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Summary

In this thesis the spontaneous emission, of a single quantum emitter, and the energy trans-
fer, between a pair of quantum emitters, rates are investigated in the presence of conducting
nanostructures. The competition between these two rates leads to the introduction of the en-
ergy transfer efficiency. Metallic and graphene nanostructures are investigated. The excitation
of surface plasmon modes, hybrid modes of the conduction band electrons and the electro-
magnetic field, is crucial for enhancing the spontaneous emission and energy transfer rates,
compared with their free space values.

The near field of the quantum emitters can directly excite the surface plasmon modes. The
surface plasmon wavelengths depend on the shape and material properties of the nanostruc-
tures. The spectral and distance dependences of the spontaneous emission and energy transfer
processes are studied. It is of particular interest, from the point of view of applications, to be
able to manipulate the light at nanometer distances.

In particular, metallic multilayer planar and cylindrical geometries are investigated. The
noble metals, Ag and Au, are used as the conducting metallic medium. Their surface plas-
mon wavelengths lie in the visible part of the spectrum. For planar geometries the distance
and spectral dependences of the spontaneous emission rate are analyzed, and their connection
with the dispersion relation, the propagation length and penetration depth of the surface plas-
mon mode is pointed out. For the dielectrically coated cylinder the influence of the coating
on coupling with the near field of the quantum emitters and excitation of the surface plasmon
mode, which subsequently leads to larger interactions distances, is presented. The energy
transfer efficiency is influenced by the overlap of the emission spectrum, of the donor quan-
tum emitter, and the absorption spectrum, of the acceptor quantum emitter, with the surface
plasmon resonance wavelength. Then, the interaction distance between the quantum emitters
can be enhanced compared with their free space value. Tuning the surface plasmon wave-
length to the emission wavelength of the donor via the geometrical and material parameters of
the coated cylinder allows control of the energy transfer efficiency.

Furthermore, a graphene monolayer and graphene nanodisk are considered as conducting
media supporting surface plasmon modes. Their surface plasmon wavelengths lie in the near to
far infrared part of the spectrum. For the gated graphene monolayer the influence of the prop-
agation length and penetration depth on the energy transfer rate is presented. The graphene
monolayer can support efficient coupling between the quantum emitters up to distances of
300 nm when the quantum emitters are on resonance with the surface plasmon mode.

For the graphene nanodisk the surface plasmon frequencies are investigated. Different tran-
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sition dipole moments of the quantum emitters excite different sets of resonances. When the
emission wavelength of the quantum emitter matches the resonance frequencies, the sponta-
neous emission and energy transfer rates are enhanced by several orders of magnitude com-
pared with their free space values. The distance dependence of the energy transfer rate between
a pair of quantum emitters, placed perpendicularly to the graphene nanodisk plane, is studied
and is found that it depends on the geometrical characteristics of the graphene nanodisk in
contrast with the graphene monolayer where the penetration depth, of the surface plasmon
mode, dominates.
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Chapter 1
General Introduction

1.1 Motivation: enhance the interaction between

quantum emitters over larger distances

Developing new techniques to control and manipulate the interaction between light and
matter has been in the spotlight in science and engineering since the advent of Maxwell’s
equations. The work of James Clerk Maxwell was confirmed by a series of experiments which
agreed very well with his equations. It was the first time that physicists had an elegant way of
describing light-matter interactions at the classical level.

The revolutionary theory of quanta was able to explain phenomena which up to this point
classical physics was unable to explain, like the black body radiation. The discrete nature
of light was revealed by the work of Planck and Einstein. The early quantum theory was
significantly reformulated in the mid-1920s by Werner Heisenberg, Max Born, Wolfgang Pauli
and their collaborators; the Copenhagen interpretation of Niels Bohr became widely accepted.
By 1930, quantum mechanics had been further unified and formalized by the work of Paul
Dirac and John von Neumann, with a greater emphasis placed on measurement in quantum
mechanics, the statistical nature of our knowledge of reality.

The unification of quantum theory with special relativity led to one of the biggest concep-
tual human achievements: quantum electrodynamics (QED). In essence, QED describes how
light and matter interact, and it covers all phenomena involving charged particles interacting
by means of exchange of photons. It represents the quantum counterpart of classical electro-
dynamics giving a complete account of light-matter interactions. The accuracy of this theory
is quite remarkable, with discrepancies between theory and experiment being as small as 10−8.
Among the pioneers of QED were Sin-Itiro Tomonaga, Julian Schwinger, Freeman Dyson and

12
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(a) (b)

Figure 1.1: Image of patterned nanostructures. (a) Ag nanoboxes array fabricated by helium ion lithography,
taken from [18]. (b) Graphene nanodisk array fabricated by electron beam lithography, taken from [19].

Richard Feynman.
Feynman made many contributions to different areas in physics and is also considered to

be the first to propose that it could be possible to manipulate matter at nanoscale dimensions.
Feynman predicted the emergence of quantum effects when considering dimensions of the
order of a nanometer at the border between the macroscopic and microscopic worlds [1].
Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale,
and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical
engineering, electrical engineering, and nanotechnology [2].

For the last couple of decades the field of plasmonics has been an area of extensive experi-
mental [3–6] and theoretical investigations [7–9]. Confining light to subwavelength structures
has various applications such as plasmon rulers [10], biosensing devices [11, 12], light har-
vesting [13], optical nanoantennas [14], plasmonic tweezers [15] and quantum information
processing. The extreme confinement of light in subwavelength structures is achieved by
exciting surface plasmon (SP) modes [16]. The SP modes are collective oscillations of elec-
trons and the electromagnetic field that are excited at the interface between a dielectric and
a conductor. In the literature, a SP mode is called SP polariton (SPP) mode [17], when the
plasmonic nanostructure is extended, and they are called localized SP (LSP) modes [8], when
the nanostructure is finite. Throughout this thesis the term SP modes is used to describe both
these modes. In plasmonics the most commonly used conductors are the noble metals Ag and
Au, since their SP wavelengths lie in the visible part of the electromagnetic spectrum, making
them of significant practical importance.

Several technological inventions have been made in the last 20 years that have made the
modern field of plasmonics possible. The invention of the scanning tunneling microscope
in 1981, which provided unprecedented visualization of individual atoms and bonds, for the
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first time, was of indispensable importance for observing individual atoms. Colloidal synthe-
sis techniques have made possible the preparation of complicated conducting nanostructures
with shapes such as spheres, boxes and triangles. Fabrication of structures, with nanometer
precision can be achieved using lithography, electron beam lithography or helium ion beam
lithography. Patterned periodic nanostructures are nowadays routinely fabricated using these
techniques. We present in Fig. 1.1a a patterned nanostructure of Ag nanoboxes [18].

Of particular importance are the interactions between quantum emitters and nanostructures
for applications such as efficient photon collection, single photon switching and long range op-
tical coupling of quantum-bits. As quantum emitters they can be considered quantum mechan-
ical systems that they can be approximated as two-level systems. There is a variety of these
types of quantum systems such as atoms, molecules, semiconductor quantum dots, nitrogen-
vacancies color centers in diamonds and superconducting quantum bits.

Spontaneous emission (SE) is the process by which an initially excited quantum emitter
spontaneously decays to its ground state by emitting a photon. In 1946 Purcell showed that the
environment of the quantum emitter influences its SE rate [20]. Even if the quantum emitter is
placed in vacuum, the presence of a material body in its vicinity can influence the local density
of states (LDOS) of the electromagnetic field. Various structures have been investigated with
respect to their role in modifying the SE of a quantum emitter: planar [21–28], cylindrical [29–
40], spherical [41–46], prolate spheroids [47, 48] and metallic nanotip [49–51] geometries.

The second interaction process that is investigated in this thesis is the transfer of the exci-
tation energy of a quantum emitter (donor) to another quantum emitter that is in its ground
state (acceptor) [52, 53]. This process is called energy transfer (ET). Considering the dis-
tance dependence of the ET rate between the donor-acceptor pair, we can distinguish three
regimes (in the following R is the donor-acceptor distance and λ is the emission wavelength
of the donor): (a) the short range regime, R� λ , first studied by Förster, where the ET rate
dependence is R−6, which is similar to the electrostatic coupling between a pair of dipoles,
(b) the radiative long-range regime, where R� λ , which has a R−2 dependence, and (c) the
intermediate regime, R ∼ λ , where the distance dependence is R−4 [54, 55]. The ET rate
can also be considered as a photon exchange process. In the Förster regime the photons are
virtual and they appear as non-observable intermediate states in the quantum electrodynamic
analysis. In the radiative regime, on the other hand, the photons are real and the ET can be
viewed as the emission and absorption of a real photon. The energy transfer between a pair
of quantum emitters has also been investigated in the presence of various geometries: pla-
nar [28, 56–60], cylindrical [37, 38, 61], spherical [62–66], photonic crystal [67, 68] and edge
and channel waveguides [69, 69].
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As has already been mentioned, plasmonics is used to trap light at subwavelength dimen-
sions. Also, the SE and ET rates can be enhanced when conducting material bodies are placed
in close proximity to the quantum emitters, due to the excitation of SP modes [4, 24, 70, 71].
The SP modes exist mainly at a specific resonance wavelength which depends on the geomet-
rical characteristics of the bodies and on their optical properties, i.e. their dielectric permit-
tivity. These unique properties provided by conducting nanostructures when interacting with
quantum emitters can be used, and are used, in various applications such as surface enhanced
Raman scattering, biosensing devices, plasmonic lasers, quantum computing and as intercon-
nectors for integrated photonic chips. Knowledge of the distance dependence of the SE rate of
a single quantum emitter, and the ET rate between a pair of quantum emitters, in the presence
of conducting nanoparticles is of absolute importance in order to fully exploit the possibili-
ties provided by plasmonics. In this thesis the main goal is to present ways of understanding
the distance dependence of these rates and propose ways to further enhance their interaction
distances.

The ET rate between quantum emitters in homogeneous media, with real positive dielec-
tric permittivity, falls off really fast, as R−6. Using the SP modes the interaction distance
is enhanced and efficient transfer energy between quantum emitters placed in the vicinity of
conducting nanostructures can be achieved. In the last decade graphene has been considered
as an alternative to using noble metals for plasmonic applications [72–75].

Graphene is a material with exciting properties which may be used in the near future as an all
optical basis due to its tunable material properties [73,76]. In particular, graphene plasmonics
has emerged as a field of intense experimental [19, 74, 75, 77–80] and theoretical [72, 81–
86] investigation over the last decade. Graphene has important advantages compared with
conventional plasmonic materials, such as noble metals, where large material losses cannot
be easily avoided [72]. Some of the desirable properties of graphene are: higher mechanical
properties [87], the fact that graphene does not require a substrate, its low losses [72] and,
due to its two dimensional nature, huge optical enhancements when interacting with quantum
emitters in close proximity.

An undoped graphene monolayer (GM) can absorb πα0 ≈ 2.3% of the light incident upon
it, at wavelengths in the visible part of the spectrum, where α0 is the fine structure constant
[88]. Patterned GM nanostructures can give rise to 100% absorption at specific wavelengths,
which can be tuned through the applied voltage [89, 90]. The optical response of various
graphene nanostructures has been investigated theoretically and experimentally. These varied
geometries include, graphene monolayers [91–97], graphene ribbons [90, 98–105], nanotubes
[106–109] and nanodisks [89, 110–114].



1.1. Motivation: enhance the interaction between quantum emitters over larger
distances 16

The interaction of quantum emitters and graphene nanostructures has been theoretically in-
vestigated. In particular, the SE rate of quantum emitters in proximity to a graphene monolayer
is enhanced several orders of magnitude compared with its free space value [93, 94, 97, 115].
This effect is due to the extreme confinement of light due to the two dimensional nature of
the graphene monolayer [99]. Further confinement of light, by reducing the dimensionality,
enhances these interactions even more [81]. Another less studied process of particular interest
is the ET process between a pair of quantum emitters which, in close proximity to a graphene
monolayer, can also be extended over large distances due to the excitation of propagating
SP modes [97]. When the 1D confinement of light is considered, as in graphene nanorib-
bons [81, 99] and nanotubes [106, 109], the propagation length of the SP is increased and so
is the interaction distance. For the case of a graphene nanodisk, the confinement of light in
all three dimensions [81, 110, 111] produces large field enhancements which might be used in
order to extend the interaction between the quantum emitters to larger distances.

In this thesis, in Chapter 6 the interaction between quantum emitters in the presence of a
gated graphene nanodisk is studied. Graphene nanodisk structures have been investigated in
depth over the last few years and Fig. 1.1b depicts an array of patterned graphene nanodisks.
Electrically gated patterned graphene nanostructures [19, 116], nanodisks and nanorings, in-
teract strongly with the incoming light and the confinement parameter is large compared with
the radius of these nanostructures, λ 3/R3� 1. As previously mentioned, a patterned array of
graphene nanodisks has been predicted to provide 100% absorption [89]. Similar predictions
have been made concerning a photonic crystal consisting of nanoholes patterned in a graphene
substrate in the near infrared optical regime [117]. Furthermore, a graphene monolayer dec-
orated with small metallic nanoparticles, with zero chemical potential, can support strong
absorption [118]. These interactions have been predicted to be blue-shifted when considering
more layers of graphene nanodisks instead of a single nanodisk [119,120]. Edge states and an
applied magnetic potential can also influence the response of these nanostructures [114, 121].
Further quantum effects have been considered in the regime where non-linear effects emerge
in the coupled quantum emitter-graphene nanodisk system [122, 123].

Using the plasmonic response of the conducting, metallic and graphene, nanostructures we
can trap the light in nanometer dimensions. The large spatial confinement of light gives rise to
large field enhancements compared to free-space. For extended conducting nanostructures in-
teracting with QEs, e.g. metallic slabs, metallic nanocylinders, edge and channel waveguides,
graphene monolayers, graphene ribbons, the large field enhancements may be attributed to
the strong confinement of the propagating SPs, leading to much larger field values than in
free-space [95, 99, 109, 124, 125]. Large field enhancement values are also observed when
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the interaction between QEs and zero dimensional nanostructures, e.g. nanospheres and nan-
odisks, is considered, due to the excitation of localized plasmon modes. However, a large field
enhancement does not necessarily mean that the absolute value of the field intensity is large
enough to facilitate efficient interactions.

To experimentally probe these interactions, one measures the lifetime of the quantum emit-
ter, whose inverse is the total decay rate, given by an overlap integral of the form [42, 126]

kSE ∝

∞̂

0

dλ fD(λ )Im(nD ·Gind(rD,rD,λ ) ·nD), (1.1)

while the energy transfer rate between a pair of quantum emitters can be written as [59],

kET ∝

∞̂

0

dλ

λ 2 fD (λ ) |nA ·G(rA,rD,λ ) ·nD|2σA (λ ) , (1.2)

where fD(λ ) is the emission spectrum of the donor quantum emitter, placed at rD, and σA is
the absorption cross-section of the acceptor quantum emitter, placed at rA. More details for
these expression are given in Chapter 2. For both these expressions, the quantity encapsulating
the response to the relevant nanostructure is the Green’s tensor, G(rA,rD,ω). Classically, the
Green’s tensor represents the response of the geometry under consideration to excitation by
a point-like dipole. Thus we can see that rather than the field enhancement, it is the field
strength that is most important. Furthermore, Eq. (1.2) shows that the ET rate is dependent on
the SE rate of the donor QE.

In Ref. [127] the authors investigate the energy transfer efficiency between monolayers of
donor and acceptor colloidal quantum dots in the presence of Au nanospheres, experimen-
tally and theoretically. In Fig. 1.2a the structure investigated in Ref. [127] is presented. The
probability of efficient coupling between a donor layer and an acceptor layer is given by the
energy transfer effeciency. In Fig. 1.2b the energy transfer is presented when a layer of donors
is kept fixed and the position of the acceptor layer is varied. When both are embedded in a
homogeneous medium their interaction distance fall very fast. When a layer of Au spheres is
sandwiched between the donor and acceptor layers, the donor quantum emitters can efficiently
transfer energy to the acceptors at unreachable distances compared with the homogeneous
space case. Thus, the modification of the energy transfer efficiency by the spontaneous emis-
sion rate is verified by explaining experimental results concerning the ET efficiency between
quantum emitters in the presence of gold nanospheres [127]. More details will be given in
Chapter 2.
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(a) (b)

Figure 1.2: (a) A layer of donor quantum dots, green spheres, is interacting with a layer of acceptor quantum
dots, red spheres, in the presence of Au metal nanospheres. (b) Energy transfer efficiency between: (i) a layer
of donors and a layer of acceptors, dashed line, (ii) a layer of donors and a layer of Au spheres, dot line, (iii) a
layer of donors to a layer of acceptor, when a layer of Au spheres is sandwitched between them, solid line. Taken
from Ref. [127].

The main purpose of this thesis is the theoretical investigation of the SE and ET rates in the
presence of the conducting nanostructures [54, 55]. In particular, these rates are investigated
for planar and cylindrical Au and Ag metallic nanostructures and a graphene monolayer and
nanodisk.

1.2 Plasmonic materials

Noble metals, Au and Ag, contain nearly free electrons. They possess unique electromag-
netic properties as compared to normal positive dielectric materials. Furthermore, graphene, a
material that has emerged as an alternative to noble metals, has small material losses opening
new routes in the field of plasmonics.

There are various ways of exciting SP modes on conducting nanostructures, depending on
the source of excitation and the form of nanostructure. As a source of excitation one can
consider a plane wave, a low energy electron beam or a quantum emitter. When a plane
waves is used to excite extended nanostructures, specific requirements have to be fulfilled to
compensate for the momentum mismatch between the plane wave and the SP mode. This
can be done if the extended nanostructures have a defect or are corrugated or other special
techniques described in this section are employed. When the nanostructures are finite the SP
modes can be excited using any source. A low energy electron beam and a quantum emitter can
excite directly SP modes in any nanostructure. In this thesis the interaction between quantum
emitters in the presence of extended nanostructures is discussed in chapters 3, 4 and 5. The
interaction of conducting nanostructures with a low energy electron beam is not the subject of
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(a) (b)

Figure 1.3: (a) Real and imaginary part of the dielectric permittivity of Au and Ag as a function of wavelength.
The point are for experimental data from Ref. [129] and the solid lines are fittings using Eq. 1.4. For Au h̄ωp =
8.95eV and h̄ΓAu = 68.5 meV and for Ag h̄ωp = 9.17 eV and h̄ΓAg = 21 meV. (b) Surface conductivity, σ , as a
function of frequency, using Eq. 1.5, τ = 1ps. Different values of the chemical potential, µ , are considered.

this thesis and more details on this subject can be found in Ref. [128] and references therein.
In this section a brief description of the material properties for Drude metals and graphene

is given. Their plasmon dispersion relation is extracted. The Kretschmann and Otto methods
for exciting SP modes by plane wave excitation are presented. These methods are used ex-
perimentally to excite SP modes for planar nanostructures. The advantage of using quantum
emitters for exciting SP modes will become clear.

1.2.1 Optical properties of noble metals

The optical properties of noble metals can be described by a complex dielectric function that
depends on the frequency of light. The presence of an electric field leads to a displacement,
r, of an electron, moving freely in the bulk. We consider the Drude-Sommerfeld model for
describing the free electron gas

me
∂ 2r
∂ t2 +meΓ

∂r
∂ t

= eE0e−iωt , (1.3)

where e and me are the free electron charge and effective mass, respectively, and E0 and ω

are the electric field amplitude and frequency, respectively. The damping term is given by
the expression Γ = vF/l, where vF is the Fermi velocity and l is the electron mean free path
between scattering events. Making the ansatz r = r0e−iωt and substituting to Eq. (1.3) it can
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be shown that [130]

εDrude = 1−
ω2

p

ω2 + iΓω
, (1.4)

where ω2
p = ne2/meε0 is the plasma frequency. For gold h̄ωp = 8.95eV and h̄ΓAu = 68.5 meV

and for silver h̄ωp = 9.17 eV and h̄ΓAg = 21 meV. In Fig. 1.3a experimental data of the dielec-
tric permittivity of Au and Ag are presented, from Ref. [129], and fitted data using Eq. 1.4.
The experimental data for Au and Ag are used in Chapter 4.

1.2.2 Optical properties of graphene

In this thesis graphene is approximated as an infinitely thin conducting layer. Its optical
properties are embedded in the frequency dependent surface conductivity, σ . Ignoring the
interband transition, for the moment, the Drude conductivity is given by [72, 87, 131]

σ(ω) =
e2

π h̄2
iµ

ω + iτ−1 , (1.5)

µ is the chemical potential and τ is the finite relaxation time. In Eq. 1.5 the local limit is
used where the inplane wavevector contribution is set to zero. The relaxation time, τ , contains
information for all admissible decay mechanisms such as scattering of impurities and defects,
to acoustic and optical phonons etc. Throughout this thesis the value of τ = 1ps is used
[115, 132]. In Fig. 1.3b the surface conductivity, σ , is presented, as a function of frequency,
ω . Different values of the chemical potential, µ , are considered.

The losses in graphene are seen to be much lower than for Au and Ag via h̄ΓAu/h̄τ−1 ≈ 102

and h̄ΓAg/h̄τ−1 ≈ 30. From this comparison it is clear why graphene has become an area of
intensive research in the field of plasmonics.

1.2.3 Excitation of surface plasmon modes

In order to excite the SP mode a transverse magnetic (TM) field is considered impinging a
single interface, Fig. 1.4. The incident, reflected and transmitted electric fields have the form

Eq = (−Exq,0,−Ezq)e−ikzqz+iksx (1.6)

where Exq = Eq cos(kq), Ezq = Eq sin(kq) and kzq =
√

k2
q− k2

s , q = i,r, t for the incident, re-
flected and transmitted electric field, respectively, and ks is the in-plane wavevector. The
relevant magnetic field is found from the expression Bq =

√
εqµqkq×Eq/kq. Applying the
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Figure 1.4: Transverse magnetic field impinging on the interface between semi infinite materials described by ε1
and ε2 dielectric permittivities.

boundary conditions at the z = 0 interface

n̂× (Ei +Er−Et) = 0 (1.7)

n̂× (Hi +Hr−Ht) =
4πσ

c
kzt

kt
Ext ŷ (1.8)

where σ is the surface conductivity, the reflection, R = Er/Ei, and transmission, T = Et/Ei,
coefficients have the form

R =
k2

2kz1− k2
1kz2 +4πσω/c2kz1kz2

k2
2kz1 + k2

1kz2 +4πσω/c2kz1kz2
, (1.9)

T =
4πσω/c2kz1kz2

k2
2kz1 + k2

1kz2 +4πσω/c2kz1kz2
, (1.10)

where ki = ω/c
√

εi and kzi =
√

k2
i − k2

s , i = 1,2. The generalization of the above expressions
can be easily found when considering multilayer stacks.

The case where layer 2 is Au is now considered, with no surface conductivity, σ = 0. The
metal layer properties are given by a Drude type of model, Eq. (1.4), with h̄ωp = 9eV and
ignoring the material losses, h̄γp = 0. The material 1 is simply air. To find the minimum of the
reflection at the air-Au interface, the denominator of Eq. (1.9) is set to zero, k2

2kz1+k2
1kz2 = 0,

from which we obtain the condition

ks =
ω

c

√
ε1ε2

ε1 + ε2
, (1.11)
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(a) (b)

Figure 1.5: Dispersion relation for (a) air-Au interface and (b) for free standing infinite graphene monolayer.

which is the dispersion relation, ω(ks). In Fig. 1.5a the dispersion relation curve lies below
the light line, thus the SP mode cannot be excited due to momentum mismatch between its
in-plane wavevector, ks, and that of the incoming light. In order to overcome this difficulty,
the Kretschmann configuration, depicted in Fig. 1.6a, is used [133].

Now the case of a free standing infinite graphene monolayer is considered, with air as the
host medium. The surface conductivity of the infinite graphene monolayer is given by Eq. 1.5.
To find the minimum SP dispersion relation, the denominator of Eq. (1.9), k2

1+2πσω/c2kz1 =

0 is set to zero, for k1 = k2 = ω/c. The dispersion relation takes the form

ks =
ω

c

√
1− c2

2π2σ(ω)2 . (1.12)

The SP dispersion relation, for a chemical potential of µ = 1 eV and relaxation time of τ =

1 ps is shown in Fig. 1.5b. It is observed that the in-plane wavevector, ks, for the case of
graphene has larger values than the air-Au case, due to smaller material losses. Furthermore, in
Fig. 1.5b the SP resonance frequencies are in the far infrared region, compared with the optical
frequencies for the air-Au case. Also, in Fig. 1.5b the light line would be indistinguishable
from the y-axis. In order to excite the SP mode in graphene the Otto configuaration, depicted
in Fig. 1.6b, is used [134].

Excitation of SP modes on a flat conducting surface is not possible by direct light illu-
mination, see Fig. 1.5. This is due to the fact that the wave vector of the SP modes, at a
given frequency, is much larger than the free space wavevector. In Fig. 1.6a we present the
Kretschmann configuration, which is routinely used for exciting SP modes at planar layers.
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(a) (b)

Figure 1.6: Schematic of experimental setup for describing (a) the Kretschmann and (b) the Otto configuration.

A thin conducting material is placed directly onto a prism. The dielectric permittivity of the
prism is larger than the dielectric permittivity of the substrate, ε1 > ε3. The light again illu-
minates through the prism, and an evanescent wave penetrates through the metallic thin film.
Fig. 1.3a shows that the real part of the dielectric constant is negative. This means that the
plane wave can penetrate a metal over a small extent. Thus, since the SP mode is excited at
the outer side of the film, the metallic films needs to be thinner than the penetration depth of
light into the metal.

The second configuration for exciting SP modes, Fig. 1.6b, uses an attenuated total re-
flection configuration. Electromagnetic radiation coming from the prism impinges on the
interface 1-2 at an angle θ larger than the critical angle for total internal reflection, θ >

arcsin(
√

max(ε2,ε3)/ε1). So only evanescent waves can exists in the layer with ε2, of thick-
ness d, and in the half space ε3. In this configuration it becomes possible to couple the incident
wave to the SP mode in the conducting material because the dielectric permittivity constant
of the prism, ε1, is larger than the separation material ε2. This is the Otto configuration for
exciting the SP modes.

Each of these configurations is experimentally used to investigate excitation of SP modes in
metallic planar layers, Kretschmann configuration, and graphene monolayer, Otto configura-
tion, structures.
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(a) (b)

Figure 1.7: Reflectance using the (a) Kretschmann and (b) Otto configurations for a metallic slab and a gated
graphene monolayer.

1.2.3.1 Metallic layer

The configuration depicted in Fig. 1.6a is considered with the values ε1 = 5, ε2 = εAu and
ε3 = 1 for describing the relevant dielectric permittivities. In Fig. 1.5a the light line for ε1 = 5
is provided and it can be observed that the coupling with the SP branch is now possible.
Fig. 1.7a shows the reflectance for an angle of incidence α = 0.7π/2 as a function of fre-
quency, ω , of the incident plane wave, for different values of the metal thickness d. For differ-
ent thicknesses we have different plasmon resonance conditions, thus the resonance frequency
is presented as dips in the reflection, redshifted as d increases.

1.2.3.2 Graphene layer

In Fig. 1.7b the reflectance is presented for excitation with the Otto configuration. The
values of the dielectric permittivity for each layer are ε1 = 5, ε2 = 1 and ε3 = 5. The graphene
monolayer is lying at the interface between 2-3 media. The thickness of medium 2 is d =

20 nm. In Fig. 1.7b the reflectance for a fixed angle of incidence, α = 0.8π/2, is presented
as a function of the frequency of the incident plane wave for different values of the chemical
potential, µ . For the different values of the chemical potential, different SP resonances are
evident, again corresponding to dips in the reflectance in Fig. 1.7b.

Comparing Fig. 1.7a and 1.7b it is observed that by changing the Au thickness, d, and the
chemical potential, µ , of the graphene monolayer one can tune the plasmon resonance. On the
other hand, the SP resonances for the Au slab lies in the visible part of the spectrum, while,
for the graphene monolayer they lie in the infrared part of the spectrum.
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Figure 1.8: Field distribution of a point dipole, with emission wavelength of λ = 600 nm. The point dipole
orientation is implied by the green arrow.

Exciting the SP modes on planar conducting nanostructures with a plane wave can prove
non-trivial. The subject of this thesis is to investigate the interaction between quantum emit-
ters in the presence of conducting nanostructures. The quantum emitters can directly excite
the SP modes of the conducting nanostructures. This can be done by the direct coupling of
the near field of the quantum emitters, which provides the large momentum k vectors, with the
conducting nanostructures. Fig. 1.8 shows the field distribution of a quantum emitter, consid-
ered as a point dipole, with emission wavelength of λ = 600 nm. Close to the dipole position
the field intensity is maximized and at distances larger than the emission wavelength it starts
resembling a plane wave.

1.3 Structure of the thesis

In this thesis the interaction between quantum emitters and conducting nanostructures is
explored. In particular we investigate planar and cylindrical metallic nanostructures, and an
infinite graphene monolayer and a graphene nanodisk. These metallic and graphene nanos-
tructures support SP modes.

In Chapter 2 the theoretical formalism used throughout this thesis is presented. The spon-
taneous emission and energy transfer rates are defined and their connection with the Green’s
tensor is presented. The integral representation of the free-space Green’s tensor is given for
cartesian and cylindrical coordinates.
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In Chapter 3 the spontaneous emission and energy transfer function are investigated in the
presence of a half space, dielectric-metal, and slab geometry, dielectric-metal-dielectric. The
method of scattering superposition in cartesian coordinates is presented. The spectral and
distance dependence of the spontaneous emission of a quantum emitter are analyzed. Contour
plots of the energy transfer function between a pair of quantum emitters are presented when the
donor quantum emitter is kept in a fixed position. The importance of the dispersion relation
in explaining the spectral and distance dependence is presented. This chapter is used as an
introductory chapter to study the SE and ET rates and how they are influenced by the SP
modes provided the planar nanostructures.

In Chapter 4 the spontaneous emission and energy transfer rates in the presence of a di-
electric coated metallic cylinder is studied. After analyzing the spectral and distance depen-
dences of the spontaneous emission we present contour plots of the normalized energy transfer
function. Using realistic parameters for the emission and absorption spectra of the quantum
emitters, the energy transfer efficiency is investigated and the influence of the physical dimen-
sions of the coated cylinder in enhancing the interaction distance between quantum emitters is
presented.

In the last two chapters metallic nanostructures are considered. Metallic structures suffer
from large losses, while graphene is a conducting two dimensional material with lower losses.
In the next two chapters the spontaneous emission and energy transfer rates are investigated
in the presence of gated graphene nanostructures.

In Chapter 5 the spontaneous emission and energy transfer rates in the presence of a gated
graphene monolayer are studied. Long distance energy transfer efficiency is observed, sup-
ported by the graphene SP modes. The propagation length of the plasmon mode is found to
characterize the energy transfer rate, between a pair of quantum emitters, along the graphene
monolayer, while the penetration depth characterizes the interaction perpendicular to the graphene
monolayer.

In Chapter 6 the influence in the spontaneous and energy transfer rates of the plasmon res-
onances encountered when the quantum emitters are in close proximity to a gated graphene
nanodisk are investigated. The distance dependence of the interaction length between a pair
of quantum emitters is analyzed and it is found to depend on the geometrical characteristics
of the graphene nanodisk. Furthermore, the graphene nanodisk geometry is compared with a
graphene monolayer regarding the perpendicular distance dependence of the interaction be-
tween the quantum emitters.

Finally, in Chapter 7 the main conclusions of the work presented are given and an outlook
of the future steps that may be taken to further enhance and exploit the interaction distance
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between quantum emitters are presented.



Chapter 2
Mathematical Introduction

2.1 Overview

In this chapter we introduce the main formalism used throughout this thesis to study the
spontaneous emission (SE) rate of a single quantum emitter and the energy transfer (ET)
rate between a pair of quantum emitters. A non-Hermitian quantum electrodynamic method
is used, which takes account of lossy, plasmonic, materials, to calculate these rates. The
plasmonic materials will be described by frequency dependent complex permittivity, ε(r,ω).

The main quantity needed to calculate the SE and ET rate is the Green’s tensor [126, 135],
a quantity that is calculated by solving the Maxwell equations of electrodynamics considering
a point dipole excitation and thus can be directly connected with a quantum emitter.

We start by giving the quantum description of light-matter interactions in Sec. 2.2. A de-
tailed derivation of the SE and ET rate and their connection with the Green’s tensor is given in
Sec. 2.3. Then the ET efficiency between a pair of quantum emitters is introduced in Sec. 2.4.
This chapter is completed by giving the integral form of the Green’s tensor in planar and
cylindrical coordinates. These expressions will be used in the following chapters of the thesis.

2.2 Quantum electrodynamics

2.2.1 Classical electrodynamics

The classical description of electrodynamics is given by a set of differential equations con-
necting four vector quantities which describe the electromagnetic field: electric field intensity
E(r, t), magnetic field intensity H(r, t), electric displacement D(r, t) and the magnetic induc-

28
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tion B(r, t). The Maxwell’s equations have the following form in the frequency domain [136]:

∇×E(r,ω) = iωB(r,ω), (2.1a)

∇×H(r,ω) =−iωD(r,ω)+ j(r,ω), (2.1b)

∇ ·D(r,ω) = ρ(r,ω), (2.1c)

∇ ·B(r,ω) = 0, (2.1d)

where ρ(r,ω) is the electromagnetic charge distribution and j(r,ω) is the electric current
distribution. The conservation of charge is implicitly contained in the Maxwell’s equations.
Taking the divergence of Eq. (2.1b) and substituting into Eq. (2.1c) we get the continuity
equation

∇ · j(r,ω)− iωρ(r,ω) = 0, (2.2)

for which charge and current distributions describe the external, free, charge and current dis-
tributions.

The electromagnetic properties of the medium are most commonly discussed in terms of
the macroscopic polarization P and magnetization M according to

D(r,ω) = ε0E(r,ω)+P(r,ω) (2.3a)

H(r,ω) =
1
µ0

B(r,ω)−M(r,ω) (2.3b)

where ε0 and µ0 are the permittivity and the permeability of vacuum, respectively. These
expressions do not impose any conditions on the medium and are therefore always valid.

To account for free charges, bound up charges, currents and spins the field vectors D and H
have been introduced, thus, describing the electromagnetic response to an external source. In
this thesis only linear, isotropic, local and non-magnetic materials are considered, resulting in

D(r,ω) = ε0E(r,ω)+ ε0

ˆ
∞

0
dτχ(τ)E(r), (2.4a)

B(r,ω) = µ0H(r,ω), (2.4b)

where χ(τ) is the linear electric susceptibility. Then Maxwell’s equations will have the form

∇×E(r,ω)− iωB(r,ω) = 0, (2.5a)
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∇×B(r,ω)+ i
ω

c2 ε(ω)E(r,ω) = j(r,ω), (2.5b)

∇ · [ε0ε(ω)E(r,ω)] = ρ(r,ω), (2.5c)

∇ ·B(r,ω) = 0, (2.5d)

where c is the speed of light and the frequency dependent complex valued dielectric permit-
tivity of the material is introduced,

ε(ω) = 1+
ˆ

∞

0
dτχ(τ)eiωτ , (2.6)

where χ is the linear electric susceptibility.
In this thesis inhomogeneous materials, which will be considered as piece-wise homoge-

neous materials with abrupt transitions between them, are investigated. Boundary conditions
will be applied at the transition between the material layers.

2.2.2 Quantization of the EM �eld in absorptive materials

Maxwell’s equations, Eq. (2.5), together with the constitutive relations Eq. (2.4) can be
written in terms of the electric Ê and magnetic B̂ field operators as the quantum Maxwell’s
equations [54, 55]

∇× Ê(r,ω)− iωB̂(r,ω) = 0, (2.7a)

∇× B̂(r,ω)+ i
ω

c2 ε(ω)Ê(r,ω) = ĵ(r,ω), (2.7b)

∇ · [ε(ω)D̂(r,ω)] = ρ̂(r,ω), (2.7c)

∇ · B̂(r,ω) = 0, (2.7d)

In a dielectric material, without average charge and current density, the new operators intro-
duced in the above equations, ρ̂(r,ω) and ĵ(r,ω), represent the noise charge density and the
noise current density operators, respectively. These noise operators account for absorption in
the medium.

In the frequency domain, the electric field operator Ê(r,ω) satisfies an inhomogeneous
Helmholtz equation of the form:

∇×∇× Ê(r,ω)− ω2

c2 ε(ω)Ê(r,ω) = i
ω

c2ε0
ĵ(r,ω), (2.8)
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whose solution can be written as:

Ê(r,ω) = i
ω

c2ε0

ˆ
d3sG(r,s,ω) · ĵ(s,ω), (2.9)

where the Green’s tensor G(r,s,ω) is introduced. The Green’s tensor represents the electro-
magnetic response of a particular configuration of material bodies to a point-like excitation.
G is a 3×3 tensor which satisfies the equation:

∇×∇×G(r,s,ω)− ω2

c2 ε(ω)G(r,s,ω) = Iδ (r− s), (2.10)

s is the position of the point-like excitation and r is the position where the response to the
point-like excitation is measured, I is the unit 3×3 tensor.

In the Schrödinger picture the electric and magnetic field operators can be defined as:

Ê(r) =
1√
2π

∞̂

0

dωÊ(r,ω)+h.c., (2.11a)

B̂(r) =
1√
2π

∞̂

0

dωB̂(r,ω)+h.c., (2.11b)

and they satisfy the usual equal-time commutation relations of QED:

[Êi(r), Ê j(r′)] = [B̂i(r), B̂ j(r′)] = 0, (2.12a)

[
Êi(r), B̂ j(r′)

]
=− ih̄

ε0
εi jk

∂

∂xk
δ (r− r′). (2.12b)

The source terms ρ̂ and ĵ are closely related to the noise associated with the losses in
the medium, which themselves are described by the imaginary part of the permittivity. The
current noise operator ĵ(r,ω) is expressed in terms of the bosonic vector field operator f̂(r,ω)

as [59, 126]:
ĵ(r,ω) = ω

√
2h̄ε0ε ′′(r,ω)f̂(r,ω), (2.13)

where ε ′′(r,ω) is the imaginary part of the dielectric permittivity, Eq. 2.6. The components of
the bosonic field satisfy the canonical commutation relations:

[ f̂i(r,ω), f̂ j(r′,ω ′)] = [ f̂ †
i (r,ω), f̂ †

i (r
′,ω ′)] = 0, (2.14a)
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[ f̂i(r,ω), f̂ †
i (r
′,ω ′)] = δi jδ (ω−ω

′)δ (r− r′). (2.14b)

The bosonic vector field operators, f̂† and f̂, are creation and annihilation operators for medium-
dressed states, which account for lossy surface modes, surface plasmon modes or far-field
emission. The surface plasmon modes are the main subject of this thesis.

Using the bosonic vector field f̂(r,ω), the electric field operator Ê(r) has the form:

Ê(r) = i

√
h̄

πε0

∞̂

0

dω
ω2

c2

ˆ
d3s
√

ε ′′(s,ω)G(r,s,ω) · f̂(s,ω)+h.c. (2.15)

Calculating the energy density of the EM field, the radiation Hamiltonian is obtained as

Ĥem =
1
2

ˆ
d3r[Ê(r)2 + B̂(r)2] =

ˆ
d3r

∞̂

0

dω h̄ω f̂†(r,ω) · f̂(r,ω). (2.16)

2.3 Spontaneous emission and energy transfer rate

Now a pair of two-level systems, A and B, located at rA and rB, respectively, is considered
[137]. The ground state of system A(B) is denoted as |gA〉 (|gB〉) and the excited state as |eA〉
(|eB〉). The transition frequencies and dipole matrix element are denoted as ωA′A (ωB′B) and
µA′A (µB′B), respectively.

The multipolar Hamiltonian is used to describe this system interacting with the electro-
magnetic field. In this description, direct Coulomb interactions between the two systems are
absent. They interact via the electromagnetic field and the total Hamiltonian has the form

Ĥ = Ĥem + Ĥqs + Ĥint, (2.17)

where the electromagnetic field Hamiltonian Ĥem has the form (2.16), the quantum system
Hamiltonian is

Ĥqs = h̄ωA′Aσ
†
AσA + h̄ωB′Bσ

†
BσB, (2.18)

where σ
†
A and σA are the Pauli raising and lowering operators for system A (similar for system

B) and the interaction Hamiltonian is

Ĥint =−µ̂AÊ(rA)− µ̂BÊ(rB). (2.19)
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µ̂α = µασ
†
α +µ∗ασ−α is the dipole operator of the two level system α , α = A,B, with µα being

the transition dipole moment of the system between its ground and excited states.
The Hamiltonian (2.17) completely describes, in the electric dipole approximation, the in-

teraction of a system of quantum emitters (atoms, molecules, quantum-dots or superconduct-
ing q-bits) with the electromagnetic field. The SE rate of a quantum emitter and the ET rate
between a pair of quantum emitters will be the main quantities studied in this thesis and de-
scribed through the Hamiltonian (2.17).

2.3.1 Spontaneous emission rate

The quantum emitter is described as a two-level quantum mechanical system, with transition
frequency ω0 between the ground and excited states |0〉 and |1〉, respectively. An excited
quantum emitter interacts with its environment through the electromagnetic field and relaxes
from its excited state, to the ground state, by emitting a photon or exciting any of the dressed
states supported by its environment. The initial state of the system, |i〉, can be written as

|i〉= |e〉⊗ |0〉, (2.20)

where the quantum emitter is in the excited state and the electromagnetic field is in its vacuum
state. The quantum emitter system will not stay indefinitely excited, but will relax by emitting
a photon and therefore the EM field will be in a |1(k, p)〉 state; p and k are the polarization
and wavevector, respectively. This state can be expressed by introducing the creation operator
f̂ †
i (r,ω) which acts on the vacuum state of the electromagnetic field produce the one excitation

state. The final state of the entire system therefore has the form

| f 〉= |g〉⊗ f̂ †
i (r,ω)|0〉. (2.21)

Now the rate of passage from the initial to the final state is calculated. By applying Fermi’s
golden rule to this particular problem we get the following expression for the transition rate
|i〉 → | f 〉

w f i =
2π

h̄2 |〈 f |T̂ |i〉|
2
δ (ω−ω0), (2.22)

where ω0 is the transition frequency of the quantum emitter and ω represents the frequency
of the medium dressed electromagnetic excitation into which it decays. The Dirac δ -function
ensures the conservation of energy in this process. The T̂ operator is called the transition
operator and it accounts for the relaxation of the quantum system. By considering the interac-
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tion with the electromagnetic field as a small perturbation, this operator can be written, up to
second order, as

T̂ = Ĥint + Ĥint
1

h̄ω0− Ĥ0 + iη+
Ĥint, (2.23)

where Ĥ0 is the unperturbed part of the total Hamiltonian

Ĥ0 = Ĥqs + Ĥem, (2.24)

η+ is an infinitesimal small positive constant, and h̄ω0 is the energy of the initial state. The
energy of the final state is h̄ω , and the conservation of energy states that h̄ω = h̄ω0.

Using the Eq. (2.21) and summing over all the final states the expression for the SE rate γ

is obtained as:

γ = ∑
f

w f i =

∞̂

0

dω
2ω2

h̄ε0c2 µiImGi j(r,r,ω)µ jδ (ω−ω0) =
2ω2

h̄ε0c2 µiImGi j(r,r,ω)µ j. (2.25)

Throughout this thesis the emission rate of the quantum emitter in inhomogeneous media is
expressed in units of the free-space emission rate γ0 of the same two-level system. So we
define the quantity

γ̃ =
γ

γ0
. (2.26)

The expression for γ0 is given by the Einstein A-coefficient:

γ0 =
ω3

c3h̄ε0

µ2

3π
. (2.27)

Later, in the next subsection, it is described how this expression is calculated. From the above
expressions

γ̃ = n+
6πc
ω

µ̂iImGi j
s (r,r,ω)µ̂ j, (2.28)

is obtained, where n is the refractive index of the medium in which the two-level system is
embedded, Gi j

s is the scattering part of the Green’s tensor and µ̂i = µi/µ . The normalized SE
γ̃ is used in this thesis as a measure of how much the material bodies influence the SE rate of
a quantum system compared with its vacuum value.
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When dealing with statistical ensembles of emitters, the emission spectrum will be different
from that of a single emitter, which we have taken to have a δ shape. The emission rate for an
ensemble can be expressed as:

kSE =

∞̂

0

dλ fD(λ )γ(λ ), (2.29)

where fD(λ ) is the area-normalized emission spectrum of the emitter, with
∞́

0
dλ fD(λ ) = 1,

and λ is the emission wavelength.

2.3.2 Resonance energy transfer rate

Next a pair of quantum systems, A and B, is considered and the ET between them is studied
[54, 55, 137]. The initial state is

|i〉= |eA〉⊗ |gB〉⊗ |0〉, (2.30)

where |e〉 and |g〉 are the excited and ground state of the quantum system, A and B, while |0〉
is the vacuum state of the electromagnetic field. In the final state system A has relaxed to the
ground state, transferring its excitation energy to system B, which now is in the excited state;
the electromagnetic field is still in the vacuum state:

| f 〉= |gA〉⊗ |eB〉⊗ |0〉. (2.31)

The quantity

〈
f |T̂ |i

〉
= ∑
|α〉
〈 f |Ĥint

1
Ei− Ĥ0 + iη+

|α〉〈α|Ĥint|i〉, (2.32)

is computed, where the states |α〉 over which we perform the summation, are of two types

|αI〉= |gA〉⊗ |gB〉⊗ f̂ †
i (s,ω)|0〉, (2.33a)

|αII〉= |eA〉⊗ |eB〉⊗ f̂ †
i (s,ω)|0〉. (2.33b)

For the Hamiltonian operators the expressions introduced above are used.
Second order perturbation theory is used for the transition operator and thus the expression
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for the ET rate between two two-level has the form

Γ(rA,rB,ω) =
2π

h̄2

(
ω2

0
c2ε0

)2

|dA ·G(rA,rB,ω) ·dB|2 (2.34)

Again, the normalized ET rate is defined as the ratio between the ET rate in the nanostruc-
tured environment and the ET rate between the same two-level systems, at the same positions,
but in free space. This quantity measures the effect of the presence of the nanostructure on the
ET rate between the two two-level systems. The expression of interest has the form

Γ̃(ω) =
Γ(ω)

Γ0(ω)
=
|dA ·G(rA,rB,ω) ·dB|2

|dA ·G0(rA,rB,ω) ·dB|2
, (2.35)

where G0(rA,rB,ω) is the Green’s tensor in free space. The importance of the Green’s tensor
in calculating the SE and ET rates needs to be stressed again since this quantity encapsulates all
the information on the response of material bodies to electromagnetic fields. The knowledge
of the Green’s tensor is an important element in order to calculate various quantities such as:
a low energy electron beam interacting with nanostructures [83, 128], the heat distribution
created by a quantum emitter [138,139] and the trapping potential interacting with a quantum
emitter [135]. In the following chapters we present a method for calculating the Green’s tensor
in planar and cylindrical geometries.

Analogously to the case of the SE rate, when considering statistical ensembles of donors and
acceptors, the donor emission spectrum fD(λ ) and acceptor absorption cross-section σA(λ )

need to be taken into account when calculating the ET rate,

kET = 36π
2YDkSE

∞̂

0

dλ

λ 2 fD (λ ) |nA ·G(rA,rD,ω) ·nD|2σA (λ ) , (2.36)

where kSE is given by Eq. (2.29) and YD is the intrinsic quantum yield of the donor QE [130].
This expression is used in order to calculate the ET rate between donors and acceptors with
specific emission and absorption spectra and to investigate how the energy process competes
with the emission process of the donor.
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2.4 Energy transfer e�ciency between quantum

emitters

The ET between particles plays a crucial role in photophysical processes such as light har-
vesting proteins in photosynthetic membranes. The optical energy absorbed by chlorophyll
molecules has to be channeled over large distances to a protein called the reaction center. ET
can be also observed between closely arranged semiconductor nanoparticles (although we will
see at the end of this thesis they are ways to expand this interaction distance), and is the basis
of Förster energy-transfer (FRET) studies of biological processes.

In the previous section the SE rate, Eq. (2.29), of a single quantum emitter and the ET rate,
Eq. (2.36), between a pair of quantum emitters were introduced. An excited donor has two
ways of relaxing: it can either transfer its excitation energy to the acceptor dipole with an ET
rate kET, or it can relax with decay rate kSE, where no nonradiative internal decay is assumed,
in other words the intrinsic quantum yield of the donor quantum emitter is Y0 = 1 [130, 140].
The decay rate, kSE, takes account of photon emission into the far field, coupling to surface
plasmon modes or to Ohmic losses of no propagating nature. The SE and ET processes are,
therefore, in competition.

The ET efficiency η is defined as

η =
kET

kSE + kET
. (2.37)

This quantity gives the relative contribution of the ET process to the total decay rate of the
donor quantum emitter. If the ET efficiency, η , has a value η > 50%, then the decay of
the excited state of donor quantum emitter occurs mainly by ET to the acceptor, rather than
relaxation into photon or surface plasmon modes.

The donor quantum emitter’s emission and the acceptor quantum emitter’s absorption spec-
tra are both described by Gaussian distributions of the form:

Aq e−(λ−λq)
2/∆λ 2

q , (2.38)

where q = D,A represents the donor or acceptor quantum emitter, respectively. Aq is a nor-
malization constant, λq gives the position of the spectral peak and ∆λq is related to the full
width at half maximum of the spectrum.

In order to calculate the SE rate, Eq. (2.29), and the ET rate, Eq. (2.36), knowledge of the
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(a) (b)

Figure 2.1: (a) Normalized donor emission and acceptor absorption spectra and the field intensity, for two
donor-acceptor separations, as a function of wavelength. (b) ET efficiency as a function of the donor-acceptor
distance, the donor emission and acceptor absorption of (a) are used.

Green’s tensor is needed, which in free space has the form

G
i j
h (rA,rD,ω) =− 1

k2
eikR

4πR3 [(1− ikR)(δi j−3R̂iR̂ j)− k2R2(δi j− R̂iR̂ j)] (2.39)

where R = rA− rD is the relative distance between the donor and the acceptor, and k = ω/c

is the emission wavenumber [141].
A very important parameter characterizing the interaction length is the Förster radius, R0,

which is defined as the donor-acceptor separation at which the ET efficiency η is 50% [52].
The Förster radius can be calculated from the spectral overlap of the normalized donor emis-
sion, fD, and the acceptor absorption, σA, spectra as

R0 =

 3c
32π4n4

∞̂

0

dλλ
2 fD (λ )σA (λ )

1/6

(2.40)

where n is the refractive index of the host medium.
In order to better illustrate the form of the interaction a specific pair of quantum emit-

ter spectra is considered. The emission peak is at λD = 500nm and the acceptor absorp-
tion maximum at λA = 516nm. The normalization constant of the donor emission is given
by A−1

D =
´

∞

0 dλ fD(λ ). The normalization constant for the acceptor absorption spectrum is
AA = 0.021nm2, while the width is ∆λA = 50nm. The ET rate, Eq (2.36), is given by the
overlap integral between the donor emission and the acceptor absorption spectra with the ab-
solute value of the Green’s tensor, Eq. (2.39). In Fig. 2.1a the normalized donor emission
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and acceptor absorption spectra are presented, and a strong overlap can be seen. In the same
figure, Fig. 2.1a, the field intensity is presented for two different distances between the donor
and the acceptor as a function of emission wavelength of the donor. Eq. (2.39) shows that
the field strength falls as r−6 as the distance between them is increased. Thus, the ET rate
decreases quickly as the distance between the donor-acceptor is increased. In Fig. 2.1b the ET
efficiency is presented for the aforementioned pair of quantum emitters. It can be seen that
the Förster radius, calculated from Eq. (2.40), has a value R0 = 7.4nm. This shows that the
interaction distance is very short, and this value has been obtained under the assumption that
the quantum yield is Y = 1. In this thesis some methods for enhancing this interaction distance
are presented.

2.5 Integral form of the Green's tensor

From Eq. (2.25) and (2.34) it is evident how crucial is the knowledge of the Green’s tensor
for calculating the SE and the ET rates . In this section the integral form of the Green’s tensor
is given for the case of Cartesian and Cylindrical coordinates [141,142], obtaining expressions
that will be used in the following chapters of the thesis.

2.5.1 The Green's tensor in Cartesian coordinates

In order to calculate the Green’s tensor in Cartesian coordinates, the vacuum case is firstly
considered, ε(ω) = 1. The differential equation for the Green’s tensor has the form

∇r×∇r×G(r,s,ω)− ω2

c2 G(r,s,ω) = Iδ (r− s), (2.41)

with the differential operators acting on r. The goal would be to find an expansion of the
Green’s tensor in terms of the vector wave functions (VWFs) in Cartesian coordinates. These
VWFs are solutions of the homogeneous Helmholtz equation in Cartesian coordinates:

∇×∇×F(k,r)− k2F(k,r) = 0, (2.42)

where k2 = k2
x + k2

y + k2
z denotes the eigenvalue of the differential operator ∇×∇×. One can

construct the VWFs solutions from the corresponding scalar Helmholtz equation

∇
2
ψ(k,r)+ k2

ψ(k,r) = 0, (2.43)

which have a plane-wave form
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ψ(k,r) = eik·r, (2.44)

as follows:

M(k,r) = ∇× [ψ(k,r)ẑ] = i(k× ẑ)eik·r, (2.45a)

N(k,r) =
1
k

∇×∇× [ψ(k,r)ẑ] =−1
k

k× (k× ẑ)eik·r, (2.45b)

L(k,r) = ∇ψ(k,r) = ikeik·r. (2.45c)

It can be shown that these VWFs form an orthogonal and complete set of eigenfunctions,
which means that one can expand the Green’s tensor as follows

G(r,s,ω) =
1

2π3

ˆ
d3k
[

M(k,r)⊗M̂(−k,s)
k2

s (k2− k2
0)

+
N(k,r)⊗ N̂(−k,s)

k2
s (k2− k2

0)
− L(k,r)⊗ L̂(−k,s)

k2
s k2

0

]
,

(2.46)
where k0 = ω/c and k2

s = k2
x + k2

y . We can further simplify this expression by performing
the integrals over kz. Each of the terms has a number of poles in the complex kz plane. The
M-term has poles at kz =±

√
ω2− k2

s . The N-term also has poles at kz =±
√

ω2− k2
s , as well

as a static pole at kz = ±iks. The static pole exactly cancel the contribution from the poles
coming from the L-term. Performing these integrations we are left with a two-dimensional
integral for the Green’s tensor

G(r,s,ω) =− δ (r− s)
k2

0
ẑ⊗ ẑ+

i
8π2

ˆ
d2ks

1
kzk2

s
[M(ks,±kz,r)⊗M∗(ks,±kz,s)+

+N(ks,±kz,r)⊗N∗(ks,±kz,s)] , z ≶ zs, (2.47)

where zs is the z-component of the source position vector s. This is the free space Green’s
tensor, the field created by a dipole source in the absence of material bodies.

2.5.2 The Green's tensor in cylindrical coordinates

The same method as illustrated in section 2.5 is used to solve Eq. (2.41) in cylindrical
coordinates by expanding the Green’s tensor in the appropriate basis of VWFs [141, 142].
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Eq. (2.43) in cylindrical coordinates has the form(
∂ 2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂ 2

∂θ 2 +
∂ 2

∂ z2 + k2

)
ψ(k,r) = 0, (2.48)

where r = (ρ,θ ,z) in cylindrical coordinates. The solution to this equation is

ψn(kρ ,kz,r) = Jn(kρρ)einθ eikzz, (2.49)

where Jn(kρρ) are the regular Bessel functions of first kind and integer order n, which are reg-
ular at the origin. Now the solution of Eq. (2.42) is constructed by using Eq. (2.45), resulting
in

Mn(kρ ,kz,r) = ∇×ψn(kρ ,kz,r)ρ̂ =

(
in
ρ

Jn(kρρ)ρ̂−
∂Jn(kρρ)

∂ρ
θ̂

)
einθ eikzz, (2.50)

Nn(kρ ,kz,r) =
1
k

∇×∇×ψn(kρ ,kz,r)ρ̂ =
1
k

(
ikz

∂Jn(kρρ)

∂ρ
ρ̂− nkz

ρ
θ̂ + k2

ρJn(kρρ)ẑ

)
einθ eikzz,

(2.51)

Ln(kρ ,kz,r) = ∇ψn(kρ ,kz,r) =

(
∂Jn(kρρ)

∂ρ
ρ̂ +

in
ρ

Jn(kρρ)θ̂ + ikzJn(kρρ)ẑ

)
einθ eikzz. (2.52)

These VWFs form an orthogonal complete set. The Green’s tensor is expressed in cylindrical
coordinates as

G(r,s,ω) =
δ (r− s)

k2
0

ρ̂⊗ ρ̂ +
i

8π

∞

∑
n=−∞

ˆ
∞

−∞

dkz
1
k2

ρ

Wn(kz,r,s), (2.53)

with

Wn(kz,r,s) = M(1)
n (kρ ,kz,r)⊗M̂n(kρ ,kz,r)+N(1)

n (kρ ,kz,r)⊗ N̂n(kρ ,kz,r), ρ > ρs,

(2.54a)
Wn(kz,r,s) = Mn(kρ ,kz,r)⊗M̂(1)

n (kρ ,kz,r)+Nn(kρ ,kz,r)⊗ N̂(1)
n (kρ ,kz,r), ρ < ρs.

(2.54b)
where kρ =

√
k2− k2

z , k = ω

c
√

ε . The notation is introduced in a similar manner to sec-
tion 2.5.1. The vector wave functions now are expanded in basis of Bessel and Hankel func-
tions. The superscript (1), e.g. M(1)

n (kρ ,kz,ω), denotes that the Hankel functions of the first
kind should be used.

One should emphasize the fact that the expressions given by Eq. (2.39), (2.47) and (2.53)
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are completely equivalent. Until this point the field created by a quantum emitter in a homo-
geneous medium, in particular free space, is considered. For the rest of the thesis piece-wise
non-homogeneous material bodies are considered and the main goal is to find ways for en-
hancing the interaction distance between quantum emitters. This is a crucial effect from the
point of view of applications.



Chapter 3
Planar Multilayer Geometries

3.1 Introduction

The interaction between quantum emitters and multilayer planar structures is the simplest
and thus the first that has been investigated, both experimentally [3,24,53,70] and theoretically
[4, 9, 27, 28, 58, 143], in depth. Thus it will be instructive from a pedagogical point of view to
investigate in this chapter the spontaneous emission (SE) rate, of a single quantum emitter, and
the energy transfer (ET) rate, between a pair of quantum emitters, in the presence of planar
multilayer geometries. In particular, the influence on the SE and ET rates of the excitation
of surface plasmon (SP) modes is investigated. The SP modes are collective oscillations of
electrons and the electromagnetic field that can be excited at the interface between a dielectric
and a conductor.

In this chapter the focus is on two geometries: the planar single interface geometry, be-
tween a dielectric and a conductor, and a metallic slab in a dielectric host. The metallic slab
geometry is interesting from an application point of view. Our investigation is concentrated
on the SE and ET rates and it is observed that these rates are enhanced several orders of
magnitude compared with the free-space values. The importance of knowing the dispersion
relation [16, 144], the relation between the frequency and the in-plane wavevector, will be
apparent. The spectral and distance dependences of a single quantum emitter interacting with
the planar geometries are explained through the dispersion relation. The penetration depth
characterizes the perpendicular distance dependence of the interaction distance between QEs
and multilayer planar geometries. Furthermore, the propagation length characterizes the par-
allel to the metal/dielectric distance dependence of the interaction distance, between QEs in
the presence of planar multilayer structures.

In this chapter the method of scattering superposition, Sec. 3.2, is introduced for calculating

43
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the Green’s tensor. Then, this method is applied for calculating the Green’s tensor for the
single interface and slab geometry, Sec. 3.3. In the same section the SE and ET rates are
investigated. In Sec. 3.4 the main points summarized and conclusions are drawn.

3.2 Method of scattering superposition for planar

geometries

A multilayer planar geometry is considered consisting of a number of N layers, which are
indexed by their layer number i = 1, . . . ,N where each layer has thickness di and dielectric
permittivity εi. The layers are of infinite extent in the xy plane and the z axis is perpendicular
to the surface of each layer. As we have seen in section 2.3, in order to calculate the SE and
ET rates we have to calculate the Green’s tensor for a particular geometry.

The method of scattering superposition is used [141, 142, 145] where the Green’s tensor
splits into two parts

G(r,s,ω) =Gh(r,s,ω)+Gs(r,s,ω), (3.1)

where Gh(r,s,ω) is the homogeneous part that accounts for direct interaction between the
source and target point at s and r respectively, and is non zero when both points are in the
same media and there is no discontinuity between them, see Eq. (2.39). Gs(r,s,ω) is the
scattering part, is always present and accounts for the multiple reflections and transmissions
taking place at the interfaces.

The general form of the scattering part of the Green’s tensor has the form

Gs(r,s,ω) =
i

8π2

ˆ
d2ks

1
kzik2

s
∑
T

R±(i j)±
T T(ks,±kzi,r)⊗T∗(ks,±kz j,s). (3.2)

A summation is implied for each pair of ± indices. These indices show the direction of
propagation of the electromagnetic modes, the first index for the acceptor and the second for
the donor. Also the summation over T is over the M and N modes which are connected with
the transverse electric and transverse magnetic modes, respectively. For the planar geometries
there are no hybrid modes. The boundary conditions imposed on the system of multilayers
are the continuity condition and the radiation condition. The first condition is denoted by
continuity equations at each interface:

ẑ×
[
G(i j)(r,s,ω)−G((i+1) j)(r,s,ω)

]∣∣∣
z=di

= 0, (3.3a)
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ẑ×
[
∇×G(i j)(r,s,ω)−∇×G((i+1) j)(r,s,ω)

]∣∣∣ z=di = 0. (3.3b)

By applying these boundary equations an inhomogeneous system of 2N−1 equations is defined
which have 2N−1 unknowns, the generalized R±(i j)±

M(N)
coefficients. These coefficients are suf-

ficient to uniquely determined the problem under consideration through the exact knowledge
of the scattering part of the Green’s tensor. Using equations (2.28) and (2.35) the spontaneous
emission and resonance energy transfer rates, γ and Γ, respectively, are calculated.

In order to find the generalized coefficients a matrix equation is solved which has the form

∆M(N) ·R
(i)±
M(N)

=V (i)±
M(N)

, (3.4)

where ∆ is the characteristic matrix of the system of equations from the boundary conditions
at the interfaces, R(i)± is the column of the generalized coefficients R±(i j)±

M(N)
and V (i)± is the

free term vector whose terms are given by the homogeneous part of the Green’s tensor.

3.3 Spontaneous emission and energy transfer rates

In this section the spontaneous emission and energy transfer rates are investigated for the
half space and slab geometries. The full expressions regarding the calculation of the general-
ized Fresnel coefficients are given using the method of scattering superposition developed in
Sec. 3.2. Then, calculating the scattering part of the Green’s tensor the SE and ET rates are
calculated using the formalism developed in Sec. 2.3.

3.3.1 The half space geometry

In this subsection the simplest geometry supporting SP modes is considered, a planar inter-
face between two half-spaces: a dielectric and a metal, Fig. 3.1a. The space for z > 0 is filled
by a dielectric material with dielectric constant ε1, while the region with z < 0 is occupied by
a metal, having a frequency-dependent, complex permittivity, ε2(ω). In this chapter we use a
Drude permittivity for the metal given by:

ε2(ω) = 1−
ω2

p

ω2 + iωγ
, (3.5)

ωp is the plasma frequency for the metal and γ is the linewidth which accounts for ohmic
losses in the metal.

This subsection presents how the scattering part of the Green’s tensor is constructed, Eq. (3.2),
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by applying the boundary conditions Eq. (3.3). Due to the form of the geometry the choice
of Cartesian coordinates is natural, see Sec. 2.5.1. The case where the quantum emitter is
placed in medium 1 is considered. The VWFs form a complete set of eigenfunctions, thus, the
scattering term has the form [141, 142]:

G
(11)
s (r,s,ω) =

i
8π2

ˆ
d2kρ

1
kz1k2

ρ

(
R+11−

M M(kρ ,kz1,r)⊗M∗(kρ ,−kz1,s)+

+R+11−
N N(kρ ,kz1,r)⊗N∗(kρ ,−kz1,s)

)
(3.6a)

G
(21)
s (r,s,ω) =

i
8π2

ˆ
d2kρ

1
kz1k2

ρ

(
R−11−

M M(kρ ,−kz2,r)⊗M∗(kρ ,−kz1,s)+

+R−11−
N N(kρ ,−kz2,r)⊗N∗(kρ ,−kz1,s)

)
(3.6b)

where kzi =
√

k2
i − k2

ρ is the in-plane propagation constant and ki =ω/c
√

εi is the wavenumber
in medium i (i= 1,2). We have already applied the radiation condition. This condition ensures
that there are no incoming waves from z→±∞ as there are no scatterers there.

The R coefficients are calculated by applying the boundary conditions at z = 0, where the
continuity of the tangential component of the electric field E and the normal component of the
magnetic field B translates into the following conditions in terms of the Green’s tensor

ẑ×
[
G(21)(r,s,ω)−G(11)(r,s,ω)

]
z=0

= 0, (3.7a)

ẑ×
[
∇×G(21)(r,s,ω)−∇×G(11)(r,s,ω)

]
z=0

= 0. (3.7b)

The continuity conditions Eq. (3.7) can then be written in matrix form as

∆M(N) ·RM(N) = VM(N), (3.8)

where the characteristic matrices for the two polarizations, TE and TM, have the form,

∆M =

(
1 −1

kz1 kz2

)
, ∆N =

(
kz1
k1

kz2
k2

k1 k2

)
, (3.9)

the unknown coefficients vectors are,

RM =

(
R+(11)−

M

R−(21)−
M

)
, RN =

(
R+(11)−

N

R−(21)−
N

)
, (3.10)
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and the free-vectors

VM =

(
−1
kz1

)
, VN =

(
1

kz2

)
, (3.11)

The usual Fresnel coefficients are the solution of Eq. (3.8):

R+(11)−
M =

kz1− kz2

kz1 + kz2
, R−(21)−

M =
2kz1

kz1 + kz2
, (3.12)

R+(11)−
N =

ε2kz1− ε1kz2

ε2kz1 + ε1kz2
, R−(21)−

N =
2
√

ε1
√

ε2kz1

ε2kz1 + ε1kz2
. (3.13)

The SP modes are now discussed. The SP modes are purely TM in nature and are obtained
by requiring the det(∆N) = 0 which leads to the expression

ε2kz1 + ε1kz2 = 0. (3.14)

The z- components of the wavevector, kz1 and kz2, are given by kzi =
√

k2
i − k2

ρ , i = 1,2, which
leads to

kρ =
ω

c

√
ε1ε2

ε1 + ε2
, (3.15)

the dispersion relation. The electric field is evanescent along the z-direction in both media,
with

kz1 =
ω

c

√
ε2

1
ε1 + ε2

, kz2 =
ω

c

√
ε2

2
ε1 + ε2

, (3.16)

pictured in Fig. 3.1a. In case that the metal losses are ignored, γ = 0, then the physical con-
ditions for the existence of SP modes are that they propagate along the interface, i.e. kρ is
real, and decay away from the interface between metal-dielectric, kzi imaginary. Then using
Eq. (3.5) the SP modes are in the range ω ∈ (0,ωSP), where ωSP = ωP/

√
1+ ε1 is the surface

plasmon frequency. By increasing the value of the permittivity of the dielectric medium then
the SP frequency is redshifted.

In Fig. 3.1b the modes supported by a planar metal-dielectric interface are considered [16,
144]. The dielectric permittivity has a value of ε1 = 2 and the value of the plasma frequency
ωp = 8fs−1, also γ = 0. The SP frequency has a value of ωSP = 4.6fs−1, and the SP branch
asymptotically tends to this value. The SP branch is in the (0,ωSP) and lies beneath the light-
line in medium 1, thus the SP modes cannot be excited by direct plane wave illumination. In
the region between (ωSP,ωp) there are no modes, this is the stop-gap region. Finally, in the
(ωp,∞) region the modes are radiative and propagate freely in both media.

Using all the above expressions, the scattering part of the Green’s tensor, Eq. (3.6), is calcu-
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(a) (b)

Figure 3.1: (a) Infinite half space geometry between a dielectric, ε1 = 2, and a frequency dependent Drude type
of metal, ε2(ω). The solid red lines show the field distribution of the electric field. (b) Band structure for the half
space geometry shown in (a).

lated by switching to polar coordinates, kρ = (kρ ,kθ ), where the kθ integral can be performed
analytically. The reflection coefficients R do not depend on kθ . The form of the z component
of the scattering part of the Green’s tensor is presented in the case of a quantum emitter with
the transition dipole moment oriented along z and the emitter and target points are in medium
1,

G11
zz (r,s,ω) =

i
4π

ˆ
∞

0
dkρ

k3
ρ

kz1k2
1

R+(11)−
N J0(kρ |ρ−ρs|)eikz1(z+zs), (3.17)

where J0 is the regular Bessel function of zero order and r = (ρ,z) and s = (ρs,zs). This
integral is calculated with numerical methods. In the following paragraphs the zz-component
of the transition dipole moment of the quantum emitters and the SE and ET rates are calcu-
lated. The quantum emitters considered in this chapter have emission and absorption spectra
described by Dirac delta distributions .

3.3.1.1 Spontaneous emission rate

In Fig. 3.2 a quantum emitter embedded in the dielectric medium 1 is considered, with
ε1 = 2, at different distances, rQE = (0,0,z), from the frequency dependent medium 2, ε2(ω).
The emission frequency of the quantum emitter is varied. The SE rate is given by Eq. (2.28)
and the scattering part of the Green’s tensor is given by Eq. (3.17). The normalized SE rate is
given by

γ̃(ω) =
γ

γ0
=
√

ε1 +
3c
2ω

Im

(
i
ˆ

∞

0
dkρ

k3
ρ

kz1k2
1

R+(11)−
N e2ikz1z

)
. (3.18)
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(a) (b)

Figure 3.2: Normalized SE rate of a QE embedded in a dielectric medium, ε1 = 2, placed above a frequency
dependent Drude-type metal, ε2(ω). (a) Varying the emission wavelength of the QE, λ , for different distances
away from the metal. (b) Distance dependence of the SE rate for a QE with emission λ = 430nm where the lossy
surface wave (LSW), surface plasmon (SP) and radiative (Rad) emission contributions are depicted.

As can be observed in Fig. 3.2a when we are close to the SP resonance condition the SE
rate is enhanced several orders of magnitude, compared with its free space value. The SP
wavelength is λSP = 408nm when Re(ε2(ω)) =−ε1. As the distance between the QE and the
Drude metal half space is increased the SE rate drops and at distances larger than the emission
wavelength, z� λ , it drops to its free space value. This effect is due to the fact that the SP
branch, Fig. 3.1b, lies below the light-line and we need large values of the in plane wavevector
kρ to excite the SP modes. The near field of the QE provides these high values of kρ , but as the
distance of the QE to the metal half space is increased, the near field of the QE drops rapidly.
It is well known that by placing a dipole source at infinity its signal is received as a plane wave.
Furthermore, for wavelengths smaller than the λSP the SE is suppressed, compared to the free
space emission, due to the fact that these wavelengths lie in the stop-gap region and there are
no modes to be excited by the QE. For larger values of the emission wavelength, λ > λSP, the
QE can couple with the SP branch and a considerable enhancement of the SE rate is observed.

In Fig. 3.2b the distance dependence of a QE away from the Drude half space is investigated,
for an emission wavelength close to SP wavelength, λ = 430nm. Three different contributions
are presented, namely:

• At small separations of the QE-Drude media the lossy surface waves (LSW) dominate.
These modes are non-radiative in nature and non-propagating. They are excited by very
large wavevectors, thus, we need to be well within the near field of the QE. We can get
an analytical expression for describing these modes by setting kρ → ∞, then kz1 = ikρ .
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The integral in Eq. (3.18) can be analytically calculated

γ̃LSW =
γLSW

γ0
=

3
8

1
(k0z)3 Im

(
ε2(ω)− ε1

ε2(ω)+ ε1

)
. (3.19)

The γ̃LSW falls off rapidly as 1/z3 and, thus, is the main path of relaxation for the QE
when it is very close to the Drude metal half space.

• The excitation of SP modes along the metal-dielectric interface. These modes appear
as the pole contribution to the reflection coefficient, R+11−

N , in the integral of Eq. (3.18)
and we get the expression

γ̃SP =
γSP

γ0
=−

3πk3
0

ε1
Im

(
kSP

z1

k6
SP
(ε2(ω)− ε1)e2ikSP

z1 z

)
, (3.20)

where the SP wavenumber, kSP, is given by Eq. (3.15), and was shown in Fig. 3.1b as
the SP dispersion, and kSP

z1 =
√

k2
1− k2

SP. For wavelengths above the SP wavelength the
kSP

z1 has a complex component, thus, the exponent in Eq. (3.20) drops as the separation
between the QE-metal is increased.

• Finally, by integrating the integral of Eq. (3.18) in the (0,k1) interval we get the radiation
of the QE to the far field. For these modes the kz1 is real. The contribution of these
modes to the total SE is given by:

γ̃Rad =
γRad

γ0
=
√

ε1 +
3c
2ω

Im

(
i
ˆ k1

0
dkρ

k3
ρ

kz1k2
1

R+(11)−
N e2ikz1z

)
. (3.21)

Thus, the normalized total SE rate of the QE has the form

γ̃Total = γ̃Rad + γ̃SP + γ̃LSW. (3.22)

where the different contributions are given by Eq. (3.19-3.21) for a QE whose transition dipole
moment is along z. In Fig. 3.2b the full numerical integration of Eq. (3.18) is presented and
the various contributions extracted earlier. Very close to the metal there is a considerable
contribution to the SE rate from the SP mode but the main path of relaxation is through the
LSW, which drops rapidly as this distance is increased. At the intermediate distances between
5 nm to 60 nm the SP modes are the main path of relaxation. Up to these distances the far field
emission is suppressed and is below the free space values. At distances above 100 nm the QE
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is only emitting in the far field.

3.3.1.2 Energy transfer rate

In Fig. 3.3 a contour plot of the logarithm of ET rate, Γ(r,s,ω) ∝ |G(r,s,ω)|2 is presented,
with the Green’s tensor given by Eq. (3.2). The position of the donor QE is kept fixed, rD =

(0,0,zD), and we scan the xz-plane varying the acceptor QE position, rA = (x,0,z). The emis-
sion wavelength of the donor QE is close to the SP wavelength, λ = 430nm. The zz-transition
dipole moments of the donor and acceptor QEs are considered. Three different positions of
the donor QE above the Drude metal half space are investigated, zD = 5nm, 10nm and 15nm,
in Fig. (3.3a-3.3c) respectively. As the separation between the donor QE and the metal surface
is increased, the ET rate drops, since the coupling with the near field of the donor QE drops.
Moreover, the ET rate has its largest values very close to the metal-dielectric interface. The
closer the donor QE is to the metal, the larger is the field extent along the interface. This
shows the importance of exciting the SP modes in order to enhance the interaction distance
and, also that the donor-acceptor position plays a crucial role. As we increase the acceptor
position away from the interface the ET rate falls off rapidly, due to the tight confinement of
the field at the metal-dielectric interface.

3.3.2 Metallic slab geometry between dielectric substrates

In this subsection the focus is on the geometry presented in Fig. 3.4 comprised of three
different materials. The material labeled with 1 has a dielectric permittivity ε1 = 2, material 2
is described by the frequency dependent Drude dielectric permittivity given by Eq. (3.5), and
finally material 3 has ε3 = 4. The metallic slab has a thickness d and its center is placed at the
z = 0 plane. Eq. (3.5) is used with ωp = 8fs−1 and γ = 0.07fs−1, the same parameters as have
been used for the single interface geometry. The focus here is on the case where the donor QE
is placed in medium 1, cf. Fig. 3.4.

The construction of the scattering part of the Green’s tensor is described following the same
method as in Sub. 3.3.1. After applying the boundary conditions, Eq. (3.3), at the z = ±d/2
we end up with a system of equations described by Eq. (3.8) where now the characteristic
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(a)

(b)

(c)

Figure 3.3: Contour plot of the ET rate for fixed donor position, rD = (0,0,zD), and varying acceptor position,
r = (xA,0,zA), in the xz-plane. The z-orientation of the transition dipole moment of the donor and acceptor QEs
is considered. The emission wavelength of the donor QE is λD = 430nm. Three positions for the donor QE (a)
zD = 5nm, (b) zD = 10nm and (c) zD = 15nm are considered.
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Figure 3.4: Drude metal slab geometry with dielectric permittivities of ε1 = 2,ε2(ω),ε3 = 4 . We focus on the
case where the QE is placed in medium 1, ε1 = 2, for the SE and ET rates.

matrices describing the TE and TM polarizations are given by:

∆M =


ei/2kz1d −ei/2kz2d −e−i/2kz2d 0

kz1ei/2kz1d −kz2ei/2kz2d kz2e−i/2kz2d 0
0 e−i/2kz2d ei/2kz2d −ei/2kz3d

0 kz2e−i/2kz2d −kz2ei/2kz2d −kz1ei/2kz3d

 , (3.23)

∆N =


kz1
k1

ei/2kz1d −kz2
k2

ei/2kz2d kz2
k2

e−i/2kz2d 0

k1ei/2kz1d −k2ei/2kz2d k2e−i/2kz2d 0
0 kz2

k2
e−i/2kz2d −kz2

k2
ei/2kz2d kz3

k3
ei/2kz3d

0 k2e−i/2kz2d k2ei/2kz2d −k1ei/2kz3d

 , (3.24)

the generalized unknown coefficients have the form:

R11
M =


R+(11)−

M

R+(21)−
M

R−(21)−
M

R−(31)−
M

 , R11
N =


R+(11)−

N

R+(21)−
N

R−(21)−
N

R−(31)−
N

 , (3.25)
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(a) (b)

Figure 3.5: Band structure of the slab geometry. Contour plot of 1/Det(∆N) as a function of frequency, ω , and
the in plane wavevector, kρ , for two slab thicknesses (a) d = 5nm and (b) d = 10nm.

and the free-terms vectors are given by:

V11
M =


−e−i/2kz1d

−kz1e−i/2kz1d

0
0

 , V11
N =


kz1
k1

e−i/2kz1d

k1e−i/2kz1d

0
0

 . (3.26)

With the above method, the generalized reflection coefficients, R, are calculated, which fully
characterize the problem under consideration. Before doing that, the modes provided by the
slab geometry are discussed. In Fig. 3.5 a contour plot of the expression 1/Det(∆N(ω,kρ)) is
presented, as a function of the frequency, ω , and the in-plane wavevector, kρ . The dark colors
in Fig. 3.5 are connected with large values of this expression, which, in turn, are connected
with the poles of the expression 1/Det(∆N). This provides all the available modes supported
by the slab geometry, in particular the dispersion relation [16, 144]. Two thicknesses for the
slab, d = 5nm, Fig. 3.5a, and d = 10nm, Fig. 3.5b are considered. Firstly, in both figures is
observed that two SP branches are present due to the fact that two dielectric-metal interfaces
are included. Also, for higher values of the in-plane wavevector, kρ , the two branches asymp-
totically tend to the SP frequencies given by the expression ωSPi = ωp/

√
εi +1, where for

our case i = 1,3. The SP frequencies have the values ωSP1 = 4.6fs−1, (λSP1 = 430nm), and
ωSP3 = 3.6fs−1(λSP3 = 524nm). In Fig. 3.5a, where the slab thickness is d = 5nm, the upper
SP branch lies in the stop gap, a region which for the half space geometry was inaccessible. As
the thickness of the metallic slab is increased, Fig. 3.5b, the upper SP branch lies also below
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Figure 3.6: Normalized SE of a QE above a metallic slab, embedded in ε1 = 2, for different thicknesses of the
metallic slab, d, as a function of the emission wavelength of the QE. The position of the quantum emitter is given
by zQE = d/2+5nm.

the asymptotically value of ωSP1. Moreover, a main difference between the single interface
and the slab geometries, regarding their dispersion relation is that, for the smaller thickness of
the slab, Fig. 3.5a, it tends to the SP frequencies at large values of the wavevector kρ , while
as we increase the thickness, smaller values are required. For comparison, for the d = 5nm
thickness they tend to the asymptotic values for wavevectors kρ = 0.4nm−1 while for the half
space geometry the dispersion branch tends to the asymptotic value at kρ = 0.1nm−1.

In the following, the SE of a single QE, and the ET between a pair of QEs, are discussed
for a transition dipole moment along the z-axis. The scattering part of the Green’s tensor, for
the case that the QE and the target position are in medium 1 is given by expression Eq. (3.17).

3.3.2.1 Spontaneous emission rate

In this subsection the normalized spontaneous emission rate, γ̃ , of a QE is studied, for
a dipole moment oriented along the z-axis and placed above a metallic slab of thickness d,
embedded the medium 1, ε1 = 2. In Fig. 3.6 the normalized SE rate is presented as a function
of the emission wavelength, λ , for different thicknesses of the metallic slab. Fig. 3.6 shows
that there are two resonance wavelengths, as is expected from the dispersion relation Fig. 3.5,
at λSP1 = 430nm and λSP2 = 524nm. Close to λSP1, for all the slab thicknesses d, the SE
rate has values up to 105 due to the excitation of the SP mode. For the surface plasmon λSP2,
which is the SP wavelength connected with the lower metal-dielectric interface, ε2(ω)/ε3, the
normalized SE rate has a peak that is more broad compared with the case λSP1. Furthermore,
as the slab thickness is increased, the coupling of the near field of the QE with the opposite
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(a) (b)

(c) (d)

Figure 3.7: Contour plot of the ET rate for fixed donor position, rD = (0,0,5nm+ d/2), as a function of the
acceptor position, r = (xA,0,zA), in the xz−plane. We consider the zz−orientation for the transition dipole
moment for the donor and acceptor QEs. The emission wavelength of the donor QE is (a-b) λD = 430nm and
(c-d) λD = 555nm. Two thickness for the metallic slab are considered, (a,c) d = 5nm and (b,d) d = 10nm.

surface is smaller, hence the normalized SE rate is decreased.
The shoulder observed in Fig. 3.6 for the thickness of 5 nm at around 290 nm is attributed

to the intersection of the upper branch of the SP mode with the light line, see Fig. 3.5a. As
the thickness of the slab is increased this shoulder is redshifted, because the intersection of the
upper SP branch with the light line is also redshifted. Compare Fig. 3.5a and 3.5b. For larger
thicknesses this shoulder disappears, d = 30 nm.

3.3.2.2 Energy transfer rate

In this subsection the ET rate, Γ, between two QEs is investigated, when their dipole mo-
ments are along the z-axis, near a metallic slab. Two thicknesses, d = 5nm and d = 10nm, of
the Drude metal slab are investigated. In Fig. 3.7 a contour plot of the xz cross section of the
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Figure 3.8: Propagation length, LSP , and penetration depth in medium 1, δSP1, of a metallic slab for different
slab thicknesses.

ET rate Γ(r,s,ω) ∝ |G(r,s,λ )|2 is presented for donor emission wavelengths of λ = 430nm
and λ = 555nm. These wavelengths are close to the SP wavelengths but the wavelength
λ = 430nm lies in the band gap between the two surface plasmon wavelengths, see Fig. 3.5.
The color map scale is the same in all graphs, thus the color differences can directly be con-
nected with the ET rate strength. When the ET rate investigated for the case of the half space
geometry, Fig. 3.3, as the donor QE -metal surface separation increased the interaction strength
decreased, thus the donor QE is placed 5nm above the metal slab in all cases considered for
the rest of this section.

In Fig. 3.7a and 3.7b, the donor emission wavelength is λ = 430nm, for metal thicknesses
d = 5nm and 10 nm, respectively. This wavelength lies in the region between the two SP
modes, see Fig. 3.5, in that region the upper branch of the SP mode is very close to the light
line, thus the coupling with the propagating SP modes is poor. The ET rate has large values
when the acceptor QE is close to the donor QE and has a similar spatial distribution in the xz-
plane as for the free space case, with a minimum coupling with the slab geometry. On the other
hand, in Fig. 3.7c and 3.7d, the donor emission wavelength is λ = 555nm, a large influence
in the ET, between the donor and acceptor QEs, is observed from the slab geometry due to
the coupling with the propagating SP modes. The lobes observed in Fig. 3.7c and 3.7d, when
placing the donor QE close to the metal/dielectric interfaces, are connected with the surface
plasmon wavelength, λSP = 2π/kSP. In particular, for the d = 5 nm we have λSP = 20 nm and
for d = 10 nm is λSP = 60 nm. The surface plasmon wavevector, kSP, is extracted from the SP
dispersion, see Fig. 3.5.

In Fig. 3.8 the propagation length, LSP = 1/Im(kSP
s ) and the penetration depth, δSP1 =

1/Im(kSP
z1 ), are plotted for the two thicknesses discussed in Fig. 3.7. In the the region be-
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tween the two surface plasmon modes the propagation length is quenched, thus explaining
the behavior observed in Fig. 3.7a and 3.7b. Considering the case that the emission wave-
length of the donor QE is λ = 555nm for the thicknesses d = 5nm, Fig. 3.7c, and d = 10nm,
Fig. 3.7d, the propagation lengths are 90 nm and 145 nm, respectively. This explains why
the interaction distance between the donor-acceptor QEs is increased compared with the case
where the donor emission wavelength is λ = 430nm. Furthermore, in Fig. 3.8 the penetration
depth, δSP1 = 1/Im(kSP

z1 ), is smaller in the region between the two SP wavelengths thus for
λ = 430nm in Fig. 3.7 the extent of the ET is smaller compared with the λ = 555 nm.

3.4 Summary and conclusions

In the beginning of this chapter the method of scattering superposition was introduced for
multilayer planar structures in order to calculate the Green’s tensor. This method was applied
in Sec. 3.3 for calculating the Green’s tensor for a single interface and slab geometries. The
method of scattering superposition will be applied in Chapter 4, for a dielectric coated cylinder,
and in Chapter 5, for a graphene monolayer.

The knowledge of the Green’s tensor is needed for investigating the SE and ET rates for a
single interface and slab geometries. The SE rate of a quantum emitter is enhanced several or-
ders of magnitude, compared with its free space value, due to the excitation of the SP modes.
The spectral and distance dependence of a QE interacting with the planar geometries is inves-
tigated and explained with the help of the dispersion relation. The ET rate is observed to have
large values when the donor and acceptor quantum emitters are close to the dielectric-metal
interface, and when the near field of the donor can efficiently excite the surface plasmon mode.
The form of the interaction is explained by the properties of the SP mode, its penetration depth,
its propagation length and its plasmon wavevector.

This Chapter is used as a pedagogical introduction to the interaction between QEs and con-
ducting planar multilayer nanostructures. In the next chapter a dielectric coated metallic cylin-
der is considered for enhancing the interaction distance between quantum emitters through the
SP mode provided by the metallic core.



Chapter 4
Spontaneous Emission and Energy Transfer Rates
Near a Coated Metallic Cylinder

4.1 Introduction

In this chapter the spontaneous emission (SE) rate of a single quantum emitter (QE), and
energy transfer (ET) rate between a pair of QEs, are investigated in the presence of a dielec-
trically coated metallic infinite cylinder as a function of the material and dimensions of the
core and coating, as well as the emission wavelength of the donor. For the material of the
core we consider gold and silver, whose surface plasmon wavelengths lie in the visible part
of the electromagnetic spectrum. Tabulated experimental data are used to describe the optical
response of these materials [129]. The SE and ET rates are calculated using a semi-analytical
Green’s tensor method [141,142]. A variety of quantum systems can be investigated this way,
e.g. atoms, molecules, quantum dots and fluorescent dyes.

The SE and ET rates have been studied extensively for cylindrical geometries during the
past decade, the focus being mainly on the SE rate in the presence of dielectric and metallic
cylinders. Furthermore, it has been shown that the ET rate between a pair of quantum emitters
can be significantly enhanced due to coupling to SP modes on a metallic cylinder [37, 40].

When a dielectric coating to a metallic core is considered, it can support SP modes [32].
Moreover, it is found that the spontaneous emission rate is enhanced by several orders of mag-
nitude when the emission wavelength is close to the surface plasmon wavelength. The energy
transfer rate enhancement is found to be concentrated in hot spots around the circumference
of the coated cylinder. Introducing the energy transfer efficiency as a parameter, it is found
that, when the donor emission and acceptor absorption spectra are resonant with the SP modes
excited on the coated cylinder, the energy transfer efficiency can be significantly enhanced

59
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compared to the off-resonance situation. Tuning the SP wavelength to the emission wave-
length of the donor via the geometrical and material parameters of the coated cylinder allows
control of the energy transfer efficiency.

Top-down techniques, e.g. electron-beam lithography, or bottom-up techniques, e.g. col-
loidal synthesis, can be used to fabricate hybrid nanostructures with dimensions of a few tens
of nanometers. These structures form the building blocks for a variety of potential techno-
logical applications. Nanowires and coated nanowire structures can be used in light harvest-
ing [146,147] and switching devices [148], imaging [149,150], light conversion [150,151] and
quantum optics applications [50]. A good understanding of the SE and ET processes in these
environments is important for manipulation of light below the diffraction limit.

The chapter is structured as follows: In Sec. 4.2 an outline of the formalism used is pre-
sented, while in Sec. 4.3 the results of our simulations of the SE and ET rates for various
material and dimensions of the dielectric coated cylinder are presented and discussed. Finally,
Sec. 4.4 is reserved for a summary of the results and the conclusions that can be drawn.

4.2 Spontaneous emission, energy transfer and the

Green's tensor formalism

The Green’s tensor encapsulates all the information for the response of material bodies to
electromagnetic fields and determines the normalized SE rate, Eq. (2.28), and normalized ET
function, Eq. (2.35). In what follows a method for calculating the Green’s tensor for a coated
cylinder geometry is presented [152].

A coated cylinder with core radius, a, and outer radius, b, is considered, embedded in a
homogeneous medium with dielectric permittivity ε3, as in Fig. 4.1. The cylinder axis is along
the z-direction. The dielectric permittivity of the core cylinder is ε1 which is taken from the
tabulated experimental data of Ref. [129], see Fig. 1.3a, while the coating will have a constant
dielectric permittivity ε2. Due to the cylindrical symmetry of the structure, throughout this
chapter the cylindrical coordinate system, (ρ,θ ,z), is used.

In order to calculate the Green’s tensor for the coated cylinder geometry the method of scat-
tering superposition is used [141,142] which was introduced in Sec. 3.2 for planar geometries.
When the source point is located in the background medium outside the coated cylinder, the
Green’s tensor has the form

G(13)(r,s,ω) =G
(13)
s (r,s,ω), (4.1)
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Figure 4.1: Cross-section of an infinitely long coated cylinder, with its axis along the z-direction, core radius a
and outer radius b. The dielectric permittivity of the core is ε1, the dielectric permittivity of the coating is ε2 and
that of the surrounding medium is ε3.

G(23)(r,s,ω) =G
(23)
s (r,s,ω), (4.2)

G(33)(r,s,ω) =G
(33)
h (r,s,ω)+G

(33)
s (r,s,ω), (4.3)

where the first of the two labels in the superscript (i3), i = 1,2,3, denotes the field point,
while the second denotes the source point. The subscript s denotes the scattering term, always
present, while the homogeneous term G

(33)
h (r,s,ω) contributes only when the source and

field points are in the same medium. When calculating the ET rate, the source and field points
correspond to the donor and acceptor positions, respectively, while for the SE rate, the source
and field points coincide and correspond to the position of the quantum emitter.

The scattering term has the following general expression, see Sec. 2.5.2 and Eq. (2.53),

G
(i3)
s (r,s,ω) =

i
8π

∑
n,K

∞̂

−∞

dkz
[
Ri3

MKMn(kρi,r)+Ri3
NKNn(kρi,r)

]
⊗K(1)

n (kρ3,s), (4.4)

where kρi =
√

k2
i − k2

z is the radial propagation constant in medium i, and ki =
ω

c
√

εi is the
wavenumber in medium i (i = 1,2,3). The above expression involves a summation over K
which represents M(1)

n (kρ3) and N(1)
n (kρ3), or the transverse electric (TE) and transverse mag-

netic (TM) modes. As is evident, the field has a hybrid nature, and cannot be separated into TE
and TM modes. The vector wave functions are solutions of the Helmholtz equation in cylin-
drical coordinates and involve Bessel and Hankel functions. The superscript (1) in M(1)

n (kρ)

denotes the fact that we use the Hankel function of the first kind. This form of the Green’s
tensor already takes into account the radiation condition at infinity and the regularity condition
on the z axis, i.e. at ρ = 0, where the regular Bessel functions are used.

The following continuity conditions are imposed at the surface of the core (ρ1 = a) and
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coating (ρ2 = b),

ρ̂×
[
G(i3)(r,s,ω)−G((i+1)3)(r,s,ω)

]∣∣∣
ρ=ρi

= 0, (4.5)

ρ̂×
[
∇×G(i3)(r,s,ω)−∇×G((i+1)3)(r,s,ω)

]∣∣∣
ρ=ρi

= 0. (4.6)

Using equation (4.2) in the continuity conditions, two inhomogeneous systems of linear
equations are obtained, one for each polarization M or N. This system of equations can be
written in matrix form as

∆(n,kz) ·RM(N)(n,kz) = VM(N)(n,kz), (4.7)

where ∆(n,kz) represents the characteristic matrix, the same for both polarizations TE and TM,
RM(n,kz) and RN(n,kz) are the unknown coefficients vectors, and VM(n,kz) and VN(n,kz) are
the free-term vectors, known quantities emerging from the homogeneous part of the Green’s
tensor G(33)(r,s,ω), and associated with the field of a point dipole source.

The characteristic matrix, ∆(n,kz), has the form:

∆n = (4.8)

kρ1J′n1a
nkz
ak1

Jn1a −kρ2H ′(1)n2a − nkz
ak2

H(1)
n2a −kρ2J′n2a − nkz

ak2
Jn2a 0 0

0
k2

ρ1
k1

Jn1a 0 −
k2

ρ2
k2

H(1)
n2a 0 −

k2
ρ2
k2

Jn2a 0 0
nkz
a Jn1a k1kρ1J′n1a −nkz

a H(1)
n2a −k2kρ2H ′(1)n2a −nkz

a Jn2a k2kρ2J′n2a 0 0

k2
ρ1Jn1a 0 −k2

ρ2H(1)
n2a 0 −k2

ρ2Jn2a 0 0 0

0 0 0
k2

ρ2
k2

H(1)
n2b 0

k2
ρ2
k2

Jn2b 0 −
k2

ρ3
k3

H(1)
n3b

0 0 kρ2H ′(1)n2b
nkz
bk H(1)

n2b kρ2J′n2b
nkz
ak2

Jn2b −kρ3H ′(1)n3b − nkz
k3bH(1)

n3b

0 0 k2
ρ2H(1)

n2b 0 k2
ρ2Jn2b 0 −k2

ρ3H(1)
n3b 0

0 0 nkz
b H(1)

n2b k2kρ2H ′(1)n2b −nkz
b Jn2b k2kρ2J′n2b −nkz

b H(1)
n3b −k3kρ3H ′(1)n3b


,

where we use the compact notation Jn1a = Jn(kρ1a), H(1)
n2a = H(1)

n (kρ2a) and so on. The free-
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term vectors, V3
M(n,kz) and V3

N(n,kz), have the form:

V3
M(n,kz) =



0
0
0
0
0

kρ3J′n(kρ3b)

k2
ρ3Jn(kρ3b)

nkz
b Jn(kρ3b)


, V3

N(n,kz) =



0
0
0
0

k2
ρ3
k3

Jn(kρ3b)
nkz
bk3

Jn(kρ3b)

0
k3kρ3J′n(kρ3b)


, (4.9)

while the coefficients vectors are:

RM =



R13
MM

R13
NM

RH23
MM

RH23
NM

RJ23
MM

RH23
NM

R33
MM

R33
MM


, RN =



R13
MN

R13
NN

RH23
MN

RH23
NN

RJ23
MN

RH23
NN

R33
MN

R33
MN


. (4.10)

Using these expressions, Eq. (4.7) can be readily solved.
As an example, the expression of the scattering part of the Green’s tensor is given for the

case when the donor and the acceptor are both oriented along the z direction:

G
(13)
s(zz)(r,s,ω) =

i
8π

∞

∑
n=−∞

∞̂

−∞

dkz
k2

ρ1

k1k3
R13

NN Jn(kρ1ρ)Hn(kρ3ρs)einθ eikzz. (4.11)

The integrals above do not depend on θs, because of the rotational symmetry, or zs, because
of translation symmetry along the axis of the cylinder. The integrals are also symmetric with
respect to kz, which means that the integration interval of kz can be replaced with the inter-
val (0,∞). The various scattering coefficients have a complicated form, and we implement
numerical methods to calculate these integrals and thereafter the SE and ET rates. One can
distinguish three contributions in the above integrals: for kz ∈ (0,k3), one integrates over con-
tributions from radiative modes traveling freely in the surrounding medium, in this case air; for
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(a) a = 40 nm, b = 50 nm (b) a = 80 nm, b = 90 nm

Figure 4.2: Dispersion curves of surface plasmons of different orders n on a coated cylinder with a Ag core,
dielectric coating ε2 = 2 and embedded in air, for two different sets of geometric parameters: (a) a = 40 nm and
b = 50 nm (b) a = 80 nm and b = 90 nm.

kz ∈ (k3,k2), the integral gives the contribution from guided modes within the dielectric coat-
ing. These modes are evanescent in the surrounding medium, and thus only contribute when
the donor and acceptor are both close to the surface of the coating. Finally, for kz ∈ (k2,∞),
the integral has contributions from surface plasmon modes on the metallic core [38], as well
as from lossy surface waves with larger values of kz [51].

One can obtain the normal modes of the geometry under consideration by setting the free
vectors to zero in Eq. (4.5) and solving the resulting homogeneous system of equations [32].
This kind of system has a non-trivial solution only when the determinant of the characteristic
matrix ∆(n,kz) is set to zero. Due to the complex form of ∆(n,kz) we solve this equation
numerically. We consider the case of a Ag core, where experimental data are used for the
dielectric permittivity, ε1 = εAg(ω) [129], coated with a dielectric with ε2 and embedded in
air, ε3 = 1. Fig. 4.2 presents the dispersion curves for surface plasmons of different orders
n. In panel 4.2a the core radius is a = 40 nm and the outer radius is b = 50 nm while for
panel 4.2b we have a = 80 nm and b = 90 nm. The dielectric permittivity of the coating
is ε2 = 2 in both panels. The horizontal line with the value ω = ωSP = 5.3 fs−1 represents
the surface plasmon frequency, i.e. the asymptotic value of ω for k→ ∞, for all the surface
plasmon dispersion curves. This frequency corresponds to a surface plasmon wavelength of
λSP = 355 nm. In panel 4.2a the surface plasmon dispersion curves with n > 1 lie close to
the SP frequency ωSP, while in panel 4.2b the surface plasmon dispersion curves reach their
asymptotic value for n > 2. The value of n above which the dispersion curves are close to ωSP

increases with the size of the metallic core.
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(a) Ag core (b) Au core

Figure 4.3: Normalized SE rate, γ̃ = γ/γ0, near a coated metallic cylinder as a function of the radial distance,
r, and emission wavelength, λ , of the emitter. The core radius is a = 40 nm and outer radius is b = 50 nm.
The coating has constant dielectric permittivity ε2 = 2 and the surrounding medium is air, ε3 = 1. (a) Ag core,
ε1 = εAg(ω) (b) Au core, ε1 = εAu(ω). The dipole moment of the emitter is radial.

4.3 Results and Discussion

Using the formalism developed in the previous section, the SE and ET functions and rates
are now calculated for quantum systems in the presence of a dielectrically coated metallic
cylinder, with core radius a and outer radius b. All the results have been obtained for transition
dipoles that are radially oriented, and we therefore use the ρρ component of the Green’s tensor.

4.3.1 Spontaneous emission rate

In this section the influence of the coated cylinder on the SE rate of a nearby quantum
emitter is investigated. The normalized SE rate of the quantum emitter is defined as γ̃ = γ/γ0

which is the ratio of the SE rate in the presence of the coated metallic cylinder, γ , to the free
space SE rate, γ0, see Sec. 2.3.1. Thus the normalized SE rate, γ̃ , gives the enhancement or the
inhibition of the SE rate with respect to the free space value due to the presence of the coated
metallic cylinder.

Firstly, the case of a coated cylinder of core radius a = 40 nm and outer radius b = 50 nm is
considered. Figure 4.3 shows contour plots of the normalized SE rate, γ̃ , as a function of the
position of the emitter and its emission wavelength, for both Ag and Au cores. The normalized
SE rate is enhanced close to the metallic core and for an emission wavelength close to the SP
wavelength. Excitation of SPs on the coated cylinder requires momentum matching between
the excitation field and the SP mode. This momentum matching is provided, in this case, by
the dipole near-field of the quantum emitter. Consequently, as the dipole is moved away from
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(a) Ag core (b) Au core

Figure 4.4: Normalized SE rate, γ̃ = γ/γ0, as a function of the emission wavelength, λ , of the emitter, for
several core radii, a. The position of the emitter is fixed at r = a+ 5 nm, and its dipole moment is radial. The
surrounding medium is air, ε3 = 1, the coating has ε2 = 2 and the core is metallic. (a) Ag core ε1 = εAg(ω) (b)
Au core ε1 = εAu(ω). The SE rate in the limit a→ ∞ is also shown for comparison.

the metallic core, its near-field cannot excite the SP modes and, at larger distances, we recover
the free space value of the SE rate. The SP wavelength for the Ag core is λAg = 356 nm while
the Au SP wavelength is λAu = 520 nm.

In Fig. 4.4 the normalized SE rate is investigated as a function of the emission wavelength
of the emitter, for a fixed coating thickness d = 10 nm, and a fixed position of the emitter, r =

a+5 nm, in the middle of the coating. Four cases for the core radius, a = 10 nm, a = 20 nm,
a = 40 nm and a = 90 nm are considered. As the core radius is increased, the SP wavelength
does not change, as it does not depend on the cylinder radius, see Fig. 4.2. When the emission
wavelength is above the SP wavelength, corresponding to frequencies below ωSP in Fig. 4.2,
the SE rate exhibits a strong dependence on the size of the core. More precisely, the SE is
reduced as the size of the core is increased and this can be explained by the fact that in this
wavelength regime, the emitter can couple to the SP modes of the coated cylinder. SPs with
a larger wavenumber give a larger contribution to the SE rate, though their influence is more
constrained to the surface of the core. For a given frequency in this range, the SP wavenumber
varies inversely as the core size, and, therefore, smaller cores produce larger SE rates of the
emitter. For core radii above a = 40 nm, the SE rate no longer depends on the core size and
is, in essence, the same as the SE rate for a core of infinite size, also shown in Fig. 4.4. When
the emission wavelength is close to or below the SP wavelength, SPs of higher order and with
a dispersion curve very close to the SP wavelength begin to contribute to the SE rate. Coated
cylinders with a larger core support a larger number of these high-order SPs which, therefore,
give a larger contribution to the SE rate of the emitter. The dependence of the SE rate on the
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(a) Ag core (b) Au core

Figure 4.5: Normalized SE rate, γ̃ = γ/γ0, as a function of the distance of the emitter from the surface of the
core, d, for several core radii, a = 10nm,20nm,40nm,80nm. The surrounding medium is air, ε3 = 1, the coating
has a constant dielectric permittivity ε2 = 2 and thickness b− a = 10 nm, and the core is metallic with: (a) Ag
core and (b) Au core. The dipole moment of the emitter is radial. The insets of both panels show the different
contributions of the radiative and SP modes to the total SE rate in the absence of losses, for a = 40nm and
b = 50nm.

size of the core is then reversed, increasing with core size, though not very strongly. The limit
a→ ∞ is seen to hold in both wavelength regimes, above and below the SP wavelength.

Apart from a larger SE rate for the Ag core, the main difference between the Au and Ag
cores is that the features for a Ag core are sharper than those for a Au core. For the latter,
the dependence of the normalized SE rate, γ̃ , on the emission wavelength has a broader and
shallower peak around the SP wavelength. This is due to the larger absorption of Au com-
pared with Ag, Im[εAu(ω)]> Im[εAg(ω)]. Furthermore, the convergence of the SE rate to the
limiting value for a→ ∞ occurs at a lower value of the core size, a & 20nm.

In Figure 4.5 the normalized SE rate, γ̃ , is presented as a function of the distance of the
emitter from the surface of the core for the four different core radii. The emission wavelength
of the quantum emitter is the same for all curves in each panel, for Fig. 4.5a λ = 356nm and
for Fig. 4.5b λ = 520nm, respectively, placing it in the regime where the SE rate increases
with the size of the core. In Fig. 4.5 the emitter is always outside the coating, in contrast to
Fig. 4.4 where the emitter was placed in the middle of the coating. Because the transition
dipole moment of the emitter is normal to the surface of the coating, its SE rate will have a
discontinuity as the emitter moves from the coating in the background medium. As a result of
this, the values of the SE rate in the background medium can be considerably different from
the values inside the coating. Again, it is evident that for the Ag core, the normalized SE rate,
γ̃ , has larger values compared with the Au core. This different behavior of the coated cylinders
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with Ag and Au core can once again be attributed to the larger absorption of Au.
The insets in the Fig. 4.5 show the different contributions to the SE rate when the core

radius is a = 40 nm and the outer radius b = 50 nm using the same parameters described in
the previous paragraph. For these calculations, the losses in the metal are set to zero [40], to
better illustrate the SP contributions. In order to analyze the different contributions to the SE
rate depicted in Fig. 4.5 the SP wavenumber, kSP, needs to be extracted. This is done by using
the dispersion curves shown in Fig. 4.2 for the relevant geometrical and material parameters.
In general, for a specific emission frequency of the quantum emitter the surface plasmon
dispersion curves determine the number of SP modes that can be excited by the emitter and
their wavenumber. As panel 4.2a shows, the quantum system cannot excite any SP mode when
its emission frequency is above the SP frequency ωSP = 5.3 fs−1. For emission frequencies
smaller than ωmin = 3.5 fs−1, the quantum system can only couple with the fundamental mode,
n = 0 [38, 51].

By choosing the emission frequency of the quantum system in the interval (ωmin,ωSP), the
SP with angular momentum numbers n = 0,1 can be excited, see Fig. 4.2. These SPs have
wavenumbers kSP0 and kSP1, respectively, which correspond to two poles of the generalized
scattering coefficients from (4.10). The integrand from Eq. (4.11) when, r = rs = r, has the
general expression

dGii
n(kz,r) =

1
Det
(
∆n(kz)

)F ii
n (kz,r), (4.12)

where i= 1,2,3 for the three different media, F ii
n (kz,r) is a function containing all the different

contributions to the integrand, except the pole contribution which is given by the determinant
of the characteristic matrix. Using Cauchy’s residue theorem, the contributions of the two
poles to the Green’s tensor can be written as

Gii
s(rr)(r,r,ω)SP = πi

 F ii
0 (kSP0,r)

∂

∂kz

(
Det(∆0(kz))

)∣∣∣∣
kz=kSP0

+
2F ii

1 (kSP0,r)

∂

∂kz

(
Det(∆1(kz))

)∣∣∣∣
kz=kSP1

 , (4.13)

where the factor of 2 for the second SP contribution of comes from the fact that the n = 1 and
n =−1 modes have equal contributions.

Using all the above, the contribution of each SP mode to the total SE rate in the inset of
Fig. 4.5 is becoming clear. For the case of Ag core, inset Fig. 4.5, the main contribution to
the SE rate comes from the n =±1 modes close to the interface between media 2 to 3. Inside
the dielectric coating the contributions from the SP modes n = 0 and n =±1 becomes almost
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(a) Ag core (b) Au core

Figure 4.6: Normalized SE rate, γ̃ = γ/γ0, as a function of the radial position of the emitter, r, for several
dielectric permittivities of the coating. The surrounding medium is air, ε3 = 1, the coating thickness is b− a =
10 nm and the core is metallic, with: (a) Ag core and (b) Au core. The radius of the core is a = 40nm. The dipole
moment of the emitter is radial.

equal due to the fact that the near field of the QE is strongly coupled with the Ag core, thus
fully exciting the SP modes. As the distance between the QE and the Ag core is increased,
the near field of the QE begins to decouple from the Ag core and the emission to the far
field dominates. Similar behavior is followed for the Au core, inset of Fig. 4.5, but now the
coupling with the modes n = ±1 is smaller due to the poorer coupling with this mode in the
dispersion relation. In both insets, the sum of the contributions from radiative and SP modes
of order n = 0 and n = 1 and the full numerical integration overlap perfectly. When losses
are considered, there is an additional contribution from lossy surface modes, especially for the
case when the emitter is close to the surface of the core.

In Figure 4.6 the effect of different values of the dielectric permittivity of the coating on
the SE rate is investigated. The x-axis shows the radial position of the emitter. In panel 4.6a
a Ag core and in panel 4.6b a Au core are considered, where the coated cylinder has a core
radius a = 40 nm and an outer radius b = 50 nm. In both panels the normalized SE rate, γ̃ ,
increases as we increase the dielectric permittivity of the coating. The emission wavelength
of the emitter is chosen to be close to the SP wavelength and as the dielectric permittivity
is increased, the SP wavelength redshifts, as can be seen in the legends in Figure 4.6. This
redshift is due to the fact that the SP condition depends on ε2 (for a planar interface, this
condition is Re(ε1) =−ε2 at ωSP).
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4.3.2 Energy transfer function

In this section we consider the ET function, see Sec. 2.3.2, for a pair of quantum emitters
where the donor is excited and the acceptor is in the ground state.

In Fig. 4.7 a contour plot of the normalized ET function is presented for 4 different coated
cylinder geometries. The figure shows a xy cross-section of a coated cylinder with a core
radius a = 40 nm and an outer radius b = 50 nm. The position of the donor is fixed on the
x-axis at rD = 55 nm and is indicated by the arrow. The ET function is calculated for the
acceptor positioned at each point in the plot. The emission wavelength of the donor has been
chosen to be close to the SP wavelength in each case.

Firstly the Ag core and Au core geometries are considered, shown in panels 4.7a and 4.7b
respectively. The donor wavelength, λD, is 356 nm for the Ag core and 520 nm for the Au
core. Panel 4.7a shows that the normalized ET function, Γ̃, is concentrated in hot spots around
the circumference of the coated cylinder. The number of hot spots is associated with the
contributions of modes of different orders, n, of the Bessel and Hankel functions. In general,
the number of hot spots, δ , is given by δ = 2n+ 1. It can be seen that excitation of surface
plasmon modes can significantly enhance the ET function, by up to 4 orders of magnitude.

Panel 4.7b shows the normalized ET function, Γ̃, when the material of the core is Au. The
behavior is similar to the case of a Ag core, showing the same number of hot spots around the
circumference. However, because of the higher losses in Au, the enhancement is much lower.

To investigate the influence of the dielectric coating on the ET function two additional cases
have been considered, that of a metallic core with no coating and that of a simple dielectric
cylinder. Panel 4.7c shows a contour plot of the xy cross-section of the normalized ET function
for a Ag cylinder of radius a = 40 nm, for which the position of the donor is the same as in
panel 4.7a. The emission wavelength of the donor is chosen close to the SP wavelength for
this case, which is λSP = 340 nm. It is clear that in the absence of the dielectric coating, the
normalized ET function, Γ̃, across the Ag cylinder is considerably smaller. Therefore, for the
case of the coated metal core cylinder the dipole near field is able to couple with the coating.
Additionally, the dielectric material enhances the strength of the near field, as we have already
shown in the section on the SE rate, i.e. Fig. 4.6.

It is also instructive to consider a purely dielectric cylinder, where the metallic core is re-
placed with a material with a constant dielectric permittivity, ε1 = 4. The emission wavelength,
λD = 356 nm, and the donor position are identical to those in Fig. 4.7a to allow for direct com-
parison. It can be seen that the normalized ET function, Γ̃, is significantly smaller than in the
other panels. Outside the cylinder it has a value Γ̃≈ 7 very close to the dielectric interface and,
as the distance is increased, it reverts to the free space value. The importance of the excitation
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(a) Ag core, dielectric coating, ε2 = 2 (b) Au core, dielectric coating, ε2 = 2

(c) Ag core, no coating, ε2 = 1 (d) Dielectric core, ε1 = 4, dielectric coating, ε2 = 2

Figure 4.7: An xy contour plot of the normalized ET rate, Γ̃ = Γ/Γ0, near a coated metallic cylinder with a core
radius a = 40 nm and an outer radius b = 50 nm. The dielectric permittivity of the coating is ε2 = 2 and the
surrounding medium is air, ε3 = 1. The position of the donor is fixed for all panels at rD = 55 nm on the x-axis.
The material of the core cylinder and the emission wavelength of the donor are different for each panel: (a) Ag
core with λD = 356 nm (b) Au core with λD = 520 nm (c) Ag core, no coating and λD = 340 nm (d) Dielectric
core with ε1 = 4 and λD = 356 nm. For each case where the core is metallic, the emission wavelength matches
the SP wavelength. Both the donor and acceptor dipole moments are radial.
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(a) (b)

Figure 4.8: A xy contour plot of the normalized ET rate, Γ̃ = Γ/Γ0, near a coated cylinder with a Ag core, and a
dielectric coating (ε2 = 2), embedded in air (ε3 = 1). (a) a = 20 nm, b = 30 nm, rD = 35 nm and λD = 356 nm;
(b) a = 80 nm, b = 90 nm, rD = 100 nm and λD = 356 nm. Both the donor and acceptor dipole moments are
radial.

of the SP modes for a large enhancement of the ET function is thus evident when we compare
the dielectric core case with the metallic core cases considered in the rest of Fig. 4.7. The
reader should note the different orders of magnitude for the color maps shown in Fig. 4.7.

In Fig. 4.8 the effect of changing the size of the coated cylinder on the ET mechanism is
investigated. The normalized ET function, Γ̃, is presented in a xy cross-section of the coated
cylinder. In both panels the core material is Ag, with ε2 = 2 and ε3 = 1. For Fig. 4.8a we
have a = 20 nm, b = 30 nm, the position of the donor rD = 35 nm on the x-axis, and the
emission wavelength of the donor is close to the SP wavelength at λD = 356 nm. It can be
seen that the normalized ET function, Γ̃, exhibits one hot spot at a position on the opposite
side of the cylinder relative to the donor and is confined around the periphery of the coated
cylinder. When larger dimensions for the coated cylinder are considered, a = 80 nm, and
b = 90 nm as shown in Fig. 4.8b, the number of hot spots increases and the spatial extent of
the enhancement of the normalized ET function, Γ̃, also increases. For panel 4.8b, the position
of the donor is rD = 100 nm on the x-axis and the donor emission wavelength is close to the
SP wavelength, λD = 356 nm. The number of hot spots is given by the coupling to surface
plasmons of different orders n, the dispersion curves of which are shown in Fig. 4.2.
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4.3.3 Energy transfer e�ciency

In the previous two sections generic donor-acceptor pairs with δ -like emission and absorp-
tion spectra have been considered, i.e. single-frequency spectra. As such, the normalized SE
or ET rates were determined by the optical response of the coated metallic cylinder, through
the Green’s tensor.

This constraint now will be relaxed and realistic donor emission spectra, fD(λ ), and ac-
ceptor absorption spectra, σA(λ ) are considered [3, 130]. These spectra describe statistical
ensembles of donor-acceptor pairs. When the donor dipole is excited it has two ways of relax-
ing to the ground state: it can either transfer its excitation energy to the acceptor dipole with
an ET rate kET, or it can relax with decay rate kSE. The decay rate kSE takes account of pho-
ton emission into the far-field, intrinsic non-radiative recombination paths, coupling to surface
plasmon modes and losses in the metallic core. The SE and ET processes are, therefore, in
competition with each other and we introduce an energy transfer efficiency to describe this
competition. In what follows, they will be considered donors with a quantum yield of one,
Y0 = 1.0, which assumes no intrinsic losses such as phonon relaxation, etc.

Using the expressions introduced in Eqs. (2.29) and (2.36) for the SE and ET rates of en-
sembles of emitters and donor-acceptor pairs, the energy transfer efficiency η is calculated
using the expression Eq. (2.37) as [140]

η =
kET

kSE + kET
. (4.14)

This quantity gives the relative contribution of the energy transfer process to the total decay
rate of the donor. If the ET efficiency, η , has a value η > 50%, then the decay of the excited
state of the donor occurs mainly by energy transfer to the acceptor, rather than relaxation into
photon or SP modes.

Two donor-acceptor pairs will be considered. The donor emission and acceptor absorption
spectra are both given by a Gaussian distribution Eq. (2.38), we rewrite here the expression

Aqi e−(λ−λqi)
2/∆λ 2

qi, (4.15)

where q = D represents the donor, q = A represents the acceptor, i = 1 corresponds to the
on-resonance case, and i = 2 corresponds to the off-resonance case. Aqi is a normalization
constant, λqi gives the position of the spectral peak and ∆λqi is the half width half maximum
(HWHM) of the spectrum. The normalization constant of the donor emission spectrum is
given as A−1

Di =
´

∞

0 dλ fD(λ ). The HWHM will be ∆λDi = 20 nm for both donor-acceptor
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pairs, which corresponds to a typical spectrum of a fluorescent dye, e.g. fluorescein [130].
The constant for the acceptor absorption spectrum is AAi = 0.021 nm2, while the HWHM is
∆λAi = 50 nm. The preceding values are common to both donor-acceptor pairs. The two
donor-acceptor pairs do however differ with respect to the positions of their emission and
absorption peaks. For the first pair, the donor emission peak is at λD1 = 363 nm, while the
absorption maximum is at λA1 = 373 nm; for the second pair λD2 = 453 nm and λA2 = 463 nm.
Panels 4.9a and 4.9b show the normalized emission spectrum of the donor, fD(λ ), and the
absorption cross section spectrum of the acceptor, σA(λ ), together with the energy transfer
function, Γ(λ ). Since the energy transfer function, Γ(λ ), is given by the Green’s tensor of
the coated metallic cylinder, Eq. (2.34), it is the same for both donor-acceptor pairs, with a
peak close to the surface plasmon wavelength, λSP ≈ 365 nm. This SP wavelength is different
from what we used in the previous sections, as the thickness of the coating is now b− a =

5nm, whereas before it was 10nm. The permittivity of the coating is the same, ε2 = 2, and
the background medium is air, ε3 = 1. The donor emission spectrum, fD(λ ), and acceptor
absorption spectrum, σA(λ ), of the first donor-acceptor pair considered both have a good
overlap with Γ(λ ), i.e. this pair is on-resonance, see Fig. 4.9a. The overlap is poor for the
second donor-acceptor pair, i.e. it is off-resonance, see Fig. 4.9b.

The Förster radius, R0, is defined as the donor-acceptor separation at which η is 50% [52].
The Förster radius is calculated to be 6.07nm and 7.04nm in free space for the first and second
donor-acceptor pair, respectively. These values were calculated from the spectral overlap of
the normalized donor emission and acceptor absorption spectra from Eq. (2.40), where the
host medium is air with a refractive index of 1.

The next step will be to consider the influence of the coated cylinder on the ET efficiency
η . The core radius is a = 10 nm and the outer radius is b = 15 nm. The position of the donor
is kept fixed at rD = 20 nm on the x-axis. In panel 4.9c we plot the value of the ET efficiency,
η , as a function of the radial position of the acceptor diametrically opposite to the donor, for
the two donor-acceptor pairs, the shaded area defining the area inside the coating. For the on-
resonance case, the ET efficiency has values of η = 23% close to the Ag-dielectric interface
while for the off-resonance case, cf. 4.9b, the value of the ET efficiency is η = 1.3% close to
the Ag-dielectric interface. These values can be compared with the free-space energy transfer
efficiency of 0.0077% and 0.017% at a donor-acceptor separation of 30 nm, corresponding
to the diameter of the coated metallic cylinder, for the first and second donor-acceptor pair,
respectively. It can also be noted that the Förster radius in free-space for the first donor-
acceptor pair is smaller than for the second. Therefore, the enhanced energy transfer range
near the coated metallic cylinder, is a consequence of the excitation of SP modes on the coated
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(a) On-resonance (b) Off-resonance

(c) ET efficiency vs. acceptor position (d) ET efficiency vs. core radius

Figure 4.9: (a) - (b) Normalized donor emission spectrum, fD(λ ), acceptor absorption spectrum, σA(λ ), and
ET function, Γ(λ ), for two different donor/acceptor pairs: (a) On-resonance and (b) Off-resonance. (c) ET
efficiency, η , for a coated metallic cylinder, with a core radius a = 10 nm, outer radius b = 15 nm, for a donor
placed at rD = 20 nm on the x-axis, as a function of acceptor distance, d, from the core surface, diametrically
opposite the donor. (d) ET efficiency, η , as a function of core radius, a, for an outer radius b = a+5 nm, donor
position rD = a+10 nm and acceptor position rA =−a−2 nm, both on the x-axis.



4.3. Results and Discussion 76

cylinder.
In panel 4.9d the influence of the core radius, a, of the coated cylinder on the ET efficiency,

η , is investigated by keeping the thickness of the coating fixed at 5 nm. The dielectric per-
mittivities of the coated cylinder layers are the same as before. The position of the donor is
rD = a+ 10 nm, in air, and the position of the acceptor is rA = −a− 2 nm, inside the coat-
ing. In panel 4.9d it is observed that for the case where the emission and absorption spectra
are on-resonance, the ET efficiency reaches values as high as η = 19.4% at a = 5 nm and
it has values η > 10% for core radii a < 10 nm. When the donor-acceptor pair from panel
4.9b is considered, it is observed that the maximum values of the energy transfer efficiency
are smaller, η = 7.9% at a = 5 nm and it drops-off more abruptly as a function of core size.
Comparing the on- and off-resonance cases shows that a large overlap of the donor emission
spectrum and acceptor absorption cross-section with the SP peak in the spectrum of the ET
function, Γ(λ ), can significantly enhance the ET efficiency, η , and mediate the interactions
over larger distances.

In panel 4.10a the influence of the dielectric permittivity of the coating, ε2, on the SE rate
of a donor, kSE, and the ET rate between a donor and an acceptor, kET, is investigated for the
geometry considered in the previous paragraph with parameters a = 10 nm and b = 15 nm.
For the donor emission and acceptor absorption spectrum, the data from panel 4.9a are used,
the on-resonance case. The donor is located at rD = 20 nm and the acceptor is located at
rA = −20 nm, both on the x-axis. The SE and ET rates are expressed in units of free space
SE rate, γ0. The SE rate, kSE, is two orders of magnitude larger compared to the ET rate,
kET. This is due to the fact that the distance between the donor and the acceptor is large and
thus the factor |nA ·G(rA,rD,ω) ·nD|2 of Eq. (2.36) is weak compared with the factor γ(λ )

of Eq. (2.29). The SE rate reaches a maximum value at ε2 = 2.5, while the maximum value of
the ET rate, kET, is attained at ε2 = 2.25. The interplay between the SE and ET contributions
to the ET efficiency, η , will determine for which value of the dielectric permitivitty of the
coating, ε2, the ET efficiency reaches its maximum, as seen in panel 4.10b.

Fig. 4.10b shows the influence of the dielectric permitivitty of the coating, ε2, and its thick-
ness, on the ET efficiency, η , for the same inner core radius, a = 10 nm, and donor and
acceptor spectral properties. The donor position is rD = b+ 5 nm and the acceptor position
rA = −b−5 nm, both on the x-axis. In order to quantify the influence of the coated cylinder
geometry on the ET efficiency, the normalized ET efficiency, η̃ , is introduced as η̃ = η/η0,
where η is the ET efficiency in the presence of the coated cylinder and η0 is the free space
ET efficiency. The normalized ET efficiency, η̃ , decreases as we increase the outer radius, b,
due to the decoupling between the near field of the quantum emitters and the SP modes of the
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(a) SE and ET rates, kSE and kET. (b) Normalized ET efficiency, η̃ .

Figure 4.10: Coated cylinder of inner radius, a = 10 nm, donor position rD = b+ 5 nm and acceptor position
rA =−b−5 nm, both on the x-axis. (a)SE rate, kSE, of the donor and ET rate between donor-acceptor for outer
radius b = 15 nm. (b) Normalized ET efficiency, η̃ , as a function of the dielectric permittivity of the coating, for
several values of the coating thickness.

metallic core. As the outer radius, b, is increased even more, the ET efficiency reverts to its
free space value and we have η̃→ 1. The peak in the normalized ET efficiency for b = 15 nm
occurs at a value of the dielectric permittivity of the coating of ε2 = 2. By varying the di-
electric permitivitty, the ET function is shifted in wavelength. The ε2 = 2 is the value for the
on-resonance case as shown in Fig. 4.9a. Furthermore, as the outer radius, b, is increased it
is seen that the peak in the normalized ET efficiency is shifted from ε2 = 2 to ε2 = 2.5, due
to the redshifting of the SP resonance wavelength with increasing outer radius b. Thus, the
dielectric permitivitty of the coating, ε2, and the thickness of the coating, constitute separate
parameters that can be adjusted to optimally couple donor-acceptor pairs with different optical
properties, maximizing the ET efficiency.

4.4 Summary and Conclusions

In this chapter the role of a dielectric coated metallic cylinder in modifying the SE rate of
a single emitter and the ET rate in a donor-acceptor pair is presented. The excitation of SP
modes, when the emission wavelength is close to the SP wavelength, enhances the SE and ET
rates and functions by several orders of magnitude compared with their free space values.

First, the SE rate of an emitter in the presence of a coated cylinder is considered. The SE
rate is enhanced through the excitation of SP modes. The enhancement is larger when the
emitter is in close proximity to the metallic core and its emission wavelength is close to the SP
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wavelength. The SE rate also depends on the radius of the core, and is seen to increase with
the radius when the emission wavelength is close to the SP wavelength. When the dielectric
permittivity of the coating is increased, the SP wavelength is red-shifted, as expected. The
maximum of the SE rate follows the same trend, undergoing a red-shift. Furthermore, the
value of this maximum increases with the dielectric permittivity of the coating.

Next the ET function between a donor-acceptor pair is considered. By exciting SP modes,
the ET function can be enhanced by orders of magnitude, the enhancement being localized at
hot-spots around the circumference of the coated cylinder. The number of these hot-spots is in
direct relation to the order of the SP mode or modes being excited. The presence of the coating
dielectric layer around the metallic core further increases the ET enhancement provided by the
core by itself.

Furthermore, since SE and ET are competitive processes, the ET efficiency, η , is introduced
in order to investigate the interplay between them. As examples, two donor-acceptor pairs are
chosen, with different donor emission and acceptor absorption spectra. For the first pair, the
emission and absorption spectra overlap with the ET function, given by the Green’s tensor,
while for the second pair, they do not. By considering a fixed geometry for the coated cylinder
and varying the position of the acceptor and the core radius, a, a significant difference between
on- and off-resonance emission and absorption spectra with the SP mode is evident.

Additionally, it is shown that the SP-mediated coupling between different donor-acceptor
pairs can be engineered in a predictable way by controlling the refractive index of the coating
as well as its thickness. These parameters can be chosen such that one can obtain an optimal
coupling between donors and acceptors with specific optical properties.

For applications in which the energy transfer efficiency needs to be optimized, it is shown
that fine tuning of the geometrical parameters of the dielectrically coated metallic cylinder,
e.g. thickness of dielectric coating, can lead to large enhancements of the ET rate. Control of
the wavelength at which the ET efficiency is maximum can be achieved through the refractive
index of the dielectric coating and, for a more coarse-grained tuning, through the material of
the core, i.e. Ag vs. Au.

Using noble metals, Au and Ag, the interaction length for efficient ET between pairs of
donors and acceptors is enhanced compared with their free-space value, see Sec. 4.3, when
there is a strong overlap of the donor emission and the acceptor absorption spectra with the
SP mode. Thus, the emitters used have to emit and absorb in the visible part of the spectrum.
In Sec. 1.2, see Fig. 1.3a, the dielectric permittivity of Ag and Au is presented, their main
disadvantage are their material properties, due to large losses. On the other hand graphene is
a material with lower losses compared with the noble metals, see Sec. 1.2. In the next chapter
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graphene is used as the platform for facilitating long range tunable interactions between a pair
of quantum emitters, by exciting graphene SP modes. The SP modes provided by graphene are
in the infrared part of the spectrum, an area of interest for applications in telecommunication.



Chapter 5
Dynamical tuning of energy transfer efficiency on a
graphene monolayer

5.1 Introduction

For the last two decades the field of plasmonics has grown intensively. Confining light in
sub-wavelength structures by exciting surface plasmon-polaritons (SPP) modes has various
applications in biosensing devices, light harvesting, optical nanoantennas and quantum infor-
mation processing. SPPs are collective oscillations of electrons and the electromagnetic field
that are excited at the interface between a dielectric and a conductor and can propagate along
that interface [4]. In plasmonics, noble metals are routinely used as the conducting medium.
The main drawback of using noble metals in the applications mentioned above is their large
material losses [16].

Graphene constitutes an alternative to using noble metals for plasmonic applications [72–
74, 146]. It is a two-dimensional material possessing unique properties [87]. This atomically
thick monolayer has superior electronic and mechanical properties originating in part from its
charge carriers of zero effective mass that can travel for microns without scattering at room
temperatures.

An undoped graphene monolayer (GM) can absorb πα0 ≈ 2.3% of the light incident upon it,
at wavelengths in the visible part of the spectrum, where α0 is the fine structure constant [88].
Patterned GM nanostructures can give rise to 100% absorption at specific wavelengths, which
can be tuned through the applied voltage [89, 90].

In this chapter a theoretical investigation of the energy transfer (ET) efficiency between
quantum emitters placed in proximity to a conducting monolayer of graphene is presented.
The spontaneous emission (SE) rate of a quantum emitter (QE) and the energy transfer (ET)

80
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rate between a donor acceptor, QEs pair, rate, are calculated using the Green’s tensor formal-
ism. The SE and ET rates are competitive processes, thus an ET efficiency is introduced, in a
similar manner to Chapter 4. This quantity, which is a measure of the contribution of the en-
ergy transfer rate to the total decay rate of the donor, will show that one can efficiently transfer
energy between QEs separated by distances of the order of hundreds of nanometers, due to the
excitation of graphene plasmon (GP) modes on the graphene monolayer (GM).

The ET efficiency can be tuned, through gating of the GM, thus opening opportunities for
possible applications, such as switching and sensing devices [79, 153, 154], light harvesting
[155], plasmonic rulers [79, 156] and quantum computing [85]. Furthermore it is shown that
the ET rate along the GM has two contributions, a Förster contribution, and a GP contribution,
both of which can be tuned. Also it is shown that the distance dependence of ET rate between
a pair of QEs, placed perpendicular to the GM, is mainly characterized by the penetration
depth of the GP mode.

The chapter is structured as follows. Beginning in Sec. 5.2 with a theoretical framework in
which we introduce the optical properties of the GM and the GP mode it supports (Sec. 5.2.2),
the different coupling regimes of the QE-GM system are investigated, i.e. strong or weak
coupling (Sec. 5.2.3). In Sec. 5.3 the results of our calculations are presented for the SE
rate (Sec. 5.3.1), the ET function (Sec. 5.3.2) and the ET efficiency (Sec. 5.3.3), for different
distance regimes and values of the chemical potential. Finally, in Sec. 5.4 a summary of the
results and the conclusions drawn.

5.2 Theoretical Framework

The model system considered in this chapter is presented as a sketch in Fig. 5.1a. An
atomically thin monolayer of graphene in the xy-plane is considered, suspended in vacuum.
Close to this graphene monolayer, there are either a single quantum system, when investigating
spontaneous emission, or two quantum emitters, for energy transfer investigations. Firstly, we
calculate the Green’s tensor, an important quantity for calculating the SE and ET rates, see
Sec. 2.3. Next, a conductivity model for describing the optical response of the graphene
monolayer and its graphene surface plasmon properties is introduced. Finally, the strong and
weak coupling regimes of the QE-GM interaction are investigated .
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(a) (b)

Figure 5.1: (a) A graphene monolayer in the xy-plane, with the quantum emitter approximated as a two level
system. (b) Optical response of the graphene monolayer for different values of the chemical potential, µ .

5.2.1 Green's tensor for a graphene monolayer

We will consider two planar half-spaces with dielectric permittivities ε1 and ε2. The z-
direction is perpendicular to the boundary between the two half-spaces. In order to calculate
the Green’s tensor for this system, we use the method of scattering superposition, see Sec. 3.2.
The Green’s tensor has the form

G(11)(r,s,ω) =G
(11)
h (r,s,ω)+G

(11)
s (r,s,ω), (5.1)

G(21)(r,s,ω) =G
(21)
s (r,s,ω), (5.2)

where the first of the two labels in the superscript (i1) denotes the field point, while the second
denotes the source point. The subscript s denotes the scattering term, always present, while
the homogeneous term G

(11)
h (r,s,ω) contributes only when the source and field points are in

the same medium.
The scattering terms have the following expression

G
(11)
s (r,s,ω) =

i
8π2 ∑

K

ˆ
d2ks

1
kz1k2

s
R+11−

K K(ks,kz1,r)⊗K∗(ks,−kz1,s) (5.3)

G
(21)
s (r,s,ω) =

i
8π2 ∑

K

ˆ
d2ks

1
kz1k2

s
R−11−

K K(ks,−kz2,r)⊗K∗(ks,−kz1,s) (5.4)

where ks =
√

k2
i − k2

zi is the in-plane propagation constant, kzi is the perpendicular propagation
constant in medium i, and ki =

ω

c
√

εi is the wavenumber in medium i (i = 1,2). The above



5.2. Theoretical Framework 83

expressions involve a summation over K which represents M and N, or the transverse electric
(TE) and transverse magnetic (TM) modes.

We impose the following continuity conditions at the boundary between the two half spaces,
z = 0,

ẑ×
[
G(11)(r,s,ω)−G(21)(r,s,ω)

]
z=0

= 0, (5.5)

ẑ×
[
∇×G(11)(r,s,ω)−∇×G(21)(r,s,ω)

]
z=0

=−i
4π

c
k0σ ẑ× ẑ×G(21)(r,s,ω), (5.6)

where σ is the surface conductivity of the GM.
Using Eqs. (5.3)-(5.4) in (5.5)-(5.6) we obtain the generalized Fresnel coefficients, which

have the form [84, 115],

R11
M =

kz1− kz2−2αk0

kz1 + kz2 +2αk0
, R11

N =
k2

2kz1− k2
1kz2 +2αk0kz1kz2

k2
2kz1 + k2

1kz2 +2αk0kz1kz2
(5.7)

R21
M =

2kz1

kz1 + kz2 +2αk0
, R21

N =
2k1k2kz1

k2
2kz1 + k2

1kz2 +2αk0kz1kz2
, (5.8)

where α = 2πσ/c. In this chapter we focus in the case of a free standing graphene monolayer,
thus ε1 = ε2 = 1.

5.2.2 Graphene conductivity and graphene plasmon properties

The graphene in-plane conductivity, σ , is calculated using the random phase approximation
(RPA) [131, 132, 157]. This quantity is mainly controlled by electron-hole pair excitation that
can be divided into intraband and interband excitations. It can be written as

σ = σintra +σinter, (5.9)

where the intraband and interband contributions are,

σintra =
2ie2t

h̄π(Ω+ iγ)
ln
[

2cosh
(

1
2t

)]
, (5.10)

σinter =
e2

4h̄

[
1
2
+

1
π

arctan
(

Ω−2
2t

)
− i

2π
ln

(Ω+2)2

(Ω−2)2 +(2t)2

]
. (5.11)

In the above the dimensionless parameters Ω = h̄ω/µ , γ = ES/µ and t = kBT/µ are intro-
duced. Here, µ is the chemical potential, T is the temperature, and ES is the scattering energy.
This scattering energy is related to the relaxation time τ through τ = h̄/ES. In Fig. (5.1b) the
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(a) (b)

Figure 5.2: (a) Surface plasmon dispersion relation in doped graphene, ω(ks), for different values of the chemi-
cal potential µ; the dots show the quadratic approximation of the dispersion relation. (b) (Up) Penetration depth,
δSP, and propagation length, LSP, of the GP mode for different values of the chemical potential, µ .

expression α = 2πσ/c is plotted in units of the fine structure constant, α0, for different values
of the chemical potential, µ . The σintra term describes a Drude model response for intraband
processes corrected with a term γ , accounting for impurities, which compromise the electron’s
mobility. Throughout this chapter a temperature T = 300K and a value of the relaxation time
of τ = 1ps are considered [158, 159]. Fig. 5.2a shows the dispersion relation, ω(ks) where ks

is the in-plane wavevector, for different values of the chemical potential, µ . Due to the fact
that retardation effects dominate for wavevectors ks > kF and for energies h̄ω > 2µ , the GP
dispersion curves in Fig. 5.2a terminate at these values, where kF is the Fermi wavevector,
kF = EF/h̄c. When the chemical potential, µ , has the value µ = 0, the GM absorbance has the
value πα0 ≈ 2.3%, where α0 is the fine structure constant. This is the asymptotic value of the
doped GM for energies h̄ω > 2µ . Considering that the GM is surrounded by air, ε1 = ε2 = 1
(free standing GM), the GP dispersion relation can be obtained from:

1√
k2

0− k2
SP

=−2πσ

ω
, (5.12)

where kSP is the GP wavevector [81]. Because kSP� k0, the dispersion relation above can be
simplified, using only the σintra contribution, to obtain

kSP =
h̄2

4e2µkBT ln
[

2cosh
(

µ

kBT

)]ω

(
ω +

i
τ

)
, (5.13)
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which has as its main feature the quadratic dependence of the GP wavevector on the frequency,
when the intraband contributions dominate [132]. This approximate quadratic dependence is
shown as dots in Fig. 5.2a. Another feature of the GP dispersion relation on graphene is the
fact that the GP resonance frequency is blue-shifted as the chemical potential increases.

Fig. 5.2b shows the penetration depth, δSP = 1/Im(kSP
z ), and the propagation length , LSP =

1/Im(ks), of the surface plasmon along the graphene as a function of energy, for different
values of the chemical potential, µ . It is evident from the plot that, depending on the value of
the chemical potential, µ , the penetration and propagation lengths can reach values as large as
tens of microns at low frequencies. As the energy is increased, however, the lengths decrease
rapidly, because the GP then has sufficient energy to generate electron-hole pairs and the
dispersion relation is dominated by the interband contributions [72].

5.2.3 Rabi splitting - strong coupling regime

The quantum emitters considered in this thesis have well defined transitions between their
electronic levels. In Sec. 2.3.1 it is shown that the spontaneous emission rate is altered by
its environment. When the interaction between the emitter and its environment does not
alter the emission frequency, but only its spontaneous emission, then the combined system
QE+environment operates under the weak coupling regime. The strong coupling regime, on
the other hand is accessed when the energy levels, of the quantum emitter, are altered by the
modes provided by their the local environment. As environment in this chapter the gated
graphene monolayer is considered and the mode provided is the graphene SP mode.

In order to ascertain whether the weak or the strong coupling (SC) regime applies for partic-
ular sets of parameters, a model consisting of a single QE interacting with the GP mode of the
GM is considered. To describe this system, a Jaynes-Cummings Hamiltonian is used [160],
that has the form:

H =
h̄ω

2
σz + h̄ωSP â†â+ h̄g(âσ++ â†

σ−), (5.14)

where ωSP is the GP frequency, â† and â are the creation and annihilation operators of the
plasmon mode, ω is the transition frequency of the QE between its ground and excited state,
σ+ and σ− are the raising and lowering operators of the QE, and g is the coupling constant
between the QE and the GP mode of the GM. The coupling constant g is given by [161]

|g(ω)|2 = 1
h̄πε0

ω2

c2 d̂T ImGSP(ω,rQE,rQE)d̂

=γ0
3c
ω

d̂T ImGSP(ω,rQE,rQE)d̂, (5.15)
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where GSP (ω,rQE,rQE) is the GP part of the Green’s tensor, derived in Sec. 5.2.1, Eq. (5.3),
γ0 is the Einstein A-coefficient, γ0 = ω3d2/(3π h̄ε0c3) and d is the transition dipole moment
of the QE positioned at rQE = (0,0,z). In this section, we consider γ0 = 5×10−8 fs−1. Since
the focus is in the coupling between the GP mode and the QE the GP contribution to Eq. (5.3)
is calculated, by extracting the pole contribution and it is obtained as

G
(11)SP
S,zz (z,ω) =−1

4

(
1−1/α2)

αk0
e−2iz/α , (5.16)

where α = 2πσ/c.
The Hamiltonian from Eq. (5.14) couples the states |e〉⊗ |0〉 and |g〉⊗ |1〉 to the dressed

states |1〉 and |2〉 with energies,

E1,2 =
h̄ωSP

2
∓ h̄

2

√
δ 2 +4g2, (5.17)

where δ = ωSP−ω , is the detuning between the GP mode resonant frequency and the transi-
tion frequency of the QE. The energy states are separated by Ω =

√
δ 2 +4g2, which gives the

value of the Rabi splitting. As an example, if the QE is positioned at z = 10nm above a GM
with a chemical potential equal to the transition energy of the QE, µ = h̄ω = 0.5eV, the Rabi
splitting, at δ = 0, has a value 2g(ω) = 0.12eV.

In order to further investigate the weak and strong coupling regimes, the dependence of the
coupling constant, g, on the various parameters involved, namely the value of the chemical
potential, µ , the emission frequency of the QE, ω , and the distance of the QE to the GM,
z, is analyzed. Considering ω = ωSP, i.e. zero detuning, the criterion for having strong cou-
pling is whether or not the absorption spectrum of the system exhibits two peaks of different
frequencies [161, 162]. This condition is fulfilled if

|g|> 1
4
|γLSW−κ| , (5.18)

where γLSW represents the lossy surface waves (LSW) contribution, which are non-propagating
evanescent modes relaxing through Ohmic losses, and κ is the width of the |g(ω)|2 spectrum.

In Fig. 5.3a a contour plot of the quantity D = 4 |g|/ |γLSW −κ| is presented, as a function
of the chemical potential, µ , and the emission energy, h̄ω , for a fixed position of the QE,
z= 10nm. Although from condition (5.18) when D< 1 the weak coupling regime is exhibited,
this condition might not be sufficient under some experimental conditions [160], and thus we
consider the more stringent inequality D . 0.5 as giving the weak coupling condition. As
is evident from Fig. 5.3a, for chemical potential values µ < 0.3eV, there exists a frequency
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(a) (b)

Figure 5.3: Contour plots of the quantity D = 4 |g|/ |γLSW −κ| as a function of (a) chemical potential, µ , and
emission energy, h̄ω , for fixed QE position z = 10nm, (b) chemical potential, µ , and QE position, z; each point
reflects the maximum value of D(ω).

region where we have D ≥ 0.5 and the weak coupling that will be used to calculate the SE
and ET rates would no longer be valid. This region where the strong coupling dominates
corresponds to THz frequencies, a range outside the scope of this investigation. For chemical
potential values µ > 0.6eV, on the other hand, the quantity D has values below 0.2 well within
the weak-coupling regime.

Figure 5.3b examines the maximum value of D for different values of the chemical po-
tential, µ , and at different positions of the QE above the GM. For each point, the maximum
value of D is calculated as a function of the emission energy of the QE, h̄ω . This represents,
therefore, the worst-case scenario for weak coupling, since at all other frequencies, D will be
smaller than the values depicted in Fig. 5.3b. It can be seen that the strong coupling regime is
only accessed for values µ < 0.4eV at certain frequencies. Throughout the rest of the chapter
we only consider frequency ranges which remain outside the SC regime for all values of µ

and g explored.

5.3 Results and Discussion

5.3.1 Spontaneous emission rate

As is discussed in Sec. 2.3.1, the decay rate, γ , is proportional to the strength of the coupling
between the transition dipole matrix element and the electromagnetic modes acting on it. The
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(a) (b)

Figure 5.4: (a) SE rate of a QE, positioned at r=(0,0,10nm), as a function of its emission frequency for different
values of the chemical potential, µ . (b) Normalized ET function, Γ̃(rA,rD,ω), between a donor and acceptor QE
as a function of frequency, for fixed donor and acceptor positions, rD = (0,0,10nm) and rA = (100nm,0,10nm)
respectively, and different values of the chemical potential, µ .

normalized SE is given by Eq. (2.28), for completeness the expression is given again [59],

γ̃ =
γ

γ0
= ni +

6πc
ω

Im [nQE · Gs(r,r,ω) ·nQE] , (5.19)

where γ0 is Einstein’s A-coefficient, nQE is a unit vector along the direction of the transition
dipole moment of the emitter, and G(r,r,ω) is given by (5.3).

In Fig. 5.4a the normalized SE rate, γ̃ , of a QE is plotted for a fixed position, r=(0,0,10nm)

above the GM, as a function of the QE’s emission energy, h̄ω , for different values of the chem-
ical potential, µ . In general the SE rate has a peak at an energy below µ . As the energy is
further increased, the SE rate drops dramatically before finally recovering to a value indepen-
dent of µ , typically occurring when the energy is above 2µ . As the value of µ is increased the
GP peak blue-shifts, broadens, and has a lower value. The general drop in the SE rate is most
visible starting with values of the chemical potential of µ > 0.4eV, and it occurs between
the energies h̄ω = µ and h̄ω = 2µ . This drop is due to interband transitions when the QE
relaxes through lossy channels. At emission energies h̄ω > 2µ the emission is determined by
interband contributions and GP excitations become unimportant, as the dispersion relations
in Fig. 5.2a show. At these energies the SE rate follows the same behavior as for the case
of undoped graphene, µ = 0 eV, also shown in Fig. 5.4a. Moreover, it can be seen that the
main contribution to the peak in the normalized SE rate, γ̃ , comes from the GP contribution,
which is denoted by the circular symbols in Fig. 5.4a. The maximum value of D is 0.41 at
µ = 0.4eV, thus placing us within the weak coupling regime.
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(a) (b)

Figure 5.5: Contour plots of the normalized ET function, in the (a) xz-plane and (b) xy-plane when z = 10nm,
for a donor positioned at rD = (0,0,10nm) above a GM. The dielectric permitivitty of the surrounding media
is ε1 = ε2 = 1. The chemical potential of the graphene monolayer is µ = 1.0eV. The emission frequency of the
donor is ω = 0.8 fs−1 (λ = 2.3 µm). Both donor and accceptor have their transition dipole moments oriented
along the z-axis.

5.3.2 Energy transfer function

In this section the influence of the GM on the energy transfer process between a pair of
QEs, a donor and an acceptor, is investigated. The normalized energy transfer function is
investigated, which has been introduced in Sec. 2.3.2 and is given by Eq. (2.35).

Figure 5.4b shows the normalized energy transfer function, Γ̃, as a function of frequency for
different values of the chemical potential, µ , and when both the donor and acceptor transition
dipole moments are oriented perpendicular to the GM, i.e. zz-orientation. The donor and
acceptor positions are fixed at rD = (0,0,10nm) and rA = (100nm,0,10nm), respectively. As
for the case of the SE rate in 5.4a, the normalized ET function, Γ̃, is enhanced close to the GP
frequency and in general for frequencies h̄ω < µ , where the intraband transitions dominate.
For frequencies h̄ω > µ the energy transfer rate decreases due to the losses generated by the
interband contributions.

Figure 5.5 presents contour plots of the normalized ET function, Γ̃, as a function of the
position of the acceptor in (a) the xz-plane and (b) the xy-plane 10 nm above the GM, when
the donor position is fixed at rD = (0,0,10nm), the transition energy is h̄ω = 0.52eV (λ =

2.3 µm) and the chemical potential is µ = 1.0eV. In Fig. 5.5a the normalized ET function has
large values when the acceptor is close to the GM and decreases as the acceptor distance is
increased. This behavior is due to the fact that the field is highly confined in the z-direction
at the surface of the GM, with a penetration depth of δSP = 10nm, or δSP/λ = 4 ·10−3. The
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(a) (b)

Figure 5.6: Normalized ET function, Γ̃(r,s,ω), as a function of the donor and acceptor distance to the graphene
monolayer, for a fixed transition energy, h̄ω = 0.33eV. (a) For various values of the chemical potential, µ , when
the donor position is rD = (0,0,z) and the acceptor position is rA = (100nm,0,z); (b) For various in-plane
distances, x, when the donor position is rD = (0,0,z) and the acceptor position is rA = (x,0,z), for a fixed value
of the chemical potential, µ = 0.4eV. The symbols represent the full simulation data, while the lines are fits with
the exponential function in the legend. Both donor and acceptor have their transition dipole moments oriented
along the z-axis.

fringes visible in Fig. 5.5a are due to the constructive and destructive interference between the
direct and scattering terms in the Green’s tensor, see Eq. (5.1). This effect is more profound
due to the dipole moment orientations of the QEs, along the z-axis. Fig. 5.5b shows that the
normalized ET function has cylindrical symmetry in the xy-plane, due to the orientation of
both donor and acceptor transition dipole moments along the z-axis. Furthermore, the normal-
ized ET function has a peak value at a distance of about 400 nm, which is the propagation
length of the GP mode for the particular set of parameters used in this calculation.

In Fig. 5.6a the z-dependence of the normalized ET function, Γ̃, is presented for a donor
located at rD = (0,0,z) and an acceptor at rA = (100nm,0,z), for various values of the chem-
ical potential, and a fixed transition energy, h̄ω = 0.33eV. As has already been pointed out,
for different values of the chemical potential, µ , the position of the maximum in the normal-
ized ET function blueshifts as the value of the chemical potential is increased, cf. Fig. 5.4b.
Thus, for the smallest value of the chemical potential, µ = 0.2eV, the enhancement of the ET
function is negligible to non-existent. As the value of the chemical potential is increased, the
ET function has values a few orders of magnitude larger than in free-space when the donor-
acceptor pair is close to the GM. As the donor-acceptor pair is moved further from the GM –
increasing z – the ET function drops off exponentially, as the figure shows. The continuous
lines in Fig. 5.6a represent fits of the calculated ET function (represented by symbols) with
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Table 5.1: Graphene plasmon penetration depths.

h̄ω (eV) µ (eV) δSP (nm) BSE (nm) BET (nm)
0.33 0.4 8.2 8.50 8.68
0.33 0.6 14.06 14.38 14.72
0.33 0.8 19.48 20.04 20.10
0.33 1.0 24.76 25.47 25.96

the exponential function Ae−4z/B. The factor 4 in this expression has two sources: (i) the z

distance of both donor and acceptor to the GM is varied and (ii) the ET function depends
on the square of the field, see Eq. 2.35; each of these gives a doubling of the exponent, for
a total of 2× 2 = 4. Furthermore, because the donor-acceptor separation is kept constant at
x = 100nm, the free-space ET function is also constant and, hence, does not influence the
exponential behavior. Table 5.1 shows the values of the parameter BET extracted from the
fit, together with the analogous parameter BSE extracted from fitting the SE dependence (the
numerical factor in the exponent is 2 in this case, rather than 4, due to the fact that the SE
rate depends linearly on the electric field; data not shown) and the penetration depth of the
GP in the air above the graphene, calculated as δSP = 1/Im

(
kSP

z
)
. As this table shows, the

values of the parameters BSE and BET match closely with the calculated penetration depths of
the GPs. This suggests that the main channel for enhancing the ET function between the QEs
is the GP resonance. As the separation between the two QEs becomes smaller and smaller,
this relaxation channel becomes less and less important and the direct interaction dominates
at distances below x = 20nm, as panel 5.6b shows. In this panel the influence of the in-plane
distance between the donor and acceptor is investigated, for a fixed value of the chemical
potential, µ = 0.4eV and fixed transition energy, h̄ω = 0.33eV. The calculated ET function
data (symbols) are fitted with the expression Ae−4z/B. As one can see, above x = 50nm the
BET parameter extracted is very close to the penetration depth of the GP, δSP. When the donor
and acceptor in-plane distance is smaller than x = 50nm, the influence of the GP mode on the
ET function is less profound, and, as the donor-acceptor pair is moved away from the GM, it
recovers its free-space interaction at shorter distances. This is due to the fact that the influence
of the homogeneous part of the Green’s tensor dominates over the scattered part, see Eq. 5.1;
this effect will be further discussed in Sec. 5.3.3. In this section the quantity D has the largest
value of 0.48 for µ = 0.4eV, h̄ω = 0.33eV at a donor-GM distance of 8 nm, ensuring that the
system is in the weak coupling regime.



5.3. Results and Discussion 92

5.3.3 Energy transfer e�ciency

In Sec. 5.1 and 5.2 the SE and ET rates have been investigated, respectively, which will
now be used to study the energy transfer efficiency. Now, using a similar approach to the one
developed when the dielectric coated cylinder geometry was discussed in Sec. 4.3.3, when the
donor dipole is excited it has two ways of relaxing to the ground state: it can either transfer
its excitation energy to the acceptor dipole with an ET rate kET, or it can relax with decay rate
kSE, where it is assumed that there is no intrinsic non-radiative decay, i.e. the intrinsic quantum
yield of the donor is Y0 = 1. The decay rate kSE takes account of photon emission into the
far-field, coupling to GP modes and losses in the GM. The SE and ET processes are, therefore,
in competition with each other and an energy transfer efficiency is introduced to describe this
competition.

The energy transfer efficiency η is given by Eq. 2.37. This quantity gives the relative
contribution of the energy transfer process to the total decay rate of the donor. If the ET
efficiency, η , has a value η > 50%, then the decay of the excited state of the donor occurs
mainly by energy transfer to the acceptor, rather than relaxation into photon or GP modes.

Considering a donor-acceptor pair, the donor emission and acceptor absorption spectra are
both given by a Gaussian distribution, Eq. (6.54), and have the form:

Aq e−(λ−λq)
2/∆λ 2

q , (5.20)

where q = D represents the donor and q = A represents the acceptor. The properties of the
spectra describing the donor emission and acceptor absorption cross section are identical with
the ones used in Sec. 4.3.3. The only difference is that the donor emission peak and acceptor
absorption maximum coincide at λD = λA = 2 µm. There are a variety of emitters at this
wavelength, such as quantum dots and synthesized molecules [163, 164].

The Förster radius, R0, is defined as the donor-acceptor separation at which the energy
transfer efficiency, η , is 50%. The Förster radius can be calculated from the spectral overlap
and has a value of 19nm in free-space. R0 is calculated from the spectral overlap of the
normalized donor emission, fD, and acceptor absorption, σA, spectra using Eq. (2.40).

In Fig. 5.7 contour plots of the ET efficiency are presented for the donor-acceptor pair,
with spectral properties described above; the donor and acceptor positions are fixed at rD =

(0,0,10nm), and rA = (x,0,z), respectively. Two values of the chemical potential are consid-
ered µ = 1.0 eV, Fig. (5.7a), and µ = 0.6 eV, Fig. (5.7b). When µ = 1.0eV the emission and
absorption spectrum overlap strongly with the ET function. For this case the ET efficiency,
η , has values above 70% even for separations along the GM as large as 100nm, and the 50%
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(a) (b)

Figure 5.7: Contour plot of the ET efficiency, η , between a pair of QEs, as a function of acceptor position for a
fixed position of the donor at rD = (0,0,10nm) and different values of the chemical potential, (a) µ = 1eV and
(b) µ = 0.6eV. The green line gives the η = 50% values.

efficiency distance is around 300nm. This value is very large compared to the free-space
Förster radius of R0 = 19nm. When the value of the chemical potential is µ = 0.6eV, the
ET efficiency, η , has values above 50% for separations above 100nm but now the overlap
between the emission and absorption spectra and the ET function is reduced, thus showing a
diminished effect. The large confinement of light at the atomically thin GM surface can be
used to efficiently transfer energy between a pair of QEs over large separations. Furthermore,
this ET efficiency, η , can be controlled through gating of the GM, thus opening striking oppor-
tunities for possible applications, such as switching and sensing devices [79, 153, 154], light
harvesting [155], plasmonic rulers [79, 156] and quantum computing [85].

The behavior of the ET rate, kET, is investigated as a function of the in-plane separation
between donor and acceptor. Figs. 5.8a and 5.8b show the ET rate, kET, as a function of
the in-plane distance between the donor and acceptor, when their elevation above the GM
is (a) z = 5nm and (b) z = 10nm on the same side of the GM. For both panels, the near
field is fitted with a Förster-type model, (R0/x)n, where R0 is the Förster radius. At small
separations the fit yields the values n = 6 and the Förster radius is modified from the free-
space value, R0 = 19nm. The fact that at small separations, x < 10nm, for zD = zA = 5nm
and x < 20nm, for zD = zA = 10nm, the ET rate, kET, follows an n = 6 dependence shows
that the homogeneous part of the Green’s tensor dominates, see Eq. (5.1), modified by the
donor-acceptor interaction with the GM. Thus, there is an enhancement of the Förster radius,
which depends on the donor-acceptor distances from the GM and the value of the chemical
potential, µ . In Fig. 5.8a the Förster radius has values of R0 = 123nm for chemical potential
values µ = 0.8eV and µ = 1.0eV. As the chemical potential value drops, the Förster radius
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(c) (d)

Figure 5.8: (a-b) ET rate, kET, as a function of the donor-acceptor in-plane separation, x, for fixed donor
positions, (a) rD = (0,0,5nm) and (b) rD = (0,0,10nm) respectively, and variable acceptor position, rA =
(x,0,5nm) and rA = (x,0,10nm) respectively, for different values of the chemical potential, µ . (c-d) ET rate,
kET, as a function of the donor-acceptor separation, d, for fixed donor positions, (c) rD = (0,0,5nm) and (d)
rD = (0,0,10nm) respectively, and variable acceptor position rA = (0,0,zA), with d = zD− zA and for different
values of the chemical potential, µ .
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Table 5.2: Graphene plasmon propagation length.

z (nm) µ (eV) LSP (nm) B (nm)
5 0.8 379.23 376.82
5 1.0 890.31 884.86

10 0.8 379.23 376.99
10 1.0 890.31 886.47

decreases to R0 = 91nm for µ = 0.4eV, a value that is smaller than the one for the case of an
undoped graphene layer, R0 ≈ 100nm, due to interband transitions, see Fig. 5.4a. The effect
of tuning the Förster radius through the chemical potential is evident. In Fig. 5.8b the values
of the Förster radius are smaller for the different values of the chemical potential, µ , due to
the fact the QEs-GM distance is increased. When µ = 1.0eV the largest value of the Förster
radius is exhibited, R0 = 94.3nm, due to the choice of the donor and acceptor. For the off-
resonance case, µ = 0.4eV, the Förster radius is R0 = 54nm, once again smaller than the case
of undoped graphene, R0 = 70nm.

At larger donor-acceptor separations, the following expression is used to fit the calculated
ET rate

f (x) =
A
x

exp
(
−2x

B

)
, (5.21)

which represents the dependence of the GP field intensity on the in-plane distance x (the
factor 2 in the exponential results from the square of the Green’s tensor, as does the x in the
denominator – the GP field has a factor of 1/

√
x). The fitting parameter B is tabulated in

Table 5.2, together with the corresponding propagation length of the GP along the interface of
the GM, LSP. As is clear, the correspondence between these parameters is very good indeed,
confirming that, away from the near-field, the interaction between donor and acceptor occurs
primarily through the GP excited by the donor at the surface of the GM. As the distance
between the QEs and the GM is increased, the Förster regime dominates further away from
the near-field, as can be seen from the fact that the intersection between the two fitting curves
moves to larger distances. This is due to the small value of the penetration depth of the GP,
δSP = 6.6nm at µ = 1.0eV.

Figs. 5.8c and 5.8d consider the ET rate, kET, as a function of the donor-acceptor separation,
for the case when the donor position is kept fixed at (5.8c) zD = 5nm and (5.8d) zD = 10nm
above the GM, and the separation between the donor-acceptor, d = zD− zA is varied, for
µ = 1.0eV and µ = 0.4eV. At small separations the Förster model is used for fitting, presented
earlier. To fit the behavior of the ET rate, kET, below the GM the expression f (z) = Ae−2z/∆

is chosen, where the parameter ∆ will be connected with the penetration depth of the GP,
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δSP. In both figures, the GM position is denoted by the dashed vertical line. In Fig. 5.8c, for
which the donor position is very close to the GM (zD = 5nm), the behavior of the ET rate
immediately below the GM is not trivial and comes from various contributions, such as direct
interaction and GP-coupling. On the other hand, in panel 5.8d, for which zD = 10nm, we can
use the fitting function f (zA), and find for ∆ the value ∆= δSP = 6.6nm, showing that the main
contribution to the ET rate comes from the GP on the GM. For the µ = 0.4eV case the ET
rate, kET, is almost uninfluenced by the presence of the GM. The quantity D has a maximum
value of 0.2 for the donor-GM distance of 5 nm and µ = 1.0eV.

5.4 Summary and Conclusions

In this chapter the behavior of quantum systems placed near a free-standing graphene mono-
layer has been investigated. The graphene monolayer can support graphene surface plas-
mon modes, tightly confined to the surface and having large propagation distances along the
graphene monolayer.

The conditions of strong and weak coupling, between a quantum system and the surface
plasmon mode supported by the graphene monolayer, have been investigated. For reasonably
large values of the chemical potential µ > 0.4eV and any transition energies of the QE not in
the THz regime, the weak coupling conditions are fulfilled. Quantities such as spontaneous
emission and energy transfer functions are calculated. It is found that both of these quantities
are enhanced, compared to their free space values, due to efficient coupling to the graphene
plasmon modes.

Due to the competition of the donor-acceptor energy transfer process with other donor de-
cay processes, an energy transfer efficiency, η , is defined and the influence of the graphene
plasmons on this quantity is investigated. It is shown that the energy transfer efficiency, η ,
can reach values above 50% for distances up to 300nm along the graphene monolayer. This
process can be controlled by tuning the value of the chemical potential, e.g. through gating.

Finally, the ET rate, kET, is investigated varying the donor-acceptor in-plane separation and
distance from the GM, for various values of the chemical potential, µ . The ET rate, when the
in-plane distance between the donor and acceptor is varied, has two major contributions: the
Förster-type mechanism which dominates at small separations, while the GP contribution is
found to dominate at large distances. The Förster-type ET rate follows an x−6 dependence,
with an increased Förster radius value, due to the presence of the GM. The Förster radius value
is increased from a value of R0 = 91nm when µ = 0.4eV to R0 = 123nm when zD = zA = 5nm
and µ = 1.0eV. At larger distances, the main contribution comes from the GP propagation; the
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transition from the Förster to the GP-propagation mechanism depends on the distance of the
donor-acceptor pair from the GM, and it occurs at donor-acceptor separations ranging from
a few nm to tens of nm. When the z-distance between donor-acceptor is varied, for x = 0,
the behavior is somewhat more complicated, but the GP penetration depth still dictates the
interaction length. As the chemical potential, µ , decreases the ET rate approaches the value
for the case of undoped graphene.

An application for sensing using the main benefit provided by the graphene monolayer,
its tunability, can be envisioned. Drop casting a layer of different species of quantum emit-
ters, thus different spectral properties, on top of a conducting monolayer they will operate as
donors. Bringing the full structure in proximity to an other set of different species of acceptors
quantum emitters will then resulting in an interaction between donor and acceptor quantum
emitters. Tuning the chemical potential of the graphene monolayer the interaction between
them can be switched -on and -off. Thus indirectly determine the spectral properties of the
acceptors and the distance between donors and acceptors.

In this chapter a gated graphene monolayer is used to facilitate long range, tunable, interac-
tion between a pair of quantum emitters using the propagating SP mode provided. Confining
the light in an infinitely thin two-dimensional material, graphene, the interaction between
quantum emitters is increased to unreachable distances compared with the case where bulk
nanostructures used. Confining the light in all three dimensions can further enhance the SE
rate as is discussed in Sec. 1.1. In the next chapter the SP modes provided by a graphene
nanodisk are used to enhance the interaction distance, perpendicularly to the disk, between
quantum emitters.



Chapter 6
Tunable and long range energy transfer efficiency
through a graphene nanodisk

6.1 Introduction

In the previous chapters, the interaction between quantum emitters in the presence of ex-
tended conducting, metallic and graphene nanostructures was considered. Moving from the
infinite planar metallic layer geometries, Chapter 3, to the dielectric coated metallic cylin-
der geometry, Chapter 4, one observes an enhancement of the interaction between a pair of
quantum emitters in their presence. It is well known that decreasing the dimensionality of
the nanostructures, their interactions with quantum emitters are increased, see Sec. 1.1 and
the discussion there. Furthermore, in Chapter 5 the interaction between quantum emitters
can be significantly increased and tuned by a gated graphene monolayer. In this chapter the
interaction between quantum emitters in the presence of a gated graphene nanodisk is consid-
ered. A graphene nanodisk confines the light in all three dimensions and its surface plasmon
resonances are localized.

Graphene nanodisk structures have been investigated in depth over the last few years. Here
is repeated, for completeness, the discussion developed in Sec. 1.1. Electrically gated pat-
terned graphene nanostructures [19, 116], nanodisks and nanorings, interact strongly with
the incoming light and the confinement parameter is large compared with the radius of these
nanostructures, λ 3/R3 � 1. A patterned array of graphene nanodisks has been predicted to
provide 100% absorption [89]. Similar predictions have been made concerning a photonic
crystal consisting of nanoholes patterned in a graphene substrate in the near infrared optical
regime [117]. Furthermore, a graphene sheet decorated with small metallic nanoparticles, with
zero chemical potential, can support strong absorption [118]. These interactions have been

98
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predicted to be blue-shifted when considering more layers of graphene nanodisks instead of a
single nanodisk [119,120]. Edge states and an applied magnetic potential can further influence
the response of these nanostructures [114,121]. Further quantum effects have been considered
in the regime where non-linear effects emerge in the coupled quantum emitter-graphene nan-
odisk system [122, 123].

In this chapter the SE of a single quantum emitter and the ET function between a pair of
quantum emitters are investigated in the presence of a graphene nanodisk. An electrostatic
method developed in Ref. [165], and used recently in Ref. [86], and expanded here, is used to
calculate an electrostatic approximation of the Green’s tensor. This approximation works well
for the near field distances used in our calculations, provided that the graphene nanodisk ra-
dius is large enough such that quantum effects are unimportant [112], but small compared with
the emission wavelength of the QEs. Using this semianalytical method the dependence of the
SE and ET rates and the ET efficiency on the separations between the quantum emitters and
the graphene nanodisk is studied, which is of significant importance when considering exper-
iments such as in Refs. [79,80] where the graphene layer doping and distance dependence are
considered for quantum emitters at telecommunication wavelengths. The interaction length
between a pair of quantum emitters in the presence of a graphene nanodisk is enhanced up to
one order of magnitude compared to the free space value, and a comparison with an infinite
graphene monolayer is also provided. Furthermore, the electrostatic nature of the interaction
suggests that the main influence comes from the geometrical characteristics of the graphene
nanodisk. The formalism developed in this chapter is quite general and can be applied to
any two dimensional material provided its conductivity is known and the electrostatic regime
applies.

6.2 Theoretical Introduction

In this section are introduced the basic quantities used throughout this chapter to investigate
the system sketched in Fig. 6.1. The conductivity of the graphene nanodisk is described by
the model introduced in Sec. 5.2.1. In Sec. 6.2.1 the Poisson equation is solved by using
an expansion to a known set of functions. In Sec. 6.2.2 the electrostatic Green’s tensor is
constructed with the aid of which the SE emission of a quantum emitter and the energy transfer
between a pair of quantum emitters in the presence of a graphene nanodisk are calculated.
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Figure 6.1: Schematic of the geometry under consideration, a QE in the presence of a graphene nanodisk of
radius R.

6.2.1 Eigenvalues and eigenfunctions

The electrostatic potential, φ(r), in the case of a graphene nanodisk is given by the Poisson
equation,

∇
2
φ(r) =− 1

ε0ε(r)
ρ(r), (6.1)

where the charge density of the graphene nanodisk is given by ρ(r) = δ (z)ρq(r,θ)Θ(R− r),
which vanishes for r > R, the background dielectric permittivity is given by ε(r) = ε+θ(z)+

ε−θ(−z), with ε+ = ε− = 1. Taking advantage of the azimuthal symmetry of the problem un-
der consideration we write the electrostatic field in the form φ(r) = φq(r)φz(z)exp(ilθ), with
the condition φz(0) = 1. Similarly, the charge density has the form ρq(rq) = ρq(r)exp(ilθ). We
start by considering only modes with angular dependence, l 6= 0. Applying a Hankel transform
on Eq. (6.1) for the lth order, when z 6= 0, the electrostatic potential has the form:

φ(r) =
ˆ

∞

0
pφ(p,z)Jl(pr)eilθ d p. (6.2)

Substituting (6.2) into Eq. (6.1), the following differential equation is obtained:(
d2

dz2 − p2
)

φ(p,z) = 0. (6.3)

A general solution of this equation reads φ(p,z)=A± exp(∓pz). Applying the relevant bound-
ary conditions, that the potential φ is continuous and its normal derivative has a discontinuity
of the form

ε+
∂φ(p,z)

∂ z

∣∣∣∣
z=0+
− ε−

∂φ(p,z)
∂ z

∣∣∣∣
z=0−

= ρq(p), (6.4)
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the coefficients are found to have the form A± = 1
2ε±

ρq(p) 1
p . The total field is given by the

inverse Hankel transform of φ(p,z), which, when used in Eq. (6.2) yields,

φq(r̃) =
R

2ε0

ˆ 1

0
dr̃′Kl(r̃, r̃′)ρq(r̃′)r̃′, (6.5)

where r̃ = r/R and Kl(r̃, r̃′) = 1/R
´

∞

0 d pJl(pr̃)Jl(pr̃′). From now on for simplicity the change
of variable r̃→ r is understood, unless otherwise specified.

By using Ohm’s law, J = σ(ω)E, and the continuity equation, iωρ(r) = ∇ ·J, one finds the
expression

φ(r) =
iω

σ(ω)

ˆ 1

0
dr′Gl(r,r′)ρ(r′)r′, (6.6)

where (
1
r

∂

∂ r
r

∂

∂ r
− l2

r2

)
Gl(r,r′) =−

δ (r− r′)
r

, (6.7)

subject to the boundary conditions that Gl(0,r′) is bounded and ∂rG(r,r′)|r=1− = 0. The
solution of Eq. (6.7) is

Gl(r,r′) =
1
2l

(
(rr′)l +

( r<
r >

)l
)
, (6.8)

where r> = max(r,r′) and r< = min(r,r′), for l 6= 0.
Using Eq. (6.5) and (6.6) and including the external potential φ ext(r,r′), we obtain the ex-

pression

Ω
2(ω)

ˆ 1

0
dr′Kl(r,r′)ρq(r′)r′−ω

2
ˆ 1

0
dr′Gl(r,r′)ρ(r′)r′ =−φ

ext(r,r′), (6.9)

where Ω2(ω) =−iωσ(ω)/2ε0R. To solve Eq. (6.9) the charge density is expanded by using
the Jacobi polynomials

ρq(r) = rl
∞

∑
j=0

c jP
(l,0)
j (1−2r2). (6.10)

In order to calculate the integrals in Eq. (6.9) and replace the integral equation with matrix
equations, the orthogonality condition of the Jacobi polynomials is used

ˆ 1

0
drP(l,0)

i (1−2r2)P(l,0)
j (1−2r2)r2l+1 =

δi j

2(l +2 j+1)
, (6.11)
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as well as the integral identities

ˆ
∞

0
dr rl+1Jl(pr)P(l,0)

j (1−2r2) =
1
p

Jl+2 j+1(p) (6.12)

and

ˆ
∞

0
p−2Jl+2i+1(p)Jl+2 j+1(p)d p =

(−1)i− j+1

π[4(i− j)2−1](l + i+ j+1/2)(l + i+ j+3/2)
. (6.13)

Then, a system of matrix equation is obtained

(−ωG+Ω(ω)K)c =
iωσ(ω)

R2 Dd, (6.14)

where the potential created by an external source is expanded as

φ
ext(r,r′) = rl

∞

∑
j=0

d jP
(l,0)
j (1−2r2). (6.15)

When one neglects the external potential φ ext(r,r′), one is left with an eigenvalue problem

Kcn = ζnGcn (6.16)

where ζn are geometric modes that are once and for all calculated for the specific geometry and
are independent of the disk radius R, l is the angular eigenmode and n is the radial eigenmode.
Then the resonance frequencies are found from the relation ζn = Ω2(ωn)/ω2

n , see Eq. (6.38).
The matrices D, G and K have the form

Dl
i j =

δi j

2(l +2 j+1)
, (6.17)

Gl
i j =

δ j0δi0

8l(l +1)2 +
δi j

4(l +2 j)(l +2 j+1)(l +2 j+2)
+

δi+1, j

8(l +2 j+1)(l +2 j+2)(l +2 j+3)
+

+
δi, j+1

8(l +2 j+1)(l +2 j+2)(l +2 j+3)
, (6.18)

Kl
i j =

(−1)i− j+1

π[4(i− j)−1](l + i+ j+1/2)(l + i+ j+3/2)
. (6.19)

The above expressions are valid for l 6= 0. When these angular modes are considered there is
no net induced charge density. The situation for the breathing mode, l = 0, is different, as we
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need to modify the boundary conditions at r̃ = 1.
Eq. (6.8) is no longer valid for l = 0 and the boundary condition is modified to read as

∂rG(r,r′)|r=1− = 1, in which case the Green’s function has the form

G(r,r′) =− ln(r>), (6.20)

where x> = max(r,r′). For l = 0 the expansion of the charge density, ρq, is still valid and
the Jacobi polynomials become the Legendre polynomials. Following similar considerations
we find that the matrix equation Eq. (6.14) is still valid. Also the matrices (6.17)-(6.19) are
correct except for the fact that i, j = 1,2,3 . . .. More details can be found in ref. [165].

The induced electrostatic potential in the presence of an external source is written as

φ
ind(r,r′) =

R
2ε0

∞

∑
l,n

cl
n(r
′,ω)cos(lθ)

ˆ
∞

0
p−1e−|z|/RpJl(pr)Jl+2n+1(p)d p, (6.21)

where for l = 0, n = 1,2,3 . . . and for l > 1, n = 0,1,2 . . .. In Eq. (6.21) r and r′ are the
non-normalized vectors.

6.2.2 Electrostatic Green's tensor

In this section as an external excitation we consider the potential produced by a dipole
source in order to investigate the interactions between quantum emitters in the presence of a
gated graphene nanodisk.

The potential at r created by a dipole source positioned at r′ = (0,0,z′) and oriented along
x̂ is given by

φ
ext(r,r′) =

p0

4πε0

|x− x′|
((x− x′)2 +(y− y′)2 +(z− z′)2)3/2 =

p0

8πε0R2
r(eiθ + e−iθ )

(r2 +(z− z′)2)3/2 , (6.22)

where p0 is the dipole moment of the quantum emitter in our case, and the term 1/R2 comes
from the normalized values we use, r→ Rr.

Writing the dipole potential in terms of the Jacobi polynomials, in the xy plane at z = 0, as

φ
ext(r,r′) = rl

∞

∑
j=0

d jP
(l,0)
j (1−2r2), (6.23)

and using Eq. (6.22) and (6.27) , as well as the orthogonality condition Eq. 6.11, the expansion
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coefficients are given by

d1
i = (2i+2)

p0

4πε0R2

ˆ 1

0

r3P(1,0)
i (1−2r2)

(r2 +(z′/R)2)3/2 dr, (6.24)

where only the l = 1 terms survive from the expansion, due to the dipole orientation of the
dipole source along x. The d1

i are then the components of the vector d of Eq. (6.14).
The induced electrostatic Green’s tensor is given by the expression

Gind(r,r′,ω) = ε0c2/(ω p0)∇φ
ind(r,r′), (6.25)

using Eq. (6.21) and for the xx transition dipole moments has the form

Gind
xx (r,r

′,ω) =
c2

ω2 ∑
k

c1
k(z
′)

ˆ
∞

0
[J0(pr)− J2(pr)]J2k+2(p)e−|z|/Rpd p (6.26)

where the expansion coefficient for the case of a dipole oriented along x̂ has only the l = 1
terms and depends on the dipole position through the expansion of the dipole field Eq. (6.24).

When the acceptor QE is also placed in the middle of the graphene nanodisk, r = (0,0,z),
the integral in Eq. (2.26) can be performed analytically, leading to the full result

Gind
xx (r,r

′,ω) =− c2

2ω2

∞

∑
k=0

c1
k(z
′)

[√
(z/R)2 +1− z/R

]2k+2

√
(z/R)2 +1

, (6.27)

where we used the identities

∂

∂ r
J1(pr̃) =

p
R

1
2
[J0(pr̃)− J2(pr̃)] (6.28)

ˆ
∞

0
e−axJn(βx)dx =

β−n[
√

a2 +β 2−a]n√
a2 +β 2

. (6.29)

Similarly, the electrostatic potential at r created by a dipole source positioned at r′ =
(0,0,z′) and oriented along ẑ is given by

φ
ext(r,r′) =

|z− z′|
((x)2 +(y)2 +(z− z′)2)3/2 =

1
R3

|z− z′|
(r2 +(z− z′)2/R2)3/2 . (6.30)

Due to the symmetry only the l = 0 term in the expansion will survive and, like Eq. (6.24), the
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expansion coefficients have the expression

d0
i = 2(2i+1)

z′

R3

ˆ 1

0

rP(0,0)
i (1−2r2)

(r2 + z′/R2)3/2 , (6.31)

where the d0
i are then the components of the vector d of Eq. (6.14).

The zz component of the electrostatic induced Green’s tensor, describing the relevant tran-
sition dipole moment, is given by the expression

Gind
zz (r,r′,ω) =

∓c2

2ω2 ∑
k

c0
k(z
′)

ˆ
∞

0
J0(pr)J2k+2(p)e−|z|/Rpd p, (6.32)

where the minus (plus) signs holds for z > 0 (z < 0). Again, when the acceptor QE is placed
at r = (0,0,z), the integral in Eq. (6.32) can be calculated analytically, yielding

Gind
zz (r,r′,ω) =

∓c2

2ω2

∞

∑
k=1

c0
k(z
′)

[√
(z/R)2 +1− z/R

]2k+1

√
(z/R)2 +1

. (6.33)

The integrals in Eq. (6.24) and (6.31) can be calculated analytically for each order k, and
below we provide the expressions for a few values of k,

dl=1
k=0 =

2
R3

(
√

R2 + z2− z)2
√

R2 + z2
, (6.34)

d0
1 =−6

z
R3

(
R
z

√
R2 + z2− z√

R2 + z2
−2

(√
R2 + z2− z

)2

R
√

R2 + z2

)
, (6.35)

d0
2 =−10

z
R3

(
R
z

√
R2 + z2− z√

R2 + z2
−6

(√
R2 + z2− z

)2

R
√

R2 + z2
+Higher order terms

)
. (6.36)

6.3 Results and Discussion

6.3.1 Spontaneous emission rate

The spontaneous decay rate, γ , is proportional to the strength of the transition dipole mo-
ments and the electromagnetic field strength acting on it. The normalized spontaneous emis-
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(a) x-oriented dipole (b) z-oriented dipole

Figure 6.2: Normalized spontaneous emission rate of a quantum emitter placed 10 nm above the center of a
graphene nanodisk for a fixed value of the chemical potential, µ = 1eV, as a function of emission frequency and
disk radius, R, for (a) x-oriented and (b) z-oriented transition dipole moment of the emitter. The dashed lines
represent numerical solutions of Eq. (6.38).

sion rate was introduced in Sec. 2.3 and has the form

γ

γ0
= 1+

6πc
ω

Im(nQE ·Gind(r′,r′,ω) ·nQE) (6.37)

where the free space spontaneous emission is given by γ0(ω) = ω3 |p|2 /3πε0h̄c3 and nQE is a
unit vector along the direction of the transition dipole moment of the quantum emitter.

In Fig 6.2 a contour plot of the SE rate is presented as a function of the emission frequency
of the quantum emitter, ω , and the radius of the graphene nanodisk, R, when the dipole emitter
is located at rD = (0,0,10nm) and the value of the chemical potential is fixed at µ = 1eV.
In panel 6.2a the dipole is oriented along the x-axis, while in panel 6.2b it is along the z-axis.
For both orientations, as the radius of the graphene nanodisk is increased, more resonances
are emerging; this is due to the fact that modes with a higher order k can now contribute
in Eqs. (6.23) and (6.33). The values of the resonance frequencies are found by setting the
external excitation to zero in Eq. (5.21) and then numerically solving the equation

σ(ω l
k)

ω l
k

=
2iε0R

ζ l
k

, (6.38)

where ζ l
k are the geometric modes of the particular geometry which can be calculated through

Eq. (6.16). Considering only the intraband contribution to the surface conductivity, σ(ω) =

8iπα0ckBT ln(2cosh(µ/2kBT ))/[π(h̄ω)], where α0 is the fine structure constant, ignoring the
relaxation time, τ , and noting that µ/kBT � 1 for the chemical potential values considered in
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(a) x-oriented dipole (b) z-oriented dipole

Figure 6.3: Normalized spontaneous emission rate of a quantum emitter placed 10 nm above the center of a
graphene nanodisk with a fixed radius, R = 15nm, as a function of frequency and the chemical potential, µ , for
(a) x-oriented and (b) z-oriented transition dipole moment of the quantum emitter. The dashed lines represent
numerical solutions of Eq. (6.38).

this chapter, the following expression is obtained for the resonance frequencies:

ω
l
k =

√
4α0cζ l

kµ

h̄R
. (6.39)

This expression gives the approximate physical connection of the resonance frequencies with
the geometric modes, ζ l

k , the chemical potential, µ , and the graphene nanodisk radius, R. It
is observed that for l = 1, x oriented dipole, and l = 0, z oriented dipole, different sets of
resonance frequencies are excited. From Eq. (6.39) it can be easily seen that, as the radius
is increased, the resonance frequencies are red-shifted, following a

√
1/R dependence. The

dashed lines in Fig. 6.2 represent precise numerical solutions of Eq. (6.38) and it is clear
that the sharp resonance peaks in the SE rate follow the trend described by Eq. 6.39 for the
resonance frequencies.

Eq. (6.39) also easily accounts for the behavior of the SE rate as a function of the chemical
potential following a

√
µ dependence, as seen in Fig. 6.3. Here we present a contour map

of the SE rate of a quantum emitter placed at rD = (0,0,10nm), above a graphene nanodisk
of radius R = 15nm, as a function of the emission frequency of the quantum emitter and the
chemical potential of the graphene nanodisk. The emerging resonances are now blueshifted
with increasing the value of the chemical potential, µ . Thus, by changing the value of the
chemical potential, the graphene nanodisk resonances can be tuned to selectively couple to
specific quantum emitters.

As the distance between the quantum emitter and the graphene nanodisk is increased, their
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interaction decreases, and at large distances it reverts to its free-space behavior. The orien-
tation of the dipole quantum emitter has a large influence on the distance dependence. The
spontaneous emission rate is given by the field induced by the dipole source, which can be
found from Eqs. (6.23) and (6.33). From these expressions, the induced field can be written
as Gind(r′,r′,ω) = Resonance×Geometrical dependence. The Resonance term is given by
M = (−ωG+Ω(ω)K)−1 which is maximum at the resonance frequencies calculated from
Eq. (6.38). The Geometrical term is connected with the expansion coefficients of the dipole
source, see Eqs. (6.24) and (6.31).

Considering the distance dependence of the SE rate of a quantum emitter placed at r′ =
(0,0,z′) and with a transition dipole moment oriented along the x-axis, focusing only on the
k = 0 term, the induced electrostatic Green’s tensor then has the form:

Gind
xx,k=0(r

′,r′,ω) =−1
2

c1
k=0

[√
(z′/R)2 +1− z′/R

]2

√
(z′/R)2 +1

, (6.40)

with

c1
0 =

iω
R2 σ(ω)M1

i0D00
1

R2

ˆ 1

0

x3

(x2 +(z′/R)2)3/2 dx. (6.41)

From this, the distance dependence of the Green’s tensor becomes:

Gind
xx,k=0(r

′,r′,ω) = Resonance
1

R9

[√
(z′2 +R2− z′

]4

z′2 +R2 . (6.42)

If the transition dipole of the quantum emitter is along the z-axis, i.e. perpendicular to the
graphene nanodisk, the distance dependence of the Green’s tensor is somewhat more compli-
cated. Nevertheless, focusing on the k = 2 term, the induced electrostatic Green’s tensor has
the form:

Gind
zz,k=2(r

′,r′,ω) =−c0
k=2

[√
(z′/R)2 +1− z′/R

]5

√
(z′/R)2 +1

(6.43)

with
c0

2 =
iω
R2 σ(ω)M0

i jD j jd0
2 . (6.44)
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(a) Electrostatic mode expansion (b) Boundary element method

Figure 6.4: Spontaneous emission of a quantum emitter as a function of its position, rD = (0,0,z), above the
graphene nanodisk, for a chemical potential, µ = 1 eV and radii R = 10 nm and R = 25 nm. (a) Mode expansion.
(b) Boundary element method.

After some algebraic manipulation the distance dependence is obtained as:

Gind
zz,k=2(r

′,r′,ω) = Resonance
1

R4

[√
(z′2 +R2− z′

]6

z′2 +R2 . (6.45)

In order to examine these approximate forms of the dependence of the SE rate on the dis-
tance away from the graphene nanodisk, in Fig. 6.4 several examples are presented, where the
full calculations are fitted using an expression of the form f (z,R) = A

(√
z2 +R2− z

)n
/
(
z2 +

R2), with A and n being the fitting parameters. The choice of this expression is suggested
naturally by Eqs. (6.42) and (6.45). A good agreement of the fitting with the full numerical
calculation is found, which shows that the distance dependence follows the analytical expres-
sions introduced earlier. In particular, in Fig. 6.4a it is shown that for the z-oriented dipole and
radii R = 10nm and R = 25nm, the value of the fitting parameter n = 6 coincides precisely
with the value given by Eq. (6.45). For the x-orientation it is found that n = 3.9 is very close
to the analytical value n = 4 given by Eq. (6.42). The general behavior is, of course, more
complicated than described by Eqs. (6.45) and (6.42), since different orders, k, contribute to
each resonance. For the case of a dipole source oriented along the z-axis and for the k = 2
order, we can see from Eq. (6.36) that there are different values of n that we can use as a fitting
parameter. Nevertheless, the general distance dependence behavior can be explained with the
fitting expression.

In order to compare the electrostatic approximation with full numerical results, the bound-
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ary element method open source code MNPBEM has been used [166, 167]. In MNPBEM the
graphene disk is modeled as a thin layer of thickness d = 0.5nm with a dielectric permittivity
described by [168]

ε(ω) = 1+
4πiσ(ω)

ωd
, (6.46)

where the surface conductivity is given by Eq. (5.9). Importantly, the full numerical results in
Fig. 6.4b give almost the same fitting parameters, A and n.

Thus, it is found that the dependence of the SE rate of a quantum emitter on its distance
to a graphene nanodisk is primarily given by the geometrical characteristics of the structure
and not by the material characteristics of the graphene nanodisk. For comparison we consider
the distance dependence of a quantum emitter above an infinite graphene sheet, this behaves
as exp(−z/δSP), where δSP is the penetration depth of the surface plasmon on an infinite
graphene sheet, given by δSP = Im

(
1/kSP

z
)

with kSP
z =

√
k2− k2

SP [97]. When an infinite
graphene sheet is considered with chemical potential µ = 1eV, the penetration depth is δSP =

24nm at h̄ω = 0.35eV and δSP = 7nm at h̄ω = 0.6eV, see Fig. (5.2b). Fig. 6.4a shows, on
the other hand, that the QE can interact with the graphene nanodisk at up to 80 nm for the
z-orientation and up to 200 nm for the x-orientation, distances considerably larger than the
penetration depth.

6.3.2 Energy Transfer Function

In this section we present results regarding the enhancement of the ET function between
a pair of quantum emitters placed in proximity to the graphene nanodisk. To do so the full
Green’s tensor is used, see Sec. (3.1), which has the form

G(rA,rD,ω) =Gind(rA,rD,ω)+Ghom(rA,rD,ω), (6.47)

where the induced part of the electrostatic Green’s tensor is given by Eq. (6.26) and Eq. (6.32)
for the x and z oriented transition dipole moments, respectively, and Ghom(r,r′,ω) is the
electrostatic homogeneous Green’s tensor which is given by the expression

Ghom
i j (rA,rD,ω) =

c2

4πω2R2 (3R̂iR̂ j−1), (6.48)

with R = rA− rD. The ET function is defined as, see (2.34),

Γ(rA,rD,ω) =
2π

h̄2

(
ω2

c2ε0

)2 ∣∣p ·G(rA,rD,ω) ·p′
∣∣2 , (6.49)
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(a) x-oriented dipole (b) z-oriented dipole

Figure 6.5: Normalized ET function between a pair of quantum emitters, when the donor is positioned at rD =
(0,0,10nm) and the acceptor is positioned at rA = (0,0,−10nm), for a fixed value of the chemical potential, µ =
1eV, as a function of disk radius, R, for two orientations, (a) x-orientation and (b) z-orientation of the transition
dipole moments of the donor and acceptor. The dashed lines represent numerical solutions of Eq. (6.38).

where p and p′ are the acceptor and donor transition dipole moments, respectively.
Starting by considering the donor placed at rD = (0,0,10nm) and the acceptor placed ex-

actly on the opposite side of a graphene nanodisk, rA = (0,0,−10nm), the enhancement of the
ET function between them is investigated. Firstly, in Fig. 6.5 a contour plot of the logarithm
of the normalized ET function, Γ̃(rA,rD,ω) = Γ(rA,rD,ω)/Γhom(rA,rD,ω) see Eq. (2.35),
is presented for a fixed value of the chemical potential, µ = 1eV, as a function of the radius
of the graphene disk, R. Secondly, in Fig. 6.6 it is presented the normalized ET function,
Γ̃(rA,rD,ω), for a fixed radius of the graphene nanodisk, R = 15nm, as a function of the
chemical potential, µ . Comparing Figs. 6.5 and 6.6 with Figs. 6.2 and 6.3, it is observed that
the behavior of the ET function is very similar to the behavior of the SE rate, particularly the
locations of the resonances.

In Fig. 6.7a and 6.8a we again consider fixed positions for the donor, rD = (0,0,10nm),
and acceptor, rA = (0,0,−10nm), for a single value of chemical potential, µ = 1eV, for
two disk radii, R = 10 nm and R = 30 nm, respectively. Furthermore, two different dipole
orientations, x and z, are considered and are clearly seen the different resonance frequencies
for the different orientations. It is also observed that the normalized ET function follows an
asymmetric resonance of Fano type, and not a Lorentzian shape, as when considering the
normalized SE rate, see Fig. (6.2) and (6.3). Moreover, as expected, for a graphene nanodisk
with a larger radius, R = 30nm, more resonance frequencies are visible. The dashed lines in
Figs. 6.7a and 6.8a represent numerical simulations using MNPBEM and a good agreement is
obtained between the two methods. In this regime the electrostatic method is expected to hold,
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(a) x-oriented dipole (b) z-oriented dipole

Figure 6.6: Normalized ET function between a pair of quantum emitters, when the donor is positioned at rD =
(0,0,10nm) and the acceptor is positioned at rA = (0,0,−10nm), for a fixed radius of the graphene nanodisk,
R = 15nm, as a function of the chemical potential, µ , for two orientations, (a) x-orientation and (b) z-orientation
of the transition dipole moments of the donor and acceptor. The blue lines in each panel represents the resonance
frequencies calculated using Eq. (6.39). The dashed lines represent numerical solutions of Eq. (6.38).

since the donor-acceptor separations are smaller than the emission wavelength of the donor,
|r− r′| � λ .

Panels (6.7b-6.7d) and (6.8b-6.8e) present contour plots of the normalized ET function
when the donor is placed at a fixed position, rD = (0,0,10nm), and the acceptor scans the xz-
plane, rA = (x,0,z). Panels (6.7b-6.7c) and (6.8b-6.8c) show the x-component of the transition
dipole moment of both the donor and acceptor, while panels 6.7d and (6.8d-6.8e) show the z-
component. The emission frequencies of the donor have been chosen from the peak values
from panels 6.7a and 6.8a, in order to have the largest response of the graphene nanodisks.
Details of the relevant parameters are found in the caption and below the individual panels.

Firstly it is observed that when both donor and acceptor transition dipole moments are along
the x-axis, the largest ET function enhancement occurs in the region of the circumference;
when both donor and acceptor transition dipole moments are along the z-axis, the normalized
ET function is reduced. Furthermore, as the emission frequency is increased, higher order res-
onances are involved and, consequently, the number of lobes increases, a general characteristic
of plasmonic finite structures when localized surface plasmons are excited. As the number of
lobes is increased the field is more tightly confined to the graphene nanodisk.

Now we consider the ET function, Γ(rA,rD,ω) ∝
∣∣Gind(rA,rD,ω)+Ghom(rA,rD,ω)

∣∣2,
where the induced part is given by Eqs. (6.26) and (6.32). The interaction strength between
the donor and acceptor is proportional to this quantity. Panels 6.9a and 6.9b present a contour
plot of the ET function as a function of frequency and acceptor position for a fixed donor
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(a) (b) ω = 0.83 fs−1, λ = 2.24 µm

(c) ω = 1.54 fs−1, λ = 1.22 µm (d) ω = 1.35 fs−1, λ = 1.4 µm

Figure 6.7: Normalized ET function between a donor-acceptor pair, when the donor is positioned at rD =
(0,0,10nm) for a fixed radius, R = 10nm, and a fixed value of the chemical potential, µ = 1eV. (a) Accep-
tor positioned at rA = (0,0,−10nm) for two orientations, along the x and z-axes. For the peak frequencies
labeled B, C and D we present contour plots of the spatial distribution in the xz-plane of the normalized ET
function in the (b-d) graphs.
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(a) (b) ω = 0.98 fs−1, λ = 1.91 µm

(c) ω = 1.22 fs−1, λ = 1.54 µm (d) ω = 0.83 fs−1, λ = 2.27 µm

(e) ω = 1.12 fs−1, λ = 1.68 µm

Figure 6.8: Normalized ET function between a donor-acceptor pair, when the donor is positioned at rD =
(0,0,10nm) for a fixed radius, R = 30nm, and a fixed value of the chemical potential, µ = 1eV. (a) Accep-
tor positioned at rA = (0,0,−10nm) for two orientations, along the x and z-axes. For the peak frequencies
labeled B-E we present contour plot of the spatial distribution in the xz-plane of the normalized ET function in
panels (b-e).
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(a) x-oriented donor and acceptor (b) z-oriented donor and acceptor

(c) x-oriented donor and acceptor (d) z-oriented donor and acceptor

Figure 6.9: Frequency and acceptor position dependence of the ET function for a donor placed at rD =
(0,0,−10) nm for the case where both donor and acceptor are along the (a) x-axis and (b) z-axis. Donor-
acceptor distance dependence of the ET function for frequencies marked by vertical lines in (a) and (b) when
both donor and acceptor are along the x-axis, cf. panel (c), and z-axis, cf. panel (d). In all cases the chemical
potential is µ = 1 eV and the graphene nanodisk radius is R = 20 nm.
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position, rD = (0,0,−10) nm, when the donor and acceptor transition dipole moments are
along the x-axis (6.9a) and along the z-axis (6.9b). The acceptor is positioned at r = (0,0,zA).
The chemical potential is µ = 1eV, and the radius is R = 20nm. It is observed that for the
x-orientation, the normalized ET function has larger values which extend over larger distances
compared with the z-orientation. the higher order resonances decay faster than the main reso-
nance, which is the k = 0 order for the xx-orientation and the k = 1 order for the z-orientation.

The focus now is on the resonance frequencies from panels 6.9a and 6.9b and the depen-
dence of the normalized ET function on the donor-acceptor distance is investigated. The
components of the induced Green’s tensor are given by Eq. (6.27) and (6.33), where these ex-
pressions are separated in resonance and geometrical contributions. The situation is somewhat
simplified now, because the donor position is kept fixed. The xx-component of the induced
Green’s tensor is

G1
xx,k(r,r

′) = resonance term×

[√
(z/R)2 +1− z/R

]2k+2

√
(z/R)2 +1

, (6.50)

while the zz-component reads as

G0
zz,k(r,r

′) = resonance term×

[√
(z/R)2 +1− z/R

]2k+1

√
(z/R)2 +1

. (6.51)

In panels 6.9c and 6.9d the data obtained from the simulations are fitted with the function

f (z) = A(
√

z2 +R2− z)n/(z2 +R2), (6.52)

corresponding to the squares of the expressions in Eqs. (6.50) and (6.51). For the resonances
with quantum number l = 1 and k = 0, the fitting at large donor-acceptor distances gives a
value n = 4.7, which is close to the value n = 4 for k = 0 given by Eq. (6.50). The closer the
donor is to the graphene nanodisk, however, the worse the fitting with the chosen function is,
since this considers that only one resonance contributes to the ET function. In addition, the
direct interaction between the donor and acceptor is appreciable when they are close to each
other, further leading to a mismatch. For higher order resonances, the behavior becomes more
complex, and one can even identify a minimum in the ET function for k = 1 at a distance of
50 nm. Similarly, considering the case when both donor and acceptor are along the z-axis, the
fitting of the main resonance gives a value of n = 6.8, again close to the value n = 6 for k = 1
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given by Eq. (6.51). Furthermore, the minimum in the next higher order resonance occurs
even closer to the graphene nanodisk, at a donor-acceptor distance of 25 nm. The appearance
of a minimum can be seen in Fig. 6.8e. The ET function falls off more rapidly for the higher
frequency resonances, as can be seen in Fig. (6.9c) and (6.9d). This effect is also present
in Fig. 6.8e, where the higher frequency of the resonances lead to more lobes in the field
distribution, which in turn leads to a tighter confinement of the field at the graphene nanodisk.
The distance dependence is further analyzed in the next section.

6.3.3 Energy transfer e�ciency

When the donor is excited it generally has two ways of relaxing to the ground state: by
transferring its excitation energy to the acceptor with an ET rate kET, or by relaxing with
decay rate kSE. The decay rate kSE takes account of photon emission into the far-field, intrinsic
non-radiative recombination paths and coupling to surface plasmon modes. The SE and ET
processes are, therefore, in competition with each other and an energy transfer efficiency is
introduced to describe this competition. We consider, in what follows, quantum emitters with
a quantum yield of one, Y0 = 1.0, which assumes no intrinsic losses such as phonon relaxation,
etc.

Using Eqs. (2.29) and (2.34), introduced in Sec. (2.3), for the SE and ET rates of ensembles
of emitters and donor-acceptor pairs, an energy transfer efficiency η is defined as [127]

η =
kET

kSE + kET
. (6.53)

This quantity gives the relative contribution of the energy transfer process to the total decay
rate of the donor. If the ET efficiency, η , has a value η > 50%, then the decay of the excited
state of the donor occurs mainly by energy transfer to the acceptor, rather than relaxation into
photon or SP modes.

When real quantum emitters are considered, the donor emission spectra, fD(λ ), and accep-
tor absorption spectra, σA(λ ), are described by Gaussian distributions and not by the ideal-
ized δ -distributions. Note that the properties used to describe the donor and acceptor quantum
emitters in this chapter have been introduced earlier, see Sec. (4.3.3). They are restated here
for completeness. The donor emission and acceptor absorption spectra are given by

Aq e−(λ−λq)
2/∆λ 2

q , (6.54)

where q = D represents the donor and q = A represents the acceptor, Aq is a normalization
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(a) x-orientation, k = 0. (b) z-orientation, k = 1.

(c) x-orientation, k = 0. (d) z-orientation, k = 1.

Figure 6.10: (a-b) Contour plot of the ET efficiency as a function of graphene nanodisk radius and donor-
acceptor distance, for a fixed donor position, rD = (0,0,10nm) and variable acceptor position, rA = (0,0,zA),
and for different resonances calculated using Eq. (6.38). The solid black line represents the 50% efficiency
contour, while the dashed red line represents the same in free-space. The grey line represents the 50% efficiency
for the k = 1, panel (a), and k = 2, panel (b), frequency mode resonances. (c-d) ET rate as a function of donor-
acceptor distance for the same fixed position of the donor. The chemical potential is everywhere µ = 1 eV.

constant, λq gives the position of the spectral peak and ∆λq is related to the full width at
half maximum (FWHM) of the spectrum. The normalization constant of the donor emission
spectrum is given as A−1

D =
´

∞

0 dλ fD(λ ). The FWHM will be ∆λD = 20 nm for the donor-
acceptor pairs, which corresponds to a typical spectrum of a fluorescent dye, e.g. fluorescein
[130]. The constant for the acceptor absorption spectrum is AA = 0.021 nm2, while the FWHM
is ∆λA = 50 nm. In this section we consider quantum emitters that are on resonance with the
graphene nanodisk which means that the position of the spectral peak, λq, for the various
arrangements, is given by Eq. (6.38), cf. also the dashed lines from Fig. 6.2 and Fig. 6.3.

In Fig. 6.10a and Fig. 6.10b, contour plots of the ET efficiency are presented as a function
of the radius of the graphene nanodisk, R, and the donor-acceptor distance, rDA, when the
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donor position is kept fixed at rD = (0,0,10nm) and the position of the acceptor varies. The
value of the chemical potential is µ = 1eV. For each panel in the figure, the peak values
of the donor emission and acceptor absorption spectra, Eq. (5.20), are taken to be the reso-
nance wavelength, calculated from Eq. (6.38). In Fig. 6.10a, for which the donor and acceptor
transition dipole moments are oriented along the x-axis and the resonance wavelength corre-
sponds to k = 0, the interaction distance increases with the disk radius. The free-space 50%
efficiency contour is given as the dashed red line. It corresponds to the so-called Förster ra-
dius. The interaction distance is considerably increased, reaching values well above 100 nm
for the larger disk radii considered. In Fig. 6.10b, for which the dipole moment orientation
is along the z-axis and the resonance wavelength corresponds to k = 1, we observe that the
interaction distance is smaller compared with the x-orientation of the transition dipole, while
still being larger than the free space value. This is not surprising, since the SE rate and the ET
function follow similar trends, and more insight is given by Eqs. (6.24) and (6.31) where the
different distance dependences, for the different orientations of the transition dipole moment,
are apparent. Furthermore, the next higher order resonances are considered in panels 6.10a
and 6.10b where the 50% distance is plotted for k = 1 and k = 2 resonances, respectively. It is
observed that the interaction distance is smaller than for the main resonances. This is a gen-
eral characteristic for structures supporting localized surface plasmons, such as nanospheres,
nanoboxes etc. For these higher order resonances, the interaction distance is also larger than
in free-space.

Panels 6.10c and 6.10d show the dependence of the ET rate between a donor-acceptor pair
on their separation, for several disk radii from panels 6.10a and 6.10b. The value of the chem-
ical potential is µ = 1eV. For the fitting we use Eq. (6.52), the same expression as for the case
of the ET function. For the x-oriented transition dipole moments, the fitting returns n = 4.4,
for a radius of R = 40nm, slightly different from the value n = 4 obtained from the induced
Green’s tensor from Eq. (6.50) for k = 0. Interestingly as the radius increases, the fitting value
approaches the theoretical value, due to the fact that the contribution from the induced part
of the Green’s tensor, Eq. (6.47), becomes large. When considering a z-orientation for the
transition dipole moments, similar results are obtained, with a fitting parameter n = 6.6, for
radius of R = 40nm, compared with the theoretical value n = 6. This discrepancy is attributed
to the contribution of higher order modes. The main difference between the behavior of the
ET rate for x and z oriented donors and acceptors, is the fact that the absolute values of the
ET rate decay faster with distance for the z orientation, explaining the shorter distance over
which efficient ET occurs. Furthermore, we want to point out, again, that the distance depen-
dence of the energy transfer for a donor-acceptor pair is fully characterized by the geometrical
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(a) x-orientation, k = 0. (b) x-orientation, k = 1.

Figure 6.11: Contour plot of the ET efficiency as a function of the acceptor position, rA = (0,0,z), with a fixed
position of the donor, rD = (0,0,10nm), d = 10nm− z. The value of the chemical potential, µ , is varied for
fixed value of the radius of the graphene nanodisk, R = 20nm, for different resonance frequencies, Eq. (6.38),
more details in the inset. The solid black line represents the 50% efficiency contour, while the dashed red line
represents the same in free-space. The solid gray line represents the 50% efficiency for the k = 1, panel (a), and
k = 2, panel (b), frequency mode resonances.

dependence. This is one of the key results of this chapter. This is in contrast with the case
considering the interaction of a donor-acceptor pair in the presence of an infinite graphene
sheet, for which the perpendicular distance dependence is characterized by the SP penetration
depth δSP, Sec. 6.3.1 [97].

In Fig. 6.11 a contour plot of the ET efficiency is presented as a function of the donor-
acceptor distance and chemical potential, for a fixed donor position rD = (0,0,10nm), and
a fixed value of the graphene nanodisk radius, R = 20nm. The x and z orientation for the
transition dipole moments of the donor-acceptor QEs are considered, Fig. 6.11a and 6.11b
respectively. The peak values of the donor emission and acceptor absorption spectra are given
by the resonance wavelengths from Eq. (6.38). The ET efficiency is observed to vary slowly
with the chemical potential over a broad range of values of the chemical potential. This further
supports the argument that the ET efficiency has a strong dependence on the geometrical
parameters of the structures and not on the material parameters. The interaction distance is
enhanced compared with the free space value for the same set of parameters. In Fig. 6.11a
and 6.11b the 50% ET efficiency distance for the k = 1 and k = 2 resonances is also shown as
gray lines, respectively. The ET efficiency for the higher order resonances is not significantly
influenced by varying the value of the chemical potential, µ .
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6.4 Summary and Conclusions

In this chapter the SE of a single quantum emitter and the ET function have been investi-
gated for a donor-acceptor pair in the presence of a gated graphene nanodisk. While investi-
gating the SE and ET rate sharp resonances are appearing, due to the excitation of localized
surface plasmon modes, that can enhance these rates several order of magnitudes compared
with their free space values.

Furthermore, due to the competition between the donor SE rate and the ET rate from the
donor to the acceptor, an energy transfer efficiency, η , has been introduced. In the case that
the donor and acceptor are placed in the middle of the graphene nanodisk, and on opposite
sides, the ET efficiency is enhanced compared with its free space value, even for the higher
order resonances which are close to the telecommunication wavelengths.

Moreover, the distance dependence of the SE and ET function and the ET rate have been in-
vestigated. The distance dependence has a certainly non-trivial behavior which depends on the
geometrical characteristics of the disk. The full numerical results describing the interaction
distance of a quantum emitter-graphene nanodisk system and of a pair of quantum emitters-
graphene nanodisk are fitted with an analytical expression which depends on the geometrical
characteristics of the graphene nanodisk, i.e. its radius. In contrast, the perpendicular interac-
tion between a pair of quantum emitters in the presence of an infinite graphene sheet is dictated
by the SP penetration depth [97], which is influenced by the value of the chemical potential
and the emission energy of the quantum emitters, see Sec. (5.3.3). The interaction distance be-
tween a pair of quantum emitters in the presence of a graphene nanodisk is increased, through
the interaction with the localized surface plasmon modes of the disc. The interaction distance
compared with the free-space is increased by one order of magnitude, for the x-transition
dipole orientation of the donor-acceptor quantum emitters for disc radii above 15nm. Further-
more, when the orientation of the transition dipole moments of the donor-acceptor quantum
emitters is along x, the interaction distance is larger compared with z-oriented transition dipole
moments.

The knowledge of the distance dependence of the SE rate of a single quantum emitter and
of the ET rate between a pair of quantum emitters in the presence of a graphene nanodisk
and the tunability of the interaction between them, through the applied voltage, is crucial for
a plethora of applications. The gating of an array of graphene nanodisks has been experi-
mentally demonstrated in Ref. [19] and the tunability of the SE rate of the quantum emitters
interacting with a gated graphene sheet in Ref. [80]. Thus, the experimental investigation of
the interaction of quantum emitters with graphene nanodisks described in this chapter is fea-
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sible. Possible applications, such as: tunable plasmonic rulers [78], surface-enhanced Raman
scattering [169, 170], quantum information [122], sensing devices [11, 154] and light harvest-
ing [155] could benefit from tuning the interaction distance and efficiency.

Finally, novel two dimensional materials have been considered in recent years due to the
high demand for nanostructures with emission in the visible. Materials belonging to the fam-
ily of diochalgonides [171], like MoS2, fulfill this requirement and the analysis presented
above is general enough to be applied to any two-dimensional material with a known surface
conductivity, in the electrostatic limit. Furthermore, this analytical formalism is also valid for
metallic plasmonic nanodisks, i.e. Au, Ag or Cu, with small thickness and large radius to
thickness ratio [172].



Chapter 7
Conclusions and Outlook

7.1 Conclusions

In this thesis the interaction between quantum emitters in the presence of conducting nanos-
tructures is investigated. In particular, the spontaneous emission rate, of a single quantum
emitter, and the energy transfer rate, between a pair of quantum emitters, in the presence of
conducting nanostructures have been studied. The influence of the surface plasmon modes
provided by the conducting nanostructures has been found to enhance these rates. Further-
more, an energy transfer efficiency has been introduced in order to examine which of these
two processes is favored. The interaction distance between a pair of quantum emitters is en-
hanced when a conducting material is present, compared with its free space values.

In Chapter 3 a single planar interface, between a metal and a dielectric, and a metallic slab,
in dielectric host media, have been considered. The spontaneous emission rate of a single
quantum emitter is enhanced several order of magnitudes, compared with its free space value,
when it is in proximity to the planar nanostructures of thicknesses of tens of nanometers. The
distance dependence of the spontaneous emission away from the single interface geometry
has been analyzed. Different contributions dominate in different distances. In particular, very
close to the interface between metal and dielectric the lossy surface waves dominate, which
are connected with Ohmic losses, as the distance is increased above 5 nm the surface plasmon
mode dominates and for larger distances the spontaneous emission rate reverts to its free space
value. The spectral dependence of the spontaneous emission rate presents large enhancements,
compared with the free space values, close to the surface plasmon wavelengths. The surface
plasmon dispersion relation has been used to analyze these contributions. The energy transfer,
between a pair of quantum emitters, is influenced by the position of the donor. It needs to
be close to the metal dielectric interface in order to facilitate high energy transfer. When the

123
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energy transfer is considered for the case of a metallic slab, the donor emission wavelength is
crucial for exciting the surface plasmon wavelength. If the emission frequency lies between
the two surface plasmon curves of the dispersion relation, for small thicknesses of the metallic
slab, the energy transfer rate is suppressed.

The analysis conducted for the interaction between quantum emitters and metallic planar
nanostructures provides an introduction for the next chapters. In Chapter 4 the level of com-
plexity is increased, the spontaneous emission and energy transfer rates have been investigated
in the presence of a dielectric coated metallic cylinder. Au and Ag cores have been considered.
Experimental data have been used for the dielectric permitivitties of the metallic core taken
from Ref. [129]. Again the spontaneous emission rate has been enhanced when the emission
wavelength of the quantum emitter is close to the surface plasmon wavelength and its posi-
tion is close to the coated cylinder. Au and Ag have different plasmon resonance wavelengths
and different material losses yielding different modification of the spontaneous emission res-
onances. Also, the energy transfer rate, between a pair of quantum emitters, in the presence
of metallic nanostructures is influenced by the surface plasmon modes. The dielectric coating
acts as a mediator for the energy transfer process. The existence of hot spots around the cir-
cumference of the coated cylinder is also observed, the number of hot spots is connected with
the number of the modes excited, which can be found from the dispersion relation.

The energy transfer efficiency, between a pair of quantum emitters in the presence of the
dielectric coated metallic cylinder, depends strongly on the overlap integral between the emis-
sion spectrum of the donor, the absorption cross section of the acceptor and the spectral de-
pendence of the absolute value of the Green’s tensor. Thus, strong overlap of the emission and
absorption spectra with the surface plasmon wavelength leads to enhancement of the interac-
tion distance over the free space values. The dielectric coated cylinder acts as a lens when
the distance dependence between a pair of quantum emitters across the cylinder is consid-
ered. Furthermore, the surface plasmon wavelength can be tuned by changing the value of the
dielectric permittivity of the coating and the core material.

The noble metals suffer from high material losses. Graphene, a material that can also sup-
port surface plasmon modes, has lower losses. Thus grahene might be a suitable candidate
for replacing noble metals. In Chapter 5 the spontaneous emission and energy transfer rates
have been considered in the presence of a graphene monolayer. The optical properties of
graphene can be tuned via an applied voltage, thus influencing the emission properties of the
quantum emitters. The normalized spontaneous emission, of a single quantum emitter, and
energy transfer function, between a pair of quantum emitters, are enhanced several orders of
magnitude when the emission wavelength matches the plasmon wavelengths, compared with
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their free space values. The energy transfer efficiency has values above 50% for distances up
to 300 nm, for quantum emitters positioned very close to the graphene monolayer. Moreover,
the distance dependence of the energy transfer rate at small donor-acceptor separations is char-
acterized by an R−6 dependence. When increasing the separation distance along the graphene
monolayer, the propagation length of the graphene surface plasmon mode dominates the en-
ergy transfer rate and again enhances the interaction distance over larger distances, compared
with their free space value. When the perpendicular distance between the donor and accep-
tor is varied, the energy transfer rate distance dependence is characterized by the penetration
length of graphene plasmon mode.

In Chapters 3,4 and 5 extended conducting nanostructure have been considered. Thus the
surface plasmon modes are propagating, tightly confined to the surface of the conductors. In
Chapter 6 a gated graphene disk has been considered as the conducting medium, thus con-
fining the light in all three dimensions. The surface plasmon modes are now localized. The
normalized spontaneous emission and energy transfer rates have been enhanced compared
with their free space values following sharp resonances which they can be tuned by the chemi-
cal potential and the nanodisk radius. Different set of resonances are excited when considering
different transition dipole moments of the quantum emitters. The distance dependence of the
energy transfer efficiency, between a pair of quantum emitters, along the axis perpendicular
to the graphene nanodisk, is enhanced compared to free space, once the emission wavelength
of the donor matches the resonance wavelength. Considering higher order resonances the in-
teraction distance is smaller but still larger than free space values. The distance dependence
of the energy transfer rate, between a pair of quantum emitters, is fully characterized by the
geometrical property of the graphene nanostructure, its radius.

The main goal of this thesis was to investigate routes for enhancing the interaction distance
between a pair of quantum emitters. The free space interaction is weak. Choosing conducting
nanostructures, that support surface plasmon modes, the interaction distance can be enhanced.
This statement is the main conclusion of my work. A great deal of work for this thesis it has
been devoted to the distance dependence of the spontaneous emission and energy transfer rates
due to fact that these quantities can be directly measured and thus exploited from an applica-
tion point of view. Applications such as a plasmon ruler, sensing devices, light harvesting and
quantum computing can potentially benefit from enhanced energy transfer rates, efficiencies
and distances. In the next section further ideas are considered for extending the current work.
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7.2 Outlook and Future Work

In this section further work on the study of the nanostructures discussed in this thesis will
be considered. Starting from the planar structures, Chapter 3, one can further investigate how
the emission properties of a periodic array of quantum emitters positioned above a metallic
slab compare with a single emitter. For this one can use a Hubbard Hamiltonian to investigate
these collective phenomena [173].

For the dielectric coated metallic cylinder, Chapter 4, the energy transfer efficiency has been
studied across the axis of the cylinder. Thus, the next direct step would be to investigate the
interaction distance between a pair of quantum emitters along the coated cylinder [38, 40].
Also, instead of a metallic core, the case of a metallic coating can be considered. Further-
more, the material of the coating can be replaced with a material supporting surface phonon
polaritons and compare it with a graphene nanotube [109] because the resonance wavelengths
are for both materials in the infrared. The case where the core medium is a lossy material and
the coating is a gain material, or vice versa, can also be considered. In this case due to the
breaking of the PT-symmetry the nanostructure will only allow specific orientations for light
transmission [174, 175].

A vast family of two dimensional material monolayers are being developed [176–178].
These materials they can be considered as a replacement for the graphene monolayer, Chap-
ter 5. Graphene is a well studied material and its surface conductivity is described by a
closed form formula [131]. Moreover, understanding the material properties of the new two-
dimensional materials, like MoS2, is challenging [118, 179]. Investigating the interaction
distances for these materials using the Green’s tensor formalism is also of fundamental impor-
tance for possible applications in the future.

Considering the infinitely thin nanodisk geometry, Chapter 6, the next step will be to con-
sider different material replacing the graphene. Using an effective surface conductivity, noble
metal materials can be considered as replacements [172]. Then one can use the formalism
developed in this thesis to investigate the interaction distance between a pair of quantum emit-
ters.

In this thesis metallic and graphene nanostructures are considered and their interaction with
quantum emitters is investigated. Both of these material have a similarity, they are able to con-
fine light to sub-diffraction lengths by supporting surface plasmon modes. A main difference
between them is their surface plasmon resonance wavelengths. For the noble metals are in the
visible part of the spectrum, while for graphene the resonance frequencies spans from the near
to the far infrared part of the spectrum. Thus, graphene is unfavorable for many applications in
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the visible part of the spectrum. On the other hand, the material losses for the noble metals are
higher than in the case of graphene. Furthermore, graphene’s optical response can be tuned via
the value of the chemical potential, giving an additional advantage over the noble metals. To
date the primary commercial application that has become successful is the surface enhanced
Raman scattering (SERS) [169]. Graphene on the other hand has only been exploited as a
complementary material, not providing, up to this day, any unique commercial application, in
the field of photonics [180]. However with the recent emergence of many new two dimen-
sional materials it might be expected that someones can achieve the desired properies in order
for plasmonics to be used for everyday commercial photonics applications [178]. Stronger
collaboration is needed between the different branches of science, such as engineering, exper-
imental and theoretical physics and chemistry in order to develop materials with the desirable
properties for the future applications.

The field of plasmonics is active and has not yet fully exploited in order to bring to the
society its full benefits. There are still a lot to be done, something exciting for all the people
working on the field.
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