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Abstract

Improving the effectiveness of heat transfer devices is one of the most chal-
lenging and determinant processes for industrial situations involving energy trans-
formation. Thermal simulations can enable engineers to try and assess different
approaches to deal with a heat transfer situation, at a very early stage in the design
process of a device. The enhancement of the heat transfer potential of a device,
based on the optimization of its shape, has been reported by many authors. This
thesis presents the development of a shape optimization procedure for maximiz-
ing the heat transfer from complex geometries by (i) establishing and validating
a robust and low-cost computational fluid dynamics (CFD) method to predict
the fluid flow and heat transfer of steady and unsteady convective heat transfer
phenomena, and by (ii) incorporating the CFD model in an optimization loop
which aims at searching for the optimal design that maximizes the heat transfer,
using a genetic algorithm. In parallel, this study could enable the improvement of
our understanding of coral growth as these living organisms rely on mass transfer
processes to develop. In order to achieve the development of a shape optimiza-
tion procedure that can be applied to complex geometries, and additionally, that
can provide results comparable to situations specific to the living environment of
corals, the investigation was done progressively. The idea is to study flow and heat
transfer configurations around geometries of increasing complexity resulting in a
shape optimization methodology applicable to a wide range of shape complexities.
A genetic algorithm is used to search for optimal solutions over a high-dimension
search-space that represents all the possible designs of a complex geometry. The
study of how genetic algorithms operate in combination with CFD simulations is
conducted in order to assess the shape optimization methodology.
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Nomenclature

Symbol Units Description
A [m2] Surface’s area
D [m] Circle’s diameter
Dφ [m2s−1] Mass diffusivity
f [Hz] Frequency
g [ms−2] Acceleration due to Earth’s gravity
Gr [-] Grashof number Gr = (ρ2βgL3∆T )/µ2

h [Wm−2K−1] Heat transfer coefficient
H [m] Height
~J [molm−2s−1] Diffusion flux
k [m2s−2] Turbulent kinetic energy k = 1/2(u′2 + v′2 + w′2)
k [Wm−1K−1] Thermal conductivity
K [ms−1] Mass transfer coefficient
L [m] Length
n [-] Population size
Nu [-] Nusselt number Nu = hL/k
p [-] Search-space dimension
pc [-] Cross-over probability
pm [-] Mutation probability
P [Pa] Pressure
Pr [-] Prandtl number Pr = ν/α
~q [Js−1m−2] Local heat flux
q′ [W ] Heat transfer rate
Qcond [J ] Amount of heat transferred by conduction
Qconv [J ] Amount of heat transferred by convection
Ra [-] Rayleigh number Ra = Gr · Pr
Re [-] Reynolds number Re = UL/ν
Ri [-] Richardson number Ri = Gr/Re2
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S [m] Spacing between bodies
Sc [-] Schmidt number Sc = ν/Dφ

Sh [-] Sherwood number Sh = KL/Dφ

Sr [-] Strouhal number Sr = fD/Vref
t [s] Time
T [K] Temperature
Tbulk [K] Bulk temperature
Tf [K] Fluid’s temperature
TS [K] Surface temperature
Tw [K] Wall temperature
ui [ms−1] Velocity component
uτ [ms−1] Shear velocity
U, V [ms−1] Velocity
y+ [-] Wall coordinate y+ = yuτ/ν
Greek
α [m2s−1] Thermal diffusivity
β [K−1] Coefficient of thermal expansion
ε [m2s−3] Turbulence dissipation rate
µ [Pas−1] Dynamic viscosity
ν [m2s−1] Kinematic viscosity
ω [s−1] Turbulence specific dissipation rate
φ [molm−3] Concentration of particles
ρ [kgm−3] Fluid’s density
τ [Nm−2] Shear stress
θ [rad, ◦] Angle
σ [Nm−2] Stress tensor
Subscripts
∞ Free-stream
m Mean value over a surface
max Maximum value
min Minimum value
w Wall values
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Chapter 1

Introduction: Lessons for
Engineering from Natural
Sciences

Convective heat transfer is found in many technical applications such as heat
exchangers, boiler devices, air cooling systems, etc. According to the International
Energy Agency [1], apart from hydro, wind and photovoltaic energy generation
technologies, more than 75% of the world’s electricity is produced in heat source
power plants such as fossil-fuel, nuclear, geothermal, biomass or solar power sta-
tions. The heat is transferred from these primary energy sources to water which is
transformed into steam and drive a rotor in order to produce electricity. But elec-
tricity is not the only production that requires heat transfer; oil, which is the most
used fossil fuel for transportation, generates power in a car engine by converting
heat energy into mechanical energy (the piston’s movement). Heat transfer pro-
cesses are literally involved everywhere, from the industry and huge power plants
to the small heat sink of everyone’s computer.

This PhD research is a study inspired by the well-known parallel between con-
vective heat and mass transfer; we aim at examining the similarities between
optimal design of heat exchange structures (e.g., heat sinks and heat exchangers
in engineering applications) and the evolutionary development and growth pat-
terns of biological organisms in response to convective mass transfer from nutrient
streams (e.g., deep water coral growth).
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CHAPTER 1. INTRODUCTION: LESSONS FOR ENGINEERING FROM
NATURAL SCIENCES

1.1 Nature-inspired shapes in engineering
The choice that has been made to turn toward biological organisms in order

to study the physics and enhance the performance of an engineering device is not
new in human history. In order to understand why, one has to understand first
the importance of the parallel between engineering and Nature.

(a) Nature (b) Engineering

Figure 1.1: Principle of biomimetics1

The seminal book of Adrian Bejan, Shape and structure, from engineering
to Nature [2] has been very useful in the understanding of Nature: its relation
with engineering, and the study of laws that drive Nature’s design. This relation
with Nature has always been of importance, especially in the engineering field; the
biomimetics is the basis of tools creation as illustrated in Fig. 1.1. It seems that
humans have always tried to mimic Nature because Nature’s shapes appear to be
the most efficient for their task. In other words, Nature is optimal.

Nature seems to find its way, always being the most favorable for its develop-
ment. But why is it so? Where does this come from? Why are leaves distributed
this way? How a nautilus shell, a cyclone and a galaxy come up to have the same
logarithmic spiral shape? The main idea developed in A. Bejan’s book [2] is that
Nature designs itself as a result of a global process of optimization subject to global
and local constraints.

1http://www.art.com/gallery/id--a32178/leonardo-da-vinci-posters_p5.htm
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1.1. NATURE-INSPIRED SHAPES IN ENGINEERING

(a) Nautilus shell (b) Cyclone (c) Galaxy

Figure 1.2: Logarithmic spiral shapes in Nature, references: 2

(a) Lungs (b) Tree (c) River delta

Figure 1.3: "Tree shapes" in Nature, references: 3

In order to understand how Nature creates these patterns, we need to in-
vestigate what are the constraints it is subjected to, and finally, what is this
optimization process, this universal law, that makes the trees, the river deltas and
our lung’s bronchi look the same.

In the framework of heat transfer enhancement and the parallel between heat
and mass transfer, the attention should be drawn to corals because of their capac-
ity to absorb nutrients efficiently. This has already been noticed by engineers who

2http://www.123rf.com/stock-photo/nautilus_shell.html, https://en.wikipedia.
org/wiki/Cyclone, https://apod.nasa.gov/apod/archivepix.html

3http://drawingimage.com/art/21862, http://www.drodd.com/html7/tree-drawing.
html, http://www.dfiles.me/delta-river-definition.html
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built cooling devices inspired by these organisms as illustrated in Fig. 1.4.

(a) Deep-sea coral (b) Axi-symmetrical heat sink

Figure 1.4: Principle of biomimetics, references: 4

The ability of corals to grow and reproduce using the energy of nutrients ab-
sorbed from the surrounding fluid deserves as many studies as there are different
corals and this goes beyond the scope of the present work. Some studies have
investigated the growth of corals by accretion, considering the advection and dif-
fusion of nutrients only [3]. However, the effects of wave driven flows inside coral
colonies that could enhance the mass transfer compared to a steady flow situation
are reported in [4]. And more recently, studies present some features of corals that
help enhance the mass transfer: small polyps at the coral’s surface, called cilia,
can create vortices to improve the mixing and therefore increase the mass transfer
between the coral and the water [5].

Obviously the full understanding of corals growth dynamic and how efficiently
they absorb nutrients from the surrounding water covers a wide range of disci-
plines.

4http://www.marinebio.net/marinescience/04benthon/index.htm
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1.2. UNIVERSAL DESIGN LAWS

1.2 Universal design laws
In the case of the tree-shaped natural structures (the tree, the river delta, the

lungs), it is important to notice that they are all traversed by internal currents.
These networks are meant to transport sap for the trees, water for the river, and
air for the bronchi. In the case of a coral, the structure is surrounded by an exter-
nal current.

From these observations, a question arises: how does Nature optimize the de-
sign of these structures so that the internal or external currents can flow efficiently?

1.2.1 Constructal law: minimum travel time
The first approach comes from the field of optics [6] with the Fermat Law which

states that when light travels between two points (A,B) located in two different
media, it must choose the path that minimizes the time of travel between these
two points (which is often not a straight line!).

In our case and in contrast to the point-to-point flow of Fermat, the constructal
law applies to a finite-size system in which the current flows from one point (M)
toward several points (P ) contained in a fixed area (A0) [7]. In 2D, A0 = L0×H0
as shown on Fig. 1.5. (A0) is fixed but (L0) and (H0) are not; they define the
system’s external shape.

The system is composed of two media; a small medium where the movement
occurs at high speed and a low-speed medium which mainly composes the system
A0, that is to say, V1 � V0. If A0 is assumed to be small enough, it contains only
one channel of high-speed material (V1) and the rest of the volume contains the
low-speed material (V0). These two media and how they are distributed in (A0)
define the internal structure of the system.

The idea of the constructal law is to find the external shape and the inter-
nal structure so that the access between all the points (P ) ∈ (A0) and (M) is
maximized. The maximization of volume-to-point access is obtained using the
minimization of travel-time [8, 9].

For this simple 2D case, the best way to distribute the high-speed material
is a straight line along the longer of the two axes of symmetry as it is already the
case in Fig. 1.5. The internal structure is thus defined.

In terms of external shape; two different approaches are possible in order to
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(a) Fermat law, point-to-
point flow

(b) Constructal law, volume-to-point flow

Figure 1.5: Minimization of travel time: between two points (a) and between a
volume and one point (b).

optimize (A0) and surprisingly they provide identical results [7,8]. The first one is
the "altruistic" mode. The idea is to minimize the travel-time between the furthest
point (top right corner in Fig. 1.5) to point (M). All the other travel-times will be
shorter since the points are closer to point (M). The optimization is done in order
to benefit the most disadvantaged traveler. In this case, the maximal travel-time is
tmax = H0/(2V0) + L0/V1. This time is minimal with (H0/L0)opt = 2V0/V1, which
defines the external shape of our system.

The second approach is to calculate the time-travel between any point (P ) ∈
(A0) to (M), average it over the whole domain (A0) and minimize it. It can be
found [2] that the mean travel-time in this scenario is ¯tA0 = H0/(4V0) + L0/(2V1)
which can be minimized with (H0/L0)opt = 2V0/V1. The same optimized external
shape is obtained.

1.2.2 Minimum entropy generation
The general idea of entropy minimization comes directly from the second law of

thermodynamics. Indeed, in a heat exchanger design for example, there is no first
law efficiency metric since energy is only transferred. The second law on the other
hand pinpoints all losses including those associated with energy transfer. As such,
there is a second law efficiency for components like heat sinks and heat exchang-
ers. Therefore, entropy generation minimization is a popular objective function to
design heat sinks and heat exchangers with.

As described by Adrian Bejan [10], Entropy Generation Minimization (EGM)
consists of modeling and optimizing real devices that owe their imperfections to
heat transfer, mass transfer and fluid flow. Multiple objectives can be achieved us-
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ing this method, such as, minimization of entropy generation in heat exchangers,
maximization of power output in power plants, minimization of costs, etc.

Let us consider a general system which is enclosed in space (real finite device)
and operates at an unsteady state. The first and second law of thermodynamics
enable us to compute the net work rate, the heat transfer rate, or any quantity
we are interested in as well as the total entropy generation rate (which can not be
negative). The whole idea of EGM is to minimize this entropy generation and get
as close as possible to the hypothetical case of an entropy generation of zero, that
is to say, the reversible, and most effective, case.

For example, considering the flow of a single-phase stream of mass flow rate
ṁ through a heat exchanger tube of internal diameter D the entropy generation
rate per unit tube’s length Ṡgen is, according to A. Bejan [11,12];

Ṡgen = q′2

πkT 2Nu
+ 32ṁf
π2ρ2TD5 (1.1)

where q′ is the heat transfer rate per unit length of the tube from the wall to the
fluid, Nu = hD/k is the Nusselt number - h being the heat transfer coefficient
between the wall and the fluid - and f is the friction factor which accounts for the
frictional pressure drop along the tube. ρ, T and k are the bulk density, tempera-
ture and thermal conductivity of the fluid, respectively.

The optimal tube diameter that minimizes the Ṡgen expression 1.1 is given
by [12];

ReD,opt = 2.023B0.36
0 Pr−0.007 (1.2)

where B0 is a heat and fluid flow "‘duty"’ parameter that accounts for the con-
straints (q′, ṁ):

B0 = q′ṁ

(kT )1/2µ5/2/ρ
(1.3)

This is a quick example of a simple situation of heat transfer but illustrates the
concept; minimizing the entropy generation in order to optimize the performances.
The EGM method is well described and extensively documented by A. Bejan in
many of his papers, especially in [10].
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1.2.3 Asymptotic Analysis
A different approach from the Minimum Travel Time (MTT) and the Entropy

Generation Minimization (EGM) theories described in this section, is the Asymp-
totic Analysis (AA) which has been developed in order to estimate approximately
the optimal design of a system under constraints.

In order to illustrate the concept of asymptotic analysis, an example can be
considered; what is the optimal spacing Sopt between the cylinders of an array of
cylinders of diameter D contained in a volume V0 = L×H ×W , which maximizes
the overall thermal conductance q/(Tw − T∞)? This example is from the study of
Stanescu et al. [13];

To optimize the spacing S is equivalent to determining the optimal number of
cylinders n in the fixed volume HLW , namely n = HW/(S +D)2cos(30◦), or the
optimal porosity of the HLW space;

φ = 1− n(π/4)D2

HW
(1.4)

In the small-spacing limit, the cylinders almost touch, the fluid spends a long
time in the HLW volume and the fluid outlet temperature is practically the same
as the cylinder temperature. The total heat transfer rate between the volume and
the fluid is;

qsmallS = ṁcp(Tw − T∞) (1.5)

where ṁ = ρWLU is the total mass flow rate. The volume averaged longitudinal
velocity U can be estimated by assuming Darcy flow;

U = K

µ

∆p
H

(1.6)

where the permeability of the equilateral triangle array is represented adequately
by the Carman-Kozeny model [14]

K = D2φ3

C(1− φ)2 (1.7)
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where C ≈ 100 in an order of magnitude sense. In the small-S limit the pressure
difference between the front and back planes of the fixed volume, ∆p, is controlled
by the dynamic pressure of the approaching stream, ∆p = 1/2ρU2

∞. Combining
these equations we find that in the small-S limit the volume averaged velocity U
behaves as

U ∼=
ρU∞

200µH
φ3

(1− φ)2 (1.8)

where

φ = 1− 0.907
(1 + S/D)2 (1.9)

The asymptotic behavior for the small spacing is determined by assuming
S/D � 1 and combining all these equations gives;

(
q

Tw − T∞

)
smallS

∼=
1
25ρcpν

WL

H
Re2

D

(
S

D

)3
(1.10)

In the opposite extreme, S � D, each cylinder is bathed by free-stream fluid and
the total heat flux is the sum of each individual cylinder’s qsingle = NuDk/DπDL(Tw−
T∞) and finally;

(
q

Tw − T∞

)
largeS

∼= 1.89kHWL

D2 Pr0.37Re
1/2
D

(
S

D

)−2
(1.11)

The overall thermal conductance increases with S/D when S/D is small and
decreases when S/D is large, so there is a maximum thermal conductance which
can be estimated approximately by intersecting equations 1.10 and 1.11.

1.2.4 Evolutionary computation techniques
In the early 50’s, the science of computing machines and artificial intelligence

was booming and at this time appeared the premises of evolutionary algorithms.
Such algorithms are based on the Darwinian evolutionary theory. The "survival
of the fittest" concept that describes the mechanism of natural selection perfectly
summarizes the idea of evolutionary computing. The basic principle is to start
from a certain solution to the posed optimization problem and modify it ran-
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domly: this procedure is referred to a mutation. The new solution, the offspring,
is then compared to its "parent" solution and the best solution between parent and
child, is conserved. The process is repeated until it is told to stop (for example,
after a fixed number of mutations, or when no better solution is discovered for a
given number of consecutive mutations, etc.)

Several different versions of such evolutionary algorithms have been developed,
among which is the Genetic Algorithm (GA). In a GA, not only one but several dif-
ferent solutions are mutated, mixed and compared through successive generations
in order to find solutions that are progressively fitter to the problem. The history
and principles of genetic algorithms will be presented and discussed in detail in
Section 3.3.3 and Chapter 6.

The two previous sections aimed at highlighting that the improvement of heat
transfer structures can be explored by combining the knowledge from

• An effective optimization technique.
• Certain aspects of efficient mass transfer structures like corals.

The choice of this optimization technique is twofold:

• When searching for possible optimization methods to deal with shape optimiza-
tion involving CFD simulations, evolutionary computation techniques appeared to
be interesting tools as evolution, in the Darwinist sense, is the process that de-
scribes how Nature searches for optimal solutions by mean of natural selection. To
apply this survival-of-the-fittest process to a complex optimization problem seems
promising and is worth investigating.

• For complex optimization problems, classical optimization techniques such as
hill-climbing or gradient methods are inefficient or too time-consuming compared
to GAs [15–18]. According to many scientists, genetic algorithms seem best suited
to deal with noisy, non-linear, complex optimization problems [15, 19–21]. For
those reasons, genetic algorithms appear to be a strong choice if one wants to deal
with non-trivial phenomena that are encountered in fluid mechanics and heat/mass
transfer situations.

The potential to deal with complex problems and the puzzling process of evo-
lution that genetic algorithms represent, are promising as it will be highlighted in
Section 3.3.3 and Chapter 6.
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1.3 Research objectives and outline of this thesis
This PhD thesis intends to make a contribution towards setting up a theoreti-

cal and numerical framework for shape optimization of convective heat and mass
transfer structures and can be divided in two stages;

• To develop a numerical methodology to model convective heat transfer from
complex geometries, which is (i) experimentally validated, (ii) capable of model-
ing transient phenomena, and (iii) computationally efficient enough5 to be used as
part of a numerical optimization procedure.

• To derive an optimal design methodology for two-dimensional heat sinks in a
stream, in an attempt to mimic the conditions inspired by deep sea corals.

Several optimization methods can be considered such as the ones introduced in
the previous section: minimization of entropy generation, minimization of travel
time [2, 22] or the asymptotic method [13, 23, 24], among many others including
genetic algorithms.

The present work aims at developing a numerical method of design optimization
of two-dimensional structures subjected to mixed convection heat transfer.

By studying the mass transfer dynamics and evolutionary optimization in
nature [25], this cross-disciplinary research aims at providing new ways of improv-
ing energy efficiency and minimizing material usage of cooling systems, e.g. for
large-scale ICT infrastructures such as data centers and telecommunication sys-
tems [26].

Chapter 2 presents an overview of the theoretical background necessary to the
understanding of the processes involved in heat transfer phenomena and to the de-
velopment of a numerical method which aims at optimizing the shape of a device
subjected to heat transfer.

Chapter 3 reviews the literature on the work done in the area of thermal con-
vection and genetic algorithms that are the core of this study.

5The difficulty to define "enough" must be noticed as this mainly depends on the optimization
procedure itself
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Chapter 4 presents the numerical methodology that has been developed on
the simulation of the interaction between two two-dimensional vertically aligned
horizontal cylinders in natural convection and the optimization method used to
optimize the geometry of a two-dimensional heat sink in a stream.

The results of the simulation of two horizontal cylinders in natural convec-
tion are presented and discussed in Chapter 5 while the results of the numerical
shape optimization of the heatsink in cross-flow are presented in Chapter 6.

A final conclusion is drawn and some possible improvements are suggested
in Chapter 7.
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Chapter 2

Theoretical background:
Convective heat and mass
transfer

2.1 Convective heat transfer

This thesis mainly deals with numerical simulations dedicated to heat transfer
problems, that is to say, situations where heat is transferred from a medium to
another as encountered in many engineering situations. The most interesting sit-
uation (from the engineering field’s point of view) is when heat is transferred from
a solid structure to a surrounding fluid as for the examples shown in Fig. 2.1. A
schematic of this process (the cooling of a computer chip) is shown in Fig. 2.2.
The equations describing the heat transfer presented in this section can be found
in any handbook about heat transfer such as the the one from Bejan & Kraus [27].

Heat is first transferred by conduction as shown in Fig. 2.2. The conductive
heat flux through the structure’s boundary can be computed using the Fourier’s
law eq. 2.1 and its one dimensional form 2.2.

~q = −k∇T (2.1)

2http://www.coltinfo.co.uk/data-centre-climate-control.html
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(a) Air-cooled data centre (b) Axi-symmetrical
heat sink

Figure 2.1: Heat transfer from a solid to a fluid encountered in everyday engineer-
ing applications, reference:2

Figure 2.2: Schematic of the cooling process of a chip in a computer.

∆Qcond,x

∆t = −kA∆T
∆x (2.2)

where ~q is the local heat flux Js−1m−2, Qcond,x is the amount of heat transferred by
conduction through a surface perpendicular to the x-direction (J), k is the mate-
rial’s conductivity (Wm−1K−1), A is the surface area (m2), ∇T is the temperature
gradient (Km−1) and ∆T = Ts − Tf is the difference between the solid’s and the
fluid’s local temperatures (K).

Heat is then carried from one place to another by the fluid’s movement: this
phenomenon is known as convection, or advection and is shown in Fig. 2.2. New-
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ton’s law of cooling, as shown in eq. 2.3 in its one-dimensional form, is used to
compute the convective heat transfer.

∆Qconv

∆t = hA∆T (2.3)

where Qconv is the amount of heat energy transferred by convection (J), h is the
fluid’s heat transfer coefficient (assumed independent of T here) (Wm−2K−1) and
∆T = Tf − Tbulk is the difference between the fluid’s local temperature and the
bulk temperature (K).

The ratio between convective and conductive heat transfer across the boundary
of the structure is non-dimensionalized using eq. 2.4 in order to obtain the Nusselt
number Nu. This number characterizes the heat transfer structure; the higher the
Nusselt number, the more effectively heat is evacuated since the fluid carries heat
away by convection at a higher rate than heat comes in the fluid by conduction
within the thermal boundary layer.

This parameter, which is used to compare the different situations and geome-
tries, is expressed as follows:

Nu = Convective heat transfer
Conductive heat transfer = hL

k
(2.4)

with L the characteristic length of the system (m).

The Nusselt number is one of the several dimensionless numbers that are used.
The second one is the Prandtl number Pr, which is a fluid’s property parame-

ter:

Pr = ν

α
(2.5)

In the absence of external pressure gradient, the temperature of the fluid close
to the heated surface will increase, which leads to a decrease of its density. This
difference in density creates an imbalance in the buoyancy forces near the surface,
and leads to advective currents, if they overcome the viscous forces which tend to
maintain the fluid at rest. This leads to the third dimensionless parameter, the
Grashof number Gr, which is the ratio of buoyancy over viscous forces:
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Gr = ρ2βgL3∆T
µ2 (2.6)

The Rayleigh number Ra, which is a modified version of the Grashof number,
takes the thermal diffusivity of the fluid into account:

Ra = gβ

να
∆TL3 = Gr · Pr (2.7)

When the flow is driven externally by forces (pressure gradient or any other
external force field) which overpower buoyancy forces, the main parameter char-
acterizing the flow is the Reynolds number Re, which relates the momentum in
the flow to the viscous dissipation:

Re = ρUL

µ
(2.8)

If both buoyancy and pressure gradient forces affect the flow, it cannot be char-
acterized by only one parameter, and both the Reynolds number and the Rayleigh
number have to be considered. This phenomenon is called mixed convection and
is described in the next section.

2.1.1 Mixed convection heat transfer

The real-life situation of heat transfer is called mixed convection and takes into
account both natural - or free - convection as well as forced convection. Natural
convection is the convection of heat where the fluid’s motion is driven by density
differences created by temperature gradients, that is to say, by heat itself. Forced
convection refers to a phenomenon in which the fluid is set in motion by another
process - for example, when a heat exchanger is placed inside an existing stream
flow. In this case, the general form of the Navier-Stokes equations have to be
considered. The Navier-Stokes equations are written using the Einstein notation
as 2.9, 2.10 and 2.11

Continuity:
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∂ρ

∂t
+ ∂ρui

∂xi
= 0 (2.9)

Momentum:

∂ρui
∂t

+ ∂ρuiuj
∂xj

= ∂σij
∂xj

+ ρgi (2.10)

Energy:

∂ρe

∂t
+ ∂ρuie

∂xi
= σij

∂ui
∂xj

+ ∂qi
∂xi

(2.11)

where ρ is the density, ui the velocity vector and σij = τij − pδij the stress
tensor, split into the deviatoric stress tensor (which contains the shear stresses)
τij and the normal stress tensor −pδij (with δij = 1 if i = j and 0 otherwise, the
Kronecker delta). gi is the gravitational acceleration, e is the internal energy and
qi is the heat flux.

The Einstein notation is used in this thesis because of its simplicity; a vector
is noted with one subscript such as ~u = ui and then u1 = u, u2 = v and u3 = w.
A tensor is noted with two subscripts such as ~~τ = τij. The particularity of this
notation is that when a term presents two equal subscripts, the sum of this term
over this subscript have to be taken such as: ∂ρuiuj

∂xj
= ∂ρuiu

∂x
+ ∂ρuiv

∂y
+ ∂ρuiw

∂z
,

which is valid for ui = u, v or w, corresponding to the three momentum equations.

Two important assumptions are often used:

(i) The fluid is Newtonian. In this case, the Newton’s law describes the stress
tensor σij and the Fourier’s law describes the heat flux qi;

σij =
(
−p+ λ

∂ul
∂xl

)
δij + 2µSij (2.12)

where Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, and δij is the identity tensor, or Kronecker’s delta.

qi = −k ∂T
∂xi

(2.13)
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(ii) The fluid is incompressible. In this case, the density is considered constant
(except for the buoyancy term in some particular cases explained later in this
chapter).

When the fluid is considered Newtonian and incompressible, the Navier-Stokes
equations reduce to Eq. 2.14 - 2.16;

Continuity:

∂ui
∂xi

= 0 (2.14)

Momentum:

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ gi + ν

∂2ui
∂x2

j

(2.15)

Temperature:

∂T

∂t
+ ui

∂T

∂xi
= α

∂2T

∂x2
i

+ 2µ
ρCv

SijSij (2.16)

The main dimensionless parameter which comes into play when considering
mixed convection is the Richardson number Ri which represents the importance
of natural convection relative to the forced convection:

Ri = Buoyancy
Inertia = gβL∆T

U2 = Gr

Re2 (2.17)

Typically, the natural convection is negligible for Ri < 0.1, the forced convection
is negligible for Ri > 10, and both natural and forced convection have to be taken
into account for 0.1 < Ri < 10.

2.1.2 Forced convection heat transfer
In many heat transfer situations encountered in the engineering field, the fluid

carrying the heat evolves at high speed, that is to say, high Re compared to the
buoyancy term (

√
Gr). It moves at speed high enough so that generally, the cor-

responding Richardson number is below 0.1 and only forced convection can be
considered. Basically, considering only forced convection simply means that the
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convection due to temperature differences - or density differences - is neglected,
that is to say, gravity is neglected. The Navier-Stokes equations thus become;

Continuity:

∂ρ

∂t
+ ∂ρui

∂xi
= 0 (2.18)

Momentum:

∂ρui
∂t

+ ∂ρuiuj
∂xj

= ∂σij
∂xj

(2.19)

Energy:

∂ρe

∂t
+ ∂ρuie

∂xi
= σij

∂ui
∂xj

+ ∂qi
∂xi

(2.20)

As it can be noted, only the momentum equation (Eq. 2.19) is modified. Indeed
the term ρgi has been removed from Eq. 2.10 and inertial forces are significantly
larger than buoyancy forces.

As the result of the assumption of forced convection is the removal of a term in
one of the equation of fluid mechanics, one can assume that this particular case of
forced convection is relatively easier to treat than the natural situation.

2.1.3 Natural convection heat transfer
Let us assume now a fluid subject to density differences and gravity so that

buoyancy forces overpower viscous forces. In this case the Grashof and Rayleigh
numbers are larger than one. In contrast with the previous section, if the device is
placed in a medium where the free stream flows at a velocity, so that these buoy-
ancy forces are greater than the upstream advective forces, then the Richardson
number of such a flow is above 10. Consequently, the buoyancy forces affect the
flow in a greater extent than the free stream. This is natural convection.

In this case, the buoyancy term cannot be neglected and the general form of
the Navier-Stokes equations apply (Eq. 2.9 - 2.11).

As only natural convection is considered and the flow velocity is relatively low
compared to forced convection, it can be safely assumed (if not dealing with acous-
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tic problems) that the fluid is incompressible, that is to say, that the density does
not depend on the pressure but on the temperature only.
very common approximation, when the temperature differences are significantly
small, is the Boussinesq approximation, named after Boussinesq [28] but certainly
introduced by Oberbeck [29]. As the density depends on the temperature only, the
Taylor series expansion of the density evaluated for any temperature T is given in
Eq. 2.1.3;equation ρ(T ) = ρ(T0) + dρ

dT

∣∣∣
T0

(T − T0) + . . .

Now, neglecting higher order terms and defining the thermal expansion coeffi-

cient β = − 1
ρ0

∂ρ

∂T
, where ρ0 = ρ(T = T0), we obtain the Boussinesq’s approxima-

tion in its common form;

ρ(T ) = ρ0(1− β∆T ) (2.21)

which is valid for small changes in density, that is to say, for β(T − T0)� 1.

In this case, only the zeroth order term is kept in the Navier-Stokes equa-
tions (ρ = ρ0), but the first order term is used for the buoyancy term; ρgi =
ρ0gi(1 − β∆T ), in order to reproduce the effects of the temperature variations in
the flow.

2.2 Convective mass transfer
The analogies between heat transfer and mass transfer mechanisms can be ob-

served by considering their governing equations. While the heat transfer governing
equations have been presented in the previous section, their mass transfer equiva-
lents are described in the present section [30].

The mechanism which drives how particles are moving inside a fluid medium,
such as the way nutrients are carried in the ocean, is a combination of advection
and diffusion. Advection is the phenomenon which leads to the movement of par-
ticles in a medium, as a consequence of the medium motion. The moving medium
(the stream created by the movement of a spoon in a cup of coffee for example)
will carry particles it contains (the dissolved sugar in this example). Diffusion is
the mechanism which drives the particles’ motion as a consequence of a gradient
of these particles’s concentration in the medium (just like this same sugar will
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eventually mix with water even if nobody stirs the coffee).

The advection can be directly related to the heat transfer convection as the
movement of the entity of interest (heat for heat transfer and particles for mass
transfer phenomena) is driven by the surrounding fluid’s motion.

The analogy between mass diffusion and heat conduction is not straightfor-
ward but can be observed using the Fourier’s law 2.1, describing the heat transfer
conduction, and the Fick’s law of diffusion 2.22 or 2.23 in its one-dimensional form;

~J = −Dφ∇φ (2.22)

Jx = −Dφ
∂φ

∂x
(2.23)

where ~J is the "diffusion flux" ( mol
m2·s), Dφ is the diffusion coefficient or diffusivity

(m2

s
), φ is the concentration of the particles (mol

m3 ), ∇φ and ∂φ
∂x

represent the concen-
tration gradients, in three dimension or along x respectively, with x the position
along the direction of diffusion (for the one dimension case).

Similarly to the Nusselt number which gives the ratio of convective and conduc-
tive heat transfer, the Sherwood number is a non-dimensional parameter defined
as Eq. 2.24. The Schmidt number (Eq. 2.25) gives the ratio of momentum dif-
fusivity (viscocity) and mass diffusivity, which is the mass transfer version of the
Prandtl number.

Sh = Mass transfer rate
Diffusion rate = KL

Dφ

(2.24)

where K is the mass transfer coefficient (ms−1), L is the characteristic length (m)
and Dφ is the mass diffusivity (m2s−1).

Sc = Viscous diffusion rate
Mass diffusion rate = ν

Dφ

(2.25)

Another parameter is sometimes considered when analogies between heat and
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mass transfer are studied; the friction factors. This analogy, namely the Chilton
and Colburn J-factor analogy [31], can be written as follows;

JH = Nu

Re · Pr1/3 (2.26)

JM = Sh

Re · Sc1/3 (2.27)

where JH and JM are the Colburn-Chilton j-factors for heat and mass transfer
respectively. The analogy states that JH = JM = f

2 , with f the friction factor, in
the case of a fully developed turbulent flow, for Re ≥ 10000 and 0.7 ≤ Pr ≤ 160.

The analogy between a heat exchanger and a biological organism takes its source
here. The similarity is noticeable; advection of heat or particles is driven by the
fluid motion, and conduction along with diffusion behave similarly; a flux is cre-
ated by a gradient as illustrated in Table 2.1.
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Table 2.1: Parallel between heat and mass transfer.

Heat transfer Mass transfer

Studied object Heat Mass

Convection transfer Convection heat transfer Mass transfer
coefficient coefficient h coefficient K

Conduction (or Thermal Mass
diffusion) constants conductivity k diffusivity Dφ

or diffusivity α

Ratio of convection Nusselt number Nu = hL

k
Sherwood number Sh = KL

Dφ

and conduction

Ratio of viscosity Prandtl number Pr = ν

α
= cpµ

k
Schmidt number Sc = µρ

Dφ

and diffusion

Conduction flux Heat flux ~q Mass flux ~J

Gradient Temperature T Mass concentration φ

Fourier’s law Fick’s law
Equation of conduction

~q = −k∇T ~J = −Dφ∇φ

Chilton and Colburn JH = Nu

Re · Pr1/3 JM = Sh

Re · Sc1/3
J-factor
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2.3 Summary of the chapter
A theoretical background has been presented in this chapter as it was necessary

to recall the notions and mechanisms involved in the phenomena to be studied.
The equations driving the heat and mass transfer have been described, as well as
the analogies between heat and mass transfer processes.

As this thesis focuses more on the heat transfer aspect, a review of the work
that has been done in this specific area is presented in Sections 3.1 and 3.2. This
literature review aims at presenting the studies that, starting from the equations
and notions presented in Chapter 2, have been improved up to these days.

Section 3.3.3 presents the history of genetic algorithms in an attempt to show
how the principles of this evolutionary numerical technique has developed and how
it is suited to the present objectives.
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Chapter 3

Literature Review: Convective
heat and mass transfer and
genetic algorithms

This chapter can be divided into two main parts.

(i) A literature survey of the work done in the area of thermal convection around
a single cylinder and an array of cylinders. Many studies in the area of heat trans-
fer have focused on this particular geometry as it is commonly found in engineering
applications as illustrated in Fig. 3.1. The heat transfer from cylinders placed in a
medium at rest or in a free stream, has been investigated experimentally and nu-
merically for years ( [42]- [122]). Several empirical correlations have been derived
and provide engineers with good hints on how to design heat exchangers effectively.

(ii) The history of genetic algorithms as this optimization technique has been
chosen as the procedure to search for optimal designs of two-dimensional heat sinks
in cross-flow. This second part aims at presenting the evolution of GAs and aims
at showing their potential for finding optimal solutions to complex problems.

As introduced in section 2.1.1, the physics of heat transfer is greatly affected
by the type of flow, or more specifically, by whether forced, natural, or both types
of convection have to be taken into account. Figure 3.2 recalls the main forces
involved in forced and natural convection for the cylinder case, which is the geom-
etry that has been studied the most.

In the case of a cylinder, the main parameter is its diameter D used in the
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Figure 3.1: Pin fin heat sink

(a) (b)

Figure 3.2: Schematic of (a) Natural convection and (b) Forced convection for a
cylinder.

computation of the Reynolds number and the Grashof number, characterizing the
flow in the case of forced or natural convection respectively. As it is described in
the previous sections, studies of heat transfer from cylinders initially focused on
time-averaged mean quantities. When the "mean value" is employed, it refers to
the average over the cylinder surface; Num = 1

2π
1
L

∫ 2π

0

∫ L

0
Nu(θ, z)dθdz where θ

is the angular coordinate and z is the coordinate along the cylinder’s length L.

The studies conducted on forced convection are presented in Section 3.1. Section

44



3.1. FORCED CONVECTION HEAT TRANSFER

3.2 reviews the work done on natural convection, and finally, studies on complex
geometries, like arrays of cylinders, and the optimization of their design are re-
viewed in Section 3.3.1.

3.1 Forced convection heat transfer
This section presents the development that has been made in the field of forced

convection, which has been studied experimentally as well as numerically for many
years now. Indeed, the situation where a heat transfer device is placed in a high
velocity stream of fluid is very common in engineering; almost every cooling device
installed on engines producing heat, from a computer up to a nuclear power plant,
includes forced convection processes.

3.1.1 Heat transfer in boundary layers
In the case of forced convection, scientists have first studied the problem of heat

transfer through a boundary layer, which is a phenomenon occurring at the surface
of an object placed in a free stream. Because of the predominance of free stream
convection over buoyancy induced convection, the Richardson number is very low
(Ri < 0.1) and the heat transfer characteristics of the fluid mainly depends on the
Reynolds number and the Prandtl number rather than the Rayleigh number.

There are two important pioneers in the analytical prediction of heat transfer
through boundary layers. Pohlhausen provided, in 1921, solutions to the boundary
layer equations which aim at estimating the heat and mass transfer rate within a
laminar boundary layer, in the case of negligible mass transfer [32]. Eckert, who
worked on the more general case which considers heat and mass transfer, also pro-
vided solutions to the b-equations [33]. The formulation of the similar b-equations
is extensively described by Spalding et al. [34], [35], [36] and a brief summary of
the history of the analytical work done on this matter is presented;

The continuity, momentum and energy equations are considered in their general
form (Eq. 2.9, 2.10 and 2.11 respectively) and rewritten, taking several assump-
tions into account;
• Natural convection is neglected, that is to say, the buoyancy forces are neglected.
• Steady flow and incompressible fluid.
• Two-dimensional laminar boundary layer.
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• Low Mach number.
With all these assumptions, the Navier-Stokes equations reduce to Eq. 3.1, 3.2

and 3.3. Finally these assumptions are also applied to the similar equations, as
described in [34] and [36], as shown in Eq. 3.4 and 3.5. These two similar equations
are derived for flows in which ∂u∞/∂x is proportional to un∞ with n a constant
(u∞ being the upstream flow velocity outside the boundary layer).

Continuity:

∂u

∂x
+ ∂v

∂y
= 0 (3.1)

Momentum:

u
∂u

∂x
+ v

∂u

∂y
= u∞

∂u∞
∂x

+ ν
∂2u

∂y2 (3.2)

Energy:

u
∂T

∂x
+ v

∂T

∂y
= k

cpρ

∂2T

∂y2 (3.3)

where ν is the fluid kinematic viscosity, k its thermal conductivity and cp its spe-
cific heat.

f ′′′ + ff ′′ + β(1− f ′2) = 0 (3.4)

and
θ′′ + Prfθ′ (3.5)

where f is the dimensionless stream function so that u

u∞
= ∂f

∂y
and v

v∞
= −∂f

∂x
,

θ = (T−TS)/(T∞−TS) is the dimensionless temperature difference, β = 1/(1−n/2)
is related to the mainstream acceleration and Pr is the Prandtl number.

In 1950, Lighthill suggested solutions to the heat transfer in a laminar boundary
layer problem [37] in the following form;

δ2
i

ν

u∞
x

= F

(
x

u∞

∂u∞
∂x

)
(3.6)
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and
∆2
i

ν

u∞
x

= F

(
x

u∞

∂u∞
∂x

, Pr

)
(3.7)

where δi represents the thickness of the velocity boundary layer (i ∈ [1, 2, 4] 1 for
the displacement, 2 for the momentum and 4 for the shear thickness), ∆i is "a"
thickness of the thermal boundary layer as of δi for the velocity boundary layer
and F (...) means "some function of...".

Tifford modified slightly Lighthill’s solution in order to improve the accuracy
of the solutions by using an additional term [38];

(
u∞
δ4

)
effective

= (0.98Pr−0.02)1.5 ×
[(
u∞
δ4

)
actual

− 4
3Pr

−0.25 δ2

ν
u∞

∂u∞
∂x

]
(3.8)

where the suffixes "effective" and "actual" indicate how u∞/δ4 should be modified
to improve Lighthill’s solutions.

In relation to the analytical work that has been done on the heat transfer
inside a boundary layer, experimental studies on the forced convection heat trans-
fer have been conducted in the case of channel flows. Sieder and Tate (1936) [39]
suggested the following empirical correlations, Eq. 3.9 and 3.10, for the averaged
overall heat transfer coefficient along an isolated plate or between two surfaces
of length L in the laminar case, at Re ≤ 3× 105 and in the turbument case, at
Re ≥ 3× 105 respectively:

h = 0.664 k
L
Re1/2 · Pr1/3 (3.9)

h = 0.036 k
L
Re0.8 · Pr1/3 (3.10)

where k is the fluid thermal conductivity, L the characteristic dimension of the
surface, Re the Reynolds number based on the length L and Pr the Prandtl num-
ber.

Similar correlations are found for a flow in tubes or pipes; Sieder and Tate pro-
vided Eq. 3.11, for laminar flow (Re ≤ 2100) [39] and the Dittus-Boelter equation
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with viscosity correction 3.13 is available for turbulent flow (Re ≥ 10, 000) [40]. In
1943, Hausen suggested the correlation 3.12 which is valid in the transition regime
(2100 ≤ Re ≤ 10, 000) [41].

hde
k

= 1.86
(
Re · Prde

L

)1/3 (
µ

µw

)0.14

(3.11)

hde
k

= 0.116(Re− 125)Pr1/3

1 +
(
de
L

)2/3
( µ

µw

)0.14

(3.12)

hde
k

= 0.023Re0.8 · Pr1/3
(
µ

µw

)0.14

(3.13)

where de is the equivalent diameter, µ is the dynamic viscosity of the fluid and µw
is the viscosity at the wall temperature.

3.1.2 Time-averaged overall heat transfer from a cylinder
Forced convection has been studied in its simplest form, as described in the pre-

vious section, with the analytical prediction of the very basics of the phenomenon:
heat transfer through a boundary layer. Experiments on the heat transfer in a
channel flow, which is the closest situation to the theoretical boundary layer, have
been conducted as it is shown in the previous section.

Scientists have also worked on the understanding of heat transfer, and more pre-
cisely here, forced convection of bodies placed in a cross flow. The heat is not
transferred from a body to a fluid it contains, but from a body surrounded by a
fluid in cross flow as shown in Fig. 3.3. One of the pioneer in the area is certainly
Davis who conducted, in 1924, experimental studies on forced convection heat
transfer from cylinders using different oils in order to account for a wide range
of fluid viscosity [42]. Davis gathered data for a Reynolds number ranging from
0.1 to 200, and in 1932, Ulsomer [43] correlated the data using an equation in the
form;
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Nu = C · Prm ·Ren (3.14)

where c, m and n are constants taking the following values; m = 0.31, C = 0.91
and n = 0.385 for 0.1 ≤ Re ≤ 50 and m = 0.31, C = 0.6 and n = 0.5 for
50 ≤ Re ≤ 104 [43].

Figure 3.3: Heated wire in water stream, experimental setup, [44].
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In 1946, Kramers [45] suggested another form for the empirical correlation
consisting in Eq. 3.14 but containing an additional term as follows;

Nu = C ′ · Prm′ + C · Prm ·Ren (3.15)

Where the values of the constants C ′, m′, C, m and n are 0.42, 0.2, 0.57, 0.33 and
0.5 respectively.

In 1954, the results obtained previously from Davis [42] and other scientists
such as Piret et al. [44], who investigated forced convection from cylinders in
water, and which was correlated with Eq. 3.14, correlate well with Eq. 3.15 by
McAdams [46], which gave rise to the explicit correlation;

Nu =
[
0.35 + 0.56Re0.52

]
Pr0.3 (3.16)

In the numerical field, Schuh (1953) [47] and Merk (1959) [48] offered improve-
ments of the analytical similarity solutions. Merk even assumed that these solu-
tions were valid in general and not only as similar solutions.

A new idea emerged in the late fifties, that the heat transfer can be split into
two terms; one representing the heat transfer through the laminar boundary layer
on the front or upstream portion of the cylinder, and the second representing heat
transfer from the back of the cylinder, where separation and turbulence occur as
suggested by Douglas and Churchill [49], Hegge Zijnen [50] and Richardson [51].
This led to the following form of correlation;

Nu = a ·Re0.5 + b ·Ren (3.17)

Where a and b are not constants but rather proportional to Prm, and n de-
pends on the author, varying from 0.67 for Richardson [51] to 1 for Douglas and
Churchill [49].

This correlation has been validated by Perkins and Leppert [52] in 1962; they
reported an adequate correlation of their data with correlation 3.17 for a Reynolds
number ranging from 40 to 105, and Prandtl number varying from 1 to 300 with
numerical constants as in the following;
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(Nu)a =
(
µa
µs

)0.25 [
0.53(Re)0.50

a + 0.0019(Re)a
]

(Pr)0.40
a (3.18)

(Nu)a =
(
µa
µs

)0.25 [
0.30(Re)0.50

a + 0.10(Re)0.67
a

]
(Pr)0.40

a (3.19)

where µ is the viscosity of the fluid and the subscripts a and s refer to conditions
at ambient temperature and at the cylinder surface temperature respectively.

Spalding and Pun [53] published a paper in 1961 reviewing all the different meth-
ods of calculation for the analytical prediction of heat transfer inside the boundary
layer, comparing results from the previously mentioned authors who worked on the
subject, as well as Squire [54], Stine and Wanlass [55] and Frössling [56] who solved
the partial differential equations 3.1, 3.2 and 3.3 with the use of series. The im-
portance of the upstream flow’s turbulence intensity on the heat transfer has been
described in 1961 by Kestin et al. [57].

In 1965, Fand reported a good agreement between his experimental results on
forced convection from a cylinder to water in crossflow with McAdams’s correla-
tion, Eq. 3.16 [58]. In 1977, Churchill and Bernstein [59] proposed a universal
empirical correlation valid for circular cylinders in cross flow that covers the entire
range of Reynolds number and a wide range of Prandtl number, such asRePr > 0.2
in the following form;

Nu = 0.3 + 0.62Re0.5Pr1/3

[1 + (0.4/Pr)2/3]1/4

[
1 +

(
Re

282000

)5/8]4/5

(3.20)

3.1.3 Local and unsteady heat transfer from a cylinder
More in-depth studies have been conducted on the local forced convection heat

transfer from a cylinder, as well as on the unsteady heat transfer. One solution
of the local heat transfer, built on experimental results from Schmidt and Wen-
ner [60], theoretical calculations from Frössling [56] and results from Eckert [33],
of these two-dimensional boundary layer heat transfer problems, is described by
Kestin et al. [57] in 1961 and takes the following form;
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U

U∞
= 3.631

(
x

D

)
− 3.275

(
x

D

)3
− 0.168

(
x

D

)5
(3.21)

Nu

Re0.5 = 0.9449− 0.7693
(
x

D

)2
− 0.3009

(
x

D

)4
(3.22)

where x = Rφ, φ being the angular coordinate around the cylinder and R the
cylinder radius. D is the cylinder diameter and U∞ is the free stream velocity.
The Prandtl number for which these solutions are valid is Pr = 0.7.

In 1963, Perkins and Lepert [61] published their results on the normalized local
Nusselt number and compared them with analytical predictions from Lighthill [37],
Seban [62] and Eckert [33]. A good agreement is found on the local heat transfer
characteristics as shown in Fig. 3.4;

Unsteady numerical studies have been conducted since the late seventies with
the works from Apelt and Ledwich [63] and Karniadakis [64]. Karniadakis stud-
ied, in 1988, the forced convection heat transfer from a cylinder in cross flow for
Reynolds numbers up to 200 by direct numerical simulation (DNS). The numer-
ical results are obtained using a spectral element numerical method. Periodic
oscillations of the velocity field, temperature and drag coefficients are reported by
Karniadakis as shown in Fig 3.5 and a good agreement with available experimental
data is found [64].

Cheng et al. studied the so-called lock-on effect on convective heat transfer
from a transversely oscillating circular cylinder for two values of the Prandtl num-
ber corresponding to air and water [65] (1997). For the case of a non-oscillating
cylinder, they reported good agreement with available data from relevant studies.

In 2000, Mahfouz and Badr [66] investigated the effect of rotational oscilla-
tions of a cylinder on the forced convection heat transfer from the cylinder in air.
They reported periodic variations in Nusselt number depending on the Reynolds
number for Re = 80, 100 and 200. Lange et al. [67] and Baranyi [68] also numer-
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Figure 3.4: Local Nusselt number from [61]

ically studied the heat transfer from a heated cylinder to air. Bhinder et al. [69]
conducted a numerical study on the unsteady forced convection heat transfer from
a semi-circular cylinder to air at incidence and reported strong dependency of the
Nusselt number on the incidence angle. Similarly, studies on forced convection
heat transfer from various body shapes have been reported ( [70], [71]). However,
a few papers numerically investigated unsteady forced convection to water.

The study of unsteadiness for forced convection heat transfer problems has
been a little extended to power-law fluids (a generalized Newtonian fluid for which
the shear stress and the velocity gradient perpendicular to the plane of shear follow

a power-law relationship; τ = K

(
∂u

∂y

)n
) . Indeed, the study of vortex shedding,

transition to unsteadiness and the effects of these phenomena on the heat transfer
has been conducted by Chhabra et al. [72] and [73] for a range of Reynolds number
40 ≤ Re ≤ 140 and Prandtl number 1 ≤ Pr ≤ 100. Figure 3.6 shows the transi-
tion to unsteadiness achieved by increasing the Reynolds number which confirms
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(a) (b)

(c) (d)

Figure 3.5: Numerical investigations by Karniadakis [64]. (a) horizontal velocity,
(b) vertical velocity and (c) temperature for Re = 150 and Pr = 0.7 at a point
located 0.92D from the rear stagnation point and 0.068D from the centreline. (d)
pressure-drag coefficient of the cylinder at Re = 200.

that the heat transfer characteristics of the cylinder can fluctuate over time, in a
situation of forced convection.

3.2 Natural convection heat transfer
When considering natural convection, our understanding is less complete than

forced convection, as natural convection is often neglected for high velocity flows
which are encountered more often in the engineering field.
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(a)

(b)

Figure 3.6: Numerical investigations by Chhabra et al. [73]. Isotherms at (a)
Re = 40, (b) Re = 100. Pr = 10, n = 0.4.

3.2.1 Natural convection from a point or a line heat source
Even though natural convection has been less intensively studied compared to

forced convection, the beginning of its analytical study dates back to the mid
twenties. The mathematical problem is to predict how heat will transfer from a
point or a line source to the surrounding fluid. A brief summary of the history of
the studies conducted in this area is presented.

A natural convection plume arising from a point and from a horizontal line
heat source has first been described by Zeldovich [74] in Russia in 1937. He em-
ployed the similarity methods used by Tollmien [75] to solve for the turbulent flow
velocity for the two-dimensional and axi-symmetric jet, and the similarity methods
used by Schlichting [76] to solve for the laminar flow velocity. Zeldovich included
buoyancy and a similarity form of temperature distribution to his model.

In 1941, Schmidt [77] studied the natural convection in a turbulent plume above
a line and point source of heat.

A concise analysis of the natural convection in a boundary layer flow above a
plane and axially symmetric sources were presented by Schuh in 1948 [78]. The
boundary conditions he used were presented, and by assuming the form of the
similarity variable, as originally proposed by Prandtl, and using a numerical inte-
gration scheme which corrects velocity and temperature values, initialized at the
centerline in order to satisfy conditions at infinity, the coupled differential equa-
tions were solved.

In 1951, Yih reported a study of natural convection from a point source [79]
and, in 1952, he presented a closed form solution for the temperature and the
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velocity distribution for the laminar natural convection above a line source of heat
for Prandtl numbers 2/3 and 7/3 [80].

3.2.2 Time-averaged overall natural convection heat trans-
fer from a cylinder

Experimental studies of the free convection heat transfer from cylinders started
in the late forties with the work of Eckert and Soehngen, who measured the temper-
ature variations using a Zehnder-Mach Interferometer [81]. They already reported
that in the case of two vertically aligned cylinders, the lower cylinder’s buoyant
plume could either have a positive or a negative effect on the upper cylinder’s heat
transfer capacity, depending on the spacing between the two cylinders. The heat
transfer rate was found to decrease with decreasing cylinder spacing [81]. The first
empirical correlations for the natural convection problem were calculated by Merk
and Prins in 1953 and Lefevre in 1956 for horizontal cylinders (Eq. 3.23, [82]) and
vertical cylinders (Eq. 3.24, [83]) respectively;

Num = C ·Ra1/4 (3.23)

Where Num is the Nusselt number averaged over a horizontal cylinder area and C
depends on the Prandtl number; C = 0.436, 0.456, 0.520, 0.523 for Pr = 0.7, 1, 10, 100
respectively [82].

Num = 4
3

[
7Gr · Pr2

5(20 + 21Pr)

]1/4

+ 4(272 + 315Pr)L
35(64 + 63Pr)D (3.24)

Where Num is the Nusselt number averaged over a vertical cylinder area.

From the analytical study of the free convection from point and line heat sources,
the investigations have complexified towards analytical analysis of infinite and fi-
nite cylinders. An analytic study of natural convection heat transfer is published
by Mahony [84] in 1956. This paper deals with heat transfer from spheres and
cylinders, at small Grashof numbers, and focuses on the regions in which conduc-
tion or convection are dominant. It is shown that convection is negligible near the
body’s surface and becomes as important as conduction at a distance from the
body of the order of Gr−n, where n varies from 1/3 to 1/2 depending on the shape
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of the body. In 1961, Lee and Emmons theoretically and experimentally investi-
gated the turbulent natural convection above a line of fire [85]. Theoretically, the
governing equations are solved by quadrature for a finite width source, with the
use of boundary layer assumptions, as well as assumptions for the lateral entrain-
ment of air, and similar Gaussian profiles for the velocity and the temperature at
all heights.

The most complete work that has been done on the subject is, to date, the nu-
merical analysis of Fujii [86]. In this paper, published in 1963, Fujii solved the two-
dimensional flow configuration assuming boundary layer behavior, in closed form
for a Prandtl number of 2, and for the axisymmetric case for Pr = 1 and 2. Nu-
merical integration was also used to solve the differential equations for Pr = 0.01,
0.7 and 10.

More recently, in 1967, Brand and Lahey analytically studied the laminar free
vertical jet with buoyancy [87]. Although a vertical jet would have a mass flow
and a vertical component of the velocity at the origin, no additional parameter
was introduced so that the formulation of the problem, along with the boundary
condition, is identical to Fujii’s work. An additional closed-form solution is pre-
sented for a Prandtl number of 5/9 and their numerical solution includes velocity
and temperature profiles for Pr = 0.72, 5 and 10.

Empirical correlations are also available for isothermal vertical plates (Eq. 3.25,
from Oosthuizen, 1999 [88]) and horizontal plates (Eq. 3.27, from Gebhart and
Pera, 1970 [89]).

Num = 4
3Φ(Pr)Gr1/4 (3.25)

Where Num is the Nusselt number averaged over the surface and Φ(Pr) is defined
by Oosthuizen and Naylor [88] as;

Φ(Pr) =
(

0.316Pr5/4

2.44 + 4.88Pr1/2 + 4.59Pr

)1/4

(3.26)

Nux = 0.394Gr1/5
x · Pr1/4 (3.27)
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Where Nux is the local Nusselt number on a horizontal isothermal surface.

In 1972, a paper from Marsters [90] presents results from an experimental study
of heat transfer from an array of horizontal cylinders where the complexity of the
interaction between numerous cylinders, which cannot be "predicted by simple su-
perposition of single cylinder behavior", is highlighted and an enhancement in the
overall heat transfer is already observed. For small spacing between the cylinders
which compose the array, the cylinders affected by a thermal plume rising from
a cylinder below them have their individual Nusselt number decreased up to 50
percent, but for wider spacing, positive enhancement is observed with an increase
of the individual tubes’ Nusselt number up to 30 percent [90].

Morgan mostly studied the single cylinder case and presents his experimental
results in his paper in 1975 [91]. He describes several empirical correlations for a
single horizontal and vertical cylinder, in natural and forced convection configura-
tions, and presents the values of the constant appearing in the empirical correlation
from many different investigators.

Results from Stafford and Egan [92] also show that an increase can be obtained,
and that an optimum design (i.e., optimal spacing in the case of a simple geom-
etry such as a pair of cylinders) can be achieved in the laminar flow regime, for
104 ≤ Ra ≤ 105. A centre-to-centre distance, S = 4D was found to be the opti-
mum.

In the numerical field, natural convection heat transfer problems have been
conducted and provide a consistent body of data for time-averaged results of heat
transfer from one or several horizontal or vertical cylinders.

Dai et al. numerically investigated natural convection around a pair of hori-
zontal cylinders, a cold one and a hot one, in an adiabatic cylindrical enclosure in
2015 [93]. They focused on finding the position in terms of the inclination angle θ
from the upward direction between the two cylinders, which maximizes the overall
heat transfer from the hot tube to the cold tube. The minimum effective heat
transfer coefficient between the tubes is found when the hot tube is placed directly
above the cold one. This is indeed not difficult to imagine as the thermal plume
rising from the hot tube is moving upward and away from the cold tube. The hot
fluid has to travel around the boundary of the cylindrical enclosure in order to
reach the cold tube; the heat transfer is not optimal. The opposite configuration
is naturally coming into mind when looking for the maximum heat transfer coef-
ficient. Dai et al. indeed report an optimum position which is when the cold tube
is placed directly above the hot one. However, interestingly, the optimum position
is found to be when the cold cylinder is placed above the hot one at an inclination
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angle θ = 60◦ for a Rayleigh number Ra ≤ 1400 [93].
In 2014, Stafford and Egan also investigated numerically the phenomenon of nat-

ural convection from a pair of horizontal cylinders aligned vertically and horizon-
tally, in the laminar flow regime, for a Rayleigh number range 104 ≤ Ra ≤ 105 [92]
as shown in Fig. 3.7. A very precise optimal spacing was found for the horizontal
alignment case, but in the vertically aligned scenario, the pair of cylinders have
multiple constructal configurations and the enhancement of the upper cylinder
heat transfer is observed when the combined effects of the lower cylinder thermal
plume impose a beneficial buoyancy-assisted flow. They finally predict two con-
structal configurations for the vertically aligned cylinders pair; one with no spacing
S/D = 0, where the cylinders form a single tall body, and another with a spacing
S = 3.5D which maintains individual performance as well as maximizes the global
array performance [92].

(a) (b)

Figure 3.7: Heatlines and isotherms for cylinders optimally positioned from
Stafford and Egan [92], RaD = 104. (a) horizontal alignement, S = 0.28D and (b)
vertical alignement, S = 3.5D.
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An increase of the averaged Nusselt number is reported in other numerical
studies. This increase has been observed, either depending on the distance to the
free surface for a single immersed cylinder [94], or on the spacing between two
vertically aligned cylinders [95]. Park et al. investigated the natural convection
from two heated vertically aligned horizontal cylinder in a cold enclosure. They
report smaller values of the time-averaged overall Nusselt number of the upper
cylinder for Rayleigh numbers from 103 to 105 but a strong increase is observed
for Ra = 106. They conclude on the strong dependency on the spacing between
the two cylinders and the Rayleigh number to the heat transfer potential of the
cylinders [95].

Shyam et al. investigated numerically the natural convection from a pair of
vertically aligned horizontal cylinders in power-law fluids for a Prandtl num-
ber 0.72 ≤ Pr ≤ 100, a Grashof number 10 ≤ Gr ≤ 104, a power-law index
0.3 ≤ n ≤ 1.5 and a centre-to-centre spacing 2 ≤ S/D ≤ 20. They discuss the
effect of the fluid characteristic (shear-thinning and shear-thickening fluid behavior
for n ≤ 1 and 1 ≤ n respectively) and its impact on the heat transfer potential
of the cylinders as well as the effects of the Prandtl number, Grashof number
and spacing. Despite the fact that shear-thinning seems to be beneficial to heat
transfer whereas shear-thickening has a negative impact on the heat transfer, their
results show very similar behavior than studies base on Newtonian fluids. The
lower cylinder is not affected much by the presence of a cylinder placed above, and
its heat transfer is comparable to that of a single cylinder. However, when two
cylinders are vertically aligned, the upper cylinder is greatly affected and Shyam
et al. report that there is a variation of the Nusselt number of the oreder of 70%
to 130% compared to the Nusselt number of a single cylinder [96].

However not many studies have described the effect of the thermal plume oscil-
lations on the transient local Nusselt number and flow velocity.

3.2.3 Local and unsteady heat transfer from a cylinder
Some publications have discussed the unsteady behavior of the thermal plume

rising from a single cylinder.
An experiment of natural convection from a single horizontal cylinder has been

conducted by Pera & Gebhart in 1972 [97]. They used solid particles illuminated
with a laser beam and a high speed camera in order to capture the fluid motion.
The experiment revealed the formation of a plume, which is formed as the bound-
ary layers developing on each side of the cylinder join each other at the top of the
cylinder as shown in Fig. 3.8. For Grashof numbers up to 0.5× 1010 the resulting
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plume is laminar and steady as shown in Fig. 3.8a and 3.8b where the observed
rising plume is straight. However the results from Pera & Gebhart show that at a
Grashof number of 1 × 1010 an unsteady wake is created above the cylinder with
irregular flow separation and reversal as shown in Fig. 3.8c and 3.8d [97]. These
results have been related to the incoming edge effects of the tank containing the
cylinder and surrounding water. Similar results and conclusion are obtained by
Schorr & Gebhart [98] in 1970 and compared to theoretical results from analytic
study [89].

In 1980, laminar natural convection from a horizontal isothermal cylinder has
been studied by Kuehn and Goldstein with an interesting approach; a balance be-
tween natural convection from a line heat source which is the extreme limit when
the Rayleigh number tends to zero, and laminar boundary layer flow (extreme limit
for a Rayleigh number which tends to infinity) has to be found in order to solve
the flow [99]. A good agreement is found between the results from experiments
and results of the time-averaged local Nusselt number over the cylinder surface.
These results are often referred to in many paper.

Noto also reported a swaying motion of the thermal plume and published a pa-
per of his experimental study in 1989, aiming at predicting the swaying frequency
of such plumes [100]

Unsteady simulations of a two-dimensional buoyancy induced flows from a hor-
izontal line heat source confined in a rectangular vessel has been conducted by
Desrayaud and Lauriat in 1993 [101]. The side walls are set to adiabatic while
the top and bottom walls are maintained at a constant temperature. A direct
simulation is performed and enables to capture the transition to unsteadiness and
the swaying motion of the plume that appears for certain values of immersion
depth. For these immersion depths, a periodic regime characterized by a swaying
frequency is observed and discussed.

in 1999, Kitamura et al. investigated the formation of a turbulent plume in
the case of natural convection from a single horizontal cylinder. Their study sug-
gests than above a critical Rayleigh number Racritical = 2.1 × 109, the laminar
boundary layers developing along each side of the cylinder eventually separates
and transition towards a turbulent boundary layer before they merge at the top
of the cylinder. They finally report an increase of the local Nusselt number in
the regions of transitional and established turbulence compared to the laminar re-
gions [102]. Figure 3.9 shows the visualized flow field around cylinders for a wide
range of investigated Rayleigh number.
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(a) (b)

(c) (d)

Figure 3.8: Visualization of the flow above a heated horizontal cylinder in water
from Pera & Gebhart [97]. (a) and (b); steady natural convection at Gr = 0.25×
1010 and Gr = 0.5 × 1010 respectively, (c) and (d); starting transient natural
convection.

Recent experimental studies (2008) revealed a range of cylinder spacing and
Rayleigh numbers where beneficial interaction occurs as Eckert ans Soehngen pre-
dicted sixty years ago [81]. Indeed it is shown in [103, 104], that for a separa-
tion distance of two diameters between the cylinders, the heat transfer of the
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Visualized flow fields from Kitamura et al. [102]. (a) D = 95 mm,
RaD = 1.29 × 109, (b) D = 95 mm, RaD = 4.7 × 109, (c) D = 300 mm, RaD =
2.12 × 1011, (d) D = 500 mm, RaD = 5.87 × 1012, (e) D = 800 mm, RaD =
3.56× 1013 and (f) D = 216 mm, RaD = 1.98× 1011

upper cylinder is negatively affected for the majority of the cylinder’s circumfer-
ence but a strong enhancement is observed in the local heat transfer near the
bottom (0◦ ≤ θ ≤ 30◦) of the upper cylinder. With a separation distance of 3D,
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the enhancement near the bottom is less significant but extend much more around
the cylinder (0◦ ≤ θ ≤ 60◦) and does not significantly drop below that of a single
cylinder for θ ≥ 60◦. Based on experimental measurements of local time-varying
Nusselt number, spectral analysis suggested that when the plume from the lower
cylinder oscillates out of phase with the plume from the upper cylinder, the mixing
around the upper cylinder is enhanced, which in turn reduces the thickness of the
thermal boundary layer and finally increases the heat transfer rate.

In 2011, Persoons et al. [105] described an experimental study of the coupling
between fluid flow and natural convection heat transfer for a pair of vertically
aligned cylinders. The transient behavior of the thermal plume has been charac-
terized for Rayleigh numbers ranging from 1.7×106 to 5.5×106, which corresponds
to the studied range of Eckert and Soehngen [81]. Persoons et al. [105] confirmed a
range of cylinder spacing and Rayleigh number where heat transfer from the upper
cylinder is enhanced or diminished by the plume interaction. For all the investi-
gated Rayleigh numbers, an overall enhancement with a spacing of S = 4D is noted
with its maximum δNu = (Nu − Nu0)/Nu0 × 100% = 9.2% for Ra = 3.6 × 106.
An enhancement of 10.2% is observed for S = 3D and Ra = 5.3× 106, and finally
a negative effect on the heat transfer rate for S = 2D and Ra = 1.8 × 106 where
δNu = −5.1%.

The investigations initiated by Persoons et al. [105] have been pursued and
complemented by Quentin et al. (2015) [106] with good agreement in terms
of heat transfer and velocity results. This numerical study highlights a ten-
dency to heat transfer enhancement up to 11% in the range 3 ≤ S/D ≤ 4 and
4.7 × 106 ≤ Ra ≤ 5.3 × 106. Moreover, an attempt at describing and discussing
the two main periodic processes involved in the natural convection heat transfer
from two vertically aligned horizontal cylinders, is presented [106].

Positive enhancement has also been reported by Grafsronningen and Jensen
in 2012 and 2013 [107, 108]. They investigated the change in heat transfer of
the upper of a pair of cylinders for Rayleigh numbers ranging from 1.82 × 107 to
2.55×108 and spacing 1.5D ≤ S ≤ 5D [107] and for a configuration of three verti-
cally aligned cylinders for Rayleigh numbers Ra = 1.96× 107 and Ra = 5.35× 107

and spacing between the lowermost and middle cylinders and between the middle
and upper cylinders from S = 2D to 5D [108]. They found an increase in the
average Nusselt number of all the cylinders which are not the lowermost, for all
the cases.

Park et al. [95] investigated the problem numerically in 2014, and reported
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asymmetric time-dependent distribution of the isotherms and streamlines about
the vertical centerline at x = 0 as shown in Fig. 3.10, and periodic oscillations
at a Rayleigh number of Ra = 106 for a centre-to-centre spacing S = 2.5D. This
swaying motion is correlated with a significant increase of the upper cylinder time-
averaged Nusselt number compared to the single cylinder case [95], which seems to
warrant a more detailed study of these oscillations. This transition to unsteadiness
is also reported by Park et al. in 2013 [109]; the flow and thermal fields eventually
reach a steady state for 103 ≤ Ra ≤ 106 but become unsteady for a Rayleigh num-
ber above 106 and for a spacing between the two cylinder 0 < S/D ≤ 0.5. When
the Rayleigh number increases and the effect of convection becomes dominant, the
upwelling thermal plume from the cylinders and the downwelling plume from the
top wall of the enclosure move back and forth in the right and left directions and
create the unsteady periodic oscillations.

(a) (b)

(c) (d)

Figure 3.10: Instantaneous isotherms and streamlines at selected time instances
at Ra = 106. Data from Park et al. [95]

The oscillatory behavior of the thermal plume rising from a single cylinder has
been described by several other papers. Fiscaletti et al. [110] showed experimen-
tally that for the case of a single cylinder, the plume begins to oscillate above a
critical Rayleigh number value Racritical = 5.88 × 104. Figure 3.11 shows the os-
cillating pattern of the velocity field obtained from PIV measurements conducted
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by Fiscaletti et al. in 2013. The mechanisms leading to plume oscillation and the
development of vortices in the cylinder wake have been investigated by Kuehner
et al. from 2012 to 2015 [111, 112]. Their conclusion is that the plume flow feeds
back into the boundary layer after interacting with the upper free water surface
through penetrative convection in the approach flow. A feedback mechanism is
formed, which creates the swaying motion. This behaviour doesn’t depend on
horizontal confinement but rather in vertical confinement. Indeed, Kuehenr et
al. found that the swaying motion appears for relatively small submersion depths
(H/D ≤ 6) where penetrative convection reaches the bottom surface of the cylin-
der, perturbs the boundary layer, and thus creates this oscillating motion.

3.3 Optimization methods and their application
for optimizing complex heat transfer geome-
tries

This section is dedicated to the review of studies on optimization techniques
in general and more precisely, on optimization methods that could be applied to
search for optimal geometries for maximizing the heat transfer from a body.

3.3.1 Complex geometries and early design optimization
Several studies have been conducted on the optimal spacing between the bodies

of an array of such bodies, that maximizes the overall thermal conductance of the
array.

The first studies reporting an optimal spacing for heat transfer problems dates
back to 1984 with the publications of Bar-Cohen & Rohsenow [113] as well as Be-
jan [114]. Both papers focus on the natural convection heat transfer from vertical
parallel plates and present equations for the optimal spacing between the plates
which maximizes heat dissipation from the vertical plate array for different bound-
ary conditions (isothermal, isoflux, insulated walls, etc...).

These studies compare experimental and numerical results and present an at-
tempt at analytically predicting this optimal spacing based on the Asymptotic
Analysis described in Section 1.1. Other authors studied the optimal spacing
for free convection heat transfer from vertical parallel plates such as Kim et

66



3.3. OPTIMIZATION METHODS AND THEIR APPLICATION FOR
OPTIMIZING COMPLEX HEAT TRANSFER GEOMETRIES

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.11: PIV measurements from Fiscaletti et al. [110]; instantaneous velocity
field from an arbitrary time t0 for a duration corresponding to one period of the
plume oscillation T , Ra = 1.03×105. (a) t = t0, (b) t = t0 +T/8, (c) t = t0 +T/4,
(d) t = t0 + 3T/8, (e) t = t0 + T/2, (f) t = t0 + 5T/8, (g) t = t0 + 3T/4, (h)
t = t0 + 7T/8 and (i) t = t0 + T . The vortex cores are indicated in blue and red
for clockwise and anti-clockwise rotation, respectively.

al. [115,116].
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The first studies on optimal spacing for packages that are cooled by forced
convection appear in 1988 with the work of Nakayama et al. [117] who studied the
forced convection heat transfer from arrays of finned geometries that is to say from
parallel plates. They were quickly followed by Knight et al. [118] who published a
paper in 1991, reporting optimal spacing results from an analytical study of forced
convection from finned heat sinks, and an experimental verification published in
1992 [119]. Matsushima et al. [120] and Bejan et al. also report results for optimal
spacing between parallel plates [23] and plate fins [121] in forced convection.

In the past twenty years, this field of study has been extended; different types
of geometry are investigated, such as arrays of cylinders. Numerical and experi-
mental studies on the forced convection heat transfer from an array of cylinder in
cross-flow conducted by Stanescu et al. [13] report good agreements with asymp-
totic analysis in terms of optimal spacing as shown in Fig. 3.12. More complicated
types of flows are also studied with the example of an optimization study in the
case of mixed convection from parallel plates, published by Sun et al. in 2012 [122].
They report the existence of an optimal spacing in the case of mixed convection,
in agreement with asymptotic analysis yet smaller than the solution for forced
convection. They also report a noticeable increase in heat transfer from natural
to mixed convection for a relatively small pressure drop addition at the outlet (for
∆p ≈ 1 Pa the heat flux is increased by a factor of three) at this particular optimal
spacing.
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Figure 3.12: The optimal cylinder-to-cylinder spacing for maximum overall ther-
mal conductance: experimental, numerical and scaling results. From Stanescu et
al. [13]
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3.3.2 A selective review on optimization methods

A review on some available optimization methods is presented in this section.
Most of the optimization methods gathered here are taken from the very informa-
tive textbook of Nocedal and Wright [123].

3.3.2.1 Direct methods for linear, quadratic and linear-fractional pro-
gramming

Direct methods aim at solving an optimization problem exactly, in a finite
amount of steps.

Linear Programming (LP) is a class of direct optimization methods that achieve
the best solution to a mathematical problem represented by a linear objective func-
tion and for which the space of all possible solutions, called the polytope, is defined
by linear constraints on the problem’s parameters. Such polytopes are represented
in Fig. 3.13 and 3.14. The history of linear programming is extensively reviewed
by Dantzig in [124]. The pioneers of LP are, according to Dantzig, Kantorovich
and Koopmans for their work in the early 40’s. They received the Nobel prize of
economics in 1975 for their work on the subject [125]. After the Second World
War, Dantzig developed by himself a general linear programming formulation and
finally invented the Simplex algorithm, a general linear programming problems
solver [123, 124]. Basically the Simplex algorithm starts with a random solution
that can be represented by a matrix in which rows describe the objective function
and the constraints. These solutions can also be illustrated by a random vertex on
the polytope as shown in Fig. 3.13 and 3.14. Iteratively, pivot operations on the
matrix that represents the problem are performed, which corresponds to moving
the current solution to an adjacent vertex, until a better solution cannot be found
anymore. At this point the optimal solution is known [123].

Later on, linear programming optimization was extended to quadratic problems
and problems for which the objective function is a ratio of two polynomials, namely
the linear-fractional programming. These types of problems can be solved using
different methods, among which, some extensions of the simplex algorithm [123].
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Figure 3.13: A two-dimensional linear program polytope (solutions space) with
the optimal solution x∗, the objective gradient c and iso-values of the solution
represented by dotted lines [123]

Figure 3.14: Representation of vertices of a three-dimensional polytope [123]
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3.3.2.2 Iterative methods

For nonlinear equations (except the quadratic and linear-fractional problems),
direct methods are not able to produce an optimal solution and for linear equa-
tions with a tremendous number of parameters the expensive computational cost
makes the use of direct methods impossible.

Another type of methods are iterative search which are optimization techniques
that travel iteratively inside the space of all possible solutions in order to minimize
(or maximize) an objective function. There are two main types of traveling strate-
gies [123]. Although they both use a quadratic model of the objective function to
generate steps, they perform it in different ways as shown in Fig. 3.15:

• Line search methods generate a search direction, and then focus their ef-
forts on finding a suitable step length α along this direction in order to minimize
the objective function.

• Trust region methods define a region around the current iterate within which
they trust the model to be an adequate representation of the objective function,
and then choose the step to minimize the model in this region.

Figure 3.15: Trust region and line search methods. f is the true objective function,
whereas mk is the quadratic model of f at iteration k. Both trust region and line
search methods use mk to define their next step [123].

Several iterative methods that use either line search or trust region iterative
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strategies have been developed. Some of the most famous are recalled here.

a) Coordinate descent method

The coordinate descent method is a search line method that minimizes the
multivariable objective function F (x1, x2, ...xn) by minimizing F along one direc-
tion at a time, that is to say, according to one variable xi at a time as illustrated
on Fig. .

Figure 3.16: Successive steps of the coordinate descent method for minimizing a
two-dimensional objective function

b) Newton and quasi-Newton’s methods

The Newton’s method is an example of trust region method that aims at finding
the roots of the gradient of the objective function model mk, which correspond to
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locations of extrema. This method uses finite differences to evaluate the objective
function’s Hessian ∇2f - supposedly trusted inside the trust region - at each step.
This method is very efficient when computing the exact Hessians, that is to say
for problems where the objective function is mathematically defined and twice dif-
ferentiable [123].

In quasi-Newton methods the Hessian matrix does not need to be computed.
The Hessian is updated by analyzing successive gradient vectors instead. The first
quasi-Newton method was developed in the mid 1950s, when W.C. Davidon, a
physicist working at Argonne National Laboratory, was using the coordinate de-
scent method to perform a long optimization. As computers were not very stable
at that time, the computer system would always crash before the calculation was
finished and Davidon decided to find a way of accelerating the iteration [123].

c) Gradient descent method

Another well-known line search method is the gradient descent method where
the direction of the iterative step is defined by the gradient of the objective func-
tion’s model. Similarly to the Newton’s method, the objective function, or its
model, and its gradient, must be well defined as a function of the problem’s pa-
rameters.

d) Limitations of the iterative methods

These methods require to define a model of the objective function with a certain
level of trust and have trouble dealing with non-smooth objective functions. They
are efficient to find a local optimum but fail to provide the global optimum of a
problem that present several local optima [123].

One way to deal with this problem is to perform these local optimizations start-
ing from several different initial solutions, increasing drastically the total computa-
tional time to find the global optimum. Moreover, the user must define a strategy
to ensure that the different initial solutions are chosen so that the global optimum
is likely to be found. A good knowledge of the problem that is being optimized is
required.
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3.3.2.3 Heuristic methods

Heuristic methods, often simply called "heuristics", are optimization methods
that aim at finding satisfactory optimal solutions rather than exact optimal solu-
tions. Some of them are briefly described in the next paragraphs.

a) Hill climbers with random restart

Hill climbing is a famous optimization method in which a multivariable ob-
jective function F (x) = F (x1, x2, ...xn) is maximized (or minimized) by iteratively
changing one variable xi to x′i and comparing the new solution F (x1, x2, ...x

′
i, ...xn)

to the previous one F (x) (they differ from gradient descent methods, which adjust
all of the values in x at each iteration according to the gradient of the hill). If
an improvement is found, the new solution is kept and the hill climber "moves" to
that new vertex of the search space, progressively climbing the hill that represents
the increase of the objective function. This is repeated until no change in the solu-
tion is found, which corresponds to the discovery of a local optimum. The change
of variable can be determined using different strategies. The simplest strategies
consist in choosing the nearest vertex or compare all the neighbours.

In an improved version of hill climbing, this hill ascension is inserted in a loop
that performs the ascension for a number of different initial guesses, determined
randomly. This enables to search for a global optimum rather than only refining
a local area of the search space.

b) An evolutionary algorithm: the stochastic hill climber

A brief description of the basics of evolutionary computation is presented in Sec-
tion 1.2.4. A particular example of such algorithms is the "stochastic hill climbing".
Instead of comparing the solution at iteration k, Fk(x), to the neighbours and mov-
ing to the better solution, a variable is randomly chosen and randomly modified
and the new solution is evaluated and computed. This stochastic approach proved
to be efficient for very wide search spaces for which a neighbour-to-neighbour as-
cension is too expensive in terms of computational cost.
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c) Genetic algorithms

The history and principles of genetic algorithms are more extensively presented
in Section 3.3.3.

3.3.3 History of Genetic Algorithms
This Section is dedicated to the study of genetic algorithms (GAs) and their

potential for cooling devices improvement.

In 1950, Alan Turing, who is considered the father of computers by many, pub-
lished "Computing Machinery and Intelligence" in which the learning process of a
machine is investigated and eventually parallels the principles of evolution [126].
Turing states; "It is probably wise to include a random element in a learning ma-
chine. A random element is rather useful when we are searching for a solution of
some problem." before reminding that "It should be noticed that it is used in the
analogous process of evolution." [126]

The concept of evolutionary computation was born in the late 50’s and early
60’s. The subject was mostly investigated by biologists and geneticists such as N.
A. Barricelli, A. Fraser and Burnell [127]. In the late 60’s and early 70’s, Ingo
Rechenberg and Hans-Paul Schwefel were able to solve engineering problems us-
ing evolution strategies [128,129] and artificial evolution became recognized as an
optimization process. However, the process was more similar to hill-climbers than
genetic algorithms. In this technique, a single parent candidate 1 was mutated to
one offspring and the better between the two was kept as the parent for the future
mutation. There was no population, nor cross-overs.

Since the early 70’s, genetic algorithms as we use them nowadays and their
power to generate robust solutions have been more deeply studied and described.

1The vocabulary used in this Chapter can be confusing as it originally comes from the genetic
field but has spread to many different scientific areas. Multiple synonyms of "candidates" are used
among the genetic computation community such as "individuals", "phenotypes", "chromosomes".
They all represent the same object, which is a set of parameters (sometimes called genes) that
define one of the possible solutions to the problem. The "parent" individuals are mated and
mutated from one generation to the next, to create new "offspring" or "child" individuals.
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Holland explicitly suggests crossovers and other recombination operators among a
population of candidates [130].

From this point on, the principle of genetic algorithms that we use today was
defined as described in Section 3.3.4.

Holland then identifies and defines the schema - a subset of candidates sharing
some common attributes - as the unit of selection [130]. If we consider an opti-
mization problem in the search space of all 8-bit strings, any 8-bit string can be
represented by "∗ ∗ ∗ ∗ ∗ ∗ ∗∗", where "∗" can either be a "1" or a "0". A schema H
is defined as a sub-ensemble of the ensemble containing all the 8-bit strings. For
example; H1 ="11 ∗ ∗ ∗ ∗ ∗ ∗" or H2 ="∗0 ∗ 0 ∗ 011"; the schema H1 (resp. H2)
represents all the 8-bit strings with a "1" at the first and second positions (resp.
with a "0" at positions 2, 4 and 6 and a "1" at positions 7 and 8). The defining
length δ(H) of a schema H is the distance between the fixed bits that are located
the furthest apart. The order o(H) of a schema H is the number of fixed bits. In
our example, δ(H1) = 1, o(H1) = 2, δ(H2) = 6 and o(H2) = 5.

In 1975, Holland specifies a bound on the expected growth of these schemata
in his famous paper, "Adaptation in natural and artificial systems"; the Holland’s
schema theorem, which is sometimes called the fundamental theorem of genetic
algorithms [131]. This theorem says that short, low-order schemata (low-order
subsets or families of candidates, later called Building Blocks) with above-average
fitness increase exponentially with successive generations. This was expressed as
an equation;

E(m(H, t+ 1)) ≥ m(H, t)f(H)
at

(1− p) (3.28)

where E is the expected value, m(H, t) is the number of candidates belonging to
the schema H at generation t, f(H) is the observed average fitness of schema H
and at is the average fitness of the entire candidates pool at generation t. p is
the probability of disruption of the schema h by crossover or mutation and can be
expressed as;

p = δ(H)
l − 1 pc + o(H)pm (3.29)

where o(H) is the order of the schema H, δ(H) its defining length, l is the length of
the code and pm and pc are the probability of mutation and crossover respectively.

77



CHAPTER 3. LITERATURE REVIEW: CONVECTIVE HEAT AND MASS
TRANSFER AND GENETIC ALGORITHMS

This theorem describes GAs as powerful tools to look for solutions to complex
optimization problems. An important notion first introduced by Holland [131] is
the building block (BB), that is to say, a low-order sub-family (schema) of chro-
mosomes (candidates) showing a high fitness compared to the average. According
to Eq. 3.28, if a BB is randomly discovered as cross-overs and mutations happen,
then the number of chromosomes that belong to this BB is going to increase. Since
the growing number of chromosomes inside a BB already present a relatively high
fitness compared to the average chromosome of the entire pool, cross-overs and
mutations among the BB increase the chance to generate an even higher fitness
individual. However, one has to understand that this theorem is limited in the
sense that it is true for an infinitely large population.

The same year, De Jong publishes his PhD thesis [132] in which the poten-
tial of GAs is confirmed, by showing that they can perform well on a variety of
test functions, including noisy, discontinuous, and multimodal search landscapes.

Since the late 70’s, genetic algorithms have been applied to a wide range of
subjects, from abstract mathematical problems to engineering practical issues [17].
And nowadays, with the increase of computational power, evolutionary algorithms
have touched any field one can think of, from trading market, aerospace engineer-
ing, microchip design, biochemistry, assembly lines planning, etc.

With this growing interest for GAs, many researchers started investigating how
to make the best use of these algorithms. As it has been shown, GAs rely on an
initial population, probability to have mutations and cross-overs. These are key
parameters that have an impact on the solution provided by the GA, and therefore,
a GA user has to understand them in order for the algorithm to be tuned effectively.

That is the issue J. J. Grefenstette addressed in 1986 when he used genetic
algorithms to find the optimal parameters of genetic algorithms for a particular
test function [133]. He tried to find the optimal values of six parameters; popu-
lation size n, crossover rate c, mutation rate m, renewal rate r, scaling window
w and whether ellitism is considered or not s. Up to now, the "standard" genetic
algorithm was based on De Jong’s work who reported "rule of thumb" settings for
GAs, that can be seen as settings that perform ok for a wide range of optimization
problems and from where to start investigating the optimal GA settings [132].
These general settings presented the following parameters: GAJ(n,c,m,r,w,s) =
Ga(50, 0.6, 0.001, 1.0, noscaling, elitist). After Grefenstette, the best genetic algo-
rithm with respect to his test function was GAG = GA(30, 0.95, 0.01, 1.0, 1, elitist).
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Population sizing has been one of the important topics to consider in evolution-
ary computation [19], because according to many researchers, a "small" population
size could guide the algorithm towards a poor solution [134,135], and a "large" pop-
ulation size could make the algorithm spend more computational time in finding
a solution [136,137]. A trade-off needs to be found by feeding the algorithm with
"just enough" chromosomes (candidates) in order to find "good" solutions. This
trade-off is perfectly illustrated on Fig. 3.17 (from [136])

Figure 3.17: Population sizing in genetic algorithms [136]. Too small and the user
pays a quality penalty. Too large and the user pays a time penalty.

This difficulty of choosing the right population size was analyzed theoretically
in 1989 by Goldberg [18]. His analysis leads to the conclusion that the optimal
population size increases exponentially with the problem complexity and is rather
large even for moderate chromosome lengths. He put this pessimistic prediction
into perspective by stating; "Too few empirical studies have been performed to
know whether the theory provides quantitatively accurate predictions" [18].

Alander later ironically noticed in 1992 that "the most commonly used method
(to find the optimal population size) according to GA literature has been to set
population size equal to the usually well working value of 50" [19]. Or as Goldberg
said "choose as large a population as you can" [18].
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Later on, Goldberg et al. [21] studied this problem considering that building
blocks (BBs) must be carefully supplied to GAs in order to obtain good results.
Other studies [134, 138] agree that the optimal population size is in direct rela-
tion to the difficulty, or complexity of the problem. The more difficult, complex,
a problem is, the bigger the initial population should be. Pelikan et al. [134]
performed another study of population sizing using the Bayesian Optimization Al-
gorithm (BOA). The principle is to randomly generate an initial population and a
Bayesian network is fitted on the selected best individuals of this first generation.
Iteratively, the population at generation t+1 is composed of the best candidates of
generation t plus some new candidates, created according to the Bayesian network.

Another study by Harik and Lobo [139] concludes that the optimal popula-
tion size is proportional to the number of building blocks in the problem. This
also means that if not enough BBs are supplied in the initial population, the algo-
rithm may not find a correct solution. They also addressed the problem of sizing
the population using self-adaption. Two principal approaches can be used; (1) a
pre-running self-adaption, in which case the population size remains the same in
each generation [139], or (2) a progressive self-adaption where the population size
can change from one generation to another [140].

Among all the studies that have been done about the effects of the GA pa-
rameters tuning on the algorithm’s accuracy and effectiveness, the most com-
mon method (especially for population sizing) is recognized to be the empirical
method [141]. The algorithm is tested with several different sets of parameters
and the configuration that gives the most accurate and repetitive results is the
one reported.

Genetic algorithms have been used for some time to deal with optimization
problems involving computational fluid dynamics. In 2000, Poloni et al. utilized a
combination of a genetic algorithm, a neural network and a gradient based opti-
mization technique to optimize the design of a sailing yacht fin keel [142]. Genetic
algorithms can be applied to the optimization of the design of a various type of
systems, such as compressor rotor [143], or freight trucks [144] involved in aero-
dynamic optimization problems. More interestingly for the present research, GAs
have been used for the optimization of heat transfer devices: the design optimiza-
tion of heat exchangers of various sizes [145–147].
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3.3.4 Fundamentals of genetic algorithms

If the solution of a complex problem implying objectives to be fulfilled while
under constraints is searched, such a solution (or optimal candidate) is nothing
more than a candidate whose characteristics best fit the problem. Then if a group
of several candidates with good results is found, the solution (or the best fitted
candidate to the problem) can be built from a combination of characteristics from
the successful group.

This evolutionary computation technique can be split into four main stages as
shown in Fig. 3.18. A general description of each stage is given below.

Figure 3.18: Genetic algorithms general chart.
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3.3.4.1 Genetic algorithm 1st stage: Initialization

To begin with, a set of candidates is chosen to be the first generation. When
searching for a global extremum within an optimization problem, the first set of
candidates has to cover the largest part of the solution space in order not to miss
any local extremum which could be a global one. Many methods of first selection
are available.

3.3.4.2 Genetic algorithm 2nd stage: Genetic operations

The next stage is to breed a new generation of individuals. Diversity is the key
to evolution so that the more diversified candidates there are, the more likely one
is to find the fittest. At this point, there is a probability that candidates selected
from the previous generation (or from the initial population) are:
(i) Cross-overed (or recombined): Two "parent" candidates are selected randomly
among the breeding group in order to create two "child" or "offspring" candidates
to be included in the next generation. The process is repeated with other random
"parent" candidates.
(ii) Mutated: random "parent" individuals see one or several of their characteristics
(also called genes) changed randomly.

These two genetic operators are repeated until the desired size is reached for
the new generation population and ensure that new potentially better candidates
appear among the diversity of the pool.

3.3.4.3 Genetic algorithm 3rd stage: Selection

Then the candidates are compared using the so-called "fitness" function that as-
signs each candidate a weight (or rank), illustrating how well they fit the problem.
The aim of this comparison is to find the best performers among the candidates’
pool. A proportion of the whole population is then selected to breed the next gen-
eration, where fitter candidates are basically more likely to be selected. The fitness
function is the core of the genetic algorithm. It dictates what makes a candidate
"good" or "bad". For "simple" problems, the fitness function can be expressed as
a "simple" mathematical equation, but for complex problems (non-linear, noisy,
etc.), the expression of the fitness function is often impossible to determine and
the weight of each individual has to be computed with the use of an estimation, a
model, a simulation etc.
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3.3.4.4 Genetic algorithm 4th stage: Termination

This generational process is repeated until a termination condition has been
reached. Common terminating conditions are:

• A solution is found that satisfies minimum criteria
• Fixed number of generations reached
• Allocated budget (computation time/money) reached
• The highest ranking solution’s fitness is reaching or has reached a plateau such
that successive iterations no longer produce better results

3.3.5 The strengths and weaknesses of genetic algorithms
and implications for this thesis

In this section, a non-exhaustive list of the GAs pros and cons is presented.
These characteristics aim at supporting the choice of genetic algorithm as the op-
timization method.

3.3.5.1 Strengths of the genetic algorithm

• The first and most important point is that genetic algorithms are parallel. Most
other algorithms are serial and can only explore the search space of a problem in
one direction at a time, and if the solution they discover is only a local optimum,
there is nothing to do but abandon all work previously completed and start over.
However, since GAs have a population of multiple candidates, they can explore the
search space in multiple directions at once. If one path turns out to be a dead end,
they can easily abandon it and keep on searching along more promising directions,
giving them a greater chance, each run, of finding the optimal solution.

Moreover, the advantage of parallelism goes beyond this: the evaluation of
the fitness of one candidate of the search space gives information about all the
schemata containing this candidate. Let us consider the search landscape of all
the 8-bit strings (used as an example in Section 3.3.3) that can be represented by
"∗ ∗ ∗ ∗ ∗ ∗ ∗∗", where "∗" can either be a "1" or a "0". The string "00110101" is
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a member of this space. But it is also a member of the schema (or sub-space)
"0 ∗ ∗ ∗ ∗ ∗ ∗∗", the schema "∗011 ∗ ∗ ∗ ∗", the schema "∗0 ∗ 1 ∗ 10∗" and so on.
By evaluating the fitness of this particular string, a genetic algorithm would be
sampling each of these many schemata to which it belongs. Over many of such
evaluations, it would build up an increasingly accurate value for the average fit-
ness of each of these schemata, each of which having many members. Therefore, a
GA that explicitly evaluates a small number of individuals is implicitly evaluating
a much larger group of individuals. This is the "central advantage" of GAs over
other optimization methods [15–18].

• Due to the parallelism that allows them to implicitly evaluate many schemata at
once, genetic algorithms are particularly well-suited to solving problems where the
space of all potential solutions is truly huge, that is to say, too large to search the
whole search space in a reasonable amount of time. In a linear problem, the fitness
of each component is independent, so any improvement to any one part will result
in an improvement of the system as a whole. However, in real-world problems, non-
linearity is the norm, where changing one component may have unexpected effects
on the entire system, and where multiple changes that are individually detrimental
may lead to much greater improvements in fitness when combined. Non-linearity
results in an exponential increase of the number of required evaluations: the space
of 1,000-digit binary strings can be exhaustively searched by evaluating only 2,000
possibilities if the problem is linear, whereas if it is nonlinear, an exhaustive search
would require evaluating 21000 possibilities!

Fortunately, the implicit parallelism of a GA allows it to overcome this huge
number of possibilities, successfully finding optimal or very good results in a
short period of time after directly sampling only small regions of the vast search
landscape [148]. For example, a genetic algorithm developed jointly by engi-
neers from General Electric and Rensselaer Polytechnic Institute produced a high-
performance jet engine turbine design that was three times better than a human-
designed configuration and 50% better than a configuration designed by an expert
system by successfully navigating a solution space containing more than 10387
possibilities. Conventional methods for designing such turbines are a central part
of engineering projects that can take up to five years and cost over $2 billion; the
genetic algorithm discovered this solution after two days on a typical engineering
desktop workstation [15].

• "A classic problem for all systems that adapt and learn", states Holland in
1992 [15] is the known dilemma of exploration vs. exploitation. Once a solu-
tion above average is found, should the optimization methods focus on this local
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area and make the best use of it or search for others? Evolutionary algorithms
have proven to be effective at escaping local optima and discovering the global
optimum in problems for which the search landscape is complex, noisy and discon-
tinuous [15, 19–21]. Cross-over is the key element for this. In other methods such
as hill-climbers and gradient methods, each candidate is "on its own", exploring the
search space in its immediate vicinity without reference to what other individuals
may have discovered. However, cross-overing enables a transfer of information from
one candidate to an other, notably a transfer of information between successful,
above average, candidates. As a result, it could potentially produce an offspring
that has the strengths of both parents and the weaknesses of neither [149,150].

• Another advantage of parallelism is that genetic algorithms can efficiently ma-
nipulate many parameters simultaneously [148].

• Finally, GAs know nothing about the problems they are meant to solve and
although it could be seen as a disadvantage, it is rather a strength: Instead of
using previously known information to guide the optimization, they make random
changes and use the candidates’ fitness to determine which candidates should be
kept. No need for the user to provide any information concerning the shape, or
characteristics of the search space. It allows GAs to start an optimization ob-
jectively, with an "open mind". This potentially allows the discovery of solutions
that were completely unexpected, that might even never have occured to human
designer or user guided-optimization methods [17,18,149,150].

3.3.5.2 Limitations of the genetic algorithm

• In Nature, the representation method of the candidates undergoing evolution
is the genetic code. It is inherently robust and, with very few exceptions, any
sequence of DNA is translated into a protein. Unlike in Nature, one of the main
disadvantage of genetic algorithms is that the optimization problem has to be de-
fined, represented by parameters. The difficulty is that any candidate is defined as
a set of these parameters and the representation method must be able to tolerate
random changes as the candidates will mutate and will be cross-overed during the
procedure.

• One of the main problems is how to write the fitness function(s). These fit-
ness functions must be defined so that higher fitness is reachable and actually
does correspond to a better solution. This problem is even more important in the
case of multiple objectives optimization. The fitness function used in Nature is
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rather straightforward: the organisms that manage to survive and reproduce are
fit, those who fail are unfit.

• As it has been shown in Section 3.3.3, the GA tuning parameters such as initial
population size, cross-overs and mutation rates, selection pressure, etc... have a
drastic impact on how the GA performs and should be chosen with care. Living
organisms do face similar difficulties, and evolution has dealt with them. It is true
that if a population size falls too low, mutation rates are too high, or the selection
pressure is too strong (such a situation might be caused by drastic environmental
change), then the species may go extinct.

• One type of problems that genetic algorithms have difficulty dealing with are
problems with "deceptive" fitness functions [16]. Deceptive fitness functions are
functions where the locations of improved fitness give misleading information about
the global optimum. For example, we can consider the space of 8-bit strings
"∗ ∗ ∗ ∗ ∗ ∗ ∗∗" and define the fitness function to be proportional to the number of
1’s in the string (so that "00010001" is fitter than "00000001" for example) except
for "11111111" and "00000000" that are defined to be the lowest and highest fitness
respectively. It should be noticed that this kind of optimization problems are also
difficult to solve for other optimization methods.

• Finally, one well-known problem that can occur with a GA is the premature
convergence. If an individual that is more fit than most of its competitors emerges
early in the process, it may reproduce so quickly and abundantly that it drives
down the population’s diversity too soon, which leads to an early convergence to-
wards a local optimum [16, 148]. This phenomenon does occur in Nature and is
known as a genetic drift.

Table 3.1 presents a selection of different studies that have been done utilizing
genetic algorithm for various types of optimization problems and whether these
studies investigate how GAs operate.

3.4 Summary of the chapter and implications for
the goals of this thesis

First, a review of the work that has been done in the field of heat transfer, espe-
cially forced and natural convection from cylinders, has been presented in the first
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Table 3.1: Optimization literature review: Presentation of different investigations
dealing with optimization problems.
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Nakayama et al. (1988) [117] − − − X −
Bejan et al. (1992) [23] − − − X −

Dejong et al. (1975) [132] X X − − −
Alander et al. (1992) [19] X X − − X
Weilin et al. (2006) [143] X − X − −
Poloni et al. (2000) [142] X − X − −
Hilbert et al. (2006) [145] X − X X −
Xie et al. (2008) [147] X − X X −

Goals of present X (compared X X X
study with)

sections of this chapter. Experimental, analytical and numerical approaches have
been used to investigate the heat transfer from a point, a line and a cylindrical
heat source and as it has been shown in this chapter, similarities appeared in the
results from the different investigators. Indeed, the phenomenon of heat transfer
can become fully unsteady for high Reynolds number flows in the case of forced
convection and for high Rayleigh number flows in the case of natural convection.
The heat transfer from finite surfaces such as a cylinder strongly depends on the
location on the surface. And finally, the enhancement (positive or negative) of
the heat transfer from a body when it is placed near another body is observed by
many scientists.

Further in-depth studies of the heat transfer from complex geometries or ar-
rays of cylinders certainly have to account for the local and unsteady aspects of
the phenomenon. But there is no doubt in the potential of heat and mass transfer
enhancement for confined geometries as it has been highlighted in the literature
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review.

Secondly, an overview of the development of genetic algorithms has been pre-
sented in Section 3.3.3, from the early basic idea to the formalization and study
of the parameters that define them. The basic principles of GAs were presented
and the main advantages and weaknesses GAs present have been listed in Sections
3.3.4 and 3.3.5 respectively. They show why genetic algorithms are strong candi-
dates for optimizing heat transfer structures.

Indeed, the non-linearity of the Navier-Stokes equations, and more generally,
of the phenomena involved in fluid mechanics and heat and mass transfer pro-
cesses, are preventing researchers from using classical optimization methods when
the problem cannot be linearized or at least simplified enough. Moreover, the
optimization of the design of a complex geometry would suppose a large number
of parameters - think of parametrizing a full coral - and therefore, the parallelism
of genetic algorithms become, if not necessary, very convenient for the reasons
listed in Section 3.3.5. Additionally, the research of an optimal design for complex
geometries is not trivial and can even lead to unexpected results. The fact that
GAs do not require any guidance is a strong advantage in the present case.

In terms of limitations, the problem of defining a good fitness function does
not hold in the present case since only one objective is to be fulfilled: the maxi-
mization of the heat transfer. Premature convergence could be an issue and will
have to be dealt with care undoubtedly. The main issue that every genetic algo-
rithms user has to face is to determine the right GA parameters: the population
size, the mutations and cross-overs probability, the selection pressure and so on...
This last problem is definitely a key issue that has to be addressed.

As genetic algorithms present strong advantages regarding the type of opti-
mization problem investigated in this thesis, a coupled study on heat transfer
from confined geometries and the understanding of the use of genetic algorithms
to search for optimal designs of heat transfer structures is undertaken. The objec-
tives introduced in Section 1.3 can be more precisely stated:

• The first objective is to develop a numerical methodology to model convec-
tive heat transfer from complex geometries, which is (i) experimentally validated,
(ii) capable of modeling transient phenomena, and (iii) computationally efficient
enough to be used as fitness evaluation in a genetic algorithm procedure.

• The second objective is to derive and study a design optimization methodol-
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ogy based on genetic algorithms for maximizing the heat transfer from a confined
geometry: a two-dimensional heat sink in a stream whose flow characteristics are
inspired from deep sea coral environment.

The effects of the population size used during the genetic algorithm process
must be investigated for this heat transfer optimization problem as it has never
been done before, as illustrated in Table 3.1.

89



Chapter 4

Numerical methodology and
implementation

This chapter aims at describing the methodology used to derive the numerical
CFD model that is utilized to evaluate the heat transfer from complex geome-
tries in convective heat transfer situations in the first instance, and secondly, the
methodology used to develop an optimization procedure implementing the CFD
model previously mentioned in order to optimize the geometry of a complex body
for maximizing its overall heat transfer.

4.1 Overview of the modelling approach in this
thesis

The objective of this work is to develop a complete numerical optimization pro-
cedure to determine the optimal design of heat transfer structures. Both CFD
simulations dedicated to accurate heat transfer evaluations, and shape optimiza-
tion for maximizing the overall heat transfer aspects must be performed with care
as they are working together in order to fulfill the objective. The methodology of
the complete modelling approach, as shown in Fig. 4.1, is decomposed into (i) the
development and validation of the CFD model presented in Section 4.3 and (ii) the
development and validation of the optimization procedure described in Section 6.

90



4.1. OVERVIEW OF THE MODELLING APPROACH IN THIS THESIS

Figure 4.1: Overall modelling approach of the development of a numerical opti-
mization procedure using a genetic algorithm and a CFD model.
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4.2 Geometries under investigation
As already mentioned, the numerical optimization procedure aims at determin-

ing the optimal design of a complex body that maximizes the overall heat transfer.
The results from the literature review that are described in Chapter 3, show that
our understanding of heat transfer phenomena is mainly based on studies involving
rather simple geometries like line heat sources, cylinders, flat plates, etc...

Figure 4.2: Increasing complexity of heat/mass transfer structures, references: 1

More and more studies are dealing with situations where convective heat
transfer from bodies of increasingly complex geometries occurs. In order to move
towards the optimization of a design of high complexity, similar to what is found in

1http://www.marinebio.net/marinescience/04benthon/index.htm, http://www.qats.
com/eShop.aspx?q=Custom20Pin20Fin
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Nature and more specifically in this case: corals, one has to increase the problem’s
complexity progressively. One of the most important results the literature review
highlighted, is the fact that the overall heat transfer from several simple bodies
(like cylinders for example) could be enhanced when spaced from each others by
a particular distance. The study of the interaction between two bodies is the first
step towards the study of highly complex bodies as illustrated in Fig. 4.2.

In order to improve our understanding and modelling of heat transfer from
complex structures and be capable of optimizing such structures, the studies of (i)
the interactions between two two-dimensional heated cylinders and (ii) the inter-
actions between two-dimensional heated elongated fins with rounded corners, have
been undertaken and the methodology adopted for these two studies are presented
in Sections 4.3 and 4.4. The validation and results of these studies are presented
and discussed in Chapters 5 and 6.3.

4.3 Modelling steady and transient heat convec-
tion problems

In order to develop an accurate numerical model, one way is to verify it by
comparison with experimental results. That is why the numerical methodology is
described, in this section, through the case of the interaction between two vertically
aligned horizontal cylinders. This particular configuration was investigated exper-
imentally by Persoons et al. in 2011 [105] and experimental results are available
for comparison and verification of the numerical model as presented in Section 5.2.

The numerical model has been developed using ANSYS Fluent 14.0 and
aims at providing an estimation of the enhancement or diminishment of the nat-
ural convection heat transfer from a pair of horizontal cylinders. Both a (steady)
Reynolds-Averaged Navier-Stokes (RANS) and Unsteady RANS (URANS) ap-
proach are used on a two-dimensional numerical domain.

The derivation of the RANS equations starts from the Reynolds decomposi-
tion which splits any quantity into a mean and a fluctuating part by using the so
called Reynolds average:
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(a) (b)

Figure 4.3: (a) Diagram of the natural convection test facility, and (b) close-up
view of the cylinder pair, from Persoons et al. [105].

F = f (4.1)

f ′ = f − F (4.2)

where f denotes the Reynolds average of any quantity f(x, y, z, t), function of
space and time. It is extremely important to recall that the Reynolds average is
an ensemble average of as shown in Eq. 4.3;

f(x, y, z, t) = lim
N→∞

(
1
N

N∑
n=1

fn(x, y, z, t)
)

(4.3)

where n represents an event, or an experiment. The experiment is repeated a large
number of times and an average over all the experiments is performed.
This ensemble average can be expressed differently (sometimes wrongly) depend-
ing on the characteristics of the flow;

Statistical stationarity: the quantity is statistically independent of time. In that
case the ensemble average is equivalent to a temporal average;

f(x, y, z) = lim
T→∞

(
1
T

∫ T

0
f(x, y, z, t)dt

)
(4.4)

Statistical homogeneity: the quantity is statistically independent of the location
in one (or several) direction. In that case the ensemble average is equivalent to a
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spatial average;

f(y, z, t) = lim
L→∞

(
1
L

∫ L

0
f(x, y, z, t)dx

)
(4.5)

Statistical periodicity: the quantity is statistically periodic (or pseudo-periodic) of
period τ . In that case the ensemble average is equivalent to a phase average;

f(x, y, z, t) = lim
N→∞

(
1

N + 1

∫ N

n=0
f(x, y, z, t+ nτ)

)
(4.6)

Let us consider the Navier-Stokes equations for a Newtonian, incompressible
fluid (Eq. 2.14 - 2.16). The introduction of the Reynolds decomposition leads to
the Reynolds averaged Navier-Stokes equations shown in Eq. 4.7 - 4.9;

Continuity:

∂Ui
∂xi

= 0 (4.7)

Momentum:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= − 1
ρ0

∂P

∂xi
+ gi(1− β∆T ) + ν

∂2Ui
∂x2

j

−
∂u′iu

′
j

∂xj
(4.8)

Temperature:

∂T̄

∂t
+ Ui

∂T̄

∂xi
= α

∂2T̄

∂x2
i

+ 2µ
ρcp

SijSij −
∂u′iT

′

∂xi
(4.9)

where cp is the specific heat per unit mass, β is the thermal expansion coefficient,
gi is the gravitational acceleration vector and u′iu

′
j is called the Reynolds stress

tensor. There are 5 equations for 14 unknowns: P , U , V , W , T̄ , u′2,v′2, w′2, u′v′,
u′w′, v′w′, u′T ′, v′T ′ and w′T ′. Now it is necessary to close the system in order to
solve it.

The first approach would be to derive transport equations for the Reynolds
stress tensor u′iu′j to have enough equations to close the system. However this
process leads to the creation of higher moments term as u′iu′ju′k and the system re-
mains open. At some point, one has to model the highest moments in the system,
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using lower moments.

The eddy-viscosity modeling consists in modeling the second moments u′iu′j
and u′iT

′ using first moments; this is a first order model. The simplest form for
eddy-viscosity models are based on the Boussinesq relation;

− ρu′iu′j = −2
3δij + 2µtSij (4.10)

where µt is the so called eddy viscosity.

It is important to notice that the time derivative ∂Ui
∂t

is kept in the RANS
equations. However in practice, this term often disappears. Indeed, the Reynolds
average is implemented in most CFD codes as a time average, under the assump-
tion of statistical stationary, which leads to solutions independent in time. This is
the case in Fluent. For periodic and pseudo-periodic phenomena, the flow is sta-
tistically stationary but not steady. Nevertheless, this problem can be coped with
by considering that the phenomenon is truly periodic and the periodic (or pseudo-
periodic) and turbulent parts respectively characterized by a time-scale tp and tt
are separated by a time averaging (as Eq. 4.6) over a time tu so that tt � tu � tp.
This is called Unsteady-RANS or URANS. The decomposition gives u = ũ + u′′

where ũ = 1
tu

∫ tu/2

−tu/2
u(x, y, z, t+ τ)dτ . Figure 4.4 illustrates the difference between

RANS and URANS;

The two-dimensional (2D) approach was used in order to save computational
time; a single simulation with the 2D mesh, desired time-step and duration takes
about 10 hours on a quad-core desktop workstation. Moreover, the experimental
facility [105] used for the validation of the numerical model has been designed to
approximate infinite cylinders placed in an infinite medium, which mathematically
corresponds to a two-dimensional problem. It will be shown later in Fig. 5.23, in
the last section of this paper, that a good agreement is found between the present
numerical unsteady results for the velocity flow field and 2D PIV measurements
carried out in the mid-plane of the test facility by Persoons et al. [105].

The analysis is based on a second order finite volume spatial discretization
method for the momentum equation, the PISO velocity-pressure coupling tech-
nique (derived from the SIMPLE algorithm [151, 152]) and second order implicit
time discretization.
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Figure 4.4: The RANS and URANS decompositions

The PISO method, developed by Issa [152], is based on the splitting of op-
erations in the solution of the discretized momentum and pressure equation. At
each time step, the fields obtained are close approximations of the exact solu-
tion, after convergence inside the operation-splittings loop. Figure 4.5 shows a
schematic of the PISO algorithm. As can be seen in Figure 4.5, each time step
can be decomposed in three main phases:

In order to compute the velocity field at the time step tn+1, the momentum
equation (Eq. 2.10) is first solved using the pressure field at the previous time
step pn = p(tn), hence called "Momentum Predictor". One can note that since the
previous time-step’s pressure gradients ∇pn are used, the prediction of the new
velocity field ũn+1 = ũ(tn+1) is quite rough and this estimation has to be refined
(the tilde stands for estimation).

The second phase, called "Pressure Solution", consists in solving the pressure
equation using the previously estimated velocity field ũn+1 in order to compute

97



CHAPTER 4. NUMERICAL METHODOLOGY AND IMPLEMENTATION

the pressure correction pn+1,∗ (where ∗ stands for correction). One can derive the
Poisson Equation for the pressure correction by computing the divergence of the
momentum equation for the incompressible case (or compressible but at low Mach
number), or from the continuity equation by linking the pressure to the density
with the state equation for compressible high speed flows (see [153]).

Finally, the velocity field can be updated by computing un+1,∗ (through the
momentum equation) using the new estimation of the pressure field pn+1,∗ and the
resulting pressure gradients. This is the "Explicit velocity correction".
The two last procedures are repeated until the velocity field satisfies both the con-
tinuity and momentum equations.

Figure 4.5: Flowchart of the PISO algorithm

The eddy viscosity is obtained using the Shear Stress Transport (SST)
k − ω model with a low-Reynolds model approach to avoid the use of wall func-
tions [151, 154]. This model behaves like a classical k − ω model in the inner
parts of the boundary layer, down to the wall through the viscous sub-layer, and
it switches to a k − ε model behaviour in the free-stream regions. This particu-
lar two-equations turbulence model has been chosen because of its accuracy both
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near the wall as well as far from walls. Indeed, many wall treatments expressed as
blending function, have been proposed and the one from Menter takes advantage
of the fact that the solution to the specific dissipation rate ω equation is known
for both viscous and log layer unlike the dissipation rate ε used in k − ε models,
as shown in Eq. 4.11 and 4.12 [154].

ωviscous = 6ν
βy2 (4.11)

ωlog = uτ

C
1/4
µ κy

(4.12)

where y is the cell centroid distance from the wall. A blending can then be used
as follows;

ω =
√
ω2
viscous + ω2

log (4.13)

Low values of y, meaning that the considered cell is close to the wall, implies
the dominance of the term in 1/y2 and thus, viscous value for ω while the term
1/y is dominant (compared to 1/y2) for large values of y and the log behaviour of
ω is recovered far from the wall. Blending for the friction velocity is also proposed
by Menter [154].

However the k−ω model presents a well known issue; a high sensitivity to the inlet
free-stream turbulence properties [151, 155]. In order to cope with this problem,
the model switches to the more robust k − ε behaviour in these regions as shown
in Eq. 4.14;

νt = ρa1k

max {a1ω,ΩF2}
(4.14)

where a1 is a constant, Ω is the vorticity magnitude and F2 is defined as;

F2 = tanh

(max{ 2
√
k

β∗ωy
,
500ν
y2ω

})2 (4.15)

It can be seen that when a1ωSF2 the turbulent viscosity is νt = k/ω which is
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precisely the turbulent kinematic viscosity of a standard k−ω model. It is allowed
to switch to νt = a1k/(SF2) when the standard k − ω model is unstable.

Under-relaxation factors α are implemented in Fluent in order to damp nu-
merical oscillations. As shown in Eq. 4.16, the smaller the under-relaxation factor,
the stronger the damping.

φnew = φold + α(φcalculated − φold) (4.16)

where φ is any variable submitted to under-relaxation.
However, although the damping prevents numerical oscillations, it can also pre-

vent the solver to catch physical, real small oscillations. This is why the under-
relaxation factors have been increased from 0.3 to 0.8 for the pressure and from 0.7
to 1 (i.e., no relaxation) for the momentum equation, which increases the sensitivity
of the solver to physical oscillations, in an effort to better capture the experimen-
tally observed variations in velocity and temperature. Since a low-Reynolds model
is used, a two-dimensional mesh with 8,600 grid cells is designed to ensure the size
of the first cells at the cylinder wall does not exceed y+ = 1.

The inner part of the mesh around the cylinders is discretized using quadrilat-
eral cells while the outer part of the numerical domain is discretized with triangular
cells as shown in Fig. 4.7. The most common issues associated with the shape
of the cells are (i) the error in the computation of the diffusion term caused by
the non-orthogonality, or skewness, of the cells and (ii) the error term due to the
central-differences; indeed, central-differences are used to estimate the flux term
through the face (a line in 2D) connecting two adjacent cells but if the cells are too
skewed or have a high aspect ratio, the mid-point between their centroid (where
the central-difference is calculated) does not coincide with the centre of the face
connecting the cells. It is worth noting that these errors are not only encountered
in triangular shaped cells, but also for quadrilateral cells (in 2D). The perfect
shape for an orthogonal (i.e., zero skewness) grid would be equilateral triangles
and rectangles for the triangular mesh and the quadrilateral mesh respectively.
The skewness and aspect ratio of the cells (triangles as well as quadrilaterals) are
minimized in order to avoid any non-orthogonality related issues;

• The orthogonality of the triangular cells (as well as for the quadrilateral cells)
has been maximized with a minimum of 0.72 and an average of 0.97.
• The aspect ratio has been minimized with a maximum of 2.4 and an average of
1.29.
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• A cross-diffusion term is used to compensate error (i) in Fluent [151]

Figure 4.6: Two cylinders numerical domain and boundary conditions

The fluid density is described by the Boussinesq approximation (2.21) which is
used in the computation of the buoyancy force term ρg in the momentum equa-
tion [151].

The thermal boundary conditions on the bottom and side walls of the tank
are defined as convective boundary conditions, representing the small amount of
heat loss through the walls of the tank in the experimental test facility [105]. An
overall heat transfer coefficient U is computed as;
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(a) (b)

Figure 4.7: (a) Overview of the entire two-dimensional numerical domain meshed,
and (b) close-up view of the pair of cylinders showing the transition from struc-
tured mesh around the cylinders to unstructured mesh in the surrounding region.

1
U

= 1
hwater

+ twall
κwall

+ 1
hair

(4.17)

where twall and κwall are the thickness and thermal conductivity of the tank walls,
respectively. hwater and hair are the estimated average heat transfer coefficients on
the inside (water) and outside (air) of the tank, estimated using established em-
pirical correlations [156]. The top side of the numerical domain is defined as free
slip surface to represent the free water surface in the experimental test facility [105].

The mesh size and the time step refinement have been studied for a single
cylinder, to ensure that the solution is independent of both mesh size and time
step, as shown in Fig. 4.8. The characteristic mesh size is represented by ∆r in
Fig. 4.8 b, which corresponds to the radial thickness of the first layer of structured
cells adjacent to the cylinder surface (see Fig. 4.7 b). For the URANS simula-
tions, a time-step of ∆t = 50 ms has been used. A grid size of ∆r = 0.5 mm was
taken for both steady and URANS simulations. Numerical time-averaged Nusselt
number results (presented in Section 5.2.1) are evaluated from steady RANS sim-
ulation, whereas time-resolved data (presented in Section 5.3.2) are obtained from
URANS simulations. The consistency of the RANS results with the average over
time of the URANS results has been verified for the single cylinder case.
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(a) (b)

Figure 4.8: Sensitivity study of the solution to (a) the time step and (b) mesh
spacing, for a single cylinder at Ra = 1.70× 106.

The best suited turbulence model is found to be the Shear Stress Transport
(SST) k − ω model, as presented at the beginning of this section. This particular
model was chosen because it is recommended by several authors for this type of
simulation [151,155].

4.4 Implementation of shape optimization using
genetic algorithms

In this section, the implementation of a shape optimization procedure involving
a genetic algorithm as illustrated in Fig. 4.1, is detailed. Moreover, the particular-
ities of the genetic algorithm used in the present work are highlighted, namely, the
MOGA algorithm (for Multi-Objectives Genetic Algorithm) implemented in AN-
SYS Workbench. The ANSYS MOGA is a hybrid variant of the NSGA-II [157],
an improved version of the Non-dominated Sorting Genetic Algorithm (NSGA)
initially proposed by Srinivas and Deb [158].

4.4.1 Shape optimization approach with genetic algorithms
and CFD simulations

In this section, the general approach of a shape optimization of structures sub-
mitted to convective heat transfer utilizing a genetic algorithm is presented.
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a) Definition of a fitness function

As genetic algorithms operate by means of evaluating fitness function, the def-
inition of such fitness function is of primary importance. In the present case,
the overall heat transfer rate from a body placed in a fluid is to be maximized:
max(q′). Therefore, the fitness function has to account for this objective. Because
only one objective is considered, the fitness of one design candidate is set to be
its overall time-averaged heat transfer rate to the surrounding fluid; that is to say
f(ci) = q′(p1, p2, ...pn) where f is the fitness value and ci is a candidate geometry
defined by the parameters p1, p2, ...pn. Therefore, the candidates presenting the
higher fitness values fulfill the objective max[q′(p1, p2, ...pn)]. This fitness value is
obtained from a CFD simulation whose model has been described in Section 4.3.

b) Parametrization of the problem

Many different shapes’ fitness must be evaluated throughout the GA process,
and these different geometries are to be mutated and cross-overed in order for the
concept of "survival of the fittest" to apply. Therefore, each design must be en-
coded, or represented, to allow these mutations and cross-overs: the parametriza-
tion. The problem must be parametrized, similarly to any organism’s character-
istics which are encoded in its DNA. In the present case, the geometry of the
convective heat transfer structure must be defined by a finite amount of param-
eters, like lengths, angles, curves, etc. For example, in the case of two vertically
aligned horizontal cylinders, any given configuration is defined by knowing the
cylinders diameter D (forced to be the same) and the centre-to-centre distance S.
Each design candidate is then represented by a unique concatenation of values of
these parameters. In our example, this concatenation gives the vector, or chro-
mosome, [D,S] and [0.1, 0.3] is the unique geometrical configuration consisting of
two cylinders of diameter 10cm spaced by 30cm, centre-to-centre. The genetic op-
erations that apply on these representations are extensively described in Section
4.4.2.
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c) Search space dimension and constraints

At this point, the fitness function is defined and the shape of the structure
is represented by a finite number n of independent parameters, that is to say, is
represented by a chromosome of finite length. The space of all possible solutions,
that is to say, all possible geometrical configurations defined by a combination
of the n parameters, is a space of dimension n, a n-D search space. In order
for the optimization procedure to come up with a solution in a finite amount of
time, boundaries on the search space must be set. Closing the search space corre-
sponds to forcing constraints on the parameters that define the candidate. In the
present case of shape optimization, this corresponds to geometrical constraints on
the heat transfer structure (minimum/maximum size, located inside a fixed area,
etc...). These constraints are specific to the problem and will be detailed when
needed.

4.4.2 The genetic algorithm workflow in ANSYS MOGA
In this section, the functional principles of GAs are presented and detailed for

the MOGA method.

As already presented, in Section 3.3.4, the algorithm can be decomposed into
four main stages that are shwon in Fig. 3.18 and precised in Fig. 4.9;

4.4.2.1 Genetic algorithm: Step 1. Initialization

A method for generating the individuals of the initial population is used. It has
been recognized that the initial population has to show diversity. For a very large
number of initial candidates, a random distribution over the search space is the
best option to increase diversity. However, in order to ensure a diverse repartition
of the first generation individuals, even for small population size, GAs may use
more sophisticated algorithms to initialize the population. ANSYS MOGA initial-
ization procedure is based on the Shifted Hammersley Sampling method. It is a
quasi-random number generator which has very low discrepancy that is also used
for quasi-Monte Carlo simulations. A low-discrepancy sequence is defined as a
sequence of points that approximates the equidistribution in a multi-dimensional
cube in an optimal way. In other words, the design space is populated almost
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Figure 4.9: A general description of the main stages of a genetic algorithm.

uniformly by these sequences and, due to the inherent properties of Monte Carlo
sampling, dimensionality is not a problem (i.e., the number of points does not
increase exponentially with an increase in the number of input parameters) [151].

It should be noted that unlike the classical GA, the MOGA proposes two inde-
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pendent controls for (i) the initial population size and (ii) the size of the population
that is selected to form the next generation, presently called the "evolving pop-
ulation" [151]. These two controls have been kept equal in all the optimizations
performed in this work in order to avoid misleading interpretations of the results
that could be due to an evolving population too small even though the initial pop-
ulation was large enough. Further studies on the effect of different combinations
of these two controls would help towards a more profound understanding of how
GAs must be tuned.

4.4.2.2 Genetic algorithm: Step 2. Genetic operations

Genetic operators are used at this stage in order to create the next generation:
cross-overs and mutations.

a) Discrete chromosomes

Originally, genetic algorithms were developed in the framework of discrete,
chromosome-like manipulations. Basically, each discrete parameter is represented
by a binary chain. If a parameter can take up to two different values, a 1-bit chain
is used, if a parameter can take up to eight different values, a 3-bits chain is used;
a n-bits chain will represent a parameter with 2n values.

Then the concatenation (in the same order) of all the chains that represent
the different parameters, forms the chromosome that represents the individual.
These chromosomes can be cross-overed and mutated following different methods;

a).1 Discrete chromosomes: Type 1. Cross-over

Two parent chromosomes have a probability pc (defined by the GA user) to
be cross-overed following three different types of cross-over operator;

• One point cross-over
A cross-over point is randomly chosen within the chromosome length and the

two parent chromosomes interchange all the bits after (or before) this point, cre-
ating two new offspring as shown in Fig. 4.10.
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Figure 4.10: One point cross-over example with two 5-bits parent chromosomes
forming two new offspring.

• Two points cross-over
A two-point cross-over operator randomly selects two cross-over points within

the chromosome length and the two parent chromosomes interchange all the bits
in between these points, creating two new offspring as shown in Fig. 4.11.

Figure 4.11: Two points cross-over example with two 5-bits parent chromosomes
forming two new offspring.

• Uniform cross-over
In the case of a uniform cross-over, the (uniform) cross-over operator decides

which parent chromosome will contribute to each of the gene values in the first
offspring chromosome. Then the exact opposite of the first offspring is created as
the second child. This "decision" is defined by a probability; the "mixing ratio".
Such a uniform cross-over operation is shown in Fig. 4.12.
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Figure 4.12: Uniform cross-over example with two 5-bits parent chromosomes
forming two new offspring.

As explained earlier, building blocks are the basis upon which high fitness chro-
mosomes can be found [131]. The one and two points cross-over operators perform
parent chromosomes mixing at a segment level as they interchange a complete
consecutive set of genes within the parent chromosomes. On the other hand,
the uniform cross-over operator is a gene level mixing tool that can potentially
destroy building blocks. One might think that this last type of cross-over is disad-
vantageous but for some problems, the additional flexibility of gene level mixing
outweighs the disadvantage of destroying BBs [151].

a).2 Discrete chromosomes: Type 2. Mutation

For discrete chromosomes, when mutation occurs, it alters one or more gene
values from its initial state. Typically, the mutation operator has a 50% chance to
invert each gene; if it is a "0", it becomes a "1" and if it is a "1" it becomes a "0".
The probability that a mutation occurs pm is controlled by the GA user.

b) Continuous parameters

If parameters are now encoded using floating genes instead of a concatena-
tion of binary chains, a continuous version of cross-over and mutation can be used;

b).1 Continuous parameters: Type 1. Cross-over

For a continuous cross-over, the cross-over operator linearly combines the two
parent chromosome vectors to produce two new offspring according to Eq. 4.18;
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∀i ∈ [1 : n] , C1(i) = a×P1(i) + (1− a)× P2(i)
C2(i) = (1-a)×P1(i) + a× P2(i) (4.18)

where C1,2(i) (resp. P1,2(i)) is the ith floating gene of the n-floating-genes child
C1,2 (resp. the n-floating-genes parent P1,2) and a is a randomly chosen parameter
between 0 and 1 [159].

This is how the ANSYS MOGA treats the continuous cross-overs. The probabil-
ity of two n-floating-genes parent chromosomes to be cross-overed is pc = 0.9 [159].

b).2 Continuous parameters: Type 2. Mutation

For continuous mutation, a polynomial mutation operator is applied, as shown
in Eq. 4.19;

∀i ∈ [1 : n] , C(i) = P (i) + (Pmax(i)− Pmin(i))δ (4.19)

where C(i) and P (i), are the ith floating gene of the child C and parent P respec-
tively. Pmax(i) and Pmin(i) are the upper and lower bound of the ith floating gene
of P and δ is a small variation calculated from a polynomial distribution [159].
The probability of such mutation to happen is pm = 0.01 [159].

An improvement of these genetic operations has emerged recently and is called
elitism [160–163]. The principle of elitism is that instead of populating the next
generation exclusively with "children" of the breeding group, the best candidates
from the previous generation (the "parent" generation) are also conserved, unal-
tered. Recent results [161, 162] clearly show that elitism can speed up the perfor-
mance of the GA significantly, while helping to prevent the loss of good solutions
once they have been found.

4.4.2.3 Genetic algorithm: Step 3. Selection

In the case of computational fluid dynamics, each candidate is represented by
a set of geometric parameters. For any generation, the fitness of each candidate
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is evaluated using a CFD simulation of the geometric configuration defined by the
candidates’ parameters. That means that one must perform as many simulations
as candidate’s fitness evaluations. Each individual’s defining parameters are used
to build a geometry and a mesh. A CFD simulation is then performed using the
considered mesh and the output quantity(ies) of interest is(are) stored. The fitness
is equal to the CFD simulation output value, or to a weighted sum of output values
in the case of multiple-objectives optimization. These weight coefficients depend
on the importance of one output compared to another: coefficients are higher for
more important outputs. The fitness of each candidate is then compared with all
other candidates fitness in order to determine the best ones among the current
generation.

4.4.2.4 Genetic algorithm: Step 4. Termination

Within the ANSYS MOGA algorithm, the termination criteria can be;

• For multi-objectives optimization; a certain percentage of the population on
the Pareto front.
• A fixed number of generations is reached
• Convergence stability is reached defined as;∣∣∣f(t)− f(t− 1)

∣∣∣
fmax − fmin

< S

100
and

|σ(t)− σ(t− 1)|
fmax − fmin

< S

100

(4.20)

where f(t) is the mean fitness at generation t, σ(t) is the fitness standard deviation
at generation t, fmax and fmin are the maximum and minimum fitness in the first
generation respectively, and S is the desired stability percentage.

4.5 Computing resources
As already mentioned many times, a single complete shape optimization pro-

cedure involves several CFD simulations. As it will be presented in Section 6, the
different investigated optimizations involve a number of CFD simulations ranging
from dozens to a thousand. Needless to say that an optimization involving a thou-
sand CFD simulations of a turbulent flow around a complex geometry cannot be

111



CHAPTER 4. NUMERICAL METHODOLOGY AND IMPLEMENTATION

performed on a traditional workstation in an acceptable amount of time.

In order to cope with this issue, the optimization have been performed in par-
allel, on numerous cores provided by the Irish Centre for High-End Computing
(ICHEC). The ANSYS files are sent to the "fionn" ICHEC’s server and a job is
submitted and wait for the number of cores that are requested to be available so
that the process can start. There is a total of around eight thousand ≈ 2.3 GHz
cores available for a peak performance of 147.5 TFlops [164].

The main issue remaining is that only limited amount of licenses are avail-
able for ANSYS jobs. Basically 128 "tokens" are available and each time a job is
started, it uses a number of tokens that depends on the requested number of nodes
(one node corresponds to 24 cores). The first node needs 12 tokens and each addi-
tional node requires 8 tokens [165]. These tokens being shared among all ICHEC
users that run ANSYS jobs, although a larger number of cores is available com-
pared to a classical 4-cores workstation, the computing resource is strongly limited.

Moreover, a job must be submitted with a time limit, namely the "walltime". If
this limit is reached, the job is killed in order to avoid errors such as infinite loop.
The maximum walltime is 144 hours [166].

As a result of (i) the limitation of the number of nodes because of the AN-
SYS licenseing issue, and (ii) the limitation of the walltime, all the simulations
performed and discussed in the present work have been run on the fionn server
using two nodes, that is to say 48 cores, with a walltime limit set at the maximum
144 hours. The queue time between the job submission and the actual start of
the optimization varies from a couple of minutes to a couple of days as it depends
on the number of people using ANSYS licenses (tokens) at the moment the job is
submitted. As a result, there is a limit in the complexity of the shape optimiza-
tion that can be performed on this system, even though the improvement from a
typical 4-cores workstation is more than noticeable as shown in Table 4.1.

4.6 Summary of the chapter
The methodology approach to derive a CFD model to simulate the flow around

a complex structure and accurately evaluate the convective heat transfer from this
structure to the fluid, is developed in Section 4.3 for a benchmark case of two ver-
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Table 4.1: Comparison of computing resources between a typical workstation and
the fionn system from ICHEC.

system Workstation Fionn ICHEC
CPU Intel Core i3-2120 Intel Xeon E5-2695
CPU clock 3.30 GHz 2.40 GHz
Number of
cores

4 48

FLOPS 52.8 GFlops 921.6 GFlops
Limitations Can not use the computer for

something else if full power
dedicated to the optimization

Walltime limit of 144 hours,
queuing time

tically aligned, isothermally heated, horizontal, two-dimensional cylinders. The
choice of this particular case is twofold: (i) starting from rather simple but inter-
acting geometries is the first step towards the study of heat transfer from more
complex structures and (ii) experimental data is available for validation of the
numerical model for both steady and transient situations as presented in Section
5.2.

Section 4.4 presents the approach undertaken in order to derive a shape op-
timization procedure that involves a genetic algorithm and CFD simulations using
the model described in Section 4.3. This shape optimization process has been uti-
lized to discover optimal designs for different geometrical and flow configurations
in the limit of the available computing resources. The first case studies the optimal
spacing between parallel plates and compare the numerical results obtained from
the shape optimization process described in Section 4.4 with analytical results
from the literature [23, 24]. The second case presented in Chapter 6 investigates
the optimal design of a heat sink composed of three and five fins as an additional
step towards more complicated geometries that are encountered in Nature.
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Chapter 5

Numerical results: Transient heat
transfer from a pair of cylinders

This chapter presents the results from the numerical study investigating the
problem of heat transfer from two heated two-dimensional cylinders. The numeri-
cal methodology developed to deal with this problem has been presented in Section
4.3. The methodology is now verified against experimental data in Section 5.2 and
new results obtained using this CFD method are presented and discussed in the
Section 5.3.

5.1 Background and motivation
The study of the natural convection from a pair of vertically aligned, isother-

mally heated, horizontal two-dimensional cylinders is investigated in order to ob-
tain numerical results comparable to experimental data available from Persoons
et al. [105]. Their experimental study focuses on how the Rayleigh number and
the centre-to-centre distance S separating the two cylinders as shown in Fig. 4.3
can affect the heat transfer characteristics of the top cylinder. The present nu-
merical work aims at replicating the exact configuration presented and studied
by Persoons et al. [105] so that the comparison for verification that is presented
in this Section is relevant. As both steady and transient results are reported by
Persoons et al., the comparison will validate the capability of the numerical model
developed in Section 4.3, to model and capture transient phenomena that could
help providing a further understanding of the convective heat transfer mechanisms.

The objectives of this benchmark study are;
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• to verify the numerical model presented in Section 4.3, based on previous exper-
imental data [105]

And because Persoons et al. [105] could only provide hypotheses and partial expla-
nations for the observed phenomena based on the limited amount of experimental
data available, the numerical results - after validation - were discussed and high-
lighted a new objective;

• to reveal the nature of the thermal plume oscillations and their influence on
the heat transfer effectiveness based on numerical results as presented in Section
5.3

This should yield a more profound insight into the nature of unsteady nat-
ural convection from a pair of cylinders, to complement the experimental ap-
proach [105].

5.2 Validation of the Ansys Fluent CFD model
This section presents a detailed validation of the CFD model for natural convec-

tion heat transfer from one or two isothermally heated horizontal circular cylinders,
using empirical data available in the literature as well as from experimental data
from Persoons et al. [105]. Validation of the results is obtained by comparison with
the experimental results for the ranges of Rayleigh numbers and cylinder spacings
that were available from the work of Parsoons et al. [105].

5.2.1 Time-averaged heat transfer from a single cylinder

The time-averaged mean surface heat transfer coefficient results have first been
compared for a single cylinder test case to a widely used empirical correlation [82]
(in the form of Eq. 3.23) which is valid for a range of Rayleigh numbers ranging
from 0.5× 106 to 6× 106 as shown in Fig. 5.1. Equation 3.23 is recalled;

Num = C ·Ra1/4 (5.1)
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Figure 5.1: Mean time-averaged Nusselt number for a single cylinder. Verifica-
tion of numerical results by comparison with empirical correlation from Merk &
Prins [82] (Eq. 5.1 with C = 0.515) R2 = 0.9994. Equation 5.2 is not shown for
clarity.

For the same range of Rayleigh number (0.5× 106 ≤ Ra ≤ 6× 106), the results
of the CFD model with a single cylinder (yet otherwise the same tank dimen-
sions as described in the preceding sections) are in good agreement with the above
correlation from Merk & Prins (for Pr = 7, C = 0.515 in Eq. 5.1). The mean
time-averaged Nusselt number results have been least square fitted with the power
law correlation;

Num = 0.551Ra0.245 (R2 = 0.9991) (5.2)

As the main objective of the paper is to study oscillations of the thermal plume
arising from the bottom cylinder, a study of the local effects of this plume on
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the top cylinder is required. Therefore, in addition to only comparing the time-
averaged heat transfer, a more detailed validation of the local heat transfer rate
around a single cylinder is carried out.

For the single cylinder CFD model results, the time-averaged local Nusselt
number has been evaluated at small surface increments every 10◦ from the bottom
(θ = 0◦) to the top (θ = 180◦) of the cylinder. The results for different values
of Rayleigh number have been compared to the results obtained by Kuehn and
Goldstein [99] and are shown in Fig. 5.2. The results are normalized by dividing
the local Nusslet number by C ×Ra1/4 with C = 0.551 for the present work’s re-
sults (value taken from Eq. 5.2) and C taken from Kuehn and Goldstein’s study
for their results. It can be noted that our CFD results fit the results by Kuehn
& Goldstein for the investigated Rayleigh number range (104 ≤ Ra ≤ 5.3× 106)
although a small difference is seen for Ra = 104, especially for 135◦ ≤ θ ≤ 180◦.
The coefficient of determination between the present work and Kuehn & Goldstein
results are, R2 = 0.9154, 0.9545, 0.9896 for Ra = 104, 105, 106, respectively.

5.2.2 Time-averaged heat transfer from a pair of cylinders
The validation of the CFD model with experimental results has also been con-

ducted for natural convection from a pair of isothermally heated horizontal cylin-
ders in water. The two horizontal cylinders are vertically aligned, separated by a
centre-to-centre distance S, as shown in Fig. 4.3 and heated at the same temper-
ature TS. The surface temperature TS is set to different values corresponding to
the targeted Rayleigh numbers (Ra is computed using Eq. 2.7 so in the case of
a cylinder, Eq. 5.3 is used). The results for the investigated ranges of Rayleigh
numbers Ra and dimensionless spacing S/D are summarised in Table 5.1.

Ra = gβ(Ts − T∞)D3

να
(5.3)

Where D is the cylinders’ diameter, Ts is the temperature of the cylinders and T∞
is the water bulk temperature.

a) Effects of the Rayleigh number
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Figure 5.2: Normalised local Nusselt number. CFD results as solid lines (from
top to bottom; Ra = 104, 105, 106, 5.3× 106) and Kuehn & Goldstein’s results as
markers (from top to bottom; Ra = 104, 105, 106) [99].

Fig. 5.3 shows the (a) numerical and (b) experimental results for a spacing
S = 2D. A good qualitative agreement is found, with curves showing similar trends
and inflection points, marking three distinct heat transfer regions (I, II, III). The
Nusselt number decreases sharply from the bottom of the cylinder for 0◦ ≤ θ < 40◦
(region I) followed by a more gradual decrease for 40◦ ≤ θ < 150◦ (region II) and
again a sharper decrease towards the top of the cylinder (150◦ ≤ θ < 180◦, region
III). For each tested Rayleigh number, a monotonic increase of the local Nusselt
number with Rayleigh number is observed. The numerical and experimental results
exhibit a reasonable quantitative agreement as this region of gradually decreasing
Nu (region II) is reached at around θ = 40◦ with a similar value of Nu ≈ 20 in
both sets of results for all Rayleigh number.

Fig. 5.4 shows the comparison between numerical and experimental results
for the three investigated Rayleigh numbers. Region I shows a good quantitative
agreement between numerical and experimental data. Region II shows a reasonable
agreement, although the experimental local Nusselt number data exhibit a more
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pronounced plateau, especially at higher Rayleigh numbers, whereas the numerical
data retain a monotonic decreasing trend for increasing angle. Region III (near the
top of the cylinder) shows decreasing local Nusselt number values in both numer-
ical and experimental results, yet there remains a discrepancy near θ = 180◦. The
discrepancy between the experimental and numerical results consistently appears
near the top of the cylinder as shown in Fig. 5.4. Although there is no certain
reason why we observe this discrepancy, it might be due to the fact that in the
case of the experimental measurements, the local Nusselt number near the top of
the cylinder is averaged over a broader circumferential span than the numerical
surface of integration, due to the finite sensor size. As the local Nusselt number is
a minimum at the 180◦ position, this would contribute towards the experimental
results being higher than the numerical results. However, for the purpose of veri-
fying the CFD code, the observed agreement in the trends and locations of these
three regions is considered to be satisfactory.

(a) (b)

Figure 5.3: Local Nusselt number along the circumference of the upper cylinder
for S = 2D. (a) Numerical and (b) experimental results [105].

A numerical simulation has also been conducted for S = 3D and for the
same Rayleigh numbers, as shown in Fig. 5.5. In the case of a spacing of S = 3D,
the relationship between the local Nusselt number and the angular location along
the top cylinder’s circumference is more progressive. Especially in region II, where
the decrease of the local Nusselt number with θ is rather linear than the plateau
observed in the case of S = 2D. However, the 3 regions along the circumference (I,
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(a) Ra = 1.7× 106, (b) Ra = 3.31× 106, (c) Ra = 5.33× 106,
R2 = 0.9281 R2 = 0.9023 R2 = 0.8939

Figure 5.4: Local Nusselt number along the circumference of the upper cylinder
for S = 2D. Numerical and experimental results comparison and coefficients of
determination. [105,106].

Figure 5.5: Local Nusselt number along the circumference of the upper cylinder
for S = 3D (numerical results).

II, III) can still be observed with a concave decrease for 0◦ ≤ θ ≤ 40◦, an inflection
of the curve at θ = 40◦ and a convex decrease up to θ = 150◦, back to a concave
decrease up to θ = 180◦. From the numerical results shown in Figs. 5.3 and 5.5, it
can be concluded that the Rayleigh number mainly influences the averaged Nus-
selt number. In other words, a change in Rayleigh number does not significantly
alter the relative local Nusselt number at a given position θ when normalised by
the averaged Nusselt number. A global trend appears in the distribution of the
local Nusselt number, which is scaled up or down as a whole with an increase
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or decrease in Rayleigh number, respectively, as shown in Fig. 5.3 and 5.5. This
scaling however only slightly affects the local Nusselt number around 180◦ (the top
of the upper cylinder). The sensitivity of the Nusselt number curve to a change in
Rayleigh number is expressed by a similar power law relationship as Eq. 5.2.

b) Effects of cylinder spacing S/D

The effect of the spacing on the distribution of the local Nusselt number has
been investigated in more detail for a Rayleigh number Ra = 5.33 × 106. Figure
5.6 shows the local time-averaged Nusselt number distributions for (a) the numer-
ical model and (b) experimental measurements for three cylinder spacings and the
single cylinder case. Each set of results shows a satisfactory agreement in terms of
absolute values and trends with coefficients of determination above 0.8 as shown
in Fig. 5.7, with the exception of the region near the top of the cylinder where the
experimental data diverges.

Unlike the Rayleigh number, Fig. 5.6 demonstrates that the cylinder spacing
S/D has a strong influence on the local Nusselt number distribution. The sharp
decrease in local Nusselt number near the bottom of the cylinder is more pro-
nounced for smaller spacings, and tends to a more gradual trend at larger spacing
S/D > 3. For S = 2D, the Nusselt number drops by 54% (from 59 to 27) between
θ = 0◦ and 40◦ whereas for S = 4D, the Nusselt number drops by only 13% from
θ = 0◦ to 40◦.

The greater the dimensionless spacing S/D, the more closely the Nusselt num-
ber distribution agrees with the single cylinder results, as shown in Fig. 5.8. Indeed
when the two cylinders are far from each other, the interaction between them is
weak and if the distance is great enough, this interaction is expected to become
negligible. For the investigated range (2 ≤ S/D ≤ 4), Fig. 5.8 shows that the
increase in local heat transfer coefficient near the bottom of the cylinder reduces
from a maximum of 90% for S/D = 2 to 23% for S/D = 4. A reduction in local
heat transfer (albeit smaller in magnitude) is observed in the upper half of the
cylinder; however the reduction magnitude in this region is less affected by the
cylinder spacing.
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(a) (b)

Figure 5.6: Local time-averaged Nusselt number along the circumference of the
upper cylinder for Ra = 5.33 × 106. (a) Numerical and (b) experimental results
[105].
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(a) S = 2D, R2 = 0.8174 (b) S = 3D, R2 = 0.8435

(c) S = 4D, R2 = 0.8373 (d) Single cylinder, R2 = 0.8967

Figure 5.7: Local time-averaged Nusselt number along the circumference of the up-
per cylinder for Ra = 5.33× 106. Numerical and experimental results comparison
and coefficients of determination [105,106].
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Figure 5.8: Deviation of the local time-averaged Nusselt number from the single
cylinder case along the circumference of the upper cylinder for Ra = 5.33× 106.

Figure 5.9 compares the numerical against experimental values for the local
Nusselt number for the same three spacings at Ra = 5.33 × 106. The highest
values of Nusselt number represent the region near the bottom of the upper cylin-
der. A good agreement can be noted for most values within approximately ±15%,
except for the smallest values representing the heat transfer near the top of the
cylinder. In this region, the numerical results consistently underpredict the exper-
imental values as explained in section a).

The numerical approach adopted to study the benchmark case of natural
convection heat transfer from a pair of vertically aligned horizontal cylinders has
been presented in Section 4.3. The numerical results of time-averaged Nusselt
number from a single cylinder and from a pair of cylinders have been compared to
results found in the literature [82], [99] as well as from experimental results [105].
A reasonable agreement was found, which validates the CFD model for this type
of simulation.
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Figure 5.9: Numerical versus experimental local Nusselt number at ∆θ = 10◦ in-
crements along the circumference for Ra = 5.33× 106. ±15% limits indicated with
dotted lines.
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5.3 Results and discussion: transient natural con-
vection from a pair of cylinders

Figure 5.10: Thermal plume arising from a pair of cylinders, temperature contours.

As highlighted previously, the local and unsteady aspects of the heat transfer
phenomena are the key to understand how the upper cylinder’s capacity to trans-
fer heat can be augmented by simply placing it above another cylinder. Numerical
results from the verified CFD model of overall performance as well as unsteady
and local heat transfer and velocity field quantities are presented in this chapter.
The present chapter ends with a discussion and an attempt at explaining these
results.

5.3.1 Mean time-averaged results

Besides using the mean time-averaged numerical results described in Chapter
4.3 in order to verify the CFD model, some of these results are already relevant
to the study of heat transfer performance of cooling devices. Indeed, Table 5.1
summarizes the time-averaged mean Nusselt number results as a function of the
Rayleigh number and cylinder spacing. The normalized heat transfer enhancement
compared to the single cylinder case (at the same Rayleigh number) is represented
in Table 5.1 by percentage values of δNum, defined as;
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Table 5.1: Mean time-averaged Nusselt number Num of a single cylinder and the
upper of a pair of vertically aligned cylinders with the values in brackets repre-
senting the relative deviation to a single cylinder, δNum × 100%. Experimental
results from [105].

Case Ra = 1.7× 106 Ra = 3.35× 106 Ra = 5.33× 106

Num. Exp. Num. Exp. Num. Exp.
Single
cylinder

Num =
18.3

Num =
16.9

Num =
21.6

Num =
20.7

Num =
23.6

Num =
23.8

S/D = 4 Num =
19.2
(+5.0%)

Num =
18.0
(+6.1%)

Num =
23.3
(+7.7%)

Num =
22.8
(+9.2%)

Num =
24.5
(+4.1%)

Num =
24.3
(+2.0%)

S/D =
3.5

Num =
26.2
(+11.0%)

S/D = 3 Num =
19.5
(+6.5%)

Num =
18.2
(+7.2%)

Num =
23.1
(+6.8%)

Num =
22.4
(+7.6%)

Num =
26.1
(+10.8%)

Num =
26.5
(+10.2%)

S/D =
2.5

Num =
25.6
(+8.6%)

S/D = 2 Num =
18.1
(−0.9%)

Num =
16.1
(−5.1%)

Num =
22.3
(+3.1%)

Num =
22.3
(+7.2%)

Num =
24.7
(+4.9%)

Num =
24.5
(+3.1%)

S/D =
1.5

Num =
23.7
(+0.7%)

δNum = Num −Num,single
Num,single

(5.4)

It is worth noting that, even for the numerical results, the overall heat transfer
does not exhibit a monotonic dependence on either the spacing, or the Rayleigh
number. Indeed the relative deviation from a single cylinder Nusselt number varies
between slightly negative values (e.g., −1.8% for S = 4D and Ra = 5.33× 106) to
positive values up to +11% for S = 3.5D at Ra = 5.33× 106.

Figure 5.11 shows a contour plot of the heat transfer enhancement δNum (in per-
centage values) as a function of cylinder spacing and Rayleigh number. Apart from
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Figure 5.11: Heat transfer enhancement δNum = (Num − Num,single)/Num,single
(×100%) as a function of Rayleigh number and cylinder spacing S/D.

the sudden decrease at S = 4D and Ra = 5.3×106, the heat transfer enhancement
δNum tends to increase with increasing Ra and decrease with decreasing S/D. The
locus of optimum spacing and Rayleigh number, for the specific configurations in-
vestigated, is in the range 2.8D ≤ S ≤ 3.6D and 4.7 × 106 ≤ Ra ≤ 5.3 × 106.
However the objective of this study was not to provide a definitive optimum, and
further work would be needed to ascertain that the 10% contour in Fig. 5.11 is in
fact a global extremum.

5.3.2 Spectral analysis of local Nusselt number and flow
velocity

Results have been presented in the previous section for the local time-averaged
Nusselt number and demonstrate the strong dependence of the Nu distribution
on the cylinder spacing S/D. Since experimental measurements for the same con-
ditions have previously revealed strong oscillatory flow and heat transfer [105],
unsteady (URANS) simulations have been performed for each case in Table 5.1 to
further investigate the origin of these oscillations, and their relationship to heat
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transfer enhancement. As discussed in Section 4.3, a time step of ∆t = 50 ms has
been used. The simulations ran for 80,000 iterations or a simulated time of 4,000
s. Figure 5.12 presents a sequence of the instantaneous temperature field captured
with an interval of 6s.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.12: Sequence of the instantaneous temperature distribution, from
t = 1406s (a) to t = 1495s (p).
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Figure 5.13: Monitored points where solution data is extracted for FFT spectra
and coherence analysis (see Figs. 5.14-5.17).

Figure 5.13 identifies a number of points where time-resolved local Nusselt
number and fluid velocity data are extracted for further analysis in this section.
Points A1, A2 and A3 are defined on the circumference of the upper cylinder at
angular locations θ = 0◦,−90◦, 90◦, respectively. Points B1 and B2 are defined in
the flow field with B1 midway between the two cylinders. At the location B1, the
reference plume velocity Vref is averaged along a horizontal line;

Vref = 1
b

∫ b/2

−b/2
V (x, y = yB1)dx (5.5)

where the plume width b is defined as the distance between the locations (along
the same horizontal line through B1) where the upward time-averaged velocity
magnitude drops to 25% of the peak velocity. Point B2 is somewhat arbitrarily
defined at a radial distance from point A2 equal to b/2. Figure 5.22 shows that
the trajectory of the vortex centres passes close to this point which ensures that
any fluctuations of the local velocity vector are captured in the analysis. In other
locations adjacent to the side of the upper cylinder, oscillations are observed at
the same frequencies yet different magnitudes.
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For the sake of brevity, the spectral analysis is only presented in full for a single
representative case in the investigated range, Ra = 3.35 × 106 and S = 3D. Fig-
ure 5.14 shows the strong oscillations arising at the bottom of the upper cylinder
(θ = 0◦, point A1) in the local Nusselt number. A supplemental video of the de-
veloping flow field from the start of the simulation until t = 570 s is provided as an
electronic appendix A. After the start of the simulation (t = 0 s), the flow initially
develops as a stable plume, switching to a quasi-periodic oscillation at t ≈ 250 s.
Once plume oscillation is established, the flow switches between regimes of almost
purely harmonic swaying and more random fluctuations, as previously observed
experimentally [105].

Figure 5.15 shows a close-up view of these quasi-periodic oscillations, where
the data in Fig. 5.15 a are obtained from the numerical results and in Fig. 5.15 b
from experimental measurements at the same conditions [105]. The strong tempo-
ral fluctuations in local Nusselt number shown in Figs. 5.14 and 5.15 a, correspond
to lateral swaying oscillations of the thermal plume rising from the lower cylinder.
Depending on the time-varying position and shape of the plume, the buoyant flow
occasionally impinges directly onto the bottom of the upper cylinder causing a
sharp rise in instantaneous local Nusselt number, or it is deflected along either
side of the cylinder, causing a reduction in local Nu. The fluid temperature and
flow velocity magnitude and direction near the bottom of the upper cylinder (point
A1) also vary strongly.

Upon closer inspection of Fig. 5.14, the plume oscillations seem to switch
between two regimes, a quasi-periodic pattern alternated by more random fluctua-
tions. This behaviour agrees with the previous experimental observations [105]. In
fact, a remarkable similarity can be seen in the periodic fluctuations in Fig. 5.15
a (numerical results) and Fig. 5.15 b (experimental results [105]). The fact that
the numerical model is able to capture both the temporal characteristics and Nu
amplitude of the oscillation provides strong validation evidence for the URANS
methodology.

Figure 5.15 shows the variations of the Nusselt number at the lowest point of the
upper cylinder (point A1). The Nusselt number at point A1 goes approximately

from 25 up to 60 with a time average of 1/T
T∫
0
Nu(θ = 0◦, t)dt = Num ≈ 43 as is
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Figure 5.14: Time history of the local Nusselt number at θ = 0◦ (point A1 in Fig.
5.13) for Ra = 3.35× 106, S = 3D. The start-up and initial oscillations from 0 s
until 570 s are shown in the supplemental video in appendix A.

shown on Fig. 5.5. Interestingly, the Nusselt number achieved by a single cylinder
with the same Rayleigh number is 28 (this value has been calculated from the data
shown in Fig. 5.2, with Pr = 7 and C = 0.515, Nu = 1.25 ·C ·Ra1/4). The devia-
tion of the time-averaged local Nusselt number from that for a single cylinder, at
the location θ = 0◦, is observed, and is remarkably high with δNum(0Â◦) = 53.6 %,
as shown in Fig. 5.8. The increase or decrease of the global heat transfer char-
acteristics of the upper of a pair of cylinders compared to the single cylinder case
appears to be directly linked to these oscillations.

For this same dataset (Ra = 3.35 × 106 and S = 3D), a frequency analysis of
the local Nusselt number at points A1 and A2, and velocity at points B1 and B2
has been performed.

Figures 5.16a and 5.16b show the Fourier transform of the local Nusselt num-
ber at point A1 and the vertical velocity at point B1, based on a sampling fre-
quency of 2 Hz for a 500 s long signal. For this case, a distinct peak frequency
f1 = 0.0195 Hz is found in both Nusselt number and vertical velocity, while a
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(a) (b)

Figure 5.15: Time-resolved local Nusselt number at θ = 0◦ (point A1 in Fig. 5.13)
for Ra = 3.35× 106, S = 3D. (a) Numerical and (b) experimental results [105].

peak frequency f2 = 0.00977 Hz is found for the horizontal velocity. It is worth
noting that the frequency of the vertical velocity oscillations is twice the frequency
of the horizontal velocity oscillations at point B1. Reymond et al. [104] also re-
ported a similar pair of frequencies governing the oscillations; they observed peak
frequencies at 0.016 Hz and 0.008 Hz for a spacing of S = 1.5D and 2D and a
Rayleigh number of 6× 106. This can be explained by the fact that each time the
thermal plume oscillates around the centreline from the left side to the right side,
it corresponds to one full period for Vy(t) but only half a period for Vx(t). Figures
5.16c and 5.16d show a peak frequency f2 = 0.00977 Hz for the Nusselt number
at point A2 and both velocity components at point B2.

Figure 5.17a shows the magnitude and phase angle of the coherence spectrum
CA1,B1 between the Nusselt number at point A1 and the velocity components at
point B1. Similarly, Fig. 5.17b shows the coherence spectrum CA2,B2 between the
Nusselt number at point A2 and the velocity components at point B2.

Figures 5.16a and 5.16b show a sharp peak frequency at f1 = 0.0195 Hz while
5.17a shows a broad range of high coherence at low frequencies up to approxi-
mately 0.03 Hz with a peak at f3 = 0.0234 Hz. This suggests that the oscillations
at points A1 and B1 follow a coherent periodic pattern with a base frequency f3.
In the low frequency range up to 0.03 Hz, Fig. 5.17a shows a strong correlation
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(a) (b)

(c) (d)

Figure 5.16: FFT amplitude spectrum for (a) local Nusselt number at point A1
(θ = 0◦), (b) (normalized FFTs) velocity components Vx and Vy at point B1, (c)
local Nusselt number at point A2 (θ = −90◦) and (d) (normalized FFTs) velocity
components Vx and Vy at point B2 (see Fig. 5.13) (Ra = 3.35× 106, S = 3D).

between the Nusselt number at A1 and the vertical velocity at B1, even though
both locations are separated by a distance ∆yA1B1 = (S −D)/2 = D. The corre-
lation between Nusselt number at A1 and the horizontal velocity at B1 is small
throughout the entire frequency range.

Figure 5.17a shows that the coherence phase angle near the peak frequency
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(a) (b)

Figure 5.17: Magnitude and phase angle of the coherence spectrum (a) between
local Nusselt number at A1 and velocity components Vx and Vy at B1, (b) between
local Nusselt number at A2 and velocity components Vx and Vy at B2 (Ra =
3.35× 106, S = 3D).

f1 is slightly negative (Φ1 ≈ −25◦), which indicates that the Nusselt number at
A1 lags the vertical velocity at B1 by (Φ1/360)/f1 ≈ 3.6 s. Considering the dis-
tance between locations A1 and B1 (see Fig. 5.13), one can assume than this lag
is mainly due to the time it takes the rising fluid inside the thermal plume to be
advected from point B1 to the stagnation zone near point A1. For comparison,
based on the value of the reference velocity Vref and distance between points A1
and B1, the estimated bulk advection time would be ∆t = ∆yA1B1/Vref = 8.8 s.
However, this can be considered an overestimation since the reference plume ve-
locity is averaged over the full plume width, and the peak velocity in the centre of
the plume is about double this average, which means that the time lags are indeed
comparable. This advection time lag has been verified for other points in the flow
field, and therefore this seems a reasonable explanation for the observed phase lag
in Fig. 5.17a.

Interestingly, Fig. 5.17b shows different peak frequencies (marked by trian-
gles and circles) in the coherence spectrum between the Nusselt number on the
side of the cylinder (at A2) and the velocity components adjacent to that location
(at B2, a distance b/2 from A2). Compared to the coherence with the flow below
the cylinder (Fig. 5.17a), the coherence between the Nusselt number and the hor-
izontal velocity Vx is much more pronounced alongside the cylinder (Fig. 5.17b).
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A peak frequency is observed at f2 = 0.00977 Hz (leftmost triangular marker
in Fig. 5.17b) which confirms the FFT results shown in Fig. 5.16c and 5.16d.
Alongside the cylinder the Nusselt number and both velocity components follow a
periodic pattern at the frequency f2 = 0.00977 Hz. Four distinct peaks at higher
frequencies are assumed to be harmonics of this frequency f2; these are marked by
triangles in Fig. 5.17b (0.08789 Hz = 9f2, 0.1465 Hz = 15f2, 0.2637 Hz = 27f2
and 0.3223 Hz = 33f2.

However, two other peaks can be discerned at f4 = 0.06641 Hz and its harmonic
at 0.1992 Hz = 3f4. The peak frequency f4 which can also be observed in the
Fourier transform of the horizontal velocity fluctuations, indicates that another pe-
riodic pattern is present in the variations of the Nusselt number at point A2 and the
velocity at point B2, especially its horizontal components Vx. This high frequency
suggests that rapid variations (the period of these oscillations is 1/f4 ≈ 15 s) in
the instantaneous heat transfer occur in parallel to the slow fluctuations due to
the swaying of the plume (the period is 1/f2 ≈ 100 s). The phase angle at this
frequency is found to be φ4 = −11.5◦ which indicates that the Nusselt number at
point A2 lags the horizontal velocity at point B2 by (−11.5/360)/0.06641 ≈ 0.5 s.

The relationship between flow velocity and Nusselt number on the side of the
cylinder can lead to a better understanding of how the buoyant plume dynamics
affect the heat transfer characteristics of the upper cylinder. An interpretation of
these two periodic phenomena (one characterised by f1 and f2 and the other one
by f4) is given in the following section.

In order to better characterise the oscillatory nature of this flow for the entire
range of Rayleigh number and cylinder spacing, these three peak frequencies f1, f2
and f4 are represented by dimensionless Strouhal numbers Sr1 = 0.171,Sr2 = 0.086
and Sr4 = 0.58 where

Sr = fD

Vref
(5.6)

Unsteady RANS simulations have been carried out for all test conditions in
Table 5.1. The results are analyzed in a similar way as described above for the
arbitrarily selected dataset (Ra = 3.35 × 106, S = 3D), and are summarized in
Table 5.2.

Based on the data in Table 5.2, two empirical power law correlations are least
squares fitted to the reference plume velocity and the secondary peak Strouhal
number, representing the peak oscillation frequency along the side of the cylinder.
The reference plume velocity increases monotonically with both Rayleigh number
and cylinder spacing, towards a maximum velocity for the single cylinder case
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(represented by S/D = ∞ in Table 5.2). However, the single cylinder case was
not taken into account in least square fitting the correlation:

Vref = 8.77× 10−6Ra0.33
(
S

D

)0.85
(5.7)

This correlation shows an RMS deviation of 2.7% and a coefficient of determina-
tion R2 = 0.98. The Strouhal number at the side of the cylinder (Sr2) does not
exhibit a strictly monotonic behaviour, yet as a first approximation, Sr2 decreases
for both increasing Rayleigh number and cylinder spacing. For the single cylinder
cases, the results for the time history of the Nusselt number at θ = 0◦ (corre-
sponding to point A1) did not exhibit significant oscillation, and thus no values
are obtained for those cases, which agrees with the results of Grafsronningen and
Jensen [107].

Sr2 = 219Ra−0.47
(
S

D

)−1.05
(5.8)

This correlation shows an RMS deviation of 24.6% and a coefficient of determi-
nation R2 = 0.75. The primary Strouhal number (Sr1) representing the peak
oscillation frequency in the region directly below the cylinder exhibits a maximum
of Sr1 ≈ 0.17 for the intermediate condition of Ra = 3.35× 106 and S = 3D, and
therefore does not collapse well to a power law correlation such as Eqs. 5.7 and
5.8. As noted by Persoons et al. [105], the Strouhal number values are comparable
in magnitude to those found for vortex shedding behind a cylinder in forced cross-
flow with an approach velocity of Vref (Sr = 0.19 ± 0.01) [167]. The following
section will examine the unsteady flow fields in the thermal plume in more detail,
with particular emphasis on the relationship between vortices and heat transfer
enhancement.

5.3.3 Discussion: Effect of vortices in the oscillating plume
on the local heat transfer coefficient

Figure 5.18 shows instantaneous velocity magnitude distributions and stream-
lines around the upper cylinder. Similar results have been obtained from experi-
ment and are shown in Fig. 11 of Persoons et al.’s paper [105]. The colour scale
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Table 5.2: Summary of frequency analysis based on URANS results. The di-
mensionless frequencies Sr1 and Sr2 represent peak coherence between Nusselt
number and velocity between points A1 and B1 (Sr1), and between points A2 and
B2 (Sr2). Heat transfer enhancement is related to the equivalent single cylinder
case at the same Rayleigh number.

Rayleigh
number

Cylinder
spacing

Reference
velocity

Plume
width

Peak Strouhal number Heat trans-
fer en-
hancement

Ra S/D Vref b/D Sr1 Sr2 δNum

5.33 ×
106

∞ (single)
4
3.5
3
2.5
2
1.5

6.2 mm/s
5.3 mm/s
4.2 mm/s
4.1 mm/s
3.5 mm/s
2.8/ mm/s
2.2 mm/s

0.53
0.57
0.47
0.50
0.40
0.43
0.20

−
0.094
0.086
0.094
0.101
0.104
0.145

−
0.033
0.049
0.058
0.051
0.083
0.079

−
+4.1%
+11.0%
+10.8%
+8.6%
+4.9%
+0.8%

3.35 ×
106

∞ (single)
4
3
2

5.5 mm/s
4.4 mm/s
3.4 mm/s
2.4 mm/s

0.60
0.77
0.53
0.43

−
0.092
0.171
0.122

−
0.054
0.026
0.085

−
+7.7%
+6.8%
+3.1%

1.70 ×
106

∞ (single)
4
3
2

4.0 mm/s
3.5 mm/s
2.7 mm/s
1.9 mm/s

0.62
0.73
0.53
0.47

−
0.093
0.150
0.137

−
0.042
0.075
0.167

−
+5.0%
+6.5%
−0.8%
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represents velocity magnitude from 0 to 18 mm/s. Based on the behaviour shown
in Fig. 5.18 and on the spectral analysis described in section 5.3.2, the hypothesis
has been developed that the fluctuations of the Nusselt number in various points
on the cylinder circumference are affected by the combination of (i) the overall
swaying of the plume and (ii) smaller scale vortices that periodically form along-
side the plume at inflection points. On alternating sides of the cylinder, vortices
can be seen to appear, advect, and merge with larger scale recirculating flows sur-
rounding the plume and stretching into the rest of the domain.

(a) (b) (c)

(d) (e) (f)

Figure 5.18: Instantaneous streamline and velocity magnitude plot at (a) t = 280 s,
(b) 300 s, (c) 320 s, (d) 340 s, (e) 360 s, (f) 380 s, showing one plume oscillation
period (Ra = 3.35× 106, S = 3D).
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Figure 5.18 shows that a vortex is appearing alternately on each side of the
upper cylinder, prior to the plume motion at an approximate angular position of
θ = ±40◦ as shown in Fig. 5.18a (where the sign depends on whether the vortex
forms on the left or on the right hand side of the cylinder). Consequent to the
creation of the vortex, the plume is deflected toward the side where the vortex has
developed. The plume remains attached to the side of the cylinder. The vortex is
seen to travel around the cylinder with its centre at an approximate distance of b,
the plume width, from the cylinder surface, as shown in Fig. 5.18b.

As the vortex propagates (from θ = 40◦ to θ = 120◦ on the right hand side and
similarly on the left hand side of the cylinder), it is stretched vertically, following
the plume direction, until it eventually dissipates. When this vortex has almost
disappeared at approximately θ = ±120◦, another vortex forms at the opposite
side of the cylinder at a position θ∓ 40◦ as shown in Fig. 5.18c. It is worth noting
that when this new vortex forms (Fig. 5.18c), the thermal plume arising from the
lower cylinder is still attached to the cylinder on the opposite side, i.e. on the side
where the previous vortex had been created. Once the new vortex appears, the
plume sways towards its side of the cylinder (as seen in Figs. 5.18d and 5.18e) and
the pattern is repeated.

Figure 5.19: Schematics of the stages of (i) plume swaying corresponding to low
frequency oscillations of the velocity in between the two cylinders and the local
Nusselt number at point A1 (ii) vortex formation linked to high frequency fluc-
tuations of the velocity and the local Nusselt number observed at the side of the
upper cylinder.

Figure 5.19 shows a schematic diagram which illustrates our interpretation of
this pattern. In Fig. 5.19, the thin grey lines represent the outline of the plume as
it sways through one full cycle. The curved red arrow represents the two vortices
that form on alternating sides of the upper cylinder. In the diagram, the first one
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forms at θ = −40◦ and propagates until it dissipates at θ = −120◦, at which time
the second vortex forms at θ = +40◦. The second vortex then propagates upwards
until it dissipates at θ = +120◦ and the cycle repeats itself.

Figure 5.20: Nusselt number variations around a zero mean (Nu′ = Nu−Nu) at
(a) point A1 (θ = 0◦), (b) A2 (θ = −90◦) and A3 (θ = +90◦) (Ra = 3.35 × 106,
S = 3D).

Firstly, the plume swaying explains why the dominant frequency of the Nusselt
number oscillation at points A2 and A3 on the side of the cylinder (represented
by Sr2) is half the peak oscillation frequency at point A1 (represented by Sr1), at
least for most conditions listed in Table 5.2. Indeed, Fig. 5.20 shows the Nusselt
number variations about the mean value, Nu′ = Nu−Nu, at points A1 (θ = 0◦),
A2 (θ = −90◦) and A3 (θ = +90◦). The oscillations of Nu′ at points A2 and A3
are similar in waveform but are 180◦ out of phase, or shifted by half a period. At
each trough of Nu′(0◦) in Fig. 5.20a, a peak in the Nusselt number is alternately
reached in Fig. 5.20b for Nu′(±90◦) which explains the factor of two between the
peak frequencies Sr1 and Sr2.

Secondly, the higher frequency oscillations represented by Sr4 can be explained
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by the effect of vortices on local instantaneous heat transfer enhancement and can
be illustrated by taking a closer look at the time evolution of the local Nusselt
number at point A2 and the adjacent transverse (horizontal) velocity Vx at point
B2. As explained in the previous section, the coherence spectrum revealed a strong
dependency between these two signals at a peak frequency of f4 = 0.06641 Hz be-
tween the Nusselt number and the Vx velocity fluctuations, which could not be
explained merely by bulk advection.

Figure 5.21: Fluctuations of the Nusselt number at point A2 and the transverse
velocity (arbitrarily scaled) at point B2 (Ra = 3.35×106, S = 3D). Five indicated
events in (b) correspond to the flow fields shown in Fig. 5.22.

Figure 5.21 shows both signals (with subtracted mean and arbitrarily scaled) for
(a) a time duration of 400 s, and (b) a close-up view of 30 s corresponding to the
leftmost encircled interval on Fig. 5.21a. The two signals are quite similar which
confirms the high coherence between them (see Fig. 5.17b). The four encircled
events in Figure 5.21a exhibit a repeating pattern with a period corresponding to
Sr2 (here, a frequency f2 ≈ 0.0097 Hz or period 1/f2 ≈ 100 s).

As explained above, this long period represents the plume swaying and alter-
nating between both sides of the cylinder. However, upon closer inspection each
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encircled event also contains higher frequency oscillations. Figure 5.21b shows
these oscillations corresponding to the frequency f4 = 0.06641 Hz identified in
the coherence spectrum between the Nusselt number at point A2 and the velocity
at point B2 (Fig. 5.17b) and the Fourier transform of the velocity at point B2
(Fig. 5.16d). This â˜highâTM frequency oscillation is characterised by a period of
approximately 1/f4 ≈ 15 s. In terms of Strouhal number, Sr4 = f4D/Vref ≈ 0.58.
A broadly comparable peak frequency was also found experimentally by Persoons
et al. [105] (Sr = 0.46 ± 0.02) and Grafsronningen and Jensen [107] (1/f ≈ 7 s,
S/D = 2, Ra = 5.2 × 107 corresponding to a Strouhal number Sr = 0.73). As
shown in Fig. 5.21b, the Nusselt number (solid line) lags the velocity Vx (dotted
line) by approximately 0.5 s which confirms the results from the coherence phase
lag.

Figure 5.22 and 5.23 show the instantaneous flow fields from the present numer-
ical results and experimental PIV results from Persoons et al. [105] respectively,
at the five time instants identified during one of the high-frequency oscillations in
Fig. 5.21b. The numerical results show a good agreement with the experiment in
terms of vortex size, plume width and velocity magnitude. However a difference
is noticeable as the vortex centre reaches the position θ = −120◦ in Fig. 5.22e
whereas the vortex centre seems to be located at the position θ = −90◦ in Fig.
5.23e. The vortex captured numerically is moving faster than what is seen in the
experimental results even though the local Nusselt number at point A2 is oscillat-
ing at the same frequency f4 = 0.0664 Hz. At t = t1 the plume is still impinging
on the bottom of the cylinder although it is already starting to sway towards the
left hand side of the cylinder. The swaying is difficult to see in Fig. 5.22 and 5.23
because of the different time scales involved, with a period of 1/f2 ≈ 100 s for
plume swaying compared to 1/f4 ≈ 15 s for this high frequency oscillation.

Considering the data shown in Fig. 5.21b, the horizontal velocity fluctuations
at point B2 are first negative (times t1, t2 and t3), pass by zero at time t4 and
then reach a positive peak at time t5. This shows that the vortex is rotating in
an anticlockwise direction on the left hand side of the cylinder. At t = t1 the
anticlockwise vortex shown in Fig. 5.22 is visible with a centre at an angular po-
sition θ = −40◦. Point B2 is at the leading edge of the vortex, with local flow
directed away from the cylinder, or negative horizontal velocity fluctuations. This
corresponds to a decrease from 0 to −10 approximately in the variations of the
local Nusselt number at point A2 according to the data shown in Fig. 5.21b.
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(a) t = t1 (b) t = t2 (c) t = t3

(d) t = t4 (e) t = t5

Figure 5.22: Instantaneous streamline and velocity magnitude corresponding to
five events indicated in Fig. 5.21: (a) t1 = 426 s, (b) t2 = 427 s, (c) t3 = 428 s,
(d) t4 = 429 s, (e) t5 = 430 s. Ra = 3.35× 106, S = 3D, with points A1, A2, B2
and A3.

Over the next four seconds (t1 through t5), the vortex travels from an angular
position θ = −40◦ to θ = −120◦. During that time, the local transverse velocity
in B2 goes from a negative extremum at t = t2 (i.e., flow pulling away from point
A2) to a positive extremum at t = t5 (i.e., flow impinging onto point A2). This
leads to an increase from −10 to +10 in the variations of the local Nusselt number
at point A2.

The URANS simulation enabled us to identify how the variations in trans-
verse velocity at point B2 correlate with the variations of Nusselt number at point
A2. However, the time-averaged local Nusselt number at point A2 is 24.1 as is
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(a) t = t1 (b) t = t2 (c) t = t3

(d) t = t4 (e) t = t5

Figure 5.23: Instantaneous streamline and velocity magnitude (experimental data)
corresponding to five events indicated in Fig. 5.21: (a) t1s, (b) t2 = t1 + 1s, (c)
t3 = t1 + 2s, (d) t4 = t1 + 3s, (e) t5 = t1 + 4s, from PIV data set also presented in
Persoons et al. [105].

shown in Fig. 5.5 whereas the time-averaged local Nusselt number of a single
cylinder is 23.5 at that same location with the same Rayleigh number, according
to the data presented in Fig. 5.2. The difference between the time-averaged local
Nusselt number at this location (θ = −90◦) and the single cylinder case is only
δNum(−90◦) = 2.5%. The change in local Nusselt number at point A2 due to the
presence of another cylinder seems not to contribute as much to the global en-
hancement of the heat transfer potential of the upper cylinder as does the change
in local Nusselt number at point A1.
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5.4 Summary of the chapter
The results from the numerical model developed in Section 4.3 has been com-

pared to experimental data obtained from Persoons et al. [105]. A good agreement
is found between the numerical and experimental results, for both the single cylin-
der and the pair of cylinders cases.

A number of steady RANS simulations were carried out for a range of Rayleigh
numbers (1.7 × 106 ≤ Ra ≤ 5.3 × 106) and centre-to-centre cylinder spacing
(1.5 ≤ S/D ≤ 4). The overall time-averaged heat transfer rate is found to
be affected by both the Rayleigh number and the cylinder spacing, in a simi-
lar way to that observed experimentally [105]. Mean heat transfer enhancement
results are presented in Fig. 5.11 and Table 5.1, showing a locus of optimum
spacing (to achieve maximum enhancement) in the range 3D ≤ S ≤ 4D and
4.7 × 106 ≤ Ra ≤ 5.3 × 106, with more pronounced enhancement for increasing
Rayleigh number. A maximum enhancement of δNu ≈ +11% was observed for
Ra = 5.33× 106 and S = 3.5D.

For all conditions described in Table 5.1, an unsteady RANS simulation was
also carried out. After an initial non-oscillating start-up, regimes of quasi-periodic
plume oscillations alternating with seemingly random fluctuations were observed
in the numerical results and two regimes characterized by two different frequencies
were identified. Having observed remarkably similar unsteadiness in the previous
experiments [105], this agreement further confirmed the validity of the numerical
methodology. Fourier transforms and coherence spectra were calculated for local
Nusselt number and flow velocity signals, extracted from different points in the do-
main. A strong periodicity and coherence between heat transfer and flow velocity
was observed. Trends were analysed in the peak oscillation frequencies (expressed
as dimensionless Strouhal numbers) for the entire investigated range of Ra and
S/D.

The unsteady results were analysed in further detail, yielding interpretations for
the two main time scales in this flow, resulting from (i) slow large scale swaying of
the buoyant plume with a period of approximately 100 s and (ii) faster dynamics of
vortices forming adjacent to the plume with a corresponding time scale of approx-
imately 15 s., and their effect on local instantaneous heat transfer enhancement
has been discussed. Based on the present study, the low frequency (i.e., large time
scale) fluctuations correspond to the swaying of the thermal plume rising from the
lower cylinder. This phenomenon affects the overall heat transfer of the upper
cylinder to a greater extent than the high frequency fluctuations associated with
the formation and propagation of vortices at the side of the upper cylinder.
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Overall, the availability of detailed time-resolved flow and heat transfer data
from the URANS simulations has provided insight into this flow beyond the prac-
tical limitations of experimental measurements [105]. However, the experimental
data was indispensable to validate the numerical model. Therefore, only by com-
bining the strengths of both approaches was this study (in combination with the
previous work [105]) able to provide explanations for the intricate dynamics of this
natural convection configuration. The details of this numerical work, the compar-
ison with experimental data and the discussion of the results, have been published
by Pelletier et al. [106].
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Chapter 6

Numerical results: Shape
optimization using genetic
algorithms

This Chapter is dedicated to the study of design optimization, by the use of
genetic algorithms, and its potential for cooling devices improvement. The numer-
ical shape optimization procedure introduced in Section 4.4 is validated against
analytical results from the literature [23,24] in Section 6.2. Section 6.3 presents the
results from the numerical shape optimization study of two-dimensional elongated
fins in forced convection that has been performed using the shape optimization
model derived in Section 4.4.

6.1 Background and motivation
In order to study the possibility of heat transfer enhancement by optimizing the

shape of the structure subjected to heat transfer, the understanding of the numer-
ical shape optimization procedure that is used is necessary. Therefore, the perfor-
mance of the shape optimization method developed in Section 4.4 must be vali-
dated against trusted data. Secondly, with the idea of moving towards heat/mass
transfer structures of high complexity, the study of the shape optimization of a
heat sink composed of three, and later on, five fins is presented in Section 6.3.
This study corresponds to another step as illustrated in Fig. 4.2.

It is important to recall that, because of the increasing complexity of the prob-
lem due to the non-linear coupling through the advection term in the heat equation
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of the Navier-Stokes equations and the heat transfer phenomena in general, and
finally because the objective of discovering a global optimal shape that maximizes
the overall heat transfer from a complex structure without any information about
the fitness landscape of the problem (smoothness, number of local optima, etc...),
the approach of Darwinist evolution has been chosen, by the means of a genetic
algorithm.

The objectives of the studies presented in Chapter 6 are

• to validate the numerical shape optimization procedure presented in Section
4.4, based on analytical studies [23,24] as presented in Section 6.2

• to study how genetic algorithms operate when combined with CFD simulations,
and how the GA tuning parameters affect the determination of the optimal solu-
tion as presented in Section 6.3.3

• to study the flow and interactions captured for the simulated optimal shape
solution in order to understand why this particular design is the fittest as pre-
sented in Section 6.3.4

6.2 Validation of the ANSYS MOGA optimiza-
tion tool

This section presents the case and results of an ANSYS MOGA optimization
that has been compared to the analytical solution to this optimization problem.
The objective is to determine the optimal spacing for maximum heat transfer from
a stack of parallel heated infinite plates, arranged in a fixed two-dimensional vol-
ume, that are cooled by forced convection.

6.2.1 Analytical analysis
In order to determine the spacing that maximizes the overall heat transferred

from the plates to the coolant fluid analytically, one can use the asymptotic analy-
sis, or order of magnitude analysis as explained in the introduction. This approach
is precisely described by Bejan et al. [23,24] for both laminar and turbulent cases
and a summary of the development of the analysis is presented here.
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Let us consider the geometry of Fig. 6.1. A set of parallel plates of length
L and thickness t, each of them heated at the uniform temperature Tw, are con-
fined in a volume H×L and spaced by the distance D. An incoming flow, parallel
to the plates, with a free stream at temperature T∞ is created by imposing a
pressure head ∆P across the volume H × L. To determine the optimal spacing
D between the plates is the same as determining the optimal number of plates n
inside the volume of thickness H

n ≈ H

D + t
(6.1)

Figure 6.1: Stack of parallel plates cooled by forced convection [23]

Intuitively, if the plates are far apart, there is a small number of plates inside
the fixed volume so the total heat transferred to the coolant fluid is low. On the
other hand if the number of plates inside the channel is increased up to the point
where the plates touch each other, the fluid is prevented from flowing and the
overall heat transfer drops. So there is a situation in between these two extreme
situations, where the overall heat transfer is maximum.
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6.2.1.1 Laminar forced convection

A laminar forced convection and t� D are assumed so that Eq. 6.1 becomes

n ≈ H

D
(6.2)

a) Small D limit.

If the limit D → 0 is considered, the developing length of the thermal boundary
layers x∗ in each channel formed by two consecutive plates is really small compared
to the plate’s length L; x∗ � L. Therefore the fluid outlet temperature is Tw and
the average fluid velocity of this plane Poiseuille flow is given by Eq. 6.3

U = D2

12µ
∆P
L

(6.3)

The total mass flow rate through the entire stack per unit of depth ṁ′is then

ṁ′ = ρUH = ρH
D2

12µ
∆P
L

(6.4)

where ρ is the fluid density.

The total heat transfer rate from the entire stack to the fluid is

q′a ≈ ṁ′cp(Tw − T∞) = ρH
D2

12µ
∆P
L
cp(Tw − T∞) (6.5)

In conclusion, in the limit D → 0, the total heat transfer rate decreases as D2

as illustrated qualitatively in Fig. 6.2.

b) Large D limit.
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In the opposite case, where D → ∞, the boundary layers developing on each
surface are distinct, that is to say: each channel looks like the entrance of a parallel-
plate duct. The overall force balance on the whole volume H × V requires

∆P ·H = 2nτwL (6.6)

where n is the number of channels and τw is the L-averaged wall shear stress

τw = CfL ·
1
2ρU

2
∞ = 1.328Re−1/2

L

1
2ρU

2
∞ (6.7)

using the empirical correlation Cfx = 0.664√
Rex

for the laminar boundary layer.

Combining Eq. 6.6 and 6.7 yields

U∞ =
(

1
1.328

∆P ·H
nL1/2ρν1/2

)2/3

(6.8)

The total heat transfer rate from one surface (per unit of depth) q′1 is derived
from the overall Nusselt number

NuL = hL

k
= q′1
Tw − T∞

L

k
= 0.664Pr1/3Re

1/2
L (6.9)

where q′1 is the L-averaged heat flux per unit of depth.

The total heat transfer rate from the entire stack of n channels, that is to
say 2n surfaces is

q′b = 2nq′1 = 2nLq′1 = 2nk(Tw − T∞)0.664Pr1/3Re
1/2
L (6.10)

Using Eq. 6.2 and 6.8 for the expressions of n and U∞, the total heat transfer
rate becomes

152



6.2. VALIDATION OF THE ANSYS MOGA OPTIMIZATION TOOL

q′b = 1.208k(Tw − T∞)HPr1/3L1/3∆P 1/3

ρ1/3ν2/3D2/3 (6.11)

The second conclusion is that the heat transfer rate from the entire stack de-
creases with D−2/3 when D →∞ as shown qualitatively on Fig. 6.2.

Figure 6.2: Determining the optimal spacing by intersecting the asymptotes 6.5
and 6.11.

Figure 6.2 suggests that the unknown curve q′(D) reaches a maximum for a
value Dopt that is of the same order as the D value obtained by intersecting the
two asymptotes:

Dopt

L
≈ 2.73

(
µα

∆P · L2

)
(6.12)
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where µ and α are the viscocity and thermal diffusivity of the coolant fluid [23].

6.2.1.2 Turbulent forced convection

Bejan et al. performed a similar analysis to determine the optimal board-to-
board spacing between parallel plates cooled by turbulent forced convection [24].
The configuration is the same as for the laminar case except for the board thickness
that is not necessarily negligible compared to the board-to-board spacing so that
t� D doesn’t hold anymore and Eq. 6.1 is not simplified so that n ≈ H/(D+ t).

a) Small D limit.

When D → 0, the board-to-board spacing is small enough so that a fully
developed turbulent flow goes through each channel defined by two consecutive
half-plates and the outlet temperature is the the same as the board temperature.
The total heat removed from the entire stack is then

q′a ≈ ṁ′cp(Tw − T∞) (6.13)

where ṁ′ = nρUD is the mass flow rate, with U the average velocity through each
channel in the case of a fully developed turbulent flow:

U =
(
D∆P
ρLf

)1/2

(6.14)

where f is the friction factor.

The D → 0 asymptote of the total heat transfer rate from the entire stack
is then

q′a = Hcp(Tw − T∞)
1 + t

D

(
ρD∆P
Lf

)1/2

(6.15)
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b) Large D limit.

In the opposite extreme, a boundary layer develops on each board while the
fluid at the core of each channel flows at the velocity U∞ and is at the coolant
temperature T∞. By assuming that the force experienced by each board is domi-
nated by skin friction, a force balance on the whole control volume H × L gives

H∆P = 2nτL (6.16)

where τ is the L-averaged wall shear-stress. Combining Eq. 6.16 and the definition
of the skin friction coefficient Cf = τ

1
2ρU

2
∞

yields

U∞ =
(
H∆P
nρLCf

)1/2

(6.17)

The total heat transfer rate from one plate q′1, that is to say through one bound-
ary layer, is

q′1 = q′1 · L = St · LρcpU∞(Tw − T∞) (6.18)

where q′1 is the L-averaged heat flux and St is the Stanton number

St = 1
2CfPr

−2/3 (6.19)

Eq. 6.19 is derived using the Colburn analogy between momentum and heat trans-
fer in the boundary layer flow.

Finally, recombining Eq. 6.18 and Eq. 6.17 and noticing that the total heat
transfer rate from the entire stack equals the heat transfer rate from one board,
multiplied by the number of boards 2n where n is the number of channels, leads
to the D →∞ asymptote of q′(D)
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q′b = 2nq′1 = Hcp(Tw − T∞)Pr−2/3
(
ρLCf∆P
t+D

)1/2

(6.20)

In conclusion, in the turbulent case, the heat transfer rate from the entire
stack increases with D when D is small and decreases with D when D is large.
This means that there is a D value for which the heat transfer rate from the 2n
boards is maximized. By intersecting the two asymptotes corresponding to Eq.
6.15 and 6.20, Bejan et al. conclude with a prediction of the optimal spacing Dopt

as a function of the pressure difference ∆P , the Prandtl number Pr and the plate
slenderness t/L, as shown in Fig. 6.3 [24].

Figure 6.3: The optimal spacing as a function of ∆P , Pr and t/L. From [24]

6.2.2 Parallel plate spacing optimization using a genetic
algorithm

In order to assess the efficacy of a genetic algorithm coupled with CFD simula-
tions, the MOGA algorithm implemented in ANSYS has been used to search for
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an optimal solution to the optimization problem discussed in the previous section
and compare its results with the analytical results described above.

6.2.2.1 Parametrization of the problem

The first stage is to design and parametrize a CFD simulation that can repre-
sent the problem previously described. The situation is rather simple here: one of
the channels defined by two consecutive half-plates of length L and thickness t/2
is considered as shown in Fig. 6.4. They are separated by a distance D and are
heated at the same temperature Tw = 323 K. An outlet pressure boundary con-
dition with Pout = P0 = 101325 Pa and an inlet pressure BC with Pin = P0 + ∆P
and T∞ = 293 K are imposed. The total heat transfer rate from the two half-plates
q′1 is defined as the output and is used to attribute a fitness to each geometrical
configuration. The CFD model used for this optimization in the case of turbulent
forced flow, is the same as the one developed and presented in Chapter 4.3.

Figure 6.4: Geometry and boundary conditions of the parallel plates cooled by
forced convection.

Four different combinations of the parameters t/L, ∆P and turbulence models
are investigated as presented in Table 6.1
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Table 6.1: Investigated configurations for the optimization of the parallel plates
forced convection

optimization n◦ t/L ∆P (Pa) Turbulence model
1 � 1 0.5 Laminar
2 � 1 5 Laminar
3 1/20 10k kw-SST
3 1/20 25k kw-SST

6.2.2.2 Optimization settings

In order to search for the optimal spacing D between the parallel plates con-
tained in a fixed volume H×L, the objective of the optimization is set to maximiz-
ing the total heat transfer rate from the entire stack q′, that is to say the heat trans-
fer rate from one channel q′1 multiplied by the number of channels n ≈ H/(D + t)
that fits the volume H × L:

q′ = q′1 × n = q′1 ×
H

D + t
(6.21)

where H is arbitrarily set to 200 mm in these simulations.

The MOGA algorithm is used with an initial population size of 50 individu-
als, a cross-over and mutation probability of pc = 0.9 and pm = 0.01 respectively
and a target stability percentage S = 2% for the termination.

6.2.2.3 Results from MOGA

The results obtained from the four optimization processes are described and
compared using non-dimensional values for the board-to-board spacing D

L
and the

pressure drop
(

∆P ·L2

µα

)1/4
or a combination of these numbers

δ = 2D
L

(
∆P · L2

µα

)1/4

(6.22)

where 2D = Dh is the hydraulic diameter. The non-dimensional heat transfer rate
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is also used and is defined as

q′norm = q′

(ρ∆P/Pr)1/2 ·Hcp(Tw − T∞) (6.23)

Using these non dimensional numbers, the two asymptotes for the heat transfer
rate removed from the entire stack in the limits D → 0 and D → ∞ simplify;
basically for the laminar forced convection, Eq. 6.5 and 6.11 respectively become

q′a,norm = 1
12

(
δ

2

)2

(6.24)

q′b,norm = 1.208
(
δ

2

)−2/3

(6.25)

Results of the total non-dimensional heat transfer rate q′norm obtained for some
of the individuals evaluated through the advancement of optimization n◦1 (see Ta-
ble 6.1) as a function of the board-to-board spacing are shown in Fig. 6.5. They
are compared to the results of Bejan et al. [23]. As it is shown on Fig. 6.5, the
total heat transfer rate from the entire stack of parallel plates is underestimated in
the present simulations compared to the theoretical value calculated by Bejan et
al. [23]. This could be due to the fact that Bejan et al. assumed t� L so that the
total force experienced by the the plates (used in their force balance evaluation)
is only due to friction. However more interestingly, the location, on the x-axis, of
the optimal board-to-board spacing that maximizes the overall heat transfer rate
q′norm from the present work’s optimization agrees well with the analytical results
from [23]. Moreover, as shown by the two curves q′a,norm and q′b,norm on Fig. 6.5, the
asymptotic behavior of the heat transfer rate evaluated numerically as a function
of the board-to-board spacing agrees with the order-of-magnitude study described
in the previous section. Both analytical and numerical optimization studies con-
clude with the optimal spacing

δopt
2 = Dopt

L

(
∆P · L2

µα

)1/4

≈ 3.033 (6.26)
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Figure 6.5: The optimal board-to-board spacing for maximum heat transfer.

The results obtained from the four investigated cases presented in Table 6.1
are plotted against the imposed pressure drop and compared to the analytical re-
sults from Bejan et al. [24] in Fig. 6.6. The results for board-to-board optimal
spacing Dopt/L from the present MOGA investigations define two distinct regimes
(laminar and turbulent) that are in good agreement with the analytical study.

This study shows that there is an optimal board-to-board spacing Dopt that
maximizes the total heat transfer rate from a stack of parallel plates inside a fixed
volume H × L in the case of forced convection generated by a pressure drop ∆P .
This optimal spacing has been determined both analytically using an asymptotic
analysis [23,24], and numerically using the ANSYS MOGA genetic algorithm. The
results from the two methods are in good agreement and this comparison is used as
a validation of the numerical optimization approach. It is important to notice that
the validity of the MOGA approach stands for both laminar and turbulent cases.
However, although GAs can show a strong potential, as it is the case in this study,
the user must be aware that the good agreement found between the analytical and
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Figure 6.6: Comparison between present work MOGA results and analytical results
[24] with Pr = 7 and t/L = 1/20

numerical optimizations may depend on the parameters that have been chosen for
the ANSYS MOGA (initial population size, cross-over and mutation rates,...) and
must then be careful on how to tune genetic algorithms in future studies.
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6.3 Results and discussion: optimization of a
generic plate-fin heat sink in cross-flow

6.3.1 Description of the simulation

The CFD model coupled with the ANSYS MOGA genetic algorithm validated
in the previous section can now be used for maximizing the heat transfer from
two-dimensional fins in cross flow. This section is dedicated to the study of the
optimization of a new problem, more specifically, on how the results obtained from
the MOGA can be trusted, and what are the effects of the GA’s initial population
size on the results. A discussion on the MOGA results is also developed.

The problem posed here is to optimize the design of a heat sink placed in a
stream of coolant fluid. A H × L = 40 mm × 40 mm heat sink is composed of
three, and later on, five 16 mm × 2 mm fins with rounded corners with a radius
of curvature r = 0.8 mm. The H × L fixed volume is placed in a 500 mm ×
200 mm channel as shown in Fig. 6.7. An inlet pressure Pin = Patm + ∆P with
∆P = 10 Pa and an outlet pressure Pout = Patm are used as boundary conditions.
The fins are heated at the constant temperature of Tw = 323 K and the fluid en-
ters the channel at temperature T∞ = 293 K. Water is chosen as the coolant fluid
and each candidate’s fitness evaluation is performed using a RANS simulation that
outputs the total heat flux from the fins to the fluid q′. The k-w SST turbulence
model is used for the reasons described in Chapter 4.3. The mesh is designed in
order for the k-w SST model to be used down to the viscous sublayer inside the
boundary layers that will develop along the fins. Accordingly, at the fins/water
interface, the first cell height value is chosen to be ∆y = 1× 10−2 mm. The mesh
generated for a random geometry is shown in Fig. 6.8.

One fin is placed along the axis of symmetry in the direction of the flow and
one (or two) other fin(s) is (are) placed at each side of the middle fin. The fins
are defined by a number from 1 to 5 from the top left corner towards the middle
fin following the anti-clockwise direction as shown in Fig. 6.9. Three parameters
are used in order to define the position and orientation of each of these fins; xi,
yi and θi where xi is the coordinate of the centre of the fin i from the left side of
the H × L fixed volume along the direction of the flow, yi is the coordinate from
the bottom side of the H × L fixed volume along the direction perpendicular to
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Figure 6.7: Geometry and boundary conditions for the three fins in cross flow
simulation

(a) Total numerical domain (b) Close-up view

Figure 6.8: Three fins configuration meshed for a random geometry.

the flow and θi is the angle of the fin’s axis with the x-direction, as shown in Fig.
6.10.
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(a) Three fins (b) Five fins

Figure 6.9: Fins disposition inside the fixed volume 40 mm × 40 mm.

Figure 6.10: Design parameters

6.3.2 Definition of the shape optimization procedure
The optimization process begins with the choice of; (A) objectives to be ful-

filled, (B) parametrization of the design (the parameters will correspond to the
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characteristics defining each candidate) and (C) constraints as introduced in Sec-
tion 4.4.1.

6.3.2.1 Objectives

The design aims at being optimized in order to fulfill desired objectives. In this
case, the objective is to maximize the total heat transfer rate from the fins to the
fluid.

The optimization process aims at finding a configuration which could enhance
the cooling, by increasing the heat transfer rate from forced convection, while
keeping constant the pressure drop across the heat sink. The fitness function of
each design candidate is equal to the overall heat transfer rate from the fins q′.

6.3.2.2 Parametrization

The parameters defining the different "design candidates" must cover the space
of all possible solutions. In this case, the design is defined by the location and
orientation of the fins. The middle fin can be translated along the x-axis and the
other fins can be moved and rotated inside the H × L = 40 mm × 40 mm fixed
area. Therefore, thirteen (respectively seven) parameters would be required to
describe all the possible combinations of position and orientation of each of the
five (respectively three) fins, namely: x5 and xi, yi and θi for i ∈ [1, 4] (respectively
for i ∈ [1, 2]). Any combination of these parameters defines the characteristics
of a candidate and will be conserved unaltered, cross-overed, mutated or sim-
ply forgotten in the evolutionary process. This means that the search space is a
thirteen-dimensional space in the case of five fins that are independently located
and oriented. However, in order to understand how GAs, and more specifically
the ANSYS MOGA, works, several optimizations have been performed over search
landscapes of lower dimensions (that is to say fewer independent parameters) for
the three fins case, as summarized in Table 6.2.

Table 6.2 shows different optimization setups with increasing dimension of the
search-space. Parameters can be fixed to a precise value, defined as a function
of other parameters, or take a value in a given interval (obviously the search
space has to be closed since an infinite number of evaluations would be required
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Table 6.2: Increasing search-space dimension - optimization of three fins in cross
flow.

space x1 y1 θ1 x2 y2 θ2 x5
dimension (mm) (mm) (mm) (mm) (mm)

1 13.28 10 [−π
2 ,

π
2 ] x1 H − y1 −θ1 30

1 13.28 [20, 40] 10◦ x1 H − y1 −θ1 30
2 [0, 40] 10 [−π

2 ,
π
2 ] x1 H − y1 −θ1 30

3 [0, 40] [20, 40] [−π
4 ,

π
4 ] x1 H − y1 −θ1 30

4 [0, 40] [20, 40] [−π
4 ,

π
4 ] x1 H − y1 [−π

4 ,
π
4 ] 30

5* [0, 40] [20, 40] [−π
4 ,

π
4 ] x1 H − y1 [−π

4 ,
π
4 ] [0, 40]

otherwise). The bolded intervals are independent parameters over which the evo-
lutionary search is to be made. The last line refers to an optimization similar to
the previous line (of dimension four) but the horizontal position of fin 5 is not
fixed anymore. All the configurations described by the combinations of the 5 pa-
rameters could have been obtained considering a 4-D search space involving the
relative horizontal position of the fins, namely x1−x5. However, this optimization
is performed over a 5D search-space in order to investigate a search space of higher
dimension.

Figure 6.11 shows five random geometry configurations generated in different
search spaces: Figure 6.11 a,b,c,d and e show a random geometry designed in the
search-space of dimension 1,2,3,4 and 4*, respectively, presented in Table 6.2. The
independent parameters are indicated in the captions.

For the five fins case, an optimization has been performed with an imposed
symmetry about a fixed middle fin. This corresponds to the following setup:
x1 = x2 ∈ [0mm, 20mm], y1 = y2 ∈ [20mm, 40mm], θ1 = −θ2 ∈ [−π/2, π/2],
x4 = x3 ∈ [20mm, 40mm], y4 = y3 ∈ [20mm, 40mm], θ4 = −θ3 ∈ [−π/2, π/2],
x5 = y5 = 20 mm and θ5 = 0.

6.3.2.3 Constraints

In order for the geometries and meshes to be generated without errors, con-
straints on the parameters are necessary. Indeed, (i) two fins cannot overlap and
(ii), up to now xi and yi - that is to say the center of the fins - are restricted to the
H × L volume, whereas the objective is to ensure that each fin in itself is entirely
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(a) (θ1) (b) (x1, θ1) (c) (x1, y1, θ1)

(d) (x1, y1, θ1, θ2) (e) (x1, y1, θ1, θ2, x5)

Figure 6.11: Random geometries represented by vectors from 1D to 5D search-
landscapes.

bounded to the volume. The parameters defined in the previous paragraph are
therefore submitted to the following constraints;

• The minimum distance between two fins is 0.5 mm.
• The fins have to be located inside the 40 mm × 40 mm box, strictly.

For three fins, these constraints are mathematically written as follows (in mm);

• xi + 7.2× cos(θi) + 0.2× sin(θi) + r ≤ 40, for i = 1, 2
• xi − 7.2× cos(θi)− 0.2× sin(θi) + r ≥ 0, for i = 1, 2
• y1 + 7.2× sin(θ1) + 0.2× cos(θ1) + r ≤ 40
• y1 − 7.2× sin(θ1)− 0.2× cos(θ1)− r ≥ 21.5
• y2 + 7.2× sin(θ2) + 0.2× cos(θ2) + r ≤ 18.5
• y2 − 7.2× sin(θ2)− 0.2× cos(θ2)− r ≥ 0

For the five fins case, the entire search space defined by all the possible po-
sitions for fins 1 and 4 in the top half volume (resp. fins 2 and 3 in the bottom
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half) can be similarly described if the location of the centre of fin 1 (resp. fin 2) is
imposed inside the top left square (resp. bottom left), and the fin 4’s centre (resp.
fin 3) inside the top right square (resp. bottom right) as shown in Fig. 6.12

Figure 6.12: H×L volume divided into four squares, each fin’s centre is restricted
to a square.

The constraints then become:

• xi − 7.2× cos(θi)− 0.2× sin(θi)− r ≥ 0, for i = 1, 2
• xi ≤ 20, for i = 1, 2
• xi ≥ 20, for i = 3, 4
• xi + 7.2× cos(θi) + 0.2× sin(θi) + r ≤ 20, for i = 3, 4
• yi + 7.2× sin(θi) + 0.2× cos(θi) + r ≤ 40, for i = 1, 4
• yi − 7.2× sin(θi)− 0.2× cos(θi)− r ≥ 21.5, for i = 1, 4
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• yi + 7.2× sin(θi) + 0.2× cos(θi) + r ≤ 18.5, for i = 2, 3
• yi − 7.2× sin(θi)− 0.2× cos(θi)− r ≥ 0, for i = 2, 3

Besides, when considering fins 1 and 4 (resp. fins 2 and 3), an additional
non-overlap constraint is required. Indeed, when the centre of the fins located at
the same side of fin 5 are close to each other, the orientation of the fins can only
take certain values. This constraint can be divided into three different cases:

• If the distance between the centres of each fin D =
√

(xi − xj)2 + (yi − yj)2

(where (i, j) = (1, 4) or (2, 3)) is greater than a fin’s length Lf = 16 mm, then the
fins have no chance to overlap and no further constraint is needed.

• If Lf/2 + Wf/2 < D ≤ Lf where Wf = 2 mm is the fin’s width, the situa-
tion illustrated in Fig. 6.13 is encountered.

Figure 6.13: Schematic of the geometrical configuration of two close fins and the
overlap area in red.

When the distance between the centers of the two fins is in the range [Lf/2 +
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Wf/2 ; Lf ], an overlap region appears as illustrated in red in Fig. 6.13. φ is the
semi-angle formed by the overlap cone and ψ is the angle between the direction of
the centre-to-centre (Pi, Pj) straight line and the x-axis.

(i) In such case, if fin i is oriented so that it doesn’t enter the overlap re-
gion, the fins won’t overlap. This happens for |ψ− θi| > |φ| or, since all the angles
are in the interval [0;π], for cos|ψ − θi| < cos|φ| = D/Lf .

(ii) If fin i enters the overlap area, another constraint is required on fin j.
The orientation of fin j corresponding to the symmetrical position of fin i about
the yellow line in Fig. 6.13 is the worst case scenario where the two fins overlap
completely. This configuration is encountered when θj = ψ + (ψ − θi) = 2ψ − θi
In order not to have an overlap, fin j must be oriented away from this worst con-
figuration which can mathematically be defined as the following constraint:

if Lf2 + Wf

2 + δ < D ≤ Lf + δ and cos|ψ − θi| >
D

Lf
then |2ψ − θi − θj| > φ

or cos|2ψ − θi − θj| <
D

Lf
(6.27)

where δ is a safety parameter.

• Finally if D < Lf/2 the fins are forced not to enter the overlap area at all
which leads to two additional constraints:

if D <
Lf
2 + δ then |ψ − θi| > φ

or cos|ψ − θi| <
D

Lf

(6.28)

and

if D <
Lf
2 + δ then cos|ψ − θj| <

D

Lf
(6.29)

Let us summarize all the constraints and conditions on these constraints that
ensure that no error will occur during the course of the optimization procedure. If
Bool(a > b) is the boolean function that equals 1 if true (if a > b) and 0 if false
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(if a < b), constraints 6.27, 6.28 and 6.29 respectively become

Bool
(
Lf
2 + Wf

2 + δ < D ≤ Lf + δ
)
×Bool

(
cos|ψ − θi| >

D

Lf

)
×
(
cos|2ψ − θi − θj| −

D

Lf

)
≤ 0

(6.30)

Bool
(
D <

Lf
2 + δ

)
×
(
cos|ψ − θi| −

D

Lf

)
≤ 0 (6.31)

Bool
(
D <

Lf
2 + δ

)
×
(
cos|ψ − θj| −

D

Lf

)
≤ 0 (6.32)

With these constraints imposed to the ANSYS MOGA, the creation and mesh-
ing of all the geometries that are to be evaluated through the successive generations
can be done without the errors that would otherwise have stopped the optimiza-
tion progress.

6.3.2.4 Genetic algorithm parameters

As it has been highlighted in Section 3.3, the parameters controlling the be-
havior of the GA must be tuned, or must be chosen with care. In any case, they
should be stated, as the results most probably depend on them. In the future
optimizations, the MOGA algorithm has been used with a cross-over and muta-
tion probability of pc = 0.9 and pm = 0.01 respectively, and a target stability
percentage S = 2% for the termination. The initial population size is an object
of investigation and varying values have been investigated, from 10 to 100 indi-
viduals. The "evolving population" size is always set to be equal to the initial
population size so that a n-individuals population is initially generated and at
each generation, the best n candidates among the children and parents from the
previous generation, are selected.

6.3.3 Results from the ANSYS MOGA optimization
In this section, results obtained from the different optimization cases listed in

Table 6.2 are presented. More specifically, the effect of the initial population size
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on the results and the total computing time required to find the optimal design,
is investigated. No attention is paid to the flow field in this section, only the
optimization tuning is investigated (the study of the velocity, temperature and
pressure fields is developed in Section 6.3.4 for specific geometries of interest). Ta-
ble 6.3 shows all the performed optimizations.

Table 6.3: Set of optimizations investigated, with different initial population sizes
and number of parameters.

case # # of fins search space initial population
dimension sizes investigated

1 3 1 (θ1) 10, 20, 30, 40, 50
2 3 1 (y1) 10, 20, 30, 40, 50
3 3 3 (θ1, x1, y1) 20, 25, 30, 35, 40, 50, 60, 80
4 3 4 (θ1, x1, y1, θ2) 15, 20, 25, 30, 35, 40, 50, 60, 80, 100
5 3 5* (θ1, x1, y1, θ2, x5) 40, 50, 60, 80
6 5 6 (θ1, x1, y1, θ4, x4, y4) 50

At the start of each new optimization, the initial population is randomly gen-
erated which means that the initial population generated at the start of two op-
timization runs are different, even if the parameters defining the optimization are
exactly the same. This, plus the inherent randomness of mutations and cross-
overs, means that two optimizations will produce different results, that is to say,
different optimal solutions. It is important to understand that this holds for two
optimizations that present the exact same parameters (initial population size, mu-
tation and cross-over rates, selection pressure, etc...).

The way to deal with this issue is to run many of these simulations to gather
statistical data on the obtained results. Indeed, a set of many of the same opti-
mization giving different results, but with a low standard deviation, provides good
information on how close the computed mean optimal solution is to the theoretical
one.

Unfortunately, a complete optimization process is time consuming, especially in
the present case where a CFD simulation has to be performed for each design fit-
ness evaluation. In the present work, the results that are presented and discussed
are preliminary and must be analyzed with care.
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6.3.3.1 Three fins shape optimization: 1-D search space

The first two shape optimizations performed for the case of three fins in cross
flow is made over a one-dimensional search space: the first optimization investi-
gates θ1, while in the second, only y1 is investigated, corresponding to cases #1
and #2 in Table 6.3. In both cases, the symmetry along the middle fin is imposed
and we are looking for the optimal angle of attack θ1 in case #1, or the optimal
vertical position y1 in case #2, when all the other parameters are locked. The
optimizations have been performed with a population size ranging from 10 to 50
individuals as shown in Table 6.3.

As it is shown in Fig. 6.14, the total heat transfer rate from the three fins is

(a) Angle convergence (b) Heat transfer rate convergence

Figure 6.14: Convergence of (a) the optimal angle θ1 and (b) the overall heat
transfer rate

increased up to approximately q′opt = 6.8 W with the angle θ1,opt ≈ 19◦.

Figure 6.14 shows an example of the values of the angle θ1 and the overall
heat transfer rate q′ of all the individuals that have been evaluated through an op-
timization procedure over the 1-D search space of the θ1 values. In the particular
case shown in Fig. 6.14, the initial population size is set to 30. Each generation
corresponds to 30 candidates, meaning that every 30 simulations, a new population
is created by selecting the best individuals of the previous set of 30 simulations.
This is observed on Fig. 6.14(a) and 6.14(b) as both values of θ1 and q′ are refined
every 30 individuals’ fitness evaluation.
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It can already be observed in Fig. 6.14(b), that the evaluation of the over-
all heat transfer rate q′ ranges from approximately 6 W up to 6.8 W. By only
modifying the angle of attack of the fins, the total heat transfer rate can increase
by more than 10% from the worst to the best case scenario. An optimization over
a one-dimensional search space can already provide useful results.

Table 6.4 (resp. 6.5) presents the results obtained for the optimal angle θ1,opt
(resp. optimal vertical position y1,opt) and the corresponding total heat transfer
rate q′opt, for all the different initial population sizes investigated for cases #1 and
#2 from Table 6.3.

Table 6.4: Converged parameter θ1,opt and objective q′opt and total computational
time for the investigated initial population sizes, case #1.

Initial θ1,opt (◦) q′opt(W ) computational
pop. size time (min)

10 24.5 6.76 36
20 19.7 6.82 101
30 19 6.79 184
40 19.5 6.83 345
50 19.1 6.86 469

Table 6.5: Converged parameter y1,opt and objective q′opt and total computational
time for the investigated initial population sizes, case #2.

Initial y1,opt (◦) q′opt(W ) computational
pop. size time (min)

10 36.17 6.81 84
20 35.33 6.83 179
30 35.27 6.83 247
40 35.29 6.83 454
50 35.26 6.83 543

Interestingly, the solution provided by the genetic algorithm depends on the ini-
tial population size, for both the optimal parameter (θ1,opt or y1,opt) and the total
heat transfer rate q′opt, as shown in Tables 6.4 and 6.5. It should be noticed that,
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as already stated earlier, due to the huge amount of computational time required
for the convergence of these shape optimization procedure, it has not been possi-
ble to perform many of the same simulations in order to obtain statistical results.
However, it can already been observed that the dependency is not monotonic, and
for a population size higher than 20, the solution provided by the GA does not
depend on the population size anymore. This behavior is more easily observed on
Fig. 6.15 that illustrates the data presented in Tables 6.4 and 6.5.

(a) Case #1, varying θ1 (b) Case #2, varying y1

Figure 6.15: Results for (a) the optimal angle θ1,opt, (b) the optimal vertical posi-
tion y1,opt, and total heat transfer rate q′opt as a function of the population size for
shape optimizations over a 1-D search space, cases #1 and #2 from Table 6.3)

As it could have been expected at first sight, with larger population sizes,
the results are more accurate, repeatable and therefore present a higher level of
confidence. However this increase of reliability has a price: the computational cost.
Indeed Tables 6.4 and 6.5 also present the total computing time required for each
shape optimization to converge to the imposed convergence stability percentage
S = 2%, on 48 cores. These results are plotted in Fig. 6.16 for case #1 and #2.
A linear progression is fitted to the data using a least square method.

Figure 6.16 illustrates an expected result: the total computing time required
for the optimization to converge increases with the population size. A linear fit has
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(a) Case #1, varying θ1 (b) Case #2, varying y1

Figure 6.16: Optimization’s computing time t as a function of the population size
n for (a) case #1 and (b) case #2 - parallel computing on 48 cores.

been performed on each data set, as shown in Eq. 6.33 and 6.34. One important
result shown in Fig. 6.16 is that, even though optimizations over 1-D search space
dimension involving other parameters than θ1 or y1 have not been performed, it
appears that the relation between the population size and the computing time
depends on the number of parameters (search space dimension) rather than on the
parameter itself. Indeed the fitted linear curves, and especially the slopes, plotted
in Fig. 6.16(a) and 6.16(b) are very close.

t = 11.1× n− 106 (R2 = 0.973) (6.33)

t = 11.9× n− 56.5 (R2 = 0.969) (6.34)

The linear fitting could seem strange because the data plotted in Fig. 6.16(a)
and 6.16(b) appears not to follow a linear progression at first sight. However a
linear relationship between the computing time and the population size has been
reported by other authors [19] and this linear fit will become much clearer when the
results for the shape optimization over higher dimension search space will be pre-
sented, especially the results for the 4-D search space presented in Section 6.3.3.3.
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The results obtained from the MOGA differ slightly from a linear progression and
this could be due to multiple reasons. One of them is certainly the lack of time
or computing power available, that stand as an obstacle to the constitution of a
relevant statistical set of data. Therefore, some of the results presented in Tables
6.4 and 6.5 and in Fig. 6.16 could be misleading results that deviate from the
average result.

The objective of any GA user is to find the right balance between confidence
and execution time. In this particular case, with a small 1-D search space, an
optimization with a population of 20 individuals appears to provide an optimal
angle θ1,opt and an optimal vertical position y1,opt close to the result obtained with
a much larger population size. Moreover, this conclusion does not depend on the
parameter itself, but only on the number of parameters. According to these re-
sults, the "optimal" population size that balances confidence and computing time
in the case of the present optimizations #1 and #2, over a 1-D search space, is 20.

6.3.3.2 Three fins shape optimization: 3-D search space

Shape optimizations have been performed over a three-dimensional search space:
the optimal combination of three parameters, namely θ1, x1 and y1, is investigated.
This corresponds to the case #3 in Table 6.3 in which the symmetry about the
middle fin is still imposed on the top and bottom fins.

Table 6.6 presents the results obtained for the optimal angle θ1,opt optimal hor-
izontal position x1,opt and optimal vertical position y1,opt, and the corresponding
total heat transfer rate q′opt, for all the different initial population sizes investigated
for the case #3 from Table 6.3.

The first noticeable result presented in Table 6.6 is that the discovered optimal
overall heat transfer rate q′opt has increased from 6.8 W (case #1) to 7.23 W (case
#3) by allowing an optimization over a 3-D search space rather than over one di-
mension only. This result is not surprising since the optimal angle and position are
searched for, rather than the angle for a fixed position, nevertheless, the increase is
quite significant. Indeed the total heat transfer rate from the three fins optimized
in case #3 is increased by approximately 7% as compared to the optimal solution
of case #1.

The second result that should be looked at is the difference in the optimal
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Table 6.6: Converged parameters θ1,opt, x1,opt and y1,opt and objective q′opt and total
computational time for the investigated initial population sizes, case #3.

Initial θ1,opt (◦) x1,opt (mm) y1,opt (mm) q′opt(W ) computational
pop. size time (min)

20 24.6 17.8 33.7 7 165
25 22.7 31.9 30.6 7.2 267
30 24.9 31 32 7.2 451
35 23.8 32.2 33.3 7.23 484
40 23 32.2 31.7 7.23 622
50 23.6 32.3 31.1 7.23 1047
60 22.8 30.8 31.7 7.2 818
80 23.7 32.4 30.7 7.23 1053

solution for the angle θ1 between case #1 and #3. In case #1, the optimal angle
is θ1,opt1 ≈ 19◦ whereas in case #3, θ1,opt2 ≈ 23◦. This result could be an example
of the effect of non-linearity: a slight modification of a particular parameter in one
direction could have a positive a effect on the fitness function when all the other
parameters are fixed, but this same change could have a negative impact when
conjugated with changes of other parameters. This is the reason why the GA user
must define and parametrize the problem with care. In order to investigate the
effect of each parameter on the overall heat transfer rate from the fins, all the
evaluations of q′ performed through the successive generations of the optimization
with a population of 80 individuals are interpolated, resulting in a mapping of the
3-D fitness function q′(θ1, x1, y1). The projections of this interpolation on the 2-D
sub-spaces are shown in Fig. 6.17.

The first noticeable observation in Fig. 6.17 is that the results do not cover the
entire search space (θ1 ∈ [−45◦, 45◦], x1 ∈ [0mm, 40mm], y1 ∈ [20mm, 40mm]).
This phenomenon is due to the constraints that force the fins to remain inside the
fixed volume H × L.

Some parameters have a more important impact on the overall heat transfer
rate q′ than others. In this particular case #3, Fig. 6.17(b) and 6.17(c) show that
y1 has a small effect on the results compared to θ1 and x1. Indeed, if an iso-θ1
(resp. iso-x1) line is drawn on the data shown in Fig. 6.17(b) (resp. 6.17(c)), it can
be noticed that the q′ value changes only slightly along this line. In contrast, Fig.
6.17(a) and 6.17(b) show that θ1 is a high-impact parameter and similarly, Fig.
6.17(c) shows that x1 has more impact on the total heat transfer rate compared to
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(a) Projection on the (θ1, x1) 2-D sub-space (b) Projection on the (θ1, y1) 2-D sub-space

(c) Projection on the (x1, y1) 2-D sub-space

Figure 6.17: Overall heat transfer rate q′ results interpolated and projected on
different two-dimensional sub-spaces of the search space, case #3. The circle
markers correspond to raw evaluations.

y1. From Fig. 6.17(a), it seems that θ1 is globally the most impactful parameter
among the three.

Table 6.6 also presents the computing time required to complete all the case
#3 shape optimizations on 48 cores, as a function of the population size. These
results are shown in Fig. 6.18 and a linear progression is fitted to the data using
a least square method.

To begin with, the most noticeable element seen in Fig. 6.18 is the result obtain
with a population size of 50 individuals. The point (50,1047) plotted in Fig. 6.18
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Figure 6.18: Optimization’s computing time t as a function of the population size
n for case #3 - parallel computing on 48 cores.

deviates strongly from the linear fit. The reason of this deviation is believed to
come from the random characteristic of genetic algorithms that can, in some cases,
end up with a solution that is different from the average solution. This is a perfect
example that explains why the solutions from GAs should be studied statistically
by running several optimization procedures with the exact same parameters. Un-
fortunately, this statistical approach could not be achieved in this work due to
computing resource limitations. Indeed, a statistical study on the case #3 opti-
mization with a population of 80 individuals demands a huge computational effort
as a single complete optimization procedure takes approximately 1000 min, that
is to say, 16h 40m according to Table 6.6 (this result does not take the queuing
time into account).

Secondly, an important observation that can be made when looking at Fig.
6.18, is the increase of the linear fitting curve’s slope, compared to cases #1 and
#2 that are plotted in Fig. 6.16. The slope of the relationship between population
size and computing time increased from approximately 11 for a 1-D search space
to 15 for a 3-D search space. The relation between the slope of the t(n) curve and
n is investigated and discussed more precisely in Section 6.3.3.4.
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6.3.3.3 Three fins shape optimization: 4-D search space

The next set of shape optimizations corresponds to case #4 in Table 6.3. The
optimization is performed by searching for the optimal combination of four param-
eters: θ1, x1, y1 and θ2. The symmetry about the middle fin is no longer imposed
to the geometry because θ1 and θ2 can vary regardless.

The results obtained for the optimal angles θ1,opt and θ2,opt, optimal horizontal
position x1,opt and optimal vertical position y1,opt, and the corresponding total heat
transfer rate q′opt, are presented in Table 6.7, for all the different initial population
sizes investigated for the case #4 from Table 6.3.

Table 6.7: Converged parameters θ1,opt, x1,opt, y1,opt and θ2,opt and objective q′opt
and total computational time for the investigated initial population sizes, case #4.

Initial θ1,opt x1,opt y1,opt θ2,opt q′opt computational
pop. size (◦) (mm) (mm) (◦) (W) time (min)

15 -41.9 20.7 33.9 -35.6 6.9 141
20 24.8 31.4 33.7 -32.8 7.17 333
25 24.7 31.4 33.5 -23.4 7.21 484
30 35.5 31.6 33.3 -23.1 7.16 508
35 23.4 31.9 33.6 -24.5 7.22 662
40 23.1 31.5 34.1 -24.9 7.21 1245
50 24.1 30.6 33.9 -25.8 7.2 1202
60 23.1 31.9 32.9 -23.9 7.23 1354
80 24.3 31.9 32.4 -24.6 7.23 1840
100 24.9 31.6 33.1 -26.4 7.23 2015

The first important observation is that, when comparing Tables 6.6 and 6.7,
it can be noticed that the overall heat transfer rate obtained for the discovered
optimal solution on the 4-D search-space is 7.23 W, and therefore, no improvement
is made compared to the previous optimization on the 3-D search space.

One interesting aspect of the investigation of this #4 set of optimizations is
the potential asymmetry of the solutions. Indeed, the symmetry of the top and
bottom fins about the middle fin is forced in cases #1, #2 and #3, for which
x2 = x1, y2 = y1 and θ2 = −θ1. But in case #4, θ1 and θ2 are independent. How-
ever the results obtained and shown in Table 6.7 lead to the conclusion that the
optimal configuration is symmetrical, even though symmetry is not forced. Indeed
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the optimal solution provided by the GA is represented by the following combina-
tion: x1,opt ≈ 31.5mm, y1,opt ≈ 33mm, θ1,opt ≈ 24◦ and θ2,opt ≈ −25◦. Although
θ2 is free to vary regardless of θ1, the GA ended up with an optimal solution close
to the one obtained for the case #3 as seen in Fig. 6.19. Indeed, the projection
of the investigated solutions of case #4 for a population of 100 individuals on the
two-dimensional sub-spaces (θ1, x1), (θ1, y1) and (x1, y1) are presented in Fig. 6.19,
and the main observation is that these results are close to the ones from case #3,
presented in Fig. 6.17. More precisely, similarities are observed in the range of
overall heat transfer rate resulting from the investigated solutions, the location
of the areas of solutions with high heat transfer rates, the monotony of q′ as a
function of y1, and so on.

Moreover, Fig. 6.20 shows the projection of the solutions on the (θ1, θ2) 2-D
sub-space. The results from Fig. 6.20 seem symmetrical about the red dashed
line. This line corresponds to symmetrical configurations: the top and bottom fins
are symmetrically oriented about the middle fin as θ2 = −θ1 on this line. Addi-
tionally, two solutions in Fig. 6.20 symmetrically located about the red dashed
line are, in theory, equivalent. Indeed the configuration (with x1 and y1 being
fixed) where θ1 = α and θ2 = β is, in theory, the exact same configuration as
the one with θ2 = −α and θ1 = −β. That is why the projection of the solutions
on the (θ1, θ2) space is symmetrical about the red dashed line as shown in Fig. 6.20.

From this figure, it can be seen that the solution with the highest overall heat
transfer rate is located on the line of symmetrical configurations, at the bottom
right corner of Fig. 6.20, which is coherent with the result of the GA presented
in Table 6.7. However, Fig. 6.20 also shows that asymmetrical solutions can score
higher overall heat transfer rates than certain symmetrical solutions. For example,
configurations where 25◦ ≤ θ1 ≤ 35◦ and 5◦ ≤ θ2 ≤ 30◦ which correspond to the
orange area in the top-right corner in Fig. 6.20, or the equivalent configurations
across the red dashed line for −35◦ ≤ θ2 ≤ −25◦ and −30◦ ≤ θ1 ≤ −5◦, all present
a total heat transfer rate of 7 W on average. On the other hand, the symmetrical
and near-symmetrical configurations close to the parallel case with −10◦ ≤ θ1 ≤ 0◦
and 0◦ ≤ θ2 ≤ 10◦ result in an overall heat transfer rate of approximately 6.6 W.
Interestingly, although the best solution is symmetrical, non-symmetrical geome-
tries performed better than the close-to-parallel symmetrical configurations, with
a total heat transfer rate increased by about 6 % for these particular sets of con-
figurations.
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(a) Projection on the (θ1, x1) 2-D sub-space (b) Projection on the (θ1, y1) 2-D sub-space

(c) Projection on the (x1, y1) 2-D sub-space

Figure 6.19: Overall heat transfer rate q′ results interpolated and projected on
different two-dimensional sub-spaces of the search space, case #4, population size
equal to 100. The circle markers correspond to raw evaluations.

Although the GA provides an optimal solution for case #4 similar to the one
from case #3, the computing time required to discover this same optimal solution
has increased compared to case #3 along with the slope of the linear relationship
of the computing time as a function of the population size, as presented in Table
6.7 and illustrated in Fig. 6.21:
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Figure 6.20: Overall heat transfer rate q′ results interpolated and projected on the
(θ1, θ2) 2-D sub-space, case #4, population size equal to 100. The circle markers
corresponds to raw evaluations and the dashed red line correspond to symmetrical
configurations.

6.3.3.4 Three fins shape optimization: 5-D search space

For this case #5 of shape optimizations presented in Table 6.3, the search-space
is five-dimensional, as the solutions are a combination of five parameters: θ1, x1,
y1, θ2 and x5.

The results obtained for the optimal angles θ1,opt and θ2,opt, optimal horizontal
position x1,opt and x5,opt and optimal vertical position y1,opt, and the corresponding
total heat transfer rate q′opt, are presented in Table 6.8, for all the different initial
population sizes investigated for the case #5 from Table 6.3.

The difference between cases #4 and #5 lies only in the possibility for the
horizontal position of the middle fin to vary. It has already been precised that
even though only the relative position of the fins matters in theory, adding x5
as a modifiable parameter does increase the search-space dimension by one. The
first interesting result that can be seen in Table 6.8 is that performing the shape
optimization over this particular 5-D search-space enabled the discovery of a new
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Figure 6.21: Optimization’s computing time t as a function of the population size
n for case #4 - parallel computing on 48 cores.

Table 6.8: Converged parameters θ1,opt, x1,opt, y1,opt, θ2,opt and x5,opt and objective
q′opt and total computational time for the investigated initial population sizes, case
#5.

Initial θ1,opt x1,opt y1,opt θ2,opt x5,opt q′opt computational
pop. size (◦) (mm) (mm) (◦) (mm) (W) time (min)

40 18.5 16.4 30.6 -21.1 10.4 7.26 770
50 22.1 21.8 33.4 -20.8 13.2 7.25 1102
60 23.5 15.5 32.6 -21.2 9.7 7.269 1221
80 23.2 16.2 32.4 -21.3 10.1 7.268 2103

optimal solution that scores an even higher total heat transfer rate with approx-
imately 7.27 W, compared to the 7.23 W of cases #3 and #4. As the fins are
confined in the fixed volume H × L, allowing the middle fin to move horizontally
leads to new values of relative positions between the fins, among which, an even
fitter one.

The projections of the solutions obtained for the individuals investigated through-
out the shape optimization process of case #5 with a population size of 80 does
not provide additional information but are presented in Appendix B.
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Nevertheless, Table 6.8 provides information about the computing time re-
quired to perform the shape optimization over a five-dimensional search-space.
These computing time results are illustrated in Fig. 6.22:

Figure 6.22: Total optimization’s computing time as a function of the population
size for case #5 - parallel computing on 48 cores.

An increase of both the computing time required to perform the shape opti-
mization for a given population size, and the slope of the relationship between
computing time and population size, is also observed for the case #5 as shown in
Fig. 6.22. Although the study could not be performed over more search-spaces
of different dimensions, an investigation can be done on the effect of the number
of parameters (or search-space dimension) on the total computing time required
for the GA to discover an optimal solution when coupled with CFD simulations.
As it has been shown through the different cases, from case #1 to #5, the re-
lationship between population size and computing time follows a linear behavior
and the slope of this linear relationship increases with the search-space dimen-
sion. Indeed, Fig. 6.16(a), 6.18, 6.21 and 6.22 are combined together in Fig. 6.23
in order to show the evolution of the slope of t(n) with the search-space dimension.

As it is shown in Fig. 6.23, the relationship between computing time and pop-
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Figure 6.23: Optimization’s computing time t as a function of the population size
n and the search-space dimension p - parallel computing on 48 cores.

ulation size t(n) is linear for a given search-space dimension p. The t(n) curves
present an increasing slope with p and are close to proportional curves, that is to
say linear relationships with a y-intercept equal to 0, except for the 5-D search-
space (p = 5) results. The discrepancy could possibly be due to misleading isolated
results compared to the mean results one would have obtained with a statistical
study. Nevertheless, the increase of the t(n) slope with p is undeniable. Such
linear relationship t(n) and such evolution of the slope of t(n) with the problem’s
complexity have been reported by Alander [19]. In his paper, Alander uses a test
problem that is to find a sub-bitstring of size m of a given bitstring. The fit-
ness function is the hamming distance between the chromosome and the targeted
string. The complexity is defined by Alander to be the sub-bitstring’s length, that
is to say, m. His study is extensively described in [19]. Fig. 6.24 shows the execu-
tion time t as a function of the population size n and problem complexity c (with
c = m).

The results from [19] show a linear relationship between the population size and
the processing time for a given problem’s complexity c, and show an increase of the
t(n) linear relationship’s slope with the problem’s complexity. In Alander’s study,
the complexity is well defined, namely: the complexity is the length of the sub-
bitstring that must be determined. Therefore, he is able to present results of the
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Figure 6.24: Optimization’s computing time t as a function of the population size
n and the problem’s complexity c (time in relative units), [19].

slope of the t(n) curve, k1, as a function of the complexity c, as shown in Fig. 6.25.

Alander [19] fitted a linear curve to the data he obtained for the t(n) curve’s
slope k1 as a function of the complexity c as shown in Fig. 6.25. The relationship
between k1 and c appears to be rather non-linear at low complexity problems and
tends towards linearity with increasing complexity.

Unlike Alander’s study in which the complexity is well defined, the complex-
ity of the present optimization problem depends on many parameters such as the
search-space dimension, the way the fitness function is calculated, that is to say
by using a CFD simulation, thus depending on the flow characteristics, and so on.

Figure 6.26 shows the relationship between k1, the slope of the t(n) curve,
and p, the search-space dimension, based on the results from the present shape
optimization procedure:
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Figure 6.25: Slope of the processing curve k1 as a function of the complexity c, [19].

Figure 6.26: Slope of the t(n) curve k1 as a function of the search-space dimension
p, present work.

As shown in Fig. 6.26, the relationship between the search-space dimension p,
and the slope of the t(n) linear curve k1, is fitted with a square function. The slope
of the linear relationship between processing time and populations size k1 increases
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proportionally to the square of the search-space dimension p. When comparing
these results to the results from [19] shown in Fig. 6.25, it can be hypothesized
that: (i) either the complexity c of the present problem is proportional to the
search-space dimension p and the results presented in Fig. 6.26 correspond to the
low end of the complexity values shown in Fig. 6.25, for 7 ≤ c ≤ 15 approximately,
or (ii), c is proportional to the square-root of p in the present case. In order to
compare the results from different studies, a repeatable method for the evaluation
of complexity, independent of the problem’s type, is required.

Additionally, it has been highlighted that the solution provided by the shape
optimization procedure converges to a constant value with the increase of the
population size. Therefore, there is, for each search-space dimension, a minimum
population size that enables the discovery of the optimal solution that does not
depend on the population size anymore. The optimal population, that is to say,
the minimum population that achieves the discovery of the population size’s in-
dependent solution, is estimated from Tables 6.4, 6.6, 6.7 and 6.8, and is plotted
against the search-space dimension in Fig. 6.27.

(a) Optimal population size nopt against
search-space dimension p

(b) Minimum population size s against problem’s
complexity c [19]

Figure 6.27: Optimal population size as a function of the search-space dimension
(present work) and the complexity (from [19]).

According to the estimation of the optimal population size nopt from the
present numerical results, the relationship between nopt and the search-space di-
mension p is fitted with a second-order polynomial curve, as shown in Fig. 6.27(a),
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such as nopt appears to increase with the square of p. Alander reports non-linear
results regarding the relationship between the minimum population size and the
problem’s complexity as shown in Fig. 6.27(b) [19]. A good agreement is notice-
able regarding the trends in Fig. 6.27(a) and 6.27(b).

However, the small amount of available data in the present work, due to com-
puter resource limitations, in addition to the difficulty to define a complexity
parameter that does not depend on the problem’s type, is preventing a more rele-
vant comparison between results obtained from the shape optimization procedure
combined with CFD simulations and the results reported by Alander [19]. It also
should be noted that the present results must be considered with care as they
are isolated results, which means that the problem is not studied statistically, as
mentioned in Section 6.3.3.2.

6.3.4 Flow study of the optimal solution
All the different shape optimization procedures presented in Sections 6.3.3.1 to

6.3.3.4, that is to say cases #1 to #5, have provided an optimal solution to the
problem of the three fins in cross flow. The optimal solution discovered by the
ANSYS MOGA is analyzed and compared to another configuration in an attempt
to understand the physics that could explain the advantage of this particular ge-
ometry that has been found to be optimal.

The optimal configuration is represented by the following vector of parame-
ters: (θ1,opt = 23◦, x1,opt = 16mm, y1,opt = 32.5mm, θ2,opt = −21◦, x5,opt = 10mm)
as shown in Table 6.8. This optimal configuration is compared to the geometry
(−23◦, 16mm, 32.5mm, 21◦, 10mm). This geometry correspond to the "convergent"
version of the "divergent" optimal configuration as illustrated in Fig. 6.28 where
both geometries are presented.

Firstly, the pressure and velocity fields have been compared as shown in Fig.
6.29 and 6.30 respectively.

Figure 6.29 shows the pressure field for both the optimal and convergent ge-
ometries. Firstly, it can be observed that the pressure range is similar for both
configurations with 101315 Pa ≤ P ≤ 101335 Pa. Interestingly, because of the
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(a) (b)

Figure 6.28: Investigated geometries: the optimal geometry
(23◦, 16mm, 32.5mm,−23◦, 10mm) (a) is compared to another configuration
(b) (−23◦, 16mm, 32.5mm, 23◦, 10mm) in an attempt to understand what makes
the optimal configuration optimal.

(a) (b)

Figure 6.29: Pressure field for the optimal geometry
(23◦, 16mm, 32.5mm,−23◦, 10mm) (a) and the convergent geometry
(−23◦, 16mm, 32.5mm, 23◦, 10mm) (b)

inclination of the top and bottom fins, low pressure recirculation zones and high
pressure zones around the stagnation points create completely different pressure
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(a) (b)

Figure 6.30: Velocity field for the optimal geometry
(23◦, 16mm, 32.5mm,−23◦, 10mm) (a) and the convergent geometry
(−23◦, 16mm, 32.5mm, 23◦, 10mm) (b)

fields between Fig. 6.29(a) and 6.29(b).

In Fig. 6.29(a), the top (resp. bottom) fin’s stagnation point is located on
the top (resp. bottom) side of the fin, that is to say, the stagnation points on fins
1 and 2 (top and bottom fins) are located at the outter side of the fins, and there-
fore, high pressure regions (with P ≈ 101.332 Pa) appear outside the heat sink.
On the other hand, the low pressure recirculation zones created by the inclination
of the top and bottom fins are located towards the middle fin as shown in Fig.
6.29(a). As a result, a P ≈ 101.316 Pa low pressure zone appears in between the
top and middle fin as well as between the bottom and middle fin, creating a low
pressure corridor around the middle fin. This low pressure corridor explains why
the velocity around the middle fin is higher in Fig. 6.30(a), with V ≈ 0.18 m · s−1,
than in Fig. 6.30(b) with V ≈ 0.13 m · s−1. Unlike what was expected, the "con-
vergent" situation leads to a decrease of the velocity and an uneven value of the
velocity along the middle fin, whereas the optimal "divergent" geometry enables a
higher, almost constant, velocity along the entire length of the middle fin.

As shown in Fig. 6.29 and 6.30, the pressure and velocity fields of both cases
around the top and bottom fins are very similar qualitatively and quantitatively.
The heat transfer rate from the top and bottom fins is expected not to be different
between the optimal case and the convergent case. However, because of the pres-
sure distribution and the resulting velocity field around the middle fin, the heat
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transferred from the middle fin is expected to be higher in the optimal situation.

The temperature field of both the optimal and the convergent case are shown
in Fig. 6.31.

(a) (b)

Figure 6.31: Temperature field for the optimal geometry
(23◦, 16mm, 32.5mm,−23◦, 10mm) (a) and the convergent geometry
(−23◦, 16mm, 32.5mm, 23◦, 10mm) (b)

The difference in the temperature field, and especially the developing thermal
boundary layers, between the optimal and the convergent case is not visible at this
scale and therefore, a local study is conducted, that focuses on the middle fin.

The temperature is monitored along radial lines placed along the middle fin,
corresponding to the blue lines shown in Fig. 6.32.

The distance from the wall δ99 at which the local fluid temperature has
decreased to reach the temperature of T99 = T∞ + 0.01× (Tw − T∞) is defined as
the "99% thermal boundary layer thickness". This distance is representative of the
capacity of the fin to transfer heat to the surrounding fluid in the sense that, the
thicker the thermal boundary layer, the higher the distance between near-wall hot
fluid, and further colder fluid, that is to say, the higher the thermal resistance. The
99% thermal boundary layer thickness δ99 is plotted as at the monitored locations
along the middle fin as shown in Fig. 6.33.
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Figure 6.32: Monitoring positions. Nineteen 1 mm long radial lines numbered
from 1 to 19 from left to right and seven 14 mm long horizontal lines numbered
from 1 to 7 with increasing distance from the wall.

Figure 6.33: Boundary layer thickness along the middle fin.

As shown in Fig. 6.33, the boundary layer developing along the middle
fin in the optimal case is thinner than in the convergent case up to x ≈ 9mm,

with a relative difference
∣∣∣∣∣δ99,opt − δ99,conv

δ99,conv

∣∣∣∣∣ up to 17% at x = 3mm, and thicker

for 9mm ≤ x ≤ 15mm, which involves that the thermal resistance in the first half
along the fin is smaller in the optimal case. This would imply a better heat transfer
in this region, in the optimal case compared to the convergent case.
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In order to pursue the investigation, the study of heat transfer related quan-
tities at the fins surface, is conducted. First of all, the overall Nusselt number
Nu = hL/k, of each fin are compared, as presented in Table 6.9. The wall heat
transfer coefficient h and the fluid’s thermal conductivity k are obtained from the
simulation, and the length that has been used to compute the Nusselt number is
L = 10 mm.

Table 6.9: Comparison of the surface-averaged Nusselt numbers of each fin for the
convergent and the optimal cases

Convergent case Optimal case
top middle bottom top middle bottom
fin fin fin fin fin fin
375 436 374 387 458 388

The results shown in Table 6.9 show that in both cases, the overall Nusslet
number of the middle fin is higher than the Nusselt number of the top and bot-
tom fins. As the geometries under investigation are almost symmetrical, it is
not surprising to have close overall Nusselt numbers for the top and bottom fins.
More interestingly, the results shown in Table 6.9 can be observed in the light of
the expectations presented in the previous paragraph. Indeed, the overall Nusselt
number of the top (resp. bottom) fin in the optimal case, is slightly higher with
Nu = 387 (resp. 388), than the top (resp. bottom) fin in the convergent case which
scores 375 (resp. 374). However, the increase of performance from the convergent
to the optimal case is more pronounced on the middle fin with an increase of over-
all Nusselt number from 436 to 458.

As extensively presented in Sections 3 and 5, the local characteristics of physical
quantities related to heat transfer must be taken into account. Figure 6.34 shows
the local Nusslet number at the surface of the middle fin for both the optimal and
the convergent geometries. The horizontal location x is defined from the leading
edge of the middle fin: x = 0 mm and x = 0 mm respectively correspond to the
leftmost and rightmost point of the fin.

As shown in Fig. 6.34, the local Nusselt number varies significantly along the
middle fin in both the optimal and the convergent cases. The higher local Nus-
selt number is reached, in both cases, near the stagnation point, where the flow
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Figure 6.34: Local Nusselt number along the middle fin’s surface for both optimal
and convergent cases.

impinges the fin. The local Nusselt then decreases rapidly from 0 mm to 2 mm,
and remains stable along the fin after the flow passed the fin’s rounded corner.
Moreover, the local Nusselt number is higher in the optimal case up to x ≈ 8mm,
which correlates well with the observation that the boundary layer thickness is
smaller in this region in the optimal case, as shown in Fig. 6.33. The evolution of
near-wall components have also been monitored into adjacent wall cells, that is to
say in the thermal boundary layer, at the different monitoring locations along the
fin shown in Fig. 6.32.

The time-averaged of the streamwise velocity gradient term ∂u

∂x
is monitored

from the fin’s surface up to a distance of 1 mm away from the wall at the nineteen
different different locations along the fin’s surface shown in Fig. 6.32. The results
for both cases are shown in Fig. 6.35.

The legend representing the results obtained from the monitoring lines num-
bered from 6 to 19, is omitted for clarity, as the results fall down to relatively low
values compared to the results at locations 1 to 5 as it can be observed in Fig.
6.35. Results are very similar qualitatively between the convergent and optimal
case. Indeed the streamwise velocity gradient increases rapidly as the fluid flows
around the rounded corner with a peak at location 3 and decreases as rapidly as
it increased, until it reaches a flat low value that stays approximately constant
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(a) Convergent case (b) Optimal case

Figure 6.35: Time-averaged streamwise velocity gradient in the near-wall region at
different locations along the middle fin. ∆r represents the perpendicular distance
from the wall.

along the fin. However, the results differ quantitatively with a maximum absolute
value for the streamwise velocity gradient 40% higher in the optimal configuration
compared to the convergent situation. The difference in value of the streamwise
velocity gradient can explain the difference in local Nusselt number values at this
location as the streamwise velocity gradient represents the convective acceleration.

The observation of the streamwise velocity gradient and the local Nusselt num-
ber is refined on the near wall region after the rounded corner corresponding to
1 mm ≤ x ≤ 8 mm in Fig. 6.34. ∂u

∂x
is monitored at fixed radial distances

from the fin’s surface, from 1 mm to 8 mm along the fin after the rounded corner.
This corresponds to the seven horizontal lines shown in Fig. 6.32. The stream-
wise velocity gradient is averaged in the radial direction in order to obtain a local
radially-averaged streamwise velocity gradient along the fin, as presented in Fig.
6.36, against the local Nusselt number, for both the convergent and the optimal
cases.

As shown in Fig. 6.36, the local Nusselt number and the local streamwise veloc-
ity gradient present a reasonable degree of coherence. Indeed, higher values of the
streamwise velocity gradient for small x ≤ 2 in the optimal configuration causes
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(a) Convergent case (b) Optimal case

Figure 6.36: Radially-averaged local streamwise velocity gradient in the near-wall
region along the middle fin against the local Nusselt number.

a higher local Nusselt number in this region which then decreases progressively as
shown in Fig. 6.36(b). On the other hand, the streamwise velocity gradient does
not exceed 30 s−1 for x ≤ 2 for the convergent case, which leads to a lower local
Nusselt number as shown in Fig. 6.36(a).

Another interesting component to observe in the near-wall region is the tur-
bulent kinetic energy k = 1/2(u′2 + v′

2 + w′
2) (where w = 0 in two-dimension).

The turbulent kinetic energy is averaged radially and plotted as a function of the
location along the fin and against the local Nusselt number, in Fig. 6.37.

As shown in Fig. 6.37, the coherence between the turbulent kinetic energy and
the local Nusselt number is more important than between the streamwise velocity
gradient and Nux. It is clear that the increase in local Nusselt number for the
optimal case, compared to the convergent geometry, is related to an increase of
the turbulent kinetic energy in the first half region along the fin, near the wall.
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(a) Convergent case (b) Optimal case

Figure 6.37: Turbulent kinetic energy k = 1/2(u′2 + v′
2) in the near-wall region

along the middle fin against the local Nusselt number.

6.4 Summary of the chapter
Numerical results of a shape optimization that aims at maximizing the overall

heat transfer rate from a heat sink composed of three or five fins, are presented in
Chapter 6.

The numerical shape optimization procedure uses a genetic algorithm combined
with a numerical CFD model, and is validated against analytical results in Section
6.2. A good agreement is found between the present numerical results and the
analytical study.

This shape optimization procedure is then used to search for an optimal ge-
ometry that maximizes the heat transfer rate from three fins in cross flow, as
presented in Section 6.3. Several different optimizations are performed in order
to investigate the behavior of the genetic algorithm when combined with CFD
simulations as the fitness function’s evaluations. The convergence of the optimal
solution discovered by the optimization procedure towards a constant configura-
tion that does not depend on the GA’s parameters indicates that the optimization
procedure is capable of finding the optimal solution.

Moreover, a new study on the effects of one particular GA’s parameter (which

200



6.4. SUMMARY OF THE CHAPTER

is the population size) on the results provided by the GA when used in combina-
tion with CFD simulations, and on the total processing time, is undertaken. The
results show that the relationship between the population size and the computing
time, for a given search-space dimension, is linear. However the slope of this lin-
ear curve increases with the dimension of the search-space. These results are in
good agreement with results from the literature although they refer to different
types of optimization problems and fitness functions. One of the next challenges
in the understanding of genetic algorithms, is the definition of the complexity of
an optimization problem, regardless of the problem’s type.

Finally, the flow field and the local heat transfer from the fins of two different
geometrical configurations, one "bad" solution, and the optimal one, are studied
and compared. The increase of heat transfer rate in the optimal case, compared
to the convergent case, is related to the increase of the local streamwise velocity
gradient ∂u

∂x
and turbulent kinetic energy k, especially along the middle fin, that

presents a higher increase compared to the side fins. The increase of ∂u
∂x

and k and
the decrease of the thermal boundary layer thickness responsible for the higher
heat transfer rate in the first half along the fin, could be explained by the increase
of the velocity around the middle fin as the optimal geometry leads to the creation
of a low pressure corridor that drives and accelerates the fluid.
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Chapter 7

Conclusions and further work

7.1 Summary of the findings of this research work

This study is an investigation of the shape optimization of heat transfer struc-
tures surrounded by a fluid. A complete shape optimization approach is detailed,
from the development of a computational fluid dynamics model that accurately
evaluates the heat transfer phenomena in a fluid flow situation, to the development
of a shape optimization procedure that resorts to the CFD model. One important
aspect of this study is that both the CFD and the shape optimization processes are
validated against experimental and analytical data from the literature and from
in-house results.

Based on the literature review, most of the studies dealing with the under-
standing of heat transfer phenomena focused on simple geometries such as cylin-
ders. However, some authors report enhancement of heat transfer characteristics in
some cases with several bodies, more complex geometries, which confirms that the
heat transfer potential can be improved by a shape modification. Additionally, the
unsteady and local aspects of the heat transfer phenomena have been highlighted
in the literature review. As a result, the investigation of a shape optimization
approach using a CFD model that accurately predicts heat transfer phenomena,
is undertaken.

The choice of the optimization method is guided by the literature review, that
presents different methods with their advantages, and limitations. Genetic algo-
rithms are recognized as the best approach to deal with heat and mass transfer
problems, leading to the development of a shape optimization procedure featuring
a CFD model and a genetic algorithm. This optimization process is used to search
for the optimal geometry of a three fins heat sink in cross flow. This chapter
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highlights the main conclusions regarding the objectives stated in Section 1.3, and
precised in Section 3.4, and presents possible new trails of investigation regarding
the shape optimization of heat and mass transfer structures.

• A CFD numerical model has been developed to solve the flow around two close
cylinders in natural convection. Realistic boundary conditions, computational do-
main, fluid properties and turbulence models have been adjusted based on a real
natural convection heat transfer situation as presented in Section 4.3. The results
from the numerical model have been compared to experimental data obtained from
the real situation [105] and show a good agreement. The availability of detailed
time-resolved flow and heat transfer data from the URANS simulations has pro-
vided insight into the interacting flow from two cylinders in natural convection,
beyond the practical limitations of experimental measurements.

• Consequently, a shape optimization procedure featuring a genetic algorithm has
been developed around the CFD model in order to optimize the geometry of com-
plex structures for maximizing the heat transfer. After validation, a new study on
how genetic algorithms operate when combined with CFD simulations has been
conducted in the case of the shape optimization of a three fins heat sink in cross
flow. The results provided by the GA converge towards a constant solution with
the increase of the population size which indicates that an optimal solution exists
and can be discovered by the GA when combined with the present CFD model.
Moreover, a linear relationship between the computing time and the population
size which agrees with other studies [19] is found, and a relationship between the
search-space dimension and the slope of the linear curve is highlighted.

7.2 Suggestions for further work
A shape optimization procedure using genetic algorithms and CFD simulations

to search for optimal geometries that maximize the heat transfer has been de-
veloped, validated, and provides promising results regarding the improvement of
our understanding of GAs in combination with the developed CFD model, and
regarding the improvement of heat transfer structure designs.

The utilization of such shape optimization procedure featuring a GA and CFD
simulations can be extended to different problems, particularly to mass transfer
problems as mass and heat transfer phenomena are similar. The study of coral
growth using such shape optimization tool was initially considered.
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Coral growth cannot be explained by pure shape optimization. Indeed, sev-
eral other phenomena are, at least partially, responsible for the development of
corals. The process of accretion for example, is reported by some authors to be
one of the main phenomena that drive the coral growth [3]. Another example
is the active enhancement of mass transport that corals can perform using small
polyps that generate vortices in the boundary layer as reported by Shapiro et al. [5].

However, the enhancement of mass transfer and growth dynamics inside coral
colonies can be affected by hydrodynamic phenomena. For example, the increase
of the velocities inside the colony, and thus the increase of mass transfer, can be
related to the presence of waves, as compared to a steady flow, in which case the
velocity outside the colony is much higher than inside [4]. The shape optimization
procedure developed in this work can be adapted to investigate the effect of the
addition of waves to a steady flow on the optimal shape of heat or mass transfer
structures. A CFD model that simulates the five fins heat sink in an oscillating
flow has been developed but the model uses a URANS simulation for which the
computational cost is much higher compared to a RANS simulation. It is compre-
hensible that the optimization of the heat sink in an oscillating - wave induced -
flow would only be possible with significant computing resources.

The following points list different investigations that could be conducted in
order to progress in our understanding of shape optimization and its applications
on heat transfer structures improvement as well as on the study of organisms re-
lying on mass transfer such as corals.

• To pursue the investigation of the effects of GA’s parameters on the results and
computing time, and define the "complexity" of a GA as a characteristic that allows
a comparison between optimization problems different in nature. This character-
istic could enable the GA user to have some expectations regarding the results,
based on other optimization problems.

• To use an adaptive population size genetic algorithm in order to cope with the
issue of the determination of the optimal population size. Obviously this method
would be a less cost-effective option compared to a fixed population size GA for
which the optimal population size has been accurately evaluated. However, this
method could appear beneficial considering the difficulty to evaluate the optimal
population size of a given optimization problem.

• To perform the shape optimization for cases with an increasing number of fins
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in order to move towards bio-inspired geometries. Obviously the computing re-
sources are the main limitation in this case. The use of parallel computing and
large number of processors is required, and in order to increase the available num-
ber of cores, the use of another, open-source, CFD solver, such as OpenFOAM,
could be beneficial in order to deal with license restrictions.

• To consider three-dimensional structures. Indeed, the shape optimizations pre-
sented in this work have been done on two-dimensional bodies. One challenging
improvement (in terms of computing resources mainly) of the present work is to
extend the shape optimization procedure to three-dimensional geometries, as an-
other step towards bio-inspired shapes.

• To use this shape optimization procedure in order to understand coral growth
dynamics at a colony level by superimposing waves-induced movements to the
steady flow. The unsteady simulations required to solve such unsteady flow, that
are performed at each fitness evaluation, imply a significant increase of the avail-
able computing resources.

7.3 Publications
The results obtained during the course of this PhD project are synthesized in

two peer-reviewed journal articles and conference materials as listed below.

• Q. Pelletier, T. Persoons and D.B. Murray, Numerical Study of the Natural
Convection Heat Transfer of a Pair of Vertically Aligned Horizontal Cylinders, 1st
CADFEM Ireland Users’ Meeting ANSYS Regional Conference, Dublin, Ireland
(2014)

• Q. Pelletier, D.B. Murray and T. Persoons, Unsteady natural convection heat
transfer from a pair of vertically aligned horizontal cylinders, Int. J. Heat Mass
Transfer vol. 95 pp. 693-708 (2016)

• Q. Pelletier, D.B. Murray and T. Persoons, Numerical optimization of unsteady
natural convection heat transfer from a pair of horizontal cylinders, 7th European
Thermal-Sciences Conference, 19-23 June 2016, Krakow, Poland

• Q. Pelletier, T. Persoons and Sajad Alimohammadi. Numerical shape opti-
mization of two-dimensional fins in cross-flow: on the effects of the population size
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of genetic algorithms for CFD applications. In preparation.
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Appendix A

Thermal plume oscillations
visualization

The video of the simulation conducted to capture the flow and heat transfer
interactions between two cylinders thermal plumes can be visualized at the adress
below. The pictures presented in Fig. 5.12 have been taken from this video.

The video depicts the formation, development and swaying of the thermal plume
arising from the heated cylinders initially placed in water at rest, for the most in-
vestigated case Ra = 3.35× 106 and S = 3D.

https://drive.google.com/open?id=0B0Q2curze67ORnN3V2VKb08yVTQ
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Appendix B

Results from the shape
optimization investigation

B.1 Three fins shape optimization over a four
dimensional search-space

The additional two-dimensional projections of the 4-D search-space studied in
Section 6.3.3.3 are presented in Fig. B.1.

(a) Projection on the (x1, θ2) 2-D sub-space (b) Projection on the (y1, θ2) 2-D sub-space

Figure B.1: Overall heat transfer rate q′ results interpolated and projected on
different two-dimensional sub-spaces of the search space, case #4, population size
equal to 100. The circle markers corresponds to raw evaluations.
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B.2. THREE FINS SHAPE OPTIMIZATION OVER A FIVE DIMENSIONAL
SEARCH-SPACE

B.2 Three fins shape optimization over a five di-
mensional search-space

The 2-D sub-spaces of the 5-D search-space studied in Section 6.3.3.4 are pre-
sented in Fig. B.2 and B.3.

(a) Projection on the (θ1, x1) 2-D sub-space (b) Projection on the (θ1, y1) 2-D sub-space

(c) Projection on the (θ1, θ2) 2-D sub-space (d) Projection on the (θ1, x5) 2-D sub-space

Figure B.2: Overall heat transfer rate q′ results interpolated and projected on
different two-dimensional sub-spaces of the search space, case #5, population size
equal to 80. The circle markers corresponds to raw evaluations.
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APPENDIX B. RESULTS FROM THE SHAPE OPTIMIZATION
INVESTIGATION

(a) Projection on the (x1, y1) 2-D sub-space (b) Projection on the (θ2, x1) 2-D sub-space

(c) Projection on the (x1, x5) 2-D sub-space (d) Projection on the (θ2, y1) 2-D sub-space

(e) Projection on the (y1, x5) 2-D sub-space (f) Projection on the (x5, θ2) 2-D sub-space

Figure B.3: Overall heat transfer rate q′ results interpolated and projected on
different two-dimensional sub-spaces of the search space, case #5, population size
equal to 80. The circle markers corresponds to raw evaluations.
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