
Translating from “State-Rich” to “State-Poor” Process Algebras

Department of Computer Science

Trinity College Dublin

Mirza Muhammad Arshad Beg

A Thesis Submitted to the University of Dublin, Trinity College
in Fulfillment of the Requirements for the Degree of

Doctor of Philosophy (Computer Science)

April 28, 2016

2

Declaration

This thesis has not been submitted as an exercise for a degree at
this or any other university. It is entirely the candidate’s own work.
The candidate agrees that the Library may lend or copy the thesis
upon request. This permission covers only single copies made for
study purposes, subject to normal conditions of acknowledgement.

Mirza Muhammad Arshad
Beg

i

ii

Summary

Following the development of formalisms based on data and behavioural aspects of the system, there are a
number of attempts in which these two formalisms are mixed together to get benefit of both paradigms. Cir-
cus being a living specification language with continuous collaboration from both academia and industry, is a
combination of Z, CSP and the refinement calculus. To make use of the available and industry-proven tools
for a particular programming paradigm, there is a need to develop a formally verified link between one world
and the other. The aim of this work is to develop a formally verified translation between the state-rich process
algebra i.e. Circus to the state-poor process algebra i.e. CSP.

To achieve the research goal, the most suitable available tools had to be identified. For developing a link be-
tween targeted formal languages, the key translations required between the two languages are identified. For
ensuring correctness of the translation, the key translation / refinement steps are formalised using a well-known
functional language - Haskell. This formed the theoretical core of the work and supported the soundness of
the link. In the end, a case study from the collection of software / hardware protocols was selected and the
processes specified for the protocol were formally described using the notations available in the prototype de-
signed in Haskell.

iii

iv

Dedications

Dedicated to my mother,
my wife, Amna,

and my daughters, Raafia and Rahma.

v

vi

Acknowledgements

I am really grateful to my supervisor, Dr Andrew Butterfield, for his always helpful attitude during the period
I conducted this research. From reviewing and fixing my early manuscripts to the underlying implementation
code and the final manuscript preparation, he helped me in every aspect. His motivation drove me throughout
my doctoral research. I was always impressed by the depth of his knowledge, the way of working, and appre-
ciation of good work.

It was a real honour for me to work within such a talented group of people, especially the faculty members: Dr
Matthew Hennessey, Dr Arthur Hughes and Dr Hugh Gibbons; the post-doctoral researchers of the group: Dr
Vasileios Koutavas and Dr Edsko de Vries; and PhD researchers (some have already passed their PhD): Ric-
cardo Bresciani, Pawel Gancarski, Andrea Cerone, Giovanni Bernardi, Colm Bhandal, and Carlo Spaccasassi.

Also, the acknowledgement cannot be completed without mentioning the Lero Graduate School of Software
Engineering (LGSSE), which thankfully provided me the funding for my entire period of study at Trinity Col-
lege Dublin.

Finally, I want to thank my parents and my wife, whom always prayed for my success. It is a good time to
mention the most caring person I lost during the period of my PhD studies, my father, who always cared about
me during my entire life.

vii

viii

Contents

1 Introduction 1

1.1 Problem Area in General . 1

1.2 Research Objective . 1

1.3 Motivation and Key Inspiration . 2

1.4 Notation for Language and Tool Names in the Thesis . 3

1.5 Contribution of the Thesis . 4

1.5.1 Semantic Justification for Turning Variables of Circus to Parameters in CSPM 4

1.5.2 Developing First Version of Translator – circus2cspm 5

1.5.3 Developing Second Version of Translator in Haskell – SimpleCircus2CSPM 6

1.6 Structure of the Thesis . 6

2 Background 9

2.1 The Z notation, CSP and Circus . 9

2.1.1 An Example of a program in CSP . 9

2.1.2 Example of a Specification in Circus . 10

2.2 Introduction to the Available Tools . 12

2.3 Unifying Theory of Programming . 13

2.4 The UTP Semantics of CSP and Circus . 13

2.4.1 Healthiness Condition: Reactive Processes . 13

2.4.2 Healthiness Conditions: CSP Processes . 14

2.4.3 Healthiness Conditions: Circus Processes . 14

2.4.4 Alphabets of Circus in UTP Semantics . 14

2.4.5 Guarded Action in Circus : An Example . 14

2.5 Dealing with Z Schemas and Assignment Command in Circus 15

2.5.1 Z Schemas in Circus . 15

2.5.2 Dealing of Assignment Command . 15

2.5.3 Mechanical Abstraction of CSPZ Processes . 15

2.6 CSP Normal Forms . 16

2.6.1 A Similar Work on Normalisation of CSP Processes 16

2.7 Summary . 17

3 State of the Art 19

3.1 Related Work . 19

ix

x CONTENTS

3.2 Possible Case Study Area . 22

3.2.1 Verification of Flash Memory Behaviour . 22

3.2.2 Formal Verification of Cache Coherency Protocols 23

3.2.3 Formal Verification of Hardware Protocol – AMBA Bus Protocol 23

3.2.4 Formal Verification of Networking Protocols . 23

3.3 Summary . 24

4 Flash Work – An Initial Industrial Case Study 25

4.1 Introduction . 25

4.2 Background . 26

4.2.1 Flash Memory Operations . 26

4.2.2 Host-Target Communication . 26

4.2.3 The ONFi state machines . 27

4.3 Related Work . 27

4.4 The CSP Model . 28

4.4.1 CSP Data-Entry . 29

4.5 Model Analysis . 29

4.5.1 Moving from ONFi 1.0 to ONFi 2.1 . 29

4.5.2 Running the Model in FDR . 30

4.5.3 Initial Checks Performed on the Model . 30

4.5.4 More Concrete Tests through Failures Refinement Checks on the Model 30

4.5.5 “Deep Hiding” along with Model Compression Techniques available in FDR 32

4.5.6 Tackling Full ONFi 2.1 Model . 33

4.6 Summary . 33

5 Design 35

5.1 Translation Process for a Simple Circus Example . 35

5.2 Translation Step-by-Step . 35

5.2.1 Step 1 – Scanning for the Variables in a Circus Process and Replacing Continuations
for Skip . 35

5.2.2 Step 2 – Removal of Assignment Commands and Replacing Expressions in the Param-
eter List . 36

5.2.3 Step 3 – Analysis of Main Action and Replacing Continuations with Corresponding
Calling Action . 36

5.2.4 Step 4 – Inlining the Calling Actions and Propagating Parameter Changes 37

5.2.5 Increasing Complexity . 37

5.3 Summary . 39

6 Semantics 41

6.1 The UTP Semantics of SimpleCSP and SimpleCircus . 41

6.1.1 Semantics of SimpleCSP . 41

6.1.2 Exploring the Semantics of Parameters . 42

CONTENTS xi

6.1.3 Semantics of SimpleCircus . 45

6.2 The Link between SimpleCircus and SimpleCSP . 47

6.2.1 Assignment Command Handling . 48

6.2.2 Mathematical Proofs . 49

6.3 Summary . 55

7 Translation Theory 57

7.1 The Template for Each Function in the Translation Process 57

7.2 The Translation Process . 58

7.2.1 Overview . 58

7.2.2 Normalise Sequential Composition . 59

7.2.3 Rename Hidden Events . 59

7.2.4 Name “Next” Actions . 59

7.2.5 Get Variable Parameters . 60

7.2.6 Ensure Assignment Continutation . 61

7.2.7 Add Continuation Calls . 61

7.2.8 Propagate Assignments and Instantiate Continuations 62

7.3 Summary . 64

8 Implementation 65

8.1 Implementation Initial Attempt – JCircus to circus2cspm 65

8.1.1 The Explanation of the Translation Flow Diagram with a Simple Example 65

8.1.2 Step 1 – Specification/Environment Loading and Information Gathering 66

8.1.3 Step 1.1 – Getting Channel Information . 67

8.1.4 Step 1.2 – Process the Z schemas to know the state variables 67

8.1.5 Step 1.3 – Making each action to its parameterised version 68

8.1.6 Step 2, 3 – Analysis of the Main Action . 68

8.1.7 Step 4 – Conversion of CSP-like actions to CSPM and Alignment of Information Gath-
ered So Far . 70

8.1.8 Step 5 - Final Transformation . 70

8.2 Haskell Implementation – SimpleCircus2CSPM . 72

8.2.1 Names . 72

8.2.2 Expressions . 73

8.2.3 Expression Builders . 73

8.2.4 Abstract Syntax of SimpleCircus . 74

8.2.5 Precedence and Pretty Printing . 75

8.2.6 CSP Laws . 76

8.2.7 Head Normal Form Implementation in Haskell . 77

8.2.8 Implementation of the Step Laws . 78

8.2.9 Top Level Translator Function Implementation . 79

8.2.10 Implementation of Formalised Steps in Translation Theory 83

8.3 Summary . 84

xii CONTENTS

9 Evaluation 85

9.1 Running Examples in SimpleCircus2CSPM . 85

9.1.1 Example 1 – Simple Sequential Case in the Main Action 85

9.1.2 Example 2 – Adding Extra Disjoint Variables in the Main Action 86

9.1.3 Example 3 – Circus Process without the Main Action 86

9.1.4 Example 4 – Two Distinct Sequential Composition Chains of Calling Actions 87

9.1.5 Example 5 – the Lift Process . 87

9.1.6 Example 6 – Including External Choice in the Main Action 88

9.2 Case Study – A Cache Coherence Protocol Representation in SimpleCircus Notation 89

9.2.1 Background Information . 89

9.2.2 The Felty Example in Haskell . 89

9.3 Running Examples in circus2cspm Tool . 93

9.3.1 Example 1 – Lift Process . 93

9.3.2 Example 2 – Simple Sequential Chain of Calls in Initialiser 94

9.3.3 Example 3 – Main Action having Internal Choice . 95

9.3.4 Example 4 – Varied Order of Action Calls in Example 3 96

9.3.5 Example 5 – Multiple Assignments in an Action . 97

9.3.6 Example 6 – Call of Actions having Sequential Composition and External Choice . . . 97

9.3.7 Example 7 – Call of Actions having External Choice and Sequential Composition . . . 98

9.3.8 Example 8 – Including Output Prefixing Action . 99

9.4 Summary . 100

10 Conclusions 101

10.1 Extending a CSP Model of Flash Device Behaviour . 101

10.2 Development of a Prototype to Translate from Circus to CSPM using Java 102

10.3 Mathematical Proofs of Semantic Justification for the proposed Translation using the Unifying
Theories of Programming (UTP) Semantics . 102

10.4 Using Haskell for Development of the Prototype for Circus to CSPM Translation 103

10.5 Summary . 104

A Introducing Karnaugh Maps for Graphical Proofs 111

A.1 Graphical Approach . 111

A.1.1 Standard Reactive Diagram . 111

A.1.2 Logical Operations . 111

A.1.3 Conditionals as Projections . 114

A.1.4 Examples . 115

A.1.5 Lemma 1 – Graphical Approach . 117

A.1.6 Lemma 2 – Graphical Approach . 118

B Proofs for the Link between SimpleCircus and SimpleCSP 119

B.1 A Graphical Proof Attempt . 119

B.2 Other Proofs . 123

CONTENTS xiii

B.3 Lemmas . 130

C Haskell Implementation 131

C.1 Working with Simple Circus in Haskell . 131

C.1.1 Names . 131

C.1.2 Expressions . 131

C.1.3 Abstract Syntax . 132

C.1.4 Simplifying Constructors . 133

C.2 Standard Circus Names . 134

C.2.1 Names . 134

C.2.2 Expression Builders . 135

C.2.3 Precedence . 136

C.3 Standard Circus Printing . 138

C.3.1 Pretty-Printing Expressions . 138

C.3.2 Pretty-Printing Processes . 139

C.4 Simple Circus Translation . 143

C.4.1 Name Management . 143

C.5 Simple Circus Laws . 145

C.5.1 Laws . 145

C.5.2 Step Laws . 153

C.6 Simple Circus Translation . 157

C.6.1 Normal Form . 157

C.6.2 Acquiring Head Normal Form . 157

C.6.3 Translation . 158

C.7 Simple Circus Examples . 165

C.7.1 Examples . 165

C.8 “Standard” Simple Circus . 168

C.9 Implementation of Formalised Steps in Translation Theory 169

D Cache Coherence Protocol – Processes Specified using SimpleCircus 179

E How to Run Examples in SimpleCircus2CSPM and circus2cspm 191

E.1 Haskell Implementation of Translator . 191

E.1.1 Steps to Follow . 191

E.2 Java Implementation of Translator – circus2cspm . 191

E.2.1 Steps to Follow . 192

xiv CONTENTS

Chapter 1

Introduction

This chapter describes the overall picture of the research objectives, area of contribution and technical approach
adopted for our research. It also presents the layout of the whole thesis.

1.1 Problem Area in General

Software system use and its application is increasing in our daily life. For example, the number of internet
users stands at 39% of total world population in 2013 [URLd]. This was standing at 16% in 2005 [URLd].
Consequently, the importance of correctness and reliability of the software is increasing [Wil09]. Errors in
software design have led to major accidents in the past. For example, [URLa] lists examples of such failures.
One of these examples is the Mars Climate Orbiter mission failure in 1998 [URLe]. The fault was due to an
inconsistency in the units used. The designer used imperial units while NASA [URLg] was supposed to work
with metric units. It resulted in a crash of the orbiter while trying to stabilise in the orbit around Mars at too
low an altitude. In 2007, an error-prone piece of software running on a network card maliciously broadcasted
the data on the United States Customs and Border Protection network [URLb]. It resulted in a halt of the
entire system. For eight hours, nobody could leave Los Angeles airport. It resulted over 17,000 planes being
grounded for the duration of the fault.

Other examples of critical software systems are software dealing with financial institutions, or software running
for the medical industry and applications etc. Serious software failures and accidents in the past decades, for
example in [URLa], have led software designers to realise the importance of formal methods in designing crit-
ical software systems [HM05]. By adopting formal techniques for designing software with proven correctness,
the overall quality and reliability of that software can be increased.

‘Formal Methods’ can be defined as a collection of languages, techniques and tools based on mathematics for
specifying and verifying systems [URLc]. More precisely, ‘Formal Methods’ is about ‘formalising’ a system
on the basis of a set of tools and notations having a formal semantics. These tools are used to clearly specify
the requirements of a system, allowing the proof of properties of that specification and to prove the correctness
of an implementation with respect to that specification.

1.2 Research Objective

There has been a recent trend in the field of formal methods to link different formal methods tools e.g. model-
checkers, theorem provers and model simulations, in order to make the formal verification process of a system
automatic or semi-automatic, for example, the work presented in [FO09, FSO08, MAF08]. In order to utilise
existing available industry proven formal methods tools, we have the option of developing automatic code

1

2 CHAPTER 1. INTRODUCTION

generators. The function of these automatic code generators is to translate the specifications written in one
notation to the other.

The aim of this work is to design and implement a translation strategy between a “state-rich” process algebra
i.e. Circus [WC02] to a “state-poor” process algebra i.e. machine readable CSP or CSPM

1 [Hoa04, Ros98] and
later to generalise it to have a translation strategy from an imperative language to a functional one. The need
for developing links between these two languages is due to the fact that CSPM has an industry-proven model
checker [For05] while Circus has an under development model checker. This objective is achieved through a
number of stages which are listed below:

1. To develop a formally verified link between a Circus based tool [MFMU05] to a CSPM based tool
[For05]. Tools in the link are to support the verification of software/hardware implementations which are
derived from Circus specifications. This involved:

(a) Designing and implementing a translation strategy between the two target languages.

(b) Formalising the translation strategy to ensure the key translations’ proof of correctness.

(c) Linking the target languages by relating the semantics of the target languages. Both Circus and
CSPM have well-formed semantics within the Unifying Theories of Programming (UTP) frame-
work [OCW09, CW04].

2. All the above steps ended up in a prototype tool for automating the translations between the two lan-
guages.

3. In order to prove the utility of the developed prototype, a case study was carried out for a selected protocol
[FS96] specification by using the notation suggested in the tool.

1.3 Motivation and Key Inspiration

The key motivation for developing the link was to contribute to the ‘Grand Challenge in Computing’ (GC6)
project. The GC6 project [HM05] was expected to: 1. deliver a comprehensive and verified theory of pro-
gramming; 2. give a prototype for a comprehensive and integrated suite of programming tools; and 3. deliver a
repository of verified software. So, the development of the link will be a contribution to the prototype collection
of integrated suite of programming tools.

Circus is a state-rich specification language with an active research focus from the researchers as the Circus
website [URLf] lists around 80 journal and conference publications since 2001. These publications deal with
the underlying theory of the language as well as its practical use in industrial applications.

One of the key inspiration for developing this formally verified translation strategy for Circus based modelling
is from the work [FO09]. The goal of that work was to integrate both programming and logical tools to verify
formally specified operations. The authors of [FO09] verified a File System model through the combination
of different formal specification languages and made their tools inter-operate together. This process was ac-
complished using Alloy (design and model checking), VDM++(Prototyping and Testing) and HOL (proof of
correctness) as depicted in figure 1 of [FO09], shown here in figure 1.1. First of all, a highly abstract model
of the architectural design of the target system was designed either by using point free notation (PF-notation)
or Alloy. In spite of having no ability to prove properties, Alloy was very handy in getting counter-examples.
These counter-examples were used to spot where and why the properties were failing. After validating the
design in Alloy, the model was translated to VDM++ where more details were added in the model. In the
VDM++ stage, validation of all functional requirements became possible. The proof of correctness of the prop-
erties of the model was perfomed with HOL. The unproved goals from both VDM++ and HOL were proved in

1The names Circus and CSPM are formatted typographically as per the style adopted by their originators.

1.4. NOTATION FOR LANGUAGE AND TOOL NAMES IN THE THESIS 3

Figure 1.1: Figure 1 of [FO09]: Tool-chain Operation

the end using pen-and-paper proofs through point free (PF) calculation. This step was performed to simplify
proof-obligations.

The work [HH05] deals with the linking theories of Calculus of Communicating Systems (CCS) [Mil80] and
CSP. Here the underlying theories were linked through a Galois connection. The complete transition system
of CCS was projected on the healthiness conditions of CSP. The strategy applied to the weak, strong and
barbed simulations of CCS, along with trace, failures, and failures/divergence refinement semantics of CSP.
The challenge of linking other theories of concurrency through Galois connection was also suggested in the
paper [HH05]. Chapter 4 of [HH98] provides a general approach for linking theories of different languages
using UTP framework.

1.4 Notation for Language and Tool Names in the Thesis

In order to maintain consistency, the following typographical style will be used for the language and tool names,
referred in the text.

Notation Explanation

circus2cspm The prototype developed using Java for translation from Circus to CSPM

SimpleCircus2CSPM The prototype developed using Haskell for translation from Circus to CSPM

Circus Complete Circus language

CSP and CSPM Complete CSP and machine readable CSP language

SimpleCSP The subset of CSPM selected for the mathematical proofs

SimpleCircus The subset of Circus selected for the mathematical proofs

4 CHAPTER 1. INTRODUCTION

1.5 Contribution of the Thesis

Here, we list the road path for our research and the outcomes. As our work comprises of number of stages, so
we explain them here one by one.

1.5.1 Semantic Justification for Turning Variables of Circus to Parameters in CSPM

A thorough explanation of the target languages is in the following chapter. Here, we show the selected subset
of the abstract syntax tree of the target languages in figure 1.2. The problem area chosen is to provide the
semantic justification for converting an assignment command in the Circus world to a parametric process in
the CSPM world, shown in figure 1.3. In case of the Circus process, x is assigned a value in the specification.
While doing the same for CSPM , the value is passed as a parameter. This problem is dealt in Chapter 6 of the
thesis.

P ∈ Process ::= Awhere AD1; . . . ; ADn

AD ∈ ActDef ::= N =̂ A | N(X1, . . . ,Xn) =̂ A

A ∈ Action ::= Stop | Skip | a→A | e&A | A o
9 A | AuA | A2A

| A ‖ A — CSP only
| x := e | A V ||V A — Circus only
| N | N(e1, . . . ,en)

N ∈ Name ::= names
a,b.e ∈ Event events

e ∈ Expr expressions
x ∈ Var variables

V ∈ VarSet variable-sets

Figure 1.2: Circus/CSPM Syntax

Figure 1.3: An assignment command in the Circus world converted to a parametric process in the CSPM world

1.5. CONTRIBUTION OF THE THESIS 5

1.5.2 Developing First Version of Translator – circus2cspm

By utilising the CZT 2 Java classes, which contains the type checker and parser for Circus, the requirement of
inputting Circus specifications was achieved. The Circus parser was a contribution from the work [WCF05].
In previous work [Oli05], a transformation strategy for transforming from a concrete Circus specification to
a Java program had been proposed. It consisted of translation rules, that applied to each Circus construct in
a concrete specification, resulting in a Java program that implements the Circus program. The resulting Java
program uses the JCSP library, a Java implementation of the CSPM model for concurrency and communication.
The work [dF05] provided an implementation of the translation strategy. The implementation result is a tool
called JCircus. This tool generates a Java implementation of the concrete Circus specification through a
simple GUI.

The work presented in [dF05] was selected as the starting point for translating from Circus to CSPM as this
provided us the basis for parsing Circus specifications. The next step was to modify the translation rules written
for conversion of Java, to work with conversion to CSPM . In the latest version of the freely available CZT tool
sources, we did not find Java sources for translation from Circus to CSPM , which was an indication that it is
a novel work for automatic translation of Circus into CSPM . Figure 1.4 depicts the difference between the
previous works available and our contribution. It is made clear in the figure that CZT classes and Circus parser
is the contribution of Leo Freitas et. al. JCircus tool is the contribution of Angela Freitas et. al. By updating
the source files of JCircus, the prototype circus2cspm is our contribution. The UTP linkage between Circus
and CSPM script is shown here to depict that mathematical proofs are done using UTP semantics to justify the
translation between the two languages.

Figure 1.4: Translation from Circus to CSPM

To develop the circus2cspm tool, the front end of the tool is kept the same while the back-end processing
of the abstract syntax tree is updated to get the required translation. The development of this tool was done
in Java using Eclipse IDE. The base design of the circus2cspm tool is based on the classes written for JCir-

2http://czt.sourceforge.net/manual.html

6 CHAPTER 1. INTRODUCTION

cus tool. The main modification is done in TranslatorVisitor class which visits each construct of the
Circus language and outputs the required text. Futhermore, the Translator2Java class is renamed to
Translator2CSP and modified accordingly.

The interface of circus2cspm is quite simple. It takes input from a LaTeX file. Then the user specifies the
output file directory where the output project directory structure is to be created. If correctly parsed and type
checked, the CSPM output is generated. The datatype declaration is in the output file called DataType.csp
where DataType is replaced with the name of actual data type given in Circus specification. Channel dec-
larations are listed in ChannelDecl.csp, while the finalProcDecl.csp is the file containing the final
translated version of the process definition.

1.5.3 Developing Second Version of Translator in Haskell – SimpleCircus2CSPM

Cases of some simple action compositions were tested through circus2cspm. But if this structure grows and
acquires a complex form, it would be a complex task to implement the translation. Pattern matching in the
compositions of complex combinations of actions in the main action is another challenge to implement in the
source code of circus2cspm. This pattern matching is a pre-requisite while dealing with the implementation
of all CSP laws in the main action. So, later on, in the implementation stage, we used Haskell – a well-
known functional programming language – for modelling these translations and this is maintained in our online
repository [Rep].

In the Haskell implementation for the translation, a number of examples are provided to show the use of the
implementation of the translation strategy between the two worlds. We covered a number of constructs in
our prototype such as prefix actions, sequential composition, internal choice, external choice, hiding action,
interface parallel, alphabetised parallel, conditional, assignment command, calling an action as well as their
generalised forms. A significant number (forty four) of CSP algebraic laws are formalised in the implementa-
tion. A normalisation process is also implemented in the prototype. A simple implementation of pretty printing
is also provided which can be extended to provide a more sophisticated one.

1.6 Structure of the Thesis

Chapter 2 of the thesis provides background information for the target languages i.e. Circus and CSPM . Later,
it explains the Unifying Theory of Programming (UTP) [HH98]. The explanation of UTP is necessary as later
the link between the two languages is proven feasible using the UTP semantics of the languages.

Chapter 3 provides state of the art section of the thesis. This chapter describes the similar works available in the
literature. Our approach for the translation between Circus and CSPM is by turning variables into parameters
while the similar work described in the chapter turns variables into processes with set and get channels, or
clocked hardware.

Chapter 4 provides the details of an industrial case study. This chapter is a published work in an ACM
conference proceedings. The case study conducted is about modelling flash devices behaviour using CSPM .
The updated flash device behaviour model is model-checked using the Failures-Divergence Refinement (FDR)
toolkit.

Chapter 5 explains the translation process adopted in our first attempt of developing a prototype tool using
Java. It takes a simple example of the Circus specification and explains each stage of the translation involved.
This chapter also gives some implementation details about the data structures and record keeping process for
the transformation of the specification from Circus to CSPM .

Chapter 6 explains the semantics of Circus and CSPM in UTP framework and then gives description of our
work of linking the underlying theories.

Chapter 7 provides the formalisation of the translation process between the target languages. Here, the steps

1.6. STRUCTURE OF THE THESIS 7

involved in the translation are formalised and presented in mathematical style.

Chapter 8 explains the implementation of the translation strategy using Java and then in Haskell. Implemen-
tation in Haskell provides the basic constructs of the languages, CSP laws available in [Ros98], normalisation
process available in Chapter 11 of [Ros98], prototyping of the step laws involved, pretty-printing of the lan-
guages and some working examples.

Chapter 9 evaluates the translated examples using the SimpleCircus2CSPM tool and gives comments on the
results achieved so far. It also describes the case study of a cache coherence protocol specified in the notation
of SimpleCircus in order to explain the usefulness of SimpleCircus for specifying such protocols.

Chapter 10 concludes the thesis by listing the contributions presented in this work.

Appendix contents are divided into sections given below.

Section A gives an introduction to the graphical way of proof using Karnaugh Maps technique. This technique
was proposed and devised by Dr Andrew Butterfield and is used in the proof of theorem B.1.1. The need
for devising this technique appeared when the usual way of proof by expansion of definitions did not work
for theorem B.1.1. Section B includes remaining mathematical proofs done for establishing the link between
Circus and CSPM using the UTP framework. It also includes the proposed lemmas for the proof of theorem
6.2.5. The proofs of these lemmas have been gone through but they are of significant length. So, currently
they are not included in the body of the thesis. Section C includes the Haskell code of the implementation
of the translator SimpleCircus2CSPM. Section D contains a case study, which includes the specification of
processes for a cache coherency protocol using SimpleCircus notation. Section E includes the instructions how
to run and see output of the examples translated through the tools circus2cspm and SimpleCircus2CSPM.

The following chapter gives us the background information about the target languages and their semantics.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter provides background information for the target languages, Circus and CSPM . Later, it explains
the unifying theory of programming (UTP) [HH98]. The explanation of UTP is necessary as later the link
between the two languages is proven feasible using the UTP semantics of the languages. This chapter also
explains work of others described in the literature which is relevant to this work.

2.1 The Z notation, CSP and Circus

The Z notation [WD96] has its basis in the set theory and mathematical logic. Standard set operators, set
comprehensions, Cartesian products, and power sets are used in the set theory. First-order predicate calculus
is used as the mathematical logic. In Z, the mathematics can be structured by the use of schemas. Collections
of mathematical objects and their properties are described using these schemas. A unique type is given to each
mathematical object in the language. So, the use of types gives the functionality of checking the type of each
object in the specification. The use of refinement calculus [Cav97] is another characteristic feature of the Z
language. A model is defined using simple mathematical data types to describe the desired behaviour. Then
this description is refined by construction of another model. This refined model gives a description closer to the
implementation of the system. The other notations similar to Z are the B-method and Object-Z (a Z extension
with an object oriented approach).

Communicating Sequential Processes (CSP) [Hoa04] is a process algebra where the systems are represented as
processes. In the CSP world, the system is specified as the order in which these processes are to be performed.
CSP allows concurrency and provides a way in which these processes can interact. This is achieved through
channels. Messages can be exchanged betweeen these channels from one process to the another one. However,
data requirements are not handled very well in process algebras. In CSP, parameters can be defined for a
limited data modelling. The Calculus of Communicating Systems (CCS) [Mil80] is another example of a
process algebra.

2.1.1 An Example of a program in CSP

In this example, the door of a lift can be opened or closed, as exemplified by the type DoorState and there
are four possible events in which the lift may engage i.e. up, down, open and close.

datatype DoorState = opened | closed

channel up

channel down

channel open

channel close

9

10 CHAPTER 2. BACKGROUND

INITIAL_LIFT = LIFT(0,closed)

LIFT(floor,doorState) =

(floor < 5 and doorState == closed) &

(up -> LIFT(floor + 1, doorState)) []

(floor > 0 and doorState == closed) &

(down -> LIFT(floor - 1, doorState)) []

(doorState == closed) & (open -> LIFT(floor,opened)) []

(doorState == opened) & (close -> LIFT(floor,closed))

There are a number of efforts in which the process algebras and state-rich formal languages are mixed together
to gain benefits from both paradigms. This is necessary for the systems that have both data and behavioural
requirements. Some of these examples are CSP|B [ST05], Z with CSP [MS01], Z with CCS [GS97] and
many more. Circus is a specification language that combines Z, CSP and refinement calculus constructs. The
main difference between Circus and other ones is that the languages, i.e. Z and CSP, are mixed freely in a
specification. A Circus program consists of a sequence of paragraphs. These paragraphs can be a: Z paragraph,
channel or channel set definition, or a process declaration. A process paragraph may contain a Z paragraph, an
action definiton or a name set definition. The process paragraph is started and ended with the keywords begin
and end.

2.1.2 Example of a Specification in Circus

DoorState ::= opened | closed

channel up,down,open,close

process Lift =̂ begin
state

LiftState

floor : N
doorState : DoorState

InitLift =̂ (floor := 0; doorState := closed)

Lift =̂ ((floor < 5 ∧ doorState = closed)& up→floor := floor+1)
2 ((floor > 0 ∧ doorState = closed)& down→floor := floor−1)
2 (doorState = closed & open→doorState := opened)

2 (doorState = opened & close→doorState := closed)

• InitLift; µ X • (Lift; X)

end

If the examples of CSP and Circus are analysed critically, there are apparent differences between the two,
among which a few are discussed here. In the lift example of CSP, the process INITIAL_LIFT is initiated
with the call to process LIFT by passing parameters to it with some initial values, e.g. LIFT(0, closed).
On the other hand, in the Circus example, the state variables defined by the Z schema LiftState are initialized
with assignment statements in the process InitLift. Furthermore, the same difference appears in the guarded
commands of actions in a Circus specification, where after making a decision about a state of the variable e.g.
floor < 5, the state variables changes its state being assigned an expression, e.g. floor+1. On the other hand,

2.1. THE Z NOTATION, CSP AND CIRCUS 11

CircusProgram ::= CircusPara∗

CircusPara ::= channel CDecl
| ProcDecl

CDecl ::= N+ | N+ : Expr
ProcDecl ::= process N = ProcDef
ProcDef ::= CircProc
CircProc ::= begin PPara∗ state ParaPPara∗ •Action end

| Comm→ Action | Pred & Action | Action\CSExpr
| Proc; Proc | Proc 2 Proc | Proc u Proc
| Proc |[CSExpr‖CSExpr]|Proc
| Proc |[CSExpr]|Proc
| Proc ||| Proc
| Decl•Proc

(
Expr+

)
| (µ N•Decl•Proc)

(
Expr+

)
| 2Decl•Proc
| uDecl•Proc
| ||| Decl•Proc

CSExpr ::= {| N∗ |} | N | CSExpr∪CSExpr
| CSExpr∩CSExpr | CSExpr\CSExpr

Figure 2.1: BNF Syntax of Circus Processes

in the CSP world, the same operation is implemented by passing parameters e.g. LIFT(floor + 1,

doorState).

The BNF Syntax for Circus processes and actions are shown in the figures 2.1 and 2.2. These syntax trees are
simplified versions. The complete version can be seen in [OCW09]1. In the BNF syntax of Circus processes,
CircusPara∗ and PPara∗ denote a possible empty list of elements of the syntactic category CircusPara of
Circus paragraphs and PPara of process paragraphs. The complete BNF representation of Circus syntax also
includes the categories SchemaExp, Exp, Pred and Decl to show the schema expressions of Z, expression
lists, predicates and declarations.

N+ is used here to indicate a non-empty list of Z identifiers N. In the CircProc definition, state defines the state
variables of the specification. The process definition is enclosed in the keywords begin and end. The Circus
processes can be: a prefix action i.e. where a communication is performed followed by an action depicted as
Comm→ Action; A guarded action where a predicate is checked for taking an action depicted as b & Action;
a hiding action Action \ CSExpr in which members of channel sets included in CSExpr are kept hidden while
performing an action; a sequential composition Proc ; Proc where a process is followed by another process; an
external choice between two processes Proc 2 Proc; an internal choice between two processes Proc u Proc;
the processes are put in parallel with each other by Proc |[CSExpr‖CSExpr]|Proc; and the interleaving of the
processes where none of the members of channel sets are common to both processes, Proc ||| Proc. The BNF
syntax of Circus actions also includes: the basic constructs of CSP i.e. Skip (Do nothing), Stop (termination)
and Chaos (depicting chaotic behaviour of the program); the assignment command (N := e) where a variable
is assigned an expression; the conditional between two actions i.e. if a boolean b is true, perform action on the
left of conditional otherwise perform action on the right side of the conditional (Action CbB Action); and µ

N • Action depicts a recursive call to an action.

1The typographical style of BNF syntax here is kept same as in the original cited work.

12 CHAPTER 2. BACKGROUND

CircusPara ::= N =̂ ActionDef
ActionDef ::= Action

Action ::= Skip

| Stop

| Chaos

| Comm→Action
| b&Action
| Action u Action
| Action 2 Action
| Action; Action
| Action |[s1 | {| CS |} | s2]|Action
| Action\CS

| N := e
| ActionCbBAction
| µ N•Action

Comm ::= NCParameter∗

CParameter ::= ?N |!e | .e

Figure 2.2: BNF Syntax of Circus Actions

2.2 Introduction to the Available Tools

Community Z Tools – CZT: CZT 2 is an open-source Java framework to build formal method tools for Z and
Z dialects. The specifications in LaTeX, Unicode and XML formats can be parsed, typechecked, transformed,
animated and printed using the formal method tools included in CZT. The supported languages of the latest
version of CZT are Z, Object Z and Circus. A limited subset of Z is supported by the animator available in the
tool.
The paper [MFMU05] shows how to support new extensions of Z within the CZT framework while minimising
the effort required to build a new Z extension. A variety of reuse mechanisms are used in the CZT framework.
These mechanisms are: generation of Java code from hierarchical XML schemas; XML templates for shared
codes; and several design patterns for maximising reuse of Java code.

Failure Divergence Refinement – FDR: FDR [For05] is a CSP based model-checking tool. More precisely,
FDR can be described as a refinement checker. Refinement is a term for the process of incremental implemen-
tation of the system from the specification. In general, usually it is not possible to construct a program directly
from its specification, then prove it to be correct. Instead, the program should be constructed in small steps,
each time adding more detail. Since the changes are small, it is relatively easy to prove at each stage that the
implementation satisfies the specification. If S is a specification and P is a program then Pw S means that the
program P refines the specification S. The FDR tool does refinement checking based on the traces, failures and
failures-divergence models.
Saoithin: Saoithin [But10] is a theorem prover designed to support the Unifying Theories of Programming
(UTP) framework. It is based on the UTP literature [HH98] so that it can support the proofs containing higher
order logic, alphabets and “programs as predicates”. It mainly deals with proofs in equational style.

2http://czt.sourceforge.net/manual.html

2.3. UNIFYING THEORY OF PROGRAMMING 13

2.3 Unifying Theory of Programming

While mixing two different languages, the unification of the semantics of the languages is a matter of concern.
So, there must be a unification framework so that the two worlds of these languages could be mixed together.

The Unifying Theories of Programming (UTP) [HH98] proposes a unification of different programming paradigms
based on the theory of relations. The unification allows the exploration of different paradigms. The relation
between the paradigms can result in mappings that relate specifications in abstract models to programs in more
concrete models; in UTP, the refinement relation is simply a reverse logical implication. The semantics of
Circus in UTP framework are explained in detail in [OCW09]. Furthermore, the UTP semantics of CSP are
discussed in [CW04].

2.4 The UTP Semantics of CSP and Circus

In UTP, the language semantics are described using observation variables with their undashed and dashed
versions i.e. initial and final observation variables. Each programming construct is given by a relation between
the initial and final observation variables.

1. ok,ok′ depict the successful start and termination of a program.

2. tr, tr′ depict the initial and final traces (list of events) of a program.

3. ref ,ref ′ depict the initial and final refusal set for a program.

4. wait,wait′ depict the waiting status of a program for an interaction with its environment.

The theory being studied has three essential parts:

1. Alphabets: the collection of names for the theory.

2. Signature: the set of syntax rules.

3. Healthiness Conditions: identification of important properties. Each healthiness condition captures an
important fact of the computational model of the theory under study.

In design theory of UTP, P ` Q depicts a design with pre-condition P and post-condition Q. It is defined as:

(P ` Q) = (ok∧P⇒ ok′∧Q)

So, the design definition states that if a program starts in a state satisfying P, then it will terminate, and on
termination Q will be true.

2.4.1 Healthiness Condition: Reactive Processes

Healthiness Condition Meaning

R1(P) = P∧ tr ≤ tr′ A process does not change the past history of events.

R2(P) = ∃s • P[s,sa (tr′− tr)/tr, tr′] The behaviour of a reactive process is oblivious to what has gone before.

R3(P) = IIreaCwaitBP If previous process is unfinished, then P should not start.
Here, IIrea =̂ DIV ∨ ok′ ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref

and DIV =̂ ¬ok ∧ tr ≤ tr′

R = R1 ◦ R2 ◦ R3 The composition of above three healthiness conditions is R.

14 CHAPTER 2. BACKGROUND

2.4.2 Healthiness Conditions: CSP Processes

Healthiness Condition Meaning

CSP1(P) = P∨ (¬ok∧ tr ≤ tr′) The extension of the trace is the only guarantee on divergence.

CSP2(P) = P; J A process may not require non-termination.

CSP3(P) = SKIP; P A process does not depend on ref .

CSP4(P) = P; SKIP A terminating process does not restrict ref ′.

CSP5(P) = P ||| SKIP CSP5 states that a deadlocked process that is refusing
some events offered by the environment is still deadlocked in an environment

that offers even fewer events.

In CSP2, J = (ok⇒ ok′)∧ tr′ = tr∧wait′ = wait∧ ref ′ = ref .

2.4.3 Healthiness Conditions: Circus Processes

Healthiness conditions for Circus processes are explained below:

C1(A) = A; Skip

This condition is similar to CSP4 which states that the value of the variable ref ′ has no relevance after termi-
nation.

C2(A) = A |[v | /0]|Skip

This condition is similar to CSP5.

The third healthiness condition for Circus processes, C3 states that the precondition of a process expressed as
a reactive design contains no dashed variables.

C3(A) = R(¬Af
f ; true ` At

f)

2.4.4 Alphabets of Circus in UTP Semantics

According to [OCW09], the UTP semantics of Circus contains the alphabet set of okay,wait,ref and tr with
their dashed versions. In order to denote the state variables, the predicate v′ = v is used to denote x′1 = x1 ∧
. . . ∧ x′n = xn.

2.4.5 Guarded Action in Circus : An Example

The semantics of Circus actions are given in [OCW09]. One out of the Circus actions i.e. a guarded action
has its semantic explanation provided here for an example.

The guarded action: g & A deadlocks if the guard g is false and performs action A if g is true.

In the definition of the guarded action below, A[b/ok′][c/wait] is abbreviated as Ab
c . So, Af

f depicts A[false/okay′][false/wait].
It means that the observation variables ok′ and wait are false. Similarly, At

f = A[true/ok′][false/wait], meaning
if A is not waiting for a previous process to finish, then it does not diverge.

g&A = R
((

g⇒¬Af
f

)
`
((

g∧At
f
)
∨
(
¬g∧ tr′ = tr∧wait′

)))

2.5. DEALING WITH Z SCHEMAS AND ASSIGNMENT COMMAND IN CIRCUS 15

2.5 Dealing with Z Schemas and Assignment Command in Circus

A simplified presentation of the syntax of both Circus and CSP together was shown on page 4 in figure 1.2.
In our work, we shall view a process as a collection of action definitions, along with a designated action called
the process main action. The action definitions associate a name and possibly some formal parameters with an
action body, whose syntax is basically that of CSP processes or Circus actions, including calls by name to
actions. The Circus action syntax covers those of CSP, with the addition of an assignment statement and a
state-partitioning parallel construct.

As Circus descriptions freely mix state information through Z and behavioural aspects through CSP actions,
so dealing with these two things are of importance. Below, we will describe the handling of Z schemas and
assignment commands in previous works.

2.5.1 Z Schemas in Circus

The denotational semantics for schema expressions in [Oli05] is based on a conversion rule given in [Cav97]
which transforms the schema expressions into specification statements. The schema expression is first nor-
malised. In Circus, the Z notations for input (?) and output (!) are syntactic sugar for dashed and undashed
variables, respectively. So, the schema contains actual undashed variables (udecl), dashed variables (ddecl’)
and the predicate explaining the effect of the schema. The definition of schema expression in this work is as
follows:
Definition: [udecl; ddecl′ | pred] =̂ ddecl : [∃ddecl′ •pred,pred]

In [Oli05], the laws of schemas describe the interaction between the Z and CSP part of a Circus specifications.
The functions named usedV and wrtV are additionally defined to specify the laws. The usedV function gives
the set of used variables i.e. the variables which are only read, but not written. The wrtV function gives the set
of variables which are written. Furthermore, in case of schema expressions, the wrtV function gives the set of
variables that are constrained by the schema. v′ is used the describe the list of dashed v′1, . . . ,v

′
n free variables

(DFV) of schema expressions SExp. Similarly, v′ : T notations describe the list of variables with their respective
types, defined in the schema expression. The definition for wrtV function is given as:

wrtV(SExp) = {v′ : DFV(SExp) | SExp 6= (∃v′ : T •SExp) ∧ [v,v′ : T | v′ = v]• v}

Here, all the dashed free variables are hidden first and then they are declared again. Their types are constrained
to be of the same type as defined in the schema. If the schema expression is changed, it means that their actual
values have been changed and these should be in the set of written variables.

2.5.2 Dealing of Assignment Command

In [Oli05], for assignment command, the semantics suggest non-divergence resulting a successful termination,
leaving the trace unchanged. The assignment sets the final value of the variables in the left hand side to their
new values. Remaining values, denoted by u in the definition, remain unchanged. The symbol u is defined as
(u =̂ v \ {x1, . . . ,xn}). The definition for assignment command is as follows:

x1, . . . ,xn := e1, . . . ,en =̂ R(true ` tr′ = tr ∧ ¬wait′ ∧ x′1 = e1 ∧ . . . ∧ x′n = en ∧ u′ = u)

2.5.3 Mechanical Abstraction of CSPZ Processes

In [EL02], a mechanical strategy to transform an infinite CSPZ process, composed of Z and CSP constructs
into a form suitable for model-checking, was proposed. To allow the infiniteness of CSPZ process, two theories
are integrated together: one is data independence of the behavioural aspects and second is abstract interpretation
of the data structure aspects. The goal defined in the work [EL02] was to propose a strategy for analysis of
infinite CSPZ processes in which the user intervenes only in the theorem proving step. The strategy is based on

16 CHAPTER 2. BACKGROUND

the integration of model checking and theorem proving. The strategy was a combination of data independence
and abstract interpretation. In the proposed strategy of this work, the authors had considered data independent
CSPZ processes and data dependencies in the Z part using abstract interpretation.

2.6 CSP Normal Forms

Chapter 11 of [Ros98] provides information about getting normal forms of CSP. Normalisation, in general,
refers to the process of re-arranging the both sides of an equation to have a particular shape. Likewise, CSP
also has a normal form. This is required for the use of CSP in FDR with better performance. The normal form
of CSP has the following form:

Stop | Skip | Chaos |u(2 (g&e→NF))

This equation depicts that the internal choice of external choices of guarded prefix actions leads to other normal
form expressions.
The normal form of CSP can be achieved by looking at the laws of CSP.

• Non-determinism distributes through everything.

• Step laws allow prefixes to be pulled out of other language constructs.

• Step laws can eliminate parallel and hiding.

For getting a normal form of CSP, the start of the process is getting the head normal form “hnf” (Ch 11, p287)
[Ros98].

• DIV is in hnf.

• SKIP is in hnf.

• ?x : A→P is in hnf.

• (?x : A→P)2 SKIP is in hnf.

• If each Qi is a hnf, then uN
i=1 Qi is in hnf.

Reducing an arbitrary P into hnf is as follows:

hnf (?x : A→P) =̂ ?x : A→P

hnf (Q u R) =̂ hnf (Q) u hnf (R)

hnf (STOP) =̂ ?x : {}→P

hnf (µ N •F(N)) =̂ hnf (µ unwind(µ N •F(N)))

hnf (Q⊕R) =̂ uN
i=1 (?x : Ai→hnf (Q))⊕ (?x : Bi→hnf (R))

2.6.1 A Similar Work on Normalisation of CSP Processes

The paper [BM10] provides the information on the unfolding process for CSP operators. Unfolding is a special
case of parametric recursion and unfolding of these processes i.e. 2 and ||| is achieved through reduction to a
normal form. [BM10] demonstrated the complementary features of CSP and bisimilarity features of CCS.

CSP defines a failures preorder which combines specification and implementation in a single syntactic frame-
work. CCS defines process as an equivalence class keeping the order in which the non-deterministic choices
are made. If bisimilarity is shown by ∼ and we have P1 ∼ Q1 and P2 ∼ Q2 and there is a CSP operator OP

2.7. SUMMARY 17

then OP(P1,Q1) ∼ OP(P2,Q2). The operators defined in [Hoa04] not only worked for failures preorders but
also satisfied the bisimilarity equivalence. As a result, the theory of CCS and CSP can be combined. The
equivalence introduced by unfolding is closely related to bisimilarity. Roscoe’s CSP [Ros98] defined head
normal forms. Two processes are failures’ equivalent if their expressions in normal forms are equivalent.

Unfolding of the CSP operators in [BM10]:
If the symbol ↪→ stands for unfolding operator, then the following are the equations for unfolding of the

CSP operators suggested by [BM10]:

F ||G ↪→ H where H(z) =


F(z) ||G (z ∈ X\Y)
F ||G(z) (z ∈ X\Y)
F(z) ||G(z) (z ∈ X∩Y)

 and H(τ) = F(τ) ||G∪F ||G(τ)

F2H ↪→ H where H(x) = F(x)∪G(x), (x ∈ X) and H(τ) = F(τ)2G∪F2G(τ)

F |||G ↪→ H where H(µ) = F(µ) |||G∪F |||G(µ), (µ ∈ X∪{τ})

F \Z ↪→ H where
H(x) = F(x)\Z, (x ∈ X \Z)

and H(τ) = F(τ)\Z∪
⋃

x∈X∩Z F(x)\Z

F u G ↪→ H where H(µ) = F(µ)∪G(µ) (µ ∈ X∪{τ})

2.7 Summary

Here, we conclude this chapter and summarise what has been covered in this chapter. We started with a
brief introduction to the Z notation, CSP and Circus. The basic structure of CSP and Circus programs was
elaborated through an example process definition. Then, a key subset of Circus and CSP abstract syntax
trees were described. A brief introduction to the available tools for the target languages was given. Then,
we introduced the Unifying Theories of Programming (UTP) framework and described how the semantics of
programs can be described through this framework. Here, the observation variables and healthiness conditions
of Circus and CSP were introduced. Then, very specific topics related to this research were introduced, for
example, handling Z schemas and assignment commands in Circus, and the description of CSP normal forms.
The following chapter gives state of the art of the thesis.

18 CHAPTER 2. BACKGROUND

Chapter 3

State of the Art

As the name of the chapter suggests, this chapter describes the state of the art section of our work. First, it
describes the similar work available in the literature. Then it suggests what we are proposing in this thesis.
Later on, it gives a whole picture of some of the interesting work related to state-rich Circus. In the last section
of the chapter, we describe possible case-study areas for our work.

3.1 Related Work

The paper [OC04], also described in Chapter 6 of the PhD of M. Oliveira [Oli05] suggested a tool named JCir-
cus. This work provided the translation rules for automatically generating the Java code from a Circus specifi-
cation. The translation strategy was suggested on the basis of a JCSP library, providing the implementation of
CSP constructs of Circus. In [OC04] and Chapter 6 of [Oli05], the implementation of multi-synchronisation
on a channel was provided by a class GeneralChannel.

Simple Example of a Translation Rule

In case of a Java program, the rule for internal choice is to use RandomGenerator class to produce a pseudo-
random number, which is compared in a switch statement to pick a random process.

|[Proc1 u . . . u Procn]|Proc =

int choosen = RandomGenerator.generateNumber(1,n);

switch(choosen) {

case 1: { |[Proc1]|Proc } break;

. . .

case n: { |[Procn]|Proc } break;

}

There are around forty translation rules suggested in [Oli05] to cover a significant amount of Circus to trans-
form into their Java versions. These translation rules were implemented in [dF05]. This work ended up in the
first version of JCircus. The tool had a simple graphical user interface. The Circus specification written in
LaTeX was given as input by specifying the folder containing it. The next two fields specified the project place
holder where the output, generated Java code, should be placed. By hitting the translate button, the output
project folder was generated by the translator. The work presented in the paper [dF05] was the starting point of
our work of implementing the translation from Circus to CSPM as this provided us the basis for parsing Circus
specifications.

19

20 CHAPTER 3. STATE OF THE ART

The basic architecture of JCircus is shown in figure 3.1. JCircus contains three main modules. The parser
is the first one, which receives a LaTeX file containing the specification, parses it, and creates the AST that
represents the specification. The AST is given as input to the type checker, which performs type inference,
checks for type errors, and annotates the AST nodes for expressions with their types. The third module is the
translator, which is the contribution of [dF05]. The TranslatorVisitor class contains all the methods to
convert Circus processes to their Java equivalent.

Figure 3.1: The basic architecture of JCircus classes. Figure 4.4 of [dF05]

The second version of JCircus, named JCircus 2.0 was suggested in [BO12]. The difference between JCSP
and the Circus implementation of concurrency had imposed restrictions on the translation strategy in [Oli05]
and, as a result in the developed tool JCircus. The improvements in JCircus 2.0 listed by the authors of [BO12]
are: the improved translation strategy to allow multiway synchronisation; complex structure of communications
on channels and translation involving mix of parallel and interleaving constructs. The performance analysis
between the first version and second one is also provided in [BO12].

In our work, to establish the link between a Circus based tool and a CSP based tool, the specifications written
in one domain are to be translated in to the other.

Let us take an example of a simple process, by considering figure 1.3 shown on page 4. In the case of a
Circus process, x is assigned value in the specification. While doing the same in CSPM , the value is passed
as a parameter. In the case of this particular example, we need to extend UTP semantics to cover parameteric
processes.

The main difference between previous works and ours is that others translate the variables into processes with
set and get channels [CH13, Sch99], while in our approach, we turn variables into parameters.

Translating from Circus to CSP requires finding a way to model the effect of the variable assignment of the
former in the latter. One possible approach is to model each variable as a process with get and set channels
[CH13, Sch99] e.g.:

Var(n,v) =̂ get.n.v→Var(n,v)

2set.n.v′→Var(n,v′)

However, every expression in x := e has to be rendered as a process that performs an appropriate sequence of

3.1. RELATED WORK 21

gets to evaluate e, to v (say), and then performs a set.x.v event. In addition, the interpretation of A L||R B is,
that A may only modify variables in L, which is disjoint from R, which itself determines what B is allowed
to modify. Both A and B can read all variables, but cannot see any modifications made by the other process.
Operationally, A and B run on local copies of the starting variable state, and the changes each has made only get
merged together when both have terminated. This would require us to have explicit state-copying and merging
processes acting as bookends to every parallel construct.

Instead, we are going to adopt the approach of turning assigment variables into parameters of action definitions,
so a Circus fragment like

A =̂ x := y+1 o
9 B

is translated to

A(x,y) =̂ B(y+1,y).

Now, we describe some of the literature which contains similar efforts in the past.

In [YP07], the automatic translation from ‘Combined B’ and CSP to Java was proposed. The authors proposed
the translation rules of the given specifications to multi-threaded Java. This was achieved using the extended
JCSP channel classes. A prototype tool was presented. This tool was an extension of the ProB tool. [YP07]
gave a working example and then the formal verification of the translation was provided.

In [PS04], a tool for conversion of a subset of CSP to Handel-C code is presented. Handel-C is a C like
language and is portable to produce program files to upload on FPGAs. The output script is in a functional
language style. This tool is not successful for every script of CSP but two working examples were provided
in the paper which were successfully being loaded on FPGAs. In short, the contribution of [PS04] was the
automatic generation of a Hardware Description Language (HDL) from a CSP program.

In [Bro08], special types called monads are used to express the concurrent CSP processes within Haskell -
a lazy functional programming language. This resulted in a new CSP library for Haskell known as Commu-
nicating Haskell Processes (CHP). In [Bro09], the authors presented the strategy to generate CSP models of
Haskell implementations. These Haskell implementations are in the CHP language, proposed in [Bro08].

In [BH99, BH01], an Occam-based programming language was used for the automatic compilation of high-
level programs to low-level circuits. Also, the compilation process was verified which ensured its correctness.
The compiler was written in Prolog. The translation used for assignments was to convert then into a hardware
latch with a delay.

In [VG08], descriptions of concurrent systems written in the RAISE Specification Language were translated to
CSPM . The need for the translation was to use the FDR toolkit to model-check RSL specifications. In [VG08],
it was shown that this translation is a strong bisimulation. Properties of RSL specifications could be inferred
using FDR generated results.

In [TG08], a translator was developed to convert RSL specifications to CSPM . Overview of semantic and
syntactic differences between two languages were discussed. A translation subset was defined, limited to only
those constructs in RSL that matched those in CSP.

Now, we mention some of the other literature related to Circus and CSPM .

Paper [BSW07] presents a generic framework of UTP theories for describing systems whose behaviour is char-
acterised by regular time-slots, compatible with the general structure of the Circus language. The slotted-Circus
framework in [BSW07] is parameterised by the particular way in which event histories are observable within
a time-slot, and specifies what laws a desired parameterisation must obey in order for a satisfactory theory to
emerge. Papers [GB09b, GB09a] are related to an ongoing work that describes a complete denotational se-
mantics, in the UTP framework, of slotted-Circus. Slotted-Circus is a generic framework for reasoning about

22 CHAPTER 3. STATE OF THE ART

discrete timed / synchronously clocked systems. The key result presented in [GB09b] is a comprehensive se-
mantics of the entire language that addresses various semantics issues, This work laid foundations for its future
extensions, particularly towards prioritized choice.

In [OCW06], the authors mechanised the combination of different programming paradigms in a theorem prover,
ProofPower-Z. This work included the theories of alphabetised relations, designs, reactive and CSP processes.
The authors targeted Circus for the mechanisation of the unification theory [HH98]. In the paper [SCS06],
object-oriented programming concepts were studied in languages like Java and C++ within the UTP frame-
work. By using the combination and extension of theories of designs and higher-order procedures, the authors
described subtyping, data inheritance, (mutually) recursive methods, and dynamic binding in the UTP. Paper
[CHW06] described a theory of pointers and records providing a representation for objects and sharing in lan-
guages like Java and C++. The authors defined the theory as a restriction of the general theory of relations, in
which terminating and non-terminating programs are not distinguished from each other. So, the authors linked
it with the theory of designs. This provided a basis for reasoning about the correctness of pointer-based sequen-
tial programs. The work in [CHW06] gave the semantics of an object-oriented language. Here the constructs
for specification of state-rich concurrent systems were integrated.

The work [BGW09] investigated the interactions between program variable state visibility and communication
behaviour in state-rich CSP-like processes, using the UTP framework. This gave a result that, if the variable
state is visible during the wait state of communication, then ordinary programs put together in a normal way
ended up with miraculous behaviour – to be avoided in a theory of feasible programming.

3.2 Possible Case Study Area

The description of background reading in the following subsection belongs to the possible case study area of
my PhD work.

3.2.1 Verification of Flash Memory Behaviour

After the start of the ‘Grand Challenge in Computing’ (GC6) [HM05] project with a special focus on mission
critical filestores, a number of efforts have been made to formalise flash memory and filestores. Paper [BW07]
gave the Z notation for a formal model of NAND flash memory. The model describes the internal architecture
of NAND flash memory with some abstractions. Paper [BFW09] was a step ahead towards mechanising the
formal model of NAND flash memory. The Z/Eves Theorem Prover has been used for describing the state
model and initialisation operation of NAND flash memory. Papers [Cat08, BOC09] are about modelling the
flash memory behaviour using CSP. In these works, Open NAND Flash Interface (ONFi) specifications were
modelled. Instead of writing CSP directly, the ONFi’s finite state machines’ specifications were converted into
intermediate form using State Chart XML (SC–XML). This XML was then automatically converted into CSP
via XML Transforms (XSLT).

Paper [MAF08] reports on the use of Alloy and HOL (a theorem prover) to validate and verify a VDM model
of the Intel Flash File System Core specification, as a part of the ‘Verifiable File System’ (VFS) project1.
Paper [KJ08] describes the formal modeling and analysis of a design for flash-based filesystem in Alloy. The
authors modelled the basic operations of filesystem as well as other features that are crucial to NAND flash
hardware, such as wear-leveling and erase-unit reclamation. Papers [KCKK08b, KCKK08a, KK09, KKK08]
document experiments in the formal verification of OneNANDTM Flash Memory, which is a trademark of
Samsung Electronics. Flash memory is an essential part of mobile devices, so in order to operate mobile devices
successfully, it is essential that flash memory be controlled correctly through the device driver software. In
[KCKK08b, KCKK08a, KK09, KKK08], Kim et. al. formalized the multi-sector read operation of OneNAND

1http : //wiki.di.uminho.pt/twiki/bin/view/Research/VFS/WebHome

3.2. POSSIBLE CASE STUDY AREA 23

flash memory using NuSMV, Spin, and CBMC model checkers to verify the correctness of the read operation.
Results obtained from model checking techniques demonstrate the feasibility of using these techniques to verify
the control algorithm of device driver. Furthermore, Concolic (Concrete + Symbolic) testing was applied for
the verification of the Multi-Sector Read Operation in the flash control software.

Flash Device Behaviour Modelling Extension

As an intial case study and to have hands-on experience on CSPM and the model checker FDR, CSP models
for flash device behaviour presented in [Cat08, BOC09] were extended. This work has been published in
conference proceedings [BB10b]. The body of the paper is included in chapter 4. The achievements were:

1. Upgrading the Open Nand Flash Model (ONFi 1.0) CSP sources to ONFi 2.1.

2. Tests done on the model with more rigorous testing using full Failure-Divergence Refinement. In the old
version, the testing was done with the weaker testing technique of trace refinement only.

3. By pushing the use of hiding deeper into the model, as well as the compression techniques available, the
state-space of the model was much reduced.

3.2.2 Formal Verification of Cache Coherency Protocols

In the distributed and shared memory systems, the performance of the system is very dependent on the ‘co-
herency’ of cache memories. Cache memory’s purpose is to place or access the most frequently used data
through the cache instead of accessing the data from the main memory each time. In shared and distributed
memory architectures, a number of caches along with a shared bus are present. As a consequence, the need
for ‘coherent’ data placed in each cache is obvious so that most updated copy of data is available to every
processor. This problem is resolved through ‘Cache Coherency Protocols’. The correctness of these protocols
is of key importance. The papers [ARA04, CMP04, CMW90, DNA05, EK03, FS96, NG02, PD97, QGPY08,
She00, SPH+00, SD95, WE04] are some previous works about proving the correctness of cache coherence
protocols.

Use of SimpleCircus for Cache Coherency Protocol Specification

The notation of SimpleCircus is used to specify a cache coherence protocol given in [FS96] on page 89, section
9.2. This provided the future use of the SimpleCircus notation for such protocols’ specification.

3.2.3 Formal Verification of Hardware Protocol – AMBA Bus Protocol

For high performance data transfers among the IP cores in the System-on-chip (SoC) designs, different bus
protocols are used. The work [RMK03] is a case study in the formal verification of a SoC bus protocol named
the Advanced Micro-controller Bus Architecture (AMBA) protocol from ARM. The particular emphasis of this
work was the formal specification of the AMBA protocol. The crucial design invariants were verified using the
SMV model checker. Pipelining and split transfer in the AMBA protocol gave scenarios which could not be
analysed with informal ways of reasoning. Roychoudhury et al [RMK03] detected a potential bus starvation
scenario in the AMBA protocol.

3.2.4 Formal Verification of Networking Protocols

An interesting work in the formal verification of networking protocols is [ISK06]. A portion of the Dynamic
Host Configuration Protocol (DHCP) was modelled and verified in [ISK06]. The selected part of DHCP was the

24 CHAPTER 3. STATE OF THE ART

assignment of new IP addresses to newly arriving hosts. For modelling and verification PROMELA (PROcess
Meta LANguage) was used in SPIN. SPIN provides verification capability for a number of communication
protocols either by C program generation or by random simulations. In [ISK06], analysis and verification of
deadlock, livelock-freedom, and improper termination of the DHCP protocol under constraints of message loss
and arbitrary errors was done. The much needed properties of the protocol were also verified using linear
temporal logic (LTL). The properties verified were message integrity and conflict handling in allocated IP
addresses. The first property was proved error-free while the second property was violated. Another interesting
work is [BOG02] in which authors used HOL, an interactive theorem prover, with SPIN to prove key properties
of a distance vector routing protocol.

3.3 Summary

This chapter described the state of the art of our thesis. An important point made here was the selection of
our approach of turning variables into parameters, while others translate the variables into processes with set
and get channels or clocked hardware. Then, we gave a detailed overview of the related work available in the
literature. Then, a possible case study area for our work was discussed in detail. We chose here a flash device
behaviour CSPM model. This resulted in an initial case study, which is the topic of the next chapter.

Chapter 4

Flash Work – An Initial Industrial Case
Study

The material in this chapter is based on [BB10b], published and presented at the International Conference
on Frontiers of Information Technology, 2010, held at Islamabad, Pakistan. In section 3.2.1 on page 22, we
described the possible case study areas for our work. In initial stage of our research, the case study mentioned
in this chapter was carried out. This provided us hands-on experience with the Failures-Divergence Refinement
(FDR) toolkit – a model checker for CSP.

4.1 Introduction

We present our experience of working with the Failures-Divergence Refinement (FDR) toolkit while extending
our modelling of the behaviour of Flash Memory. This effort is a step towards the low-level modelling of data-
storage technology that is the target of the POSIX filestore mini-challenge. The key objective was to advance
previous work presented in [Cat08, BOC09] to cover the full Open Nand-Flash Interface (ONFi) 2.1 model.
The previous work covered a sub-model of the mandatory features of ONFi 1.0. The FDR toolkit was used for
refinement/model-checking. In addition to the compression techniques available in FDR, we also experimented
with FDR Explorer - an application-programming interface (API) that allowed us to get a better picture of FDR
performance. This paper summarises the progress we made, and the limits we encountered. We are now able
to verify many of the operations in ONFi 2.1 model using full Failures-Divergence refinement checking, rather
than just trace refinement. Through the use of compression techniques available in the FDR toolkit and in
particular by hiding the events deeper in the model, we were able to get compression of the state-space. The
work also reports the number of attempts to compile the full ONFi 2.1 model.

The “Grand Challenge in Computing” [Hoa03] on Verified Software [Woo06, HMLS09], has a stream fo-
cussing on mission-critical filestores, as required, for example, in space-probe missions [JH05]. Of particular
interest are filestores based on the NAND Flash Memory technology, very popular in portable datastorage
devices such as MP3 players and datakeys.

This paper follows on from initial formal models of NAND Flash Memory, reported in [BW07] and then
[BOC09] based on the specification published by the “Open NAND Flash Interface (ONFi)” consortium
[H+06]. The first two works looked at the formal model of flash memory in terms of its internal data stor-
age architecture, and the top-level operations that manipulate that storage.

The work in [BOC09] reports on modelling and analysing the finite-state machines in [H+06] that describe
the internal behaviour of flash devices. The modelling was done using machine-readable Communicating
Sequential Processes (CSPM) [Ros98] and the FDR2 tool [For05] for the analysis, and was reported in detail

25

26 CHAPTER 4. FLASH WORK – AN INITIAL INDUSTRIAL CASE STUDY

in an M.Sc dissertation [Cat08]. The works [Cat08, BOC09] also describe a methodology for model data-
entry based on the “state-chart” dialect of XML (SCXML) using XSLT to translate into CSP. Using XSLT
to convert the intermediate XML to CSP saved time and reduced error-proneness in the semi-automatically
generated CSP code. The key objective of recent work was to advance the work presented in [Cat08, BOC09]
to cover the full ONFi 2.1 model [H+09] and to get stronger and more complete results from FDR.

In the next section (§4.2) we describe the relevant aspects of ONFi flash devices, and look at related work
(§4.3). We then proceed to present the development of the CSP model (§4.4), the analyses performed with it
(§4.5) – main contribution lies in this section, and conclude (§4.6).

4.2 Background

A flash memory device is best viewed as a hierarchy of nested arrays of bytes/words, plus additional state and
storage facilities at various levels. At the bottom we have pages, arrays of bytes, which comprise the basic
unit for both writing (programming) and reading (operations PageProgram and Read). The next level up is
the block, an array of pages, that is the smallest level at which erasure (operation BlockErase) can take place.
Blocks are aggregated together under the control of a logical unit (LUN), which is the smallest entity capable
of independent (concurrent) execution. A LUN also has one or more local registers the same size as a page
(page-registers), used as temporary storage when transferring data to/from block pages, and a status register

recording key information about ongoing operations, or those just completed. The status register has 8 bits,
of which only bit 6 (a.k.a “SR[6]”), is of interest, used to indicate the ready/busy status of a LUN. LUNs
are collected together into targets, which have their own means of communication off-chip. A physical flash
memory chip (or device) may have several targets, depending on the number of available I/O pins. This paper
focusses on the target level and below, with a particular emphasis on the interactions between LUNs and their
containing target.

4.2.1 Flash Memory Operations

The ONFi standard defines a collection of operations that are to be supported by flash devices. Some of
the operations are mandatory and must be provided in any ONFi-compliant implementation. The operations,
Read, PageProgram, BlockErase and ReadStatus, have already been introduced. The other operations include:
Change . . .Column operations that support access to part of a page; Reset to allow software to reset a device;
WriteProtect to direct LUNs to be locked/unlocked against changes; and ReadID and ReadParameterPage that
return data specific to a device such as manufacturer’s name, and sizing information.

Other optional operations are also specified, typically providing enhanced performance-improving features that
exploit the parallelism provided by the LUNs — in ONFi2.1 there are about 17 of these so we do not list them
here. Keeping the size of the model in mind, our CSP model comes in two versions, one covering only the
mandatory behaviour, whilst the other also includes the optional operations.

4.2.2 Host-Target Communication

We use the term host to refer to any entity interacting with a flash memory device. Most communication
between a host and target is mediated through a single bi-directional byte-wide I/O port, so the hardware
interface is essentially serial. Conceptually, four types of transfer take place across this port: Command Write
CW(opcode), a single byte denoting a command is sent by the host to the target; Address Write AW(addr), a
byte denoting part of an address is sent to the target; Data Write DW(byte), a data-byte is sent to the target; and
Data Read DR(byte), A data-byte is received from the target.

Executing a typical operation involves a series of transfers of the four types listed above, typically with some

4.3. RELATED WORK 27

T_RPP_ReadParams The target performs the following actions:
1. Request LUN tLunSelected clear SR[6] to zero.
2. R/B# is cleared to zero.
3. Request LUN tLunSelected make parameter page data

available in page register.
4. tReturnState set to T_RPP_ReadParams.

1. Read of page complete → T RPP Complete
2. Command cycle 70h (Read Status) received → T RS Execute
3. Read request received and tbStatusOut set to TRUE → T Idle Rd Status

Figure 4.1: ONFi Target State Example [H+09], Page 175.

Figure 4.2: ONFi Target State Example – SC-XML Code

waiting inbetween. For example, a Read operation involves the following (typical) initial series of transfers:

CW(readOpcode); AW(addr4); . . . ; AW(addr0); CW(confirm)

The host has then to wait whilst the addressed data is pulled from the relevant page into the selected LUN’s
page-register, as signalled by the LUN status register. LUN status can be read either directly via an output pin
(“hardware” status) or by performing a ReadStatus operation (“software” status).

4.2.3 The ONFi state machines

The internal behaviour of ONFi devices is described by two finite-state machines (FSMs) [H+09, §7], one
describing the behaviour of a target, the other capturing the actions of a LUN. An example state entry, for the
target state T_RPP_ReadParams (for the ReadParameterPage operation) is shown in figure 4.1. The box
at on the top-right describes the events that occur on entry to the state. The three rows below describe the
subsequent conditional behaviour in this state. The left of each row describes a input event or condition whilst
the right indicates the resulting state transition, with the conditions being evaluated in the order in which they
appear.

In figure 4.2, we show the SC-XML code for T_RPP_ReadParams state. In figure 4.3, we show the generated
HTML for T_RPP_ReadParams state. In figure 4.4, we show the generated CSPM for T_RPP_ReadParams
state. Here, it can be noted, that in CSPM , setting one parameter requires the whole parameter list to attach to
the calling action. Whereas, doing the same in Circus is much easier. Only a single assignment command sets
the value of the state variable.

4.3 Related Work

Formal model-checking techniques have been applied to the verification of the Samsung OneNAND flash de-
vice driver [KCKK08b], with particular emphasis on a multi-sector read operation implemented within the FTL.
The model-checkers explored were NuSMV, Spin and CBMC. The best tool was reported as CBMC[CKL04],
a SAT-solver based model-checker, that works directly with C source code. Follow-on work [KK09] described
the use of a concolic testing method applied to the multi-sector read operation for the flash memory. This

28 CHAPTER 4. FLASH WORK – AN INITIAL INDUSTRIAL CASE STUDY

T_RPP_ReadParams

Event: tl.tLunSelected!targRequest1.
Event: tl_setSR6.tLunSelected!false2.
isReadyBusy set to false3.
Event: tl.tLunSelected!targRequest4.
Event: tl.tLunSelected!retrieveParameters5.
tReturnState set to T_RPP_ReadParams6.

1. tl.tLunSelected readPageComplete -> T RPP Complete
2. ht_ioCmd.cmd70h -> T RS Execute
3. ht_read (if tbStatusOut==true) -> T_Idle_Rd_Status

Figure 4.3: ONFi Target State Example – Generated HTML from SC-XML

T_RPP_READPARAMS(tbStatusOut,tbChgCol,tCopyback,tLunSelected,tLastCmd,tReturnState,
 tbStatus78hReq,cmd,isReadyBusy,isWriteProtected,dataBit,addrReceived,lun0ready,
 lun1ready,intCounter,addr3Block,addr2Page,addr1ColH,addr0ColL) =
 tl.tLunSelected!targRequest -> tl_setSR6.tLunSelected!false ->
 tl.tLunSelected!targRequest -> tl.tLunSelected!retrieveParameters ->
 (tl.tLunSelected.readPageComplete -> T_RPP_COMPLETE(tbStatusOut,
 tbChgCol,tCopyback,tLunSelected,tLastCmd,T_RPP_ReadParams,
 tbStatus78hReq,cmd,false,isWriteProtected,dataBit,addrReceived,
 lun0ready,lun1ready,intCounter,addr3Block,addr2Page,addr1ColH,
 addr0ColL)
 []
 ht_ioCmd.cmd70h -> T_RS_EXECUTE(tbStatusOut,tbChgCol,tCopyback,
 tLunSelected,tLastCmd,T_RPP_ReadParams,tbStatus78hReq,cmd,false,
 isWriteProtected,dataBit,addrReceived,lun0ready,lun1ready,
 intCounter,addr3Block,addr2Page,addr1ColH,addr0ColL)
 []
 (tbStatusOut==true)
 & (ht_read -> T_IDLE_RD_STATUS(tbStatusOut,tbChgCol,tCopyback,
 tLunSelected,tLastCmd,T_RPP_ReadParams,tbStatus78hReq,cmd,false,
 isWriteProtected,dataBit,addrReceived,lun0ready,lun1ready,
 intCounter,addr3Block,addr2Page,addr1ColH,addr0ColL)))

Figure 4.4: ONFi Target State Example – Generated CSPM from SC-XML

method combines a concrete dynamic analysis and a symbolic static analysis to automatically generate test
cases and an accordingly exhaustive path testing was performed. Furthermore, the authors compared concolic
testing method with other model checking techniques applied to the flash file system domain.

A fully automatic analysis, using Alloy, of a flash filesystem is described in [KJ08, KJ09]. This was built on
top of a simple flash model (at roughly the same level of abstraction as [BW07]). The basic file operations as
well as crucial design features, such as wear leveling and erase-unit reclamation, of NAND flash memory were
included in the design. This design also includes a recovery mechanism for unexpected hardware failures. The
design was analysed by checking trace inclusion of the flash file system against a POSIX-compliant abstract
file system. Similar work, but very much a tools-integration approach to modelling (VDM/HOL/Alloy), was
reported in [FSO08, FO09]. The key issue here was matching specific tools to specific verification tasks, and
the need to translate between tool notations, in order to have a complete formal verification lifecycle. VDM
was used as the main modelling tool, with Alloy and HOL called upon to verify proof obligations that arose.

4.4 The CSP Model

The main objective of this and previous efforts [Cat08, BOC09] was to formalise the Target/LUN FSM de-
scriptions in machine-readable CSP and then use this as a basis for checking their correctness using the FDR2
refinement checker [For05].

The main criteria for correctness was that the behaviours possible for the interconnected FSMs was consistent
with the behaviour patterns for the operations mandated by that same standard.

The state machine notation of the ONFi specification allows for a relatively direct conversion into CSP: there
is a close correspondence between ONFi states and CSP processes. The separation of target from LUNs also
echoes the parallel composition features of CSP. Multiple LUN processes can be interleaved: required to

4.5. MODEL ANALYSIS 29

synchronize on events with the target, but not with each other. The target-LUN communication events (TLEvts)
are then hidden and this is put in parallel with a HOST process that models the behaviour of the environment
that communicates with the flash device. In CSP notation this is written (for a single target and two LUNs) as:

SYSTEM =̂ HOST ‖ ((TARGET ‖ (LUN(0) ||| LUN(1)))

\TLEvts)

Modelling the communication between host and target was straightforward as this is well documented as the
external interface of ONFi devices, and had already been modelled in Z at an abstract level[BW07]. In CSPM ,
we used events with names of the form ht_XXXX to model these communications, which basically consisted
of the byte-level transfers of commands, addresses, data and the single-bit signals (e.g. write-protect input,
ready/busy output).

Certain abstractions and simplifications had to be made so that the FDR2 model-checker could perform anal-
ysis without running out of memory. So, most data and address items were modelled as single bits, while
the command datatype was restricted to the set of known command types, rather than being a full byte. An
exception is the column address (address of byte within page), which was modelled as two bits to support the
ChangeXXXXColumn operations.

The 8 state variables of the target had also to be abstracted, and augmented with implicit state data, such as the
state of the write protect pin, and the data and address information temporarily in transit, as well as a counter
for the number of address chunks expected. This resulted in the addition of a further 13 state components. A
similar exercise in augmenting the state had to be done for the LUN FSM as well, to a lesser degree (9 ONFi
variables were augmented by a further 3).

4.4.1 CSP Data-Entry

Instead of writing CSP directly, the ONFi finite state machines specifications are described using Statechart
XML (SC–XML). This was then automatically converted into CSP via XML Transforms (XSLT) as described
in [Cat08, BOC09]. The model has two versions: the full and mandatory version, covering all the operations
and only the mandatory ones respectively. The auto-generated CSP files for the host, target and LUN state-
machines vary between the full and mandatory specifications. The other CSP files are hand-crafted and do not
vary with the model version. These files are: declarations of datatypes and CSP channels (header.csp);
status register implementation (SR6.csp); internal LUN behaviour (lun-innards.csp); and combining
all the processes to describe various systems (footer.csp). At the top-level, we include all the above files
in ONFI.csp, (or use ONFI-mandatory.csp if only the mandatory model is required).

4.5 Model Analysis

The model analysis fell conceptually into two phases: the first focussed on debugging and validating the model,
to ensure that it captured the intent of the ONFi specification. The second phase was using the model to analyse
the consistency of the entire ONFi document. The model validation is described in detail in [BOC09, §5.1].
The verification process undertaken for the FSMs of ONFi 1.0 document is described in [BOC09, §5.2].

4.5.1 Moving from ONFi 1.0 to ONFi 2.1

First of all, the pre-existing SCXML files of ONFi 1.0 model were updated according to the ONFi 2.1 document
[H+09], after noting the differences between the two versions. This step was straightforward. The comparison
of state variables and state entries of the two models are in table 4.1. This clearly indicates that the ONFi 2.1
model is bigger than the previous version.

30 CHAPTER 4. FLASH WORK – AN INITIAL INDUSTRIAL CASE STUDY

Description ONFi 1.0 ONFi 2.1
Target FSM state variables 7 8
Target FSM state entries 77 88
LUN FSM state variables 8 9
LUN FSM state entries 62 68

Table 4.1: Comparison of State Variables and Entries for Two Models

Description ONFi 1.0 ONFi 2.1 Increment Factor
Transitions in ISM 4490300 7023100 156.4%

States Refined 32,338 47,787 147.7%
Transitions during Refinement 78,469 117,473 149.7%

Table 4.2: Comparison of State Space of Two Models reported by FDR

4.5.2 Running the Model in FDR

After conversion, we initially tried to check the model on a Core Duo machine with processor speeds of
2.00GHz and 1.06GHz and 1.75GB of RAM running Ubuntu Linux, and then on a machine having Core 2
Duo Processors of 2.66GHz and 4.00GB of RAM also running Ubuntu Linux. But in each case FDR stopped
during its compilation process and halted all the processes running on the CPU. The model ran successfully
on a Quad Processor UltraSPARC-IIIi machine with processor speeds of 1.28GHz and 16GB RAM under So-
laris. After this experimentation, all the tests were run on this machine. In addition to this, in order to compile
the indexed state machines (ISMs) of the model in FDR2, we had to increase the stack size using the com-
mand ulimit -s 262144. With these settings we were able to compile and verify all required properties
on the mandatory-only version of the model. However, all attempts to handle the full model failed, with a
compile-time failure. We now describe various attempts made to get the full ONFi model to run through FDR.

4.5.3 Initial Checks Performed on the Model

The host model in which the status check is done through software was setup as follows:

TARGET_TWOLUNS = TARGET [| tl_events |]

(LUN(lun0) ||| LUN(lun1))

HOST_SW_TARGET_TWOLUNS = INITAL_HS_POWERON

[| ht_sw_events |] TARGET_TWOLUNS

In the case of mandatory ONFi 2.1, when checking the
HOST_SW_TARGET_TWOLUNS process for deadlock freedom using failures refinement, the comparison of
state space of two models reported by FDR is shown in table 4.2. We see an increase of about 50% in all
model-checking size measures reported by the tool.

4.5.4 More Concrete Tests through Failures Refinement Checks on the Model

In previous work the implementations of Read, Page Parameter, MultiRead and Block Erase operations were
tested against their specifications using CSP’s Traces model. The implementations of these operations were
now tailored so that we could do refinement checks in the more powerful Failures model. As all our models
were shown to be divergence-free initially, we did not need to perform full Failures-Divergences refinement
checks. For these, the implementation of a process looped back to its specification. For example, the Read

operation was checked as follows.

4.5. MODEL ANALYSIS 31

In the READ_SPEC process we took the HOST_SW_TARGET_TWOLUNS process, hid all the events except
the host-target read-related commands and data transfers. The timing diagram of these commands and data
transfers are specified on Page 127 of [H+09]. The POWERON behaviour is specified as a sequence of first a
reset command (FFh) followed by a read status command (70h). The implementation of the Read operation was
defined as a process that performed an expected sequences of host target protocol events for a Read (preceded
by a POWERON behaviour).

READ_SPEC = HOST_SW_TARGET_TWOLUNS

\ diff(Events,union

({ht_ioCmd.cmds |

cmds <-{cmd30h,cmd00h,cmd70h,cmdFFh}}

,{|ht_ioDataOut|}))

POWERON = ht_ioCmd.cmdFFh -> ht_ioCmd.cmd70h

-> ht_ioDataOut.true

-> SKIP -- poweron events

READ_F_IMPL0 = POWERON;

ht_ioCmd.cmd00h -> ht_ioCmd.cmd30h

-> ht_ioCmd.cmd70h -> ht_ioDataOut.true

-- read status returned ready, so read

-> ht_ioCmd.cmd00h -> ht_ioDataOut.false

-> ht_ioCmd.cmd70h -> ht_ioDataOut.true

-> READ_SPEC

assert READ_SPEC [F= READ_F_IMPL0

The complete list of tests undertaken are in the source file footer.csp available on the project website in-
dicated in the acknowledgement section. The specifications and the process implementations have their basis
in the ONFi document. All the tests performed on the failures model took 10 to 22 minutes to complete with
exception of the first check which took 29 minutes. Some of the important tests performed on the model are
listed below:
1. Deadlock and Livelock Freedom Checks using Failures and Failures Divergence Refinement respectively:
HOST_SW_TARGET_TWOLUNS :[deadlock free [F]]

HOST_HW_TARGET_TWOLUNS :[deadlock free [F]]

HOST_SW_TARGET_TWOLUNS :[livelock free [FD]]

HOST_SW_TARGET_LUNHIDDEN :[livelock free [FD]]

HOST_HW_TARGET_TWOLUNS :[livelock free [FD]]

HOST_SW_ANYCMD_HIDDEN :[livelock free [FD]]

HOST_SW_ANYCMD :[livelock free [FD]]

2. Correctness Tests for Read, PageParameter, BlockErase and MultiRead Operation using Failures Refine-
ment:
READ_SPEC [F= READ_F_IMPL0

READ_SPEC [F= READ_F_IMPL1

PP_SPEC [F= PP_F_IMPL0

PP_SPEC [F= PP_F_IMPL1

BE_SPEC [F= BE_F_IMPL0

BE_SPEC [F= BE_F_IMPL1

MULTIREAD_SPEC [F= MULTIREAD_F_IMPL0

MULTIREAD_SPEC [F= MULTIREAD_F_IMPL1

3. Wrong Implementations to ensure that the tests which should fail must fail:
BE_SPEC [F= BE_IMPL_F_WRONG0

BE_SPEC [F= BE_IMPL_F_WRONG1

32 CHAPTER 4. FLASH WORK – AN INITIAL INDUSTRIAL CASE STUDY

Description of Model Setting Time (min) Nodes Transitions
High Level Hiding + No Compression Applied 20.6 47787 117473

High Level Hiding + Normalise 18.5 11869 29452
High Level Hiding + ModelCompress 21.5 14696 39455

Low Level Hiding + Normalise 21.76 2393 5292
Low Level Hiding + ModelCompress 23.7 3827 9660

Table 4.3: Hiding and Compression Techniques Effect on State Space

READ_SPEC [F= READ_IMPL_F_WRONG1

MULTIREAD_SPEC [F= MULTIREAD_IMPL_F_WRONG0

4.5.5 “Deep Hiding” along with Model Compression Techniques available in FDR

While dealing with the state space problem, the FDR manual [For05] on Page 35 suggests: “Hide all events at

as low a level as is possible . . . any event that is to be hidden should be hidden the first time (in building up the

process) that it no longer has to be synchronised at a higher level”. The way the model was setup previously,
was as follows:

LUN(lunID) = diamond(INITIAL_L_IDLE(lunID)

[| li_events |] LI_IDLE(lunID))

TWOLUNS = LUN(lun0) ||| LUN(lun1)

TARGET = INITIAL_T_POWERON [| tr_events |]

READYBUSY(true,true)

TARGET_TWOLUNS = TARGET [| tl_events |] TWOLUNS

This clearly shows that the hiding of events was not applied at the first instant of the process setup. We changed
the setup of the model as follows:

LUN(lunID) = diamond(INITIAL_L_IDLE(lunID)

[| li_events |] LI_IDLE(lunID)) \ li_events

TWOLUNS = LUN(lun0) ||| LUN(lun1)

TARGET = (INITIAL_T_POWERON [| tr_events |]

READYBUSY(true,true)) \ tr_events

TARGET_TWOLUNS = (TARGET [| tl_events |]

TWOLUNS) \ tl_events

Furthermore, by careful investigation we also found that there were two compression techniques i.e. model_
compress and normalise which were neither applied automatically by FDR and nor by us. The remaining
compression techniques i.e. explicate, sbsim, tau_loop_factor and diamond were already being
used in the refinement step of states either by FDR or being manually applied. The details of these compression
techniques i.e. how these techniques actually compress the model, are discussed in chapter 5 of [For05]. Table
4.3 lists the impact of these compressions and hiding of events on the state space. Here ‘High Level Hiding’
refers to the fact that hiding is applied at the top level while ‘Low Level Hiding’ refers to the hiding being
as close to the point of definition of the relevant process as possible. We did these tests using FDR Explorer
[FW09]. These tests were run on a multi-user timeshared machine, but one whose utilisation was pretty low.
So, the timings mentioned here are just to indicate that these tests completed in a reasonable time limit.

The use of FDR Explorer was quite straightforward. For example, the commands used for testing
HOST_SW_TARGET_TWOLUNS were:

$FDRHOME/bin/fdr2tix -insecure -nowindow

4.6. SUMMARY 33

% source FDRExplorer.tcl

% inspectProcs ONFI-mandatory.csp

HOST_SW_TARGET_TWOLUNS 0 0

After the application of hiding at low level, all the checks were again run to ensure the continued correctness
of the model.

4.5.6 Tackling Full ONFi 2.1 Model

After having confidence that use of FDR Explorer and compression techniques could possibly be helpful in the
compilation of the full model, hiding and compression were applied. But it again failed to compile. This is
due to the fact that FDR is setup in such a way that it always performs complete ISM generation at the start,
and it applies all compressions at a later stage. The failures we encountered occurred in the ISM generation
phase. This fact came to our notice when FDR always reported 7023100 transitions (in the case of mandatory
ONFI 2.1) in ISM generation in order to perform the first check and after that it started to compress the state-
space during each of test runs. So, the application of hiding and compression techniques did not affect the
performance.

After this failure, FDR support was contacted to get a 64-bit built of FDR so that we could possibly break the
barrier of 32-bit limit for FDR paging. FDR support thankfully provided us with 64-bit built of the tool for
Solaris machine. But even on 64-bit version of FDR, the ISM generation phase could not complete successfully,
giving up after 6 hours of test running whereas the number of transitions at the point of failure was above 23
Million. The status of memory usage was investigated on the Solaris machine during the test, just before dying.
The machine was consuming more than 30 GB of memory on the local disk as well as 10 GB on the physical
memory. This clearly reflects that the full ONFi 2.1 model ISM is too large to handle in the present state.

4.6 Summary

We are now able to cover many of the operations in ONFi 2.1 model using full Failures-Divergence refinement
checking, rather than just trace refinement. For ONFi 1.0, the total count of the CSP code was 1922 of which
1346 were automatically generated from the SCXML sources. Having upgraded to ONFi 2.1, the number of
auto-generated lines of CSP has risen to 2070. Through the use of compression techniques available in the
FDR toolkit and in particular by hiding the events deeper in the model, we were able to get compression of
the state-space, i.e. low level hiding and normalise gave approximately 20 times more compression while
in case of model_compress, this was a factor of about 12. However despite compression tricks and the use
of FDR explorer, we still have not been able to compile the full ONFi model, which may represent the current
limit of this model-checking technology. This is due to the fact that FDR does full compilation before any
compressions are applied.

34 CHAPTER 4. FLASH WORK – AN INITIAL INDUSTRIAL CASE STUDY

Chapter 5

Design

This chapter explains the translation process of a simple Circus example into its CSPM equivalent. The trans-
lation process is explained through informal text, dividing the entire process into a number of steps. At first,
the main action in the Circus example is composed containing only sequencing of the individual actions. Later
on, the complexity of the construction of the main action is increased by adding external and internal choice
operators. This inclusion of choices in the main action suggested that the translated description be in a normal
form.

5.1 Translation Process for a Simple Circus Example

The entire process of translation is walked through by taking the simple Circus example shown in figure 5.1.
A possible translation of this to CSP is shown in figure 5.2.

5.2 Translation Step-by-Step

We now show the steps required to get to this kind of end-result. In effect we make a series of passes that
accumulate information about assignment variables and add these to parameter lists. Some of the intermediate
steps are typically not well-formed, or even have different semantics to the original Circus process, but it is
helpful to view the translation via these steps.

5.2.1 Step 1 – Scanning for the Variables in a Circus Process and Replacing Continu-
ations for Skip

First we scan the process to identify all the variables, which in our example returns with the formal parameter
fragment (x,y). Then we revise the definitions to add these parameters in. A particular trick we employ is to
replace every Skip in the definition of N (say), by CONTN(x,y). These are placeholders to be further elaborated
upon at a later stage.

A(x,y) =̂ x := 0 o
9 a→CONTA(x,y)

B(x,y) =̂ y := x+1 o
9 b.y→CONTB(x,y)

C(x,y) =̂ c.(x+ y)→CONTC(x,y)

In effect, each action is now parameterised with all the variables, and any final Skip are now replaced with a
call to some as yet undetermined continuation process, with parameters being passed along.

35

36 CHAPTER 5. DESIGN

A o
9 B o

9 C
where
A =̂ x := 0 o

9 a→Skip
B =̂ y := x+1 o

9 b.y→Skip
C =̂ c.(x+ y)→Skip

Figure 5.1: A Circus Process example

a→b.1→ c.1→Skip

Figure 5.2: A possible translation

5.2.2 Step 2 – Removal of Assignment Commands and Replacing Expressions in the
Parameter List

We then analyse the flow in each action and remove any assignments, noting and carrying along the changes
made to the parameter list. The relevant form of the parameter list is then used to overwrite variables in
expressions, and the parameter list of any CONTN encountered:

A(x,y) =̂ a→CONTA(0,y)
B(x,y) =̂ b.(x+1)→CONTB(x,x+1)
C(x,y) =̂ c.(x+ y)→CONTC(x,y)

5.2.3 Step 3 – Analysis of Main Action and Replacing Continuations with Corre-
sponding Calling Action

Now we look at the main action, which is this case is

A o
9 B o

9 C

We note that here the continuation action for A is a call to B, for B is a call to C, and C has nothing following
it, so its continuation is Skip. So we tailor our instances of A, B and C to fit the sequential flow of the main
action, and now note that the initial A calls B when done, so the main action need only invoke A, with arbitrary
starting parameter values.

A(x,y)

where
A(x,y) =̂ a→B(0,y)
B(x,y) =̂ b.(x+1)→C(x,x+1)
C(x,y) =̂ c.(x+ y)→Skip

5.2. TRANSLATION STEP-BY-STEP 37

5.2.4 Step 4 – Inlining the Calling Actions and Propagating Parameter Changes

We can finish off if we so desire by “inlining” the calls and propagating the parameter changes along.

A(x,y)

where
A(x,y) = a→B(0,y)
B(0,y) = b.(0+1)→C(0,0+1)
C(0,1) = c.(0+1)→Skip

This results in the translation shown in figure 5.2.

The advantage of this translation scheme is that the structure of the translation is a close match to that of the
original, with assignments removed and parameters added. In particular, event prefixes are retained, with no
events added or removed. However, as we look at more complicated cases, we see that the four-step translation
process above is somewhat too simplistic.

5.2.5 Increasing Complexity

If we change the sequencing of the main action, then we instantiate the CONTN in a different way, so, for
example with

B o
9 C o

9 A

where
A =̂ x := 0 o

9 a→Skip

B =̂ y := x+1 o
9 b.y→Skip

C =̂ c.(x+ y)→Skip

we obtain the following for Step 3:

B(x,y)

where
A(x,y) =̂ a→Skip

B(x,y) =̂ b.(x+1)→C(x,x+1)
C(x,y) =̂ c.(x+ y)→A(x,y)

reducing to

B(x,y)whereB(x,y) =̂ b.(x+1)→ c.(x+ x+1)→a→Skip

Things get more interesting if our main action is now a choice between the above two cases:

(A o
9 B o

9 C)2 (B o
9 C o

9 A)

where
A =̂ x := 0 o

9 a→Skip

B =̂ y := x+1 o
9 b.y→Skip

C =̂ c.(x+ y)→Skip

38 CHAPTER 5. DESIGN

After Step 2 we have:

A(x,y) =̂ a→CONTA(0,y)
B(x,y) =̂ b.(x+1)→CONTB(x,x+1)
C(x,y) =̂ c.(x+ y)→CONTC(x,y)

Now however, we find that each of A, B and C needs a different instantiation in each arm of the choice, so in
effect we have to double them up:

A1(x,y)2B2(x,y)

where
A1(x,y) =̂ a→B1(0,y)
B1(x,y) =̂ b.(x+1)→C1(x,x+1)
C1(x,y) =̂ c.(x+ y)→Skip

A2(x,y) =̂ a→Skip

B2(x,y) =̂ b.(x+1)→C2(x,x+1)
C2(x,y) =̂ c.(x+ y)→A2(x,y)

It is quite clear that for more complex main actions, the number of instances will rise quite sharply.

This lead us to investigate the notion of a normal form that might simplify the translation, both conceptually,
and in terms of size. To motivate this, consider the following example:

(A2B) o
9 C

where
A =̂ x := 0 o

9 a→Skip

B =̂ y := x+1 o
9 b.y→Skip

C =̂ c.(x+ y)→Skip

We might try doing Step 1, then setting A and B to have C as a continuation, so obtaining:

(A2B) o
9 C

where
A(x,y) =̂ a→C(0,y)
B(x,y) =̂ y := x+1 o

9 b.(x+1)→C(x,x+1)
C(x,y) =̂ c.(x+ y)→Skip

We then replace the main action with A(x,y)2B(x,y), noting that these two now call C when they are done. In
effect we are using the CSP law (P2Q) o

9 R = (P o
9 R)2 (Q o

9 R). We obtain:

A(x,y)2B(x,y)

where
A(x,y) =̂ a→C(0,y)
B(x,y) =̂ b.(x+1)→C(x,x+1)
C(x,y) =̂ c.(x+ y)→Skip

5.3. SUMMARY 39

which reduces to:

D(x,y)whereD(x,y) =̂ (a→ c.y→Skip)2 (b.(x+1)→ c.(2x+1)→Skip)

This seemed to suggest a normal form that brought choices out in front of sequential composition — something
like

d e(2sequential forms)

where step laws are used to factor out parallelism. Here “sequential forms” are actions built out of prefix,
assignment, sequential composition and action calls only — no choice or parallel operators, and their associated
branching.

5.3 Summary

In this chapter, we explain the translation process of a simple Circus example into its CSPM equivalent. The
translation process is explained through informal text, dividing the entire process into a number of steps. The
first step is to search for the variables in a Circus program. The second step is the removal of the assignment
commands and substitution of the expressions into the parameter list. Then, the next step involves analysis
of the main action and replacing continuations with the corresponding calling action. The final step is to do
inlining of the calling actions and propagating the parameter changes. At first, the main action in the Circus
example is composed containing only sequencing of the individual actions. Later on, the complexity of the
construction of the main action is increased by adding external and internal choice operators. This inclusion
of choices in the main action suggested the translated description using a normal form. The next chapter is the
most important one as it desribes the semantic justification of the link between Circus and CSPM through the
mathematical proofs.

40 CHAPTER 5. DESIGN

Chapter 6

Semantics

This chapter describes the semantics of the target languages, i.e. SimpleCSP and SimpleCircus. First, the
UTP semantics of the languages are formulated, having its basis in [OCW09, CW04]. The meaning of language
constructs considered in SimpleCSP and SimpleCircus are explained through informal text. Following is a
description of approach adopted for establishing the link between the languages. The chapter concludes by
including the proofs of the theorems and lemmas suggested for the link.

6.1 The UTP Semantics of SimpleCSP and SimpleCircus

6.1.1 Semantics of SimpleCSP

The observation variables were briefly introduced on page 13, section 2.4. The variables ok,ok′ depict the
successful initiation and termination of the program. So, these are of boolean type, showing either a true or
false condition. The variables wait,wait′ depict the waiting status of a program for an interaction with its
environment. So, these are of type boolean, showing the waiting status as either true or false. The variables
tr, tr′ are for the initial and final traces of a program. These traces record event histories as a sequence of events.
The variables ref ,ref ′ result in a set, capturing the events being refused by a program during execution, given
that the events recorded in tr, tr′ have already occurred.

Observations for SimpleCSP:

ok,ok′ : B

wait,wait′ : B

tr, tr′ : Σ
∗

ref ,ref ′ : P Σ

Healthiness conditions of CSP, with their informal meaning, were briefly introduced on page 14, section 2.4.2.

Healthiness for SimpleCSP:

R1(P) =̂ P ∧ tr ≤ tr′

R2(P) =̂ ∃s • P[s,sa (tr′− tr)/tr, tr′]

R3(P) =̂ IICwaitBP

II =̂ DIV ∨ ok′ ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref

DIV =̂ ¬ok ∧ tr ≤ tr′

41

42 CHAPTER 6. SEMANTICS

R =̂ R3 ◦ R2 ◦ R1

CSP1(P) =̂ P ∨ DIV

CSP2(P) =̂ P o
9 J

CSP4(P) =̂ P; SKIP

J =̂ (ok⇒ ok′) ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref

CSP =̂ CSP1 ◦ CSP2 ◦ CSP4

P ` Q =̂ ok ∧ P⇒ ok′ ∧ Q, ok,ok′ /∈ P,Q

Having expansions of R are useful. Given that R1 and II are R2 healthy, and II is R1-healthy the most useful
expansion is:

R(P)

= R3(R1(R2(P)))

= IICwaitB (∃s • P[s,sa (tr′− tr)/tr, tr′]) ∧ tr ≤ tr′

In most case, our language definition fragments are R2-healthy so we often ignore it quite safely, to get the
following “standard expansion” of R(P):

R(P) = IICwaitBP ∧ tr ≤ tr′

6.1.2 Exploring the Semantics of Parameters

The key idea is that we have named, parameterised action definitions of the form:

N(x1,x2, . . . ,xn) =̂ A

Here the xi are parameters that denote expressions.

We can view the meaning of this as:

λ x1,x2, . . . ,xn • A

Then the meaning of an invocation of N

N(e1,e2, . . . ,en)

is

A[e1,e2, . . . ,en/x1,x2, . . . ,xn]

When recursion is involved, things get a little more complicated:

R(x1,x2, . . . ,xn) =̂ F(R)

We obtain the following fixpoint equation:

R = µ X • λ x1, . . . ,xn • F(X)

6.1. THE UTP SEMANTICS OF SIMPLECSP AND SIMPLECIRCUS 43

Regardless of which fixed point we use, the following is a fold/unfold law:

R = F(R)

If recursion is guarded, then we should also have a unique fixed-point principle, so:

guarded(F) ∧ R = F(R) ∧ S = F(S)⇒ R = S

Now we introduce the formal semantics for SimpleCSP.

N(x1, . . . ,xn) =̂ A ≡ N = µ X • λ x1, . . . ,xn • A[X/N]

N = A[λ x1, . . . ,xn • A/N]

The deadlock or Stop cannot engage in any event and is always waiting. So, here the final trace tr′ will be
equal to the initial trace tr and the variable wait′ will be true. Stop must refuse all the events as it represents a
deadlock. The definition of Stop allows any possible refusal set, including the one that contains all events, by
not mentioning ref or ref ′ in the definition.

Stop =̂ R(true ` wait′ ∧ tr′ = tr)

Skip is an action which terminates immediately. Here the final trace tr′ is equal to the initial trace tr. The final
waiting status wait′ will be false.

Skip =̂ R(∃ref • II)

≡ R(true ` ¬wait′ ∧ tr′ = tr)

The CSP prefixing action is CSP1 healthy. It never diverges. On termination, it establishes the result of doA,
defined below. In doA, while waiting (wait′ = true), it simply requires that a is not being refused, while, once
waiting is over (wait′ = false), then the trace has been extended with a.

a→Skip =̂ CSP1(ok′ ∧ doA(a))

doA(a) =̂ Φ(a /∈ ref ′Cwait′B tr′ = tra 〈a〉)

Φ(A) =̂ R(A) ∧ B = R(A ∧ B)

B =̂ tr′ = trCwait′B tr < tr′

The definition of prefix, in which after an event a, the action A is invoked, can be split into a sequential
composition of a→ Skip followed by the action A. Similar definition can be devised for input and output
prefixing action. An event can be defined as a pair (c,e) where c is the channel and e is the value to be
communicated on the channel.

a→A =̂ a→Skip o
9 A

c!e→A =̂ c.e→Skip o
9 A

c?v→A =̂ 2k • c.k→A[k/v], k ∈ type(v)

The sequential composition is defined as a relational sequence, instead of being defined as reactive design.
Here, the relational sequence is defined as an existential quantifier over the intermediate state of the UTP

44 CHAPTER 6. SEMANTICS

observation variables i.e. ok,wait, tr,ref .

A o
9 B =̂ ∃Obsm • A[Obsm/Obs′] ∧ B[Obsm/Obs]

whereObs = {ok,wait, tr,ref}

Internal choice operator is defined as a disjunction between the actions A and B, showing that either of the
actions can proceed.

A u B =̂ A ∨ B

The external choice is CSP2 healthy. If a deadlock (Stop) occurs, it is a conjuction of actions A and B. If
deadlock does not occur, it is a disjunction of actions A and B. Stop being true means we are healthy but
waiting. During this time, we want A and B to agree on refusals (see definition of doA(a) above), when wait′ is
true. When Stop no longer holds, wait′ is false and so we want the behaviour of whichever of A and B can do
the event offered by the environment.

A 2 B =̂ CSP2((A ∧ B)CStopB (A ∨ B))

For hiding operator, if action A reaches such a stable state, in which it cannot perform any further events in H,
then the action A\H has also reached such state. Here, trH− tr and tr′− tr depict the new events of action A
during hiding. Skip is to ensure the inclusion of possible divergences by hiding actions.

A\H =̂ R(∃ trH • A[trH,H∪ ref ′/tr,ref ′] ∧ (tr′− tr) = (trH− tr) �H) o
9 Skip

The parallel construct is defined as existensial quantifier of observation variables of actions A and B over the
conjuction of the actions. Here, both A and B run together, but we rename their after-observations so we can
distinguish their outcomes. We then merge these outcomes to give the overall parallel outcome.

A ‖S B =̂ R



∃ObsA,ObsB •
A[ObsA/Obs′] ∧ B[ObsB/Obs′]

∧ ok′ = okA ∧ okB

∧ wait′ = waitA ∨ waitB
∧ ref ′ ⊆ (refA∪ refB)∩S∪ (refA∩ refB)\S

∧ tr′− tr ∈ (trA− tr) ‖S (trB− tr)


o
9 Skip

In a guarded action, if the condition given in expression e is true, the action A will take place, otherwise, it will
deadlock.

e&A =̂ ACeBStop

The parameterised call to an action is through calling the action and replacing the corresponding expressions
into the parameter list.

N(e1, . . . ,en) =̂ B[e1, . . . ,en/x1, . . . ,xn]

givenN(x1, . . . ,xn) =̂ B

6.1. THE UTP SEMANTICS OF SIMPLECSP AND SIMPLECIRCUS 45

In above, two auxiliary functions are used:

t �S trace t with all elements in S removed

t1 ‖S t2 set of all interleavings of t1, t2 that synchronise on S

6.1.3 Semantics of SimpleCircus

The main difference between observation variables of SimpleCircus and SimpleCSP is the inclusion of addi-
tional state,state′ which depict the status of the state variables in the program. Here, it is defined as a partial
function from a variable to its value.

Observations for SimpleCircus:

ok,ok′ : B

wait,wait′ : B

tr, tr′ : Σ
∗

ref ,ref ′ : P Σ

state,state′ : Var 7→ Value

In the definition of healthiness conditions of SimpleCircus, R and CSP are renamed to S and CXS, to avoid
confusion.

Now we give the definitions of healthiness conditions of SimpleCircus.

S1(P) =̂ P ∧ tr ≤ tr′

S2(P) =̂ ∃s • P[s,sa (tr′− tr)/tr, tr′]

S3(P) =̂ (∃state′ • II)CwaitBP

II =̂ DIV ∨ ok′ ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref ∧ state′ = state

DIV =̂ ¬ok ∧ tr ≤ tr′

S =̂ S3 ◦ S2 ◦ S1

CXS1(P) =̂ P ∨ DIV

CXS2(P) =̂ P o
9 JX

CXS4(P) =̂ P o
9 Skip

JX =̂ (ok⇒ ok′) ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref ∧ state′ = state

P ` Q =̂ ok ∧ P⇒ ok′ ∧ Q, ok,ok′ /∈ P,Q

Here, JX definition includes state,state′ as well.

The “standard expansion” of S(P):

S(P) = (∃state′ • II)CwaitBP ∧ tr ≤ tr′

An “alternate expansion” of S(P):

S(P) = (∃state′ • II)CwaitB (P ∧ tr ≤ tr′)

The work in [BGW09] explains the motivation behind S3 (R3 with state-hiding). [BGW09] investigated the
interactions between program variable state visibility and communication behaviour in state-rich CSP-like
processes, using the UTP framework. This gave the result that, if the variable state is visible during the wait

46 CHAPTER 6. SEMANTICS

state of communication, ordinary programs put together in a normal way ended up with miraculous behaviour
— to be avoided in a theory of feasible programming.

Now the formal semantics for SimpleCircus is given. Here, many of the definition of the language constructs
involve state,state′ observation variables, which were not there in the case of SimpleCSP. Most of the defi-
nitions are essentially the same as those for SimpleCSP, and we only really need to consider the assignment
command, and the parallel construct.

N(x1, . . . ,xn) =̂ A ≡ N = µ X • λ x1, . . . ,xn • A[X/N]

N = A[λ x1, . . . ,xn • A/N]

Stop =̂ S(true ` wait′ ∧ tr′ = tr)

Skip =̂ S(true ` ¬wait′ ∧ tr′ = tr ∧ state′ = state)

A o
9 B =̂ ∃Obsm • A[Obsm/Obs′] ∧ B[Obsm/Obs]

whereObs = {ok,wait, tr,ref ,state}

c→Skip =̂ S

true `

 tr′ = tr ∧ c /∈ ref ′

Cwait′B

tr′ = tra 〈c〉 ∧ state′ = state




c→A =̂ (c→Skip) o
9 A

c!e→A =̂ (c.e→Skip) o
9 A

c?x→A =̂ 2v∈typeof (x) c.v→ x := v o
9 A

A u B =̂ A ∨ B

A 2 B =̂ CXS2((A ∧ B)CStopB (A ∨ B))

A\H =̂ S(∃ trH • A[trH,H∪ ref ′/tr,ref ′] ∧ (tr′− tr) = (trH− tr) �H) o
9 Skip

N(e1, . . . ,en) =̂ B[e1, . . . ,en/x1, . . . ,xn]

givenN(x1, . . . ,xn) =̂ B

e&A =̂ ACeBStop

In the SimpleCircus model of parallelism, both sides run on their own copy of the initial state, and the two
final states are merged at the end. A requirement is that the set of variables written by each side are disjoint
from each other. Also note that changes to variables done by one side are not visible to the other side.

A[U|S|V]B =̂ ∃ObsA,ObsB •

A[ObsA/Obs′] ∧ B[ObsB/Obs′]

∧ ok′ = okA ∧ okB

∧ wait′ = waitA ∨ waitB

∧ tr′− tr ∈ (trA− tr) ‖S (trB− tr)

∧

 ref ′ ⊆ (refA∪ refB)∩S∪ (refA∩ refB)\S

Cwait′B

state′ = state\ (U∪V)⊕ stateA �U⊕ stateB �V


The assignment command was not included in SimpleCSP. In SimpleCSP, these assignment commands turn
into the parameterised call to an action, where the corresponding expressions are substituted in the parameter
list. The UTP definition of the assignment command in SimpleCircus is defined as a reactive design. Here, the
final status of state variables i.e. state′ is equal to the sum of unchanged state variables and the changed one
having a mapping from x to expression e, evaluated in the before-state.

6.2. THE LINK BETWEEN SIMPLECIRCUS AND SIMPLECSP 47

x := e =̂ S(true ` ¬wait′ ∧ tr′ = tr ∧ state′ = state⊕{x 7→ estate})

We use the following auxiliary functions that act on states:

state\V state with all variables in V removed

state �V state with only variables in V retained

6.2 The Link between SimpleCircus and SimpleCSP

Here, we make a distinction between the notation of constructs of SimpleCircus and SimpleCSP. The subscript
C is used to distinguish the CSP version of a construct e.g. (StopC) from the Circus version of the construct
i.e. (StopX). Here, X is the subscript for the Circus version of the construct.

The observation variables defined for SimpleCircus and SimpleCSP have as a difference the presence of the
variables stateX and state′X in SimpleCircus. So, the link between SimpleCircus and SimpleCSP has to deal
with this difference. The need here is a linking predicate that connects these:

LC
X =̂ okC = okX ∧ ok′C = ok′X ∧ ...ref ′C = ref ′X

∧ relationship of stateX and state′X

Here, we do some pilot proofs of concrete translations, to explore the usefulness of the semantics and to get
some idea of useful laws that might help simplify proofs.

First we introduce some notation:

PX A SimpleCircus program

T The translation predicate transformer

PC A SimpleCSP program

If PC is the translation of PX , then we want to prove that they have the same behaviour, when we ignore state.
So, given

PC = T PX

we want to show that
PC = (∃state,state′ • PX)

But after mathematical investigation, it turned out that the best we can get is a refinement relation, so that

PC v (∃state,state′ • PX)

This effectively defines the connecting link between Circus and CSP UTP theories.

So, the big theorem for the translation between SimpleCircus and SimpleCSP is

Conjecture 6.2.1 For all SimpleCircus programs PX:

T (PX)v (∃state,state′ • PX)

We want to show that the CSPM description produced by the translation covers the behaviour of the original
Circus process with the state hidden. It would be very nice if simply hiding the state was enough, but we find

48 CHAPTER 6. SEMANTICS

the issue is more complex.

Here are some possible “linking pairs” in SimpleCircus and SimpleCSP worlds:

PC Rel PX Theorem Proof? By

StopC = ∃state,state′ • StopX B.2.1 Pg. 123 Dr. Butterfield

SkipC = ∃state,state′ • SkipX 6.2.1 Pg. 49 −
a→C SkipC = ∃state,state′ • a→X SkipX B.1.1 Pg. 119 Dr. Butterfield

(AC o
9C BC) v (∃state,state′ • AX o

9X BX) 6.2.2 Pg. 50 −
AC uBC v (∃state,state′ • AX uBX) 6.2.3 Pg. 50 −
AC o

9C JC v (∃state,state′ • AX o
9X JX) B.2.5 Pg. 126 Dr. Butterfield

AC 2BC v (∃state,state′ • AX 2BX) 6.2.4 Pg. 51 −
AC ‖ BC v (∃state,state′ • AX S||T BX) 6.2.5 Pg. 52 −
a→AC v (∃state,state′ • a→AX) 6.2.6 Pg. 53 −
AC \C H v (∃state,state′ • AX \X H) 6.2.7 Pg. 54 −
Rn(AC) v ∃state,state′ • Sn(AX), n ∈ 1 . . .3 B.2.6 Pg. 128 −

CSPn(AC) v ∃state,state′ • CXSn(AX), n ∈ 1 . . .5 B.2.7 Pg. 129 −

Note: In the mathematical proofs, the sequential composition case was not trivial. Here, the left and right hand
side were shown to be non-equivalent. Instead, the relationship between o

9X and o
9C is proved to be a refinement,

not an equality. Because we obtained a refinement for the o
9 operator, all other results on general predicates A,B

are forced to be refinements as well, by the monotonicity of the operators.

6.2.1 Assignment Command Handling

In the link pairs table above, the assignment command is missing. Before going to start the mathematical
proofs, it is important to discuss the handling of the assignment command in the translation. We have already
discussed the semantics of parameters in Section 6.1.2.

The semantics of assignment, in both Circus, and in regular imperative languages, has the effect, when followed
sequentially by some action, of acting like a substitution, i.e. the following rule holds in the case of the
assignment command:

x := e; A = A[e/x]

Here, note that if we have parameters with an action, e.g. A(x,y), then the substitution A(x,y)[e/x] can imme-
diately be written as A(e,y). This is the intuition behind how we translate assignments.

From the translation perspective, the above rule is ensured through a seperate formalised step in the translation
process.

In Chapter 7, we formalise the translation steps. The steps are implemented as functions. In the process,
the first step is “Ensure Assignment Continuation”. If an assignment appears without a following sequential
composition,, it appends a sequentially composed Skip in front of it i.e. x := e becomes x := e; Skip. This
is to ensure that the assignment command is always followed by something. There is a following step in
the translation which is named as “Add Continuation Call”. It replaces each Skip with a continuation marker
followed by the action name. Substitution of expression e is done in the parameter list attached to the action
call. Later on, this continuation marker along with the action name is replaced by the appropriate action call,
determined by the analysis of the main action.

6.2. THE LINK BETWEEN SIMPLECIRCUS AND SIMPLECSP 49

6.2.2 Mathematical Proofs

Here, for the proofs, the assumptions throughout are:

AC v ∃state,state′ • AX

BC v ∃state,state′ • BX

Theorem 6.2.1
SkipC = (∃state,state′ • SkipX)

Proof: Here, we adopt the strategy of reducing the left and right hand side of the equation to the same form.

LHS = SkipC

Now, according to the definition of the Skip construct in the CSP world, the left hand side will be equal to:

= IICwaitB (true ` ¬wait′ ∧ tr′ = tr) ∧ tr ≤ tr′

Now, considering the right hand side:

RHS = (∃state,state′ • SkipX)

According to the definition of the Skip construct in the Circus world, the equation will be:

= (∃state,state′ • S(true ` ¬wait′ ∧ tr′ = tr ∧ state′ = state))

Expanding the above equation by applying the definition of the healthiness condition S, will make the above
equation as:

= (∃state,state′ • (∃state • IIX))CwaitB (true ` ¬wait′ ∧ tr′ = tr ∧ state′ = state) ∧ tr ≤ tr′

Distributing the quantifier ∃:

= (∃state,state′ • (∃state • IIX))CwaitB (true ` ¬wait′ ∧ tr′ = tr ∧

(∃state,state′ • state′ = state)) ∧ tr ≤ tr′

Now, we apply the definition of Lemma B.2.2, available on page 124.

= IIXCwaitB (true ` ¬wait′ ∧ tr′ = tr ∧ (∃state,state′ • state′ = state)) ∧ tr ≤ tr′

Applying the one point rule will reduce the above equation to the following:

= IIXCwaitB (true ` ¬wait′ ∧ tr′ = tr ∧ True) ∧ tr ≤ tr′

Simplifying above equation:

= IIXCwaitB (true ` ¬wait′ ∧ tr′ = tr) ∧ tr ≤ tr′

This form of the equation makes the proof complete, as the left hand side also has the same form.

50 CHAPTER 6. SEMANTICS

Theorem 6.2.2
(AC o

9C BC)v (∃state,state′ • AX o
9X BX)

Proof: Here, we show the left hand side is refined by the right hand side. This theorem is unique from others.
Here, the left and right hand side were originally hoped to be equivalent. Instead, the relationship between o

9X

and o
9C is emerged as a refinement, not an equality.

L.H.S = (AC o
9C BC)

According to the definition of AC and BC:

= (∃state,state′ • AX) o
9C (∃state,state′ • BX)

This prove completes by the application of theorem B.2.4, on page 125.

v ∃state,state′ • AX o
9X BX

Theorem 6.2.3
AC uBC v (∃state,state′ • AX uBX)

Proof: Here, we adopt the strategy of reducing the left and right hand side of the equation to the same form.

L.H.S = AC uBC

According to the definition of internal choice in CSP world, we get,

= AC ∨ BC

Expanding the definitions of AC and BC:

v (∃state,state′ • AX) ∨ (∃state,state′ • BX)

The distributive property of ∃ simplifies the above expression to the following:

= ∃state,state′ • (AX ∨ BX)

Now, we can apply the definition of internal choice construct in Circus world.

= (∃state,state′ • AX uBX)

Hence, the required form is acquired.

6.2. THE LINK BETWEEN SIMPLECIRCUS AND SIMPLECSP 51

Theorem 6.2.4
AC 2BC v (∃state,state′ • AX 2BX)

Proof: Here, we adopt the strategy of reducing the left and right hand side of the equation to the same form.
We start the proof by taking the right hand side of the theorem.

R.H.S = (∃state,state′ • AX 2BX)

According to the definition of external choice in the Circus world, we get:

= (∃state,state′ • CXS2((AX ∧ BX)CStopXB (AX ∨ BX)))

Expanding the above equation by applying the definition of the healthiness condition CXS2, will make the
above equation become:

= (∃state,state′ • [((AX ∧ BX)CStopXB (AX ∨ BX)) o
9 JX])

Distributing the predicate ∃state,state′, we get:

= ∃state,state′ • ((AX ∧ BX)CStopXB (AX ∨ BX)) o
9∃state,state′ • JX

Expanding the above equation by applying the definition of J in Circus world will make the above equation
be:

= ∃state,state′ • ((AX ∧ BX)CStopXB (AX ∨ BX)) o
9∃state,state′ • (ok⇒ ok′)

∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref ∧ state′ = state

Applying the one point rule will reduce the above equation to the following:

= ∃state,state′ • ((AX ∧ BX)CStopXB (AX ∨ BX)) o
9 (ok⇒ ok′) ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref

Applying the definition of J in CSP world will reduce the equation as follows:

= ∃state,state′ • ((AX ∧ BX)CStopXB (AX ∨ BX)) o
9 JC

Now, applying the definition of the CB construct:

= ∃state,state′ • (StopX ∧ (AX ∧ BX) ∨ ¬StopX ∧ (AX ∨ BX)) o
9 JC

The distributive property of ∃state,state′ will make the equation become:

= ((∃state,state′ • StopX ∧ (∃state,state′ • AX ∧ ∃state,state′ • BX))

∨ (∃state,state′ • ¬StopX ∧ (∃state,state′ • AX ∨ ∃state,state′ • BX))) o
9 JC

Now we apply theorem B.2.1, on page 123.

= ((StopC ∧ (∃state,state′ • AX ∧ ∃state,state′ • BX)) ∨ (¬StopC ∧ (∃state,state′ • AX ∨ ∃state,state′ • BX))) o
9 JC

Reducing above equation by using definitions of CB, AC and BC:

v ((AC ∧ BC)CStopCB (AC ∨ BC)) o
9 JC

52 CHAPTER 6. SEMANTICS

Using the definition of healthiness condition CSP2, we get:

= CSP2((AC ∧ BC)CStopCB (AC ∨ BC))

Now, we can apply the definition of external choice construct in CSP world.

= AC 2BC

This completes our proof as we have matched the expression of the left hand side of the theorem.

Theorem 6.2.5
AC ‖S BC v (∃state,state′ • AX[U|S|V]BX)

Proof: Here, we adopt the strategy of reducing the left and right hand side of the equation to the same form.
We start the proof by taking the left hand side of the theorem.

L.H.S = AC ‖S BC

Applying the definition of parallel construct in the CSP world, we get the following expression.

=



∃ObsC
A ,ObsC

B •
AC[ObsC

A/Obs′] ∧ BC[ObsC
B/Obs′]

∧ ok′ = okC
A ∧ okC

B

∧ wait′ = waitC
A ∨ waitC

B

∧ ref ′ ⊆ (ref C
A ∪ ref C

B)∩S∪ (ref C
A ∩ ref C

B)\S

∧ tr′− tr ∈ (trC
A − tr) ‖S (tr

C
B − tr)


o
9C SkipC

Now, taking right hand side of the theorem and solving it to get the expanded form of left hand side.

R.H.S = (∃state,state′ • AX[U|S|V]BX)

According to the definition of parallel construct in Circus world, we get:

= ∃state,state′ •



∃ObsX
A,ObsX

B •
AX[ObsX

A/Obs′] ∧ BX[ObsX
B/Obs′]

∧ ok′ = okX
A ∧ okX

B

∧ wait′ = waitX
A ∨ waitX

B

∧ tr′− tr ∈ (trX
A − tr) ‖S (tr

X
B − tr)

∧

 ref ′ ⊆ (ref X
A ∪ ref X

B)∩S∪ (ref X
A ∩ ref X

B)\S

Cwait′B

state′ = state\ (U∪V)⊕ stateX
A �U⊕ stateX

B �V




In the SimpleCircus model of parallelism, both sides run on their own copy of the initial state, and the two final
states are merged at the end. A requirement is that the set of variables written by each side are disjoint from
each other. Furthermore, the changes to variables done by one side are not visible to the other side. Therefore,
we can partially apply the one-point rule, as there are no free occurrences of state’, which means the statement
state′ = . . . reduces to true, but we keep the now-vacuous quantification of state’ because it makes later steps

6.2. THE LINK BETWEEN SIMPLECIRCUS AND SIMPLECSP 53

simpler.

= ∃state,state′ •



∃ObsX
A,ObsX

B •
AX[ObsX

A/Obs′] ∧ BX[ObsX
B/Obs′]

∧ ok′ = okX
A ∧ okX

B

∧ wait′ = waitX
A ∨ waitX

B

∧ tr′− tr ∈ (trX
A − tr) ‖S (tr

X
B − tr)

∧

 ref ′ ⊆ (ref X
A ∪ ref X

B)∩S∪ (ref X
A ∩ ref X

B)\S

Cwait′B

true




Making use of theorem B.3.2, on page 130, we get:

= ∃state,state′ •


∃ObsX

A,ObsX
B •

AX[ObsX
A/Obs′] ∧ BX[ObsX

B/Obs′]

∧ ok′ = okX
A ∧ okX

B

∧ wait′ = waitX
A ∨ waitX

B

∧ tr′− tr ∈ (trX
A − tr) ‖S (tr

X
B − tr)

 o
9X SkipX

Now, using theorem 6.2.2, on page 50, the following equation is acquired.

v



∃ObsC
A ,ObsC

B •
AC[ObsC

A/Obs′] ∧ BC[ObsC
B/Obs′]

∧ ok′ = okC
A ∧ okC

B

∧ wait′ = waitC
A ∨ waitC

B

∧ ref ′ ⊆ (ref C
A ∪ ref C

B)∩S∪ (ref C
A ∩ ref C

B)\S

∧ tr′− tr ∈ (trC
A − tr) ‖S (tr

C
B − tr)


o
9C SkipC

This form of the equation makes the proof complete, as the left hand side also has the same form.

Theorem 6.2.6
a→AC v (∃state,state′ • a→AX)

Now, we provide the proof for prefixing action.

Proof: Here, we adopt the strategy of reducing the left and right hand side of the equation to the same form.
We start the proof by taking the left hand side of the theorem.

L.H.S = a→C AC

According to the definition of prefixing action in the CSP world, we get:

= a→C SkipC o
9C AC

Now, taking the right hand side of the theorem and solving it to get the expanded form of left hand side.

R.H.S = (∃state,state′ • a→X AX)

According to the definition of prefixing action in the CSP world, we get:

= (∃state,state′ • a→X SkipX o
9X AX)

54 CHAPTER 6. SEMANTICS

Distributing the existensial quantifier ∃, the above equation will get the following form:

= (∃state,state′ • a→X SkipX) o
9X (∃state,state′ • AX)

Using the theorem B.1.1, on page 119, will reduce the equation to the following form:

= (a→C SkipC) o
9C (∃state,state′ • AX)

Using theorem 6.2.2, on page 50, makes the proof complete, as the left hand side has also expanded to the same
form

v a→C SkipC o
9C AC

Theorem 6.2.7
AC \C H v (∃state,state′ • AX \X H)

Now, we provide the proof for the hiding construct.

Proof: Here, we adopt the strategy of reducing the left and right hand side of the equation to the same form.
We start the proof by taking the right hand side of the theorem.

R.H.S = (∃state,state′ • AX \X H)

According to the definition of hiding in the Circus world, we get:

= (∃state,state′ • S(∃ trH • AX[trH,H∪ ref ′/tr,ref ′] ∧ (tr′− tr) = (trH− tr) �H) o
9X SkipX)

Now, applying the definition of healthiness condition CXS4, we get the following equation:

= (∃state,state′ • (CXS4(S(∃ trH • AX[trH,H∪ ref ′/tr,ref ′] ∧ (tr′− tr) = (trH− tr) �H))))

Now, taking left hand side of the theorem and solving it to get the expanded form of right hand side.

L.H.S = AC \C H

Applying the definition of hiding construct of CSP, we get:

= R(∃ trH • AC[trH,H∪ ref ′/tr,ref ′] ∧ (tr′− tr) = (trH− tr) �H) o
9C SkipC

Now, applying the definition of healthiness condition CSP4, we get the following equation:

= CSP4(R(∃ trH • AC[trH,H∪ ref ′/tr,ref ′] ∧ (tr′− tr) = (trH− tr) �H))

According to the defintion of AC, we get following form:

v CSP4(R(∃ trH • (∃state,state′ • AX)[trH,H∪ ref ′/tr,ref ′] ∧ (tr′− tr) = (trH− tr) �H))

As the predicate here does not include state,state′, so we can pull state,state′ out.

= CSP4(R(∃state,state′ • ∃ trH • AX[trH,H∪ ref ′/tr,ref ′] ∧ (tr′− tr) = (trH− tr) �H))

6.3. SUMMARY 55

Using theorem B.2.6, on page 128, will give the following equation:

= CSP4(∃state,state′ • S(∃state,state′ • ∃ trH • AX[trH,H∪ ref ′/tr,ref ′] ∧ (tr′− tr) = (trH− tr) �H))

Now we use theorem B.2.7, on page 129.

= ∃state,state′ • CXS4(∃state,state′ •

S(∃state,state′ • ∃ trH • AX[trH,H∪ ref ′/tr,ref ′] ∧ (tr′− tr) = (trH− tr) �H))

As state,state′ is not mentioned in the inner predicate, we can pull state,state′ out.

= ∃state,state′ • CXS4(S(∃ trH • AX[trH,H∪ ref ′/tr,ref ′] ∧ (tr′− tr) = (trH− tr) �H))

This makes the proof complete, as left and right hand side of the theorem have acquired the same form.

6.3 Summary

In this chapter, we discuss the results required in the mathematical foundation of the translation strategy be-
tween the target languages. First of all, the semantics of Circus and CSPM in Unifying Theories of Program-
ming (UTP) framework are specified for the selected constructs of the languages. The chosen subset of the
original Circus and CSP languages are named as SimpleCircus and SimpleCSP. The semantical difference
between the two is captured by the need for extra observation variables i.e. state,state′, in the case of Sim-
pleCircus. A formal link was proposed to connect the two theories. We propose Conjecture 6.2.1, on page 47
for the linking pairs between the two languages. If PX is a SimpleCircus program and PC is a SimpleCSP
program, then the transformation predicate (T) translates between the two.

For all SimpleCircus programs PX , we define a link to the CSP world that hides the state. By mathematical
proofs included in this chapter, it is proved that this linking predicate preserves the semantics of most of the
language operators, with the notable exception of sequential composition. Here, the relationship between o

9X

and o
9C is proved to be a refinement, not an equality. This is in fact novel work and the major contribution

of the thesis. Now, in the following chapter, we describe the translation theory by giving the mathematical
representation of the steps involved in the translation process.

56 CHAPTER 6. SEMANTICS

Chapter 7

Translation Theory

This chapter describes the formalised version of the translation process. The translation process is divided
into a number of steps. The action bodies of SimpleCircus processes are gone through these steps in order to
translate to their equivalent SimpleCSP output.

7.1 The Template for Each Function in the Translation Process

The following is a common overlapping syntax for SimpleCircus and SimpleCSP

P ∈ Process ::= AwhereD1; . . . ; Dn

D ∈ ActDef ::= N =̂ A | N(x1, . . . ,xn) =̂ A

A ∈ Action ::= Stop | Skip | a→A | e & A | A o
9 A | A\H — sequential subset

| AuA | A2A

| A ‖S A — CSP only
| x := e | A[V|H|V]A — Circus only
| N | N(e1, . . . ,en)

| Ci(e1, . . . ,en) — translation temporary only
| o

9i — translation temporary only
N ∈ Name ::= names

a,b.e ∈ Event events
e ∈ Expr expressions

x ∈ Var variables
V ∈ VarSet variable-sets

C ∈ ContName continuation names
i ∈ Indices an index set

A similar version of this mixed syntax was introduced in figure 1.2 of Chapter 1. The difference between figure
1.2 and this syntax is the inclusion of translation temporary placeholders. These temporary placeholders are
needed during the appliction of translation steps, discussed in the preceding section.

The formalised translation process is divided into steps. Each step is implemented as a function. If f is a
function then it is applied to each language construct. The function f takes an input of type Action, and
possibly some extra parameters, and returns a result/output, also of type Action, also possibly with some extra
outcome data..

f : Action→ Action

f (Input) =̂ Output

57

58 CHAPTER 7. TRANSLATION THEORY

For example, in our translation process, the first step is called “Normalise Sequential Composition”. This step
is implemented as a function, abbreviated as NSC. The application of this function to an action will result in
some output action, as shown.

NSC : Action→ Action

NSC(Stop) =̂ SomeOutputFromNSC

NSC(Skip) =̂ SomeOutputFromNSC

NSC(a→A) =̂ SomeOutputFromNSC

and so on.

In short, each translation step is a function from Action to Action, typically defined by pattern matching against
the range of syntax forms.

7.2 The Translation Process

7.2.1 Overview

Given a SimpleCircus process description

AwhereD1; . . . ; Dn

we translate as follows:

Normalise Sequential Composition
Transform all nested uses of o

9 into right associative forms, and apply the Skip unit laws to eliminate as
many uses of Skip as possible.

Rename Hidden Events
Rename hidden events to avoid clashes, using the following law:

P\~h = P[~n/~h]\~n

where~h is a canonically ordered set (H) of events and~n are globally fresh.

Name “Next” Actions
For every sequential composition P o

9 Q, if Q is not atomic (Stop, Skip, Chaos or a call N(. . .)) then we
introduce a fresh name NQ and definition NQ =̂ Q, and replace the composition by P o

9 NQ.

Get Variable Parameters
Gather all assignment variables and extend parameter lists of all definitions to include these. We assume
that pre-existing call parameter list names do not overlap with assignment variables.

Ensure Assignment Continutation
Every assignment x := e that is not immediately followed by o

9 we replace with x := e o
9 Skip.

Add Continuation Calls
Replace every Skip with a call to a fresh distinguished name Cx, and every arm of every choice gets a
fresh Cy sequentially composed on the end.

Propagate Assignments
Propagate the assignment effects up as far as the next call (including any Cx), removing the assignments
in passing.

7.2. THE TRANSLATION PROCESS 59

Instantiate Continuations
For every sequential composition P o

9x N(. . .), create a new instance of P in which every Cx(e1, . . . ,e2) is
replaced by N(e1, . . . ,e2).

We shall adopt the following shorthand in the sequel to reduce mathematical boilerplate:

• Unary Circus constructors: a→A, e & A and A\H will be covered by the notation F A.

• Binary Circus constructors: AuB, A2B, A[U|S|V]B, A o
9 B will be covered by the notation A⊕B.

7.2.2 Normalise Sequential Composition

Transform all nested uses of o
9 into right associative forms, and apply the Skip unit laws to eliminate as many

uses of Skip as possible.

NSC : ActDef ∗→ ActDef ∗

NSC(Skip o
9 c) =̂ NSC(c)

NSC(c o
9 Skip) =̂ NSC(c)

NSC(c1 o
9 c2) =̂ NSC(c1) o

9R NSC(c2)

NSC(F A) =̂ F NSC(A)

NSC(A⊕B) =̂ NSC(A)⊕NSC(B)

NSC(A) =̂ A —when none of the above apply. . .

(c1 o
9 (c2 o

9 c3)) o
9R c4 =̂ c1 o

9 ((c2 o
9 c3) o

9R c4)

(c1 o
9 c2) o

9R c3 =̂ c1 o
9 (c2 o

9 c3)

c1 o
9R c2 =̂ c1 o

9 c2

7.2.3 Rename Hidden Events

Rename hidden events to avoid clashes, using the following law:

P\~h = P[~n/~h]\~n

where~h is a canonically ordered set (H) of events and~n are globally fresh.

For now, we do not elaborate further, but rather assume that all hidden events are disjoint from non-hidden
ones, at every level of the hierarchy This rather avoids the benefits of hiding in name-space management, but
is just a piece of boiler-plate “alpha-substitution” that is of little interest at present. We also assume that this
includes α-renaming all existing parameters so they do not clash with assignment variables.

7.2.4 Name “Next” Actions

For every sequential composition P o
9 Q, if Q is not atomic (Stop, Skip, Chaos or a call N(. . .)) then we introduce

a fresh name NQ and definition NQ =̂ Q, and replace the composition by P o
9 NQ.

60 CHAPTER 7. TRANSLATION THEORY

NNA : Action→ Action× ActDef ∗

let (A′,δ ′) = NNA(A)

(B′,δ ′′) = NNA(B)

below

NNA(A o
9 N) =̂ (A′ o

9 N,δ ′)

NNA(A o
9 B) =̂ (A′ o

9 NB,δ
′aδ

′′a 〈NB =̂ B′〉), NB fresh

—rest is boilerplate. . .

NNA(F A) =̂ (F A′,δ ′)

NNA(A⊕B) =̂ (A′⊕B′,δ ′aδ
′′)

NNA(A) =̂ (A,〈〉) —when none of the above apply. . .

7.2.5 Get Variable Parameters

Gather all assignment variables and extend parameter lists of all definitions to include these. We assume that
pre-existing call parameter list names do not overlap with assignment variables.

This stage is sub-divided into three phases.

GVP : ActDef ∗→ ActDef ∗

GVP(P) =̂ GVP3 ◦ GVP2 ◦ GVP1

The first phase simply accumulates variables used in each action in isolation, and notes any calls to other
actions.

GVP1 : ActDef → ActDef ×P Var×P Name

GVP1(A) =̂ (A,COLLV(body.A),COLLC(body.A))

COLLV : Circus→P Var

COLLV(x := e) =̂ {x}

COLLV(F A) =̂ COLLV(A)

COLLV(A⊕B) =̂ COLLV(A)∪COLLV(B)

COLLV(A) =̂ /0 —when none of the above apply. . .

COLLC : Circus→P Name

COLLC(N(. . .)) =̂ {N}

COLLV(F A) =̂ COLLV(A)

COLLV(A⊕B) =̂ COLLV(A)∪COLLV(B)

COLLV(A) =̂ /0 —when none of the above apply. . .

The second phase follows the call patterns, effectively computing a form of transitive closure: an action uses
variables in those actions it calls as well as its own.

GVP2 : (ActDef ×P Var×P Name)∗→ (ActDef ×P Var×P Name)∗

GVP2 — if A calls B extend both with each others vars, until no change

7.2. THE TRANSLATION PROCESS 61

The third and final phase simply extends each definition parameter list with the variables discovered in the
previous two phases.

GVP3 : (ActDef ×P Var×P Name)∗→ ActDef

GVP3(N =̂ A,ν ,) =̂ (N(ν) =̂ ADDVν(A))

ADDV : Var∗→ Action→ Action

let A′ = ADDVν(A)

B′ = ADDVν(B)

below

ADDVν(N(. . .)) =̂ N(. . . ,ν)

ADDVν(F A) =̂ F A′

ADDVν(A⊕B) =̂ A′⊕B′

ADDVν(A) =̂ A —when none of the above apply. . .

7.2.6 Ensure Assignment Continutation

Every assignment x := e that is not immediately followed by o
9 we replace with x := e o

9 Skip.

EAC : Var∗→ Action→ Action×ActDef

EACν(x := e o
9 B) =̂ x := e o

9 EACν(B)

EACν(A o
9 B) =̂ EACν(A) o

9 EACν(B)

EACν(x := e) =̂ x := e o
9 Skip

EACν(F A) =̂ F EACν(A)

EACν(A⊕B) =̂ EACν(A)⊕EACν(B)

EACν(A) =̂ A —when none of the above apply. . .

7.2.7 Add Continuation Calls

Replace every Skip with a call to a fresh distinguished name Cx, and every arm of every choice gets a fresh Cy

sequentially composed on the end.

ACC : Var∗→ Action→ Action×ActDef

let (A′,α) = ACCν(A)

(B′,β) = ACCν(B)

below

ACCν(Skip) =̂ (Cx(ν),〈Cx(ν) =̂ Skip〉), x fresh.

ACCν(AuB) =̂ (A′ o
9 Cx(ν)uB′ o

9 Cy(ν),α
aβ a 〈Cx(ν) =̂ Skip〉a 〈Cy(ν) =̂ Skip〉),x,y fresh

ACCν(A2B) =̂ (A′ o
9 Cx(ν)2B′ o

9 Cy(ν),α
aβ a 〈Cx(ν) =̂ Skip〉a 〈Cy(ν) =̂ Skip〉),x,y fresh

ACCν(F A) =̂ (F A′,α)

ACCν(A⊕B) =̂ (A′⊕B′,αaβ)

ACCν(A) =̂ (A,〈〉) —when none of the above apply. . .

62 CHAPTER 7. TRANSLATION THEORY

7.2.8 Propagate Assignments and Instantiate Continuations

Propagate Assignments: Propagate the assignment effects up as far as the next call (including any Cx), remov-
ing the assignments in passing.
Instantiate Continuations: For every sequential composition P o

9x N(. . .), create a new instance of P in which
every Cx(e1, . . . ,e2) is replaced by N(e1, . . . ,e2).

A first attempt, noting that we need to manage assignments in context, e.g. being aware of subtle syntactic
differences like (a→ x := 1); N(x, . . .) and a→ (x := 1; N(x, . . .)), that should both translate to the same
outcome: a→N(1, . . .).

PA : (Var 7→ Expr)→ Action→ ((Var 7→ Expr)× Action)

let (σ ′,A′) = PAσ (A)

(σ ′′,B′) = PAσ (B)

ς = σ †{x 7→ e}

below

PAσ (x := e) =̂ (ς ,Skip)

PAσ (C (e1, . . . ,en)) =̂ (σ ,C (e1σ , . . .enσ))

PAσ (e & A) =̂ (σ ′,eσ & A′)

PAσ (F A) =̂ (σ ′,F A′)(σ ′,A\H)

PAσ (A o
9 N(e1, . . . ,en)) =̂ (σ ′,A′ o

9 N(e1σ
′, . . . ,enσ

′))

PAσ (A[U|S|V]B) =̂ (σ ′[U|S|V]σ ′′,PAσ (A)[U|S|V]PAσ (B))

PAσ (N(e1, . . . ,en)) =̂ (σ ,N(e1σ , . . . ,enσ))

PAσ (AuB) =̂ (σ ′]σ
′′,(PAσ (A)uPAσ (B)) o

9 M(i,ν1,ν2))

PAσ (A2B) =̂ (σ ′]σ
′′,(PAσ (A)2PAσ (B)) o

9 M(i,ν1,ν2))

PAσ (A) =̂ (σ ,A) —when none of the above apply. . .

Here eσ denotes e with substitution done as per σ , and νσ means each x in ν is so substituted. In addition, †
is function override.

In the case of internal and external choice,] is disjoint union that distinguishes the left and right sides by
tagging the variables. A suitable tagging mechanism ensures that if expression e is meant to be substituted
in left side variables and expression f is meant to be substituted in the right side, the correct substitution is
performed. Mathematically, if we have,

v 7→ e] v 7→ f

It becomes:
vL 7→ e,vR 7→ f

Here, the call M(i,vL,vR) ensures the final continuation call uses the appropriate variable set.

Here we used a single C process, but it now looks like we need to tag them to link to names after specific o
9s.

So
(. . .Cx . . .) o

9x N

will become
(. . .N . . .)

7.2. THE TRANSLATION PROCESS 63

in step “Instantiate Continuations”.

Consider the following:
(. . .(. . .Skip o

9 N . . .) . . .Skip) o
9 M . . .

If we do not distinguish Skips and o
9s, then we get

(. . .(. . .C o
9 N . . .) . . .C) o

9 M . . .

and Instantiate Continuations risks doing incorrect replacements to obtain, for instance:

(. . .(. . .M . . .) . . .M) . . .

With proper labelling, shown below:

(. . .(. . .C1 o
91 N1 . . .) . . .C2) o

92 M2 . . .

“Instantiate Continuations” can get it right:

(. . .(. . .N . . .) . . .M) . . .

In order to elaborate more on the translation for internal and external choice, we take a running example from
SimpleCircus2CSPM. The Circus specification of this example is as follows:

A ˆ= a -> (x := 1) ; Skip

B ˆ= (y := x+1) ; b -> Skip

C ˆ= c -> Skip

MAIN ˆ= (z := 3) ; (A() ; B() |˜| A() ; C())

The translated version of this particular example is:

A(x,y,z) ˆ= a -> Skip

A_2(x,y,z) ˆ= a -> MAIN_3(1,y,z)

B(x,y,z) ˆ= B_2(x,x+1,z)

B_2(x,y,z) ˆ= b -> Skip

C(x,y,z) ˆ= c -> Skip

MAIN(x,y,z) ˆ= MAIN_2(x,y,3)

MAIN_2(x,y,z) ˆ= A_2(x,y,z)

MAIN_3(x,y,z) ˆ= B(x,y,z) |˜| C(x,y,z)

Here, the main function first sets the variable z to a value. This assignment command is followed by an internal
choice between left and right sequentially composed chains of actions. Effectively, there is an internal choice
between actions B and C. In the translated version, the proper tagging for the call of actions is performed.
Furthermore, the variables are substituted with their expressions correctly.

64 CHAPTER 7. TRANSLATION THEORY

7.3 Summary

Now, we wrap up this chapter. The translation process from Circus to CSPM is divided into steps. In fact,
each translation step is a function, typically defined by pattern matching against the range of syntax forms.
These steps are formalised and mathematically represented here. Once formally specified, the mathematical
representation made the implementation phase much easier and straightforward, particularly in the case of
developing the SimpleCircus2CSPM prototype in Haskell. The following chapter gives the implementation
details of both the circus2cspm and SimpleCircus2CSPM tools.

Chapter 8

Implementation

This chapter provides the information on the implementation of the translation between Circus and CSPM .
First, it describes our initial attempt of translating between Circus and CSPM using Java i.e., the conversion of
JCircus sources to circus2cspm. Then, we describe the implementation of the translator in Haskell.

8.1 Implementation Initial Attempt – JCircus to circus2cspm

In the figure 8.1, the steps for the translation process of our translator circus2cspm are described informally.
These steps are similar to those mentioned in section 5.2.1 to 5.2.4. The flow diagram is a representation of the
initial setup of steps for translation process, implemented in circus2cspm tool.

The first step is about specification file loading. Here, we gather the information about the channel declarations.
Then, we gather the state variables defined in Z schemas. From these, we develop a list of parameters, to be
attached to each process name. The second step involves the analysis of the main action. Here, we establish
a record of the calling actions and the operators in the initialiser. Now, each CSP-like action in the Circus
specification is converted into its equivalent machine readable version. If an assignment command appears, the
expression is replaced at the appropriate place in the parameter list, attached to corresponding process name.
This gives us an intermediate translated version of the specification. The final translation step involves the
replacement of the correct calling actions in the intermediate translated version. The replacement is performed
on the basis of analysis of main action done in Step 2 of the translation.

8.1.1 The Explanation of the Translation Flow Diagram with a Simple Example

Our formal description of the translation strategy below states that in order to translate a program in Circus to
CSP, we get the channels declared in the program. After that, we obtain the schemas defined in the program
and extract from them a list of state variables. Here ’g’ in gstatevars stands for global. The next step is to
load all the process paragraphs in the program.

The process paragraphs are composed of number of state variables and Circus actions. After developing the
list of parameters from the state variables, the description of each individual Circus action is gathered. The
purpose of initialiser part of the Circus actions in a process paragraph is to establish the order of the Circus
actions performed in the main action.

The translation is then a matter of converting the gathered information of the Circus process into its machine
readable version while performing transformation steps on the gathered channels, state variables and process
paragraphs information.

translate prog

65

66 CHAPTER 8. IMPLEMENTATION

Specification / Environment Loading

Gather the information about
 the channel declarations

Convert the state variables
defined in Z schemas into

parameter list

Attach parameter list with
each process name

Step 5

Step 1.1

Step 1.3

Step 1.2

Analyse the main action – Record keeping
of the actions and operators in initialiser

On the basis of CSP laws related
to sequential composition, internal

choice, external choice etc., make the flow

The final transformation of intermediate
translated version into final form based on the

analysis performed in the previous step

Each CSP like action in Circus
specification converts to its

equivalent machine readable version
Step 4

Step 3

Step 2

Step 1

Figure 8.1: Generic Translation Process Flow

= let chans = getchanns prog in

let gstatevars = get schemas prog in

let circprocess = get process prog in

let CSPprocess = get translateProc chans gstatevars prog

in output CSPprocess

translateproc chans gstatevars proc

= let statevars = (getschemas proc) ++ gstatevars in

let params = metaparas statevars in

let circactions = getactions proc in

let CSPactions = map (tanslateAct chans params) circactions

let InitCSP = translateAct chans params (actions | proc)

in CSPassemble CSPactions, InitCSP

In order to explain each step of the translation process, we use a Circus program given in figure 8.2, to elaborate
the input and output of each step of the translation. This example contains channel declaration and a process
definition with name Ex1. The Z schema has two state variables x and y. The actions are constituted of
assignment commands, sequential composition, prefix action and one of the basic actions, that is, Skip. The
main action defined is kept simple with all sequential compositions between each call of a particular action.

8.1.2 Step 1 – Specification/Environment Loading and Information Gathering

Section 4.2.3 of [dF05] describes the environment setting of the tool formally. For example, the formal de-
scription for the channels environment is described as VisChanEnv : seq N, recording the names of visible
channels of a process. HidChanEnv : seq N records the names of hidden channel of a process. SyncCom-

8.1. IMPLEMENTATION INITIAL ATTEMPT – JCIRCUS TO CIRCUS2CSPM 67

channel a,b,c
process Ex1 =̂ begin
state

Ex1State
x,y : N

ACTION A =̂ x := 1; a→Skip
ACTION B =̂ y := x+1; b→Skip
ACTION C =̂ c→Skip
• ACTION A; ACTION B; ACTION C

end

Figure 8.2: Circus Example to Explain Translation Process

mEnv : N 7→ SC maps each channel name used in a process to a value of type SC : S (if synchronisation
channel) or SC : C (if communication channel). A communication channel is the channel which inputs (indi-
cated by ‘?’) or outputs (indicated by ‘!’) a value on the channel. Meanwhile, the synchronisation channel is
an untyped channel or it contains fields that are not defined as input or output.

Now, in the following, we describe the steps of the translation process:

8.1.3 Step 1.1 – Getting Channel Information

In this step, the task is to gather the information of channel declarations, CDecls, in the loaded specification,
Program.

Step1.1 : Program→CDecls∗

We process a list of process paragraphs, Paras, having empty set of CDecls. Each Para we process may add
some more channel declarations.

Step1.1Para :CDecls∗→Para→CDecls∗

Step1.1Para CDecls CDecl = CDecl ++[CDecls]

Step1.1Para CDecls Para = CDecls

If we take the Circus example, Ex1 mentioned earlier, after completing this step, the translated version of
CSPM will be:

channel a

channel b

channel c

8.1.4 Step 1.2 – Process the Z schemas to know the state variables

The next step is to gather the information of the state variables defined in a process. After gathering this data,
the state variables defined in Z schemas are converted into a parameter list. As in a Circus specification, the
Z is mixed freely within the specification, so the new state variables can be added anywhere in the Circus

68 CHAPTER 8. IMPLEMENTATION

specification. Consequently, the parameter list is required to add in the upcoming variables into the existing list
during parsing. We process a list of process paragraphs, Paras start with an empty set of parameters, Params.
Each Para we process, may add some new parameter into the parameter list, appended in Params.

Step1.2Para :ParamList→Para→ParamList

Step1.2Para Paramszschema = paramsOf zschema++[Params]

Step1.2ParaParamsPara = Params

The function paramsOf is used here is to extract the state variables from zschema. After completing these
two sub-steps for a process N now we know the declared channels and the state variables.

In order to elaborate more, if we process the schema defined in our Circus example Ex1, the following schema
will turn into a parameter list of (x,y).

Ex1State

x,y : N

In Java code, this step is achieved by calling visitingSignature function in TranslatorVisitor

class. The function visitingSignature is called from the visitBasicProcess function. A local
function named variableListFunction is provided to retrieve list of variables at any time of execution.
A globally scoped list of strings named state_variables is provided to store the schema information into
a parameter list.

8.1.5 Step 1.3 – Making each action to its parameterised version

This step of the translation involves attaching the parameter list to each process name. This step is necessary be-
cause in CSPM , each of the processes is called by passing the values of the parameters. From an implementation
prospective, this functionality is achieved by the globally defined list of strings named state_variables.
This list has already gathered the information of parameters available in the process in step 1.2. So, now at-
taching the list of parameters to a function name is just a matter of outputting this list into the required form at
the required places.

8.1.6 Step 2, 3 – Analysis of the Main Action

The Skip in an individual action is replaced by a continuation marker i.e. CONT , followed by the particular
action name.

We use the process initialiser part of the specification, i.e. Init to see the common pattern, e.g. in our particular
case, analysing A ; B ; C turns into A⇒ B⇒ C, i.e. A will be followed by B and B will be followed by C.
More closely, if A = . . . CONT A(x,y) and A feeds into B then translation would be: A(x,y) . . .→ B(x,y)

In our simple example Ex1, the actions are followed by one another i.e. the main action contains all sequential
actions e.g Action A; Action B; Action C. Here, we keep record of the action names in the main action and the
operators involved. We used two lists rkActionsInMain and rkOperatorsInMain for this purpose.
After visiting the main action: • Action A; Action B; Action C, the contents of rkActionsInMain and
rkOperatorsInMain contents’ are shown in the figure 8.3 below.

When the assignment command in the actions i.e. Action A, Action B and Action C are visited, the record
keeping of the corresponding expressions for the variable list is recorded in the global scope list named
rkExprsForSkip. For uniquely identifying the expressions for each action, the respective action name is

8.1. IMPLEMENTATION INITIAL ATTEMPT – JCIRCUS TO CIRCUS2CSPM 69

Figure 8.3: Record Keeping for Actions Called in Main Action and Linking Operators

also stored on the first index, followed by the expressions. To elaborate this, the content of rkExprsForSkip
is shown in the figure 8.4 when the assignment command x := 1 and y := x+1 have been visited respectively.

Figure 8.4: Record Keeping for Expressions when visiting Assignment Command

Furthermore, the length of the list of expressions for a particular action is dependent on the number of parame-
ters defined for a particular process, that is, in the case of our simple example, as x and y are the state variables
defined in the specification. So, the length of list of expressions for a particular action would be equal to 2.

When the function visitSkipAction is called, initially the Skip will be replaced by the CONT fol-
lowed by the action name. This information is stored in the global scope list called rkContinueActions
ForSkip. This replacement of Skip with the Continue functions is depicted below in the figure 8.5.

Figure 8.5: Record Keeping for Continue Functions when visiting Skip Action

70 CHAPTER 8. IMPLEMENTATION

8.1.7 Step 4 – Conversion of CSP-like actions to CSPM and Alignment of Information
Gathered So Far

In step 4, each of the CSP-like actions in the Circus specification converts to its equivalent machine readable
version.

Now in order to elaborate the conversion in this step, the intermediate format of our Circus example Ex1 should
turn into the following form:

Action A(x,y) = a→CONT Action A(1,y)

Action B(x,y) = b→CONT Action B(x,x+1)

Action C(x,y) = c→CONT Action C(x,y)

When the function visitingPrefixAction is called during the specification translation, the information
gathered so far is aligned and a string is output for this intermediate stage. One functionality is gathering
information about the prefixed channels related to a particular action, e.g. in our example the prefixed channel
for ACTION A will be ‘a’. At this stage of the translation, the aligned information is gathered together as a
string named outputStringPrefixAction for a particular action. To uniquely identify the string related
to a particular action, the action name is indexed first in a list of output strings followed by the respective string
as shown in figure 8.6.

Figure 8.6: Record Keeping for Output Strings from Prefix Action

8.1.8 Step 5 - Final Transformation

The final step in the translation is replacing the CONT ACTION function by the following action appearing
in the list of action names found in the main action call. We have already stored this sequence in the global list
named rkActionsInMain. Here the CONT ACTION function is an indication that a Skip was there. So
one can immediately follow the pattern found in the list of recorded action names i.e. rkActionsInMain
and replace the CONT with the following action name. In the case of the last string the Skip will simply be
replaced by SKIP. The figure 8.7 elaborates the final step of translation.
So, final translated version of the CSP code will be:

ACTION_A(x,y) = a -> ACTION_B(1,y)

ACTION_B(x,y) = b -> ACTION_C(x,x+1)

ACTION_C(x,y) = c -> SKIP

8.1. IMPLEMENTATION INITIAL ATTEMPT – JCIRCUS TO CIRCUS2CSPM 71

Figure 8.7: Final Replacement Step on the basis of Main Calling Action

Now, if we consider the case of a changed sequence of actions in the main action call, the final translation step
must follow the sequence appearing in the main action call. For example, if the sequence in the main action
call is now • Action C; Action B; Action A, then the final translation step of replacing continue actions will
be as shown in the figure 8.8.
Now in this case, final translated version of the CSP code will be:

Figure 8.8: Final Replacement Step with Changed Sequence of Actions

ACTION_C(x,y) = c -> ACTION_B(x,y)

ACTION_B(x,y) = b -> ACTION_A(x,x+1)

ACTION_A(x,y) = a -> SKIP

Here the SimpleCircus process main contains is containing only sequential composition. The laws of CSP
have to be followed while dealing with other language constructs like 2, u, ‖, etc.

A number of examples translated from circus2cspm are discussed in the evaluation chapter in Section 9.3 on
page 93.

Although we have achieved the correct output of a number of translation examples for a subset of constructs
from Circus to CSPM , however, we found the development in Java to be quite complex, especially in the record
keeping process and moving from initial to intermediate and then from intermediate to the final transformation
of the translated version. We dealt here with some simple action compositions. But if this structure grows
and acquires a complex form, it would be quite hard to implement it. Pattern matching in the compositions
of complex combinations of actions in the main action is hard to find and implement in the present state
of the source code of circus2cspm. This pattern matching is also a pre-requisite while dealing with the
implementation of all CSP laws in the main action. This goal was found to be very hard to achieve as an
implementation in Java.

72 CHAPTER 8. IMPLEMENTATION

As an alternative approach, the use of Haskell, a well-known functional programming language, for modelling
these translations and acquiring CSP normal form was found to be much easier. This implementation can be
achieved in far less lines of code than its equivalent in Java. The use of functional languages is quite easy when
dealing with pattern matching. In comparison to few lines of code in Haskell, the TranslatorVisitor
class size was increased from 3850 to 4987 lines after the implementation of few combinations of action calls
in main action, as described above.

Now we give the implementation details of the development of a prototype in Haskell.

8.2 Haskell Implementation – SimpleCircus2CSPM

This section gives a step-by-step explanation of prototyping the translation strategy in Haskell. Portions of
Haskell code are included for the prototype details.

8.2.1 Names

First of all, we defined all the names involved in our target languages. The languages are kept simple and so
the proposed name for the language is SimpleCircus. It covers a subset of Circus and CSPM constructs. The
data type of the names is String. The names for binary operators of not, or, and, equal or implies
are given. Similarly, standard operators for comparison, arithmetic operations are given relative names. The
set notations involve the names for usual sets and channel sets. The operations on sets are union (∪), intersect
(∩), difference (\\) and subset (⊂). The sequences involve their definition, catenation of two sequences and
determining the length by operator #. The names specific to SimpleCircus are: interleaving (|||), alphabetised
parallel (X||Y), interface parallel (||X), internal choice (u), external choice (2), sequential composition (;), guard
(&), prefix operator (→), hiding (\), assignment (:=) and recursion (Mu). The type for prototyping names in
Haskell is:

type Name = String

Listed below are the Circus specific names.

ilvName = "|||"

interfaceParOpenName = "[|"

interfaceParCloseName = "|]"

alphabetisedParOpenName = "["

alphabetisedParMidName = "||"

alphabetisedParCloseName = "]"

repAlphabetisedOpenName = "["

repAlphabetisedCloseName = "]"

icName = "|˜|"

ecName = "[]"

seqName = ";"

guardName = "&"

prefixName = "->"

hideName = "\\"

atName = "@"

replName = "RR"

ifName = "if"

thenName = "then"

elseName = "else"

8.2. HASKELL IMPLEMENTATION – SIMPLECIRCUS2CSPM 73

asgName = ":="

muName = "Mu "

8.2.2 Expressions

In SimpleCircus, we modelled expressions as a boolean, an integer, a variable name, an aggregate function
which aggregates a list of expressions, application of name to an expression list, combining two expressions
in one name using the Bin function and depicting events on a channel. The interesting one is modelling of
events which are defined to be of type EvtSpec (event specfication). The event communication can be a Null;
inputting an expression on a channel or outputting an expression on a channel. Here [Comm] lists a number of
communications on a channel. This is defined in Haskell as:

type EvtSpec = (Name, [Comm])

data Comm

= Null | Dot Expr | Bang Expr | Q Name (Maybe Expr)

deriving (Eq, Ord, Show)

data Expr

= B Bool | Z Int | Var Name

| Agg Name Name [Expr]

| App Name [Expr]

| Bin Name Expr Expr

| Evts EvtSpec

deriving (Eq,Ord,Show)

8.2.3 Expression Builders

The utility of the expressions defined above is depicted in expression builders section of the Haskell code. For
example, a boolean to be always true or false can be defined as:

true = B True

false = B False

Similarly, the equality operation can be defined as:

eq = Bin eqName

ge = Bin geName -- Greater or equal

Set operations can be built as:

setof = Agg setOpenName setCloseName

setnull = setof []

setdiff = Bin setdiffName

74 CHAPTER 8. IMPLEMENTATION

8.2.4 Abstract Syntax of SimpleCircus

A concrete mathematical syntax for parameterised CSP, based on CSPM [For05] extended with assignment,
is:

P,Q,R ∈ Proc ::= Div | STOP | SKIP | CHAOSA

| a→P | c?x?y : A!z→P | P o
9 Q

| P\A | P2Q | PuQ | c & P

| P |||Q | P ‖A Q | P A||B Q

| o
9x:σ
• P |�x:A• P | d ex:A• P

| |||x:A• P | ||A
′

x:A• P | ||x:A• [A
′]P

| PCbBQ | N | N(e, f , . . .) | x,y, . . . := e, f , . . .

D ∈ PDef ::= N =̂ P

| N(x,y, . . .) =̂ P

The implementation of the abstract syntax in our prototype is given below. The interesting bit in the syntax
is type definition of CircusProgram and CircusDef. CircusProgram is a list of Circus definitions.
Here each Circus definition or CircusDef consists of a name argument which identifies a process; followed
by the list of string in which each element of the list depicts formal arguments i.e. the state variables of
the process (in the CSP world, these state variables are going to turn into a parameter list); and body of the
process which gives the description of the process through Circus actions which can be any of the actions in
the Circus world available in the abstract syntax.

data Circus

= Div | Stop | Skip |

Chaos Expr |

String :-> Circus |

(String,[String]) ::-> Circus |

Circus ::: Circus |

IntChoice Circus Circus |

ExtChoice Circus Circus |

Hide Circus [String] |

IPar [String] Circus Circus |

APar [String] [String] Circus Circus |

Ilv Circus Circus |

Cond Expr Circus Circus |

Guard Expr Circus |

INT Name [String] Circus |

SEQ Name [String] Circus |

EXT Name [String] Circus |

ILV Name [String] Circus |

IPAR [String] Name [String] Circus |

APAR Name [String] [String] Circus |

Name := Expr |

8.2. HASKELL IMPLEMENTATION – SIMPLECIRCUS2CSPM 75

Call String [Expr] -- name(actual arguments,)

deriving (Eq,Ord,Show)

type CircusDef -- name(formal arguments,) = body

= (String -- name

, ([String] -- formal argument

, Circus -- body

)

)

type CircusProgram = [CircusDef] -- ordered by name component

8.2.5 Precedence and Pretty Printing

A standard and compatible precedence is given to the logical, comparison and arithmetic operators. Also
a precedence consistent with CSPM constructs is provided. A complete list is in the appendix source code.
Examples of this in Haskell are:

stdPrec nm

| nm == eqvName = 21

| nm == impName = 22

| nm == orName = 23

| nm == andName = 24

| nm == eqName = 25

| nm == neqName = 26

| nm == ltName = 26

| nm == leName = 26

| otherwise = 1

cspPrec nm

| nm == ilvName = 2

| nm == interfaceParOpenName = 3

| nm == alphabetisedParMidName = 3

| nm == icName = 4

| nm == ecName = 5

| otherwise = 1

Pretty printing of expressions is provided by the function ppExpr which takes as input a precedence lookup
function and expression and gives back a string. Precf takes as input a name and returns back the precedence.
Pretty printing of some simple expressions is shown below:

type Precf = Name -> Int

ppExpr :: Precf -> Expr -> String

ppExpr prec e

= pp 0 e

where

pp _ (B False) = "ff"

pp _ (B True) = "tt"

76 CHAPTER 8. IMPLEMENTATION

pp _ (Z z) | z < 0 = brkt $ show z | otherwise = show z

pp _ (Var v) = v

Similarly, the ppProc function provides pretty printing for Circus processes. It takes the input a precedence
and a Circus process and returns back a string. The pretty printing is available for all SimpleCircus constructs,
given in the abstract syntax of the language. As an example, the pretty printing implementation of some basic
constructs and an alphabetised parallel is shown below:

ppProc :: Precf -> Circus -> String

ppProc prec e

= pp 0 e

where

pp _ Div = "DIV"

pp _ Stop = "STOP"

pp _ Skip = "SKIP"

pp cp (APar a b c1 c2) -- p [a || a’] q

= precRender prec cp alphabetisedParOpenName

(\nmp -> pp nmp c1

++ ’ ’:alphabetisedParOpenName

++ ’ ’:(ppSts1 a)

++ ’ ’:alphabetisedParMidName

++ ’ ’:(ppSts1 b)

++ ’ ’:alphabetisedParCloseName

++ ’ ’:pp nmp c2)

8.2.6 CSP Laws

Algebraic laws govern the translation between the two languages. So, we formalised a significant number of
the CSP laws available in [Ros98] using Haskell. The Haskell code included in Appendix lists all of them.
There are forty four (44) CSP laws that are implemented in our prototype.

The approach here is that when a particular law is attempted on a Circus process, the first argument of the
function sets a flag (a boolean) indicating if the law is applicable. If the boolean returns True, it means that the
law was successfully applied to the process. Otherwise, it returns value of False in the first argument and the
Circus process is returned unchanged. Two examples of the implementation of these laws are given below:

“; -assoc” P; (Q; R) = (P; Q); R

law_Seq_Assoc_LtoR (c1 ::: (c2 ::: c3)) = (True, ((c1 ::: c2) ::: c3))

law_Seq_Assoc_LtoR c = (False, c)

law_Seq_Assoc_RtoL ((c1 ::: c2) ::: c3) = (True, (c1 ::: (c2 ::: c3)))

law_Seq_Assoc_RtoL c = (False, c)

“\-||-dist” (P X‖YQ)\Z = (P\Z∩X)X‖Y(Q\Z∩Y)

8.2. HASKELL IMPLEMENTATION – SIMPLECIRCUS2CSPM 77

law_Hide_APar_DistL (Hide (APar x y c1 c2) z)

= (True, APar x y (Hide c1 zintsctx) (Hide c2 zintscty))

where

zintsctx = z ‘intersect‘ x

zintscty = z ‘intersect‘ y

law_Hide_APar_DistL c = (False, c)

law_Hide_APar_DistR z x’ y’ z’ circ@(APar x y (Hide c1 zintsctx’)

(Hide c2 z’intscty’))

| x==x’ && y==y’ && z==z’ = (True, Hide (APar x y c1 c2) z)

| otherwise = (False, circ)

where

zintsctx’ = z ‘intersect‘ x’

z’intscty’ = z’ ‘intersect‘ y’

8.2.7 Head Normal Form Implementation in Haskell

We have explained the head normal forms (HNF) of CSP in Section 2.6, on page 16. The normal form
implementation in Haskell is given here. The basic constructs are already in head normal form.

hnf Stop = Stop

hnf Skip = Skip

hnf Div = Div

hnf circ@((x,xs)::->c) = circ

For internal choice required to be in HNF,
hnf (Q u R) =̂ hnf (Q) u hnf (R)

hnf (IntChoice c1 c2) = IntChoice (hnf c1) (hnf c2)

For interleaving to be transformed to HNF involves the application of the distributive law to the head normal
form of the left and right processes of the interleaving. Then, the application of the step law for ||| turns the
whole expression into head normal form.

“|||-step”

x : C→P(x) ||| y : D→Q(y) “|||-step”
= x : C→ (P(x) ||| y : D→Q(y))

u y : D→ (x : C→P(x) |||Q(y))

hnf (Ilv c1 c2) = (snd $ law_ILeave_StepL

(Ilv (snd $ law_Ilv_DistL (hnf c1)) (snd $ law_Ilv_DistL (hnf c2))))

The same strategy is to adopt for acquiring HNF of the hiding, external choice, internal choice, interface
parallel, and alphabetised parallel constructs. Here, we represent the step law of hiding construct. Meanwhile,
the remaining are included in the appendix C.6, on page 157.

78 CHAPTER 8. IMPLEMENTATION

“\-step”

(a→P)\H =

{
a→ (P\H), if a /∈ H

P\H, if a ∈ H

A generalised form of this law is:

(a : A→P)\H = (a : (A\H)→ (P\H))u d ea:A∩H• (P\H)

hnf (Hide circ a) = (snd $ law_Hide_StepL (Hide (snd $ law_Hide_DistL (hnf circ)) a))

8.2.8 Implementation of the Step Laws

Step laws are integral part of the process of acquiring the head normal form for a Circus process.

Normalisation refers to a process of changing sides of an equation to obtain a required form. As a process
algebra, CSP processes can be normalised to a particular shape to get better performance using the model
checker of the language, i.e. FDR [For05]. This normalisation process involves getting the head normal form,
abbreviated as HNF. This process is explained in Chapter 11, [Ros98]. We implemented this in Haskell. While
some basic constructs and equations are already in normal form, the normal form is the internal choice of
external choices of guarded prefix actions, leading to other normal form expressions. Here, we just present the
normalisation process of the external choice. In general, it involves the distributive laws which remove the non-
deterministic or internal choices to the right; the step laws which calculate the first-step actions of constructs;
and the manipulations of the expressions within the processes. For converting external choice required in HNF,
involves the application of the distributive law to the head normal form of the left and right processes of the
external choice. Then, the application of the step law turns the whole expression into HNF.

hnf (ExtChoice c1 c2) = (snd $ law_ExtChoice_StepL

(ExtChoice (snd $ law_ExtChoice_IntChoice_Dist_LtoR (hnf c1))

(snd $ law_ExtChoice_IntChoice_Dist_LtoR (hnf c2))))

Here the step law for external choice shown in the figure 8.2.8 below implemented in Haskell as:

“2-step”
x : A→P(x)2 y : B→Q(y) “2-step”
= x : (A\B)→P(x)
2 z : (A∩B)→ (P(z)uQ(z))
2 y : (B\A)→Q(y)

Figure 8.9: The Step Law for External Choice, 2

law_ExtChoice_StepL circ@(ExtChoice ((x,xs) ::-> c1) ((y,ys) ::->

c2)) = (True, mkExtChoice p1 (mkExtChoice p2 p3))

where

p1 = (x,adiffb) ::-> c1

p2 = (z,aintsctb) ::-> (mkIntChoice p4 p5)

p3 = (y,bdiffa) ::-> c2

adiffb = xs \\ ys

aintsctb = xs ‘intersect‘ ys

bdiffa = ys \\ xs

8.2. HASKELL IMPLEMENTATION – SIMPLECIRCUS2CSPM 79

p4 = (csubstitute x z c1)

p5 = (csubstitute y z c2)

z = freshName $ circNames circ

law_ExtChoiceStepL c = (False, c)

In addition, the implementation of the step law for (X||Y) in Haskell is also shown here.

law_APar_StepL circ@(APar a b ((x,xs)::->c1) ((y,ys)::->c2))

= (True, mkExtChoice p1 (mkExtChoice p2 p3))

where

p1 = ((x,comb1) ::-> (APar a b c1 ((y,ys)::->c2)))

p2 = ((z,comb2) ::-> (APar a b c3 c4))

p3 = ((y,comb3) ::-> (APar a b c5 c2))

comb1 = ((xs ‘intersect‘ a) \\ b)

comb2 = ((xs ‘intersect‘ (a ‘intersect‘ (ys ‘intersect‘ b))))

comb3 = ((ys ‘intersect‘ b) \\ a)

c3 = (csubstitute x z c1)

c4 = (csubstitute y z c2)

c5 = ((x,xs)::->c1)

z = freshName $ circNames circ

law_APar_StepL c = (False, c)

8.2.9 Top Level Translator Function Implementation

In the implementation, action2csp is a top level function which takes a complete Circus program and a
defined action in it and returns its equivalent in the CSP world. The implementation is achieved by making use
of mkCGraph appearing later in the implementation. After getting the graph of a particular Circus program
through mkCGraph, the translateCirc function is used to do the actual translation based on the action
name received and its corresponding variables and calls.

action2csp :: CircusProgram -> String -> CircusProgram

action2csp prog aname

= let cgrf = mkCGraph prog

in case alookup cgrf aname of

Nothing -> error ("No action ’"++aname++"’ found")

Just (vars,calls) -> translateCirc prog cgrf aname vars calls

The difference between high level functions circus2csp and action2csp is that the function circus2csp
maps a complete Circus program to its translated version while the latter works on an individual action inside
the Circus program.

circus2csp :: CircusProgram -> CircusProgram

circus2csp prog

= let cgrf = mkCGraph prog

in prog

80 CHAPTER 8. IMPLEMENTATION

Function getCircVarsCalls takes a complete Circus program and gets the information involved, i.e. the
definition name, the array maintaining variables used in the definition and the array having the information
about the calls of particular actions. This is achieved by using functions actionVars and actionCalls.

getCircVarsCalls :: CircusProgram

-> [(String -- definition name

, ([String] -- variables used in definition (sorted)

, [String] -- actions called

)

)

]

getCircVarsCalls defs

= alnorm $ gCVC defs

where

gCVC [] = []

gCVC ((aname,(aparam,abody)):rest)

= (aname,(avars,acalls)):gCVC rest

where

avars = lnorm $ actionVars abody

acalls = lnorm $ actionCalls abody

The function actionVars takes a particular Circus action and generates an array for gathering names of the
variables used in a particular action. Similarly, the function actionCalls takes a particular Circus action
and generates an array for gathering names of the calls to particular actions.

To gather information on the variables used in a particular expression, the function exprVars is defined.

exprVars (Var v) = [v]

exprVars (Agg _ _ es) = concat $ map exprVars es

exprVars (App _ es) = concat $ map exprVars es

exprVars (Bin _ e1 e2) = exprVars e1 ++ exprVars e2

exprVars _ = []

The important function here is detCircDeps which manages the record of the dependencies for the final
translated version of the Circus program. It determines the dependencies by analysing the calls to particular
actions by using the getCalls function.

detCircDeps :: [(String,([String],[String]))] -> [(String,([String],[String]))]

detCircDeps deps

= dCP deps [] False deps

where

dCP deps0 deps’ chgd []

| chgd = dCP deps’ [] False deps’

| otherwise = deps’ -- should equal deps0 !

dCP deps0 deps’ chgd (dep@(name,(vars,calls)):rest)

| calls’ == calls = dCP deps0 (dep:deps’) chgd rest

| otherwise = dCP deps0 ((name,(vars,calls’)):deps’) True rest

8.2. HASKELL IMPLEMENTATION – SIMPLECIRCUS2CSPM 81

where calls’ = getCalls deps0 calls calls

getCalls :: [(String,([String],[String]))] -> [String] -> [String] -> [String]

getCalls deps0 calls’ [] = lnorm calls’

getCalls deps0 calls’ (call:calls)

= case alookup deps0 call of

Nothing -> error ("Action ’"++call++"’ is undefined")

Just (_,subcalls) -> getCalls deps0 (subcalls++calls’) calls

As mentioned earlier, the functions mkCGraph and translateCirc are used by the high level functions
of translator called action2csp and circus2csp. After getting the graph of a particular Circus program
through mkCGraph, the translateCirc function is used to do the actual translation based on the action
name received and its corresponding variables and calls.

mkCGraph :: CircusProgram -> [(String,([String],[String]))]

mkCGraph = detCircDeps . getCircVarsCalls

translateCirc :: CircusProgram -> [(String,([String],[String]))]

-> String -> [String] -> [String] -> CircusProgram

translateCirc prog cgrf aname vars calls

= let usedActionNames = lnorm (aname:calls)

isUsed (nm,_) = nm ‘elem‘ usedActionNames

rprog = filter isUsed prog

newplist = lnorm (vars ++ getParams cgrf calls)

plistvars = map Var newplist

addpars (nm,(pars,body))

= (nm,(pars++newplist,addParams nm plistvars body))

pprog = map addpars rprog

in pprog

The purpose of addParams function is to attach the list of parameters to a Circus action. This is required
because in the CSP world the variables of the Circus world turn into parameters and a particular action is
called using parametric calls.

addParams :: String -> [Expr] -> Circus -> Circus

addParams nm plist (Call cnm pars) = (Call cnm (pars++plist))

The function is also important, when Skip construct is visited. Whenever, a Skip appears, it is replaced with
the continuation marker. Later on, in the translation, these continuation markers are replaced with the calls,
already obtained from the analysis of the main action.

addParams nm plist Skip = (Call (nm++"_CONT") plist)

When all other constructs available in the syntax tree are visited, they recursively call addParams function.

addParams nm plist (c1 ::: c2) = (addParams nm plist c1 ::: addParams nm plist c2)

addParams nm plist (a :-> circ) = (a :-> (addParams nm plist circ))

addParams nm plist ((x,xs) ::-> circ) = ((x,xs) ::-> addParams nm plist circ)

82 CHAPTER 8. IMPLEMENTATION

addParams nm plist (IntChoice c1 c2) = (IntChoice (addParams nm plist c1)

(addParams nm plist c2))

addParams nm plist (ExtChoice c1 c2) = (ExtChoice (addParams nm plist c1)

(addParams nm plist c2))

When no pattern is matched, the function addParams returns the action unchanged.

addParams nm plist body = body

The function getParams is there to extend the parameter list, if new parameters are added in by a particular
action.

-- extract part of prog of interest - all definitions aname:calls (rprog)

-- add newplist to extend plist of every call (pprog)

-- return pprog

getParams :: [(String,([String],[String]))] -> [String] -> [String]

getParams cgrf calls = concat $ map (fst . fromJust . alookup cgrf) calls

The function extractSeq is defined here to generate fresh names for the Circus actions on the left and right
side of the sequential composition. Each leading node from the tree of sequential compositions is given a fresh
name to make the Circus action compositions a sequential one. For example:
(A2B); (C2D) => N1; N2 where N1 = (A2B) and N2 = (C2D).

getExtractSeq :: CircusProgram -> [(Circus, [(String, Circus)])]

getExtractSeq defs

= gES defs

where

gES [] = []

gES ((aname,(aparam,abody)):rest)

| aname == "MAIN" = (extractSeqSt):gES rest

| otherwise = gES rest

where

extractSeqSt = extractSeq abody

extractSeq :: Circus -> (Circus, [(String,Circus)])

extractSeq circ = (circ, newNamedActs circ)

newNamedActs :: Circus -> [(String, Circus)]

newNamedActs (ExtChoice c1 c2) =

[(newActNameGen c1, c1)] ++ [(newActNameGen c2, c2)]

newNamedActs (IntChoice c1 c2) =

[(newActNameGen c1, c1)] ++ [(newActNameGen c2, c2)]

newNamedActs (c1 ::: c2) = (newNamedActs c1) ++ (newNamedActs c2)

newNamedActs _ = []

newActNameGen :: Circus -> String

newActNameGen circ = (freshNameAct $ circNames circ)

8.2. HASKELL IMPLEMENTATION – SIMPLECIRCUS2CSPM 83

8.2.10 Implementation of Formalised Steps in Translation Theory

The translation process steps formalised in Chapter 7 are implemented in Haskell code as well. Section C.9
on page 169 includes this implementation. The top level translator functions at action and process level are
topTranslatorAct and topTranslator. The process flow is depicted in figure 8.10.

topTranslator

Contains
MAIN

action?

GetCircVarParamsCalls
(gCVPV)

1. collVars abody'
2. collCalls abody'

where
abody' = ACC outEAC

outEAC = EAC outNNA
outNNA = doNNA' abody

PA (Propagate
Assignment)

IC (Instantiate
Continuation)

topTranslatorAct
YES

NO

Here,
NNA = Name
Next Action.
EAC = Ensure
Assignment
Command
ACC = Add
Continuation Call

Circus
Process (I/P)

Figure 8.10: Top Level Translator Working Flow based on Formalised Steps

When a Circus program is given as input to the topTranslator function, first, it checks that the program
contains a main action. If a main action is there, the getCircVarParamsCalls function is called. It
collects state variables and the action calls (final transformation will be based on call dependencies in the main
action). The action body abody will be updated to abody’ by following the formalised steps defined as
functions. For example: the doNNA function performs the “Name Next Action” step on the action body; the
doEAC is for the “Ensure Assignment Continuation” step; the doACC is for the “Add Continuation Call” step;
the doPA is for “Propagate Assignments”; and the doIC is for the “Instantiate Continuations” function. All of
these steps are mathematically represented in Section 7.2, on page 58. If a particular Circus program does not
contain the main action, it decides to use the topTranslatorAct function instead.

Here, we include the implementation of the “Ensure Assignment Continuation” step implementation in Haskell
to show the correspondence between the mathematical representation, actual functionality and the implemen-
tation detail of this step.

Ensure Assignment Command: Every assignment x := e that is not immediately followed by o
9 we replace

84 CHAPTER 8. IMPLEMENTATION

with x := e o
9 Skip.

EAC : Var∗→ Action→ Action×ActDef

EACν(x := e o
9 B) =̂ x := e o

9 EACν(B)

EACν(A o
9 B) =̂ EACν(A) o

9 EACν(B)

EACν(x := e) =̂ x := e o
9 Skip

EACν(F A) =̂ F (EACν(A))

EACν(A⊕B) =̂ EACν(A)⊕EACν(B)

EACν(A) =̂ A —when none of the above apply. . .

The function ensureAssgnCont checks all actions in a Circus program for assignment commands, not
followed by Skip. If such assignment command is found in the action definition, a Skip is sequentially composed
to the assignment command.

ensureAssgnCont :: Circus -> Circus

ensureAssgnCont circ@(asg@(n := e) ::: c) = asg ::: ensureAssgnCont c

ensureAssgnCont (n := e) = (n := e) ::: Skip

When all other constructs available in the syntax tree are visited, they recursively call ensureAssgnCont
function.

ensureAssgnCont (c1 ::: c2) = ensureAssgnCont c1 ::: ensureAssgnCont c2

ensureAssgnCont ((x,xs) :-> circ) = ((x,xs) :-> ensureAssgnCont circ)

8.3 Summary

This chapter started with the implementation details for the circus2cspm tool. We achieved the correct output
of a number of translation examples with a subset of constructs from Circus to CSPM . However, we found
the development in Java quite complex especially in the record keeping process and moving from initial to
intermediate and then from intermediate to the final transformation of the translated version. We dealt here
with some simple action compositions. But handling more of the various language construct cases proved very
hard to implement. Pattern matching for the compositions of complex combinations of actions in the main
action is hard to find and implement in the present state of the source code of circus2cspm. This pattern
matching is also a pre-requisite while dealing with the implementation of all CSP laws in the main action.
This goal was found hard to achieve by implementation in Java.

We then presented the implementation details of the SimpleCircus2CSPM prototype. This is a novel approach
of prototyping the translation from Circus to CSPM , exploiting the expressiveness of functional languages. In
the Haskell implementation, a number of examples are provided. We covered a number of constructs in our pro-
totype such as prefix actions, sequential composition, internal choice, external choice, hiding action, interface
parallel, alphabetised parallel, conditional, assignment command, calling an action, as well as their generalised
forms. A significant number (forty four) of CSP algebraic laws are formalised in the implementation. The
normalisation process is also implemented in the prototype. A simple implementation of pretty printing is also
provided which can be extended to provide a more sophisticated one. The formalised steps of translation, de-
fined in Chapter 7, are implemented in Haskell code. The next chapter evaluates prototype tools we developed,
by inspecting the running examples and their corresponding outputs.

Chapter 9

Evaluation

This chapter evaluates the translated examples from the SimpleCircus2CSPM tool and gives comments on the
results achieved so far. It also describes the case study of a cache coherence protocol specified in the notation of
SimpleCircus in order to explain its utility for specifying such protocols. Subsequently, the Circus examples
translated through the tool circus2cspm are discussed.

9.1 Running Examples in SimpleCircus2CSPM

9.1.1 Example 1 – Simple Sequential Case in the Main Action

This example contains three actions, A, B, and C. There are two variables, x and y defined in these actions.
Meanwhile, the third variable named z is introduced in the main action. The actions are made up of assignment
commands, sequential composition, prefix action and one of the basic actions, that is, Skip. The main action
defined is kept simple with just sequential compositions between each call of a particular action.

The mathematical version of the Circus example, cp1, is:

A =̂ (x := 1) o
9 (a→Skip)

B =̂ (y := x+1) o
9 (b→Skip)

C =̂ (c→Skip)

MAIN =̂ (z := 0) o
9 A o

9 B o
9 C

The output from translator is as follows, using the command, putppd (circus2csp cp1):

A(x,y,z) =ˆ= a -> B(1,y,z)

B(x,y,z) =ˆ= b -> C(x,x+1,z)

C(x,y,z) =ˆ= c -> Skip

MAIN(x,y,z) =ˆ= A(x,y,0)

Comments: By inspecting the mathematical version of this example, it can be seen that the main action of the
process calls actions A, B, and C in sequence. Before calls to actions, the assignment command sets the value
of variable z equal to zero. The output from circus2csp function shows that the process starts by calling
action A, while the expression of z is substituted in the parameter list. Afterwards, after performing event a,
action B is called with the parameter list having being updated by the assignment command of setting variable
x value to 1. Similarly, action B calls actions C with parameter list having being updated by the assignment

85

86 CHAPTER 9. EVALUATION

command of setting variable y value to x+ 1. As action C is the last in the sequential composition of calls in
the MAIN so we find that after performing event c, the process terminates. The correct output should contain
the observable events as a→b→ c→Skip which is achieved in the translated version.

9.1.2 Example 2 – Adding Extra Disjoint Variables in the Main Action

The mathematical version of the Circus example cp2 is:

A =̂ (x := 1) o
9 (a→Skip)

B =̂ (y := x+1) o
9 (b→Skip)

C =̂ (c→Skip)

MAIN(p,q) = (z := 0) o
9 A o

9 B o
9 C

Comments: This Circus process is same as cp1. The difference here is the inclusion of extra variables (p,q)
by the main action. It can be seen that these variables are disjoint from the ones in the actions A, B, and C. So,
the call to A from main just includes parameters x, y and z.

The output from translator function circus2csp is as follows, using the command, putppd (circus2csp

cp2):

A(x,y,z) =ˆ= a -> B(1,y,z)

B(x,y,z) =ˆ= b -> C(x,x+1,z)

C(x,y,z) =ˆ= c -> Skip

MAIN(P,Q,x,y,z) =ˆ= A(x,y,0)

Comments: The correct output should contain the observable events as a→b→c→Skip which is achieved in
the translated version. Also the subsituted expression in each call to a particular action is achieved correctly.
The disjoint variables from the main action are not included in call to action A, which is as required in the
correct translation.

9.1.3 Example 3 – Circus Process without the Main Action

The mathematical version of the Circus example cp3 is:

A =̂ (x := 1) o
9 (a→B)

B =̂ (y := x+1) o
9 (b→C)

C =̂ (c→A)

Comments: Here, in this example, there is no MAIN action. If this example is given as an input to circus2csp
function, the translator chooses to use the action level translation instead. The action level translator function
action2csp determines the dependencies for each action and translates the Circus process.

The output from the translator is as follows, using the command putppd (action2csp cp3 "A")

A(x,y) =ˆ= a -> B(1,y)

B(x,y) =ˆ= b -> C(x,x+1)

C(x,y) =ˆ= c -> A(x,y)

9.1. RUNNING EXAMPLES IN SIMPLECIRCUS2CSPM 87

Comments: Here, we can see that the function action2csp is producing the right CSP output, as it deter-
mines the dependencies for the whole process. Also the subsituted expression in each call to a particular action
is achieved correctly.

9.1.4 Example 4 – Two Distinct Sequential Composition Chains of Calling Actions

In the Circus example cp4, there is no main action. Here, actions A, B, and C are calling each other. Action D

calls itself, while action E calls action D.

The mathematical version of the Circus process cp4 is:

A =̂ (x := 1) o
9 (a→B)

B =̂ (y := x+1) o
9 (b→C)

C =̂ (c→A)

D =̂ (a := b+1) o
9 (d→D)

E =̂ (e→D)

As there is no main action, so we have to use the action2csp function, instead of the circus2csp funtion.
The output from the translator for action A is as follows, using the command putppd (action2csp cp4

"A"):

A(x,y) =ˆ= a -> B(1,y)

B(x,y) =ˆ= b -> C(x,x+1)

C(x,y) =ˆ= c -> A(x,y)

The output from translator for action D is as follows, using the command putppd (action2csp cp4

"D"):

D(a,b) =ˆ= d -> D(b+1,b)

The output from translator for action E is as follows, using the command putppd (action2csp cp4

"E"):

D(a,b) =ˆ= d -> D(b+1,b)

E(a,b) =ˆ= e -> D(a,b)

Comments: Here again, we can see that the translator function action2csp is producing the right CSP
output for the individual actions in the whole process definition, as it determines the dependencies correctly in
case of the actions A, D and E. The translator correctly identifies that A, B and C use different variables from
D and E.

9.1.5 Example 5 – the Lift Process

This example is more elaborate as it involves more expression builders as well as guarded commands with
external choice between them. The main action calls the initialiser which identifies the variables for the floor
number and the state of the lift door. Afterwards, the Lift process operates on the basis of the guarded com-
mands and performs events of up, down, close and open. Up and down events change the floor number while
close and open events change the status of the lift door.

88 CHAPTER 9. EVALUATION

The mathematical version of the lift example is:

INITLIFT =̂ (floor := 1) o
9 (doorState := closed)

LIFT =̂ (floor < 5 ∧ doorState = closed&(up→floor := floor+1 o
9 LIFT))

2

(floor > 0 ∧ doorState = closed&(down→floor := floor−1 o
9 LIFT))

2

(doorState = open&(close→doorState := closed o
9 LIFT))

2

(doorState = closed&(open→doorState := opened o
9 LIFT))

MAIN = INITLIFT; LIFT

The output from translator function circus2csp is as follows, using command, putppd (circus2csp

cp5):

INITLIFT(doorState,floor) =ˆ= LIFT(closed,1)

LIFT(doorState,floor) =ˆ= (floor < 5 and doorState = closed &

(up -> LIFT(doorState,floor+1)))

[]

((floor > 0 and doorState = closed &

(down -> LIFT(doorState,floor-1)))

[]

((doorState = opened &

(close -> LIFT(closed,floor)))

[]

(doorState = closed &

(open -> LIFT(opened,floor)))))

MAIN(doorState,floor) =ˆ= INITLIFT(doorState,floor)

Comment: Here, the translator is producing the correct output. The main action calls the initialiser func-
tion INITLIFT. Here, the initial status of LIFT is set by passing the initial values of the parameters. The
doorState parameter is set to closed, while floor number is set to 1 initially. Then, depending on the
events up, down, close, and open, the LIFT process continues by calling itself recursively.

9.1.6 Example 6 – Including External Choice in the Main Action

The Circus example cp7 contains an external choice between two disjoint sequentially composed chains of
calls. Here, the left hand side sequentially composed chain has calls to actions A, B, and C. Meanwhile, the
right hand side chain has calls to action D and E.

A =̂ (x := 1) o
9 (a→B)

B =̂ (y := x+1) o
9 (b→C)

C =̂ (c→A)

D =̂ (u := v+1) o
9 (d→E)

E =̂ (e→D)

MAIN =̂ (A o
9 B o

9 C)2 (D o
9 E)

The output from translator is as follows, using the command putppd (circus2csp cp7):

9.2. CASE STUDY – A CACHE COHERENCE PROTOCOL REPRESENTATION IN SIMPLECIRCUS NOTATION89

A(u,v,x,y) =ˆ= a -> B(u,v,1,y)

B(u,v,x,y) =ˆ= b -> C(u,v,x,x+1)

C(u,v,x,y) =ˆ= c -> A(u,v,x,y)

D(u,v,x,y) =ˆ= d -> E(v+1,v,x,y)

E(u,v,x,y) =ˆ= e -> D(u,v,x,y)

MAIN(u,v,x,y) =ˆ= A(u,v,x,y)

[]

D(u,v,x,y)

Comments on Output: Here, in this case, the translator function circus2csp produces the correct output.
The first thing to observe is that the state variables defined at all the places in Circus process are collected
successfully. Secondly, the expression substitution for all the assignment commands is working fine. The left
hand side of the main action calls the left sequentially composed chain by just calling action A. On the other
hand, the right hand side of the main action calls the right sequentially composed chain by just calling action
D.

9.2 Case Study – A Cache Coherence Protocol Representation in Sim-
pleCircus Notation

The work presented in [FS96] is selected to be represented in the SimpleCircus notation and implemented in
Haskell.

9.2.1 Background Information

Caches are fast memories placed in computer systems in order to have fast access to the items being frequently
used by the processors during program execution. If multiple processes are accessing same data in the cache,
the program should pick the most recently updated value from the cache. The presence of either multiprocessors
or multiple caches introduces the problem of coherence. To deal with this problem, cache coherence protocols
are being implemented in memory systems.

The authors of [FS96] modelled and proved correctness for the cache coherence part of the Scalable Coherent
Interface (SCI) – an IEEE standard for specifying communication among processors. This was done in a
guarded command language. For more technical details, the work in [FS96] is the reference.

The protocol under study was modelled as processes for memory (m) and processor (p). There were seventeen
(17) processes at processor level and four (4) processes at memory level. Each process describes its status and
a finite set of guarded actions.

The specification of all of these processes is done here using the notation of SimpleCircus. Here, we include
two very simple processes on the processor side. Then, we include two processes on the memory side. The
remaining processes are included in the appendix D, on page 179.

9.2.2 The Felty Example in Haskell

We import Haskell modules developed for SimpleCircus2CSPM to specify the cache coherence protocol
specified in [FS96] using SimpleCircus notation.

90 CHAPTER 9. EVALUATION

module Felty where

import Data.List

import Maybe

import Utilities

import StdSimpleCircus

The state variables in the Felty model are mapped to the following abbreviations in our model:

For h, we use "hist".
For statusm, we use "statusMem".
For buf [m], we use "buf[m]".
For headm, we use "headMem".
For nil, we use "Nil".
For statusp, we use "statusProc".
For buf [p], we use "buf[p]".
For csp, we use "csProc".
For invalid, we use "invalid".
For succp, we use "succProc".
For predp, we use "predProc".

The initial conditions of the model are as below:

• h = ε

• statusm = Home ∧ buf[m] = ε ∧ headm = nil, and

• for all p ∈ P, statusp = Off ∧ buf[p] = ε ∧
csp = invalid ∧ succp = nil ∧ predp = nil.

initcp6 = [("INIT_SCI_MODEL", ([], ("hist" := setnull) :::

("statusMem" := (Val "Home")) :::

("bufMem" := setnull) :::

("headMem" := (Val "Nil")) :::

("statusProc" := (Val "Off")) :::

("bufProc" := setnull) :::

("csProc" := (Val "invalid")) :::

("succProc" := (Val "Nil")) :::

("predProc" := (Val "Nil"))

)

)

]

The auxiliary functions given below are defined to simplify the specification of memory and processor pro-
cesses in our model.

bufout i act = Evts ("buf["++i++"]",[Bang (Val act)])

bufin i act = Evts ("buf["++i++"]",[Q act Nothing])

read_cache_freshQ p = "read_cache_freshQ("++p++")"

read_cache_goneQ p = "read_cache_goneQ("++p++")"

9.2. CASE STUDY – A CACHE COHERENCE PROTOCOL REPRESENTATION IN SIMPLECIRCUS NOTATION91

read_cache_freshR p = "read_cache_freshR("++p++")"

read_cache_goneR p = "read_cache_goneR("++p++")"

prependQ p = "prependQ("++p++")"

prependR p = "prependR("++p++")"

purgeQ p = "purgeQ("++p++")"

purgeR p = "purgeR("++p++")"

modifydataQ p = "modifydataQ("++p++")"

modifydataR p = "modifydataR("++p++")"

delrightQ p = "delrightQ("++p++")"

delrightR p = "delrightR("++p++")"

delleftQ p = "delleftQ("++p++")"

delleftR p = "delleftR("++p++")"

On page 3 of [FS96], the description of processes p1 and p2 are as follows:

If processor p is in the Off state then it can send a message named read cache freshQ(p) to memory indicating
that p wants to read the cache; or a message read cache goneQ(p) indicating that p wants to modify the cache.
Processor p then goes to the Pending state waiting for a response from memory.

Formal Description of process p1 and p2:

(p1) statusp = Off →
buf[m]!read cache freshQ(p); statusp:=Pending

(p2) statusp = Off →
buf[m]!read cache goneQ(p); statusp:=Pending

cp6p1 = [

("P1"

, ([]

, Guard (eq (Var "statusProc") (Val "Off"))

(bufout "m" (read_cache_freshQ "p")

:::->

("statusProc" := (Val "Pending")))

)

)

]

cp6p2 = [

("P2"

, ([]

, Guard (eq (Var "statusProc") (Val "Off"))

(bufout "m" (read_cache_goneQ "p")

:::->

("statusProc" := (Val "Pending")))

)

)

]

92 CHAPTER 9. EVALUATION

On page 3 of [FS96], the description of process m1 is as follows:

If memory m receives read cache freshQ(p) then it sends a message read cache freshR as a response to p.
This message carries 4 arguments.
i. identity of m
ii. the processor which will be p’s successor in the shared list (this will be nil if there is no other processor in
the queue).
iii. value of cvm

iv. either gone if m is not the owner of the cache or ok otherwise.
Memory also updates its variable headm. If p is the first processor on the list from m’s point of view, then m
goes from the Home state to Fresh state. This is given as the m1 process.
Formal Description of process m1:

(m1) buf[m]?read cache freshQ(p)→
if statusm = Gone
then buf[p]!read cache freshR(m,headm,cvm,gone)
else buf[p]!read cache freshR(m,headm,cvm,ok)
fi; headm:=p;
if statusm = Home then statusm := Fresh fi

cp6m1 = [

("M1"

, ([]

, (bufin "m" (read_cache_freshQ "p")

:::->

(Cond (eq (Var "statusMem") (Val "Gone"))

(bufout "p" (read_cache_freshR "m,headMem,cvMem,gone")

:::->Skip)

(bufout "p" (read_cache_freshR "m,headMem,cvMem,ok")

:::->Skip)

)

::: ("headMem" := (Val "p"))

::: (Cond (eq (Var "statusMem") (Val "Home"))

("statusMem" := (Val "Fresh")) Skip)

)

)

)

]

On page 3 of [FS96], the description of process m2 is as follows:

If memory m receives message read cache goneQ(p), then it sends a message read cache goneR back to p.
This message also carries 4 arguments as mentioned above for the case of read cache freshQ(p). As previous
case, m updates its variable headm. Finally, m goes to the Gone state. This is given as the m2 process.
Formal Description of process m2:

(m2) buf[m]?read cache goneQ(p)→
if statusm = Gone

then buf[p]!read cache goneR(m,headm,cvm,gone)

else buf[p]!read cache goneR(m,headm,cvm,ok)

fi; headm:=p; statusm := Gone

9.3. RUNNING EXAMPLES IN CIRCUS2CSPM TOOL 93

cp6m2 = [

("M2",

([]

, (bufin "m" (read_cache_goneQ "p")

:::->

(Cond (eq (Var "statusMem") (Val "Gone"))

(bufout "p" (read_cache_goneR "m,headMem,cvMem,gone") :::-> Skip)

(bufout "p" (read_cache_goneR "m,headMem,cvMem,ok") :::-> Skip)

)

::: ("headMem" := (Val "p"))

::: ("statusMem" := (Val "Gone"))

)

)

)

]

As mentioned earlier, the remaining processes are included in appendix D, on page 179.

9.3 Running Examples in circus2cspm Tool

Here, we describe again how the circus2cspm tool works. The interface of circus2cspm is quite simple. It
takes as input a LaTeX file. Then the user specifies the output file directory where the output project directory
structure is to be created. If correctly parsed and type checked, the CSPM output is generated. The datatype
declaration is in the output file called DataType.csp where DataType is replaced with the name of the
actual data type given in the Circus specification. Channel declarations are listed in ChannelDecl.csp,
while the finalProcDecl.csp is the file containing the final translated version of the process definition.

9.3.1 Example 1 – Lift Process

This example is same as the one translated by the SimpleCircus2CSPM prototype, given on page 87.

DoorState ::= opened | closed

channelup,down,open,close

processLift =̂ begin
state

LiftState

floor : N
doorState : DoorState

94 CHAPTER 9. EVALUATION

InitLift =̂ (floor := 0; doorState := closed)

Lift =̂ (floor < 5 ∧ doorState = closed & up→floor := floor+1)
2 (floor > 0 ∧ doorState = closed & down→floor := floor−1)
2 (doorState = closed & open→doorState := opened)

2 (doorState = opened & close→doorState := closed)

• InitLift; µ X • (Lift; X)

end

The CSPM script generated from circus2cspm tool is as follows:
The datatype DoorState is defined in the generated file DoorState.csp, with the following script:

datatype DoorState = opened | closed

The channel declaration code is written to the file named ChannelDecls.csp, having the following script:

channel up

channel down

channel open

channel close

The final translated version is written to ProcDecls.csp file, having the following script.

INITLIFT(doorState,floor) = LIFT(closed,0)

LIFT(doorState,floor) =

((floor < 5 and doorState == closed))& (up -> LIFT(doorState,floor + 1))

[]

((floor > 0 and doorState == closed))& (down -> LIFT(doorState,floor - 1))

[]

(doorState == closed)& (open -> LIFT(opened,floor))

[]

(doorState == opened)& (close -> LIFT(closed,floor))

9.3.2 Example 2 – Simple Sequential Chain of Calls in Initialiser

This example is the same as the one translated from the SimpleCircus2CSPM prototype, given on page 85.
The difference here is the order of calling actions in the initialiser.

channela,b,c

processProcEx1 =̂ begin
state

Ex1State

x,y : N

9.3. RUNNING EXAMPLES IN CIRCUS2CSPM TOOL 95

InitProcEx1 =̂ x := 1; y := 1
ActionA =̂ x := 0; a→Skip

ActionB =̂ y := x+1; b→Skip

ActionC =̂ c→Skip

• ActionC; ActionA; ActionB

end

The generated CSPM script will have two files in this case. As there is no local DataType definition in this
example, so DataType.csp file will not be generated.

The generated file, ChannelDecls.csp has the following channel declarations:

channel a

channel b

channel c

The final translated CSPM script contained in finalProcDecl.csp is as follows:

ACTION_C(x,y)

= c->ACTION_A(x,y)

ACTION_A(x,y)

= a->ACTION_B(0,y)

ACTION_B(x,y)

= b->SKIP

9.3.3 Example 3 – Main Action having Internal Choice

Here, the final transformation of the process is based on the distributive property of sequential composition (;)
and internal choice (u). This property can be stated as:
A; (BuC) = (A; B) u (A; C)

channela,b,c

processProcEx2 =̂ begin
state

Ex2State

x,y : N

InitProcEx2 =̂ x := 1; y := 1
ActionA =̂ x := 0; a→Skip

ActionB =̂ y := x+1; b→Skip

ActionC =̂ c→Skip

• ActionA; (ActionB u ActionC)

end

96 CHAPTER 9. EVALUATION

The output generated from circus2cspm has two files. The channel declarations are in the file
ChannelDecls.csp.

channel a

channel b

channel c

The final transformed CSPM script contained in finalProcDecl.csp is as follows:

ACTION_FINAL(y,x) = a->b->SKIP |˜| a->c->SKIP

Note: Here, actions ActionA, ActionB are sequentially composed. Similarly, actions ActionA, ActionC are
sequentially composed, based on the law, A; (BuC) = (A; B) u (A; C).

9.3.4 Example 4 – Varied Order of Action Calls in Example 3

This example has same operators used in the main action as in the previous example. The difference here is the
different order of action calls in the main action.

channela,b,c

processProcEx3 =̂ begin
state

Ex3State

x,y : N

InitProcEx3 =̂ x := 1; y := 1
ActionA =̂ x := 0; a→Skip

ActionB =̂ y := x+1; b→Skip

ActionC =̂ c→Skip

• ActionB; (ActionC u ActionA)

end

The generated file ChannelDecls.csp will have the channel declarations as follows:

channel a

channel b

channel c

The final transformed CSPM script contained in finalProcDecl.csp is as follows:

ACTION_FINAL(y,x) = b->c->SKIP |˜| b->a->SKIP

Note: Here, the law governing distributivity of sequential composition and internal choice is used:
B; (CuA) = (B; C)u (B; A)

Note: Here, actions ActionB, ActionC are sequentially composed. Similarly, actions ActionB, ActionA are
sequentially composed.

9.3. RUNNING EXAMPLES IN CIRCUS2CSPM TOOL 97

9.3.5 Example 5 – Multiple Assignments in an Action

This example contains a simple sequential composition case between the calling actions in the main action.
The difference is the introduction of multiple assignment commands in the definition of ActionC.

channela,b,c

processProcEx4 =̂ begin
state

Ex4State

x,y : N

InitProcEx4 =̂ x := 1; y := 1
ActionA =̂ x := 0; a→Skip

ActionB =̂ y := x+1; b→Skip

ActionC =̂ x := y−1; y := y+ x; x := 4; y := 5; c→Skip

• ActionA; ActionB; ActionC

end

The generated file ChannelDecls.csp will have the channel declarations as follows:

channel a

channel b

channel c

The final transformed CSPM script contained in finalProcDecl.csp is as follows:

ACTION_A(y,x)

= a->ACTION_B(y,0)

ACTION_B(y,x)

= b->ACTION_C_0(x + 1 ,x)

ACTION_C_0(y,x) = ACTION_C_1(y,y - 1)

ACTION_C_1(y,x) = ACTION_C_2(y + x,x)

ACTION_C_2(y,x) = ACTION_C_3(y,4)

ACTION_C_3(y,x) = ACTION_C_4(5 ,x)

ACTION_C_4(y,x) = c->SKIP

In case of multiple assignment commands in one action, the action name is indexed from 0 dealing with one
assignment at a time and keeps increasing the index for each assignment.

9.3.6 Example 6 – Call of Actions having Sequential Composition and External Choice

In this example, the calling actions in main contains sequential composition and external choice.

channela,b,c

processProcEx5 =̂ begin
state

98 CHAPTER 9. EVALUATION

Ex5State

x,y : N

InitProcEx5 =̂ x := 1; y := 1
ActionA =̂ x := 0; a→Skip

ActionB =̂ y := x+1; b→Skip

ActionC =̂ c→Skip

• ActionA; (ActionB 2 ActionC)

end

The generated file ChannelDecls.csp will have the channel declarations as follows:

channel a

channel b

channel c

The final transformed CSPM script contained in finalProcDecl.csp is as follows:

ACTION_FINAL(y,x) = a-> BOX(y,0)

BOX(y,x) = b-> SKIP [] c-> SKIP

Note: Here, the case of main action with a combination of sequential composition and external choice is
translated.

9.3.7 Example 7 – Call of Actions having External Choice and Sequential Composi-
tion

In this example, the main action contains action calls arranged like (A2B); C.

channela,b,c

processProcEx6 =̂ begin
state

Ex6State

x,y : N

InitProcEx6 =̂ x := 1; y := 1
ActionA =̂ x := 0; a→Skip

ActionB =̂ y := x+1; b→Skip

ActionC =̂ c→Skip

• (ActionA 2 ActionB); ActionC

end

9.3. RUNNING EXAMPLES IN CIRCUS2CSPM TOOL 99

The generated file ChannelDecls.csp will have the channel declarations as follows:

channel a

channel b

channel c

The final transformed CSPM script contained in finalProcDecl.csp is as follows:

ACTION_FINAL(y,x)=a->b->SKIP[]a->c-SKIP

Note: In this case the distributive property of external choice and sequential composition holds, i.e. (A2

B); C = (A; C)2 (B; C). Consequently, in the output, ActionA and ActionC are sequentially composed on the
left side of external choice. Similarly, ActionB and ActionC are sequentially composed on the right side of
external choice.

9.3.8 Example 8 – Including Output Prefixing Action

In this example, an output channel is there in the definition of ActionC. The expression x+ y is calculated and
given as output on channel c.

channela,b

channelc : N
processProcEx7 =̂ begin
state

Ex7State

x,y : N

ActionA =̂ x := 0; a→Skip

ActionB =̂ y := x+1; b→Skip

ActionC =̂ c!(x+ y)→Skip

• ActionA; (ActionB 2 ActionC)

end

The generated file ChannelDecls.csp will have the channel declarations as follows:

channel a

channel b

channel c : {0,1,2,3,4,5}

The final transformed CSPM script contained in finalProcDecl.csp is as follows:

ACTION_FINAL(y,x) = a-> BOX(y,0)

BOX(y,x) = b-> SKIP [] c!(x + y)-> SKIP

Note: Here, channel c outputs a value of type natural number. So, in the declaration of this particular channel
i.e. channel c in this case, a list of possible values has to be given. Here we assume that the possible range of
numbers is between 0 and +5.

100 CHAPTER 9. EVALUATION

9.4 Summary

This chapter first evaluated the translated examples using the SimpleCircus2CSPM tool and gave comments
on the output acquired for each translated example. It also described the case study of the cache coherence
protocol [FS96] specified in the notation of SimpleCircus. Subsequently, the Circus examples translated using
the tool circus2cspm are discussed. The next chapter concludes the thesis by summarising the technical
contribution during each phase of our research.

Chapter 10

Conclusions

Here, we conclude this thesis by presenting the technical contributions achieved:

10.1 Extending a CSP Model of Flash Device Behaviour

As an intial case study and to gain hands-on experience of CSPM and the model checker FDR, the earlier work
on a CSP model for flash device behaviour [Cat08, BOC09] was extended.

In [BOC09], the Open Nand Flash Model (ONFi 1.0) was first represented in State Chart XML(SC-XML).
The processes in the model had a direct correspondence between the state machine of the particular process
and its entry in the state-chart XML. Then, using XSLT (a translator for XML), SC-XML descriptions of state
machines were translated into their equivalent HTML pages and CSPM sources. This automatic translation
helped in modelling flash device behaviour because the call to each process in CSPM required establishing a
long list of parameters. In [BOC09], tests on the flash model were performed using FDR trace refinement
checking, which is a weak testing mode. Also, this testing was performed only on the mandatory portion of the
ONFi model. The testing could not be performed on the full ONFi 1.0 model.

So, the following enhancements to the original model were achieved:

1. Upgrading of the ONFi 1.0 model to an ONFi 2.1 model (which was the latest at that time) was done.
The SC-XML description of the model was updated. Using XSLT, as before, HTML pages and CSPM

sources were generated.

2. The tests were performed on the model with more rigorous checks using Failures Refinement and
Failures-Divergence Refinement. In the old version, the testing was done with the weaker notion of
trace refinement only.

3. Through the technique of pushing all use of the hiding operators down to the deepest level possible, as
well as the compression techniques available in the FDR toolkit, the state-space of the model was much
reduced.

The work for the CSP model of flash device behaviour can be extended in the following direction:
Although having achieved more rigorous testing and state-space compression of the model, the full ONFi 2.1
model could not be compiled. These are the possibilities:

• One possible solution for the full model compilation is to try it on a larger machine with more physical
and virtual memory, to handle the high demands made by initial ISM generation.

• Another way for dealing with this problem is to analyse the model to see if it can be re-factored into
independent chunks.

101

102 CHAPTER 10. CONCLUSIONS

• A third possibility is trying to use the relatively recently released FDR3 to see if it is better able to cope.

This work has been published in conference proceedings [BB10b]. The body of the paper is included in Chapter
4, on page 25.

10.2 Development of a Prototype to Translate from Circus to CSPM us-
ing Java

In order to target the research objective of translating from Circus to CSPM [BB10a], the research went through
a number of steps.

The first attempt was made to modify the sources of JCircus [dF05] to get the translation working from Cir-
cus to CSPM . Here, the tool development was in the imperative language, Java. The original sources were
developed to translate from Circus to Java. As Circus specifications are parsed and type-checked through the
JCircus tool, it was the natural choice to re-use these sources. Here, we modified the sources of JCircus to
produce the translation from Circus to CSPM . The prototype tool developed is named circus2cspm. The
examples translated using the tool circus2cspm are included in Section 9.3, on page 93. These examples con-
tain the sequential composition, assignment commands, prefixing actions, if statements, basic constructs and
some binary and equality check operators in a guard. A number of combinations of calling actions in the main
action were tested to verify the final transformation of the process definition. The TranslatorVisitor
and Translator2CSP java classes were significantly modified. All the outputs of CSPM generated from
circus2cspm were tested with the ProBE tool and FDR for correct parsing and type-checking.

Despite having the initial implementation of the translator, as described above in Java being quite straight-
forward, the other operators of the language were found to be hard to implement in that structure and in the
implementation language i.e. Java. We found the development in Java quite complex, especially in the record
keeping process and moving from initial to intermediate and then from intermediate to the final transformation.
In the examples considered, we dealt with some simple action compositions. But as the constructs became more
complex in form, it was increasingly hard to implement it. Pattern matching compositions of complex combi-
nations of actions proved very difficult to implement in the present state of the source code of circus2cspm.
This pattern matching was required to deal with the implementation of all the CSP laws in the main action.
This goal was found to be hard to achieve, using the implementation in Java.

The work of Java implementation might have the following future directions:

• The tool circus2cspm is a prototype for the translation. One way of extension is using the updated
sources of the tool JCircus 2.0 presented in the work [BO12].

• As a result of later translation work for this thesis, the translation steps for the target languages are
presented in a better formalised way. The Haskell implementation also improved the way the translation
is done. Now, re-structuring circus2cspm Java code might improve its capability.

• After re-structuring of the circus2cspm code suggested above, the implementation of more language
constructs is a future work.

10.3 Mathematical Proofs of Semantic Justification for the proposed
Translation using the Unifying Theories of Programming (UTP)
Semantics

Now, we discuss the achievement acquired in the mathematical foundation of the translation strategy between
the target languages. First of all, the semantics of Circus and CSPM in the Unifying Theories of Programming

10.4. USING HASKELL FOR DEVELOPMENT OF THE PROTOTYPE FOR CIRCUS TO CSPM TRANSLATION103

(UTP) framework are specified for the selected constructs of the languages. The chosen subset of the original
Circus and CSP languages are named as SimpleCircus and SimpleCSP. The semantical difference between
the two is captured by the need for extra observation variables i.e. state,state′, in case of SimpleCircus. A
formal link was proposed to connect the two theories. We proposed theorem 6.2.1, on page 47 for the linking
pairs between the two languages. If PX is a SimpleCircus program and PC is a SimpleCSP program, then the
transformation predicate (T) will translate between the two.

For all SimpleCircus programs PX , we define a link to the CSP world that hides the state. In effect, we view
Circus and CSP processes as equivalent, if the translation is a refinement:

T (PX)v (∃state,state′ • PX)

By mathematical proofs included in Chapter 6, it is proved that this linking predicate preserves the semantics of
most of the language operators, with the notable exception of sequential composition. We applied the theorem
6.2.1 for the constructs considered in SimpleCircus and SimpleCSP. The established link demonstrated the
feasibility of the translation between the two languages, and justifies the close attention paid to translating
sequential composition. This is novel work.

The work of mathematical proofs of the link might have the following future directions:

• The future enhancement in this area is to consider the remaining constructs of the target languages.

• The proofs of link are done manually. Saoithin [But10] is a theorem prover designed to support the UTP
framework and do the proofs in an equational style. The mechanisation of the link proofs in Saoithin is
a possible future direction of work.

The translation process from Circus to CSPM is divided into steps. In fact, each translation step is a function,
typically defined by pattern matching against the range of syntax forms. These steps are formalised and mathe-
matically represented in Chapter 7, on page 57. Once formally specified, the mathematical representation made
the implementation phase much easier and straightforward.

10.4 Using Haskell for Development of the Prototype for Circus to CSPM

Translation

The prototype tool called SimpleCircus2CSPM is implemented in the functional language, Haskell. This is a
novel approach of prototyping the translation from Circus to CSPM , exploiting the expressiveness of functional
languages. In the Haskell implementation, a number of examples are provided. We covered a number of
constructs in our prototype such as prefix actions, sequential composition, internal choice, external choice,
hiding action, interface parallel, alphabetised parallel, conditional, assignment command, calling an action, as
well as their generalised forms. A significant number (forty four) of CSP algebraic laws are formalised in the
implementation. A normalisation process is also implemented in the prototype. A simple implementation of
pretty printing is also provided which can be extended to provide a more sophisticated one. The formalised
translation steps defined in Chapter 7 are implemented in Haskell code. The examples translated using the tool
are listed in Section 9.1.

The notation of SimpleCircus developed for the SimpleCircus2CSPM tool is used to specify a cache coher-
ence protocol given in [FS96]. This is included in Section 9.2. All the processes for processor and memory
specified in [FS96] are re-stated using SimpleCircus notation. One can pretty print each process of proces-
sor and memory specified through the prototype. This provides evidence for the utility of the SimpleCircus
notation for performing industry case studies in the future.

104 CHAPTER 10. CONCLUSIONS

10.5 Summary

Now, we summarise the overall contribution of the thesis.

To make use of the available and industry-proven tools for a particular programming paradigm, there is a need
to develop a formally verified link between one world and the other. The aim of this work was to develop a
formally verified translation between the state-rich process algebra i.e. Circus to the state-poor process algebra
i.e. CSP. For developing a link between targeted formal languages, the key translations required between the
two languages are identified. For ensuring correctness of the translation, the key translation / refinement steps
are formalised. This formed the theoretical core of the work and supported the soundness of the link. The
prototyping of the translation strategy by exploiting the expressiveness of the functional language, Haskell is
a novel approach. Providing the mathematical foundation by giving semantical justification for the translation
between the target languages is another major contribution of the thesis.

Bibliography

[ARA04] M. Al-Rousan and S. Ahmed. Implementation of cache coherence protocol for COMA multi-
processor systems based on the scalable coherent interface. Computer Standards & Interfaces,
27(1):71–88, 2004.

[BB10a] Arshad Beg and Andrew Butterfield. Linking a state-rich process algebra to a state-free alge-
bra to verify software/hardware implementation. In Proceedings of International Conference on

Frontiers of Information Technology, Islamabad, Pakistan, number 47, pages 1–5. ACM, 2010.

[BB10b] Arshad Beg and Andrew Butterfield. Modelling flash devices with FDR: Progress and limits.
In Proceedings of International Conference on Frontiers of Information Technology, Islamabad,

Pakistan, number 18, pages 1–6. ACM, 2010.

[BFW09] Andrew Butterfield, Leo Freitas, and Jim Woodcock. Mechanising a formal model of flash mem-
ory. Sci. Comput. Program, 74(4):219–237, 2009.

[BGW09] Andrew Butterfield, Pawel Gancarski, and Jim Woodcock. State visibility and communication in
unifying theories of programming. In Wei-Ngan Chin and Shengchao Qin, editors, Third IEEE

International Symposium on Theoretical Aspects of Software Engineering (TASE), pages 47–54.
IEEE Computer Society, 2009.

[BH99] Jonathan P. Bowen and Jifeng He. Hardware Compilation: Verification and Rapid-prototyping.
RUCS Technical Report RUCS/1999/TR/012/A, Department of Computer Science, University of
Reading, October 1999.

[BH01] Jonathan P. Bowen and Jifeng He. An approach to the specification and verification of a hardware
compilation scheme. The Journal of Supercomputing, 19(1):23–39, 2001.

[BM10] Mikkel Bundgaard and Robin Milner. Unfolding CSP. Springer, 2010.

[BO12] S. L. M. Barrocas and M. V. M. Oliveira. JCircus 2.0: an Extension of an Automatic Translator
from Circus to Java. In Peter H. Welch, Frederick R. M. Barnes, Kevin Chalmers, Jan Baekgaard
Pedersen, and Adam T. Sampson, editors, Communicating Process Architectures 2012, pages
15–36, August 2012.

[BOC09] Andrew Butterfield and Art Ó Catháin. Concurrent models of flash memory device behaviour.
Formal Methods: Foundations and Applications: 12th Brazilian Symposium on Formal Methods,

SBMF 2009 Gramado, Brazil, August 19–21, 2009, Revised Selected Papers, pages 70–83, 2009.

[BOG02] Karthikeyan Bhargavan, Davor Obradovic, and Carl A. Gunter. Formal verification of standards
for distance vector routing protocols. Journal of the ACM, 49(4):538–576, July 2002.

[Bro08] Neil C. C. Brown. Communicating Haskell Processes: Composable Explicit Concurrency Using
Monads. In Peter H. Welch, S. Stepney, F. A. C Polack, Frederick R. M. Barnes, Alistair A.
McEwan, G. S. Stiles, Jan F. Broenink, and Adam T. Sampson, editors, Communicating Process

Architectures 2008, pages 67–83. IOS Press, September 2008.

105

106 BIBLIOGRAPHY

[Bro09] Neil C. C. Brown. Automatically generating CSP models for Communicating Haskell Processes.
Journal of Electronic Communication of the European Association of Software Science and Tech-

nology (ECEASST), Vol. 23, 2009.

[BSW07] Andrew Butterfield, Adnan Sherif, and Jim Woodcock. Slotted-Circus. In Jim Davies and Jeremy
Gibbons, editors, 6th International Conference on Integrated Formal Methods (IFM), volume
4591 of Lecture Notes in Computer Science, pages 75–97. Springer, 2007.

[But10] Andrew Butterfield. Saoithin: A theorem prover for UTP. In Shenchao Qin, editor, Unifying

Theories of Programming, Third International Symposium, UTP 2010, Shanghai, China, volume
6445 of Lecture Notes in Computer Science, pages 137–156, Shanghai, China, November 2010.
Springer.

[BW07] Andrew Butterfield and Jim Woodcock. Formalising flash memory: First steps. In 12th Inter-

national Conference on Engineering of Complex Computer Systems (ICECCS), pages 251–260.
IEEE Computer Society, 2007.

[Cat08] Art Ó Catháin. Modelling flash memory device behaviour using CSP. Taught M.Sc dissertation,
School of Computer Science and Statistics, Trinity College Dublin, 2008. Also published as
Technical Report TCD-CS-2008-47.

[Cav97] A. L. C. Cavalcanti. A Refinement Calculus for Z. PhD thesis, Oxford University Computing
Laboratory, Oxford, 1997.

[CH13] A. L. C. Cavalcanti and Robert M. Hierons. Testing with inputs and outputs in CSP. In 16th

International Conference on Fundamental Approaches to Software Engineering (FASE), pages
359–374. Springer-Verlag, 2013.

[CHW06] A. L. C. Cavalcanti, Will Harwood, and Jim Woodcock. Pointers and records in the Unifying
Theories of Programming. In Steve Dunne and Bill Stoddart, editors, Unifying Theories of Pro-

gramming (UTP), volume 4010 of Lecture Notes in Computer Science, pages 200–216. Springer,
2006.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs.
In Kurt Jensen and Andreas Podelski, editors, 10th International Conference, TACAS 2004, Held

as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004,

Barcelona, Spain, volume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer,
2004.

[CMP04] Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. A simple method for parame-
terized verification of cache coherence protocols. In Alan J. Hu and Andrew K. Martin, editors,
5th International Conference on Formal Methods in Computer-Aided Design (FMCAD), volume
3312 of Lecture Notes in Computer Science, pages 382–398. Springer, 2004.

[CMW90] Russell M. Clapp, Trevor N. Mudge, and Donald C. Winsor. Cache coherence requirements for
interprocess rendezvous. International Journal of Parallel Programming, 19(1):31–51, February
1990.

[CW04] A. L. C. Cavalcanti and Jim Woodcock. A tutorial introduction to CSP in Unifying Theories
of Programming. In Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock, editors, First Per-

nambuco Summer School on Software Engineering (PSSE), volume 3167 of Lecture Notes in

Computer Science, pages 220–268. Springer, 2004.

[dF05] Angela Figueiredo de Freitas. From Circus to Java: Implementation and verification of a transla-
tion strategy. Master’s thesis, University of York, December, 2005.

BIBLIOGRAPHY 107

[DNA05] Nirav Dave, Man Cheuk Ng, and Arvind. Automatic synthesis of cache-coherence protocol
processors using bluespec. In Third ACM-IEEE International Conference on. Formal Methods

and Models for Codesign, (MEMOCODE), pages 25–34. IEEE, 2005.

[EK03] E. Allen Emerson and Vineet Kahlon. Exact and efficient verification of parameterized cache
coherence protocols. In Daniel Geist and Enrico Tronci, editors, Correct Hardware Design and

Verification Methods (CHARME), volume 2860 of Lecture Notes in Computer Science, pages
247–262. Springer, 2003.

[EL02] Lars-Henrik Eriksson and Peter A. Lindsay, editors. Mechanical Abstraction of CSPZ Processes,
volume 2391 of Lecture Notes in Computer Science. Springer, 2002.

[FO09] Miguel Alexandre Ferreira and José Nuno Oliveira. An integrated formal methods tool-chain and
its application to verifying a file system model. Formal Methods: Foundations and Applications:

12th Brazilian Symposium on Formal Methods, SBMF 2009 Gramado, Brazil, August 19–21,

2009 Revised Selected Papers, pages 153–169, 2009.

[For05] Formal Systems (Europe) Ltd. FDR Manual, June 2005.

[FS96] Amy Felty and Frank Stomp. A correctness proof of a cache coherence protocol. In Compass’96:

Eleventh Annual Conference on Computer Assurance, page 128, Gaithersburg, Maryland, 1996.
National Institute of Standards and Technology.

[FSO08] M.A. Ferreira, S.S. Silva, and J.N. Oliveira. Verifying intel flash file system core specification. In
P.G. Larsen J.S. Fitzgerald and S. Sahara, editors, Modelling and Analysis in VDM: Proceedings

of the Fourth VDM/Overture Workshop, pages 54–71, School of Computing Science, Newcastle
University, 2008. Technical Report CS-TR-1099.

[FW09] Leo Freitas and Jim Woodcock. FDR explorer. Formal Asp. Comput, 21(1-2):133–154, 2009.

[GB09a] Paweł Gancarski and Andrew Butterfield. The denotational semantics of slotted-circus. In Ana
Cavalcanti and Dennis Dams, editors, FM2009: Formal Methods, volume 5850 of Lecture Notes

in Computer Science, pages 451–466. Springer, 2009.

[GB09b] Pawel Gancarski and Andrew Butterfield. Slotted circus a generic UTP framework for discretely-
timed Circus. Technical report, Department of Computer Science, Trinity College Dublin, 2009.

[GS97] Andy Galloway and Bill Stoddart. An operational semantics for ZCCS. In First IEEE Interna-

tional Conference on Formal Engineering Methods (ICFEM), page 272. IEEE Computer Society,
1997.

[H+06] Hynix Semiconductor et al. Open NAND Flash Interface Specification. Technical Report Revi-
sion 1.0, ONFI, www.onfi.org, 28th December 2006.

[H+09] Hynix Semiconductor et al. Open NAND Flash Interface Specification. Technical Report Revi-
sion 2.1, ONFI, www.onfi.org, 14th January 2009.

[HH98] C. A. R. Hoare and Jifeng He. Unifying Theories of Programming. Prentice-Hall International,
Englewood Cliffs, NJ, 1998.

[HH05] Jifeng He and C. A. R. Hoare. Linking theories of concurrency. In Dang Van Hung and Mar-
tin Wirsing, editors, International Colloquium on Theoretical Aspects of Computing (ICTAC),
volume 3722 of Lecture Notes in Computer Science, pages 303–317. Springer, 2005.

[HM05] C. A. R. Hoare and Jayadev Misra. Verified software: Theories, tools, experiments vision of a
grand challenge project. In Bertrand Meyer and Jim Woodcock, editors, VSTTE, volume 4171 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2005.

108 BIBLIOGRAPHY

[HMLS09] C. A. R. Hoare, Jayadev Misra, Gary T. Leavens, and Natarajan Shankar. The verified software
initiative: A manifesto. ACM Comput. Surv, 41(4), 2009.

[Hoa03] C. A. R. Hoare. The verifying compiler: A grand challenge for computing research. Journal of

the ACM, 50(1):63–69, 2003.

[Hoa04] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 2004.

[ISK06] Syed M. S. Islam, Mohammed H. Sqalli, and Sohel Khan. Modeling and formal verification
of DHCP using SPIN. International Journal of Computer Science and Applications (IJCSA),
3(2):145–159, 2006.

[JH05] Rajeev Joshi and Gerard J. Holzmann. A mini challenge: Build a verifiable filesystem. In Proc.

Verified Software: Theories, Tools, Experiments (VSTTE), Zürich, 2005.

[KCKK08a] Moonzoo Kim, Yunja Choi, Yunho Kim, and Hotae Kim. Formal verification of a flash memory
device driver – an experience report. In Klaus Havelund, Rupak Majumdar, and Jens Palsberg,
editors, SPIN, volume 5156 of Lecture Notes in Computer Science, pages 144–159. Springer,
2008.

[KCKK08b] Moonzoo Kim, Yunja Choi, Yunho Kim, and Hotae Kim. Pre-testing flash device driver through
model checking techniques. In IEEE International Conference on Software Testing Verification

and Validation (ICST), pages 475–484. IEEE Computer Society, 2008.

[KJ08] Eunsuk Kang and Daniel Jackson. Formal modeling and analysis of a flash filesystem in Alloy.
In Egon Börger, Michael J. Butler, Jonathan P. Bowen, and Paul Boca, editors, Conference on

Abstract State Machines, Alloy, B and Z (ABZ), volume 5238 of Lecture Notes in Computer

Science, pages 294–308. Springer, 2008.

[KJ09] Eunsuk Kang and Daniel Jackson. Designing and analyzing a flash file system with Alloy. Inter-

national Journal of Software and Informatics (IJSI) 2009, Vol 3, No. 1, 2009.

[KK09] Moonzoo Kim and Yunho Kim. Concolic testing of the multi-sector read operation for flash
memory file system. Formal Methods: Foundations and Applications: 12th Brazilian Symposium

on Formal Methods, SBMF 2009 Gramado, Brazil, August 19–21, 2009 Revised Selected Papers,
pages 251–265, 2009.

[KKK08] Moonzoo Kim, Yunho Kim, and Hotae Kim. Unit testing of flash memory device driver through
a SAT-based model checker. In IEEE Proceedings of Automated Software Engineering (ASE),
pages 198–207. IEEE, 2008.

[MAF08] J. N. Oliveira M. A. Ferreira, S. S. Silva. Verifying Intel Flash File System Core Specification.
In Modelling and Analysis in VDM: Proceedings of the Fourth VDM/Overture Workshop, 2008.

[MFMU05] Tim Miller, Leo Freitas, Petra Malik, and Mark Utting. CZT support for Z extensions. In Judi
Romijn, Graeme Smith, and Jaco van de Pol, editors, Fifth International Conference on Integrated

Formal Methods (IFM), volume 3771 of Lecture Notes in Computer Science, pages 227–245.
Springer, 2005.

[Mil80] R. Milner. A calculus of communicating systems. Lecture Notes in Computer Science, 92, 1980.

[MS01] Alexandre Mota and Augusto Sampaio. Model-checking CSP-Z: strategy, tool support and in-
dustrial application. Sci. Comput. Program, 40(1):59–96, 2001.

[NG02] Ratan Nalumasu and Ganesh Gopalakrishnan. Deriving efficient cache coherence protocols
through refinement. Formal Methods in System Design, 20(1):107–125, 2002.

BIBLIOGRAPHY 109

[OC04] M. V. M. Oliveira and A. L. C. Cavalcanti. From Circus to JCSP. In Sixth International Con-

ference on Formal Engineering Methods, volume 3308 of Lecture Notes in Computer Science,
pages 320 – 340. Springer-Verlag, November 2004.

[OCW06] M. V. M. Oliveira, A. L. C. Cavalcanti, and Jim Woodcock. Unifying theories in ProofPower-
Z. In Steve Dunne and Bill Stoddart, editors, UTP, volume 4010 of Lecture Notes in Computer

Science, pages 123–140. Springer, 2006.

[OCW09] M. V. M. Oliveira, A. L. C. Cavalcanti, and Jim Woodcock. A UTP semantics for Circus. Formal

Asp. Comput, 21(1-2):3–32, 2009.

[Oli05] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus. PhD thesis,
University of York, 2005.

[PD97] Fong Pong and Michel Dubois. Verification techniques for cache coherence protocols. CSURV:

Computing Surveys, 29, 1997.

[PS04] Jonathan D. Phillips and G. S. Stiles. An automatic translation of CSP to Handel-C. In Ian R. East,
David Duce, Mark Green, Jeremy M. R. Martin, and Peter H. Welch, editors, Communicating

Process Architectures 2004. IOS Press, Amsterdam, 2004.

[QGPY08] WanXia Qu, Yang Guo, Zhengbin Pang, and Xiaodong Yang. Efficient verification of parameter-
ized cache coherence protocols. In 9th International Conference for Young Computer Scientists

(ICYCS), pages 154–159. IEEE Computer Society, 2008.

[Rep] https://bitbucket.org/andrewbutterfield/csp-in-haskell/overview,
accessed at 13:08pm, 17th July, 2014.

[RMK03] Abhik Roychoudhury, Tulika Mitra, and S. R. Karri. Using formal techniques to debug the
AMBA system-on-chip bus protocol. In Proceedings of Design, Automation and Test in Europe

(DATE), pages 10828–10833. IEEE Computer Society, 2003.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in Computer
Science. Prentice-Hall, New York, 1998. Oxford.

[Sch99] Steve Schneider. Concurrent and Real Time Systems: The CSP Approach. John Wiley & Sons,
Inc., New York, NY, USA, 1st edition, 1999.

[SCS06] Thiago L. V. L. Santos, Ana Cavalcanti, and Augusto Sampaio. Object-orientation in the UTP. In
Steve Dunne and Bill Stoddart, editors, UTP, volume 4010 of Lecture Notes in Computer Science,
pages 18–37. Springer, 2006.

[SD95] U. Stern and D. L. Dill. Automatic verification of the SCI cache coherence protocol. Lecture

Notes in Computer Science, 987:21–34, 1995.

[She00] Xiaowei Shen. Design and verification of adaptive cache coherence protocols. PhD thesis,
Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science,
2000.

[SPH+00] Daniel J. Sorin, Manoj Plakal, Mark D. Hill, Anne E. Condon, Milo M. Martin, and David A.
Wood. Specifying and verifying a broadcast and a multicast snooping cache coherence protocol.
Technical Report 1412, Univ. of Wisconsin Computer Sciences, Madison, WI, March 2000.

[ST05] Steve Schneider and Helen Treharne. CSP theorems for communicating B machines. Formal

Asp. Comput., 17(4):390–422, 2005.

110 BIBLIOGRAPHY

[TG08] Lizeth Tapia and Chris George. Model checking concurrent RSL with CSPM and FDR2. Tech-
nical Report UNU-IIST Report No. 393, International Institute for Software Technology, The
United Nations University, May 2008.

[URLa] http://www.sundoginteractive.com/sunblog/posts/

top-ten-most-infamous-software-bugs-of-all-time/, accessed at 16:40pm,
18th September, 2013.

[URLb] http://www.zdnet.com/the-top-10-it-disasters-of-all-time-3039290976,
accessed at 12:40pm, 2nd October, 2013.

[URLc] http://en.wikipedia.org/wiki/formal_methods, accessed at 13:15pm, 31st of
august, 2012.

[URLd] http://en.wikipedia.org/wiki/internet, accessed at 14:13pm, 20th January,
2015.

[URLe] http://en.wikipedia.org/wiki/mars_climate_orbiter, accessed at 13:16pm,
2nd October, 2013.

[URLf] http://www.cs.york.ac.uk/circus/, accessed at 15:33pm, 12th March, 2013.

[URLg] http://www.nasa.gov, accessed at 14:33pm, 20th January, 2015.

[VG08] Abigail Parisaca Vargas and Chris George. Formalisitng the translation from RSL to CSP. Tech-
nical Report UNU-IIST Report No. 395, International Institute for Software Technology, The
United Nations University, May 2008.

[WC02] Jim Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In ZB 2002: Formal Specifi-

cation and Development in Z and B, volume 2272 of Lecture Notes in Computer Science, pages
184–203. Springer-Verlag, 2002.

[WCF05] Jim Woodcock, A. L. C. Cavalcanti, and Leonardo Freitas. Operational semantics for model
checking Circus. In John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors, FM, volume
3582 of Lecture Notes in Computer Science, pages 237–252. Springer, 2005.

[WD96] Jim Woodcock and Jim Davies. Using Z Specification, Refinement and Proof. Prentice Hall
International Series in Computer Science, 1996.

[WE04] Kylie Williams and Robert Esser. Verification of the futurebus+ cache coherence protocol: A
case study in model checking. In Vladimir Estivill-Castro, editor, Twenty-Seventh Australasian

Computer Science Conference (ACSC2004), volume 26 of Conferences in Research and Practice

in Information Technology (CRPIT), pages 65–71, Dunedin, New Zealand, 2004. ACS.

[Wil09] Matthew Wilson. Quality matters: Correctness, robustness and reliability. Overload, 17(93),
October 2009. What do we mean by quality? Matthew Wilson considers some definitions.

[Woo06] Jim Woodcock. First steps in the verified software grand challenge. IEEE Computer, 39(10):57–
64, 2006.

[YP07] Letu Yang and Michael Poppleton. Automatic translation from combined B and CSP specification
to Java programs. In Jacques Julliand and Olga Kouchnarenko, editors, B, volume 4355 of Lecture

Notes in Computer Science, pages 64–78. Springer, 2007.

Appendix A

Introducing Karnaugh Maps for
Graphical Proofs

A.1 Graphical Approach

This tutorial for proof through graphical approach is for reference and is used in the proof of theorem B.1.1.
The approach is proposed and devised by Dr. Andrew Butterfield. The need for developing this approach arose
when the theorem B.1.1 proof proved to be too complicated using the conventional technique of expanding the
definitions.

A.1.1 Standard Reactive Diagram

In these diagrams we use 1 and . to stand for True and False respectively, for compactness. These diagrams
are only valid for use as described below when the predicates inside the boxes do not have ok,ok′,wait,wait′

among their free variables.

Given the following shorthand,

Abcde =̂ A[b,c,d,e/ok,ok′,wait,wait′]

then the following is true:

P ≡



¬w ¬w w w

¬o P0000 P0001 P0011 P0010 ¬o′

¬o P0100 P0101 P0111 P0110 o′

o P1100 P1101 P1111 P1110 o′

o P1000 P1001 P1011 P1010 ¬o′

¬w′ w′ w′ ¬w′



A.1.2 Logical Operations

We illustrate by example.

111

112 APPENDIX A. INTRODUCING KARNAUGH MAPS FOR GRAPHICAL PROOFS

Logical-And

A square with a dot (.) in either argument (False) is a dot in the result, otherwise we connect with ∧

¬w ¬w w w

¬o A B C D ¬o′

¬o E F G H o′

o o′

o ¬o′

¬w′ w′ w′ ¬w′


∧



¬w ¬w w w

¬o . P . T ¬o′

¬o . Q . U o′

o . R . V o′

o . S . W ¬o′

¬w′ w′ w′ ¬w′


≡

¬w ¬w w w

¬o . B ∧ P . D ∧ T ¬o′

¬o . F ∧ Q . H ∧ U o′

o o′

o ¬o′

¬w′ w′ w′ ¬w′


Logical-Or

A square with a dot (.) in both argument (False) is a dot in the result, otherwise we connect with ∨

¬w ¬w w w

¬o A B C D ¬o′

¬o E F G H o′

o o′

o ¬o′

¬w′ w′ w′ ¬w′


∨



¬w ¬w w w

¬o . P . T ¬o′

¬o . Q . U o′

o . R . V o′

o . S . W ¬o′

¬w′ w′ w′ ¬w′


≡

¬w ¬w w w

¬o A B ∨ P C D ∨ T ¬o′

¬o E F ∨ Q G H ∨ U o′

o . R . V o′

o . S . W ¬o′

¬w′ w′ w′ ¬w′


Logical-Not

Just negate it all, remembering that . (False) becomes 1 (True).

¬



¬w ¬w w w

¬o A B C D ¬o′

¬o E F G H o′

o o′

o ¬o′

¬w′ w′ w′ ¬w′


≡



¬w ¬w w w

¬o ¬A ¬B ¬C ¬D ¬o′

¬o ¬E ¬F ¬G ¬H o′

o 1 1 1 1 o′

o 1 1 1 1 ¬o′

¬w′ w′ w′ ¬w′



A.1. GRAPHICAL APPROACH 113

Implication

A square with a dot (.) in the first becomes 1 (True). Squares with a value only from the first get negated, while
those values in the second where there is a 1 in the first only are left as is. Squares with values from both are
connected with⇒.



¬w ¬w w w

¬o A B C D ¬o′

¬o E F G H o′

o o′

o ¬o′

¬w′ w′ w′ ¬w′


⇒



¬w ¬w w w

¬o . P . T ¬o′

¬o . Q . U o′

o . R . V o′

o . S . W ¬o′

¬w′ w′ w′ ¬w′


≡

¬w ¬w w w

¬o ¬A B⇒ P ¬C D⇒ T ¬o′

¬o ¬E F⇒ Q ¬G H⇒ U o′

o 1 1 1 1 o′

o 1 1 1 1 ¬o′

¬w′ w′ w′ ¬w′


Equivalence

A square with a dot (.) in both becomes 1 (True). Squares with a value only from one or the other get negated.
Squares with values from both are connected with ≡.



¬w ¬w w w

¬o A B C D ¬o′

¬o E F G H o′

o o′

o ¬o′

¬w′ w′ w′ ¬w′


≡



¬w ¬w w w

¬o . P . T ¬o′

¬o . Q . U o′

o . R . V o′

o . S . W ¬o′

¬w′ w′ w′ ¬w′


≡

¬w ¬w w w

¬o ¬A B≡ P ¬C D≡ T ¬o′

¬o ¬E F ≡ Q ¬G H ≡ U o′

o 1 ¬R 1 ¬V o′

o 1 ¬S 1 ¬W ¬o′

¬w′ w′ w′ ¬w′



114 APPENDIX A. INTRODUCING KARNAUGH MAPS FOR GRAPHICAL PROOFS

A.1.3 Conditionals as Projections

Conditional statements with ok,ok′,wait,wait′ in the conditions act as projection operations over these graphs.



¬w ¬w w w

¬o A B C D ¬o′

¬o E F G H o′

o I J K L o′

o M N O P ¬o′

¬w′ w′ w′ ¬w′


=

¬w ¬w w w

¬o ¬o′

¬o o′

o I J K L o′

o M N O P ¬o′

¬w′ w′ w′ ¬w′


CokB



¬w ¬w w w

¬o A B C D ¬o′

¬o E F G H o′

o o′

o ¬o′

¬w′ w′ w′ ¬w′


=

¬w ¬w w w

¬o ¬o′

¬o E F G H o′

o I J K L o′

o ¬o′

¬w′ w′ w′ ¬w′


Cok′B



¬w ¬w w w

¬o A B C D ¬o′

¬o o′

o o′

o M N O P ¬o′

¬w′ w′ w′ ¬w′


=

¬w ¬w w w

¬o . . C D ¬o′

¬o . . G H o′

o . . K L o′

o . . O P ¬o′

¬w′ w′ w′ ¬w′


CwaitB



¬w ¬w w w

¬o A B . . ¬o′

¬o E F . . o′

o I J . . o′

o M N . . ¬o′

¬w′ w′ w′ ¬w′


=

¬w ¬w w w

¬o . B C . ¬o′

¬o . F G . o′

o . J K . o′

o . N O . ¬o′

¬w′ w′ w′ ¬w′


Cwait′B



¬w ¬w w w

¬o A . . D ¬o′

¬o E . . H o′

o I . . L o′

o M . . P ¬o′

¬w′ w′ w′ ¬w′



A.1. GRAPHICAL APPROACH 115

A.1.4 Examples

DIV ¬ok ∧ tr ≤ tr′

¬w ¬w w w

¬o tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ ¬o′

¬o tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ o′

o o′

o ¬o′

¬w′ w′ w′ ¬w′

OKID ok′ ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref

¬w ¬w w w

¬o ¬o′

¬o tr′ = tr ∧ ref ′ = ref . tr′ = tr ∧ ref ′ = ref . o′

o tr′ = tr ∧ ref ′ = ref . tr′ = tr ∧ ref ′ = ref . o′

o ¬o′

¬w′ w′ w′ ¬w′

II DIV ∨ OKID

tr ≤ tr′ ≡ tr ≤ tr′ ∨ tr′ = tr ∧ ref ′ = ref

¬w ¬w w w

¬o tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ ¬o′

¬o tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ o′

o tr′ = tr ∧ ref ′ = ref . tr′ = tr ∧ ref ′ = ref . o′

o ¬o′

¬w′ w′ w′ ¬w′

B wait′ ∧ tr′ = tr ∨ tr < tr′

¬w ¬w w w

¬o tr < tr′ tr ≤ tr′ tr ≤ tr′ tr < tr′ ¬o′

¬o tr < tr′ tr ≤ tr′ tr ≤ tr′ tr < tr′ o′

o tr < tr′ tr ≤ tr′ tr ≤ tr′ tr < tr′ o′

o tr < tr′ tr ≤ tr′ tr ≤ tr′ tr < tr′ ¬o′

¬w′ w′ w′ ¬w′

B’ tr′ = trCwait′B tr < tr′

116 APPENDIX A. INTRODUCING KARNAUGH MAPS FOR GRAPHICAL PROOFS

¬w ¬w w w

¬o tr < tr′ tr = tr′ tr = tr′ tr < tr′ ¬o′

¬o tr < tr′ tr = tr′ tr = tr′ tr < tr′ o′

o tr < tr′ tr = tr′ tr = tr′ tr < tr′ o′

o tr < tr′ tr = tr′ tr = tr′ tr < tr′ ¬o′

¬w′ w′ w′ ¬w′

J (ok⇒ ok′) ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref

¬w ¬w w w

¬o tr′ = tr ∧ ref ′ = ref . tr′ = tr ∧ ref ′ = ref . ¬o′

¬o tr′ = tr ∧ ref ′ = ref . tr′ = tr ∧ ref ′ = ref . o′

o tr′ = tr ∧ ref ′ = ref . tr′ = tr ∧ ref ′ = ref . o′

o ¬o′

¬w′ w′ w′ ¬w′

P `Q ok ∧ P⇒ ok′ ∧ Q

ok,ok′ /∈ P,Q

Acd =̂ A[c,d/wait,wait′]

¬w ¬w w w

¬o 1 1 1 1 ¬o′

¬o 1 1 1 1 o′

o P00⇒ Q00 P01⇒ Q01 P11⇒ Q11 P10⇒ Q10 o′

o ¬P00 ¬P01 ¬P11 ¬P10 ¬o′

¬w′ w′ w′ ¬w′

A.1. GRAPHICAL APPROACH 117

A.1.5 Lemma 1 – Graphical Approach

Lemma A.1.1
IIC ∧ B =?

Proof Strategy: Graphical Proof.

B

¬w ¬w w w

¬o tr < tr′ tr ≤ tr′ tr ≤ tr′ tr < tr′ ¬o′

¬o tr < tr′ tr ≤ tr′ tr ≤ tr′ tr < tr′ o′

o tr < tr′ tr ≤ tr′ tr ≤ tr′ tr < tr′ o′

o tr < tr′ tr ≤ tr′ tr ≤ tr′ tr < tr′ ¬o′

¬w′ w′ w′ ¬w′

II

¬w ¬w w w

¬o tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ ¬o′

¬o tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ o′

o tr′ = tr ∧ ref ′ = ref . tr′ = tr ∧ ref ′ = ref . o′

o ¬o′

¬w′ w′ w′ ¬w′

II ∧ B

¬w ¬w w w

¬o tr < tr′ tr ≤ tr′ tr ≤ tr′ tr < tr′ ¬o′

¬o tr < tr′ tr ≤ tr′ tr ≤ tr′ tr < tr′ o′

o . . tr′ = tr ∧ ref ′ = ref . o′

o ¬o′

¬w′ w′ w′ ¬w′

From this we can read-off:

¬ok ∧ ¬wait′ ∧ tr < tr′

∨ ¬ok ∧ wait′ ∧ tr ≤ tr′

∨ ok ∧ ok′ ∧ wait ∧ wait′ ∧ tr′ = tr ∧ ref ′ = ref

�

118 APPENDIX A. INTRODUCING KARNAUGH MAPS FOR GRAPHICAL PROOFS

A.1.6 Lemma 2 – Graphical Approach

Lemma A.1.2
IIC ∧ B′ =?

Proof Strategy: Graphical Proof.

B′

¬w ¬w w w

¬o tr < tr′ tr = tr′ tr = tr′ tr < tr′ ¬o′

¬o tr < tr′ tr = tr′ tr = tr′ tr < tr′ o′

o tr < tr′ tr = tr′ tr = tr′ tr < tr′ o′

o tr < tr′ tr = tr′ tr = tr′ tr < tr′ ¬o′

¬w′ w′ w′ ¬w′

II

¬w ¬w w w

¬o tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ ¬o′

¬o tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ o′

o tr′ = tr ∧ ref ′ = ref . tr′ = tr ∧ ref ′ = ref . o′

o ¬o′

¬w′ w′ w′ ¬w′

II ∧ B′

¬w ¬w w w

¬o tr < tr′ tr = tr′ tr = tr′ tr < tr′ ¬o′

¬o tr < tr′ tr = tr′ tr = tr′ tr < tr′ o′

o . . tr′ = tr ∧ ref ′ = ref . o′

o ¬o′

¬w′ w′ w′ ¬w′

From this we can read-off:

¬ok ∧ ¬wait′ ∧ tr < tr′

∨ ¬ok ∧ wait′ ∧ tr = tr′

∨ ok ∧ ok′ ∧ wait ∧ wait′ ∧ tr′ = tr ∧ ref ′ = ref

�

Appendix B

Proofs for the Link between
SimpleCircus and SimpleCSP

B.1 A Graphical Proof Attempt

(with Andrew Butterfield)

Theorem B.1.1
(a→C SkipC) = (∃state,state′ • a→X SkipX)

Proof Strategy: reduce LHS and RHS to same form.

LHS:

a→C SkipC

= “ def of a→SkipC ”

CSP1(ok′ ∧ doA(a))

= “ def of CSP1 ”

ok′ ∧ doA(a) ∨ DIV

= “ def of doA(a) ”

ok′ ∧Φ(a /∈ ref ′Cwait′B tr′ = tra 〈a〉) ∨ DIV

= “ def of Φ(A) ”

ok′ ∧ R(a /∈ ref ′Cwait′B tr′ = tra 〈a〉) ∧ B ∨ DIV

= “ re-arrange ”

DIV ∨ ok′ ∧ B ∧ R(a /∈ ref ′Cwait′B tr′ = tra 〈a〉)

= “ alternate expansion of R ”

DIV ∨ ok′ ∧ B ∧
(
IICCwaitB

(
(a /∈ ref ′Cwait′B tr′ = tra 〈a〉) ∧ tr ≤ tr′

))
= “ Distribute in tr ≤ tr′, subsume by tr′ = tra ”

DIV ∨ ok′ ∧ B ∧
(
IICCwaitB

(
a /∈ ref ′ ∧ tr ≤ tr′Cwait′B tr′ = tra 〈a〉

))
= “ Push B into nested conditionals (∧-CB-distr) ”

DIV ∨ ok′ ∧
(
B ∧ IICCwaitB

(
B ∧ a /∈ ref ′ ∧ tr ≤ tr′Cwait′BB ∧ tr′ = tra 〈a〉

))
119

120 APPENDIX B. PROOFS FOR THE LINK BETWEEN SIMPLECIRCUS AND SIMPLECSP

We pause here, to observe that we have interactions with B and conditionals involving wait′.

B ∧ wait′ = wait′ ∧ tr ≤ tr′

B ∧ ¬wait′ = ¬wait′ ∧ tr < tr′

B′ ∧ wait′ = wait′ ∧ tr = tr′

B′ ∧ ¬wait′ = ¬wait′ ∧ tr < tr′

So we can simplify B in the innermost conditional:

DIV ∨ ok′ ∧
(
B ∧ IICCwaitB

(
tr ≤ tr′ ∧ a /∈ ref ′ ∧ tr ≤ tr′Cwait′B tr < tr′ ∧ tr′ = tra 〈a〉

))
= “ simplify, subsume ”

DIV ∨ ok′ ∧
(
B ∧ IICCwaitB

(
a /∈ ref ′ ∧ tr ≤ tr′Cwait′B tr′ = tra 〈a〉

))
At this point we can see clearly that B is simply wrong, because when wait is false (we are running) and wait′

is true (we are waiting to perform an event) we see that we assert only R1 regarding tr and tr′, whereas we
should assert tr′ = tr. So we should use B′ instead:

DIV ∨ ok′ ∧
(
B′ ∧ IICCwaitB

(
tr = tr′ ∧ a /∈ ref ′ ∧ tr ≤ tr′Cwait′B tr < tr′ ∧ tr′ = tra 〈a〉

))
= “ subsume twice ”

DIV ∨ ok′ ∧
(
B′ ∧ IICCwaitB

(
tr′ = tr ∧ a /∈ ref ′Cwait′B tr′ = tra 〈a〉

))
We can now build the graphic form (using Lemma A.1.2):

¬w ¬w w w

¬o tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ ¬o′

¬o tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ o′

o tr′ = tra 〈a〉 tr′ = tr ∧ a /∈ ref ′ tr′ = tr ∧ ref ′ = ref . o′

o ¬o′

¬w′ w′ w′ ¬w′

B.1. A GRAPHICAL PROOF ATTEMPT 121

RHS:

∃state,state′ • a→X SkipX

= “ def of a→XSkipX ”

∃state,state′ • S

true `

 tr′ = tr ∧ a /∈ ref ′

Cwait′B

tr′ = tra 〈a〉 ∧ state′ = state




= “ alternate expansion of S ”

∃state,state′ •

(∃state′ • IIX)

CwaitB
true `

 tr′ = tr ∧ a /∈ ref ′

Cwait′B

tr′ = tra 〈a〉 ∧ state′ = state


 ∧ tr ≤ tr′


= “ push ∃state,state′ scope inwards ”

(∃state,state′ • (∃state′ • IIX))

CwaitB
true `

 tr′ = tr ∧ a /∈ ref ′

Cwait′B

tr′ = tra 〈a〉 ∧ (∃state,state′ • state′ = state)


 ∧ tr ≤ tr′


= “ merge scopes, 1pt state′ = state ”

(∃state,state′ • IIX)

CwaitBtrue `

 tr′ = tr ∧ a /∈ ref ′

Cwait′B

tr′ = tra 〈a〉 ∧ True

 ∧ tr ≤ tr′


= “ Lemma B.2.2, ∧-unit, on page 124 ”

IIC

CwaitBtrue `

 tr′ = tr ∧ a /∈ ref ′

Cwait′B

tr′ = tra 〈a〉

 ∧ tr ≤ tr′


= “ Lemma B.2.3, on page 124 ”

IIC

CwaitBDIV ∨ ok′ ∧

 tr′ = tr ∧ a /∈ ref ′

Cwait′B

tr′ = tra 〈a〉

 ∧ tr ≤ tr′



122 APPENDIX B. PROOFS FOR THE LINK BETWEEN SIMPLECIRCUS AND SIMPLECSP

from previous page:

IIC

CwaitBDIV ∨ ok′ ∧

 tr′ = tr ∧ a /∈ ref ′

Cwait′B

tr′ = tra 〈a〉

 ∧ tr ≤ tr′


= “ distribute ∧ into CB ”

IIC

CwaitBDIV ∨ ok′ ∧

 tr′ = tr ∧ a /∈ ref ′ ∧ tr ≤ tr′

Cwait′B

tr′ = tra 〈a〉 ∧ tr ≤ tr′




= “ tr′ = tr and tr′ = tra both imply tr ≤ tr′ ”

IICCwaitB

DIV ∨ ok′ ∧

 tr′ = tr ∧ a /∈ ref ′

Cwait′B

tr′ = tra 〈a〉




= “ defn. IIC ”

(DIV ∨ ok′ ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref)

CwaitBDIV ∨ ok′ ∧

 tr′ = tr ∧ a /∈ ref ′

Cwait′B

tr′ = tra 〈a〉




= “ (A ∨ B ∧ C)CwB (A ∨ B ∧ D) = A ∨ B ∧ (CCwBD) (Exercise!) ”

DIV ∨ ok′ ∧


(wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref)

CwaitB tr′ = tr ∧ a /∈ ref ′

Cwait′B

tr′ = tra 〈a〉




= “ (w′ = wCwB . . .)≡ (w′CwB . . .) ”

DIV ∨ ok′ ∧


(wait′ ∧ tr′ = tr ∧ ref ′ = ref)

CwaitB tr′ = tr ∧ a /∈ ref ′

Cwait′B

tr′ = tra 〈a〉




We now enter this into the graphical form:

¬w ¬w w w

¬o tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ ¬o′

¬o tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ tr ≤ tr′ o′

o tr′ = tra 〈a〉 tr′ = tr ∧ a /∈ ref ′ tr′ = tr ∧ ref ′ = ref . o′

o ¬o′

¬w′ w′ w′ ¬w′

Both diagrams are identical! �

B.2. OTHER PROOFS 123

B.2 Other Proofs

Theorem B.2.1
StopC = (∃state,state′ • StopX)

Proof Strategy: reduce both LHS and RHS to same

LHS:

StopC

= “ defn. ”

R(true ` wait′ ∧ tr′ = tr)

= “ standard expansion of R ”

IICCwaitB (true ` wait′ ∧ tr′ = tr) ∧ tr ≤ tr′

This looks like a good target—let’s see if we can get the RHS to transform to this.

RHS:

∃state,state′ • StopX

= “ defn. ”

∃state,state′ • S(true ` wait′ ∧ tr′ = tr)

= “ standard expansion of S ”

∃state,state′ • (∃state′ • IIX)CwaitB (true ` wait′ ∧ tr′ = tr) ∧ tr ≤ tr′

= “ state,state′ not free from CwaitB rightwards ”

(∃state,state′ • (∃state′ • IIX))CwaitB (true ` wait′ ∧ tr′ = tr) ∧ tr ≤ tr′

= “ remove nested ∃state′ ”

(∃state,state′ • IIX)CwaitB (true ` wait′ ∧ tr′ = tr) ∧ tr ≤ tr′

= “ Lemma B.2.2, on page 124 ”

IICCwaitB (true ` wait′ ∧ tr′ = tr) ∧ tr ≤ tr′

�

124 APPENDIX B. PROOFS FOR THE LINK BETWEEN SIMPLECIRCUS AND SIMPLECSP

Lemma B.2.2
(∃state,state′ • IIX) = IIC

Proof Strategy: reduce LHS to RHS

∃state,state′ • IIX

= “ defn. IIX ”

∃state,state′ • ¬ok ∧ tr ≤ tr′

∨ ok′ ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref ∧ state′ = state

= “ restrict quantifier scope ”

¬ok ∧ tr ≤ tr′

∨ ok′ ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref ∧ (∃state,state′ • state′ = state)

= “ 1-pt rule ”

¬ok ∧ tr ≤ tr′ ∨ ok′ ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref ∧ True

= “ simplify ”

¬ok ∧ tr ≤ tr′ ∨ ok′ ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref

= “ defn IIC ”

IIC

�

Lemma B.2.3
(true ` P) ∧ tr ≤ tr′ = DIV ∨ ok′ ∧ P ∧ tr ≤ tr′

Proof Strategy: reduce LHS to RHS

(true ` P) ∧ tr ≤ tr′

= “ defn. ` ”

(ok⇒ ok′ ∧ P) ∧ tr ≤ tr′

= “ defn. ⇒ ”

(¬ok ∨ ok′ ∧ P) ∧ tr ≤ tr′

= “ distributivity ”

¬ok ∧ tr ≤ tr′ ∨ ok′ ∧ P ∧ tr ≤ tr′

= “ defn. DIV ”

DIV ∨ ok′ ∧ P ∧ tr ≤ tr′

�

B.2. OTHER PROOFS 125

Theorem B.2.4

AC o
9C BC v (∃state,state′ • AX o

9X BX)

where AC = ∃state,state′ • AX

BC = ∃state,state′ • BX

This proof is based on distinguishing clearly between the reactive and state observations. We introduce the
following shorthands: R = {ok,wait, tr,ref}, s and s′ for state and state′, and note the following alternate
formulations of both kinds of sequential composition:

P o
9C Q = ∃Rm • P[Rm/R′] ∧ Q[Rm/R]

P o
9X Q = ∃Rm,sm • P[Rm,sm/R′,s′] ∧ Q[Rm,sm/R,s]

Proof (with Andrew Butterfield)
Strategy: we show LHS refined by RHS by starting with the RHS and proving it implies the LHS, as per the
definition of refinememt.

RHS = (∃s,s′ • AX o
9X BX)

= “ alt. defn. of o
9X ”

∃s,s′ • (∃Rm,sm • AX[Rm,sm/R′,s′] ∧ BX[Rm,sm/R,s])

= “ re-order and re-nest quantifiers ”

∃Rm • (∃sm,s,s′ • AX[Rm,sm/R′,s′] ∧ BX[Rm,sm/R,s])

⇒ “ weakening ”

∃Rm • (∃sm,s,s′ • AX[Rm,sm/R′,s′]) ∧ (∃sm,s,s′ • BX[Rm,sm/R,s])

= “ s′ not free in 1st conjunct, nor s in 2nd ”

∃Rm • (∃sm,s • AX[Rm,sm/R′,s′]) ∧ (∃sm,s′ • BX[Rm,sm/R,s])

= “ independent substitutions ”

∃Rm • (∃sm,s • AX[sm/s′][Rm/R′]) ∧ (∃sm,s′ • BX[sm/s][Rm/R])

= “ move Rm substitution out ”

∃Rm • (∃sm,s • AX[sm/s′])[Rm/R′] ∧ (∃sm,s′ • BX[sm/s])[Rm/R]

= “ defn o
9C ”

(∃sm,s • AX[sm/s′]) o
9C (∃sm,s′ • BX[sm/s])

= “ α-renaming ”

(∃s′,s • AX) o
9C (∃s,s′ • BX)

�

126 APPENDIX B. PROOFS FOR THE LINK BETWEEN SIMPLECIRCUS AND SIMPLECSP

Theorem B.2.5
AC o

9C JC = (∃state,state′ • AX o
9X JX)

Proof (with Andrew Butterfield)
Strategy: Making R.H.S equal to L.H.S.

Here we note that

ObsC = ok,wait, tr,ref

ObsX = ok,wait, tr,ref ,state

ObsC = ObsX \state

RHS :

∃state,state′ • AX o
9X JX

= “ def of o
9X ”

∃state,state′ • (∃ObsX
m • AX[ObsX

m/Obs′X] ∧ JX[ObsX
m/ObsX])

= “ flatten nested ∃ ”

∃state,state′,ObsX
m • AX[ObsX

m/Obs′X] ∧ JX[ObsX
m/ObsX]

= “ def of JX ”

∃state,state′,ObsX
m • AX[ObsX

m/Obs′X]

∧ ((ok⇒ ok′) ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref ∧ state′ = state)[ObsX
m/ObsX]

= “ substitution ”

∃state,state′,ObsX
m • AX[ObsX

m/Obs′X]

∧ (okm⇒ ok′) ∧ wait′ = waitm ∧ tr′ = trm ∧ ref ′ = refm ∧ state′ = statem

= “ one-pt rule, replacing state′ only ”

∃state,ObsX
m • AX[ObsX

m/Obs′X][statem/state′]

∧ (okm⇒ ok′) ∧ wait′ = waitm ∧ tr′ = trm ∧ ref ′ = refm

= “ All state′ in AX are now statem, so outer sub has no effect ”

∃state,ObsX
m • AX[ObsX

m/Obs′X]

∧ (okm⇒ ok′) ∧ wait′ = waitm ∧ tr′ = trm ∧ ref ′ = refm

= “ state only occurs, if at all, in AX so we can distr ∃state in ”

∃ObsX
m • (∃state • AX)[ObsX

m/Obs′X]

∧ (okm⇒ ok′) ∧ wait′ = waitm ∧ tr′ = trm ∧ ref ′ = refm

= “ substitution backwards ”

∃ObsX
m • (∃state • AX)[ObsX

m/Obs′X]

∧ ((ok⇒ ok′) ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref)[ObsX
m/ObsX]

= “ def JC ”

∃ObsX
m • (∃state • AX)[ObsX

m/Obs′X] ∧ JC[ObsX
m/ObsX]

= “ JC does not mention state or state′ so we can restrict to ObsC ”

∃ObsX
m • (∃state • AX)[ObsX

m/Obs′X] ∧ JC[ObsC
m/ObsC]

= “ factor statem out of ObsX
m ”

∃statem,ObsC
m • (∃state • AX)[statem,ObsC

m/state′,Obs′C] ∧ JC[ObsC
m/ObsC]

= “ can split substitution because statem is not in AX . ”

∃statem,ObsC
m • (∃state • AX)[ObsC

m/Obs′C][statem,/state′] ∧ JC[ObsC
m/ObsC]

B.2. OTHER PROOFS 127

= “ can bring state′ substitution out, as only poss. occurrences are in AX ”

∃statem,ObsC
m • ((∃state • AX)[ObsC

m/Obs′C] ∧ JC[ObsC
m/ObsC])[statem,/state′]

= “ (∃x • P) = (∃y • P[y/x], provided y /∈ x,P ”

∃state′,ObsC
m • ((∃state • AX)[ObsC

m/Obs′C] ∧ JC[ObsC
m/ObsC])

= “ state′ only in AX , if at all ”

∃ObsC
m • ((∃state,state′ • AX)[ObsC

m/Obs′C] ∧ JC[ObsC
m/ObsC])

= “ def o
9C ”

(∃state,state′ • AX) o
9C JC

= “ def AX ”

AC o
9C JC

LHS!

�

128 APPENDIX B. PROOFS FOR THE LINK BETWEEN SIMPLECIRCUS AND SIMPLECSP

Theorem B.2.6
Rn(AC)v ∃state,state′ • Sn(AX), n ∈ 1 . . .3

Proof For n=1,

L.H.S = R1(AC)

= “ def of R1 ”

AC ∧ tr ≤ tr′

v “ def of AC ”

∃state,state′ • AX ∧ tr ≤ tr′

= “ def of S1 ”

∃state,state′ • S1(AX) = R.H.S

For n=2,

R2(AC)

= “ def of R2 ”

∃s • AC[s,sa (tr′− tr)/tr, tr′]

v “ def of AC ”

∃s • ∃state,state′ • AX[s,sa (tr′− tr)/tr, tr′]

= “ Re-arranging ”

∃state,state′ • ∃s • AX[s,sa (tr′− tr)/tr, tr′]

= “ def of S2 ”

∃state,state′ • S2(AX) = R.H.S

For n=3,

R3(AC)

= “ def of R3 ”

IICwaitBAC

= “ def of CB ”

wait ∧ II ∨ ¬wait ∧ AC

v “ def of AC ”

(wait ∧ II) ∨ ¬wait ∧ (∃state,state′ • AX)

= “ ”

∃state,state′ • II ∧ wait ∨ ¬wait ∧ AX

= “ def of CB ”

∃state,state′ • ∃state′ • IICwaitBAX

= “ def of S3 ”

∃state,state′ • S3(AX) = L.H.S

�

B.2. OTHER PROOFS 129

Theorem B.2.7
CSPn(AC)v ∃state,state′ • CXSn(AX), n ∈ 1 . . .5

Proof For n=1,

L.H.S = CSP1(AC)

= “ def of CSP1 ”

AC ∨ DIV

v “ def of AC ”

∃state,state′ • AX ∨ DIV

= “ def of CXS1 ”

∃state,state′ • CXS1(AX) = R.H.S

For n=2,

L.H.S = CSP2(AC)

= “ def of CSP2 ”

AC o
9C JC

= “ By theorem B.2.5, on page 126 ”

∃state,state′ • AX o
9X JX

= “ def of CXS2 ”

∃state,state′ • CXS2(AX) = R.H.S

For n=4,

L.H.S = CSP4(AC)

= “ def of CSP4 ”

AC o
9C SkipC

v “ def of AC ”

(∃state,state′ • AX) o
9C SkipC

= “ By theorem 6.2.1, on page 49 ”

(∃state,state′ • AX) o
9C (∃state,state′ • SkipX)

= “ By theorem B.2.4, on page 125 ”

∃state,state′ • (AX o
9X SkipX)

= “ def of CXS4 ”

∃state,state′ • CXS4(AX) = R.H.S

�

130 APPENDIX B. PROOFS FOR THE LINK BETWEEN SIMPLECIRCUS AND SIMPLECSP

B.3 Lemmas

Proofs of following two lemmas have been gone through and can be provided if needed.

Lemma 1

Lemma B.3.1 Assuming that A and B are R-healthy:

R



∃ObsA,ObsB •
A[ObsA/Obs′] ∧ B[ObsB/Obs′]

∧ ok′ = okA ∧ okB

∧ wait′ = waitA ∨ waitB
∧ ref ′ ⊆ (refA∪ refB)∩S∪ (refA∩ refB)\S

∧ tr′− tr ∈ (trA− tr) ‖S (trB− tr)


=



∃ObsA,ObsB •
A[ObsA/Obs′] ∧ B[ObsB/Obs′]

∧ ok′ = okA ∧ okB

∧ wait′ = waitA ∨ waitB
∧ ref ′ ⊆ (refA∪ refB)∩S∪ (refA∩ refB)\S

∧ tr′− tr ∈ (trA− tr) ‖S (trB− tr)


Lemma 2

Lemma B.3.2 Assuming that A and B are R-healthy:

∃ObsA,ObsB •
A[ObsA/Obs′] ∧ B[ObsB/Obs′]

∧ ok′ = okA ∧ okB

∧ wait′ = waitA ∨ waitB
∧ ref ′ ⊆ (refA∪ refB)∩S∪ (refA∩ refB)\S

∧ tr′− tr ∈ (trA− tr) ‖S (trB− tr)


o
9 Skip

=



∃ObsA,ObsB •
A[ObsA/Obs′] ∧ B[ObsB/Obs′]

∧ ok′ = okA ∧ okB

∧ wait′ = waitA ∨ waitB
∧ tr′− tr ∈ (trA− tr) ‖S (trB− tr)

∧

 ref ′ ⊆ (refA∪ refB)∩S∪ (refA∩ refB)\S

Cwait′B

true




Lemma 3

Lemma B.3.3
tr ≤ trA ∧ tr ≤ trB ∧ tr′− tr ∈ (trA− tr) ‖S (trB− tr)⇒ tr ≤ tr′

Appendix C

Haskell Implementation

C.1 Working with Simple Circus in Haskell

module SimpleCircus where

import Data.List

import Maybe

import Utilities

C.1.1 Names

type Name = String

C.1.2 Expressions

type EvtSpec = (Name, [Comm])

data Comm

= Null | Dot Expr | Bang Expr | Q Name (Maybe Expr)

deriving (Eq, Ord, Show)

data Expr

= B Bool | Z Int | Var Name | Val Name

| Agg Name Name [Expr]

| App Name [Expr]

| Bin Name Expr Expr

| Evts EvtSpec

deriving (Eq,Ord,Show)

131

132 APPENDIX C. HASKELL IMPLEMENTATION

C.1.3 Abstract Syntax

data Circus

= Div | Stop | Skip |

Chaos Expr |

String :-> Circus |

(String,[String]) ::-> Circus |

Expr :::-> Circus | -- to accomodate I/O channels

Circus ::: Circus |

IntChoice Circus Circus |

ExtChoice Circus Circus |

Hide Circus [String] |

IPar [String] Circus Circus |

APar [String] [String] Circus Circus |

Ilv Circus Circus |

Cond Expr Circus Circus |

Guard Expr Circus |

INT Name [String] Circus |

SEQ Name [String] Circus |

EXT Name [String] Circus |

ILV Name [String] Circus |

IPAR [String] Name [String] Circus |

APAR Name [String] [String] Circus |

Name := Expr |

Call String [Expr] | -- name(actual arguments,)

Mu Name Circus

deriving (Eq,Ord,Show)

type CircusDef -- name(formal arguments,) = body

= (String -- name

, ([String] -- formal argument

, Circus -- body

)

)

type CircusProgram = [CircusDef] -- ordered by name component

C.1. WORKING WITH SIMPLE CIRCUS IN HASKELL 133

C.1.4 Simplifying Constructors

(x,[]) --> circ = Stop

(x,xs) --> circ = (x,xs) ::-> circ

mkIntChoice Div circ = Div

mkIntChoice circ Div = Div

mkIntChoice c1 c2 = IntChoice c1 c2

mkINT nm [] _ = Div

mkINT nm [x] circ = csubstitute x nm circ

mkINT nm [x,y] circ = IntChoice (csubstitute x nm circ) (csubstitute y nm circ)

mkINT nm es circ = INT nm es circ

mkExtChoice circ Div = Div

mkExtChoice Div circ = Div

mkExtChoice Stop circ = circ

mkExtChoice circ Stop = circ

mkExtChoice c1 c2 = ExtChoice c1 c2

mkEXT nm [] _ = Div

mkEXT nm [x] circ = csubstitute x nm circ

mkEXT nm [x,y] circ = ExtChoice (csubstitute x nm circ) (csubstitute y nm circ)

mkEXT nm es circ = EXT nm es circ

Substitutions

csubstitute e x pr@((y,es) ::-> p)

| x == y = pr

| otherwise = (y,map (esubstitute e x) es) ::-> (csubstitute e x p)

csubstitute e x (IntChoice pr1 pr2) = IntChoice (csubstitute e x pr1)

(csubstitute e x pr2)

csubstitute e x circ = circ

esubstitute e x y

| x == y = e

| otherwise = y

134 APPENDIX C. HASKELL IMPLEMENTATION

C.2 Standard Circus Names

module StdCircusNames where

import SimpleCircus

C.2.1 Names

Names for Binary Operators

notName = " not "

orName = " or "

andName = " and "

eqvName = " ˆ= "

impName = " ==> "

Names of Operators for Comparisons

eqName = " = "

neqName = " != "

ltName = " < "

leName = " <= "

gtName = " > "

geName = " >= "

Arithmetic Operators

addName = "+"

subName = "-"

mulName = "*"

divName = "/"

remName = "%"

absName = "abs"

Names of Set Notations

setOpenName = "{"

setCloseName = "}"

chanSetOpenName = "{|"

C.2. STANDARD CIRCUS NAMES 135

chanSetCloseName = "|}"

unionName = "union"

intersectName = "intersct"

setdiffName = "diff"

subsetName = "subset"

Names for Sequences

seqOpenName = "<"

seqCloseName = ">"

catName = "ˆ"

lenName = "#"

Circus Specific Names

ilvName = "|||"

interfaceParOpenName = "[|"

interfaceParCloseName = "|]"

alphabetisedParOpenName = "["

alphabetisedParMidName = "||"

alphabetisedParCloseName = "]"

repAlphabetisedOpenName = "["

repAlphabetisedCloseName = "]"

icName = "|˜|"

ecName = "[]"

seqName = ";"

guardName = "&"

prefixName = "->"

hideName = "\\"

atName = "@"

replName = "RR"

ifName = "if"

thenName = "then"

elseName = "else"

asgName = ":="

muName = "Mu "

C.2.2 Expression Builders

true = B True

false = B False

land = Bin andName

136 APPENDIX C. HASKELL IMPLEMENTATION

lor = Bin orName

implies = Bin impName

eqv = Bin eqvName

lnot = App notName

eq = Bin eqName

neq = Bin neqName

lt = Bin ltName

le = Bin leName

gt = Bin gtName

ge = Bin geName

subset = Bin subsetName

setof = Agg setOpenName setCloseName

setnull = setof []

unn = Bin unionName

intsct = Bin intersectName

setdiff = Bin setdiffName

C.2.3 Precedence

stdPrec nm

| nm == eqvName = 21

| nm == impName = 22

| nm == orName = 23

| nm == andName = 24

| nm == eqName = 25

| nm == neqName = 26

| nm == ltName = 26

| nm == leName = 26

| nm == gtName = 26

| nm == geName = 26

| nm == addName = 27

| nm == subName = 27

| nm == mulName = 28

| nm == divName = 28

| nm == remName = 28

| nm == catName = 29

| otherwise = 1

cspPrec nm

| nm == ilvName = 2

| nm == interfaceParOpenName = 3

| nm == alphabetisedParMidName = 3

| nm == icName = 4

| nm == ecName = 5

| nm == seqName = 8

| nm == guardName = 9

C.2. STANDARD CIRCUS NAMES 137

| nm == prefixName = 10

| nm == hideName = 11

| nm == muName = 12

| nm == ifName = 1

| nm == replName = 1

| otherwise = 1

138 APPENDIX C. HASKELL IMPLEMENTATION

C.3 Standard Circus Printing

module StdCircusPrint where

import Data.List

import Maybe

import Utilities

import SimpleCircus

import StdCircusNames

C.3.1 Pretty-Printing Expressions

type Precf = Name -> Int

ppExpr :: Precf -> Expr -> String

ppExpr prec e

= pp 0 e

where

pp _ (B False) = "ff"

pp _ (B True) = "tt"

pp _ (Z z) | z < 0 = brkt $ show z | otherwise = show z

pp _ (Var v) = v

pp _ (Val v) = v

pp _ (App nm es) = nm ++ brkt (showlist (pp 0) es)

pp _ (Agg open close es) = open ++ showlist (pp 0) es ++ close

pp _ (Evts (ch, rest)) = ch ++ concat (map (ppComm stdPrec) rest)

pp cp (Bin nm e1 e2)

= precRender prec cp nm

(\nmp -> pp nmp e1 ++ nm ++ pp nmp e2)

--pp prec _ = ""

--pp prec (c:cs) = pp prec c ++ pp prec cs

pad s = ’ ’:s++" "

brkt s = "(" ++ s ++ ")"

precRender prec cp nm strf

| nmp > cp = string

| otherwise = brkt string

where

nmp = prec nm

string = strf nmp

showlist sh [] = ""

showlist sh [x] = sh x

showlist sh (x:xs) = sh x ++ "," ++ showlist sh xs

C.3. STANDARD CIRCUS PRINTING 139

-- Pretty printing of (String, [String])

ppSts (x,as) = x ++ ":" ++ ppSet as

ppSet as = "{"++ppSts1 as++"}"

-- Pretty printing of [String]

ppSts1 = concat . intersperse ","

Pretty Printing Events

ppComm :: Precf -> Comm -> String

ppComm prec Null = ""

ppComm prec (Dot expr) = "." ++ (ppExpr prec expr)

ppComm prec (Bang expr) = "!" ++ (ppExpr prec expr)

ppComm prec (Q nm Nothing) = "?" ++ nm

ppComm prec (Q nm (Just expr)) = "?" ++ nm ++ ":" ++ (ppExpr prec expr)

ppComms prec [] = ""

ppComms prec (c:cs) = ppComm prec c ++ ppComms prec cs

C.3.2 Pretty-Printing Processes

ppProc :: Precf -> Circus -> String

ppProc prec e

= pp 0 e

where

pp _ Div = "Div"

pp _ Stop = "Stop"

pp _ Skip = "Skip"

pp _ (Chaos a) = "Chaos(" ++ ppExpr prec a ++ ")"

pp cp (a :-> circ) -- Prefix action

= precRender prec cp prefixName

(\nmp -> a

++ pad prefixName

++ pp nmp circ)

pp cp ((x,xs) ::-> circ) -- Prefix action

= precRender prec cp prefixName

(\nmp -> ppSts (x,xs)

++ pad prefixName

++ pp nmp circ)

pp cp (evtExpr :::-> circ) -- I/O channel

= precRender prec cp prefixName

(\nmp -> ppExpr prec evtExpr

++ pad prefixName

++ "\n\t"

++ pp nmp circ)

pp cp (c1 ::: c2) -- Seq composition i.e c1 ; c2

140 APPENDIX C. HASKELL IMPLEMENTATION

= precRender prec cp seqName

(\nmp -> pp nmp c1 ++ pad seqName ++ "\n\t" ++ pp nmp c2)

pp cp (Hide circ a) -- P \ A

= precRender prec cp hideName

(\nmp -> pp nmp circ ++ pad hideName ++ ppSet a)

pp cp (ExtChoice c1 c2) -- p [] q

= precRender prec cp ecName

(\nmp -> pp nmp c1 ++ "\n\t" ++ pad ecName ++ "\n\t" ++ pp nmp c2)

pp cp (IntChoice c1 c2) -- p |˜| q

= precRender prec cp icName

(\nmp -> pp nmp c1 ++ pad icName ++ pp nmp c2)

pp cp (Guard b circ) -- b & P

= precRender prec cp guardName

(\nmp -> ppExpr prec b ++ pad guardName ++ "\n\t" ++ pp nmp circ)

pp cp (Ilv c1 c2) -- p ||| q

= precRender prec cp ilvName

(\nmp -> pp nmp c1 ++ pad ilvName ++ pp nmp c2)

pp cp (IPar a c1 c2) -- p [| a |] q

= precRender prec cp interfaceParOpenName

(\nmp -> pp nmp c1

++ ’ ’:interfaceParOpenName

++ ’ ’:(ppSts1 a)

++ ’ ’:interfaceParCloseName

++ ’ ’:pp nmp c2)

pp cp (APar a b c1 c2) -- p [a || a’] q

= precRender prec cp alphabetisedParOpenName

(\nmp -> pp nmp c1

++ ’ ’:alphabetisedParOpenName

++ ’ ’:(ppSts1 a)

++ ’ ’:alphabetisedParMidName

++ ’ ’:(ppSts1 b)

++ ’ ’:alphabetisedParCloseName

++ ’ ’:pp nmp c2)

pp cp (SEQ x s circ) -- ; x:s @ p

= precRender prec cp replName

(\nmp -> seqName

++ ’ ’:x ++ ":<" ++ (ppSts1 s)

++ "> @ "

++ pp nmp circ)

pp cp (EXT x a circ) -- [] x:a @ p

= precRender prec cp replName

(\nmp -> ecName

++ ’ ’:x ++ ":" ++ (ppSet a)

++ " @ "

C.3. STANDARD CIRCUS PRINTING 141

++ pp nmp circ)

pp cp (INT x a circ) -- |˜| x:a @ p

= precRender prec cp replName

(\nmp -> icName

++ ’ ’:x ++ ":" ++ (ppSet a)

++ " @ "

++ pp nmp circ)

pp cp (ILV x a circ) -- ||| x:a @ p

= precRender prec cp replName

(\nmp -> ilvName

++ ’ ’:x ++ ":" ++ (ppSet a)

++ " @ "

++ pp nmp circ)

pp cp (IPAR a’ x a circ) -- [| a’ |] x:a @ p

= precRender prec cp replName

(\nmp -> interfaceParOpenName

++ (ppSet a’)

++ interfaceParCloseName

++ ’ ’:x ++ ":" ++ (ppSet a)

++ " @ "

++ pp nmp circ)

pp cp (APAR x a a’ circ) -- || x:a @ [a’] p

= precRender prec cp replName

(\nmp -> alphabetisedParMidName

++ ’ ’:x ++ ":" ++ (ppSet a)

++ " @ "

++ repAlphabetisedOpenName

++ (ppSet a’)

++ repAlphabetisedCloseName

++ ’ ’:pp nmp circ)

pp cp (Cond b c1 c2) -- if b then p else q

= precRender prec cp ifName

(\nmp -> ifName

++ ’ ’:ppExpr prec b

++ "\n\t"

++ ’ ’:thenName

++ ’ ’: pp nmp c1

++ "\n\t"

++ ’ ’:elseName

++ ’ ’:pp nmp c2)

pp cp (n := e)

= precRender prec cp asgName

(\nmp -> n ++ pad asgName ++ ppExpr prec e)

pp cp (Call f []) = f

pp cp (Call f es)

= f ++ "("++concat(intersperse "," (map (ppExpr prec) es))++")"

142 APPENDIX C. HASKELL IMPLEMENTATION

pp cp (Mu nm circ) = precRender prec cp muName

(\nmp -> muName ++ nm ++ " @ " ++ pp nmp circ ++ " ; " ++ nm)

--pp cp circ = "(CAN’T PP : "++show circ++")"

pp = ppProc stdPrec

putpp = putStrLn . pp

Pretty-printing definitions

ppDefs prec = unlines . map (ppDef prec)

ppDef prec (name, ([],body))

= name ++ " =ˆ= " ++ ppProc prec body ++ "\n"

ppDef prec (name, (fpars,body))

= name ++ "(" ++ ppSts1 fpars ++")" ++ " =ˆ= " ++ ppProc prec body ++ "\n"

ppd = ppDefs stdPrec

putppd = putStrLn . ppd

C.4. SIMPLE CIRCUS TRANSLATION 143

C.4 Simple Circus Translation

module CircusNameMgmt where

import Data.List

import Maybe

import Utilities

import SimpleCircus

C.4.1 Name Management

We need to determine all the names in a Circus expression

circNames :: Circus -> [String]

circNames Div = []

circNames Stop = []

circNames Skip = []

circNames (Chaos e) = []

circNames (a :-> circ) = lnorm (a:(circNames circ))

circNames ((x,xs)::-> circ) = lnorm (x:xs ++ (circNames circ))

circNames (c1 ::: c2) = lnorm ((circNames c1) ++ (circNames c2))

circNames (IntChoice c1 c2) = lnorm ((circNames c1) ++ (circNames c2))

circNames (ExtChoice c1 c2) = lnorm ((circNames c1) ++ (circNames c2))

circNames (Hide circ a) = lnorm ((circNames circ) ++ a)

circNames (IPar x c1 c2) = lnorm (x ++ (circNames c1) ++ (circNames c2))

circNames (APar x y c1 c2) = lnorm (x ++ y ++ (circNames c1) ++ (circNames c2))

circNames (Ilv c1 c2) = lnorm ((circNames c1) ++ (circNames c2))

circNames (Cond e c1 c2) = lnorm ((circNames c1) ++ (circNames c2))

circNames (Guard e circ) = lnorm (circNames circ)

circNames (INT nm a circ) = lnorm (nm:a ++ (circNames circ))

circNames (SEQ nm a circ) = lnorm (nm:a ++ (circNames circ))

circNames (EXT nm a circ) = lnorm (nm:a ++ (circNames circ))

circNames (ILV nm a circ) = lnorm (nm:a ++ (circNames circ))

circNames (IPAR x nm y circ) = lnorm (nm:x ++ y ++ (circNames circ))

circNames (APAR nm x y circ) = lnorm (nm:x ++ y ++ (circNames circ))

circNames (nm := e) = lnorm (nm:[])

circNames (Call a exprs) = lnorm (a:[])

We need to generate a new name that is not present in a given list

freshName :: [String] -> String

freshName known = isFirstUnknown known allNames

isFirstUnknown known (n:ns)

| n ‘elem‘ known = isFirstUnknown known ns

| otherwise = n

allNames = genName ’a’ 0

genName cseed nseed

= [cseed,intToDigit nseed]:genName cseed’ nseed’

144 APPENDIX C. HASKELL IMPLEMENTATION

where

cseed’ = if cseed == ’z’ then ’a’ else chr (ord cseed+1)

nseed’ = if cseed == ’z’ then (nseed+1) else nseed

ord :: Char -> Int

ord = fromEnum

chr :: Int -> Char

chr = toEnum

intToDigit :: Int -> Char

intToDigit i

| i >= 0 && i <= 9 = toEnum (fromEnum ’0’ + i)

| i >= 10 && i <= 15 = toEnum (fromEnum ’a’ + i - 10)

| otherwise = error "Char.intToDigit: not a digit"

freshNameAct :: [String] -> String

freshNameAct known = isFirstUnknown1 known allNames1

isFirstUnknown1 known (n:ns)

| n ‘elem‘ known = isFirstUnknown1 known ns

| otherwise = n

allNames1 = genName1 ’A’ 0

genName1 cseed nseed

= [cseed,intToDigit1 nseed]:genName1 cseed’ nseed’

where

cseed’ = if cseed == ’Z’ then ’A’ else chr (ord cseed+1)

nseed’ = if cseed == ’Z’ then (nseed+1) else nseed

intToDigit1 :: Int -> Char

intToDigit1 i

| i >= 0 && i <= 9 = toEnum (fromEnum ’0’ + i)

| i >= 10 && i <= 15 = toEnum (fromEnum ’A’ + i - 10)

| otherwise = error "Char.intToDigit: not a digit"

C.5. SIMPLE CIRCUS LAWS 145

C.5 Simple Circus Laws

module SimpleCircusLaws where

import Data.List

import Maybe

import Utilities

import SimpleCircus

import StdCircusNames

import CircusNameMgmt

C.5.1 Laws

“; -assoc” P; (Q; R) = (P; Q); R

law_Seq_Assoc_LtoR (c1 ::: (c2 ::: c3)) = (True, ((c1 ::: c2) ::: c3))

law_Seq_Assoc_LtoR c = (False, c)

law_Seq_Assoc_RtoL ((c1 ::: c2) ::: c3) = (True, (c1 ::: (c2 ::: c3)))

law_Seq_Assoc_RtoL c = (False, c)

“; -unit-l” SKIP o
9 P = P

law_Skip_Unit_LtoR (Skip ::: c) = (True,c)

law_Skip_Unit_LtoR c = (False, c)

“; -unit-r” P o
9 SKIP = P

law_Skip_Unit_RtoL (c ::: Skip) = (True,c)

law_Skip_Unit_RtoL c = (False, c)

“; -zero-l” STOP o
9 P = STOP

law_Stop_Zero_LtoR (Stop ::: _) = (True, Stop)

law_Stop_Zero_LtoR c = (False, c)

“prefix-assoc-l” (a→ P1); P2 = a→ (P1; P2)

law_Prefix_Assoc_LtoR ((a :-> c1) ::: c2) = (True, a :-> (c1 ::: c2))

law_Prefix_Assoc_LtoR c = (False, c)

146 APPENDIX C. HASKELL IMPLEMENTATION

“u-Idem” P u P = P

law_IntChoice_IdemL c@(IntChoice c1 c2)

| c1 == c2 = (True, c1)

| otherwise = (False, c)

law_IntChoice_IdemL c = (False, c)

law_IntChoice_IdemR c = (True, IntChoice c c)

“2-Idem” P 2 P = P

law_ExtChoice_IdemL c@(ExtChoice c1 c2)

| c1 == c2 = (True, c1)

| otherwise = (False, c)

law_ExtChoice_IdemL c = (False, c)

law_ExtChoice_IdemR c = (True, ExtChoice c c)

“u-Symm” P1 u P2 = P2 u P1

law_IntChoice_SymmL (IntChoice c1 c2) = (True,(IntChoice c2 c1))

law_IntChoice_SymmL c = (False, c)

law_IntChoice_SymmR = law_IntChoice_SymmL

“2-Symm” P1 2 P2 = P2 2 P1

law_ExtChoice_SymmL (ExtChoice c1 c2) = (True,(ExtChoice c2 c1))

law_ExtChoice_SymmL c = (False, c)

law_ExtChoice_SymmR = law_ExtChoice_SymmL

“u-assoc-l” P1 u (P2 u P3) = (P1 u P2) u P3

law_IntChoice_Assoc_LtoR (IntChoice c1 (IntChoice c2 c3))

= (True,(IntChoice (IntChoice c1 c2) c3))

law_IntChoice_Assoc_LtoR c = (False,c)

law_IntChoice_Assoc_RtoL (IntChoice (IntChoice c1 c2) c3)

= (True, (IntChoice c1 (IntChoice c2 c3)))

law_IntChoice_Assoc_RtoL c = (False, c)

“2-assoc-l” P1 2 (P2 2 P3) = (P1 2 P2)2 P3

law_ExtChoice_Assoc_LtoR (ExtChoice c1 (ExtChoice c2 c3))

= (True,(ExtChoice (ExtChoice c1 c2) c3))

law_ExtChoice_Assoc_LtoR c = (False,c)

law_ExtChoice_Assoc_RtoL (ExtChoice (ExtChoice c1 c2) c3)

= (True, (ExtChoice c1 (ExtChoice c2 c3)))

law_ExtChoice_Assoc_RtoL c = (False, c)

C.5. SIMPLE CIRCUS LAWS 147

“prefix-u-dist” a→ (P1 u P2) = (a→ P1) u (a→ P2)

law_Prefix_IntChoice_Dist_LtoR (a :-> (IntChoice c1 c2))

= (True, IntChoice (a :-> c1) (a :-> c2))

law_Prefix_IntChoice_Dist_LtoR c = (False,c)

law_Prefix_IntChoice_Dist_RtoL c@(IntChoice (e@(a,ds)::-> c1) ((a’,ds’)::->c2))

| a == a’ && ds == ds’ = (True, e ::-> (IntChoice c1 c2))

| otherwise = (False, c)

“prefix-Dist” c→ (d ex:A• P) =d ex:A• c→P

law_Prefix_Dist_LtoR (e :-> (INT x a circ))

= (True, INT x a (e :-> circ))

law_Prefix_Dist_LtoR c = (False, c)

law_Prefix_Dist_RtoL (INT x a (e :-> circ))

= (True, e :-> (INT x a circ))

law_Prefix_Dist_RtoL c = (False, c)

“u-2-dist-l” P1 u (P2 2 P3) = (P1 u P2)2 (P1 u P3)

law_IntChoice_ExtChoice_Dist_LtoR (IntChoice c1 (ExtChoice c2 c3))

= (True, (ExtChoice (IntChoice c1 c2) (IntChoice c1 c3)))

law_IntChoice_ExtChoice_Dist_LtoR c = (False, c)

law_IntChoice_ExtChoice_Dist_RtoL c@(ExtChoice (IntChoice c1 c2) (IntChoice c1’ c3))

| c1 == c1’ = (True, IntChoice c1 (ExtChoice c2 c3))

| otherwise = (False, c)

“2-u-dist-l”

law_ExtChoice_IntChoice_Dist_LtoR (ExtChoice c1 (IntChoice c2 c3))

= (True, (IntChoice (ExtChoice c1 c2) (ExtChoice c1 c3)))

law_ExtChoice_IntChoice_Dist_LtoR c = (False, c)

law_ExtChoice_IntChoice_Dist_RtoL c@(IntChoice (ExtChoice c1 c2) (ExtChoice c1’ c3))

| c1 == c1’ = (True, ExtChoice c1 (IntChoice c2 c3))

| otherwise = (False, c)

“2-Dist”

law_ExtChoice_Dist_LtoR (ExtChoice c1 (INT x a c2))

= (True, INT x a (ExtChoice c1 c2))

law_ExtChoice_Dist_LtoR c = (False, c)

law_ExtChoice_Dist_RtoL (INT x a (ExtChoice c1 c2))

= (True, ExtChoice c1 (INT x a c2))

law_ExtChoice_Dist_RtoL c = (False, c)

148 APPENDIX C. HASKELL IMPLEMENTATION

“2-unit-l” STOP 2 P = P

law_ExtChoice_Unit (ExtChoice Stop c) = (True,c)

law_ExtChoice_Unit c = (False, c)

“CB-idem” PCbBP = P

law_Cond_Idem_L circ@(Cond b c c’)

| c == c’ = (True, c)

| otherwise = (False, circ)

law_Cond_Idem_R b circ = (True, Cond b circ circ)

“CB-dist-l” (P u Q)CbBR = (PCbBR) u (QCbBR)

law_Cond_Dist_lL (Cond b (IntChoice c1 c2) c3)

= (True, IntChoice (Cond b c1 c2) (Cond b c2 c3))

law_Cond_Dist_lL c = (False, c)

law_Cond_Dist_lR circ@(IntChoice (Cond b c1 c3) (Cond b’ c2 c3’))

| b == b’ && c3 == c3’ = (True, Cond b (IntChoice c1 c2) c3)

| otherwise = (False, circ)

“CB-dist-r” RCbB (P u Q) = (RCbBP) u (RCbBQ)

law_Cond_Dist_rL (Cond b c3 (IntChoice c1 c2))

= (True, IntChoice (Cond b c3 c1) (Cond b c3 c2))

law_Cond_Dist_rL c = (False, c)

law_Cond_Dist_rR circ@(IntChoice (Cond b c3 c1) (Cond b’ c3’ c2))

| b == b’ && c3 == c3’ = (True, Cond b c3 (IntChoice c1 c2))

| otherwise = (False, circ)

“true-id” PCtrueBQ = P

law_True_IdL (Cond (B True) c1 c2) = (True, c1)

law_True_IdL c = (False, c)

law_True_IdR c1 c2 = (True, Cond true c1 c2)

“false-id” PCfalseBQ = Q

law_False_IdL (Cond (B False) c1 c2) = (True, c2)

law_False_IdL c = (False, c)

law_False_IdR c1 c2 = (True, Cond false c1 c2)

C.5. SIMPLE CIRCUS LAWS 149

“CB-2-dist” P 2 (QCbBR) = (P 2 Q)CbB (P 2 R)

law_Cond_ExtChoice_DistL (ExtChoice c1 (Cond b c2 c3))

= (True, Cond b (ExtChoice c1 c2) (ExtChoice c1 c3))

law_Cond_ExtChoice_DistL c = (False, c)

law_Cond_ExtChoice_DistR circ@(Cond b (ExtChoice c1 c2) (ExtChoice c1’ c3))

| c1 == c1’ = (True, ExtChoice c1 (Cond b c2 c3))

| otherwise = (False, circ)

“||-dist” P X||Y (Q u R) = (P X||Y Q) u (P X||Y R)

law_APar_Dist_LtoR (APar x y c1 (IntChoice c2 c3))

= (True, IntChoice (APar x y c1 c2) (APar x y c1 c3))

law_APar_Dist_LtoR c = (False, c)

law_APar_Dist_RtoL circ@(IntChoice (APar x y c1 c2) (APar x’ y’ c1’ c3))

| x == x’ && y == y’ && c1 == c1’ = (True, APar x y c1 (IntChoice c2 c3))

| otherwise = (False, circ)

“||-sym” P X||Y Q = Q Y ||X P

law_APar_Symm (APar x y c1 c2) = (True, (APar x y c2 c1))

law_APar_Symm c = (False, c)

“||-assoc” (P X||Y Q) X∪Y ||Z R = P X||Y∪Z (Q Y ||Z R)

law_APar_AssocL x y circ@(APar xuniony z (APar x’ y’ c1 c2) c3)

| x == x’ && y == y’ = (True, APar x yunionz c1 (APar y z c2 c3))

| otherwise = (False, circ)

where

xuniony = x ‘union‘ y

yunionz = y ‘union‘ z

law_APar_AssocR y z circ@(APar x yunionz c1 (APar y’ z’ c2 c3))

| z == z’ && y == y’ = (True, APar xuniony z (APar x y c1 c2) c3)

| otherwise = (False, circ)

where

xuniony = x ‘union‘ y

yunionz = y ‘union‘ z

“||-termination” SKIP X||Y SKIP = SKIP

law_APar_TerminateL (APar x y Skip Skip) = (True, Skip)

law_APar_TerminateL c = (False, c)

150 APPENDIX C. HASKELL IMPLEMENTATION

“|||-sym” P ||| Q = Q ||| P

law_Ilv_Symm (Ilv c1 c2) = (True, Ilv c2 c1)

law_Ilv_Symm c = (False, c)

“|||-assoc” (P ||| Q) ||| R = P ||| (Q ||| R)

law_Ilv_AssocL (Ilv (Ilv c1 c2) c3) = (True, Ilv c1 (Ilv c2 c3))

law_Ilv_AssocL c = (False, c)

law_Ilv_AssocR (Ilv c1 (Ilv c2 c3)) = (True, Ilv (Ilv c1 c2) c3)

law_Ilv_AssocR c = (False, c)

“|||-dist” P ||| (Q u R) = (P ||| Q) u (P ||| R)

law_Ilv_DistL (Ilv c1 (IntChoice c2 c3))

= (True, IntChoice (Ilv c1 c2) (Ilv c1 c3))

law_Ilv_DistL c = (False, c)

law_Ilv_DistR circ@(IntChoice (Ilv c1 c2) (Ilv c1’ c3))

| c1 == c1’ = (True, Ilv c1 (IntChoice c2 c3))

| otherwise = (False, circ)

“|||-unit” SKIP ||| P = P

law_IlvUnitL (Ilv Skip circ) = (True, circ)

law_IlvUnitL circ = (False, circ)

law_IlvUnitR circ = (True, Ilv Skip circ)

“||I-sym” P |[I]|Q = Q |[I]|P

law_IPar_Symm (IPar x c1 c2) = (True, (IPar x c2 c1))

law_IPar_Symm c = (False, c)

“||I-dist” P |[X]| (Q u R) = (P |[X]|Q) u (P |[X]|R)

law_IPar_Dist_LtoR (IPar x c1 (IntChoice c2 c3))

= (True, IntChoice (IPar x c1 c2) (IPar x c1 c3))

law_IPar_Dist_LtoR c = (False, c)

law_IPar_Dist_RtoL circ@(IntChoice (IPar x c1 c2) (IPar x’ c1’ c3))

| c1 == c1’ && x == x’ = (True, IPar x c1 (IntChoice c2 c3))

| otherwise = (False, circ)

C.5. SIMPLE CIRCUS LAWS 151

“||I-assoc” P |[X]| (Q |[X]|R) = (P |[X]|Q) |[X]|R

law_IPar_AssocL (IPar xi c1 (IPar xf c2 c3))

| xi==xf = (True, (IPar xi (IPar xi c1 c2) c3))

law_IPar_AssocL c = (False, c)

law_IPar_AssocR circ@(IPar x (IPar x’ c1 c2) c3)

| x == x’ = (True, IPar x c1 (IPar x c2 c3))

| otherwise = (False, circ)

“||-termination” SKIP |[X]|SKIP = SKIP

law_IPar_TerminateL (IPar x Skip Skip) = (True, Skip)

law_IPar_TerminateL c = (False, c)

“\-dist” (P u Q)\X = (P\X) u (Q\X)

law_Hide_DistL (Hide (IntChoice c1 c2) x)

= (True, (IntChoice (Hide c1 x) (Hide c2 x)))

law_Hide_DistL c = (False, c)

law_Hide_DistR circ@(IntChoice (Hide c1 x) (Hide c2 x’))

| x == x’ = (True, Hide (IntChoice c1 c2) x)

| otherwise = (False, circ)

“\-sym” (P\Y)\X = (P\X)\Y

law_Hide_Symm (Hide (Hide c x) y) = (True, Hide (Hide c y) x)

law_Hide_Symm c = (False, c)

“\-combine” (P\Y)\X = P\ (X∪Y)

law_Hide_CombineL (Hide (Hide c x) y)

= (True, (Hide c xuniony))

where

xuniony = x ‘union‘ y

law_Hide_CombineL c = (False, c)

law_Hide_CombineR x y (Hide c xuniony)

= (True, Hide (Hide c x) y)

where

xuniony = x ‘union‘ y

law_Hide_CombineR x y c = (False, c)

152 APPENDIX C. HASKELL IMPLEMENTATION

“SKIP-\-id” SKIP\X = SKIP

law_Hide_SkipIdL (Hide Skip x) = (True, Skip)

law_Hide_SkipIdL c = (False, c)

law_Hide_SkipIdR x Skip = (True, Hide Skip x)

“\-null” P\{}= P

law_Hide_NullL (Hide c setnull) = (True, c)

law_Hide_NullL c = (False, c)

law_Hide_NullR c = (True, Hide c [])

“\-||-dist” (P X‖YQ)\Z = (P\Z∩X)X‖Y(Q\Z∩Y)

law_Hide_APar_DistL (Hide (APar x y c1 c2) z)

= (True, APar x y (Hide c1 zintsctx) (Hide c2 zintscty))

where

zintsctx = z ‘intersect‘ x

zintscty = z ‘intersect‘ y

law_Hide_APar_DistL c = (False, c)

law_Hide_APar_DistR z x’ y’ z’ circ@(APar x y (Hide c1 zintsctx’)

(Hide c2 z’intscty’))

| x==x’ && y==y’ && z==z’ = (True, Hide (APar x y c1 c2) z)

| otherwise = (False, circ)

where

zintsctx’ = z ‘intersect‘ x’

z’intscty’ = z’ ‘intersect‘ y’

“\-||-dist” (P |[X]|Q)\Z = (P\Z) |[X]| (Q\Z), X∩Z = {}

law_Hide_IPar_DistL circ@(Hide (IPar x c1 c2) z)

| xintsctz == [] = IPar x (Hide c1 z) (Hide c2 z)

| otherwise = circ

where

xintsctz = x ‘intersect‘ z

law_Hide_IPar_DistR circ@(IPar x (Hide c1 z) (Hide c2 z’))

| xintsctz == [] && z == z’ = (True, Hide (IPar x c1 c2) z)

| otherwise = (False, circ)

where

xintsctz = x ‘intersect‘ z

“; -dist-l” (P u Q) o
9 R = (P o

9 R) u (Q o
9 R)

C.5. SIMPLE CIRCUS LAWS 153

law_Seq_Ic_DistlL ((IntChoice c1 c2) ::: c3)

= (True, IntChoice (c1 ::: c3) (c2 ::: c3))

law_Seq_Ic_DistlL c = (False, c)

law_Seq_Ic_DistlR circ@(IntChoice (c1 ::: c3) (c2 :::c3’))

| c3 == c3’ = (True, (IntChoice c1 c2) ::: c3)

| otherwise = (False, circ)

“; -dist-r” P o
9 (Q u R) = (P o

9 Q) u (P o
9 R)

law_Seq_Ic_DistrL (c1 ::: (IntChoice c2 c3))

= (True, IntChoice (c1 ::: c2) (c1 ::: c3))

law_Seq_Ic_DistrL c = (False, c)

law_Seq_Ic_DistrR circ@(IntChoice (c1 ::: c2) (c1’ ::: c3))

| c1 == c1’ = (True, c1 ::: (IntChoice c2 c3))

| otherwise = (False, circ)

C.5.2 Step Laws

“STOP-step” a : {}→P = STOP

law_Stop_StepL ((x,setnull) ::-> c) = (True, Stop)

law_Stop_StepL c = (False, c)

foldEc :: [Circus] -> Circus

foldEc [] = Stop

foldEc [c] = c

foldEc (c:cs) = ExtChoice c (foldEc cs)

“2-step”
x : A→P(x)2 y : B→Q(y) “2-step”

= x : (A\B)→P(x)

2 z : (A∩B)→ (P(z)uQ(z))

2 y : (B\A)→Q(y)

law_ExtChoice_StepL circ@(ExtChoice ((x,xs) ::-> c1) ((y,ys) ::-> c2))

= (True, mkExtChoice p1 (mkExtChoice p2 p3))

where

p1 = (x,adiffb) --> c1

p2 = (z,aintsctb) --> (mkIntChoice p4 p5)

p3 = (y,bdiffa) --> c2

adiffb = xs \\ ys

aintsctb = xs ‘intersect‘ ys

bdiffa = ys \\ xs

154 APPENDIX C. HASKELL IMPLEMENTATION

p4 = (csubstitute x z c1)

p5 = (csubstitute y z c2)

z = freshName $ circNames circ

law_ExtChoiceStepL c = (False, c)

--test bench ExtChoiceStep

tbec x xs y ys = law_ExtChoice_StepL (ExtChoice ((x,xs)::->Skip) ((y,ys)::->Skip))

“||-step”

x : C→P(x) A||B y : D→Q(y) “‖-step”
= x : ((C∩A)\B)→ (P(x) A||B y : D→Q(y))

2 z : (C∩A∩D∩B)→ (P(z) A||B Q(z))

2 y : ((D∩B)\A)→ (x : C→P(x) A||B Q(y))

law_APar_StepL circ@(APar a b ((x,xs)::->c1) ((y,ys)::->c2))

= (True, mkExtChoice p1 (mkExtChoice p2 p3))

where

p1 = ((x,comb1) --> (APar a b c1 ((y,ys)::->c2)))

p2 = ((z,comb2) --> (APar a b c3 c4))

p3 = ((y,comb3) --> (APar a b c5 c2))

comb1 = ((xs ‘intersect‘ a) \\ b)

comb2 = ((xs ‘intersect‘ (a ‘intersect‘ (ys ‘intersect‘ b))))

comb3 = ((ys ‘intersect‘ b) \\ a)

c3 = (csubstitute x z c1)

c4 = (csubstitute y z c2)

c5 = ((x,xs)-->c1)

z = freshName $ circNames circ

law_APar_StepL c = (False, c)

-- Test Bench AParStep

tbapar a b x xs y ys = law_APar_StepL (APar a b ((x,xs)::-> Skip) ((y,ys)::->Skip))

“||A-step”

x : C→P(x) ||A y : D→Q(y) “||A-step”
= x : (C \ (D∪A))→ (P(x) ||A y : D→Q(y))

2 z : (C∩A∩D)→ (P(z) ||A Q(z))

2 y : (D\ (C∪A))→ (x : C→P(x) ||A Q(y))

2 z : ((C∩D)\A)→ ((P(x) ||A y : D→Q(y))

u
(x : C→P(x) ||A Q(y)))

law_IPar_StepL circ@(IPar a ((x,xs)::->c1) ((y,ys)::->c2))

= (True, mkExtChoice p1 (mkExtChoice p2 (mkExtChoice p3 p4)))

where

p1 = ((x,comb1) --> (IPar a c1 ((y,ys)::->c2)))

C.5. SIMPLE CIRCUS LAWS 155

p2 = ((z,comb2) --> (IPar a c3 c4))

p3 = ((y,comb3) --> (IPar a ((x,xs)::->c1) c2))

p4 = ((z,comb4) --> (mkIntChoice (IPar a c1 ((y,ys)::->c2))

(IPar a ((x,xs)::->c1) c2)))

comb1 = (xs \\ (ys ‘union‘ a))

comb2 = (xs ‘intersect‘ (a ‘intersect‘ ys))

comb3 = (ys \\ (xs ‘union‘ a))

comb4 = ((xs ‘intersect‘ ys) \\ a)

c3 = (csubstitute x z c1)

c4 = (csubstitute y z c2)

z = freshName $ circNames circ

law_IPar_StepL c = (False, c)

--Test Bench IParStep

tbipar a x xs y ys = law_IPar_StepL (IPar a ((x,xs)::->Skip) ((y,ys)::->Skip))

“|||-step”

x : C→P(x) ||| y : D→Q(y) “|||-step”
= x : C→ (P(x) ||| y : D→Q(y))

u y : D→ (x : C→P(x) |||Q(y))

law_ILeave_StepL (Ilv ((x,xs)::->c1) ((y,ys)::->c2))

= (True, mkIntChoice p1 p2)

where

p1 = ((x,xs)-->(Ilv c1 ((y,ys)-->c2)))

p2 = ((y,ys)-->(Ilv ((x,xs)-->c1) c2))

law_ILeave_StepL c = (False, c)

--Test Bench ILeave

tbilv x xs y ys = law_ILeave_StepL (Ilv ((x,xs)::->Skip) ((y,ys)::->Skip))

“\-step”

(a→P)\H =

{
a→ (P\H), if a /∈ H

P\H, if a ∈ H

We generalise this to:

(a : A→P)\H = (a : (A\H)→ (P\H))u d ea:A∩H• (P\H)

law_Hide_StepL (Hide ((x,xs) ::-> c) hdn) = (True, mkIntChoice p1 p2)

where

p1 = ((x, euh) --> puh)

p2 = mkINT x aintrscth (Hide c hdn)

puh = (Hide c hdn)

euh = xs \\ hdn

aintrscth = xs ‘intersect‘ hdn

156 APPENDIX C. HASKELL IMPLEMENTATION

law_Hide_StepL c = (False, c)

--Test Bench HideStep

tbhide x xs hdn = law_Hide_StepL (Hide ((x,xs)::-> Skip) hdn)

“; -step”

(x : C→P(x)); Q “; -step”
= y : C→ (P(y); Q), y fresh

law_Seq_StepL circ@(((x,xs)::->c1) ::: c2) =

(True, (x,(map (esubstitute y x) xs))::->(c1 ::: c2))

where

y = freshName $ circNames circ

law_Seq_StepL c = (False, c)

--Test Bench SeqStep

tbseq x xs = law_Seq_StepL (((x,xs)::->Skip) ::: Skip)

C.6. SIMPLE CIRCUS TRANSLATION 157

C.6 Simple Circus Translation

module SimpleCircusTranslate where

import Data.List

import Maybe

import Utilities

import SimpleCircus

import CircusNameMgmt

import StdCircusNames

import SimpleCircusLaws

C.6.1 Normal Form

nf ((a:->Skip)::: (ExtChoice c1 c2)) = (a :-> Skip) ::: ExtChoice (nf c1) (nf c2)

nf ((ExtChoice c1 c2) ::: c3) = ExtChoice (nf $ nfseq (nf c1) (nf c3))

(nf $ nfseq (nf c2) (nf c3))

nf (a :-> (IntChoice c1 c2)) = IntChoice (a :-> nf c1) (a :-> nf c2)

nf (a :-> c) = a :-> nf c

nf (c1 ::: c2) = nf $ nfseq (nf c1) (nf c2)

nf (ExtChoice c1 c2) = ExtChoice (nf c1) (nf c2)

nf (IntChoice c1 c2) = IntChoice (nf c1) (nf c2)

nf c = c

nfseq Stop _ = Stop

nfseq Skip c = c

nfseq c Skip = c

nfseq (a :-> nfc1) nfc2 = a :-> (nfseq nfc1 nfc2)

C.6.2 Acquiring Head Normal Form

Following are already in hnf.

hnf Stop = Stop

hnf Skip = Skip

hnf Div = Div

hnf circ@((x,xs)::->c) = circ

For internal choice required to be in hnf,
hnf (Q u R) =̂ hnf (Q) u hnf (R)

hnf (IntChoice c1 c2) = mkIntChoice (hnf c1) (hnf c2)

158 APPENDIX C. HASKELL IMPLEMENTATION

“2-step”
x : A→P(x)2 y : B→Q(y) “2-step”
= x : (A\B)→P(x)

2 z : (A∩B)→ (P(z)uQ(z))

2 y : (B\A)→Q(y)

hnf (ExtChoice c1 c2) = (snd $ law_ExtChoice_StepL

(mkExtChoice (snd $ law_ExtChoice_IntChoice_Dist_LtoR (hnf c1))

(snd $ law_ExtChoice_IntChoice_Dist_LtoR (hnf c2))))

“||A-step”

x : C→P(x) ||A y : D→Q(y) “||A-step”
= x : (C \ (D∪A))→ (P(x) ||A y : D→Q(y))

2 z : (C∩A∩D)→ (P(z) ||A Q(z))

2 y : (D\ (C∪A))→ (x : C→P(x) ||A Q(y))

2 z : ((C∩D)\A)→ ((P(x) ||A y : D→Q(y))

u
(x : C→P(x) ||A Q(y)))

hnf (IPar x c1 c2) = (snd $ law_IPar_StepL (IPar x (snd $ law_IPar_Dist_LtoR (hnf c1))

(snd $ law_IPar_Dist_LtoR (hnf c2))))

“||-step”

x : C→P(x) A||B y : D→Q(y) “‖-step”
= x : ((C∩A)\B)→ (P(x) A||B y : D→Q(y))

2 z : (C∩A∩D∩B)→ (P(z) A||B Q(z))

2 y : ((D∩B)\A)→ (x : C→P(x) A||B Q(y))

hnf (APar x y c1 c2) = (snd $ law_APar_StepL (APar x y (snd $ law_APar_Dist_LtoR (hnf c1))

(snd $ law_APar_Dist_LtoR (hnf c2))))

hnf c = c

C.6.3 Translation

Here, we briefly explain the purpose and implementation details of each defined function as it appears in the
translator code.

isCSP is a function which takes a Circus action and returns a boolean indicating if the particular Circus action
is a CSP one or not.

isCSP :: Circus -> Bool -- to be implemented later

isCSP _ = False

C.6. SIMPLE CIRCUS TRANSLATION 159

action2csp is a high level function which takes a complete circus program and a defined action in it and
returns its equivalent in the CSP world. The implementation is achieved by making use of mkCGraph ap-
pearing later in the implementation. After getting the graph of a particular Circus program using mkCGraph,
the translateCirc function is used to do the actual translation based on the action name received and its
corresponding variables and calls.

action2csp :: CircusProgram -> String -> CircusProgram

action2csp prog aname

= let cgrf = mkCGraph prog

in case alookup cgrf aname of

Nothing -> error ("No action ’"++aname++"’ found")

Just (vars,calls) -> translateCirc prog cgrf aname vars calls

The difference between high level functions circus2csp and action2csp is that the function circus2csp
maps a complete Circus program to its translated version while the latter works on an individual action inside
the Circus program.

circus2csp :: CircusProgram -> CircusProgram

circus2csp prog

= let cgrf = mkCGraph prog

in prog

Function getCircVarsCalls takes a complete Circus program and gets the information involved i.e. the
definition name, the array of maintaining variables used in the definition and the array having the information
of the calls of particular actions. This is achieved by using functions actionVars and actionCalls.

getCircVarsCalls :: CircusProgram

-> [(String -- definition name

, ([String] -- variables used in definition (sorted)

, [String] -- actions called

)

)

]

getCircVarsCalls defs

= alnorm $ gCVC defs

where

gCVC [] = []

gCVC ((aname,(aparam,abody)):rest)

= (aname,(avars,acalls)):gCVC rest

where

avars = lnorm $ actionVars abody

acalls = lnorm $ actionCalls abody

The function actionVars takes a particular Circus action and generates an array for gathering names of the

160 APPENDIX C. HASKELL IMPLEMENTATION

variables used in a particular action.

actionVars :: Circus -> [String]

actionVars (x := e) = [x] ++ exprVars e

actionVars (Call act _) = []

actionVars ((x,_) ::-> circ) = x : actionVars circ

actionVars (INT x _ circ) = x : actionVars circ

actionVars (SEQ x _ circ) = x : actionVars circ

actionVars (EXT x _ circ) = x : actionVars circ

actionVars (ILV x _ circ) = x : actionVars circ

actionVars (IPAR _ x _ circ) = x : actionVars circ

actionVars (APAR x _ _ circ) = x : actionVars circ

actionVars (a :-> circ) = actionVars circ

actionVars (c1 ::: c2) = actionVars c1 ++ actionVars c2

actionVars (IntChoice c1 c2) = actionVars c1 ++ actionVars c2

actionVars (ExtChoice c1 c2) = actionVars c1 ++ actionVars c2

actionVars (Hide circ _) = actionVars circ

actionVars (IPar _ c1 c2) = actionVars c1 ++ actionVars c2

actionVars (APar _ _ c1 c2) = actionVars c1 ++ actionVars c2

actionVars (Ilv c1 c2) = actionVars c1 ++ actionVars c2

actionVars (Cond e c1 c2) = exprVars e ++ actionVars c1 ++ actionVars c2

actionVars (Guard e circ) = exprVars e ++ actionVars circ

actionVars (Mu _ circ) = actionVars circ

actionVars _ = []

The function actionCalls takes a particular Circus action and generates an array for gathering names of
the calls to particular actions.

actionCalls :: Circus -> [String]

actionCalls (Call a _) = [a]

actionCalls (n := e) = []

actionCalls (c1 ::: c2) = actionCalls c1 ++ actionCalls c2

actionCalls (a :-> circ) = actionCalls circ

actionCalls ((x,xs) ::-> circ) = actionCalls circ

actionCalls (IntChoice c1 c2) = actionCalls c1 ++ actionCalls c2

actionCalls (ExtChoice c1 c2) = actionCalls c1 ++ actionCalls c2

actionCalls (Hide circ a) = actionCalls circ

actionCalls (IPar a c1 c2) = actionCalls c1 ++ actionCalls c2

actionCalls (APar a b c1 c2) = actionCalls c1 ++ actionCalls c2

actionCalls (Ilv c1 c2) = actionCalls c1 ++ actionCalls c2

actionCalls (Cond e c1 c2) = actionCalls c1 ++ actionCalls c2

actionCalls (Guard e circ) = actionCalls circ

actionCalls (INT x a circ) = actionCalls circ

actionCalls (SEQ x a circ) = actionCalls circ

actionCalls (EXT x a circ) = actionCalls circ

actionCalls (ILV x a circ) = actionCalls circ

C.6. SIMPLE CIRCUS TRANSLATION 161

actionCalls (IPAR _ x _ circ) = actionCalls circ

actionCalls (APAR x _ _ circ) = actionCalls circ

actionCalls (Mu x circ) = actionCalls circ \\ [x]

actionCalls _ = []

To gather information on the variables used in a particular expression, the function exprVars is defined.

exprVars (Var v) = [v]

exprVars (Agg _ _ es) = concat $ map exprVars es

exprVars (App _ es) = concat $ map exprVars es

exprVars (Bin _ e1 e2) = exprVars e1 ++ exprVars e2

exprVars _ = []

The important function here is detCircDeps which manages the record of the dependencies for the final
translated version of the Circus program. It determines the dependencies by analysing the calls to particular
actions by using getCalls function.

detCircDeps :: [(String,([String],[String]))] -> [(String,([String],[String]))]

detCircDeps deps

= dCP deps [] False deps

where

dCP deps0 deps’ chgd []

| chgd = dCP deps’ [] False deps’

| otherwise = deps’ -- should equal deps0 !

dCP deps0 deps’ chgd (dep@(name,(vars,calls)):rest)

| calls’ == calls = dCP deps0 (dep:deps’) chgd rest

| otherwise = dCP deps0 ((name,(vars,calls’)):deps’) True rest

where calls’ = getCalls deps0 calls calls

getCalls :: [(String,([String],[String]))] -> [String] -> [String] -> [String]

getCalls deps0 calls’ [] = lnorm calls’

getCalls deps0 calls’ (call:calls)

= case alookup deps0 call of

Nothing -> error ("Action ’"++call++"’ is undefined")

Just (_,subcalls) -> getCalls deps0 (subcalls++calls’) calls

As mentioned earlier, mkCGraph and translateCirc are used by the high level functions of translator
called action2csp and circus2csp. After getting the graph of a particular Circus program through
mkCGraph, the translateCirc function is used to do the actual translation based on the action name
received and its corresponding variables and calls.

mkCGraph :: CircusProgram -> [(String,([String],[String]))]

mkCGraph = detCircDeps . getCircVarsCalls

162 APPENDIX C. HASKELL IMPLEMENTATION

translateCirc :: CircusProgram -> [(String,([String],[String]))]

-> String -> [String] -> [String] -> CircusProgram

translateCirc prog cgrf aname vars calls

= let usedActionNames = lnorm (aname:calls)

isUsed (nm,_) = nm ‘elem‘ usedActionNames

rprog = filter isUsed prog

newplist = lnorm (vars ++ getParams cgrf calls)

plistvars = map Var newplist

addpars (nm,(pars,body))

= (nm,(pars++newplist,addParams nm plistvars body))

pprog = map addpars rprog

in pprog

The purpose of the addParams function is to attach the list of parameters to a Circus action. This is required
because in the CSP world the variables of the Circus world turn into parameters and a particular action
is invoked using parametric calls. While dealing with the assignment commands of the Circus world, the
expression assigned to a particular variable is substituted in the parameter list.

addParams :: String -> [Expr] -> Circus -> Circus

addParams nm plist (Call cnm pars) = (Call cnm (pars++plist))

addParams nm plist Skip = (Call (nm++"_CONT") plist)

addParams nm plist (c1 ::: c2) = (addParams nm plist c1 ::: addParams nm plist c2)

addParams nm plist (a :-> circ) = (a :-> (addParams nm plist circ))

addParams nm plist ((x,xs) ::-> circ) = ((x,xs) ::-> addParams nm plist circ)

addParams nm plist (IntChoice c1 c2) = (IntChoice (addParams nm plist c1)

(addParams nm plist c2))

addParams nm plist (ExtChoice c1 c2) = (ExtChoice (addParams nm plist c1)

(addParams nm plist c2))

addParams nm plist (Hide circ a) = (Hide (addParams nm plist circ) a)

addParams nm plist (IPar a c1 c2) = (IPar a (addParams nm plist c1)

(addParams nm plist c2))

addParams nm plist (APar a b c1 c2) = (APar a b (addParams nm plist c1)

(addParams nm plist c2))

addParams nm plist (Ilv c1 c2) = (Ilv (addParams nm plist c1)

(addParams nm plist c2))

addParams nm plist (Cond e c1 c2) = (Cond e (addParams nm plist c1)

(addParams nm plist c2))

addParams nm plist (Guard e circ) = (Guard e (addParams nm plist circ))

addParams nm plist (INT x a circ) = (INT x a (addParams nm plist circ))

addParams nm plist (SEQ x a circ) = (SEQ x a (addParams nm plist circ))

addParams nm plist (EXT x a circ) = (EXT x a (addParams nm plist circ))

addParams nm plist (ILV x a circ) = (ILV x a (addParams nm plist circ))

addParams nm plist (IPAR a x b circ) = (IPAR a x b (addParams nm plist circ))

addParams nm plist (APAR x a b circ) = (APAR x a b (addParams nm plist circ))

addParams nm plist body = body

C.6. SIMPLE CIRCUS TRANSLATION 163

-- extract part of prog of interest - all definitions aname:calls (rprog)

-- add newplist to extend plist of every call (pprog)

-- return pprog

getParams :: [(String,([String],[String]))] -> [String] -> [String]

getParams cgrf calls = concat $ map (fst . fromJust . alookup cgrf) calls

getCallChains :: CircusProgram -> [[[String]]]

getCallChains defs

= gCC defs

where

gCC [] = []

gCC ((aname,(aparam,abody)):rest)

| aname == "MAIN" = (normTreeSt):gCC rest

| otherwise = gCC rest

where

normTreeSt = normTree abody

normTree :: Circus -> [[String]]

normTree (ExtChoice c1 c2) = [[ecName]] ++ [actionCallChains c1] ++ [actionCallChains c2]

normTree (IntChoice c1 c2) = [[icName]] ++ [actionCallChains c1] ++ [actionCallChains c2]

normTree (c1 ::: c2) = [[seqName]] ++ [actionCallChains c1 ++ actionCallChains c2]

normTree _ = [[]]

actionCallChains :: Circus -> [String]

actionCallChains (Call a _) = [a]

actionCallChains (c1 ::: c2) = actionCallChains c1 ++ actionCallChains c2

actionCallChains _ = []

The function getCallTree is defined here to create the call tree after analysing the MAIN action. It is
assumed here that the Circus main is constituted only of calls to actions, internal choice and external choice.

class Functor1 f where

fmap1 :: (a -> b) -> f a -> f b

data Tree a = Empty | Node (Tree a) String (Tree a) | Leaf a

deriving (Eq, Ord, Show)

instance Functor1 Tree where

fmap1 f (Node l m r) = Node (fmap1 f l) m (fmap1 f r)

fmap1 f (Leaf x) = Leaf (f x)

getCallTree :: CircusProgram -> [Tree String]

getCallTree defs

= gCT defs

164 APPENDIX C. HASKELL IMPLEMENTATION

where

gCT [] = []

gCT ((aname,(aparam,abody)):rest)

| aname == "MAIN" = (callTreeSt):gCT rest

| otherwise = gCT rest

where

callTreeSt = callTree abody

callTree :: Circus -> Tree String

callTree (Call a _) = Leaf a

callTree (ExtChoice c1 c2) = (Node (callTree c1) ecName (callTree c2))

callTree (IntChoice c1 c2) = (Node (callTree c1) icName (callTree c2))

callTree (c1 ::: c2) = (Node (callTree c1) seqName (callTree c2))

callTree _ = Empty

The function extractSeq is defined here to generate fresh names for the Circus actions on the left and right
side of the sequential composition. Each leading node from the tree of sequential composition is given a fresh
name to make the circus action compositions a sequential one. For example:
(A[]B); (C[]D) => N1; N2 where N1 = (A[]B) and N2 = (C[]D).

getExtractSeq :: CircusProgram -> [(Circus, [(String, Circus)])]

getExtractSeq defs

= gES defs

where

gES [] = []

gES ((aname,(aparam,abody)):rest)

| aname == "MAIN" = (extractSeqSt):gES rest

| otherwise = gES rest

where

extractSeqSt = extractSeq abody

extractSeq :: Circus -> (Circus, [(String,Circus)])

extractSeq circ = (circ, newNamedActs circ)

newNamedActs :: Circus -> [(String, Circus)]

newNamedActs (ExtChoice c1 c2) = [(newActNameGen c1, c1)] ++ [(newActNameGen c2, c2)]

newNamedActs (IntChoice c1 c2) = [(newActNameGen c1, c1)] ++ [(newActNameGen c2, c2)]

newNamedActs (c1 ::: c2) = (newNamedActs c1) ++ (newNamedActs c2)

newNamedActs _ = []

newActNameGen :: Circus -> String

newActNameGen circ = (freshNameAct $ circNames circ)

C.7. SIMPLE CIRCUS EXAMPLES 165

C.7 Simple Circus Examples

module StdCircusExamples where

import Data.List

import Maybe

import Utilities

import SimpleCircus

import StdCircusNames

import CircusNameMgmt

import SimpleCircusLaws

import StdCircusPrint

C.7.1 Examples

a = "a"

b = "b"

c = "c"

ex1 = (a :-> Skip) ::: (b :-> Skip) ::: (c :-> Skip)

ex2 = (a :-> Skip) ::: (b :-> Stop) ::: (c :-> Skip)

ex3 = (a :-> Skip) ::: (IntChoice (b:->Skip) (c:->Skip))

ex4 = (a :-> Skip) ::: (ExtChoice (b:->Skip) (c:->Skip))

ex5 = (ExtChoice (a:->Skip) (b:->Skip)) ::: (c:->Skip)

-- For checking step law for external choice

in6 = ExtChoice (("x",["f","g"])::->Skip)

(("y",["g","i","j","k"])::->Skip)

ex6 = law_ExtChoice_StepL in6

-- For checking step law for alphabetised parallel

ex7 = APar ["e","f"] ["e","g"]

(("h",["i","j"])::-> Skip)

(("i",["k","l"])::->Skip)

doex7 = law_APar_StepL ex7

-- For checking step law for interface parallel

ex8 = law_IPar_StepL (IPar ["e","f"] (("e",["f","g"])::->Skip)

(("e",["g","h","i"])::->Skip))

-- For checking step law for hiding

ex9 = law_Hide_StepL (Hide (("h",["i","j","k"])::->Skip) ["i","j"])

-- Fresh name generation

ex10 = freshName $ circNames (("a0",["b0","c0"])::->Skip)

ex11 = freshName $ circNames (snd $ ex6)

ex12 = freshName $ circNames (snd $ doex7)

ex13 = freshName $ circNames (snd $ ex8)

ex14 = freshName $ circNames (snd $ ex9)

-- example of ppComms

exEvts = putpp ((Evts ("ch",[Dot (Z 3),Bang (Z 5),Q "v" Nothing])):::->Skip)

Examples of Circus Paragraphs

add = Bin addName

166 APPENDIX C. HASKELL IMPLEMENTATION

sub = Bin subName

cp1 = [("A",([],("x" := Z 1) ::: ("a" :-> Skip)))

, ("B",([],("y" := add (Var "x") (Z 1)) ::: ("b" :-> Skip)))

, ("C",([],"c" :-> Skip))

, ("MAIN",([],("z" := Z 0) ::: Call "A" [] ::: Call "B" [] ::: Call "C" []))

]

cp2 = [("A",([],("x" := Z 1) ::: ("a" :-> Skip)))

, ("B",([],("y" := add (Var "x") (Z 1)) ::: ("b" :-> Skip)))

, ("C",([],"c" :-> Skip))

, ("MAIN",(["P","Q"],("z" := Z 0) ::: Call "A" [] ::: Call "B" [] ::: Call "C" []))

]

cp3 = [("A",([],("x" := Z 1) ::: ("a" :-> Call "B" [])))

, ("B",([],("y" := add (Var "x") (Z 1)) ::: ("b" :-> Call "C" [])))

, ("C",([],"c" :-> Call "A" []))

]

cp4 = [("A",([],("x" := Z 1) ::: ("a" :-> Call "B" [])))

, ("B",([],("y" := add (Var "x") (Z 1)) ::: ("b" :-> Call "C" [])))

, ("C",([],"c" :-> Call "A" []))

, ("D",([],("a" := add (Var "b") (Z 1)) ::: ("d" :-> Call "D" [])))

, ("E",([],"e" :-> Call "D" []))

]

cp7 = [("A",([],("x" := Z 1) ::: ("a" :-> Call "B" [])))

, ("B",([],("y" := add (Var "x") (Z 1)) ::: ("b" :-> Call "C" [])))

, ("C",([],"c" :-> Call "A" []))

, ("D",([],("a" := add (Var "b") (Z 1)) ::: ("d" :-> Call "D" [])))

, ("E",([],"e" :-> Call "D" []))

, ("MAIN",([],ExtChoice (Call "A" [] ::: Call "B" [] ::: Call "C" [])

(Call "D" [] ::: Call "E" [])))

]

cp8 = [-- creating tree for A ; (B [] C)

("MAIN",([], (Call "A" [] ::: (ExtChoice (Call "B" []) (Call "C" [])))))

]

cp9 = [-- depicting a complex action composition in MAIN

-- A;(B;(C;D[]E)[](F;(G[]H))) [] (I;(J[]K))

("MAIN",([], ExtChoice

(

Call "A" [] ::: (Call "B" [] :::

(ExtChoice

(Call "C" [] ::: ExtChoice (Call "D" []) (Call "E" []))

(Call "F" [] ::: ExtChoice (Call "G" []) (Call "H" [])))

)

)

(Call "I" [] ::: (ExtChoice (Call "J" []) (Call "K" [])))

)

)

]

The lift model:

cp5 = [("INITLIFT", ([], ("floor" := (Z 1)) ::: ("doorState" := (Val "closed"))))

,

("LIFT", ([], foldEc [(Guard (land (lt (Var "floor") (Z 5))

C.7. SIMPLE CIRCUS EXAMPLES 167

(eq (Var "doorState") (Val "closed")))

("up" :-> ("floor" := ((add (Var "floor") (Z 1)))) ::: Call "LIFT" []))

,

(Guard (land (gt (Var "floor") (Z 0))

(eq (Var "doorState") (Val "closed")))

("down" :-> ("floor" := ((sub (Var "floor") (Z 1)))) ::: Call "LIFT" []))

,

(Guard (eq (Var "doorState") (Val "opened"))

("close" :-> ("doorState" := (Val "closed"))) ::: Call "LIFT" [])

,

(Guard (eq (Var "doorState") (Val "closed"))

("open" :-> ("doorState" := (Val "opened"))) ::: Call "LIFT" [])]

)

)

,

("MAIN", ([], (Call "INITLIFT" [] ::: Call "LIFT" [])))

]

168 APPENDIX C. HASKELL IMPLEMENTATION

C.8 “Standard” Simple Circus

module

StdSimpleCircus

(module SimpleCircus

,module StdCircusNames

,module StdCircusPrint

,module SimpleCircusLaws

,module SimpleCircusTranslate

,module StdCircusExamples

)

where

import Data.List

import Maybe

import Utilities

import SimpleCircus

import StdCircusNames

import StdCircusPrint

import SimpleCircusLaws

import SimpleCircusTranslate

import StdCircusExamples

C.9. IMPLEMENTATION OF FORMALISED STEPS IN TRANSLATION THEORY 169

C.9 Implementation of Formalised Steps in Translation Theory

Rename Hidden Events

renameHidNames :: Circus -> (Circus,[String])

renameHidNames circ@(x := e) = (circ,[])

renameHidNames circ@(Call act _) = (circ,[])

renameHidNames c@(Hide circ hdn) = (rHN’ c hdn)

renameHidNames c@(INT x _ circ) = (c,snd $ renameHidNames circ)

renameHidNames c@(SEQ x _ circ) = (c,snd $ renameHidNames circ)

renameHidNames c@(EXT x _ circ) = (c,snd $ renameHidNames circ)

renameHidNames c@(ILV x _ circ) = (c,snd $ renameHidNames circ)

renameHidNames c@(IPAR _ x _ circ) = (c,snd $ renameHidNames circ)

renameHidNames c@(APAR x _ _ circ) = (c,snd $ renameHidNames circ)

renameHidNames c@(a :-> circ) = (c,snd $ renameHidNames circ)

renameHidNames c@(c1 ::: c2) = (c,

(snd $ renameHidNames c1) ++

(snd $ renameHidNames c2)

)

renameHidNames c@(IntChoice c1 c2) = (c,

(snd $ renameHidNames c1) ++

(snd $ renameHidNames c2)

)

renameHidNames c@(ExtChoice c1 c2) = (c,

(snd $ renameHidNames c1) ++

(snd $ renameHidNames c2)

)

renameHidNames c@(IPar _ c1 c2) = (c,

(snd $ renameHidNames c1) ++

(snd $ renameHidNames c2)

)

renameHidNames c@(APar _ _ c1 c2) = (c,

(snd $ renameHidNames c1) ++

(snd $ renameHidNames c2)

)

renameHidNames c@(Ilv c1 c2) = (c,

(snd $ renameHidNames c1) ++

(snd $ renameHidNames c2)

)

renameHidNames c@(Cond e c1 c2) = (c,

(snd $ renameHidNames c1) ++

(snd $ renameHidNames c2)

)

renameHidNames c@(Guard e circ) = (c,(snd $ renameHidNames circ))

renameHidNames c@(Mu _ circ) = (c,(snd $ renameHidNames circ))

rHN’ circ hdn =

170 APPENDIX C. HASKELL IMPLEMENTATION

let es = circNames circ

ns = freshNames (es ++ hdn) (length hdn)

in (circ,ns)

freshNames :: [String] -> Int -> [String]

freshNames ns 0 = []

freshNames ns k

= let n’ = freshName ns

in n’ : freshNames (n’:ns) (k-1)

C.9. IMPLEMENTATION OF FORMALISED STEPS IN TRANSLATION THEORY 171

Name “Next” Actions

nmNextAct :: CircusProgram -> [(Circus, [CircusDef])]

nmNextAct defs

= nNA defs

where

nNA [] = []

nNA ((aname,(aparam,abody)):rest) = doNNA:nNA rest

where

doNNA = doNNA’ abody aname

doNNA’ :: Circus -> String -> (Circus, [CircusDef])

doNNA’ circ aname

= nNA’ (circNames circ) aname circ

nNA’ _ _ Div = (Div, [])

nNA’ _ _ Stop = (Stop, [])

nNA’ _ _ Skip = (Skip, [])

nNA’ _ _ (nm := expr) = (nm := expr, [])

nNA’ known aname circ@(Call n params)

= (circ, [(n,(circNames circ,circ))])

nNA’ known aname circ@(c1 ::: c2@(Call _ _)) = (c1’ ::: c2, d’)

where (c1’,d’) = doNNA’ c1 aname

nNA’ known aname circ@(c1 ::: c2)

= (c1’ ::: (Call nn [])

, [(nn,([],c2’))] ++ d1’ ++ d2’

)

where

(c1’,d1’) = doNNA’ c1 aname

(c2’,d2’) = doNNA’ c2 aname

-- nn = freshNameAct (circNames c1’++circNames c2’ ++ known)

nn = aname

nNA’ known aname circ@(IntChoice c1 c2)

= (IntChoice (fst $ doNNA’ c1 aname) (fst $ doNNA’ c2 aname),

(snd $ doNNA’ c1 aname)++(snd $ doNNA’ c2 aname))

nNA’ known aname circ@(ExtChoice c1 c2)

= (ExtChoice (fst $ doNNA’ c1 aname) (fst $ doNNA’ c2 aname),

(snd $ doNNA’ c1 aname)++(snd $ doNNA’ c2 aname))

nNA’ known aname circ@(Guard expr cp)

= (Guard expr (fst $ doNNA’ cp aname), (snd $ doNNA’ cp aname))

nNA’ known aname circ@(a :-> cp)

= (a :-> (fst $ doNNA’ cp aname), (snd $ doNNA’ cp aname))

nNA’ known aname circ@(Hide cp hdn)

= (Hide (fst $ doNNA’ cp aname) hdn, (snd $ doNNA’ cp aname))

nNA’ known aname circ@((a,as) ::-> cp)

= ((a,as) ::-> (fst $ doNNA’ cp aname), (snd $ doNNA’ cp aname))

nNA’ known aname circ@(evt :::-> cp)

= (evt :::-> (fst $ doNNA’ cp aname), (snd $ doNNA’ cp aname))

nNA’ known aname circ@(IPar a c1 c2)

= (IPar a (fst $ doNNA’ c1 aname) (fst $ doNNA’ c2 aname),

172 APPENDIX C. HASKELL IMPLEMENTATION

(snd $ doNNA’ c1 aname)++(snd $ doNNA’ c2 aname))

nNA’ known aname circ@(APar a b c1 c2)

= (APar a b (fst $ doNNA’ c1 aname) (fst $ doNNA’ c2 aname),

(snd $ doNNA’ c1 aname)++(snd $ doNNA’ c2 aname))

nNA’ known aname circ@(Ilv c1 c2)

= (Ilv (fst $ doNNA’ c1 aname) (fst $ doNNA’ c2 aname),

(snd $ doNNA’ c1 aname)++(snd $ doNNA’ c2 aname))

nNA’ known aname circ@(Cond expr c1 c2)

= (Cond expr (fst $ doNNA’ c1 aname) (fst $ doNNA’ c2 aname),

(snd $ doNNA’ c1 aname)++(snd $ doNNA’ c2 aname))

nNA’ known aname circ@(Mu nm cp)

= (Mu nm (fst $ doNNA’ cp aname), (snd $ doNNA’ cp aname))

nNA’ known aname circ@(INT nm a c)

= (INT nm a (fst $ doNNA’ c aname), (snd $ doNNA’ c aname))

nNA’ known aname circ@(SEQ nm a c)

= (SEQ nm a (fst $ doNNA’ c aname), (snd $ doNNA’ c aname))

nNA’ known aname circ@(EXT nm a c)

= (EXT nm a (fst $ doNNA’ c aname), (snd $ doNNA’ c aname))

nNA’ known aname circ@(IPAR a nm b c)

= (IPAR a nm b (fst $ doNNA’ c aname), (snd $ doNNA’ c aname))

nNA’ known aname circ@(APAR nm a b c)

= (APAR nm a b (fst $ doNNA’ c aname), (snd $ doNNA’ c aname))

Get Variable Parameters

getCircVarParamsCalls :: CircusProgram

-> [(String -- definition name

, ([String] -- variables used in definition (sorted)

, [String] -- actions called

)

)

]

getCircVarParamsCalls defs

= alnorm $ gCVPC defs

where

gCVPC [] = []

gCVPC ((aname,(aparam,abody)):rest)

= (aname,(avars,acalls)):gCVPC rest

where

avars = lnorm $ collActionVarParams abody’

acalls = lnorm $ collActionCalls abody’

abody’ = addContCall aname (circNames abody) (ensureAssgnCont (fst $ doNNA’ abody aname))

collActionVarParams :: Circus -> [String]

collActionVarParams (x := e) = [x] ++ collExprVars e

collActionVarParams (Call act _) = []

C.9. IMPLEMENTATION OF FORMALISED STEPS IN TRANSLATION THEORY 173

collActionVarParams ((x,_) ::-> circ) = x : collActionVarParams circ

collActionVarParams (INT x _ circ) = x : collActionVarParams circ

collActionVarParams (SEQ x _ circ) = x : collActionVarParams circ

collActionVarParams (EXT x _ circ) = x : collActionVarParams circ

collActionVarParams (ILV x _ circ) = x : collActionVarParams circ

collActionVarParams (IPAR _ x _ circ) = x : collActionVarParams circ

collActionVarParams (APAR x _ _ circ) = x : collActionVarParams circ

collActionVarParams (a :-> circ) = collActionVarParams circ

collActionVarParams (c1 ::: c2) = collActionVarParams c1 ++

collActionVarParams c2

collActionVarParams (IntChoice c1 c2) = collActionVarParams c1 ++

collActionVarParams c2

collActionVarParams (ExtChoice c1 c2) = collActionVarParams c1 ++

collActionVarParams c2

collActionVarParams (Hide circ _) = collActionVarParams circ

collActionVarParams (IPar _ c1 c2) = collActionVarParams c1 ++

collActionVarParams c2

collActionVarParams (APar _ _ c1 c2) = collActionVarParams c1 ++

collActionVarParams c2

collActionVarParams (Ilv c1 c2) = collActionVarParams c1 ++

collActionVarParams c2

collActionVarParams (Cond e c1 c2) = collExprVars e ++

collActionVarParams c1 ++

collActionVarParams c2

collActionVarParams (Guard e circ) = collExprVars e ++

collActionVarParams circ

collActionVarParams (Mu _ circ) = collActionVarParams circ

collActionVarParams _ = []

To gather information on the variables used in a particular expression, the function collExprVars is defined.

collExprVars (Var v) = [v]

collExprVars (Agg _ _ es) = concat $ map collExprVars es

collExprVars (App _ es) = concat $ map collExprVars es

collExprVars (Bin _ e1 e2) = collExprVars e1 ++ collExprVars e2

collExprVars _ = []

The function collActionCalls takes a particular Circus action and generates an array for gathering names
of the calls to particular actions.

collActionCalls :: Circus -> [String]

collActionCalls (Call a _) = [a]

collActionCalls (n := e) = []

collActionCalls (c1 ::: c2) = collActionCalls c1 ++ collActionCalls c2

collActionCalls (a :-> circ) = collActionCalls circ

collActionCalls ((x,xs) ::-> circ) = collActionCalls circ

collActionCalls (IntChoice c1 c2) = collActionCalls c1 ++ collActionCalls c2

174 APPENDIX C. HASKELL IMPLEMENTATION

collActionCalls (ExtChoice c1 c2) = collActionCalls c1 ++ collActionCalls c2

collActionCalls (Hide circ a) = collActionCalls circ

collActionCalls (IPar a c1 c2) = collActionCalls c1 ++ collActionCalls c2

collActionCalls (APar a b c1 c2) = collActionCalls c1 ++ collActionCalls c2

collActionCalls (Ilv c1 c2) = collActionCalls c1 ++ collActionCalls c2

collActionCalls (Cond e c1 c2) = collActionCalls c1 ++ collActionCalls c2

collActionCalls (Guard e circ) = collActionCalls circ

collActionCalls (INT x a circ) = collActionCalls circ

collActionCalls (SEQ x a circ) = collActionCalls circ

collActionCalls (EXT x a circ) = collActionCalls circ

collActionCalls (ILV x a circ) = collActionCalls circ

collActionCalls (IPAR _ x _ circ) = collActionCalls circ

collActionCalls (APAR x _ _ circ) = collActionCalls circ

collActionCalls (Mu x circ) = collActionCalls circ \\ [x]

collActionCalls _ = []

The purpose of the addAV function is to attach the list of parameters to a Circus action. This is required because
in the CSP world the variables of the Circus world turn into parameters and a particular action is invoked using
parametric calls. While dealing with the assignment commands of the Circus world, the expression assigned
to a particular variable is substituted in the parameter list.

addAV :: String -> [Expr] -> [String] -> Circus -> Circus

addAV nm plist calls (Call cnm pars) = (Call cnm (pars++plist))

addAV nm plist calls Skip = Skip

addAV nm plist calls (a :-> circ) = (a :-> (addAV nm plist calls circ))

addAV nm plist calls (c1 ::: c2) = (addAV nm plist calls c1 ::: addAV nm plist calls c2)

addAV nm plist calls (Guard e circ) = (Guard e (addAV nm plist calls circ))

addAV nm plist calls (IntChoice c1 c2) = (IntChoice (addAV nm plist calls c1)

(addAV nm plist calls c2))

addAV nm plist calls (ExtChoice c1 c2) = (ExtChoice (addAV nm plist calls c1)

(addAV nm plist calls c2))

addAV nm plist calls ((x,xs) ::-> circ) = ((x,xs) ::-> addAV nm plist calls circ)

addAV nm plist calls (Hide circ a) = (Hide (addAV nm plist calls circ) a)

addAV nm plist calls (IPar a c1 c2) = (IPar a (addAV nm plist calls c1)

(addAV nm plist calls c2))

addAV nm plist calls (APar a b c1 c2) = (APar a b (addAV nm plist calls c1)

(addAV nm plist calls c2))

addAV nm plist calls (Ilv c1 c2) = (Ilv (addAV nm plist calls c1)

(addAV nm plist calls c2))

addAV nm plist calls (Cond e c1 c2) = (Cond e (addAV nm plist calls c1)

(addAV nm plist calls c2))

addAV nm plist calls (INT x a circ) = (INT x a (addAV nm plist calls circ))

addAV nm plist calls (SEQ x a circ) = (SEQ x a (addAV nm plist calls circ))

addAV nm plist calls (EXT x a circ) = (EXT x a (addAV nm plist calls circ))

addAV nm plist calls (ILV x a circ) = (ILV x a (addAV nm plist calls circ))

C.9. IMPLEMENTATION OF FORMALISED STEPS IN TRANSLATION THEORY 175

addAV nm plist calls (IPAR a x b circ) = (IPAR a x b (addAV nm plist calls circ))

addAV nm plist calls (APAR x a b circ) = (APAR x a b (addAV nm plist calls circ))

addAV nm plist calls body = body

Ensure Assignment Continutation

ensureAssgnCont :: Circus -> Circus

ensureAssgnCont Skip = Skip

ensureAssgnCont Stop = Stop

ensureAssgnCont Div = Div

ensureAssgnCont circ@(asg@(n := e) ::: c) = asg ::: ensureAssgnCont c

ensureAssgnCont circ@(Call a _) = circ

ensureAssgnCont (n := e) = (n := e) ::: Skip

ensureAssgnCont (c1 ::: c2) = ensureAssgnCont c1 ::: ensureAssgnCont c2

ensureAssgnCont (a :-> circ) = a :-> ensureAssgnCont circ

ensureAssgnCont ((x,xs) ::-> circ) = ((x,xs) ::-> ensureAssgnCont circ)

ensureAssgnCont (IntChoice c1 c2) = IntChoice (ensureAssgnCont c1) (ensureAssgnCont c2)

ensureAssgnCont (ExtChoice c1 c2) = ExtChoice (ensureAssgnCont c1) (ensureAssgnCont c2)

ensureAssgnCont (Hide circ a) = Hide (ensureAssgnCont circ) a

ensureAssgnCont (IPar a c1 c2) = IPar a (ensureAssgnCont c1) (ensureAssgnCont c2)

ensureAssgnCont (APar a b c1 c2) = APar a b (ensureAssgnCont c1) (ensureAssgnCont c2)

ensureAssgnCont (Ilv c1 c2) = Ilv (ensureAssgnCont c1) (ensureAssgnCont c2)

ensureAssgnCont (Cond e c1 c2) = Cond e (ensureAssgnCont c1) (ensureAssgnCont c2)

ensureAssgnCont (Guard e circ) = Guard e (ensureAssgnCont circ)

ensureAssgnCont (INT x a circ) = INT x a (ensureAssgnCont circ)

ensureAssgnCont (SEQ x a circ) = SEQ x a (ensureAssgnCont circ)

ensureAssgnCont (EXT x a circ) = EXT x a (ensureAssgnCont circ)

ensureAssgnCont (ILV x a circ) = ILV x a (ensureAssgnCont circ)

ensureAssgnCont (IPAR a x b circ) = IPAR a x b (ensureAssgnCont circ)

ensureAssgnCont (APAR x a b circ) = APAR x a b (ensureAssgnCont circ)

ensureAssgnCont (Mu x circ) = Mu x (ensureAssgnCont circ)

Add Continuation Calls

addContCall :: String -> [String] -> Circus -> Circus

addContCall _ _ Stop = Stop

addContCall _ _ Div = Div

addContCall _ _ circ@(n := e) = circ

addContCall _ _ circ@(Call a _) = circ

addContCall aname known Skip = Call aname []

176 APPENDIX C. HASKELL IMPLEMENTATION

addContCall aname known (c1 ::: c2) = (addContCall aname known c1) :::

(addContCall aname known c2)

addContCall aname known (a :-> circ) = a :-> (addContCall aname known circ)

addContCall aname known ((x,xs) ::-> circ) = ((x,xs) ::-> (addContCall aname known circ))

addContCall aname known (IntChoice c1 c2) = IntChoice (addContCall aname known c1)

(addContCall aname known c2)

addContCall aname known (ExtChoice c1 c2) = ExtChoice (addContCall aname known c1)

(addContCall aname known c2)

addContCall aname known (Hide circ a) = Hide (addContCall aname known circ) a

addContCall aname known (IPar a c1 c2) = IPar a (addContCall aname known c1)

(addContCall aname known c2)

addContCall aname known (APar a b c1 c2) = APar a b (addContCall aname known c1)

(addContCall aname known c2)

addContCall aname known (Ilv c1 c2) = Ilv (addContCall aname known c1)

(addContCall aname known c2)

addContCall aname known (Cond e c1 c2) = Cond e (addContCall aname known c1)

(addContCall aname known c2)

addContCall aname known (Guard e circ) = Guard e (addContCall aname known circ)

addContCall aname known (INT x a circ) = INT x a (addContCall aname known circ)

addContCall aname known (SEQ x a circ) = SEQ x a (addContCall aname known circ)

addContCall aname known (EXT x a circ) = EXT x a (addContCall aname known circ)

addContCall aname known (ILV x a circ) = ILV x a (addContCall aname known circ)

addContCall aname known (IPAR a x b circ) = IPAR a x b (addContCall aname known circ)

addContCall aname known (APAR x a b circ) = APAR x a b (addContCall aname known circ)

addContCall aname known (Mu x circ) = Mu x (addContCall aname known circ)

Propagate Assignment and Instantiate Continuation

propAssgn_InstCont :: String -> [Expr] -> [String] -> Circus -> Circus

propAssgn_InstCont nm plist calls (Call cnm pars) = (Call cnm (pars++plist))

-- when assignment is followed by a prefix e.g. x:=1;a:->Skip

propAssgn_InstCont nm plist calls ((v := expr) ::: (a :-> Skip))

= (a :-> (Call (foll_call calls nm) (map (esubstitute expr (Var v)) plist)))

-- when assignment is followed by a prefix to a call e.g. x:=1 ; a :-> Call "B"

propAssgn_InstCont nm plist calls ((v := expr) ::: (a :-> (Call cnm pars)))

= (a :-> (Call cnm (map (esubstitute expr (Var v)) plist)))

-- to deal with Guarded commanded with prefix to an assignment and a call

-- e.g. Guard e (a :-> v:=expr ; Call)

propAssgn_InstCont nm plist calls (Guard e (a :-> (v := expr):::(Call cnm pars)))

= (Guard e (a :-> (Call cnm (map (esubstitute expr (Var v)) (pars++plist)))))

-- to deal with initialiser which has only assignments

propAssgn_InstCont nm plist calls ((v1 := expr1) ::: (v2 := expr2))

= (Call (foll_call calls nm) (map (esubstitute expr1 (Var v1)) plist’))

where plist’ = (map (esubstitute expr2 (Var v2)) plist)

-- to deal with calls in sequence e.g. (Call "A" [] ::: Call "B" [])

propAssgn_InstCont nm plist calls ((Call cnm1 pars1) ::: (Call cnm2 pars2))

| nm == "MAIN" = Call cnm1 (pars1++pars2++plist)

| otherwise = (Call cnm1 (pars1++plist)) ::: (Call cnm2 (pars2++plist))

C.9. IMPLEMENTATION OF FORMALISED STEPS IN TRANSLATION THEORY 177

-- when assignment is followed by a call e.g. x:=1;Call "a"

propAssgn_InstCont nm plist calls ((v := expr) ::: (Call cnm pars))

| nm == "MAIN" =

(Call (head calls) (map (esubstitute expr (Var v)) (pars++plist)))

| otherwise = (Call cnm (map (esubstitute expr (Var v)) (pars++plist)))

-- when assignment is followed by a call e.g. x:=1;Call "a";Call "b"

propAssgn_InstCont nm plist calls ((v := expr) ::: (Call cnm1 pars1) ::: (Call cnm2 pars2))

| nm == "MAIN" =

(Call (head calls) (map (esubstitute expr (Var v)) (pars1++pars2++plist)))

| otherwise = (Call cnm1 (map (esubstitute expr (Var v)) (pars1++plist)))

-- adding case for pA((A[]B);C) = (pA(A;C))[](pA(B;C))

propAssgn_InstCont nm plist calls ((ExtChoice c1 c2):::c3) =

(ExtChoice (propAssgn_InstCont nm plist calls (c1:::c2))

(propAssgn_InstCont nm plist calls (c2:::c3)))

-- adding case for pA((A|˜|B);C) = (pA(A;C))|˜|(pA(B;C))

propAssgn_InstCont nm plist calls ((IntChoice c1 c2):::c3) =

(IntChoice (propAssgn_InstCont nm plist calls (c1:::c2))

(propAssgn_InstCont nm plist calls (c2:::c3)))

propAssgn_InstCont nm plist calls Skip = Skip

propAssgn_InstCont nm plist calls (a :-> circ) =

(a :-> (propAssgn_InstCont nm plist calls circ))

propAssgn_InstCont nm plist calls (c1 ::: c2)

| nm == "MAIN" = propAssgn_InstCont nm plist calls c1

| otherwise = (propAssgn_InstCont nm plist calls c1 :::

propAssgn_InstCont nm plist calls c2)

-- propAssgn_InstCont nm plist calls (v := expr) = (Call (foll_call calls nm)

(map (esubstitute expr (Var v)) plist))

propAssgn_InstCont nm plist calls (Guard e circ) =

(Guard e (propAssgn_InstCont nm plist calls circ))

propAssgn_InstCont nm plist calls (IntChoice c1 c2) =

(IntChoice (propAssgn_InstCont nm plist calls c1)

(propAssgn_InstCont nm plist calls c2))

propAssgn_InstCont nm plist calls (ExtChoice c1 c2) =

(ExtChoice (propAssgn_InstCont nm plist calls c1)

(propAssgn_InstCont nm plist calls c2))

propAssgn_InstCont nm plist calls ((x,xs) ::-> circ) =

((x,xs) ::-> propAssgn_InstCont nm plist calls circ)

propAssgn_InstCont nm plist calls (Hide circ a) =

(Hide (propAssgn_InstCont nm plist calls circ) a)

propAssgn_InstCont nm plist calls (IPar a c1 c2) =

(IPar a (propAssgn_InstCont nm plist calls c1)

(propAssgn_InstCont nm plist calls c2))

178 APPENDIX C. HASKELL IMPLEMENTATION

propAssgn_InstCont nm plist calls (APar a b c1 c2) =

(APar a b (propAssgn_InstCont nm plist calls c1)

(propAssgn_InstCont nm plist calls c2))

propAssgn_InstCont nm plist calls (Ilv c1 c2) =

(Ilv (propAssgn_InstCont nm plist calls c1)

(propAssgn_InstCont nm plist calls c2))

propAssgn_InstCont nm plist calls (Cond e c1 c2) =

(Cond e (propAssgn_InstCont nm plist calls c1)

(propAssgn_InstCont nm plist calls c2))

propAssgn_InstCont nm plist calls (Guard e circ) =

(Guard e (propAssgn_InstCont nm plist calls circ))

propAssgn_InstCont nm plist calls (INT x a circ) =

(INT x a (propAssgn_InstCont nm plist calls circ))

propAssgn_InstCont nm plist calls (SEQ x a circ) =

(SEQ x a (propAssgn_InstCont nm plist calls circ))

propAssgn_InstCont nm plist calls (EXT x a circ) =

(EXT x a (propAssgn_InstCont nm plist calls circ))

propAssgn_InstCont nm plist calls (ILV x a circ) =

(ILV x a (propAssgn_InstCont nm plist calls circ))

propAssgn_InstCont nm plist calls (IPAR a x b circ) =

(IPAR a x b (propAssgn_InstCont nm plist calls circ))

propAssgn_InstCont nm plist calls (APAR x a b circ) =

(APAR x a b (propAssgn_InstCont nm plist calls circ))

propAssgn_InstCont nm plist calls body = body

foll_call :: [String] -> String -> String

foll_call [] nm = (show Skip)

foll_call [call] nm = call++"_CONT"

foll_call (call:calls) nm

| call == nm = head calls

| otherwise = foll_call calls nm

Appendix D

Cache Coherence Protocol – Processes
Specified using SimpleCircus

The notation of SimpleCircus developed for the SimpleCircus2CSPM tool is used to specify a cache co-
herence protocol given in [FS96]. This is included in Section 9.2, on page 89. The description of only two
processes at the processor and memory is given there. Here, we include the remaining processes. The descrip-
tion of each of the process specified here is given on pages 3–6, [FS96].
Formal Description of Process p3:

(p3) buf[p]?read cache freshR(q,r,cv,arg)→
predp := q;
if r = nil
then statusp:=Inlist; cvp:=cv; csp:=fresh
else buf[r]!prependQ(p);statusp:=Inqueue;

if arg = ok then cvp:=cv; csp:=fresh fi fi

cp6p3 = [

("P3"

, ([]

, (bufin "p" (read_cache_freshR "q,r,cv,arg")

:::->

(("predProc" := (Val "q")) :::

(Cond (eq (Val "r") (Val "Nil"))

(("statusProc" := (Val "Inlist")) :::

("cvProc" := (Val "cv")) :::

("csProc" := (Val "Fresh"))

)

((bufout "r" (prependQ "p") :::-> Skip) :::

("statusProc" := (Val "Inqueue")) :::

(Cond (eq (Var "arg") (Val "ok"))

(("cvProc" := (Val "cv")) :::

("csProc" := (Val "Fresh"))

)

Skip

)

)

179

180APPENDIX D. CACHE COHERENCE PROTOCOL – PROCESSES SPECIFIED USING SIMPLECIRCUS

)

)

)

)

)

]

Formal Description of Process p4:

(p4) buf[p]?read cache goneR(q,r,cv,arg)→
predp := q;
if r = nil
then statusp:=Inlist; cvp:=cv; csp:=dirty
else buf[r]!prependQ(p);statusp:=Inqueue;

if arg = ok then cvp:=cv; csp:=dirty fi fi

cp6p4 = [

("P4"

, ([]

, (bufin "p" (read_cache_goneR "q,r,cv,arg")

:::->

(("predProc" := (Val "q")) :::

(Cond (eq (Val "r") (Val "Nil"))

(

("statusProc" := (Val "Inlist")) :::

("cvProc" := (Val "cv")) :::

("csProc" := (Val "Dirty"))

)

(bufout "r" (prependQ "p") :::-> Skip) :::

("statusProc" := (Val "Inqueue")) :::

(Cond (eq (Var "arg") (Val "ok"))

(("cvProc" := (Val "cv")) :::

("csProc" := (Val "Dirty"))

)

Skip

)

)

)

)

)

)

]

Formal Description of Process p5:

(p5) buf[p]?prependQ(q)→
if statusp = Inlist
then buf[q]!prependR(p,p,ok,cvp,csp); predp:=q;

if csp = dirty then csp:=fresh fi
else if statusp = Delleft

181

then if succp = nil
then buf[q]!prependR(p,nil,ok,cvp,csp);

csp:=invalid; predp:=nil
else buf[q]!prependR(p,succp,retry,cvp,csp);

csp:=invalid; predp:=nil succp:=nil fi
else buf[q]!prependR(p,p,retry,cvp,csp) fi fi

cp6p5 = [

("P5"

, ([]

, (bufin "p" (prependQ "q")

:::->

(Cond (eq (Var "statusProc") (Val "Inlist"))

(

(bufout "q" (prependR "p,p,ok,cvProc,csProc"):::->Skip) :::

("predProc" := (Val "q")) :::

(Cond (eq (Var "csProc") (Val "Dirty"))

("csProc" := (Val "Fresh")) Skip)

)

(Cond (eq (Var "statusProc") (Val "Delleft"))

(

(Cond (eq (Var "succProc") (Val "nil"))

(

(bufout "q"

(prependR "p,nil,ok,cvProc,csProc") :::-> Skip) :::

("csProc" := (Val "invalid")) :::

("predProc" := (Val "Nil"))

)

(bufout "q"

(prependR "p,succProc,retry,cvProc,csProc") :::-> Skip) :::

("csProc" := (Val "invalid")) :::

("predProc" := (Val "Nil")) :::

("succProc" := (Val "Nil"))

)

)

(bufout "q" (prependR "p,p,retry,cvProc,csProc") :::-> Skip)

)

)

)

)

)

]

Formal Description of Process p6:

(p6) buf[p]?prependR(q,r,arg,cv,cs)→
if arg = ok
then statusp:=Inlist; succp:=r;

182APPENDIX D. CACHE COHERENCE PROTOCOL – PROCESSES SPECIFIED USING SIMPLECIRCUS

if csp = invalid then cvp:=cv; csp:=cs; fi
else buf[r]!prependQ(p) fi

cp6p6 = [

("P6"

, ([]

, (bufin "p" (prependR "q,r,arg,cv,cs"))

:::->

(Cond (eq (Var "arg") (Val "ok"))

(("statusProc" := (Val "Inlist")) :::

("succProc" := (Val "r")) :::

(Cond (eq (Var "csProc") (Val "invalid"))

(

("cvProc" := (Val "cv")) :::

("csProc" := (Val "cs"))

)

Skip

)

)

(bufout "r" (prependQ "p") :::-> Skip)

)

)

)

]

Formal Description of Process p7:

(p7) statusp = Inlist ∧ csp = dirty
if succp 6= nil
then buf[succp]!purgeQ(p); statusp:=Purging; succp:=nil
else cvp:=? fi

cp6p7 = [

("P7"

, ([]

, (Guard (land (eq (Var "statusProc") (Val "Inlist"))

(eq (Var "csProc") (Val "Dirty"))))

(Cond (neq (Var "succProc") (Val "Nil"))

(

(bufout "succProc" (purgeQ "p"):::-> Skip) :::

("statusProc" := (Val "Purging")) :::

("succProc" := (Val "Nil"))

)

(bufin "cvProc" "in" :::-> Skip)

)

)

)

]

Formal Description of Process p16:

183

(p16) buf[p]?purgeQ(q)→
csp:=invalid; buf[q]!purgeR(p,succp);
predp:=nil; succp:=nil;
if statusp:=Inlist then statusp:=Off fi

cp6p16 = [

("P16"

, ([]

, (bufin "p" (purgeQ "q"))

:::->

(

("csProc" := (Val "invalid")) :::

(bufout "q" (purgeR "p,succProc"):::->Skip) :::

("predProc" := (Val "Nil")) :::

("succProc" := (Val "Nil")) :::

(Cond (eq (Var "statusProc") (Val "Inlist"))

("statusProc" := (Val "Off"))

Skip

)

)

)

)

]

Formal Description of Process p17:

(p17) buf[p]?purgeR(q,r)→
if r = nil
then statusp:=Inlist;cvp:=?
else buf[r]!purgeQ(p) fi

cp6p17 = [

("P17"

, ([]

, (bufin "p" (purgeR "q,r"))

:::->

(Cond (eq (Var "r") (Val "Nil"))

(("statusProc" := (Val "Inlist")) :::

((bufin "cvProc" "in"):::->Skip)

)

(bufout "r" (purgeQ "p") :::-> Skip)

)

)

)

]

Formal Description of Process p8:

184APPENDIX D. CACHE COHERENCE PROTOCOL – PROCESSES SPECIFIED USING SIMPLECIRCUS

(p8) statusp = Inlist ∧ csp = fresh ∧ predp = m→
buf[m]!modifydataQ(p);statusp:=Ftod

cp6p8 = [

("P8"

, ([]

, (Guard (land

(land

(eq (Var "statusProc") (Val "Inlist"))

(eq (Var "csProc") (Val "Fresh"))

)

(eq (Var "predProc") (Val "m"))

)

)

(bufout "m" (modifydataQ "p"):::->Skip) :::

("statusProc" := (Val "Ftod"))

)

)

]

Formal Description of Process m4:

(m4) buf[m]?modifydataQ(p)→
if headm = p
then buf[p]?modifydataR(m,ok);stausm:=Gone
else buf[p]?modifydataR(m,reject); fi

cp6m4 = [

("M4"

, ([]

, (bufin "m" (modifydataQ "p"))

:::->

(Cond (eq (Var "headMem") (Val "p"))

((bufout "p" (modifydataR "m,ok"):::->Skip) :::

("statusMem" := (Val "Gone"))

)

((bufout "p" (modifydataR "m,reject")):::->Skip)

)

)

)

]

Formal Description of Process p9:

(p9) buf[p]?modifydataR(q,arg)→
statusp:=Inlist; if arg = ok then csp := dirty fi

185

cp6p9 = [

("P9"

, ([]

, ((bufin "p" (modifydataR "q,arg"))

:::->

(("statusProc" := (Val "Inlist")) :::

(Cond (eq (Var "arg") (Val "ok"))

("csProc" := (Val "Dirty"))

Skip

)

)

)

)

)

]

(p10) statusp = Inlist ∧ succp 6= nil→
buf[succp]!delrightQ(p,predp,csp); statusp := Delright

cp6p10 = [

("P10"

, ([]

, (Guard

(land

(eq (Var "statusProc") (Val "Inlist"))

(neq (Var "succProc") (Val "Nil"))

)

)

(((bufout "succProc" (delrightQ "p,predProc,csProc")):::->Skip) :::

("statusProc" := (Val "Delright"))

)

)

)

]

Formal Description of Process p12:

(p12) buf[p]?delrightQ(q,r,cs)→
if statusp = Inlist ∧ predp = q
then buf[q]?delrightR(p,ok); predp := r;

if cs = dirty then csp := cs fi
else buf[q]!delrightR(p,reject); fi

cp6p12 = [

("P12"

, ([]

, (bufin "p" (delrightQ "q,r,cs"))

:::->

(Cond

(land (eq (Var "statusProc") (Val "Inlist"))

186APPENDIX D. CACHE COHERENCE PROTOCOL – PROCESSES SPECIFIED USING SIMPLECIRCUS

(eq (Var "predProc") (Val "q"))

)

(

((bufout "q" (delrightR "p,ok")):::->Skip) :::

("predProc" := (Val "r")) :::

(Cond (eq (Var "cs") (Val "Dirty"))

("csProc" := (Val "cs")) Skip

)

)

((bufout "q" (delrightR "p,reject")):::->Skip)

)

)

)

]

Formal Description of Process p11:

(p11) statusp = Inlist ∧ succp = nil→
buf[predp]!delleftQ(p,nil,cvp); statusp := Delleft

cp6p11 = [

("P11"

, ([]

, (Guard

(land (eq (Var "statusProc") (Val "Inlist"))

(eq (Var "succProc") (Val "Nil"))

)

)

(((bufout "predProc" (delleftQ "p,nil,cvProc")):::->Skip) :::

("statusProc" := (Val "Delleft"))

)

)

)

]

Formal Description of Process p13:

(p13) buf[p]?delrightR(q,arg)→
if csp = invalid

then statusp = Off

else if arg = reject

then statusp = Inlist

else buf[predp]!delleftQ(p,succp,cvp);
statusp := Delleft fi fi

cp6p13 = [

187

("P13"

, ([]

, (bufin "p" (delrightR "q,arg"))

:::->

(Cond (eq (Var "csProc") (Val "invalid"))

("statusProc" := (Val "Off"))

(Cond (eq (Var "arg") (Val "reject"))

("statusProc" := (Val "Inlist"))

((bufout "predProc" (delleftQ "p,succProc,cvProc")):::->Skip)

::: ("statusProc" := (Val "Delleft"))

)

)

)

)

]

Formal Description of Process m3:

(m3) buf[m]?delleftQ(p,q,cv)→
if headm = p
then cvm:=cv;buf[p]!delleftR(m,ok); headm := q;

if q = nil then statusm:=Home fi
else buf[p]!delleftR(m,reject); fi

cp6m3=[

("M3"

, ([]

, (bufin "m" (delleftQ "p,q,cv"))

:::->

(Cond (eq (Var "headMem") (Val "p"))

(

("cvMem" := (Val "cv")) :::

(bufout "p" (delleftR "m,ok"):::->Skip) :::

("headMem" := (Val "q")):::

(Cond (eq (Var "q") (Val "Nil"))

("statusMem" := (Val "Home"))

Skip

)

)

(bufout "p" (delleftR "m,reject"):::->Skip)

)

)

)

]

Formal Description of Process p14:

(p14) buf[p]?delleftQ(q,r,cv)→
if succp = q ∧ (statusp = Inlist ∨ statusp = Ftod

188APPENDIX D. CACHE COHERENCE PROTOCOL – PROCESSES SPECIFIED USING SIMPLECIRCUS

∨ statusp = Delright)
then buf[q]!delleftR(p,ok); succp:=r
else buf[q]!delleftR(p,reject); fi

cp6p14 = [

("P14"

, ([]

, (bufout "p" (delleftQ "q,r,cv")

:::->

(Cond (land

(eq (Var "succProc") (Val "q"))

(lor

(lor

(eq (Var "statusProc") (Val "Inlist"))

(eq (Var "statusProc") (Val "Ftod"))

)

(eq (Var "statusProc") (Val "Delright"))

)

)

(

(bufout "q" (delleftR "p,ok"):::->Skip) :::

("succProc" := (Val "r"))

)

(bufout "q" (delleftR "p,reject"):::->Skip)

)

)

)

)

]

Formal Description of Process p15:

(p15) buf[p]?delleftR(q,arg)→
if csp = invalid ∨ arg = ok
then succp = nil; predp = nil; statusp = Off ;
else buf[predp]!delleftQ(p,succp,cvp) fi

cp6p15 = [

("P15"

, ([]

, (bufin "p" (delleftQ "q,r,cv")

:::->

(Cond (lor

(eq (Var "csProc") (Val "invalid"))

(eq (Var "arg") (Val "ok"))

)

)

(

("succProc" := (Val "Nil")) :::

189

("predProc" := (Val "Nil")) :::

("csProc" := (Val "invalid")) :::

("statusProc" := (Val "Off"))

)

(bufout "q" (delleftR "p,reject") :::-> Skip)

)

)

)

]

190APPENDIX D. CACHE COHERENCE PROTOCOL – PROCESSES SPECIFIED USING SIMPLECIRCUS

Appendix E

How to Run Examples in
SimpleCircus2CSPM and
circus2cspm

E.1 Haskell Implementation of Translator

The development of this translator is done using GHCi (Haskell compiler / interpreter) version 6.2.2.
The working machine had a Core2Duo processor running Windows 7 OS.

E.1.1 Steps to Follow

1. Download GHCi 6.2.2 version.

2. Install the Haskell compiler / interpreter.

3. Get the SimpleCircus2CSPM .lhs files from the given URL:
https://www.scss.tcd.ie/˜begm/finalWork.html

4. Run Cmd (command prompt).

5. Go to the folder where the .lhs files of SimpleCircus2CSPM tool are placed.

6. Type ghci and press Enter.

7. Run command :load MainSimpleCircus.lhs (This will load all necessary files to the compiler)

8. Now you can run the examples. The command to run each example is mentioned in the Evaluation
chapter where the output of each example is discussed.

E.2 Java Implementation of Translator – circus2cspm

The development of this version is done using Eclipse IDE.
The working machine had a Core2Duo processor running Windows 7 OS.

191

192 APPENDIX E. HOW TO RUN EXAMPLES IN SIMPLECIRCUS2CSPM AND CIRCUS2CSPM

E.2.1 Steps to Follow

1. Download circus2cspm archive from the given URL
https://www.scss.tcd.ie/˜begm/finalWork.html

2. Download LaTeX files from the Circus examples’ archive.

3. Unzip the folders where you want.

4. You should have the appropriate JDK version installed on your machine. (The version we have is JRE
version 6).

5. Go to the circus2cspm unzipped folder.

6. Run the Windows Batch File named Circus2cspm.

7. This will start the GUI of the circus2cspm tool.

8. Now specify the path of the Circus LaTeX file in the “Input Specification” field.

9. The project name has to be specified.

10. Specify the path where you want to create the folder of CSPM output files.

11. Hit the “Translate” Button.

