
 

Reconfigurable Manufacturing             

Process Monitoring Systems 

 

 

Jeff Morgan 

 

Department of Mechanical and Manufacturing Engineering 

Trinity College Dublin 

Ireland 

 

 

 

February 2016 

 

 

 

A thesis submitted to the University of Dublin in partial fulfilment  

of the requirements for the degree of Ph.D. 

 

 

Supervisor 

Dr. Garret E. O’Donnell 



 
 
 
 
 
 

 

  



 
 
 
 
 
 

i 

 

Declaration 

I declare that this thesis has not been submitted as an exercise for a degree at this 

or any other university and it is entirely my own work. 

 

I agree to deposit this thesis in the University’s open access institutional repository 

or allow the library to do so on my behalf, subject to Irish Copyright Legislation and 

Trinity College Library conditions of use and acknowledgement. 

 

 

 

 

 

Jeff Morgan, February 2016 

 

 

 
 
 

 

 

 

 

 

 

This work was funded under the Graduate Research Education Programme in Engineering (GREP-

Eng), which is a PRTLI Cycle 5 funded programme and is co-funded under the European Regional 

Development Fund.  



 
 
 
 
 
 

ii 

 

  



 
 
 
 
 
 

iii 

 

Summary 

Performance measurement is indispensable to manufacturing, due to the fact that if 

the efficiency of an activity cannot be measured it could not be effectively controlled. 

Recent trends in process monitoring systems point towards a transformation from 

static centralisation to dynamic decentralisation. This change has been motivated 

by the need to enable reconfigurable systems that are internally flexible to 

production requirements, and externally adaptive to multiple processes. The 

convergence of industrial systems with advanced computing, low-cost sensing, and 

new levels of connectivity permitted by network technology has been the catalyst 

for this transformation. Furthermore, these decentralised cloud manufacturing 

systems are being combined with advanced analytics and artificial intelligence, to 

form cyber-physical production systems. 

This research work explores the dynamics of decentralised software 

architecture within field-level manufacturing process monitoring systems. The need 

for this understanding has been driven by the prediction that these cyber-physical 

systems will create the next generation of innovative intelligent machines. This 

research investigates the capability of decentralisation design to provide the core 

fundamental functionality of process monitoring systems in a new reconfigurable 

format. The embodiment of this investigation is the design and development of a 

decentralised architecture for the creation of a reconfigurable process monitoring 

system within field-level manufacturing. 

An investigation into available data interoperability systems and field-level 

manufacturing process monitoring system requirements, resulted in the 

identification of a research opportunity. Evidently, current academic and commercial 

mediums could not provide for the high communication speed, high data capacity, 

and heterogeneous data requirements present in field-level manufacturing systems.  
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Through a combination of decentralised modelling, and state-of-the-art 

technologies and techniques, a new data interoperability architecture was 

developed. The resultant architecture, namely the ARC, is tested in respect to 

speed, capacity, and correlation accuracy. The results showed a; <= 1 ms 

communication speed, 1 Hz to 1MHz data capacity, and 99.95% correlation 

accuracy. Evidently, the ARC is an effective data interoperability medium for 

utilisation in field-level manufacturing systems, beyond the capability of all 

previously reviewed systems. 

Furthermore, the ARC was adapted to monitor multiple process variables 

from a CNC turning machine tool, such as: tool force, spindle and axis motor current, 

spindle and turret vibration. The ARC provided a platform to evaluate the migration 

of signal process techniques, and time and frequency domain analytics, within a 

decentralised architecture. The results from this work represent a first case 

migration of fundamental manufacturing process monitoring steps within a cyber-

physical system. Furthermore, an advanced cyber-physical system was created for 

autonomous process performance characterisation. 

In order to investigate the industrial application of the ARC, a study was 

undertaken into the variation in dry CNC turning machining, thereby evaluating the 

capability of the ARC signal processing techniques and analytics to achieve process 

insight. The result of which, was the successfully implementation of the ARC to 

achieve multi-scalable data acquisition, signal processing, and process 

performance analysis of a CNC turning machine tool. The generic building blocks 

present within the ARC were configured to produce unique signal feature extraction 

across multiple process variables. Process insight was evident in the multi-

perspective view of machine actions, via the time and frequency domain analysis, 

of tool force, spindle and axis motor current, and spindle and turret vibration. 
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Chapter 1 

Introduction 

 

1.1 Sustainable manufacturing through process monitoring 

Manufacturing has contributed to shaping the development of human race from the 

start of the industrial revolution, and through progressive world industrialisation. 

Subsequently leading to various socio-economic influences, including the enabling 

and distribution of global information communication technology. In 2011 the United 

Nations Environmental Programme (UNEP) stated that manufacturing accounted 

for 23% of global employment, 35% of global electricity use, over 25% of primary 

resource extraction consumption, 20% of world CO2 emissions and 10% of global 

water demand [1]. Manufacturing’s significant global impression identifies 

manufacturing as a leading influence in global economics, politics, technology, 

sociology, and ecology.  Today manufacturing faces multiple challenges within its 

influent domains, such as its effect on: climate change, public health, poverty and 

social exclusion, loss of bio-diversity, increasing waste volume, soil-loss and 

transport congestion [2]. Manufacturing sustainability is being sought after to meet 

the needs of the present without compromising the ability of future generations to 

meet their own needs [3]. Fundamentally manufacturing sustainability is identified 

as the creation of manufactured products that use processes that minimize negative 

environmental impacts, conserve energy and natural resources, are safe for 

employees, communities, and consumers and are economically sound [4]. 

Engineering challenges to meet sustainable manufacturing goals, follow objectives 

to reduce the consumption of resources in the transformation process from input to 

output. Evidently performance measurement is vital to sustainable manufacturing 

goals, because if the effective efficiency of an activity cannot be measured, it cannot 

be properly controlled [5]. These metrics are achieved through process monitoring 

systems that provide performance measures. These performance measures enable 
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manufacturers to achieve high accuracy manufacturing systems, sustainable 

production capabilities, and enable resource efficiency. 

1.2 Manufacturing process monitoring evolution 

1.2.1 Fundamental manufacturing process monitoring 

In order to achieve performance measurement engineers utilise sensors to obtain 

process variables and subject these variables to analogue and digital signal 

conditioning and processing, with the aim to generate functional signal features that 

are potentially correlated to process conditions [6]. Fundamentally the systematic 

implementation of such system within manufacturing can be referred to as a 

Manufacturing Process Monitoring Systems (MPMS).  

 

Figure 1.1  Process monitoring control loop, adapted from [6] 

The types of process variables typically utilised with manufacturing process 

monitoring systems include; cutting force, vibration, acoustic emission, sound, 

temperature, power, etc. [7]. Selection of process variable for a manufacturing 

process monitoring systems is subjective and varies between manufacturing 

processes, due to the required output of the system, and the capability to extract 

the required variable from its environment [8]. Once the process data sources have 

been identified and variables are being actively measured and acquired, signal 

processing can be undertaken. Signal processing can be subdivided into pre-

processing, feature extraction and feature selection [6], as illustrated in Figure 1.1. 

Signal pre-processing focuses a signal for increased resolution through filtering, 
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amplification, conversion, and/or segmentation. Signal feature extraction aims at 

extracting different signal features or signal transform features that change with the 

process. While signal feature selection aims at selecting the most relevant features 

that best describe the machining process. These features enable the process 

performance to be characterised, and enable the input measures for decision 

support systems to initiate corrective measures if required [9]. 

The process monitoring control loop, as seen in Figure 1.1, is designed to 

meet a multitude of manufacturing management criteria, i.e. production 

performance, maintenance, and resource efficiency. Examples of production 

performance improvements that manufacturing process monitoring systems provide 

are; machining chatter detection [10], automatic ideal machine parameter selection 

[11], tool wear detection [12], and automated process planning [13]. Maintenance 

manufacturing process monitoring systems are motivated by the fact that 99% of 

equipment failures are preceded by certain signs, conditions, or indications [14]. 

Examples of manufacturing process monitoring systems within maintenance 

include; automated neural network predictive maintenance [15], mass remote 

monitoring of machine tools [16], and intelligent condition based maintenance 

prognostics tools [17]. Resource efficiency corresponds to the opportunities that 

exist across the manufacturing enterprise for more efficient usage of energy and 

resources [14]. Manufacturers are actively aiming to provide visibility of energy 

within the organisation to enable resource management. Examples of resource 

efficiency driven manufacturing process monitoring systems can be seen in; 

electrical metering and monitoring of manufacturing systems [18], energy efficient 

decision making for production management and scheduling [19], and identification 

of energy efficient machining parameters for part manufacture [20]. 

1.2.2 Cloud-based monitoring 

Cloud-Based Monitoring (CBM) can be defined, as a model for enabling ubiquitous, 

on-demand network access to a shared pool of configurable manufacturing 

resources that can be rapidly provisioned and released [21]. Examples of 

manufacturing resources can be seen in the diverse manufacturing data sources 

present throughout a manufacturing enterprise, e.g. sensors, meters, machines, 

production lines, databases, etc. These data sources can be utilised by multiple 
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enterprise level management and controls systems; e.g. Supply Chain Management 

(SCM), Enterprise Resource Planning (ERP) [22], Manufacturing Execution 

Systems (MES), machine Continuous Control (CC) and Discrete Control (DC) 

systems [23]. Through cloud technology these systems can all gain access to the 

same data sources, via a cloud service that enables dynamic data acquisition and 

distribution, as illustrated in Figure 1.2. This creates a decentralisation of systematic 

components, free from peer-to-peer relationships, with the extensibility and re-

configurability to expand and meet the monitoring requirements of multiple 

manufacturing process. 

 

Figure 1.2  Cloud-based dynamic manufacturing data acquisition and 

distribution 

Cloud-based monitoring is the consolidation of multiple decentralised technologies 

and methodologies, i.e. Ubiquitous and Cloud Computing, Internet-of-Things (IoT), 

and Service Oriented Architecture (SOA) [1]. Cloud-based monitoring data 

interoperability has been at the forefront of manufacturing production Supervisory 

Control And Data Acquisition (SCADA) research and development [24]. This has 

resulted in multiple architectures to-data; the industrial standard OPC-Unified 

Architecture [25], the emergent open factory floor communication protocol 

MTConnect [26], and the ArchitecturE for Service-Oriented Process-Monitoring and-

Control (AESOP) initiative [27]. Each system varies in functionality and capacity and 

there is no one solution to meet the requirements of every manufacturing system or 

enterprise level. The adoption of any data interoperability architecture is dependent 
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on the required desired attributes of the system as a whole, i.e. speed, capacity, 

openness, network range, security, etc. 

1.2.3 Cyber physical production system 

Within manufacturing, the incorporation of decentralised interoperable cloud 

solutions in combination with advanced analytics and artificial intelligences, is aimed 

at creating innovative intelligent machines, that will represent the Cyber Physical 

Systems (CPS) of the future [28], as illustrated in Figure 1.3. It has been envisioned 

that the future enhancement of manufacturing machining systems and their 

operation performance will depend upon the development and implementation of 

these innovative sensor monitoring systems  [6]. 

 

Figure 1.3  Cloud-based process monitoring control loop; cyber physical 

production system 

Cyber-physical systems are open, interconnecting systems that operate flexibly, 

cooperatively (system and system) and interactively (human and system) [29]. 

Cyber-physical systems are expected to exceed traditional embedded systems in 

various aspects, such as efficiency, safety, reliability, robustness, adaptability, and 

more [30]. These systems provide the link between the physical world and virtual 

world, with the seamless integration of information technology and software through 

various types of digital communication services. Cyber-physical system research 

covers multiple domains, which are associated with decentralised networked 

systems; e.g. Healthcare, Automotive, Smart power grid, Aerospace [31], etc. 
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Cyber-physical system development in manufacturing specifically, has been 

categorised by Cyber Physical Production Systems (CPPS). Cyber-physical 

production systems consist of autonomous, cooperative elements and sub-systems 

from processes, machines, and up to production and logistics networks [32]. 

This early stage of cloud-based monitoring adoption and cyber-physical 

production systems development has identified various research and development 

challenges; context-adaptive and autonomous systems, cooperative production 

systems, identification and prediction of dynamical systems, robust scheduling, 

fusion of real and virtual systems, human-machine symbiosis [32]. In particular it 

has been recognised that improvements are needed in terms of custom algorithms 

and techniques that provide effective summaries, filtering and correlating 

information coming from different sources [33]. To-date Cloud-based technology 

and design paradigms have enabled the loose coupling of both cyber and physical 

manufacturing systems. However the desired artificial intelligence, dynamic 

analysis, and systematic cooperation are in their infancy stage of development. 

A wealth of knowledge has already been generated to achieve intelligent 

manufacturing systems through development of manufacturing process monitoring 

system methods and techniques in a centralised way. The adoption of a new 

decentralised architecture via cloud-based technology provides the potential to 

incorporate these methods and techniques more easily, and enable reconfigurability 

and extensibility within the system. Subsequently, manufacturing process 

monitoring systems can now be viewed as colonies of interactive cyber-physical 

systems, similar to decentralised design paradigms of Agent-based design and 

Holonic systems [34]. Systematic functionalities can now be added or removed 

freely, and collaboration between components is provided via services. A multitude 

of processes can now utilise the same monitoring tools, that are customised through 

plug-and-play components and reconfigurable software attributes. Additionally the 

decentralised environment promotes sensor fusion analysis, which possesses the 

potential to generate new process characterisation insights previously unexplored. 
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1.3 Research focus 

The goal of the present research is to explore the dynamics of decentralised 

software architectures within field-level manufacturing process monitoring systems. 

The hypothesis of this research is that decentralised reconfigurable monitoring 

systems can enable multi-scalable analysis and process performance 

characterisation. 

The research objectives are: 

(1) Define and develop a manufacturing reconfigurable process monitoring 

architecture. The key to achieving this objective is the adoption/creation of a 

data/entity interoperability medium to meet the requirements of field-level 

manufacturing systems. Requirements include high data acquisition rates, 

high communication speeds, and effective/high accuracy data correlation. 

(2) Develop interoperable decentralised reconfigurable process monitoring 

system entities. This objective focuses on the integration of the previously 

defined data interoperable architecture with fundamental signal processing 

and analysis techniques, to form entities of a cyber-physical production 

systems. The collaboration and reconfiguration of these entities will form 

multi-scalable process analytic capabilities. 

(3) Achieve multi-scalable analysis and process performance characterisation in 

a manufacturing process through utilisation of the reconfigurable process 

monitoring architecture. This objective investigates the effectiveness of the 

previously defined cyber-physical production systems framework to be 

assimilated into a real manufacturing process. 

The current manufacturing application of this research will be focused around the 

monitoring and analysis of a CNC turning machine. This process was selected due 

to its wide industrial utilisation, variety of process kinematics, and multitude of 

reactive process variables for analysis. This research will indirectly provide a 

multiphase investigation into CNC turning machining process characterisation and 

analysis. 
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Chapter 2 

Literature survey 

 

2.1 Manufacturing process monitoring systems 

2.1.1 Monitoring system fundamentals 

 

Figure 2.1  Process Monitoring System 

Since 1976 machining process monitoring has been an interesting topic for 

engineers trying to understand machine actions and subsequent reactions [6]. Since 

then more than a thousand academic publications have been produced to further 

investigate and understand how to optimise machining operations. Predominantly 

process monitoring incorporates indirect measurement, which utilises auxiliary 

measurements from other process variables to correlate reactive effects to scaled 

measurement parameter deviation. A CIRP keynote paper by Teti et al [6] provided 

a comprehensive study on machine process monitoring, illustrating core 

fundamentals and state-of-the-art developments. Through this work a 

Manufacturing Process Monitoring System (MPMS) is able to be characterised into 

the multiple steps, which is visualised Figure 2.1: 

(1) Measurement: physical hardware, e.g. sensors, for measuring the physical 

process parameter 

(2) Acquisition: interconnecting hardware and software elements for providing 

high speed data acquisition from the sensor to a computational device 
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(3) Signal Processing: methods, techniques and algorithms for the manipulation 

of data for specific process feature extraction and selection 

(4) Decision Support: subsequent methods, techniques and algorithms 

appertaining to identifying the required corresponding process action from 

analysed results 

(5) Loop control: hardware and software elements associated with facilitating 

corrective action from decision support functions.  

2.1.2 Enterprise integration 

 

Figure 2.2  Process monitoring manufacturing distribution structure 

A manufacturing process monitoring system is distributed throughout a enterprises 

structure. In 2010 Reich-Weiser et al [35] identified four levels of complexity in 

manufacturing to assist in understanding an organisation for accurate environmental 

analysis. The levels are; product feature, machine device, facility/line/cell, supply 

chain. In 2012 Duflou et al [36] expanded on these levels to identify energy and 

resource efficient methods and techniques. There are five levels in total, as seen in 

Figure 2.2: 

(1) Device/unit process: individual devices or machine tools that are performing a 

unit process 

(2) Line/cell/multi-machine system: logical organisation of devices in the system 

that are acting in series or parallel to execute a specific activity 

(3) Facility: distinct physical entity, housing multiple devices, which may or may 

not be logically organised into lines or cells 
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(4) Multi-factory system: different facilities within close proximity to one another 

making use of possible synergies in terms of reuse of waste and lost energy 

streams 

(5) Enterprise/global supply chain: the entire manufacturing system, consisting 

of all the individual facilities, the infrastructure required to support the 

facilities, as well as the transportation and supply chain externalities 

Each manufacturing level utilises the fundamental process monitoring steps of 

measurement, acquisition, filtering, analysis, decision support, and closed loop 

control. 

 

Figure 2.3  ISA-95 architecture of automation system, functional hierarchy 

according to (IEC 62264-3) , adapted from [37] 

Similarly from a production monitoring and control system perspective a 5 level 

architecture is specified within the ISA 95 enterprise architecture [38]. ISA 95 is an 

international standard that was created to define models and terminology to 

determine which information has to be exchanged between systems for sales, 

finance and logistics and systems for production, maintenance and quality. There 

are five levels in this standard, as seen in Figure 2.3: 

 Level 0 is the production process itself 

 Level 1 is associated with all sensing and manipulating elements within the 

production process 

 Level 2 addresses monitoring, supervisory control and automatic control of the 

production process 
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 Level 3 incorporates the management of the workflow to produce the desired 

end-products, maintaining records and optimising the production process 

 Level 4 aims at establishing the basic plant production schedule, material use, 

delivery and shipping, and inventory 

Each layer contains different analysis criteria, a separation in functional 

requirements is observed as data is abstracted up the hierarchy. Vijayaraghavan 

and Dornfeld [39] identified different temporal analysis layers within a manufacturing 

structure, as seen in Figure 2.4. This demonstrates the varying data acquisition 

rates at different enterprise layers. 

           

Figure 2.4  Examples of process monitoring analysis across temporal scales, 

adapted from [39] 

Higher data acquisition rates are observed at lower levels due to the high speed 

reaction control requirements, i.e. position control systems. However the lower level 

heterogeneous manufacturing environment presents many challenges in regards to 

computer integrated manufacturing. This is due to the diversity of communication 

mediums and protocols present within machine tools and automation equipment 

[40]. Protocols include; PROFIBUS, Modbus, TCP/IP, USB, etc. These protocols 

are comparable in regards to bandwidth, transmission speed, and peer 

relationships, and have been implemented across a diverse range of manufacturing 

machinery. Enabling data acquisition from a single source requires conformance to 

its communication medium and protocol. However, manufacturing process 

monitoring systems have an increased challenge in enabling interoperability from 
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multiple sources [8]. More standardisation of programming and communication 

interfaces are sought after to enable more implementable solutions [41]. 

Lower data acquisition rates are observed at higher levels, as data is 

abstracted throughout the hierarchy to meet more global factory responsibilities, i.e. 

Manufacturing Execution Systems (MES) and Enterprise Resource Planning (ERP). 

Challenges at the enterprise level include the identification of robust methods for 

interoperability between manufacturing levels, to enable orchestration by 

manufacturing execution systems and enterprise resource planning systems [42]. 

The need for data sharing amongst system entities has yielded web-based-

concepts such as E-manufacturing. E-manufacturing was envisaged to meet the 

needs of business strategies, and meet the requirements for the complete 

integration of all business elements; suppliers, customer service networks and 

manufacturing unit, through the effective use of web-enabled computational tools 

and tether-free technologies [22]. 

2.1.3 Domains of influence 

 

Figure 2.5  Process monitoring domains 

Domains of recent study for manufacturing process monitoring system over the past 

decade have included production, maintenance and resource efficiency, which is 

visualised in Figure 2.5. Each domain has its own goals yet implements the same 

process monitoring steps, to enable assisted and even automatic decision support. 

Production monitoring 

The future enhancement of machining systems and their operation performance will 

vitally depend upon the development and implementation of innovative sensor 

monitoring systems [6]. Production monitoring enables a production process to 
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achieve manufacturing product specifications accurately and repeatedly. In 

machining processes internal production monitoring systems are focused to achieve 

adaptive control in response to monitoring tool conditions [43], chip formation 

conditions [44], surface integrity [45], machine tool state [46], and chatter detection 

[47]. Examples of external machining production monitoring can be seen in 

automated scheduling of production machines [48], and automated machining 

parameters selection [49]. Other areas of production research includes, new data 

manipulation algorithms and paradigms have been a topic of extensive research to 

show how data can be filtered and used to identify Key Process Indicators (KPI) for 

decision making support [50] [51] [39]. Additionally ongoing and recent technology 

advancements have and will continue to improve the availability of process data, 

and its capacity to be fused together [52] [53] [54] [55].  

Maintenance Monitoring 

Maintenance is defined as a set of activities or tasks used to restore an item to a 

state in which it can perform its designated functions [56]. Maintenance strategies 

can be broadly classified into Corrective Maintenance (CM) and Preventative 

Maintenance (PM). Corrective maintenance is a strategy to restore equipment to its 

required function after it has failed. This strategy leads to high levels of machine 

downtime and maintenance costs due to sudden failure. Preventative maintenance 

involves the performance of maintenance activities prior to failure of equipment. One 

main objective of preventative maintenance is to reduce the failure rate or failure 

frequency of the equipment. This strategy contributes to minimising failure costs and 

machine downtime and increasing product quality. Preventative maintenance 

deploys process monitoring over the lifetime of the equipment. The motivations of 

process monitoring for preventative maintenance are that 99% of equipment failures 

are preceded by certain signs, conditions, or indications [14]. Maintenance activities 

are performed when needed or just before failure. The main goal of process 

monitoring or condition monitoring, is to perform a real-time assessment of 

equipment conditions in order to make maintenance decisions. Example parameters 

for measurement within the machinery or process include vibration monitoring, 

sound or acoustic monitoring, oil-analysis or lubricant monitoring, electrical 

consumption analysis and, temperature monitoring. Maintenance decision making 

can be carried out based on Current Condition Evaluation-Based (CCEB) and 
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Future Condition Prediction-Based (FCPB). Additionally a new trend emerging is the 

concept of Prognostic and Health Management (PHM) [57]. Prognostic and health 

management consists of monitoring parameters and analysing data using 

prognostic models, to assess the reliability of a product in its actual life cycle 

conditions, to determine the occurrence of failure. 

Resource Monitoring 

Opportunities exist across the manufacturing enterprise for more efficient usage of 

energy and resources [36]. Environmentally organisations face a moral 

responsibility to seek out environmental sustainability through sustainable resource 

consumption. Economically organisations are looking to reduce production costs to 

stay competitive in the market place. Resource Monitoring has been an investment 

for manufacturers since the 1970, beginning with the introduction of Material 

Requirements Planning (MRP) systems to optimise and control inventory levels 

within plants [58]. Material requirements planning has developed to incorporate not 

only manufacturing resource requirements but enterprise resource planning 

requirements; such as product design, information warehousing, materials planning, 

capacity planning, communication systems, human resources, finance, and project 

management. An area in recent focus for enterprise resource planning is energy 

measurement, monitoring, and management. In the last decade, the manufacturing 

industry has witnessed a dramatic increase in electricity costs, which can no longer 

be treated as an overhead, but a valuable resource to be managed strategically [18]. 

Manufacturers are actively aiming to provide visibility of energy within the 

organisation to enable resource management. Manufacturers are implementing 

various industrial electricity metering and monitoring equipment spanning multiple 

manufacturing structural layers. Additional to energy management manufacturers 

are implementing various strategies to optimize resource efficiency and 

effectiveness of their manufacturing systems.  

These strategies include;  

 The launch of self-regulatory initiative for supporting the identification of 

measures to improve the energy and resource efficiency of the machine tools by 

the European Association of the Machine Tool Industries [59] 

 The introduction of automated energy monitoring systems for continuous 

quantitative and qualitative analysis [18] 
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 The introduction of proximity waste energy recovery systems for cross patterned 

production lines [60] 

 The application of advanced process sequencing algorithms for process 

scheduling [61]. 

2.1.4 Manufacturing production system topologies 

There are three types of production system, Dedicated Manufacturing System 

(DMS), Flexible Manufacturing System (FMS), and Reconfigurable Manufacturing 

System (RMS) [63], as seen in Figure 2.6. 

Dedicated systems are fixed automation which produce parts or products at 

high volume. Each dedicated line is typically designed to produce a single part at a 

high production rate through the operation of several tools at once. Dedicated 

systems are cost effective as long as demand exceeds supply and is operating at 

full capacity.  

Flexible manufacturing systems consist of general purpose Computer 

Numerically Controller (CNC) machines, which can produce a variety of products 

with changeable volume and mix, on the same system. However CNC machines 

only allow part programs to be changed, not the software architecture or control 

algorithms, therefore the system is semi-static, with a degree of flexibility. Flexible 

 

Figure 2.6  Economic goals for various manufacturing paradigms,          

adapted from  [62] 
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systems possess a lower throughput than dedicated systems and have a higher 

initial cost due to increased functionality. 

A reconfigurable manufacturing system is designed at the outset for rapid 

change in structure, as well as in hardware and software components. 

Reconfigurable  systems can swiftly adjust production capacity and functionality 

within a part family in response to sudden changes in market or in regulatory 

requirements  [63].  Reconfigurable systems focus on enabling reconfiguration 

through system design combined with the simultaneous design of open-architecture 

controllers with modular machines. Key characteristics of reconfigurable systems 

include; modularity, integrate-ability, customization, convertibility, and diagnose-

ability. Reconfigurable systems can be less expensive than flexible and dedicated 

systems when the entire life-cycle cost of a production system in an uncertain 

marketplace is taken into account. The main factor that makes a reconfigurable 

systems less expensive is the initial precision of production capacity and 

functionality on instalment, with the availability/capability to upgrade in the future. 

Traditional production control and monitoring systems are fully hierarchical 

and based on Computer Integrated Manufacturing (CIM) paradigm [64]. These 

systems divide a global control problem into hierarchical dependant subsystems. 

These subsystems consisted of strategic, tactical and operational entities, such as 

planning scheduling and supervising applications, enabling sufficient long-term 

optimisation to be maintained. The computer integrated based approach is known 

to provide near optimal solutions where long term availability and reliability of supply 

and demand are met, where there is a low product diversity, and where all the 

possible internal variables are observable and controllable. However, today’s 

turbulent market place has a movement towards a higher product mixture and a low 

product volume production [65]. Manufacturers need to have the ability to be 

cooperative, have quick responses to changes and disturbances to stay competitive 

in the market place [66]. Similarly to the production system components, production 

control and monitoring systems have moved away from central operational 

structures and towards decentralised [67]. This shift in manufacturing technology 

paradigm is aimed at enabling the manufacturing plant of the future, through the 

introduction of intelligent and reconfigurable, or adaptable manufacturing systems, 

with a modular architecture which can be restructured without a loss in efficiency 

[68]. Decentralised operational structures are more flexible and reconfigurable 
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solutions through a semi heterarchical and full heterarchical control structure [67], 

as seen in Figure 2.7. A hierarchy can be seen as a vertical distribution of control or 

function, while a heterachy can be seen as a horizontal distribution [64].  

Advantages of a heterarchical structure include; full local autonomy at a level of 

peer-to-peer relationships, implicit fault tolerance as a single component failure 

should not affect total system operation, reconfigurable and adaptable ability due to 

interconnecting and disconnecting element functionality, and a faster diffusion of 

information due to parallel element communication [69]. 

 

Figure 2.7  Distribution of decisional capabilities from centralised control 

systems to decentralised control systems, adapted from [13] 

2.1.5 Decentralised design paradigms 

It has been previously shown how a manufacturing process monitoring system has 

multiple dimensions due to the diversity of process monitoring steps, the distribution 

throughout a manufacturing organisation, and the separation of end goals via 

different domains of influence, which is visualised in Figure 2.8. Similar to production 

systems, manufacturing process monitoring system are seeing a shift in architecture 

design from centralised to decentralised, from hierarchal to heterarchical. Two 
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conceptual paradigms have emerged over the past two decades that enable a 

collaborative representation of complex distributed multi-functional systems, 

Holonic manufacturing systems, and Agent-based design. 

 

Figure 2.8  Process monitoring system dimensions 

Holonic Manufacturing Systems 

The concept of Holonic systems was proposed  by Koestler in 1967 [70] in order to 

explain the evolution of biological and social systems. Koestler identified how in 

living and organisational systems it is generally difficult to distinguish between 

‘wholes’: an autonomous body, and ‘parts’: an integrated section of a larger, more 

capable body [71]. Subsequently the word Holon was defined, which is a 

combination of the Greek word ‘holos’, meaning whole, and the Greek suffix ‘on’, 

meaning particle or part. A Holonic system can be considered to be scalar chains of 

Holonic entities, where at each level the reference entity can be considered to 

consist of part of a higher level system and to contain lower level subsystems of 

their own [72], as seen in Figure 2.9. A system of Holons cooperating with one 

another is called a Holarchy. Features of Holonic systems include:  

 Semi-Autonomy: Holons need to be self-sufficient 

 System Dependence: Holons are required to function within constraints and are 

subject to the direction of higher level systems 

 Entity Concatenation: system integration or interoperability across the same 

level plain, or across multiple levels requires a recursive communication to be 

established. 
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The adoption of Holonic systems to meet manufacturing requirements was 

observed by the need to break down rigidity to decompose exponentially expanding 

systems into smaller more manageable sub-systems [72]. The Holonic 

Manufacturing System (HMS) approach was first envisaged as a means of providing 

a building block or plug-and-play capability for developing and operating a 

manufacturing system in the factory of the future [73]. The Holonic concept 

combines the best features of hierarchical and heterarchical organisation, as it 

preserves the stability of hierarchy while providing the dynamic flexibility of a 

heterachy [69]. The ultimate aim of the Holonic manufacturing systems is to enable 

decentralised manufacturing systems built from a modular mix of standardised, 

autonomous, co-operative and intelligent components, in order to cope with rapidly 

changing environments. 

 

Figure 2.9  Holonic manufacturing systems 

Some key characteristics of Holonic systems include [71]:  

 Autonomy: the capability of a manufacturing unit to create and control the 

execution of its own plans and/or strategies 

 Co-operation: the process whereby a set of manufacturing units develop and 

execute mutually acceptable plans 

 Self-Organisation: the ability of manufacturing units to collect and arrange 

themselves in order to achieve a production goal 

 Reconfigurability: the ability of a function of a manufacturing unit to be simply 

altered in a timely and cost effective manner 
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Agent Based Design 

Agent-based-design is a paradigm of information communication technology [74]. 

Agents aim to address autonomy and complexity through adaptive capabilities 

allowing agents to be resilient to changes and disruptions, exhibit intelligence and 

are distributed in nature. An abstract visualisation of agent-based design is 

represented in Figure 2.10. This visualisation identifies how Agents vary in 

functionality, are dispersed within an environment, act in different domains, and 

expand throughout an enterprise. Individually, agents are problem solvers with 

some capacity of sensing and acting upon their environment, to deciding their own 

course of action, as well as communicating with other agents. Depending on the 

problem and available resources/technology, agents can apply various faculties of 

problem solving, including searching, reasoning, planning and learning [74]. 

 

Figure 2.10  Agent based design systems 

Holonic and Agent Comparative Discussion 

When comparing Holonic and Agent based architectures many factors need to be 

evaluated, due to the fact that both systems are very similar. In 1998 Bussmann [75] 

reviewed and compared Holonic and Agent systems. Within this work, a clear 

division between the concepts was made through referencing how Agents are 

general software technology that was motivated by fundamental research questions 

concerning aspects such as autonomy, cooperation, and team foundation. While 

Holonic manufacturing systems deals with the overall structure of the manufacturing 

process, in particular with the integration of equipment, control, and workers. 

Bussmann concluded by outlining how Holonic manufacturing systems should be 
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used to design the overall manufacturing process and derive requirements for the 

information processing from the intended interactions. While Agents should provide 

a basic reasoning and incorporate cooperation techniques necessary to meet 

manufacturing control requirements.  

In 2004 Giret and Botti [34] identify Agent and Holonic systems as two 

paradigms to meet the future manufacturing challenges of the 21st Century. Within 

this work Giret and Botti take a similar position to Bussmann in outlining how a 

Holonic system is tailored for meeting flexible manufacturing tasks, through 

distributed intelligent control, while Agent is a broad software approach that can be 

used for distributed intelligent control. In summary, Giret and Botti define a Holon 

as a special case of an agent, due to its similarities but defined operation sector. 

Similar to Giret and Botti,  Fischer et al [76] outlined a framework for Holonic 

multi-agent systems, which combines both paradigms of Holonic and Agent 

systems. Within this work the idea of interconnecting agents representing Holonic 

entities is prevalent. The definition of a new framework, namely “Holonic multi-agent 

systems”, demonstrates how Fischer identifies the benefits of combining both 

paradigms, but makes the clear separation of doing so through the creation of a 

newly defined structure. This separation aims at removing stringent requirements, 

present mainly in Holonic systems, due to Holonic origins being firmly present within 

the manufacturing sector. The result identifies a Holon as a concept that is realised 

by the commitments between agents, to maintain a specific relationship concerning 

goals. This point is re-enforced when considering the origins of both paradigms. As 

a Holonic system is a representative of a decentralised system with multiple levels 

of influence and association. While an Agent system came from AI co-operation in 

order to achieve collaborative goals. The aggregate of Agent Based Design and 

Holonic systems results in the visualisation of a complex system through the Holonic 

identification of hierarchical and heterarchical structures and substructures, and the 

incorporation of interactive decentralised Agent elements who accomplish localised 

goals and network wide goals through collaboration. 
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2.2 Cloud process monitoring and service oriented architecture 

2.2.1 Prologue 

Cloud manufacturing systems are set to overcome today’s limitations in rigid system 

structure, standalone software usage, centralised resource utilisation, unidirectional 

information flow and off-line decision making [77]. Similarly Ubiquitous information 

systems are supporting a global compatibility of digital services over ubiquitous 

computing technologies anywhere and anytime [78]. In order to meet future 

manufacturing support and sustainability requirements a combination of both Cloud 

and Ubiquitous Manufacturing Systems have been identified as the perfect setting 

[79]. The origins of Cloud and Ubiquitous manufacturing can attributed to various 

ideologies of decentralised design, such as holonic and agent-based paradigms 

[75], and the enabling technologies of Ubiquitous computing, Cloud computing, 

social media, the Internet of Things (IoT), and Service-Oriented Architecture (SOA) 

[80]. Traditionally Cloud manufacturing at an enterprise level has been addressed 

by E-manufacturing, which was designed to meet the needs of business strategies, 

and business elements; suppliers, customer service networks and manufacturing 

unit, through the effective use of web-enabled computational tools and tether-free 

technologies [22]. However Cloud manufacturing addresses a global mode of 

organisation through non-linear structuring, to enable dynamic transformative 

capabilities. The incorporation of cloud manufacturing technologies from 

management to execution is present on every level of a manufacturing enterprise 

[42]. Specifically field-level cloud systems has been an expanding research area, 

characterised by SOA development. 

2.2.2 Service Oriented Architecture 

A Service-Oriented Architecture (SOA) is a set of architectural tenets for building 

autonomous yet interoperable systems [81]. SOA specifies that distributed 

resources and organisations should provide their functionalities in the form of 

services that requesters can have access to [82]. An entity or service can be 

discovered dynamically through asynchronous messaging by exposing its interface 

[83]. In doing so SOA systems enable multiple client oriented entities to utilise the 

resources embedded within the service, making the way for more reconfigurable 
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and flexible decentralised systems. These core SOA principles can be modelled in 

different ways to address application requirements, providing a different architecture 

perspective. Within the field of manufacturing SOA offers the potential to provide 

the necessary system-wide visibility and device interoperability for complex 

collaborative automation systems [84]. Designed around standard web-

technologies, such as Transfer Control Protocol (TCP), SOA is aimed at being 

technology-neutral, enabling system extensibility and distribution throughout an 

organisation [85]. 

In 2005 Jammes and Smit [86] reviewed the service-oriented paradigms for 

industrial automation adoption. This work highlights the benefits of; interoperability, 

scalability, Plug-and-Play connectivity, seamless enterprise network integration, 

legacy technology integration, simplicity of application development, and 

manageability. In 2008 Mendes et al. [82] provided a survey on the engineering of 

service-oriented automation systems. This work provides insight into main SOA 

engineering fields of; semantic web-services and ontology, modelling, orchestration 

and choreography, service composition, analysis and simulation, and collaboration. 

In 2009 Cândido et al. [87] provided a research roadmap to SOA in reconfigurable 

supply chains. This work provides a brief overview of public and private initiatives; 

SIRENA 2006, STREP CobIs 2006, ITEA SODA 2007, STREP InLife 2007, IST 

SOCRADES 2008, OPC-UA 2008. In 2010 Cˆandido et al. [88] provided a technical 

assessment of the OPC-UA and Device Profile for Web services (DPWS) for device 

level SOA in the industrial domain. In 2012 Jammes et al. [89] reviewed 

technologies for SOA-based Distributed Large Scale Process Monitoring and 

Control Systems. Technology reviewed included the Efficient XML Interchange 

(EXI) structuring, Constrained Application Protocol (CoAP), OPC-UA, Distributed 

Service Bus, and Complex Event Processing (CEP). 

Modelling 

Abstract model 

A SOA data model can be abstracted into a common structure that can be described 

by four technical layers; Meta Model, Data Model, Generic Services, and Mapping 

on Protocols [90], as seen in Figure 2.11; 

 Meta Model: defines the basic components that the data model can be built from, 

which includes concepts and rules 
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 Data Model: is a semantic or abstract description of the data owned by a 

subsystem which can be accessed by other systems within a specific domain. 

 Generic Services: defines an abstract common way for exchanging data 

between subsystems, which are technologically independent. Mapping on 

 Protocols: defines how abstract services are mapped for physical 

implementation 

 

Figure 2.11  Service-oriented architecture  common structure,                

adapted from [90] 

Engineering model 

In 2013 Nagorny et al. [91] outlined an engineering approach to assist in the 

development and visualisation of a SOA based system. This approach incorporated 

the use of the ISA-95 enterprise architecture to define the different component types 

and their location within a hierarchical manufacturing enterprise. The approach 

incorporated a five step method:  

(1) Legend, identifies the symbols for different architecture elements across 

multiple domains. These symbols include inputs, outputs, boundary layers, 

and events. These components define the different objects present within the 

SOA. 

(2) Domain and system categorisation, incorporates the assembly of domain 

specific components and categorisation within specific layers defined in the 

ISA 95 standard. System categorisation corresponds to the identification of 

system boundaries, and embedded subsystem boundaries. An abstract 

visualisation of his step is presented in Figure 2.21. Specific manufacturing 
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domains are identified, the architecture components are identified on each 

level of the ISA-95 standard, and communication streams are defined. 

(3) Interface definition, incorporates the definition of what services will be 

provided by what system, and what the interfaces will be, e.g. inputs and 

outputs. 

(4) Service and orchestrator integration, requires the specification of 

orchestrator systems, which are services capable of orchestrating two or 

more services/orchestrators. 

(5) Topology generation, connects all components within domains and between 

domains using the previously defined interfaces, creating a topology of the 

SOA system. 

 

Figure 2.12  Service Oriented Architecture Domain Characterisation, adapted 

from [91] 

Holonic model 

Another perspective of SOA modelling is defined by the National Institute of 

Standards and Technology (NIST) U.S. Department of Commerce, which provides 

a reference architecture for cloud computing [92]. This architecture resembles the 

principles of Holonic systems. These systems are considered to be scalar chains of 

Holonic entities, where at each level the reference entity can be considered a 

subsystem of part of a higher level system and to contain lower level subsystems of 

their own [72]. NIST defines a Cloud Provider as a person, or organisation that is 

responsible for making a service available to interested parties; And a Cloud 

Consumer as a person or organisation that maintains a business relationship with, 

and uses the service from a cloud provider. The Cloud Provider and Consumer 
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share control of resources in a cloud system that are structured within a classical 

software stack design, as seen in Figure 2.13; Application layer, Middleware layer, 

and Operating system layer. The application layer includes software applications 

targeted at end users or programs. The middleware layer provides software building 

blocks for developing application software in the cloud, e.g., libraries, databases, 

etc. The operating system layer includes operating systems and drivers. 

 

 

 

Figure 2.13  Holonic Cloud Computing 

Enterprise integration 

Enterprise integration research has been ongoing since the 1990s 

addressing both enterprise modelling and information technology, which was 

characterised by Panetto and Molina [93]. Key issues addressed in this work was 

the high level of communication heterogeneity within dynamic enterprises, and the 

need for collaborative networked environments where integration and 

interoperability enhance the competitive advantages. Heterogeneity within a 

manufacturing enterprise starts at the lowest hardware levels and transverse 

throughout. 

At low enterprise levels, within the shop-floor, communication standards are 

domain specific, as they utilise proprietary codes, protocols and data 

representations [94]. With diversity comes incompatibility with the inability to support 

collaboration between hardware and software throughout a manufacturing 

organisation. This incompatibility is due to the lack of standardisation amongst 

technology suppliers and the difference of resource capabilities amongst embedded 
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devices. In order to overcome this communication barrier SOA identifies the 

utilisation of mediator software entities to enable the conversion of proprietary or 

legacy technology into the SOA standard, to enable free data distribution throughout 

the networks [95]. Alternatively devices can be service enabled by embedding the 

SOA communication service within them, allowing the device to be a direct 

data/service source. This solution enables a ubiquitous data collection, and 

furthermore offers the potential to support sensor fusion capabilities within process 

monitoring and control systems [6]. 

At high enterprise levels Manufacturers have utilised manufacturing suites 

and platforms, to assist in multiple decentralised organisation aspects; design of 

manufacturing, business strategy, sales and marketing, shop-floor operation, supply 

chain collaboration, collaboration engineering, etc [96]. These systems utilise Web 

technology to enable manufactures to be become more agile, and flexible in the 

areas of Supply Chain Management (SCM), enterprise resource planning, and 

manufacturing execution systems [22]. However the individualistic manner in which 

these systems are implemented makes it difficult for coordinated interactions to exist 

[97]. These systems have been identified to not enable seamlessly cross layer 

enterprise collaboration, as they are islands of automation with no obvious 

integration points [98]. Next generation SOA ubiquitous cloud manufacturing 

platforms are aiming to remove these bottlenecks of incomparability, through the 

standardisation of data interoperability, while facilitating the hosting of unique 

application functions via services [42]. Industrial applications will be rapidly 

composed by selecting and combining the information and capabilities offered via 

services in the manufacturing cloud.  

Considerable research has been achieved to-date to incorporate the 

STandard for Exchange of Product (STEP) standard as the manufacturing data 

model [99]. The STEP standard is a neutral data format within the heterogeneous 

CAD systems which has been extended to meet the requirements of a product over 

its whole life cycle [98]. The extent of STEP standard research in distributed 

manufacturing systems was achieved by Zhao, Habeeb, and Xu [100]. This 

standard would act as a standard meta and data modal for manufacturing SOA 

enterprise solutions. 
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Technology integration 

           

Figure 2.14  Temporal scales of analysis and manufacturing execution systems 

As engineers lean towards more standardised data structuring for enterprise 

through the STEP standard, a divergence in data modelling can be observed 

between product and process. Product data viewed from the STEP standard 

recognises a multitude of data types and relationships, as a product is identified 

throughout its lifecycle.  While process data is associated with the multitudes of 

control and management systems that enable the creation of a product from raw 

materials. Product data is more easily structured due to the common abstracted 

attributes shared amongst manufacturing products; material, dimensions, CAD files, 

part numbers, etc. However process data various largely due to the complexity and 

diversity of production processes and machines. This diversity increases further 

when state-of-the-art process and condition monitoring systems are involved. The 

varying data sources, data manipulation techniques, and transition of transient state 

information to process characterisation or corrective action data, lead to highly 

complex and unique data structures. 

As defined previously, the ISA-95 model helps define boundaries between 

the different industrial enterprise levels. However the ISA-95 structure has been 
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seen as rigidly hierarchical by limiting the capacity of cross layer interoperability due 

to highly integrated vendor-locked communication standards [37]. These standards 

exist due to the different functional control requirements present at each enterprise 

level. When data is acquired from a source the information is abstracted the further 

it is passed up the enterprise hierarchy, to meet different management 

requirements, as seen in Figure 2.14. Each temporal level requires different 

computation and communication capabilities to provide for the control operating 

characteristics and data analysis. Subsequently a question is how can SOA be 

implemented across a manufacturing enterprise to enable more interoperable 

systems while maintaining the critical functional requirements at each level? 

In 2012 Delsing et al. [37] proposed a migration procedure for ISA-95 

decentralised control systems into enabled SOA systems. This work identified the 

presence of supporting service driven informatic systems at level 4 for enterprise 

resource planning and level 3 for production management. A key challenge 

identified in this work was for SOA to be adopted Real-Time (RT) control system 

execution must be preserved. This challenges the capability of SOA to meet the 

requirements of level 2 of a manufacturing enterprise which is associated with 

monitoring, supervisory control and autonomous control of the production process. 

In order to understand what role SOA can play to either meet the requirements of 

or coexist with machine control systems, a computational review of manufacturing 

control must be achieved to identify the functional requirements at this level. 

Machine control and computation 

Traditionally Manufacturing control systems utilise either closed or open loop control 

to regulate the operating characteristics of a system. Closed loop control utilises the 

feeding back of the measured system output to the system controller input allowing 

a control error to be determined and corrective action to be applied to reach the 

desired output [101]. Open loop control uses desired system output and potentially 

other measured disturbance inputs to reach the desired system output. A 

manufacturing enterprise utilises a mix of these methods as closed loop control 

cannot always be implemented due to the incapacity to measure system output on 

a continuous bases or in real-time. 

Additional to these control models different control methods are utilised; 

continuous and discrete-control. Continuous-control maintains continuous response 
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relationships between input and output, e.g. adaptive motion control of a CNC axis 

through a Proportional Integral Derivative (PID) controller [102]. Alternatively 

discrete-control can exhibit multiple modes of operation and maintain discrete 

relationships within the system through discrete transitions between feedback 

measurements, or control adaption, e.g. the multifunctional control of machine 

events or scheduling of a production process [66]. Traditionally continuous-control 

operate on a micro perspective of control systems relying on analogue controllers. 

However the speed, flexibility, accuracy, and reliability of digital controllers has 

exponentially increased over the past 20 years, uniquely offering greater 

advantages over analogue controllers, allowing for discrete controllers to achieve 

continuous-control operations [103]. 

 

Figure 2.15  Manufacturing execution control computation 

Continuous-control can be achieved by digital controllers through real-time 

operating characteristics. real-time  systems can be characterised by achieving 

operation within defined jitter limits [104], and control latency as close to zero as 

possible to achieve just-in-time execution to minimise the disturbance input and 
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control error which could lead to the degradation of system stability [101]. A 

divergence in real-time definition can be identified through systems operating at 

real-time speeds deterministically, namely hard real-time and through systems 

operating at real-time speeds non-deterministically, namely soft real-time [104]. 

Real-time systems aim to achieve operational actions as close to Real-time as 

possible. In high performance motion control systems real-time is obtained under 1 

millisecond [105]. Real-time systems are designed to optimise computation through 

streamlining programming for high speed execution. Multiple operation states can 

be achieved with real-time programming, as tasks are queued for computation via 

the CPU. 

Other real-time systems utilised within high performance computation control 

are Field-Programmable Gate Arrays (FPGA). FPGA’s are reprogrammable silicon 

chips that consist of prebuilt logic blocks and programmable routing resources. 

FPGA’s exceed the computing power of digital signal processors by breaking the 

paradigm of sequential execution and accomplish execution per clock cycle by hard 

coding operation directly to the processor [106]. 

Both real-time CPU’s and FPGA’s are dedicated processing units that enable 

the creation of highly optimal systems, for both continuous and discrete control 

systems, through reconfigurable programming means. However the function 

environment of these high performance units is static. When achieving deterministic 

execution all programming code needs to be specified and compiled together, to 

enable the optimal performance and execution time limits to be determined. 

Dynamic execution environments can only be achieved through undedicated 

processing units, where computation tasks are queued for execution by the CPU. 

These systems can operate at high computation speeds of under 1 millisecond in 

soft real-time. However this flexibility comes at a price as the undedicated systems 

are not deterministic, and cannot achieve hard real-time operation due to their 

ambiguity of execution from sharing of resources in a dynamic execution 

environment.  

A topological view of manufacturing control computation systems identifies a 

separation in technology from real-time deterministic static systems, to dynamic 

interoperable open systems, as seen in Figure 2.15. This separation can be 

identified by the divergence in systematic requirements from deterministic high 

speed performance, to multifunctional flexible network capable features. A system 
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requires a greater flexibility when dealing with a dynamic environment. However to 

achieve guaranteed hard real-time control systems must be optimised for reaction 

speed. 

SOA implementation and communication 

SOA specifies that distributed resources and organisations should provide their 

functionalities in the form of services that requesters can have access to [107]. An 

entity or service can be discovered dynamically through asynchronous messaging 

by exposing its interface [83]. These characteristics meet the criteria of dynamic 

execution systems and require a dynamic communication medium for support. SOA 

originated from Web technology of Ethernet TCP/UPD, which enable the loose 

connectivity of hundreds or thousands of devices. However ultimately the use of 

asynchronous time-division multiplexed networking introduces time varying delays 

which are sources of potential instability for real-time targets [108]. Subsequently 

this incapacity to utilise deterministic communication mediums has identified a 

incapability of SOA to meet the requirements of deterministic continuous and 

discrete control present in level 2 of the ISA-95. Other solutions to meet these 

requirements can be seen with Profibus DP [109] and EtherNet/IP [105]. SOA may 

not be a primary interoperability member at the lowest point of computation in a 

manufacturing execution system. However these systems should be enabled to 

either provide their data for higher levels systems directly or indirectly from 

communicating their data to a mediator or orchestrator. 

Traditional implementation of SOA within manufacturing systems identified 

the use of WS for communication protocol, e.g. HTTP in MTConnect [110] and 

DPWS in AESOP [89]. However these medium utilise a eXtensible Markup 

Language (XML) base message structure. XML was identified to not meet the high 

speed requirements of a for industrial machinery applications due to its verbose 

syntax and the need for parsing which can slow down processing speed and cause 

real-time constraints [111]. Limitations with traditional XML structuring can  be 

overcome through adoption of the Efficient XML Interchange (EXI), which utilises 

binary representation of data and is designed for compactness and high 

performance parsing and serialisation [112]. Subsequently the introduction of binary 

messaging has identified a means for nondeterministic discrete-control present in 

level 2 of the ISA-95 [111]. 
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The time restrictions present within level 2 of the ISA-95 are not present in 

the above levels due to the abstracting of data in the higher temporal scales of 

analysis in manufacturing execution systems. These systems favour flexibility and 

open connectivity rather than high speed deterministic behaviour. Due to the fact 

that latency within the millisecond range will not destabilise systems operating within 

a >1sec scale of temporal operation, e.g. scheduling, resource management, 

production planning. Subsequently traditional or high speed WS technology can be 

utilised to achieve SOA at levels 3 and 4 in the ISA-95. 

2.2.3  Field level service oriented architecture platforms 

An acumination of diversity in field level data structures and enterprise integration 

requirements has resulted in the creation of SOA’s within manufacturing. Four Key 

SOA are; the industrial standard OPC-UA, the data sharing platform, the open 

standard MTConnect, commercial National Instrument Shared Variable Engine 

(SVE), and the data protocol DPWS through the EU initiatives SERINA, SODA, 

SOCRADES, and AESOP. These systems provided different SOA capabilities, to 

meet different requirements of a manufacturing enterprise. 

OPC-UA 

OPC originated from a collaboration of world leading automation suppliers, aimed 

at achieving interoperability for process control and manufacturing automation 

applications. The OPC specification defines a set of standards of objects, interfaces 

and methods for dynamic data acquisition and distribution via a central server [113]. 

The OPC server would allow a user to define what communication medium, ex. 

RS485, to communicate across to the machine tool, and what protocol, ex. Modbus, 

was required to interact with the machine tool. Originally OPC utilised Microsoft’s 

OLE Component Object Model (COM) and Distributed Component Object Model 

(DCOM) to achieve interoperability, namely OLE for Process Control (OPC). This 

allowed client applications, i.e. SCADA systems, to acquire data dynamically from 

the server. Client applications can utilise the COM communication interface for local 

access to a server, or the DCOM interface to access data across a local area 

network. 

Current trends towards web services have led to a new generation of OPC 

technology, namely OPC Unified Architecture (OPC-UA). OPC-UA is a platform-
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independent standard through which various kinds of systems and devices can 

communicate by sending Messages between Clients and Servers over various 

types of networks [114], as seen in Figure 2.16. OPC-UA provides an integrated 

service model that allows a single server to integrate data, alarms, and events, and 

provide access to them using an integrated set of Services. Uniquely OPC-UA 

utilises XML/text and or UA binary encodings, and can incorporate OPC-UA TCP, 

SOAP/HTTP, and HTTPS transport protocols. The integration between OPC-UA 

Clients and Servers is defined by a set of Services. These services are organised 

in groupings called Service Sets. Clients can issue requests to servers and receive 

responses, as well as subscribing for notifications. Uniquely Servers can also act as 

clients to enable the interlinking of OPC servers throughout different networks. This 

enables the OPC-UA information model topology to no longer be limited to a tree 

formation, as it now allows for full mesh topology, through the interconnection of 

multiple OPC servers [115]. 

The industrial adoption of OPC and OPC-UA is widespread in manufacturing and 

industrial systems, with OPC technology currently installed in over 17 million 

machines and factories worldwide [116]. Examples of industrial adoption can be 

seen in; the Texas oil and gas company’s adoption of OPC enabled software-

toolbox [117], and chemical manufacturer Saudi Arabian Fertilizer Company’s 

adoption of OPC enabled Owl Perimeter Defence Solution [118]. OPC also has a 

 

Figure 2.16  OPC UA Topology, adapted from [114] 
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presence in academic research. An example of which can be seen in Eckstein and 

Mankova’s work [52], that utilised an OPC to achieve sensor fusion analysis through 

a Siemens Sinumerik 840D CNC controller. OPC-UA is ultimately a total cloud 

solution for manufacturing enterprise. 

MTConnect 

 

Figure 2.17  MTConnect topology, adapted from [110] 

MTConnect is an open, extensible, and royalty free standard, that outlines a 

universal factory floor communication protocol for the shop floor environment [110]. 

This standard enables users to link data from shop floor machines to software 

applications used to run their businesses. The MTConnect protocol is based on 

standard internet technologies, such as: HTTP and XML. The standard sets out a 

structure of five fundamental components that interact with one another, as seen in 

Figure 2.17; Device, Adapter, Agent, Network, and Application. (1) Device: 

represents a piece of equipment, commonly a machine tool or a data source. (2) 

Adapter: an optional piece of software/hardware that provides a link or conversion 

from the data source and proprietary data definition in the device to the MTConnect 

data definition standards. (3) Agent: a piece of software that collects, arranges, and 

stores data from the device or adaptor, while also receiving requests for the data 

from external applications, and processes the requests to further transmit the 

required data. (4) Network: the physical connection between a data source and the 
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external data application. (5) Application: the actual requestor and consumer of 

MTConnect data. 

The operational functionality of an MTConnect system can be summarised 

with the following definition; MTConnect organises information and data from a data 

source, typically a machine, into an information model that defines the relationship 

between each piece of data and the source of that data [119]. Furthermore, this 

information model allows an application to interpret the data received from a data 

source and correlate that data to the original definition, value, and context. 

MTConnect was the solution proposed by the committee known as the Shop Floor 

Connectivity Working Group, to solve the problem of how to concurrently connect to 

existing machine tools and new machine tools. The distinctive difference of 

MTConnect compared to the numerous other communication solutions available, is 

that MTConnect is the first standard to define a dictionary for manufacturing data, 

meaning that data from multiple machines will have common definitions, e.g. name, 

units, values, context, etc. MTConnect can be seen to provide an array of different 

functional problem solving abilities for addressing machine tool process monitoring 

requirements, such as; production dashboard or monitoring, alerts, equipment 

availability and usage, machine downtime analysis, OEE, production 

reporting/tracking, maintenance tracking/planning [120]. 

MTConnect has been gaining significant momentum in manufacturing with 

multiple leading technology companies, e.g. Mitutoyo, OKUMA, Boeing, etc [121], 

enabling their systems with MTConnect data access. MTConnect also has a 

presence in academic research. An example of which can be seen in 

Vijayaraghavan, Fox, Dornfeld, and Warndof [26] work that utilised a MTConnect 

system to gain access to machine tool path data for planning verification. 

MTConnect is ultimately a field level cloud solution for manufacturing data 

acquisition and distribution. 

National Instruments - Shared Variable Engine 

The Shared Variable Engine (SVE) is a software framework that enables variables 

to exist on a network and be communicated between applications, remote 

computers, and hardware [122]. The SVE is a generic SOA for distributing data, as 

it enables dynamic service discovery, data acquisition, data replication, and data 

distribution inside a local computer and across a network. The SVE enables 



2. Literature Survey 

38 

applications to expose their data as services, by publishing the data to a SVE. The 

SVE hosts the data, buffers the data, and distributes the data to multiple applications 

which subscribe to it. 

 

Figure 2.18  Shared Varibale Engine topology, adapted from [123] 

The network variable is made up of three parts; network variable nodes, the NI-

Publish Subscribe Protocol (NI-PSP), and the SVE [124], as seen in Figure 2.18. 

Network variable nodes consist of the readers and writers Application Programming 

Interfaces (API), for interacting with the SVE [125]; static shared variable node, 

programmatic shared variable API, DataSocket API, Data logging and Supervisory 

Control (DSC) API, and DSC event structure API. The NI-PSP is a proprietary 

networking protocol that optimises the transport of network shared variables, and 

operates above TCP/IP, with a LogosXT transmission algorithm [123]. The SVE 

hosts the published data, enabling dynamic data acquisition through data buffering. 

Other functions provided include data integration of multiple streams into a singular 

output, data event notification, and dynamic data discovery of networked shared 

variables across a network. Additionally SVE can be hosted on PC’s and real-time 

targets. One SVE is required to enable interoperability within a system, as 

applications can connect to SVE on computers that they are not hosted on. This 

allows applications to publish their data to other computational devices that will 

handle the data management requirement and reduce their own computation 
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resource requirements. The SVE is ultimately an open field level cloud solution for 

local area decentralised data interoperability. 

Device Profile for Web Service 

 

Figure 2.19  Shared Varibale Engine topology, adapted from [126] [127] 

Device Profile for Web Services (DPWS) is a profile developed by Microsoft to 

promote both interoperability between resource-constrained WS implementations 

and interoperability with more flexible client implementations [126]. DPWS is based 

on existing WS standards XML, WSDL, XML Schema, SOAP, MTOM, and HTTP. 

The profile identifies a core set of WS to; send secure messages to and from a WS, 

dynamically discover a WS, describing a WS, and receiving events from a WS. 

DPWS specifies a structured format for which users can define services and map 

them for standardised interoperability on a network. A DPWS topology consists of 

devices and software adaptors that have their services encapsulated by DPWS, 

enabling them to be dynamically discovered and via clients on a network, as seen 

in Figure 2.19. In manufacturing, devices would consist of measurement devices; 

sensors, meters, controllers, etc., and machines tools; CNC lathes, CNC Mills, etc. 

For the last decade DPWS has been at the centre point of SOA EU research 

through the initiatives SERINA, SODA, SOCRADES, and AESOP. These projects 

have enabled the development of an IT driven interoperability standard for utilisation 

with manufacturing enterprise. 
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SIRENA (2003-2005) 

The Service Infrastructure for Real-time Embedded Networked Applications 

(SIRENA) project started in the framework of the European premier cooperative 

R&D program ITEA in 2003, to leverage SOA to interconnected devices inside the 

domains of; industrial telecommunication, automotive, and automation [128]. 

SIRENA aimed to utilise DPWS to address system wide interoperability, scalability 

of service composability and aggregation, plug-and-play connectivity, integration 

with enterprise networks, and integration with legacy technology [129]. 

SODA (2006-2008) 

Continuing on from SIRENA, the Service Oriented Devices Architecture (SODA) 

projects main goal was to implement a complete ecosystem for designing, building, 

deploying and running device-based applications within different domains of 

application including industrial automation [87]. SODA provides an abstract service 

model of a device by providing an interface to proprietary and standard device 

interfaces, and presents device services as SOA services over a network through a 

bus adaptor [130]. 

SOCRADES (2008-2009) 

The Service-Oriented Cross-layer Infrastructure for Distributed smart Embedded 

devices (SOCRADES) primary objective was to design and develop, an execution 

and management platform for next-generation industrial automation systems, 

exploiting SOA both at the device and at the application level [131]. Key research 

areas in SOCRADES included:  

 Gateway entities for direct incorporation of legacy equipment not capable of WS-

technology [95] 

 Mediator entities that poses the capability of data manipulation prior to service 

access [95] 

 Orchestration control methods consisting of a central control unit that facilitates 

interoperability between decentralised entities [87] 

 Choreography control methods that define how distributed entities use 

collaboration without a centralised controlling entity [87] 

 SOA enabled e-maintenance [132] 
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 Timing properties and network determinism associated with network message 

communication [133] 

 SOA for wireless sensor networks [134][135][136] 

 Dynamic optimisation of production planning [137] 

AESOP (2010-2013) 

The ArchitecturE for Service-Oriented Process-monitoring-and-Control (AESOP) 

project is targeted at optimisation within architectural and functional levels of logical 

and physical network architectures behind process automation systems [27]. 

AESOP maps out the industrial environment into ‘Cloud Services’, comprising of 

devices and applications distributed across the different layers of enterprise, which 

are exposing their characteristics and functionalities as ‘Services’[89]. Key research 

areas in AESOP included: 

 Complex Event Processing (CEP) tools and techniques for real-time analysing 

and handling series of events that circulate at fast speed in distributed 

information systems [138] 

 Binary representation for reduced transmission overhead via the Efficient XML 

Interchange (EXI) to replace traditional XML [112] 

 Strategies and approaches for migration of legacy process monitoring and 

control systems to SOA [139] [37] 

 Expansion of network technology and integration strategies to increase system 

flexibility and enable real time operation of integrated SOA elements [111] [140] 

[141] 

 Optimisation of network loads present within SOA communication [142] [112] 

A successful implementation of DPWS was demonstrated in the AESOP project with 

the creation of an energy management system called EcoStruxure by Schneider 

Electric [143]. EcoStruxure is a systematic solution-based approach that creates 

intelligent energy management systems and allows people to view, measure, and 

manage energy across different domains. EcoStruxure combines the domains of 

Power Management, Process & Machine Management, IT Room Management, 

Building and Security Management, with a common platform SOA. DPWS is 

ultimately a total SOA modelling solution for manufacturing enterprise. 
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Hybrid service-oriented architecture solutions 

The comparative view of manufacturing SOA has identified a separation in 

functionality from architecture to architecture, due to the multifaceted requirements 

of manufacturing enterprise. Ultimately there is no single solution to cloud 

manufacturing implementation, which has led to the incorporation of hybrid 

architectures. Hybrid architectures enable the integration of other architectures 

within their own networks. This collaboration enables an architecture to gain access 

to specific beneficial functionalities not currently support, and also enable further 

data interoperability through manufacturing systems. Examples of hybrid SOA can 

be seen in;  

The incorporation DPWS with OPC-UA and SAP xAPP through the 

SOCRADES project [144]. In this hybrid solution OPC-UA enables dynamic data 

acquisition of production data sources within the SOCRADES SOA. The 

interconnection of SAP xAPP ensures a wider network interoperability, as 

SOCRADES data can now be utilised in SAP enabled enterprise applications. Cross 

platform integration of the SVE with MTConnect [145]. In this test-case the SVE was 

utilised to provide ad hoc dynamic data acquisition. The data was then buffered in 

MTConnects RESTful mechanism and formated to enable the distribution to 

MTConnect analysis client applications. 

Cross platform integration of the SVE and OPC [146]. Systematically the 

creator of the SVE, National Instruments, has developed the SVE to connect with 

OPC. The SVE incorporates an OPC client to enable the acquisition of OPC data 

from OPC servers. Additionally the SVE contains an OPC server plugin to enable 

OPC clients to gain access to SVE data. This seamless integration enables the 

comprehensive OPC data communication library to be utilised in any SVE 

architectures. 

Cross platform integration of DPWS with OPC-UA through the AESOP 

project [90]. In this hybrid solution the integration of both architectures serves a 

multitude of mutual benefits; enabling the linking of the industrial world with IT 

enterprise, improved dynamic service discovery, improved event notification, 

establishing a data model for DPWS, etc. 
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2.2.4 Field-level service oriented architecture comparative 

Introduction 

 

Figure 2.20  Service Oriented Architecture Comparative 

The reviewed field level SOA technology provides a unique look into key composed 

solutions to-date to meet the diverse interoperability requirements of the 

desentralised nature of manufacturing systems. The SOA’s for comparison are 

OPC-UA, MTConnect, SVE, and DPWS. All architectures utilise WS to achieve 

dynamic data acquisition and data distribution. However they all have aspects that 

separate them from one another; Machine data acquisition, Client data model, 

Network interoperability, Binary encoding, Event ‘Subscription’, Security, 

Architecture access, and Service definition. The architectures are compared in 

Figure 2.20, which identifies the scale of implementation of each aspect with an 

icon. These icons identify if the specific aspect of the architecture is; open for 

implementation, fully implemented, not implemented, or a variety of all three. 

Comparative aspects 

Machine data acquisition 

Machine data acquisition defines how a SOA can gain access to data from a 

manufacturing machine or device. OPC-UA is an industrial standardised 

technology, designed to meet the diverse nature of communication protocols on the 

manufacturing floor. The standard enables interoperability of process data from 

multiple sources. Uniquely OPC-UA consists of a vast library of communication 

mediums and protocols to achieve M2M communication. MTConnect similarly to 
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OPC-UA, was created for data acquisition and distribution within a heterogeneous 

industrial environment. MTConnect is working to provide the required drivers and 

protocols to communicate with various machines. DPWS and the SVE both identify 

the capability to provide homogenous manufacturing floor data interoperability. 

However they are open client data model architectures and would require the 

development of drivers for specific machine data acquisition. Alternatively DPWS 

and the SVE could utilise a hybrid solution through the integration of OPC-UA and/or 

MTConnect to acquire data into their network. 

Client data model 

Client data model characterises the data types and relationships within a 

manufacturing system. MTConnect contains a defined library of manufacturing 

machine data variables. Meaning MTConnect provides a specific data model for the 

variables acquired by its agents. This data model is separate from the service data 

model internally incorporated within each standard. MTConnects client data model 

specifically defines the types of data and their relationships in machines and 

devices. This enables engineers to easily identify the data they need from a machine 

tool. OPC-UA has an abstract yet defined client data model that allows data to be 

seen in its simplest form; data types, values, meta relationship data, etc. DPWS and 

SVE do not specify specific client data models, enabling messages to be sent in any 

format. An advantage to not having a data model is that the technology is not tied 

down to a specific standard and can be adopted as needed. A disadvantage of this 

operation is that the data acquired does not provide metadata to identify itself. This 

identification is required to be carried out initially by the engineer installing the 

system through manual reference of the technology being communicated with. An 

exception to this disadvantage can be seen in DPWS who’s data service can be 

created with a data model and include metadata description through an identification 

service. 

Network interoperability 

Network interoperability identifies how a system transfers data amongst its 

components and throughout its network. Within manufacturing this addresses how 

information can be communicated from machine to machine, application to 

application, and network to network. DPWS incorporates a multitude of 
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communication mechanisms for service access. A machine or device can be 

created with a multiple DPWS enabled services for data acquisition, control, and 

monitoring. Furthermore other architecture components can actively achieve their 

own data integration through custom built services created through the DPWS 

service meta-model. MTConnect is open to allow for broad connectivity through the 

creation of data acquisition adapters for machine and device data sourcing. 

However it is unclear how the client data model would handle the broader range of 

manipulated data being integrated back into the system. Furthermore MTConnect 

does not utilise orchestration for data sharing, meaning client applications may need 

to connect to multiple MTConnect agents to gain access to the data they need. 

Subsequently MTConnect is a specifically defined data interoperability medium for 

field level data acquisition and distribution. All data is accessed throughout a 

network through TCP/HTTP. Similar to DPWS, OPC-UA offers a multitude of 

communication mechanisms for service access. A machine or device can integrate 

OPC-UA services or be accessed by OPC-UA plugin service adapters. Further 

network applications can integrate their data through adherence to OPC-UA’s 

abstract client data model. OPC-UA has been developed for enterprise integration, 

through tiered server to server data linking. However it is still uncertain how the 

defined standard would be integrated with STEP standard. The SVE is similar to 

MTConnect, as it defines a data distribution WS for network interoperability. The 

SVE does not however specify a client data model, allowing architecture to be 

utilised for a range of different application requirements. Additionally the SVE allows 

for sever to server connectivity, enabling data interoperability through single source 

client connectivity. However the range of the SVE is restricted to local area 

networks, meaning data in not freely available throughout a larger network. 

Binary encoding 

OPC-UA utilises two different message encoding; XML/text and UA binary. 

Traditional WS utilise XML/text messages, however the data volume footprint of this 

method can be large, as it utilises character code representation, i.e. ASCII, which 

corresponds to 1 byte of data per character. Subsequently it has been identified that 

XML accounts for a 50% increase in latency for small single variable messages and 

up to 1800% for large messages with thousands of variables [112]. Binary encoding 

offers the potential for more efficient data transmission, due to its lower message 
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data volumes. Binary encoding does not use a character code representation 

format, meaning the data in a binary format would be illegible in a text based 

referencing system. However this format can be easily serialised for transmission 

and deserialised for application utilisation with minimal time overhead. Text based 

message structuring may not affect lower data communication, but at high data 

acquisition speeds and high data trafficking in CPS, text-based XML WS were 

identified to not meet real-time requirements and resource constraints for industrial 

machinery applications [142]. DPWS utilises XML for message structuring, however 

the AESOP project has identified the potential present within the EXI standard to 

overtake traditional XML structuring within DPWS [112]. EXI a binary representation 

of the XML information set that is designed for compactness and high performance 

parsing and serialisation. The introduction of EXI into DPWS would require a 

fundamental change in the standard, however the standard is open to utilise it in the 

client data model since it is defined by the architect developer. The SVE’s 

communication medium is the NI-PSP protocol which is proprietary to NI, meaning 

it is not open for binary encoding for service level data modelling. However the client 

data model is open for interpretation enabling the utilisation of binary messages. 

MTConnects standard only facilitates HTTP with XML message structuring. The 

introduction of EXI would require a fundamental change in the standard on both the 

server and client data model. 

Eventing ‘subscription’ 

Eventing is a subscriptions service that enables a system to provide client 

applications with the data they need autonomously. Subscription are a ‘pushing’ 

data mechanism which provides data when available. The alternative to pushing is 

the pulling or polling of data, where clients are given data on their request. DPWS 

fully implements both event subscription and data polling. The SVE fully implements 

both event subscription and data polling. OPC-UA also implements both event 

subscription and data polling through data, event, and alarm services. However 

MTConnect utilises a REpresentational-State-Transfer (RESTful) interface which 

defines how the MTConnect server will interpret the interactions of Client 

Applications. RESTful systems specify that the server within a system is unaware 

of a client’s state, and can only process their specific requests. Subsequently 
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MTConnect cannot provide for eventing message services, and client applications 

will have to continuously pull data from the server through requests. 

Security 

Security in network technology is imperative due to the ever evolving and increasing 

cyber-attacks on manufacturing systems [30]. The increasing connectivity of our 

networks, and integration of our CPS increases the availability and severity of 

potential attacks. In order to overcome this, SOA has turned to enabling security 

mechanisms within their standards to ensure more reliable control. However in SOA 

there is a trade-off between security and performance [147]. At the top level security 

is more important than performance since the corporate network is connected to the 

Internet. At the bottom level performance is more important than security as data 

has to be acquired in a fast and efficient way in order to control a production process. 

Both OPC-UA and DPWS incorporate a security model that governs the 

authentication of clients and servers to ensure data integrity. Both MTConnect and 

the SVE do not support security services. There are other ways to protect a network 

from a cyber-attack without integrating security within every element of a SOA. 

However if a networks access was breached there would be no other mechanisms 

available to detect or stop the intruder. 

Architecture access 

Architecture access defines the capability level for a user to gain access to the SOA 

and their defined standard schematics. MTConnects standard is an open source 

standard that enables any engineer to gain access online. DPWS consists of a 

collection of standards that are freely available online; SOAP 1.2, WSDL 1.1, XML, 

etc. By enabling the free distribution of web standards a multitude of end users can 

incorporate them within their own systems, further expanding the interoperability 

capabilities between venders. OPC-UA’s standard is available for incorporation, 

however a subscription fee would be required. The SVE’s NI-PSP is proprietary and 

cannot be acquired for person development. However the SVE itself is freely 

available to anyone programming with the NI programming language LabVIEW. 

Service definition 

Service definition identifies the capability of a SOA to generate user driver services 

within the cloud architecture. Fundamentally the only SOA capable of doing so is 
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DPWS due to service generating model. MTConnect is an open standard, however 

to create a custom service would deviate from the standard. However developers 

can choose to do so if they wish to create hybrid solutions. OPC-UA is a 

comprehensive standard, and to deviate from the standard would not be possible, 

as the OPC user group would not validate it. The SVE is proprietary, there are no 

ways of altering it to create custom services or gain access to current software 

infrastructure. End users can only utilise the SVE data distribution service, where 

they can provide customisation through the open client data model. 

2.2.5 Cyber-physical production systems 

The unification of cloud-based data interoperability and manufacturing intelligence 

research in manufacturing process monitoring systems is aimed at creating the 

innovative intelligent machines of the future. These Cyber-Physical Production 

Systems (CPPS) has to potential to enable an open access interaction platform for 

limitless virtual collaborative elements to interact with and expand the capabilities of 

the physical production equipment [148]. 

The foundation to these system is the utilisation of SOA to enable data to 

become interoperable via a data hosting communication server. Cloud computing 

has identified the need for multiple communication servers to cooperate together 

across multiple computers seamlessly. This generates an interoperable data cloud 

for process data to be accessed by any networked client. The internet-of-things 

encourages the dynamic data collection of process data sources, and Ubiquitous 

computing enables data representation on multiple mediums. The resultant cloud-

based manufacturing process monitoring system overcomes the traditional 

centralised design paradigms limitations of incompatible proprietary communication, 

incompatible side-ways software integration, lack of scalability, lack of potential 

extensibility, limited computation resources and customised singular process 

solutions [87]. 

Examples of CPPS development can be seen in; Savio et al. development of 

a dynamic optimisation system for production planning through an interconnected 

vendor enterprise resource planning application [137], Pinto et al. [149] 

development of decision support system for automation control via path planning, 

production scheduling, and preventative maintenance, Riedl et al. [150] 
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development of a service oriented distributed automation monitoring and control 

system, Izaguirre et al. [138] development of a automation signal processing feature 

selection system via complex event generation for process monitoring, and 

Colombo et al. deveopment of a service oriented automation SCADA system for 

manufacturing execution systems orchestration [151].
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2.3 CNC machine tool monitoring 

2.3.1 Sensing and measurement 

CNC Turning, along with all other core machining systems, use a variety of auxiliary 

measurements; power/current, vibration, acoustic emission, cutting force, etc., to 

identify a range of different production deviations; dimension accuracy, surface 

quality, cutting tool health, etc. [152]. The selection of these process variables is 

dependent on the required output of the system.  

Force, acoustic emission, and vibration have been utilised for tool wear 

estimation, chatter prediction, chip form categorisation, surface roughness 

prediction, and monitoring of tool condition [6]. Similarly sound measurement is 

reactive to independent sources and can be utilised for identification machining 

failures, tool breakage, and chatter detection [7]. Uniquely temperature 

measurement can be utilised to identify tool wear, degree of plastic deformation, 

degree of diffusion and corrosion, fatigue properties, and compositional changes in 

the work-piece material [7]. 

Power 

 

Figure 2.21  Current (a) and voltage (b) transformer circuits [18] 

The electric drive/s and spindle/s provide the mechanical force necessary to remove 

material from a part. By measuring the motor power or current, measures of the 

machine tool and drive condition can be realised [6]. Power measurement is a non-

invasive measurement medium, as power readings already exist in the drives 

controller, and additionally, other measurement devices do not interfere with 

machining actions. Modern CNC machining systems can provide internal operating 

signals to external applications via standardised communication mediums. Other 
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methods include the instalment of current and/or voltage transformers [18], as seen 

in Figure 2.21. Transformers transfer energy between two or more circuits through 

electromagnet induction. The measurement of both current and voltage enables for 

a processes power to be analysed. 

Motor power and current are both reactive to the cutting process, through a 

linear relationship with cutting force, and independent sources, through operating 

actions [153]. However obstacles to achieving force measurement include; the small 

power response to material removal, the influence of motor temperature on power 

consumption, the variable motor power response to varying 

acceleration/deceleration, and the adequacy of axis lubrication. Other motor 

phenomenon include the increase in spindle current due to inrush current, and back 

Electro-Magentic Force (EMF). Inrush current causes an immediate high current 

flow in the circuit due to the initial lack of resistance in the circuit [154]. Back EMF 

is created across an inductor from the changing magnetic flux produced by a change 

in current. The rapid reduction of current during motor switch off causes high back 

EMF, which can leading to sparking across connectors as stored energy is released 

from the motors magnetic field [155]. 

Vibration 

Mechanical vibration denote oscillations in a mechanical system. Fundamentally 

vibration is characterised by its frequency/frequencies, amplitude, and phase. 

Vibration analysis involves the identification of deterministic and random vibrations, 

forced and free vibration, linear and no linear vibration [156]. Using vibration 

analysis, the condition of a machine can be constantly monitored [157]. Detailed 

analysis can be made to determine the health of a machine and identify any faults 

that may be arising or that already exist. Faults include; unbalance, a bent shaft, 

eccentricity, misalignment, looseness, bent drive problems, gear defects, bearing 

defects, electric faults, oil whip/whirl, cavitation, shaft cracks, rotor rubs, resonance, 

hydraulic and aerodynamic forces, etc. However in machining, vibration is reactive 

to independent sources, and not just dependent on the cutting process. The most 

fundamental analysis in vibration is the determination of amplitude characteristics in 

the time domain, and spectral distribution of the signal in the frequency domain 

[158]. 

Piezoelectric transduction is the most common type of vibration sensing in 
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machining operations [6]. Fundamentally accelerometers rely on the piezoelectric 

effect of quartz or ceramic crystals to generate an electrical output that is 

proportional to applied acceleration [159], as seen in Figure 2.22. Force is applied 

to the crystals from the seismic mass located inside the sensor. Wires connected to 

a signal conditioner to excite and condition the circuit. Sensor containing inbuilt 

signal conditioners are classified as Integrated Electronics PiezoElectric (IEPE). 

These sensors can be mounted in different ways, which has an effect on the 

accuracy of the signal. Direct coupling stud mounting generally yields the highest 

mechanical resonant frequency and, therefore, the broadest usable frequency 

range. The addition of any mass to the accelerometer, such as an adhesive or 

magnetic mounting base, lowers the resonant frequency of the sensing system and 

may affect the accuracy and limits of the accelerometer's usable frequency range. 

 

Figure 2.22  Piezoelectric accelerometers [159] 

Any object has a natural frequency which is determined by its characteristics 

of mass, stiffness and damping [157]. A free vibration (not forced) at a natural 

frequency is called the resonance. In order to find the natural frequency of any object 

a bump test is undertaken. A bump test involves using an impact hammer to strike 

an area where a vibration sensor is positioned. The period after the forced vibration 

occurs is the natural frequency of the area. When forced vibration meets natural 

vibration, it is called critical speed. Critical speed yields significantly higher vibration 

amplitudes than unbalanced effects. High vibration amplitudes at critical speeds can 

be catastrophic for any system, and must be avoided at all costs. 

Acoustic Emission 

Acoustic Emission (AE) is defined as the phenomena whereby transient elastic 

waves are generated by the rapid release of energy from localized sources in a 

material [7]. Sources of this energy release in machining are; primarily due to chip 

formation, secondarily due to friction between the cutting tool and chip, and thirdly 
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due to the friction between the cutting tool flank and workpiece, as seen in Figure 

2.23. Acoustic emission occurs over a wide frequency range but typically from 100 

kHz to 1 MHz [160]. Acoustic emission sensors utilises the direct connection of 

piezoelectric transducers to the measurement surface. The output signal from the 

sensor is fed through a preamplifier, and further filtered to remove noise. 

 

Figure 2.23  Sources of acoustic emission in machining [6] 

Force 

Any cutting operation requires a certain force to separate and remove the material 

[6]. Cutting force measurement enables thermal analysis, tool wear estimation, 

chatter prediction, chip form categorization, surface roughness prediction, 

monitoring of tool condition [7]. There are two types of force sensors; piezoelectric 

based, and strain based. Typically direct force measurement using piezoelectric 

sensors is possible when the force transducer is mounted in line with the force path. 

However Rotating cutting force dynamometers are also available that contain the 

force sensing elements capable to measure 3 components of force and torque. 

Strain gauge force transducers consists of a structure that deforms under a force. 

The usage of these sensing methods is most popularly represented by a 

dynamometer. These devices can be IEPE enabled, or require outside excitation. 

2.3.2 Signal processing 

Signal processing is performed in order to extract the various forms of information 

carried in the signals, which have been found to relate to the properties of the 

measured system [158]. Signal processing can be subdivided into pre-processing, 

feature extraction and feature selection [6]. Signal pre-processing focuses a signal 
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for increased resolution through filtering, amplification, conversion, and or 

segmentation. Signal feature extraction aims at extracting different signal features 

or signal transform features that change with the process. While signal feature 

selection aims at selecting the most relevant features that best describe the 

machining process. Different processing techniques are applied to different types of 

signals. 

 

Figure 2.24  LabVIEW formulas; 1. Mean, 2. Root Mean Square, 3. Median, 4. 

Variance, 5. Kurtosis, 6. Skewness, 7. Fast Fourier Transform, 8. 

Power Spectrum 

A signal can be categorised by being stationary, and non-stationary, and can be 

sub-categorised as being deterministic, random, continuous and transient, as seen 

in Figure 2.25. Stationary deterministic signals are made up of a combination of 

sinusoidal signals with different amplitudes and frequencies. Stationary random 

signals as described by their statistical properties, such as the mean value, standard 

deviation, amplitude probability, etc. Transient signals have a finite short duration, 
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and are characterised by total energy. Nonstationary continuous signals consist of 

one or more of; sine components with varying frequencies and changing amplitudes, 

random signals with statistical properties changing with time, and transients that 

appear with varying intervals and characteristics in time and frequency. 

 

Figure 2.25  Examples of different types of signals and their spectral         

content [158] 

Time domain –techniques 

Mean, Median, and Mode [6] 

The mean is the average value of a sum of numbers, the median is the middle value 

in a sum of numbers, and the mode is the number that appears the most in a sum 

of numbers. 

Variance and Standard Deviation  [6] 

The variance measures the average squared difference from the mean of a set of 

numbers. Similarly the standard-deviation measures the average difference from 

the mean of a set a numbers, subsequently the standard deviation = √Variance. 

Root Mean Square [158] 

The Root Mean Square (RMS) gives information about the power in a signal in value 

of units in the measured quantity. It is a value characteristic of a continuously varying 
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quantity, obtained by taking the mean of the squares of the instantaneous value 

during a cycle. 

Skewness and Kurtosis [6] 

Skewness quantifies how symmetrical the distribution is in a set of numbers. 

Kurtosis quantifies whether the shape of data matches the Gaussian, or normal 

distribution. 

Frequency domain -techniques 

Fourier transform [161] 

Discrete Fourier transform (DFT) maps a discrete–time sequence of N samples into 

a discrete–frequency representation [6]. This enables a signal to be represented by 

the various frequencies present in signal, with the varying influence magnitude or 

power represented per frequency. A more widely used algorithm for computing 

DFTs are Fast Fourier Transforms (FFT). FFTs reduce large amounts of 

computational complexity in computing the coefficients of DFTs. Other factors to 

include when utilising FFTs is weighting. Weighting is concerned with the jointing of 

the discrete signals from digital signal processors, to enables smoothening between 

the transitions [158]. Weighting mediums include; Hanning, Kaiser-Bessel, Flat-top, 

and rectangular. Rectangular weighting refers to when no weighting medium is 

utilised. 

Spectrum analysis [158] 

(1) Power Spectrum 

Power spectrum is characterised by power readings at discrete 

frequencies. This means that each frequency contains a specific 

RMS/MS value, of which the sum of is equal to the total RMS/MS of 

the signal. 

(2) Amplitude Spectrum 

In some vibration applications, the spectra are sometimes rescaled to 

the amplitude of the sine components, which represents an amplitude 

spectrum, √2*RMS. Applicable to deterministic signals. 

(3) Power Spectral Density (PSD) 

Due to the continuous distribution and disturbances in spectral 

content, an effective way to scale the spectra is in terms PSD. The 
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power in each frequency band in a PSD spectrum is represented by 

the integral over the frequency band’s width, U²/Hz. Subsequently 

decreasing the bandwidth in the spectrum will lower the noise RMS. 

Applicable to random signals. 

(4) Energy Spectral Density (ESD)  

ESD represents the total energy present in each spectra over a time 

period, U²s/Hz. Applicable to transient signals. 

Digital filtering 

 

Figure 2.26  Filter types [158] 

Filtering is a common form of signal processing, which is utilised to remove specific 

frequencies from a signal, or to amplify the signal or desired feature in the signal. 

Filter types include, lowpass, highpass, bandpass, and bandstop filters [162]. Each 

filter identifies an area of frequency on a spectrum to either allow pass through, or 

be stopped by the filter, as seen in Figure 2.26. Additional to types there are multiple 

design methods for implementing these filters, each of which with different 

advantages and disadvantages. These designs include; Butterworth, Chebyshev, 

Elliptic, and Bessel [162]. Butterworth is the most widely utilised filter due to its all-

around performance. 
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2.3.3 Process characterisation 

In order to achieve high accuracy part dimensions, engineers have sought to control 

the factors influencing these process variables. Influencing factors can be 

characterised by the cutting tool state, and the material removal process conditions 

[6]. The cutting tool state corresponds to the ability of the mechanism to maintain its 

operation effectively, i.e. cutting motions, and feeding motion [163]. The material 

removal process conditions corresponds to the fundamental cutting parameters of 

machining; i.e. cutting speed, feed-rate, depth of cut, tool geometry, work-piece 

material, etc. [163]. In order to meet the control criteria, engineers have utilised a 

variety of sensor fusion monitoring systems to identify; optimal operating 

parameters [164], tool wear [165], tool breakage [166], machining chatter detection 

[167], and work-piece surface roughness [45]. However both influencing factors 

affect the same variables. Root cause analysis of the process can only be achieved 

through an understanding of the influences of both the cutting tool state, and the 

material removal process conditions, in real-time, across the monitored variables in 

the system. For example, tool wear is a normal phenomenon occurring in any metal-

cutting process, due to the abrasive interaction between the tool and the work-piece 

[168]. Tool wear dulls the tools cutting edge, and increases the friction between the 

tool and the work-piece. Increased friction causes increased vibration and requires 

increased energy to perform the operation at the expense of the surface finish of 

the part [169] [20]. However tool wear is not the only cause of vibration and 

increased energy consumption in the machine tool. Vibration and energy are 

influenced by; multiple cutting conditions [170], motion paths [171], and machine 

operations [172]. Additionally the degradation of the machine tool can result in the 

irregularities of operation resulting in a higher energy demands [173], and the 

generation of higher vibrations [174], which reversely enhances the tool wear and 

surface roughness of the work-piece [168]. 

2.3.4 Sensor fusion 

Machine tool monitoring systems favour the utilisation of multiple process variable 

measurements, with multiple sensors, to achieve data fusion analysis. This is due 

to the fact that sensor fusion provides multiple perspectives of processes operation 

[175], ultimately enabling a wider scope of process prognostics and diagnostics, to 
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be achieved. These systems achieve context specific analysis through data stream 

clustering via windows of analysis [176]. Windows of analysis are identified through 

process characterisation, i.e. the identification of machine operations, states, and 

events. Research undertaken by Vijayaraghavan and Dornfeld [39] proposed an 

framework for cloud-based signal characterisation of manufacturing machine tools. 

This work proposed the dynamic generation of process events from a multitude of 

process data types, e.g. machine controller data, and measured phenomenon. 

These events would then enable the characterisation of a process into machining 

operations via a Complex Event Processing (CEP) application. Identification of 

process states facilitates the correlation of process data to machining operations, 

allowing for context specific analysis to be achieved. 

Examples of context specific analysis in other processes monitoring systems 

can be found in: 

 Eckstein and Mankova [52] utilised a Numerical Controllers (NC) state data 

to identify machine movements in CNC drilling to examine multiple process 

variables, e.g. torque, power and feed force. 

 Brazel et al [177] correlated machining tool path position with cutting power 

data in grinding to identify magnitude of feature specific power consumption 

over a parts machining cycle time. 

 Liao and Lee [178] utilised a controllers state data to analysis vibration for 

machining operation prognostics of a CNC mill.  

 Other simulated examples of context specific analysis through process state 

acquisition and cross reference  has been visualised in [39] [179] [180]. 

These examples demonstrate the benefits of monitoring complementary variables 

to achieve collaborative decision support goals. These complementary variables 

came in form of CNC controller data; axial position, G-code execution, and digital 

outputs. This data is fixed and is not subject to change, unless machine failure 

occurs. However not all processes can avail of this option, due to the lack of data 

sharing capabilities present in the control technology. In these cases other 

complementary process variables are required to enable process characterisation. 

These variables need to be reactive to specific process oriented sources, to provide 

stable windows of analysis. 
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Sensor fusion is very challenging as it requires the homogeneous data acquisition 

of heterogeneous data sources. Through cloud-based monitoring the challenges of 

sensor fusion are overcome, as data is made available on request, standardised for 

correlation, and distributed freely on a network as needed [145]. 
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2.4 Literature Summary 

The evolution of manufacturing process monitoring systems has resulted in the 

combination of decentralised collaborative technology and advanced analytics. The 

drive for decentralisation aims to achieve a multi-dimensional cyber-physical 

system, capable of traversing different process monitoring steps, domains of 

influence, and enterprise levels. Ideologically these systems are the materialisation 

of the design paradigms known as Agent-based design and Holonic systems. The 

resultant cyber-physical production systems are predicted to create the next 

generation of innovative intelligent machines. The research has identified a key 

requirement for these systems, which is the identification/development of a dynamic 

or multi-purpose interoperability medium, to ensure the integration and collaboration 

of multiple Holonic/Agent entities within its multi-dimensional environment. 

Decentralisation has been encapsulated with cloud-based technology, 

namely service-oriented architecture. The utilisation of these mediums within 

manufacturing creates a new open access data environment. The reviewed 

interoperability mediums vary in functionality and capacity. Ultimately there is no 

one solution to meet the requirements of every manufacturing system or enterprise 

level. The adoption of any data interoperability architecture is dependent on the 

required desired attributes of the system as a whole, i.e. speed, capacity, openness, 

network range, security, etc. A research opportunity is present within the creation of 

a cloud-based interoperability medium to meet the requirements of field-level 

manufacturing process monitoring systems. Requirements include; high 

communication speeds, high data throughput, high correlation accuracy. 

The previous examples of cyber-physical production systems, have 

implemented some form of manufacturing process monitoring intelligence. However 

a multitude of development potential is available due to the advantageous open 

access data environment. Evidently, research and development into the migration 

of proven methods to achieve the fundamental process monitoring steps is 

imperative. A research opportunity is available in the realisation of dynamic multi-

scalable signal processing. This incorporates the migration of fundamental signal 

processing techniques to a cloud-based architecture, to form a manufacturing 

monitoring specific cyber-physical production system. 
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Chapter 3 

Design and development of a reconfigurable field-level 

manufacturing process monitoring architecture 

 

3.1 Introduction 

The adoption of any data interoperability architecture is dependent on the required 

desired attributes of the system as a whole, i.e. speed, capacity, openness, network 

range, security, etc. This work is aimed at field-level manufacturing process 

monitoring systems, i.e. level 2 and level 3 of the ISA-95 standard, which addresses 

non-deterministic discrete control systems. Performance requirements in these 

systems include; (1) High data rates, > 10 kHz, (2) High communication speed, <= 

1ms, (3) High accuracy correlation, <= 1ms. Evidently, no current field-level SOA 

could provide for these requirements, and subsequently a new custom architecture 

is required for development. However development creates more requirements, as 

the architecture needs to be; (a) open source to allow for data structuring that meet 

the needs of the dynamic manufacturing environment, and (b) incorporate, or be 

open to the integration, of state-of the art technologies and techniques. These are 

the design requirements for a new manufacturing field-level reconfigurable process 

monitoring system. 

The developed architecture is named after its fundamental data 

interoperability operation of Acquisition Recognition and Clustering (ARC). The ARC 

is; programmed through the Labview graphical programming language, modelled 

after SOA modelling techniques, and utilises state-of-the-art technologies, to 

provide a shared pool of data amongst decentralised manufacturing process 

monitoring system software applications. The performance of the architecture is 

quantified through an experimental investigation, to identifying the speed, capacity, 

reliability, and correlation accuracy. 
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3.2 Architecture modelling and development 

In order to model the ARC a cross-over modelling approach is applied, combining 

the SOA abstract model and the SOA engineering model. This cross over aims at 

addressing the requirements of a process monitoring system. The model steps are; 

legend definition, domain specification, meta and data modelling, service and 

mapping, and topology generation. 

3.2.1 Legend definition 

 

 Acquire Recognise Cluster legend 

A legend identifies the symbols for different SOA elements across multiple domains. 

These symbols include inputs, outputs, boundary layers, and events [1]. These 

components define the different objects present within the SOA. 

The ARC’s elements illustrated in Figure 3.1, consist of; 

 Adaptor, the physical connection points of cyber-physical-systems [2], which can 

acquire data from a physical or virtual source and release the data within the 

SOA as a service, or oppositely transfer system commands or data to a physical 

controlled body. Adaptors would represent data acquisition and loop control 

steps within a process monitoring system. Adaptors are either acquisition-

Adaptors: inputs, or control-Adaptors: outputs. 

 Complex Event Processing (CEP), entities that derive and analyse higher level 

information out of low-level or atomic events [3]. The scope of event processing 

is limitless due to its open definition, any data manipulation services can be 
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represented as an event processing engine. A defining characteristic of an event 

processing element is its ability to acquire data from a source, process it, and 

then re-release it as a new service to the network. Event processing can 

represent the signal processing and decision support steps within a process 

monitoring system. Complex event processing is an open-representation of a 

computational service, and can be distinguished by their primary functions, e.g. 

CEP-Filter, CEP-Analysis, etc. 

 Agents, active consumers of service data for individual utilisation. The scope of 

Agent entities is limitless due to its open definition. This is because any data 

consumer can be represented as an Agent. A defining characteristic of an Agent 

is its localised individual use of data, as it does not release data back into the 

system as a service. Agents, if required, can utilise multiple services that are 

available within the network, communicate with entities to achieve goals, and 

perform system control actions through the available services. Agents can 

represent the signal processing, and decision support within a process 

monitoring system. Agent is an open representation of a system component, and 

can be distinguished by their primary functions, e.g. database-Agent, filter-

Agent, management-Agent, etc. 

 Gateway/Mediator, elements that enable the connection of different network 

types within the architecture, or provide a means of transportation of data to 

different network areas for distribution [4]. 

 Orchestrator, central control applications which can dictate operation to organise 

decentralised entities, or enable interoperability between two or more entities [5]. 

3.2.2 Domain specification 

Domain and system categorisation incorporates the assembly of domain specific 

components and categorisation within layers defined in the ISA 95 standard.  

The focus of this work incorporates level 1 measurement and sensing, for 

level 2 and 3 monitoring and control. The capability of a SOA discrete control system 

to achieve enterprise wide integration throughout higher levels is evident in the 

AESOP initiative, and OPC-UA. However, this work aims at providing a specific 

model starting with a bottom up approach to reconfigurable manufacturing process 

monitoring systems, consisting of the measurement, acquisition, signal processing, 
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and decision support steps. An example of which can be seen in the merging of 

infrastructure layers across domains, as seen in Figure 3.2. Level 0 and 1 represent 

a common platform for the higher level domain specific levels to share. Each domain 

requires monitoring of the manufacturing process, this data can be subsequently 

shared by providing its action as a service to applications inside and outside the 

specific domain of initial implementation. The Adaptor element can enable this goal 

by utilising custom data acquisition functions to take unique inputs from a sensor to 

produce a common output that is hosted as a service and transmitted to multiple 

sources. 

 

 ISA-95 layers, adapted from [1] 

3.2.3 Meta and data modelling 

A meta-model defines the basic components that the data-model can be built from, 

which includes concepts and rules. A data-model is a semantic or abstract 

description of the data owned by a subsystem which can be accessed by other 

systems within a specific domain [6]. 

Within the Adaptor element, the data model can be seen to represent 

different types of data that is able to be acquired by data acquisition functions 

present within the application, as seen in Figure 3.3. This data has sub-type-data 

corresponding to different variable parameters, i.e. its data type, sample rate, unit 

representation, and time of occurrence. Timing within a process monitoring system 

is crucial as it enables the correlation of different data streams through an instance 

of occurrence reference. This requires the data that is being acquired to share a 

timing element, e.g. a clock reference. Traditional SCADA systems are less 

concerned with correlation given that their requirements are specific to the most 
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recent data reading. However, sample rate requirements within manufacturing 

process monitoring systems can range between 1Hz-to-1MHz and beyond. 

Computational-units or networks have an incapability to sustain such a large amount 

of traffic, especially for single value references at high frequency. In order to 

overcome this challenge data is clustered into packets, with meta-data specifying 

time of occurrence with a reference clock reading. Within the data model, specified 

in Figure 3.3, a data packet is a collection of raw data points with timing-meta-data, 

namely;  

 Clock: specifies a reference point from the acquisition clock appertaining to 

when data was first acquired 

 Time-Line: the total time that has passed since the initial clock reading was 

taken 

 T-Delta: the common time increment between samples which is dictated by 

the sample rate. 

 

 Adaptor modelling 

The combination of raw-data and timing-meta-data enables a data stream to be 

packed by a sourcing application and then subsequently assembled and consumed 

by a seeking application. 

3.2.4 Services and mapping 

Generic Services are an abstract common way for exchanging data between 

subsystems that are technologically independent, and Mapping defines how 

abstract services are mapped for physical implementation [6].  
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Shared Variable Engine 

The SOA interoperability system selected to achieve the goals of the reconfigurable 

manufacturing process monitoring system is the Shared Variable Engine (SVE). The 

SVE was selected due to its available services, network integration, and open 

source meta and data models. In order to summarise, the SVE is a software 

framework that enables variables to exist on a network and be communicated 

between applications, remote computers, and hardware [7], as seen in Figure 3.4. 

The SVE utilises the NI-Publish Subscribe Protocol (NI-PSP), which consists of the 

Ethernet TCP/IP and a LogosXT transmission algorithm [8]. The SVE enables 

applications to expose their data as services, by ‘publishing’ the data to a SVE. The 

SVE hosts the data, buffers the data, and distributes the data to multiple applications 

which ‘subscribe’ to it. Furthermore, the open-source meta and data model ensured 

that advanced SOA attributes could be integrated, such as binary messaging for 

efficient communication. 

 

 National Instruments – Shared Variables Engine 

Binary Message Model 

Binary conversion enables the conversion of any data type or cluster to a binary 

string format which can be represented as byte string. The binary conversion 

specifics are presented in the Appendix A.3: Binary Conversion.  In order to 

distribute data within a network via the SVE a message structure needs to be 

defined. The design requirements for the message structure includes; 

 Multi-sample, the message must be capable of containing a single variable 

value as well as multiple values 
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 Meta-data, the message requires the incorporation of timing-meta-data and 

variable characterisation data 

 Data-types, the message must be able to incorporate multiple data types, 

e.g. Boolean, Double, Integer, etc. 

 Binary-compression, the raw data and message must be compressed into a 

binary representation.  

 

 Binary message model conversion 

A three step Binary Message Model (BMM) was utilised to meet the previous stated 

requirements. A visualisation of the BMM is shown in Figure 3.5, and the data 

descriptor is presented in Table 3.1. Both the process-data and metadata could be 

converted into byte strings and structured in a generic message model, which 

identifies what type of message it is, the owner of the message, and the time at 

which the message was created.  

Binary conversion enables flexibility within the message as different data types and 

quantities can be assembled without the need for changing the message structure. 

In order to decode the message the receiving application needs a data structure 

reference in which to transpose the binary data into. The initial message data model 

acts as a base reference model to achieve this, enabling the message type to be 
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exposed and enabling the application to determine what structure the metadata is 

in. Subsequently, the metadata will provide details in how to transpose the process 

data binary string, e.g. data-type, sample count, variable count. The BMM can be 

expanded to incorporate multiple types of messages, including request and 

response messages between applications. The only change will be present within 

the message type specified and the corresponding data structure of the metadata 

and data binary strings. 

 

Table 3.1 Binary message model data descriptor 

Data interoperability 

The ARC data interoperability operation can be reviewed in 7 steps, as data flows 

from source to service and finally to consumer. These steps are characterised by 

name of the architecture; Acquire, Recognise, and Cluster (ARC), as illustrated in 

Figure 3.6. The software elements in this example include an acquisition-Adaptor 

for data sourcing, the SVE for data interoperability, and a data client-Agent for data 

consumption. 



Architecture Design and Development .3 

71 

 

 Acquire recognise cluster, sequential data flow 

(1) Acquisition: data is collected via an Adaptor and time-stamped with a CPU 

timing mechanism. 

(2)  Serialisation: data is serialised to a Binary Message Model (BMM) format, 

data can range from single values to thousands of values in an array which 

is bundled into a singular message packet 

(3) Hosting: packets are published to and hosted by the SVE for internal and 

network wide data distribution 

(4) Stream: data is acquired and streamed dynamically from the SVE by the data 

client-Agent which can be present locally on the same computer or remotely 

across a network 

(5) Buffer: data is acquired from multiple sources that arrive at different times 

and are then loaded into a designated buffers for processing 

(6) Forming: data buffers are emptied cyclically where message packages are 

deserialised, data streams are correlated, and further buffered for 

consumption 

(7) Consumption: processed data streams are consumed depending on the 

functionality of the application. 
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3.2.5 Topology generation 

 

 Example ARC service oriented architecture topology 

Topology generation connects all components within domains, and between 

domains, using the previously defined interfaces. A simple reconfigurable 

manufacturing process monitoring system topology example for data acquisition, 

signal processing, and decision support can be seen in Figure 3.7. Adaptors acquire 

data, format it to the BMM, and publish it to the orchestrator, i.e. the SVE. Connected 

computers can gain access to the data via local SVE’s that provide for network 

interoperability. Complex event processing elements subscribe to data streams, 

manipulate the data (signal processing) and publish it back to the SVE. Agent 

elements subscribe to data within the network and provide data management and 

decision support capabilities. The modular structure of the SOA manufacturing 

process monitoring system enables the expansion, retraction, and reconfiguration 

capabilities to adapt to any analytical requirement. The dynamic data acquisition 

elements allow the system to adapt to environmental changes, e.g. changes in 

sensors types, data sources, etc. The network distribution capabilities enable 

collaboration of computation, allowing multiple analysis functions to be achieved 

through dedicated processing units. The resultant manufacturing reconfigurable 

process monitoring system is decentralised in nature, yet cooperatively united 

through asynchronous services. 
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3.3 Performance measurement 

3.3.1 Communication and message serialisation speed  

Setup 

Two experiments were undertaken to test the performance of the SVE and BMM. 

Firstly the message structure serialisation and deserialisation time frame was 

quantified. Secondly the Round Trip Time (RTT) was identified, and contrasted with 

other architectures. RTT measures the time taken to send a message to a 

networked application and receive the same message. Three types of message 

structure were tested to enable a performance comparison; the BMM, normal XML 

coding, and a hybrid structure which utilised binary conversion of sample data 

values with a XML structure. The data contained within the messages was in 

accordance with the BMM, consisting of metadata and raw data, which had a 

varying data quantity of 100, 500, and 1000 samples per message. All three 

methods utilised the SVE as an interoperability medium. The SVE enables data 

interoperability across a network and within a central computer. Both scenarios were 

tested for RTT capabilities.  

Results 

The numerical experimental results are presented in Table 3.2: serialisation and 

deserialisation, and Table 3.3: RTT. Furthermore, Karnouskos and Somlev  [9] 

performed similar experiments in order to assess the performance of WS, namely; 

traditional web services with Axis2, DPWS, REpresentational State Transfer 

(REST), and Constrained Application Protocol (CoAP), as seen in Table 3.4. A 

comparative analysis of results from both studies is given in Figure 3.8. 

From the results, as illustrated in Figure 3.8, there is an 87.2% time reduction 

when utilising the BMM serialisation at 100 samples compared to SVE-XML and a 

95.6% reduction compared to DPWS. Data representation within the BMM produced 

on average a 66.2% reduction in message size compared to XML. BMM 

deserialisation provided a 96.7% time reduction at 100 samples compared to SVE-

XML and a 98.7% reduction compared to DPWS. The SVE RTT has a linear 

response to data transmission size. This provided a reduced RTT of 89.1% on 

average at 100 samples per messages across SVE BMM, XML, and XML-B 

compared to DPWS. Comparatively, the SVE in combination with the BMM provides 



3. Architecture Design and Development 

74 

the shortest serialisation, RTT, and deserialisation time of all measured services at 

0.88 ms, with a sample rate of 100 kHz at 100 samples per message, within a Local 

Area Network (LAN), which is within the 1 ms requirement of soft real-time systems. 

These results also indicate that local interoperability within a central computer can 

yield greater time reductions as the SVE provided a 0.23 ms RTT. The combination 

of SVE and BMM within a central computer can provide interoperability within 0.24 

ms with a sample rate of 100 kHz at 100 samples per message, or 0.37 ms with a 

sample rate of 1 M Hz at 1000 samples per message. 

 

Table 3.2 BMM experimental results: serialisation and deserialisation 

 

 

Table 3.3 SVE experimental results: round trip time 

 

Table 3.4 Karnouskos and Somlev experimental results [9] 
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 BMM and SVE experimental results 

Architecture comparison 

 

 
 

 Service-oriented architecture enterprise integration and field-Level 

speed capability, adapted from [6] 

Several studies have been undertaken by researchers to characterise the 

performance of the specified SOA’s; OPC-UA [10], DPWS and REST [9], and the 

SVE [11], as illustrated in Figure 3.9. The characterisation of the MTConnect speed 

performance has not yet been specifically addressed. However the characterisation 

of similar REST interfaces has been achieved, and will represent MTConnect in this 

comparison. The SVE with the BMM and REST provided the fastest communication 

speeds of between 10 to <1 ms, with OPC-UA and DPWS providing lesser speeds 

of 100 to 10 ms. The causality of the communication speed difference can be 
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identified in the simplification of communication stacks that exist within the SVE and 

REST. While OPC-UA and DPWS provide a greater service functionality, enterprise 

integration capability, and security measures. 

3.3.2 Data capacity and communication reliability 

Setup 

Two experiments were undertaken to provide a contrasting view of how large data 

packages can be communicated through the ARC reliably. Data was transmitted 

from an acquisition-Adaptor to a data client-Agent via the SVE. The software 

applications were being hosted in the first test by a singular computer, and in the 

second test between two computers networked together via a 100 Mbps network 

switch. Network communication speed was identified through the measurement of 

message arrival times in the Agent. The Adaptor was set to communicate 1 

message or “package” of set data size every 1 ms, which is 1000 Packages Per 

Second (PPS) per variable. The set 1 ms timeframe acted as a defining limit for 

capable data communication. The mean communication time was determined 

through 3 repeated tests. Additionally the quantity of variables being transmitted 

was incremented between test sets. Samples per package were varied between 

local and network tests, as the network tests were limited by 100 Mbps on the 

network. Local communication time experiments were undertaken with a 1000 

samples per package with double point precision variables resulting in 8.134 kB per 

package. Network communication time experiments were undertaken with a 100 

samples per package with double point precision variables resulting in 0.934 kB per 

package. 

Results 

Experimental results are illustrated in Figure 3.10 and Fgure 3.11. Each figure has 

two sets of data, the bar chart represents the total transmission of data of each test 

(Mbps) axis Y1, and the dot plot represents the average package communication 

time (ms) axis Y2. The X axis in the charts represent each test undertaken, and 

identifies the number of shared variables utilised and PPS sent. 

From the results, as seen from Figure 3.10, it can be concluded that the ARC 

has a local maximum capacity to maintain 20 M Hz of data, i.e. 20000 packages, 

across 20 shared variables, with a standard deviation of 0.32 ms, at 1301.4 Mbps. 
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It can be seen from Figure 3.11 that the ARC has identified a network maximum 

capacity to maintain 1 M Hz of data across 10 shared variables, with a standard 

deviation of 0.83 ms, at 74.2 Mbps. Results beyond these two set points in both 

experiments, identify an increase in mean communication time above the 1 ms set 

time, indicating an incapacity to maintain the set throughput target. 

 

 Local communication time bench marking 

 

 Network communication time bench marking 

It is important to note that: 

  A larger number of variables can be utilised depending on the systems 

requirements, meaning 5 to 30 variables is not the maximum limit. However 

message communication times will increase with increasing message sizes and 

communication traffic. 
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 Decreasing message sizes will enable a higher PPS throughput capacity, and 

vice versa.  

 Faster and more reliable results could potentially be achieved within network 

tests through increasing the connection speed >100Mbps, which is a bottle neck 

in the system’s capacity. 

3.3.3 Correlation accuracy 

Setup 

The decentralised architecture of cloud-based interoperability systems need a 

common clock reference to correlated data. On a network of servers, clock 

synchronising is undertaken autonomously. However the accuracy of operation 

varies between 10-100-1000 ms. Since the ARC operates on a local area network, 

all data sourcing software adaptors are required to operate on a single computer, to 

ensure the highest correlation accuracy of data streams. However there is a 

variation in clock referencing mechanisms. Subsequently an experiment was 

undertaken to identify the accuracy of correlation between data streams, utilising 

different time referencing mechanisms. The clock referencing mechanisms include; 

 Windows clock: references the computers operating system’s clock, and sets the 

timestamps when data arrives 

 CPU clock: references an internal CPU clock and sets the timestamps when data 

arrives 

 Calculation: utilises a base reference from the CPU clock from when data first 

arrived, and then timestamps data on a calculation utilising a set distance 

between samples.  

These three mechanisms are utilised to measure vibration from two equally 

distanced sources, from the impact of a force measurement hammer. Vibration was 

measured with two separate triaxial accelerometers, A and B, connected to 9234 

analogue input modules, with separate cDAQ 9191 Ethernet data acquisition 

devices. Two acquisition-Adaptors acquired data from the data sources, timestamp 

the data using the different timing mechanisms, and published their data to the SVE. 

A database-Agent acquires the sources and correlates the data streams together 

for analysis. The force of the impact hammer was recorded in the same analogue 

input module and data acquisition device, as accelerometer A. This insured that the 
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natural reaction from impact to vibration was measured on a single data acquisition 

rate, enabling a near perfectly correlation between the two data streams, regardless 

of time stamping mechanism. However accelerometer B was operating on a 

separate data acquisition system, with a different data acquisition clock. The only 

point of correlation between A & B’s data streams are through the timing 

mechanisms in the acquisition-Adaptors. In order to identify the accuracy of the 

different mechanisms, the accelerometers were excited periodically over a 60 

minute period. The primary vibration reaction response time, T1, was recorded 

between the impact force and accelerometer A. Also the secondary response time, 

T2, was recorded between the impact force and accelerometer B. T1 identifies the 

variation in the natural response to vibration from impact. T2 identifies the natural 

response to vibration from impact, and also the variation in timing correlation 

mechanisms. Subsequently, T2-T1=T3, T3 being the variation in timing correlation 

mechanisms. 

Results 

Experimental results are presented in Figure 3.12. The results show for all three 

timing mechanisms; the deviation of correlation over time, as seen in Figure 3.12.A, 

the average deviation in correlation over the testing period, as seen in Figure 3.12.B, 

and the standard deviation in correlation over the testing period, as seen in Figure 

3.12.C.  

Both the operating-system and CPU clock timing mechanisms provide a 

stable measurement timing correlation, with the CPU clock maintaining a standard 

deviation of 0.165 ms, and the operating-system maintaining a standard deviation 

of 0.434 ms. However the calculated mechanism identifies a continuous drift in 

correlation between data streams, with a standard deviation of 3.35 ms. This drift is 

due to the losses in the system from errors in measurement, rounding of 

calculations, and other disturbances. The calculation cannot provide for these 

irregularities as it utilises set values. Subsequently any deviation is progressive, 

resulting in a separation in data stream correlation. 

As specified, both the operating system and CPU timing mechanisms provide 

a stable timing correlation. However, initial correlation with the operating-system 

timing identifies a large deviation in correlation, represented by an average 

correlation deviation of 14.578 ms. This identifies a significant inaccuracy in the 
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operating-system timing mechanism to timestamp data. 

 

 Data stream correlation timing mechanism comparison; A: 

correlation over time, B: average correlation drift, C: standard 

deviation in correlation drift 

In conclusion to this experiment, the CPU timing mechanism has been identified as 

the best choice in data stream correlation, with an average correlation deviation of 

0.304 ms, and a standard deviation of 0.165. This equates to a maximum correlation 

deviation of ±0.05%, e.g. a deviation of ±1 sample @ 2 kHz, or ±10 samples @ 20 

kHz, ±100 samples @ 200 kHz, or ±500 samples @ 1 MHz, etc. This can be 

considered highly adequate for multi-system inputs in a manufacturing process 

monitoring system. However this is depending on the accuracy required by the 

analytics. Where sampling correlation is most significant, parallel data acquisition 

hardware devices can achieve a near 0% correlation deviation. These systems can 

also feed into a decentralised system, however the correlation deviation would be 

present among other distributed data acquisition resources. Further measures to 

overcome high data acquisition rates and/or higher accuracy correlations, would 

include the use of integrated dedicated technology such as FPGA’s or real-time 

CPUs. The utilisation of high-spec hard-real-time technology can provide localised 

high speed data processing and correlation, resulting in lower sampling rates of 

shared data, and subsequently reduce correlation deviation. 
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3.4 Summary 

This chapter focused on the design and development process for creating a 

reconfigurable manufacturing process monitoring system. Fundamental to this task 

was the creation of a dynamic multi-purpose interoperability medium, to ensure the 

integration and collaboration of decentralised software components. Key design and 

performance requirements included (a) open source data structuring, (b) 

incorporate, or be open to the integration, of state-of the art technologies and 

techniques, (c) meet performance criteria; (1) High data rates, > 10 kHz, (2) High 

communication speed, <= 1ms, (3) High accuracy correlation, <= 1ms. 

The following summarises the developed reconfigurable manufacturing 

process monitoring system, namely the Acquire Recognise Cluster (ARC) service-

oriented architecture. 

The ARC utilises the National Instruments Shared Variable Engine (SVE) for 

dynamic data interoperability. The SVE incorporates key SOA aspects such as data 

interoperability, discovery, and eventing. Furthermore, the utilisation of the SVE 

enables the solution to both of the design requirements of (a) open source data 

structuring, and (b) the integration of state-of the art technologies and techniques. 

The solution to both of these design requirements is represented in the integration 

of the Binary Message Model (BMM) within the SVE. The BMM utilises state-of-the-

art binary representation for efficient data exchange. The dynamic behaviour of 

binary conversation enables the adaption of the model to meet the variation present 

in manufacturing systems. The variation in data type, data size, data length, data 

format, can now be serialised into a common message format. 

Fundamentally, SVE acts as an orchestrator unit to represent data sources 

as services on a network. The SVE utilises the National Instruments – Publish 

Subscribe Protocol (NI-PSP), which operates on Ethernet TCP/IP with use of the 

LogosXT transmission algorithm. The NI-PSP enables the pulling and pushing of 

data within the network, via event services, as data variables can be referenced on 

request or subscribed to for event driven data acquisition. Ultimately the ARC 

enables the facilitation of process data variables within a cloud that is acquirable 

dynamically locally and/or across a network. The functionality fundamentally meets 

the requirements to form the platform on which a cyber-physical production system 

can be built. 
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Multiple experiments were undertaken to test the effectiveness of the ARC to 

meet design requirement (c), which corresponds to performance criteria within a 

field-level manufacturing environment. The results of these experiments have 

resulted in the creation of a performance characterisation table, as seen in Table 

3.5. Evidently the ARC meets the performance criteria of (1) High data rates, > 10 

kHz, (2) High communication speed, <= 1ms, (3) High accuracy correlation, <= 1ms. 

The functionality and performance of the ARC has surpassed all previously 

reviewed SOA technologies within field-level manufacturing systems, or levels 1 to 

3 in the ISA 95 standard. 

 

 

Table 3.5 ARC performance characterisation 
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Chapter 4 

Investigation and development of decentralised 

manufacturing data acquisition, signal processing, and 

process analysis entities 

 

4.1 Introduction 

A case study was required to investigate the initial application of the ARC in a 

manufacturing environment, and enable the development of multi-scalable signal 

processing and analysis elements, which form the reconfigurable manufacturing 

process monitoring system. 

This phase 1 investigation focused on monitoring a single spindle turning 

operation in a CNC turning machine tool. CNC turning is a complex process of 

interactive variables and reactive phenomena. Challenges in monitoring these 

processes include; multiple process sensors/variables, large data acquisition rates, 

accurate correlation of data streams, parallel/high capacity data processing 

computation, and the utilisation of advanced analytics. Key process variables 

selected for acquisition, signal processing, and analysis are; tool force, single phase 

motor electrical current, and spindle/turret vibration. 

The process data acquired provided a point of reference for the design and 

development of decentralised signal processing and analysis techniques. These 

entities formed the reconfigurable tools within the ARC process monitoring system. 

Key signal processing techniques and analytics for both the time and frequency 

domain are migrated into the architecture. A detailed review of how signals can be 

processed to extract specific process features is provided. Considerable focus is 

placed on frequency analysis through utilisation of spectrum and spectra analytics. 

Furthermore an advanced autonomous process performance characterisation 

system is presented, which utilises a collection of reconfigurable ARC signal 

processing tools. 
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4.2 Manufacturing process setup 

4.2.1 CNC turning machine tool 

 

 
 

Figure 4.1 OKUMA LT15-M CNC turning lathe, axis reference 

 

 OKUMA LT15-M CNC turning lathe, specifications 

The CNC turning machine tool in this work was the OKUMA LT15-M, as seen in 

Figure 4.1, and detailed in Table 4.1. OKUMA machines operate in the aerospace, 

automotive, construction, oil and gas, biomedical, die and mold and wheel 

manufacturing areas [184]. The OKUMA LT15-M is an industrial machine tool, and 

provides a real representation of a manufacturing environment. 
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4.2.2 Tooling and materials 

  

Figure 4.2 Sanvik tool tip and tool holder 

 

Figure 4.3 Workpieces 

Oblique cutting was carried out using a Sanvik PSBNL 2525M12 tool holder and a 

Sanvik SNMG 12 04 08-23 H13A cutting tool tip, as seen in Figure 4.2. The 

workpiece material selected for testing was Steel BS 080A15 and Aluminium 

6082T6. Both materials are commonly used for general machining purposes, and 

are suitable for machining. Dimensions of the workpieces and key material 

properties are illustrated in Figure 4.3. 

4.2.3 Sensing systems: force, vibration, motor current 

The machining variables selected for monitoring identify both cutting tool state, and 

the material removal process conditions; Force, Vibration, and Motor Current. 
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 Force is selected due to its wide utilisation in CNC turning, and dependency on 

the cutting process. Force is unique in this way as it is not influenced by other 

sources.  

 Vibration is selected also due to its wide utilisation in CNC turning, and because 

it is reactive to both the cutting process and machine tool actions.  

 Motor current was selected due to its direct relationship with the machine tool 

movements. Previous examples of motor current measurement in CNC turning, 

reviewed in the literature, focused on spindle monitoring. However electrical 

current drives the entire machine tool. Motor current is an active variable for 

machining operation, and a reactive variable due to its direct relationship with 

the cutting force. Subsequently motor current will be utilised to monitor the 

machine tools active operation, independently of the cutting process. 

Sensors 

Force 

 

Figure 4.4 Kistler 9263 dynamometer mounting 

Force measurement was achieved with a triaxial Kistler 9263 dynamometer. The 

dynamometer was mounted to a custom mounting plate, secured to turret A, and 

provided tool holder clamping, as seen in Figure 4.4. The dynamometer connected 

to a Kistler charge amplifier 5038A, a NI-9234 analogue input module, and a NI 
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cDAQ 9191 WIFI data acquisition chassis. This setup enabled force on the X, Y, Z 

axis of the cutting tool to be measured. 

Vibration 

 

Figure 4.5 Kistler 8762A accelerometers, magnetic mounting A 

 

Figure 4.6 Kistler 8762A accelerometers, magnetic mounting B 

Vibration measurement was achieved with two triaxial Kistler 8762A 

accelerometers. Accelerometer A, is magnetically mounted to the spindle, as seen 

in Figure 4.5. Accelerometer B, is magnetically mounted to the turret-A cross-slide, 

as seen in Figure 4.6. The accelerometers are connected to separate NI-9234 
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analogue input modules, and a NI-cDAQ 9191 Ethernet, and NI-cDAQ 9171 USB 

data acquisition chassis. Accelerometer B is mounted away from the tool, as the 

experiment is aimed at monitoring real manufacturing process conditions. 

Subsequently the accelerometer cannot be placed on the turret, mounting plate, or 

tool, because the wired connectivity of Kistler 8762A accelerometer. This wire would 

interfere with machine actions when the turret rotates. Subsequently Accelerometer 

B will explore the effects of vibration monitoring in a process as it is dispersed 

throughout a physical structure. 

Motor current 

 

Figure 4.7 Magnelab SCT-0400-050 current transformer wire connection 

Current measurement was achieved with four Magnelab SCT-0400-050, 50amp 

Current Transformers (CT). The current transformers are clipped around different 

motor winding wires in the LT15-M; spindle A, turret A x-axis, Spindle L z-axis, and 

turret B z-axis, as seen in Figure 4.7. The current transformers are connected to a 

singular NI-9239 analogue input module, and a NI-cDAQ 9178 USB data acquisition 

chassis. The current transformers enable AC to be measured on 1/3 motor phase 

connections, of each motor. 
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Axis 

 

Figure 4.8 Axis reference 

Each sensor is connected to CNC machine in different ways. The CNC machine has 

a set axis coordinate system. Each of these sensors has sensing capabilities in 

different axis. The cross-reference of sensor axis with machine axis can be seen in 

Figure 4.8. 

Scale 

The cross-reference of sensor sensitivity, scale, and acquisition rate can be 

observed in Table 4.2. A total of 13 data streams will be acquired, varying from 3kHz 

to 12kHz sampling rates, with a combined 102kHz sample rate, which is 829.668 

kB or 6.637 Mbps. Scaling was determined through the combination of 

recommended settings specified to each sensor, and sensory calibration results, 

which are represented in Appendix B: datasheets. 

 

 Data variable reference  
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4.3 Cloud data acquisition 

4.3.1 Prologue 

Each sensor was connected to a data acquisition hardware device, which was 

connected to a micro-computer via a communication medium, e.g. USB, Ethernet 

TCP, or WIFI, as seen in Figure 4.9. These devices provided the physical 

measurement, and initial digital process variable measurement. The ARC 

acquisition-Adaptors utilised a unique hardware API to acquire data from these 

devices. 

 

Figure 4.9 OKUMA LT15-M sensor monitoring topology 

In order to achieve high speed and high data capacity data acquisition, an ARC 

software Adaptor was created for each data acquisition device. Data is acquired by 

the software Adaptor, formatted or serialised to meet the Binary Message Model 

(BMM), and published to the SVE data cloud, as illustrated in Figure 4.10. The SVE 

data cloud hosts the data and distributes it to subscribing client/Agent software 

applications, on Micro-computer #2. These applications can subscribe to the data in 
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the cloud by referencing the shared variable address, as seen in Table 4.3. The data 

acquired is then de-serialised according to the BMM, and the required data stream 

in the message can be referenced via the sv-index number. The accelerometers 

and the force variables are represented by individual shared variables, due to their 

high data stream sizes. The current variables are represented by a collective shared 

variable, due to their lower data stream size. 

 

Figure 4.10 ARC acquisition-Adaptor schematic 

 

 Data acquisition variable reference 

Two client applications are utilised; a viewing-Agent to display the data to the user, 

and a database-Agent to store the data streams for post process analysis. These 

applications incorporate the same operating principles, as seen in Figure 4.11. Each 

applications unique operation is represented by a custom programming function, 

positioned at the end of the acquisition process. This structure acts as a default 
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programming template, ensuring effective and efficient dynamic data acquisition of 

multiple process variables. This is made possible through the use of asynchronous 

programming.  

 

Figure 4.11 ARC Agent schematic 

Asynchronous programming allows for a single primary-computation program to 

generate multiple sub-computation programs, which are detached from the original 

program. This separation allows the sub-programs to operate freely and 

communicate to other programs via internal communication streams. In an ARC 

Agent, the Asynchronous Programming Agents (APA) perform the data acquisition 

task from each shared variable. Asynchronous programming is imperative to this 

operation, as each shared variable can be from a different source, meaning their 

data is being transmitted at different rates. The high data sizes and throughput 

requirements in manufacturing process monitoring systems, means delays can 

cause communication bottlenecks. These bottlenecks create large data buffering 

queues that will lead to high computation periods, data lose, and fundamental 

software crashes. Bottlenecks must be avoided at all cost. If the ARC is to be used 

in an industrial setting, it must be resilient. Through asynchronous programming this 

problem can be overcome, as each shared variable has its own thread of 

computation, free from delay from other sources. This dedicated action ensures data 

cannot bottleneck within the parameters of available computation in the hardware. 

Additionally since asynchronous programming allows for multitudes of sub-

programs to be generated, the ARC Agent is free to acquire limitless amounts of 

shared-variables. 
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4.3.2 Machining data acquisition 

Operation 

In order to examine the process data via the ARC, a fundamental roughing cycle 

machining operation was selected, as illustrated in Figure 4.12. This operation is 

common in turning roughing cycles to quickly remove large quantities of material 

from the workpiece. The machining parameters present in Figure 4.12, represent 

the convergence of the recommended tool machining parameters, referenced in 

Appendix B.4: machine tools, and OKUMA operating capability, referenced in 

Table 4.1. Dry cutting was selected due to the low ingress protection rating of the 

sensors. The workpiece is pre-machined to reduce the diameter from 42mm to 

33mm, ensuring a concentric workpiece for testing. The cutting operation 

incorporates 3 cutting cycles, which will cut at different feed rates. This will allow for 

the comparative view of different cutting speeds on the process variables for 

analysis, for this initial phase 1 investigation. 

  

Figure 4.12 Tool canned cycle motion 
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Results 

 

Figure 4.13 Cutting cycle varying feed steel machining results 1, A: x,y,z force, 

B: spindle current, C: x-axis current, D: z-axis current. 
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Figure 4.14 Cutting cycle varying feed steel machining results 2, A: x,y,z 

spindle vibration, B: x,y,z turret vibration. 

The results of the cutting cycle with varying feeds for steel machining are presented 

in Figure 4.13, and Figure 4.14. This is the raw data acquired via the ARC, and 

stored in a database by the database-Agent. 
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The force data, as seen in Figure 4.13.A, identifies a clear machining reaction 

to the cutting operation, as varying feeds produce an increased force, as more 

material is removed in a shorter time frame. The primary of these forces is along the 

cutting Y-axis. The radial X-axis having marginally greater force than the feed Z-axis 

at F0.1 and F0.2. However feed Z-axis overtakes radial X-axis force during F0.3, as 

the required cutting speed reaches high cutting force levels above 1kN. 

The spindle current, as seen in Figure 4.13.B, is a more complicated signal 

to process due to its alternating nature, reactive phenomenon, and variable 

operational speeds. A high inrush current is observable during process start-up, 

followed by multiple equal spikes in amplitude 2 seconds apart. These fluctuations 

are from the rapid acceleration of the spindle, initially through the process start, and 

variably from constant surface speed. The first acceleration is the set 160 RPM at 

+X 100 mm, which is the home position of the test, this is followed by a secondary 

acceleration as the tool is moved into its first cutting position 993 RPM at +X 32 mm. 

These fluctuations are followed by periods of constant acceleration, then 

exponential signal decay as the spindle approaches the desired speed, followed by 

a steady state signal to maintain the current speed. In the current unprocessed state 

cutting influences on the spindle cannot be observed. The only changes occur after 

the machining operation, from spindle acceleration and deceleration as the position 

of the tool changes. Finally a large spike in current can be seen during the switching 

off of the spindle at the end of the process. This occurrence is placed with back EMF 

as the energy leaves the magnetic field of the motor. 

The axis current data, as seen in Figure 4.13.A/B is influenced by a base 

band of noise, within the <=1A, which is the minimum sensitivity of the sensor. 

Further signal processing may reduce this noise effect and strengthen the underline 

current readings. In the raw state the axis current data identifies rapid movements 

of the axis with large current fluctuations, movements of the feed Z-axis, and minor 

movements in the X-axis. 

The vibration data, as seen in Figure 4.14, is highly dense due to the large 

data sampling rate of 12kHz. Spindle vibration varies significantly due to the 

acceleration of the spindle. Different spindle vibration axis identify varying 

magnitudes of reaction to the cutting process, which is similar to the force data. 

However spindle vibration is more reactive to sources other than the cutting process, 

as the radial X-axis shows significant signal magnitude reaction to spindle speed. A 
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significant scale difference, of x5, can be seen in signal magnitude between the 

spindle and turret vibration. This is due to the location of the vibration sensors. The 

spindle accelerometer is located directly above the source of vibration, while the 

Turret accelerometer is positioned away from the tool tip, which is the dominate 

vibration source. However both the sources show a clear reaction to machining, with 

varying magnitude intensities at different feed rates, and signal fluctuations from 

rapid axis movements. 

4.3.3 Conclusion 

The ARC’s high speed and high capacity interoperability, enabled the dynamic 

acquisition and correlation of field-level manufacturing data. Data is freely available 

to any subscribing software application. Data sources are replicated in the data 

cloud to meet the demand of multiple users. Additionally the data correlation 

provided a multi-dimensional view of a machines operation, which was comparable 

to varying modes of operation. The data produced within this phase 1 investigation 

can now be utilised for the development of the signal processing and analysis 

elements, which form the reconfigurable process monitoring system. 
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4.4 Cloud signal processing 

4.4.1 Prologue 

In order to further analyse the process, the next step in a manufacturing process 

monitoring system needs to be applied, i.e. signal processing. The integration of 

signal processing techniques within a decentralised architecture identifies a 

transition from a cloud-based data acquisition tool, to an ideology of decentralised 

collaborative cyber-physical systems. The migration of signal processing techniques 

into a dynamic cloud environment possesses many challenges, including; dynamic 

data acquisition and distribution, high computational requirements, multiple signal 

processing types, and customised filtering configuration sets.  

Previously, the ARC Agent identified a means to dynamically acquire multiple 

streams of data for utilisation. However this data was consumed by the application 

and not redistributed. Redistribution of data identifies a transition from cloud 

monitoring to cyber-physical system collaboration. The data processing application 

is now providing its operation as a service, acting as a mechanism, or Holon, in a 

collaborative system, or Holarchy. In signal processing, this incorporates the 

dynamic signal feature extraction and subsequent distribution of process data. This 

enables a new resource in the collective, as process data is refined and available 

extensively. 

 

Figure 4.15 ARC signal-processing-CEP schematic 

By combining both the ARC Agent and ARC Adaptor, a means for dynamic data 

acquisition and distribution can be formed, i.e. Complex Event Processing (CEP), 
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as seen in Figure 4.15. Similarly to the ARC Agent, SV addresses are defined to 

acquire the specific process variables through an asynchronous configure wizard. 

The wizard generates APAs to rapidly acquire data from the cloud. The raw data is 

collectively deserialised from its binary representation into the BMM. After which 

signal processing can begin, followed by a collective data serialisation and 

transmission back to the SVE. 

Signal processing incorporates multiple techniques with varying attributes 

that enable the extraction and suppression of signal attributes. Additionally the 

utilisation of multiple signal processing techniques in series is common practice to 

refine and ‘filter’ a signal in different ways. Subsequently the configuration and 

orientation of these functions can alter the outputted signal drastically. 

Experimentation is required to produce the desired signal feature. A flexible 

mechanism needs to be created to achieve this in an efficient, effective, and timely 

manner, which also maintains the internal and external configuration of the signal 

processing technique. 

 

Figure 4.16 ARC reconfigurable signal processing mechanism 

The reconfigurable signal processing mechanism created, as illustrated Figure 4.16, 

incorporates the embedding of fundamental process monitoring techniques in a 

programming stack format, namely the Signal Processing Kernel (SPK). The SPK 

is hard-coded to perform the required computation for the specific signal processing 

technique. The internal configuration information to enable the custom operation of 

these techniques are held in data layers, namely ‘Filter’ layers. Furthermore the 

external configuration or sequencing/stacking of these Filters defines the 

sequence/length of signal processing undertaken. Data is processed in accordance 
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to the filter stack, selecting the SPK layer required to perform the specific technique 

of each filter stack layer. Once data is processed through one filter it is passed to 

the next. In order to further control this operation, parameters need to be set to 

define the required input to the first filter layer, and the output address to the 

each/last filter layer. In order to achieve this, the filter stack is embedded into a CEP 

data cluster, which defines the input and output configuration data. Filters and CEP 

data clusters are represented by separate XML files. Filters are linked in the CEP 

data cluster via XML file addresses. Subsequently all data required for customised 

signal processing is dynamically loaded for utilisation. 

 

Figure 4.17 Dynamic signal processing  

The utilisation of different signal processing types, with varying serial orientations, 

in connection with different data streams at different rates, causes varying 

computation requirements between signals. Additionally multiple signals in a 

process require processing. Subsequently the reconfigurable signal processing 

mechanism is embedded within an APA. Asynchronous programming will provide 

for effective and efficient computation of uniquely configured and stacked signal 

processing functions in parallel for multiple signal streams. The flow of data in the 

signal processing APA is defined by the CEP-cluster, and sequential orientation of 

the filter layers, as seen in Figure 4.17. The CEP-cluster identifies the data stream 

for processing into the initial filter layer. Additionally the CEP-cluster identifies which 

layers in the filter stack are outputted to SV for distribution. This enables a single 

signal to be subjected to different signal processing techniques, with parallel signal 

processing APAs. Additionally a single reconfigurable signal processing mechanism 

can provide multiple outputs, as a signal is processed at different layers. 
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The signal processing techniques embedded in the SPK include, but are not 

limited to; average, mode, standard deviation, variance, root mean square, 

skewness, kurtosis, rectifier, amplifier, bandpass filter, highpass filter, lowpass filter, 

cut-off-limit, scaling, etc. Additionally maths functions include, but are not limited to; 

addition, subtraction, absolute value, square root, squared, etc. 

4.4.2 Machining signal processing evaluation 

In order to examine the signal processing capability of the ARC signal-processing-

CEP application, the process data acquired during the previous machining cutting 

cycle is examined. Specifically the z-axis motor current is examined, due to its 

multiple features. This was achieved through a virtual ARC software Adaptor that 

reads the process data from the database, and simulates the machining process by 

transmitting the data in real-time to the SVE. The ARC signal-processing-CEP 

application gains access to this data and processes it in real-time, exactly the same 

way it would process the data if machining was actively undertaken. All resulting 

filtered signals are recorded by an ARC database-Agent. 

 

Figure 4.18 Signal processing Z-axis current: raw 

The monitored Z-axis current consists of non-stationary continuous signals, due to 

its varying movement lengths and occurrences, varying speeds, and influences from 

cutting, as seen in Figure 4.18. A variety of Time-domain signal processing 

techniques can be utilised to extract the varying Z-axis movements of the tool. The 

configuration and sequence of these techniques has significant effects on the signal. 

In order to identify the most effective configuration and sequence, a signal needs to 

be evaluated. 
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Evaluation incorporates the utilisation of multiple signal processing 

techniques with different limits, in different sequences. This methodology provides 

a comparative signal responses, allowing for the most effective and efficient signal 

processing chain to be identified.  

Signal processing window size 

A common signal processing configuration setting is the size of the window for 

subjection to the technique, and whether or not the window is moving. Figure 4.19 

provides a contrasting view of the effects of both of these characteristics. 

Figure 4.19.A1/B1 identifies the varying window size of an averaging function 

across a rapid movement/feed movement, with a ‘stationary’ window. In order to 

perform the averaging technique, the window must have the required amount of 

data, i.e. ‘window size’. At capacity the averaging function will then be undertaken. 

After which, the window will be emptied and filled again. The larger the window size, 

the more data is being average, resulting in a greater reduction of signal samples 

per second, and an increase in signal delay. Increasing the window size can reduce 

the load on the signal, from a high data rate to a low data rate. This can allow for 

the enhancement of the signal B1, or the suppression of signal attributes A1. The 

A1 rapid movement is a high frequency transient signal. Small windows can 

enhance this feature, and large windows dilute the signal. Oppositely the B1 feed 

movement is a low frequency continuous signal. Large windows can enhance this 

feature, while small windows have less of an effect on signal noise. Ultimately the 

utilisation of different window sizes can have varying effects on the signal, and 

should be scaled depending on desired feature extraction requirements. 

Figure 4.19.A2/B2 also identifies the varying window size of an averaging 

function across a rapid movement/feed movement, however with a ‘moving’ window. 

Similar to perform the averaging technique, the window must have the required 

amount of data. At capacity the averaging function will then be undertaken. After 

which the window will remove a single value, and acquire a new single value to 

perform its operation again. This resembles a First-In-First-Out (FIFO) approach to 

signal processing. The unique effects this operation has include; minimal decrease 

in signal samples per second, and a smoothing of data transitions. A2 and B2 both 

demonstrate this smoothening effect, as signal features are enhanced in both 

movement types without loss of the signals sampling rate. 



Decentralised Data Acquisition, Signal Processing, and Analysis .4 

103 

 Raw W10 W50 W100 W200 

A1 Rapid Movement – Average 
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A2 Rapid Movement – Moving Average 
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Figure 4.19 Signal processing averaging window size and mode variation 

 

W: Window 
TS: Total Samples 
SPS: Samples per Second 
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Figure 4.20.C1/D1 demonstrate the signal processing techniques of standard 

deviation / variance, with varying window sizes. The suppression of feed movement 

and enhancement of rapid movement can be achieved by varying the window size 

of either the standard deviation or variance. The larger window allows for more data 

to be utilised in the function, and a bigger scope of the process operation to be 

considered. This allows for the large variation present in rapid movements to be 

identified. Subsequently in this example, the required window size for rapid 

movement identification is achieved at W50, and further window extension has little 

effect. 

Figure 4.20.E1 demonstrate the signal processing technique of RMS, with 

varying window sizes. RMS identifies the power in an alternating signal and the 

window size is imperative for effective utilisation. Small window sizes allow for the 

identification of high frequency signals, as the full magnitude of the alternating 

amplitude is measureable. In low frequency signals, the full magnitude of the 

amplitude is not measurable. A RMS is taken incrementally as the amplitude of the 

signal rises and falls, producing a semi-elliptical pattern. This pattern is formed from 

the iteration of the amplitude and inverting of the negative phase of the signal. Low 

frequency signals can be measured by increasing the window size. However the 

magnitude of transient signals are reduced due to dilution of the mean. 
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 Raw W10 W50 W100 W200 

C1 Rapid Movement and Feed 0.2 – Standard Deviation (SD) 

 

  

   

D1 Rapid Movement and Feed 0.2 – Variance 

 
     

E1 Rapid Movement and Feed 0.2 – Root Mean Square (RMS) 
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Figure 4.20 Signal processing techniques with varying window sizes 

 

  

W: Window 
TS: Total Samples 
SPS: Samples per Second 
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Signal processing sequencing 

The sequencing of signal processing techniques can achieve the highest resolution 

of desired signal features. Pre-signal processing can enable a new signal 

processing technique to produce a more desirable response. Figure 4.21.1 identifies 

that the combination of both an average and moving average function can yield 

smooth signal features with a reduced sample load. In order to achieve this result 

the overall magnitude of the amplitude of the signal was reduced. However, this can 

be compensated for with a signal amplifier function if required. Further signal 

processing can now be undertaken with a refined Z-axis current signal.  

Figure 4.21.2 identifies the incorporation of a RMS, to identify the power in 

the signal and convert the alternating current into direct current. The result display 

a clear distinction in amplitude at the different feed rates. However the resultant 

signal load is extremely low, at 1.5 samples per second. Additionally the RMS 

window size required to get a clear amplitude at different feeds, has begun merging 

operations, as feed and rapid movements converge due to the low signal load. In 

order to overcome this, a moving window is utilised in the RMS, ensuring a high 

resolution signal, while maintaining the required RMS window size to identify the 

feed and rapid movement features, as seen in Figure 4.21.3. The moving RMS 

identifies a separation in machining movements and produces a clear direct current 

response to axis movement. Subsequently, this sequence of signal processing is 

the most effective and efficient to measure the overall power in the z-axis 

movements of the CNC machine tool. 

Figure 4.21.4 identifies the capability of signal processing to extract different 

features from the same signal, as rapid movements are suppressed in one signal 

and magnified in another. In order to achieve this, a unique sequence of averaging 

functions, with stationary and moving windows, is utilised to identify feed 

movements. The rapid movements are then extracted through a standard deviation 

function. These two signals can now be utilised by analysis tools for the correlation 

of data to different machining operations. 
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Figure 4.21 Signal processing sequencing and optimising 
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4.4.3 Conclusion 

The internal and external re-configuration capability in the ARC signal-processing-

CEP application, enables the dynamic custom signal processing of multiple 

manufacturing variables. Process data streams can now be manipulated on-the-fly 

within the soft-real-time capabilities of the architecture. The unique customisation of 

signal feature extraction is achieved through a signal processing evaluation, which 

does not require any programming knowledge. The manufacturing process 

monitoring environment is now open to not only multiple data sources, but open 

CEP services.  

The manipulation of data streams through signal processing will further 

propagate varying acquisition rates and data types in the system. The ARC 

facilitates this operation due to the dynamic meta/data model, namely the BMM. The 

incorporation of processing monitoring signal processing functionalities with the 

ARC network forms the first step in manufacturing cyber-physical system 

collaboration. Data interoperability provides the capability for this collaboration, 

however the unique services built above it provides the desired intelligence to the 

process.  
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4.5 Cloud signal frequency analysis and processing 

4.5.1 Prologue 

In order to further analyse the process, more advanced signal processing features 

need to be applied. The integration of frequency domain analysis functions requires 

the integration of spectrum analysis. This functionality transforms a 1 dimensional 

wave into a 2 dimensional spectrum, which viewed overtime becomes a 3 

dimensional spectra. This data structure is outside the scope of the BMM and 

subsequently cannot be utilised within a CEP to distribute the spectrum. However 

feature selection and transformation into 1 dimensional wave from the spectrum 

would allow for redistribution. Subsequently spectrum analysis is utilised for signal 

analysis and subsequent decision support in the ARC. Through spectrum analysis 

the signal processing of alternating signals can be evaluated, e.g. vibration. 

Furthermore, specific frequency bands can be identified and if required isolated 

through ‘pass’ filters that are present in the ARC signal-processing-CEP. 

 

Figure 4.22 Cloud signal spectra analysis 

In order to achieve spectrum analysis an ARC spectra-analysis-Agent was created. 

This Agent can only acquire a single shared variable, to perform amplitude or power 

spectrum analysis via a FFT. Single shared variable processing removes the 

complexity of previous Agents, as data correlation functions, and asynchronous 

program is not required. Single value processing further demonstrates the re-

configurability within the ARC, as a single software application can be replicated 

multiple times and utilised in parallel to analyse different process variables, as seen 

in Figure 4.22. Through utilisation of these configuration options, a data stream can 
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be analysed in a multitude of ways. Furthermore, the integration of these functions 

within the ARC, allows these functions to be applied to any data stream.  

In order to perform spectrum analysis the following settings need to be defined:  

(1) Type of spectrum required, i.e. amplitude spectrum or power spectrum 

(2) Sensitivity frequency (Sf), what is the sensitivity of the sensor, e.g. 6kHz  

(3) Nyquist frequency (Nf), what is the sampling rate, e.g. 12kHz/2 = 6kHz  

(4) Window size (W), i.e. how much data to apply the FFT to, the size of the 

spectrum produced is half the window size, e.g. 12kS = 6kHz spectrals in a 

spectrum. 

(5) Spectral density, whether to represent the each spectral band as the mean 

of its bandwidth 

(6) Window type, what type of window should the data be in, i.e. rectangular, 

Hanning, etc. 

(7) Multiple-In-Multiple-Out (MIMO), is the FFT a moving average with varied 

window size. 

Amplitude and power spectra analysis provide a 3D frequency map of alternating 

signals. This enables a user to identify not only a change in amplitude/power, but 

also a change amongst the various frequencies contributing to the signal. This 

frequency map can enable the identification of process specific frequencies of 

interest that can be isolated for monitoring in real-time, without full spectrum 

evaluation. Isolation can be achieved through the utilisation of various ‘pass’ filters. 

These filters operate in real-time, across a range of sampling rates, and with high 

resolution capability. 

The filtering types of high pass, low pass, band pass, and band stop, are 

Butterworth filters, and are embedded within the signal processing kernal of the ARC 

signal-processing-CEP. Butterworth was selected due to its wide application use 

within process monitoring. Furthermore other filtering techniques can be easily 

integrated within the SPK, but is currently outside the scope of this work.  

In order to perform pass filtering the following settings need to be defined: 

(1) Type of pass filter, i.e. low pass, high pass, band pass, and band stop 

(2) Window size, i.e. how much data to apply the filter to 

(3) Nyquist frequency (Nf), what is the sampling rate, e.g. 12kHz/2 = 6kHz  

(4) Limits, what are the frequency limits of the filter,  
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e.g. band pass 1000 – 2000 Hz 

(5) Order, identifies the level of attenuation at the frequency limits, the higher the 

order steeper the slope of power reduction at frequency limits. 

By integrating these filters into the ARC signal-processing-CEP multiple pass filters 

can be utilised on the same signal to extract specific features, or on a variety of 

process variables dynamically. 

4.5.2 Machining signal frequency analysis 

In order to examine cloud-oriented signal frequency analysis, the process data 

acquired during the previous machining cutting cycle is examined. This was 

achieved through a virtual ARC software adaptor that reads the process data from 

the database, and simulates the machining process by transmitting the data in real-

time to the SVE. The ARC spectra-analysis-Agent and signal-processing-CEP gain 

access to this data and process it in real-time, exactly the same way it would process 

the data if machining was actively undertaken. The spindle cutting Y-axis is 

subjected to spectra analysis as it is most reactive axis to the machining process. 

Subsequently this data stream can provide unique insight into machining 

operations. 

Spectra analysis 

The amplitude spectra and power spectra provide contrasting views of the 

machining processes, as seen in Figure 4.23. The amplitude spectra displays the 

changing amplitude of the various frequencies in the signal. This is achieved by 

estimating the amplitude by expanding the RMS value obtained, √2*RMS. The 

power spectra displays the changing power of the various frequencies in the signal, 

of which the square-root of the sum of all power in the spectrum is equal to the 

signals RMS. The power spectrum is obtained through the squaring of the FFT, 

RMS2 = MS. The subsequent squaring of the spectrum reduces the lower impacting 

frequencies and increases the higher impacting frequencies on the spectrum. 

Spindle cutting Y-axis amplitude and power spectra analysis provides a 3D 

map of vibration during a machining process. In this example the configuration of 

both the amplitude and power spectrum is set to achieve the highest resolution of 

frequency analysis in the spectra, i.e. a spectral band a width of 1 Hz. 
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Figure 4.23 Spindle cutting Y-axis, 1. amplitude spectra, 2. power spectra 

The 12kHz sampling rate represents the Nyquist rate, i.e. the minimum sampling 

rate to achieve a Nyquist frequency to meet the 6kHz sensitivity range of the 

accelerometer. By processing the data at a window size of 12k samples a spectrum 

range of 6kHz is produced. If the sampling rate of the sensor was set to 12kHz and 

window size set to 24k samples, the spectrum range would be 12kHz. A full 

measurement range is achievable. If the sampling rate of the sensor was set to 6kHz 

and window size set to 24k samples, the spectrum range would also increase to 

12kHz. A full measurement range is not achievable as the sensor is only capable of 

measurement up to 6kHz. However, the extra sampling rate can ensure that the 

high frequency signals at not missed. 

The 12kHz sampling and 12k window size of the spectrum produces a high 
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resolution spectrum but at a low rate of 1 spectrum per second. If a high rate was 

required, the spectrum would need to be generated by smaller windows. However 

decreasing the window size also decreases the resolution of the spectrum. The 

Band width (Bw) per spectral, and Cut-off band (Cb) for which the spectrum provides 

a measured value is proportional to the Sensitivity frequency (Sf), Window size (W), 

and Nyquist frequency (Nf), as seen in Figure 4.24. 

 

 

Figure 4.24 Spectrum scaling 

For example; 

A: sensitivity of 6kHz, Nyquist frequency 6kHz, a window size of 12000 

(6000/(12000/2))*(6000/6000) = 1 Hz Band width 

(6000 / 1) = 6000 Cut-off band (6000 Hz range) 

B: sensitivity of 6kHz, Nyquist frequency 6kHz, a window size of 600 

(6000/(600/2))*(6000/6000) = 20 Hz Band width 

(6000 / 20) = 300 Cut-off band (6000 Hz range) 

C: sensitivity of 6kHz, Nyquist frequency 12kHz, a window size of 1200 

(6000/(1200/2))*(12000/6000) = 20 Hz Band width 

(6000 / 20) = 300 Cut-off band (6000 Hz range) 

Both the B and C examples cover the sample time period of 100 milliseconds, 

however B has twice the sampling rate, and window size. The greater window size 

will yield a larger spectrum, however the higher frequencies in the spectrum are not 

obtainable as the sensitivity rate is the same in both applications. Subsequently the 

cut off band is the same for both instances. However increasing the sample size can 

become difficult as large data sets require high computation, and can lead to large 

data storage or ‘big data’ requirements. 
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Figure 4.25 Spindle cutting Y-axis power spectra; varying sample sizes  

A demonstration of reduced window sizes can be seen in Figure 4.25. The window 

size is decreased from 12kHz to 50 Hz at different increments. As the window size 

decreases the band width increases, spectrum layer output increases, and 

subsequently the power in each spectral increases. At a 12k window size the highest 

reading is 0.0047 g.MS, at a 100 window size the highest reading is 0.45 g.MS. This 

is due to the fact that as the bandwidth per spectral increases, the power in each 

band is added together. No power is lost in the process as the sum of all power in 
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both spectrums is equal to 0.048 g.MS/s. Increasing the bandwidth provides a 

collective perspective of neighbouring spectral. As a 100 window size provides a 50 

spectral spectrum with a band width of 120 Hz per spectral. 

 

Figure 4.26 Spindle Y-cutting-axis power spectral density 

In order to compensate for the widening of spectral bands and subsequent 

collective of frequency power, Power Spectral Density (PSD) is utilised. PSD 

represents the power of each spectral on a spectrum as the mean of its band width. 

The PSD of both a 12k and 100 sample window are presented in Figure 4.26. The 

spectral band width of the 12k sample window is 1Hz, subsequently the averaging 

has no effect. The spectral band width of the 100 sample window is 120Hz, 

subsequently the averaging has significant effect. PSD represents the power in a 

low resolution spectrum, >1Hz bandwidth, equivalently to a high resolution 

spectrum, =1Hz bandwidth. 

In order to improve the spectral resolution when performing spectrum 

analysis at periods below 1Hz, a moving spectrum analysis through a MIMO 

operation is required. A moving spectrum operates like a moving average, new data 

is combined with a window of previous data producing a collective result. Unlike 
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previous moving average examples that operate on a FIFO operation, the moving 

spectrum utilises a MIMO operation. A FIFO operation would be unrealistic in this 

operation as new the computational requirements would be extremely high to 

achieve the rapid FFT. More advanced hardware, such as FPGA could yield these 

high data computation results, but are outside the scope of the current work. In order 

to demonstrate this operation a window size of 600 was selected, which generates 

a bandwidth of 20 Hz. By utilising a MIMO of window size 600 and sensitivity of 

6000, the 600 data samples are added to the previous 11400 samples, creating a 

full 6kHz spectrum with a bandwidth of 1 Hz, 20 times a second, as seen in Figure 

4.27. The MIMO operation of FFT enables a high resolution at a higher analysis rate 

of 20 Hz. However the computation and data requirements increased significantly, 

causing the process data to be segmented for collective analysis. This utilisation of 

this method without buffering the spectrums would remove this overhead, as all 

computation would be dedicated to performing the FFT, and not forming large data 

arrays for display. 

 

Figure 4.27 Spindle cutting-Y-axis power spectra; MIMO 
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Signal filtering 

In order to demonstrate the frequency filter configuration specifics within the ARC 

signal-processing-CEP, a band pass filter was selected to isolate the most reactive 

frequency range within the spindle Y-cutting axis vibration, i.e. 1200 to 1800 Hz. 

The bandpass filter operates similarly to spectrum analysis, but produces an 

accumulative time domain output signal corresponding to specific frequency limits. 

This reduces the high data load and computational requirements of spectrum 

analysis, but without the wide range, as the function is frequency specific. 

 

Figure 4.28 Signal filtering, 1. window size variation, 2. power spectra 

The frequency filtering operation in the ARC signal-processing-CEP is specifically 

MIMO, which enables a high resolution and high frequency signal output. A 

demonstration of this accuracy at different window sizes can be seen in Figure 4.28. 

In Figure 4.28.1, the window size varies between 12000, 600, 100, 50, and results 

in a near identical time domain output signal. Furthermore the band-pass filter type 
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successfully isolates the frequencies within the 1200-1800 Hz, as seen in Figure 

4.28.2.  

 

Figure 4.29 Signal filtering order variation, 1. time domain, 2. frequency domain 

Other configuration capabilities within frequency filtering include, types, limits, and 

the order. Types and limits operate within the previous defined example, as the filter 

type will identify modes of frequency isolation, and the limits define the specific 

frequency border/s. However, the order is unique as it identifies the “roll-off” or slope 

outside the pass limits in the frequency domain. The higher the order the higher the 

slope in the transition period between isolated and un-isolated frequencies. In order 

to demonstrate the order effect identical band pass filters are applied to the cutting 

Y-axis vibration data with varying orders of; 1, 2, 5, and 10, as seen in Figure 4.29. 

The time domain output signal, represented in Figure 4.29.1, identifies a small 

decrease in power between cutting operations. This observation becomes clearer 

in the frequency domain, as seen in Figure 4.29.2, as low order filters allow for more 

power from neighbouring frequencies to be present. As the order increases the 
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slope of transition in increased removing neighbouring frequencies, and increasing 

the resolution of frequencies within the isolation area. 

4.5.3 Conclusion 

The transition of advanced signal processing techniques, specifically frequency 

domain analysis, within the ARC, identifies a major benefit for reconfigurable 

process monitoring systems. Internal reconfiguration parameters enables 

application adaption to a wide range of processes, and the flexibility to change with 

a varying process. Furthermore, the integration of this functionality with the ARC 

has provided an external reconfigurability. Sophisticated analytics are now 

applicable to any process variable in the data cloud. The replication of Agents within 

the architecture, ensures parallel signal processing of multiple data sources. A 

complex task has now become a building block in a larger collaborative system. This 

multi-dimensional reconfiguration enables the incorporation of effective and 

efficient, simplistic and complex functions, into any manufacturing process 

monitoring system. 
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4.6 Cloud process performance characterisation 

4.6.1 Prologue 

The measurement, data acquisition, and signal processing steps, provided varying 

degrees of decision support within manufacturing systems. During online and off-

line analysis, a skilled engineer can review this data and make decisions for process 

management and operation, with the aim to improve the process. However this 

process can be complex and extremely time consuming. Within a high production 

volume environment more autonomous means of process analysis and decision 

support is required. Sensor fusion is required to achieve this, providing multiple 

perspectives on process operation, subsequently identifying windows of analysis for 

comparative review and decision support. This autonomous characterisation also 

requires the automation of all other previous process monitoring steps, in order to 

provide the system with the raw/filtered data it needs. 

 

Figure 4.30 ARC sequence-event-engine-CEP 

A unique CEP was created to achieve autonomous characterisation within the ARC; 

the ARC sequence-event-engine-CEP, as seen in Figure 4.30. This application 

utilises multiple digital Boolean signals to generate an operating sequence of 

sequential events. These events act as windows of analysis, and process metrics 

can be defined within their specific occurrences, providing a processes performance 

to be autonomously monitored. The ARC sequence-event-engine-CEP utilises a 

similar topology as the ARC signal-processing-CEP. Multiple process signals are 

acquired via APAs from the cloud, processed, and a signal is then redistributed to 
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the cloud. Diversely however, the functionality of the event engine is to correlate the 

data acquired and subject it to a Boolean logic mechanism to identify the operating 

sequence. Each operating sequence has a Boolean logic set, consisting of multiple 

signals with different states, “on” or “off”, with different logic rules, i.e. states are 

equal in parallel, serial sequence, or randomly. If the logic set is met the sequence 

becomes active. The application searches sets in succession. For example if 

sequence set N is active, then sequence set N+1 is being actively searched for. 

Once sequence set N+1 is identified, it becomes the active state, and sequence set 

N+2 becomes the active search set. Once all sequence sets have been found, the 

search resets to the first sequence set N, unless specified otherwise. The sets are 

reconfigurable, and the sequence of sets is represented in an XML format for 

importing and exporting on-the-fly. 

 

Figure 4.31 Cyber physical process performance characterisation system 

The active sequence is communicated to a shared variable, allowing multiple 

Sequence-oriented ANalySis (SANS) Agents to synchronously correlate their 

analysed data to the processes operation. These SANS-Agents follow the 

schematic of the ARC Agents, enabling cloud acquisition and correlation of multiple 

data streams. Diversely the SANS-Agents also acquire the sequence shared 

variable from the ARC sequence-event-engine-CEP. This variable identifies the 

active sequence with a timestamp of initial occurrence. Once a new state is active 
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the window of analysis of the previous sequence is closed, enabling a machining 

operation to be quantified within the measured timeframe. 

Two SANS-Agents were created to provide time and frequency domain 

analysis. These Agents utilise the previously explored signal processing and 

frequency analysis techniques. The SANS frequency domain Agent utilises spectra 

analysis to quantify the total energy and power across the spectrum of frequencies 

in each sequence of operation. The SANS time domain Agent quantifies multiple 

process signals in relation to the signal features of; sum, average, maximum, and 

variance. The utilisation of the ARC signal-processing-CEP enables the dynamic 

pre-isolation and enhancement of process signals for utilisation in the SANS time 

domain Agent application.  

The unique collaborative environment of the ARC has produced a collective 

signal processing and analysis chain, as seen in Figure 4.31. Each software 

application has a localised goal which is internally reconfigurable to provide a range 

of bespoke outputs. However, the globalised goal is achieved through the 

collaboration between these software applications provided by the ARC. The 

complexity of each step on the signal processing step is localised within a singular 

interchangeable entity, or ‘holon’. The produced outputs of this entities are further 

utilised on a higher plain or domain of holonic influence. 

4.6.2 Machining process performing characterisation 

 

Figure 4.32 OKUMA LT15-M CNC turning lathe, axis reference 
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In order to examine autonomous cloud-oriented process performance 

characterisation, the process data acquired during the previous machining cutting 

cycle is examined. This was achieved through a virtual ARC software Adaptor that 

reads the process data from the database, and simulates the machining process by 

transmitting the data in real-time to the SVE. All ARC software applications gained 

access to this data and process it in real-time, exactly the same way it would process 

the data if machining was actively undertaken. In order to provide context, the 

OKUMA CNC machine axis reference is shown in Figure 4.32. 

Process sequence generation 

 

Figure 4.33 Process characterisation; operating sequence identification: 1. 

process signals, 2. derived events, 3. operating sequence 

Boolean process signals are required to achieve process sequencing. 

Manufacturing processes typically consist of various Boolean and numeric data 

streams which enable the process to be controlled. The OKUMA LT15-M CNC 

Turning Lathe did not provide any of these data points for external measurement. 

Subsequently Boolean process operations needed to be extracted from the external 

sensors. This was achieved through signal processing and limit setting of spindle 

and turret motor currents, as seen in Figure 4.33.1. Specific process attributes were 
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extracted via signal processing, converting alternating current to direct current. 

Spindle current identified the occurrence of spindle activation, and Turret rapid 

movements were isolated to identify the start and end of process operations. The 

Boolean output was achieved by setting limits on the signals, which identify the 

occurrence of different events in the process, as seen in Figure 4.33.2. If the signal 

was above the limit the event was active, Boolean value “true” or numerically “1”. If 

the signal was below the limit the event was inactive Boolean value “false”, or 

numerically “0”. The correlation of these events in sequence define the sequence, 

i.e. sequence 1 Start: Spindle “True”, sequence 2 cut 1: Spindle “True” Rapid 

Movement “True”, as seen in Figure 4.33.3. The rapid movement is an ideal signal 

to divide the sequences, as it is a clear stable signal. Rapid movement reactions do 

not differ between machining parameter settings, and subsequently the sequence 

does not require modification if machining parameters change, e.g. cutting speeds. 

The defined sequence consisted of start and stop sequences, and 3 cutting 

sequences, to autonomously quantify the varying effects different cutting speeds 

have on spindle vibration and tool force. 

Process performance analysis 

 
 

Figure 4.34 Process characterisation; sequence time-domain performance 

metrics, 1. vibration energy and power, 2. cutting force 

Sequence specific time domain performance analysis for both spindle cutting 

vibration, and tool force is identified in Figure 4.34. Spindle vibration identified an 

decreasing energy distribution between the different cutting speeds. Each cut had 

the same length and depth, however the speed of the tool feed changed. This is 
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made evident with the root of the power of the vibration, unit RMS/S. Vibration power 

increases with the increase in cutting speed linearly. The force also shows an 

increase in cutting force with an increase in cutting speed, however the plot 

resembles an exponential change. The only reactive variable in vibration that 

similarly responds to the exponential force, is the standard deviation, indicating 

variance in the signal. 

 

Figure 4.35 Process characterisation; sequence frequency domain 

performance metrics, 1. energy spectra, 2. power spectra 

Sequence specific frequency domain performance analysis for spindle cutting 

vibration is identified in Figure 4.35. Figure 4.35.1 identifies the energy spectrum 

and Figure 4.35.2 identifies the power spectrum of spindle cutting Y-axis vibration 

over the sequence time period. The two dominant vibration frequency bands; 

A:1500–1900, B:2100–2400, provide performance metrics for frequency reaction to 

changing machining parameters within this turning process. Previous time domain 

analysis identified the even distribution of energy between cutting processes. The 

frequency energy spectra identifies an equal energy peak in band B, and an unequal 

peak in band A. The energy in band A widens during Cut 3. The sequence power 
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spectrum also identifies a difference in frequency response in band A, as it not only 

widens in cut 3, but increases in magnitude significantly. Subsequently, frequency 

analysis provides a new performance metric, as vibration can be quantified in both 

power and frequency. 

4.6.3 Conclusion 

The configuration and collaboration of the unique ARC entities has resulted in the 

autonomous characterisation of a manufacturing process. This phase 1 

investigation has demonstrated the capability of the ARC to be assembled into a 

cyber-physical production system. Data acquisition, signal processing, and data 

analytic software applications are distributed in a decentralised architecture, and 

collaborate together to create a unified process monitoring system.  

The goals of the signal processing chain are configured to meet the unique 

requirements of the CNC turning machine. By identifying key machining actions a 

sequence of operations are extracted through sensor fusion. This process removes 

the need for manual segmentation of data by a user, and enables the autonomous 

dynamic identification of machining operations. The core fundamental operation of 

this analytical system is achieved through Boolean logic, in connection with 

monitored process variables, which are pre-processed to extract process features. 

Locally, each step in this signal processing chain incorporates intelligent techniques, 

mechanisms, and analytics. However, collaboration empowers a global intelligence, 

as windows of analysis are correlated to machining actions. A wide range of process 

signals can now gravitate to these key moments in time. The result is comparative 

performance metrics, which enable competent decision support for real-time 

production systems.  
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4.7 Summary 

This chapter, has identified the complexity present in manufacturing process 

monitoring systems. This complexity is evident in; the multitude of sensory 

technologies, variation in production equipment, and the sophistication of data 

acquisition medium, signal processing techniques, and data analytics. The 

utilisation of decentralised design aims to overcome this complexity, through the 

establishment of reconfigurable process monitoring tools.  

This phase 1 investigation set out to identify the capability of the ARC to 

achieve reconfigurable process monitoring within an engineering environment. 

Evidently the ARC enabled the data acquisition of multiple process variables from a 

CNC turning machine. This data was hosted as a service by ARC acquisition 

Adaptors, to enable the dynamic distribution of digital resources across a network. 

A test case was undertaken to machine a workpiece at different feed rates, and 

examine the reactions from; tool force, axis and spindle motor current, and spindle 

and turret vibration. Each data source was represented by individual 

hardware/software components. The unification of these data sources was achieved 

through the remote acquisition of cloud data via data sourcing Agents. Effective and 

efficient data acquisition, and signal correlation was achieved with key software 

architecture techniques, namely asynchronous programming. 

The process data acquired in the industrial case-study, provided a point of 

reference for the design and development of decentralised signal processing and 

analysis techniques. Signal processing techniques were encapsulated within a 

reconfigurable mechanism, to enable customised signal processing sequencing and 

configuration. Frequency analysis entities were created with reconfigurable controls. 

For efficient parallel computation, these signal processing mechanisms and 

reconfigurable analytics were designed with asynchronous programming. The 

resultant ARC signal-processing-CEP and ARC signal-spectra-Agent applications, 

enabled reconfigurable and dynamic signal processing within the decentralised 

process monitoring architecture. 

In order demonstrate the utilisation and collaboration capability of the 

reconfigurable process monitoring system entities, an autonomous cyber-physical 

process characterisation system was created. Process characterisation was 

achieved through utilisation of a Boolean logic sequencing mechanism, namely the 
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ARC sequence-event-engine-CEP. This application enabled the identification of 

process operations through the correlation of multiple process events. The global 

dispersion of current machine operations, enabled the analysis of sequenced 

operations by other Agents. Both frequency and time domain sequence analysis 

Agents were created, resulting in autonomous multi-dimensional manufacturing 

process performance characterisation. 

 

Figure 4.36 Reconfigurable process monitoring system topology 

The resultant reconfigurable manufacturing process monitoring system is a dynamic 

borderless collective of interactive software entities, or tools, as illustrated in Figure 

4.36. Localised intelligence is integrated within every individual architecture entity, 

which represent common process monitoring tools. However, global intelligence is 

achieved through configurable orchestration, resulting in generation of a custom 

process specific signal processing chain. 
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Chapter 5 

Application investigation into CNC turning characterisation 

and dry machining 

 

 

5.1 Introduction 

The establishment of an interoperability foundation for manufacturing process 

monitoring has provided an advantageous multi-scalable reconfigurable 

environment. The further integration of signal processing techniques, advanced 

signal analysis, and intelligent monitoring applications, provide building blocks for 

custom process performance characterisation. Process adoption of these advanced 

signal processing and decision support mediums is dependent on the effective 

framework assimilation into the specific process. Subsequently, a case study was 

undertaken to identify the capability of the ARC process monitoring components to 

achieve process insight. 

This phase 2 investigation focuses on the characterisation of CNC machining 

operation inside and outside cutting operations. The investigation involves the 

characterisation of the process through the measured process monitoring variables 

and evaluation of effective application for production monitoring. Machine operation 

parameters are varied to identify their effects on spindle vibration, turret vibration, 

tool force, and turret movements. Furthermore the effects of undesired machining 

parameters, namely tool wear, was quantified in respect to the defined machining 

performance.  
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5.2 Machine characterisation 

5.2.1 Machine operation 

The characterisation of machining operation is important for the health monitoring 

and management of manufacturing machines. By identifying normal operating 

parameters, the onset of faults can be comparatively identified and targeted for 

preventative maintenance. Process characterisation requires the varied 

measurement of multiple machining operation procedures, in a controlled manner. 

This process allows for a comparative map of machine operation reactions to be 

defined. This map can be utilised to not only define a baseline for normal operation, 

but also identify key operating characteristics/events for windows of analysis and 

potentially autonomous monitoring. 

In order to provide context to analysis figures, the OKUMA CNC machine axis 

reference is shown in Figure 5.1, and Figure 5.2. 

 

 OKUMA LT15-M CNC turning lathe, axis reference 

 

 Axis reference 
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Spindle Rotation 

 

Table 5.1 Machine operation: Spindle rotation, signal processing legend 

Motor current 

Figure 5.3.1 represents the spindle motor current during a rotating operation from a 

station position. By converting alternating current to direct current with a RMS, the 

spindle operating states can be identified, as seen in Figure 5.3.2. Spindle states 

include; 

 Off– Spindle is inactive 

 Start– Spindle has been switched on 

 Acceleration– Spindle is accelerating 

 Transient–  Spindle in decreasing acceleration 

 Steady– Spindle is maintaining speed 

 Stop– Spindle has been switched off 

With signal filtering these states can be extracted by feature recognition, as seen in 

Figure 5.3.3. Each of these state can provide a window for analysing a specific 

machining operations, or collectively analysing a total machining operation.  

The requirement for constant surface speed machining causes multiple 

spindle accelerations. The forced acceleration of the spindle can be reviewed in 

Figure 5.3.4. The spindle is accelerated from stationary to 300 RPM, and then 

incrementally to 2000 RPM. This acceleration is characterised by the spike in 

current and period of large signal amplitude, as the spindle transitions between 

operating states. The steady state amplitude does not show a significant change 
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with varying speed. Additionally the amplitude and duration of acceleration periods, 

does not scale proportionally with acceleration. 

Vibration 

The vibration response to spindle operation is similar to the motor current, as seen 

in Figure 5.4.1. However the triaxial signals respond differently to the process, as 

seen in Figure 5.4.2. Axis X and Z, the movement axis, resemble the spindle 

operating states. While the cutting axis Y, identifies a response to spindle vibration, 

but without variation between spindle acceleration, transient, and steady-state. A 

potential explanation to this occurrence is the structural restraints of the CNC, 

stiffening the cutting axis.  

With signal filtering, some process states can be extracted by feature 

recognition, as seen in Figure 5.4.3. Furthermore the time domain vibration 

response to varying spindle speed/acceleration, as seen in Figure 5.4.4, is 

incremental in steady state operation, with a reduced initial peak. 

The frequency domain, represented in Figure 5.5, further identifies the 

variance in vibration reaction to spindle operation, as each axis identifies a different 

response frequency. These vibrations represent stationary deterministic signals 

from a combination of the spindles bearings, gears, and motor windings. The Y and 

Z axis are both restrained structurally in different ways, but provide no movement to 

machining operations. The Y axis is the most unreactive to vibration compared to 

the other axis. Axis X is an unrestrained axis, as it provides the Z axis movements 

to the machine tool. Subsequently the X axis identifies the most variation in 

frequency, including peaks in 1 Hz spectra from rapid movements. 
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 Machine operation: spindle operation, motor current 

 



5. Application Investigation 

134 

 

 Machine operation: spindle operation, triaxial vibration, time 

domain 
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 Machine operation: spindle operation, triaxial vibration, frequency 

domain 



5. Application Investigation 

136 

 

Z Axis Movement 

 

Table 5.2 Machine operation: Z axis movement, signal processing legend 

Motor current 

Figure 5.6.1 represents the machine Z-axis motor current during 4 incremental 

movements, in both the positive and negative directions. The first movement is a 

rapid movement, followed by 3 set speed movements, covering 50mm, 10mm, and 

1mm. Signal processing enables the alternating current to be converted into direct 

current, which identifies different movements, as seen in Figure 5.6.2. Furthermore 

the occurrence of rapid movements can be separated from the signal, enabling the 

creation of multiple windows of analysis from the individual signal. Subsequently 

large and small movements of the machine Z-axis can be effectively identified 

through single phase motor current measurement. 

The speed of the machine Z-axis is proportional to the feed rate, and the 

spindle speed. Feed-rate is the distance travelled per revolution of the spindle. 

Varying the feed rate produces different amplitudes and frequencies of current, as 

seen in Figure 5.6.3. Also varying the spindle speed produces different amplitudes 

and frequencies of current, as seen in Figure 5.6.4. At 700 RPM the signal 

processing chain created can identify a wide range of different feeds. However the 

varying spindle speeds, as seen Figure 5.6.4, identify slower axis movements, 

identifying an incapacity to produce a stable direct current. The capability of a signal 

processing chain to produce the direct current response is dependent on the size of 

the moving average window. A low moving average window will produce a fast 

output signal, and is more responsive to high frequency alternating signals. A large 

moving average window will produce a slower output signal, and is more responsive 

to low frequency alternating currents. Subsequently to produce a smooth direct 
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current at low speeds would require a larger moving average. Currently the signal 

processing chain is ideal for measuring spindle speeds >=900 RPM at feed rates 

>=0.1, which is in scope for the machining tests within this work. 

Vibration 

The machine Z-axis vibration is measured by the spindle accelerometers X-axis, as 

seen in Figure 5.7.1. Since the spindle itself is moved to produce Z-axis movements, 

the vibration of spindle revolution is combined with Z-axis movement. In order to 

measure the vibration/acceleration response to Z-axis movements, a Lowpass filter 

is utilised to isolate movements below 2Hz. The acceleration response across; axis 

movements Figure 5.7.2, varying feed rates Figure 5.7.3, and varying spindle 

speeds Figure 5.7.4, have identified no significant response controlled speed 

movements, and only identify rapid movements. Subsequently the current 

vibration/acceleration measurement system in this work can only utilise windows of 

analysis from rapid movements. 
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 Machine operation: Z axis movement, motor current 
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 Machine operation: Z axis movement, Spindle X-axis vibration, 

Time domain 
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X Axis Movement 

 

Table 5.3 Machine operation: X axis movement, Signal processing legend 

Motor current 

Figure 5.8.1 represents the machine X-axis motor current during 4 incremental 

movements in both the positive and negative directions. The first movement is a 

rapid movement, followed by 3 set speed movements, covering 25mm, 5mm, and 

1mm. With signal processing the alternating current can be converted into direct 

current identifying the different movements, as seen in Figure 5.8.2. Furthermore 

the occurrence of rapid movements can be separated from the signal, enabling the 

creation of multiple windows of analysis from the individual signal. Subsequently 

large and small movements of the machine X-axis can be effectively identified 

through single phase motor current measurement. 

Uniquely the X-axis draws a significantly larger current amplitude than the 

machine Z-axis. Potentially this is because of the weight difference between the 

spindle and the turret. Additionally the negative movements of the X-axis result in a 

higher current amplitude. This is due to the angle of the CNC bed, as the X-axis 

moves on a slope downwards, towards the workpiece, for positive moves, and 

upwards for the negative moves. The extra force requires a greater current 

amplitude to do the work. 

The X-axis operates similarly to the Z-axis. Subsequently varying the feed 

rate or spindle speed produces different amplitudes and frequencies of current, as 

seen in Figure 5.8.3 and Figure 5.8.4. 

Vibration 

The machine X-axis vibration is measured by the turret accelerometers X-axis, as 

seen in Figure 5.9.1. In order to measure the vibration/acceleration response to Z-
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axis movements, a Lowpass filter is utilised to isolate movements below 2Hz. The 

acceleration response across; axis movements Figure 5.9.2, varying feed rates 

Figure 5.9.3, and varying spindle speeds Figure 5.9.4, have identified small 

responses to controlled speed movements, and large responses to rapid 

movements. Uniquely the X-axis is not significantly influenced by the spindle 

rotation, reducing the noise in the acceleration signal. Subsequently small 

acceleration spikes can be observed in the signal at initial movement, acceleration, 

and movement stops. 

The triaxial frequency response to acceleration during the incremental 

movements of Figure 5.9.2, can be observed in Figure 5.10. The results identify 

significant low levels of vibration outside of rapid movements, e.g. below 0.2x10-5 

g.MS/s. A varied range of small frequencies is observed, with the X-axis exhibiting 

the highest stationary signal at 1244 Hz, and a variety of frequency spikes induced 

from rapid movement acceleration and braking. Furthermore the spindle rotation is 

faintly observable on the turret acidometers Y and Z axis at 4688 Hz. 
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 Machine operation: X axis movement, motor current 
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 Machine operation: X axis movement, turret x axis vibration, time 

domain 
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 Machine operation: X axis movement, turret triaxial vibration, 

frequency domain 
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5.2.2 Machine resonance 

 

 Machine resonance: turret and spindle, natural frequencies 

In order to further identify the natural frequencies within CNC turning, a bump test 

was carried out. This test required the external excitation of the tool, and both 

aluminium and steel workpieces. The spindle accelerometer monitored the 

workpiece vibration, and the turret accelerometer measured the tool vibration. 

External excitation was achieved with a force hammer. The result of the external 
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excitation are plotted with the natural vibration recorded during machine operation, 

i.e. spindle rotation and machine X-axis movement, as seen in Figure 5.11. The 

results identify a multitude of frequency responses to the spindle rotation, tool and 

workpiece vibration. 

The natural tool resonance resides in a low frequency band <1000 Hz for the 

Turret X, Y, and Z axis. The turrets movement resonance are below <1300 Hz, at 

1246 Hz in the unrestrained X-axis. Also spindle rotation frequencies are 

measureable on Turret Y 2344 Hz and Z 4688 Hz 

The spindles resonance is identified in X 2344 and 4688 Hz, Y 2344 and 

4688 Hz, and Z 4688 Hz. The natural workpiece resonance of aluminium and steel 

both have low resonant frequencies at 600 Hz, measureable across X, Y, and Z. 

Diversely steel exhibits a X axis resonant peak at 1900 Hz, and a lesser peak at 

2300 Hz, which is the resonant frequency of the spindle. Aluminium also exhibits 

two peaks but at closer frequency bands and equal power, X 2100 and 2300 Hz. 

Both aluminium and steel resonant at the similar frequencies in the cutting Y axis,  

550 - 566 Hz, and 2250 – 2300 Hz. The lower frequency reaction is present in the 

X, Y, and Z axis, with the steel workpiece having the greatest power. The higher 

frequency reaction is present on both the X and Y axis, with the aluminium 

workpiece having the greatest power. 

5.2.3 Conclusion 

The measurement of machine operations outside of cutting operations has defined 

the normal/natural spindle and axis current and vibration response. These natural 

machining responses allow for windows of analysis to be identified for in-processing 

machining. Key process indicators include; spindle activation, spindle acceleration, 

spindle braking, and axis movements. Furthermore a unique key process indicator 

identified to provide sequential windows of analysis is the rapid movement of the 

axis. These rapid movements are easily extracted from the motor current, and are 

not influenced by changing machining parameters. Subsequently these operations 

are repeatable and reliable, can be utilised to characterise the machining of multiple 

parts, and will not require updating if machining parameters change. 

Both vibration and current enable the monitoring of machining actions. The 

current is the most accurate and reliable measurement for machine action 
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monitoring, due to its direct relationship with the motors that perform the operations. 

Spindle vibration does however provide a measurement of physical movements, 

and the kinematic response to various operations. These measurements are key to 

monitoring the internal bearing and gears during physical machining.  

By performing machining actions and motions demonstrated in this work, 

specific insight into unseen mechanics can be observed. Subsequently comparing 

the results to the previously defined normal operating responses, can isolate areas 

of concern in the spindle, and both axis. This alignment of machine health datums 

can ultimately become a periodic preventative maintenance task, resulting in more 

insightful decisions into machine operation and maintenance. 

Furthermore, the identification of the natural resonance of the machining 

components has enabled frequency spectrum to be separated into areas. These 

areas consist of tool, workpiece, spindle, and turret vibration. The identification of 

these areas allows for the effective monitoring and understanding of their excitation 

during machining. 
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5.3 Machining investigation 

The following machining operations were undertaken to measure the triaxial 

responses of tool force, spindle vibration, and turret vibration, in both the time and 

frequency domain, for active machining operations. The machining area of focus, is 

roughing cycles in CNC turning, which remove large quantities of material. These 

operations typically utilise the same machining parameters to remove the bulk of 

the material in a turning operation. Fundamentally these operations are the most 

consistent operations, due to the limited variation observed between iterations. 

Logically, performance characterisation should be obtainable by measuring these 

windows.  

The aim of this study is to compare the tool force, spindle vibration, and turret 

vibration during dry turning roughing cycles of both aluminium and steel workpieces. 

Furthermore, a tool wear mode will also be investigated to provide a contrast in 

cutting performances. Key process indicators are sought out to identify the tool wear 

mode in both the time and frequency domains. 

5.3.1 Case 1: fixed cutting parameters 

Machining setup 

  

 Machining: Feed variation, setup 

The initial machining operation was undertaken to; identify the required signal 

processing configuration/resolution for comparable signal analysis throughout the 

testing regime, and to provide an initial contrast for machining both aluminium and 

steel. An aluminium and steel workpiece was cut using the machining parameters 

represented in Figure 5.12.  
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Resolution 

 

 Machining: analysis resolution, time domain 

Figure 5.13, identifies the time domain force and spindle Y-axis vibration response 

to 4 cutting operation in series, with an aluminium workpiece. A clear analysis signal 

is required for comparison. Subsequently an average value is sought to remove the 

larger variations in measurements, and represent the response as the mean power. 

Force provides a more stable response to the cutting process than vibration. Both 

signals are represented by kHz sampling. By reducing both signals to Hz a visually 

comparable signal is produced. This was achieved by averaging the force data, and 

performing a RMS on the vibration data, with windows of 1000 samples. The 

produced force signal is very consistent, as the constant surface speed of the 

turning operation aims to achieve a uniform cutting speed at different workpiece 

diameters. The produced vibration signal however, shows a degree of variation as 

the vibration of the spindle appears to vary throughout the cutting process. 
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 Machining: analysis resolution, frequency domain 

A frequency window with the peak power of the vibration is reviewed to observe the 

vibration frequency response between cuts, 1200 – 2500 Hz, of both aluminium and 

steel, as seen in Figure 5.14. A clear variation in vibration frequency between cuts 

is observable in both materials, as seen in Figure 5.14.1. Subsequently an average 

value is required to represent the signal as a mean of this variation, producing a 

more stable and comparable signal. Two methods can be utilised to achieve this, 

time dimensional averaging, and spectral bandwidth widening. Time dimensional 

averaging maintains the high resolution spectral bandwidth of 1Hz, and gets total 

power across all cutting iterations. Spectral bandwidth widening condenses the 

power within a specific bandwidth to represent the sum of the power in all 

frequencies. Obtaining an average of multiple cuts identifies the cutting process as 

a collective. This improves the robustness of the analysis regime to not be affected 

by minor random anomalies. Widening bandwidths compensates for small 

frequencies shifts, and is useful for the analysis of random stationary signals, and 
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continuous and transient non-stationary signals. Time dimensional averaging 

maintains the peak frequencies response, as the bandwidth is maintained at 1Hz. 

Spectral bandwidth widening represents the frequency response as an area, >1Hz. 

The utilisation of both methods is dependent on the application area. In turning 

machining, viewing the frequency response of the cutting axis on the spindle as a 

peak and an area identifies contrasting results. Peak results, identify the dominant 

frequency of the deterministic spindle at 2344Hz. Area results, identify the dominate 

frequency of the resonance of the material between two peaks which differs 

between materials; steel 1360 – 2240Hz, aluminium 1840 – 2300 Hz. Area analysis 

is beneficial to processes that demonstrate drifting frequency responses. 

Furthermore, un-deterministic vibration frequency responses represent the sum of 

the frequencies, which enables a clear comparison to be achieved. 

Results 

The results are displayed and individually reviewed in the following; time domain 

Figure 5.15, spindle vibration frequency domain peak Figure 5.16, turret vibration 

frequency domain peak Figure 5.17, and spindle and turret vibration frequency 

domain area Figure 5.17. 

Time domain 

There is a significant difference in the tool force required for cutting the two 

materials. This difference is expected due to the difference in hardness. Both 

materials provide stable and repeatable force measurements between cycles with 

minimal variance in the signals.  

Aluminium has an increase in spindle vibration amplitude compared to steel, 

in both the feed and cutting axis. However, considerable variance is observed in 

spindle vibration for aluminium machining, as steel maintains a minimal reaction to 

machining with near equal measurement on all axis. 

Aluminium also has an increase turret vibration amplitude compared to steel, 

however only in the cutting axis. The feed and radial axis are consistently higher 

during steel machining. Aluminium is prone to vibration over steel due to its lower 

density and Young’s modulus. However aluminium is more easily machined due to 

its lower hardness. The volatility in machining the harder material could be identified 

in the increase in turret feed and axial vibration. Furthermore, steels reluctance to 

vibrate can also be seen in the lack of turret vibration peaks that are observed at 
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the end of cutting cycles. The cause of these peaks can be contributed to the 

accuracy of the CNC to move the required distance in the Z axis, and the rapid 

movement at the end of the roughing cycle. If the tool overshoots the distance it will 

strike the end of the workpiece at 2mm+ cutting depth. The rapid movement can 

also slightly swing the tool into contact to the wall as it reverses direction rapidly. 

Frequency domain 

In spindle vibration, both aluminium and steel identify peak power in the X, Y, and 

Z axis at the spindle resonating frequencies of 2344 and 4688 Hz. Similarly to the 

time domain, aluminium has the highest cutting axis power, while steel has the 

highest feed and radial axis power. 

Turret vibration provides a unique view of machining vibration. All frequency 

responses are not significantly reactive to the previously defined natural resonance 

frequencies, observed in tool excitation and machine movement. The frequency 

responses do not resemble deterministic peaks, but do resemble concentrated 

areas of vibration within frequency bands. Subsequently the vibration is a collection 

of turret components under resonance induced via machining. Comparatively both 

materials identify a separation in frequency and power response to different material 

machining. Aluminium has high frequency response in the cutting axis. Steel has a 

varied frequency response amongst axis, with significantly larger areas of power in 

the feed and radial axis than aluminium.  

To further compare the resonance of the materials, area frequency analysis 

is presented in Figure 5.18, with spectrals consisting of a 20Hz bandwidth. Each 

spindle and turret vibration axis of both materials are plotted against one another. 

The lack of peak reaction for turret vibration means area frequency analysis 

provides a less variant frequency spectrum. However, area frequency analysis for 

spindle vibration, provides a very clear and comparable material frequency 

response to aluminium and steel. A difference in spindle peak reaction between the 

materials, at 2340 Hz, is still observable, however the sum of the frequency shifting 

material resonance is now visible. This identifies a separation in spindle vibration 

frequency response between materials, with steel peaks of 1360 and 2340 Hz, and 

aluminium peaks of 1840 and 2340 Hz. 
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Steel Aluminium 

 Spindle vibration is very unreactive, all 
axis near equal in value  

 Consistent and similar turret vibration 
amplitude between axis 

 Variance in spindle vibration 
between cuts 

 Turret vibration peaks observable 
after cut 1, low feed and radial axis 
amplitude 

 Minimal variance in force between cutting cycles 

 Significantly higher force required for steel machining 

 Spindle vibration is greater during aluminium machining 

 Turret vibration peaks observable during aluminium machining 
 

 Machining: initial cut, time domain 
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Steel Aluminium 

 Minimal peak power in cutting axis Y  Minimal peak power in feed and 
cutting axis X & Y 

 Peak power of both materials at X Y Z axis are all at spindle resonating 
frequencies; 2344, 4688 

 Increase in peak power in steel at X Z axis 

 Higher cutting axis vibration in aluminium Y axis 

 Higher area power observable in aluminium X Y axis, at ≈1800 Hz material 

resonance 
 

 Machining: initial cut, spindle vibration, frequency domain peak 
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Steel Aluminium 

 Minimal power in cutting axis Y  High frequency cutting response to 
aluminium X Y Z  

 Distributed vibration power and frequency cutting response across both 
materials and axis 

 Vibration is clustered in areas, peaks are not dominant 

 There is no significant reaction in the previously defined natural resonance 
frequencies, i.e. tool vibration and machine movement 

 

 Machining: initial cut, turret vibration, frequency domain peak 
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Spindle Turret 

 Steel resonant frequency 1360Hz 

 Aluminium resonant frequency 1840Hz 

 Spindle Frequencies; 2340 & 4680 Hz 

 Steel has a higher power spindle high 
frequency response 

 Aluminium has a higher material 
resonance X Y 

 Aluminium has a high frequency 
cutting axis response 

 Steel frequency power is 
dominant in the feed and radial 
axis 

 
 

 Machining: initial cut, spindle and turret vibration, frequency 

domain area 
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5.3.2 Case 2: tool wear 

The previous comparison of aluminium and steel roughing cycle machining, has 

provided a contrasting reaction in both the time and frequency domain of the defined 

monitored process variables. These machining actions were undertaken specifically 

under the same machining parameters, in order to provide a baseline of normal 

reaction in tool force, spindle vibration, and turret vibration. The following tests are 

undertaken in order to understand the variant reaction to undesirable machining 

conditions, specifically tool wear. Key process indicators are sought out to identify 

tool wear across all process monitoring variables, in both the time and frequency 

domain. 

Setup 

 

 Machining: tool wear, new and worn tools 

The cutting tools are identical in manufacture, however one has been worn. The 

wear on the tool is a mixture of both corner/flank wear and crater wear, as seen in 

Figure 5.19. The corner/flank wear dulls the cutting edge of the tool, and the crater 

wear changes the rake angle of the tool. The result is an undesirable cutting tool, 

which should be avoided during manufacturing production. 
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The machining operation and parameters are defined in Figure 5.20. Eight 

consecutive cutting cycles are made to obtain the average response to the cutting 

process. The cycle count was increased from 4 to 8 compared to the previous tests, 

to provide a wider scope of consecutive dry cutting machining. Once again, both 

Aluminium and Steel workpieces are machined to provide a comparison. 

  

 

 Machining: tool wear, setup 

Post machining tooling 

 

 Machining: tool wear, post machining tool inspection 

The machining of both materials has resulted in a significant variation in tool 

dimensions post machining, as seen in Figure 5.21. Aluminium has fused to the tool 
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and created a new cutting edge. This new dimension has the potential to improve 

the cutting process. The crater wear has now been filled in, resulting in a new 

sharper cutting edge, and a smaller rake angle. In contrast, machining steel has not 

had the same effect. Crater and flank wear is still visible on the tools surfaces. 

Furthermore, scorch marks were noticeable on the tool after steel machining, 

indicating a high friction cutting process. 

Results 

The results are displayed and individually reviewed in the following; steel time 

domain Figure 5.22, aluminium time domain Figure 5.23, spindle vibration frequency 

domain area Figure 5.24, turret vibration frequency domain area Figure 5.25. 

Time domain 

Tool wear has largely increased the tool force magnitude, signal variance, and end 

of cycle peak values in steel machining. Aluminium however, only has a slight 

increase in tool force magnitude, but a significant increase in signal variance and 

end of cycle peak values. Both materials identify an increase in spindle vibration 

amplitude, and signal variance. Steel spindle vibration is significantly more volatile 

with random spikes in the cutting and radial axis. Turret vibration for steel machining, 

has a reduction in uniform axis vibration amplitude, with reduced cutting and radial 

axis vibration, but extremely large cutting axis end of cycle peak values. Turning 

vibration for aluminium machining maintains the end of cycle peak values within 

normal operating conditions, but observes a decrease in these peaks during worn 

tool machining. 

Tool wear has caused a radical change in steel time domain process variable 

reaction, by increasing all aspects of all signals. Tool wear for aluminium has had 

less of an effect, with minimal signal magnitude increase, but significant signal 

variance increase. The new cutting edge formed during aluminium machining has 

improved vibration within the cutting process, but with a less uniform response over 

each cutting cycle. Subsequently the occurrence of tool wear is observable through 

the time domain analysis, significantly in steel for magnitude and signal variance, 

and potentially in aluminium for signal variance. 
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Frequency domain 

Tool wear for steel machining has provided a significant change in the material 

resonance in spindle vibration monitoring. There is shift in frequency response in 

the feed and cutting axis, and an increase in power across all axis. The signal variant 

response in time domain aluminium machining, is met with a more significant 

observation in the spindle vibration frequency domain. Similar to the steel 

machining, tool wear aluminium machining has a shift in frequency response in the 

feed and cutting axis, and an increase in power across all axis. There are similarities 

between both materials in the frequency domain on the cutting axis. Both materials 

display 2 peak areas within a band width of 1760 to 2340 Hz. However this range is 

a natural frequency for the new tool with aluminium machining, but with a lesser 

power. Additionally steels primary peak in the cutting axis, 1560 Hz, is not present 

during aluminium machining. 

Turret vibration under worn tool machining exhibits a similar reaction in both 

materials. There is a high frequency response in the cutting axis, with steel having 

the highest peak at 5740 Hz, but both material containing two unique peaks within 

the frequency band 4000 – 5000 Hz. The greatest difference between materials is 

the high power response during aluminium machining with a new tool. However 

consistent and comparable key process indicators are present in both materials. 
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New Tool Worn Tool 

 Uniform force measurements, with 
minor increase in force peaks 

 Low spindle vibration variance, yet 
steadily increasing cutting axis 
amplitude 

 Uniform turret vibration 
measurements 

 Increase in force for initial cuts, 
minor signal variance 

 Volatile spindle vibration, high 
signal variance and peaks 

 Minor turret vibration variance 

 High turret vibration peaks 

 

 Machining: tool wear, steel, time domain 
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New Tool Worn Tool 

 Uniform force measurements, with 
minor increase in force peaks 

 Small sequential spindle vibration 
increase 

 High spindle vibration variance 

 Sequential increase in turret vibration 
peaks 

 Variant force signal, high force 
peaks 

 High spindle vibration variance 

 Variant turret vibration amplitude 
and peaks 

 

 Machining: tool wear, aluminium, time domain 
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Steel Aluminium 

 Worn tool Increases in power within 
the defined frequency bands, Y and Z 

 Worn tool varies in frequency, X Y Z 

 Worn tool Increases in power 
within a wider frequency range; 
1760 – 2300 Hz X Y 

 

 Machining: tool wear, spindle vibration, frequency domain area 
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Steel Aluminium 

 Tool wear high frequency response; 
>4000 Hz X Y Z 

 Tool wear reduced power response 
3660 Hz Y, 2860 Hz Z 

 Tool wear  high power response 
within a high frequency range; 
<5000 >4000 Hz X Y Z 

 Tool wear  power reduction within 
a high frequency range; >5000 Hz 
X Z 

 The frequency response is 
reaching high levels outside the 
range of the accelerometer, 
>6000 Hz, for both the new and 
worn tool 

 

 Machining: tool wear, turret vibration, frequency domain area 
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5.3.3 Case 3: variant cutting parameters 

The previous comparison of an aluminium and steel roughing cycle under normal 

and abnormal machining conditions, has provided a contrasting reaction in both the 

time and frequency domain. These machining actions were undertaken specifically 

under the same machining parameters to ensure the deviation in machining 

reactions was specifically related to the tool wear. The aim of this study is to vary 

the machining parameters and characterise the variance in tool force, spindle 

vibration, and turret vibration during dry turning roughing cycles, of both aluminium 

and steel workpieces. Machining parameter variation includes; feed rate, cutting 

speed, depth of cut, number of cutting cycles, and orientation of the tool length from 

the tool holder, and workpiece length from the chuck. Areas of particular interest 

include; identifying if machining parameter variation have key process indicators, 

and whether a universal key process indicator is present to qualify dynamic 

machining operations. 

Setup 

 

 Machining: variant cutting, machining parameters 
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The machining parameters for each test is represented in Figure 5.26. Both the time 

and frequency domain of each test is examined for tool force, spindle vibration, and 

turret vibration. The averaging values established in the previous chapters are 

maintained; Time domain 6 – 12 Hz, and frequency domain area analysis 20 Hz 

spectral band widths.  

Results 

The results of the variant cutting tests are listed in Appendix C: CNC turning 

machining parameter variation test results. Furthermore, to review the time domain 

results, signal attributes were extracted from the time domain waveforms listed. The 

signal attributes included; average, standard deviation, and maximum value. These 

results were combined for review in Appendix C.6: Time domain signal analysis 

summary. 

The conclusions from these tests are as follows: 

Feed variation 

Varying the feed speed increases the tool force, spindle and turret vibration 

magnitude and variance. The frequency response varies in power within defined 

frequencies. The same response is also recorded when varying the cutting speed 

to 125m/min. 

Depth of cut 

The increased depth of cut also increases the tool force, spindle and turret vibration 

magnitude and variance. Spindle vibration frequency response varies in both power 

and frequency peak in both materials. Turret vibration frequency response varies 

only in power within defined frequencies. 

Continuous machining 

Continuous machining identifies a volatile machining process, as tool force 

incrementally increases, and spindle and turret vibration exponential increase in 

magnitude and signal variance, after 12 – 15 cutting cycles. Factors influencing this 

occurrence include the increased temperature of the tool and workpiece, and 

potentially reaching the maximum limits of the OKUMA CNC turning machine. The 

volatile reaction in continuous cutting is more extreme in steel machining, as 

aluminium does display an incremental tool force increase. However the spindle and 
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turret vibration is considerably lower in aluminium machining. Evidently the higher 

force requirement for steel machining is resulting in higher friction and higher 

machining temperature.  

The frequency response in continuous machining is reactive within defined 

frequencies and has an increasing power response to the machining process. The 

severity of this power increase is once again extremely high when machining steel, 

and moderately high in aluminium machining. The sever change in machining 

variables in reaction to multiple dry cutting roughing cycles, identifies a potential 

incapacity to achieve a stable cutting process without coolant. This volatility also 

makes it difficult to achieve process monitoring, as the current sensors are reaching 

maximum limits. 

Tool and workpiece orientation 

The length of the workpiece and distance between the tool holder and tool tip should 

always be set to the minimal value. This ensures the workpiece and tool are held 

firmly and bend minimally during machining. However depending on the required 

machining area of the workpiece, and tool setup, these lengths can vary. The results 

on machining process to this variation are considerable. Tool length has a minimal 

effect in the time domain, but significant frequency and power response in the 

frequency domain. Workpiece length has an extreme effect in the time domain 

across all variables, with increased magnitude and signal variance. This response 

is matched in the frequency domain with both a power and frequency response. 

5.3.4 Conclusion 

Tool force is a direct cutting parameter measurement, which is highly reactive to the 

machining process and yields consistent results. However it is an invasive 

measurement method, and requires considerable modification to the CNC machine. 

While not implausible to utilise, the external integration of tool force monitoring for a 

multi-tool production line cutting is not practical. Dynamic indirect un-invasive 

vibration monitoring is a practical method of machining analysis. However the 

limitations to these systems is the inferred analysis. These systems are sensitive to 

a multitude of variables, and need to be controlled to produce the desired output. 

The comparative monitoring of vibration from two sources has provided a 

contrasting view of process monitoring capability. The spindle vibration was highly 
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reactive to small changes in the process. The turret vibration was less reactive to 

the process yet yielded key process indicators outside of the capability of spindle 

monitoring. Evidently both methods could be utilised individually to achieve a range 

of qualitative process monitoring tasks. 

The resultant machining comparison of both aluminium and steel for CNC 

turning, has identified a separation in reactive response, in both the time and 

frequency domain. This separation is justified due to the diversity in mechanical 

properties of both materials. Key process indicators can be extracted to identify the 

different materials across force, spindle vibration, and turret vibration. Specifically, 

the frequency domain, where utilising both peak and area frequency analysis is 

essential. 

By recording and analysing normal operating conditions for both materials a 

comparative is achievable when undesired machining conditions occur. This was 

examined when machining with worn tools. Key process indicators in the time 

domain analysis of process signals include an increase in signal magnitude, 

variance, and peak values. Furthermore, the frequency domain has yielded 

significant key process indicators in the form of frequency and power changes, for 

both spindle and turret vibration. 

Results have yielded key process indicators for identifying tool wear in both 

materials. These indicators are unique to the material, as a normal operating 

reaction in steel can be seen as a key process indicator for tool wear in aluminium. 

However universally both spindle and turret vibration frequency domain analysis can 

yield a common metric, with fixed machining parameters. 

The variations in materials, setup orientations, and cutting parameters, have 

identified a highly diverse machining reaction in tool force, spindle and turret 

vibration. The capabilities of a process monitoring system to qualitatively analyse 

the performance of an operation depends on scaled reactions, limits, and key 

process indicators. The wide variety of time and frequency domain reactions to 

machining variations has identified an incapacity to universally monitor the turning 

process with varying machining properties. Subsequently, dynamic CNC turning 

control is not feasible through tool force, and spindle and turret vibration. These 

mediums are however capable in the controlled environment of batch and mass 

production.  
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5.4 Summary 

Process adoption of advanced signal processing and decision support techniques 

is dependent on an effective framework assimilation within a specific process. 

Subsequently the generic building blocks present in cyber-physical production 

systems must be capable of forming custom solutions to real manufacturing 

problems. Evidently the ARC has been successfully implemented to achieve multi-

source data acquisition, signal processing, and process specific analytics of a 

manufacturing CNC turning machining. The unique framework generated from the 

interconnecting virtual building blocks has provided a means for essential process 

characterisation inside and outside cutting operations. Furthermore, a 

comprehensive machining variation study has been achieved, which investigates 

the dry machining of both aluminium and steel, and the reactions from both tool 

force, spindle and turret vibration. This phase 2 investigation has yielded potential 

key process indicators for effectively monitoring dry roughing cycles in all three 

sensor sources for tool wear, for batch and mass production. The dynamic nature 

of the ARC will allow for any fundamental changes to the measurement or analysis 

chain, for future application. 
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Chapter 6 

Summary and conclusions 

 

6.1 Summary 

This research work explores the dynamics of decentralised software architecture 

within field-level manufacturing process monitoring systems. The need for this 

understanding has been driven by the prediction that these cyber-physical systems 

will create the next generation of innovative intelligent machines. This research 

investigates the capability of decentralisation design to provide the core 

fundamental functionality of process monitoring systems in a new reconfigurable 

format. The embodiment of this investigation is the design and development of a 

decentralised architecture for the creation of a reconfigurable process monitoring 

system within field-level manufacturing. 

An investigation into available data interoperability systems and field-level 

manufacturing process monitoring system requirements, resulted in the 

identification of a research opportunity. Evidently, current academic and commercial 

mediums could not provide for the high communication speed, high data capacity, 

and heterogeneous data requirements present in field-level manufacturing systems. 

Through a combination of decentralised modelling, and state-of-the-art 

technologies and techniques, a new data interoperability architecture was 

developed. The resultant architecture, namely the ARC, is tested in respect to 

speed, capacity, and correlation accuracy. Furthermore, the ARC was adapted to 

monitor multiple process variables from a CNC turning machine tool, such as: tool 

force, spindle and axis motor current, spindle and turret vibration. 

The ARC provided a platform to evaluate the migration of signal process 

techniques, and time and frequency domain analytics, within a decentralised 

architecture. Key to the success of this investigation, depended on the internal and 

external mechanisms required to achieve dynamic data acquisition, manipulation, 
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and re-distribution. Furthermore, an advanced cyber-physical system was created 

for autonomous process performance characterisation. 

In order to investigate the industrial application of the ARC, a study was 

undertaken into the variation in dry CNC turning machining, thereby evaluating the 

capability of the ARC signal processing techniques and analytics to achieve process 

insight. The result was a comparative of machine reactions, inside and outside of 

machining operations, with varying operation modes and variant cutting parameters, 

for dry turning machining. 

6.2 Conclusions 

6.2.1 Design and development of a reconfigurable process monitoring 

architecture 

Challenges to develop a field-level manufacturing reconfigurable process 

monitoring system were characterised by the design requirements of; (a) open 

source data structuring, (b) incorporate, or be open to the integration, of state-of the 

art technologies and techniques, (c) meet performance criteria; (1) High data rates, 

> 10 kHz, (2) High communication speed, <= 1ms, (3) High accuracy correlation, <= 

1ms. In order to evaluate the capability of decentralised architectures to be utilised 

within a manufacturing field-level environment, these design requirements needed 

to be satisfied. 

The solution to these challenges/design requirements was achieved through 

the adoption of the National Instruments – Shared Variable Engine (SVE) data 

interoperability medium. The SVE provide the key service-oriented architecture 

functionalities of data distribution, data discovery, and eventing. Furthermore, the 

open source data structure enabled the integration of state-of-the-art binary 

representation for the efficient data exchange. Binary representation further 

facilitated a means to dynamically integrate multiple data types, sizes, and formats. 

The resultant data structure, namely the Binary Message Model (BMM), was 

produced to meet the variation present within a manufacturing process monitoring 

system. 

The evaluation of the ARC to meet the performance criteria in a field-level 

manufacturing environment, was undertaken in three experiments, which quantified 

communication speed, data capacity, and accuracy of correlation. The ARC results 
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include; 0.865 ms round trip time, 0.013 ms serialisation time, 0.003 ms 

deserealisation time, which equated to a <=1 ms average communication speed,    

1 Hz to 1 MHz data capacity per variable, 1 to 10 signals per variable, 1 to 1000 

samples per message or ‘package’, and a 99.8% correlation accuracy.  

Therefore it can be concluded that the ARC is an effective data 

interoperability medium for utilisation in field-level manufacturing systems, beyond 

the capability of all previously reviewed systems. 

6.2.2 Investigation and development of decentralised manufacturing data 

acquisition, signal processing and process analytic entities 

In order to investigate and develop decentralised manufacturing data acquisition, 

signal processing and process analytic entities, a number of challenges needed to 

be addressed; (1) industrial application of the ARC within a manufacturing 

environment, (2) effective and efficient migration of signal processing techniques 

and analytics within a decentralised architecture, (3) collaborative configuration of 

decentralised tools to form a cyber-physical system. 

A CNC turning industrial case-study provided the contextual basis for 

investigations. Multiple data-sources, including: tool force, motor current, and 

spindle vibration, with varying data acquisition rates, 3kHz to 12 kHz, were 

successfully acquired and dynamically distribution within the data cloud. The 

information acquired from cloud-monitoring a CNC turning machine tool, was 

utilised to develop and effectively migrate fundamental signal processing techniques 

and analytics within the ARC. The utilisation of asynchronous programming ensured 

effective and efficient computation of parallel data streams. Furthermore, internal 

and reconfigurable mechanisms enabled the dynamic customisation of these signal 

processing and analysis tools.  

The migration of reconfigurable tools within the architecture, provided the 

next step in decentralised manufacturing process monitoring. Unique signal 

processing techniques and analytics were represented as services hosted by the 

cloud. This external reconfiguration capability through collaboration, identifies the 

transition from cloud-system to cyber-physical system. The realisation of this goal 

was achieved through the development of an autonomous process characterisation 

cyber-physical production system. The configuration of the collaborating 
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decentralised applications, provided multi-dimensional process performance 

quantification. 

Therefore it can be concluded that decentralised design can provide the core 

fundamental functionality of process monitoring systems, in a new reconfigurable 

format. Unique merit/novelty in this work can be seen in a first case migration of 

fundamental manufacturing process monitoring steps within a cyber-physical 

system. Furthermore, the collaborative process performance quantification system, 

is a high-performance realisation of Vijayaraghavan and Dornfeld’s [39] proposed 

dynamic, event-orientated, automated system for temporal analysis of machine 

tools. 

6.2.3 Application investigation into CNC turning characterisation and dry 

machining 

The industrial application investigation was undertaken to; (1) evaluate the 

capability of decentralised signal processing techniques and analytics to achieve 

process insight, (2) provide a first-step investigation into the characterisation of a 

CNC turning machine tool, and (3) identify key process indicators for manufacturing 

decision support in CNC turning dry machining. 

The ARC has been successfully implemented to achieve multi-scalable data 

acquisition, signal processing, and process performance analysis of a CNC turning 

machine tool. The generic building blocks present within the ARC were configured 

to produce unique signal feature extraction across multiple process variables. 

Process insight is self-evident in the multi-perspective view of machine actions, via 

the time and frequency domain analysis, of tool force, spindle and axis motor 

current, and spindle and turret vibration. 

Through evaluation of scaled machine operations, a comprehensive 

comparative of machine actions and subsequent reactions was achieved. Evidently, 

vibration and motor current provide non-invasive real-time monitoring of machine 

operations. Both sources vary with machining parameters, i.e. feed and spindle 

speeds. A unique event, namely rapid movements, was identified to not vary in 

response to changing machining parameters. Evidently, these operations are 

repeatable and reliable, and can be utilised to provide state transition information, 

and to characterise the machining of multiple part types. 
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The comparative investigation into dry CNC turning machining has resulted 

in a mixture of time and frequency domain variation, across tool force, spindle and 

turret vibration. The platform developed allows for significant process insight using 

multiple sensor inputs, providing a detail understanding of the process and machine 

interaction. Similarly the platform also allows for the ranking of the measurable 

phenomena and its correlation to the process, the machine, and other influences. 

For example, in both non-invasive vibration measurement sources have been 

identified to individually provide a range of key process indicators, e.g. detecting tool 

wear. The wide variety of time and frequency domain reactions to machining 

variations was a potential limitation for monitoring purposes, however it also has a 

value in process understanding and characterisation.  

Therefore it can be concluded that the developed decentralised platform has 

the potential to act as both a monitoring platform or as a new product introduction 

tool for process characterisation and optimisation. 

6.3 Concluding remarks 

Process monitoring systems have evolved from centralised bespoke applications to 

decentralised reconfigurable collectives. The resulting cyber-physical systems are 

made possible through the integration of collaborative communication, high power 

computation, and advanced analytical technology. These systems exist in this digital 

age due to the exponential advancement of artificial computation, and mass 

production within a free market.  

The idea that these systems will create the next generation of innovative 

intelligent machines, is based on the concepts of; abstraction, simplification, and 

free data. Providing tools in a borderless computation collaborative space will result 

in new and innovative solutions. Engineers previously unable to access these 

resources due to high skill requirements, are now presented with reconfigurable 

tools, for direct utilisation, or custom modification. The power of these systems is in 

the hands of the users, as the environment itself is limitless in possibility. 
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6.4 Recommendations for future work 

The areas where future work could be undertaken is categorised as follows: 

1) CNC Turning investigation and real-time industrial adoption 

Continuing on with the current research application, CNC turning can be further 

investigated in the areas of; tool wear variation, wet cutting, multi-point machining, 

continuous monitoring for batch/mass production, automated configuration learning, 

CNC controller integration, and design and development of user friendly graphical 

user interfaces. For industrial adoption, these research areas would need to be 

addressed. 

2) Advancement and application of cyber physical production systems 

Further development of the decentralised architecture could include; collaborative 

messaging between autonomous entities, production control application, multi-

machine analysis and management, hard-real-time communication, and the 

integration of control/monitoring error handing orchestration of decentralised 

software applications. These research goals would provide a wider scope of 

industrial application, through a higher capacity and more sustainable architecture. 

3) Assimilation of the ARC within other manufacturing processes 

The multi-dimensional scaling of the ARC’s data acquisition, signal processing, and 

analytic components, enables the implementation of the ARC in multiple 

manufacturing processes. Further work could include the reconfiguration of current 

systematic components to meet the requirements of other manufacturing 

environments, such as CNC milling. 
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1 Labview 

Reference: www.ni.com, Labview 2012 Manuals 

 

Labview is a graphical programming language. LabVIEW follows a dataflow model 

for running programs or ‘Virtual Instruments (VI)’. A block diagram node executes 

when it receives all required inputs. When a node executes, it produces output data 

and passes the data to the next node in the dataflow path. The movement of data 

through the nodes determines the execution order of the VIs and functions on the 

block diagram. Visual Basic, C++, JAVA, and most other text-based programming 

languages follow a control flow model of program execution. In control flow, the 

sequential order of program elements determines the execution order of a program. 

You transfer data among block diagram objects through wires. Each wire has a 

single data source, but you can wire it to many VIs and functions that read the data. 

Wires are different colors, styles, and thicknesses, depending on their data types. 

 
For a dataflow programming example, consider a block diagram that adds two 

numbers and then subtracts 50.00 from the result of the addition, as shown in the 

above figure. In this case, the block diagram executes from left to right, not because 

the objects are placed in that order, but because the Subtract function cannot 

execute until the Add function finishes executing and passes the data to the Subtract 

function. Remember that a node executes only when data is available at all of its 

input terminals and supplies data to the output terminals only when the node finishes 

execution.  
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2 National Instruments Shared Variable Engine 

Reference: www.ni.com, Labview 2012 Manuals 

 

Network-published shared variables publish data over a network through a software 

component called the Shared Variable Engine (SVE). The SVE is installed as a 

service on your computer when you install LabVIEW, and it manages shared 

variable updates using a proprietary technology called the NI Publish-Subscribe 

Protocol (NI-PSP). The term publish-subscribe describes a model of communication 

where writers, or publishers, do not send data to specific readers, or subscribers. 

Rather, publishers send updates to a server, in this case the SVE, and subscribers 

receive those updates from the server. 

 

The following events occur in the above figure; 

1. In Application A, the Random Number (0-1) function writes a random number 

to the Shared Variable node that corresponds to Variable 1 

2. The Shared Variable node in Application A sends a request to the SVE to 

update the value of Variable 1 

3. The SVE approves and sends the new value to the Shared Variable nodes 

that correspond to Variable 1 in Applications B and C. 

In the above figure, although Computer 1 hosts a writer of Variable 1 in Application 

A and a reader of Variable 1 in Application B, Application A cannot write a new value 

directly to Application B. Instead, Application A must send a request to the SVE on 

Computer 2 to update every application that subscribes to Variable 1. Therefore, 

the latency involved in these updates makes shared variables ideal for publishing 

latest values only. To stream data continuously, use network streams.  
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3 Binary conversion 

Reference: www.ni.com, Labview 2012 Manuals 

 

Booleans and numeric objects 

The flattened form of any numeric type and Boolean type stores the data only in big-

endian format. For example, a 32-bit integer with a value of –19 is flattened to FFFF 

FFED. A double-precision floating-point number with a value equal to 1/4 is 

flattened to3FD0 0000 0000 0000. A Boolean value of TRUE is any nonzero value. 

A Boolean value of FALSE is 00.  

The flattened form for extended-precision numbers is the 128-bit extended-

precision, floating-point format. When you save extended-precision numbers to disk, 

LabVIEW stores them in this format. 

Strings and paths 

Because strings and paths have variable sizes, a flattened 32-bit integer that 

records the length in bytes precedes the flattened form. For example, a string type 

with value ABC is flattened to 0000 0003 4142 43. For strings, the flattened format 

is similar to the format the string takes in memory. However, paths do not have a 

length value preceding them when LabVIEW stores them in memory, so this value 

comes from the actual size of the data in memory and prefixes the value when 

LabVIEW flattens the data. This length is preceded by four characters: PTH0. For 

example, a path with value C:\File is flattened to 5054 4830 0000 000B 0000 0002 

0143 0466 696C 65.  

5054 4830 indicates PTH0. 0000 000B indicates 11 bytes total. 0000 is the 

type. 0002 is the number of components. 0143 indicates the letter C as a Pascal 

string. 0466 696C 65 indicates the word File as a Pascal string. 

Arrays 

Flattened 32-bit integers that record the size, in elements, of each of the dimensions 

of an array precede the data for a flattened array. The slowest varying dimension is 

first, followed successively by the faster varying dimensions, just as the dimension 

sizes are stored in memory. The flattened data follows immediately after these 

dimension sizes in the same order in which LabVIEW stores them in memory. The 
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following example shows a 2D array of six 8-bit integers. { {1, 2, 3}, {4, 5, 6} } is 

flattened to 0000 0002 0000 0003 0102 0304 0506. The following example shows 

a flattened 1D array of Boolean variables. {T, F, T, T} is flattened to 0000 0004 0100 

0101. The preferred value for TRUE is 01. 

Clusters 

A flattened cluster is the concatenation, in cluster order, of the flattened data of its 

elements. For example, a flattened cluster of a 16-bit integer of value 4 (decimal) 

and a 32-bit integer of value 12 is 0004 0000 000C. A flattened cluster of a 

string ABC and a 16-bit integer of value 4 is 0000 0003 4142 4300 04. A flattened 

cluster of a 16-bit integer of value 7, a cluster of a 16-bit integer of value 8, and a 

16-bit integer of value 9 is 0007 0008 0009. 

Waveforms 

Waveforms are clusters. 

Refnums 

LabVIEW stores the majority of flattened refnums as flattened 32-bit integers, which 

represent an internal LabVIEW data structure. You can classify the remaining 

refnums by their refnum type code. Type codes 0xE, 0xF and 0x15 are refnums that 

store their data as a flattened string. This string contains the value of the refnum 

tag, and can be empty (4 bytes of zero). Type codes 0x1A, 0X1C, and 0x1D 

concatenate, in the following order: 

 A flattened string for the name in the refnum tag. This string is empty (4 bytes 

of zero) if the refnum does not have a tag. 

 A flattened string that contains information specific to the refnum. This string 

can be empty (4 bytes of zero). 

 A flattened string that contains information specific to the refnum. This string 

can be empty (4 bytes of zero). 

 A flattened 32-bit signed integer that contains information specific to the 

refnum. 

 A flattened string that contains information specific to the refnum. This string 

can be empty (4 bytes of zero). 

http://zone.ni.com/reference/en-XX/help/371361J-01/lvconcepts/flattened_data/#Booleans_and_Numerics
http://zone.ni.com/reference/en-XX/help/371361J-01/lvconcepts/type_descriptors/
http://zone.ni.com/reference/en-XX/help/371361J-01/lvconcepts/flattened_data/#Strings_and_Paths
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Classes 

LabVIEW flattens a LabVIEW class according to the following general format: 

level in hierarchy class name version list private data 

 level in hierarchy: 4-byte unsigned integer representing how many levels into 

the class hierarchy the class occurs. For example, if this value is 2, the class 

has one ancestor class between itself and LabVIEW Object. If this value is 0, 

the object is an instance of LabVIEW Object. 

 class name: A Pascal string representing the fully qualified name of the class. 

This section of the flattened string includes enough pad bytes to increase the 

class name section to a multiple of 4 bytes. 

 version list: A series of 2-byte unsigned integers that represent the version 

number of each class in the hierarchy. The first number in this list represents 

the version of class name, the second is the version of its parent, and so on. 

This list contains one version number for each level in hierarchy. 

Note  If level in hierarchy is 1 and the version is 0, the flattened data 

represents the default data of the class. 

 private data: A series of flattened clusters representing the private data of 

each level of the hierarchy. Unlike in the version list, the first cluster in this 

series corresponds to the oldest ancestor class. Each flattened cluster begins 

with a 4-byte signed integer that represents the number of bytes in the data 

that follows. If this initial number is 0, the flattened cluster represents the 

default data for the corresponding class in the hierarchy. Otherwise, the 

following data uses the standard flattened cluster representation explained 

earlier in this topic. Each flattened cluster ends with enough pad bytes to 

increase the cluster to a multiple of 4 bytes. 
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1 Sensors 

1.1 Accelerometers 
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1.2 Dynamometer 
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Reference: “Surface acoustic wave strain sensor technology for machine 
monitoring applications in cnc turning”, Phd Thesis, Trinity College Dublin, Rory 
Stoney, 8/2013 
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1.3 Current transformers 
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1.4 Force hammer 
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2 Data acquisition 

2.1 Analogue input 

 

Reference: www.ni.com 

 

Reference: www.ni.com 
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2.2 Data acquisition 

 
Reference: www.ni.com 

 
Reference: www.ni.com 

 
Reference: www.ni.com 
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3 Peripheral equipment  

3.1 Next Unit of Computing (NUC) 

  

 
Reference: www.intel.com 

3.2 Ethernet router 

 

 
Reference: www.netgear.ie 
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3.3 Charge amplifier 
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4 Machine tools 

4.1 OKUMA CNC turning machine 
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4.2 Cutting tool 

 

 

Reference: http://www.sandvik.coromant.com 
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4.3 Recommended cutting parameters 

 

 

 

 

Reference: Sandvik Turning tools 2012 
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Reference: Sandvik Turning tools 2012 
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4.4 Tool wear 

 
Reference: V. Marinov, “Manufactuirng Technology.” Eastern Mediterranean University 

 

Types of wear observed in cutting tools 

 
Single point tool wear ISO 3685:1993 

 
 

Reference: V. P. Astakhov and J. P. Davim, “Tools (Geometry and Material) and Tool 
Wear,” in Machining SE  - 2, Springer London, 2008, pp. 29–57. 
 

Flank-wear curve, VB vs cutting path length 
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1 Machining feed variation 

 
 

Steel Aluminium 

 Force, spindle and turret vibration 
magnitude and variance increases 
with feed rate 

 Feed force becomes greater than 
radial force during feed 0.3 

 Turret vibration is marginally higher in 
amplitude in the radial and feed axis in 
feed 0.2 and 0.3 

 Force, spindle and turret vibration 
increases with feed rate 

 Force and Turret vibration at feed 
0.3 identifies a significant force 
increase, with the radial and feed 
axis become greater than cutting 
axis in turret vibration 

 Vibration variance is increased 
with feed rate 

 Significantly higher force required for steel machining. 

 Spindle vibration is greater during aluminium machining. 
 

Figure 7.1 Machining: feed variation, time domain 
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Steel Aluminium 

 3 peak frequencies are identified; 
1600 (Material), 2350 (Spindle), and 
4700 (Spindle) Hz 

 Feed rate varies the power in set 
frequencies 

 3 peak frequencies are identified; 
1900 (Material), 2300 (Spindle), 
and 4700 (Spindle) Hz 

 Feed rate varies the power in set 
frequencies 

Similar frequency response between materials, however steel has a wider 
frequency gap between peaks, 1600 – 2300 = 700Hz, and aluminium has a 
narrower gap, 1900 – 2300 = 400Hz. 

Aluminium has a significantly larger peak power in the feed and cutting axis. 
 

Figure 7.2 Machining: feed variation, spindle vibration, frequency domain 
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Steel Aluminium 

 3 peak frequencies are identified; 
2900, 3600, and 4300 Hz 

 Feed rate varies the power in set 
frequencies 

 3 peak frequencies are identified; 
2900, 3600, and 4300 Hz 

 Feed rate varies the power in set 
frequencies 

 Turret vibration power during feed 
0.3 is scaled, due to a significantly 
large power 

Diverse frequency response between materials, significant increase in power 
and frequency of lower frequencies, <3000Hz, during steel machining (Tool 
vibration <1000 ) 

 

Figure 7.3 Machining: feed variation, turret vibration, frequency domain 
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2 Machining speed and depth of cut 

 
 

Steel Aluminium 

 Force and spindle vibration  increase 
with increased depth of cut and cutting 
speed 

 No increase in turret vibration, only an 
increase in variance for 2mm cut 

 Force, spindle and turret vibration  
increase with increased depth of 
cut. 

 Increased spindle speed reduces 
force, spindle and turret vibration 

 Increased vibration variance and 
peak during 2mm cut 

N/A 
 

Figure 7.4 Machining: speed and depth, time domain 



Appendix C 

228 

 

 

 
 

Steel Aluminium 

 Increase in power within the defined 
frequency bands, between cutting 
variations 

 Increase in power within the 
defined frequency bands, 
between cutting variations 

 Frequency change during 2mm 
cut; 2100 – 2200 Hz Y 

N/A 
 

Figure 7.5 Machining: speed and depth, spindle vibration, frequency domain 
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Steel Aluminium 

 Increase/Decrease in power within the 
frequency bands, between cutting 
variations 

 Increased speed has increased the 
tool vibration <1000 Hz 

 Increase/Decrease in power 
within the frequency bands, 
between cutting variations 

N/A 

 

Figure 7.6 Machining: speed and depth, turret vibration, frequency domain 
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3 Machining tool wear 

 
 

New Tool Worn Tool 

 Uniform force measurements, with 
minor increase in force peaks 

 Low spindle vibration variance, yet 
steadily increasing cutting axis 
amplitude 

 Uniform turret vibration 
measurements 

 Increase in force for initial cuts, 
minor signal variance 

 Volatile spindle vibration, high 
signal variance and peaks 

 Minor turret vibration variance 

 High turret vibration peaks 

 

Figure 7.7 Machining: tool wear, steel, time domain 
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New Tool Worn Tool 

 Uniform force measurements, with 
minor increase in force peaks 

 Small sequential spindle vibration 
increase 

 High spindle vibration variance 

 Sequential increase in turret vibration 
peaks 

 Variant force signal, high force 
peaks 

 High spindle vibration variance 

 Variant turret vibration amplitude 
and peaks 

 

Figure 7.8 Machining: tool wear, aluminium, time domain 
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Steel Aluminium 

 Worn tool Increases in power within 
the defined frequency bands, Y and Z 

 Worn too varies in frequency, X Y Z 

 Worn tool Increases in power 
within a wider frequency range; 
1760 – 2300 Hz 

 

Figure 7.9 Machining: tool wear, spindle vibration, frequency domain 



Appendix C 

233 

 
 
 

 
 

Steel Aluminium 

 Tool wear high frequency response; 
>4000 Hz X Y Z 

 Tool wear reduced power response 
3660 Hz Y, 2860 Hz Z 

 Tool wear  high power response 
within a high frequency range; 
<5000 >4000 Hz X Y Z 

 Tool wear  power reduction within a 
high frequency range; >5000 Hz X 
Z 

 The frequency response is 
reaching high levels outside the 
range of the accelerometer, >6000 
Hz, for both the new and worn tool 

 

Figure 7.10 Machining: tool wear, turret vibration, frequency domain 
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4 Continuous Machining 

 
 

Steel Aluminium 

 Increasing cutting force on every 
cutting cycle 

 Spindle vibration increases in 
amplitude on every cycle, and 
reaches a point of exponential growth; 
after cut 14 

 Turret vibration exponential growth 
observed after cut 14, where the feed 
axis becomes higher than cutting axis 

 Increasing cutting force after cut 10 

 Increase in spindle vibration 
amplitude, variance and peak after 
cut 10 

 Slow decrease in turret cutting 
vibration, however significant peak 
variance and magnitude 

 Extreme heat induced during continuous dry cutting could be the cause of the 
increase in force and vibration 

 

Figure 7.11 Machining: continuous, time domain 
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Steel Aluminium 

 X: Significant power increase across 
all frequencies, continuous machining 
is overpowering 

 Y Z: Significant power increase from 
frequencies >1600, however 
frequency 1600 is unique for tool wear 

 Continuous cutting causes high 
material resonance 1900 Hz 

 X Y Z: large power increase in 
spindle frequency band 2300, 
however  unique tool wear identifier 
at 1760 

 

Figure 7.12 Machining: continuous, spindle vibration, frequency domain 
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Steel Aluminium 

 X Y Z: Continuous cuts overpower all 
frequencies below 5000, however 
unique tool wear frequency 
observable >5000 

 Y Z: Overwhelming power increase 
across all frequencies, however  
Unique tool wear identifier at 4800 

 
 

Figure 7.13 Machining: continuous, turret vibration, frequency domain 
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5 Machining workpiece and tool orientation 

 
 

150 mm Workpiece 40 mm Tool 100 mm Workpiece 100 mm Tool 

 Increase in force variance 

 Volatile spindle and turret cutting axis 
vibration 

 Consistent tool cutting force 

 Increasing spindle vibration and 
peak values 

 Increasing turret peak values  

 
 
 

Figure 7.14 Machining: orientation, steel, time domain 
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150 mm Workpiece 40 mm Tool 100 mm Workpiece 100 mm Tool 

 Extremely high tool force variance, 
and feed and radial magnitude 

 Extremely high spindle and turret 
vibration variance, feed axis greater 
than cutting axis 

 Uniform cutting force 

 Increasing spindle vibration on the 
cutting axis 

 Increasing turret peak vibration  

 
 

Figure 7.15 Machining: orientation, aluminium, time domain 
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Steel Aluminium 

 Frequency variation on the feed axis x 

 Diverse power variation on cutting 
axis Y 

 Power variation on the feed and 
cutting axis 

 High power response for the 150mm work piece 

 
 

Figure 7.16 Machining: orientation, spindle vibration, frequency domain 
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Steel Aluminium 

 High frequency and power variation 
between orientations 

 High frequency and power 
variation between orientations 

 High frequency and power response for the 150mm work piece 

 
 

Figure 7.17 Machining: orientation, spindle vibration, frequency domain 
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6 Time domain signal analysis summary 

 

Figure 7.18 Machining, time domain analysis, tool force summary 
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Figure 7.19 Machining, time domain analysis, spindle vibration summary 
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Figure 7.20 Machining, time domain analysis, turret vibration summary 



 

 

 

  



 

 

 

 
 




