration, synchronization

delays, DirectX activity, areas of overlapped I/O.

Page 27

CHAPTER 2. RELATED WORK

Figure 2.6 – Microsoft Visual Studio Concurrency Visualizer

Advantages of Concurrency Visualisation Tools

• Embeds some expert knowledge and does further analysis. For example, the

Concurrency Visualizer logically splits the execution time in different compo-

nents such as synchronisation or memory management.

• The tools in this category often include a collection of typical and recognisable

visual patterns that are exposed through it, together with an explanation of the

behaviour that is represented by each pattern, the likely result of that behaviour,

and the most common approach to resolve it. The collection includes patterns

such as lock contention, uneven workload distribution, oversubscription and

inefficient I/O.

Disadvantages of Concurrency Visualisation Tools

• Operating systems event tracing mechanisms do not usually provide extensive

Page 28

CHAPTER 2. RELATED WORK

sampling of hardware performance counters, which makes it impossible to iden-

tify lower-level performance problems such as poor data locality or false sharing.

2.4.4 Platform-Specific Profilers

Figure 2.7 – YourKit Java Profiler

Many languages and platforms such as Java or .NET have an ecosystem of tools

specifically designed to examine the performance of the applications running on those

platforms. In the case of Java and .NET, such tools often have access to the underlying

Virtual Machine (VM) and garbage collector and provide platform-specific diagnostic

capabilities. Some of the tools that fit into the category include:

• YourKit Java Profiler (Figure 2.7), both a CPU and a Memory profiler developed

by YourKit. The tool exists in two versions, one targeting Java and another is

targeting .NET platforms. Each version has various platform-specific features

such as Java Servlet Page (JSP) requests graphing or Java VM statistics.

• ANTS Performance Profiler (Figure 2.8), a CPU profiler developed by Redgate.

The tool is targeting specifically .NET platform and related concepts and collects

Page 29

CHAPTER 2. RELATED WORK

statistics from the .NET virtual machine along with some Windows performance

counters.

Figure 2.8 – Redgate ANTS Performance Profiler

Advantages of Platform-Specific Profilers

• Often features a call tree visualisation which is widely-used in industry and in-

cluded in many profilers, such as AMD CodeXL described above.The call tree

depicts the performance data for every method and is usually enhanced with

sparkline visualisations to allow quick identification of hot spots.

• Relatively easy to use by programmers experienced in the particular language or

platform, in the case of .NET it uses the same vocabulary of concepts (eg: ”.NET

GC Gen0”).

• Since the tool targets a specific platform, it is able to show additional semantic

information about various libraries and group them. For example, the ANTS

Page 30

CHAPTER 2. RELATED WORK

Performance Profiler can show ”Database calls” depicted in a tabular fashion

and sorted by the execution time.

Disadvantages of Platform-Specific Profilers

• The embedded visualisations are of limited use for concurrency purposes. For

example Redgate ANTS features a simple timeline visualisation of the aggregate

CPU usage across all cores and threads.

2.4.5 Hybrid CPU/GPU Profilers

In recent years, with the advent of general purpose computing on graphics process-

ing units (GPGPU), graphic hardware manufacturers began to provide hybrid perfor-

mance analysis tools for their clients, often game companies. Such tools integrate CPU

and GPU profiling techniques and allow side-by-side performance diagnosis. Some

of the tools that fit into the category include:

• NVIDIA Nsight (Figure 2.9), an extension of Visual Studio or Eclipse integrated

development environments (IDEs) containing a suite of tools that brings CPU

and GPU debugging closer to the place where the program is actually being de-

veloped (the IDE). It features timeline visualisation for hybrid profiling of both

CPU and GPU activity, along with support for GPGPU (CUDA), shader pro-

gramming and real-time inspection of Direct3D API calls.

• AMD CodeXL (Figure 2.4), a software development tool suite created by AMD.

The suite features a CPU profiler, both GPU debugger and a GPU profiler, along

with a static OpenCL kernel analyser.

Advantages of Hybrid CPU/GPU Profilers

• Provides a unified visualisation of the CPU and GPU application activity, allow-

ing the identification of performance bottlenecks that can occur during CPU/GPU

interaction. For example, this would allow identifying application slowdowns

occurring due to data (eg: textures) being transferred to the GPU memory from

the main memory.

Page 31

CHAPTER 2. RELATED WORK

Figure 2.9 – NVIDIA Nsight

• Supports a range of time-series visualisations and logical separations such as

streams, threads, CPU cores or memory.

Disadvantages of Hybrid CPU/GPU Profilers

• Targets primarily special-purpose hardware (e.g.: NVIDIA) as well as game de-

velopers. The use for ordinary application developers is limited as they would

use higher-level frameworks instead of OpenGL or DirectX directly.

2.5 Concluding Remarks

The last decade has seen an increase in available performance analysis tools, coming

from both academia and industry. This trend is driven from multiple directions simul-

taneously. The rapid growth of distributed computing with the advent of the cloud

is pushing the need for better HPC performance diagnosis tools such as TAU [146] or

PerfExplorer [76]. The increased diversity or parallel processors and the number of

Page 32

CHAPTER 2. RELATED WORK

cores on commodity hardware have pushed the creation of hardware-specific analy-

sis tools such as Intel R© VTune Amplifier [137] and AMD R© CodeAnalyst [44] which

leverage hardware performance counters to achieve ”closer to metal” performance

diagnosis.

The increased prevalence of parallel hardware has also influenced developers spe-

cialising in popular programming environments such Java or .NET who require sup-

port for parallelising and optimising their systems. To support them and leverage

platform-specific constructs such as garbage collectors or just-in-time runtime diag-

nosis, specialised tools have been created such as Jinsight [38], HProf, XProf, JProfile

or YourKit [118] to name a few.

At the same time, significant effort within popular operating systems such as Linux

or Windows have pushed for better support of parallel hardware and the need for bet-

ter performance diagnosis of concurrently running processes. One examples is the Mi-

crosoft Windows Performance Analyzer, based on the event tracing subsystem within

Windows operating system (ETW) [130, 117] which allows visual analysis of every

single process/thread running on a particular machine.

While the need for better performance diagnosis tools is undeniable and highly

driven, there has been little work related to the more general analysis of the problem

space to serve as a solid scientific foundation consisting of models and actionable in-

sights to support the development of the performance tools. In this thesis, we aim

to remedy the situation by providing such a foundation; or at the very least a good

starting point for one.

The empirical software engineering community have studied extensively the pro-

cesses that relate to the construction of software. We can draw on the methods com-

monly used for better understanding the daily practices of software developers with

regard to the process of performance tuning of parallel programs. Understanding the

similarities between practices involved in the process of debugging and optimisation

of parallel software might bring us a step closer to applying existing models to the

domain of our interest.

Numerous algorithmic skeletons have been developed in the recent years with the

aim of making the creation of parallel programs more accessible to ordinary develop-

ers. They simplify the application development, reduce errors and potentially reduce

Page 33

CHAPTER 2. RELATED WORK

mental effort required. If we can understand some of the reasons for the success of

the algorithmic skeletons, this might inform us of the way programmers think about

creating parallel programs and help us to support them in the process of optimisation.

Finally, such a foundation should also provide a model or insights to simplify the

creation or improvement of performance analysis tools. A visual tool can be useful

here, given the volume and complexity of the data that can be collected through the

means of underlying hardware, operating system or program instrumentation; some

of the early successes over the last decade and a half in applying InfoVis concepts

to performance visualisation along with existing tools that support of some kind of

visualisation, suggest that this is a promising direction for research.

However, these issues must be studied in relation to one another and brought to-

gether and evaluated as a whole.

Page 34

Chapter 3 Research Overview

The goal of the research contained within this thesis is to support the creation of soft-

ware development tools that allow developers to understand the performance of soft-

ware on many-core systems. Such tools must support the developer in understand-

ing the complex interactions of software with dozens of threads running on multi-

threaded systems. This entrails the development of summaries and visualisations that

help to understand the patterns of parallelism in multi-threaded software for software

maintenance and moving to systems with more cores. The main objectives are thus:

• to provide a foundation for the development of software tools that will help

the developer to understand the complex interactions of software with dozens

of threads running on many-core systems by building an understanding of the

problem space;

• to explore the solution space for development of summaries and visualisations

that help to understand the patterns of parallelism in many-core software for

software maintenance and moving to systems with more cores.

In this chapter we discuss some of the high-level research processes and the re-

search methodology we have applied to answer the research questions and accom-

plish the goals set out above.

This research combines a number of different research approaches and hence fol-

lows a mixed mixed methods research methodology [37, 80]. The process is illus-

trated in the Figure 3.1 and follows the basic exploratory sequential design of mixed

methods research, in which we have collected and analysed both qualitative and quan-

titative data in response to our research questions. Each step of the process was in-

formed by the insights, results gathered in the previous steps and established qualita-

tive and quantitative methods.

Page 35

CHAPTER 3. RESEARCH OVERVIEW

Semi-Structured Interviews
Qualitative Analysis

Related Work Analysis
Quantitative Exploration Survey

Theoretical Model
Inter-Rater Evaluation

Related Work Analysis
Data Collection and Implementation

Visualisation Tool Design
Quantitative Evaluation

Qualitative Analysis

Figure 3.1 – An overview of the research process.

The main reasons for using a mixed methods research methodology are the com-

plexity of the field and the relatively under-explored nature of performance tuning

of parallel programming. To effectively establish a scientific foundation for tool de-

signers, we found ourselves in need of employing diverse methods to explore, model

and validate various elements of our research. These elements then had to be brought

together and evaluated as a whole through the proxy of a visual tool; a convergent

mixed methods design was used to accomplish the latter.

Mixed methods research methodology was used as we needed to augment the

qualitative data gathered through various interviews and surveys with statistical data

and a more rigorous validation. Combining both statistics and qualitative informa-

tion gave us a more complete picture of the research problem and therefore, allowed

us to build a more robust scientific framework for building tools to support parallel

performance optimisation process.

While this methodology was extremely helpful and allowed us to build towards

such a framework, it had some disadvantages and challenges associated. One of the

Page 36

CHAPTER 3. RESEARCH OVERVIEW

main challenges for us was to find a way to effectively mix the results of different

methods in order to achieve a result which is bigger than just the sum of two parts. For

example, as will be explained in the Chapter 5 we extended on the results of our qual-

itative interview analysis and taxonomy construction and created a model that relies

quantitative inter-rater agreement calculation in order to figure out which parts of our

taxonomy can be applied “as is” and which ones need further work. Another example

of such mixing is our validation study where we have evaluated our visualisation tool

and discovered different interesting aspects in our data with different methods, effec-

tively one complementing the other. Another challenge is that the process of merging

qualitative and quantitative data is very time-consuming and complex, as it requires

analysing, coding and integrating data from unstructured to structured data [42].

3.1 Research Questions

We have mentioned in the Chapter 1 the three main research questions, which funda-

mentally guide the process of the research presented in this dissertation.

• RQ 1: How do people conceptualise parallel programs? We try to answer this

question by conducting a series of informal and unstructured interviews with

a broad range of developers across industry and academia and understand the

conceptual models they employ while designing well performing parallel pro-

grams and the various implications. The interviews are analysed and distilled

as a series of practical implications for design, that can be leveraged by both tool

designers directly and by us for further modelling of the problem space.

• RQ 2: Can we perform a comprehensive and systematic analysis of the infor-

mation involved in understanding and improving the performance of parallel

programs? We try to answer this question by designing a taxonomy and model,

based on the findings from the interviews and creating an effective visualisation

metaphors to match those models. To this end, we employ a combination of

both quantitative and qualitative analysis methods to construct practical models

that can be used later on to guide the design and implementation of the tools to

support programmers of parallel systems.

Page 37

CHAPTER 3. RESEARCH OVERVIEW

• RQ 3: To what extent can a visualisation effectively support programmers in

the task of optimising parallel programs? We try to answer this question by

creating a prototype of a particular parallel performance problem, in our case

this being “data locality problem”, one problem category from the taxonomy,

and then evaluating those prototypes both quantitatively for the correctness of

problem identification and qualitatively so we can understand better the process

undertaken by programmers to solve some of the particular tasks related to data

locality problems.

3.2 Understanding the Programmer

We began our research by conducting a series of unstructured interviews with pro-

grammers across industry and academia in order to understand the conceptual mod-

els they employ while designing well performing parallel programs and the various

implications. The interview results and the study itself are discussed in more detail in

the Chapter 4.

In our interview analysis we have performed both open and axial coding for the

entire set of transcribed interviews. The codes were then grouped into logical cate-

gories such as techniques, people or tools and then grouped into abstract sub-categories.

Figure 3.2 depicts the entire hierarchy that emerged during the interviews. We have

also made use of interactive visualisations to explore the hierarchy and drill down to

individual statements.

During the entire process of analysing and annotating we produced a large num-

ber of different memos1, which were used to perform a deeper analysis than just a

categorisation, we used them extensively in order to derive the implications for de-

sign for tool builders regarding how modern tools that support regular programmers

in their endeavour of parallel performance optimisation should be built. In the pro-

cess of analysing the interviews, we also constructed some interactive web-based vi-

sualisations to aid us in the task of exploration and in order to better understand the

interview transcripts.

One of our main findings is the importance of orchestration models in the domain

1Memos are various snippets of text and audio we recorded along the way, representing our thoughts
and ideas related to the interviews, as they emerge during coding, data collection, analysis and memoing.

Page 38

CHAPTER 3. RESEARCH OVERVIEW

Figure 3.2 – The radial tree representing all the categories, sub-categories and individual
codes that emerged during the analysis of the interviews.

of parallel programming. An orchestration model is a specific design pattern man-

ifested by the way programmers arrange, coordinate and manage a set of workers

using and sharing resources in order to achieve a common goal. Orchestration models

are abstract design patterns, spanning different contexts and patterns related to soft-

ware, hardware and system architectures. An easy metaphor to understand this, is to

consider that a developer who writes parallel programs does not write recipes (as of-

ten taught to first year computer science students), but manages a project with several

workers working for him. The developer attempts to orchestrate these workers in an

optimal way, considering the available resources and tasks at hand. In the parallel pro-

Page 39

CHAPTER 3. RESEARCH OVERVIEW

gramming context, such workers can be threads, processes, machines, domain-specific

classes, etc.

Orchestration models are a type of design pattern employed in parallel program-

ming, and they span different contexts (or scopes) on which developers are focusing.

In software engineering, design patterns are often related to reusable code skeletons

for quick and reliable development of parallel applications [149]. In contrast, orches-

tration models are more abstract, spanning not only patterns related to software archi-

tecture, but hardware and system architectures as well.

3.3 Modelling the Diagnosis

In the second phase of our research, which will be explained in more detail in Chapters

5 and 6, we wanted to answer the question of whether we can perform a comprehen-

sive and systematic analysis of information involved in understanding and improving

the performance of parallel programs. In other words, we needed to create a practical

model that could be used to build tools to support developers. To do this and continue

with the goal of creating an effective visualisation for parallel problem identification,

several parts had to be brought together and analysed as a whole:

1. Performance data extraction and collection. In order to be able to build paral-

lel performance analysis tools, we first need to be able to collect data whether

it be by instrumenting the program or gathering operating-system or hardware

counter data. Most importantly, we need to know what type of data is possi-

ble to collect, visualise and analyse later. We settled on the Windows operating

system, since it features a set of well-supported and well-documented tools. We

compiled comprehensive lists of of different measurable events or counters we

could collect; this gave us insight into the possible information that can be dis-

played by tools that would allow successful identification of performance prob-

lems.

Once this was carried out, we implemented a data collection tool that allowed

us to experiment, extract and combine both CPU hardware and performance

counters2 and performance events and counters issued by Windows operating

2Hardware performance counters are a set of special-purpose registers built into modern micropro-

Page 40

CHAPTER 3. RESEARCH OVERVIEW

system. Chapter 6 contains more discussion on this aspect of our research.

2. Taxonomy of parallel performance problems on multi-core architectures. Un-

fortunately, no comprehensive taxonomy existed, listing parallel performance

problems which can occur on shared memory multi-core architectures; hence,

we had to create one ourselves. Several classes of problems had been identified

tangentially in the interview study, and we began iteratively constructing a tax-

onomy based on various scientific literature and white-paper publications from

companies such as Microsoft or Intel. The very first taxonomy contained only

eight of the most common problems, or at least that was our untested initial as-

sumption. The initial problems included under-subscription, over-subscription,

uneven load distribution, lock contentions and lock convoys, along with I/O

contention, indirect memory access and false/true sharing.

After the first model we reiterated multiple times with two domain experts and

created a more complete taxonomy which contained seven broad categories such

as load balancing and task granularity, with a total of twenty three individual

problems. We then performed a broad survey with 71 participants to better un-

derstand which problems are most commonly occuring as well as commonly

diagnosed, which ones are more exotic and do not really occur in practice. We

discuss this in more detail in the Chapter 5.

3. Expert knowledge on the parallel problem diagnosis.

By the time we started creating the taxonomy, we had already begun pulling in

a significant amount of expert knowledge. Together with the domain expert, we

have attempted to create a set of simple diagnosis models for the performance

problems we have identified. Some of the diagnosis process turned out to be

rather straightforward while other problems turned out to be very difficult to

diagnose and the expert could not determine how he would perform diagnosis.

For example, for one of the poor data locality performance problems we were

able to construct a simple decision tree based on the observations of measurable

events or counters we could collect.

cessors to store the counts of hardware-related activities within computer systems. Advanced users often
rely on those counters to conduct low-level performance analysis or tuning.

Page 41

CHAPTER 3. RESEARCH OVERVIEW

33% 67% +
“high #DRAM page changes”

80% 20%+
“high #TLB misses”

60% 40%-
“low #DRAM page changes”

Figure 3.3 – An example of the levels of agreement between experts on various “measur-
able observations” of two performance problems.

Once we had completed the three parts, we knew the data we could collect and

implemented a performance data collection mechanism. Once we had a relatively

large and refined problem taxonomy and initial expert diagnosis models for most of

the performance problems, we began to work on a practical model of performance

problem identification. It was paramount that the model would be relatively easy to

apply as the model is intended to be used by practitioners and tool builders and not

only for research purposes.

While Chapter 5 goes into more detail on the model itself and the related vali-

dation, an example of the components of the model can be seen in Figure 3.3 which

depicts the levels of agreement between experts on various observations that can be

either:

• A (strong) indication of a particular performance problem being present in the

target program.

• A (strong) contra-indication of a particular performance problem being present

in the target program.

In other words, this model helps to determine which measurable events or coun-

ters can be used for effective parallel performance problem identification through

inter-expert validation and, can be extended by simply having experts assessing var-

ious observations and the agreement level statistics used to further extend/refine the

model.

3.4 Visualising the Performance

The third, and the last phase of our research consisted in applying our own findings

and models we have established during previous phases and validate them by creat-

Page 42

CHAPTER 3. RESEARCH OVERVIEW

ing an effective visualisation to effectively identify several parallel performance prob-

lems. We decided to address data locality issue and use our observational model along

with the diagnosis model for the design.

The visualisation we have designed consists of three main components and is ex-

plained in detail in Chapter 7; the main design goal of the tool is to allow effective

identification of data locality issues. In the past two decades processing speeds in-

creased by around 50% per annum, whereas the time to access DRAM memory fell by

only 10%-15% per year. The result is that it now takes hundreds of processor cycles to

read a value from main memory. This phenomenon is often called the “memory wall”

and efficient use of CPU caches is required to achieve good performance; this recent

trend influenced our decision to address data locality problem in our visualisation.

Once we had a visualisation, an evaluation was performed using a convergent

basic design as part of our mixed methods research, to assess whether programmers

could identify correctly data locality problems. The visualisation was compared to a

simple source-code reading exercise, since there is a large percentage of programmers

(+- 60% as found by one of the studies sponsored by Intel) who do not use any parallel

performance tools and analyse their performance problems by simply looking at the

source code. This was consistent with the feedback we received during the interviews.

In our experiment we have found, among other things, that the correctness increased

significantly across the board (experts and non-experts alike), along with an overall

confidence boost. Chapter 7 goes into more detail on the experiment and the findings.

Page 43

Chapter 4 UnderstandingtheProgrammer

A qualitative study was carried out to better understand how developers approach

parallel programming, identify the issues that they are trying to address, and how

software performance analytics systems could help them in their work. We conducted

a range of interviews across various organisations including a large corporation pro-

ducing operating systems, one of the largest B2B software corporations, universities,

research laboratories and small to medium sized software companies. A broad spec-

trum of organisations was targeted in order to obtain a general overview of the field

of parallel programming practices and problems.

4.1 Methodology

Interview participants were practicing software developers, engineers and academics.

All of the interviewees were practicing parallel programming in some way, including

high performance computing (HPC), Graphics Processing Unit (GPU) accelerators,

many-core and/or multi-core programming. The goal of the semi-structured inter-

views was to explore and understand the daily activities and challenges faced by pro-

grammers and to explore the techniques they use in order to tackle those challenges.

The interviewees were asked to describe the nature of their work and recent projects

involving parallel programming.

Overall, 22 people were interviewed. 14 of them were recorded, resulting in over

8 hours of audio. Interviews were transcribed (around 47,000 words), open coded

(582 open codes, unified into 252 codes), categorised in 8 major categories and sub-

categorised in 23 sub-categories. Interview participants are summarised in Table 4.1.

Interviews were semi-structured, and interviewees were asked to talk about the

challenges they had to overcome in their every day work related to parallel program-

Page 44

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

Participant Organisation Activity Years
P1, Male Corporate Engineering 0-5
P2, Male Corporate Engineering 0-5
P3, Female Corporate Engineering 5-10
P4, Male Corporate Engineering 5-10
P5, Male Corporate Engineering 10+
P6, Male Corporate Engineering 10+
P7, Male Corporate Engineering 10+
P8, Male Corporate Engineering 10+
P9, Male Corporate Engineering 10+
P10, Male Corporate Research 10+
P11, Male Corporate Research 10+
P12, Male Corporate Research 10+
P13, Male SME Consultancy 5-10
P14, Male SME Consultancy 5-10
P15, Male SME Consultancy 10+
P16, Male SME Engineering 5-10
P17, Female SME Engineering 10+
P18, Male SME Engineering 10+
P19, Male University Research 0-5
P20, Male University Research 5-10
P21, Male University Teaching 5-10
P22, Male University Teaching 5-10

Table 4.1 – A table of participants with their years of experience, main activity and the
type of organisation.

ming, the tools they had employed, and practices they used. While this analysis

method has its roots in Grounded Theory [157], we would like to highlight that it

was not our goal to build a holistic theory from the data. Following common practice

in HCI [115], we used the approach as the foundation for a focussed analysis of the

transcribed interviews.

Listed below are the some of the questions that we asked developers during our

interviews. In keeping with the methodological background, the questions were de-

liberately kept general and we tried to ”let them talk” from these starting points:

• Could you introduce yourself, describe your background and professional expe-

rience?

• Could you describe some projects you worked on and what kind of challenges

you have met in these projects?

• What kind of techniques do you use to optimise your programs?

Page 45

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

• What kind of interesting projects have you had and how did you solve them?

• What kind of challenges, what kind of problems do you face on a daily basis?

• When you’ve got a piece of code, how do you find where it should be optimised?

• What kind of profiling, tracing tools are you using?

• How do you usually determine where the bottlenecks are in the code?

• You spoke about knowledge of hardware. Could you specify what kind of

knowledge of hardware you needed?

• You mentioned patterns in parallel programming, do you use them? Are they

relevant?

• Alright, do you have something else to add?

4.2 Interview Analysis Process

As mentioned before, the process for the interview analysis has its roots in Grounded

Theory, and this section explains the analysis process we went through.

First, the audio-recorded interview were transcribed. After transcribing the inter-

views, we attempted to extract information, meaningful to us and at the same time,

understand the overall context. Figure 4.1 depicts the process of analysis, starting with

interviewing and recording. It is important to notice that the process was not perfectly

cyclic, but with each new interview new knowledge was added to our analysis, until

we reached a saturation point where we could not learn anything new. Moreover, the

categorisation was performed once every interview was collected.

Since we performed our interviews in two different languages, in 3 countries, we

first performed a language reconciliation process. We did it because 4 of our inter-

views were entirely in French, but we needed to perform a deep analysis in English.

To do this, the languages needed to be reconciled and this was accomplished by trans-

lating the interviews from French to English manually, with the goal of maintaining

the original meaning of each phrase even if the exact wording had to be changed.

Once we had a uniform set of transcripts, we needed to prepare the data for analysis.

Page 46

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

Interview	
 and	

Record	

Transcribe	

Translate	

Chunk	
 by	

Sentence	
 Open	
 Code	

Axial	
 Code	

Categorise	

and	
 Calculate	

Figure 4.1 – The interview data collection and interview analysis process.

The first step of our analysis process consisted of performing a sentence-based open

coding. In other words, we first split every transcript in sentences and then assign

labels for each sentence. It is important to note that the chunks of data we chose were

sentences and not fixed-size chunks of text, however, some sentences were split manu-

ally into a few smaller phrases, if we considered the sentence to carry multiple distinct

meanings or topics. In order to accelerate the process of sentence splitting, we created

a software tool that helped us along the way, saving some valuable time. The tool

used a simple computational linguistics approach to split sentences by punctuation

and was quite straightforward as it did not try to extract any meaning nor did it try

to split into phrases. There were a total of 1947 sentences in our final, transcribed, in-

terview dataset, with an average of 130 sentences per interview and 47077 transcribed

words. The next phase of our analysis required performing so-called open coding.

Open-coding is a process where a scientist reads through the data several times and

assigns short labels for each data chunk. In our case, for each sentence we applied a

1-3 word label. The open coding process requires the label not to be merely a descrip-

tion, but be a higher-level one and attempt to describe the meaning of the data chunk,

for example, by answering the question ”what did the interviewee actually mean when he

said that?” Figure 4.2 shows a part of our Excel file used for analysis and open coding

procedure.

Page 47

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

Figure 4.2 – Open and Axial coding dataset, used during the procedure of applying labels
and seeking relationships between codes.

After open-coding, we performed an axial coding where we attempted to relate the

codes to each other, creating sub-categories that link to general themes (categories), as

shown in Figure 4.2. In order for us to understand the initial themes, we performed a

card-sorting exercise where we printed out all 582 open codes that emerged during the

interviews on small, post-it size paper sheets each. We attempted to tangibly cluster

them, reasoning and trying to understand why a particular categorisation made sense.

We describe the categories in more detail in the following section.

We also performed a statistical analysis in order to understand the importance of

each sub-category, as shown in Figure 4.3. We have extracted the number of occur-

rences of a particular sub-category within all the interviews, and whether the term is

present in an interview or not. Then it allowed us to compute a percentage value of

whether the interviewees mentioned a particular topic or not.

During the entire process of analysing and annotating we also collected a large

amount of different memos. Memos were used to perform a deeper analysis than

just a categorisation, we used them extensively in order to derive the implications for

design and advise tool builders about the modern tools that support regular program-

mers in their endeavour to build parallel performance optimisation tools. Addition-

ally, during the process of analysing the interviews we have also constructed some

interactive web-based visualisations in order to aid us in the task of exploration and

understanding of the interview transcripts.

In is important to note that the process of hermeneutic analysis of interview data

presented above runs the risk of subjective interpretation; in order to reduce some of

the bias and strengthen our results we have presented the results of the analysis by

Page 48

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

Figure 4.3 – A snippet of the summarised analysis, showing various statistics about each
sub-category along with major category and an open code.

e-mail, to most of the interviewees, and in person, to some. The interviewees have

generally agreed with the results of our study, presented in this chapter. Furthermore,

some of the interviewees have expressed the interest in our research and have con-

tributed to several experiments discussed in this dissertation.

4.3 Themes, Categories and Codes

This section includes the results of our interview analysis categorisation, describing

major and sub-categories that have emerged during our analysis and careful series of

card-sorting exercises. The eight distinct major categories are related to people, un-

derstanding, orchestration, environment, goals / problems, resources, techniques and

tools. For each major category we also linked open codes by a sub-category, repre-

senting a semantic relationship between the major category and the code. Below we

describe each sub-category.

To help the reader in understanding our analysis, we present the categorisation

in a series of simple bar charts. Each bar illustrates a single open code and shows

the proportion of interviewees that mentioned or extensively spoke about the topic

during our interviews.

Figure 4.4 shows the drill down of the environment category and its sub-categories.

It represents the environment related concepts in which developers try to accomplish

Page 49

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

53%
40%

33% 27%
20%

13% 7%

Attribute

87%

47%
33%

20% 13% 7%

Project Architecture Hardware Operating System Money Programming Language Software

Component

Figure 4.4 – Categories and Codes related to the ”environment“ theme.

their work, whether it’s a company, a particular hardware configuration or a particular

architecture.

The major category ’people’ can be shown in the Figure 4.5. It represents people-

related concepts such as human factors, collaboration, experience and education.

Figure 4.6 depicts the drill down of the major category about understanding. It

represents a series of concepts explaining how people understand parallel program-

ming and what kind of things they are trying to understand. Sub-categories include

things such as hardware, bugs, components or interlinking.

In the Figure 4.7 the reader can see the drill down of the major category titled

’orchestration’. It represents a series of concepts explaining how people understand

parallel programming and the kind of things they are trying to understand. Sub-

categories include concepts such as hardware, bugs, components or interlinking.

As depicted in the Figure 4.8, the major category ’resources’ is very specific. It

Page 50

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

67%

7%

Collaboration Customer Feedback Teamwork Organization

Collaboration

40%
33%

20%

7%

Expertise Experience Practices Control Skills Design Pattern Knowledge Design Pattern Knowledge Frame of Mind

Experience

60%
47%

7%

Behaviour

53%

27% 20% 13% 7%

Human Factors

Figure 4.5 – Categories and Codes related to the ”people“ theme.

represents resources-related concepts, whether the resource is hardware, software and

what types of properties each resource possesses.

In the Figure 4.9 the reader can see the drill down of the major category about

goals (problems). It represents a series of concepts related to the types, contexts and

Page 51

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

40%

13% 7%

Technology

33%
27%

20%
13%

7%

Method
13%

7%

Abstraction Info on Context Goals Can Reproduce

Facilitator

67%
53% 47%

33%
20% 13% 7%

Target

Figure 4.6 – Categories and Codes related to the ”understanding“ theme.

properties of various goals or problems that programmers seek to solve.

The Figure 4.10 shows various codes and sub-categories related to the major cate-

gory of techniques. It represents the concepts related to the set of techniques develop-

ers use to solve the problems or achieve their goals.

Page 52

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

7%

Analysis Expertise and Practices Overview Preparation

Facilitator

40%

27%
20%

Points of Synchronism Workers Communication

Target

60%

33% 27%
13% 7%

Attribute

13%

7%

Factor

60%
47%

27% 20% 13% 7%

Method

Figure 4.7 – Categories and Codes related to the ”orchestrating“ theme.

Lastly, the Figure 4.11 depicts the drill down of the category about tools. It repre-

sents concepts related to the tools developers use in order to achieve their goals and

the characteristics of these tools.

Page 53

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

33% 33%
27%

20%
13%

7%

Property

47%

20%
13%

7%

Hardware Memory Feedback Tool Worker Abstract Entitity Event Processor

Type

Figure 4.8 – Categories and Codes related to the ”resources“ theme.

Page 54

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

87%

47% 40% 33%
20% 13% 7%

Context
40%

27%
20%

13%
7%

Factor

67% 60%
40%

27% 20% 13% 7%

Property

60% 53%
40% 33%

20%
7%

Type

Figure 4.9 – Categories and Codes related to the ”goal/problem“ theme.

Page 55

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

60%53%47%
33% 27%20%13%7%

Loa
d Ba

lanc
ing

Syn
chro

niza
tion

Me
mor

y M
ana

gem
ent

Loc
king

Opt
imiz

ing
Ree

ngin
eer

ing
I/O

Man
age

men
t

Loc
k Co

mpo
sitio

n
Hyb

rid
Par

alle
lism

Ato
mic

ity
Cac

hing
Com

pile
r Op

tim
izat

ions
Loc

king
 Sch

eme
s

Man
ual

Opt
imiz

atio
ns

Mic
ro-O

ptim
izat

ion
Tra

cing
 in R

eal-
Tim

e
Tra

nsa
ctio

ns

Orchestrate 47%

27%
20%

13% 7%

Evo
luti

on
Har

dwa
re

Dat
a Se

par
atio

n
Flex

ibili
ty

Algo
rith

m D
epe

nda
nt

Con
flict

ing
Pat

tern
s

Con
ten

tion
Com

pet
itivi

ty
Rea

l-Tim
e

Tim
e

App
rop

riat
e M

ode
l

Lan
gua

ge I
nde

pen
dan

t
Me

mor
y Sa

fety
Ree

ntra
nce

Seq
uen

tial
Algo

rith
m

Constraint

87%

20% 13% 7%

Worker

60%
47%40%33%27% 20% 13% 7%

Exp
erim

ent
atio

n
Deb

ugg
ing

Ver
ifica

tion
Visu

aliz
ing

Tra
cing

Abs
trac

t Co
mpl

exit
y

Exp
lori

ng t
he C

ode
Ana

lysi
ng

Ben
chm

arki
ng

Cha
in o

f Ev
ent

s …
Dea

dloc
k De

tect
ion

Doc
ume

nta
tion

Fee
dba

ck
Visu

aliz
atio

n
Visu

aliz
ing

Res
our

ces
Che

rryp
ick

Tra
cing

Cod
e An

not
atio

ns
Con

text
ual

Info
Deb

ug I
dea

s
Deb

ug i
n Re

al T
ime

Deb
ug S

trat
egie

s
Foc

us
Hid

den
 Par

alle
lism

Lev
els

of P
aral

lelis
m

Ove
rhe

ad
Pro

blem
Sim

plifi
cati

on
Sim

ulat
ions

Stat
ic A

naly
sis

Tim
e-Tr

ave
l De

bug
Tra

cing
 Ana

lysi
s

Visu
aliz

ing
Pat

hs

Understand

40% 33% 27% 20%

Producer Consumer Active Object Scatter / Gather Pipes and Filters Futures and Promises

Orchestration Model

20%

7%

Domain-Specific Language Domain-Specific Tools Tools

Instrument

Figure 4.10 – Categories and Codes related to the ”techniques“ theme.

Page 56

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

53% 47%
40%

20%
13% 7%

Attribute
27%

13%

Programs Frameworks

Type

60%

40%

13% 7%

Debugging Profiling Explorative Analytical Modeling General Purpose

Function
33%

7%

Constraint

Figure 4.11 – Categories and Codes related to the ”tools“ theme.

Page 57

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

4.4 Developing parallel software

During our study we identified three major poles of activity in a developers work.

Developers attempt to: 1) Meet their own goals and the goals of their organisation, 2)

Understand what is going on with the workers (threads, processes, machines). Where

are they, what are they doing, are they performing well? 3) Orchestrate the group of

‘workers’ and make them work efficiently together. In the following sub-sections we

examine these three poles.

4.4.1 Context for development
The developers interviewed were mostly based in industry and every organisation

had their own unique set of constraints and concerns. Their working environments

(both physical and virtual) are composed of various components such as software

specifications, budgeting and deadlines, human resources, hardware and software

constraints, programming languages, software architecture, the actual code, etc. An

interesting aspect of the study is that the programmers interviewed did not dwell on

programming paradigms and talked about their experience across different program-

ming languages. We know, however, that many were using imperative languages such

C, C++, Fortran or Java, and some used hybrid languages such as C# or Matlab.

Throughout the interviews, developers often talked about complexity, and specif-

ically about the complexity of the software: large systems tend to become larger and

ever more complex as new features are introduced. One developer, commenting on a

major web search engine stated:

Interviewee: “When you have a 20 million line app, no one can fit it in the

brain.”

The complexity of many of these systems is such that no one person understands

every detail of the system. The knowledge is shared between people in the organisa-

tion, and distributed across various information systems.

While developers often worked with extensive tool support in the form of IDE’s,

this support does not extend specifically to debugging and optimising parallel soft-

ware. As a result, developers tend to rely on intuition and resort to ‘thinking really

Page 58

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

hard’ about the problem. There are two aspects to reasoning about problems; on a

conceptual level developers want to focus on the problematic elements of their pro-

gram and abstract away elements not immediately relevant to the matter in hand. On

a concrete level, there are also issues of experimental noise; they may wish to replicate

the problem in the simplest possible form in order to clearly identify the source of the

issue and test possible solutions.

Interviewee: “(...) sort of a test bench, where we just took that problem piece

of code and then just on that algorithm, just enough of the code to be able to

start that algorithm and run it or just enough of the code to run it to get the

results and to be able to verify that they were accurate.”

However, developers are often confronted with various and sometimes unexpected

problems. These problems can occur on different levels: in a particular function in

their code, in an external library, on a particular machine or a cluster, or even on an

abstract architectural level.

Most developers who develop parallel software do so in order to obtain better

performance. Therefore, performance becomes a design requirement. In consequence,

developers do not think of parallel performance optimisation as a separate process,

but as a correctness issue, a particular type of bug. This contrasts with traditional

software development where the two concerns are generally more easily separated.

Interviewee: “In the normal software development they usually forget about

optimisation at the beginning and then look to optimise later. In HPC it is

totally different approach: you design your code to be optimal.”

4.4.2 Understanding

In almost every interview, developers described methods they use which help them

improve their understanding of the system they are working on, the environment or

various problems that occur. There are numerous things they try to understand. For

example, they may want to know which component is at fault (code path, thread,

task), when and what caused the failure to occur. Alternatively, they may be interested

in understanding the architecture of the software they are working on (patterns of

Page 59

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

communication, design patterns, dependancies, hardware).

In order to improve their understanding, developers use a range of techniques.

Some of these techniques are only possible with very specific tools whereas in other

cases they may simply ask other people.

Table 4.2 provides a non-exhaustive list of techniques that were mentioned or dis-

cussed to some extent during the interviews.

% of Participants Technique
60% Active Experimentation
47% Verification
40% Visualizing
33% Tracing
27% Abstracting the Complexity
20% Benchmarking
20% Chain of Events Analysis
13% Deadlock Detection
13% Documentation

Table 4.2 – A non-exhaustive set of techniques for understanding and the percentage of
interviewees who were talking about the subject.

In addition to this, there are various obstacles that developers have to overcome in

order to gain a better understanding. Obstacles mentioned include the overall com-

plexity, non-determinism, incomplete information, incorrect assumptions and lack of

documentation.

A developer in a large organisation commented:

Interviewee: “Some classes were written decades ago, then somebody puts it

in another product, and then to another product. And suddenly someone says

that we’re going to use multiple threads to do that, and all of the sudden this

legacy code has been dragged into the 21st century.”

In this case, the programmer used an external library (a piece of code) written by

someone else some decades ago. The new developer made an erroneous assumption

about thread-safety as relevant information was not available to him, resulting in a

poorly performing and buggy program.

Page 60

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

Inadequate Tools

The majority of developers we interviewed expressed dissatisfaction with available

tools. Three developers we interviewed clearly stated that the tools were very poor a

few years ago, but gradually getting better over time. Five of the interviewees asserted

that they do not use any performance analysis tools at all.

Interviewee: “ (...) Take the lock again, commit everything back. But the prob-

lem is, at least in C++ and C, there’s no great tools or mechanisms to support

that type of thing, or to even find out that you have those problems.”

In some cases, this discontent even results in a person, in the case of the next quote,

a computer-science expert, not using tools and relying solely on intuition for the whole

debugging and optimisation process.

Interviewee: “I think the only way I can do most of this debugging is stare at

it and debug it in my head, which is the least effective way you can ever debug.”

There seems to be a gap between the results that performance analysis tools pro-

vide and the information that developers seek. Developers are usually interested in a

specific issue that they wish to diagnose. They see a symptom of a performance issue

and they attempt to figure out what caused it. This is a challenging, and often time

consuming process. This process of understanding is still poorly understood and de-

velopers use various techniques. For example, they might experiment, putting traces

in code, recompiling over and over again, they might try to go back to the whiteboard

and create some hypotheses of which component is failing, or use tools that assist

them. The whole process is usually a combination of all those things.

Interviewee: “But I spent, I do not know, maybe a week just staring at the

thing, watching it god knows how many times.”

The Probe Effect

One of the most problematic barriers for understanding the performance of complex

software systems, is the presence of the probe effect. The probe effect denotes an

Page 61

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

unintended change to the behaviour of a system caused by observing (measuring)

that system [53, 95]. In order to measure something in the program, an automated

tool or a person adds additional code to record features of interest. This approach is

called program instrumentation.

Interviewee: “And then, there’s a question of how to observe the parallelism.

[...] An observation brings problems which wouldn’t be there if we wouldn’t

observe.”

In order for a performance measurement system to be safe to use on production

systems, it is generally considered that the performance analysis infrastructure should

have zero probe effect when disabled and should not accidentally induce any errors

when enabled [26]. However, most instrumentation techniques have a probe effect

when enabled making it difficult to apply continuous monitoring of performance on

production systems.

Developers are aware of the presence of potential probe effects and 27% high-

lighted the probe effect as an important issue, resulting in them not using any per-

formance analysis tools on production systems. By slowing down the whole program,

the behaviour of the program is altered and makes it difficult or impossible to track

some performance issues such as race conditions. This is especially problematic when

developers have to diagnose performance issues, as the instrumentation may slow

down the whole program to the point where the performance problem is no longer

observable.

Interviewee: “We had a number of interesting issues. The actual turning on

the log it slowed everything down such as the problem would not be there with

logging on.”

Information representation and resources

In order to cope with the complexity of software development, developers create ab-

stract representations of the environment and contextualise the work they are per-

forming. For example, interviewees talk about a global scope or a local scope. The

scope represents a context in which they perform their tasks, allowing them to focus

and reason on a particular level:

Page 62

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

Interviewee: “So you have parallel programming at the GPU level, 1 at the

CPU level at cluster level, and then, you know, maybe deeper even.”

The global scope represents a ‘big picture’ of the system. For example, hardware,

systems and software architectures. The global scope thinking allows developers to

think about the problem in a more abstract way. The local scope represents a ‘detailed

picture’ of a sub-system of the system the developers are working on. For instance, a

developer might consider using a specific algorithm in order to optimise some part of

a program.

As mentioned above, complexity can be overwhelming. Developers therefore use

tools to offload knowledge into the world, a common strategy for people faced with

complexity [123]. For example, several developers reported using UML2 or sketching

tools, even pen and paper, in order to externalise their knowledge by ‘charting’ the

environment in this way:

Interviewee: “The only tools I used [during the project] were UML analysis

tools.”

However, while developers are focusing on a local scope, they may lack contextual

information. For example, while with a modern integrated development environment

(IDE), the developer may know what parameters are taken by a function they call,

they usually do not know whether the function is thread-safe, what side-effects it pro-

duces or how well it performs. This is especially problematic in the case of functions

or classes that are poorly documented. Developers stated that they rely heavily on

documentation, augmenting available resources with internal wikis, and tend to use

third party libraries that they know are well tested and perform well.

Interviewee: “I’ll often look to use the Intel MKL3 libraries, wherever possible.

[...] But the documentation for it is really excellent. ”

Developers seek information relevant for the task at hand. For example, if a pro-

grammer designs a new feature which complements a bigger system, they need in-

1Graphics Procesing Unit (GPU) can be used by developers to perform some computation, usually
number-crunching.

2UML stands for Unified Modelling Language, a standardised general-purpose modelling language
in the field of software engineering.

3MKL stands for Math Kernel Library, a set of routines which includes highly vectorised and threaded
Linear Algebra, Fast Fourier Transforms (FFT), Vector Math and Statistics functions.

Page 63

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

formation about the existing elements of the system in order to achieve their goal.

If the programmer develops a particular algorithm destined to work on particular

hardware, they might need hardware specifications in order to create an optimal al-

gorithm. The programmer needs information relevant to their task, but information

is often fragmented and distributed across various sources (documentation, internal

wiki, people).

4.4.3 Orchestration

The process of parallel programming is essentially a process of coordinating the efforts

of different workers and balancing workload, which we can paraphrase as orchestra-

tion. The programmer attempts to distribute the workload across multiple worker

nodes, to achieve optimal resource utilisation, maximise throughput, minimise re-

sponse time, and avoid overhead. Programmers in different contexts will have differ-

ent constraints and therefore might perform this orchestration differently. For exam-

ple, a developer working alone in a small company, would want to reduce his costs in

writing the software by reducing the time required to do so. On the other hand, a PhD

researcher might concentrate more on the performance of their program, sacrificing

time. This leads the developers to use different orchestration techniques, depending

on the situation.

Orchestration Models

As mentioned above, programmers go through a process of orchestration, trying to

find a solution that allows them to efficiently distribute the workload across multiple

workers. In programming, as with many other crafts, reusable solutions for commonly

occurring problems are often formalised. Some such solutions discussed during the

interviews are also known, more formally, as design patterns. An advantage of such

formalised design patterns is that they provide both a common conceptual model and

a vocabulary for everyone who uses them, allowing programmers to reason about and

solve problems more easily.

Interviewee: “The goal was to decouple an image processing part as much

Page 64

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

as possible in a pipeline and partition the tasks on the different resources [ma-

chines].”

During the interviews, we asked people to talk about various challenges they en-

countered during their projects. They all gave at least one, high level explanation of

the solution they implemented. The projects the programmers worked on were var-

ied: from a small multiplayer game running on a single computer, to one of the biggest

search engines in the world, running on thousands of computers. They talked about

the way their program is orchestrated, about the architecture and about the high-level

design.

Across these various projects and solutions that were put in place, similar orches-

tration patterns were applied. Surprisingly only some of the developers were familiar

with formalised design patterns and named them. However, many developers we

interviewed were essentially talking about a design pattern. Table 4.3 shows the per-

centage of developers we interviewed who were using knowingly or unknowingly a

recognisable design pattern in their work.

Occurrences Orchestration Model
40% Producer / Consumer
33% Active Object
27% Scatter / Gather
20% Pipes and Filters
20% Futures and Promises

Table 4.3 – A non-exhaustive set of orchestration models and the percentage of intervie-
wees who were talking about the subject.

For example, one of most commonly mentioned design patterns is the Produc-

er/Consumer, a design pattern that is used to decouple workers that produce and

consume data at different rates. Such decoupling grants the programmer flexibil-

ity in how they partition the workload in a scalable manner. Another example of a

widely used design pattern is the Active Object model. This pattern allows indepen-

dent threads of execution to interleave their concurrent access to data modelled as a

single object. This model allows the developers to simplify synchronisation complex-

ity and transparently leverage available parallelism.

While design patterns are in part formally defined in the literature, in the context

of parallel programming, their significance is in the way that they provide orchestra-

Page 65

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

tion models. An easy metaphor to understand this, is to consider that a developer

who writes parallel programs does not write recipes (as often taught to first year com-

puter science students), but manages a project with several workers working for him.

The developer attempts to orchestrate these workers in an optimal way, considering

the available resources and tasks at hand. In the parallel programming context, such

workers can be threads, processes, machines, domain-specific classes, etc.

Interviewee: “It’s like seeing a team working. Sometimes the team works

better when you have some people that work worse for some reason.”

Orchestration models are a type of design pattern employed in parallel program-

ming, and they span different contexts (or scopes) on which developers are focusing.

In software engineering design patterns are often related to reusable code skeletons

for quick and reliable development of parallel applications [149]. In contrast, orches-

tration models are more abstract, spanning not only patterns related to software archi-

tecture, but hardware and system architectures as well.

Programmers tended to refer to specific orchestration models when describing the

way they think about the design and implementation of concurrent systems.

Difficulties with Orchestration

While the orchestration models provide an initial basis for design, helping the pro-

grammers to reason about and implement their system, there are many issues associ-

ated with the process of orchestration. In this section we highlight some of the diffi-

culties described by the developers. To illustrate our point, we start by giving a couple

of examples of problems the programmers encountered.

Problem: Novice programmers (computer science students) were im-

plementing a concurrent game, running on a single multi-core machine.

They ran into critical deadlock and slowdown issues due to lock con-

tentions.

Adopted Solution: Students were forced to reengineer the whole game

and completely understand the interactions between components. By

removing redundant locks and following a critical section pattern for ev-

Page 66

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

ery component, they achieved a correct and fast implementation. They

drew a schema of interaction of various components, mainly in order

to understand the activity of workers at any given moment, and the re-

source usage and sharing.

Problem: Expert developers were implementing a system, allowing them

to perform computationally intensive tasks on a massively parallel GPU.

They ran into a series of subtle problems, the most common being branch

misprediction. Branch misprediction occurs when a processing unit (CPU

or GPU) mispredicts the next instruction to execute, which impacts ad-

versely on overall execution time.

Adopted Solution: They ran tests to identify which branches were taken

most often and adapted the code accordingly.

Problem: Expert developers were implementing an equivalent of an

OpenMP “parallel for” loop. They were building a library for other de-

velopers to use and ran into a problem where their implementation did

not perform as well as expected in production, far below the theoretical

performance. They had been very focused on the implementation and

theoretical performance and did not consider the context, in this case,

the influence of the operating system which negatively impacted on the

performance.

Adopted Solution: They adopted a clever solution, where workers would

steal work from other workers (work-stealing). This allowed them to

have an implementation which was more dynamic in nature and could

cope with the uncertainty introduced by the operating system.

In the examples above, as in many other instances observed during our interviews,

developers implemented the system, but noticed a slower than expected performance

or a critical bug during the verification phase. They encountered undesirable side

effects of both a deterministic and non-deterministic nature.

Page 67

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

Interviewee: “Because it just works most of the time, and you occasionally

just see some corruption”

Non-deterministic issues may manifest themselves in various forms, and, most

importantly be unpredictable and difficult to reproduce. The programmer’s job is to

prune as much nondeterminism as possible [96]. Moreover, in many cases, developers

had to go back to the drawing board and reengineer, at least partially, their system.

‘‘Optimal’’ solutions

Developers want to reach a working solution which is close to the best achievable

result given their organisational constraints. Essentially, they are trying to find an or-

chestration model that allows them to build a system with satisfactory performance.

The “optimal solution” in this context represents an ideal, a scalable and practically

feasible solution that programmers strive to achieve (rather than theoretically opti-

mal).

Interviewee: “There is not an analysis tool in existence that helps to ensure

that we’re getting to an optimal solution.”

Picking a satisficing orchestration model is not an easy task as it depends on var-

ious constraints. We have previously illustrated some of the constraints, including

the correctness or performance, but an orchestration model, as opposed to a design

pattern, can also have more general constraints, such as usability. To illustrate this,

consider the following quote from an expert developer who worked on a “parallel

for” loop abstraction, from the third example.

Interviewee: “Next thing we worked on is a parallel for. A parallel for by itself

it’s not terribly hard [to implement], but there is different types of workloads...

So, analysing every workload and seeing how a parallel for would perform and

what are the different jobs that a user could actually use. [It] turned out to be a

herculean task, because most people use it for a very simple thing. For example:

I have two arrays of numbers and I use parallel for to sum them. So now, there’s

work which is too small in every iteration, which means we can not introduce

any overhead. But the same parallel for could be used to do much more complex

problems: tons of work within every iteration. And, even worse, they could use

Page 68

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

it for raytracing, for which in every iteration the work is different.”

Essentially, the developer explained to us that in addition of having correct and fast

implementation, their system had to be used in many different ways by developers,

and thus being usable and flexible. Once again, they had to go back and reengineer a

part of the system to cope with this requirement.

Summary

Whether explicitly or implicitly, developers are thinking about their programs in terms

of orchestration models. The majority (60%) of developers we interviewed talked

about load balancing and optimality. They want to orchestrate their programs in a

efficient manner, coordinate workers and distribute resources. There is a clear need

for tools that help developers to go ‘back to the drawing board’ and analyse the un-

derlying architecture, the orchestration model, of a program upon encountering per-

formance problems.

4.5 Discussion

In this section, we consider and discuss potential implications of the study regarding

parallel programming practices and the design of tools to support these.

Cover both correctness and performance. While our study initially intended

to focus only on performance improvement, during the interviews it quickly became

clear that that performance concerns cannot easily be separated from program correct-

ness, as is the case in traditional programming tasks. This is due to the nature of the

problem itself, as programmers write parallel code in order to leverage the resources

and increase performance. Good performance thus becomes a design requirement.

This observation leads us to consider a range of implications. Firstly, tools that sup-

port parallel programming activity should consider both correctness and performance

issues at the same time. This is different from traditional programming where we can

see two major types of tools: profilers which are used for measuring and analysing

the performance of a system, and debuggers used for diagnosing correctness prob-

lems. Secondly, this observation also means that it might be possible to apply research

Page 69

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

on debugging in software engineering to parallel performance problems, such as the

information foraging perspective [94, 133].

Support active experimentation and tracing. Developers are not happy with cur-

rently available tools for parallel programming. At least one interviewed developer

in five was not using any performance analysis tools at all and attempting to reason

about the performance using tracing and active experimentation.

Therefore we suggest features supporting incremental running and testing of pro-

grams should be included in software performance analytics systems. It has been

previously noted that such features help developers to be more productive during

the debugging process [60, 58, 131]. Hence, enhancing software performance ana-

lytics systems with immediate feedback and exploratory search could result in more

productive performance analysis. As an example, consider a visualisation system of

performance data that supports an exploratory search process, allowing developers

to localise performance bottlenecks and hence narrow the range of possible causes.

Moreover, such a visual analytics tool could aid program comprehension and help

reduce bugs [56]. While this strategy is applicable to more traditional programming

tasks, parallel programming introduces more parameters which might be varied, such

as conducting multiple runs with different numbers of threads, or changing processor

affinity. There appears to be a gap between what developers need and what current

tools provide. Most of the current tools are designed and built by computer scientists

in a bottom-up, data-driven fashion. Rather than taking bottom-up approach, build-

ing tools and sticking a nice barchart on top of the captured performance data, we

must build meaningful tools what are tailored to developer’s actual needs. Ideally,

performance tools should not only be useful, but also easy to learn, require a minimal

effort from developer, assist them in experimentation, encompass contextual informa-

tion and highlight points of interest.

Consider the environment and the context. Developers deal with very com-

plex environments and create abstractions and contextualise the work they are doing.

However, they seem to lack support for integration of various sources of information,

even simple things such as a link to the page of the company’s wiki explaining the

architecture of a particular library or server configuration.

We suggest that developers of software performance analytics systems keep in

Page 70

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

mind that developers work in a highly interconnected system. The interviewees ex-

pressed concern about lack of context, bad documentation or legacy code. This can

be solved by integrating contextualised knowledge into tools. For example, if a de-

veloper uses a particular library, it is useful for him to be able to have easy access

to documentation, have it automatically checked for thread-safety, or present some

information about performance of the piece of code they are about to include.

Consider the probe effect. Developers are concerned about the probe effect. Most

tools rely on code instrumentation, and hence alter the behaviour of the program. In

some cases, this leads to developers avoiding using any tools and relying solely on

intuition. The probe effect also makes developers avoid using performance analysis

tools for continuous monitoring of production systems. Once the system is deployed,

developers desire maximum performance of the system and anything that might slow

down or impair a deployed program is avoided. This makes it difficult to measure the

performance, capture and diagnose performance issues on production servers, when

it occurs. It is especially problematic with non-deterministic issues which may occur

only rarely. For example, the Ptolemy II Project developed a process that included a

code maturity system, design reviews, code reviews, nightly builds, regression tests,

and automated code coverage metrics. They also wrote regression tests that achieved

100 percent code coverage. However, after four years of use, a deadlock was encoun-

tered [96].

We suggest that the probe effect issue must be considered from the beginning while

building performance analysis tools. It may be possible to reduce or avoid the probe

effect by using a combination of hardware counters and operating system events.

[176]. While such approaches are less relevant from a HCI perspective, an important

challenge is how to make this data meaningful to the programmer; it must be possible

to relate the low-level data back to the structure of the program.

Make use of orchestration models. During the interviews, developers discussed

a range of design patterns and architectures they used throughout their programs. An

interesting design direction would hence be to leverage orchestration models in the

design of software performance analysis tools.

Developers seek to pick a suitable orchestration model for a particular scope. It can

be a design pattern, a way to split an array in a function for a parallel loop, or even

Page 71

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

Figure 4.12 – Sample graph for measuring scalability of the same algorithm for different
workloads [72].

a cluster configuration. A good tool should help them in this endeavour of “thinking

parallel”, which is also the number one point on a recent list of challenges in parallel

computing [106].

One can think of numerous ways to take advantage of orchestration models. One

direction would be to design visualisations which are specific to particular design pat-

terns, and which emphasise features of interest within these, illustrating the perfor-

mance data with respect to the pattern. One example of such a visualisation can be

found in Sutter [72] and depicted in the 4.12, in which scalability of a given algorithm

is charted for a range of different numbers of producer threads and consumer threads,

within a producer-consumer orchestration model.

Page 72

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

Help in finding an optimal solution. As many developers seek to get as much

performance as they can, providing that in doing so the code remains maintainable

and reusable, we need to help them in this task.

Ideally, this can be done via automatic parallelisation, which is the Holy Grail of

parallel computing and aims to automatically parallelise the work, thus not requiring

the developer to know about parallel programming at all. However, since it does not

seem to be realistically possible in the near future, there are many other things that

could be done, for example, predicting the performance of an application [79, 174].

Provide support for scope exploration. We have noted that developers consider

the notion of scope of their orchestration. Additionally, when faced with a challenge,

developers must often go ‘back to drawing board’ and reconsider their orchestra-

tion model. This process requires them to look at the problem from different angles,

essentially being able to consider orchestration models at various levels of abstrac-

tion. By providing the ability to developers to interactively change the scope (core,

CPU, thread, and upwards) and re-sample measurement data accordingly, developers

would have additional flexibility in the challenge of diagnosis and re-orchestration.

4.6 Concluding Remarks

Parallel programming is an important, but very complex activity. In this chapter we

have identified and explored some of the challenges involved in parallel program-

ming, in particular the challenge of parallel performance analysis.

As well as illustrating the way in which correctness and performance issues are in-

terwoven in parallel programming, the way in which the probe effect influences their

performance analysis and debugging behaviour, and the way issues surrounding the

complexity of the task and environment, the study has looked at the role of orchestra-

tion models in parallel software development. While some of the issues identified are

apply to more traditional software development, in all cases additional dimensions

are introduced by parallel programming.

Developers of parallel software have to meet their goals within a complex envi-

ronment. In some sense, they are similar to factory managers and have to orchestrate

multiple workers and manage them as a team. This metaphor of parallel program-

Page 73

CHAPTER 4. UNDERSTANDING THE PROGRAMMER

ming is different from traditional programming, where developers write a recipe for

a unique worker, here, they have to deal with often unpredictable interactions.

The study can help to inform the discussion on potential tool support for develop-

ers, and particularly the design of performance analysis tools.

Chapter 5 explores the problem space in systematic fashion; identify the major

types of problems that programmers might encounter, and the information they might

exploit in their diagnosis.

In Chapter 6 and 7 we explore how we might build on such a model by focusing

on the specific example of data locality. The design, implementation and evaluation

of a performance visualisation for data locality is presented, building on insights and

requirements emerging from the study.

Page 74

Chapter 5 Modelling the Diagnosis

In our effort to establish a framework to help parallel performance tool developers

in dealing with performance problem analysis, we need to create an effective model

which can be used by practitioners in their endeavour. In order to effectively help

diagnose parallel performance problems, we need to know what those problems are;

while we have identified some of the problems in the previous chapter, it is necessary

to perform a more comprehensive analysis of the field literature.

At the point of writing, no formal and well accepted taxonomy of parallel perfor-

mance problems exists so far, that we are aware of. Hence, we present an initial tax-

onomy of parallel performance problems. These are classified into seven interrelated

categories, six of which we consider in detail in this thesis1. Each category contains

several specific performance problems that can arise in parallel programs.

There are many possible ways to conceptualise parallel performance problems,

and several of the categories in the taxonomy can be seen as overlapping to some

extent, or to interfere with one another; a given issue with the software might also lead

to multiple performance problems. Furthermore, certain types of parallel performance

problems, such as those arising from the design of the software architecture, are not

easily characterised. There is a strong bias in our model towards problems that lend

themselves to measurements of the executing program.

In terms of measurement, hardware counters such as cache misses and memory

controller bandwidth, together with operating system events such as context switches

and I/O writes provide raw data which can be processed to produce performance

metrics. During the process of identifying performance problems, a developer can

interpret these performance metrics and relate these to the performance of various

1One of the categories (I/O) is conceptually distinct and not covered in detail in this thesis, for reasons
which are discussed later.

Page 75

CHAPTER 5. MODELLING THE DIAGNOSIS

components of their own mental representation of the program.

Building on the taxonomy, we present an observational model which identifies a

set of potential symptoms which may be associated with particular problems within

the taxonomy. Additionally, a series of discriminating (contrary) symptoms are also

proposed. Two accompanying studies are used to validate and explore the model. We

investigate the relationship between: (a) performance data we can collect, measure

or calculate such as operating system events or performance counters and, (b) the

process of identification of performance problems. In other words, to what extent can

programmers of multi-core systems effectively identify specific problems given a set

of measurable features?

The aim is not to discover the “one true model” but rather a useful model with

reasonable coverage of the problem space which can be used as the basis for discus-

sions around tool support. To this end, we have cross-validated the model in a study

with 10 experts, constructed as an inter-rater annotation exercise [166]. The experts

annotated various observations as being indications, contraindications or irrelevant

to the performance problem presented. While F.D. Roosevelt quipped that “there are

as many opinions as there are experts”, the expert study helps to identify both those ar-

eas with high agreement, improving confidence in the objective validity of those parts

of the model, as well as those where there is disagreement. Disagreement may indi-

cate the need for further research, but might also arise in cases where context plays

a strong role in the significance of a particular observation, requiring a more detailed

breakdown of the observations and their meaning.

We accompany the expert validation exercise with a survey using this taxonomy to

assess the familiarity and frequency of these problems among developers, to further

help in identifying good candidates for improved tool support.

5.1 Problem Taxonomy

A taxonomy of parallel performance problems provides us with a common founda-

tion and vocabulary for discussing the diagnosis of parallel performance problems

and provides concepts which can help in the design of tools to support their detection.

In this section, we present one possible taxonomy, developed iteratively and derived

Page 76

CHAPTER 5. MODELLING THE DIAGNOSIS

from several sources. The initial starting point was an earlier qualitative study [12] in

which interviews with parallel software developers were fully transcribed and coded

following a qualitative research methodology, resulting in 582 open codes. While the

focus of the qualitative analysis was a broad characterization of needs and practices,

as a by-product of the analysis, a range of different types of performance problem

emerged, including load balancing, lock contention and saturating memory band-

width. In parallel, we examined two main classes of literature on software perfor-

mance optimization for multicore. We examined both practical materials and manu-

als aimed at software developers [4, 2, 1, 8] and books and papers from the research

literature on performance of parallel programs [7, 24, 158, 179]. These sources were

used to provide material for both the taxonomy of problems, and the model relating

observable data to these.

A useful source of information on multicore performance problems is the Intel

software optimization manual [4]. It specifies five areas for optimization of parallel

programs: thread synchronization, bus utilization, memory optimization, front-end

optimization and management of shared execution resources [4]. Specific performance

problems listed include false sharing, spinlocks, sharing updated data between cores,

and limited memory bandwidth. Elements from the literature informed our descrip-

tions of task granularity [31], lock contention[16], low-work to synchronization ra-

tio [142, 73], data sharing [4, 71], load balancing [9], TLB locality [57], DRAM memory

pages [41], NUMA [4], false sharing [8], and shared resource contention [179].

We have worked to make the emerging taxonomy and model more coherent and

bring it into line with the terms used within the computer architecture and parallel

programming literature, and relating each to potential observations. Short descrip-

tions of each problem were also produced in this way, with reference to the literature.

Further review was done sequentially with two domain experts (in building paral-

lel software and solving performance problems in parallel software). Each expert re-

viewed both the taxonomy and observations, and asked to consider which were rel-

evant and useful and which are not, as well as identify any missing items. This was

done in order to validate and stabilize the taxonomy and model before progressing

with the studies described within the paper. The final output of this process was the

taxonomy, the short descriptions of each problem, and 110 observations relating to

Page 77

CHAPTER 5. MODELLING THE DIAGNOSIS

these2.

A complication is that most performance problems that can exist on a single core

can also exist with multiple cores. Rather than trying to describe all the single-core

and multicore performance problems together, we instead focus on the problems that

arise from the interaction of multiple cores. It is difficult to draw clean lines between

related types of performance problem, and some parts of our taxonomy might overlap

in places. However, in the development of the taxonomy we have sought to provide

coverage of the most important parallel performance problems in shared-memory

multicore systems. Another issue is that it is not always clear where in the taxon-

omy to place particular problems. For example, exceeding memory bandwidth could

be a resource sharing problem or a locality problem.

It is important to note that when we refer to various performance problems, we are

referring to features of the parallel program that limit performance. For example, in

some applications exceeding available memory bandwidth may be an innate feature

of the application area and algorithms used. Many sparse linear algebra problems

operate on huge sparse matrices and are inherently limited by memory bandwidth.

Using every bit of available memory bandwidth may actually be a partial solution to

dealing with these huge data structures. When we refer to the resource limitations as

being a performance problem, we more precisely mean that they limit performance.

It is difficult to improve performance without addressing the problem. Similarly, we

regard large amounts of sequential execution as a performance problem, but in some

cases this may be inherent in the application. Sequential execution is a performance

problem in the sense that it limits parallel speedup. But there is no guarantee that the

problem can be solved in any specific program.

5.1.1 Scope of taxonomy
Multicore computing encompasses a wide range of architectures with many differ-

ent features. For example, multicore digital signal processing processors often have

low-level hardware features such as software-managed on-chip memories. Multicore

2The coding from the preceding qualitative study, experimental materials (category and problem de-
scriptions), and notes regarding derivation of the taxonomy are available from http://www.scss.tcd.

ie/ManyCore

Page 78

CHAPTER 5. MODELLING THE DIAGNOSIS

network processors have special features to accelerate packet processing. Some people

regard graphics processing units (GPUs) to be multicore processors.

For the work presented here, we restrict the scope to perhaps the most ubiquitous

class of multicore architectures: A machine with multiple cores, a shared memory with

hardware cache coherency, and which runs an operating system. The main multicore

processor on almost all server, desktop and laptop machines belongs to this class [71].

Many embedded multicore processors, especially those from ARM, also follow this

model.

We assume a shared-memory programming model based on threads, with locks,

synchronization barriers, semaphores, critical sections and similar mechanisms as the

main synchronization mechanism3. The machine might have two or more CPU chips,

each containing multiple cores. But all cores operate on a single shared consistent

memory (where consistency and transparency of access is maintained by cache co-

herency and NUMA hardware). Note also that although we do not exclude machines

with more than one multicore CPU chip, these are not at all our main focus. We con-

sider only problems that are tightly linked to multicore performance, and neglect a

great many issues that are specific to multiple CPU machines.

The cores of the machine may support hardware multithreading; that is a single

core may be able to execute more than one thread either by switching thread every

machine cycle (classical multithreading), or by intermixing instructions from more

than one thread in the execution pipeline (simultaneous multithreading — SMT). The

degree of multithreading is generally bounded by a small constant. For example, each

core in many Intel processors can execute up to two threads using SMT. This form

of shared-memory multicore architecture encompasses almost all desktop, server and

laptop systems, and a growing number of tablet, phone and embedded systems. Some

important classes of systems that are excluded from our taxonomy include large scale

parallel, distributed and cluster machines. We also exclude multicore processors with

a distributed memory, such as the Cell BE processor, embedded DSP processors, and

3We do not consider transactional memory within our taxonomy. There has been a great deal of
research on transactional memory over many years. But it is only since 2013, when Intel introduced
the Haswell line of processors, that hardware transactional memory has appeared in a processor widely
used in mainstream desktop machines. Our work is aimed primarily at mainstream software developers
working on parallel software for popular multicore desktop, laptop and server computers. Transactional
memory is likely to be important in the future, but at the moment it is simply too new in mainstream
machines to draw conclusions from the experience of mainstream parallel software developers.

Page 79

CHAPTER 5. MODELLING THE DIAGNOSIS

special-purpose network processors [71].

It is important to mention common concurrency problems such as deadlocks and

race conditions [120]. As we have mentioned previously, a large proportion of pro-

grammers have to deal with them on a regular basis in their applications. While the

diagnosis of race conditions and deadlocks are important problems[17, 46], we aim to

focus the taxonomy exclusively on performance problems, as opposed to correctness

problems. However, it should be noted that the boundary between correctness and

performance in concurrent systems is fuzzy [12]. Deadlock is a good example of this,

where it can be seen as both correctness issue and a degenerate case of lock contention

where multithreaded execution cannot progress without external intervention, either

automated or manual. We also focus the model on problems that have the potential to

be diagnosed using data collected at execution time, and do not consider more abstract

problems, such as high-level flaws in software architecture that hinder parallelization.

We include within our taxonomy a small number performance problems that are

not unique to parallel software. In particular, we include performance problems relat-

ing to data locality, which arise in both sequential and parallel contexts. Data locality

plays such an important role in program performance that it is impossible to ignore.

Furthermore, a number of the performance problems that are unique to parallel soft-

ware cause cache misses that might easily be confused with data locality problems.

Thus we include locality problems, although at a lesser level of detail than perfor-

mance tools for sequential programs, which might consider different types of locality

problems (such as compulsory, capacity and conflict misses [71]) in more detail. For

completeness we also deal briefly with some related problems such as page faults and

input/output.

Finally, we note that we do not attempt to divide the problems according to type

of application. Different types of applications often have common characteristics. For

example, linear algebra computations typically operate on large dense matrices with

very regular patterns of parallelism, whereas applications such as compilers have

more linked data structures and irregular parallelism. However, a mapping between

types of application and parallel performance problems is much less clear. For ex-

ample, linear algebra applications also operate on sparse matrices, and the compact

representation of these matrices is often irregular, unbalanced and requires synchro-

Page 80

CHAPTER 5. MODELLING THE DIAGNOSIS

nization during updates. With the possible exception of the input/output category,

none of these problems is unique to particular types of parallel applications. For ex-

ample, one might be surprised to see poor load balance in an application performing

simple, regular operations on dense matrices. But if such a load balancing problem ex-

ists, perhaps because of some simple mistake in the workload partition, the developer

will want to know about it so that it can be fixed.

5.1.2 A Taxonomy of Parallel Performance Problems

The taxonomy is comprised of seven broad categories, presented in the Table 5.1, with

specific and distinct problems within each category. Below we describe each category

and the rationale behind the problems included under them.

Category Problem
Task Oversubscription

granularity Task start/stop overhead
Thread migration

Synchronisation Low work to synchronisation ratio
Lock contention
Lock convoys
Badly-behaved spinlocks

Data sharing True sharing of updated data
Data sharing b/w CPUs on NUMA
Sharing of lock data structures
Sharing data between distant cores

Load balancing Undersubscription
Alternating sequential/parallel exec.
Chains of data dependencies
Bad threads to cores ratio

Data locality Poor cache locality
Poor TLB locality
DRAM memory pages
Page faults

Resource Exceeding memory bandwidth
sharing Threads competing for cache

False data sharing

Input/output Shared files
Shared disk
Shared network connection

Table 5.1 – Taxonomy of parallel performance problems.

1. Task Granularity. Task granularity refers to the number and size of the parallel

tasks contained within the parallel program. In parallel programs it is often a

Page 81

CHAPTER 5. MODELLING THE DIAGNOSIS

challenge to find enough parallelism to keep the machine busy. For example,

Mak and Mycroft [104] study the limits on parallelism in several applications

and find that parallelism is limited without very large changes. A key focus of

parallel software development is designing algorithms that expose more paral-

lelism. However, there are overheads associated with too many threads, and the

cost of these overheads can exceed the benefits. The problems in this category

deal with the overheads of starting, stopping and managing threads. Thus, the

category might also be described as “thread management overheads”.

2. Synchronization. Locks and other forms of synchronization are necessary to co-

ordinate threads, but performance problems arise when threads spend too much

time acquiring or waiting to acquire locks. Our focus is on multicore systems

with a shared-memory programming model. Where data is shared and updated,

some sort of synchronization is needed to ensure that all threads get a consistent

view of memory. Even where there is no contention, the use of a synchronization

primitive always causes some overhead. If the algorithm requires a large amount

of synchronization, the overhead can offset much of the benefits of parallelism.

Perhaps the most common synchronization mechanism is the lock; other mech-

anisms include high-level sychronization barriers and semaphores. Note that

these synchronization mechanisms are built from low-level atomic instructions

and memory fences (which enforce the order of memory operations), but these

are typically hidden behind the interfaces of thread libraries, such as the well-

known pthread and Futex libraries. Our category of sychronization deals with

the overheads of acquiring, releasing and waiting for locks and other synchro-

nization primitives.

3. Data Sharing. Data sharing problems can arise when parallel threads share the

same data, and copies of the data must be passed back and forth between the

parallel cores. Threads within a process communicate through data in shared

memory. Sharing data between cores involves physically transmitting the data

along wires between the cores. On shared memory computers these data trans-

fers happen automatically through the caching hardware. However these trans-

fers nonetheless take time, with the result that there is typically a cost to data

sharing, particularly when shared variables and data structures are modified.

Page 82

CHAPTER 5. MODELLING THE DIAGNOSIS

This category considers various overheads that arise under a number of differ-

ent data sharing scenarios.

4. Load Balancing. Load balancing is the attempt to divide work evenly among the

cores. Dividing the work in this way is usually, but not always, beneficial. There

is an overhead in dividing work between parallel cores and it can sometimes be

more efficient to not use all the available cores. Note that understanding many of

the other performance problems requires an appreciation of the parallelization

strategy, data dependencies and/or the parallel computer architecture. In con-

trast load balancing can be understood in relation to a much simpler measure of

the amount of activity on each core. Within our taxonomy load balancing deals

with trying to divide work evenly between cores whereas the closely related cat-

egory of task granularity deals with the overheads associated with managing

threads.

5. Data Locality. Data locality refers to the tendency for programs to reuse the

same or nearby data repeatedly. For decades computers have relied on the prin-

ciple of locality of reference; that is that if a piece of data is accessed it is likely

that the same data, or nearby data in memory, will be accessed soon after. Prob-

lems with poor data locality are not specific to multicore, but it is impossible to

talk about single or multicore performance without talking about locality. In the

early 1980s a typical computer could read a value from main memory in one or

two CPU cycles. However, between 1984 and 2004 processing speeds increased

by around 50% per year, whereas the time to access DRAM memory fell by only

10%-15% per year. The result is that it now takes hundreds of processor cycles to

read a value from main memory. This phenomenon is often called the “memory

wall”.

6. Resource Sharing. Resource sharing refers to multiple threads sharing the same

physical hardware resource. Some novice parallel programmers expect a lin-

ear speedup: code running on four cores will be four times faster than on one

core. There are many reasons why this is seldom true, but perhaps the most self-

explanatory is that those four cores share and must compete for access to other

parts of the hardware that have not been replicated four times. For example, all

Page 83

CHAPTER 5. MODELLING THE DIAGNOSIS

cores will typically share a single connection to main memory.

7. Input/Output. Degradation of performance can occur when threads compete

for I/O resources such as disk, file system or network4. While we include this

category for completeness, as I/O can be very important to performance, it is not

specifically a multicore problem, nor do multicore programs necessarily interact

with I/O in complicated or unexpected ways. It is also heavily dependent on

the software environment. For this reason, we do not include I/O problems in

the analysis to follow, although it is an interesting topic.

We have compiled short descriptions and a brief analysis for each individual problem.

Task Granularity and Thread Management Overheads

Oversubscription. Oversubscription occurs when the work of the program is broken

down into smaller tasks than is necessary to exploit the available parallelism [77].

Three cases can be considered: (a) the parallel program has more threads than cores;

(b) the machine is running multiple applications and the number of threads exceeds

the number of free cores; (c) multiple OS-virtual machines (VMs) are running on a

physical machine, and the total number of threads across all VMs is greater than the

number of cores (VM’s are themselves a means to exploit multi-core infrastructure).

Oversubscription is often harmless and can even be beneficial if a large number of

threads allows the cores to stay busy when some threads are waiting for synchroniza-

tion or for other tasks to complete. However, oversubscription can become problem-

atic if the overhead of managing or transitioning between threads becomes large. Our

experience of teaching is that novice parallel programmers sometimes spawn a new

thread (or sometimes two) for each level of recursion when implementing parallel ver-

sions of divide and conquer algorithms. This can quickly lead to very large numbers

of parallel threads that compete for a limited number of processing cores.

Task start/stop overhead. This problem occurs where the amount of work per-

formed by a task is insufficient to justify starting a separate thread to do it. The costs

4Many input/output performance problems in parallel systems arise from resource contention. Thus
they arguably should be treated as resource sharing problems, rather than in a category of their own.
However the enormous timescales of input/output (milliseconds, as compared to nanoseconds for many
other performance issues we consider) and the additional bottleneck of much input/output passing
through the operating system make these problems appear quite different to the developer.

Page 84

CHAPTER 5. MODELLING THE DIAGNOSIS

of starting a thread are significant, so a sufficient amount of work must be done by the

thread to justify it [23] (page 83). Programming systems such as OpenMP use a more

sophisticated approach where they do not launch a new thread for each parallel task.

Instead they start a pool of threads and put thread threads to sleep when they are not

in use. This reduces thread start/stop costs by reusing a single thread for multiple

purposes. However, even in these systems there is a cost from waking or putting a

thread to sleep, albeit much lower than the cost of starting a new thread.

Thread migration. Thread migration refers to a thread moving from executing

on one core to another. Each core has its own caches which contain data and code

from the currently executing thread, and from threads that have executed recently.

When a thread migrates to a different core, the benefit of this cached data is lost [36].

Similar issues arise with other state that is saved in each core relating to individual

threads, such as information stored in the translation lookaside buffer (TLB). Where

the number of threads fits within the number of available cores, threads will often stay

on a single core for their entire execution. But when the number of threads is larger,

we have idle threads waiting for a core to become available. There is a good chance

that the first core to become available will not be the same as the last one the thread

executed on. In such cases threads will tend to migrate from one core to another.

Synchronization

Low work to synchronization ratio. This problem occurs when the program syn-

chronizes threads which do not perform enough work to justify the synchronization

overhead. Acquiring and releasing a lock can be expensive [142]. Even if the lock

is available, acquiring a lock generally requires an expensive “atomic” instruction,

which both checks the lock and updates it in a single atomic step5. A lock is a small

data structure in memory, so there may also be memory caching issues when acquiring

5A special case of this problem is so-called unnecessary locks. They are typically inserted into library
code that might be called from parallel threads in a way that requires locks for correctness. However,
when the library code is used in specific programs, the locks might be unnecessary for the specific context
in which they appear. Thus, the library code repeatedly acquires and releases a lock that can never be in
contention between multiple threads. Another variant of unncessary locks that can cause contention is
where locking is overly-conservative. For example, the Python and Ruby interpreters’ global interpreter
lock (GIL) which guarantees that one interpreter thread is executing bytecodes within a process at any
time [124]. The GIL was originally introduced to prevent race conditions in the Python memory manager,
but it is widely regarded as being too conservative and a significant barrier to parallel performance.

Page 85

CHAPTER 5. MODELLING THE DIAGNOSIS

a lock.

Lock contention. Lock contention occurs when a thread attempts to acquire a lock

but the lock is already held by another thread [159]. In most cases where a thread

attempts to acquire a contended lock, the thread must wait for the lock to be released

before the thread can continue execution. Thus when locks are contended, threads

are blocked from executing until the lock becomes free. Locks are generally used to

protect shared data which may be updated. So if there is a lot of access to such data,

or if a thread accessing the shared data holds the lock for a long time, then there will

probably be a lot of contention.

It is also possible to use locks or other synchronization primitives such as semaphores

to deliberately block the progress of threads. For example, it is common to have a

master thread that generates tasks and places them in a queue, and a pool of worker

threads that complete the tasks. When no work is available, locks or semaphores may

be used to suspend the idle worker threads. The result is that it can sometimes ap-

pear that there is a great deal of contention between threads, when they are actually

waiting for work to become available.

Lock convoy. Lock convoy [18] occurs under very specific circumstances when

there are more threads than cores. On operating systems with pre-emptive thread

scheduling, the execution time on the cores is shared among threads. If there are more

threads than cores, only a subset of the threads are able to run at any time. A per-

formance problem can arise if a thread holding a lock reaches the end of its allocated

time slice and is therefore paused and put to the end of the run queue. If several

other threads attempt to acquire the same lock, all will fail. When using standard

locks (as compared to spinlocks) the operating system puts waiting threads to sleep.

The waiting threads form a “convoy” behind the thread which holds the lock, but is

paused. Putting each of the waiting threads to sleep and subsequently waking each

thread takes time. If this pattern of locking occurs repeatedly, the overhead can be

significant.

Badly-behaved spinlocks. When a spinlock is already locked, all other threads

that attempt to acquire the lock go into a loop waiting for the lock to become free,

which can result in useless spinning around the loop. When attempting to acquire a

lock, a thread will check the lock to see whether it is available. In common imple-

Page 86

CHAPTER 5. MODELLING THE DIAGNOSIS

mentations of locks, such as those found in the pthreads library, a thread that fails to

acquire a lock is suspended by the operating system until the lock becomes available.

Spinlocks are a special type of lock that does not suspend waiting threads [10]. Instead

the waiting thread repeatedly tries to acquire the lock until it becomes available.

If the lock becomes available soon, then spinlocks are usually much faster than

standard locks. If the lock continues to be held for significant time, then the wait-

ing threads occupy cores but make no progress. Note that if the thread holding the

lock exceeds its execution time-slice and is preempted by the operating system, other

threads can spin uselessly waiting for the lock-holder to next execute and release the

lock. These waiting threads occupy cores that might otherwise be available to excute

the thread that holds the lock, and ultimately allow it to release the lock. As a result,

spinlocks can lead to catastrophic slowdowns if they are heavily contended.

Note that it is possible for a careful programmer to make the worst case perfor-

mance of spinlocks extremely unlikely. The developer must be careful to keep the

number of executing threads no greater than the number of available cores, to reduce

the chance that a thread holding a spinlock will be preempted and continue to hold

the lock while waiting to get to the top of the runqueue. However, limiting the total

number of threads is difficult on a multicore machine that can execute more than one

program.

Data sharing

True sharing of updated data. This problem occurs when the same variable is writ-

ten/read by different cores. When a core writes to a shared variable, the cache co-

herency hardware invalidates all other copies of that variable in other cores’ caches

[129]. As a result when the other cores next attempt to read the variable, they will

discover that the copy in their cache is invalid. The cache hardware will then fetch the

latest copy of that variable from wherever it resides in another cores cache, a shared

cache, or main memory. This is known as a cache coherency miss, and the time taken

is similar to other types of cache miss. When shared data is updated a lot, there will

be many coherency misses.

Sharing of data between CPUs on NUMA systems. This problem occurs on mul-

tiple CPU machines, which often have non-uniform memory access times for different

Page 87

CHAPTER 5. MODELLING THE DIAGNOSIS

CPU chips; when memory is shared between threads on different CPUs, some of the

main memory accesses will be to non-local main memory. When a linked data struc-

ture is constructed by multiple threads, different parts of the data structure may be

in different local main memories. The caching and coherency system will ensure that

all threads see the correct values, but physically moving the data between CPUs takes

time [19].

Sharing of lock data structures. This problem occurs when locks are alternately

acquired by different threads, and the data structure containing the lock must be re-

peatedly transfered bewteen cores. Locks consist of data structures in memory and

code to acquire and release the lock [136]. The code must use special atomic machine

instructions to ensure mutual exclusion around the lock. However, the lock data struc-

ture is stored in normal memory locations. For the simplest spin locks, the lock data

structure may consist of a single boolean variable. When locks are acquired and re-

leased, the lock data structure is modified. The lock data structure is shared among the

threads that acquire and release the lock, and therefore exhibits the same behaviour

as any shared data structure that is updated by multiple threads. Problems thus oc-

cur when a large number of locks are acquired or released, as when any shared data

structure is updated by more than one thread.

Sharing data between distant cores. This problem occurs when data is shared be-

tween cores and must physically move between the cores when it is updated [178]. On

the recent generations of mainstream Intel processor (Skylake, Haswell, Ivy Bridge,

Nehalem) each core has had its own L1 and L2 cache. In contrast on some earlier Intel

multicore processors (Core, Penryn) had a shared L2 cache for each pair of cores. With

these configurations, some cores are “closer” than others, in the sense that the cost

of sharing data with another core that shares an L2 cache is much lower than sharing

data with a more “distant” core that is part of a different L2 cache cluster. On all recent

mainstream Intel multicore processors the L3 cache is shared by all cores.

Note that sharing data between distant cores is a special case of true sharing of

updated data. In both cases, the source of the problem is the same: there are multiple

copies of shared data in the caches of each core that uses that data. Before the data

can be updated in one cache, all other copies must first be invalidated. When the data

is next used by another core, that core must again load that data to the cache. The

Page 88

CHAPTER 5. MODELLING THE DIAGNOSIS

special case of data sharing between distant cores is different to the more general case

of updating shared data in two respects. First, when cores are distant, the impact of

transferring data over a long distance is large. Second, there is a good solution to the

problem of sharing data over long distances: change the mapping of threads to cores

so that communicating threads are located closer together. This does not remove the

need to move data between cores, but it reduces the distance that the data must travel.

Load balancing

Undersubscription. Undersubscription occurs when there are too few threads actu-

ally running on a particular machine, resulting in unused cores [69]. Where the pro-

gram contains sufficient parallelism to usefully exploit the additional cores, the result

of undersubscription is that the program takes a longer time to execute. Sometimes

a parallel program is heavily optimized for a particular machine, and the number of

threads is hard-wired into the program specifically for that machine. When the pro-

gram is executed on another machine with a larger number of cores, the additional

cores remain idle. Problematic undersubscription presupposes that it is both possible

and profitable to execute more threads.

Alternating sequential/parallel execution. This problem occurs when a program

passes through successive sequential and parallel phases, such as fork-join orches-

tration models, and the sequential part slows down the program [9]. As originally

formulated Amdahl’s law divides program execution time into sequential phases and

parallel phases, with performance limited by the sequential part. Even if you have in-

finite processors and the parallel part can be sped up infinitely (meaning the execution

time of the parallel part approaches zero), the maximum overall speedup is limited by

the sequential part. Of course real programs are more complicated than Amdahl’s law

suggests. Few programs scale linearly with large numbers of processors, and if the

same effort is applied to optimizing the sequential code as is applied to parallelizing

the parallel code (unless the sequential code has already been optimized), it may be

possible to improve its speed with algorithmic and coding changes. Changes to the

orchestration model may also help remedy such situations.

Chains of data dependencies, too little parallelism. This problem occurs where

a thread is waiting for a result produced by another thread so that it can continue

Page 89

CHAPTER 5. MODELLING THE DIAGNOSIS

computing [171]. There are many well-known parallel programming patterns that

exhibit this problem. For example, recursive divide and conquer algorithms such as

quicksort can be easy to parallelize. But the parallelism is usually at the lower levels

of recursion, and the higher levels have much less parallelism. Similarly, pipeline

type parallelism – such as performing different stages of image processing on different

cores – can be a good parallelization strategy for stream-like processing, but it is easy

to get the balance between the cores wrong.

Bad threads to cores ratio. This problem occurs when the work is divided into

chunks not matching appropriately the number of cores. We normally think about

trying to keep the number of threads equal to the number of cores. But sometimes

we divide the parallel work into a set of parallel tasks of roughly equal size. If we

assign each of these tasks to a thread then the load balance depends on how the the

number of tasks relates to the number of available cores. If the number of tasks is an

even multiple of the number of cores, then the load balance will usually be reasonably

good. For example, if there are eight tasks and four cores, then each core will perform

two tasks, and the total time will be roughly the amount of time needed to perform

two tasks on a single core. In contrast, nine tasks would take much more time, because

the last would execute alone [97].

Data locality

Cache Locality. This problem occurs when the data is not present in a reasonably

nearby location, resulting in more distant cache or main memory fetches [84]. When

accessing memory via a cache, the cache will check whether that data is already in

cache by inspecting the tags in the cache. Caches do not fetch single values from

main memory. Instead they bring in a full line of data, which on most machines is

64 bytes. Each cache line is aligned on a 64-byte boundary, and the cache keeps track

of whether each line has been read only (clean) or whether it has also been written to

(dirty). When a clean cache line is evicted from the cache it can simply be discarded.

When a dirty cache line is evicted, it must be written out to the next level of cache or

to main memory.

Cache misses arise in both sequential and parallel programs as a result of poor data

locality, and are therefore not specific to multicore performance problems. However,

Page 90

CHAPTER 5. MODELLING THE DIAGNOSIS

cache locality is central to the performance of modern multicore systems, and com-

petition between threads for limited cache space can greatly exacerbate data locality

problems within each thread.

As we describe in our section on performance problems relating to data sharing,

parallel programs have an additional source of cache misses known as coherency misses.

Locality and data sharing performance problems have very different causes and solu-

tions, so it is therefore important that developers can distinguish between the two.

TLB Locality. Translation lookaside buffer (TLB) locality problems occur when

the program references a large number of pages of memory [82]. Almost all modern

operating systems support virtual memory, allocating memory in fixed sized “pages”

of perhaps 4KB. These pages can be moved around in memory, or swapped out to

disk. Because pages can move around, the operating system needs to keep a table to

map between the addresses that the program uses (virtual addresses) and pages of

real memory (physical addresses). Modern processors provide a special cache to store

the most frequently used parts of this table, known as the translation lookaside buffer

(TLB). The TLB relies on most memory accesses referencing a small number of pages

(a form of locality). If the program instead references many pages, there will be TLB

misses.

DRAM memory pages. This problem occurs when the memory accesses are not

targeting the same physical DRAM pages [41]. This is a slightly obscure problem, but

physical DRAM is also divided into “pages” of perhaps 4 or 8KB. Successive memory

accesses to the same page are faster than accesses to different pages.

Page faults. This problem occurs when the program uses more memory than is

physically available on the machine [50]. The operating system keeps excess memory

pages on disk. When the program attempts to access an address that is stored on disk,

the CPUs memory management unit generates an exception known as a page fault.

This causes the operating system to discard (if clean) or write out to disk (if dirty) one

or more pages of memory, and read the required page(s) from disk into memory.

Resource sharing

Exceeding memory bandwidth. Memory bandwidth problems occur when the mem-

ory bus is saturated with requests [103]. On almost all current multicore processors

Page 91

CHAPTER 5. MODELLING THE DIAGNOSIS

external DRAM main memory is shared between all the cores. To access main mem-

ory, a core must gain access to a memory bus that is shared by all cores. A single core

with very poor locality can easily generate enough memory requests to occupy the

majority of the time on the memory bus. When four, eight or sixteen cores are active

on a single CPU, competition for access to the memory bus can become intense, and

cores can spend a lot of time waiting for memory requests on the highly-contended

bus to return.

Competition between threads sharing a cache. This problem arises when a thread

loads data that displaces existing data belonging to another thread that shares the

same cache. When two or more threads run on cores that share the same cache, the

threads may operate on the same data or separate data. If they share the same data,

then all threads benefit from the cached data [86]. However, when each thread oper-

ates on separate data there may be insufficient space for each thread’s data. The result

is competition between threads for space in the shared cache. The data being used by

thread A may displace other data being used by thread B. Zhuravlev et al. describe

these as “contentious threads” [179].

One solution to this problem is to attempt to map threads to cores, so that threads

which operate on the same data are mapped to the same core. Operating systems such

as Linux and recent versions of Windows allow threads to be mapped to particular

cores using processor affinity.

False data sharing. This problem occurs when a cache line is invalidated on a core

due to another core writing to it, but the threads aim to read/write different variables

[161]. The cache coherency system is responsible for ensuring that when multiple

copies of the same variable are present in different caches, that the different copies

are kept coherent. Common coherency protocols solve this problem by requiring any

core that writes to a cached variable to first ensure that it has the only copy of that

variable. This is achieved by invalidating all other copies of the variable before the

write is allowed to proceed. It is important to note that cache coherency is done at the

level of cache lines, not individual variables. Thus if several variables occupy the same

cache line, writing to any one of them will invalidate all copies of the cache line in the

caches of other cores. Thus, it is possible to cause cache invalidation (or coherence)

misses even without writing to a shared variable; it is enough that two variables share

Page 92

CHAPTER 5. MODELLING THE DIAGNOSIS

the same cache line. This is known as false data sharing.

Relationships between problems

As noted at the beginning of this section, it is not always clear whether to place a

particular problem in one branch of the taxonomy or another. False sharing arises

because several variables, each of which is not shared, can be mapped to the same

line of a cache. Arguably the line of the cache is a physical resource that is shared by

variables from different threads. However, the problem is also linked to the location

of data in memory, which is a feature of locality problems.

In fact, three of the major categories of problems are interconnected: data sharing,

data locality and resource sharing. All three deal with the patterns of access to data in

memory within and between threads. However, there is a helpful distinction between

the problems. “Data sharing” is about the locality problems that can arise when shar-

ing data between threads. The “data locality” category is primarily about data access

patterns largely independent of sharing between threads. Finally, the “resource shar-

ing” category relates to the problems that arise when multiple threads compete for the

same physical hardware resources for access to data.

5.1.3 Problem Importance

Given the range of problems within our taxonomy one might ask how important each

problem is. For example, a pagefault is perhaps of the order of 100,000 times more ex-

pensive than an L1 cache miss, so does that mean that page faults are more important

than cache misses?

The impact of a performance problem is related to (1) how often during execution

that problem arises, (2) the performance cost each time the problem arises and (3) how

much time the parallel program spends doing other things. Context will likely play a

significant role. For example, in the parallel programs we have worked with L1 cache

misses are extremely common, whereas page faults are rarer: typically a large multiple

more than 100,000 times rarer. So in our own case, L1 cache misses are a much more

important problem than page faults. Similarly, the worst case cost of badly behaved

spinlocks can be much greater than the cost of simple lock contention, but the latter is

Page 93

CHAPTER 5. MODELLING THE DIAGNOSIS

by far more common in the programs we have worked with.

One of the goals of our study is to obtain a broad characterization of how fre-

quently different performance problems arise to the extent that they have a significant

impact on performance. Without preempting the more detailed discussion of these re-

sults, the data in the Figure 5.4 suggest cache locality is indeed more commonly a sig-

nificant performance problem than page faults. And simple lock contention is much

more frequently a significant performance problem than badly behaved spinlocks.

A related question is whether a taxonomy should be aimed at higher-level perfor-

mance questions. The choice of data structure or algorithm usually has a much greater

impact on performance than its parallel implementation. For example, for large n even

a sequential O(n2) algorithm will usually be much faster than a parallel O(n3) algo-

rithm. Certainly, in some cases, the appropriate course of action when faced by poor

performance is to look for a better algorithm. On the other hand, when developers

implement their parallel algorithm on a real multicore computer, they often encounter

strange performance behaviour. For example, false sharing can have a huge impact

on performance, but as will we be seen in the next section, our data suggests that it is

not widely known or understood.

5.2 Problems in the Wild

Before investigating the information required to diagnose these problems, we felt it

would also be valuable to examine:

1. Whether developers are familiar with the problems listed within the taxonomy.

2. Which problems are more frequently encountered.

To investigate these questions, we performed a survey with a broad range of develop-

ers. This survey presented the list of problems given above (with descriptions), and

the participants could specify whether they are familiar or not with a problem, and if

they are familiar with it, how often they encounter it in their daily work. As the re-

sults of this survey are of interest when discussing the expert validation exercise, we

present it here first.

Page 94

CHAPTER 5. MODELLING THE DIAGNOSIS

5.2.1 Methodology
The survey was designed to assess and validate the list of parallel performance prob-

lems within a larger sample of developers across industry and academia. The survey

was designed to be administered through a publicly available online interface and

take around 10-15 minutes to complete.

Recruitment was primarily conducted through LinkedIn professional groups where

we posted advertisements, augmented with calls issued through personal social net-

works. A variety of different LinkedIn discussion boards were used, ranging from

small and niche such as “Multicore & Parallel Computing”? to more general such as

“Java Developers”?.

The survey was designed to simultaneously evaluate two dimensions, for each

problem that is present in our taxonomy:

• Familiarity. We wanted to know which problems developers are familiar with

and which ones are more exotic and unfamiliar to a general community of pro-

grammers.

• Frequency of Diagnosis. We wanted a broad indication of how often particular

problems get diagnosed by programmers, on a relative scale.

Participants were presented with a list of parallel performance problems with de-

scriptions of each and they were asked to indicate whether they:

• Are familiar with the issue (have heard of this problem)

• Have never encountered the issue

• Have encountered the issue once

• Have encountered the issue occasionally (e.g.: 2 or more times over past few years)

• Have encountered the issue frequently (e.g.: several times per year or per project)

The questions are intended to focus on the participants own systems. By design of

the survey, to answer “never”, “once”, “occasionally” or “frequently”, the participant

had to first select that they are familiar with the issue (i.e. either encountered it them-

selves or just heard about it). By extension, if the participant expressed familiarity

Page 95

CHAPTER 5. MODELLING THE DIAGNOSIS

0-5

5-10

10+

0 10 20 30 40

Figure 5.1 – The professional (years of) experience distribution of the developers who
participated in the problem frequency/familiarity study.

but selected “never encountered”, this would suggest that the participant had heard

about the issue, but never actually encountered it in their own systems.

We also collected demographic information about the participants, such as age,

gender, highest level of education, years of professional experience and a self-assessed

expertise in the field of parallel programming. Participants could skip questions if

they wished and were invited to give remarks or report missing performance prob-

lems.

5.2.2 Results

In total, we had 71 participants, mostly professional programmers and some experts

in multicore and distributed computing with a wide range of expertise. The most

frequent age category for participants was 26-35, with 24 participants in this range,

with 36-45 the second most common category with 23 participants. Gender balance

was poor, with 69 male and 2 female. For highest level of education, the most common

category was Masters level with 33 participants.

Figures 5.1 and 5.2 present distributions of experience and self-assessed expertise

respectively of the participants in the survey. As can be seen, the survey attracted pro-

grammers with 10 or more years of experience (see Figure 5.1) in the field. Moreover,

almost half (32 participants) not only have 10+ years experience, but also have as-

sessed themselves as having above-average expertise in parallel programming. While

this might mean that the sample is weighted towards more expert programmers, it

also means the participants have enough experience to have had a chance to encounter

a range of problems.

To enable richer consideration and discussion, the data in Table 5.2 will be dis-

cussed in more detail in Section 7.4 together with the study presented in the next

Page 96

CHAPTER 5. MODELLING THE DIAGNOSIS

novice to average

above average
expert

0 9 18 27

Figure 5.2 – The distribution of self-assessed expertise of the developers who participated
in the problem frequency/familiarity study.

section. However, we note at this point that many of the problems are encountered

at least occasionally by a substantial proportion of developers. Lock contention was

both familiar to the highest proportion of programmers, and most frequently encoun-

tered. Task start/stop overhead was also a very familiar problem, but less frequently

encountered. Lock convoy was the least familiar to programmers. Familiarity is a

prerequisite for diagnosis, and so this must be taken into account when interpreting

these figures.

Page 97

CHAPTER 5. MODELLING THE DIAGNOSIS

Problem U
nf

am
ili

ar

N
ev

er

O
nc

e

O
cc

as
io

na
lly

R
eg

ul
ar

ly

Task granularity
Oversubscription 30% 9% 10% 39% 12%
Task start/stop overhead 9% 23% 14% 35% 19%
Thread migration 25% 25% 14% 25% 11%

Synchronisation
Low work to synchronisation ratio 22% 22% 9% 29% 18%
Lock contention 5% 14% 8% 34% 39%
Lock convoy 62% 10% 6% 16% 6%
Badly-behaved spinlocks 38% 21% 8% 23% 10%

Data sharing
True sharing of updated data 25% 15% 2% 37% 22%
Sharing of lock data structures 33% 17% 7% 28% 15%
Sharing data between distant cores 40% 20% 10% 15% 15%

Load balancing
Undersubscription 37% 14% 7% 22% 20%
Alternating sequential/parallel exec. 16% 10% 9% 34% 31%
Chains of data dependencies 11% 23% 7% 27% 32%
Bad threads to cores ratio 20% 24% 10% 36% 10%

Data locality
Poor cache locality 10% 22% 5% 27% 36%
TLB Locality 37% 20% 14% 19% 10%
CPU data sharing on NUMA 38% 13% 10% 28% 11%
DRAM memory pages 48% 19% 5% 17% 10%
Page faults 24% 15% 8% 39% 14%

Resource sharing
Exceeding memory bandwidth 21% 17% 14% 17% 31%
Threads competing for cache 19% 20% 15% 27% 19%
False data sharing 41% 17% 8% 24% 10%

Table 5.2 – Familiarity and frequency for performance problems. Participants who stated
that they encountered ‘never’, ‘once’, ‘occasionally’ or ‘regularly’ also stated that they are
familiar with the problem.

Page 98

CHAPTER 5. MODELLING THE DIAGNOSIS

5.3 Observational Model

This section presents an Observational Model designed to serve as a link between:

(a) concrete data we can measure or calculate (e.g.: operating system events, hard-

ware performance counters or other instrumentation) and (b) parallel performance

problems presented in section 5.1.

The intention is not to provide a definitive or mathematical model, but rather a

useful conceptualization that can be used by tool developers building performance

analysis tools such as interactive visualizations or performance prediction algorithms.

To link concrete data with more abstract, often not precisely defined, performance

problems where some degree of subjective judgement must be made, we have based

the model on observations. For example, consider when a developer observes some

performance data and concludes that “a high number of cache misses are generated by

the program”. This is what we term an observation. The developer then draws some

conclusions, for example that particular observation could mean that there is a data

locality performance problem in the program.

We define two categories of observations: indications and contra-indications of

problems:

• Indication or Strong Indication of a performance problem means that that ob-

servation Oi implies that a particular problem, say problem p, might be present

in the program P.

Indication = Oi⇒ p ∈ P

• Contra-indication or Strong Contra-indication of a performance problem, on

the other hand, means that that observation Oi implies that a particular problem

is more likely to not be be present in the program P.

Contraindication = Oi⇒ p /∈ P

The observations themselves are short phrases, describing a measurable or calcu-

lable event, for example: “high number of L1 cache misses” or “number of threads is

larger than number of cores”. It is important to note that the observations do not con-

Page 99

CHAPTER 5. MODELLING THE DIAGNOSIS

tain any specific numbers or even percentages but instead contain subjective words

such as high or low. The rationale behind this is that the development context will

determine the thresholds for a particular value being high or low. For example, ap-

plications that operate on dense matrices usually have much better data locality than

those operating on sparse matrices. Hence the threshold for high and low can depend

on the type of application. They would also vary depending on the organizational

context, the available resources, the target performance, etc.

At the present time, there are hundreds of performance counters available on a

typical commodity-hardware CPU chip, hundreds more off-chip, and thousands of

different Operating System events. It is important to note that even for what might

seem relatively straightforward performance data (such as cache misses), some form

of calculation involving several performance counters is often involved (e.g. summing

different types of miss), and to obtain useful data at thread level, these will need to be

correlated with Operating System events or program instrumentation.

The counters and metrics we use are just a tiny fraction of those that are avail-

able on modern multicore computers and operating systems. An obvious question

is how we select from among the thousands of potentially useful measures. In fact,

the great majority of measures are focused on very low-level details of the computer

architecture or operating system. Few of these measures are aimed at application pro-

grammers, and even fewer at providing useful information about multicore execution.

We selected those that seemed to have the potential to identify multicore performance

problems. Note that modern performance analysis tools, such as Vtune [137] and TAU

[146] use heuristics to map many of these measures to particular threads and lines

of source code of a parallel program. This mapping from measures to source code

is invaluable when relating performance problems to particular parts of the parallel

program.

5.3.1 Cross-Validation
Some components of the model are straightforward and would be expected to hold

in most or all development contexts. Other aspects may be more controversial or

dependent on development context, or may require that additional data be examined

Page 100

CHAPTER 5. MODELLING THE DIAGNOSIS

simultaneously. To identify these different components, we performed a study with 10

experts in the parallel programming domain. While inter-rater agreement studies are

usually conducted with a small number of experts (2-3 typical), the complexity of the

domain motivated a larger number of experts. Each expert was presented with a series

of problems and observations related to each problem and had to annotate whether

an observation is either: (a) strong indication, (b) indication, (c) contra-indication, (d)

strong contra-indication of a particular problem or (e) is irrelevant to a particular prob-

lem, using a standard Likert-style scale. The experts were able to skip observations or

problems they were not familiar with and add missing observations.

The participants for the inter-rater study were recruited through the means of

chain-referral sampling (also known as snowball sampling: recruitment of partici-

pants is done both directly and through recommendations from existing participants).

This sampling method was intended not only to find highly motivated participants

for the inter-rater experiment but also filter out non-experts by having “experts rec-

ommending other experts”. The experts recruited included developers with a back-

ground in high-performance computing, parallel software for web services, parallel

software for games consoles, and parallel software for the desktop. The study was

delivered in the form of an on-line web interface which standardized the administra-

tion of the materials and allowed it to be conducted remotely. The duration of the

experiment varied from one participant to another, as would be expected given the

relatively complex and demanding task, and on average it took the experts about 40

to 50 minutes to complete everything.

Each expert was asked to annotate the same 110 observations presented in the

validation. The 10 experts made 933 annotations while skipping 167. Most of the

observations (85%) were annotated by the experts. Skipped observations were not

included in the analysis. Due to the nature of the data, skipped questions are not

expected to impact on the results in any significant way; the purpose of the study

is expert validation, and hence only answers that the experts are confident in are of

interest. Note that there is an important distinction between a skipped answer and a

neutral response (that the observation is irrelevant to the problem).

We then performed an inter-rater agreement analysis consisting of two parts:

1. Calculation of inter-rater agreement value to generally validate the viability of

Page 101

CHAPTER 5. MODELLING THE DIAGNOSIS

the model. A high level of agreement between expert annotations of an observa-

tion supports the validity of that aspect of the model.

2. Creation of visual displays as illustrated in the Figure 5.3 to help visualize the

details of the results and identify observations that are most promising for per-

formance problem diagnosis, or contentious issues requiring further investiga-

tion.

We performed the calculation of inter-rater agreement using Fleiss’ kappa, a com-

monly accepted statistical measure for assessing the reliability of agreement among

multiple raters (i.e. 10 experts). This measure is more robust than simple raw (per-

centage) agreement, as it takes into account the situations that could be expected by

chance. The kappa scores for the agreement of annotations of indications and contra-

indications were respectively:

kindication = 0.383

kcontraindication = 0.529

While these kappa values can be interpreted, according to Landis and Koch [91]

as fair and moderate agreements respectively, we need to examine the agreements for

each observation individually to see which ones are agreed upon, as one of the goals

of the study is to identify which indications and contra-indications have high and

low levels of agreement. Many individual indications and contra-indications have

unanimous or near-unanimous agreement, whereas opinion on others is divided. It

is interesting to note that experts seem to agree on which observations are contra-

indications of performance problems more strongly (higher kappa score) than on in-

dications (lower kappa score).

One possible interpretation of this is that it may be due to “necessary but not suf-

ficient” conditions. The presence of a problem may be more difficult to agree upon,

as some symptoms may have multiple causes, or there may be multiple variants of a

given cause (e.g. L2 vs. L3 misses). For example, a high number of L2 misses might

indicate a data locality problem but does not guarantee that one is there. On the other

hand, a contra-indication can tell us that a problem is not there. For example, a low

number of cache misses effectively rules out data locality problems. However, we

should be careful about adding too much weight to this discrepancy as the model

Page 102

CHAPTER 5. MODELLING THE DIAGNOSIS

75% 25% +
“#failed lock acquisitions >#successful lock acquisitions”

29% 57% 14%+
“high #synchronisations”

50% 25% 25%+ -
“high sequential execution time”

14% 57% 29%-
“low #synchronisations”

62% 38%-
“#failed lock acquisitions <#successful lock aquisitions”

Figure 5.3 – Levels of experts’ agreement on observations related to the “Lock contention”
problem.

puts forward more indications than contra-indications.

Figures 5.3 and 5.5 to 5.13, illustrate various observations for the problems we

validated and present the information as a sorted horizontal stacked bar charts, the

strongest indication on top and strongest contra-indication on the bottom. The dark

and light green segments of the graphs (boundary annotated with “+”) indicate strong

indication and indication, grey sections neutral, and red segments a contra-indication

(boundary annotated with “-”). Graphs containing both red and green signify areas of

disagreement, whereas graphs containing a single colour (red or green) signify agree-

ment. For example, in the Figure 5.3 the observation labeled as “#failed lock acquisi-

tions > #successful lock acquisitions”, presenting the situation where we observe that

a number of failed lock acquisitions is larger than number of successful lock acquisi-

tions, was rated by most experts as being a strong indication of the lock contention

problem being present. On the other hand the contrary observation “#failed lock ac-

quisitions < #successful lock acquisitions” was rated as a contra-indication (but not a

very strong one) of a lock contention problem.

In the next section we discuss the results of this study, together with the results of

the survey presented in section 5.2.

5.4 Discussion

In this paper, we present a taxonomy and model that we hope will have practical im-

plications and can be relatively easily understood and applied. The two studies pre-

sented in the previous sections provide a number of interesting topics for discussion

Page 103

CHAPTER 5. MODELLING THE DIAGNOSIS

Oversubscription
Start/Stop Overhead

Thread Migration

Work/Sync Ratio

Lock Contention

Lock Convoy

Bad Spinlocks

True Sharing

Lock Structure Sharing

Intercore Sharing

Undersubscription

Alternating Execution

Data Chains

Thread/Core Ratio

Cache Locality

TLB Locality

NUMA Sharing

DRAM Paging

Page Faults

Memory Bandwidth

Competing for Cache

False Sharing

We
ight

ed f
req

uen
cy

50%

75%Familiarity

Less-known & Frequent Known & Frequent

Less-known & Infrequent Known & Infrequent

Figure 5.4 – Quadrant plot of parallel performance problems mapped against Familiarity
and Frequency.

with respect to the model and taxonomy.

Figure 5.4 shows a plot of the familiarity of each of the parallel performance prob-

lems to participants, and how frequently they see them in practice. The plot is based

directly on Table 5.2. Weighted frequency is on the y axis, ranging from 0 to the maxi-

mum represented by lock contention (midpoint 50% of maximum). Familiarity ranges

from 38% to 95%, with the median of 75% used as the midpoint. Table 5.2 contains

more nuanced data, but the figure provides a quick overview.

Very broadly, one can see that the problems cluster around a diagonal band from

bottom-left (less-known and rare) to top right (known and frequent). Thus, problems

which are more familiar to developers are also more frequently observed by them.

Problems which are less familiar, are also observed rarely (in general). This suggests

Page 104

CHAPTER 5. MODELLING THE DIAGNOSIS

that the direction of causality between participant familiarity with a problem and the

frequency with which they see it in practice is (in general) that developers become

more familiar with problems that occur often.

The “Less-known and Frequent” quadrant is counter-intuitive, and relates to prob-

lems that are not familiar to many programmers, but frequently encountered by those

programmers who are familiar with them. While there is a likely causal relationship

between the two (a programmer might become familiar with the problem because they

work in a domain where they are likely to encounter them), closeness to this quadrant

might also emerge due to the problem being difficult to diagnose.

Looking at the problems in the less-known and rare quadrant, some are quite techni-

cal problems. For example, identifying problems with DRAM paging and TLB locality

require quite a low-level understanding of parallel computer architecture. Similarly

both lock convoy and problems with badly behaved spinlocks arise when a thread

holding a lock is descheduled by the operating system. These problems require a

good understanding of how locks are implemented at a low-level, some understand-

ing of operating system scheduling, and a good ability to reason about the impact on

other waiting threads that can arise from the thread holding the lock being desched-

uled. This makes these types of problems both difficult to understand in principle,

and difficult to identify in practice. A remark left by one of the particpants illustrates

the latter point:

Participant: “Even though I am familiar with many of the concepts above in theory,

it has been difficult to diagnose in code what a performance bottleneck could have been

attributed to, and therefore to know if I had encountered it or not. In a professional

environment there are constraints also to my time, so that I often have to submit code that

is simply “good enough” where I have not deduced all problems.”

On the other hand, the problems that are identified as known and frequent are

more closely related to the parallel program itself and its orchestration model. These

include lock contention, alternating parallel and sequential execution, and chains of

data dependences. The two major exceptions to this pattern are cache locality and

memory bandwidth problems, which arise from interactions with the parallel hard-

ware rather than being part of the program.

Page 105

CHAPTER 5. MODELLING THE DIAGNOSIS

5.4.1 Familiar and Frequent Problems
First let us examine the problems that are often diagnosed by the developers we sur-

veyed and that they are familiar with.

Lock contention (Figure 5.3). As one would expect, lock contention is a well

known and frequently encountered problem. There are solutions and various dif-

ferent ways to diagnose the problem (e.g.: [75, 159]). Experts agreed that the strongest

indication of lock contention is a simple proportion between the count of failed lock

acquisitions and successful ones. Experts also agree that a high number of synchro-

nizations is an indicator of the problem and a low number is a contra-indicator.

However, there is significant disagreement about whether a high level of sequen-

tial execution is an indicator or contra-indicator of lock contention. During the original

development of the model, we identified a high level of sequential execution time as

a likely indicator of lock contention, as it correlates with threads being serialized by

lock contention. However, 25% of experts disagreed. And indeed they are correct that

if the program is mostly inherently sequential then we we may not see much lock con-

tention because at least two parallel threads are needed for contention. A more correct

refinement of the model might state that if there are many unsuccessful lock acquisi-

tions and a great deal of sequential execution time, then it is likely that parallelism is

being severely limited by lock contention.

A recent paper on lock contention goes into more detail on different strategies for

gaining insight into the performance impact of various locking mechanisms, includ-

ing spinlocks; numbers of successful/unsuccessful lock acquisition attempts play an

important role in the strategies presented [159].

Poor cache locality (Figure 5.5). This problem seems similar to lock contention in

terms of its importance and frequency of diagnosis. The well-known paper “What

Every Programmer Should Know About Memory” by Ulrich Drepper illustrates the

problem with a simple matrix multiplication program [41]. This problem can be di-

agnosed by using low-level hardware performance counters6 which can be accessed

via tools such as Intel VTune or Intel Performance Counter Monitor, for Intel-family

6Hardware performance counters, are a set of special-purpose registers built into modern micropro-
cessors to store counts of low level hardware events. These events include cache misses, branch mis-
predictions and instructions executed. They were originally added by hardware designers to help them
understand bottlenecks in the hardware, but are now used for software performance analysis and tuning.

Page 106

CHAPTER 5. MODELLING THE DIAGNOSIS

25% 62% 12%+
“high #L2 cache misses”

38% 38% 25%+
“high #L3 cache misses”

38% 38% 25%+
“high cache miss to instruction ratio”

43% 29% 29%+
“high #L1 cache misses”

86% 14%-
“low cache misses as measured with hardware counters”

Figure 5.5 – Levels of experts’ agreement on observations related to the “Cache Locality”
problem.

CPUs. According to the model, cache locality problems can be identified by looking

at level 1, 2 and 3 cache miss hardware performance counters and a program that

contains low cache misses would be less likely to have this performance problem.

While this may seem obvious, the experts were not entirely in agreement on the

strength of the indications. For example, around 71% of experts agreed that a high

number of L1 cache misses was an indication of a cache locality problem, but fully

29% were not convinced that high L1 misses necessarily means that there is a cache

locality problem. A similar pattern arises for L2 and L3 misses, albeit to a lesser extent.

In other words, some experts regard L1 misses as the “real” cache locality problem,

others are more focussed on L2 or L3. When one considers that L1 misses are typically

much more frequent than L3 misses, but the cost of L3 misses is much higher it is

easy to see how this disagreement might arise. For applications with relatively small

working sets, L3 misses may be so rare as to be negligible, but it is easy to have poor

locality within a small working set and experience a great many L1 misses. On the

contrary, in applications with many L3 misses, even large numbers of L1 and L2 misses

may seem insignificant. Indeed when we inspected the data in more detail we found

different experts focusing on different levels of cache misses.

Alternating sequential and parallel execution (Figure 5.6). This particular prob-

lem is related to the way parallel programs are commonly structured, with large por-

tions of single-core execution (sequential phase) and parallel execution on multiple

cores (parallel phase). This often occurs in common design patterns for parallel pro-

gramming, such as the fork-join, scatter-gather, map-reduce patterns. There is a great

deal of agreement among our experts on indicators of the problem, which suggests

Page 107

CHAPTER 5. MODELLING THE DIAGNOSIS

62% 38% +
“alternating parallel/sequential execution”

29% 71% +
“alternating periods of high and low #synchronizations”

29% 71% +
“alternating periods of long short wait times for shared resources (IO especially)”

14% 71% 14%+
“alternating periods of high and low #thread migrations”

14% 43% 29% 14%+ -
“alternating periods of high and low #cache line invalidations”

12% 25% 50% 12%+ -
“very low sequential time”

Figure 5.6 – Levels of experts’ agreement on observations related to the “Alternating se-
quential/parallel execution” problem.

that with tool support it can be reliably diagnosed.

There is some disagreement among experts on whether a varying number of cache

line invalidations indicates that the problem exists. In parallel programs cache line

invalidations are almost exclusively the result of shared data being updated; before

a copy of the data in one cache is updated, all other copies must first be invalidated

by the cache coherency hardware. Updating of shared data happens only during con-

current execution, but the absence of shared updates does not guarantee the absence

of parallel execution. Parallel threads may simply update independent data, with lit-

tle updating of shared data. Therefore this is a much weaker indicator than some

other measures, and it makes sense that the experts show some ambivalence about it.

Fortunately, there are other much stronger indicators that can be used to identify the

problem. So we conclude that the problem is frequent in practice, and that experts

agree that is can be diagnosed with a small number of metrics.

Chains of data dependencies with too little parallelism (Figure 5.7). This is an-

other example of a performance problem that occurs in standard parallel program-

ming patterns, such as recursive divide and conquer algorithms.

In interviews carried out for a previous study [12], this was found to be a difficult

issue. The model does not provide clear indications to reliably support identification

of this problem as the expert assessments were in disagreement. Our data is very

clear that the problem is both well-known among parallel software developers, and

frequent in practice. But experts are not in agreement about how it might be iden-

tified using relatively simple measurements of performance of the executing parallel

Page 108

CHAPTER 5. MODELLING THE DIAGNOSIS

67% 17% 17%+ -
“low coherency misses (as measured by cache-tag-match-but-line-invalid counter)”

60% 20% 20%+ -
“low #cache misses and high degree of true sharing and low #thread migrations”

29% 14% 29% 29%+ -
“low #synchronization operations”

Figure 5.7 – Levels of agreement on observations related to the “Chains of data depen-
dencies, too little parallelism” problem.

program.

Indeed, this problem can appear in a great number of different variants that de-

pend on the particular patterns of parallelism, such as pipelined, reduction, or odd-

even communication [2]. Ideally we would refine this problem into several sub-

problems for the various circumstances in which it can arise. However, we cannot

see a clear sub-division of this problem that does not simply degenerate into dozens

of special cases. Part of the goal of the expert annotation exercise is to identify these

contentious issues where experts disagree.

We believe that finding a better breakdown is an important open (and difficult)

problem. One possible starting point is to investigate data dependences within com-

mon parallel programming patterns [149, 2]. This would require a higher-level ap-

proach to understanding performance problems, based on the parallel orchestration

model.

5.4.2 Less-Known but Frequent

As we mentioned before, the parallel performance problems in the Figure 5.4 tend to

cluster around a rising diagonal line from less-known-and-rare to known-and-frequent.

Nonetheless, several problems fall into the other two quadrants. True sharing is on the

boundary in terms of familiarity, and the problems of undersubscription and oversub-

scription are at least somewhat less known but frequent in practice.

True sharing (Figure 5.8). True data sharing occurs when more than one thread

accesses data that is updated by at least one thread. Each core that accesses the variable

normally has its own local copy of the variable within the core’s cache. However,

when the variable is updated by one thread, all other copies of the data are invalidated.

If a core reads the data again soon, it will find an invalid copy of the data in its cache,

Page 109

CHAPTER 5. MODELLING THE DIAGNOSIS

43% 57% +
“high L3 cache line invalidation”

25% 75% +
“high L2 cache line invalidation”

57% 43% +
“high cache line invalidation”

86% 14%+
“high #synchronization operations”

25% 50% 25%+
“high L1 cache line invalidation”

43% 29% 29%+ -
“#synchronizations scales as a function of #threads”

33% 67%-
“low #synchronization operations”

14% 43% 43%-
“single thread”

75% 25%-
“low cache line invalidation”

Figure 5.8 – Levels of experts’ agreement on observations related to the “True sharing of
updated data” problem.

and a new copy must be fetched of the updated data. According to our experts, this

problem can be detected with the help of hardware counters, which count how many

times each core attempts to read data from its cache, and finds that the cache contains

a copy, but it is invalid.

High amounts of cache invalidation suggest that true sharing of updated data is

sufficiently frequent to cause a performance problem, and a low amount of cache line

invalidation suggests the contrary. Note also that the features associated with prob-

lematic true sharing can be clearly distinguished from locality performance problems.

Cache locality problems are associated with large numbers of cache misses, but cache

invalidation misses are associated primarily with (true or false) sharing performance

problems.

In other words, true sharing is a problem that arises frequently in practice and

experts agree on the diagnosis: it is associated with large numbers of cache line inval-

idations and large numbers of synchronization operations. However, despite being

common in practice and clearly identifiable by experts, 25% of the parallel software

developers we surveyed were unfamiliar with this performance problem. This sug-

gests that developers would benefit from information and/or tool support to identify

this problem.

Page 110

CHAPTER 5. MODELLING THE DIAGNOSIS

75% 25% +
“High per-core idle time”

50% 38% 12%+
“#threads <#cores”

25% 38% 38%-
“#threads >= #cores”

Figure 5.9 – Levels of agreement on observations related to the “Undersubscription”
problem.

Undersubscription The undersubscription problem (Figure 5.9) is not well known

among the parallel software developers we surveyed but still occurs relatively fre-

quently. This performance problem occurs when there are too few active threads for

the number of available cores, with the result that the machine is under-utilized. If

there is useful parallel work that could be performed by those idle cores, the program

could complete that work more quickly if it were to utilize those cores. Our experts

are mostly in agreement that high per-core idle time and fewer threads than cores are

strong indicators of problematic undersubscription.

Under-utilizing the cores is sometimes deliberate; in some cases parallelism is

limited by other overheads, and adding additional threads gives no additional per-

formance benefit. In such circumstances adding more threads may damage perfor-

mance by introducing more inter-thread communication, more synchronization or

more thread management overhead. Using more cores also results in increased power,

and if there is no corresponding reduction in execution time the total energy (power

× time) used by the computation will also increase. Nonetheless, our study suggests

that in practice it is not uncommon for performance to be constrained by simply not

running enough parallel threads.

A very interesting question for future research is why this is so common in prac-

tice, given that for many programs it is simple to fix. We speculate that the difficulty is

that there is often no simple relationship between the number of executing threads and

the speed of the program. One can often fine-tune performance by increasing or de-

creasing the number of threads. The number of threads may be fixed to a constant in a

parallel program to achieve maximum performance on a given target machine. When

the software is executed on another machine with more cores, the optimal number of

threads may be higher.

Oversubscription The opposite of undersubscription is oversubscription, shown

Page 111

CHAPTER 5. MODELLING THE DIAGNOSIS

75% 25% +
“high #context switches”

29% 57% 14%+
“high #lock acquisitions”

38% 38% 25%+
“#threads >#cores”

12% 62% 25%+
“high % of memory swapped to disk”

57% 29% 14%+ -
“high #page faults”

38% 25% 38%+ -
“high #successful lock acquisitions”

12% 38% 50%-
“#threads ≥ #cores”

Figure 5.10 – Levels of agreement on observations related to the “Oversubscription”
problem.

in the Figure 5.10, where the number of threads exceeds the number of cores. Our

survey of parallel software developers suggests that problematic oversubscription is

at least moderately common. There is a great deal of agreement between our experts

that high numbers of context switches, large amounts of synchronization, and more

threads than cores are all indicative of problematic oversubscription. Software devel-

opers might benefit from guidance or tool support in identifying problematic over-

subscription.

The complication with both undersubscription and oversubscription is that they

can be beneficial or harmful. There is no simple deterministic relationship between

the number of threads and overall execution time. The default strategy used by many

is to simply set the number of threads equal to the number of cores. However, naive

parallelization strategies can easily result in a great mismatch between threads and

cores. For example, a simple parallel divide-and-conquer algorithm might spawn

a new thread each time the problem is divided, with the result that the number of

threads starts at one and grows with the depth of recursion. Such a program may ex-

perience a phase of undersubscription, followed by a second phase of oversubscrip-

tion. Timeline visualizations of relevant performance metrics might be particularly

useful in such cases.

Although it can be remarkably difficult to judge the best number of threads to get

maximum parallel speedup, the results of our survey are clear on some points. Both

under- and oversubscription are moderately common in real programs, but not well

Page 112

CHAPTER 5. MODELLING THE DIAGNOSIS

50% 50% +
“#spin loop iterations >#lock acquisition attempts”

57% 43%-
“#spin loop iterations <#lock acquisition attempts”

Figure 5.11 – Levels of agreement on observations related to the “Badly-behaved spin-
locks” problem.

recognized by developers as potential performance problems. Fortunately, there is

agreement among our experts about which metrics might indicate problematic under-

or oversubscription. This suggests that tools and/or information may help developers

to identify when under/oversubscription is problematic.

5.4.3 Less-known and Infrequent

The less-known and infrequent parallel performance problems of the Figure 5.4 tend

to be rather technical and obscure. As mentioned at the start of section 7.4 many of the

problems in this quadrant are related to software interactions with hardware or the

operating system at a low level. For example, to understand false sharing one must

understand how parallel computers maintain coherency between copies of the same

data in different caches during updates.

It is interesting that these are regarded as rare among those developers who are

familiar with them. This leads to the question that if these problems are indeed rare,

can we simply ignore them? The difficulty with ignoring these problems is that even

if they are rare, some can have a catastrophic impact on performance. For example,

badly-behaved spinlocks can bring a parallel application almost to a halt. Several

threads repeatedly updating different, but adjacent, array locations can cause large

slowdowns due to false sharing. Even if these problems are rare, their large impact

means that they cannot simply be ignored.

If we consider badly-behaved spinlocks in more detail, we see a great deal of agree-

ment between our experts on how the problem might be diagnosed (see Figure 5.11).

There is also a much agreement (although not unanimity) about the observations relat-

ing to false data sharing (Figure 5.12). This is in agreement with the literature, where

cache invalidation is clearly identified as a key symptom for true/false sharing [?].

Similarly, the experts broadly agree on the observations that might indicate a prob-

Page 113

CHAPTER 5. MODELLING THE DIAGNOSIS

17% 83% +
“high cache invalidation to lock acquisition ratio”

12% 75% 12%+
“high L3 cache line invalidation”

12% 62% 25%+
“high L2 cache line invalidation”

60% 20% 20%+ -
“high #synchronization operations”

20% 40% 40%+ -
“low #coherency misses”

Figure 5.12 – Levels of agreement on observations related to the “False data sharing”
problem.

lem with translation look-aside buffer (TLB) locality (Figure 5.13), which is another

problem that can have a large impact on execution time.

It appears that these problems are unfamiliar to many parallel software develop-

ers because they are related to quite low-level interactions with the parallel computer

architecture or operating system. However, the fact that they relate to low level tech-

nical features gives a significant degree of hope that they can be diagnosed with low-

level hardware and operating system performance counters. Our experts are largely

in agreement about the observations associated with these problems. This suggests

that these problems are good candidates for tool support that specifically searches for

these problems among performance data. The problems may continue to be rare and

unfamiliar to many parallel software developers. But on the rare occasions that these

problems arise, tools may be able to detect at least the possibility of their existence,

and communicate the problem and possible solutions to the developer.

5.4.4 Threats to Validity

As both the survey and validation study are based on understanding of hardware is-

sues which are potentially very complex, there is a possibility of misunderstanding

and misdiagnosis on the part of the participants. While this initial exploration delib-

erately targeted a broad class of programmers, the context in which both experts and

programmers work also introduces a potential confound. The disagreement among

experts regarding some observations points to a need for further investigation of these

issues in a context-specific way. We would recommend that both the architecture, the

Page 114

CHAPTER 5. MODELLING THE DIAGNOSIS

38% 62% +
“high #TLB miss to instruction ratio”

20% 60% 20%+
“high #thread migrations”

60% 40%+
“high #L3 cache misses”

60% 20% 20%+ -
“low degree of sharing”

50% 50%+ -
“high degree of sharing”

40% 60%-
“low #L3 cache misses”

71% 29%-
“low #TLB misses”

Figure 5.13 – Levels of agreement on observations related to the “TLB Locality” problem.

organizational context, the programming language/environment, and the type of soft-

ware being produced are considered within future work.

Nonetheless there are areas of significant agreement among the participants, in

areas such as lock contention and locality. One might conclude that these are areas

so well recognized and understood that the high level of agreement is an inevitable

outcome of the study. However, we believe that there is value in distinguishing areas

of consensus from areas of doubt.

5.4.5 Model Applications

The model and taxonomy provide a description of the problem space for the diagno-

sis of parallel performance problems. The model is intended to provide a foundation

for the development of tools and hence is based on data that we can measure or de-

rive; it relates observations from concrete instrumentation data to broad categories of

problems.

At the highest level, having a list of potential performance problems makes it easier

for tool designers to discuss the different situations that a programmer might face, and

the observational component of the model provides a starting point for discussing the

information that they might find useful in diagnosing their own program. Different

forms of tool support might be envisaged:

• Interactive performance debugging tools can be created, visualizing data asso-

Page 115

CHAPTER 5. MODELLING THE DIAGNOSIS

ciated with various indications or contra-indications and highlighting relevant

data to users. Groupings of particular problems from the taxonomy might be

addressed within the same tool or same part of a tool. For example, we could de-

velop a dashboard visualization for data locality which makes available the most

relevant information for the diagnosis of several different data locality problems.

• Automated tools can be created for more efficient parallel performance diag-

nosis and prediction. Ideally, a range of problems would be recognized by the

same tool or an integrated suite of tools. Such automated support could also be

integrated into visualization tools as described above.

• Systems can be intelligently instrumented to give strong indications of the pres-

ence of various performance problems and automatic watches/alerts can be

fired if a particular observation exceeds a user-defined threshold.

There are a number of potential advantages to a tool that focuses on a taxonomy

of specific parallel performance problems, rather than performance data alone. Fo-

cusing on a set of potential problems gives the developer structure in their efforts to

improve parallel performance. Indeed, prior research on large-scale parallel comput-

ing systems has focused on identifying problematic scalability, communication and

message-passing problems [76, 47]. It may also introduce developers to performance

problems that were previously unknown to them. Finally, a tool that deals with spe-

cific problems may be able to direct the developer towards possible solutions. For

example, once a programmer has discovered a problem with false data sharing, a tool

can provide information on solutions to common causes of the problem. Helping de-

velopers fix parallel performance problems is an important area of future research.

For performance visualization systems in particular, the model provides sugges-

tions on the type of performance metric that should be collected, and describes how

this information can be related back to various performance problems that the devel-

oper might need to diagnose. For problems where there are distinct phases of program

execution, timeline visualizations are likely to be useful, but we have also seen in sec-

tion 5.4.2 that the same algorithm might also exhibit different performance behaviour

over time (e.g. moving from undersubscription to oversubscription within a parallel

divide and conquer algorithm). Ultimately, the model is designed to support the de-

Page 116

CHAPTER 5. MODELLING THE DIAGNOSIS

veloper, who is in the position to discriminate between problems and assess whether

a particular value for an observation is “high” or “low” in the context of their own

development project.

Going up a level from the data locality example above, consider a performance vi-

sualisation tool that aims to provide the developer with insight into whether a memory-

related problem exists in a multi-threaded program. To design such a tool, we first

need to know what kind of memory problems programmers might be faced with,

the most common being cache locality (Figure 5.5), chains of data dependencies and

true sharing. Given the observations that are strong indications or contra-indications,

we should include in our tool some visual representation of relevant measures such

as cache misses and cache invalidations. While we might not know how to visually

encode high and low values for the counters, we might consider making such counts

relative to the total execution time (and hence providing an estimation of performance

impact), therefore having relative measures that are more easily understood.

The model and taxonomy may also be useful for those involved in teaching paral-

lel programming, conducting software engineering research on the practice of parallel

programming, and identifying gaps in our knowledge of, and ability to diagnose cer-

tain problems.

5.5 Concluding Remarks

The switch from single core to multicore architectures has created new challenges for

software engineering. Whereas parallel programming was once confined primarily to

the supercomputing community, we now find multicore processors in desktop, laptop

and even embedded systems. Typical software developers now face the challenge of

building parallel software for a wide variety of applications. This creates a need for

new tools, education and software development methods.

One step towards solving these problems is to identify the kinds of performance

problems that developers encounter when building software for multi-core machines,

and how those problems might be diagnosed. We have presented here one such tax-

onomy, grouped into a number of broad, interrelated themes. Our model focuses

primarily on concrete problems that have potential to be related to easily-collectable

Page 117

CHAPTER 5. MODELLING THE DIAGNOSIS

data, rather than more abstract problems relating to the software architecture or over-

all design (although this is also an important aspect).

This model has been validated with experts, identifying areas of high agreement,

which, when combined with data on relative frequency of occurrence, provides promis-

ing directions for initial tool support. Our results indicate that there is significant

agreement among developers and experts about many of the parallel performance

problems identified, and in particular about how the problems might be diagnosed.

Our study has also identified some contentious issues. Resolving these areas of dis-

agreement might not involve finding the “right” answer but rather a more nuanced

analysis of the problem. The observation might be context-dependent or require si-

multaneous consideration of multiple pieces of data.

As well as being useful to tool builders, the taxonomy might also provide a useful

starting point for educators as students are often at a loss to understand parallel per-

formance of real programs, partly because they are unaware of the kinds of problems

that might exist.

Finally, we hope that our taxonomy will be a useful starting point for future re-

search on understanding and diagnosing parallel performance problems. We expect

that future research will further refine our taxonomy, or propose entirely new ones.

Differences in how programmers with different levels of expertise diagnose parallel

performance problems is also deserving of further investigation.

Page 118

Chapter 6 Analysing Data Locality

The previous chapter explored the problem space for parallel software performance

optimisation. In order to progress towards the exploration of the solution space, while

building a general foundation, we look at the issue of Data Locality identified in our

taxonomy in the previous chapter, which is arguably one of the most important chal-

lenges currently faced by programmers of parallel systems.

In this chapter we deepen our analysis of the problem, based on the observational

model. We also explain the process we went through in order to collect and process the

necessary information to build a visualisation tool for data locality problem diagnosis.

6.1 CPU, Memory and Caches

Prior to diving into the diagnosis of data locality problem which we have described

previously in our taxonomy, we must clarify some of the general concepts with re-

gard to CPU architecture. This is necessary, as to understand the problem we must

comprehend the context and technical causes which lead to data locality problems.

Modern systems, typically have several CPUs which represent resources shared

by all running software with the help of the kernel scheduler of the operating system.

Moreover, modern processors also provide multi-level hardware caches for improving

I/O performance, such caches are located on the chip itself and become smaller and

faster the closer they are to the CPU itself. For example, the Intel Xeon E7-8870 v3

processor consists of 16 distinct cores, each core has a closely-located Level 1 cache of

32 KB and a bigger, but slower Level 2 cache of 256 KB. Furthermore, it also provides a

Level 3 cache of 45 MB, shared between all cores. To illustrate this, a generic dual-core

processor architecture is depicted in the Figure 6.1 where each core has its own Level 1

and 2 caches and the last level cache is shared between both cores present on the chip.

Page 119

CHAPTER 6. ANALYSING DATA LOCALITY

A common computer system typically has more threads and processes than avail-

able CPUs and multiple threads might need to run simultaneously. To accomplish this,

the operating system maintains a queue of software threads (ready to run queue) and

schedules the execution when the processor becomes available. In multi-processor

systems, the kernel usually tries to keep software threads in the same run queue,

where their caches are located. These caches are usually described as having cache

warmth while the approach to favour a particular CPU is known as CPU affinity.

Once scheduled on a CPU, each thread is allowed to execute some instructions,

which are chosen from the CPU instruction set. An instruction including several steps

which are processed by a component of the CPU known as functional unit, such as

arithmetic and logic unit or memory address register. Each instruction consists of several

steps:

1. Instruction Fetch. The instruction is fetched from the memory address specified

in the program counter (PC) register, then stored in the instruction register (IR).

2. Instruction Decode. The encoded instruction present in the IR is interpreted by

the decoder. The decoding process allows the CPU to determine what instruc-

tion is to be performed, so that the CPU can tell how many operands it needs to

fetch in order to perform the instruction.

3. Execute. The control unit of the CPU passes the instruction to the relevant func-

tion unit. The result generated by the operation is stored in the main memory, or

sent to an output device.

4. (Optional) Memory Access. In case of an indirect memory instruction, the effec-

tive address is read from main memory and any required data is fetched to the

appropriate registers.

5. (Optional) Register Write-Back. The result of the operation is written back to a

register.

Each of these steps takes at least one clock cycle in order to be processed: memory

access being the slowest and may take dozens of cycles to read or write to main mem-

ory, during which instruction execution is stalled and those cycles are known as stalled

cycles. This is the main reason why CPU caches exist to begin with, as they allow us to

reduce the amount of cycles needed for memory access.

Page 120

CHAPTER 6. ANALYSING DATA LOCALITY

Another component of CPU architecture is known as instruction pipeline, allow-

ing each CPU to execute several instructions in parallel by executing different steps

of different instructions at the same time. This is analogous to a factory assembly

line, where stages of production can be executed in parallel, thus increasing overall

throughput. As on the list above, a processor can process a fetch, decode, execute and

access memory simultaneously with the goal to execute an instruction per cycle.

Main Memory

CPU
Control Logic

Registers

ALU

CPU
Control Logic

Registers

ALU

L1I L1DL1I L1D

L2 Cache L2 Cache

L3 Cache

Bus Interface

FPU

MMU

TLB

Figure 6.1 – Conceptual representation of a generic dual-core processor.

Data locality problems occur when during the memory access, the data is not

present in a reasonably nearby location, resulting in more distant cache or main mem-

ory fetches. In turn, this causes pipeline stalls as other instructions can not be executed

until the the memory access completes. This process varies depending on the archi-

tecture and this is simply to illustrate the cause of the data locality problems.

There are two main types of data locality: temporal and spacial locality of ref-

erence. Good temporal locality is achieved by the reuse of specific data, and/or re-

sources, within a relatively small time duration. Good spatial locality is achieved by

the use of data elements within relatively close storage locations, such as L1 or L2

Page 121

CHAPTER 6. ANALYSING DATA LOCALITY

Event Latency Scaled

CPU cycle 0.3 ns 1 s
Level 1 cache access 0.9 ns 3 s
Level 2 cache access 2.8 ns 9 s
Level 3 cache access 12.9 ns 43 s
Main memory access 120 ns 6 min
Solid-state disk I/O 50-150 µs 2-6 days
Spinning disk I/O 1-10 ms 1-12 months
Internet: SF to NYC 40 ms 4 years
Internet: SF to Australia 81 ms 8 years
Physical System Reboot 5 min 32 millenia

Table 6.1 – Example Time Scale of System Latencies [59]

caches.

To balance between size and latency, multiple levels of cache are used. The access

time for Level 1 cache is usually only a few CPU clock cycles and for larger Level 2

cache, the access time is around a dozen clock cycles. Main memory access can take

around 120 nanoseconds, which is about 360 cycles on a 3 GHz processor.

In the Table 6.1 one can see how big the differences in latency are. To demonstrate

the differences in time scales, the table shows an average time each event might take

when scaled to an imaginary system where a CPU cycle takes one second to execute.

The table also shows disk and network accesses, as they are a natural extension of data

locality but not addressed specifically in our analysis.

In the Figure 6.1 between the cores one can find the memory management unit (MMU)

along with translation look-aside buffer. The MMU is responsible for virtual-to-physical

address translation and uses a TLB to cache address translations when a Level 1 cache

miss occurs. This address translation process takes time and the TLB capacity remains

relatively small, usually under a thousand entries. Similar to caches, TLBs may have

multiple levels, for example a small and very fast Level 1 TLB along with a larger

Level 2 TLB that is somewhat slower.

Finally, modern servers typically have multiple processors and using non-uniform

memory access architecture (NUMA). In such architectures, the processors are inter-

connected and the memory access depends on the location of the processor, as demon-

strated in the Figure 6.2 where if a hypothetical CPU 1 needs to access the data located

in DRAM 4, the data needs to be transferred through the memory bus between CPU

Page 122

CHAPTER 6. ANALYSING DATA LOCALITY

CPU 1 CPU 3

CPU 2 CPU 4

DRAM 1

DRAM 2

DRAM 3

DRAM 4

CPU
Interconnect

Figure 6.2 – Conceptual representation of the NUMA interconnect architecture.

4 and DRAM and then through the interconnect bus between CPU 1 and CPU 4. This

requires some memory accesses to go through another CPU in order to perform mem-

ory read/write operations. This further increases latency and may even affect the

performance of other threads running concurrently on other CPUs.

6.2 Applying the Observational Model

We have previously identified five performance problems within Data Locality cate-

gory, more specifically Poor Cache Locality, Poor TLB Locality, Unnecessary DRAM

Memory Paging, NUMA memory shared between CPUs and Page faults. In this

section, we are going to apply the observational model to identify the necessary infor-

mation to be presented within our performance analysis tool.

Due to the way modern processors are designed, they access memory from various

levels of caches in order; this makes each subsequent memory fetch slower as larger

and more distant memory banks are accessed. A simple conceptual way to view this

is illustrated below and in the Figure 6.1 with the arrow on the left of the diagram,

going through various components in the chip.

1. Processor attempts to retrieve the data from L1 cache.

2. If not found previously, the virtual-to-physical address translation is performed

along with an attempt to retrieve data from L2 cache.

3. If not found previously, processor attempts to retrieve data from L3 cache.

Page 123

CHAPTER 6. ANALYSING DATA LOCALITY

4. If not found previously, processor attempts to retrieve data from RAM, with a

potential involvement of the interconnect on multi-processor systems.

5. If not found previously, a page fault is raised and the appropriate memory page

is loaded into main memory.

Now that we have gone through the components and the process flow involved

in the data locality problems, we need to elicit the measurable events and counters

required to effectively diagnose the problem. Drawing on the model we have pre-

sented in Chapter 5, we need to look at and pick relevant observations, ideally with

high agreement levels and discarding highly controversial observations (i.e. observa-

tions with a high number of “irrelevant” annotation by experts and observations with

contradictory annotations).

1. Cache Locality. All of the observations seem to have general agreement be-

tween experts on whether an observation is a indication or contraindication of

this problem, with “high #L2 cache misses” being the most agreed indication

and “low cache misses as measured with hardware counters” being the strongest

contraindication.

2. TLB Locality. The observations “high #TLB miss to instruction ratio” and “low

#TLB misses” have the most discriminatory potential with all experts agreeing on

them being respectively an indication and a contraindication of the TLB locality

problem.

3. Sharing of data between CPUs on NUMA systems. The “high remote mem-

ory access” observation is the only observation that seems to have an inter-rater

consensus.

4. Unnecessary DRAM Memory Paging. All of the observations have high levels

of agreement among experts, with the simple count of DRAM page changes hav-

ing high discriminatory power, as a high number of DRAM page changes being

an indication and a low number of DRAM page changes a contraindication of a

problem.

5. Page faults. This particular problem seem to have only a single inter-rater con-

sensus with all experts annotating “high #page faults” as an indication of the

Page 124

CHAPTER 6. ANALYSING DATA LOCALITY

problem and relatively strong agreement on “very low #page faults” which is

considered as a contraindication.

The usage of the model is rather straightforward, as once we have identified the

required observations, we need to identify the exact counters, events or metrics we

require in order to successfully diagnose each problem. Below we enumerate such

raw items, along with its collection mechanism. This is only part of the solution, as

the information needs to be further refined in order to be useful for programmers.

1. Memory reads and writes. Modern hardware contains a counter that can allow

us to measure the amount of memory reads and writes for a particular processor,

in bytes of memory.

2. L1, L2 and L3 cache misses. Similarly, there are counters in hardware that would

allow us to measure cache misses on a particular level. This event essentially

occurs when data has not been found on a particular level and the processor

needs to fetch it from a higher (and slower) level.

3. L1, L2 and L3 cache hits. We can also obtain values representing the number

of successful hits in various levels of cache, representing successfully obtained

data.

4. TLB misses. Once again, we can retrieve the number of TLB misses from the

hardware performance counters on most of the modern CPUs.

5. Minor Page Faults. Operating system events can be used to get information

about minor and major page faults. A minor page fault represents a memory

address that is loaded in memory, but is not mapped to a memory management

unit, resulting in the system merely making an entry for the particular address.

6. Major Page Faults. Operating system events that are raised by hardware when a

program attempts to access memory that is mapped in the virtual address space,

but not loaded in hardware. This often requires the operating system to swap or

load from disk, resulting in a considerable slowdown.

7. Processor Interconnect Traffic. In most modern CPU architectures, hardware

performance counters can be used to extract information about the memory traf-

Page 125

CHAPTER 6. ANALYSING DATA LOCALITY

fic passing through the interconnect bus, such as Intel QuickPath Interconnect

(QPI) or AMD HyperTransport (HT).

6.3 Diagnosis Process

The observational model allowed us to identify the information that should be pre-

sented to the end-users (programmers) within our tool, assuming that if programmers

are able to make specific observations, such as seeing a high number of L2 cache misses,

they will be able to identify potential problems.

Figure 6.3 presents a decision tree describing a possible diagnosis path for iden-

tifying problems with poor data locality. Such a decision tree provides a simple rep-

resentation of how the different pieces of information within a visualisation might be

used in the process. This would fit under a more broad framework, as the decision tree

addresses solely data locality issues, so it can be seen as a sub-tree of some larger de-

cision tree. To create the tree, we have selected the most discriminatory observations

from the observational model.

Although we have already identified various components of computer architecture

that can be responsible for slow memory access, from the programmers’ standpoint

the cause of poorly performing programs is usually random memory access patterns. In

other words, accessing memory in a non-sequential way is generally harmful to the

performance of cache and memory as caches work on the expectation that the data

that has recently been touched and the data that is located closely in memory to it is

more likely to be accessed again.

Random access patterns generally contain limited memory reuse, leading to more

cache misses as the probability of finding the required data in the cache is low. More-

over, it also leads to lower utilisation of a cache line. Data is transferred between

memory and cache in blocks of fixed size, usually 64 bytes which are called cache lines.

For example, if a single 32-bit integer (4 bytes) variable is accessed within a program,

an entire block of 64 bytes of surrounding memory is brought into the cache.

Modern processors also integrate a hardware prefetcher, which relies on finding

regular access patterns to determine what data to pre-load, and thereby hide memory

access latencies. Random access patterns therefore make the hardware prefetcher in-

Page 126

CHAPTER 6. ANALYSING DATA LOCALITY

effective or may even trick the hardware prefetcher into prefetching data that is not

useful, wasting memory bandwidth.

Random access patterns can originate from different sources, including data struc-

tures, dynamic memory allocation and algorithms. Some data structures inherently cause

random access patterns, for example, most implementations of traversal of tree data

structures or hash tables. Programmers can greatly improve performance by replacing

such data structures with more cache-friendly implementations.

Changing random access patterns is generally hard: sometimes it might require

an alternative algorithm with better cache behaviour, however, such algorithms can

be inferior in other ways; other times it may be possible to adapt data structure to the

algorithm. For example, it may be possible to sort an adjacency matrix so that nodes

that are connected are close to each other, so that following the edges results in a more

regular access pattern.

Page 127

CHAPTER 6. ANALYSING DATA LOCALITY

(Start Here)

memory related issue

If any

cache misses as
measured with hardware
counters

If Low

cache locality issue is
unlikely

If High

#l1 cache misses

If Low

cache locality issue is
unlikely

If High

#l2 cache misses

If Low

cache locality issue is
unlikely

If High

#l3 cache misses

If Low

If High

If high

If low

If High

cache locality issue is
likely

If High

cache locality issue is
likely

If High

cache miss to instruction
ratio

If Low

cache locality issue is
unlikely

If High

cache locality issue is
likely

If any

#tlb misses

If high

#tlb miss to instruction
ratio

If high

#thread migrations

If high

tlb locality issue is likely

If low

tbl locality issue is
unlikely

If high

#l3 cache misses

If high

tlb locality issue is likely

If low

tbl locality issue is
unlikely

If low

tbl locality issue is
unlikely

If low

tbl locality issue is
unlikely

If high

dram paging issue is
likely

If low

dram paging issue is
unlikely

If high

page faults issue is likely

If low

page faults issue is
unlikely

If any

remote memory access

If high

only cores from only one
cpu are used

If no

numa sharing issue is
likely

If yes

numa sharing issue is
unlikely

If low

numa sharing issue is
unlikely

If any

#dram page changes

If high

#tlb misses

If high

dram paging issue is
likely

If low

dram paging issue is
unlikely

If high

page faults issue is likely

If low

page faults issue is
unlikely

If low

dram paging issue is
unlikely

If any

#page faults

If high

#tlb misses

If high

page faults issue is likely

If low

page faults issue is
unlikely

If very low

page faults issue is
unlikely

Figure 6.3 – Data locality problem diagnosis tree.

Page 128

CHAPTER 6. ANALYSING DATA LOCALITY

6.4 Data Collection

As we described in the previous section, we were able to understand which data types

are necessary to construct a picture representing memory traffic. However, our next

natural step was to understand technically, how we are going to collect the data and

which specific features we need to measure.

As our interview results suggest that we need to support orchestration models

and scoping, we therefore concluded that every measurable event needs to have the

following dimensions:

1. Processor. The specific processor (core) that raised the event.

2. Process. The specific process that raised the event.

3. Thread. The specific thread that raised the event.

4. Call Stack. The instruction pointer or a call stack that can be used to determine

which function raised the event. Processor, process and thread information al-

lows us to map each data point to a particular semantic worker. It presents

fine-grained, verbose information, it also allows us to re-sample data in differ-

ent ways, summing and averaging events per process, processor or even per

machine.

Cache misses, cache hits, memory reads and writes are architecture specific events.

In order to access and collect the data, we need to sample the values from hardware

performance counters. However, as the name suggests, hardware performance coun-

ters cannot be associated with a specific process or a specific software thread, as it only

gives hardware information. This is problematic as we determined that we need pro-

cessor, process and thread information for each event. Therefore, we must up-sample

the hardware counters in order to enrich them with the required information. The up-

sampling, or increasing the sampling rate of a signal, can be performed if we bring in

detailed context switch information.

A context switch represents a process of storing and restoring a state of a process

or thread so that execution can be resumed from the same point in time later. Since

hardware counters provide us with cache misses, cache hits and memory usage per

Page 129

CHAPTER 6. ANALYSING DATA LOCALITY

processor, which means we can up-sample only if we know which thread was execut-

ing at a given point in time. In modern operating systems such as Windows, the op-

erating system provides a facility that allows us to collect the context switch informa-

tion. This facility is called Event Tracing for Windows and was originally introduced

in Windows 2000. It provides application programmers the ability to start and stop

event tracing sessions and record (consume) specific events. By knowing precisely

which thread executes at which point in time, we can up-sample and approximate

hardware performance counters to measure the counters per thread, adding valuable

information.

6.5 Measuring the Performance Impact

In order to effectively evaluate our tools, we needed to use a benchmark suite that

illustrates a data locality problem, while being relatively easy to understand and opti-

mise.

We have based our initial analysis, tests and benchmarking on an algorithm com-

monly used in parallel programming optimisation: a matrix multiplication algorithm.

As a quick reminder, the definition of matrix multiplication is that if C = AB for an

n×m matrix A and an m× p matrix B, then C is an n× p matrix with entries:

Ci j =
m

∑
k=1

AikBk j

In this section we will analyse a matrix multiplication algorithm and we will at-

tempt to understand what the performance problems are and how a conclusion can

be reached as to what is causing the problem.

6.5.1 Parallel Implementations
Figure 6.4 is a C++ function for matrix multiplication, parallelised with an outer par-

allel for loop, a common construct that can be found in many parallel programming

libraries such as Microsoft Parallel Programming Library or Intel Threading Building

Blocks

Page 130

CHAPTER 6. ANALYSING DATA LOCALITY

void MultiplyMatrix (i n t n , i n t ∗∗ a , i n t ∗∗ b , i n t ∗∗ c)
{

p a r a l l e l f o r (0 , n , [&] (i n t k)
{

for (i n t j =0 ; j<n ; j ++) {
i n t r = b [k] [j] ;
for (i n t i =0 ; i<n ; i ++)

c [i] [j] += a [i] [k] ∗ r ;
}

}) ;
}

Figure 6.4 – Function performing matrix multiplication, parallelized with an outer parallel
for loop, a common construct that can be found in many parallel programming libraries
such as Microsoft Parallel Programming Library or Intel Threading Building Blocks.

When running the above program on a commodity quad core machine, and mul-

tiplying two 1000 by 1000 matrices together, the total execution time we measured on

our test machine is around 4 seconds; this is already 4 times faster than its sequential

sibling. We know that the multiplication algorithm results in 1000 ∗ 1000 ∗ 1000 (one

billion) sub-multiplications. Each sub-multiplication needs to read 2 addresses and

writes into another one, resulting in 2 billion memory reads in total.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

0 ms 503 ms 1045 ms 1597 ms 2137 ms 2684 ms 3235 ms 3780 ms 4323 ms

Parallel KJI - Cache Misses

L3MISS L2MISS L1MISS
Figure 6.5 – Data representations of cache misses over time that occurred due to an exper-
imental run of a parallel matrix multiplication program.

However, this performance might be insufficient and can be improved. By running

our data collection utility, we can extract the number of cache misses and various

useful metrics per thread which represent how effectively the cache is being used. In

the Figure 6.5, one can see that a significant amount of L1 and L2 cache misses occur,

while the amount of L3 misses remains insignificant in comparison. From this, we can

Page 131

CHAPTER 6. ANALYSING DATA LOCALITY

conclude that the current implementation stores the entire work set (both matrices) in

L3 cache, but accesses them in an inefficient manner.

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

0 ms 551 ms 1141 ms 1740 ms 2329 ms 2924 ms 3514 ms 4107 ms

Parallel KJI - Instructions per Cycle

Figure 6.6 – The average number of instructions executed for each clock cycle.

There are several other metrics which can be useful for our diagnosis, in addition

to raw L1, L2 and L3 cache miss counts. One of them can be seen in the Figure 6.6 and

shows the average number of instructions executed for each clock cycle. A significant

decrease in executed instructions can be observed during the execution of our matrix

multiplication program. This is due to the processor not being able to effectively ex-

ecute instructions and the processor pipeline stalling and waiting for data to arrive

from the cache.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 ms 503 ms 1045 ms 1597 ms 2137 ms 2684 ms 3235 ms 3780 ms 4323 ms

Parallel KJI - CYCLES WASTED DUE TO Cache Misses

L3CLK L2CLK
Figure 6.7 – The clock cycles wasted due to L2 and L3 cache misses.

As we can see in the Figure 6.6, the instruction decrease demonstrates clearly the

slowdown, since the CPU is not executing instructions and instead is waiting for data

to arrive to the pipeline. So far, we have formed this hypothesis by simply looking at

Page 132

CHAPTER 6. ANALYSING DATA LOCALITY

void MultiplyMatrix (i n t n , i n t ∗∗ a , i n t ∗∗ b , i n t ∗∗ c)
{

p a r a l l e l f o r (0 , n , [&] (i n t k)
{

for (i n t i =0 ; i<n ; i ++) {
i n t r = a [i] [k] ;
for (i n t j =0 ; j<n ; j ++)

c [i] [j] += r ∗ b [k] [j] ;
}

}) ;
}

Figure 6.8 – Function performing matrix multiplication, parallelized with an outer parallel
for loop, a common construct that can be found in many parallel programming libraries
such as Microsoft Parallel Programming Library or Intel Threading Building Blocks.

two particular graphs, however the “performance impact” is not clear and is difficult

to quantify.

Figure 6.7 shows a different perspective of looking on the “performance impact”

of data locality. Here, we have performed an estimation of the cycles wasted due to

L2 and L3 cache misses, more details are provided on the actual calculation in the

following section. This particular graph allows us to combine both previous graphs in

a single one and allows us to identify the cache level that becomes a bottleneck in our

program, Cache L2 in this particular case.

There are different ways to implement the matrix multiplication algorithm and a

more effective implementation can be obtained by simply swapping the order of ac-

cesses. The algorithm illustrated in the Figure 6.8, takes less than a second to execute

on the same quad core machine — this is almost a 16 times speedup compared to its

worst-case sequential sibling. The efficiency of this algorithm comes from the data ac-

cess pattern — the elements of the matrices being multiplied are accessed sequentially

as laid out in memory.

Data locality access patterns matter. In our matrix multiplication benchmark suite,

by simply swapping for loops and changing how memory is accessed, the number of

cache misses can be significantly reduced (Figure 6.9), which means that the processor

spends less time loading the data and more time actually doing the calculation.

Page 133

CHAPTER 6. ANALYSING DATA LOCALITY

0
50000

100000
150000
200000
250000

0 ms 157 ms 337 ms 517 ms 694 ms 870 ms 1048 ms 1215 ms

Parallel KIJ - Cache Misses

L3MISS L2MISS L1MISS
Figure 6.9 – Data representations of cache misses over time that occurred due an experi-
mental run of a parallel matrix multiplication program.

6.5.2 Lost Cycles

As we have seen in the Figure 6.7, expressing various levels of cache in terms of cycles

can be a good estimator of performance impact; but how do we calculate and extend

this to cover other data locality components?

Luckily, Intel provides a good starting point with some metrics used in their Intel

Performance Counter Monitor (PCM) and Intel VTunes tools which allow estimation of

the performance impact with more granularity. One such metric is shown below and

can be used to calculate the performance impact of L3 cache misses in terms of CPU

cycles.

let x∆ = xt − xt−1 for any x:

L1Impact =
10∗L2Hit∆

CpuClkUnhaltedT hread∆

For example, as shown in the formula above, we can calculate the performance

impact of L1 cache misses simply by counting the number of L2 hits and dividing this

by the number of elapsed cycles. As we are interested in calculating the impact of L1

cache misses, we are not interested in the L1 cache misses that also miss L2. We also

consider here that a “cost” of an L2 miss is roughly 10 CPU cycles.

CpuClkUnhaltedT hread represents the number of core clock cycles on a specific core

that the thread is running; this counts only used cycles, as the halted cycles are not

Page 134

CHAPTER 6. ANALYSING DATA LOCALITY

counted. To clarify this, all x86 CPUs have an instruction known as HLT (”Halt”),

which puts the CPU into an idle state, and the CPU can be brought back to life if it

receives an interruption.

let x∆ = xt − xt−1 for any x:

L3Impact =
180∗L3Misses∆

CpuClkUnhaltedT hread∆

Similarly, L3Impact is a ratio which represents how many core cycles were poten-

tially lost due to L3 cache misses. Level 3 cache misses are calculated using a hardware

performance counter L3Misses and the difference is taken between two counter states

(xt − xt−1).

We can also estimate the performance impact of Level 2 cache misses, by estimat-

ing how many core cycles were potentially lost due to missing the L2 cache but still

hitting the L3 cache. This is significantly more difficult, as the Level 2 cache is an in-

termediary level cache. The formula below results in a ratio which is usually between

0 and 1. In some cases, however, this ratio could be > 1.0 due to a lower estimation of

access latency, according to Intel documentation.

let x∆ = xt − xt−1 for any x:

L2Impact =
35∗L3UnsharedHit∆ +74∗L2HitM∆

CpuClkUnhaltedT hread∆

In this metric, L3UnsharedHit refers to the number of retired loads that hit valid

versions in the last level cache, L2HitM is the number of memory load instructions

retired that hit modified data in the sibling core, due to false or true data sharing.1

In other words, this metric attempts to approximate the performance impact in

terms of cycles by assigning different weights (35 and 74) to a pair of hardware per-

formance counters and adding them together. Noticeably, Level 2 hits that hit the

modified data are weighted more than twice the the actual L2 misses that hit L3.

To illustrate this, consider a scenario where an array of four 32-bit integer numbers

{A|A ∈ Z} = {1,2,3,4} (A is very small and fits in a single cache line) is accessed by

two different threads scheduled on CPU cores: C1 and C2. Initially, both cores have the

1True and False data sharing are explained in Chapter 5.

Page 135

CHAPTER 6. ANALYSING DATA LOCALITY

entire A in their respective Level 2 caches. If C1 has modified the first two elements of A

({1,2}) and then C2 attempts to read any of the elements of A, this results in the L2HitM

hardware performance counter being incremented, as the CPU has to invalidate the

Level 2 cache line which contains A on C2 and bring the modified values over from C1.

The cache coherency is maintained by an on-chip CPU cache coherency protocol [40].

Next, we can also calculate the performance impact of address translation misses

(TLB Misses), as shown below.

let x∆ = xt − xt−1 for any x:

T LBImpact =
30∗MemLoadRetiredDT LBMiss∆

CpuClkUnhaltedT hread∆

Here, we make use of hardware performance counter MemLoadRetiredDT LBMiss,

which represents retired memory loads that miss the DTLB (translation look-aside

buffer for data). According to Intel, this can take on average 30 additional cycles.

Lastly, we can extend the same principle to the impact of page fault traps, assum-

ing no disk accesses are caused by a page fault. Back in 2003, Haeberlen and Elphin-

stone measured the single page fault overhead to be around 1700 cycles [62] while in

his recent online post 2 Linus Torvalds estimated this to be around 1050 cycles, which

is the number we have used in our study as well.

let x∆ = xt − xt−1 for any x:

HPFImpact =
1050∗HardPageFault∆

CpuClkUnhaltedT hread∆

In this last formula, the HPFImpact represents a performance impact of the page

faults that have occurred in a particular period of time and calculated by counting

HardPageFault which can be done through operating system event collection mecha-

nisms, such as Windows Event Tracing.

2https://plus.google.com/+LinusTorvalds/posts/YDKRFDwHwr6

Page 136

CHAPTER 6. ANALYSING DATA LOCALITY

6.6 Data Modelling

The next step in our analysis was to create a flexible data model that would allow us

to build various visual support tools for developers of parallel programs. Based on

our interview analysis, we set out to design a data model that would accommodate

the following constraints:

• Support for the orchestration metaphor. As one of the major implications for

design was the widespread usage of orchestration models, our data storage sys-

tem should also accommodate the data in a way that facilitates the delivery and

implementation of tools that consume the data and visualise it with a consistent

metaphor.

• Support active experimentation. As we have noticed during our interview anal-

ysis, active experimentation (trial and error) is the most common technique used

by developers to understand the performance within programs. Based on this

conclusion, we set out to design a data model that also supports the process of

active experimentation.

• Support for consistency. Many of the developers we interviewed mentioned

that organisational constraints such as time, make it difficult for them to learn

new tools every time they have a particular problem to solve. This requires

us to make a data model that can provide data in a consistent way, effectively

smoothing the eventual learning curve.

The solution we proposed for storing our data complies with all the constraints and

provides a flexible and consistent way to explore, extract, modify and build upon. It is

called the SWARM model, which stands for “Scale”, “Worker”, “Action”, “Resource”

and “Metric”, and provides support for faceted search over time-series of orchestra-

tion model-supported data:

• Scale. Represents the scale, or the scope of the event. This is a facet with val-

ues within an ordinal class. A scale facet could take following non-exhaustive

values: “Machine”, “Processor”, “Program”, “Thread”, “User”. Within a given

scope, a particular set of workers operate, for example, if the scale dimension is

Page 137

CHAPTER 6. ANALYSING DATA LOCALITY

set “Program”, each worker is an individual program and the data is automati-

cally aggregated to accommodate for this.

• Worker. Represents one or particular worker instances. For example, a particu-

lar Core, a program or a particular thread.

• Action. This represents the conceptual action that a worker performs on a re-

source. For example, a worker can be “using” a central processing unit to calcu-

late something, or it can be “allocating” some memory resources for later use.

• Resource. The resource that can be used by a particular worker or several work-

ers. To give you an example, a resource facet could take non-exhaustive values

such as “CPU”, “GPU”, “Memory”, “Hard Disk”, “Network Interface”.

• Metric. Finally, metric represents a type of possible measurement. For example,

given that the scale is Program, worker is Program 1, action is “allocating” and

resource is “memory”, metric could be any value that is measurable by hardware

counters, operating system events or any other direct or derivative means, such

as “Allocation speed”, or “Bytes allocated”.

Scale Worker

Action Resource

Metric

Figure 6.10 – Five facets of the SWARM data model used to store the performance data
for the delivery to the client applications and post-processing transformation.

In the SWARM model, we store the data in a way that accommodates for the or-

chestration model using a time-series of 5-facet data points, as shown in the Figure

6.10. A faceted search system is a common solution for exploratory search problems,

which supports active experimentation (or data exploration). Essentially, when a pro-

grammer visualises and explores the performance data, it is an exploratory search

Page 138

CHAPTER 6. ANALYSING DATA LOCALITY

problem, which is a specialisation of information exploration which represents the

activities carried out by searchers who are either:

• Unfamiliar with the domain of their goal (i.e. need to learn about the topic in

order to understand how to achieve their goal).

• Unsure about the ways to achieve their goals (either the technology or the pro-

cess).

• Unsure about their goals in the first place.

As part of our working programme, we completed a basic performance analytics

system, leveraging the performance data model that we have designed based on the

interview analysis. This performance analytics system is shown in the Figure 6.11.

Our basic performance analytics system presents a series of horizon graphs, de-

pending on the selected parameters. Horizon graphs increase data density while pre-

serving resolution. While horizon graphs may require learning, they have been found

to be more effective than standard line and area plots when chart sizes are small [68].

Page 139

CHAPTER 6. ANALYSING DATA LOCALITY

Figure 6.11 – Horizons, a basic performance analytics system that leverages SWARM
model as its underlying data provider.

6.7 Data Processing System

In order to lay the foundation for designing various prototypes, we then began to de-

sign a data processing system, based on the SWARM model we described above. The

system we implemented was designed with the help of traditional extract, transform,

and load pattern (ETL). This pattern is widely used in data-warehousing and consists

of three steps:

1. Extract. The processes related to the extraction of data from external data-sources.

We extract data from hardware performance counters and operating system events

on the target machine, (i.e. the machine that has a software to monitor the per-

Page 140

CHAPTER 6. ANALYSING DATA LOCALITY

formance of).

2. Transform. The processes related to the transformation of the data in order to fit

the operational needs. We transform the raw data into SWARM-modelled data

structures.

3. Load. The data is loaded to a local, non-distributed NoSQL database and in-

dexed for an efficient delivery in the JSON format in order to be consumed by a

visual analytics tool via a HTTP REST API.

Figure 6.12 presents our cloud architecture and its ability to horizontally scale, as

many more virtual servers can be added. Each individual server in our cloud deploy-

ment has the ability to process and deliver the required data for one or several exper-

iments. The system can be scaled automatically based on the amount of experiments

running concurrently.

Figure 6.12 – The architectural schema presenting the cloud-based data processing system
we built as a common foundation for data storage and delivery.

There is a clean split between different components of the overall architecture. To

illustrate the data flow process, consider the following scenario of how the system

works from the beginning of data collection to the rendering of the visualisations:

1. On the target machine, a small software is installed. This software integrates the

data collection mechanisms in order collect hardware counters and operating

system events. When the performance analysis session is initiated by the pro-

grammer, it only requires them to start the program, and stop it when they wish

to stop the performance analysis session.

Page 141

CHAPTER 6. ANALYSING DATA LOCALITY

2. During the session, the data collection software sends the data to one of our

virtual servers, on a specified frequency (by default every 1 second). This is

accomplished through HTTP protocol by sending a POST request to the remote

endpoint.

3. The incoming data is then stored in the initial format by the server, and pro-

cessed as it comes in, continuously in the SWARM-compliant format. The data

points are resampled, averages and sums are created and the data is populated.

4. Finally, when a visual analytics tool requires a particular set of data, it issues a

HTTP GET request to the virtual server for the particular performance session

(i.e. experiment) and the server returns the requested data. The data is deliv-

ered to the tools via a standard REST API, where the HTTP endpoints are read-

only and the parameters can be specified in the url itself. For instance, issuing a

request to http://api.rpc.io/x1/process/program1/cpu/usage/ticks will

yield a timeline for the performance session x1 , with scale defined as process ,

the worker as being program1 , resource as being cpu , action as being usage

and the measure defined as ticks , which we used to present a sampled CPU

usage. The server then returns a JSON-formatted time series of values for the

specified parameters, such as:

[{” Time ”:”\/ Date (1368403200054+0000)\/” ,” Value ” : 0 . 1 2 3} ,

{”Time ”:”\/ Date (1368403200055+0000)\/” ,” Value ” : 0 . 2 7 1} ,

{”Time ”:”\/ Date (1368403200056+0000)\/” ,” Value ” : 0 . 9 6 1 5} ,

{”Time ”:”\/ Date (1368403200057+0000)\/” ,” Value ” : 0 . 9 6 3 5 }]

5. The tool then renders the information where the rendering process is specified

within the tool itself, allowing us to build prototypes that mix and match differ-

ent information sources. Our initial prototype simply renders the time series as

a horizon chart, as depicted in Figure 6.13.

Figure 6.13 – A single horizon timeline, representing a rendered time series of CPU usage
events for a single program on the process scale.

Page 142

CHAPTER 6. ANALYSING DATA LOCALITY

6.8 Concluding Remarks

The problem of data locality induced by the ‘memory wall’ is intimately intertwined

with parallelism [84]. When developers build parallel software, performance is usu-

ally one of the key goals, yet data locality is often just as important as parallelism for

performance. Thus, the programmer needs to be able to identify data locality prob-

lems when they arise in parallel programs. In addition, parallel threads executing on

different cores often share the same data in one or more levels of cache which can

improve locality. But equally, the threads may end up competing to keep their own

data within the cache. The result can be complex interactions that cause non-obvious

locality problems that may be difficult for the developer to identify.

In this Chapter we have examined the data locality problem, both its architectural

and its algorithmic causes, along with some of the measurable counters and events

that can be collected in order to help with the diagnosis of poor data locality in parallel

software.

We have analysed two matrix multiplication algorithm implementations which

can be used to illustrate both good and poor data locality.

We have shown that simple counters such as cache misses and cache hits can be

used together with some metrics to effectively approximate the impact of individual

events on the performance of the program. A good starting point proved to be the

metrics provided and used by Intel in their tools; we have extended the concept of

expressing the performance impact in terms of cycles lost to other components, such

as TLB and page fault traps raised by the operating system.

Going forward, we have implemented a data collection utility which allows at-

tributing various hardware performance counters to individual threads, enabling us

to “assign blame” to various threads in the program for counters such as cache or TLB

misses.

Lastly, we have constructed an ETL delivery mechanism with a standardised schema

(SWARM Model) for storing performance measurements in a time-series fashion with

enabled faceted search.

The next chapter covers the design and evaluation of a tool we have designed

based on our insights, models and analysis presented here and in the previous chap-

Page 143

CHAPTER 6. ANALYSING DATA LOCALITY

ters.

Page 144

Chapter 7 Visualising the Performance

There are aspects of data locality that are poorly understood by many developers sim-

ply because they are related to low-level aspects of modern computer architectures.

For example, modern processors have a special type of cache, known as the transla-

tion lookaside buffer (TLB), that is used to store parts of the page table from the virtual

memory system. Many of the same issues arise with TLBs as with caches in parallel

software. However, it is particularly difficult for a developer to identify a performance

problem if they are unaware that it can arise. Nonetheless, it should be possible for

developers to identify and solve problems without becoming experts in the low-level

details of the multi-core architecture.

7.1 visualisations to Support Data Locality Analysis

We address the problem of diagnosing data locality by creating an information visual-

isation (InfoVis) system. InfoVis can be described as a cognitive activity in which users

engage, with the potential of gaining an understanding and an insight from data rep-

resented by a visual medium [154]. As well as this perceptual and cognitive element,

users are also involved in an interaction with the visualisation tool, and hence the en-

tire experience can be seen as being based both on conceptual models of the domain

and on instantiated mental models of the visualisation interface. Both activities are

cognitively interconnected and difficult to separate, making it challenging to evalu-

ate, as the whole experience needs to be evaluated. This represents a major challenge

from a Human-Computer Interaction perspective [48].

It has previously been suggested that visualisations can effectively support devel-

opers in the task of software maintenance by relating information more efficiently,

presenting relevant cues to the programmers so that they can accomplish the mainte-

Page 145

CHAPTER 7. VISUALISING THE PERFORMANCE

nance task at hand [87].

The process of program optimisation can be viewed as an exploratory search prob-

lem; this view is helpful where the users (programmers) lack the knowledge or contex-

tual awareness to formulate precise queries or navigate complex information spaces

(i.e.: performance of their programs), the search task requires browsing and explo-

ration, or system indexing of available information is inadequate [170]. All of these

are potentially applicable to the task of optimising parallel programs, and hence we

are interested in multi-faceted visualisations that support data exploration in a inter-

active manner.

In this chapter, we present a data locality performance analyser, namely Data PAL

: an interactive visualisation tool designed with the objective of allowing program-

mers to easily identify the presence of data locality issues. It is intended to support

identification of problems along several dimensions:

• Process/Run. As the first question in the decision tree underlying the visuali-

sation, a programmer might ask whether there is a potential data locality issue

with the current process or experimental run. Figure 7.1 depicts the part of the

visualisation responsible for this.

• Time. A timeline visualisation (Fig. 7.2) part of the tool allows the programmer

to identify where in time the problem might occur. Different phases of a program

are likely to have different properties with respect to locality.

• Thread. A thread view (Fig. 7.3) allows programmers to identify threads ex-

hibiting poor data locality.

The design and empirical evaluation of the tool allows us to explore the design space

and potential impact of this form of programmer support, and provides some inter-

esting insights into the specific example of data locality within software engineering

practice.

The graphs are based on data from hardware performance counters combined with

constants and formulas (e.g.: clock cycles wasted due to L2 cache misses, etc.) publicly

provided by the microprocessor manufacturer (Intel in this case). These calculations

are used to transform the huge number of available hardware performance counters

to a set of simple cost-functions. These performance metrics are intended to aid devel-

Page 146

CHAPTER 7. VISUALISING THE PERFORMANCE

opers in the process of forming mental models of the performance of the program; we

define mental models as knowledge instantiated in working memory for the particu-

lar need and context. In turn, this helps developers to reason about the program and

form hypotheses on possible performance bottlenecks and on the possible solutions to

them.

7.1.1 Greenlight View
An analysis of the process of diagnosis of data locality problems yields an initial prob-

lem of deciding whether a program has a potential issue with data locality. A top level

visualisation, such as that depicted in Figure 7.1 can aid in this initial step. We term

this the “Greenlight View”. The visualisation consists of a stacked bar chart, represent-

ing the estimation of the proportion of time (CPU cycles) spent executing or loading

data from various underlying components of the architecture. The rationale for the

design builds on a previous interview study conducted with programmers:

• Purpose 1: Provide enough detail for developers to discriminate between per-

formance components.

• Purpose 2: Allow developers to easily compare the proportion of performance

components from different program runs (or program versions).

Figure 7.1 – Greenlight View for global performance assessment.

7.1.2 Timeline View

Real programs are likely to have different phases of execution. Even within the same

code, data locality can change over time due to fragmentation or as different parts of a

Page 147

CHAPTER 7. VISUALISING THE PERFORMANCE

large data set are processed. Thus a timeline view can be helpful for identifying time

intervals where a data locality issue might be present.

Depicted in Figure 7.2 is the “Timeline View” of the Data PAL visualisation. This

visualises the changes to the contributions of the components within the Greenlight

View over time. This is done using a stacked area chart and having the y-axis represent

wall clock time (elapsed time) of the execution of the program.

Figure 7.2 – Timeline View supports identification of time intervals where a data locality
issue might be present

• Purpose 1: Compare different finite algorithm implementations by elapsed time

(shorter is better).

• Purpose 2: Support the visualisation of program phases and determine a perfor-

mance diagnosis window.

• Purpose 3: Provide a format in which events can be annotated (e.g. entering a

particular loop or method).

7.1.3 Thread View

Depicted in Figure 7.3 is the “Thread View” visualisation which represents the differ-

ent threads using parallel coordinates (a technique for visualising multivariate data

[78]).

• Purpose 1: Provide a way to identify poorly performing individual threads or

groups of threads.

• Purpose 2: Identify expected or unexpected outliers and clusters.

Page 148

CHAPTER 7. VISUALISING THE PERFORMANCE

Figure 7.3 – Thread View for identifying threads exhibiting poor data locality symptoms.

• Purpose 3: Identify threads which occupy a greater proportion of core time,

which also have poor data locality (Purpose 1), and hence provide more poten-

tial benefit for optimisation.

The visualisations are interactive, and allow different data elements (TLB, L2, L3)

to be added or removed from the visualisation, subsets of the threads (or individual

threads) to be selected, and so on.

7.2 Experimental Design

As a quick reminder, the last research question that we have set out to answer in this

thesis is RQ 3: To what extent can a visualisation effectively support programmers

in the task of optimising parallel programs? In the section below we present and

discuss several sub-research questions underlying our experiment and its design.

7.2.1 Research Questions and Potential Formats
RQ 3.1: Does the visualisation allow developers to identify the presence of data-

locality issues?

Page 149

CHAPTER 7. VISUALISING THE PERFORMANCE

While this question at the first glance seems a like simple ”yes or no” question, the

answer depends on various intrinsic and extrinsic variables some of which are very

difficult (if even technically possible) to measure. Ultimately, the developer is the one

who will be able to answer the question within a given context, as we discussed previ-

ously. There are several possibilities that need to be considered in order to successfully

answer this question:

• Threshold-based evaluation. The simplest way to approach this issue would be

to set a threshold on some measurable variable, for example a threshold of 10%.

In that case, we would judge a data locality problem to be present if at least 10%

of total wall clock time of the program was spent waiting for data to arrive from

L1, L2, L3 or Main Memory. While this seems reasonable, it poses several prob-

lems: (a) the results of this evaluation would be of questionable generalisability,

since the threshold itself depends on the program, context, various goals the pro-

grammer is trying to achieve and many more constraints, for example, 10% may

be for too high for a console game developer processing millions of game enti-

ties a frame, while for another context this could be acceptable and not worth

the programming effort involved in optimising further; (b) the actual threshold

is difficult to choose; there may be different methods for determining the ap-

propriate threshold, such as an oracle-based approach (experts or a numerical

measure), a pilot study, or a pre-study focusing entirely on figuring out what the

threshold value should be, each of which will still be context dependent.

• Comparison-based evaluation. Another approach would be indirectly observ-

ing the change of hypothesis between different representations of the program.

For example, we can show to the developer the same program with and without

the visualisation, without assuming any threshold. Each time, the programmer

would simply be asked to identify the presence of data locality issues and po-

tentially to assess the severity (eg: “critical” , “important”, “moderate”, “low”

or “insignificant”). The benefit of this approach is that we are not required to set

a particular threshold, but on the other hand it requires careful setup of the ex-

periment and will yield a mixture of quantitative and qualitative results which

are more open to interpretation.

An experimental format based primarily on the comparison-based evaluation ap-

Page 150

CHAPTER 7. VISUALISING THE PERFORMANCE

proach was used, although an oracle (a domain expert working with the aid of the

visualisation) was used for the correctness criterion. We created several pairs of pro-

grams designed to accomplish the same or a very similar task with implementations

that differ in performance characteristics when it comes to data locality. A source-code

only control was chosen. A comparison based format could also be used to investi-

gate the relative performance of different forms of tool support. As we are aiming to

investigate the impact of providing this form of support, the clearest comparison is

with the unsupported case, rather than with simpler or more complex supports (for

example, showing large numbers of different raw hardware performance counters),

or alternative representations of data (such as tabular representations).

RQ 3.2: Does the visualisation help to reduce cognitive load of the data locality

identification task?

As mentioned above, 66% of the developers surveyed do not use any concurrency

tools, as illustrated by a quote from our field study: I think the only way I can do most of

this debugging is stare at it and debug it in my head, which is the least effective way you can

ever debug.

This “debugging-in-my-head” technique requires a lot of mental effort (cognitive

load) and sometimes takes hours, as one of our participants mentioned. To gain a bet-

ter understanding of how a visualisation of data locality helps to reduce cognitive load

and make the task at help seem easier to programmers, we asked participants about

the perceived difficulty of the task, ranging from very easy to very difficult. Additionally,

we also added a confidence measure on each question we asked our participants dur-

ing the experiment, ranging from very confident to very doubtful, with the hypothesis

that the perceived difficulty and confidence might correlate and if a task is perceived

as “very easy” using a visualisation, the programmer might also be very confident of

their answers.

RQ 3.3: Do the potential benefits of a data locality visualisation depend on the

level of experience of the programmer? Experts usually have significantly better ini-

tial hypotheses, better mental models of what might be happening within the pro-

gram, and are also substantially better and faster in finding bugs [60]. With this exper-

iment, we wanted to see whether Data PAL allows novice programmers to improve

their performance with respect to expert programmers when it comes to understand-

Page 151

CHAPTER 7. VISUALISING THE PERFORMANCE

ing performance overhead related to poor data locality, or whether experts are still

vastly better than novices even with the visualisation tool at their disposal.

In order to answer this question we employed a mixture of qualitative and quan-

titative analysis. For the qualitative analysis we have asked the participants with and

without the visualisation to explain the problem, which would allow us to get an in-

sight in the change of hypothesis of both novices and experts. For the quantitative

analysis, we were interested how the confidence in the answers (as an interface for

participants’ confidence in their internal hypotheses) of novices and experts changes

when they use a visualisation.

7.2.2 Methodology

The study was designed following the rationale described in section 7.2.1 above and

conducted via an online web-interface. The questions and problems posed were re-

fined iteratively through a pilot study involving 3 participants in which users were

observed in person using a think-aloud protocol. The results from the pilot study

were not included in the final experimental data.

Through the pilot study we were able to estimate the total duration of the exper-

iment which was around 40-50 minutes; this is relatively demanding on participants

and impacts on recruitment and completion of the full experiment. One of the partici-

pants of the pilot study took 1 hour 20 minutes to complete the experiment. In the full

study, 33 participants completed the entire experiment and we present an analysis of

the results below. We did not include any partial results in our analysis for the sake of

fair comparison.

The experimental design took guidance from the work done by R. Wettel and M.

Lanza [168, 169], who conducted an extensive survey of research dealing with ex-

perimental validation of software engineering, InfoVis and software visualisation ap-

proaches [140]. A number of principles taken from this served an important role in

the design of the experiment and is composed of the following:

1. Involve industry participation. A representative sample of software practition-

ers is important for any study. Efforts were made to recruit industry participants

to the study in order to obtain more generalisable results.

Page 152

CHAPTER 7. VISUALISING THE PERFORMANCE

2. Provide tutorial of the tool and problem background. Data locality is not a

trivial problem to deal with and the tool requires a basic understanding of the

vocabulary and the problem at hand. Thus, some tutorial material and an exam-

ple are delivered as part of the preamble of the experiment.

3. Take into account the level of experience of the participants. It is well estab-

lished that experts have generally better mental models and are able to reason

about programs faster. As it is possible that expert or experienced programmers

might reason more effectively about the performance of data locality, data about

experience and self-reported expertise are gathered as part of the experimental

protocol.

4. Provide the same data to all participants. The observed effect of the experi-

ment is more likely attributable to the independent variables if this guideline is

followed [140]. The automated delivery format of the experiment standardised

administration of the experiment and information provided to participants.

5. Use more than one subject system. Since performing the same experiment with

different systems can lead to significantly different results, as demonstrated by

Quante [135], we have created a small set of 4 pairs of very different programs

for this experiment.

6. Choose programs representative of the real-world. Experienced programmers

often do micro-benchmarking and isolate pieces of code that require optimisa-

tion or parallelisation. For this experiment we needed to chose a set of programs

representative of the real-world, while small in size that can be grasped by pro-

grammers during a controlled experiment. While this is an unavoidable tradeoff

for this type of experimental work, it is also a potential limitation, as we discuss

in the Limitations section.

The study was run over a period of several months and used a snowball sampling

approach leveraging advertisements to special interest groups and professional social

networks, as finding both novices and experts willing to undergo a somewhat cogni-

tively demanding ()approximately 40 min) experiment was a challenge. Recruitment

was well balanced between academia and industry participants as participants were

recruited from a range of software companies (very large, medium and small) as well

Page 153

CHAPTER 7. VISUALISING THE PERFORMANCE

as multiple academic institutions. Four sessions were observed in person (excluding

pilot sessions) in order to provide richer data and to allow for follow up on issues of

interest. The remainder were completed fully remotely.

Knowledge of compiler optimisations on particular platforms represented a poten-

tial confound, and so programs were compiled without optimisation when generating

data for visualisation.

The participants were rewarded with a e10 book token for their time. Ethical ap-

proval was obtained from the relevant ethics committee. The experiment was con-

ducted in several steps. First, the participants were asked to fill-in background in-

formation and were shown a short tutorial/refresher on the impact of data locality

to the performance of programs. Then, they were asked to assess two pairs of pro-

grams with source code alone. Next, participants went through a short training page

depicting and explaining the three components of the visualisation with some anima-

tions demonstrating interactive elements such as selecting a single thread, filtering out

data, etc. Finally, the participants would go through the remaining two pairs of pro-

grams with the visualisation at their disposal. For both source-code and visualisation

the participants were asked to answer the following questions:

1. Which program will finish the execution first?

2. Which described program has better data locality?

3. How would you describe the data locality of Program A?

4. How would you describe the data locality of Program B?

5. How challenging was the problem?

6. How would you explain the difference in performance between the two programs? (open

question)

Moreover, for the problems answered with the visualisation the participants were

asked two following additional questions:

1. Looking at the visualisation alone, which threads have the best scope for improving per-

formance (i.e. where would you start looking)?

Page 154

CHAPTER 7. VISUALISING THE PERFORMANCE

2. Is there anything about the visualisation which surprises you in any way and if yes,

how?

Participant Experience Education Expertise
P1, Male Junior High School Average
P2, Male Junior Bachelors Above Average
P3, Male Junior Bachelors Above Average
P4, Male Junior Bachelors Average
P5, Male Junior Bachelors Novice
P6, Male Junior Bachelors Novice
P7, Male Junior Bachelors Above Average
P8, Male Junior Masters Novice
P9, Male Junior Masters Novice
P10, Male Junior Masters Above Average
P11, Male Junior Masters Novice
P12, Male Junior Masters Novice
P13, Female Junior Doctorate Average
P14, Male Junior Doctorate Above Average
P15, Male Junior Doctorate Above Average
P16, Male Senior Bachelors Expert
P17, Male Senior Masters Above Average
P18, Male Senior Masters Expert
P19, Male Senior Doctorate Average
P20, Male Senior Doctorate Average
P21, Male Senior Doctorate Average
P22, Male Veteran High School Expert
P23, Male Veteran High School Average
P24, Male Veteran Bachelors Above Average
P25, Male Veteran Bachelors Expert
P26, Male Veteran Bachelors Above Average
P27, Male Veteran Bachelors Above Average
P28, Male Veteran Masters Expert
P29, Male Veteran Masters Expert
P30, Male Veteran Masters Average
P31, Male Veteran Doctorate Expert
P32, Male Veteran Doctorate Novice
P33, Male Veteran Doctorate Expert

Table 7.1 – Participants, with years of experience in the domain (Junior/Senior or Vet-
eran), self-assessed expertise levels in parallel programming and highest education level.

The participants demographic data is shown in the Table 7.1, including several

non-standard dimensions such as years of experience in the industry/academia and

a self-assessed expertise level in parallel programming. The years of experience was

grouped into three distinct categories being junior (0 to 5 years), senior (5 to 10 years)

and veteran (10+ years).

Page 155

CHAPTER 7. VISUALISING THE PERFORMANCE

7.2.3 Tasks

A set of pairs of programs were designed that try to accomplish the same conceptual

goal, but vary in implementation and data access pattern. We used a latin square de-

sign for the experiment and presented pairs of programs to participants in different

order, and with different types of treatment (source code vs. source code and visuali-

sation).

Matrix Multiplication

Figure 7.4 – Data PAL timeline representation of performance of two matrix multiplica-
tion implementations used for the experiment.

Dense matrix multiplication is a commonly used component of a variety of appli-

cations, and a core component in many scientific computations. Matrix multiplication

can be implemented in numerous ways, and the task of multiplying large matrices is

extremely data-intensive, providing us with a great example of both good and bad

data locality patterns. Moreover, there has been a great deal of interest in developing

parallel formulations of this algorithm and testing its performance on various parallel

architectures [61].

In our evaluation we selected two matrix multiplication algorithms with swapped

rows and columns. As the reader can see on the Figures 7.1, 7.2 and 7.3, the second

program (ie: Matmul KIJ) is roughly 4.5 times faster than the first program, which can

be explained largely by the impact of L2 cache misses and poorly performing TLB of

the first program.

Page 156

CHAPTER 7. VISUALISING THE PERFORMANCE

p a r a l l e l f o r (0 , n , [&] (i n t k) {

for (i n t j =0 ; j<n ; j ++) {

i n t r = b [k] [j] ;

for (i n t i =0 ; i<n ; i ++)

c [i] [j] += a [i] [k] ∗ r ;

}

}) ;

Figure 7.5 – Simple program to perform large matrix multiplication used to generate vi-
sualisation data - this version has poor data locality.

The source code for the first program, performance of which is shown in the first

chart of the Figure 7.4 can be seen in the Figure 7.5. In this program, the 5000 by

5000 matrices a and b are multiplied in parallel to produce the matrix c . The ma-

trices are represented in memory as sequential arrays, however this implementation

does not access them sequentially which results in poor data locality and a significant

amount of cache misses.

p a r a l l e l f o r (0 , n , [&] (i n t k) {

for (i n t i =0 ; i<n ; i ++) {

i n t r = a [i] [k] ;

for (i n t j =0 ; j<n ; j ++)

c [i] [j] += r ∗ b [k] [j] ;

}

}) ;

Figure 7.6 – Simple program to perform large matrix multiplication used to generate vi-
sualisation data - this version has good data locality.

The source code for the second program, performance of which is shown in the sec-

ond chart of the Figure 7.4 can be seen in the Figure 7.6. In this program, the 5000 by

5000 matrices a and b are multiplied in parallel to produce the matrix c . The ma-

trices are represented in memory as sequential arrays and this implementation does

access them sequentially which results in good data locality and few cache misses.

Page 157

CHAPTER 7. VISUALISING THE PERFORMANCE

Particle Systems

Figure 7.7 – Data PAL timeline representation of performance of parallel and sequential
particle system implementations

A common task faced by programmers consists of parallelising an existing algo-

rithm. For this task, we have aimed at a simple and understandable example, and

implemented two particle system algorithms: a serial and parallel version. The im-

plementation consists of a data structure representing a single particle that consists of

coordinates (x, y, z) and velocities (vx, vy, vz), an update method is invoked on each

particle in which the delta-time is provided and the new coordinates are computed.

Figure 7.7 shows not only that the parallelised particle system is slightly (1.4x)

faster but also has better data locality performance, proportionally. The speedup itself

is rather small, as the program also exhibited, by design, a task-granularity problem.

This was done with the intent of keeping a good balance between “toyness” of the

examples and the reality, where performance problems are often interleaved and in-

terdependent.

Page 158

CHAPTER 7. VISUALISING THE PERFORMANCE

s t r u c t P a r t i c l e {

f l o a t x , y , z , w;

f l o a t vx , vy , vz , vw;

} ;

P a r t i c l e ∗ p a r t i c l e s ;

i n t count ;

void update (f l o a t dt) {

p a r a l l e l f o r (0 , count , [&] (i n t i) {

auto p = p a r t i c l e s [i] ;

p . x += p . vx ∗ dt ;

p . y += p . vy ∗ dt ;

p . z += p . vz ∗ dt ;

p .w += p .vw ∗ dt ;

}) ;

}

Figure 7.8 – Simple program to process several million particles used to generate visuali-
sation data - this version is parallelised.

The source code for the first program, performance of which is shown in the first

chart of the Figure 7.7 can be seen in the Figure 7.8. In this program, the array of sev-

eral million Particle data structures is updated in parallel, using the parallel for

construct from C++ parallel patterns library provided by Microsoft for Visual C++.

Page 159

CHAPTER 7. VISUALISING THE PERFORMANCE

s t r u c t P a r t i c l e {

f l o a t x , y , z , w;

f l o a t vx , vy , vz , vw;

} ;

P a r t i c l e ∗ p a r t i c l e s ;

i n t count ;

void update (f l o a t dt) {

for (i n t i = 0 ; i<count ; i ++) {

auto p = p a r t i c l e s [i] ;

p . x += p . vx ∗ dt ;

p . y += p . vy ∗ dt ;

p . z += p . vz ∗ dt ;

p .w += p .vw ∗ dt ;

}

}

Figure 7.9 – Simple program to process several million particles used to generate visuali-
sation data - this is a serial version.

The source code for the second program, performance of which is shown in the

second chart of the Figure 7.7 can be seen in the Figure 7.9. In this program, the array

of several million Particle data structures is updated in sequentially on a single

thread.

Account Update

Figure 7.10 – Data PAL timeline representation of performance of two in-memory
database schemas

Page 160

CHAPTER 7. VISUALISING THE PERFORMANCE

The third task draws a parallel between database and object-oriented design where

we have two relatively straightforward schemas of user accounts that include fields

like name, address, user id and reputation. The experiment consists of a large number

of accounts being updated in parallel, with an update that consists of incrementing

the reputation. This is described to the participants as a “daily update”. Timeline

representations are depicted in the Figure 7.10, where Account B is almost 2x faster

than Account A, due to better spatial locality of reference as the schema splits unused

values, namely address and name of the user into another structure that is referenced

by pointer to avoid needlessly filling the cache. In fact, the second implementation

has 18.2x less L3 cache misses than the first one.

s t r u c t Account {

long id ;

char name [5 0] , address [3 0 0] ;

f l o a t reputa t ion ;

}

void update () {

p a r a l l e l f o r (0 , count , [&] (i n t i) {

accounts [i] . reputa t ion += 2 . 5 ;

}) ;

}

Figure 7.11 – Simple program to process several million user accounts used to generate
visualisation data - this version has poor data locality.

The source code for the first program, performance of which is shown in the first

chart of the Figure 7.10 can be seen in the Figure 7.11. In this program, the Account

data structure contains the fields name and address which are directly embedded

and when the data structure is loaded in memory to update the reputation field, the

contents of all the fields are loaded into processor cache.

Page 161

CHAPTER 7. VISUALISING THE PERFORMANCE

s t r u c t AccountInfo {

char name [5 0] , address [3 0 0] ;

} ;

s t r u c t Account {

long id ;

AccountInfo∗ i n f o ;

f l o a t reputa t ion ;

} ;

void update () {

p a r a l l e l f o r (0 , count , [&] (i n t i) {

accounts [i] . reputa t ion += 2 . 5 ;

}) ;

}

Figure 7.12 – Simple program to process several million user accounts used to generate
visualisation data - this version has better data locality

The source code for the second program, performance of which is shown in the

second chart of the Figure 7.10 can be seen in the Figure 7.12. In this program, the

the Account data structure is split between Account and AccountInfo . The latter

contains the fields name and address and the first one embeds a pointer to the latter.

When the Account is loaded from memory to the cache, it only loads a single pointer

to the name and address which results to a better data locality.

Phased Loops

The fourth task aims to visualise different program phases by doing some floating

point and integer multiplications respectively, split into two “parallel for” loops where

the first loop has a large stride which results in poor data locality pattern which can

be seen in the Figure 7.13. The program where the data type on which some multi-

plication is performed is a 32-bit floating-point number takes slightly more time and

has significantly more L1, L2 and L3 cache misses, around 3 times more than its 32-bit

integer counterpart.

Page 162

CHAPTER 7. VISUALISING THE PERFORMANCE

Figure 7.13 – Data PAL timeline representation of performance of a pair of programs
consisting of two loops each

void update (f l o a t ∗ vector){

for (i n t m = 0 ; m < 1000 ; m++){

p a r a l l e l f o r (0 , count , 100 , [&] (i n t i) {

vector [i] = vec tor [i] ∗ m;

}) ;

}

for (i n t m = 0 ; m < 1 0 ; m++){

p a r a l l e l f o r (0 , count , [&] (i n t i) {

vector [i] = vec tor [i] ∗ m;

}) ;

}

}

Figure 7.14 – Simple program to illustrate different program phases - this version uses
floating-point numbers.

The source code for the first program, performance of which is shown in the first

chart of the Figure 7.13 can be seen in the Figure 7.15. In this program, two parallel

loops are computed where first loop goes through every 100th element of the vector

and the second loop goes through every element in the vector. In total, both loop

perform the same amount of operations: 10 times the vector size.

Page 163

CHAPTER 7. VISUALISING THE PERFORMANCE

void update (i n t ∗ vector){

for (i n t m = 0 ; m < 1000 ; m++){

p a r a l l e l f o r (0 , count , 100 , [&] (i n t i) {

vector [i] = vec tor [i] ∗ m;

}) ;

}

for (i n t m = 0 ; m < 1 0 ; m++){

p a r a l l e l f o r (0 , count , [&] (i n t i) {

vector [i] = vec tor [i] ∗ m;

}) ;

}

}

Figure 7.15 – Simple program to illustrate different program phases - this version uses
integers.

The source code for the second program, performance of which is shown in the

second chart of the Figure 7.13 can be seen in the Figure 7.14. In this program, a

floating-point computation is performed which results to more costly CPU instruc-

tions while keeping the size of the data same: 32-bit per value.

7.3 Results

In order to analyse the results of the experiment, we adopted a hybrid qualitative and

quantitative approach. Wherever possible we investigated the results using statistical

analysis, and enriched our understanding of the domain using abundant feedback,

comments and answers to open questions gathered during the experiment. This sec-

tion describes some of the important results observed during the experiment.

CORRECTNESS

An independent factorial ANOVA was conducted to investigate the effect of the visu-

alisation on the evaluation of correctness. Correctness was determined by an oracle, a

domain expert in parallel programming who examined the code with the help of the

visualisation.

Page 164

CHAPTER 7. VISUALISING THE PERFORMANCE

As shown in the Figure 7.16, there was a significant difference in correctness be-

tween the answers using only the source code (M = 52.50, 95% CI [44.76,60.24], SD =

49.94, n = 160) and the answers using source code together with the visualisation (M =

83.97, 95% CI [77.69,90.25], SD = 36.69, n = 131), F(1, 295) = 10.61, p = .0013. However,

the interaction effect between the type of treatment (source code vs. visualisation) and

experience of the participants was not significant, F(3, 295) = 0.27, p = .8483.

0

20

40

60

80

100

S O U R C E C O D E V I S U A L I S A T I O N

Junior Senior Veteran

Figure 7.16 – Independent Factorial ANOVA for 2-way interaction of treatment type and
experience on correctness

CONFIDENCE

We looked at the effect of participants experience, categorised as junior, senior or vet-

eran programmers based on the years of professional experience. To compare the

effect of both visualisation and experience as well as their interaction on the partic-

ipants’ confidence in their answers, an Independent Factorial ANOVA was conducted.

There was a significant difference in confidence between the participants who used

only the source code to answer the questions (M = 0.86, 95% CI [0.75,0.97], SD = 1.02,

n = 335) and the participants using the visualisation tool (M = 1.21, 95% CI [1.12,1.30],

Page 165

CHAPTER 7. VISUALISING THE PERFORMANCE

SD = 0.81, n = 327), F(1, 396) = 10.91, p = .001.

In other words, when using the visualisation, participants rated their answers with

higher confidence than just by looking at the source code. Comparing junior program-

mers (M = 0.75, 95% CI [0.59,0.91], SD = 1.08, n = 172), senior programmers (M = 1.26,

95% CI [1.09,1.43], SD = 0.74, n = 69) and veteran programmers (M = 1.28, 95% CI

[1.15,1.41], SD = 0.82, n = 161), a significant main effect on confidence was deter-

mined, F(2, 656) = 21.42, p = .001. These results can be seen in the in the Figure 7.17

where the confidence ratings of both junior and senior programmers are significantly

higher when using the visualisation, while veteran programmers show no significant

difference between the two conditions.

0

0.5

1

1.5

2

S O U R C E C O D E V I S U A L I S A T I O N

Junior Senior Veteran

Figure 7.17 – Independent Factorial ANOVA for 2-way interaction of treatment type and
participants’ experience on the self-assessed confidence level of the answers.

PERCEIVED DIFFICULTY

A Kruskal Wallis test was conducted to investigate the effect of the treatment (pair

of programs) on perceived difficulty as reported by participants. This difference was

not significant, X2 = 1.95, p = 0.582. Additionally, we performed tests to see whether

Page 166

CHAPTER 7. VISUALISING THE PERFORMANCE

experience or self assessed expertise as any effect on the perceived difficulty, however,

no statistically significant differences were found.

7.4 Qualitative Analysis and Discussion

In this section we discuss the results in the context of our research questions and incor-

porate qualitative data from participants responses, post-experiment interviews and

think aloud pilots.

RQ 3.1: Does the visualisation allow developers to identify the presence of data-

locality issues? Unsurprisingly, our results show that the participants’ correctness

has dramatically increased when they used the visualisation. The correctness was

evaluated on two questions regarding the identification of “first program to finish

execution” and the “program with a better data locality pattern”.

During the experiment, participants were asked to comment on surprises observed

while using the visualisation, below we detail a number of recurrent themes that sur-

prised our participants, both experts and novices.

Some programmers under-estimated the importance of data locality on the perfor-

mance of the programs. Many of the participants were surprised by how much time a

particular program actually spent loading from memory.

Veteran: “Seems to be a lot of time spent loading from RAM. I expected A to be

worse, but maybe not that much worse.”

Veteran: “I’m surprised B spends so much more time loading from RAM. It would

be interesting to see at what iteration count the overall elapsed time for B is less than A.

i.e. at what point the overhead of a multi-threaded model is not worth it.”

Some programmers over-estimated the effect of parallelisation on the performance

of the program, especially in the particle system programs, depicted in Figure 7.7

where the parallel version also contains a task granularity problem.

Veteran: “(...) the fact that the parallel program is not even 2x the sequential pro-

gram.”

Some of the surprises among experts are quite interesting, as it suggests that ex-

perts have more complex mental models when it comes to parallel architectures such

Page 167

CHAPTER 7. VISUALISING THE PERFORMANCE

as hyper-threading and compiler optimisations of parallel loops.

Junior: “I would have expected hyper-threading to help more in program B by hiding

memory access latency, but it seems that the memory is able to keep up with the core,

resulting in some threads getting little core time.”

In particular, the participant below was actually able to diagnose one of the per-

formance problems where the compiler did not optimise a loop.

Senior: “It is very surprising that Program B spends so much more time loading data

from memory than Program A. This indicates that the compiler was not able to optimise

a very simple 1D loop where the data is laid out in array of structures format.”

Programmers were also able to identify specific threads using the parallel coordi-

nates visualisation, which is useful for heterogeneous programs where threads might

contain different workloads (e.g. a game engine) and the ability to identify such

threads is important:

Junior: “Last threads (14, 13, ...) of parallel program are more active than first ones

(1, 2, ...). It would be nice if first threads could be more active.”

Senior: “The first view and second view suggest that the threads of program A have

the greatest potential for optimisation. The representation in the last view is a bit less

dramatic for the ”Executing” metric, but clearly indicates that there is an issue with data

locality for the threads of program A. Program B also has a few outliers that would be

worth investigating.”

RQ 3.2: Does the visualisation help to reduce cognitive load of the data locality

identification task? While we did not observe any effect of measured variables on

the perceived difficulty (ie: on answers regarding the question How challenging was

the problem?), we received a significant amount of feedback which suggests that the

visualisation effectively supports programmers and reduced the cognitive load, which

we believe to be higher for experts as they have significantly more complex mental

models of data locality effects on performance.

Veteran: “[It’s suprising] how easy it is to see where the issues are.”

We have observed that many experts were trying to calculate the amount of data

being loaded in/out of memory and comparing this with the cache capacity and the

Page 168

CHAPTER 7. VISUALISING THE PERFORMANCE

target architecture, some even did more accurate calculations on paper.

Senior: “The structure of the data in Col A uses 350 more bytes per Account than

that of program B (less the length of pointers etc). So for each account there is much more

data to be loaded and processed for Program A. This accounts for the longer run time and

the greater interaction with RAM.”

Some of the participants attempted the estimation in more complex situations with

several loops.

Junior: “Program B can keep ”first in row” element of outer loop in cache (5000*4B

= 20kB ¡ cache) while inner loop causes less caches misses because one of them loads many

consecutive elements (used for multiples consecutive inner iterations ... 64B/4B = 16

iterations per cache miss ?).”

RQ 3.3: Do the potential benefits of a visualisation depend on the level of expe-

rience (ie: novice vs advanced)? As depicted in Figure 7.17, the self-assessed confi-

dence in the answers of the participants’, classified as Junior and Senior, was signifi-

cantly improved when the they used Data PAL . In contrast, the confidence of veteran

programmers with 10+ years of experience didn’t change significantly. Interestingly

enough, while veteran programmers were confident about their answers without the

visualisation, their correctness was not significantly higher (but higher nonetheless)

than the senior programmers with 5-10 years of experience and they also performed

quite poorly without the visualisation at their disposal. While a number of different

reasons can be postulated for this (including rapid changes to computer architecture

which are difficult to keep up with, and underestimations of the scale of the “memory

wall”), it emphasises the importance of tool support.

A think aloud process helped us to gain some understanding on how novices look

at data locality. In fact, novices were even more surprised than seniors or veteran pro-

grammers when it comes to the impact of data locality. In the case quoted below, a

participant could not tell the difference between the performance of various imple-

mentations by simply looking at the source code (Figures 7.11 and 7.12), while the

same problem was easily solved without the visualisation by other, more experienced

participants.

Junior: “I can’t tell the difference. They are almost the same except for B using a data

Page 169

CHAPTER 7. VISUALISING THE PERFORMANCE

structure to store information.”

It is interesting to notice that the same programmer when presented with the vi-

sualisation was able to correctly identify poor data locality performance in programs,

while still having no clear idea of how and why data locality has a such major impact

on the performance.

Junior: “The data locality of B is much better than A and for some reason this greatly

improves performance.”

In contrast, experienced programmers leveraged the visualisation and were able

to explain what was happening in the programs in extensive detail.

Veteran: “The difference between the two programs is in the way the data is laid out

in memory. In A there is a single structure containing id, name, address and reputation.

In B there are two structures; the first containing the name and address, the second con-

taining the id, the reputation and a pointer to the name and address. Accordingly, when

executing the loop, program A makes accesses at approximately (depends on packing of

structures) byte addresses B, B+362, B+724, whereas program B makes accesses at B,

B+20, B+40, So, B will make 6 or 8 accesses per cache-line fetched, while A will make

2. The impact of this will be that B will run slower.”

All the quotes above concern the pair of programs “Account Update”, with its

performance depicted in the Figure 7.10 and the source code can be seen in Figures

7.11 and 7.12.

7.4.1 Limitations
The study sample included a small number of senior programmers (the middle cate-

gory), with greater numbers of veterans and novices. While the performance of this

group appears to lie between the other two (which would be expected), the numbers

involved are too small to draw any firm conclusions. Only one of the study partici-

pants was female unfortunately. While there is no hypothesis regarding gender effects,

a more balanced sample would be desirable. As discussed in the experimental design

section, there are many tradeoffs in choosing comparison points, while it was decided

that comparing against source code only was the most insightful for an initial study,

Page 170

CHAPTER 7. VISUALISING THE PERFORMANCE

future work should look at comparing different forms of tool support. Another dif-

ficulty with experimentation on any new software tool is the potential influence of

training time, particularly with regard to settle-down time for user task performance.

While we did not look at performance time for this experiment, future work should

also investigate performance time, having made appropriate provision for a learning

period within the experimental protocol. In order to make the experiments tractable

in terms of time and complexity, only small programs were used. Sophisticated com-

piler optimisations are also a potential confounding factor in experimentation, further

complicating the task facing the programmer. In future work, more ecologically valid

experimentation with real programs and real performance problems would be better,

although this requires a different approach to experimental design as quantitative data

analysis becomes even more difficult to perform.

7.5 Concluding Remarks

In this chapter we have presented a controlled experiment exploring a software perfor-

mance visualisation approach with the goal of identifying the presence of data locality

issues. Participants were distributed across industry and academia with varying lev-

els of experience.

The visualisation is based on data from a range of hardware performance counters

which are processed to make it more easily accessible and represented in a number of

ways, including a summary overview, timeline, and (multivariate) thread views. The

programmers had no difficulty in understanding these visualisations.

In terms of validation the study shows that this approach leads to a significant

improvement in the successful identification of programs and threads exhibiting poor

data locality symptoms. While this was unsurprising, it was interesting that this ap-

plied across all levels of experience. It was also interesting that the problem of data

locality seems to be underestimated even by veteran programmers in terms of its im-

pact on the performance of the program, while some novice programmers were not

able to diagnose poor data locality at all without the visualisation.

Veteran programmers were as confident without the visualisation as with it; while

it is possible that this would change in a more realistic setting (ie: where programs to

Page 171

CHAPTER 7. VISUALISING THE PERFORMANCE

evaluate are larger than just a few lines of code). In contrast, programmers with less

than 10 years of experience received a confidence boost in their own diagnosis when

using the visualisation.

During the design process of the Data PAL , we employed the general framework

aimed to support designers of parallel performance tools, more specifically:

• we employed the taxonomy and built a visualisation that supports the diagnosis

process of several related problems;

• we used our observational model in order to identify appropriate candidates

(counters, events and metrics) for visualisation;

• we used the design advice and provided support for active experimentation and

scoping.

Overall, as the evaluation suggests, programmers are able to identify the presence

of the performance problems, even in extreme cases where participants did not have

previous exposure to the performance problem.

Page 172

Chapter 8 Conclusions and Future Work

In this thesis we have presented a general framework aimed to support designers

of parallel performance analysis tools. We have considered many different aspects

related to it - from understanding field practices to effective visualisation metaphors

and ways of collecting and analysing relevant hardware performance data. The frame-

work we have constructed consists of several major components including: general

advice for tool developers, a parallel performance problem taxonomy, an observa-

tional model for “data-to-problem” mapping, a deeper analysis of data locality prob-

lem identification and a visualisation tool which we have used to evaluate the effec-

tiveness of the approach.

The thesis illustrates the potential of performance data visualisations to increase

awareness of the importance and impact of performance problems in parallel soft-

ware, and is part of a wider research agenda to provide better support for the task

of parallel programming in the multi-core era. By conducting a series of interviews

and experiments with parallel programmers we have collected a series of insights and

models that have been tested by constructing and evaluating the visualisation for data

locality problem identification.

First, the fieldwork process, its analysis and the implications for design were

presented in the Chapter 4. We carried out the fieldwork study to better understand

how developers approach parallel programming, along with the issues that they are

trying to address, and how software performance analysis systems could help them in

their work. As a result, we have identified some challenges in parallel programming.

Most notably, we have identified the importance of the role of orchestration mod-

els in parallel software development, along with the way in which correctness and

performance issues are inter-linked in parallel programming. We also noted that the

probe effect influences programmers’ performance analysis and debugging behaviour

Page 173

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

and the issues surrounding the complexity of the parallel programming task and en-

vironment. While some of the issues identified apply to more traditional software

development, in all cases additional dimensions are introduced by parallel program-

ming.

This qualitative study helped the researchers to inform the discussion on potential

tool support for developers, and particularly the design of performance analysis tools.

This study served as a basis for the modelling, further analysis and the design of the

visualisation tool.

However, additional ongoing effort is required to identify issues, emerging prac-

tices and design opportunities for support of parallel programmers. Future work is

required to extend the set of implications for design presented in this thesis to a more

actionable advice for practitioners and tool developers.

Second, in Chapter 5 we have presented the analysis of the problem space con-

sisting of a taxonomy of parallel performance problems, grouped into a number of

broad, interrelated themes. The taxonomy was used as the foundation of the obser-

vational model which focuses primarily on concrete problems that have potential to

be related to easily-collectable data, rather than more abstract problems relating to the

software architecture or overall design. The model was then validated by 10 domain

experts where we were able to identify areas with high levels of agreement, which,

when combined with data on relative frequency of occurrence, provides promising

directions for initial tool support.

Our results indicate a significant agreement among experts with regard to many

of the parallel performance problems identified in our taxonomy, particularly on how

various problems can be diagnosed. The study has also identified some contentious

and exotic issues. Resolving these areas of disagreement might not involve finding the

“right” answer but rather a more nuanced analysis of the problem. The observation

might be context-dependent or require simultaneous consideration of multiple pieces

of data. Moreover, our model was based on the data we are able to collect, hence,

improving and re-evaluating the model with different observational data might lead

to significant improvement among expert agreement and potential identification of

more nuanced parallel performance problems.

While the observational model was designed with the primary intent to inform the

Page 174

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

tool builders, it might also provide a useful starting point for educators, as it has been

reported to us that students are often at a loss to understand parallel performance of

real programs, partly because they are unaware of the kinds of problems that might

exist. We hope that our taxonomy will be a useful starting point for future research on

understanding and diagnosing parallel performance problems.

Future work may extend and consolidate the taxonomy for performance problems

in programming in general, as parallel and traditional programming are closely inter-

woven. Additionally, the observational model should be extended based on a robust

taxonomy and consider the difference of the impact per architecture such as GPGPU

or HPC as well as per type of the application. Performance problems present in a

database-type applications might be considerably different from the types of perfor-

mance problems that occur within a real-time game engine. Moreover, further visual-

isation techniques can be applied and the need for good performance analysis tools is

much greater than ever before.

Third, a deep analysis of data locality problem and the data collection process

were presented in the Chapter 6. We have examined the data locality problem, both

its architectural and its algorithmic causes, along with some of the measurable coun-

ters and events that can be collected in order to help with the diagnosis of poor data

locality in parallel software.

Future collaboration between research and hardware manufacturers is required in

the effort to standardise hardware performance counters and their extraction, as they

have proven extremely useful for identifying data locality issues. Moreover, some

of the data, that is useful for identification, can not be easily collected (e.g. DRAM

paging) and requires additional integration from hardware manufacturers.

We expect that future research will deepen the analysis of both problems and the

information useful for the identification process; for example, more robust probabilis-

tic metrics can be created to assess the performance impact of particular observable

data.

Lastly, in Chapter 7 we have presented an interactive visualisation tool along with

its evaluation aimed at exploring a software performance visualisation approach with

the goal of identifying the presence of data locality issues. For the experiment we

recruited participants across industry and academia with varying levels of experi-

Page 175

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

ence. While we have explored only a single category within our taxonomy, further

research should explore more of the solution space by providing tools for other prob-

lems within the proposed taxonomy.

In terms of validation, the study shows that this approach can lead to a significant

improvement in the successful identification of programs and threads exhibiting poor

data locality symptoms. While this was unsurprising, it was interesting that this ap-

plied across all levels of experience. It was also interesting that the problem of data

locality seems to be underestimated even by veteran programmers in terms of its im-

pact on the performance of the program, while some novice programmers were not

able to diagnose poor data locality at all without the visualisation.

Future work is required to design, implement and evaluate the visualisation tools

for other problems within the taxonomy we have presented. Such problem-centric

parallel performance problem identification tools need to be evaluated and compared

to more common and exploratory types of tools.

Overall, this thesis can be seen as a starting point for further HCI research on par-

allel performance problem identification. While it can and, arguably, should be ex-

tended throughout, we have successfully applied our own design advice, taxonomy,

models and constructed a visualisation tool that has proven not only to be useful, but

also have received extremely positive feedback from the community of practitioners.

Page 176

Bibliography

[1] The MSDN common patterns for poorly-behaved multithreaded applications.

[2] Intel threading building blocks design patterns, document number 323512-
003us. Tech. rep., Intel Corporation, September 2010.

[3] AMD R© CodeAnalyst Performance Analyzer. http://developer.amd.com/tools-and-
sdks/archive/amd-codeanalyst-performance-analyzer/ (2014).

[4] Intel 64 and ia-32 architectures optimization reference manual, order no. 248966-
030. Tech. rep., Intel Corporation, September 2014.

[5] Intel R© VTune Amplifier XE. https://software.intel.com/en-us/intel-vtune-amplifier-
xe (2014).

[6] A. LAKSBERG, H. SUTTER, A. ROBISON, S. M. A C ++ Library Solution to Paral-
lelism. Tech. rep., INCITS, InterNational Committee for Information Technology
Standards, 2012.

[7] ADHIANTO, L., BANERJEE, S., FAGAN, M., KRENTEL, M., MARIN, G., AND

TALLENT, N. R. HPCToolkit: Tools for performance analysis of optimized par-
allel programs. Context (2010), 1–7.

[8] AKHTER, S., AND ROBERTS, J. Multi-core programming: : Increasing Performance
through Software Multi-threading, vol. 33. Intel press Hillsboro, 2006.

[9] AMDAHL, G. M. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference (New York, NY, USA, 1967), AFIPS ’67 (Spring), ACM,
pp. 483–485.

[10] ANDERSON, T. The performance of spin lock alternatives for shared-money
multiprocessors. Parallel and Distributed Systems, IEEE Transactions on 1, 1 (Jan
1990), 6–16.

[11] ANNAVARAM, M., RAKVIC, R., POLITO, M., BOUGUET, J.-Y., HANKINS, R.,
AND DAVIES, B. The Fuzzy Correlation between Code and Performance Pre-
dictability. 37th International Symposium on Microarchitecture (MICRO-37’04)
(2004), 93–104.

[12] ATACHIANTS, R., GREGG, D., JARVIS, K., AND DOHERTY, G. Design consid-
erations for parallel performance tools. In CHI ’14 Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (2014), pp. 2501–2510.

Page 177

BIBLIOGRAPHY

[13] BALL, L., AND ORMEROD, T. Structured and opportunistic processing in de-
sign: A critical discussion. International Journal of Human-Computer Studies
(1995).

[14] BEGEL, A., AND ZIMMERMANN, T. Analyze This ! 145 Questions for Data
Scientists in Software Engineering. In ICSE ’14 (2014), pp. 12–23.

[15] BEIZER, B. Software Testing Techniques (2Nd Ed.). Van Nostrand Reinhold Co.,
1990.

[16] BEN-ARI, M. Principles of Concurrent Programming. Prentice Hall Professional
Technical Reference, 1982.

[17] BISHOP, M., DILGER, M., ET AL. Checking for race conditions in file accesses.
Computing systems 2, 2 (1996), 131–152.

[18] BLASGEN, M., GRAY, J., MITOMA, M., AND PRICE, T. The convoy phenomenon.
SIGOPS Oper. Syst. Rev. 13, 2 (Apr. 1979), 20–25.

[19] BOLOSKY, W. J., SCOTT, M. L., FITZGERALD, R. P., FOWLER, R. J., AND COX,
A. L. Numa policies and their relation to memory architecture. SIGARCH Com-
put. Archit. News 19, 2 (Apr. 1991), 212–221.

[20] BONAR, J., AND LIFFICK, B. A visual programming language for novices. Tech.
rep., 1987.

[21] BONAR, J., AND SOLOWAY, E. Preprogramming Knowledge: A Major Source of
Misconceptions in Novice Programmers. Human-Computer Interaction 1, 2 (1985),
133–161.

[22] BOULAY, B., O’SHEA, T., AND MONK, J. The black box inside the glass box: Pre-
senting computing concepts to novices. International Journal of Human-Computer
Studies 51, 2 (1999), 265–277.

[23] BRESHEARS, C. The Art of Concurrency: A Thread Monkey’s Guide to Writing Par-
allel Applications. O’Reilly Media, Inc., 2009.

[24] BURTSCHER, M., KIM, B.-D., DIAMOND, J., MCCALPIN, J., KOESTERKE, L.,
AND BROWNE, J. Perfexpert: An easy-to-use performance diagnosis tool for
hpc applications. In Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis (Washington, DC,
USA, 2010), SC ’10, IEEE Computer Society, pp. 1–11.

[25] CAMPBELL, D. K. G. Towards the Classification of Algorithmic Skeletons. Tech.
rep., 1996.

[26] CANTRILL, B., SHAPIRO, M., AND LEVENTHAL, A. Dynamic Instrumentation
of Production Systems. USENIX Annual Technical . . . (2004).

[27] CARD, S. K., MACKINLAY, J. D., AND SHNEIDERMAN, B. Readings in information
visualization: using vision to think. Morgan Kaufmann Publishers, 1999.

[28] CAROLINA, N., MURPHY-HILL, E., ZIMMERMANN, T., AND NAGAPPAN, N.
Cowboys , Ankle Sprains , and Keepers of Quality : How Is Video Game Devel-
opment Different from Software Development ? In ICSE ’14 (2014), pp. 1–11.

Page 178

BIBLIOGRAPHY

[29] CARR, S., MCKINLEY, K. S., AND TSENG, C.-W. Compiler optimizations for
improving data locality. SIGOPS Oper. Syst. Rev. 28, 5 (Nov. 1994), 252–262.

[30] CASAVANT, T. Tools and Methods for Visualization of Parallel Systems and
Computations Guest Editor’s Introduction, June 1993.

[31] CHANDRA, R., DAGUM, L., KOHR, D., MAYDAN, D., MCDONALD, J., AND

MENON, R. Parallel Programming in OpenMP. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2001.

[32] CHARTERS, S. M., THOMAS, N., AND MUNRO, M. The end of the line for soft-
ware visualisation? In In Proceedings of the 2nd Workshop on Visualizing Software
for Analysis and Understanding. Society Press (2003), Citeseer, pp. 110–112.

[33] CHEN, C. Information Visualization: Beyond the Horizon, 2nd ed. ed. Springer-
Verlag, 2006.

[34] CLEVELAND, W. S., AND MCGILL, R. Graphical Perception: Theory, Experi-
mentation, and Application to the Development of Graphical Methods. Journal
of the American Statistical Association 79, 387 (Sept. 1984), 531.

[35] COLE, M. I. Algorithmic Skeletons : Structured Management of Parallel Computation
Table of Contents. MIT Press Cambridge, MA, USA, 1991.

[36] CONSTANTINOU, T., SAZEIDES, Y., MICHAUD, P., FETIS, D., AND SEZNEC,
A. Performance implications of single thread migration on a chip multi-core.
SIGARCH Comput. Archit. News 33, 4 (Nov. 2005), 80–91.

[37] CRESWELL, J. W., AND CLARK, V. L. P. Designing and conducting mixed meth-
ods research.

[38] DE PAUW, W., JENSEN, E., MITCHELL, N., SEVITSKY, G., VLISSIDES, J., AND

YANG, J. Visualizing the execution of java programs. In Software Visualization.
Springer, 2002, pp. 151–162.

[39] DHRUBAJYOTI GOSWAMI, AJIT SINGH, B. R. P. Architectural Skeletons: The
Re-Usable Building-Blocks for Parallel Applications. In Proc. 1999 International
Conference on Parallel and Distributed Processing Techniques and Applications (1999),
pp. 1250–1256.

[40] DONALDSON, D. D., HOWARD, M. N., ORBITS, D. A., PARCHEM, J. M.,
ROBINSON, D. M., AND WILLIAMS, D. Cache coherency protocol for multi
processor computer system, Mar. 22 1994. US Patent 5,297,269.

[41] DREPPER, U. What Every Programmer Should Know About Memory. Tech.
rep., Red Hat, 2007.

[42] DRISCOLL, D. L., APPIAH-YEBOAH, A., SALIB, P., AND RUPERT, D. J. Merging
qualitative and quantitative data in mixed methods research: How to and why
not. Ecological and Environmental Anthropology (University of Georgia) (2007), 18.

[43] DRONGOWSKI, J. G. P. An Exploratory Study of Computer Program Debug-
ging. Human Factors 16 (1974), 258–277.

Page 179

BIBLIOGRAPHY

[44] DRONGOWSKI, P. J., TEAM, A. C., AND CENTER, B. D. An introduction to anal-
ysis and optimization with amd codeanalyst performance analyzer. Advanced
Micro Devices, Inc (2008).

[45] ECCLES, R., AND STACEY, D. Understanding the Parallel Programmer. 20th
International Symposium on High-Performance Computing (2006), 12–12.

[46] ENGLER, D., AND ASHCRAFT, K. Racerx: Effective, static detection of race con-
ditions and deadlocks. In Proceedings of the Nineteenth ACM Symposium on Op-
erating Systems Principles (New York, NY, USA, 2003), SOSP ’03, ACM, pp. 237–
252.

[47] FAHRINGER, T. Automatic Performance Prediction of Parallel Programs, 1st ed.
Springer Publishing Company, Incorporated, 2011.

[48] FAISAL, S., CAIRNS, P., AND BLANDFORD, A. Challenges of evaluating the
information visualisation experience. In Proceedings of the 21st British HCI Group
Annual Conference on People and Computers: HCI...But Not As We Know It - Volume
2 (Swinton, UK, UK, 2007), BCS-HCI ’07, British Computer Society, pp. 167–170.

[49] FIX, V., WIEDENBECK, S., AND SCHOLTZ, J. Mental representations of programs
by novices and experts. In Proc. INTERACT ’93/ACM CHI ’93 (1993), pp. 74–79.

[50] FOTHERINGHAM, J. Dynamic storage allocation in the atlas computer, including
an automatic use of a backing store. Commun. ACM 4, 10 (Oct. 1961), 435–436.

[51] FRIENDLY, M. A Brief History of Data Visualization. In Handbook of Computa-
tional Statistics. Springer, 2008, ch. Chapter II, pp. 15–56.

[52] FRITZ, T., AND MURPHY, G. Using information fragments to answer the ques-
tions developers ask. Proc. ACM/IEEE ICSE 2010 1 (2010), 175.

[53] GAIT, J. A probe effect in concurrent programs. Software, practice & experience
16, 3 (1986), 225–233.

[54] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns: Ele-
ments of Reusable Object-oriented Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[55] GHANAM, Y., AND CARPENDALE, S. A survey paper on software architecture
visualization,” technical report, 2008.

[56] GOLDENSON, D., AND WANG, B. Use of Structure Editing Tools by Novice
Programmers. In Empirical Studies of Programming: Fourth Work (1991), pp. 99–
120.

[57] GOTO, K., AND GEIJN, R. A. V. D. Anatomy of high-performance matrix multi-
plication. ACM Trans. Math. Softw. 34, 3 (May 2008), 12:1–12:25.

[58] GREEN, T. R. G., AND PETRE, M. Usability Analysis of Visual Programming En-
vironments: A ‘Cognitive Dimensions’ Framework. Journal of Visual Languages
and Computing 7, 2 (1996), 131–174.

Page 180

BIBLIOGRAPHY

[59] GREGG, B. Systems Performance: Enterprise and the Cloud, 1st ed. Prentice Hall
Press, Upper Saddle River, NJ, USA, 2013.

[60] GUGERTY, L., AND OLSON, G. Debugging by skilled and novice programmers.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(New York, NY, USA, 1986), CHI ’86, ACM, pp. 171–174.

[61] GUPTA, A., AND KUMAR, V. Scalability of parallel algorithms for matrix multi-
plication. In in Proc. of Int. Conf. on Parallel Processing (1991), pp. 115–123.

[62] HAEBERLEN, A., AND ELPHINSTONE, K. User-level management of kernel
memory. In Proceedings of the Eighth Asia-Pacific Computer Systems Architecture
Conference (ACSAC’03) (Sep 2003).

[63] HAN, S., DANG, Y., GE, S., AND ZHANG, D. Performance Debugging in the
Large via Mining Millions of Stack Traces. In ICSE ’12 (2012), pp. 176–186.

[64] HANNAY, J., MACLEOD, C., SINGER, J., LANGTANGEN, H., PFAHL, D., AND

WILSON, G. How do scientists develop and use scientific software? 2009 ICSE
Workshop on Software Engineering for Computational Science and Engineering (May
2009), 1–8.

[65] HEATH, M. Visualizing the performance of parallel programs. IEEE Software
(1991), 29–39.

[66] HEATH, M., A.D. MALONY, AND ROVER, D. Parallel performance visualiza-
tion: from practice to theory. IEEE Parallel & Distributed Technology: Systems &
Applications 3, 4 (1995), 44–60.

[67] HEATH, M., AND MALONY, A. The visual display of parallel performance data.
IEEE Computer (1995).

[68] HEER, J., KONG, N., AND AGRAWALA, M. Sizing the horizon: The effects of
chart size and layering on the graphical perception of time series visualizations.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(New York, NY, USA, 2009), CHI ’09, ACM, pp. 1303–1312.

[69] HEIRMAN, W., CARLSON, T., VAN CRAEYNEST, K., HUR, I., JALEEL, A., AND

EECKHOUT, L. Undersubscribed threading on clustered cache architectures.
In High Performance Computer Architecture (HPCA), 2014 IEEE 20th International
Symposium on (Feb 2014), pp. 678–689.

[70] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture, Fifth Edition: A
Quantitative Approach, 5th ed. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2011.

[71] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture, Fifth Edition: A
Quantitative Approach, 5th ed. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2011.

[72] HERB SUTTER. Understanding Parallel Performance. Dr. Dobb’s Journal (2008).

[73] HERLIHY, M., AND SHAVIT, N. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

Page 181

BIBLIOGRAPHY

[74] HOCHSTEIN, L., AND CARVER, J. Parallel programmer productivity: A case
study of novice parallel programmers. High Performance Networking and Com-
puting (2005), 1–9.

[75] HUANG, Y., CUI, Z., CHEN, L., AND ZHANG, W. HaLock: Hardware-assisted
lock contention detection in multithreaded applications. In PACT ’12: Proceed-
ings of the 21st international conference on Parallel architectures and compilation tech-
niques (2012).

[76] HUCK, K. A., AND MALONY, A. D. Perfexplorer: A performance data min-
ing framework for large-scale parallel computing. In Proceedings of the 2005
ACM/IEEE Conference on Supercomputing (Washington, DC, USA, 2005), SC ’05,
IEEE Computer Society, pp. 41–.

[77] IANCU, C., HOFMEYR, S., BLAGOJEVIC, F., AND ZHENG, Y. Oversubscription
on multicore processors. In Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on (April 2010), pp. 1–11.

[78] INSELBERG, A. Multidimensional detective. In Information Visualization, 1997.
Proceedings., IEEE Symposium on (Oct 1997), pp. 100–107.

[79] IPEK, E., DE SUPINSKI, B., AND SCHULZ, M. An approach to performance
prediction for parallel applications. Euro-Par 2005 Parallel (2005), 196–205.

[80] JOHNSON, R. B., AND ONWUEGBUZIE, A. J. Mixed methods research: A re-
search paradigm whose time has come. Educational researcher 33, 7 (2004), 14–26.

[81] JOVIC, M., ADAMOLI, A., AND HAUSWIRTH, M. Catch Me If You Can : Perfor-
mance Bug Detection in the Wild. In OOPSLA (2011), pp. 155–170.

[82] KANDIRAJU, G. B., AND SIVASUBRAMANIAM, A. Characterizing the d-TLB
behavior of SPEC CPU2000 benchmarks. SIGMETRICS Perform. Eval. Rev. 30, 1
(June 2002), 129–139.

[83] KEIM, D., KHOLHAMMER, J., ELLIS, G., AND FLORIAN MANSMANN. Mastering
the Information Age: Solving Problems with Visual Analytics. Eurographics Associ-
ation, 2010.

[84] KENNEDY, K., AND MCKINLEY, K. S. Optimizing for parallelism and data local-
ity. In ACM International Conference on Supercomputing 25th Anniversary Volume
(New York, NY, USA, 2014), ACM, pp. 151–162.

[85] KHAN, T., BARTHEL, H., EBERT, A., AND LIGGESMEYER, P. Visualization and
evolution of software architectures.

[86] KIM, S., CHANDRA, D., AND SOLIHIN, Y. Fair cache sharing and partitioning in
a chip multiprocessor architecture. In Proceedings of the 13th International Confer-
ence on Parallel Architectures and Compilation Techniques (Washington, DC, USA,
2004), PACT ’04, IEEE Computer Society, pp. 111–122.

[87] KO, A. J., MYERS, B. A., COBLENZ, M. J., AND AUNG, H. H. An exploratory
study of how developers seek, relate, and collect relevant information during
software maintenance tasks. IEEE Trans. Softw. Eng. 32, 12 (Dec. 2006), 971–987.

Page 182

BIBLIOGRAPHY

[88] KOENEMANN, J., AND ROBERTSON, S. Expert problem solving strategies for
program comprehension. Proc ACM CHI ’91 (1991), 125–130.

[89] KOSCHKE, R. Software visualization in software maintenance, reverse engineer-
ing, and re-engineering: A research survey. Journal of Software Maintenance 15, 2
(Mar. 2003), 87–109.

[90] KRAEMER, E., AND STASKO, J. The visualization of parallel systems: An
overview.

[91] LANDIS, J. R., AND KOCH, G. G. The measurement of observer agreement for
categorical data. Biometrics 33 (1977), 159–174.

[92] LANGELIER, G., SAHRAOUI, H., AND POULIN, P. Exploring the evolution of
software quality with animated visualization. In Proceedings of the 2008 IEEE
Symposium on Visual Languages and Human-Centric Computing (Washington, DC,
USA, 2008), VLHCC ’08, IEEE Computer Society, pp. 13–20.

[93] LATOZA, T., AND MYERS, B. Hard to answer questions about code. In ”Sec-
ond Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU’2010) at SPLASH/Onward!” (2010).

[94] LAWRANCE, J., BOGART, C., BURNETT, M., AND BELLAMY, R. How people
debug, revisited: An information foraging theory perspective. IEEE Transactions
on Software Engineering 39, 2 (2009), 197–215.

[95] LEDOUX, C., AND JR, D. P. Saving Traces for ADA Debugging. ACM SIGAda
Ada Letters (1985).

[96] LEE, E. A. Problem with Threads. Computer, May (2006), 33–42.

[97] LEE, J., WU, H., RAVICHANDRAN, M., AND CLARK, N. Thread tailor: Dynam-
ically weaving threads together for efficient, adaptive parallel applications. In
Proceedings of the 37th Annual International Symposium on Computer Architecture
(New York, NY, USA, 2010), ISCA ’10, ACM, pp. 270–279.

[98] LEWIS, C., LIN, Z., SADOWSKI, C., ZHU, X., OU, R., AND JR, E. J. W. Does Bug
Prediction Support Human Developers ? Findings from a Google Case Study.
In ICSE ’13 Proceedings of the 2013 International Conference on Software Engineering
(2013), pp. 372–381.

[99] LIINSKY, N., AND STEELE, J. Data Visualizations. O’Reilly, 2011.

[100] LINDQUIST, E. Background paper Surveying the world of visualization.

[101] LIU, J., NICOL, D., AND PREMORE, B. Performance Prediction of a Parallel
Simulator. Distributed Simulation, (1999).

[102] LUFF, M. Empirically investigating parallel programming paradigms: A null
result. Usability of Programming Languages and Tools, October (2009).

[103] MAHAPATRA, N. R., AND VENKATRAO, B. The processor-memory bottleneck:
Problems and solutions. Crossroads 5, 3es (Apr. 1999).

Page 183

BIBLIOGRAPHY

[104] MAK, J., AND MYCROFT, A. Limits of parallelism using dynamic dependency
graphs. In Proceedings of the Seventh International Workshop on Dynamic Analysis
(New York, NY, USA, 2009), WODA ’09, ACM, pp. 42–48.

[105] MARCUS, A., FENG, L., AND MALETIC, J. I. 3d representations for software
visualization. In Proceedings of the 2003 ACM Symposium on Software Visualization
(New York, NY, USA, 2003), SoftVis ’03, ACM, pp. 27–ff.

[106] MATTSON, T., AND WRINN, M. Parallel programming: can we PLEASE get it
right this time? Proceedings of the 45th annual Design Automation . . . (2008), 7–11.

[107] MAYER, R. The Psychology of How Novices Learn Computer Programming.
ACM Computing Surveys 13, 1 (Jan. 1981), 121–141.

[108] MAZZA, R. Introduction to Information Visualization. Springer-Verlag, 2009.

[109] MCCANDLESS, D. Information is Beautiful, 2nd ed. ed. Collins, 2012.

[110] MCCAULEY, R., FITZGERALD, S., LEWANDOWSKI, G., MURPHY, L., SIMON, B.,
THOMAS, L., AND ZANDER, C. Debugging: a review of the literature from an
educational perspective. Computer Science Education 18, 2 (June 2008), 67–92.

[111] MCCORMICK, B. H. Visualization in scientific computing. ACM SIGBIO
Newsletter 6, November 1987 (1991), 15–21.

[112] MCKENNEY, P., GUPTA, M., MICHAEL, M., HOWARD, P., TRIPLETT, J., AND

WALPOLE, J. Is parallel programming hard, and if so, why? Control (2002).

[113] MCVOY, L., GRAPHICS, S., STAELIN, C., AND LABORATORIES, H.-P. lmbench
: Portable Tools for Performance Analysis lmbench : Portable tools for perfor-
mance analysis.

[114] MILLER, B., CALLAGHAN, M., CARGILLE, J., HOLLINGSWORTH, J., IRVIN, R.,
KARAVANIC, K., KUNCHITHAPADAM, K., AND NEWHALL, T. The Paradyn
parallel performance measurement tool. Computer 28, 11 (1995), 37–46.

[115] MULLER, M., AND KOGAN, S. Grounded theory method in hci and cscw. Cam-
bridge: IBM Center for Social . . . (2010), 1–46.

[116] MURRAY, S. Interactive Data Visualization. O’Reilly, 2013.

[117] MYERS, R. Funny, it worked last time: Event tracing for windows (etw), 2005.

[118] MYTKOWICZ, T., DIWAN, A., HAUSWIRTH, M., AND SWEENEY, P. F. Evaluating
the accuracy of java profilers. In Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation (New York, NY, USA, 2010),
PLDI ’10, ACM, pp. 187–197.

[119] NAVARRO, A., AND ZAPATA, E. An automatic iteration/data distribution
method based on access descriptors for dsmm. In Languages and Compilers for
Parallel Computing, L. Carter and J. Ferrante, Eds., vol. 1863 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2000, pp. 133–148.

[120] NETZER, R. H. B., AND MILLER, B. P. What are race conditions?: Some issues
and formalizations. ACM Lett. Program. Lang. Syst. 1, 1 (Mar. 1992), 74–88.

Page 184

BIBLIOGRAPHY

[121] NISTOR, A., SONG, L., MARINOV, D., AND LU, S. Toddler : Detecting Perfor-
mance Problems via Similar Memory-Access Patterns. In ICSE ’13 Proceedings of
the 2013 International Conference on Software Engineering (2013), pp. 562–571.

[122] NIU, N., MAHMOUD, A., CHEN, Z., AND BRADSHAW, G. Departures from
optimality: understanding human analyst’s information foraging in assisted re-
quirements tracing. Proc. ICSE ’13 (2013), 572–581.

[123] NORMAN, D. A. The design of everyday things. 2002.

[124] ODAIRA, R., CASTANOS, J. G., AND TOMARI, H. Eliminating global interpreter
locks in Ruby through hardware transactional memory. In Proceedings of the
19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(New York, NY, USA, 2014), PPoPP ’14, ACM, pp. 131–142.

[125] PANAS, T., EPPERLY, T., QUINLAN, D., SAEBJORNSEN, A., AND VUDUC, R.
Communicating software architecture using a unified single-view visualization.
In Engineering Complex Computer Systems, 2007. 12th IEEE International Conference
on (July 2007), pp. 217–228.

[126] PANCAKE, C. Applying human factors to the design of performance tools. 44–
60.

[127] PANCAKE, C., AND UTTER, S. Models for visualization in parallel debuggers.
In Proc. ACM/IEEE conference on Supercomputing (1989), pp. 627–636.

[128] PANE, J., AND MYERS, B. Usability issues in the design of novice programming
systems. Tech. Rep. August, 1996.

[129] PAPAMARCOS, M. S., AND PATEL, J. H. A low-overhead coherence solution for
multiprocessors with private cache memories. In Proceedings of the 11th Annual
International Symposium on Computer Architecture (New York, NY, USA, 1984),
ISCA ’84, ACM, pp. 348–354.

[130] PARK, I., AND RAGHURAMAN, M. K. Server diagnosis using request tracking.
In 1st Workshop on the Design of Self-Managing Systems, held in conjunction with
DSN 2003 (2003).

[131] PERKINS, D., AND MARTIN, F. Fragile knowledge and neglected strategies in
novice programmers. Tech. rep., 1986.

[132] PIORKOWSKI, D., FLEMING, S., KWAN, I., BURNETT, M., SCAFFIDI, C., BEL-
LAMY, R., AND JORDAHL, J. The whats and hows of programmers’ foraging
diets. Proc. ACM CHI 2013 (2013), 3063–3072.

[133] PIROLLI, P., AND CARD, S. Information foraging in information access environ-
ments. Proc. CHI ’95 (1995), 51–58.

[134] PRABHU, P., ZHANG, Y., GHOSH, S., AUGUST, D., HUANG, J., BEARD, S., KIM,
H., OH, T., JABLIN, T., JOHNSON, N., ZOUFALY, M., RAMAN, A., LIU, F., AND

WALKER, D. A survey of the practice of computational science. State of the
Practice Reports on - SC ’11 (2011), 1.

Page 185

BIBLIOGRAPHY

[135] QUANTE, J. Do dynamic object process graphs support program understand-
ing? - a controlled experiment. In Program Comprehension, 2008. ICPC 2008. The
16th IEEE International Conference on (June 2008), pp. 73–82.

[136] RAJWAR, R., AND GOODMAN, J. R. Speculative lock elision: Enabling highly
concurrent multithreaded execution. In Proceedings of the 34th Annual ACM/IEEE
International Symposium on Microarchitecture (Washington, DC, USA, 2001), MI-
CRO 34, IEEE Computer Society, pp. 294–305.

[137] REINDERS, J. VTune performance analyzer essentials. Intel Press, 2005.

[138] REINDERS, J. Intel Threading Building Blocks: Outfitting C++ for Multi-core Proces-
sor Parallelism, 1st ed. O’Reilly Media, Inc, 2007.

[139] RENDGEN, S., AND WIEDEMANN, J. Information Graphics. Taschen, 2012.

[140] RICHARD WETTEL, M. L., AND ROBBES, R. Empirical validation of codecity: A
controlled experiment. Tech. Rep. 2010/05, University of Lugano, June 2010.

[141] ROMAN, G.-C., AND COX, K. C. Program visualization: The art of mapping
programs to pictures. In Proceedings of the 14th International Conference on Software
Engineering (New York, NY, USA, 1992), ICSE ’92, ACM, pp. 412–420.

[142] RUSSELL, K., AND DETLEFS, D. Eliminating synchronization-related atomic op-
erations with biased locking and bulk rebiasing. In Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages,
and Applications (New York, NY, USA, 2006), OOPSLA ’06, ACM, pp. 263–272.

[143] RYAN NEWTON, FRANK SCHLIMBACH, MARK HAMPTON, K. K. Capturing and
Composing Parallel Patterns with Intel CnC. In HotPar ’10 (2010).

[144] S. FLEMING. Successful Strategies for Debugging Concurrent Software: An Empirical
Investigation. PhD thesis, 2009.

[145] SADOWSKI, C., AND SHEWMAKER, A. The Last Mile : Parallel Programming
and Usability. FOSER (2010).

[146] SHENDE, S. S., AND MALONY, A. D. The tau parallel performance system.
International Journal of High Performance Computing Applications 20, 2 (2006), 287–
311.

[147] SIEGMUND, N., KOLESNIKOV, S. S., CHRISTIAN, K., APEL, S., AND SAAKE, G.
Predicting Performance via Automated Feature-Interaction Detection. In ICSE
’12 (2012), no. ii, pp. 167–177.

[148] SILLITO, J., MURPHY, G., AND DE VOLDER, K. Questions programmers ask
during software evolution tasks. In SIGSOFT’06/FSE-14: Proceedings of the 13th
ACM SIGSOFT and 14th international symposium on Foundations of Software Engi-
neering (2006).

[149] SIU, S., SIMONE, M. D., GOSWAMI, D., AND SINGH, A. Design Patterns for
Parallel Programming. PDPTA (1996).

Page 186

BIBLIOGRAPHY

[150] SMITH, D., CYPHER, A., AND SPOHRER, J. KidSim: programming agents with-
out a programming language. Communications of the ACM 37, 7 (June 1994),
54–67.

[151] SNYDER, L. Parallel programming and the poker programming environment.
Tech. rep., DTIC Document, 1984.

[152] SNYDER, L., AND SOCHA, D. Poker on the cosmic cube: The first retargetable
parallel programming language and environment. Tech. rep., DTIC Document,
1986.

[153] SOLOWAY, E., LAMPERT, R., AND LETOVSKY, S. Designing documentation to
compensate for delocalized plans. Communications of the ACM 31, 11 (1988).

[154] SPENCE, R. Information Visualization: Design for Interaction (2Nd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2007.

[155] STOL, K.-J., AND FITZGERALD, B. Two ’ s Company , Three ’ s a Crowd : A
Case Study of Crowdsourcing Software Development. ICSE ’14 (2014), 187–198.

[156] STOREY, M.-A. D., FRACCHIA, F. D., AND MÜLLER, H. A. Cognitive design
elements to support the construction of a mental model during software explo-
ration. J. Syst. Softw. 44, 3 (Jan. 1999), 171–185.

[157] STRAUSS, A. L., AND CORBIN, J. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory, 2nd ed. Sage, Thousand Oaks, 1998.

[158] SÜSS, M., AND LEOPOLD, C. Common mistakes in OpenMP and how to avoid
them. In Proceedings of the 2005 and 2006 international conference on OpenMP shared
memory parallel programming. Springer, 2008, pp. 312–323.

[159] TALLENT, N., MELLOR-CRUMMEY, J., AND PORTERFIELD, A. Analyzing lock
contention in multithreaded applications. In PPoPP ’10: Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(2010).

[160] TILLEY, S., AND HUANG, S. Documenting software systems with views iii:
Towards a task-oriented classification of program visualization techniques. In
Proceedings of the 20th Annual International Conference on Computer Documentation
(New York, NY, USA, 2002), SIGDOC ’02, ACM, pp. 226–233.

[161] TORRELLAS, J., LAM, M., AND HENNESSY, J. L. False sharing and spatial lo-
cality in multiprocessor caches. Computers, IEEE Transactions on 43, 6 (Jun 1994),
651–663.

[162] TRINDER, P. W., K. HAMMOND, H.-W. LOIDL, S. L. P. J. Algorithm + strategy
= parallelism. Journal of Functional Programming 8, 1 (1998), 23–60.

[163] TUFTE, E. Envisioning information. Optometry & Vision Science (1991).

[164] TUFTE, E. The Visual Display of Quantitative Information, 2nd ed. ed. Graphics
Press, 2001.

Page 187

BIBLIOGRAPHY

[165] VESSEY, I. Expertise in Debugging Computer Programs: An Analysis of the
Content of Verbal Protocols. IEEE Transactions on Systems, Man, and Cybernetics
16, 5 (Sept. 1986), 621–637.

[166] VIERA, A. J., GARRETT, J. M., ET AL. Understanding interobserver agreement:
the kappa statistic. Fam Med 37, 5 (2005), 360–363.

[167] WAHEED, A., AND ROVER, D. Performance visualization of parallel programs.
In VIS ’93: Proceedings of the 4th conference on Visualization ’93 (1993).

[168] WETTEL, R., AND LANZA, M. Codecity: 3d visualization of large-scale soft-
ware. In Companion of the 30th International Conference on Software Engineering
(New York, NY, USA, 2008), ICSE Companion ’08, ACM, pp. 921–922.

[169] WETTEL, R., LANZA, M., AND ROBBES, R. Software systems as cities: A con-
trolled experiment. In Proceedings of the 33rd International Conference on Software
Engineering (New York, NY, USA, 2011), ICSE ’11, ACM, pp. 551–560.

[170] WHITE, R. W., KULES, B., DRUCKER, S. M., AND SCHRAEFEL, M. Supporting
exploratory search. Communications of the ACM 49, 4 (Apr. 2006), 36–39.

[171] WOLFE, M., AND BANERJEE, U. Data dependence and its application to parallel
processing. Int. J. Parallel Program. 16, 2 (Apr. 1987), 137–178.

[172] WULF, W. A., AND MCKEE, S. A. Hitting the memory wall: implications of the
obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20–24.

[173] YANG, L., AND MUELLER, F. Cross-Platform Performance Prediction of Parallel
Applications Using Partial Execution. ACM/IEEE SC 2005 Conference (SC’05)
(2005), 40–40.

[174] YANG, L., AND MUELLER, F. Cross-Platform Performance Prediction of Parallel
Applications Using Partial Execution. ACM/IEEE SC 2005 Conference (SC’05)
(2005), 40–40.

[175] YAU, N. Data Points. John Wiley & Sons, Inc., 2013.

[176] YOO, W., LARSON, K., AND BAUGH, L. ADP: automated diagnosis of perfor-
mance pathologies using hardware events. SIGMETRICS (2012), 283–294.

[177] ZAMAN, S., ADAMS, B., AND HASSAN, A. E. A Qualitative Study on Perfor-
mance Bugs. In MSR (2012), pp. 199–208.

[178] ZHANG, Y., KANDEMIR, M., AND YEMLIHA, T. Studying inter-core data reuse
in multicores. In Proceedings of the ACM SIGMETRICS Joint International Con-
ference on Measurement and Modeling of Computer Systems (New York, NY, USA,
2011), SIGMETRICS ’11, ACM, pp. 25–36.

[179] ZHURAVLEV, S., BLAGODUROV, S., AND FEDOROVA, A. Addressing shared
resource contention in multicore processors via scheduling. In ACM SIGARCH
Computer Architecture News (2010), vol. 38, ACM, pp. 129–142.

Page 188

