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Abstract

Emergence is a hallmark of Complex Adaptive Systems (CAS), where non-deterministic inter-

actions between agents can give rise to emergent behaviour or properties at the system level.

The nature, timing and consequence of emergent behaviour are fundamentally unpredictable

and may be harmful to the system or individual agents. This unpredictability, coupled with the

decentralised structure of these systems, means that detecting emergence at run time presents a

significant challenge. No single component of a decentralised system can possess a global view of

system state, or reliably know in advance the relevant system properties that indicate emergence.

Existing approaches to emergence detection have used statistical analysis of system variables

that represent global features of the system. These techniques depend on a centralised system

monitor with access to information on global system state. However, neither of these assumptions

are met in CAS, as these are distributed and composed entirely of decentralized autonomous

agents. Additionally, these approaches require prior knowledge of the system properties relevant

for emergence detection, which may not be obvious or available for all systems. Other approaches

use formal methods to define and predict emergence, but are intended for use at design time or

are limited to well-defined, closed systems.

This thesis presents Decentralised Emergence Detection (DETect), a novel distributed algo-

rithm that enables constituent agents to collaboratively detect emergent events in CAS. The main

contribution of DETect is that it does not require any centralised controller or system monitor,

and instead runs locally on each agent. In addition, DETect uses only the available informa-

tion from an agent’s local environment at run time to facilitate detection. DETect relies on the

feedback that occurs from the system level (macro) to the agent level (micro) when emergence

is present. This feedback constrains agents at the micro-level, and results in changes occurring

in the relationship between an agent and its environment. DETect uses statistical methods to
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automatically select the properties of the agent and environment to monitor, and tracks the

relationship between these properties over time for changes. When a significant change is de-

tected, the algorithm uses distributed consensus to determine if a sufficient number of agents

have simultaneously experienced a similar change, before a shared conclusion is reached that

emergence has occurred. On agreement of emergence, DETect raises an event, which its agent

or other interested observers can use to act appropriately.

The evaluation of DETect uses three multi-agent simulation case studies: flocking, pedestrian

counter-flow and traffic. Each simulation model exhibits emergence allowing performance to be

assessed across a range of system scales. The case studies are structured to verify the efficacy

of DETect in three competences: autonomously selecting what properties to monitor, detecting

feedback from emergence and forming consensus among agents on the presence of emergence.

Performance is evaluated for detection of both the formation and evaporation of emergence in

each system. The results of these studies demonstrate that DETect generally achieves its design

objectives, facilitating the decentralised detection of emergence formation in each case study.

However, the general applicability of DETect during periods of emergence evaporation is limited,

with successful detection achieved in the pedestrian and traffic case studies only.
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Chapter 1

Introduction

This thesis presents Decentralised Emergence Detection (DETect), a novel distributed algorithm

for decentralised emergence detection at run time in Complex Adaptive Systems (CAS). DETect

enables the constituent agents of the system to collaboratively act as detectors of emergence

using only locally available information. This is achieved using a combination of statistical

and machine learning techniques along with distributed consensus, removing the need for a

centralised controller or system monitor. This chapter motivates the work and introduces the

principal ideas underpinning emergence. Next, the challenges presented by detecting emergence

in CAS are outlined before the goals and contributions of this work are described. Finally, the

chapter closes by describing the structure of the rest of this thesis.

1.1 Motivation

Ever increasing power, heterogeneity and interoperability of computational devices means that

future large-scale systems will both host, and depend on, an array of Complex Adaptive Systems

(CAS). CAS are systems composed of independent heterogeneous agents that interact, adapt

and learn [Holland, 1992]. Individual agents are software components, systems or people, each

with unique, possibly conflicting, goals. CAS are capable of spanning organisations and large

geographic areas with no centralised control or monitoring [Northrop et al., 2006]. They form

organically through the non-deterministic interactions of their agents, which means predicting

the characteristics and behaviour of these systems with any great degree of accuracy is impossible
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in advance [Mogul, 2006,Johnson, 2006].

Emergence is a hallmark of such systems [Innes and Booher, 1999, Ottino, 2004], and refers

to the appearance of persistent properties and behaviours (emergents) at the system (macro)

level. These emergents are caused dynamically from the non-deterministic interactions between

entities at the agent (micro) level [De Wolf and Holvoet, 2005]. However, despite being caused

by agent interaction, the emergents are novel with respect to the underlying agents, meaning

they cannot be reduced to the properties or behaviour of the individual entities [De Wolf and

Holvoet, 2005, Gleizes et al., 2008]. Typical examples of emergence include traffic jams, swarm

formation of birds and the Internet [Fromm, 2005].

The interactions of agents at the micro-level are said to have causal power on the emergents at

the macro-level. However, the macro-level can also impact on the micro-level through downward

causation, where the emergent phenomenon constrains the agents at the micro-level [Bedau,

2002]. A car in a traffic-jam provides an illustrative example of this bi-directional relationship

between the two system levels. The car contributes to the volume of traffic causing the emergent

behaviour, and this emergent behaviour impacts the car by limiting its speed and also, potentially,

the route it will take. Therefore, when emergence occurs it is beneficial to be aware of its presence

so that its effects can be mitigated if they are harmful (such as a traffic jam) or leveraged if they

are beneficial (such as increased security when flocking).

However, the scale, unpredictability and decentralised architecture of CAS means that detect-

ing emergence in these systems presents significant challenges. These challenges are compounded

by the nature of emergence, which is itself both dynamic and unpredictable. Existing research

cannot meet these challenges as they rely on centralised architectures with a global system view

and design time knowledge of the emergent properties to facilitate detection. Instead, effective

detection should occur at runtime, be decentralised across the constituent agents and require no

prior knowledge of the specific emergent properties and behaviours that may arise in the system.

1.2 Emergence in CAS

The concept of emergence first appeared in philosophy in the time of Socrates and has been

studied in a variety of fields such as physics, computer science and social science, ever since

[Di Marzo Serugendo et al., 2006]. It is a fundamental concept in the field of complex systems

and can be considered a necessary part of what qualifies complex systems as complex [Deguet
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Emergent Global Properties & Behavior

Local Interactions between agents

Micro Level

Macro Level

Downward
Causation

Fig. 1.1: Emergence and the system levels: A bi-directional link exists between system levels

when emergence is present. The macro-level arises from agent interaction at the micro-level and

the macro-level constrains the micro-level through downward causation.

et al., 2006, Flake, 1998]. Underpinning the concept of emergence is the notion that the whole

is greater than the sum of the parts, or to put it another way, that order can arise from chaos

[Kub́ık, 2003]. In CAS, emergence refers to macro-level patterns, structures and properties arising

in systems of decentralised interacting agents, where these patterns, structures and properties

are not contained in the properties of its parts [Dessalles and Phan, 2001].

This definition highlights a number of characteristics of emergence that should be noted. The

first is that these systems are decentralised with no centralised controller or monitor. Second,

it is necessary to talk about these systems at two levels when discussing emergence; the level

of the individual agent (micro) and the level of the global system (macro). Third, emergence is

only possible in systems composed of autonomous agents who interact non-linearly and it is these

interactions that give rise to the emergent behaviour or property. Finally, the emergent properties

at the macro-level cannot be simplified to a composite of the properties of the micro-level.

The relationship between the two levels is one of interdependence with the micro-level causing

the macro, while the macro-level constrains the micro. This two-way relationship between the

micro and macro levels is illustrated in Figure 1.1. An everyday example of this is the coherent
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flocking patterns that flocks of individual birds exhibit, which arise from simple interactions be-

tween the individual birds. Once formed, the global flocking behaviour constrains the behaviour

of the individual birds that constitute it.

Emergent behaviour and properties can be unexpected, undesirable and difficult to control,

for example traffic congestion [Singh et al., 2013]. However, it is also possible that emergence can

be beneficial, such as the increased security from predators offered by flocking. In either case, it

is desirable to be able to detect emergence when it occurs so that harmful effects can be mitigated

or beneficial effects can be exploited. It is common to think of the observer of emergence as being

external to the system, looking at the overall system state from a global viewpoint, for example,

a human being observing a flock of birds flying in formation. However, cognitive agents, agents

with knowledge of their environment and the ability to use past experiences [Olaru and Florea,

2009], can theoretically be used to detect these phenomena if they are themselves part of the

system [Dessalles and Phan, 2001]. This is made possible if the agents know what to look for

and have a sufficiently broad view of the system.

1.3 Challenges

It is possible for both internal and external system observers to recognise emergence when it

occurs and to therefore act as detectors. However, the characteristics of both CAS and emer-

gence means that this task is non-trivial to accomplish. In particular, any emergence detection

mechanism faces the following challenges:

• Challenge 1: Decentralised control and monitoring

CAS are decentralised systems capable of spanning organisations and large geographic

areas [Holland, 1992, Northrop et al., 2006]. As a result, no single agent of the system is

responsible for undertaking or coordinating emergence detection. Additionally, emergence

occurs at the macro-level of the system. However, no single agent has immediate access to a

global view of the system state and obtaining this information in systems of scale becomes

impractical as the system state is constantly changing. Instead, agents may have access to

locally available information which is more timely, but is limited in scope and insufficient

to form conclusions about emergent behaviour and properties. This requires that detection

should be decentralised across all agents with collaboration used to overcome the limited
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system view of individual agents.

• Challenge 2: Unpredictable non-linear interactions

CAS are composed of many agents that interact non-linearly in ways that are difficult

to recognise, manage and predict [Maxwell et al., 2002]. This unpredictability results

in unforeseeable connections and subsystems forming organically at runtime. However,

the autonomy of the constituent agents means that these systems are dynamic and any

connection or subsystem formed remains transient. Agents may move to another part of

the system or decide to interact with a different set of agents depending on their individual

goals. This presents significant challenges to any collaboration attempt between agents as

the set of agents that comprise an individual agent’s neighbourhood is constantly in flux.

• Challenge 3: Knowing what to look for

The characteristics of emergence are unpredictable [Stephan, 1999]. This does not mean

that these characteristics are not knowable for all systems as, for example, in well under-

stood complex systems such as traffic or flocking, the type of emergence that occurs is

understood. However, outside of such systems, the unpredictability of emergence means

that it is not possible to know what system configuration constitute emergence. Therefore,

knowing in advance what properties to monitor and what indicates the presence of emer-

gence is not possible. As a result, a general method is required to select the important

properties to monitor at runtime with minimal design time input.

• Challenge 4: Transient nature of emergence

In systems with emergence, emergents arise and disappear as the system evolves over

time [De Wolf and Holvoet, 2005]. An illustrative example is provided by flocking in

birds with the emergent flocking behaviour being capable of both forming and evaporating

and thus being transient in nature. For appropriate steps to be taken to either mitigate or

leverage the new macro-state of the system, an effective detection method should be timely.

This means that detection events should occur when the emergence is forming, before the

new emergent state of the system is established. Similarly, it requires that evaporation of

the emergence should also be detected, especially in situations where the emergent state

was beneficial.
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1.3.1 Existing Solutions

Existing methods for detecting emergence have used a variety of statistical methods on system

variables that represent global features of the system [Bar-Yam, 2004,Mnif and Muller-Schloer,

2006, Fisch et al., 2010, Seth, 2008, Chan, 2011, De Wolf et al., 2005, Grossman et al., 2009, Ni-

azi and Hussain, 2011]. Although these approaches allow detection to occur at runtime, they

depend on a centralised architecture, with an omniscient system monitor or controller who has

immediate access to the global system state. However, such an approach is not possible in CAS

that are distributed, and composed entirely of decentralized autonomous agents. Additionally,

these variable based approaches require prior knowledge of the system properties that describe

emergence and therefore should be monitored. This assumption limits their applicability to sys-

tems with well defined and understood emergent properties. However, these properties may not

be obvious or available for all systems, especially in CAS which are dynamic and unpredictable.

Other approaches use formal language modelling and simulation of large multi-agent sys-

tems to either detect emergence [Randles et al., 2007, Ciancia et al., 2014, De Angelis and

Di Marzo Serugendo, 2015], or predict whether emergence can occur in a system [Moshirpour

et al., 2012, Kub́ık, 2003, Teo et al., 2013]. These methods require both the system and what

constitutes expected emergent behaviour to be defined and understood at design time. This

requirement makes them unsuitable for CAS, which form organically with unpredictable com-

position and behaviour and thus, may not be practicably or effectively modelled or simulated in

advance in all cases. Moreover, these approaches are centralised or require some agent, either

external or part of the system, to acquire a global view of system state. Finally, the transient

nature of emergence, forming and evaporating as the system evolves, is not addressed by these ap-

proaches. Therefore, detecting unforeseen or unintentional emergence when it occurs at runtime

in decentralised CAS remains an open research problem.

1.4 Thesis Approach

A novel distributed algorithm, DETect, is designed to enable constituent agents to collaboratively

detect emergent events in CAS, without the need for a centralised controller or system monitor.

Assumptions For the agents and environment in which emergence detection is occurring, this

thesis makes the following assumptions:
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• System time on all agents in the system is synchronized and all agents are assumed to make

decisions and record variable observations simultaneously at fixed time intervals.

• Agents are assumed to be to be failure free. Therefore, issues arising from agents not being

able to contact their one-hop neighbours, or agents receiving incomplete or inaccurate

information is not addressed. In simulations in this thesis, agents are mobile with their

one-hop neighbours constantly changing based on other agents within a fixed radius.

• Agents have access to a set of variables that describe their own state and a set of variables

that describes the subset of the environment that they care about. The variables that

compose these sets is assumed to remain static once the agent is initialised. Additionally,

agents can provide both sets of variables to DETect and inform DETect what set describes

the agent’s state and what set describes the environment’s state.

• The agents or the system contains an interested party, such as an adaptation manager,

to receive detection events from DETect and respond appropriately. DETect fits into the

monitoring stage of a MAPE-K loop [Kephart and Chess, 2003], so planning and executing

comprehensive behavioural adaptations in response to emergence is beyond the scope of

this research.

Hypothesis This thesis investigates how to facilitate the detection of emergence at runtime in

CAS without using a centralised system monitor. The hypothesis of this research is as follows:

When emergence is forming or evaporating in a system, a significant proportion of the constituent

agents will simultaneously experience a change in the statistical relationship between themselves

and their environment. By sharing this experience, agents can collaboratively act as detectors of

the emergent event.

Basic Idea The presence of emergence in a system results in feedback from the macro-layer to the

micro-layer, through downward causation, that constrains the agents in the system [Chalmers,

2006,Bedau, 2002]. As a result, the relationship individual agents have with their local environ-

ment, including other agents, will be different when emergence is present in the system compared

to when there is no emergence. As emergence is global in nature, all agents involved should si-

multaneously experience a changed relationship as the emergent behaviour forms and evaporates

in the system. This hypothesis inspires the conceptual architecture of DETect, illustrated in

Figure 1.2, with a modular design used to achieve three key competences.
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Fig. 1.2: DETect - Conceptual Architecture: DETect is composed of three units, each of

which delivers one of three key competences; modelling, change detection and collaboration.

The Modelling Unit provides agents with a general method of modelling their relationship

with their local environment. It achieves this using properties of the agent (internal variables)

and properties of the agent’s environment (external variables), with a subset of these variables

autonomously selected at runtime to compose the model. The statistical properties of the model

are periodically measured as the system executes, with recent observations used to establish

an expected baseline for the agent’s current relationship with its environment. The Change

Detection Unit provides agents with an on-line means of detecting a sudden and statistically

significant change in the relationship, that may indicate that the agent is experiencing feedback

from emergence. However, it is not possible for any single agent to independently conclude the

presence of emergence due to the limited scope of their system view. Therefore, the Collaboration

Unit uses a distributed consensus algorithm to determine the proportion of agents simultaneously

experiencing a similar change with the existence of an emergent event concluded if the proportion

is sufficiently high. Once this agreement is reached, an event is raised which can be used as input

by an adaptation manager to react appropriately.
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1.5 Thesis Contribution

This thesis investigates how the constituent agents of CAS can be facilitated to act as detectors of

emergent events when they occur at runtime. This research contributes to the body of knowledge

by providing:

Decentralised detection across agents The primary contribution of this thesis is to facilitate

decentralised detection of emergence. Existing detection approaches rely on centralised architec-

tures and knowledge of the global system state. However, neither of these are possible in CAS

and therefore detection should be distributed across the constituent agents. This is achieved

by enabling individual agents to detect the feedback from emergence when it occurs through

alterations in their relationship with their local environment. Distributed consensus is then used

to share information across agents to allow agents to collaboratively build wider views of the

system state. This ensures that conclusions on emergence are not based on the limited local view

of a single agent.

Automated model selection Existing approaches to emergence detection require significant

design time knowledge of the properties of the system that describe emergence and should be

monitored. This limits their utility to only those systems they are designed for. This thesis

describes a general statistical method that autonomously selects useful variables from the agent

and its environment to monitor as the system evolves. These variables are used to model the

relationship between the agent and its environment with this model used to facilitate detection

of feedback from emergence to the agent. As a result, the requirement for specific design time

knowledge of the emergent properties and what should be monitored is removed.

Detection of both formation and evaporation of emergence Emergence is transient in

nature, both forming and evaporating as the system evolves over time. Existing detection ap-

proaches do not address this transience or consider the timeliness of detection, instead focussing

on detection only when the emergent behaviour is established. This limits the utility of detection

as emergence may have already evaporated by the time any adaptation action is taken. This

thesis investigates how to detect both formation and evaporation periods of emergence to enable

appropriate actions to be taken before the new macro-state becomes established. The proposed

approach uses a sliding window model of the recent history of the agent’s relationship with its

environment. Each new evaluation of this relationship is compared against this window to de-
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termine if the statistical properties have significantly changed. This new evaluation is added

to the model with the oldest entry removed, ensuring that future comparisons will be based on

an up-to-date baseline. This allows the baseline to be updated gradually as the system evolves,

with only sudden significant changes triggering suspicion. As a result, detection events are raised

during both emergence formation and evaporation periods when the state of the system is in flux.

1.6 Thesis Structure

The remainder of this thesis is structured as follows,

Background and Related Work: Chapter 2 outlines the features and different types of

emergence and describes how these allow emergence to be observed both outside and inside the

system. Next existing detection approaches are presented and categorised under three broad

types i) variable based ii) formal language/model based and iii) event based. The analysis of

these approaches is rooted in the challenges presented by emergence detection in CAS, with

particular emphasis placed on when the detection occurs, what information is required and the

extent to which they are decentralised.

Design: Chapter 3 returns to the challenges presented by emergence detection in CAS, outlined

in Chapter 1, and describes the design objectives, system model, and design decisions of this

thesis. Next, the chapter describes in detail the proposed distributed algorithm for emergence

detection which provides three core competences; model selection, feedback detection and con-

sensus formation among agents on the existence of an emergent event in the system. The chapter

concludes by explaining how this solution addresses the design decisions.

Implementation and Simulation Environment: Chapter 4 describes the implementation of

the DETect algorithm using NetLogo, a multi-agent modelling platform, Java and R. Next, it

outlines how DETect is integrated into agents in three multi-agent models to provide a simulation

platform on which evaluation can be performed.

Evaluation Chapter 5 evaluates the performance of DETect in each of the three core compe-

tences. It first describes the experimental set-up, with a case study of three multi-agent systems

that exhibit emergence used to evaluate performance across systems of different scales. The

second part of the chapter presents and analyses the results of this study.
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Conclusion: Chapter 6 summaries the thesis by discussing the strengths and weaknesses of the

DETect algorithm and identifying a number of potential areas for future work.

1.7 Chapter Summary

Emergence is a hallmark of CAS and refers to the appearance of persistent properties and be-

haviours at the macro-level of the system. It arises through the non-deterministic interactions of

autonomous decentralised agents and its characteristics are unpredictable in advance. Emergent

behaviour and properties can be both harmful and beneficial to the constituent agents and the

system as a whole. Therefore, emergent behaviour and properties of a system should be detected

when they occur at runtime so that appropriate steps can be taken to mitigate harmful effects

or leverage beneficial emergent behaviour.

CAS lack any centralised controller or monitor with no individual agent possessing a complete

view of the global system state. These characteristics present a significant challenge to detection

mechanisms as emergence is unpredictable and occurs above the level of individual agents. Ex-

isting detection approaches are ill-equipped to meet these challenges as they rely on centralised

architectures, advanced knowledge of the emergent properties or knowledge of the global system

state to facilitate detection.

This thesis presents DETect, a novel distributed algorithm for decentralised emergence de-

tection in CAS. DETect enables the constituent agents of the system to collaboratively act as

detectors using only locally available information. DETect relies on downward causation from the

macro-level to the micro-level when emergence is present in the system, that naturally constrains

the agents. DETect builds on the hypothesis that this feedback can be detected by changes in

the relationship between an agent and its environment, characterised by variables that describe

the agent and variables that describe its local environment. The following chapters describe

how DETect achieves this using a combination of statistical and machine learning techniques to

autonomously model this relationship and monitor it over time for changes. Finally, distributed

consensus is used to share these changes with other agents and therefore build a shared consensus

on the presence of an emergent event.
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Background and Related Work

This chapter presents background and related work. It begins by outlining the history of the

concept of emergence and its accepted characteristics. This is followed by a description of the

different types of emergence that exist and their consequence for both the system and would-be

observers of the emergent phenomena. The next section describes the systems that are the focus

of this thesis, Complex Adaptive Systems, and outlines the various techniques used to investigate

them. Following this necessary background, the last part of the chapter discusses the state of

the art in emergence detection techniques and the gaps left by existing solutions.

2.1 Emergence

This section introduces the concept of emergence, describing its characteristics and the tools

available to study it. In addition, the different types of emergence that can occur are outlined,

illustrating how emergence can be observed and enabling the research described in this thesis to

be situated within a larger context.

2.1.1 Characteristics of Emergence

Emergence has a long history in the philosophy of science, appearing in a variety of fields such as

physics [Gemmer et al., 2009], biology [Cagan and Ready, 1989] and complexity theory [Sawyer,

2005]. This diversity of study is perhaps reflected in the fact that there exists no universally

accepted definition of the term [Olaru and Florea, 2009], with both its characteristics and its very
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existence generating much debate. The concept underpinning emergence dates back to ancient

Greek philosophy, when Aristotle claimed that, for substances, “the whole is something over and

above its parts, and not just the sum of them all” [Ross, 1997, 1045H 8-10]

The term emergence, as it is understood today, first appeared in the 19th century when it

was coined by the British philosopher G.H. Lewes to distinguish between chemical compounds

created by a chemical reaction [Lewes, 1875]. Lewes referred to compounds that were created in

a process that was understood and could be traced back to the underlying components/agents

as “resultants”. Chemical compounds that could not be reduced in the same way to the sum (or

difference) of the agents were called “emergent” compounds, with Lewes stating that they arise

“out of the combined agencies but in a way that does not display the agents in action.”

Emergence is a complicated concept and does not fit neatly into any concise definition [Hol-

land, 2000]. Abbot associates it with the appearance of an “epiphenomenon”, a phenomenon

that can be described independently of the underlying phenomenon that cause it [Abbott, 2006].

De Wolf and Holvoet provide a working definition of emergence based on its use throughout

relevant literature [De Wolf and Holvoet, 2005]. The authors state that a system exhibits emer-

gence “when there are coherent emergents at the macro-level that dynamically arise from the

interactions between the parts at the micro-level. Such emergents are novel w.r.t. the individual

parts of the system”. Emergents refer to behaviours, patterns, structures and properties.

Greater clarity is provided by examining the characteristics of emergence and the conditions

necessary for it to exist. Goldstein states that emergence can only occur in systems that are

non-linear, self-organising and do not exhibit equilibrium or homeostasis [Goldstein, 1999]. De

Wolf and Holvoet augment their working definition by outlining 8 characteristics that identify

behaviour and properties as emergent [De Wolf and Holvoet, 2005]. These are:

• Micro-Macro Effect: The most fundamental characteristic is that, when emergence

arises, it becomes necessary to talk about the system at two levels, the macro and the

micro. The macro-level refers to the global system level where the emergent properties

and behaviour are exhibited and can be observed. The micro-level contains the individual

agents or components of the system and it is the interactions of the agents at this level that

cause emergence. Example: A traffic-jam, which constitutes emergent behaviour at the

macro-level, in comparison to the individual vehicles that compose it at the micro-level.

• Bi-directional Link: A bi-directional link exists between both levels, with the micro-
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level said to cause the macro-level and the macro-level constraining the agents at the

micro-level through downward causation [Ladyman et al., 2013]. This relationship gives

rise to a number of different types of emergence, which are discussed in detail in Section

2.1.3. Example: A traffic jam is caused by the set of individual vehicles that compose

it. Once it has formed, the congestion influences the speed and direction of the individual

vehicles.

• Interacting Parts: The individual agents at the micro-level must interact with one an-

other for emergence to be possible. It is not sufficient for the system to be composed

by autonomous agents that act in isolation of one another. Furthermore, it is neces-

sary for the interactions and behaviour of these agents to be non-linear for emergence to

arise [Di Marzo Serugendo et al., 2006]. Example: The traffic jam is caused by individual

vehicles interacting with one another, other road users and traffic signals.

• Dynamical: Emergents are not perpetual in the context of the system and instead arise

as the system evolves in time [Holland, 2000]. Emergence is a new property or behaviour

that becomes possible at a certain point in time. This new behaviour is said to persist

as a coherent identity over time. However, when the circumstances of its existence are no

longer present, the emergence may evaporate and disappear from the system. Example:

The traffic jam forms and evaporates.

• Decentralised Control: Control of the agents must be decentralised in the system with

emergence not being possible if agents do not act autonomously [Goldstein, 2000]. This

means that the agents, using only local information and mechanism, create and influence

the emergence, with no centralised control. Example: In the traffic jam, although they

are influenced by one another and by traffic signals, vehicles act autonomously, each with

their own goal and behaviour.

• Coherence: Emergents appear as coherent wholes, maintaining an identity while they

persist in the system. Goldstein notes that this coherence spans and correlates the separate

lower-level agents into a higher-level unity [Goldstein, 1999]. Example: The traffic jam

spans the individual vehicles that compose it and can be observed as a coherent behaviour.

• Robustness & Flexibility: As the system is decentralised, there is no single point of

failure, so the emergent behaviour or property can survive if individual agents fail. Ex-
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Table 2.1: Detection challenges and emergence characteristics

Detection Challenge Associated Emergence Feature

Decentralised control and monitoring - Decentralised Control

Unpredictable non-linear interactions - Interacting parts

Knowing what to look for
- Radical Novelty

- Micro-Macro Effect

Transient nature of emergence
- Coherence

- Dynamical

ample: The traffic jam will persist if an individual vehicle leaves the system, for example,

by parking.

• Radical Novelty: The emergent behaviour is novel with respect to the individual be-

haviour at the micro-level and is not reducible to the agents whose interactions create it.

As a result, emergence is also unpredictable, with Goldstein noting that emergent phe-

nomena are neither “predictable from, deducible from, nor reducible to” the constituent

agents of the system [Goldstein, 1999]. This unpredictability is only absolute the first time

an emergent phenomenon is observed, however the non-linear behaviour of these systems

means that there will be some differences in the emergents each time they arise. Example:

The concept of a traffic jam does not apply at the level of individual agents.

Emergent behaviour can be both beneficial or harmful to the system and the constituent

parts [Paunovski et al., 2008]. For example, flocking behaviour provides greater protection

from predators, while traffic-jams cause pollution and cost time. Mogul points out that even

when emergence is not inherently bad, it is unpredictable and in a computer system’s context,

unpredictability is bad [Mogul, 2006]. However, the characteristics of emergence outlined above

means that detecting emergence is a difficult task. This is illustrated in Table 2.1, where each

emergence detection challenge outlined in Section 1.3 is mapped to the underlying characteristic

of emergence that motivates it.

2.1.2 Studying Emergence

The idea of radical novelty and irreducibility of the emergent phenomena has generated debate

since Lewis first coined the term [Lewes, 1875]. This resulted in the development of two schools

of thought on emergence, proto-emergentism and neo-emergentism [Goldstein, 1999]. Proto-
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emergentism, also known as the philosophical approach, viewed the emergence process as a black

box and was initially the most popular outlook. It claimed that only the inputs and outputs

at the lowest level can be discerned and the process of how the inputs become the outputs

was fundamentally un-knowable. This meant that the emergent process could not be studied

scientifically as the effects were almost “miraculous” in nature [Müller-Schloer and Sick, 2008].

Since the 1930s, neo-emergentism, also known as complexity theory, has become the dominant

outlook [De Wolf and Holvoet, 2005]. Neo-emergents seek to make emergence less mysterious

with the aim of developing tools and methods to understand and reproduce the process which

leads to emergence in systems. As stated by Miller and Page, the field of complex systems

must “direct its flight from wonder toward discoveries that make the wonderful and complex

understandable” [Miller and Page, 2009]. Complexity theory is composed of a number of different

research fields, each approaching the issue from a unique standpoint or concentrating on different

types of complex systems. Goldstein describes four broad research fields that comprise complexity

theory [Goldstein, 1999]. These are:

• Far from equilibrium thermodynamics is the study of thermodynamic systems that

are constantly changing with time due to external energy input [Nicolis, 1989]. Arising out

of these far-from-equilibrium conditions are dissipative structures that are called emergents.

These structures are complex with interacting particles exhibiting long term correlations.

• Synergetics is an interdisciplinary field, founded by Hermann Haken [Haken, 1983], which

studies the formation of self-organizing patterns and structures in open systems. Order

parameters are a core concept in this field. They are a set of collective variables which

exist when the system becomes unstable and they influence which coherent macro-level

phenomenon the system exhibits.

• Non-linear dynamical systems theory is a field of mathematics used to describe the

behaviour of non-linear complex systems [Devaney et al., 1989]. Its study of emergence is

centred on the concept of attractors, which are specific behaviours that the system evolves

to. One example is a strange attractor which was defined by Newmann and claimed to

classify a truly emergent phenomenon [Newman, 1996]. It is said to exist when a system’s

long term behaviour is apparently random yet still exhibits some degree of organisation.

• Complex Adaptive Systems Theory was made famous by the Santa Fe Institute in
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the early 1990s [Waldrop, 1993, Gell-Mann, 1994, Holland, 1992]. Anderson notes that

complex adaptive systems can be investigated either by studying real examples such as

the brain, or by building them in computer systems using artificial entities and artificial

intelligence [Anderson, 1999].

The work in this thesis is situated in the field of Complex Adaptive Systems Theory. A

detailed discussion of Complex Adaptive Systems (CAS) and how they can be modelled and

simulated using multi-agent systems (MAS) is provided in Section 2.2.

2.1.3 Types of Emergence

Downward causation and the identity of the observer of emergence have been used to identify

a number of different emergence types. Understanding the distinction between these types is

necessary to understand the context in which emergence can be detected and by whom.

2.1.3.1 Downward Causation Based Classification

Downward causation is the “raison d’etre” of the study of emergentism [Kim, 1992]. It refers

to the causal power the emergent phenomena exerts on the constituent parts at the micro-level

and it is chiefly because of this causal influence that researchers wish to understand the process.

Its existence creates a bi-directional link between the two levels of the system, with the micro-

level causing the emergents at the macro-level and the emergents subsequently constraining

or influencing the constituent parts. Kim criticised the coherence of the notion of downward

causation, claiming there was something “circular” about it [Kim, 1999]. Despite this criticism,

downward causation is a widely accepted feature of emergence [Heylighen, 2001, El-Hani and

Pihlström, 2002, Chalmers, 2006] and it is illustrated, for example, in the relationship between

an individual car and a traffic jam.

Bedau highlights that emergent phenomena are generated by and constituted from the under-

lying processes, while simultaneously being somehow autonomous from those processes [Bedau,

1997]. He argues that these two hallmarks seem to make emergent phenomena inconsistent or

illegitimate and that any philosophical defence of emergence requires that this seeming contradic-

tion be addressed. To achieve this, he proposed a distinction between weak and strong emergence

before later adding nominal emergence [Bedau, 2002].
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Nominal Emergence is the simplest notion and refers to any property that can be possessed

by macro phenomena that cannot be possessed by agents at the micro-level. The weakness of

this definition is its breadth, essentially representing a super-set of all phenomenon that appear

at the macro-level of a system. For instance, it would include both emergents and resultants

referred to by Lewes [Lewes, 1875].

Strong Emergence is the most stringent type of emergence identified by Bedau, requiring

that the emergents are supervenient and have irreducible causal-powers. To parse this, super-

venient refers to the the emergent property being caused by or determined by the micro-level

of the system. Causal-powers means that the emergent properties at the macro-level causally

affects both the macro-level itself and the micro-level, through downward causation. However,

in strong emergence the causal powers cannot be reduced to the causal powers exerted by the

micro-level. This idea of emergence existed before Bedau, and is criticised for the sense that the

causal powers of the macro-level are somehow gotten for free. As Kauffman [Kauffman, 1995]

points out, “what extra can be in the whole that is not in the parts”? Bedau asserts that strong

emergence should be embraced if there exists compelling evidence to support it, but concludes

that the elusiveness of its causal powers means that it cannot be studied scientifically.

Weak Emergence is an intermediary level between nominal and strong emergence [Be-

dau, 2002]. A phenomenon is weakly emergent if it can be derived from the dynamics of the

micro-level of the system, but only through simulation. Downward causation still exists in weak

emergence however, it differs from strong emergence in that weak emergent causal powers can

be explained from the causal powers of the micro-level components, but only in a complicated

fashion (simulation). This complicated fashion means that the phenomenon cannot be explained

merely as a resultant of the micro-level and, therefore, the phenomenon is more than nominally

emergent. Bedau identifies ocean waves, traffic jams and vortexes as plausible candidates of

weakly emergent phenomena [Bedau, 2002].

2.1.3.2 Observer Based Classification

The observer of the emergent behaviour or property is a key consideration when considering

emergence. For example, the novelty of emergent behaviours and properties to the observer has

been used by Ronald et. al as an attempt to design a formal test for emergence [Ronald et al.,

1999]. De Haan describes three types of emergence that are dependent on the location and role
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of the observer of the phenomenon [De Haan, 2006].

Discovery Emergence is emergence viewed by an external observer of the system. The

property or behaviour must be irreducible to the constituent parts and only attributable to the

system as a whole. The observer does not need to view or consider the micro-level components

to observe the emergent behaviour or property, as the impact of downward causation is not felt

at the micro-level. De Haan suggests fractal patterns in coastlines or river basins as an example

of this emergence.

Mechanistic Emergence is similar to discovery emergence in that it once again involves an

external observer. However, the key difference is that the observer can no longer just reference

the macro-level alone to describe the emergent behaviour and must also make reference to the

micro-level. The reason for this is that the components of the system are not oblivious to the

emergent phenomenon and instead are influenced by it through downward causation. An example

of this type of emergence is flocking behaviour in birds or the exchange value in financial markets.

Reflective Emergence refers to the case where the observers of the emergence property are

themselves part of the system, so no external observer is required. The constituent agents are

able to observe the emergent behaviour or properties they produce and they use this information

to adapt or alter their behaviour as a result. This emergence results in the systems as a whole

becoming reflexive, a feature that also makes it the most philosophically troubling. This occurs

because the macro-level now has a causal affect on the agents on the micro-level, causing the

agents to learn and adapt their behaviour in response to the detected emergent behaviour. This

adapted behaviour can in turn impact the emergent behaviour closing the circle of causality

between levels.

Muller uses the identity of the observer to distinguish between weak and strong emergence

in a manner similar to De Haan’s mechanistic and reflective emergence [Muller, 2004]. Weak

emergence refers to scenarios where the observer is external to the system looking at the

overall system state from a global viewpoint, for example, a human being observing a flock of

birds flying in formation. In contract, strong emergence, occurs when the agents themselves

are the observers of emergence, identifying a phenomenon at the macro level that represents

an evolution in the system they participate in. Returning to the flocking example, individual

birds would identify the emergence of the flocking behaviour. However, the agents’ ability to

act as emergence detectors requires that their view must be sufficiently broad to be capable of
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identifying the phenomenon as global rather than local.

2.1.3.3 Hybrid Classification

A hybrid classification is provided by Fromm in the context of multi-agent systems, with both

feedback from downward causation and the role of the observer explicitly incorporated into a

taxonomy [Fromm, 2005]. This categorisation is a more general evolution of that proposed by

Bar-Yam, who outlined a mathematical theory for representing emergent properties of a system

by measuring entropy at different levels of abstraction [Bar-Yam, 2004]. Fromm identifies 4 broad

categories of emergence, each of which can contain sub-types.

Type-I emergence corresponds to nominal emergence described by Bedau [Bedau, 2002],

with no downward causation from the macro-level to the micro-level. It has two sub-types, the

first of which refers to scenarios where the emergence is an intended emergent property of the

planned interactions of the parts. An example is the function of a machine, which is an emergent

property of its components. The second sub-type is when the emergence is unintentional, such

as the thermodynamic properties of pressure, volume and temperature.

Type-II emergence involves downward causation from the macro-level of the system. Fromm

refers to this as weak emergence and provides how a shoal of fish influences the motions of each

participating animal as an example. This type of emergence is broadly predictable however,

the causal effect of both system levels on one another means that it cannot be predicted in

every detail. The first sub-type is when the feedback from the macro-level is negative and acts

to constrain the actions of the agents, such as ant colonies and flocking behaviour. A second

sub-type refers to when the feedback is positive, for example a stock market bubble, with agents

imitating others instead of acting independently.

Type-III emergence refers to scenarios with multiple feedbacks, learning and adaptation.

This type of emergence is chaotic and not predictable due to the complex way these feedback

loops interact across levels. The first sub-type refers to a combination of feedbacks similar to

those described in Type-II. These can cause chaotic or oscillating behaviour such as, for example,

in Conway’s Game of Life [Gardner, 1970]. The second sub-type is similar to De Haan’s reflective

emergence [De Haan, 2006], with the agents sensing and reacting to the emergent phenomena.

Type-IV emergence is strong emergence in the classical sense, as described by Bedau [Bedau,

2002]. Strong emergent properties cannot be reduced, even in principle, to the cumulative effect
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of the component parts. Fromm cites life as a strong emergent property of genes and proteins and

culture as a strong emergent property of memes, language and writing [Fromm, 2005]. However,

Fromm states that there is nothing magical about the process, and instead it is the result of very

complex phenomena occurring at multiple scales.

2.1.3.4 Emergence and this thesis

This section presented a number of emergence classifications based on the extent of downward

causation from the macro-level in the system, and the identity and role of the observer of the

emergent phenomenon. Fromm’s taxonomy combines both considerations and can therefore be

considered the most complete categorisation of emergence presented. However, despite this, there

is a large degree of agreement across each classification with, for example, Fromm’s Type-II and

Type-III emergence being respectively comparable to the mechanistic and reflective emergence

described by De Haan. These classifications highlight that the observer of emergence can be

either outside the system or inside it. External observers can see the entire system and therefore

view the macro-level behaviour, while the presence of downward causation provides constituent

agents with a means of detecting the presence of emergence.

The focus of this thesis is investigating ways of detecting emergence at runtime without

using an external or global observer. As such, the emergence of interest is that which can

be sensed by agents through downward causation, with the expectation that by detecting the

presence of emergence, agents can take steps to mitigate or leverage its effects. This work is

therefore positioned in the gap that exists between Type-II (mechanistic) and Type-III (reflective)

emergence, where feedback exists from the macro-level to the micro-level and the observer. Both

De Haan and Fromm state that systems capable of Type-III emergence are true examples of

complex adaptive systems [De Haan, 2006,Fromm, 2005].

2.1.4 Emergence and Self-Organisation

Self-organisation is a concept that is often conflated with emergence, however there are key

distinctions between them [De Wolf and Holvoet, 2005]. Like emergence there is a number of

different definitions across literature for self-organisation. The following does not aim to provide

a new definition of self-organisation but instead to differentiate it from emergence and present a

working definition in the context of this thesis.
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Gershenson and Heylighen describe self-organisation as the process where global order is

created from local interactions [Gershenson and Heylighen, 2003]. Similarly, Rocha defines it

as the “formation of well organized structures, patterns, or behaviours, from random initial

conditions” [Rocha, 1998]. In this sense, self-organisation can be thought of as the process

through which macro-level patterns and mechanisms arise in the system, while emergence refers

to the fact that the pattern or structure appeared without being represented at the micro-level

of the system [Di Marzo Serugendo et al., 2006].

The novelty or irreducibility of the structure is not necessarily considered in self-organisation

while it is a fundamental requirement for emergence. In addition, although micro and macro-

levels of the system are at least implicit in the definitions, no reference is made to any causal

link from the macro-level to the micro-level. To put this another way, the presence of downward

causation is not necessary. De Wolf and Holvoet state that decentralised control across the

agents is not essential for self-organisation, while also asserting that both self-organisation and

emergence can occur independently of one another [De Wolf and Holvoet, 2005].

As with emergence, a lack of external control or input is a core requirement for a system to

possess self-organisation. For example, De Wolf and Holvoet explicitly refer to this feature when

describing self-organisation as “a dynamical and adaptive process where systems acquire and

maintain structure themselves, without external control” [De Wolf and Holvoet, 2005]. Similarly,

Di Marzo Serugendo et. al assert that self-organisation requires that the global system structure

comes about without explicit control or constraint from outside the system [Di Marzo Serugendo

et al., 2004].

For the purpose of this thesis, self-organisation refers to the ability of the system function

without external control. Emergence refers to macro-level behaviour and properties arising out

of the local actions and interactions of the agent, with a more detailed definition described in

Chapter 3 (cf., Section 3.2.2).

2.1.5 Summary

This section outlined the history of the concept of emergence and described the widely accepted

features of emergence. These characteristics make emergence difficult to study as the emergent

property and behaviour is irreducible to the properties of the constituent agents of the system.

This irreducibility and novelty means that emergence is unpredictable, both in terms of when
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and how the emergence will arise. Emergence can be either harmful or beneficial to the overall

system or the individual agents however, the absence of decentralised control and the non-

linear behaviour and interactions of the agents mean detecting emergence is a challenge. After

introducing emergence and its characteristics, the techniques used to study emergence were

outlined, with four research fields giving rise to the science of complexity theory. After this,

different categorisations of emergence were presented demonstrating the importance of downward

causation and the identity of the observer in the context of emergence. With this background

established, the work described in this thesis was positioned in the gap between Fromm’s Type-II

(mechanistic) and Type-III (reflective) emergence, where feedback from the macro-level influences

the agents at the micro-level and the agents themselves act as observers.

In the next section, the systems that are the focus of this thesis, complex adaptive systems,

are described along with computer simulation techniques used in their study. Particular emphasis

is placed on multi-agent systems, which are used throughout the rest of this thesis.

2.2 Complex Adaptive Systems

This section introduces the systems that are the focus of this thesis, complex adaptive systems. It

describes the features of these systems and illustrates how these characteristics allow emergence

to occur. In addition, the computer simulation techniques used to model and study these systems

are described, with emphasis placed on multi-agent systems, which are used in the rest of this

thesis.

2.2.1 Introduction

Complex adaptive systems (CAS) are composed of interacting adaptive autonomous entities,

called agents, that produce dynamic patterns and structures [Page, 2010, Dooley, 1996]. This

evolution is in the form of adaptations with agents changing their properties or behaviours as

they accumulate experience in the system [Gell-Mann, 1994]. A significant proportion of this

adaptation effort is spent adapting to other adaptive agents in their environment. The interaction

of these multiple adaptation mechanisms makes these systems complex and difficult to study

[Holland, 1992]. In his seminal work on the field, Holland identified seven basic characteristics

of CAS, consisting of four properties and three mechanisms [Holland, 1995]. These are:
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• Aggregation: property Complex large-scale behaviours emerge from the interaction of

less complex agents in the system. Control of these interactions is distributed with the

system containing no-global controller [Arthur et al., 1997]. Such aggregates can act as

“meta-agents” at higher levels in the system, possessing greater intelligence and flexibility

compared to its individual constituents. An example provided is an ant nest, which is more

adaptive and robust compared to individual ants.

• Non-linearity: property Agents interact in dynamic and non-linear ways, with reinforce-

ment of chance events leading to an enormous number of alternative development pathways

for the system [Levin, 1998]. These non-linear interactions have the effect of making the

behaviour of the aggregate more complicated than would be expected if only the sum of all

interactions was considered. Levin also points out that these interactions between agents

are local [Levin, 1998].

• Flows: property Agents organise into networks of interaction in which one interaction may

trigger other interactions. These flows of interaction can have a multiplicative effect when

an agent inserts a new resource into the system, such as money, goods or a message. It is

also possible for the effect to be a re-cycling effect, when the network contains a cycle.

• Diversity: property Agents evolve to fill diverse niches, which depend upon their interac-

tions with other agents. An example provided is insects in a rainforest, which mimic their

environment to avoid predators. In addition, diversity allows that if one type of agent is

removed from the system, the system responds with a “cascade” of adaptations to fill the

gap left.

• Tagging: mechanism Agents can be differentiated from one another based on the proper-

ties they possess. Gell-Mann refers to this characteristic as identification, where regular-

ities can be differentiated from randomness in the environment [Gell-Mann, 1994]. This

allows aggregation to occur because it facilitates selective interactions, providing a basis

for filtering, specialization and cooperation. As a result, the tagging mechanism leads to

hierarchical organisation in the system.

• Internal Models: mechanism Agents possess internal representations of themselves and

the system, that allows them to exploit the regularity of their interactions with others.

Gell-Mann refers to these internal models as “schema” which compress regularities and
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are improved through adaptation and evolution [Gell-Mann, 1994]. These representations

enable the agent to anticipate, either implicitly or explicitly. An example is how a bacterium

follows a chemical gradient, implicitly anticipating food lies in that direction,

• Building Blocks: mechanism Agents are presented with repetition, allowing internal

models to be built. This repetition also allows for experience to be gained where the agent

can, over time, decompose complex situations into parts. This decomposition allows the

experience gained to be used elsewhere, in novel situations.

There is similarity in the terminology used to describe the properties and mechanism of CAS

and the characteristics of emergence that were outlined in Section 2.1.1. This is unsurprising

given that CAS are studied in the context of emergence however, it provides some clarity into how

emergence arises in these systems. Examples of CAS are abundant and varied. They include:

the internet [Rupert et al., 2008]; economies [Tesfatsion, 2003]; pedestrian crowds [Vizzari et al.,

2013]; the nervous system [Koch and Laurent, 1999]; traffic systems [Wang, 2010]; and flocking

behaviour [Niazi and Hussain, 2011].

2.2.2 Modelling CAS

Computer simulated models play a significant role in investigating CAS [Miller and Page, 2009].

These models reduce the system to its most essential parts which simplifies the system while

simultaneously retaining the features of CAS such as non-linear interactions and aggregate be-

haviour. They additionally allow the system to be observed repeatedly in a controlled environ-

ment therefore facilitating detailed experimentation. Brownlee identifies a number of modelling

techniques used by researchers in the field [Brownlee, 2007]. The following sections review the

most common computer simulation techniques used for studying CAS.

2.2.2.1 Cellular Automata

Cellular automata (CA) are mathematical models of complex natural systems containing a large

number of identical components that interact locally [Wolfram, 1984]. Both space and time are

discrete, with space partitioned into distinct units called “cells” which can be in one of a finite

number of states at any one time [Langton, 1990]. The state of any cell at time t is a function

of its own state and the state of its immediate neighbours at time t − 1. Each model of CA is

deterministic with the initial state of all cells determining the future evolution of the system.
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Fig. 2.1: Conway’s Game of Life: These mathematical models demonstrate the formation

of coherent patterns from local interactions [Cornell, 2015].

A famous example of CA is Conway’s “Game of Life” [Gardner, 1970], illustrated in Figure 2.1,

where coherent patterns such as “gliders” and “oscillators’ seem to move across the system even

though the individual cells are stationary. The rules are simple, with a cell turning on (alive) if the

number of its direct neighbours is neither too small nor too large. Conversely, cells die if too few

of their neighbours are on (loneliness) or if too many are on (overcrowding). CA have frequently

been used to simulate CAS [Hoekstra et al., 2010]. Specific examples include the immune system’s

response to the AIDS virus [Grilo et al., 2002], communications systems [Goldenberg et al., 2001]

and social systems [Miller and Page, 2009].

2.2.2.2 Artificial Neural Networks

Artificial neural networks (ANN) are a form of statistical learning models that are inspired by

biological networks. Their structure facilitates adaptation to occur while the model is learning,

with the ultimate goal of estimating a function given a set of inputs. They are composed of

an interconnected group of nodes, called neurons, whose structure changes during the learning

process. The network takes a set of inputs and through one or more hidden layers, computes a

series of outputs. This is illustrated in Figure 2.2, with each circle representing a neuron and the

lines between them representing weights. The strength of these connections fluctuates during the

training phase as each new set of inputs generate certain outputs. Once the training is complete,

these weights will determine the output that will be generated, representing the solution with

the highest probability of success.
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Input Hidden layer Output

Fig. 2.2: Neural Network: An example of a neural network with input, hidden layer and

output.

They have been applied to a variety of different problems such as handwriting recognition [Le-

Cun et al., 1989], electricity load forecasting [Park et al., 1991] and in clinical medicine [Baxt,

1995]. The number of connections between neurons and the ability to have an unlimited number

of hidden layers means that ANN’s can produce complex global behaviour that emerges from

the interactions of the neurons [Goh, 1995]. They have been used in the study and control of

systems such as traffic management [Ledoux, 1997], organisational cybernetics [Alvarez-Molina

et al., 2014], autonomous robots [Ramdane-Cherif, 2007] and the response of ecologies to climate

change [Poff et al., 1996].

2.2.2.3 Learning Classifier Systems

Learning classifier systems (LCS) are a machine learning technique which combines reinforce-

ment learning, genetic algorithms and other heuristics to produce adaptive systems [Bull, 2004].

Introduced by Holland [Holland, 1976, Holland, 1980], they are a rule-based system with mech-

anisms that allowed rules to be processed in parallel, where rules are tested and new rules are

created through adaptation [Booker et al., 1989]. The conceptual architecture of Holland’s LCS

is illustrated in Figure 2.3, where the LCS receives input from its environment that are stored

in a message list. A list of N condition-action rules make up the rule-base, and this is scanned

when new input arrives to determine which conditions match the input. All matching rules are

selected to create a match-set of length M , and a rule is selected from this match-set to become

the system’s action, based on a bidding mechanism. If a reward is generated by the environment
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Fig. 2.3: Holland’s Learning Classifier System: The architecture of a learning classifier

system [Bull, 2004].

then it is assigned to the winning rule which generated the action. A steady state genetic algo-

rithm (GA) is applied to the rule-set periodically where parent-rules are selected at random and

new offspring are produced based on mutation and crossover. These new rules are inserted into

the rule-set replacing existing rules.

LCS are used to solve problems that involve classification or can be constructed as a rein-

forcement learning problem [Whitehead and Ballard, 2014]. They can also be used in a predictive

framework where the goal is to predict future environment states or properties [Woźniak et al.,

2014]. Applications of LCS in CAS like systems include simulating the immune system and HIV

in conjunction with cellular automata [Tay and Jhavar, 2005]. They have also been used to

control traffic signals [Bull et al., 2004] and to devise stock trading strategies [Liao and Chen,

2001].

2.2.2.4 Agent-based Modelling and Simulation

Agent-based modelling and simulation (ABMS) [Kauffman, 1993,Holland, 1995] is an approach

to modelling CAS composed of interacting autonomous agents. As the name suggests, agents

are the foundation of this technique where a bottom-up approach allows self-organisation and

emergence to be observed in these models. Each agent is self-contained and can be identified from

other agents [Macal and North, 2010]. A set of relatively simple rules is used to describe each

agent’s behaviour and interactions with other agents. Agents in the model share an environment

and it is also possible for interactions to occur between an agent and its environment. Agents

28



Chapter 2. Related Work

can be goal-directed or have the ability to adapt its behaviour as the system evolves.

ABMS allow elements such as game theory [Bonabeau, 2002], sociology [Macy and Willer,

2002], evolutionary programming [Galván-López et al., 2014] and Monte Carlo methods [Am-

brose and Grasela, 2000] to be incorporated allowing complex individuals such as humans to

be modelled. This versatility and bottom-up approach has meant that ABMS have been used

extensively in the study of CAS with the concept of modular interacting agents providing a neat

abstraction of the composition of CAS [Jennings, 2001]. Examples of their application to CAS

include the economy [Farmer and Foley, 2009], the Smart Grid [Taylor et al., 2014] and air

transportation [Bouarfa et al., 2013]. ABMS has strong roots in the fields of multi-agent systems

(MAS) and artificially intelligent robotics [Macal and North, 2005]. MAS is used through this

thesis for simulation and evaluation and it is discussed in greater detail in the next section.

2.2.3 Multi-Agent Systems

A multi-agent system (MAS) is defined as “a loosely coupled network of agents that interact to

solve problems beyond the individual capabilities or knowledge of each agent” [Sycara, 1998].

As with CAS, the foundational component of a MAS is an agent. An agent is defined as an “a

computer system that is situated in some environment and that is capable of autonomous action

in this environment in order to meet its delegated objectives” [Wooldridge, 2009]. These agents

can also be “intelligent”, referring to agents that pursue goals and execute actions that try to

optimize given performance measures [Weiss, 1999].

Figure 2.4 provides an abstraction of the relationship between an agent and its environment,

with the agent obtaining percepts of information through a set of sensors and acting on the

environment through a set of effectors. The agent’s environment includes other agents in the

system and the ability to interact with other agents is a key capability. Interactions refer to the

ability of agents to affect on another in pursuing their goals or executing tasks [Weiss, 1999].

This interaction can be in the form of direct communication, such as exchanging information in

a shared language. Interactions can also occur indirectly through the environment, such as one

agent observing another or stigmergy, where agents deposit a substance called a pheromone into

the environment that can be sensed by other agents [Grassé, 1959,Dorigo et al., 2000].

Sycara identifies four characteristics of MAS. First, each agent has incomplete information

or capabilities and thus a limited view of the system. Second, control is distributed across
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Fig. 2.4: MAS Agent: The agent acquires information from its environment through sensors

and produces actions as output that affect the environment [Russell et al., 1995].

the constituent agents with no central global controller. Third, data are decentralised in the

system. Finally, computation is asynchronous across the agents. These characteristics make

MAS a suitable way of means of approximating CAS and for studying emergence and self-

organisation [Holland, 2000,Dessalles et al., 2007,Noel and Zambonelli, 2014,Zambonelli et al.,

2015,Lopez, 2015]. MAS have been used to simulate a variety of CAS exhibiting emergence such

as flocking [Olfati-Saber, 2006], ant colonies [Xiang and Lee, 2008], swarm dynamics [Das et al.,

2014], pedestrian counter-flows [Procházka and Oľsevičová, 2015], traffic management [Arel et al.,

2010] and culture [Morris et al., 2014].

Bernon et al. describes five mechanisms used in research to generate self-organisation in

MAS, where emergence may also exist as a consequence [Bernon et al., 2006,Di Marzo Serugendo

et al., 2006]. These self-organising mechanisms include forms of interaction, direct or indirect,

as well as engineering cooperation and reinforcement between agents to achieve a desired global

behaviour. Fernandez-Marquez et al. present a catalogue of bio-inspired mechanisms in the

form of design patterns to ease the engineering of artificial systems with self-organisation and

emergence [Fernandez-Marquez et al., 2012]. These patterns are organised into layers with basic

patterns such as spreading and aggregation forming the foundation for higher-level patterns such

as flocking and quorum sensing.

Cooperation between agents provides the foundation for the Adaptive Multi-Agent-System

(AMAS) theory [Gleizes et al., 1999], where a desired collective behaviour emerges as a result of

cooperation between agents. Each agent in the system has the ability to adapt its interactions
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with other agents and the environment based on knowledge it has gained during the systems

evolution, how it perceives other agents and the goal it seeks to achieve [Capera et al., 2003].

Agents possess local cooperation rules that enable it to detect and solve Non-Cooperative Situa-

tions (NCS), which indicate cooperation protocols have not been obeyed or that an unpredictable

situation has arisen [Bernon et al., 2005]. The AMAS framework enables bottom-up engineer-

ing of systems to achieve a desired global function, however no attempt is made by the agents

to detect when emergence has occurred so harnessing or controlling emergent behaviour is not

addressed [Di Marzo Serugendo et al., 2006].

The Self-aware Pervasive Service Ecosystems (SAPERE) project [Sapere, 2015] provides a

nature-inspired coordination framework to support the design and development of composite

pervasive service systems [Zambonelli et al., 2011]. The approach positions adaptive capabilities

in the overall self-organizing dynamics of the system rather than in individual components [Zam-

bonelli et al., 2015,Montagna et al., 2012]. Its model is based on an assumption of spatially-based

local interactions where agents can combine with each other to serve their own needs as well as

those of the overall environment to create a “computational ecosystem”. Interaction and coor-

dination between agents are governed using eco-laws which define how agents can discover local

or remote information and services as well as how information can be aggregated across agents.

These laws form the foundation for a set of patterns that enable self-organisation and situational

awareness across agents, however no attempt is made to detect unexpected emergent behaviour

in the system [Zambonelli et al., 2015].

Paunovski et al. identify three properties common in MAS that exhibit emergence [Paunovski

et al., 2009]. The first is that agents are mobile and can reposition themselves in the environment.

Second, agents have the ability to influence the environment either through self-replication,

stigmergy or by interacting with others. Finally, there exists the ability to distinguish between

groups and individuals, for example a flock of birds or a lane of pedestrians. This is a similar

observation to that made by Fromm who noted that in MAS with emergence we, the observer,

can identify various levels of spatial resolution [Fromm, 2005].

This form of emergence is illustrated in Figure 2.5, where a MAS simulation of boid flocking

is shown [Reynolds, 1987]. The coherent flocking behaviour apparent in the image on the right

is generated through simple local interactions as agents move in the environment to both avoid

each other and align their speed and heading. This spatial emergent behaviour has been studied
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Fig. 2.5: Multi-Agent Flocking: The image on the left demonstrates no emergent behaviour.

The image on the right demonstrates emergent flocking behaviour.

in a diverse set of MAS, such as the warehouse location problem [Chatty et al., 2013], pedes-

trian counter-flow [Procházka and Oľsevičová, 2015] and swarm behaviour [Minar et al., 1996] .

MAS was chosen as the means of simulating emergence and evaluating the performance of the

distributed algorithm, DETect, that is described in this thesis. Informed by other researchers in

the field, emergence in the form of spatial behaviour and patterns is considered, as defined in

greater detail in Chapter 3 (cf., Section 3.2).

2.2.4 Summary

This section introduced systems composed of interacting adaptive autonomous agents known as

complex adaptive systems (CAS). Emergence is a hallmark of CAS with dynamic patterns and

structures appearing at the macro-level of the system as a result of interactions of the agents

at the micro-level. The characteristics of these systems were described, which consist of four

properties and three mechanisms. These characteristics are similar to those used to describe

emergence, illustrating how emergence can form in these systems. Next, a variety of techniques

for studying CAS using computer simulation were described. In particular, focus was placed

on multi-agent systems (MAS) as a simulation tool, introducing its fundamental features and

describing the type of emergence, spatial behaviour and patterns, that is typical in MAS. This

background positions the research in this thesis, identifying the type of simulation and type of

emergence that will be referred to in the rest of this thesis.
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2.3 Detecting Emergence

Emergence can be both beneficial and harmful to the system and the constituent agents. As a

result, detecting emergence when it occurs is desirable to enable actions to be taken to either

leverage or mitigate the emergent behaviour or properties. In Section 1.3 the set of challenges

presented by emergence detection in CAS were described, which included the decentralised nature

of these systems and that emergence arises from unpredictable non-linear interactions between

autonomous agents. In addition, the unpredictability of emergence means that knowing what

to look for is not always obvious, while the dynamic nature of emergence means that detection

should be timely to allow appropriate action to be taken. In this section, existing emergence

detection techniques are presented and analysed with analysis informed by these challenges. The

three categories of emergence detection techniques identified by Teo et al. are used to structure

the analysis of the literature [Teo et al., 2013]. In each case, individual examples are described

before the overall strengths and weaknesses of the approaches are discussed.

2.3.1 Variable based approaches

Variable based approaches employ system wide variables and statistical analysis to determine the

existence and extent of emergence in a system. Such approaches are similar to the work described

in this thesis and allow detection of emergence to occur at runtime. A major difference is that

they assume that the global state of the system can be characterised by an observed variable or

set of variables, with the presence of emergence concluded when these variables exhibit specified

properties. Additionally, detection is done in a centralised fashion with a single, typically exter-

nal, component undertaking the evaluation. These approaches can be sub-categorised into those

that are based on entropy and those that are based on other types of system variables.

2.3.1.1 Entropy Based

The concept of entropy originated in the field of thermodynamics in the mid-19th century [History

Of Entropy, 2015]. It was a response to observations that some energy released in combustion

reactions is always lost to dissipation and therefore is not available for useful work. Entropy

became the measure of this lost energy and is commonly understood as a measure of disorder in a

system. In the field of information theory, Claude Shannon developed the concept of information

entropy [Shannon, 1948], an analog of classical thermodynamic entropy, and the basis for the
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detection techniques discussed here. Shannon’s entropy is described in equation 2.1, and it is a

measure of the uncertainty or unpredictability of a system in respect to a certain variable, X,

H(X) := −
∑
x∈X

Pr(x)logPr(x) (2.1)

Mnif and Muller-Schloer define emergence as the formation of order from disorder based on

self organisation [Mnif and Muller-Schloer, 2006]. This order relates to the coherent behaviour,

structure or property that represents emergence at the macro-level of the system. The authors

propose that emergence can therefore be quantified as a function of the system entropy, measured

for a number of system specific attributes, from the beginning of its process and at its end. The

measurement requires some level of abstraction in the observation model that will automatically

lead to a lower entropy value even when there is no change in the system. Emergence is therefore

the unexplained difference in entropy in the system once this change in abstraction level is

accounted for. The approach is applied in a simulation of bird swarms with states containing

clusters of birds demonstrating a higher degree of order in their positions compared to when no

clustering was present.

Fisch et al. propose an extension to Mnif and Muller-Schloer, enabling multiple continuous and

hybrid system variables to be used in the entropy calculation [Fisch et al., 2010]. Continuous

variables are incorporated using density functions with Hellinger divergence (Equation 2.2) used

to measure the difference between historic, p, and current, q, density functions of the same

variable, x. These variables are assumed to be output from a process under observation. This

approach gives a measure of the degree of emergence on a scale between 0 and 1, with values

close to 0 indicating no emergence in the system.

Hel(p, q) =

√
1−

∫ √
p(x)q(x)dx (2.2)

Procházka and Oľsevičová focus on self-organisation of pedestrians into emergent counter-

flows in a qualitative microscopic pedestrian simulation [Procházka and Oľsevičová, 2015]. The

authors observe the difference in entropy in the system when these emergents are present com-

pared to periods when agents undertake a random walk. Information entropy is calculated as a

function of the number of agents in environment segments and whether they are currently in a

lane or not. A lane is deemed to exist if a certain threshold of agents are moving in the same
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direction with a maximum distance and offset angle between them, and no other agents moving

in the opposite direction exist between them. The entropy calculation is updated periodically as

each simulation runs, with the system entropy dropping during periods of counter-flow compared

to periods of random walks.

Shalizi and Moore detect emergence by the ratio between the statistical complexity of the

system and the predictability of the macro-level system state [Shalizi and Moore, 2003]. This

is done by characterising emergence as the relationship between two sets of variables where a)

one set of variables is a coarse-graining of the other and b) the coarse-grained variables can be

predicted more efficiently than the fine-grained. Thus in a system, the coarse grained variables

correspond to those variables that describe the macro-level of the system, with the second set

describing the micro-level.

Holzer outlines a mathematical model for discrete complex systems that uses information en-

tropy to define the level of autonomy and emergence in the system [Holzer et al., 2008]. This

technique uses a directed graph to model interactions between agents in the system with each

vertex corresponding to an agent and each edge corresponding to an interaction. To evaluate

emergence, the level of information of all edges is compared to the level of information con-

tained in each single edge. The ratio between these two information measures gives a measure

of emergence in the system. The feasibility of the approach is demonstrated in the context of

self-organised slot-synchronization in wireless networks.

2.3.1.2 Non-Entropy Based

Seth [Seth, 2008] uses a combination of linear and non-linear time series analysis, based on

Granger Causality (G-causality) [Granger, 1969] to achieve emergence detection. This technique

is inspired by Bedau’s contention that emergence is both caused by and autonomous from the

underlying agents of the system. The author defines a macroscopic property, such as the centre

of a flock of birds, to be emergent when it is both statistically autonomous of, and statistically

caused by, the microscopic properties (individual position of each bird). According to G-causality,

a variable Y causes X, if including historic values of both Y and X in a linear regression model,

reduces the prediction error of future values of X compared to just using historic values of X.

A variable, X is said to be autonomous if including its own historic values in the model reduces

prediction error compared to using a model composed of past states of other “external” variables.
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Niazi and Hussain present the SECAS framework, which uses a distributed set of sensors to

collectively sense the complex behaviour [Niazi and Hussain, 2011]. Their hypothesis is that

emergent behaviour can be perceived through an environmental change by the sensors. These

values can be used in an aggregation function to reflect the emergent effect as a manifestation

of the global environmental change. Using boid flocking as an example scenario, the sensors are

equipped with a proximity sensor that indicates if an agent is nearby at time t. The expected

emergent behaviour, flocking, means that the agents will get close to one another and, as a

result, the number of sensors detecting agents nearby will reduce. The sensors proximity status

is counted centrally with the expected emergent behaviour said to have occurred when the number

of sensors with agents nearby is consistently lower than the total number of sensors.

Grossman et al. present “Angle”, a hierarchical framework to detect emergent and anomalous

behaviour in distributed clustered systems [Grossman et al., 2009]. The framework’s architecture

contains three types of nodes; sensor nodes which collect IP data, cloud nodes which run cloud

based services and grid nodes which are pools of nodes running grid services. The detection is

undertaken by the sensor nodes which monitor events occurring across temporal windows. The

events for each window are collected and a feature vector is computed creating a model of that

window. This model is compared to previous models with emergence being defined to occur

when a model represents an outlier from previous models.

De Wolf et al. present a hybrid method for providing guarantees about system-wide behaviour

in decentralised autonomic computing systems [De Wolf et al., 2005]. Their approach allows

users to observe the evolution of macro-level properties when accurate models of micro-level

properties are provided. It requires users to have knowledge of relevant variables in advance and

that system-wide variables are obtainable.

Chan outlines an approach to emergence detection that is inspired by the fundamental impor-

tance of agent interactions in creating emergence in any system [Chan, 2011]. The framework is

designed for agent-based simulations with detection facilitated by globally monitoring the num-

ber of interactions and state changes across all agents in the system. This creates a time-series

metric of interactions with emergence said to exist when this interaction metric departs from

normality. The author demonstrates the approach using three simulation models, game of life,

boid flocking and brownian motion.
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Birdsey and Szabo propose an architecture for identifying emergent behaviour in a multi-agent

system as it occurs [Birdsey and Szabo, 2014]. The approach contains three stages; modelling,

metric collection and, analysis and visualisation. The model specifies the system and the agents,

while a set of metrics are collected and aggregated centrally at regular intervals during simula-

tions. During analysis, the collected metrics are compared against either previous known system

states that exhibited emergence, or a set of specific threshold values identified by a system ex-

pert. This approach allows for different metrics to be used depending on the specific system

under study. The authors demonstrate the feasibility of the approach using boids flocking, with

the specific metric, agent interactions, being modelled as a graph where each node represents an

agent and a weighted edge represents the strength of interaction between two agents. Using the

Hausdorff distance [Huttenlocher et al., 1993], a metric that is used to measure how similar two

graphs are, simulations states containing visual flocking behaviour were shown to be closer to

baseline states with flocking behaviour, identified by a system expert, compared to simulations

states without visual flocking.

2.3.1.3 Summary

Variable Based Approaches characterise emergence using one or more system variables and use

statistical and information theory techniques to determine when emergence has occurred in the

system under observation. Information entropy is a common metric used to indicate emergence

in these techniques (see Section 2.3.1.1). Variable-based approaches allow emergence detection

to occur at runtime, assuming that the relevant system variables have been identified and can

be observed.

A common drawback to each of these approaches however, is that they depend on knowledge

of the global system state to calculate these measures. This is achieved using an omniscient

centralised controller, violating the decentralised nature of CAS, and effectively means that

detection must take place outside the system. This is illustrated by Seth’s approach which, for a

boid flocking model, requires the individual position of each agent and the centre of the flock to

be known [Seth, 2008]. Entropy based approaches require a similar level information to calculate

the information entropy of the entire system.

Niazi and Hussain and Grossman et al. use a more distributed architecture with the informa-

tion collected by a collection of static “lookout” sensors [Niazi and Hussain, 2011,Grossman et al.,
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2009]. However, as with the other approaches described here, the processing of the collected data

is done using some central sync-node. These sensors can be considered as an intermediary be-

tween the micro-level and the central controller and allow for the possibility that the constituent

agents of the system could be informed of the emergence once it has been detected.

Another limitation of these approaches is that the specific variables needed for analysis must

be known in advance. This assumes that these variables can be known and, more fundamentally,

that the specific emergent behaviour or properties are predictable. However, as discussed in

Section 2.1, this may not always be possible given the unpredictable and non-linear nature of

both emergence and CAS. The most generic metric used is the interaction metric suggested by

Chan [Chan, 2011] as it can theoretically be applied across different systems, however it requires

that what constitutes an interaction is specified for each system. Moreover, it requires extensive

knowledge of all aspects of the system and its constituent agents to compute.

2.3.2 Formal approaches

A second category of techniques use formal language and modelling approaches to facilitate

detection. These approaches can be sub-categorised into those that are intended for design time

use, to predict the possibility of emergence, and those that are intended for run time to detect

if emergence has occurred.

2.3.2.1 Design Time Verification

Kubik provides an early example of this design time verification inspired by the notion that

emergence is greater than the sum of the parts [Kub́ık, 2003]. The author uses a formal gram-

mar to characterise basic (weak) emergence in multi-agent systems (MAS), with each agent’s

behaviour being defined by a language. This specifies what actions an agent can take, what

states it can enter and what effect it can have on the environment. A superimposition over all

permutations of each agent’s language gives a sum of agent behaviour. At the same time, the

entire MAS is modelled using a modified cooperating grammar. Emergence is said to be possible

if the system as a whole can generate a language (behaviour) that cannot be generated by the

superimposition of individual agent’s languages.

Teo et al. present a similar approach that addresses a limitation of Kubik [Teo et al., 2013].

In Kubik [Kub́ık, 2003] the superimposition step across all agent languages leads to state-space
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explosion and causes the technique to be prohibitively expensive except for rudimentary systems.

Teo et al. address this by limiting analysis to only those agent behaviours and states that are

possible and are of interest. This greatly reduces the computational work involved but assumes

that the possible and interesting behaviours can be known in advance. Szabo and Teo [Szabo and

Teo, 2015] describe an extension to this approach where the degree of interactions between agents

is used to identify the states of interest. This interaction metric is similar to the concept outlined

by Chan [Chan, 2011], and means that all details of the emergence is not required allowing the

technique to be used on different systems such as flocking, Game of Life and traffic jams. Once

a system has been simulated, the system state at each time step is retrospectively analysed

to determine if a sufficient degree of interaction occurred at that state based on a predefined

threshold. If so, the state is added to the set of states that will have a superimposition calculated.

This approach enables the time steps when emergence occurred to be identified allowing the

underlying cause of the emergence to be investigated.

Moshirpour et al. present a model-based technique with the goal of detecting emergent be-

haviour at system design-time [Moshirpour et al., 2012]. Detection at this stage can be used

to determine the cause of the behaviour, and thus eliminate or control the emergence. Here,

emergent behaviour is characterised by implied scenarios, which are types of behaviour that are

present in the synthesised model of the system but are not explicitly defined in its specification

as a scenario.

Paunovski et al. present a framework for exploring emergence in complex systems using multi-

agent simulations [Paunovski et al., 2008]. This framework involves two phases, beginning with

a formal design and verification of the system model with respect to some expected behaviour.

The second phase involves experimentation through model simulation where iterative “bottom-

up” and “top-down” analysis is applied to detect interaction patterns, local properties and other

elements that may cause or influence emergence. The authors discuss their framework in the

context of emergent herd dynamics, suggesting that by working with a field expert, such as a

biologist, system variables like herd cohesion could be identified as suitable indicators of the

presence of emergence in the system under study.
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2.3.2.2 Runtime Detection

Randles et al. advocates the use of a formal method to specify component interactions, system

evolution and runtime global states [Randles et al., 2007]. This formal specification is achieved

using Specification Language for Agent-Based Systems (SLABS) [Zhu, 2001]. This approach

requires that known candidate scenarios of emergence be pre-defined through design time for-

malisms. At run time, an observer system is implemented with logical reasoning capabilities to

determine if any of the pre-defined scenarios has arisen.

De Angelis and Di Marzo Serugendo present a logic language used to verify macro spatial

properties of a self-organising system at run time [De Angelis and Di Marzo Serugendo, 2015].

Logic formulae, defined using language operators, depict the intended or expected emergent

properties that arise through local interaction. An agent in the system can check if this emer-

gent property exists using a chemically inspired coordination mechanism that involves agents

communicating indirectly across a tuple-space. Each tuple contains passive data, such as its

name and value, and a logic fragment that define how the message should be spread, merged

and reacted to. The emergent property is verified by using a formula that is decomposed into

sub-formulae, which are evaluated distributedly as the tuple traverses the system. Their results

are recombined according to the meaning of the involved spatial operators. Once the tuple has

traversed the system, if no agent’s state violates the logic formulae specified by the originating

agent, the emergent property is concluded to exist.

Ronald et al. proposed a subjective test for emergence based on the degree of novelty of the

phenomenon [Ronald et al., 1999]. The test assumes that the system in question is designed

using a formal language L1. An observer of the system uses a different formal language L2,

but is also fully aware of the system design and of L1. Given this, emergence would occur if

the causal link between what was happening in the system, described in L2, and its underlying

design, L1, was non-obvious to the observer. Thus, this test of emergence can be summarised

as design, observation, surprise. This is an early attempt at describing a test for emergence and

although the authors do not specify details of how it can be implemented, it provides a general

structure on which subsequent tests have been based.

Ciancia et al. describe a modal logic methodology for verifying macroscopic properties of a

system that depends on space [Ciancia et al., 2014]. The authors define a spatial logic that can
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be used to express properties of closure spaces, a generalisation of topological spaces. This logic

consists of two spatial operators, a one step modality that turns closure into a logical operator

and a binary until operator which is interpreted spatially. This allows areas to be identified in

a spatial model where inside the area some property, P, holds and simultaneously the area is

surrounded by points where a different property, R, holds. The approach is not explicitly applied

to emergence detection, with a case study showing how areas of interest on digital images and

maps can be identified. Nonetheless, it is included here as the methodology could in principal

be applied to systems where spatial emergent behaviour, such as flocking, is present. However,

the authors concede that incorporating temporal reasoning into the methodology, in order to

observe a system as it evolves, is likely to lead to state space explosion, with snapshot models

being computed at every state.

2.3.2.3 Summary

Formal approaches require detailed modelling of systems and their components using formal

language techniques. Techniques, such as Kubik, Teo et al., Moshirpour et al. and Szabo and

Teo, are not intended to detect emergence at runtime [Kub́ık, 2003,Teo et al., 2013,Moshirpour

et al., 2012,Szabo and Teo, 2015]. Instead, these approaches consider the possibility of emergence

arising in systems and attempt to identify and study the underlying causes at design time, using

simulation. These approaches are computationally expensive with the use of superimposition

across agents leading to state-space explosion. State-space explosion is addressed both by Teo et

al and Szabo and Teo, where the approach is improved by limiting analysis to only those states

that are possible and of interest. However, this analysis occurs retroactively once the system

simulation has completed, so discovering emergence cannot be used within the system itself. As

a result, their applicability to CAS, where fundamentally unpredictable emergence may arise, is

limited.

The second category of formal approaches enable detection to occur at runtime. Both Randle

et al. and De Angelis and Di Marzo Serugendo. are limited by requiring that the specific

emergent phenomenon or configuration of the system can be known at design-time or formally

defined [Randles et al., 2007, De Angelis and Di Marzo Serugendo, 2015]. De Angelis and Di

Marzo Serugend do provide a distributed mechanism with the constituent agents of the system

coordinating using a tuple-space to achieve detection. However, determining the existence of
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emergence is done by one of the agents with the requirement that the original tuple traverses

the entire system before this can be concluded. This requires that the system is effectively

static while this processing takes place with the dynamic nature of emergence, formation and

evaporation, not addressed. It is possible that the methodology described by Ciancia et al. could

be used to allow detection and evaporation of emergence, however its centralised architecture

and computational expense means that this is not practical in CAS [Ciancia et al., 2014].

2.3.3 Event-based approaches

The final category of detection methods can be described as event-based. These are a hybrid of

the above approaches, incorporating aspects from both statistical analysis and formal approaches.

As a result, they require detailed modelling of the system at design time but facilitate detection

to occur when the system is executing.

Chen et al. outline a method for describing emergent behaviour at different levels of abstraction

based on defining event types [Chen, Chih-Chun and Nagl, Sylvia B and Clack, 2008]. The

authors differentiate between simple and complex events, with simple events formalised as agent

state transitions when viewed from a particular level of abstraction. Complex events are a

configuration of simple events where the configuration includes dimensions such as space or

time. Once all events are formally described, statistical analysis is used to discover correlations

between event types in simulations, enabling identification of relationships across abstraction

levels of the system.

Lewis and Whitehead describe the Mayet Architecture, which is designed to detect emergent

unwanted behaviour in games at runtime [Lewis and Whitehead, 2011]. This framework requires

that the system designer specify a set of constraints defining expected system behaviour. At run

time the system is monitored to determine if its state conforms to these designer constraints.

Emergence is concluded to have occurred if a state is entered that violates these constraints. This

definition of emergence is markedly different from what is considered emergence throughout the

rest of the literature discussed here. The approach was demonstrated using a version of Super

Mario World, where Mayet was attached and a taxonomy of faults were added to the game. The

case study showed that Mayet could identify when an “emergent” state occurred and allowed

steps to be taken to repair the fault at run time so that the game could continue.
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2.3.3.1 Summary

Event-based approaches are a hybrid of formal and variable-based approaches. Similar to those

categories, the approaches here rely on centralised architectures and require a significant level of

knowledge at design time. For example, the framework described in Chen et al. is intended as

a design time technique, requiring all event types in the system to be formalised [Chen, Chih-

Chun and Nagl, Sylvia B and Clack, 2008]. Once this is done, emergence can be predicted in a

system using simulation allowing measures to be possibly built into a system to avoid harmful

emergence. Emergence however, is unpredictable and, as noted by Goldstein, even when it has

been seen once, future evolutions will be different [Goldstein, 1999].

In contrast, the Mayet Architecture [Lewis and Whitehead, 2011] provides support for run-

time detection of emergent events, relying on a centralised architecture where the observer has

access to global system state. It assumes that the designer of the game has accurately and ex-

haustively identified all system constraints, which is possible for the systems being monitored,

video games. However, achieving this level of completeness for CAS is more challenging due to

both increased scale and their non-linear nature. Finally, their definition of emergence, as a state

that violates these constraints, is a significant departure from the traditional view of emergence

used throughout the literature.

2.3.4 Analysis

The existing emergence detection techniques, across all three categories, are evaluated against the

challenges of emergence detection, with Figure 2.6 presenting this analysis as a KIVIAT (radar)

diagram. Each criteria has 3 levels which increase in applicability for emergence detection in

CAS like systems. The further away a detection category is from the center of graph the greater

their applicability is for that challenge. The diagram illustrates the strengths and weaknesses of

each detection category in the context of these challenges. The analysis highlights:

• In available literature, no fully decentralised emergence detection approach exists. All

existing techniques require a centralised component to process system information, that

may or may not be gathered in a distributed fashion.

• Existing techniques do not handle detection when the emergence is not known about and

understood in advance. They require designers of the system to have knowledge of what
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Fig. 2.6: State of the Art Evaluation: The KIVIAT diagram shows how existing techniques

address each of the four challenges of emergence detection in CAS. Each criterion has three levels

which increase in applicability for CAS, the further they are away from the centre.

properties or variables will indicate emergence exists or what system configurations qualify

as emergence.

• Existing runtime approaches can determine if emergence is present in the system. However,

no approach is capable of determining when the macro-state of the system is transitioning

into and out of an emergent state. This limits the utility of these approaches as it may be

too late to take appropriate action by the time the detection has occurred.

In summary, existing techniques depend on a centralised architecture and knowledge of the

expected emergent phenomena at design time. Moreover, the dynamic nature of emergence as it

both, forms and evaporates, in the system is not considered.

2.4 Summary

This chapter presented a detailed discussion of the concept of emergence, highlighting its com-

monly accepted characteristics and the different types of emergence that can occur. This analysis

highlighted that emergence detection can be achieved by the constituent agents of a CAS at run-
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time as feedback from downward causation impacts the agents in the system. The leap from

Type-II (mechanistic) to Type-III (reflective) emergence was identified as the position for the

research described in this thesis. Bridging this gap allows the agents to act as detectors of emer-

gence without an external or central observer and allows the effects of emergence to be either

mitigated or leveraged.

The subsequent section introduced Complex Adaptive Systems (CAS), which are systems

composed of autonomous adaptive agents that interact and these interactions result in emer-

gence in the system. Computer simulations are a well established means of studying CAS using

techniques such as cellular automata, artificial neural networks and genetic algorithms. This

thesis uses multi-agent systems to simulate CAS and emergence. In multi-agent systems with

mobile agents, emergence occurs in the form of coherent spatial behaviours and patterns, such

as flocking.

The final section presented existing techniques for detecting emergence. These techniques

can be classified into three groups, variable based, formal and event based. Variable based

approaches use system wide variables and statistical analysis to determine the existence of emer-

gence, allowing detection to occur at runtime. Formal approaches use a combination of formal

grammars and simulation to both predict and detect if specified emergent behaviour occurs in

the system. Finally, event based approaches are a hybrid of variable based approaches and formal

approaches. All approaches were analysed in the context of the challenges presented by detecting

emergence in CAS that were identified in Chapter 1 (cf., Section 1.3). This analysis highlighted

that existing approaches are limited by a centralised architectures and required a priori of the

expected emergent phenomena at design-time. In the next chapter, the design objectives neces-

sary to meet the challenges presented by emergence detection are outlined and the design of a

novel distributed algorithm to meet these requirements is described.
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Design

This chapter returns to characteristics of emergence and the challenges associated with detecting

it in Complex Adaptive Systems (CAS) to frame both the problem and solution that are the

subject of this thesis. The chapter begins by identifying a set of design objectives that are

necessary to achieve effective emergence detection (cf., Section 3.1). Next, the terminology

associated with both emergence and CAS are outlined to define a system model that scopes

the contribution of this thesis (cf., Section 3.2). The subsequent section presents a set of design

decisions to address each design objective (cf., Section 3.3), before DETect, the solution proposed

by this thesis, is described (cf., Section 3.4). This section is divided into three parts: The

first examines how an autonomic model of the environment can be defined. The second part

examines how feedback from downward causation can be detected. The third part examines

how collaboration between agents can be facilitated to enable information to be shared and

aggregated into larger views. Finally, the chapter concludes with a summary of the key design

decisions and describes how the proposed solution achieves the design objectives outlined.

3.1 Design Objectives

Chapter 1 introduced the challenges presented by emergence detection in CAS (cf., Section

1.3). CAS are composed of decentralised autonomous agents that interact in dynamic and

non-linear ways. Macro-level properties and behaviours emerge from these interactions, that

are unpredictable and cannot be reduced to the properties of the constituent agents. These
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emergents may be harmful or beneficial to the system or the individual agents, so it is desirable

to detect emergence when it occurs. However, no agent in the system has a global system view

and the unpredictable nature of emergence means that it is not always possible to know what

form the emergence will take. Moreover, emergence is dynamic, it forms at some point during the

system evolution and evaporates at some future point. These characteristics correspond to the

challenges identified in Chapter 1 and motivate a set of design objectives for effective emergence

detection in CAS. An effective emergence detection mechanism must:

• Design Objective 1: Decentralise detection

Holland describes a CAS as being composed of “many distributed, interacting parts, with

little or nothing in the way of a central control” [Holland, 1992] (challenge 1). This is

consistent with the characteristics of emergence outlined by De Wolf and Holvoet [De Wolf

and Holvoet, 2005] and necessitates that any effective detection mechanism should be

similarly decentralised.

• Design Objective 2: Detect emergence at runtime

Emergence is unpredictable in the way and form it can arise [Mogul, 2006,Goldstein, 1999]

(challenge 3). Even when emergence is engineered into the system, undesired emergent

behaviour can still arise [Di Marzo Serugendo et al., 2006]. This is compounded by the

fact that CAS are composed of autonomous agents that behave and interact in dynamic

non-linear ways (challenge 2). Therefore, effective detection of emergence must occur at

runtime as the unpredictability of both emergence and CAS means that the effectiveness

of design time approaches are necessarily limited. Additionally, by detecting emergence at

runtime, the possibility of reacting to either leverage or mitigate the effects is presented.

• Design Objective 3: Rely on locally available information

The decentralised nature of these systems means that no single agent or component of the

system possesses a global view of system state (challenge 1). Each agent has access only to

information from their locality, referring to the subset of the environment they can sense,

including other agents that they interact and communicate with. Therefore, emergence

detection must be facilitated using each agent’s limited system view as a foundation.
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• Design Objective 4: Support collaboration between agents to achieve a larger

system view

The fact that each individual agent has access to only a limited view of the system has

already been identified (challenge 1). This presents a problem when we consider that

detecting emergence entails detecting a property or behaviour that occurs at the macro-

level of the system. As a result, no single agent is capable of concluding the existence

alone, and it is necessary that they combine their individual views of the system to create

an aggregate view with sufficient scope. This collaboration should be light weight with

consideration given to the dynamic and non-linear ways that agents may interact (challenge

2).

• Design Objective 5: Autonomously select data to monitor

Emergence is inherently unpredictable, even when it has appeared once in a system, future

evolutions will involve some alterations [Goldstein, 1999]. As a result, knowing the exact

characteristics or properties to monitor becomes a challenge (challenge 3). An emergence

detection mechanism could address this by monitoring all variables an agent has access to,

however, with no upper limit on the number of variables that an agent or system could have,

this is impractical. Instead, the properties of the system to monitor should be determined

at runtime and be selected from the set of variables already available to agents.

• Design Objective 6: Detect formation and evaporation of emergence

Emergence is dynamic, capable of both forming and evaporating as the system evolves in

time (challenge 4). This means that for a detection mechanism to be useful, it must consider

this aspect as its utility will be diminished if it detects an emergent phenomenon after it has

already evaporated. Instead, the maximum utility is achieved if the emergent behaviour

can be detected while it is still forming or evaporating. Detecting these transition periods

provides the most time for an interested party to react before the macro-state becomes

settled and therefore mitigate or leverage the effects of the emergence.

Collectively these objectives target the challenges presented by emergence detection in CAS,

with Figure 3.1 illustrating the challenge that motivates each objective. The objectives highlight

the tension between the goal of detecting an unpredictable behaviour or property that is global in
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Design ObjectiveChallenge

2. Detect emergence at runtime

1. Decentralise detection

3. Use only locally available information

5. Autonomically select data to monitor

4. Support collaboration between agents

6. Detect formation and evaporation

1. Decentralised control and monitoring

2. Unpredictable non-linear interactions

3. Knowing what to look for

4. Transient nature of emergence

Fig. 3.1: Design objectives to address emergence detection challenges.

nature using only locally available information. The remainder of this chapter presents DETect

and analyses how its design addresses the above objectives.

3.2 System Model

This thesis presents DETect, a novel distributed algorithm that facilitates decentralised detection

of emergence in CAS. In this section, the terminology associated with both emergence and CAS

as it relates to this thesis is defined. In this way, the type of systems that are the focus of

this research are clarified and the scope of, and assumptions made by, the design of DETect are

outlined.
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3.2.1 Terminology

The systems that are the focus of this thesis are Complex Adaptive Systems in the context of

multi-agent systems.

Definition 1. A Complex Adaptive System is a decentralised system composed of autonomous,

adaptive, interacting agents, where agent interactions can potentially give rise to emergent be-

haviour.

Definition 2. A Multi-Agent System is a loosely coupled network of mobile agents that interact

in a shared environment.

Definition 3. An agent is a computer system that is situated in some environment and that is

capable of autonomous action in this environment in order to meet its own objectives.

The definition of Complex Adaptive Systems is consistent with the generally accepted defini-

tion found across literature [Holland, 1992, Page, 2010]. The definition of a multi-agent system

is similar to that outlined by Sycara [Sycara, 1998], with the definition of an agent taken from

Wooldridge [Wooldridge, 2009]. Unlike Sycara however, the definition of multi-agent systems

here is limited to those systems composed of mobile agents and no assumption is made regarding

the purpose of agent interactions. These definitions require that an additional set of definitions

are presented to outline what is meant by autonomous, interaction and adaptation.

Definition 4. Autonomous refers to the property of each agent where their behaviour depends

on their own experience [Weiss, 1999].

Definition 5. An interaction refers to an instance where one agent influences the behaviour

or decision making of another agent. Such interactions can be direct, meaning an intentional,

explicit exchange of messages between agents. Interactions may also be indirect, such as an agent

observing another agent.

Definition 6. Adaptation refers to an agent’s ability to change its behavioural rules at runtime.

This definition of adaptation is consistent with that used by authors such as Holland and

Gell-Mann in the context of CAS [Gell-Mann, 1994, Holland, 1992]. The position of DETect in

the context of an adaptation pattern is discussed in Section 3.3.2 below.
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3.2.2 Emergence

Section 2.1.3 described different categorisations of emergence based on the extent and complexity

of downward causation in the system and the role and observer of the emergence. This thesis

focuses on emergence that can be harmful or beneficial to the constituent parts of the system.

Therefore, emergence where no downward causation exists is excluded from consideration. In-

stead, the transition between Fromm’s Type II and Type III emergence [Fromm, 2005], or De

Hann’s mechanistic and reflective emergence [De Haan, 2006], is where the work in this thesis is

positioned. Additionally, as the systems described in this thesis are MAS composed of mobile

agents, emergence refers to macro-level spatial patterns and behaviours that are generated by

the location interaction of agents (cf., Section 2.2.3). Examples of such emergents are flocking,

traffic-jams, pedestrian lane formations. Therefore, emergence is defined as:

Definition 7. Emergence is the appearance of coherent spatial patterns and behaviours at the

macro-level of the system that are caused by the interactions of agents at the micro-level but

are not specified in the agents behavioural rules. This emergence influences the agents at the

micro-level through downward causation.

Definition 8. An emergent event refers to a transition of the system’s macro-level into or out

of a state of emergence. That is, the period of time during which the emergence is forming or

evaporating.

3.2.3 Assumptions

A DETect-based system consists of the following components and properties:

• A set of agents A ={A1,...,An}, where each agent controls a set of sensors and actuators.

• Each agent Ai contains a set of internal variables IVi={IVi1,...,IVip}, that the agent uses

to describe itself.

• Each agent Ai contains a set of external variables EVi={EVi1,...,EVir}, that the agent

uses to describe its environment.

• The set of internal and external variables for each agent Ai does not change during the

system evolution.
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• System time is synchronised across all agents, with agents updating internal and external

variables and making decisions simultaneously at fixed time intervals.

• Each agent Ai has access to a set of neighbours Nit ={Nit1,...,Nitj} consisting of all other

agents Aj ∈ A that are one-hop neighbours of the agent Ai at time step t. One-hop refers

to the agents ability to directly communicate with that agent at that time step t.

• Each agent contains an ActionSelector or AdaptationManager which can receive the emer-

gence detection event from DETect and select an appropriate action in response.

• Agents are failure free, meaning agents can always contact their one-hop neighbours and

incomplete or inaccurate information is not communicated.

3.3 Design Decisions

Muller suggests that emergence can be detected by special “lookout” agents in a system if the

agents know what to look for and they have a sufficiently global view of the system [Muller,

2004]. Although, such lookout agents are not applicable in the systems discussed in this thesis

(challenge 1 and challenge 3), this assertion crystallises the problem of detecting emergence into

two components; knowing what to look for and having the appropriate scope. The following

discussion outlines the design decisions made to achieve these two components and shows how

these decisions address the design objectives that were identified in Section 3.1.

3.3.1 Decentralised Detection

Control and monitoring are decentralised in CAS, distributed across the constituent agents that

compose the system. The interactions of these agents generates the emergence with the effects

of emergence feeding back onto the agents through downward causation. This gives agents a

stake in detecting emergence as any detection can potentially be used to improve the effects the

emergence has on them. At the same time, as the generators of the emergence, agents are best

placed to potentially influence it by altering their behaviour or interactions. With this in mind,

the first design decision is as follows:

Design Decision 1 - Constituent agents act as detectors The first de-

sign decision is the most fundamental, identifying the constituent agents as
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the detectors of emergence. Agents both create and are influenced by emer-

gence at run time meaning that they are, in principle, capable of detecting

and shaping it. This makes them the ideal candidates to act as detectors

without the need for any special “lookout” agents or a centralised monitor.

Therefore, this design decision addresses both design objective 1 and 2.

3.3.2 Detection in the context of adaptation

The Monitor, Analyse, Plan and Execute (MAPE) loop [Kephart and Chess, 2003] is an exten-

sively used model for adaptive systems management. Although it did not originate in the MAS

domain, it is an example of a generic autonomic feedback loop and could in principle be used to

structure significant adaptations to agent behaviour [Cabri et al., 2011]. This is used as a model

of an adaptation control pattern to position the work described in this thesis.

The MAPE loop has four phases:

• Monitor - which collects the details from the managed resource or system. The monitor

phase also aggregates and filters these details until a symptom requiring further analysis

is identified.

• Analyse - which performs complex data analysis and reasoning on the symptoms described

by the monitoring function. If a change is required, a change request is passed to the

planning phase.

• Plan - which creates or selects a procedure to make a desired alteration to a managed

resource. In a MAS context, this could include the agent’s behavioural rules.

• Execute - which changes the behaviour of the managed resource using effectors, based on

the actions recommended by the Plan phase.

Design Decision 2 - DETect is in the monitoring phase of a MAPE

loop The monitoring phase of an adaptation control pattern is where the in-

formation from the system is managed and initial symptom discovery occurs.

This phase is the most suitable to locate components that will first identify

properties of the agent and the environment to monitor, before monitoring

them over time to identify symptoms of emergence that may arise. Therefore,
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Monitor

Analyse Plan

Execute

Knowledge
Base

DETECT

ENVIRONMENT

AGENT

Sensors Actuators

Fig. 3.2: DETect’s position in a MAPE loop executed by an agent [Kephart and Chess,

2003]

DETect is located in this phase of the MAPE loop, with the output poten-

tially triggering adaptations later in the adaptation work flow. This decision

addresses design objective 2, allowing the detection of emergence to be useful

in the system at run time. As a result of this decision, deciding what to do

once emergence is detected is outside the scope of DETect.

3.3.3 Detecting Feedback From Emergence

3.3.3.1 Modelling Technique

Each agent has a limited view of the system, composed of its immediate locality and other agents

nearby. It is in this window that the feedback from emergence through downward causation

manifests, having the affect of constraining the agent [Bedau, 2002]. The hypothesis of this

thesis is that this constraint will result in a changed statistical relationship between the agent

and its environment, as experienced in its locality. Initial exploration of this concept [O’Toole

et al., 2014], investigated whether specific statistical relationships, correlations, between the agent

and its environment would form during periods of emergence. The agent was characterised by

variables that described its internal state (Internal Variables) and the environment was described
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by a different set of variables (External Variables) This approach proved successful, with a

higher proportion of agents experiencing such correlations during times of emergence compared

to periods when no emergence was present in the system. However, its utility was limited by the

need to specify in advance what variables to observe and the exact relationships between them

to look for (statistically significant correlations). Furthermore, this initial approach relied on a

centralised architecture as agents reported the detection of a significant correlation to a central

observer and did not conclude themselves that emergence existed.

Instead, what is required is a statistical method that can generally describe the agent’s

relationship with its environment, allowing statistically significant changes in the relationship to

be observed over time. In other words, a technique that does not look for a specific relationship

but instead creates a baseline of what the relationship typically is and looks for deviations

from this baseline. This task is complicated by the fact that some agents may use hundreds

of variables to describe themselves and hundreds more to describe their environment, meaning

that there are possibly thousands of relationships between these two variable sets. It would be

computationally expensive for agents to monitor all of these individual relationships separately

at runtime. Therefore, a simplified statistical model is required that allows multiple relationships

to be represented at once, as well as a means of selecting only those relationships that provide

relevant information to be included in the model.

Multiple-Linear Regression (MLR) [Draper and Smith, 1981], outlined in equation 3.1, pro-

vides a statistical model of the relationship between a response variable, yi, and two or more

explanatory variables, X ={x1...xn}, by fitting a linear equation to the observed data. The coeffi-

cients β are the expected change in the response variable for every 1 unit change in the respective

explanatory variable. This model describes how the mean of yi responds when the explanatory

variables are changed. Additionally, MLR outputs a p-value for each explanatory variable in

the model. The p-value is used to evaluate the modelling hypothesis that the coefficient for the

associated explanatory variable is zero, i.e. that there is no effect. It represents the probability

of having observed the gathered data, or data even more extreme, if this hypothesis is true.

Therefore, if the p-value is low (close to zero) the data appears inconsistent with the hypothesis

of no-effect being present and we may wish to reject the hypothesis.

yi = β1x1 + β2x2 + ...+ βnxn + εi (3.1)
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MLR represents an evolution from the initial exploration described in [O’Toole et al., 2014],

with the correlations tests used there also quantifying the linear relationship between two vari-

ables. However, MLR allows multiple relationships between variables to be evaluated at once,

while performing periodic regression tests, and observing the p-values produced over time, can

indicate that the significance of the relationship between variables has changed. This analysis

motivates the next design decision:

Design Decision 3 - MLR used as statistical model Multiple-Linear Re-

gression provides a general statistical model that can incorporate the variables

that describe the agent and the variables that describe the agent’s environ-

ment. This improves on correlation analysis that formed the basis of the early

approach adopted in this research as it does not look for the appearance of a

specific type of relationship between variables i.e., statistically significant cor-

relations. In this way it reflects the challenge presented by emergence which

is fundamentally unpredictable, so knowing exactly what kind of relationship

to look for is not always possible. In addition, MLR allows multiple relation-

ships to be evaluated at once instead of analysing relationships between an

internal and all external variables one at a time, as would be the case with

correlation analysis or simple linear models. As a result, it allows the rela-

tionship between the agent and the environment to be measured using only

information locally available to the agent (design objective 3).

The decision to use MLR means that a trade off is made between simplicity and accuracy, as

the model does not account for non-linear relationships that may exist between variables. This

is discussed in more detail in Section 3.5 below.

3.3.3.2 Model Selection

Although MLR provides a simple way of monitoring the relationship between many variables,

it does not provide a means of choosing what variables should be in the model. Some variables

do not have any relationship to one another, for example, the direction of travel of a flocking

agent and the agent’s age. In this case, the agent could potentially ignore that relationship as it

does not offer value. However, without any semantic understanding of this in advance, the agent

needs to discover this at runtime.
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The accuracy and validity of MLR can suffer if the explanatory variables, X, contain multi-

collinearity. This means that linear relationships exist between individual explanatory variables,

so changes to one affect the other. Multi-collinearity does not impact the reliability or predictive

power of the overall model. However, it can affect the reliability of calculations of the effect each

explanatory variable has on the response variable, which is the focus of concern here. As an

example of this, a MLR model in a flocking agent can be imaged, where Y is the agent’s speed

and the explanatory variables contain variable X1, the number of other agents in the agent’s field

of vision and X2, the number of total agents in a defined radius of the agent. It is intuitive to

think that an increase in X1 will also likely mean an increase in X2, however the agent requires

a means of discovering this relationship autonomously before taking appropriate action.

There are a number of possible model selection approaches, each with their own merits and

limitations. A number of candidates are now presented and analysed in the context of this

specific problem.

P-values generated by MLR provide a simple means of determining the significance of the

relationship between the response variable Y and an explanatory variable X. When the p-value is

low, close to zero, the linear relationship between the two variables is said to be more significant,

where changes to X will likely result in changes in Y. Conversely, when the p-value is close

to 1 no such relationship between the variables exists. Using this characteristic of p-values,

a crude mechanism using a p-value threshold could be employed where relationships above a

certain p-value are excluded. However, while such an approach would help to reduce the number

of relationships an agent has to monitor, it would not address the issue of multi-collinearity

between explanatory variables and some method of selecting an appropriate threshold would be

required.

Information Theoretical Methods Akaike information criterion (AIC) [Akaike, 1973] or the

Bayesian information criterion [Albert and Chib, 1997], are information theoretical and statistical

methods of selecting between a finite set of possible models, by selecting the model with the lowest

criterion. For example, in AIC an estimate of each model relative to all other models is provided

using a trade off between how complex the model is and how well it fits the data. A drawback

with these methods however is that all candidate models must be compared against each other.

When an agent has many internal and external variables, this could require thousands of potential

models to be compared which is likely to be inefficient both computationally and in terms of
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timeliness.

Principal Component Analysis (PCA) [Wold et al., 1987] is a statistical and machine learning

technique that can be used for dimensionality reduction or feature selection. As its name suggests,

PCA finds the principal components of the data by linearly transforming a d-dimensional dataset

into a k-dimensional subspace, where k < d. In doing so, the variables in the dataset are replaced

with “principal components”, which are linear combinations of the original variables that retain

as much information as possible. In doing so, the computational efficiency of subsequent analysis

on that dataset is improved while most of the information in the dataset is retained. If the

intention is to use PCA for feature selection, as is the intended purpose here, future datasets

should be transformed in the same manner as the initial dataset so as to create same principal

components. In context of periodic analysis of the model, this would increase the computational

cost of each subsequent analysis step after the initial PCA has been executed.

Least Absolute Shrinkage and Selection Operator (LASSO) is a shrinkage and selection

method for use with linear regression [Tibshirani, 1996] to prevent overfitting. LASSO, outlined

in equation 3.2, returns the set of coefficients, βlasso, that minimises the sum of squared errors

while a regularisation penalty, λ, is applied to the absolute value of each of the coefficients,

β. This penalty results in all coefficients being shrunk toward zero and some coefficients will be

exactly zero meaning they have no affect on the model and can be discarded. As a result, LASSO

provides automatic variable selection while also dealing with multicollinearity in the explanatory

variables by removing variables that do not add information to the model.

βlasso = argmin
β

n∑
i=1

(yi − (βTxi))2 + λ ‖β‖1 (3.2)

Design Decision 4 - LASSO is used to select the model From analysis

of these techniques and in the context of this thesis, LASSO provides the best

trade-off between accuracy and efficiency of the feature selection techniques

discussed. LASSO is designed to work with linear regression and automati-

cally provides variable selection while also handling multi-collinearity in the

data. Additionally, once variables have been selected, future analysis of the

model will not require the dataset to be transformed. This feature [provides

a significant advantage compared to PCA which would require the data to be
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transformed into the principle components each time the model is evaluated

throughout the systems evolution, increasing the computational cost to each

agent. LASSO also does not require all potential models to be compared

against one another in contrast to Information Theoretical Methods. This

feature means it is more suited in this specific application where model se-

lection occurs at run time and there is no limit to the number of theoretical

candidate variables that could compose the final model. This design deci-

sion addresses design objective 2 by allowing variables to be selected at run

time, and design objective 5 by providing a method of autonomous variable

selection.

3.3.3.3 Feedback Detection

Due to the nature of emergence, it is not possible to predict in advance what form or shape it will

take in any given system. This means that agents should be limited to only detecting changes

in the emergent state of the system, for example when emergence forms and when emergence

evaporates. To clarify this point, consider the example of flocking agents. Using the modelling

approach discussed above, the agents could model their relationship with the environment when

there is no flocking. They could also do this when flocking is forming, when flocking is present or

when flocking is evaporating. However, without a semantic description of the emergent system

behaviour in advance, i.e. what it means to ”flock” and how it will impact them, each agent

has no way of attributing each model of the system to a particular emergent system state. As a

result, agents should not try to detect the presence of emergent behaviour, but rather changes

in the emergent behaviour that are reflected in a changed relationship with their environment.

Once an agent has modelled its relationship to the environment, it is necessary to monitor

this relationship over time to detect such changes. Achieving this requires that the agent should

create a range of typical or expected measurements for the relationship against which periodic

evaluations can be compared. This allows for significant departures from the expected range

to be quickly diagnosed. This range of expected values must be constantly updated to reflect

the transient nature of emergence. For example, flocking behaviour in birds both forms and

evaporates quickly. Detecting when both of these events occur is necessary to ensure that the

baseline of expected values is accurate. For example, before flocking forms, the characteristics of
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the system without flocking behaviour should provide the standard against which an agent judges

their current relationship. Once flocking has occurred, the agent should use the characteristics of

the system with flocking to compare against, enabling it to detect when the emergent behaviour

evaporates.

This means the agent is required to define what constitutes a significant change from this stan-

dard. This can be achieved using a number of existing change point detection algorithms [Kawa-

hara et al., 2007, Adams and MacKay, 2007], which identify when the probability distribution

of a time series of values changes. Cumulative Sum (CUSUM) [Page, 1954], is a computation-

ally inexpensive on-line change detection method that involves sequentially summing time series

samples, x, as outlined in equation 3.3. S0 is initialised to 0 and K refers to a weighting that

is applied to each sample. When S exceeds a defined threshold, h, a change point in the series

has been found. CUSUM can be used to identify significant departures from the expected mean

or standard deviation of a process and is frequently used in quality control procedures [Healy,

1987]. Non-parametrised versions of CUSUM are also possible, meaning that the expected mean

and standard deviation of the process does not have to be specified in advance [Hawkins, 1987].

Therefore, with regard to feedback detection, the next two design decisions are as follows:

Sn+1 = max(0, Sn + xn −K) (3.3)

Design Decision 5 - A sliding window approach to monitoring Figure

3.3 illustrates a sliding window approach to monitoring. A sliding observa-

tion window of length N is maintained and updated every time step until

full. When full, the M oldest observations are deleted from the window al-

lowing the window to “slide” gradually as the system evolves. This monitoring

approach is similar to that described by Grossman et al. [Grossman et al.,

2009]. In the context of this thesis, the sliding observation window would con-

stitute the baseline against which each agent judges its current experience.

This allows for the history of the system to be taken into account without

requiring the entire history to be maintained. Additionally, gradual updates

to the baseline can in principal allow transitions in the emergent state to be

detected, addressing design objective 6. The choice of values for both N and

M are discussed later in this chapter.
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Fig. 3.3: Sliding window approach: A sliding window of length N with updates of length M .

Design Decision 6 - CUSUM used to detect change In conjunction

with design decision 5, CUSUM can be used to judge current observations

of the agent’s relationship with its environment against the recent history of

the relationship, as contained in the sliding observation window. As CUSUM

is an on-line technique, it allows detection to occur at runtime, addressing

design objective 2. In addition, it can be used to detect the transition between

periods of emergence and periods of no emergence in the system, addressing

design objective 6.

3.3.4 Consensus Formation

When an agent detects a change in its relationship with the environment, this indicates that some

emergent property or behaviour may be present in the system. However, an individual agent is

unable to truly reason about the existence of emergence due to the limited scope of their view

of the system, while emergent property and behaviour occur at the global system level. This

global aspect of the emergence means that it will impact more than one agent simultaneously

when it occurs. This provides agents with a means of checking their local experience in the

context of a wider view that is presented when multiple agents aggregate their individual system
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views together. An agent should only suspect emergence if there is a consensus amongst its peers

that an emergent may be present in the system. For example, if a single car has stopped for a

prolonged period of time this does not necessarily mean a traffic-jam exists.

To achieve this requires a decentralised communication protocol that allows agents to identify

other agents, and share information about their changing relationship with their environment.

As the existence of emergence is often transient in nature e.g. flocking behaviour can form

and evaporate quickly, the time taken in achieving consensus is of critical importance. This is

compounded by the possibility that each agent may detect feedback at slightly different times

depending on their individual experience, meaning that some resilience must be built into the

protocol to handle this. Finally, the dynamic nature of CAS with an ever changing topology

means that deciding who to exchange information with, must also be considered.

Three alternative communication protocols are identified that are now evaluated in the con-

text of the specific requirements of emergence and CAS. The protocols under consideration are:

Gradient fields are an information propagation and coordination mechanism that allows in-

formation about a senders to be propagated, typically by incrementing or decrementing some

property to reflect distance or concentration. They have been used in domains such as coordi-

nation of robots [Parunak et al., 2002] or routing in networks [Mamei and Zambonelli, 2004]. In

addition, they can be used to implement quorum sensing [Fernandez-Marquez et al., 2012], a bi-

ologically inspired decentralised decision making process for coordinating behaviour and making

collective decisions [Miller and Bassler, 2001, Seeley and Visscher, 2004]. Its goal is to provide

an estimation of the number or density of agents in a system using only local interactions. This

could be potentially useful in the context of this thesis, providing agents with a way of estimating

the number of other agents who have recently detected feedback from emergence.

Digital pheromone is a coordination mechanism based on indirect communication that takes

its inspiration from ant colonies [Grassé, 1959,Dorigo et al., 2000]. Pheromones are deposited by

agents into the environment that spread a gradient over the environment and persist for a finite

period of time before fading away. They have been used in a number of decentralised systems

in domains such as scheduling [Martens et al., 2007], vehicle routing [Toth and Vigo, 2002] and

control [Sauter et al., 2005]. In the context of this thesis, pheromones provide a potential means

of allowing agents to communicate the fact that they have detected a change without requiring

direct communication with other agents in the network. Instead, agents could potentially sense
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this information from the environment with the intensity of local pheromones indirectly informing

agents of the number of agents who have recently experienced a similar change.

Gossip-based consensus protocols have widely been used across a variety of networks types,

proving efficient in both large scale networks [Jelasity et al., 2005,Nedos et al., 2006] and mobile

ad-hoc networks [Datta et al., 2004]. The fundamental component of the protocols involves peri-

odic, pairwise, interactions between agents with information exchanged during these interactions

being of bounded size. When agents interact, the state of at least one of the agents changes

to incorporate the information received from the other agent. In this way the knowledge of

individual agents increases while uncertainty decreases, allowing agreement to be reached about

the value of some system properties in a decentralised way. Gossip-based protocols can be used

to calculate aggregate information across networks such as summations and averages [Kempe

et al., 2003] and are resilient to node failures. Gossip-based protocols have also been used to

facilitate consensus formation in networks without the need for a centralised controller [Carli

et al., 2010,Lavaei and Murray, 2012].

Based on these options, the final design decision is as follows:

Design Decision 7 - Gossip based communication Gossip based con-

sensus is a widely used communication protocol in dynamic networks such as

the systems that are the focus of this thesis. In particular, it does not require

additional effort to specify how gradients should be propagated across the

system and environment. Its biggest advantage over both gradient fields and

digital pheromones is that it does not require any additional infrastructure

or special agents to be introduced. For example, digital pheromones require

some form of shared platform in which the pheromones can be placed. This

could be achieved using a middleware or tuple-space [Gelernter and Carriero,

1992], however this introduces additional assumptions and complexity which

is not required with gossip. The use of gossip-based communication addresses

design objective 1 and 4.

Figure 3.4 summarises the design decisions that constitute the novel distributed algorithm

presented in this thesis and maps them to their underlying design objective outlined earlier in the

chapter (cf., Section 3.1). In the next section, the proposed solution derived from these design

decisions is described.
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Design Objective Design Decision

2. Detect emergence at runtime

1. Decentralise detection

3. Use only locally available information

5. Autonomously select data to monitor

4. Support collaboration between agents

6. Detect formation and evaporation

1. Constituent agents act as detectors

2. DETect in monitoring phase of MAPE loop

3. MLR used as statistical model

4. LASSO is used to select the model

5. A sliding window approach to monitoring

6. CUSUM used to detect change

7. Gossip based consensus

Fig. 3.4: Design Decisions mapped to motivating Design Objectives.

3.4 Proposed Solution

This thesis presents Decentralised Emergence Detection (DETect), a novel distributed algorithm

that enables agents to collaboratively detect emergent events in CAS. Emergent event refers

to either the formation or evaporation of emergence in the system. The foundation of this

detection technique is built on enabling individual agents to detect feedback from emergence, from

downward causation, in the local environment. DETect employs a modular design, illustrated in

Figure 3.5, that is intended to deliver three key competences. The Modelling Unit provides agents

with a general method of modelling their relationship with their local environment, autonomously

selecting what properties of both the agent and the environment to monitor at run time. Next, the

Change Detection Unit, provides agents with an on-line means of detecting a significant change

in this selected relationship over time. Finally, the Collaboration Unit provides a decentralised

gossip-based communication mechanism that allows agents to share information about detected

feedback and thus build consensus on the existence of emergence, without the need for a central

observer. The remainder of this section describes each of these components in detail.
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Fig. 3.5: DETect - Conceptual Architecture

3.4.1 Modelling Unit

The Modelling Unit performs three functions as part of its role in DETect. First, it is DETect’s

primary interface with the agent, receiving both internal and external variable sets and initialising

variable observation. Next, it selects the model that will be used to characterise the agent’s

relationship with its environment. Finally, it periodically analyses this model using MLR, passing

the results onto the Change Detection Unit. The flow of information through the Modelling Unit

is illustrated in Figure 3.6, demonstrating how each of these three functions integrate with one

another.

3.4.1.1 Initialisation and Variable Observation

The initialisation phase and variable observation process in DETect is handled using a Sliding

Window. This approach uses a sliding observation window of length N that is updated when

full by deleting the M oldest values in the window. DETect uses a number of sliding windows

throughout its work flow with the values of M and N changing depending on the window being

used. This is discussed in detail in the sections below.

The initialisation and variable observation process on each agent is detailed in Algorithm 1.
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Fig. 3.6: Flow of information in DETect’s Modelling Unit: Algorithm 1 is highlighted

in green, Algorithm 2 in yellow and Algorithm 3 in blue.

To improve readability, all Internal Variables and External Variables of the agent are grouped

into a single set of variables, as the process applied to both sets of variables is the same in this

algorithm. It is assumed that this set of variables does not change during the system evolution.

The impact of this assumption is discussed later in the chapter when the limitations associated

with this design are outlined (cf., Section 3.5).

DETect begins by initialising a pair of arrays for all variables used by the agent (lines 2-5).

The first of these, the AvgArray, is used to average a group of consecutive observations for each

variable in order to improve the normality of data. This averaging is done as a preprocessing

step for MLR, as normality is an important assumption made when using any linear regression

technique. The second array is the sliding observation window SlidingObsWindow. The max-
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Algorithm 1 DETect Initialisation and Variable Monitoring on Agent Ai

Input: All variables Vi1 to Viv of agent Ai. Averaging window size AWS. Sliding observation window size N . How

far the Sliding Window should move once full M .

Output: The sliding observation window of variable Vi is filled

1: ModelSelected = FALSE // Boolean value indicating if the regression model has been selected

2: for all Vi1 to Viv do // Initialise Windows for all Variables

3: Initialise empty AvgArrayiv ;

4: Initialise empty SlidingObsWindowiv;

5: end for

6: for all time steps 1 to t do // Observe variables at each time step

7: for Vi1 to Vip do

8: Add Observationipt to AvgArrayip;

9: end for

10: if size(AvgArrayi1) == AWS then // All AvgArrays are the same size

11: for Vi1 to Viv do

12: /* Average Observations and Add to Sliding Observation Window /*

13: Add mean(AvgArrayiv) to SlidingObsWindowiv;

14: Initialise empty AvgArrayiv

15: end for

16: if size(SlidingObsWindowi1) == N then

17: /* Send data for analysis if model has been selected */

18: if ModelSelected then

19: analyseModel(SlidingObsWindowi1 to SlidingObsWindowiv)

20: else

21: ModelSelected = selectModel(SlidingObsWindowi1 to SlidingObsWindowiv)

22: end if

23: /* Slide observation windows */

24: for Vi1 to Viv do

25: Delete SlidingObsWindowiv[1 : M ];

26: end for

27: end if

28: end if

29: end for

imum length of the AvgArray and SlidingObsWindow are specified by the parameters AWS

and N respectively, meaning that when they reach this length they are considered to be “full”.

A new observation for each variable is received at each time step of the system and is added to

the relevant AvgArray (line 7-9). The AvgArrays for all variables have a common size as they

are updated synchronously. Once the AvgArrays is full (line 10), the mean value is calculated

and added to the respective SlidingObsWindow of each variable and the AvgArray is cleared

(lines 11-15). Next, the SlidingObsWindow are checked to determine if they are full (line 16).

If so, the windows for all variables are forwarded to either the analyseModel (cf., Algorithm 3)
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or selectModel (cf., Algorithm 2) functions. The selectModel algorithm will return a boolean

value indicating whether the model has been selected successfully (line 21). Once this is done, the

sliding windows are moved forward by deleting the earliest values in the window, corresponding

to the size of the jump the window should make, indicated by parameter M (lines 24-26).

3.4.1.2 Model Selection

The next step in the DETect algorithm is to select a model of the agent’s relationship with its

environment that will be monitored over time for change detection. This occurs in the Model

Selector component of the Modelling Unit, and is detailed in Algorithm 2. This process is

considered the end of the initialisation stage of DETect and occurs when the sliding observation

window reaches a size of N = 500, which corresponds to 2500 time steps. This window size was

selected after preliminary experimentation to balance the goals of minimizing the length of the

initialization phase and providing the Modelling Unit with sufficient information on which to

build the model. Its size is consistent across all models described in this thesis and it is discussed

in more detail in Chapter 5 (cf., Section 5.1.1).

The model selection process is based on LASSO (cf., Section 3.3.3.2). It begins by initialising

a model map (line 1), that will be filled with internal-external variable pairs, representing the

variable relationships that will form the regression model. Once this is complete, some pre-

processing steps are applied to the data, which are intended to remove variables that are static

(contain all the same values) or are comprised of just random noise. First, some zero-mean noise

is added to each individual observation (line 2) to ensure that no entirely static variable is fed

into the LASSO. Next, each individual internal and external variable is checked to see if it is

just random noise (line 3). This is done by converting the observations for each variable to a

distribution and using Pearson’s Chi-square test for randomness [Pearson, 1900]. If a variable’s

variation is deemed to be entirely random, it is excluded from the model at this point as it does

not contain any information. Following this, the number of internal and external variables is

updated (lines 4-5) before the final pre-processing step centres and scales each variable’s data,

by subtracting its mean from each observation and dividing by its standard deviation (line 6).

Next, the remaining variables are fed to LASSO to choose the model. The LASSO is run in two

stages, first for each internal variable against all external variables (lines 8-18), and then the pro-

cess is repeated for each external variable against all internal variables (lines 19-27). The order of
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Algorithm 2 Model Selection in DETect
Input: Internal Variables Sliding Windows SWIi and External Variables Sliding Windows SWEi of agent Ai. The

number of external variables L. The number of internal variables K.

Output: modelMap containing all internal-external variable pairs used in the agents model

1: modelMap = new Map(InternalVariable,ExternalVariable) // Initialise Model Chosen Map

2: injectNoise(SWIi, SWEi) // Inject Noise

3: removeRandomVariables(SWIi, SWEi) // Remove variables containing only noise

4: L = count(SWEi) // Update Variable Counts

5: K = count(SWIi)

6: centerAndScale (SWIi, SWEi) // Subtract the mean from each variable and divide by standard deviation

7: LassoCoefficientsMatrix = 2DArray[K * L]

8: for SWIi1 to SWIiK do // Run LASSO For each Internal Variable

9: Ym = SWIil;

10: Initialise LassoCoefficient = new Array[L];

11: LassoCoefficient = RunLasso(Y k,SWEi);

12: for LassoCoefficient[l] to LassoCoefficient[L] do

13: /* Check Coefficient To See What Models Were Selected */

14: if LassoCoefficient[l] != 0 then

15: LassoCoefficientsMatrix[i, l] = LassoCoefficientsMatrix[i, l] + 1

16: end if

17: end for

18: end for

19: for SWEi1 to SWEiL do // Run LASSO For each External Variable

20: Y l = SWEil;

21: LassoCoefficient = RunLasso(Y l,SWIi);

22: for LassoCoefficient[1] to LassoCoefficient[K] do

23: if LassoCoefficient[k] != 0 then

24: LassoCoefficientsMatrix[k, l] = LassoCoefficientsMatrix[k, l] + 1

25: end if

26: end for

27: end for

28: for each cell in LassoCoefficientsMatrix do // Update the Model Map

29: if cell == 2 then

30: Add InternalVariable[Row-Number], ExternalVariable [ColumnNumber] to modelMap

31: end if

32: end for

33: if size(modelMap) > 0 then

34: return(TRUE)

35: else

36: return(FALSE)

37: end if

these two stages is irrelevant to the outcome of the model selection process i.e., external variables

against all internal variables could be evaluated first. A matrix, LassoCoefficientsMatrix, is

initialised (line 7) with zeros, where each row corresponds to an internal variable and each column
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corresponds to its relationship with an external variable. In the first stage, the observations for

each internal variable is taken (line 9) as well as the observations for all external variables. Next

an array is initialised that will be used to store the output of LASSO (line 10). LASSO works

by returning the coefficients, β, for all external variables as fitted by the LASSO algorithm (line

11). Next, the coefficients are checked in turn and if a coefficient is non-zero, the corresponding

entry in LassoCoefficientsMatrix is updated by adding 1 (lines 14-16). The regularisation

term, λ, is selected independently for each Lasso run using cross-validation, meaning it does not

have to be set in advance.

In the second stage, this process is repeated for each external variable against all internal

variables, with the LassoCoefficientsMatrix once again updated by 1 should LASSO return

a non-zero coefficient for the corresponding internal-external variable pair (lines 23-25). Finally

the coefficients matrix is checked to see what cells contain a value of 2, indicating that LASSO

returned a non-zero coefficient for the internal-external variable pair for both LASSO runs (lines

28-32). Variable pairs that have these relationships are added to the model map (line 30).

Finally, if the model contains at least 1 internal-external variable pair the model selection is

deemed successful and a boolean True is returned (line 33-37).

As a result an internal variable can be added to the modelled variables set and a list of all

external variables relevant to that variable is maintained. It may be that no relationships are

selected when this algorithm is run. If that is the case, model selection is re-run every time

the variable sliding windows are filled until at least one internal-external variable relationship

is selected. The design assumes that eventually at least one variable pair will be selected by

this process (cf., Section 3.5). As a result of this process, an agent’s relationship model with its

environment in DETect is represented as one or more MLR models, each of which is independently

monitored for change as the system runs.

3.4.1.3 Model Analysis

After the model of the relationship between the agent and its environment has been selected,

the sliding observation window becomes the RegressionWindows and is reduced to the size of

this parameter. Various sizes of the RegressionWindows are tested as part of the case study

described in Chapter 5. All subsequent instances of the Regressionwindows being filled results

in the selected model being analysed using MLR. This process is outlined in Algorithm 3, with
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Algorithm 3 Analyse Model
Input: modelMap containing all internal-external variable pairs used in the agents model. Internal Variables Regression

Window SWIi and External Variables Regression Window SWEi of agent Ai.

Output: P-value time-series, newPijs for all internal-external variable pairs contained in modelMap

1: /* Initialise */

2: modelInternalV ars = Internal Variables in modelMap;

3: newPijs = empty matrix array;

4: /* Perform MLR */

5: for each modelInternalV ars to All do

6: Y = SWIij of modelInternalV arsj ;

7: X = empty array;

8: for all Eis of modelInternalV arsj in modelMap do

9: X = X + SWEis;

10: end for

11: newPijs = MLR(Y,X);

12: end for

the Model Analyser component taking the set of interval variables chosen by the Model Selector

and fitting a MLR model for each internal variable chosen in Algorithm 2. For each MLR Y is the

internal variable, and the explanatory variables X are the external variables associated with it in

the modelMap (lines 5-12). The output of this MLR is a set of p-values for each internal-external

variable pair, with these p-values representing the significance of the relationship between the

variables at that time (line 11). These p-values are forwarded to the Change Detector Unit, where

they are monitored over time for change to determine if feedback is present in the environment.

By collecting p-values over time, a model of the significance of a relationship can be formed,

making it possible to compare against future measurements. For example, if the historical p-

values for a relationship are consistently high, a sudden drop in the p-values in recent analysis will

indicate that something may have happened to change the significance level of the relationship.
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3.4.2 Change Detection Unit

The Change Detection Unit is responsible for monitoring the p-values associated with each

internal-external variable pair and detecting when a deviation from an expected baseline has

occurred. Any significant change indicates that the agent’s relationship with its environment

may have changed resulting in a feedback detection event being generated and sent to the Col-

laboration Unit (cf., Section 3.4.3). Change detection is achieved using a combination of a

Cumulative Sum (CUSUM) analysis and a sliding window for the p-values generated by each

internal-external variable pair, the CUSUM Windows.

Hawkins describes a self-starting on-line CUSUM algorithm [Hawkins, 1987], that calculates

the CUSUM for a process variable as each new observation of the variable arrives, to determine

if the most recent observations of the process indicate a deviation from its expected mean or

standard deviation. These expected values are the mean and standard deviation of all historic

values of the variable generated by the process up to that point. Once the CUSUM is calculated,

the expected mean and standard deviation is updated to include the new observation and these

updated values act as the baseline for the next time an observation arrives and the CUSUM is

recalculated.

Hawkins’ approach provides the foundation of the CUSUM method used by the Change Detec-

tion Unit in DETect. This approach is applied separately to the p-values of each internal-external

variable pair relationship contained in the DETect model, to determine when the mean or stan-

dard deviation of the p-values changes significantly. However, unlike Hawkins’ approach,

the Change Detection Unit does not use the mean and standard deviations of all historic obser-

vations of the p-value and instead uses the N most recent, the CUSUM Window, to calculate

the expected mean and standard deviation. The reason for not basing the mean and standard

deviation on all historic observations of the p-value is that doing so would ultimately result in

the expected baseline becoming too broad as the system evolves.

Taking flocking as an example, the expected mean and standard deviation would eventually

incorporate p-values from periods with flocking, without flocking, and transition periods, and

therefore detecting the transition between these periods would become impossible using the

CUSUM. By using only recent historic values, the CUSUM Window, this problem is avoided

assuming that the CUSUM Window is sufficiently narrow so that it does not overlap these

different macro-level states. However, the CUSUM Window should also be sufficiently wide so
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as to represent a reasonable baseline and to ensure that the CUSUM analysis is not too sensitive,

which would result in a change being suspected very frequently. The size of the CUSUM Window,

N , is therefore a critical parameter in DETect and it is one of the parameters evaluated in the

case study described in Chapter 5, with the effect of a range of different CUSUM Window sizes

analysed (cf., Section 5.1.3).

The algorithm used by the Change Detection Unit is described in Algorithm 4. It takes as

input the model selected by DETect containing the names of all internal variables and their

associated external variables. It also takes some parameters, including the specific value of

N to be used for the CUSUM Window and the parameters K and h used by the CUSUM

algorithm. Setting the values for both the weighting parameter, K and the CUSUM threshold,

h, is important to the performance and sensitivity of the CUSUM (cf., Section 3.3.3.3). It is

typical to set a value of K to half the number of standard deviations from the mean. Assuming

a normal distribution in the data, 95% of values can be expected to fall within 2 standard

deviations of the mean. Using this 5% significance level as a threshold, K = 1 was selected, and

used throughout the evaluation of DETect. The threshold was set to h = 4 after preliminary

experimentation involving the Traffic model described in Section 4.5 to find a reasonable level

for the parameter.

The first section of Algorithm 4 (lines 1-11) sets up the CUSUM Window and cumulative

sums, SMean and Sdev for each internal-external variable pair contained in the model map.

SMean (line 8) is used to look for deviations from the expected mean of the p-value and SDev

(line 9) is used to look for deviations from the expected standard deviation of the p-value as the

system evolves. The main CUSUM section begins at line 12. A check is made at every time step

to determine if a new set of p-values have been generated for the model by the modelling unit

(line 14). If this is the case, the feedback detection event flag is set to false before the analysis

takes place (line 15). Next, each CUSUM Window being monitored is processed in turn, with

the specific p-value associated with that variable pair being extracted from the received set of

p-values (line 17). If the CUSUM Window is full, the expected mean and standard deviation are

calculated and the CUSUM analysis is executed (lines 19-21) The CUSUM analysis returns the

updated CUSUM values for both SMean and SDev and the absolute value of these is compared

to the CUSUM threshold h, to determine if a significant change has occurred (line 22-24). Next,

the oldest value in the CUSUM Window is deleted (line 25), before the most recent observation
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Algorithm 4 Relationship Monitoring and Change Detection
Input: The model being observed, modelMap, containing the names of the internal-external variable pairs. New p-

values for each internal-external variable pair in the newPijs in modelMap. The size of the CUSUM sliding window

Ncusum. h the CUSUM threshold. K CUSUM weighting parameter

Output: A feedback detection event, feedBackFound

1: /* Initialise */

2: modelInternalV ars = Internal Variables in modelMap;

3: for all modelInternalV ars MIVa do

4: modelEnternalV ars = modelMap.get(MIVa); // All external variables associated with internal variable

5: for all modelEnternalV ars MEVb do

6: initialise empty CusumWindowab

7: /* Initialise CUSUM for the mean and standard deviation */

8: Smeanab = 0

9: SDevab = 0

10: end for

11: end for

12: /* Main CUSUM Part */

13: for all Time steps do

14: if newPijs arrived then

15: feedBackFound = false

16: for all CusumWindowab do

17: newPab = get P-value from newPijs

18: if size(CusumWindowab) == Ncusum then

19: expectedMean = mean(CusumWindowab)

20: expectedSd = sd(CusumWindowab)

21: [SMeanab, SDevab] = CUSUM(expectedMean,expectedSd,SMeanab,SDevab,K)

22: if absolute(SMeanab) > h or absolute(SMeanab) > h then

23: feedBackFound = true

24: end if

25: Delete CusumWindowab[0]

26: end if

27: CusumWindowab.add(newPab) // Add most recent p-value to the window

28: end for

29: send feedBackFound to Collaboration Unit

30: end if

31: end for

of the p-value is added to the end of the window (line 27). Finally, the state of feedBackFound is

sent to the Collaboration Unit, which indicates if a statistical change has occurred in the agents

relationship with its environment (line 29).
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3.4.3 Collaboration Unit

The final component of DETect is the Collaboration Unit, which is responsible for inter-agent

communication in order to share information about feedback detection and thus allow agents

to learn about the state of the system beyond their immediate locality. Algorithm 5 outlines

a gossiping consensus algorithm, based on distributed averaging, that allows agents to reach

consensus on the presence of sufficient feedback detection in the system. When DETect raises

a feedback detection event, the variable Lv is set to 1 to reflect this (lines 3 − 7). DETect also

maintains a second variable, Ev, which represents the proportion of other agents in the system

believed to have also detected feedback. Ev is updated by randomly selecting one of the agent’s

neighbours and updating both Ev values to their average (lines 11 − 15). After this is done,

Ev is scaled towards the agent’s own feedback variable Lv, meaning that without reinforcement

from other agents, DETect will believe its own experience (lines 22− 24). DETect concludes the

existence of an emergent event when Ev exceeds a certain threshold (lines 29 − 31). The value

of this threshold is explored as part of the evaluation described in Chapter 5 (cf., Section 5.1.4).

DETect makes a number of compromises between speed and accuracy in consensus formation

between agents (lines 9-15). To begin, an upper and lower limit is used on the neighbourhood

size of the agent, meaning that DETect does not gossip unless the agent has a minimum number

of neighbour agents. The is due to the nature of p-values which means that some random

changes may occur in the monitored relationships and may cause individual agents to falsely

detect change. If an agent is in a sparsely populated area of the environment it is possible that

a disconnected sub-network may form due to limitation in communication range. With few one-

hop neighbours, the consensus averaging for this group will be artificially high compared to a

densely populated area if a random p-value change occurs. However, agent interactions are a

fundamental requirement for emergence to exist [De Wolf and Holvoet, 2005], so by not trying

to detect emergence when an agent has few neighbours and thus, few interactions, false-positive

emergence detections such as these can be reduced. For example, such a group composed of only

two agents would form a consensus of 50% of agents are experiencing a change if one of them

experienced a random p-value change. Meanwhile, a group elsewhere in the system composed

of 500 agents would form a consensus of only 40% if 200 of them simultaneously experienced a

change. Finally, DETect remembers that feedback was detected for a period of time, allowing

multiple agents who do not detect feedback at exactly the same time to still form consensus over
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Algorithm 5 DETect Distributed Consensus Forming Step
Input: A feedback detection event, feedBackFound. The set Nit containing the one-hop neighbours of agent Ai at time

t. DETect’s previous estimate of feedback consensus in the system Ev. The minimum and maximum neighbourhood

sizes permitted, neighMin and neighMax. The consensus threshold value that triggers an emergence detection

event consensusTheshold. How quickly to scale consensus belief to feedback value, scaler

Output: An emergence detection event EmergeDetected

1: /* Initialise */

2: EmergeDetected = FALSE

3: if feedBackFound == TRUE then

4: Lv = 1;

5: else

6: Lv = 0;

7: end if

8: /* Check if there are sufficient neighbour agents */

9: if size(Nit) ≥ neighMin) then

10: /* If there are too many neighbours, select the neighMax closest */

11: if size(Nit) ≤ neighMax) then

12: gossipCanidates = Nit;

13: else

14: gossipCanidates = nearest(neighMax, Nit);

15: end if

16: /* Gossip */

17: partner = Random(gossipCanidates);

18: partnerEv = Ev of partner;

19: myEv = (partnerEv + Ev) / 2;

20: Ask partner update Ev to myEv;

21: Ev = myEv;

22: /* Scale to Own Feedback Detection Belief */

23: diff = Ev - Lv

24: Ev = Ev - diff * scaler)

25: else

26: Ev = 0;

27: end if

28: /* Raise Emergence Detected Event if threshold exceeded */

29: if Ev ≥ consensusTheshold then

30: EmergeDetected = TRUE;

31: end if

time.

DETect will execute Algorithm 5 at each time step that the agent has a sufficient number of

neighbours. A single agent may act as a partner to more than one neighbour at each time step

as the selection of a partner is random. As a consequence, the order in which interactions occur

impacts the final value that an agent’s value Ev will have at the end of each time step. Figure 3.7

illustrates the gossip work flow of interaction between 3 agents, where Agent 1 randomly selects
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Fig. 3.7: Consensus work flow between 3 agents.

Agent 2 as a partner and commences gossiping. Once complete, Agent 2 begins their gossiping

interaction, randomly selecting Agent 3 to interact with.

3.4.4 DETect and Design Objectives

Through a combination of sliding observation windows, statistical analysis using MLR and

CUSUM and distributed consensus, DETect has been designed to address all the objectives

for decentralised emergence detection outlined in Section 3.1. This is summarised in Table 3.1,

where specific features of DETect are mapped to each design objective. DETect removes the need

for a centralised observer of the global system, with DETect instead using the constituent agents

as detectors (objective 1). The agents use information that is already available to them, char-

acterised by a set of internal and external variables, to facilitate emergence detection. DETect

allows agents to act as detectors at runtime by reducing the amount of design-time informa-

tion required by the agent about the emergent properties of the system (objective 2). DETect

also uses an automatic model selection mechanism, LASSO, to select the relationship between

internal variables and external variables that should be monitored (objective 5). To increase

the scope of information an agent receives from the system, DETect uses a gossip-based dis-
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Table 3.1: Design Objectives and DETect Features

Obj. Description DETect feature

1. Decentralise detection Constituent agents as detectors, Dis-

tributed Consensus

2. Detect emergence at runtime Constituent agents as detectors, LASSO

model selection, CUSUM change detec-

tion

3. Use only locally available information MLR modelling of internal and external

variables

4. Support collaboration between agents Distributed gossip-based consensus

5. Autonomously select data to monitor LASSO model selection

6. Detect formation and evaporation of emergence Sliding observation windows, CUSUM

change detection

tributed consensus mechanism. This distributes the detection of emergence across all the agents

in the system, instead of having a single agent hold responsibility (objective 4). Finally, DETect

constantly updates its model of the agent’s relationship with its environment by using a series

of sliding observation windows, allowing transient changes in the emergent system state to be

detected (objective 6).

3.5 Limitations Due to Design Decisions

A number of the decisions made when designing DETect have introduced some associated limi-

tations to the DETect algorithm. Although it is not believed that these limitations significantly

undermine the feasibility of DETect’s approach, these limitations are discussed in the remainder

of this section. A detailed evaluation of the performance and feasibility of DETect is presented

in Chapter 5.

Multiple Linear Regression: The modelling technique used by DETect is multiple-linear re-

gression (MLR) where internal variables are modelled using the external variables as explanatory

variables. Using MLR means non-linear relationships that may exist between an internal variable

and one or more external variables may not be modelled entirely accurately. This is because these

relationships will be approximated to a linear model resulting in some information, or subtlety

in the relationship, being lost.

In the context of DETect, the purpose of the model is not to facilitate prediction of the

internal variable, where such subtlety could greatly impact the accuracy of predictions made.
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Instead, the purpose of the MLR is to provide a consistent measure of the relationship, not to

achieve a fully accurate understanding of how the two variables relate to one another. In other

words, DETect requires a measure that behaves consistently over time, enabling a baseline of

expected p-values for the relationships to be established, which can then be used by the CUSUM

algorithm. For example, if the MLR is a bad model of a given relationship and the p-values

generated vary wildly over time, this is acceptable for DETect’s purpose so long as the p-values

continue to act in this manner. In this instance, the CUSUM is designed to detect when this

behaviour changes, for example, if the p-values suddenly begin to remain static (the standard

deviation will change) or trend in a certain direction (the mean will change).

It is possible that non-linearity could be introduced into the MLR by the inclusion of in-

teractions between explanatory (external) variables. For example, external variables could be

multiplied with one another or themselves to create a new set of variables. This technique is

typically used when manually selecting a model and involves many iterations to find meaningful

interactions. However, with automated model selection and with no limit on the number of po-

tential external variables or combinations possible this would greatly increase the computational

cost of model selection and renders the use of this technique in DETect impractical.

Another possibility when using MLR is that p-values may vary due to random chance when no

real change has occurred in the system. In this instance, DETect’s CUSUM algorithm may detect

a change and a false positive feedback detection event may be generated. DETect’s consensus

algorithm is designed to address this scenario as a single agent experiencing a change will not

be able to form consensus with other agents. The possibility of a sufficient number of agents

simultaneously generating similar false positives does exist in theory, however the likelihood of

this happening is extremely small.

In summary, MLR provides an efficient means of generating a relationship measure for mul-

tiple variables at once. It is possible that some relationships may not be modelled entirely

accurately, as a result. However, since the objective of DETect is not a predictive one, and due

to robustness provided by both the CUSUM and consensus algorithms, these limitation are not

considered to fundamentally undermine the use of MLR in this context.

Unchanging variable set One of the assumptions made during the design is that the set of

internal and external variables available to the agent do not change during the system evolution

(cf., Section 3.2.3). This means that no new variables are added and none of the existing variables
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become unavailable. As a result, DETect’s initialisation phase is only executed once for each

agent during the system evolution. The set of available variables may change, for example,

following a comprehensive adaptation of the agent or if the environment changed fundamentally.

The impact of such scenarios are not considered as part of this work.

Model Selection The model selection algorithm is repeated every time the sliding observational

windows are full until at least one internal-external variable pair is selected to comprise the

model. It is assumed that eventually one relationship will be selected by DETect’s modelling

unit. However, it is theoretically possible that it may take a prohibitively long time for this to

happen on one or more agents, or indeed it may never happen. In such a scenario, the remainder

of DETect’s work flow, feedback detection and consensus formation, would not be utilised on that

agent. Instances where an agent fails to achieve this minimum requirement are not considered

and the scenario did not arise at any time during evaluation.

3.6 Summary

This chapter outlined the design objectives necessary to meet the challenges presented by emer-

gence detection in Complex Adaptive Systems. Next, the terminology and system model that

are the subject of this thesis were outlined to identify the scope of and assumptions made by this

work. The subsequent sections described the design decisions motivated by the identified design

objectives and described the solution proposed by this thesis.

The proposed solution for emergence detection, DETect, addresses these design objectives

using a combination of sliding observation windows and statistical analysis. The configuration of

these techniques is designed to allow the constituent agents of the system to detect feedback from

emergence through changes in their statistical relationship with their environment. Once feed-

back is detected, a distributed consensus algorithm is used to enable agents to share information

and therefore base their conclusion of emergence on more than their own limited experience.
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Implementation and Simulation

Environment

This chapter describes the implementation of DETect and the simulation environments that are

used for evaluation. It begins by introducing NetLogo, a multi-agent programmable modelling

environment that is used to implement DETect agents and perform experimentation. Extensions

to NetLogo were implemented in Java and R which contain the core functionality provided by

DETect. Next, the implementation of a generic DETect agent is outlined before the three multi-

agent models implemented as case studies to evaluate DETect’s performance in Chapter 5 are

described. The interface between agents and their environment and the behavioural rules that

are the foundation of each model are outlined.

4.1 Simulation Framework

Figure 4.1 illustrates the components of the simulation environment with DETect components

highlighted in green. DETect’s implementation is distributed across NetLogo, Java and R.

NetLogo

NetLogo v5.1.0 was used for the development of the simulation environments [Wilensky, 1999].

NetLogo is an open source programmable modelling environment that is written in Java and

runs on the Java Virtual Machine (JVM). It allows users to write their own extensions in Java
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Simulation Model

Environment

Agent

API

Monitoring & Consensus

NETLOGO

Statistical Library DETect R Library

R Libraries
Sets
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Sets

Calls
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Calls Calls

Uses

creates
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Fig. 4.1: Simulation Framework: DETect components, highlighted in green, are implemented

across NetLogo, Java and R.

82



Chapter 4. Implementation and Simulation Environment

Patch

Turtle

Link

Observer

Fig. 4.2: NetLogo Agent Types: Patches create the two dimensional grid of the simulation

providing turtles with a world to move around on. Links can be used to connect two turtles

together. The Observer monitors the simulation and can give instructions to the other agents.

that can be loaded and run during simulations via an API. It has been used extensively in

the study of emergence in multi-agent systems, modelling a variety of domains such as disease

spreading [Tang and Mao, 2014], flocking [Chan, 2011] and pedestrian counter flow [Procházka

and Oľsevičová, 2015].

Simulations in NetLogo are described by a simulation model, written in NetLogo’s own mod-

elling language. This is used by the simulation engine to specify the environment and agents

that should be created. NetLogo contains 4 types of agents illustrated in Figure 4.2. They are

introduced here and used to describe the 3 case studies later in the chapter. The agent types

are:

• Patches are stationary agents. They form a two dimensional grid that makes up the

coordinate system of the world.

• Turtles are agents that move around in the world. It is possible to create different breeds

of turtle, each with unique parameters and behaviour rules.

• Links are connections that are made between two turtles.

• The Observer agent is a super agent that can be used by the modeller to give instructions
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to agents or to monitor the properties of agents in the system. The Observer advances time

in the simulation

The simulation model also contains the behavioural rules of the agents and the environment,

which contain details of how agents move and interact with one another. Sections 4.3 to 4.5

below describe in detail the models used in each of the 3 case studies. Agents of type turtle use

DETect, as their ability to move in the environment allows them to generate the spatial emergent

behaviour that is the focus of this thesis. Therefore, from this point on, the term agent is used

to refer to turtles, while patches, the observers and links are referred to explicitly by name.

DETect API

Agents in the simulation can access DETect functionality through DETect’s API that exposes

the statistical, monitoring and consensus algorithms to the agent.

Monitoring and Consensus

The monitoring and consensus aspects of DETect are implemented in NetLogo’s modelling lan-

guage. The Monitoring functionality refers to the initialisation and variable observation (cf.,

Section 3.4.1.1), where the averaging and sliding observation windows for all internal and ex-

ternal variables are maintained. The Consensus algorithm (cf., Section 3.4.3) is responsible for

distributed consensus formation about the presence of an emergent event in the system.

DETect Statistical Library

The more complicated statistical functionality provided by DETect required a separate JAVA

library to be implemented. This functionality includes both the model selection (cf., Section

3.4.1.2) and model analysis (cf., Section 3.4.1.3) algorithms described in Chapter 3. The library

is loaded by the JVM when NetLogo is started and its functionality can be called by agents

from within the NetLogo simulation environment at runtime. When each agent is initiated, a

DETect object is created for them that stores the internal and external variables for that agent

and tracks the history of the agent’s relationship with its environment as the system evolves. In

addition, this object passes data into R and executes functionality written in R to analyse the

data. The methods exposed to the agent by this library are as follows:

• void initiateDETect(String agentName), which is used to create a DETect object

used to manage the agent’s internal and external variables and monitor its relationship
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with its environment.

• void addVariable(String varType, String varName), which is used to add a new

variable for DETect to model. The variable is given a type, either “internal” or “external”,

and assigned a name.

• void updateVariable(String varType, String varName, double[] slidingObser-

vationWindow), which is used to update a variable’s values in DETect once its sliding

observation window is full.

• int runLasso(), which is used to initiate the LASSO-based model selection. This results

in a model composed of internal-external variable pairs, where a multi-linear regression

(MLR) is applied to each internal variable and all its associated external variables. An

integer value is returned indicating how many internal variables are part of the model. If

at least 1 internal variable is selected, model selection is deemed a success.

• void runRegression(), which is used to trigger an analysis of the selected model for

all internal variables and their associated external variables using MLR. This function

dynamically creates the correct statements to load the variable data and perform the MLR

in R.

• double[] runCusum(String varName), which is used to initiate a Cumulative Sum

(CUSUM) analysis of the internal-external relationships included in the model for the

specific internal variable, varName. An array is returned indicating the CUSUM for each

external variable that is included in the internal variable’s model. This is used to determine

if any of these relationships has changed.

DETect R Library

The final component in the implementation is a dedicated R library containing aspects of the

model selection and model analysis algorithms. This functionality is called from the DETect

statistical library with the R library glmnet used to perform the LASSO analysis. The functions

included in DETect’s R library are:

• chooseVariables(internal,external), which implements Algorithm 2 (cf., Section 3.4.1.2).

It takes the set of internal and external variables for an agent and returns the names of
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each internal-external variable relationship selected by the algorithm. This is called as part

of the runLasso routine described above.

• injectNoise(slidingObservationWindow), which is used to inject zero mean noise to

the data in preparation for MLR and LASSO.

4.2 Generic DETect Agent Implementation

This section presents the implementation of a generic DETect agent. The steps involved during

agent initialisation and a generic time step in a given simulation are described in detail, showing

how control and information flows through the components in the simulation framework. The

steps described for both of these processes are common across all models where DETect is

implemented.

4.2.1 Agent Initialisation

Figure 4.3 illustrates the sequence of steps involved in the initialisation of an agent using DETect.

This sequence corresponds to the initialisation algorithm described in Section 3.4.1.1.

• Step 1-2 The sequence begins with the simulation model where the environment and agent

are specified and initialised.

• Step 3-4 The agent requests that a DETect object is initialised using the DETect API.

This involves a call to the DETect Java statistical library where a new DETect object is

created and assigned to the agent.

• Step 5-7 Next the agent informs DETect of its set of internal and external variables.

A sliding observational window is created for each variable in DETect’s monitoring and

Consensus component and the data structures for each variable are also created using

DETect’s statistical library.

• Step 8-9 Once complete, control is passed back to the environment. The clock is updated

to the next time step and the agents are instructed to move. The move an agent makes is

determined by its behavioural rules, which are unique to each simulation model. Section

4.3 to Section 4.5 describe the models implemented in the simulation environment and

outline the behavioural rules used by agents in each model.
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1. Initialise

2. Initialise

3. Initialise

4. Create DETect Object

5. Add Variables

6. Create Windows

7. Add Variables

8. Tick

9. Move

Fig. 4.3: Generic DETect agent - Initialisation Sequence Diagram

4.2.2 Generic Time Step

Once the environment and the model have been initialised the system will evolve with each agent

moving and interacting at each time step. Figure 4.4 describes the sequence of steps executed

during each time step, demonstrating how information flows into DETect. This sequence is

more complicated than the initialisation sequence as there are two decision points depending on

whether the sliding observation windows are full and whether the model has been selected. The

steps involved in this sequence are:

• Step 1-3 The sequence begins with the environment advancing the system clock and

instructing each agent to move. On receiving this prompt, the agent makes a decision on

its action based on its behavioural rules.

• Step 4-5 Next, an observation is made of the agent’s internal and external variables and the

observations are passed into DETect, where the Monitoring & Consensus component add
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Fig. 4.4: Generic DETect agent - Activity Sequence Diagram
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them to their respective sliding observational windows (cf., Algorithm 1, Section 3.4.1.1).

The internal and external variables for each model are outlined in Section 4.3 to Section

4.5.

• Step 6-7 If the windows are full, they are forwarded to DETect’s statistical library. If

the windows are not full, the sequence jumps to Step 15-16. Assuming the windows are

full, another IF-ELSE decision is made. If the model of the agent’s relationship with its

environment has already been selected Steps 8-12 are executed. Else, if the model has not

been selected, Steps 13-14 are executed.

• Step 8-12 The internal-external variable model has already been selected so these steps

proceed to analyse it using an MLR. The p-values generated by the MLR are returned

and forwarded to the CUSUM algorithm to determine if a significant change has occurred

in the relationship. Once this is complete, the results are returned to the Monitoring

& Consensus component and the sliding windows are progressed by deleting the earliest

values. Next, the gossiping consensus protocol is executed with the environment searched

to find a gossiping partner. Once complete, the process continues to Step 15-16.

• Step 13-14 (From Step 6-7) The LASSO-based model selection algorithm is executed to

select the internal-external variable relationships that will be used to model the agent’s

relationship with its environment.

• Step 15-16 Control is returned to the agent, who makes the move or action decided upon.

Once all agents have moved, the environment advances the system clock.

4.3 Model 1: Flocking

Boid flocking is a well-established model used in the study of emergence [Reynolds, 1987]. The

emergence in this model occurs when patterns form in the aggregate behaviour, such that the

flock appears to move in unison. When implementing the model, each boid is represented as an

autonomous agent, with the formation of flocking patterns achieved through the local interactions

between these agents. These interactions follow simple rules to update each agent’s speed and

heading:

1. Separation: Steer away from other agents that are too close.
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Table 4.1: Parameters used to control flocking behaviour

Rule Description
Parameter

Name

Generate

Flocking

No

Flocking

Align
Adjust heading so that you steer towards

the average heading of your flockmates
A 5 0

Cohere

Adjust heading so that you steer towards

the center point of your flockmates

(average (x,y) coordinates)

C 3 3

Separate
Adjust heading so that you steer away from

your nearest flockmate
S 1.5 1.5

2. Alignment: Adjust heading and speed so that the agent is moving in the same direction

and at the same speed as agents nearby.

3. Cohesion: Steer towards the centre of other agents nearby.

4.3.1 Behavioural Rules

The simulation uses the standard flocking model found in the NetLogo modelling commons

[Wilensky, 1998]. It contains 150 DETect enabled agents in a squared environment, sized 50x50

patches, where the width of a patch corresponds to 1 unit of distance in the world. The environ-

ment wraps both horizontally and vertically allowing agents that fly through any border of the

environment to appear again seamlessly from the other side. The (X,Y) coordinate system in the

environment is based on the patches that make up the world, with the center patch representing

point (0,0). The heading of an agent, its direction of travel, is described in degrees ranging from

0 to 360, similar to a compass. A heading of 90 degrees indicates the agent is moving left to

right (directly due east) and 180 degrees means the agent is moving from top to bottom in the

world (directly due south).

At each time step, all agents update their heading and speed using the three rules outlined

above before moving forward in their new direction. The rate at which agents adjust their

heading in response to each rules is controlled using 3 global parameters specifying how many

degrees to adjust their heading by. The values used for each of these rules during simulations

are outlined in Table 4.1. Flocking behaviour is controlled during the simulation by adjusting

the number of degrees an agent aligns its heading with its flockmates.

Figure 4.5 shows the field of vision of each agent in the model. Each agent’s “vision” is a
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Flockmate

Too close

Cannot be seen

Fig. 4.5: Flocking agent’s field of vision

distance of 5 patches from their center point. This means that agents see only other agents

within this radius (the outer circle). Agents apply their behavioural rules based on the agent set

found inside this threshold, so the blue agents are ignored. Agents inside this radius constitute

the agent’s “flockmates”. An agent will deem another agent to be too close when they are within

1 patch of their own position (the red agent inside the inner circle), triggering the agent to steer

away from this agent. Despite this, it is possible for agents to appear to inadvertently “collide”

during the simulation. Figure 4.6 presents a flowchart of this flocking process that is executed

by agents at each time step.

Speed is also updated during this process. All agents are initialised with a common speed of

1, indicating the number of patches they traverse at each time step. During the simulation, each

agent tries to match the average speed of their flockmates if there are any other agents nearby.

The process concludes with each agent making a small autonomous acceleration or deceleration,

selected randomly from a normal distribution with mean 0 and standard deviation of 0.1.

4.3.2 DETect Integration

Each agent monitors 4 internal and 6 external variables, described in Table 4.2, giving a total

of 24 internal-external variable relationships for DETect to choose from. Among these are two

internal (Age and Vision) and two external variables (temperature and Distance to Center) that

are either static or randomly varying and are not used by the agent to perform an action. As a

system modeller, these variables are deemed to be inconsequential to the model, however DETect

is unaware of the semantic content of all variables and what constitutes variables associated with
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Fig. 4.6: Flocking behaviour flowchart
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Table 4.2: Flocking Internal and External Variables

Name Description
Potentially

Useful

Internal Variables

Speed The current speed of the agent Yes

Heading The current heading in degrees of the agent Yes

Age A static variable randomly selected at agent initialisation No

Vision How far the agent can see. Variable is static during simulation No

External Variables

Neighbours Heading The mean heading agents in the agent’s field of vision Yes

Neighbours Speed The mean speed agents in the agent’s field of vision Yes

Spacing The distance to the closest other agent Yes

Number of Neighbours The number of agents in the agent’s field of vision Yes

Temperature A randomly varying environment variable No

Distance to Centre How far the agent is from the center of the map No

flocking and those that are not associated with flocking. DETect is only concerned with finding

sets of variables where the relationship between them contains some information. As a result,

variables that are deemed to be not potentially useful, are included in the implementation to

enable the model selection process in DETect to be evaluated. This evaluation is described in

more detail in the next chapter (cf., Section 5.1). Finally, the flockmates of an agent at time t

are used as gossiping candidates for DETect during the simulation.

4.3.3 Monitoring Emergence Objectively

The emergence to be detected in this model is the coherent flocking patterns that form when

agents appear to move in unison. To measure when this flocking occurs and the extent to which it

occurs, a centralised method similar to that described by Niazi and Hussain is used to provide an

objective measure of emergence in the system [Niazi and Hussain, 2011]. This objective measure

can then be used to identify times when emergence is forming and evaporating the system which

corresponds to times when DETect should generate detection events.

The objective measure is based on the intuition that when flocking forms, agents get closer

together, as illustrated in Figure 4.7. The image on the left contains no flocking behaviour and

agents are close to uniformly dispersed across the simulation world. The image on the right does

contain flocking and agents are bunched together with large areas of the world empty. Therefore,

each patch that makes up the simulation environment is equipped with a proximity sensor that
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Fig. 4.7: Flocking model screen shot: A multi-agent system simulation of boids demonstrat-

ing no emergent behaviour (left) and emergent flocking behaviour (right).

indicates if any agent is within a radius of 2 patches from its center. The percentage of patches

with no agents within this radius is recorded every 50 time steps throughout the simulation. Once

the simulation is over, the time series of this measure can be used to identify periods with flocking

and periods without flocking. As a result, transitions between these periods corresponding to

emergence formation and evaporation can also be identifed. The process used to identify these

transition periods is described in Appendix A.

4.4 Model 2: Pedestrian Counter Flow

The second simulation is of pedestrian agents, another well-studied model in the field of emer-

gence and self-organisation [Helbing and Molnar, 1998, Helbing et al., 2002, Moussäıd et al.,

2011]. There are many examples of possible emergent behaviour in pedestrian models, such as

congestion points, however this study focusses on emergence characterised by the formation of

lanes in counter-flowing individuals. An existing pedestrian model previously described in the

study of information entropy during the formation of these emergent behaviours [Procházka and

Oľsevičová, 2015] is used. The core behavioural aspects of the agents are outlined in the next

section.
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Fig. 4.8: Pedestrian model screen shot: Illustrating the counter-flow behaviour in the pedes-

trian model.

4.4.1 Behavioural Rules

The simulation, illustrated in Figure 4.8, uses 380 agents in a squared environment (sized 40x40

patches) that wraps both horizontally and vertically. The agents are split evenly into two groups,

red and white. Each agent has two types of behaviour, a random walk and a guided walk. The

guided walk behaviour involves counter-flow, with the white agents attempting to travel from

left to right (heading = 90) and the red agents attempting to travel in the opposite direction

(heading =270). Each agent’s behaviour can be summarised by three rules: (1) avoid collisions

with other agents (2) move to less crowded spaces and (3) maintain the desired heading (either

90 or 270 degrees).

Every time step, an agent will attempt to update its heading to satisfy the three specified rules.

It does this by finding an un-crowded patch within a 2 patch radius of itself. The patches within

this radius constitute the agent’s candidate patches. To achieve this, all agents tell their candidate

patches how far they are from the patch’s center. This distance is inverted by subtracting it from

the maximum possible distance of 2 patches. Once each agent has communicated with their

candidate patches, each patch sums the inverted distances creating a measure of how crowded

they are, called a crowded coefficient. When agents wish to select from amongst their candidate

patches, they select the patch with the lowest crowded coefficient that requires the smallest

deviation from its existing heading. Once complete, the agent turns towards the chosen patch

and moves forward. In the model, each agent’s speed is maintained at 0.3 patches per time step.
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Table 4.3: Pedestrian Internal and External Variables

Name Description
Potentially

Useful

Internal Variables

Heading The current heading in degrees of the agent Yes

Speed The current speed of the agent. This is static throughout. No

Age A static variable randomly selected at agent initialisation No

Height A static variable representing the agents height No

Weight A static variable representing the agents height No

External Variables

Neighbours Heading The mean heading agents in the agent’s field of vision Yes

Neighbours Speed The mean speed agents in the agent’s field of vision Yes

Spacing The distance to the closest other agent Yes

Number of Neighbours The number of agents in the agent’s field of vision Yes

Temperature A randomly varying environment variable No

4.4.2 DETect Integration

Each pedestrian agent monitors 5 internal and 5 external variables, outlined in Table 4.3. This

gives a total of 25 internal-external variable relationships for DETect to choose from. However,

four of the internal variables, speed, age, height and weight are static and are not used by the

agent when selecting an action. Similarly, the external variable temperature, is a common vari-

able across all agents and varies randomly throughout the simulation. As a result, temperature

is labelled as not useful. Finally, agents in the model gossip with other agents within a 5 patch

radius when forming consensus on the presence of emergence.

4.4.3 Monitoring Emergence Objectively

The emergent behaviour of interest in this model is the formation of lanes between agents in the

environment. Lanes are formed by individual agents who follow each other in a queue that can

be clearly distinguished. Procházka and Oľsevičová [Procházka and Oľsevičová, 2015] formally

define a lane element as a triplet of agents travelling in the same direction, who meet the following

constraints:

• Closeness - the distance from the middle agent to outer agents of the triplet is within the

defined interval <lane radiusmin, lane radiusmax>

• Straightness - the angle between two lines from the middle agent to the outer agents of
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Fig. 4.9: Pedestrian lane triplet

the triplet is within the defined interval <lane anglemin, π >

• Clearness - there are no other agents between the middle and both outer agents of the

triplet

Figure 4.9 illustrates how these constraints operate in practice. Line 1 and Line 2 illustrate

the distance from the middle agent to both outer agents. The length of both of these lines must

be greater than a minimum, set to 1 patch, and less than a maximum, set to 5 patches, to satisfy

the Closeness constraint. Next, the angle formed by Line 1 and Line 2 when they meet at the

middle agent must be less than π (180 degrees, a straight line) and greater than a minimum

angle, set to 100 degrees. Finally, no other agents can be in the space between the middle and

the two outer agents.

The model requires that at least 4 such lane elements exist contiguously for a full lane to be

formed. The number of full lanes present in the system is counted throughout each simulation

creating a time-series once the simulation is over. A high number of lanes indicates emergence is

present in the system and identifying these periods allows the formation and evaporation periods

of emergence to be found. Appendix A describes the process used to identify these transition

periods in the time series of the objective measure.
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Fig. 4.10: Traffic model screen shot: Showing a segment of the street network (white), taxi

agents (yellow) and post-code borders(blue).

4.5 Model 3: Traffic

The final simulation is of road traffic, where OpenStreetMaps is used to model the road network

of Manhattan, New York City [BBBike.org, 2014]. Agents are implemented as taxis designed

to traverse a model of the Manhattan street network with GraphHopper [Graphhopper, 2014].

GraphHopper is an open source routing library, based on OpenStreetMap data, used to ensure

realistic routing of agents. A screen shot of the model is provided in Figure 4.10 with the agents

visible as yellow on the map. The blue boxes represent zip-code areas, each containing a taxi-

depot where the agents begin the simulation. Agents are initially evenly distributed across the

map and they traverse the map with the goal of travelling to all depots during the simulation.

The simulation uses 2500 taxi agents, with each agent attempting to complete their journey

while avoiding collisions with other agents and stopping for traffic lights at intersections. Agents

travel from depot to depot around the map with each depot initially being selected randomly

by each agent. Periodically, all agents are directed to choose the same depot as their next

destination, forcing all agents to converge to the same area of the map. This convergence leads

to the formation of a traffic jam which is the spatial emergent behaviour of interest in this model.
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Fig. 4.11: Example street network in the traffic model with junctions in blue and streets

connecting them. The taxi agent is displayed in yellow.

4.5.1 Street Network and Navigation

The street network is constructed as a directed graph as illustrated in Figure 4.11. Each street

is identified with a unique OSM id and the arrow indicates the permissible direction of travel.

Both one-way and two-way streets are implemented. The network is constructed by dividing

the street into a series of straight line segments and placing a junction, the blue nodes, where

these segments meet. This allows curves in the same street to be constructed using a series of

connected junctions, as demonstrated with osmID1 using junctions 1, 2 and 3.

Junction 4 represents the convergence of three different streets. When the taxi agent (yellow)

arrives at the junction it must decide which street to follow. Each agent maintains a list of the

OSM ids it must follow in turn to reach its destination. Each junction maintains a list of the

other junctions connected to it and a list of the OSM ids that are available if the agent travels

in the direction of that junction. So, for example, Junction 4 can inform the agent that if it

travels towards Junction 5 it can reach osmID3 and if it travels towards Junction 6, it can reach

osmID4. The agent will then adjust its heading to face towards the junction that offers it the

next street on its journey.

Finally, as the streets coming into and leaving Junction 4 present potential conflicts, a set of

traffic lights is assigned to each street indicating if agents approaching on that street can use the

99



Chapter 4. Implementation and Simulation Environment

START
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a red light
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Is there
an agent
ahead?

Set speed = 
speed + acceleration

Set speed = 
other agent's speed

- deceleration

END

set speed 0
Yes

No

No

Yes

if speed > 1 then
Set speed = 1

if speed < 0 then
Set speed = 0

Fig. 4.12: Decision tree for speed updates: The agent looks for traffic lights and other

agents ahead of it.

junction. A round robin system is used to periodically update the traffic lights associated with

the same junction ensuring that each approaching street is assigned a “green light” in turn. All

junctions that have two or more streets flow into them are assigned a set of traffic lights when

the model is initialised.

4.5.2 Behavioural Rules

At each time step an agent tries to move towards its destination. This involves two steps,

updating their speed and moving.

Update Speed

Agents travel at a varying speed with a range of 0 to 1 patch per time step and have a fixed

vision of 1 patch in front of them. Unlike their heading, speed is updated constantly based on
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what is around them in the environment. Figure 4.12 illustrates the steps each agent takes to

update their speed at each time step. First, the agent checks to determine if there is a red light

for the street they are currently on within 1 patch distance ahead. If so, the agent immediately

stops and waits for the light to change. If there is no red light, the agent next checks for other

agents ahead travelling in the same direction on the same street as them. On two-way streets

agents ignore other agents travelling in the opposite direction. If there is another agent ahead

that is travelling along the same street segment, the agent slows down by setting its speed to

the other agents speed, minus a deceleration parameter of 0.1 patch. If there is no other agent

ahead, the agent increases its speed by accelerating by 0.11 patches. The final step is to ensure

that the agent’s speed is within the acceptable range of 0 to 1.

Movement

Each agent’s direction of travel is determined by the next junction they are trying to get to, with

their heading maintained to ensure the agent is pointed directly at the junction. The decision

process used for agent movement is illustrated in Figure 4.13. If the agent is not at a junction,

their movement is simply determined by their current speed. However, if the agent is at a

junction there is a series of checks the agent must make before it can move through the junction.

These decisions occur after the agent has updated their speed and movement is only possible if

their speed is greater than 0. When there are no longer any other agents ahead in the queue, the

agent may try to move through the current junction. However, this is only permitted if there is

sufficent free space, 0.05 patches, after the junction on the street they intend to travel onto. If

there is insufficent space available, the agent will wait in its current location. The reason this

space may not be available is because there is congestion on the next street and there is no more

capacity.

4.5.3 DETect Integration

Table 4.4 presents the internal and external variables monitored by agents in the traffic model.

Each agent has 3 internal and 5 external variables giving a total of 15 internal-external variable

relationships. As with the other models described in this chapter, these sets of variables contain

static and randomly varying variables that are included to facilitate the evaluation of DETect’s

model selection algorithm (cf., Section 5.1).
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Fig. 4.13: Decision tree for movement: The agent’s primary concerns are whether it is at

a junction and its proximity to other agents.
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Table 4.4: Traffic Model Internal and External Variables

Name Description
Potentially

Useful

Internal Variables

Heading The current heading in degrees of the agent Yes

Speed The current speed of the agent. Yes

Age A static variable randomly selected at agent initialisation No

External Variables

Neighbours Heading The mean heading agents in the agent’s field of vision Yes

Neighbours Speed The mean speed agents in the agent’s field of vision Yes

Spacing The distance to the closest other agent Yes

Number of Neighbours The number of agents in the agent’s field of vision Yes

Temperature A randomly varying environment variable No

4.5.4 Monitoring Emergence Objectively

As with the other two models described, a centralised objective measure of emergence is used to

identify when emergence is present in the system. This objective measure provides a benchmark

against which DETect can be evaluated. Each street segment that is greater than 2 patches

in length is provided with a manhole sensor that is positioned halfway along its length. If a

street is two-way, two manholes are used to monitored traffic travelling in both directions. The

manhole is tasked with monitoring the number of agents that pass by and their average speed.

The manhole can see agents in a radius of 2 patches of its center. The time taken for the agent

to leave the manhole’s field of vision from when it entered is used to calculate its average speed.

agentsPerHour = numberOfAgents ∗ 50 (4.1)

Every 50 time steps, called observation periods, all manholes in the system calculate a heuris-

tic that approximates flowrate of traffic over the manhole. One thousand time steps is used as a

proxy for one hour, enabling the number of agents per hour to be calculated based on how many

agents the manhole observed since the last calculation. This is described in equation 4.1. The

manhole uses the average speed and agents per hour measurements from the current observation

period and the observation period immediately prior to calculate the flowrate. It does this by

first calculating a speed metric, equation 4.2. Next, a volume metric is calculated as the average

number of agents passing as a proportion of the maximum number of agents that could be seen

during 50 time steps, equation 4.3. Finally, these two metrics are combined using a weighted

103



Chapter 4. Implementation and Simulation Environment

average as specified in equation 4.4.

speedMetric = (averageSpeedcurrentPeriod ∗ agentsPerHourcurrentPeriod)+

(averageSpeedlastPeriod ∗ agentsPerHourlastPeriod)
(4.2)

volumeMetric = mean(agentsPerHourcurrentPeriod + agentsPerHourlastPeriod)/300 (4.3)

flowRate = (speedMetric+ (volumeMetric ∗ 15)/2) (4.4)

The flowrate metric is designed to be close to zero when there is a high volume of agents

passing with a low average speed. This is intuitively what would be expected when traffic

congestion is high. The final step is for each manhole to confer with other manholes as the

emergence behaviour to be observed is not localised to a single street segment. Therefore, each

manhole that has observed at least 1 agent during the last observation period calculates the

average flowRate of all other manholes within 10 patches of itself. If its own flowRate and the

average of its neighbours is below 0.45, the manhole signals that it detects congestion in its

neighbourhood.

The number of manholes signalling congestion is monitored throughout each simulation run,

enabling the formation and evaporation of congestion to be identified. This count is also used

during simulation runs to determine if gridlock has occured, which is indicated by a high number

of manholes reporting congestion that remains constant over time. When this occurs, a global

policy is applied at traffic lights on congested streets where waiting agents are prompted to take

an alternative route to their destination. This allows agents to move again and congestion levels

to ease, allowing DETect to be evaluated during these periods of emergence evaporation.

The parameters used in the above heuristic were selected following initial prototyping and

experimentation to achieve a metric corresponding to the congestion visible in the simulation

world.

4.5.5 Summary

In this chapter, the implementation of DETect was presented as defined by the design outlined

in Chapter 3. The main purpose of this implementation is to provide an initial prototype for
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experimentation and evaluation of DETect using a variety of mobility based multi-agent systems.

The implementation of DETect is distrubted across NetLogo, Java and R with control and

information flowing across these components during the initialisation and evolution of the system.

This chapter also described the 3 multi-agent models that will be used in the next Chapter 5

to evaluate the performance of DETect. The unique behavioural rules that agents obey in each

model were outlined along with the variables that are monitored by DETect in each model.

Finally, what constitutes emergence in each model, and how it is objectively measured during

each simulation run, was also described.
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Evaluation

This chapter presents an evaluation of DETect to determine how well it addresses the overall

the objective of emergence detection in complex adaptive systems. The evaluation tests the

hypothesis (cf., Section 1.4) that when emergence is forming or evaporating, the constituent

agents will simultaneously experience a change in the statistical relationship between themselves

and their environment. By sharing this experience, agents can collaboratively act as detectors

of the emergent event. The fundamental requirement for DETect is to provide a decentralised

technique that allows constituent agents to detect the formation and evaporation of emergence

in the system. In achieving this, DETect should also autonomously select what properties of the

agent and its environment should be monitored.

Chapter 3 described how the design of DETect addresses the identified design objectives.

However, the success of DETect as a technique for emergence detection depends on its perfor-

mance in each of its three core functions: model selection, feedback detection and emergence

detection through consensus formation between agents. For both feedback detection and consen-

sus formation, DETect contains a number of parameters that are unique to the DETect algorithm

and can affect overall performance of emergence detection. Therefore, the evaluation will exam-

ine the combination of parameters that achieve the best results, as well as determining the overall

performance of the DETect approach. The evaluation objectives can thus be stated as follows:

1. To determine if DETect’s model selection algorithm can autonomously select features of

the agent, and the environment, that both enables feedback detection to occur and does
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not require all available variables to be included in the model.

2. To determine what parameter combination achieves the best performance for both feedback

detection and consensus formation.

3. To evaluate the performance of DETect at the best parameter combination to determine if

it achieves the goal of decentralised emergence detection.

5.1 Experimental Setup

To evaluate the performance of DETect, a case study of three multi-agent model simulations

implemented in NetLogo is used [Wilensky, 1999]. These models are flocking, pedestrian counter-

flow and traffic. The implementation of each these models, as well as the emergence that they

exhibit, are described in Chapter 4. In each simulation model, all agents are autonomous and

each has its own unique implementation of the DETect algorithm. The case study is divided

into three stages, each focussing on one of the three core functions of DETect: model selection,

feedback detection and emergence detection through consensus formation between agents.

5.1.1 General Setup

Table 5.1 describes the simulation setup in each of the three models. The number of agents varies

across each model, allowing DETect to be evaluated at three different scales. Each simulation is

periodically switched between emergence and non-emergence phases allowing emergent behaviour

to both form and disperse during the simulation. The length of emergence phases is common

across each model at 10, 000 time steps. The length of simulations in the Traffic model, as well

as the time steps when emergence phases begin, is different compared to the Pedestrian and

Flocking models. This is due to the larger scale of both the world size and number of agents

involved in this model with a period of time required at the start of each simulation to allow

agents to spread out.

Switching between emergence phases allows change periods to be identified at the threshold

of each phase where DETect should both detect feedback and subsequently build consensus on

the presence of emergence in the system. The method used to control these phases is described

in Chapter 4 for each of the three models.
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Table 5.1: Simulation details for each model

Model
Number of

Agents

Simulation Length

(Time Steps)

Non-Emergence

Periods (Time Steps)

Emergence

Periods (Time Steps)

Flocking 150 45,000

1-10,000

20-001-30,000

40,001-45,000

10,001-20,000

30,001-40,000

Pedestrian 382 45,000

1-10,000

20-001-30,000

40,001-45,000

10,001-20,000

30,001-40,000

Traffic 2522 65,000

1-15,000

25,001-40,000

55,001-65,000

15,001-25,000

40,001-55,000

Table 5.2: Experimentation parameters used during each simulation run

Category Variable Value Description

CUSUM h 4 The CUSUM threshold plus or minus. Outside this range, the

CUSUM triggers a feedback detection event. This was selected

through experimentation.

CUSUM k 1 The significance level outside which a CUSUM observation begins

to look suspicious. This corresponds to approximately 2 standard

deviations.

CUSUM M 1 How far the CUSUM window is pushed after each analysis. This

means that the oldest observation is deleted.

Observation
Averaging

Window
5 The number of consecutive individual values for each variable that

are averaged to provide 1 value for that variable’s sliding obser-

vational window.

Observation M 10 How far the sliding observational window is pushed after each

analysis. This means that the M oldest observations are deleted.

Model Selection
LASSO

Window
500 The size of the sliding observational window during the initial-

isation phase required before model selection will be executed.

This is to provide a large sample size on which to base the model

selection.

Finally, Table 5.2 presents the set of parameters that remain static throughout the case

study. These parameters are used during the CUSUM analysis, observation and model selection

components of the DETect algorithm. While different values for each parameter may affect

DETect’s performance, the effect of altering these parameters is not considered during this case

study. Instead, the focus is on the set of parameters that are deemed the most central and unique

to DETect for both feedback and evaluation detection. This decision is discussed in more detail
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later in the chapter when potential threats to the validity of the study are outlined (cf., Section

5.5).

5.1.2 Stage 1: Model Selection

Each multiple-linear regression (MLR) model chosen by DETect is composed of a number of

internal-external variable pairs. The first stage of the study evaluates the effectiveness of this

process. In chapter 4, the internal and external variables monitored in each model are outlined.

These variables include internal and external variables that impact agent decision making, such

as speed and heading, as well as a number of other variables that are purely random or remain

static throughout each simulation. These variables are included to represent variables that may

be used by an agent but are not directly related to the behaviour that generates emergence or

describe their environment. These have been included to enable model selection to be evaluated.

From a system model perspective, variables that describe the agent and its environment are

deemed to be potentially useful to DETect. Variables that are entirely random or static, are

deemed as potentially non-useful.

5.1.2.1 Evaluation Criteria

To evaluate the performance of model selection in DETect, variable pairs selected across all

agents are observed. Including all variables in the model would render analysis prohibitively

expensive for agents with a very high number of internal and external variables. Therefore, to

be deemed useful, this model selection process should demonstrate the ability to exclude some

variable pairs from the selected model so that not all possible variables available to the agent need

to be monitored and analysed. Although it is necessary to reduce the number of relationships

monitored, this elimination process should not be random. Instead, variables that contain no

information should be excluded in greater numbers than variables that do contain some useful

information. Of course, in the ideal case, all the static/random variables should be eliminated

with only useful variables remaining in the model. This, to the best of our knowledge, is not

possible in an automated manner. Nevertheless, the inclusion of some non-useful variables in the

model is acceptable if the change detection and consensus formation stages are resilient enough

to cope with their inclusion. However, a model composed entirely of variables that provide no

useful information should not occur, as any inferences drawn about emergence from this model
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Table 5.3: DETect feedback detection evaluation factor

Factor Description
Levels

(Pedestrian & Traffic)

Levels

(Flocking)

Regression Win-

dow

How large is the sliding window

of observations used for Regression

Analysis

LOW - 20

HIGH - 40

LOW - 20

HIGH - 40

CUSUM Window How large is the sliding window used

by the CUSUM algorithm

LOW : 80

MEDIUM : 100

HIGH : 120

LOW : 10

MEDIUM : 20

HIGH : 30

during analysis will be entirely without basis.

Therefore, DETect’s model selection process can be said to have succeeded, if it satisfies the

following evaluation criteria:

• MS1: For all agents, DETect selects a subset of all possible internal-external variable pairs.

• MS2: The number of useful variables selected is higher than non-useful and DETect should

never select only non-useful variables for any agent

5.1.3 Stage 2: Feedback Detection

The second stage of the study focusses on evaluating feedback detection, with a multi-level

factor experiment design used across each model. The goal during this stage of the study is to

determine the combination of parameters that achieves the best feedback detection performance

for DETect. Once this is determined, the best performance achieved is evaluated to determine

if it is sufficient to deem DETect’s feedback detection algorithm successful.

The parameters (factor) and their levels are described in Table 5.3 with the Regression Win-

dow size set to one of two levels, and the CUSUM Window size set to one of three levels. The

CUSUM Window sizes are consistent for both the pedestrian and traffic model, however it was

necessary to use different sizes for the flocking model to achieve useful performance. This is dis-

cussed in more detail in Section 5.4. Each combination of factor level was replicated 10 times for

each simulation model, with both factorial analysis of variance (ANOVA) and a one-tailed t-test

performed to identify the important factors and to evaluate if DETect generates a statistical

significant higher number of events during both change periods compared to non-change periods.
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5.1.3.1 Evaluation Criteria

To evaluate the performance of feedback detection in DETect, the number of events generated

by the Change Detection Unit of all agents was observed throughout each simulation. Feedback

detection can be said to be effective if for some combination of parameters DETect satisfies the

following evaluation criteria across all models:

• FD1: The number of feedback events generated by DETect across all agents is statistically

significantly higher during periods of emergence formation compared to periods when no

change is happening to the emergent system state.

• FD2: The number of feedback events generated by DETect across all agents is statistically

significantly higher during periods of emergence evaporation compared to periods when no

change is happening to the emergent system state.

The method used to identify these formation and evaporation periods is discussed in Section 5.2,

with a more detailed description of the algorithm provided in Appendix A.

5.1.4 Stage 3: Consensus Formation

The final stage of the case study focusses on consensus formation between agents on the presence

of an emergent event in the system. As with Stage 2, a multi-level factor experiment design is

used across each model, to first determine the combination of parameters that achieves the best

results, before ultimate performance is evaluated using the best combination.

The parameters and levels used during this stage of the study are outlined in Table 5.4, with

each factor set to one of two levels. Each combination of factor level was replicated 5 times for

each simulation model, giving a total of 80 replications per model. The results of the second

stage are used to provide suitable levels for both the Regression Window and CUSUM Window

in each model. Factorial ANOVA and a one-tailed T-test is performed to identify the important

factors and to evaluate the number of emergence detection events generated by agents during

change periods compared to non-change periods (to determine if they are statistically significantly

higher). Results are considered significant when the T-test returns values of p <0.05.
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Table 5.4: DETect consensus formation evaluation factors

Factor Description Levels

Minimum Neigh-

bourhood Size

What is the minimum number of neighbours needed

before DETect will begin gossiping

LOW : 8

HIGH: 16

Maximum Neigh-

bourhood Size

What is the maximum number of neighbours DETect

will consider as potential gossiping partners

LOW: 20

HIGH: 30

Feedback Detec-

tion Memory

How long will DETect remember a recent feedback

detection event

LOW: 5

HIGH: 10

Consensus Thresh-

old

How large is Ev required to be before an emergence

detection event is generated

LOW: 0.25

HIGH: 0.40

5.1.4.1 Evaluation Criteria

To evaluate the performance of consensus formation by DETect, the number of emergence detec-

tion events generated by the Collaboration Unit across all agents was observed throughout the

simulation. As this involves all components of DETect, feedback detection and consensus forma-

tion, this stage of the evaluation concerns the overall effectiveness of the DETect algorithm. In

particular, the evaluation is concerned with determining how effectively DETect performs when

detecting emergence, with the combination of factors for consensus formation that best facilitates

this also explored. The implicit goal of detection is to allow appropriate action to be taken to

either mitigate or leverage the effects of emergence. The nature of emergence is unpredictable in

advance, so it is not possible to say with certainty that action can be taken once the emergent

state has become established. Therefore, detection should occur while the formation or evapo-

ration of emergence is still taking place to allow timely action to be taken. DETect can be said

to effectively detect emergence if the following performance requirements are satisfied across all

models:

• CD1: The number of emergence detection events generated by DETect across all agents is

statistically significantly higher during periods of emergence formation compared to periods

when no change is happening to the emergent system state.

• CD2: The number of emergence detection events generated by DETect across all agents

is statistically significantly higher during periods of emergence evaporations compared to

periods when no change is happening to the emergent system state.
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Table 5.5: Summary of Objective Measures of Emergence

Model Objective Measure

Flocking The percentage of patches with no agents within a 2 radius.

Pedestrian The number of lanes in the system

Traffic The number of manholes reporting congestion for their associated street segment

• CD3: Emergence detection events are generated while the emergence formation or evapo-

ration is taking place, to allow an interested party receiving the events to take appropriate

action.

5.2 Evaluation Baselines

To facilitate evaluation, the number of events (feedback detection or emergence detection) gen-

erated across all agents is recorded every 50 time steps during each simulation run. At the

same time, the objective measure of emergence for each model is monitored at the same fre-

quency. These objective measures of emergence were described in Chapter 4, with a summary

presented in Table 5.5. Each objective measure is a centralised monitor of some system variable

that describes the emergent system state. In this sense, they are similar to the variable based

emergence detection approaches described in Chapter 2 (cf., Section 2.3) and provide a baseline

against which DETect can be evaluated.

DETect’s feedback and emergence detection events should coincide with emergent events oc-

curring in the system. Emergent events are defined as the formation or evaporation of emergence

e.g., the formation and dispersion of flocking behaviour in the flocking model, or congestion in the

traffic model. To identify when these periods occur, the time series of the objective measure for

each simulation run is processed following each simulation. A low-pass butterworth filter1 [Parks

and Burrus, 1987] is applied with a subsequent first order difference used to identify these periods

of change. This processing supports the identification of periods when emergence formed and

evaporated during each simulation run and, therefore, the periods when DETect should detect

both feedback and emergence. For a detailed description of this processing step, please refer to

1A low-pass filter is a one that allows frequencies lower than a certain frequency threshold to pass and attenuates
signals with a frequency higher than the cutoff frequency. Butterworth filters are a type of low-pass filter designed
to have as flat a frequency response as possible for frequencies lower than the cutoff frequency. It has the effect of
reducing high frequencies noise producing a smoother signal or time-series. The effect of this filtering is illustrated
in greater detail in Appendix A.
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Appendix A.

An illustrative example is provided in Figure 5.1 for each of the three models used in the

evaluation. Each plot shows the absolute value of the objective measure (black) at intervals of

50 time steps. In addition, the associated time-series of emergence detection events generated by

DETect across all models has been plotted in red. The green regions correspond to periods when

emergence formed in the system and the yellow periods correspond to periods when emergence

evaporated. The rest of the simulation is considered as a Non-Change period, including sustained

periods when emergence is present in the system.

To illustrate this, consider the Flocking model from Figure 5.1. The emergent flocking be-

haviour forms at approximately time 200 and lasts until approximately time 400. During this

period, DETect should only generate feedback detection and emergence detection events for ap-

proximately the first 60 intervals. Any events generated after this are deemed to have occurred

during a Non-Change period as the heuristic measure has deemed the objective measure to be

stable from this point. Similarly, when the flocking behaviour evaporates at time 400, the yellow

period indicates the evaporation period in which DETect should generate feedback and emer-

gence events. It is possible that for some agents, DETect may generate a detection event shortly

after the conclusion of a formation or evaporation period. While it is possible that this detection

event is prompted by the emergent event in the system, it is considered to have occurred during

a Non-Change period and therefore to be a false positive. This may be pessimistic, however a

strict boundary between periods was adopted during evaluation.

The formation and evaporation of emergence in both the Flocking model and the Pedestrian

model are similar in that they occur at regular intervals across each simulation run. This is not

the case for the Traffic model however, with the size of the map and the time it takes agents

to converge meaning that emergence formation is more irregular and formation and evaporation

periods can occur closer together. This is demonstrated in the illustrative example provided

in Figure 5.1, where the formation of congestion can lead to a plateau in the objective measure

corresponding to gridlock. Nonetheless, the same principles apply when analysing the time series

of the objective measure for the model.

Once the formation and evaporation periods have been identified, the average number of

events generated every 50 time steps during formation, evaporation and non-change periods are

determined. For each simulation there is the initialisation period for model selection, followed
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Fig. 5.1: Time series of objective measures: Illustrative example of the time series of

the objective measure (black) and DETect emergence detection events (red) from each of the

simulation models with emergence formation periods (green) and evaporation periods (yellow)

highlighted.
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by a seeding period where agents are compiling sufficient samples to fill the CUSUM Windows.

Once this process is complete, DETect can begin looking for changes in the agent’s environment

that may signify feedback from emergence. The length of this period is a factor of the length of

both the Regression Window and CUSUM Window and so differs across runs. As a result, this

period has been excluded from the evaluation of each simulation run.

Finally, it should be noted that each objective measure is designed to monitor one type

of pre-defined emergence in each model. It is possible that other types of unknown emergent

behaviour are present in the models that are not captured by each objective measure. This

possibility could lead to a high number of detection events generated by DETect being deemed

false positive during the evaluation. The reason for this is that DETect is not targeted at a

specific type of emergence and instead should generally detect emergence when it forms and

evaporates. As a result, DETect may accurately identify emergent behaviour which is missed by

the objective measure and therefore the measured accuracy of DETect in this thesis would be

pessimistic.

5.3 Results and Analysis

5.3.1 Model Selection

In this section, the performance of model selection in DETect with respect to the evaluation

criteria specified earlier is analysed. For each simulation model, the MLR models selected across

all agents for 60 simulations were analysed, with the detailed results outlined in Table 5.6. In

general the model selection process performed well with a significant number of internal-external

relationship pairs excluded in all models. The most efficient performance was achieved in the

Pedestrian model where DETect selected 3.14 variable pairs per agent from a possible 25.

Across all models, DETect never selected a model composed entirely of non-useful variables

i.e., all selected internal and external variables are non-useful. In both the Flocking and Traffic

models, DETect never selected models composed only of non-useful internal or non-useful external

variables across all 60 runs. In the Pedestrian model, a small number of agents, 406 out of 22, 920

(1.77%), selected models composed exclusively of non-useful internal variables, while almost 6%

selected models composed exclusively of non-useful external variables.

Although useful variables were almost always selected, DETect did include some non-useful
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Table 5.6: Model Selection Results For All Models

Flocking Pedestrian Traffic

No. of Agents 9,000 22,920 151,276

Total No. Variable Pairs 24 25 15

Average Selection Results

No. of Variable Pairs Selected 7.62 3.14 8.05

Agents with only

Non-useful Variables
0.00% 0.00% 0.00%

Agents with only

Non-useful Internal variables
0.00% 1.77% 0.00%

Agents with only

Non-useful External variables
0.00% 5.91% 0.00%

Agents with only

Useful variables
1.23% 11.83% 6.21%

Agents with only

Useful internal variables
24.63% 82.52% 93.60%

Agents with only

Useful external variables
2.84% 14.80% 6.53%

variables in a high proportion of agents across all models. In the Flocking model, only 1.23%

of agents had models composed entirely of variables deemed useful, with Pedestrian and Traffic

models exhibiting slightly higher figures with 11.83% and 6.21% respectively. This was caused

primarily by a failure to exclude all non-useful external variables with DETect achieving this

in less than 15% of all agents in each simulation model. Nonetheless, DETect’s feedback and

emergence detection mechanisms proved robust to the inclusion of these variables in the selected

models, as illustrated in the sections below. These results, in the context of the evaluation

criteria, are discussed in Section 5.4.

5.3.2 Feedback Detection

In this section, the performance of feedback detection in DETect with respect to the evaluation

objectives specified earlier is analysed. This is achieved by monitoring the number of feedback

detection events generated by the Change Detection Unit of all agents throughout each simu-

lation, with events being measured every 50 time steps. To improve readability, the full tables

containing the analysis of variance (ANOVA) and p-values generated from Student’s T-Tests are

presented in Appendix B, with specific values from these tables referred to in the text below

where necessary.
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Table 5.7: Flocking model - Feedback detection detailed results: Mean number of

feedback detection events generated for each factor level in the flocking model for each emergence

period type.

Regression

Window

CUSUM

Window

Period Type

Non-Change Formation Evaporation

High

High 24.73 20.84 32.95

Medium 7.80 10.62 6.30

Low 4.62 7.94 3.82

Low

High 4.28 5.61 2.63

Medium 2.50 3.52 2.00

Low 1.53 2.75 1.16

5.3.2.1 Flocking Model

Figure 5.2 shows the average number of feedback detection events generated by DETect, during

simulation runs of the flocking model for each combination of the CUSUM Window and Regres-

sion Window. The feedback detection events have been grouped based on whether emergence

was forming, evaporating or not changing when the event was generated (cf., Section 5.2). The

Regression Window size was a significant factor in the performance of feedback detection with

ANOVA returning a p-value of less than 0.05 for all period types. This impact is outlined in

Table 5.7 where the sensitivity of the algorithm at the high level of Regression Window size

was significantly higher for each period type across all three levels of the CUSUM Window size.

For example, the average number of feedback detection events during formation periods for the

medium CUSUM level increase from 3.52 with the low Regression Window size, to 10.62 with

the larger window.

Variation in the CUSUM Window size similarly demonstrated an increasing sensitivity as the

window size was increased, however the magnitude was not as significant as with the Regression

Window. An exception to this occurred when both factors were at the higher level with the

feedback detection demonstrating over-sensitive behaviour. This combination of factors is the

only one that exhibited more feedback detection events occurring during evaporation periods

than non-change periods. However, at this combination, the mean number of feedback events

during non-change periods was 24.73, meaning 16.5% of agents were experiencing a false positive

changing relationship at any moment. This proportion of agents is too high and, in addition to

the poor performance during formation periods, this combination of factors was excluded.
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Fig. 5.2: Flocking model - Feedback detection results: All combinations of the CUSUM

Window (CUSUMWIN) and Regression Window (REGWIN) was evaluated.

A one-tailed Student’s T-test of the difference in the average number of feedback detection

events during formation periods compared to non-change periods returned significant p-values

(less than 0.05) when the CUSUM Window was at both the low and medium level, for all com-

binations of Regression Window. However, a significant difference was not seen in the average

number of events generated during periods of evaporation compared to non-change. As a result,

a compromise was required for the flocking model to select a combination of parameters that

achieves a higher average number of feedback detection events during periods of formation com-

pared to non-change periods. Simultaneously, it was deemed the algorithm should generate close

to the same number of events during evaporation periods as non-change periods. As a result, the

combination of high Regression Window size and medium CUSUM Window size was selected
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Table 5.8: Pedestrian model - Feedback detection detailed results: Mean number

of feedback detection events generated for each factor level in the pedestrian model for each

emergence period type.

Regression

Window

CUSUM

Window

Period Type

Non-Change Formation Evaporation

High

High 1.66 20.80 20.66

Medium 2.05 14.58 12.28

Low 1.69 18.23 18.74

Low

High 0.12 2.49 1.79

Medium 0.19 1.80 1.16

Low 0.14 2.00 1.46

for use in stage 3 of the study. The p-values obtained for all combinations of both factors are

presented in Table B.4 in Appendix B.

5.3.2.2 Pedestrian Model

Results for the pedestrian model are illustrated in Figure 5.3, and demonstrate more promising

results compared to the flocking model. As detailed in Table 5.8, a higher mean number of events

were recorded for both formation and evaporation periods compared to non-change periods for

all factor combinations. A one-tailed Student’s T-tests of the difference between the number

of events generated during non-change periods and both formation and evaporation returned

significant p-values (less than 0.05) for all combinations of the CUSUM Window and Regression

Window. The p-values obtained for all combinations of both factors are presented in Table B.8

in Appendix B. As with the Flocking model, moving from the low Regression Window size to

the high significantly increased the sensitivity of the algorithm. This significance was reflected in

the ANOVA undertaken with the Regression Window factor returning a p-value less than 0.05

for all three period types. However, unlike the Flocking model, the increased sensitivity did not

result in false positives during non-change periods becoming unacceptably high.

Different levels of the CUSUM Window did not have the same scale of impact on the per-

formance of feedback detection compared to the Regression Window in terms of the absolute

number of events generated on average. Nonetheless, the ANOVA undertaken did indicate that

different levels of the factor did have a significant impact on the number of events generated in all

three period types (cf., Section B.1). Interestingly, the changes in performance did not behave
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Fig. 5.3: Pedestrian model - Feedback detection results: All combinations of the CUSUM

Window (CUSUMWIN) and Regression Window (REGWIN) was evaluated.

linearly, with a slight decrease in sensitivity from the high-level compared to the medium-level,

with sensitivity increasing once more when the window size was reduced to the lower level. The

best performance was achieved when both factors were at the high level with a similar aver-

age number of events generated during formation, 20.80, and evaporation periods 20.66. False

positive events during non-change periods had a mean of 1.66.

5.3.2.3 Traffic Model

Figure 5.4 shows the average number of feedback detection events generated during the traffic

model for each factor combination. As with the other models in this study, the size of the

Regression Window significantly affected the sensitivity of the algorithm, while changes in the
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Table 5.9: Traffic model - Feedback detection detailed results: Mean number of feedback

detection events generated for each factor level in the traffic model for each emergence period

type.

Regression

Window

CUSUM

Window

Period Type

Non-Change Formation Evaporation

High

High 110.44 221.65 200.29

Medium 122.85 170.33 172.54

Low 120.00 186.10 136.18

Low

High 7.46 12.80 15.12

Medium 8.83 11.28 10.70

Low 7.87 11.28 1.46

CUSUM Window size had a smaller impact on performance. Table 5.9 demonstrates this, with

fewer than 20 feedback detection events being generated during any period when the Regression

Window size was set to the lower level. Conversely, at the higher level, the average exceeded

100 events for all periods, and at the higher level of the CUSUM window, exceeded 200 events

for both emergence formation and evaporation. As the model is composed of 2500 agents, an

average of less than 20 events during transition periods is too low and so the low level of the

Regression Window is deemed to be too insensitive for use.

The algorithms performed acceptably at the higher regression window size with a significantly

higher number of events being generated during formation and evaporation periods, compared to

non-change periods. The difference between these periods was not as stark as in the Pedestrian

model, with a large number of false positives being generated, however the difference between

change periods and non-change periods was deemed sufficiently large. This is especially the case

for the combination of high Regression Window and high CUSUM Window where the average

number of events generated during formation periods was over twice that of non-change periods.

Evaporation periods displayed a similar high number of average event regularity at this parameter

level also. This is confirmed by a one-tailed Student’s T-Test comparing both change periods to

non-change periods with a significantly higher average number of feedback events generated when

both parameters were set to High. The p-values obtained for all combinations of both factors

are presented in Table B.12 in Appendix B. As a result, the High level for both the Regression

Window and CUSUM Window were selected to use during the third stage of the study. The

selection of suitable values for each of these parameters is discussed further in Section 5.4.
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Fig. 5.4: Traffic model - Feedback detection results: All combinations of the CUSUM

Window (CUSUMWIN) and Regression Window (REGWIN) were evaluated.

5.3.3 Consensus Formation

In this section, the performance of DETect when forming consensus on the presence of emer-

gence with respect to the evaluation objectives specified earlier is analysed. As with feedback

detection, this is achieved by monitoring the number of detection events generated throughout

each simulation, with events being measured every 50 time steps. The consensus protocol in-

volves 4 parameters, Consensus Threshold, Feedback Detection Memory length, Neighbourhood

Size Minimum and Neighbourhood Size Maximum, each with two levels. The analysis for each

model is structured to first examine the impact of the Consensus threshold and memory length

parameters. Next, the two neighbourhood parameters are examined together. Finally, the best

performance achieved is analysed with an emphasis placed on the timeliness of the detection
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Table 5.10: Flocking model - Detailed consensus threshold and memory length re-

sults: Mean number of emergence detection events generated for each factor level in the flocking

model for each combination of consensus threshold and feedback detection memory length factors

Threshold

Level

Memory

Length

Period Type

Non-Change Formation Evaporation

High
High 14.25 67.76 12.48

Low 2.31 14.76 0.64

Low
High 56.61 101.62 68.47

Low 12.93 42.98 10.15

events. The full analysis of variance (ANOVA) using all 4 factor may help domain experts when

applying DETect on other future case studies. However, this is not material to the evaluation

criteria outlined in Section 5.1.4 and is therefore supplied, along with the results of Student’s

T-Tests, in Appendix C for completeness.

5.3.3.1 Flocking Model

Consensus Threshold And Memory Length

Figure 5.5 illustrates the results of consensus formation for each combination of Consensus thresh-

old and Feedback Detection Memory length across all levels of neighbourhood size factors. These

results are outlined in detail in Table 5.10 and demonstrate that the length of time each agent

remembers a feedback detection event significantly impacts DETect’s performance when form-

ing consensus on the existence of emergence. In particular, a high memory length leads to a

larger increase in the number of emergence detection events generated during non-change and

evaporation periods compared to formation periods.

This is most evident at the low level for Consensus Threshold level, where detection rates

increase approximately 5 and 7 times respectively for non-change and evaporation periods, com-

pared to approximately 2.5 during formation periods. Moving from the higher to the lower

Consensus Threshold level has a similarly disproportionate impact on the number of emergence

detection events generated during non-change and evaporation periods compared to formation

periods. However, the change in sensitivity is less significant than for feedback detection memory

length.
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Fig. 5.5: Flocking model - Consensus formation and emergence detection results:

Results for all combinations of consensus threshold and feedback detection memory length param-

eters are illustrated.

Neighbourhood Factors

The impact of the neighbourhood size factors is described in Table 5.11. These results demon-

strate that performance does not markedly change between levels of these factors, with the mean

number of emergence detection events generated for both non-change periods and formation

periods remaining consistent throughout. However, performance during evaporation periods is

impacted by the minimum neighbourhood size factor, with more than twice the number of events

being generated at the higher level, as well as an increased variability in the number of events

generated across each run.

Best Performance

A ”High” setting for both consensus threshold and feedback detection memory length achieved
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Table 5.11: Flocking model: Neighbourhood parameter detailed results: Average

number of emergence detection events generated in the flocking model for each combination of

Neighbourhood Minimum and Maximum Size.

Neighbourhood

Minimum Size

Neighbourhood

Maximum Size

Period Type

Non-Change Formation Evaporation

High
High 23.30 59.10 35.99

Low 21.10 53.96 27.57

Low
High 20.91 52.71 13.16

Low 20.80 58.35 14.96
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Fig. 5.6: Flocking model- Best results: A combination of HIGH Consensus Threshold and

HIGH Feedback Detection Memory Length achieved the best results in the flocking model.

the best performance in the flocking model across all levels of neighbourhood size factors. This

is illustrated in Figure 5.6 with a significantly higher number of events detected on average

during emergence formation periods, 67.76, compared to non-change periods, 14.25. However,

the average number of emergence detection events during evaporation periods is not statistically

higher than during non-change periods with only 12.48 events generated on average per time

interval. This is a legacy of the poor performance of the feedback detection mechanism that was

encountered during flocking evaporation periods in stage 2 of the study.

Figure 5.7 further illustrates this by overlaying all formation periods and evaporation periods

across all runs with this factor combination to create an average transition period for each period
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Fig. 5.7: Flocking model - Timeliness of detection: Timeliness of emergence detection is

considered in relation to the start and end of each transition period (dashed lines).

type. The vertical dashed line at time step 0 indicates the start of the transition period with

the second vertical line corresponding to the end of the transition period, based on the average

length of such periods across all runs. The average number of both feedback and emergence

detection events generated every interval (50 time steps) are plotted in relation to the start of

each transition period. The period to left of the starting line corresponds to time before the

transition period begun. Events here are generated during non-change periods that are either at

the start of the simulation or after the previous transition period in the simulation finished. To

the right of the second vertical line corresponds to time after the average transition period has

finished. Detection events that occur during this non-change period are deemed “late”, occurring

after the transition period has finished and before the next transition period commences.

Formation periods during flocking last for 63 time intervals on average. They result in

a slight increase in the average number of feedback detection events generated by the agents

(red line). Each agent that generates a feedback detection event remembers it for 10 subsequent

intervals. This, coupled with the high consensus threshold of 0.40, results in a significant increase
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in the number of agents generating emergence detection events (green line). A maximum of 98

emergence detection events on average are generated simultaneously 23 intervals from the start of

the formation period. This corresponds to a peak of 65% of all agents and it arrives approximately

37% into the average transition period length. As a result, an interested party receiving these

events, such as an adaptation manager, would have over 60% of the transition period to react

appropriately following this peak, before the emergent state becomes static again. In practise,

the interested party may not know how long the transition period will last and durations are

likely to differ across domains and, even, from one transition period to another. However,

this illustrates the timeliness of DETect’s emergence detection demonstrating that events are

generated during the transition period. Finally, a noticeable spike in emergence detection events

occurs at approximately time interval −150 for both formation and evaporation periods. These

are “late” detection events that are caused by the previous transition period in the simulation

but are generated after that transition period was deemed to have finished.

5.3.3.2 Pedestrian Model

Consensus Threshold And Memory Length

The performance of DETect for consensus formation and emergence detection in the Pedestrian

model is illustrated in Figure 5.8 for each combination of the feedback detection memory length

and consensus threshold. A detailed breakdown of these results is provided in Table 5.12. DE-

Tect’s performance in this model builds on the strong results from the feedback detection phase

with a very small emergence detection event rate being recorded during non-change periods at

all factor levels. The best performance is experienced when the Consensus Threshold is low and

Memory length is high, with 129.33 and 131.37 events being generated during formation and

evaporation periods respectively. This is significantly higher than other factor combinations,

indicating that both factors impact on performance.

Neighbourhood Factors

The performance of DETect for each combination of the neighbourhood size factors is detailed

in Table 5.13. These results indicate that DETect is not significantly affected by the size of the

neighbourhood parameters used during the pedestrian model simulations, with a relatively small

increase in sensitivity achieved with the high minimum neighbourhood size compared to the low.
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Table 5.12: Pedestrian model - Detailed consensus threshold and memory length

results: Mean number of emergence detection events generated for each factor level in the

pedestrian model for each combination of consensus threshold and feedback detection memory

length factors

Threshold

Level

Memory

Length

Period Type

Non-Change Formation Evaporation

High
High 0.06 11.05 39.95

Low 0.01 0.66 2.43

Low
High 0.39 129.33 131.37

Low 0.08 39.53 61.44

This increase in the average number of emergence detection events is achieved without a similar

increase in the number of false positives generated during non-change periods.

Table 5.13: Pedestrian model: Neighbourhood parameter detailed results: Average

number of emergence detection events generated in the pedestrian model for each combination

of Neighbourhood Minimum and Maximum Size.

Neighbourhood

Minimum Size

Neighbourhood

Maximum Size

Period Type

Non-Change Formation Evaporation

High
High 0.10 49.59 63.94

Low 0.17 48.27 63.17

Low
High 0.11 39.17 52.45

Low 0.15 43.52 55.62
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Fig. 5.8: Pedestrian model - Consensus formation and emergence detection results:

Results for all combinations of consensus threshold and feedback detection memory length param-

eters are illustrated.

Best Performance

The performance of DETect for consensus formation and emergence detection in the Pedestrian

model is illustrated in Figure 5.9, with a low Consensus threshold and high feedback detection

memory length yielding the best results across all combinations of neighbourhood parameters.

Unlike flocking, DETect generated a significantly higher number of emergence detection events

during both emergence formation, 129.33, and evaporation 131.37, compared to non-change

periods, 0.39.

The timeliness of these events in relation to both types of transition periods is illustrated

in Figure 5.10, with an average formation period lasting 61 intervals and average evaporation

period lasting 57. As with the formation periods in the flocking model, transition periods in
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Fig. 5.9: Pedestrian model - Best results: A combination of a LOW Consensus Threshold

and HIGH Feedback Detection Memory Length achieved the best results in the pedestrian model.

the pedestrian model correspond with an increase in the number of feedback detection events

generated. This results in a significant increase in the number of emergence detection events

generated across all agents.

During formation periods, a maximum of 261 emergence detection events are generated on

average 30 intervals from the start of the transition period. This corresponds to a peak of 68%

of all agents and arrives at the half way point of the transition period. Evaporation periods

exhibit a lower maximum of 224 simultaneous emergence detection events, however this peak

occurs after only 23 intervals from the start of the transition period, allowing a larger proportion

of the transition period to be used to react. In both instances, an adaptation manager would

receive almost all detection events associated with the formation and evaporation periods while

the transition to the new emergent state was still occurring. This would theoretically allow action

to be taken to mitigate or leverage the effects of the emergence by agents across the system.

5.3.3.3 Traffic Model

Consensus Threshold And Memory Length

The results for consensus formation and emergence detection in the Traffic model are illustrated

in Figure 5.11, for each combination of consensus threshold and memory length, with a detailed
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Fig. 5.10: Pedestrian model - Timeliness of detection: Timeliness of emergence detection

is considered in relation to the start and end of each transition period (dashed lines).

breakdown provided in Table 5.14. Similar to the Pedestrian model, DETect generates a sta-

tistically significantly higher number of emergence detection events during emergence formation

and evaporation periods compared to non-change periods for each combination.

Consensus threshold level has a large impact on the number of detection events observed, with

the number of events more than doubling during non-change periods at the lower level. The lower

level of this factor has a similar impact during both formation and evaporation periods at the

lower level of the feedback detection memory length factor. However, when the Memory length

is set to the high level the increased number of false positive during non-change periods does not

see a comparative increase in detection rates during formation and evaporation periods.

Neighbourhood Factors

A detailed breakdown of the performance of DETect at each combination of the neighbourhood

size factors is provided in Table 5.15. These results illustrate that the performance of DETect

is not significantly impacted by these parameters, with similar results achieved for all 3 periods

types for each combination of factors.
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Table 5.14: Traffic model - Detailed consensus threshold and memory length results:

Mean number of emergence detection events generated for each factor level in the traffic model

for each combination of consensus threshold and feedback detection memory length factors

Threshold

Level

Memory

Length

Period Type

Non-Change Formation Evaporation

High
High 152.99 424.19 407.53

Low 72.79 222.15 207.58

Low
High 328.66 592.23 483.02

Low 162.21 416.81 365.26
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Fig. 5.11: Traffic model - Consensus formation and emergence detection results:

The results for all combination of consensus threshold and feedback detection memory length

parameters are illustrated.

Best Performance

The best achieved results for emergence detection in the traffic model are illustrated in Figure

5.12, with a high level used for both Consensus threshold and feedback detection memory length
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Table 5.15: Traffic model: Neighbourhood parameter detailed results: Average number

of emergence detection events generated in the traffic model for each combination of Neighbour-

hood Minimum and Maximum Size.

Neighbourhood

Minimum Size

Neighbourhood

Maximum Size

Period Type

Non-Change Formation Evaporation

High
High 153.51 394.76 350.59

Low 155.10 383.66 371.05

Low
High 211.04 530.89 319.34

Low 196.98 346.05 422.44

across all combinations of neighbourhood parameters, to achieve the these results. Similar to

the pedestrian model, DETect generates a statistically significantly higher number of emergence

detection events during emergence formation, 424.19, and evaporation 407.53, periods compared

to non-change periods, 152.99. The timeliness of consensus formation in the traffic model does

not match the performance achieved in the pedestrian model however, as illustrated in Figure

5.13.

The average formation period lasts for 76 time intervals and it results in a gradual increase

in the number of both feedback and emergence detection events being generated. This results in

a maximum of 504 simultaneous emergence detection events, 20% of all agents, occurring 82%

into the average formation period. The rate that events are generated remains high and results

in a significant number occurring after the transition period has ended. As a result, these events

are counted as having occurred during a non-change period.

By comparison, the average evaporation period is shorter, lasting for 55 time intervals. A

maximum of 450 simultaneous emergence detection events, 18% of all agents, occur 45% into

these periods on average. This allows a larger proportion of the transition period to react to the

changing emergent state however, as with the formation periods, the number of events remains

high throughout the period with some occurring after the transition phase is deemed to have

ended. The relative high number of emergence detection events that are generated at the start

of this plot (time interval −160 to −100) are the result of those events that were prompted by

the previous formation periods but did not occur until after the formation period was deemed
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Fig. 5.12: Traffic model - Best results: A combination of a HIGH Consensus Threshold

and HIGH Feedback Detection Memory Length achieved the best results in the Traffic model.

to have ended.
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Fig. 5.13: Traffic model - Timeliness of detection: Timeliness of emergence detection is

considered in relation to the start and end of each transition period (dashed lines).
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5.4 Discussion

In this section, the performance of DETect in each stage of the case study is discussed. This

performance is summarized in Table 5.16 using the evaluation criteria identified earlier (cf.,

Section 5.1).

5.4.1 Model Selection

Evaluation criteria MS1 and MS2 concern the model selection process performed by the Mod-

elling Unit. Criteria MS1 and MS2 are satisfied for each of the three models with a significant

number of potential internal-external variable pairs being excluded from the final MLR selected

by DETect. Additionally, in both the flocking and traffic models, the selected model is never com-

posed entirely of either non-useful internal variables or non-useful external variables, satisfying

the second component of criterion MS2.

In the pedestrian model, for a small number of agents, 1.77% and 5.5%, DETect does select

models with exclusively non-useful internal or external variables respectively. Moreover, for all

models, the number of agents who ended up with non-useful variables included in their MLR

was high. However, this should be viewed in light of the overall performance of DETect at both

feedback detection and emergence detection. The inclusion of these non-useful variables did not

adversely affect the performance, especially in the pedestrian and traffic models, demonstrating

that DETect’s feedback detection algorithm is robust to such inaccuracies. It is also possible

that including some mis-information in the system model may help to improve performance

[Nallur et al., 2015], however this requires some additional experimentation before any definitive

conclusion can be reached. Finally, these results were achieved in agents with a relatively small

number of internal and external variables which potentially limits the conclusions that can be

drawn, especially in the context of agents with significantly more variables. This is discussed

further in Section 5.5 below.

5.4.2 Feedback Detection

Evaluation criteria FD1 and FD2 concern feedback detection and are satisfied in both the

pedestrian and traffic model, with a combination of parameters identified that achieved higher

detection rates during transition periods. In particular, for both models, DETect’s feedback de-
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Table 5.16: Summary of results against evaluation criteria

Criterion Description
Flocking

Model

Pedestrian

Model

Traffic

Model

MS1 All agents select a subset of all possible internal-

external variable pairs.

Satisfied Satisfied Satisfied

MS2 The number of useful variables selected is higher

than non-useful and DETect should never select

only non-useful variables for any agent

Satisfied
Partially

Satisfied
Satisfied

FD1 The number of feedback events generated by

DETect across all agents is statistically signifi-

cantly higher during periods of emergence for-

mation compared to periods when no change is

happening to the emergent system state.

Satisfied Satisfied Satisfied

FD2 The number of feedback events generated by

DETect across all agents is statistically signifi-

cantly higher during periods of emergence evap-

oration compared to periods when no change is

happening to the emergent system state.

Not

Satisfied
Satisfied Satisfied

CF1 The number of emergence detection events gen-

erated by DETect across all agents is statisti-

cally significantly higher during periods of emer-

gence formation compared to periods when no

change is happening to the emergent system

state.

Satisfied Satisfied Satisfied

CF2 The number of emergence detection events gen-

erated by DETect across all agents is statisti-

cally significantly higher during periods of emer-

gence evaporation compared to periods when

no change is happening to the emergent system

state.

Not

Satisfied
Satisfied Satisfied

CF3 Emergence detection events should be gener-

ated while the emergence formation or evapora-

tion is taking place, to allow an interested party

receiving the events to take appropriate action.

Partially

Satisfied
Satisfied

Partially

Satisfied

tection performed better with a combination of a higher Regression Window and higher CUSUM

Window. These factors represent the memory of each agent, and how long a period of time should

be used to judge recent observations against. This suggests that the longer agent’s memory is

about its experiences, the better DETect will perform in detecting feedback from emergence.

However, a larger memory requires a longer period of time to fill the sliding windows and there-

137



Chapter 5. Evaluation

fore a longer time before DETect’s initialisation phase finishes. The models examined in this

study involved a static set of variables with variables neither being added or removed once the

system is initialised. As a result, the length of the initialisation period was not a concern. How-

ever, this aspect of DETect’s performance suggests systems that require such on-line resets may

adversely affect the utility of DETect.

In the flocking model, feedback detection was effective during formation periods, satisfy-

ing evaluation criteria FD1. However, DETect was not effective at detecting feedback during

evaporation periods in this model, failing to satisfy objective FD2. The limitation of DETect

during emergence evaporation in the flocking model means that additional work is required to

improve performance in this area. This performance aspect is in addition to the requirement

for a significantly smaller series of CUSUM Window sizes when using the flocking model, 10-30,

compared to both the pedestrian and traffic models, where consistent levels were applied across

all factors, 80-120. Attempts were made to find a range of CUSUM window sizes that would

perform sufficiently across all models. However, the sensitivity of the feedback detection was

significantly impacted when the CUSUM window size was increased in the flocking model, with

a reduction in window size creating the same effect in the Pedestrian and Traffic model. As a

result, no compromise range could be found and the study focussed on the ranges that resulted

in useful performance for each model. It is probable that the reason for this discrepancy is due

to the nature of the emergent phenomena in each of the models. For example, the movement

of the boid agents in the flocking model appears to be more dynamic compared to the traffic

and pedestrian models, where collisions are forbidden, resulting in a smaller memory of the past

being more beneficial.

An initial attempt to characterise this is illustrated in Figure 5.14, with a comparison of

the rate of change in the mean neighbourhood size of agents throughout a simulation of each

model. Neighbourhood size is defined as the number of one-hop neighbours each agent has. The

positive spikes correspond to periods of emergence formation and the negative spikes correspond

to periods of evaporation. Flocking demonstrates significantly larger change rates during these

transition periods compared to the other models and a more dynamic environment when emer-

gence is present compared to periods without emergence. Further experimentation is required

to fully understand this variation across a large number of different systems (cf., Section 5.5).
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Fig. 5.14: Neighbourhood size rate of change: A comparison of the change in the average

neighbourhood size of agents during runs in each model. The flocking model demonstrated greater

variation during periods of emergence formation and evaporation.

5.4.3 Consensus Formation

Finally, evaluation criteria CF1 to CF3 concern consensus formation on the existence of an

emergent event. The factor combinations that provided the best performance differed between

each of the models. However, for both the pedestrian and traffic models, a combination of fac-

tors existed that provided a significantly higher number of detection events during periods of

emergence formation and evaporation compared to non-change periods. Criteria CF1 and CF2

are, therefore, satisfied for both models. In the Flocking model, consensus formation performed

well during periods of emergence formation satisfying evaluation criterion CF1. However, the

performance of feedback detection during periods of emergence evaporation was not sufficiently

high to satisfy evaluation criterion FD2, with this limitation subsequently impacting the per-

formance of consensus formation. As a result evaluation criterion CF2 was unsatisfied for the

flocking model.

The timing of the feedback and emergence detection events across all models coincided with

the start of the formation and evaporation periods. In the pedestrian model, these periods saw
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a significant spike in the number of generated events with over 60% of agents simultaneously

generating emergence detection events during the transition periods. This increased event rate

could indicate to an adaptation manager that an emergent event is taking place, allowing ap-

propriate steps to be taken to either mitigate or leverage the event, satisfying criterion CF3. A

similar performance was achieved during formation periods in flocking however, as DETect did

not effectively detect evaporation periods, criterion CF3 is, therefore, only partially satisfied in

the flocking model.

In comparison, the rate of detection events in the traffic model increased gradually, with a

significant number occurring after the transition period was deemed to be finished. The effect of

this “lateness” is that though these detection events are prompted by the transition period, they

are classified in the study as false-positives, as they occurred during non-change periods. As a

result, the evaluated accuracy of DETect in the traffic model is perhaps somewhat pessimistic.

Nonetheless, criterion CF3 is therefore only partially satisfied for the traffic model, with ad-

ditional work required to improve the sensitivity of DETect in these transition periods. It is

hoped that improved sensitivity in model will result in detection events that are generated in a

timely manner, allowing appropriate adaptation to be undertaken before the emergent system

state becomes established.

Finally, the objective measure of emergence for each of the three models is designed to monitor

only one type of expected emergence (cf. Section 5.2). Despite this, it is possible that other,

possibly multiple, types of emergents are present in each of the models but are unknown and not

captured by each objective measure. In contrast, DETect is theoretically capable of operating in

scenarios where two or more types of emergence behaviour are present in the system, detecting

both types when they form and evaporate. This capability is not explicitly evaluated in this

case study, however its potential allows for the possibility that detection events deemed to occur

during non-change periods are actually DETect identifying another, not-predefined, emergent

property that is not captured by the objective measure. In such an eventuality, the accuracy of

DETect outlined in this chapter may be pessimistic as the number of false-positive detections

would be artificially high.
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5.5 Threats to Validity

The following aspects of the experimental set-up potentially limit the conclusions that can be

drawn from the case study.

Model Types: The results demonstrate that DETect performs relatively well across each model.

However, any claims regarding the general applicability of DETect for use in CAS are tempered

by the nature of the models used during the experimentation. In particular, all three models

involved agents that moved spatially, resulting in similar variables being used to describe both the

agents and their environments across each model. Additionally, although the experimentation

used models of varying scales, DETect has not been tested on truly ultra-large scale systems

involving tens or hundreds of thousands of agents, or agents with thousands of internal and

external variables to select from.

This represents a potential threat to the validity of both the model selection process used

by DETect and also the type of emergence that DETect is capable of detecting. The use of

these models was necessitated by a lack of diverse open source simulation models that exhibit

emergence, where the presence of emergence is easily identifiable and, therefore, uncontroversial.

For instance, almost all comparative papers that discuss emergence detection use flocking as

their standard test case. Thus, the claims in this thesis regarding the effectiveness of DETect

for detecting emergence are limited to similar models, where emergence is generated by agent

interactions through movement.

No adaptation: The agents in the experiments adapt their behaviour relative to one another

and their environment. They do not adapt in the sense of changing their inherent behavioural

capabilities. This limitation was not considered significant as the focus in this thesis was on eval-

uating DETect’s ability to detect emergence. Although agents themselves may or may not be

adaptive, DETect fits into the monitoring stage of a MAPE loop, so planning and executing com-

prehensive behavioural adaptations is beyond the scope of this research. Nevertheless, DETect

will be evaluated in this context in future work. In particular, the affect such adaptations may

have on the validity of the model selected by DETect and whether an additional initialisation

phase is required post-adaptation, will be analysed.

Static parameters: DETect is a novel algorithm with a high number of parameters used

throughout its work flow. While varying all these parameters may impact on performance,
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the intention of the evaluation described here was to determine the feasibility of DETect as

a decentralised approach to emergence detection. As a result, a decision was made to keep a

number of parameters static once an acceptable level was found. Of note is the decision on the

CUSUM variables h and k. Changing these parameter values is likely to greatly impact the

sensitivity of DETect’s feedback detection algorithm. The values chosen achieved a reasonable

performance and allowed a focus on analysis of the parameters that were unique to DETect. This

limitation could be compounded if applying DETect where there is little knowledge of either the

domain or the potential emergents that can occur. As a result, this area is highlighted as possible

future work in Section 6.3, to improve the general applicability of DETect.

5.6 Summary

This chapter presented a simulation-based case study to evaluate how well DETect achieves its

objective of emergence detection in CAS. The case study included three multi-agent models of

systems that exhibit spatial emergence, flocking, pedestrian counter-flow and traffic. Results

demonstrate that DETect is an effective algorithm to achieve decentralised emergence detection

in such systems. DETect’s model selection performed well across all three models, successfully

reducing the number of variables that needed to be monitored and selecting a higher number of

useful variables compared to non-useful. In terms of detection, strong performance was achieved

in both the pedestrian and traffic models during both emergence formation and evaporation with

both the feedback detection and consensus formation generating a statistically higher number of

events compared to periods without no change. In the flocking model, this performance was only

achieved during emergence formation with DETect unable to effectively detect the evaporation

of the flocking behaviour in the system. Although, this indicates that further work is required

to improve the generalisability of DETect, overall performance supports the hypothesis that the

presence of emergence changes an agents statistical relationship with its environment, providing

a means of facilitating decentralised detection.
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Conclusion

This chapter summarises the thesis and its achievements and assesses its contribution to the

state of the art in the domain of emergence detection. The chapter concludes with a discussion

of the remaining open research issues that lend themselves to future work.

6.1 Thesis Summary

This thesis presented DETect, a novel distributed algorithm for decentralised emergence detection

in complex adaptive systems.

Introduction: Chapter 1 motivated this work by outlining that emergence in complex adaptive

systems can be either harmful or beneficial to both, the system as a whole or the constituent

agents. It was argued that the main challenges to detecting emergence in these systems arise from

their decentralised and unpredictable nature coupled with the unpredictable and transient nature

of emergent behaviour and properties. This chapter hypothesised that feedback from emergence

to the constituent agents, through downward causation, presented an opportunity of enabling

decentralised detection of emergence. The hypothesis was that: When emergence is forming or

evaporating in a system, a significant proportion of the constituent agents will simultaneously

experience a change in the statistical relationship between themselves and their environment.

By sharing this experience, agents can collaboratively act as detectors of the emergent event.

Background and Related Work: Chapter 2 described the history of emergence as a concept
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and identified its characteristics. It discussed emergence in the context of complex adaptive

systems and multi-agent systems and identified the types of emergence that are the focus of this

thesis. The second half of the chapter reviewed the state of the art in emergence detection and

prediction techniques. Existing approaches were categorised under three broad types i) variable

based ii) formal language/model based and iii) event based. The analysis highlighted the gap for

a decentralised detection technique that operated at run time, did not require detailed knowledge

of the system or expected emergence at design time, and could address the dynamic and transient

nature of emergence.

Design: Chapter 3 returned to the challenges outlined in Chapter 1 to derive a set of design

objectives necessary for an effective emergence detection technique. These objectives stated that

detection must be decentralised in the system and occur at run time. No agent involved in

detection can have a global view, therefore requiring local information to be used followed by

collaboration with other detector agents. In addition, the technique should not require detailed

a priori description of the expect emergent behaviour and should be capable of detecting when

emergence forms and when it evaporates. After this, the system model positioned the contri-

bution to decentralised emergence detection made by this thesis and described the scope of and

assumptions of this work. Next, a discussion of design alternatives led to a set of design decisions

that constitute the main contribution of this thesis, the proposed distributed algorithm, DETect.

DETect enables the constituent agents of the system to act as detectors of emergence by looking

for the effects of downward causation from emergence using locally available information. It

achieves this by modelling the statistical relationship between an agent, characterised by inter-

nal variables, and its environment, characterised by external variables. The set of variables that

make up this model are autonomously chosen by DETect at run time using LASSO. The relation-

ship is analysed and monitored over time, with Cumulative Sum (CUSUM) used to detect when

a significant change has occurred. Once a change is detected, agents share their experience using

a distributed consensus protocol to determine if other agents are simultaneously experiencing a

similar change. If a sufficient proportion of agents agree that a change is occurring, DETect con-

cludes that an emergent event is occurring and a detection event is generated. Collectively, these

design decisions support decentralised detection of the formation and evaporation of emergence

in complex adaptive systems.

Implementation and Simulation Environment: Chapter 4 presented the implementation of
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DETect and simulation environment using NetLogo, Java and R. It described three multi-agent

models, flocking, pedestrian counter-flow and traffic, outlining how each model exhibits

emergence and how DETect was integrated into each model’s agents. These models provided a

prototype, serving as a basis for evaluating DETect’s performance.

Evaluation: Chapter 5 evaluated how well DETect achieves the overall objective of detecting

emergence in complex adaptive systems. It presented a case study composed of three stages, each

designed to evaluate one of DETect’s core functionalities; model selection, feedback detection and

emergence detection through consensus formation among agents. This evaluation was carried

out using simulations of the three models presented in Chapter 4. The results demonstrated

that DETect effectively detected both the formation and evaporation of emergence in both the

traffic and pedestrian models with a statistically higher number of detection events generated

during these periods compared to non-change periods. However, for the flocking model, DETect

was only effective during emergence formation with evaporation periods not being detected by

the algorithm. For model selection, DETect performed well across all three models, successfully

reducing the number of variables that need to be monitored and simultaneously removing non-

useful variables in larger numbers compared to useful variables.

6.2 Discussion

Figure 6.1 summarises the contributions made by DETect in the context of the challenges for

emergence detection in complex adaptive systems (cf., Section 1.3). The primary contribution is

that DETect is a mechanism for decentralised detection of emergence by the constituent agents

of the system. This property reflects the decentralised nature of the systems that generate emer-

gence and is in contrast to existing detection techniques that depend on centralised architectures

to varying degrees (cf., Section 2.3). DETect achieves this by exploiting the concept of downward

causation, where feedback from emergence constrains the agents at the micro-level of the system.

This thesis demonstrates that this feedback results in a different statistical relationship between

the agent and its environment when emergence is present compared to when there is no emer-

gence in the system. By detecting these statistical changes and sharing information with each

other, agents can collaboratively detect when emergence forms and evaporates in the system,

creating the possibility for action to be taken to either leverage or mitigate the effects of the
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Fig. 6.1: Summary of DETect’s contribution to knowledge compared to the existing state

of the art.

emergence. To the best of our knowledge, this decentralised feedback-based approach is unique

in the field of emergence detection.

A second contribution is to reduce the need for design time knowledge of the specific type of

emergence that is expected in the system. This is in contrast to existing detection approaches

with variable-based approaches requiring advance knowledge of the system-wide variables that

describe emergence [Seth, 2008,Niazi and Hussain, 2011], and formal language and event-based

approaches requiring the expected emergent behaviour and properties to be described [Ciancia

et al., 2014, De Angelis and Di Marzo Serugendo, 2015]. DETect autonomously selects what

variables to monitor at run time from the set of variables already available to the agent. These

variables are used to model the relationship between the agent and its environment with this

model used to facilitate detection of feedback from emergence. As a result, the requirement for

specific design time knowledge of the emergent behaviour is removed. However, design time input

is not completely eliminated as DETect uses a number of parameters throughout its work flow

that affect performance and sensitivity. The evaluation carried out in this thesis identified which

of these parameters have the greatest impact, however additional work is required to investigate

a heuristics approach for setting these parameters in different types of systems (cf., Section 6.3).
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Finally, DETect addresses the transient nature of emergence, which forms and evaporates as

the system evolves over time. This property of emergence and the timeliness of detection are

not considered by existing approaches which evaluate a static snapshot of the systems evolution

to determine if it contains emergence. This is in part due to their centralised architecture and

need for system-wide properties to be calculated which takes time to accomplish. DETect uses a

number of sliding observation windows throughout its work-flow to examine consecutive temporal

windows of the systems evolution. Moreover, analysis is performed by each agent in the system,

removing the need for system-wide properties to be gathered. This allows changes to be detected

when they occur and facilitates detection of both the formation and evaporation of emergence

in the system. This improves the timeliness of detection and allows an appropriate reaction to

be made to the emergence while the macro-level state of the system is still in flux.

6.3 Future Work

Notwithstanding its contribution to knowledge, this thesis serves as a starting point for further

investigation in the following areas:

Generalisability: Although this thesis has demonstrated the feasibility of the DETect ap-

proach, further research can yield improvements in the general applicability of the algorithm.

First, DETect is composed of three functional units each with a set of parameters e.g., window

sizes, thresholds etc., that need to be set appropriately. The evaluation presented in this thesis

identified an acceptable level for a number of these parameters in the context of the simulation

models. However, further work is needed to provide stronger guidelines for suitable ranges or to

investigate techniques to allow DETect to set these parameters automatically. This is particu-

larly important in cases where DETect may be used when there is little detailed knowledge of

either the target domain or potential emergent behaviours that could arise. Next, the evaluation

demonstrated that DETect did not perform well during the evaporation phase of the flocking

model. This suggests that DETect could be improved by evaluating it on a broader range of

models, including models that exhibit emergence that is not spatial in nature.

Adaptation: DETect is located in the monitoring stage of the MAPE loop [Kephart and Chess,

2003], with emergence detection events sent to an interested party, such as an adaptation man-

ager, who will react appropriately. A suitable response to these events is not considered by
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DETect, and DETect does not provide information on whether the detected emergent event is

positive or negative for the agent. In addition, this thesis did not consider the effect a substan-

tial adaptation of the agent’s behavioural rules could have on DETect, especially when such an

adaptation adds or removes variables. Future work may examine DETect within this broader

adaptation contexts with particular emphasis on changes to the set of internal and external

variables that may occur following an adaptation by the agent or a change in the environment.

Such changes may render DETect’s relationship model obsolete, requiring a new model to be

selected. This may require a hybrid stage in DETect’s work flow, where the model is updated

gradually, allowing DETect to remain operational and prevent a complete reinitialisation. In

terms of supplying semantic information to the adaptation manager on whether the emergent

event is considered good or bad for the agent, it is possible that this information could also be

incorporated into future versions of DETect. One potential way of achieving this is by monitor-

ing how successful an agent has been in achieving its goals in the recent history of the system

evolution.

More sophisticated modelling: The decision to use a multiple linear regression as the core

model of the agent’s relationship with its environment means that some accuracy has been traded

for model efficiency. It is possible this may result in some subtle changes in non-linear relation-

ships between variables being missed by DETect or that an apparent change occurs when, in

reality, the relationship hasn’t changed. The CUSUM change detection and distributed consen-

sus algorithms are designed to cope with such inaccuracies. However, a more sophisticated model

of the relationship between variables may yield greater accuracy in both feedback detection and

emergence detection. This would require more computational expense during DETect’s initial-

isation and model selection phase to explore alternative models. In addition, the requirement

that model selection happen autonomously at run time means that there may be limits to how

accurate the model can ever ultimately be.

Real-time systems: DETect is designed to operate in Complex Adaptive Systems, detecting

the formation and evaporation of emergence at run time. The simulation models used in the

evaluation case study (cf., Chapter 5) use discrete time with each agent’s clock assumed to be

synchronised as part of the system model (cf., Section 3.2.3). Therefore, agents periodically

execute tasks such as observing the environment, detecting change using CUSUM, finding a

partner and gossiping etc., concurrently during a single discrete time unit. In practise this
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assumption may limit DETect’s effectiveness if deployed to a real-time system where agents

have different computational power and DETect’s components takes longer than a single unit of

discrete time (whatever this may be) to complete these tasks. Of particular significance is the

fundamental importance of agents simultaneously detecting feedback from emergence that is the

core of DETect’s approach. The current implementation includes a parameter called Feedback

Detection Memory which facilitates this by allowing agents to remember feedback detection for

a certain period of time. However, determining whether this is sufficient for real-time systems

or whether more sophisticated solutions such as parallelization are required motivates additional

research in this area.

6.4 Final Remark

This thesis investigated how to facilitate decentralised detection of emergence at run time in

Complex Adaptive Systems, without detailed design time knowledge of the expected emergent

behaviour or properties. Emergence detection is a hard problem however, the proposed dis-

tributed algorithm, DETect, was designed to allow the agents of the system to collaboratively

act as detectors by detecting feedback from emergence that manifests as changes in the statistical

relationship between the agent and its environment. A case study of three spatial multi-agent

models demonstrated the feasibility of the DETect approach. Additional research may yield

further improvement in the general applicability and accuracy of DETect. It is hoped that the

findings of this thesis offer a new perspective on emergence detection and encourage further

research in this area.
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Appendix A

Identifying Formation And

Evaporation of Emergence

This appendix describes the heuristic process that is applied to the time series of the objective

measure of emergence following each simulation run, in order to identify the periods when emer-

gence formed and evaporated. These periods are used to determine when DETect should detect

generate feedback and emergence detection events. The process described here is implemented

in R and uses the pracma and signal packages.

The same process is applied to the output from each of the 3 models. An illustrative example

from the Traffic model is used to describe each step of the process.
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A.1 Starting Point

The raw time series of the objective measure, A.1 is extremely noisy, which makes it very difficult

to objectively identify when emergence formed and evaporated throughout the run. In this model,

emergence formation results in the objective measure increasing, while evaporation results in the

objective measure decreasing.
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Fig. A.1: Start Point - raw time series: An unprocessed time series of the objective measure

of emergence from the Traffic model.
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A.2 Step 1 - Remove Noise

The first step in the heuristic process is to smooth the time-series using a low pass filter to remove

the noise. The low pass filter removes small variations under a certain frequency in a signal and

accentuates larger ones. The start of the time series is padded with 100 repetitions of its first

value in order to prevent an edge effect occurring as the filter is a forward-backward filter. These

are removed once the filter has been applied. A Butterworth filter (order = 2, critical frequency

= 1/30) is applied to the raw time-series [Parks and Burrus, 1987]. The parameters of this

filter were tuned following iterative experimentation with different values. Note, that the critical

frequency that is chosen highly depends on the characteristics of the raw data. The result of the

filter is illustrated in Figure A.2 and demonstrate that the jagged edges have been removed.
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Fig. A.2: Step 1 - Remove Noise: The time series of the objective measure following a low

pass filter to remove noise.
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A.3 Step 2 - Finding Change

The next step is to find where change has occurred in the time series. By this we mean instances

where the series either increased or decreased with respect to previous values. This is achieved

by applying a 1st order difference the output from Step 1. The result is illustrated in Figure A.3.

Note that the Y axis has now changed, from the absolute value of the objective measure to the

change in its value compared to previous values.
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Fig. A.3: Step 2 - Finding change: The time series of the objective measure once the 1st

order difference has been applied.
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A.4 Step 3 - Remove the noise from the difference

The output from the difference is very noisy, similar to the initial raw data. We are only interested

in significant changes that occur during the time series so we apply another low pass filter at

this point to remove small changes from the series. Once again we pad the data and apply a

Butterworth filter (order = 2, critical frequency = 1/30) as in Step 1 above. The output from

this filter is illustrated in Figure A.4.
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Fig. A.4: Step 3 - Remove the noise from difference: The time series of the objective

measure once the 1st order difference has been smoothed.
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A.5 Step 4 - Isolate positive and negative changes

The next step is to determine when both positive and negative changes occurred during the time

series. At this point the time series contains a series of positive and negative numbers indicating

if the objective measure increased or decreased at that time compared to earlier values in the

time series.

First, we first split the original time series into two series, one containing only positive changes

and the second containing only negative changes. Using the positive change series as an example,

this is done by taking the original series and setting any negative values to 0. A similar process

is applied to the negative series after which the negative series is inverted by multiplying it by

−1. This has the effect of turning its “valleys” into peaks. The output of this step is illustrated

by Figure A.5 and Figure A.6.
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Fig. A.5: Step 4 - Positive changes:s The time series of the positive change time series.
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Fig. A.6: Step 4 - Negaitve changes: The time series of the negative change time series.

A.6 Step 5 - Determine when large changes begin and end

The final step is applied to each time-series to identify when large changes occurred. We use

the findpeaks function of the pracma library which returns the location of the peaks in a time

series of data. We specify a minimum peak height of twice the average absolute change across

both the positive and negative change series. Once we have identified the time steps at which

the peaks occurred, we find when the change associated with that peak started and ended by

finding when the change was below 10% of the mean absolute change. This start and end time

step correspond to the transition periods in the emergent state of the system. Periods identified

in the positive time series are formation periods, while periods from the negative time series are

evaporation periods. The results of the entire process is shown in Figure A.7, with the original

time series overlaid on top of the identified formation periods (green) and evaporation periods

(yellow).
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Fig. A.7: Step 5 - Identified transition periods: Original time series with identified for-

mation and evaporation periods.
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Appendix B

Stage 2: Change Detection

ANOVA and Student’s T-Tests

This appendix presents the analysis of variance (ANOVA) and Student’s T-Tests undertaken to

evaluate the performance of DETect in Stage 2 (change detection) of the case study described in

Chapter 5 of this thesis. For each of the three models used in the study, evaluation is undertaken

based on the number of detection events generated by DETect during formation, evaporation

and non-change periods.

The Student’s T-Tests performed are one-tailed tests, in each case to determine if the num-

ber of events generated by DETect during formation and evaporation periods is statistically

significantly higher compared to non-change periods.

B.1 Flocking Model

Analysis of Variance

Table B.1: Stage 2 - Flocking Model Formation Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

CUSUMWIN 2 685.98 342.99 162.36 0.0000

REGWIN 1 1262.88 1262.88 597.81 0.0000

CUSUMWIN:REGWIN 2 283.90 141.95 67.19 0.0000

Residuals 54 114.08 2.11
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Table B.2: Stage 2 - Flocking Model Evaporation Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

CUSUMWIN 2 2817.77 1408.89 221.05 0.0000

REGWIN 1 2316.95 2316.95 363.52 0.0000

CUSUMWIN:REGWIN 2 2408.22 1204.11 188.92 0.0000

Residuals 54 344.18 6.37

Table B.3: Stage 2 - Flocking Model Non-Change Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

CUSUMWIN 2 1483.28 741.64 2017.99 0.0000

REGWIN 1 1387.01 1387.01 3774.04 0.0000

CUSUMWIN:REGWIN 2 892.22 446.11 1213.85 0.0000

Residuals 54 19.85 0.37

Student’s T-Test

Table B.4: Stage 2 - Flocking Model Student’s T-Test P-Values obtained for the Flocking

model from one-tailed test to determine if DETect generated a statistically significantly higher

number of detection events during transition periods compared to non-change periods.

CUSUMWIN REGWIN
Formation vs.

Non-change Periods

Evaporation vs.

Non-Change Periods

High High 0.9991 0.0003247

High Low 3.875×10−05 1

Low High 1.836×10−05 1

Low Low 1.201×10−05 0.9999

Medium High 1.14×10−06 0.9926

Medium Low 4.402×10−06 0.9996
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B.2 Pedestrian Model

Analysis of Variance

Table B.5: Stage 2 - Pedestrian Model Non-Change Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

CUSUMWIN 2 119.68 59.84 17.53 0.0000

REGWIN 1 3730.52 3730.52 1093.03 0.0000

CUSUMWIN:REGWIN 2 77.65 38.83 11.38 0.0001

Residuals 54 184.30 3.41

Table B.6: Stage 2 - Pedestrian Model Evaporation Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

CUSUMWIN 2 219.62 109.81 24.45 0.0000

REGWIN 1 3724.39 3724.39 829.12 0.0000

CUSUMWIN:REGWIN 2 167.48 83.74 18.64 0.0000

Residuals 54 242.57 4.49

Table B.7: Stage 2 - Pedestrian Model Non-Change Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

CUSUMWIN 2 0.62 0.31 7.61 0.0012

REGWIN 1 40.87 40.87 994.80 0.0000

CUSUMWIN:REGWIN 2 0.33 0.17 4.06 0.0227

Residuals 54 2.22 0.04

Student’s T-Test
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Table B.8: Stage 2 - Pedestrian Model Student’s T-Test P-Values obtained for the

Pedestrian model from one-tailed test to determine if DETect generated a statistically sig-

nificantly higher number of detection events during transition periods compared to non-change

periods.

CUSUMWIN REGWIN
Formation vs.

Non-change Periods

Evaporation vs.

Non-Change Periods

High High 6.003×10−09 4.587×10−08

High Low 3.329×10−08 6.576×10−08

Low High 3.461×10−09 8.511×10−09

Low Low 2.423×10−06 3.044×10−05

Medium High 1.259×10−08 4.49×10−09

Medium Low 1.802×10−07 1.085×10−05

B.3 Traffic Model

Analysis of Variance

Table B.9: Stage 2 - Traffic Model Formation Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

CUSUMWIN 2 7360.04 3680.02 2.60 0.0835

REGWIN 1 490912.80 490912.80 346.87 0.0000

CUSUMWIN:REGWIN 2 6480.80 3240.40 2.29 0.1111

Residuals 54 76424.51 1415.27

Table B.10: Stage 2 - Traffic Model Evaporation Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

CUSUMWIN 2 11369.38 5684.69 1.66 0.1999

REGWIN 1 370324.28 370324.28 108.08 0.0000

CUSUMWIN:REGWIN 2 9413.00 4706.50 1.37 0.2619

Residuals 54 185020.63 3426.31

Student’s T-Test
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Table B.11: Stage 2 - Traffic Model Non-Change Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

CUSUMWIN 2 506.95 253.47 0.60 0.5501

REGWIN 1 180535.46 180535.46 430.49 0.0000

CUSUMWIN:REGWIN 2 348.33 174.16 0.42 0.6622

Residuals 54 22646.32 419.38

Table B.12: Stage 2 - Traffic model Student’s T-Test P-Values obtained for the Traffic

model from one-tailed Student’s T-Test to determine if DETect generated a statistically sig-

nificantly higher number of detection events during transition periods compared to non-change

periods.

CUSUMWIN REGWIN
Formation vs.

Non-change Periods

Evaporation vs.

Non-Change Periods

High High 0.0002982 0.01641

High Low 0.01376 0.04474

Low High 0.002883 0.03196

Low Low 0.03756 0.1521

Medium High 0.0020701 0.2291

Medium Low 0.003588 0.01873
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Stage 3: Consensus Formation

ANOVA and Student’s T-Tests

This appendix presents an ANOVA and Student’s T-Tests undertaken to evaluate DETect’s

consensus formation functionality for each of the 3 models included in the case study described

in Chapter 5 of this thesis. For each model, a different ANOVA is presented for formation,

evaporation and non-change periods with the average number of emergence detection events

generated every 50 time-steps constituting the response variable.

The Student’s T-Tests performed are one-tailed tests, in each case to determine if the num-

ber of events generated by DETect during formation and evaporation periods is statistically

significantly higher compared to non-change periods.
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C.1 Flocking Model

ANOVA

Table C.1: Stage 3 - Flocking Model Formation Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

NeighMin 1 19.82 19.82 0.17 0.6792

NeighMax 1 1.28 1.28 0.01 0.9163

Threshold 1 21177.18 21177.18 184.41 0.0000

Memory 1 59015.66 59015.66 513.91 0.0000

NeighMin:NeighMax 1 579.80 579.80 5.05 0.0281

NeighMin:Threshold 1 50.89 50.89 0.44 0.5080

NeighMax:Threshold 1 147.98 147.98 1.29 0.2605

NeighMin:Memory 1 108.56 108.56 0.95 0.3346

NeighMax:Memory 1 0.01 0.01 0.00 0.9913

Threshold:Memory 1 373.50 373.50 3.25 0.0760

NeighMin:NeighMax:Threshold 1 32.13 32.13 0.28 0.5986

NeighMin:NeighMax:Memory 1 8.71 8.71 0.08 0.7839

NeighMin:Threshold:Memory 1 300.41 300.41 2.62 0.1107

NeighMax:Threshold:Memory 1 26.93 26.93 0.23 0.6299

NeighMin:NeighMax:Threshold:Memory 1 110.76 110.76 0.96 0.3297

Residuals 64 7349.54 114.84

Table C.2: Stage 3 - Flocking Model Evaporation Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

NeighMin 1 6280.28 6280.28 32.73 0.0000

NeighMax 1 219.88 219.88 1.15 0.2885

Threshold 1 21486.82 21486.82 111.97 0.0000

Memory 1 24574.88 24574.88 128.06 0.0000

NeighMin:NeighMax 1 521.78 521.78 2.72 0.1041

NeighMin:Threshold 1 2335.24 2335.24 12.17 0.0009

NeighMax:Threshold 1 92.09 92.09 0.48 0.4910

NeighMin:Memory 1 4620.50 4620.50 24.08 0.0000

NeighMax:Memory 1 99.70 99.70 0.52 0.4737

Threshold:Memory 1 10826.08 10826.08 56.41 0.0000

NeighMin:NeighMax:Threshold 1 23.46 23.46 0.12 0.7278

NeighMin:NeighMax:Memory 1 478.42 478.42 2.49 0.1193

NeighMin:Threshold:Memory 1 1384.07 1384.07 7.21 0.0092

NeighMax:Threshold:Memory 1 164.13 164.13 0.86 0.3585

NeighMin:NeighMax:Threshold:Memory 1 15.24 15.24 0.08 0.7790

Residuals 64 12281.93 191.91

164



Appendix C. Stage 3: Consensus Formation ANOVA and Student’s T-Tests

Table C.3: Stage 3 - Flocking Model Non-Change Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

NeighMin 1 36.07 36.07 1.21 0.2757

NeighMax 1 26.64 26.64 0.89 0.3483

Threshold 1 14036.76 14036.76 470.30 0.0000

Memory 1 15469.62 15469.62 518.31 0.0000

NeighMin:NeighMax 1 21.85 21.85 0.73 0.3954

NeighMin:Threshold 1 44.19 44.19 1.48 0.2281

NeighMax:Threshold 1 16.52 16.52 0.55 0.4596

NeighMin:Memory 1 101.05 101.05 3.39 0.0704

NeighMax:Memory 1 4.07 4.07 0.14 0.7130

Threshold:Memory 1 5037.40 5037.40 168.78 0.0000

NeighMin:NeighMax:Threshold 1 34.09 34.09 1.14 0.2892

NeighMin:NeighMax:Memory 1 53.18 53.18 1.78 0.1866

NeighMin:Threshold:Memory 1 62.84 62.84 2.11 0.1517

NeighMax:Threshold:Memory 1 51.43 51.43 1.72 0.1940

NeighMin:NeighMax:Threshold:Memory 1 33.80 33.80 1.13 0.2912

Residuals 64 1910.17 29.85

Student’s T-Test

Table C.4: Stage 3 - Flocking Model Neighbourhood Factors Student’s T-Test P-

Values obtained for the Flocking model from one-tailed test to determine if DETect generated

a statistically significantly higher number of detection events during transition periods compared

to non-change periods.

NeighMIN NeighMax
Formation vs.

Non-change Periods

Evaporation vs.

Non-Change Periods

High High 1.675×10−07 0.007276

High Low 5.802×10−07 0.05446

Low High 9.057×10−08 0.999

Low Low 9.962×10−10 0.9991
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Table C.5: Stage 3 - Flocking Model Threshold & Memory Factors Student’s T-

Test P-Values obtained for the Flocking model from one-tailed test to determine if DETect

generated a statistically significantly higher number of detection events during transition periods

compared to non-change periods.

Threshold Memory
Formation vs.

Non-change Periods

Evaporation vs.

Non-Change Periods

High High 1.249×10−12 0.7699

High Low 1.522×10−08 1

Low High 4.03×10−11 0.0409

Low Low 3.261×10−13 0.9026

C.2 Pedestrian Model

ANOVA

Table C.6: Stage 3 - Pedestrian Model Formation Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

NeighMin 1 1153.71 1153.71 2.66 0.1076

NeighMax 1 45.74 45.74 0.11 0.7463

Threshold 1 123473.67 123473.67 285.07 0.0000

Memory 1 50178.68 50178.68 115.85 0.0000

NeighMin:NeighMax 1 160.64 160.64 0.37 0.5447

NeighMin:Threshold 1 2137.25 2137.25 4.93 0.0299

NeighMax:Threshold 1 0.88 0.88 0.00 0.9642

NeighMin:Memory 1 219.62 219.62 0.51 0.4790

NeighMax:Memory 1 999.16 999.16 2.31 0.1337

Threshold:Memory 1 31532.60 31532.60 72.80 0.0000

NeighMin:NeighMax:Threshold 1 37.60 37.60 0.09 0.7692

NeighMin:NeighMax:Memory 1 53.11 53.11 0.12 0.7274

NeighMin:Threshold:Memory 1 615.04 615.04 1.42 0.2378

NeighMax:Threshold:Memory 1 482.14 482.14 1.11 0.2954

NeighMin:NeighMax:Threshold:Memory 1 300.14 300.14 0.69 0.4083

Residuals 64 27720.15 433.13

166



Appendix C. Stage 3: Consensus Formation ANOVA and Student’s T-Tests

Table C.7: Stage 3 - Pedestrian Model Evaporation Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

NeighMin 1 1813.07 1813.07 3.38 0.0705

NeighMax 1 29.04 29.04 0.05 0.8167

Threshold 1 113152.50 113152.50 211.11 0.0000

Memory 1 57749.13 57749.13 107.74 0.0000

NeighMin:NeighMax 1 77.18 77.18 0.14 0.7056

NeighMin:Threshold 1 1150.03 1150.03 2.15 0.1479

NeighMax:Threshold 1 222.64 222.64 0.42 0.5216

NeighMin:Memory 1 136.94 136.94 0.26 0.6150

NeighMax:Memory 1 426.91 426.91 0.80 0.3755

Threshold:Memory 1 5254.72 5254.72 9.80 0.0026

NeighMin:NeighMax:Threshold 1 239.35 239.35 0.45 0.5064

NeighMin:NeighMax:Memory 1 151.77 151.77 0.28 0.5965

NeighMin:Threshold:Memory 1 122.19 122.19 0.23 0.6347

NeighMax:Threshold:Memory 1 2.88 2.88 0.01 0.9418

NeighMin:NeighMax:Threshold:Memory 1 290.39 290.39 0.54 0.4644

Residuals 64 34303.45 535.99

Table C.8: Stage 3 - Pedestrian Model Non-Change Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

NeighMin 1 0.00 0.00 0.05 0.8324

NeighMax 1 0.05 0.05 2.79 0.0996

Threshold 1 0.84 0.84 47.27 0.0000

Memory 1 0.66 0.66 36.99 0.0000

NeighMin:NeighMax 1 0.01 0.01 0.36 0.5510

NeighMin:Threshold 1 0.01 0.01 0.42 0.5215

NeighMax:Threshold 1 0.06 0.06 3.51 0.0654

NeighMin:Memory 1 0.00 0.00 0.09 0.7689

NeighMax:Memory 1 0.05 0.05 2.64 0.1092

Threshold:Memory 1 0.30 0.30 17.00 0.0001

NeighMin:NeighMax:Threshold 1 0.02 0.02 1.15 0.2869

NeighMin:NeighMax:Memory 1 0.00 0.00 0.24 0.6252

NeighMin:Threshold:Memory 1 0.01 0.01 0.64 0.4282

NeighMax:Threshold:Memory 1 0.06 0.06 3.23 0.0771

NeighMin:NeighMax:Threshold:Memory 1 0.02 0.02 0.84 0.3622

Residuals 64 1.14 0.02

Student’s T-Test
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Appendix C. Stage 3: Consensus Formation ANOVA and Student’s T-Tests

Table C.9: Stage 3 - Pedestrian Model Neighbourhood Factors Student’s T-Test

P-Values obtained for the Pedestrian model from one-tailed test to determine if DETect gen-

erated a statistically significantly higher number of detection events during transition periods

compared to non-change periods.

NeighMIN NeighMax
Formation vs.

Non-change Periods

Evaporation vs.

Non-Change Periods

High High 0.0004524 2.997×10−05

High Low 0.002279 1.426×10−05

Low High 0.0006545 0.0001217

Low Low 0.0006328 6.53×10−05

Table C.10: Stage 3 - Pedestrian Model Threshold & Memory Factors Student’s T-

Test P-Values obtained for the Pedestrian model from one-tailed test to determine if DETect

generated a statistically significantly higher number of detection events during transition periods

compared to non-change periods.

Threshold Memory
Formation vs.

Non-change Periods

Evaporation vs.

Non-Change Periods

High High 3.969×10{-06} 6.579×10{-11}

High Low 0.007402 0.0001034

Low High 3.012×10{-12} 6.818×10{-13}

Low Low 1.213×10{-10} 1.506×10{-10}

C.3 Traffic Model

ANOVA
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Appendix C. Stage 3: Consensus Formation ANOVA and Student’s T-Tests

Table C.11: Stage 3 - Traffic Model Formation Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

NeighMin 1 48524.79 48524.79 1.23 0.2720

NeighMax 1 191966.92 191966.92 4.86 0.0311

Threshold 1 657754.31 657754.31 16.64 0.0001

Memory 1 712424.40 712424.40 18.03 0.0001

NeighMin:NeighMax 1 150926.53 150926.53 3.82 0.0551

NeighMin:Threshold 1 126225.53 126225.53 3.19 0.0787

NeighMax:Threshold 1 3510.27 3510.27 0.09 0.7667

NeighMin:Memory 1 6170.36 6170.36 0.16 0.6941

NeighMax:Memory 1 5594.66 5594.66 0.14 0.7080

Threshold:Memory 1 3543.37 3543.37 0.09 0.7656

NeighMin:NeighMax:Threshold 1 38138.85 38138.85 0.96 0.3296

NeighMin:NeighMax:Memory 1 16783.51 16783.51 0.42 0.5170

NeighMin:Threshold:Memory 1 14265.32 14265.32 0.36 0.5501

NeighMax:Threshold:Memory 1 6734.10 6734.10 0.17 0.6812

NeighMin:NeighMax:Threshold:Memory 1 115147.97 115147.97 2.91 0.0927

Residuals 64 2529528.29 39523.88

Table C.12: Stage 3 - Traffic Model Evaporation Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

NeighMin 1 2028.34 2028.34 0.04 0.8446

NeighMax 1 76330.66 76330.66 1.46 0.2317

Threshold 1 271820.18 271820.18 5.19 0.0260

Memory 1 504684.40 504684.40 9.64 0.0028

NeighMin:NeighMax 1 34148.73 34148.73 0.65 0.4223

NeighMin:Threshold 1 145187.87 145187.87 2.77 0.1008

NeighMax:Threshold 1 1114.28 1114.28 0.02 0.8845

NeighMin:Memory 1 12283.60 12283.60 0.23 0.6298

NeighMax:Memory 1 346.02 346.02 0.01 0.9355

Threshold:Memory 1 33780.47 33780.47 0.65 0.4248

NeighMin:NeighMax:Threshold 1 54564.10 54564.10 1.04 0.3112

NeighMin:NeighMax:Memory 1 231727.67 231727.67 4.43 0.0393

NeighMin:Threshold:Memory 1 134474.46 134474.46 2.57 0.1140

NeighMax:Threshold:Memory 1 5251.68 5251.68 0.10 0.7525

NeighMin:NeighMax:Threshold:Memory 1 65571.71 65571.71 1.25 0.2673

Residuals 64 3351154.01 52361.78

Student’s T-Test
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Appendix C. Stage 3: Consensus Formation ANOVA and Student’s T-Tests

Table C.13: Stage 3 - Traffic Model Non-Change Periods ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

NeighMin 1 49412.10 49412.10 6.78 0.0115

NeighMax 1 776.47 776.47 0.11 0.7452

Threshold 1 351344.45 351344.45 48.18 0.0000

Memory 1 304179.19 304179.19 41.71 0.0000

NeighMin:NeighMax 1 1222.91 1222.91 0.17 0.6835

NeighMin:Threshold 1 13463.51 13463.51 1.85 0.1790

NeighMax:Threshold 1 239.43 239.43 0.03 0.8568

NeighMin:Memory 1 2112.27 2112.27 0.29 0.5923

NeighMax:Memory 1 12732.16 12732.16 1.75 0.1911

Threshold:Memory 1 37198.32 37198.32 5.10 0.0273

NeighMin:NeighMax:Threshold 1 313.35 313.35 0.04 0.8364

NeighMin:NeighMax:Memory 1 510.90 510.90 0.07 0.7921

NeighMin:Threshold:Memory 1 1741.81 1741.81 0.24 0.6267

NeighMax:Threshold:Memory 1 1400.19 1400.19 0.19 0.6627

NeighMin:NeighMax:Threshold:Memory 1 22723.86 22723.86 3.12 0.0823

Residuals 64 466682.29 7291.91

Table C.14: Stage 3 - Traffic Model Neighbourhood Factors Student’s T-Test P-

Values obtained for the Traffic model from one-tailed test to determine if DETect generated a

statistically significantly higher number of detection events during transition periods compared

to non-change periods.

NeighMIN NeighMax
Formation vs.

Non-change Periods

Evaporation vs.

Non-Change Periods

High High 1.521×10−05 6.82×10−05

High Low 0.0001913 0.0001256

Low High 2.557×10−05 0.03744

Low Low 0.0006516 .0005213

Table C.15: Stage 3 - Traffic Model Threshold & Memory Factors Student’s T-Test

P-Values obtained for the Traffic model from one-tailed test to determine if DETect generated

a statistically significantly higher number of detection events during transition periods compared

to non-change periods.

Threshold Memory
Formation vs.

Non-change Periods

Evaporation vs.

Non-Change Periods

High High 0.0001319 6.265×10{-05}

High Low 0.0006799 0.001258

Low High 0.0001522 0.006962

Low Low 1.637×10{-06} 0.0009383
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page 17.]

[Bernon et al., 2006] Bernon, C.; Chevrier, V.; Hilaire, V.; and Marrow, P. (2006). “Applications

of self-organising multi-agent systems: An initial framework for comparison”. Informatica,

30(1). [Cited on page 30.]

[Bernon et al., 2005] Bernon, C.; Cossentino, M.; Gleizes, M.-P.; Turci, P.; and Zambonelli, F.

(2005). “A study of some multi-agent meta-models”. In Agent-Oriented Software Engineering

V, pages 62–77. Springer. [Cited on page 31.]

[Birdsey and Szabo, 2014] Birdsey, L. and Szabo, C. (2014). “An architecture for identifying

emergent behavior in multi-agent systems”. In Proceedings of the 2014 international conference

on Autonomous agents and multi-agent systems, pages 1455–1456. International Foundation

for Autonomous Agents and Multiagent Systems. [Cited on page 37.]

[Bonabeau, 2002] Bonabeau, E. (2002). “Agent-based modeling: Methods and techniques for

simulating human systems”. Proceedings of the National Academy of Sciences, 99(suppl 3),

pp. 7280–7287. [Cited on page 29.]

172



Bibliography

[Booker et al., 1989] Booker, L. B.; Goldberg, D. E.; and Holland, J. H. (1989). “Classifier

systems and genetic algorithms”. Artificial intelligence, 40(1), pp. 235–282. [Cited on page 27.]

[Bouarfa et al., 2013] Bouarfa, S.; Blom, H. A. P.; Curran, R.; and Everdij, M. H. C. (2013).

“Agent-based modeling and simulation of emergent behavior in air transportation”. Complex

Adaptive Systems Modeling, 1(1), pp. 1–26. [Cited on page 29.]

[Brownlee, 2007] Brownlee, J. (2007). “Complex adaptive systems”. Complex Intelligent Systems

Laboratory, Centre for Information Technology Research, Faculty of Information Communi-

cation Technology, Swinburne University of Technology: Melbourne, Australia. [Cited on page 25.]

[Bull, 2004] Bull, L. (2004). “Learning classifier systems: A brief introduction”. In Applications

of Learning Classifier Systems, pages 1–12. Springer. [Cited on pages 27 and 28.]

[Bull et al., 2004] Bull, L.; ShaAban, J.; Tomlinson, A.; Addison, J. D.; and Heydecker, B. G.

(2004). “Towards distributed adaptive control for road traffic junction signals using learning

classifier systems”. In Applications of Learning Classifier Systems, pages 276–299. Springer.

[Cited on page 28.]

[Cabri et al., 2011] Cabri, G.; Puviani, M.; and Zambonelli, F. (2011). “Towards a taxonomy of

adaptive agent-based collaboration patterns for autonomic service ensembles”. In Collaboration

Technologies and Systems (CTS), 2011 International Conference on, pages 508–515. IEEE.

[Cited on page 53.]

[Cagan and Ready, 1989] Cagan, R. L. and Ready, D. F. (1989). “The emergence of order in the

Drosophila pupal retina”. Developmental biology, 136(2), pp. 346–362. [Cited on page 12.]

[Capera et al., 2003] Capera, D.; George, J.-P.; Gleizes, M.-P.; and Glize, P. (2003). “The

AMAS theory for complex problem solving based on self-organizing cooperative agents”. In

WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on Enabling Technolo-

gies: Infrastructure for Collaborative Enterprises, 2003., pages 383–388. IEEE Comput. Soc.

[Cited on page 31.]

[Carli et al., 2010] Carli, R.; Fagnani, F.; Frasca, P.; and Zampieri, S. (2010). “Gossip consensus

algorithms via quantized communication”. Automatica, 46(1), pp. 70–80. [Cited on page 63.]

173



Bibliography

[Chalmers, 2006] Chalmers, D. J. (2006). “Strong and Weak Emergence”. The reemergence of

emergence: The Emergentist hypothesis from science to religion, pages 244–256. [Cited on pages 7

and 17.]

[Chan, 2011] Chan, W. K. V. (2011). “Interaction metric of emergent behaviors in agent-based

simulation”. Proceedings of the 2011 Winter Simulation Conference (WSC), pages 357–368.

[Cited on pages 6, 36, 38, 39, and 83.]

[Chatty et al., 2013] Chatty, A.; Gaussier, P.; Kallel, I.; Laroque, P.; Pirard, F.; and Alimi, A. M.

(2013). “Evaluation of Emergent Structures in a “Cognitive” Multi-Agent System Based on

On-line Building and Learning of a Cognitive Map”. In 5th International Conference on Agents

and Artificial Intelligence (ICAART), pages 269–275. [Cited on page 32.]

[Chen, Chih-Chun and Nagl, Sylvia B and Clack, 2008] Chen, Chih-Chun and Nagl, Sylvia B

and Clack, C. D. (2008). “A method for validating and discovering associations between multi-

level emergent behaviours in agent-based simulations”. In Agent and Multi-Agent Systems:

Technologies and Applications, pages 1–10. Springer. [Cited on pages 42 and 43.]

[Ciancia et al., 2014] Ciancia, V.; Latella, D.; Loreti, M.; and Massink, M. (2014). “Specifying

and verifying properties of space”. In Theoretical Computer Science, pages 222–235. Springer.

[Cited on pages 6, 40, 42, and 146.]

[Cornell, 2015] Cornell (2015). “Conway’s Game of Life”. [Online; accessed 03-October-2015].

[Cited on page 26.]

[Das et al., 2014] Das, S.; Goswami, D.; Chatterjee, S.; and Mukherjee, S. (2014). “Stability

and chaos analysis of a novel swarm dynamics with applications to multi-agent systems”.

Engineering Applications of Artificial Intelligence, 30, pp. 189–198. [Cited on page 30.]

[Datta et al., 2004] Datta, A.; Quarteroni, S.; and Aberer, K. (2004). “Autonomous gossiping:

A self-organizing epidemic algorithm for selective information dissemination in wireless mobile

ad-hoc networks”. In Semantics of a Networked World. Semantics for Grid Databases, pages

126–143. Springer. [Cited on page 63.]

[De Angelis and Di Marzo Serugendo, 2015] De Angelis, F. L. and Di Marzo Serugendo, G.

(2015). “A logic language for run time assessment of spatial properties in self-organizing

174



Bibliography

systems”. In 2015 IEEE 9th International Conference on Self-Adaptive and Self-Organizing

Systems Workshops, pages 86–91. IEEE. [Cited on pages 6, 40, 41, and 146.]

[De Haan, 2006] De Haan, J. (2006). “How emergence arises”. Ecological Complexity, 3(4), pp.

293–301. [Cited on pages 19, 20, 21, and 51.]

[De Wolf and Holvoet, 2005] De Wolf, T. and Holvoet, T. (2005). “Emergence Versus Self-

organisation : Different Concepts but Promising When Combined”. Engineering self-

organising systems, pages 77–91. [Cited on pages 2, 5, 13, 16, 21, 22, 47, and 75.]

[De Wolf et al., 2005] De Wolf, T.; Samaey, G.; Holvoet, T.; and Roose, D. (2005). “Decen-

tralised Autonomic Computing: Analysing Self-Organising Emergent Behaviour using Ad-

vanced Numerical Methods”. In Second International Conference on Autonomic Computing

(ICAC’05), pages 52–63. IEEE. [Cited on pages 6 and 36.]

[Deguet et al., 2006] Deguet, J.; Demazeau, Y.; and Magnin, L. (2006). “Elements about the

Emergence Issue: A Survey of Emergence Definitions”. Complexus, 3(1-3), pp. 24–31. [Cited on

page 2.]

[Dessalles et al., 2007] Dessalles, J. L.; Muller, J. P.; and Phan, D. (2007). “Emergence in multi-

agent systems : conceptual and methodological issues”. In Amblard, F & Phan, D., editor,

Agent-based modelling and simulation in the social and human sciences, pages 327–355. Oxford,

The Bardwell-Press. [Cited on page 30.]

[Dessalles and Phan, 2001] Dessalles, J.-L. and Phan, D. (2001). “Emergence in multi-agent

systems : cognitive hierarchy , detection , and complexity reduction part I : methodological

issues”. In Artificial Economics, pages 147—-159. Springer. [Cited on pages 3 and 4.]

[Devaney et al., 1989] Devaney, R. L.; Devaney, L.; and Devaney, L. (1989). An introduction to

chaotic dynamical systems, volume 13046. Addison-Wesley Reading. [Cited on page 16.]

[Di Marzo Serugendo et al., 2004] Di Marzo Serugendo, G.; Foukia, N.; Hassas, S.; Karageorgos,

A.; Mostéfaoui, S. K.; Rana, O. F.; Ulieru, M.; Valckenaers, P.; and Van Aart, C. (2004). Self-

organisation: Paradigms and applications. Springer. [Cited on page 22.]

[Di Marzo Serugendo et al., 2006] Di Marzo Serugendo, G.; Irit, M.-P.; and Karageorgos, A.

175



Bibliography

(2006). “Self-organisation and emergence in MAS: An overview”. Informatica, 30(1). [Cited on

pages 2, 14, 22, 30, 31, and 47.]

[Dooley, 1996] Dooley, K. (1996). “Complex adaptive systems: A nominal definition”. The

Chaos Network, 8(1), pp. 2–3. [Cited on page 23.]

[Dorigo et al., 2000] Dorigo, M.; Bonabeau, E.; and Theraulaz, G. (2000). “Ant algorithms and

stigmergy”. Future Generation Computer Systems, 16(8), pp. 851–871. [Cited on pages 29 and 62.]

[Draper and Smith, 1981] Draper, N. R. and Smith, H. (1981). Applied regression analysis 2nd

ed. New York New York John Wiley and Sons 1981. [Cited on page 55.]

[El-Hani and Pihlström, 2002] El-Hani, C. N. n. and Pihlström, S. (2002). “Emergence theories

and pragmatic realism”. Essays in Philosophy, 3(2), pp. 3. [Cited on page 17.]

[Farmer and Foley, 2009] Farmer, J. D. and Foley, D. (2009). “The economy needs agent-based

modelling”. Nature, 460(7256), pp. 685–686. [Cited on page 29.]

[Fernandez-Marquez et al., 2012] Fernandez-Marquez, J. L.; Di Marzo Serugendo, G.; Mon-

tagna, S.; Viroli, M.; and Arcos, J. L. (2012). “Description and composition of bio-inspired

design patterns: a complete overview”. Natural Computing, 12(1), pp. 43–67. [Cited on pages 30

and 62.]

[Fisch et al., 2010] Fisch, D.; Janicke, M.; Sick, B.; and Muller-Schloer, C. (2010). “Quantitative

Emergence – A Refined Approach Based on Divergence Measures”. In 2010 Fourth IEEE

International Conference on Self-Adaptive and Self-Organizing Systems, pages 94–103. IEEE.

[Cited on pages 6 and 34.]

[Flake, 1998] Flake, G. W. (1998). The computational beauty of nature: Computer explorations

of fractals, chaos, complex systems, and adaptation. MIT press. [Cited on page 2.]

[Fromm, 2005] Fromm, J. (2005). “Types and forms of emergence”. arXiv preprint nlin/0506028.

[Cited on pages 2, 20, 21, 31, and 51.]
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d’interpr{é}tation du comportement des termites constructeurs”. Insectes sociaux, 6(1), pp.

41–80. [Cited on pages 29 and 62.]

[Grilo et al., 2002] Grilo, A.; Caetano, A.; and Rosa, A. (2002). “Immune system simulation

through a complex adaptive system model”. In Soft Computing and Industry, pages 675–698.

Springer. [Cited on page 26.]

[Grossman et al., 2009] Grossman, R.; Sabala, M.; Handley, M.; and Wilkinson, L. (2009). “Dis-

covering Emergent Behavior From Network Packet Data : Lessons from the Angle Project”.

Next Generation of Data Mining, pages 243—-260. [Cited on pages 6, 36, 37, and 60.]

[Haken, 1983] Haken, H. (1983). Advanced synergetics. Springer Berlin. [Cited on page 16.]

[Hawkins, 1987] Hawkins, D. M. (1987). “Self-starting CUSUM charts for location and scale”.

The Statistician, pages 299–316. [Cited on pages 60 and 72.]

[Healy, 1987] Healy, J. D. (1987). “A note on multivariate CUSUM procedures”. Technometrics,

29(4), pp. 409–412. [Cited on page 60.]

[Helbing et al., 2002] Helbing, D.; Farkas, I. J.; Molnar, P.; and Vicsek, T. (2002). “Simulation of

pedestrian crowds in normal and evacuation situations”. Pedestrian and evacuation dynamics,

21(2), pp. 21–58. [Cited on page 94.]

[Helbing and Molnar, 1998] Helbing, D. and Molnar, P. (1998). “Self-organization phenomena

in pedestrian crowds”. arXiv preprint cond-mat/9806152. [Cited on page 94.]

178



Bibliography

[Heylighen, 2001] Heylighen, F. (2001). “The science of self-organization and adaptivity”. The

encyclopedia of life support systems, 5(3), pp. 253–280. [Cited on page 17.]

[History Of Entropy, 2015] History Of Entropy (2015). “History Of Entropy — Wikipedia, The

Free Encyclopedia”. [Online; accessed 29-September-2015]. [Cited on page 33.]

[Hoekstra et al., 2010] Hoekstra, A. G.; Kroc, J.; and Sloot, P. M. (2010). Simulating complex

systems by cellular automata. Springer. [Cited on page 26.]

[Holland, 1976] Holland, J. H. (1976). “Adaptation”. In Progress in Theoretical Biology, pages

263–293. Elsevier. [Cited on page 27.]

[Holland, 1980] Holland, J. H. (1980). “Adaptive algorithms for discovering and using general

patterns in growing knowledge bases”. International Journal of Policy Analysis and Informa-

tion Systems, 4(3), pp. 245–268. [Cited on page 27.]

[Holland, 1992] Holland, J. H. (1992). “Complex adaptive systems”. Daedalus, pages 17–30.

[Cited on pages 1, 4, 17, 23, 47, and 50.]

[Holland, 1995] Holland, J. H. (1995). Hidden order: How adaptation builds complexity. Basic

Books. [Cited on pages 23 and 28.]

[Holland, 2000] Holland, J. H. (2000). Emergence: From chaos to order. Oxford University

Press. [Cited on pages 13, 14, and 30.]

[Holzer et al., 2008] Holzer, R.; De Meer, H.; and Bettstetter, C. (2008). On autonomy and

emergence in self-organizing systems. Springer. [Cited on page 35.]

[Huttenlocher et al., 1993] Huttenlocher, D. P.; Klanderman, G.; Rucklidge, W. J.; et al. (1993).

“Comparing images using the Hausdorff distance”. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 15(9), pp. 850–863. [Cited on page 37.]

[Innes and Booher, 1999] Innes, J. E. and Booher, D. E. (1999). “Consensus building and com-

plex adaptive systems: A framework for evaluating collaborative planning”. Journal of the

American planning association, 65(4), pp. 412–423. [Cited on page 2.]

[Jelasity et al., 2005] Jelasity, M.; Montresor, A.; and Babaoglu, O. (2005). “Gossip-based ag-

gregation in large dynamic networks”. ACM Transactions on Computer Systems, 23(3), pp.

219–252. [Cited on page 63.]

179



Bibliography

[Jennings, 2001] Jennings, N. R. (2001). “An agent-based approach for building complex software

systems”. Communications of the ACM, 44(4), pp. 35–41. [Cited on page 29.]

[Johnson, 2006] Johnson, C. W. (2006). “What are emergent properties and how do they affect

the engineering of complex systems?”. Reliability Engineering & System Safety, 91(12), pp.

1475–1481. [Cited on page 2.]

[Kauffman, 1995] Kauffman, S. (1995). At home in the universe: The search for the laws of

self-organization and complexity. Oxford University Press, USA. [Cited on page 18.]

[Kauffman, 1993] Kauffman, S. A. (1993). The origins of order: Self organization and selection

in evolution. Oxford university press. [Cited on page 28.]

[Kawahara et al., 2007] Kawahara, Y.; Yairi, T.; and Machida, K. (2007). “Change-point detec-

tion in time-series data based on subspace identification”. In Data Mining, 2007. ICDM 2007.

Seventh IEEE International Conference on, pages 559–564. IEEE. [Cited on page 60.]

[Kempe et al., 2003] Kempe, D.; Dobra, A.; and Gehrke, J. (2003). “Gossip-based computation

of aggregate information”. In Foundations of Computer Science, 2003. Proceedings. 44th

Annual IEEE Symposium on, pages 482–491. IEEE. [Cited on page 63.]

[Kephart and Chess, 2003] Kephart, J. and Chess, D. (2003). “The vision of autonomic com-

puting”. Computer, 36(1), pp. 41–50. [Cited on pages 7, 53, 54, and 147.]

[Kim, 1992] Kim, J. (1992). “Downward causationin emergentism and nonreductive physical-

ism”. Emergence or reduction, pages 119–138. [Cited on page 17.]

[Kim, 1999] Kim, J. (1999). “Making sense of emergence”. Philosophical studies, 95(1), pp. 3–36.

[Cited on page 17.]

[Koch and Laurent, 1999] Koch, C. and Laurent, G. (1999). “Complexity and the nervous sys-

tem”. Science, 284(5411), pp. 96–98. [Cited on page 25.]

[Kub́ık, 2003] Kub́ık, A. (2003). “Toward a formalization of emergence.”. Artificial life, 9(1),

pp. 41–65. [Cited on pages 3, 6, 38, and 41.]

[Ladyman et al., 2013] Ladyman, J.; Lambert, J.; and Wiesner, K. (2013). “What is a complex

system?”. European Journal for Philosophy of Science, 3(1), pp. 33–67. [Cited on page 14.]

180



Bibliography

[Langton, 1990] Langton, C. G. (1990). “Computation at the edge of chaos: phase transitions

and emergent computation”. Physica D: Nonlinear Phenomena, 42(1), pp. 12–37. [Cited on

page 25.]

[Lavaei and Murray, 2012] Lavaei, J. and Murray, R. M. (2012). “Quantized Consensus by Means

of Gossip Algorithm”. IEEE Transactions on Automatic Control, 57(1), pp. 19–32. [Cited on

page 63.]

[LeCun et al., 1989] LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hub-

bard, W.; and Jackel, L. D. (1989). “Backpropagation applied to handwritten zip code recog-

nition”. Neural computation, 1(4), pp. 541–551. [Cited on page 27.]

[Ledoux, 1997] Ledoux, C. (1997). “An urban traffic flow model integrating neural networks”.

Transportation Research Part C: Emerging Technologies, 5(5), pp. 287–300. [Cited on page 27.]

[Levin, 1998] Levin, S. A. (1998). “Ecosystems and the biosphere as complex adaptive systems”.

Ecosystems, 1(5), pp. 431–436. [Cited on page 24.]

[Lewes, 1875] Lewes, G. H. (1875). “Problems of life and mind”. London: Kegan Paul, Trench,

Turbner, and Co, 2. [Cited on pages 13, 15, and 18.]

[Lewis and Whitehead, 2011] Lewis, C. and Whitehead, J. (2011). “Repairing Games at Runtime

or, How We Learned to Stop Worrying and Love Emergence”. IEEE Software, 28(5), pp. 53–59.

[Cited on pages 42 and 43.]

[Liao and Chen, 2001] Liao, P.-Y. and Chen, J.-S. (2001). “Dynamic trading strategy learning

model using learning classifier systems”. In Evolutionary Computation, 2001. Proceedings of

the 2001 Congress on, volume 2, pages 783–789. IEEE. [Cited on page 28.]

[Lopez, 2015] Lopez, F. (2015). “Modeling emergence of norms in multi-agent systems by ap-

plying tipping points ideas”. arXiv preprint arXiv 1508.04531. [Cited on page 30.]

[Macal and North, 2005] Macal, C. M. and North, M. J. (2005). “Tutorial on agent-based mod-

eling and simulation”. In Proceedings of the 37th conference on Winter simulation, pages 2–15.

Winter Simulation Conference. [Cited on page 29.]

[Macal and North, 2010] Macal, C. M. and North, M. J. (2010). “Tutorial on agent-based mod-

elling and simulation”. Journal of simulation, 4(3), pp. 151–162. [Cited on page 28.]

181



Bibliography

[Macy and Willer, 2002] Macy, M. W. and Willer, R. (2002). “From factors to actors: Com-

putational sociology and agent-based modeling”. Annual review of sociology, pages 143–166.

[Cited on page 29.]

[Mamei and Zambonelli, 2004] Mamei, M. and Zambonelli, F. (2004). “Self-organization in multi

agent systems: A middleware approach”. In Engineering Self-Organising Systems, pages 233–

248. Springer. [Cited on page 62.]

[Martens et al., 2007] Martens, D.; De Backer, M.; Haesen, R.; Vanthienen, J.; Snoeck, M.; and

Baesens, B. (2007). “Classification with ant colony optimization”. Evolutionary Computation,

IEEE Transactions on, 11(5), pp. 651–665. [Cited on page 62.]

[Maxwell et al., 2002] Maxwell, T. T.; Ertas, A.; and Tanik, M. M. (2002). “Harnessing com-

plexity in design”. Journal of Integrated Design and Process Science, 6(3), pp. 63–74. [Cited on

page 5.]

[Miller and Page, 2009] Miller, J. H. and Page, S. E. (2009). Complex adaptive systems: an

introduction to computational models of social life: an introduction to computational models

of social life. Princeton university press. [Cited on pages 16, 25, and 26.]

[Miller and Bassler, 2001] Miller, M. B. and Bassler, B. L. (2001). “Quorum sensing in bacteria”.

Annual Reviews in Microbiology, 55(1), pp. 165–199. [Cited on page 62.]

[Minar et al., 1996] Minar, N.; Burkhart, R.; Langton, C.; and Askenazi, M. (1996). “The Swarm

Simulation System: A Toolkit for Building Multi-agent Simulations”. [Cited on page 32.]

[Mnif and Muller-Schloer, 2006] Mnif, M. and Muller-Schloer, C. (2006). “Quantitative Emer-

gence”. In 2006 IEEE Mountain Workshop on Adaptive and Learning Systems, pages 78–84.

IEEE. [Cited on pages 6 and 34.]

[Mogul, 2006] Mogul, J. C. (2006). “Emergent (mis)behavior vs. complex software systems”.

ACM SIGOPS Operating Systems Review, 40(4), pp. 293. [Cited on pages 2, 15, and 47.]

[Montagna et al., 2012] Montagna, S.; Pianini, D.; and Viroli, M. (2012). “Gradient-Based Self-

Organisation Patterns of Anticipative Adaptation”. 2012 IEEE Sixth International Conference

on Self-Adaptive and Self-Organizing Systems, pages 169–174. [Cited on page 31.]

182



Bibliography

[Morris et al., 2014] Morris, A.; Ross, W.; Hosseini, H.; and Ulieru, M. (2014). “Modelling

culture with complex, multi-dimensional, multi-agent systems”. In Perspectives on Culture

and Agent-based Simulations, pages 13–30. Springer. [Cited on page 30.]

[Moshirpour et al., 2012] Moshirpour, M.; Mousavi, A.; and Far, B. H. (2012). “Detecting Emer-

gent Behavior in Distributed Systems Using Scenario-Based Specifications”. International

Journal of Software Engineering and Knowledge Engineering, 22(06), pp. 729–746. [Cited on pages

6, 39, and 41.]
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