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Abstract

The motion of a bubble through a fluid has attracted considerable scientific attention for

many years due to the complex, interesting fluid dynamics in their wakes, coupled to a

rich and varied interface motion. Additionally, vapour and gas bubbles have been found

to significantly increase convective heat transfer rates between a heated surface and the

surrounding fluid. Bubbles play a key role within two phase heat exchangers, in addition to

applications in chemical engineering, water treatment and medicine. Of particular interest are

two-phase cooling systems, which can achieve heat transfer coefficients considerably larger

than their single-phase counterparts. However, a widespread implementation of these systems

has yet to occur. This is due to their considerable size and to reliability issues resulting

from the complexity of the flow, since the mechanisms involved in this bubble motion are

dynamic and are often poorly understood. Although numerous studies exist for bubbles rising

in an unbounded medium, that of bubbles rising in constricted geometries has received less

attention. The particular case of a gas bubble sliding underneath an inclined surface in a

quiescent medium is of key importance in the above applications. In particular, the wake of a

sliding bubble and how it influences bubble interactions has received little to no attention in

the literature.

This study experimentally investigates air bubbles sliding under an inclined surface in

quiescent water in terms of the bubble mechanics, fluid motion and resulting heat transfer.

Time-resolved particle image velocimetry (PIV) is utilised in three measurement planes to

study the flow features in the wakes of sliding bubbles for a range of bubble diameters and

surface inclination angles. High speed imaging and advanced analytical techniques are used

to capture the dynamics of the bubble and the motion of its interface. High speed, high

resolution infrared thermography is used to measure the two dimensional transient convective
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surface heat transfer. An experimental setup has been designed and built to facilitate these

measurements, while purpose specific code has been developed to analyse the experimental

data in detail. These measurements are performed both for single bubbles and an in-line

bubble pair.

Analysis of the measured velocity and vorticity fields reveals a wake structure consisting

of a near wake that moves in close proximity to the bubble, shedding vorticity at the extrema

of the bubble path. Downstream of the bubble in the far wake, these structures evolve into

asymmetrical, oppositely-oriented hairpin vortices that are generated in the near wake. These

hairpin vortices bear similarities to those observed behind freely rising bubbles and near-wall

bluff bodies and are found to cause significant motion of the bulk fluid. This fluid motion is

key to the convective heat transfer enhancement associated with a sliding bubble. Sliding

bubbles were also found to provide local heat transfer enhancement of up to 6 times natural

convection levels, which evolves dynamically as the bubble traverses the surface, spreading

over a large area and affecting heat transfer rates. The current work links the bubble wake to

the centroidal and interfacial dynamics of the bubble, in addition to quantifying the bubble-

wake interactions in terms of fluid flow, bubble dynamics and surface heat transfer. This

in-depth description of complex flow phenomena will be key in the future optimisation of

multiphase convective heat transfer.
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Chapter 1

Introduction

1.1 Background

By the year 2060, the amount of energy used worldwide in cooling will overtake that used

in heating [1]. Traditionally, thermal management meant dissipating heat from a device by

the use of simple heat sinks. However, as designers pack more devices and components into

shrinking spaces, the thermal densities grow substantially. The thermal challenges thus grow

with increasing levels of integration. As such, in recent years there has been a great demand

for efficient, high-performance thermal management technologies. This also has implications

on how we use energy: for instance, the 2014 IPCC report placed a heavy emphasis not only

on renewable energy, but also on cutting waste energy through the development of novel

technologies [2].

Two phase flows occur widely in both nature and industrial applications, including

chemical engineering (bubble columns), water treatment (oxygenation and purification),

energy production (stream generators in nuclear power plants) and even medicine (bursting of

micro-bubbles). Two phase flows offer extremely high heat transfer coefficients, temperature

homogenisation and passive or low power consumptions, all of which are extremely desirable

from a cooling perspective [3]. However, despite extensive recent research, the widespread

implementation of two phase technologies has yet to occur. This is in part due to the complex

nature of the flows, which leads to significant uncertainty regarding the reliability of new

two phase technologies. This complexity arises from the coupling between the motion of the
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gas and liquid phases. Bubbles are compressible and deformable, meaning their mechanics

are rich and complex. Furthermore, the behaviour of bubbly flows is highly dependent

on a range of interdependent parameters, with changes in fluid properties and temperature

leading to fundamentally altered system behaviour. When combined with phase change and

associated heat transfer processes, the scale of the challenges faced in reliably predicting the

performance of two phase systems is obvious.

Two-phase flow is known to significantly enhance heat transfer from a range of geometries.

Current research on two phase flow has focused on the effect of bubbles moving against

horizontal, vertical or inclined surfaces [4–8]. A key configuration of this flow is the motion

of a bubble underneath a heated, inclined surface, which is relevant for two-phase shell and

tube heat exchangers. Both vapour and gas bubbles have been found to significantly increase

the convective heat transfer rate between a heated surface and the surrounding fluid. This

has been attributed to the interaction between the bubble and the thermal boundary layer

at the surface [8]. Bubble-based cooling could offer significant advantages over traditional

single-phase liquid cooling systems. For vapour bubbles, a boiling phase change provides

heat transfer coefficients that can be an order of magnitude greater than single-phase systems.

Even without phase change, high heat transfer coefficients can be obtained using gas bubbles

[6]. These bubbles could be generated either passively, or actively at very low power inputs.

For instance, Wan et al. [9] used carbon nanocoils to achieve micro-bubble generation at <

70 µW .

By de-coupling the interdependent parameters that make up two phase flows, the current

work seeks a better understanding of the underlying behaviour from a fundamental point of

view. This is achieved by studying air bubbles sliding under an inclined surface in quiescent

water with no phase change, and initially no heat transfer. Although previous work has

quantified the surface heat transfer enhancement offered by sliding air bubbles, limited

research exists on the fluid behaviour that is responsible for this enhancement. Thus, a more

complete knowledge of the sliding bubble wake will lead to improved modelling of two-phase

phenomena and can provide insight into the wake-driven convective heat transfer involved.

Finally, the base case of a single sliding bubble can be expanded to study the effects of the

interactions between multiple bubbles, which are ubiquitous to two-phase systems. The

influence of these interactions will be discussed with respect to the bubble dynamics, wake
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structure and bubble-induced heat transfer enhancement. The overall goal of this work is

to provide this fundamental platform and use it as a foundation for optimising two-phase

convective heat transfer.

1.2 Dimensionless Numbers

A physical understanding of dimensionless numbers is important when interpreting the results

observed in the literature on two-phase flow. These are a useful tool when looking at multiple

data sets, as they allow for comparison between different experiments. In effect, by removing

the dimensions, knowledge can be extended beyond the specific data set. For the current

study, several key parameters can describe the transition between different modes of bubble

behaviour. The dimensionless numbers used in this work are as follows:

Reynolds number:

Re =
rUL

µ
=

rUT de

µ
(1.1)

Weber number:

We =
rU2L

s
=

rU2
T de

s
(1.2)

Morton number:

Mo =
gµ4Dr
r2s3 (1.3)

Eötvös number:

Eo =
DrgL2

s
=

Drgd2
e

s
(1.4)

Froude number:

Fr =
Up
gde

(1.5)

Capillary number:

Ca =
µU
s

(1.6)

Strouhal number:

Sr =
f L
U

=
f de

UT
(1.7)
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Nusselt number:

Nu =
hL
k

(1.8)

Rayleigh number:

Ra =
gbrDT L3

µa
(1.9)

The most often-used dimensionless parameter in fluid mechanics is the Reynolds number

Re, which is the ratio of inertial to viscous forces. Depending on its magnitude, either

the inertial forces dominate (Re � 1), the viscous forces dominate (Re ⌧ 1) or there is an

approximate balance between the two (Re ⇡ 1). The Reynolds number is frequently used

to determine the onset of turbulence or vortex shedding. In the general case in equation

1.1, r and µ are the fluid density and viscosity respectively, U is the velocity and L is a

characteristic length. In the study of rising bubbles, the characteristic velocity is the relative

velocity between the bubble and the fluid and is often expressed as the terminal rise velocity,

UT , while characteristic length is usually chosen to be the diameter of a sphere with the

same volume as the bubble, i.e. the equivalent spherical diameter, de. For larger bubbles

(volume > 3 cm3), the base width, b, is generally used as the characteristic length, resulting

in Re = rUT b/µ .

In two phase systems, it is common to use the Reynolds number in conjunction with the

Morton and Eötvös numbers, to predict bubble shapes, terminal velocity and the onset of

wake instability. The Morton number describes the physical properties of the surrounding

medium and the pressure field. The value of Morton number, Mo, which is a fluid property

and as such is not affected by bubble size or velocity, is highly dependent on the viscosity of

the system: that is, its resistance to deformation by shear stress. There is an extremely wide

range of possible Morton numbers, with low viscosity fluids such as water having values

as low as Mo = 2.5⇥10�11, while high viscosity fluids such as corn syrup can have Mo of

the order of 108. The Eötvös number, Eo, (often referred to as the Bond number outside of

Europe) is a ratio of the buoyancy forces to the surface tension forces. High Eötvös number

flows (Eo � 1) indicate the system is generally unaffected by surface tension forces, while

low Eötvös number flows (Eo < 1) indicate the system is affected. The bubbles in the current

study have a moderate Eötvös number.

Equally important for two-phase systems is the Weber number, We, which measures
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the relative contributions of the dynamic pressure (rU2) and the surface tension pressure

(s/L). This balance between pressure and surface tension characterises the deformation

of the bubble. For a Weber number that is < 3, the bubble deformation and motion are

dominated by surface tension forces, while bubble behaviour for We > 3 is dominated by

inertia. The surface tension, s , is sensitive to the fluid temperature and purity: this will be

explored in further detail in chapter 2. Some studies also use the Froude number (equation

1.5), which is the ratio of flow inertia to the external field (typically gravity).

It will become apparent in chapter 2 that the literature on bubbly flows does not use a

common framework: instead, a bewildering amount of various dimensionless groups are

presented. Where possible, the bubble regime in the current study will be characterised in

terms of the Reynolds, Eötvös and Morton numbers. However, this range of dimensionless

numbers fails to capture the influence of the liquid film that exists between the surface and

the bubble. This is characterised by the capillary number in equation 1.6, which represents

the ratio of the viscous drag forces (µU) to the surface tension forces across a liquid-gas

interface.

For oscillating fluid systems, the Strouhal number is a useful dimensionless parameter.

It can be used to characterise the vortex shedding behind a body, relating the frequency of

vortex shedding, f , to the bubble or flow velocity with a characteristic length scale. For

a cylinder in cross flow, the Strouhal number is approximately 0.2 over a large Reynolds

number range [10]. There are also dimensionless parameters relating to heat transfer that are

often used in empirical correlations to find heat transfer coefficients. In the current study, a

relevant parameter is the Nusselt number, which represents the dimensionless temperature

gradient at a heated or cooled surface. In equation 1.8, h is the heat transfer coefficient, L

is the characteristic length and k is the thermal conductivity of the fluid medium. Finally,

a useful parameter in free convection systems is the Rayleigh number, given by equation

1.9, where DT is the difference between the surface and fluid temperatures, b is the thermal

expansion coefficient, v is the kinematic viscosity and a is the thermal diffusivity. The

Rayleigh number can be thought of as the ratio between conductive and convective heat

transfer for free convection flows. When necessary, other dimensionless numbers will be

defined when encountered in the text.
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Chapter 2

Literature Review

The inherent complexities of bubble shape, motion, path and wakes are well known, and

have been recognised as a barrier to optimisation of bubbly flows in practical applications.

The specific properties of bubbles make their dynamics rich and varied; the purpose of this

section, therefore, is to provide an overview of bubble behaviour before narrowing the focus

to determine the existing gaps in the literature. This chapter will first examine the many

experimental and numerical studies on the mechanics of single and interacting freely rising

bubbles, paying particular attention to the wake structures observed. The literature associated

with the mechanics and heat transfer enhancement of sliding bubbles will also be reviewed.

It will become apparent that the literature on sliding bubble wake structures is very limited:

thus, to better understand the wake mechanics of sliding bubbles, the review will look into

pertinent numerical and experimental studies of near-wall turbulence and of the wakes of

near-wall bluff objects for greater insight.

2.1 Freely Rising Bubbles

Freely rising bubbles have been studied extensively in the literature, and have much in

common with sliding bubbles. As such, any study on sliding bubbles requires a knowledge of

rising bubble behaviour. This review intends to discuss rising bubbles in terms of the bubble

and wake mechanics, but a complete overview of rising bubble behaviour is not the goal.

Instead, information about rising bubbles that is pertinent to understanding sliding bubbles is

discussed.
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2.1.1 Single Bubble Mechanics

The interaction between a gas bubble and the surrounding medium determines its shape,

and the associated disruption of the surrounding flow field. Bubbles experience a dynamic

pressure as they move. At the front of the bubble, there is a stagnation point that results in a

pressure acting inwards towards the bubble surface. At the sides of the bubble, the liquid

must accelerate around the bubble to maintain its flow, meaning the pressure decreases from

the front stagnation point to the sides. This causes the bubble surface at the sides to move

outwards and increase its local curvature. At the back, the presence of the wake (this will be

discussed in section 2.1.2) means that the pressure does not recover to the ambient value.

Bubbles rising in a quiescent medium can be broadly grouped into three shapes, in order

of increasing Reynolds number: spherical, ellipsoidal and spherical-cap shape. The shape of

a bubble depends upon the relative magnitudes of the relevant forces acting on the bubble.

These are determined by a range of physical variables, with some simplifying assumptions.

Haberman & Morton [11] proposed that the bubble shape was a function of 8 parameters,

namely acceleration due to gravity, g, the terminal rise velocity, Ub, the equivalent spherical

diameter de, viscosity of the liquid, µl , and gas, µg, the density of the liquid rl and gas, rg,

and the surface tension of the liquid, s . For gas bubbles rising in water, the viscosity and

density of the gas are significantly lower than that of the fluid and can be ignored. These

parameters can then be grouped together in terms of dimensionless numbers, although, as

stated in section 1.3, the choice of dimensionless numbers is something of a dark art in

two-phase fluid mechanics. For the current study, bubbles will be represented in terms of the

Reynolds number, Weber number and Morton number.

The plot in figure 2.1 (a) shows the bubble shape regime in terms of the Eötvös, Morton

and Reynolds numbers, based on the experiments of Bhaga & Weber [12], who studied

bubbles rising in aqueous water/glucose solutions. The shapes were classified as spherical,

oblate ellipsoidal, oblate ellipsoidal cap, spherical cap with an open or closed wake, and

skirted bubbles with open or closed wakes. The various regimes observed were sketched

by Fan and Tsuchiya [13] in their seminal work on rising bubble wake dynamics, and are

shown in figure 2.1 (b). Note that while this shape regime map has been heavily cited in the

literature, it has some drawbacks. To explain why this is the case requires a more in-depth
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Figure 2.1: (a) The bubble shape regime map, characterised by the Reynolds, Eötvös & Morton
numbers, Bhaga & Weber [12]. The individual shapes corresponding to each regime are described in
(b) by Fan & Tsuchiya [13].

knowledge of the bubble dynamics. For now, we will continue to reference the Bhaga &

Weber [12] shape regime map, but will return later to discuss its limitations.

At low bubble diameters (de < 1 mm), the surface tension forces are dominant and the

shapes approximate spheres.The flow around the bubble is dictated by viscosity, and if the

Reynolds number Re << 1, it can be described by creeping flow. For bubbles of intermediate

size, the effects of surface tension and inertia, which is due almost entirely to the fluid

surrounding the bubble decelerating or accelerating, are both important. In this regime, the

bubbles are also strongly influenced by the liquid viscosity and impurities in the fluid. In

liquids with low viscosity and Morton number (e.g. water), these bubbles, which can be

broadly classed as ellipsoidal, experience complex motion in terms of shape and path. These

bubbles often lack fore-and-aft symmetry, and have a complicated wake structure to the rear.

It transpires that these complex bubbles are used in the current study.

As a bubble rises through a fluid, work is done on the fluid by the bubble. This occurs
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at a rate equal to the rise velocity times the buoyancy force. At low Reynolds numbers, the

energy associated with this work is dissipated through viscosity, and results in rectilinear

bubble motion. However, in a low viscosity fluid, the energy generated by the rising bubble

is not entirely consumed by viscous dissipation, with some energy released through turbulent

dissipation in the wake. This wake instability induces a secondary motion on the bubble,

causing oscillations in bubble path and shape. As the Reynolds number increases, the path

changes first from rectilinear to zigzag, and finally to spiral. This was studied for bubbles

rising in pure water by Saffman [14], who found that bubbles rose with a rectilinear path

when the bubble diameter, de, was less then 1.4 mm. Between de of 1.4 – 2 mm, the bubble

appeared to zigzag within a fixed plane throughout its rise, although the orientation of this

plane seemed to be random. Bubbles with de in the range of 2 – 4.6 mm could experience

either zigzag or spiral motion. At about 4.6 mm the degree of path oscillations began to

reduce in magnitude, and was fully dissipated for diameters above 6 mm. Saffman [14]

attributed this zigzag behaviour to the vortex shedding in the wake initiating an instability

in the bubble motion. This is not dissimilar to the situation with solid spheres, but occurs

at higher Reynolds numbers for bubbles due to the different surface boundary conditions

(zero-slip for a sphere, zero-stress for a bubble).

An important parameter in the field of rising bubbles is the terminal rise velocity UT .

There is extensive work in the literature on defining this in terms of the other five parameters

previously mentioned, that is, UT = f (µl,rl,db,s ,g). However, in the current study, the

bubble’s rise height is short (< 30 mm), preventing the bubble from reaching its terminal

rise velocity. Instead, it is the sliding terminal velocity that is of interest here; this will be

discussed in section 2.1.2. As such, the various governing equations for terminal rise velocity

are not provided. At extremely low Reynolds numbers, Hadamard [15] and Rybczynski

[16], independently solved for the terminal rise velocity in 1911. The assumptions in the

analysis were those of creeping flow and no contaminants, resulting in a constant surface

tension boundary condition. This model predicted that bubbles remain spherical until the

inertial forces become significant (this transition number corresponds to the (s�oe) curve

in figure 2.1). In reality, the Hadamard-Rybczynski formula acts as a limiting case for the

terminal rise velocity, as it is virtually impossible to remove all impurities from a fluid system.

For an entirely contaminated surface, the velocity can be expressed in terms of Stokes formula
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for flow past rigid spheres.

It transpires that these contaminants in the liquid phase, often called surfactants, are

crucial to two-phase systems, and can fundamentally alter the bubble mechanics. Surfactants

can gather on the surface of the bubble, reducing its mobility and dramatically reducing the

surface tension. As the bubble rises through the contaminated medium, these impurities are

pushed from the front stagnation point to the rear, which causes a no-slip boundary condition

at the rear of the bubble and a tangential surface tension gradient. This gradient causes

a tangential stress, referred to as a Marangoni stress, which acts to oppose the flow shear

stress. This is often referred to as the “stagnant cap” hypothesis, as the rear of the bubble

is immobile [17–19]. This has the result that the drag coefficient of the bubble approaches

that of a sphere, which can be calculated easily from Stokes drag model. Savic [20] assumed

a surface tension gradient over the bubble, which transitioned from surfactant-free at the

front to zero surface tension at the rear, whereas Griffith [18] performed experiments with

excessive fluid contaminants. The results obtained by both of these studies are shown in

figure 2.2 (a). As a general rule, Griffith’s curve is used when the contaminant is both known

and plentiful, while Savic’s curve should be used when the type or amount of contaminant is

unknown. As the bubble shape changes from spherical to ellipsoidal, the experimental data

become more scattered. Clift et al. [21] combined the terminal velocities measured by various

authors into figure 2.2 (b), combining tests in pure water (upper curve) and contaminated

water (lower curve). As can be observed in figure 2.2 (b), the upper and lower bounds of the

data converge at smaller and larger bubble diameters, but for ellipsoidal bubbles, the water

purity has a significant effect on the terminal velocity. For instance, Duineveld [22] showed

the velocity for 1.6 mm bubbles rising in tap water was half that of pure water.

So far, it has been observed that bubbles in the ellipsoidal regime experience large

distortions in bubble shape, which are also time-dependent. The precise mechanics of this

motion remains difficult to quantify, with many studies obtaining different terminal velocity

results for the same dimensionless parameters [23–26]. This difference is often attributed

to differences in surfactant concentration. Tomiyama et al. [27] make the point that few

studies have actually quantified this change in concentration as being the key reason behind

this scatter, referring to the experiments of Zhang and Finch [28], who found UT to be

independent of surfactant concentration for de =1.3 mm. Instead, the authors claimed that
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al. [21].

the considerable scatter in UT in the surface tension force dominant regime was caused not

by differences in surfactant concentration but by the initial displacement experienced by the

bubble. Additionally, Ellingsen and Risso [26] showed that if a strong initial perturbation is

applied to the bubble surface, it is possible to observe helical motion without any preceding

zigzag motion.

Figure 2.3 shows the results of Tomiyama et al. [27], showing the bubble shapes and

trajectories in pure and impure systems, for small and large initial deformations. Deformations

were caused based on the static pressure difference between the injector nozzle and the

elevation of a small container. In pure water, the 3 mm diameter bubbles released with a small

initial shape deformation experienced a low terminal rise velocity and a zigzag path. When

released with a large initial deformation, however, the terminal velocity was higher, with a

more helical bubble motion. For the same bubble diameter and large deformation, but in water

containing 0.0075% liquid soap, the motion became similar to the pure system with small

initial shape deformation. This coincidence was explained by considering that the damping

coefficient of a surface tension wave or capillary wave is known to become much larger when

surfactants are accumulated on the gas-liquid interface. Thus, for the ellipsoidal regime, the

influence of surfactants is to damp the initial displacement, and as such, the oscillations of the

bubble. This also has the result of reducing the degree of scatter in the system. The effect of

surfactants is more pronounced for larger ellipsoidal bubbles, with the motion in contaminated
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Figure 2.3: Shapes and trajectories of single bubbles in pure (P) and contaminated (C) systems, subject
to large initial shape deformations (LD) and small initial shape deformations (SD). The influence of
surfactants in the contaminated system is to damp the initial shape deformation, leading to a more
rectilinear bubble rise, Tomiyama [27].

water exhibiting almost rectilinear motion and significant shape oscillations. The findings of

this work show that, contrary to the opinion of much of the literature, it is not possible to

predict a motion type with the only information available being the equivalent diameter and

fluid properties; instead, the release mechanism must also be known. In reality, there are few

engineering applications that are completely surfactant-free. Practically, problems most often

arise when comparing results from the same experimental setup, particularly if the impurities

are a direct consequence of the flow measurement technique. The issue of surfactants and the

effect on flow measurement will be addressed later in this work.

With this knowledge, it is now worth making an amendment to our initial discussion

regarding the comparison of the various correlations derived by different authors. Wallis [29]

expressed concern regarding these comparisons, since the initial conditions and the method

of presentation can vary. To this extent, the author presented a regime map of dimensionless

speed, v⇤ versus radius, r⇤ for a single bubble rising in an infinite medium, as shown in

figure 2.4. This work showed results for a large variety of systems on a common scale,

as opposed to Bhaga and Weber [12], who used aqueous water/glucose solutions. In this
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Figure 2.4: Dimensionless velocity, v⇤ = v•

⇣
r2

c
µcgDr

⌘ 1
3

versus dimensionless radius r⇤ = r
⇣

rcgDr
µ2

c

⌘ 1
3
.

The parameter P is the reciprocal of the Morton number. Wallis [29]

map, Willis defined five distinct regimes of bubble behaviour. Note that the parameter P is

the reciprocal of the Morton number. Region 1 is creeping flow, where the viscous forces

dominate and the bubble interface is spherical. In region 2, the bubbles remain spherical

with increasing radius, provided the surface tension is sufficiently large. Eventually, the

bubbles are too large to remain spherical (region 3), which is characterised by ellipsoidal

bubble shapes, helical bubble paths and an increase in drag. As the bubble radius increases

further (region 4), the velocity becomes independent of the bubble size or the fluid viscosity.

Finally the largest bubbles (region 5) form spherical cap shapes with a flat base. The rise

velocity in this case can be provided by a force balance between the form drag and buoyancy.

The author also stressed that bubble motion in regimes 1-3 is heavily influenced by the fluid

purity. However, this work provides useful bounds for the terminal bubble velocity, and is

a more general case of bubble behaviour to serve a starting point in our later discussion of

sliding bubbles.

14



2.1. FREELY RISING BUBBLES

2.1.2 Wake Structures and Instability

Returning to the Hadamard-Rybczynski formula for a bubble with Re << 1, in which the

relative motion between the bubble and the surrounding fluid is very small. As such, the fluid

flow around the bubble will follow the bubble interface very closely, i.e. the contour of the

bubble forms part of a streamline. Now let us increase the Reynolds number. At some critical

value, the flow will start to separate from the bubble surface, with the separated streamlines

branching off and re-joining some distance downstream of the body, forming a closed region.

This closed region is known as the wake, and can also be defined as the region of non-zero

vorticity downstream of the body. Strictly, vorticity is a pseudo-vector field W, defined as

the rotational curl of the flow velocity vector
�!
U . More practically, the vorticity describes

the changes of a local velocity vector when one moves by an infinitesimal distance in a

direction perpendicular to it. At this critical value, the wake region consists of a symmetric

pair of stationary vortices, often referred to as the recirculation zone. As the Reynolds

number increases further, past Re = 100, the free shear layers become unstable, leading to

the formation of complex flow structures. The following section will look at research on the

nature of these structures for a range of rising bubble parameters. To aid in this analysis,

wake structures are generally defined in terms of the primary, or near wake, which moves in

close association with the bubble, and the secondary, or far wake, which extends downstream.

The latter has an open structure and is far less defined, with the possibility of free shear layers

and shed vortices from the primary wake being present in this region [13]. It is also difficult

to identify the exact boundary between the primary and secondary wake in a quantitative

manner.

Consider a bubble injected into a quiescent medium. Shortly after injection, the bubble

wake consists of a symmetrical closed laminar region of a toroidal vortex ring, followed by a

short tail. As the bubble accelerates, the wake grows in size. At some stage, the symmetry

in the wake is broken and some wake material is discharged. As the bubble accelerates, the

shape deforms, and vorticity is generated around the bubble edges at the highest rate. High

vorticity generation implies a high velocity gradient near the bubble edges, meaning the flow

becomes more prone to separation. Additionally, the pressure downstream of a rising bubble

cannot be recovered completely, as the pressure defect to the rear of the bubble induces a flow
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towards the bubble base, which in turn promotes the tendency for external flow to separate

over either side of the bubble. The formation of the bubble wake and the separation from the

bubble surface, thus, have a symbiotic relationship. Once flow separation occurs, there must

exist a pair of vortical flows to the rear of the bubble (i.e. a recirculation region). Fan and

Tsuchiya [13] provided sketches of the different possible types of wakes, which are shown

for a spherical cap shaped bubble in figure 2.5 in terms of the two extremes: a closed laminar

wake with a stable tail and an open turbulent wake.

Figure 2.5: Schematic representation of the general wake structure behind a spherical-cap bubble
between a closed laminar wake with a stable tail and an open turbulent wake. The primary and
secondary wake structures are also provided, Fan & Tsuchiya [13].

Vortex shedding can be either symmetric or asymmetric with respect to the wake central

axis, although the latter mode often dominates. For a bubble rising in two-dimensional space,

the asymmetry arises mainly from the non-linear interaction between the two vorticity layers

emanating from each side and from a disturbance or bias triggered by the external flow. This

is analogous to the asymmetry behind a cylinder in cross flow [30]. Fan and Tsuchiya [13]

describe this shedding in two dimensions. During the cyclic shedding period, the formation

of large scale vortices originates from the separation of the external flow at the bubble edges.

This forms a free shear layer, along which the vorticity travels. This vortex sheet tends to roll

up into a spiral form due to the pressure defect in the wake region and due to the velocity

differences between the outer and inner boundaries of this shear layer. Eventually, the shear

layer forms a vortex with a circular cross section. The vortex grows as vorticity continues
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to be supplied from the shear layer, and finally becomes strong enough to draw over the

opposite shear flow across the wake, thereby removing any further supply of vorticity. The

vortex subsequently sheds from the rear of the bubble.

Up to this point, the structures have been considered in two dimensions. Upon expanding

into three dimensions, a similarly detailed description of the wake is very difficult, with

different ranges of instability occurring over a wide range of Reynolds numbers. These large

scale vortical structures have several forms. For ellipsoidal and spherical-cap bubbles, Lindt

[31] argued that the periodic change in bubble orientation, and corresponding rotational drag

component, meant that the wake configuration should consist of a helical vortex in the near

wake. This helical vortex is a three-dimensional extension of the stable two-dimensional von

Kárman vortex-street wake, which is the ubiquitous repeating pattern of swirling vortices

caused by unsteady separation of flow around a bluff body. Although such a structure is

unstable in three dimensions, the helical vortex wake has been experimentally found to persist

for some time before dissipating. Understanding the flow structures of bluff bodies in three

dimensions is of key to this study; as such, section 2.3 is devoted to it. For now, let us

make a brief detour into bluff body flow behind a solid sphere in cross flow, as studied by

Achenbach [32], who used visualisation experiments at Re = 400�3000. These revealed

an apparently helical discharge of vorticity from one direction, with a discharge of vortex

loops perpendicular to this. This is shown schematically in figure 2.6 for two mutually

perpendicular planes, with the direction of vorticity indicated by the arrows. This series of

interconnected loops is commonly referred to as a hairpin, or horseshoe vortex. Fan and

Tsuchiya [13] claimed that for ellipsoidal bubbles, the three-dimensional wake structure is

likely some form of helical vortex in the near wake, with the possibility of shed loops further

downstream of the bubble.

Experimental studies on bubble wakes typically use either visualisation techniques or flow

measurement techniques. Fan and Tsuchiya [13] used the former, basing their observations

on flows seeded with minute hydrogen bubbles, which provided the basis for their deductions.

Lunde and Perkins [24; 33] used photochromic dye to investigate the shape oscillations and

motion of rising bubbles. Digital image analysis of bubbles rising in unfiltered water was

undertaken with a Reynolds number range of 700� 1300. The results revealed a regular

oscillation in the bubble shape. The authors were able to identify three frequencies of
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(c)

Figure 2.6: (a) Photograph and (b) description of helical vortex attached to a spherical cap bubble in
two dimensions, (c) sketches of a proposed “hairpin” three dimensional structure of the wake of a
solid sphere at Re = 1000 in two perpendicular planes, adapted from the work of Achenbach [32]. All
images taken from Fan & Tsuchiya [13].

oscillation, corresponding to vortex shedding from the bubble and two modes of ellipsoidal

harmonics. These harmonics were identified as mode 2,0 (oscillation between oblate (aspect

ratio c > 1) and prolate (c < 1) shapes) and mode 2,2 (waves travelling around the equator

of the bubbles). By analysis of the bubble shape time series, it was discovered that there was

a strong interaction between the shape oscillations of mode 2,0 and the bubble path. These

low mode shape oscillations can account for both the "wobbling" of oblate spheroids and the

"rocking" of spiralling or zigzag bubbles. As the Reynolds number increased, the frequency

of both harmonic modes approached that of the vortex shedding of approximately 12 Hz.

Using data from Lindt [31], it was found that the vortex shedding became fixed on mode

2,0 for bubbles larger than 4.4 mm in diameter. Sanada et al. [34] used photochromic dye

as in Lunde and Perkins, but in this case investigated the wake structures of a single rising

nitrogen gas bubble rising in silicone oil solution, in which case the effect of contaminants

was negligible. This study was the first to provide experimental support for the existence of a

standing eddy behind a clean bubble, which had been predicted previously in the numerical

study by Ryskin and Leal [35]. This only occurred in the case of smaller (de =2 mm),

spherical bubbles. Figure 2.7 shows the elevation and side view of a single rising bubble. It
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was found that for a bubble rising in axi-asymmetric motion, a pair of vortex filaments, also

referred to as a double-threaded wake, was observed. When the bubble changed direction,

a pair of streamwise vortices rotated and changed places with each other. Also observed

was the complex formation of multiple hairpin vortices, caused by the instability within the

double-threaded vortices. The authors made a point of contention with Lunde & Perkins [33],

who had previously stated that a hairpin vortex was formed every time the bubble changed its

direction, (i.e. twice in one period of a zigzag motion). Figure 2.7 suggests, however, that

vortices were formed not twice but multiple times in one period.

(6) (7) (8) (9) (10)

(6) (7) (8) (9) (10)

Figure 2.7: Side view of the photochromatic dye observation of multiple hairpin vortices shedding
behind a rising bubble, Re = 330,We = 3. Each image is separated by 10 ms. Sanada et al. [34].

Schlieren photography is a non-intrusive technique that makes use of the variations in

refractive index caused by density gradients of the fluids to create a spatial variation in light

intensity [36]. Experiments using Schlieren photography do not suffer from the possibility

of tracer particles altering flow behaviour, and as such can use highly purified systems. De

Vries et al. [37] used this method to visualise the wake of rising bubbles in ultra-purified

water. A density gradient in this case was achieved by heating the upper parts of the tank. As

the bubble rose, it entrained cold water in its wake, dragging it into the measurement region.

A double-threaded wake consisting of a pair of counter-rotating vortex filaments was found

to be present whenever the curvature of the bubble path was non-zero. The near wake was

found to consist of hairpin-type loops, which were formed and closed each time the bubble

passed through the axis of symmetry of the zigzag. The vortex loops were formed and closed

when the bubble is at maximum amplitude, i.e. the point furthest away from the centre-line
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of the zigzag. As the bubble continues to rise, new components of the wake emerged that

caused the bubble to follow a curved path. These results were later built upon by Veldhuis

[38], who used stereoscopic Schleiren measurements, provided here in figure 2.8. The bubble

wake started as axisymmetric but broke into a double-threaded wake after the initialisation of

a path instability. In this case, the bubble shape was found not to be influenced by these initial

wake instabilities. This lead the author to propose that the presence of wake oscillations

without shape oscillations means the former triggered the latter. Figure 2.8 (b) shows the

occurrence of shape oscillations, which creates discrete zones of high vorticity. As with the

results of Sanada et al. [34], the wake appeared to consist of multiple hairpin vortices in each

period.

Figure 2.8: Stereoscopic Schlieren images of rising bubbles. The yellow line denotes the path, the red
circles the shape every 0.64s. The elapsed time between first and last bubble shape is 0.205s. The
equivalent diameters are (a) 2.5 and (b) 2.8 mm. Veldhuis et al. [38].

Brücker [39] performed Particle Image Velocimetry (PIV) on the wakes of freely rising

bubbles. The experiments were performed in counterflow conditions, which kept the bubble

stationary in the y-direction and hence within the interrogation window. Bubble diameters

ranging from 4-8 mm were investigated, and a 200 Hz frame rate was deemed sufficient to

capture the full wake structures. Measurements of the rise velocity of the bubbles revealed

that they behaved as in a contaminated system, with slightly lower velocity magnitudes.

Fluid flow velocity was measured in planes parallel and perpendicular to the bubble flow

direction. The latter is shown in figure 2.9 (a), acquired in a plane 10 mm downstream of

the bubble. The flow field in this cross section showed the alternate generation of a pair of

counter-rotating vortices close to the bubble base. For the parallel plane, shown in figure 2.9
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Figure 2.9: (a) Evolution of the velocity field and streamwise vorticity distribution in a horizontal
plane 1 cm downstream of the bubble, (b) flow field in a vertical plane through the wake of a rocking
bubble, with the counterflow subtracted from the vector field. In both cases, the vector plots are the
fluid velocity, while the contour plots are vorticity, Brücker [39].

(b), regions of concentrated vorticity were observed at the locations of maximum surface

curvature of the bubble, i.e. at the major axis edges. The region denoted as “L” on this figure

indicated a cross section of a head of a shed hairpin vortex pointing to the left.

By combining information acquired in two 2-D planes, the author deduced the structures

in three dimensions, with the accompanying sketches shown in figure 2.10 (a). Brücker [39]

claimed that the wake of bubbles within this Reynolds number range consisted of a chain of

vortex loops of alternate circulation and orientation. These hairpin vortices composed of two

streamwise vortex filaments or "legs", connected at the upper end by a vortex “head” and at the

bottom by a vortex “tail” to form a closed contour. From this model, the zigzagging motion

can be explained by the shedding of the hairpin vortex head, with the interaction between the

circulation around the bubble periphery and the free stream velocity generating a transversal

lift. The zigzagging bubble motion was coupled to a regular generation and discharge of

alternate, oppositely oriented hairpin vortices. Associated with this wake oscillation was a

strong asymmetric deformation in the equatorial plane of the bubble, which occurred at the

inversion points of the zigzag path. The author claimed that azimuthal deformation along

the bubble equator was caused by an uneven pressure distribution at the inversion points,
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which in turn was caused by the shedding of vortices from the bubble base. Two frequency

modes were identified: the aforementioned vortex shedding mode, and a secondary, “weak”

wake oscillation. It was hypothesised that this weak mode may have been by capillary waves

travelling from the front stagnation point to the rear stagnation point of the bubble. Delauré

et al. [40] performed a qualitative analysis of the work of Brücker [39], explaining that

the self-induction of the opposite circulating vortices on either side ideally led to a wake

pattern that extended downwards, with successive hairpin vortices forming a vortex chain,

as visible in the sketch in figure 2.10 (a). However, by considering the work of Lunde &

Perkins [33], the authors suggested that rather than forming a long chain, vortices quickly

evolved to generate a complex flow structure. This could have resulted from the non-uniform

self-induction effects distorting the hairpin vortex unevenly.

(a) (b)

Figure 2.10: (a) Schematic showing projection of flow structures onto the PIV planes tested from
Brücker [39], (b) schematic diagram of the interconnected vortex chain formed by the shedding of
hairpin vortices from a freely rising ellipsoidal bubble, interpreted from (a) by Delauré et al. [40].

The work of Zenit & Magnaudet [41] is key to the PIV approach adopted in the current

study. For their experiments, the authors looked at a perpendicular plane downstream of

a rising oscillating bubble in silicon oil, with the bubble velocity and shape found to be

virtually unaffected by the presence of tracer particles. The authors noted the appearance

of two swirling regions of vorticity in this plane downstream of the bubble, which in time

moved, reducing in strength. The authors were able to reconstruct the 3-D structure of the

wake to the rear of the bubble by converting the vorticity a different time instances into
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the flow at different streamwise distances z, given by z =UbNi f , where Ni and f were the

image number and frame-rate respectively. Although this Lagrangian approach was only an

approximation, it provided extremely useful visualisation data. These are shown in figure 2.11

for two isosurfaces of vorticity at two different views of the same flow. Immediately apparent

from this figure should be the strength of PIV at providing flow information, in this case

relating to two counter-rotating tubes of streamwise vorticity that stretched up to 7 diameters

downstream of the bubble. The authors were also able to calculate the lift and drag forces

from the bubble wake itself, based on the circulation theory developed by De Vries [37] and

adopted by Veldhuis [42].

c

Figure 2.11: (a,b) Reconstructed isovorticity surfaces showing double counter-rotating tubes of
vorticity, (c) velocity vectors (arrows) and vorticity fields (gray level), at dimensionless times t⇤ =

t
Ub/de

= 1 and 4. Zenit & Magnaudet [41].

When examining numerical studies on bubble wake structures, it is important to consider

the model being applied. Mougin & Magnaudet [43] investigated wake instability by taking

a numerical approach, first considering the bubble as a spheroidal body of fixed shape, and

subsequently solving the coupled fluid-body problem. The 3-D Navier-Stokes equations were

solved for a large domain of fluid surrounding a spherical bubble and were coupled with the

force and torque balances that determine the motion of the bubble. The spiral path discussed

in section 2.1 consequently emerged as the most stable configuration, as it allowed vorticity
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to be shed with the greatest efficiency. Mougin & Magnaudet [44] later expanded this study,

showing that the bubble transitioning from a straight to a planar zigzag path corresponded to

the first bifurcation of the system, which broke the axial symmetry of the initial wake. The

subsequent transition from a zigzag to spiral path corresponded to a second bifurcation, which

resulted in the planar symmetry being broken. This was also reported by Jenny et al. [45]

for a bluff sphere. It was found that as soon as the wake transitioned to a three-dimensional

structure, a lateral lift force of magnitude similar to that of the buoyancy force was observed

perpendicular to the rise direction. Cano-Lozano et al. [46] found the real bubble shapes from

axisymmetric numerical simulations and imported these into a full 3-D flow simulation. The

onset of instability was in agreement with the simulations of Magnaudet & Eames [25] and

the experimental results of Zenit & Magnaudet [41]. The authors found that the net effect of

instability was to induce the development of a counter rotating vortex pair in the recirculation

region, which triggered the zigzag behaviour. The degree of fore and aft asymmetry of the

bubble and the corresponding increase in maximum curvature were identified as the crucial

parameters in the production of vorticity.

Figure 2.12: (a) Wake of a zigzagging bubble at time t, with vortex structures shown as an isosurface
—2, shaded by vertical vorticity, (b) top views of a zigzagging bubble, starting at the same time t as in
(a). Note that the bubble is asymmetric about its major axis. Gaudlitz & Adams [47].

Gaudlitz and Adams [47] performed a numerical study on the unsteady wake of a zigzag-

ging bubble of de = 5.2 mm using the hybrid particle-level-set (HPLS) method proposed by
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Enright et al. [48]. The choice of parameters chosen to facilitate comparison with the work

of Brücker [39]. The numerical simulation showed the presence of periodically shed hairpin

vortices in the bubble wake, with a chain of up to four connected vortices observed, as shown

in figure 2.12 (a). Interestingly, this is in agreement with Veldhuis et al. [38] but not with

Brücker [39], who found only a single hairpin vortex at the base of the bubble. Differences

between the results of the simulation and that of Brücker [39] and Lunde & Perkins [33]

were attributed to the influence of surfactants in such experiments, with the authors noting

that agreement was achieved with the work of Veldhuis et al. [38], who used highly purified

water in their experiments. In the simulations, the vortex chains became twisted, possibly

indicating the transition from a zigzag to a spiralling rise path. The ellipsoidal bubble shape

was found to experience 2,2-mode shape oscillations. The results indicated the formation

of a new hairpin vortex caused a local bulging of the bubble, which in turn was reduced by

surface tension and formed two surface waves. These were found to travel circumferentially

in opposite directions around the bubble, interfering with each other. The authors claimed

this superposition of waves could be what was causing the periodically asymmetric bubble

shape seen both in experiments and in figure 2.12 (b).

(a)

(b)

Figure 2.13: (a) Wake of a 6 mm bubble impacting a wall, with vortex structures shown as isosurfaces
of vorticity, (b) predicted iso-temperature surfaces for a typical interaction process. Zun et al. [49]

Zun et al. [49] studied the bubble-induced liquid motion of a thermally stratified water
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layer. The bubble wake structures were studied numerically using a 3D interface tracking

simulation. The results indicated a long, open wake region formed along the fluctuating

bubble path. A set of vortex rings were observed, which the authors referred to as “Omega”-

shaped but which are consistent with hairpin vortex loops. These vortex rings were linked

together in the near wake. The coherent self-induction of these vortex rings was found to lead

to more complex patterns in the far wake, with a loss in the coherence of the vortex chain

downstream. Significant fluid mixing was observed in both the longitudinal and transverse

directions, which led to alterations in the wall temperature. Figure 2.13 shows the process

of a collision between these hairpin vortices and a wall. Furthermore, the wall temperature

corresponding to a typical wake impact is also shown. The time scale of this mixing was

found to be large due to the long lifetime of the bubble wake. The wake impact on the wall

was found to vary temporally, since the wake structures evolved in time. The characteristic

time scale of heat transfer enhancement of approximately 8 seconds was considerably greater

than that of the bubble passage. This is shown in figure 2.14 (b) for different average bubble

centre distances from the wall.

(a) (b)

Figure 2.14: (a) Expansion of map in figure 2.4 showing simulations of Zun et al. [49] (N1,N2,N3),
where the experiments of Brücker [39] ⌅ and Veldhuis et al. [50]. H are also shown. (b) Measured
evolution of the entrainment capacity Ae, which is the deflection of an isotherm caused by bubble
agitation. Zun et al. [49]

In the same work, Zun et al. [49] also updated the terminal velocity plot of Wallis [29]

with more recent experimental data. The regions 1-4 from figure 2.4 are visible on this plot.

The authors claimed fluid structures observed in their simulations (marked N2 and N3 on

figure 2.14 (a)) corresponded to the onset of region 4 motion, for which the terminal velocity

was independent of the bubble volume. This was support by the Schlieren experiments of
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Veldhuis et al. [50].

2.1.3 Interacting Bubbles

In reality, many bubbly flows will involve more than a single bubble, wherein the wake plays

a key role. In such systems, understanding the fundamental mechanisms of these interactions

is of great importance to determine process efficiency and optimisation. Extensive numerical

and experimental work has focused on interacting rising bubbles, from a single bubble pair

to large swarms. This section will draw from both of these to provide insight into the physics

of these interactions and the effect of the wake on a trailing bubble.

As was the case for single bubbles, the key reference for interacting bubbles is that of

Fan & Tsuchiya [13]. Based on experimental observations, bubbles were found to interact

through the following steps: (1) vertical alignment of both bubbles along the same axis;

(2) acceleration and elongation of the trailing bubble; (3) the trailing bubble overtaking the

leading one; and (4) either a collision of both bubbles, or coalescence due to the draining

of the liquid film between the bubbles. Thus, the wake is responsible for the bubble-bubble

interactions (1-3). Tsuchiya et al. [51] visually studied in-line bubble-bubble interactions in

two-dimensional liquid-solid fluidised beds, determining that coalescence could be due to

suction of the trailing bubble into the primary wake of the leading bubble, with this driven

by the pressure defect in the primary wake. This means that the initial interaction between

bubble and wake is of importance, as it determines the future bubble behaviour. Additionally,

at any one time in a bubble swarm it is likely that many the bubbles are interacting with the

wake of another. Figure 2.15 shows the results of Tsuchiya et al. [51], with the bubble paths

highlighted for clarity. In this case, the bubble shed a series of vortices in an alternating

manner, creating a snake-like liquid flow pattern downstream of the leading bubble. This

liquid enhanced the zigzag motion of the trailing bubble. When the distance between these

bubbles relative to the breadth of the first bubble, i.e. (Lb/b), was small, the trailing bubble

accelerated and became profoundly elongated, before colliding with the leading bubble. For

bubbles with unsteady wakes, the extent of this interaction depended on (Lb/b), with bubbles

within a critical distance of (Lb/b) = 5�7 being affected by the leading bubble wake. At

this critical distance, a gradual acceleration started beneath the bubble base, with a rapid
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acceleration and large shape elongation when the bubble entered the leading bubble primary

wake. When the trailing bubble entered the primary wake of the leading bubble, the structure

of the primary wake was disturbed, although its size did not change significantly. For a

side-by-side bubble pair, the free shear layers interfered with each other, and rolled up to form

a large-scale vortical structure. The structure of a side-by-side bubble pair bore similarity to

the wake behind a single plate, as studied by Hayashi et al. [52], amongst others.

Figure 2.15: Interacting rising bubbles in a two-dimensional liquid-solid fluidised bed with glass
beads of 460 and 774 µm and 1.5 mm acetate particles, with the first image modified to show the
leading and trailing bubble paths, Tsuchiya et al. [51].

Brücker [39] also performed experiments with interacting rising bubbles in cross flow. In

all experiments, the trailing bubble was first captured in the wake of the leading bubble, and

thereafter accelerated until it collided with the leading bubble. The position of both bubbles

with respect to time is shown in figure 2.16. By comparing the regions marked as A, A⇤ etc.

with the corresponding locations of the trailing bubble wake structure in figure 2.16, along

with the flow field induced by the leading hairpin vortex at this point shown by the arrows, it

was possible to correlate the bubble wake with the bubble interaction. For instance, in the

first capture cycle denoted as A, the bubble was captured from the side and was accelerated,

but was then decelerated after the release of the head of the next hairpin vortex from the

leading bubble (A⇤). Hence, the acceleration and deceleration phase of the trailing bubble was

coupled in time to the passing of the head of a shed hairpin vortex from the leading bubble,

with the flow being accelerated in front of the approaching vortex ring and decelerated behind

it. The trailing bubble essentially followed a series of “jumps” from one hairpin vortex to the
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next, until the final wake capture wherein it was continuously accelerated. Bubble collision

resulted in a considerable enlargement of the wake region for a short time period, which

indicated the amplification of turbulent energy production by the collision process. In three

dimensions, the wake capture process depended on the location at which the trailing bubble

laterally approached the wake of the leading bubble, as well as to whether the bubble was to

be captured or decelerated.

Figure 2.16: Illustration of hairpin vortex chain shed by a trailing bubble in counterflow, with the
direction at A and B corresponding to the induced flow by the leading bubble hairpin vortex (left),
corresponding time-series of the vertical bubble co-ordinate, z, with the times A,B etc. marked (right).
Brücker [39].

Stewart [53] carried out an experimental study on the interaction between freely rising

ellipsoidal bubbles in low viscosity aqueous sugar solutions. Pulsed swarms of 10� 20

bubbles of diameters ranging from 6.5� 12.8 mm were released simultaneously from a

circular plate and recorded with a high-speed camera. The author found that the leading

bubble wake was the sole mechanism for bubble interaction, with all coalescence or breakup

events occurring after an initial wake capture. The first indication that a trailing bubble

entered the leader’s wake was a disturbance in the trailing bubble wobble pattern, which took

place approximately 6 equivalent diameters behind the leader, consistent with the previous

findings of Tsuchiya [51]. Once captured in the wake, the trailing bubble was accelerated, and

subsequently overtook the leader bubble in a series of jumps, as in Brücker [39]. The initial
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collision, where the trailing bubble pushed past the leader and slightly ahead of it, lasted only

a fraction of a wobble period, approximately 0.1 s. After collision, the bubbles could take

two different configurations depending on their paths and velocity: either separating with no

further interaction or “dancing” together for a short period, wherein the leading and trailing

bubbles swapped positions several times. After this, the bubbles were found to either drift

apart, coalesce or break up. The wake capture process transferred mechanical energy from

the bubble to the liquid more rapidly than with independent rising bubbles, again implying a

large amplification of turbulent energy production. For the range of dimensionless parameters

tested, Stewart noted that the two bubbles never coalesce during the initial collision. When

several bubbles were captured in the wake of another, they formed clusters, which were found

to trade places in a “leapfrog” manner. There exists a large body of work for these bubble

clusters, in which fluid properties and surfactants play a key role in determining the system

behaviour.

The factors influencing bubble coalescence were discussed by Horn et al. [54]. The

authors explained that the reason bubbles coalesce is a natural tendency to reduce their

combined interfacial area against the continuous phase; however, this is resisted by both

the finite time it takes to remove the liquid between two bubbles as they approach and the

repulsive forces acting between the two bubble surfaces. Thus, the probability of whether

coalescence occurs is a function of the time taken for the film to drain and the time the bubbles

are in close proximity, with slow drainage leading to bubbles bouncing apart. Additionally,

the difference between the aforementioned repulsive forces and the attractive Van der Waals’

forces determines whether the bubbles coalesce. The authors found that when the bubbles

were very close, they could become dimpled by hydrodynamic forces. A simplified model

for coalescence was developed by Chesters & Hofman [55], who considered coalescence for

inviscid liquids. With no viscosity, collisions were elastic, and a recovery of kinetic energy

before coalescence caused bubbles to bounce apart. It follows that this was more likely to

occur at high approach speeds. Chesters and Hofman [55] estimated that bubbles should

bounce apart if the approach speed exceeded
p

s/2rR, where s is the surface tension of the

liquid, r the liquid density and R the radius of curvature. Although this model is simplified,

it is in fact consistent with many experimental measurements, particularly at high Reynolds

number. Bubble interactions and coalescence were also studied by Broder & Sommerfield
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[56], who performed experiments on turbulent bubbly flow in a double loop reactor. It was

found that the coalescence rate was an order of magnitude less than the overall collision rate.

Bubble coalescence is also a key aspect to nucleate boiling, where a moderate coalescence

rate is believed to improve heat transfer. Bonjour et al. [57] characterised the thermal effect

of bubble coalescence on nucleate pool boiling from artificial nucleation sites, showing

that at moderate heat fluxes, coalescence led to a decrease in bubble frequency. Although

coalescence was found to improve the heat transfer coefficient, the highest heat transfer

coefficient was observed at an optimal spacing between nucleation sites at which coalescence

did not occur.

There exists extensive numerical work on interacting bubbles. Hallez & Legendre [58]

performed a numerical study on the interaction between two freely rising bubbles in quiescent

fluid for (50 < Re < 500). Potential flow was assumed everywhere except at the bubble

surface, at which the zero shear stress assumption resulted in an interfacial distribution of

vorticity. The relative position between the bubbles was described using both the separating

distance and the angle formed between the centreline of the two bubbles and the x-axis. The

interaction was found to be the combination of three effects: the potential effect, a viscous

correction (also known as Moore’s correction) and a wake effect that was observed on both

the drag and the transverse forces of the second bubble when located in the wake of the

leader. The maximum drag reduction was observed for the in-line configuration, although the

stable final position for two rising bubbles was the side-by-side configuration. For the latter,

this is not always the case in reality, such as the small bubbles that rise in an-line formation

in a glass of champagne. The authors attributed this difference to surfactant contamination.

Bunner & Tryggvason [59] performed direct numerical simulation (DNS) on the motion of

27 three-dimensional deformable rising bubbles at low Reynolds numbers (17 < Re < 26).

This work solved the Navier-Stokes equations using a parallel finite-difference/front-tracking

method, which took into account the effects of interface deformation and surface tension.

Three different void fractions were used to describe the space occupied by the bubbles

relative to the total volume: 2%, 6% and 12%. At 6% void fraction, the bubbles, which

were initially homogeneously distributed, formed large-scale wake structures, where bubbles

gathered into vertical columns, or streams. This occurred only after the bubbles had risen

by approximately 90 bubble diameters. As in Brücker [39], the dynamic interaction process
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for any two bubbles was dominated by wake effects. An important observation was that

the bubble distribution revealed a preference for pairs of spherical bubbles to be aligned

horizontally, while deformed (i.e. ellipsoidal) bubbles tended to become aligned vertically.

Deformable bubbles experienced much stronger interactions than spherical bubbles, and thus

induced larger velocity fluctuations in the liquid. These fluctuations were much larger in the

vertical than in the horizontal direction. Within these stream macrostructures, there was a

marked increase in bubble velocity, which was explained by analysing the lift force on the

bubbles. For spherical bubbles, the lift force acted perpendicular to the bubbles. However,

for deformable bubbles, the generated lift force pointed towards the wake, acting to reinforce

the bubble stream. A typical interaction event between two bubbles is shown in figure 2.17.

(i) (ii)

(iii) (iv)

(a) (b)

Figure 2.17: (a) Interaction event from two bubbles, of Eo = 5, a = 2% simulation, at times 103,
105.3, 106.1 and 107 seconds from (i) to (iv) respectively, (b) Reynolds number vs time for the leading
bubble (solid line) and trailing bubble (dashed line) in the same simulation, in which the above times
are shown as the dotted vertical line. Bunner & Tryggvason [59].

For the particular collision shown in figure 2.17, the trailing bubble was accelerated in the

wake of a leading bubble until collision, after which it can be seen to push the leading bubble

aside. This is what the authors somewhat poetically referred to as the “drafting, kissing

and tumbling” process. When the bubbles were close to each other, their rise velocities

increased. Upon touching, their rise velocity started to decrease, with the deformation of

the leading bubble increasing by approximately 50% as the kinetic energy of the fluid was

transformed into surface energy at the bubble interface. The trailing bubble also experienced

a minor deformation. After separation, the deformations experienced small under-relaxations,
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but no shape oscillations as in Lunde & Perkins [33], as the Reynolds numbers used by

Bunner & Tryggvason [59] were far lower. The collision in figure 2.17 is nearly on-axis, and

as a result experiences relatively large increases in deformation and rise velocity. Bubbles

frequently experience slightly off-axis collisions, which are characterized by smaller increases

in deformation and rise velocity. The description of the collision process differed from that

of Stewart [53] and Brücker [39] in that the trailing bubble did not experience the observed

jumps. This was attributed to the more complex wake structures in the latter cases due to

high Reynolds numbers.

2.2 Sliding Bubbles

Up to this point, the bubbles have been rising freely in an unbounded medium. There are

many practical applications, however, where the confines of the geometry restrict the motion

of the bubble. The first research into these geometries began with tubes in the 1960s. This

was motivated in part by physical observations of two phase tube arrays. It was noticed that

bubbles generated from the upstream tubes impacted and slid along the downstream tubes,

increasing the local heat transfer coefficients. These sliding bubbles maintained the surface

temperature below that required for phase change, suppressing boiling [60]. Since then,

the field of sliding bubbles has expanded to include other geometries, such as bubble rise

under inclined plates. Studies on sliding bubbles typically focus on either the sliding bubble

mechanics or the heat transfer enhancement offered, which provides a suitable structure for

this section. To date, there has been no study characterising the wake in the same fashion as

Brücker [39] did for rising bubbles. It is useful to keep in mind the wake structures discussed

in section 2.1.2 when approaching this section, as there are many ways in which sliding and

rising bubbles are similar. An important distinction to make at this point is that although

sliding bubbles will be discussed in terms of the same dimensionless numbers as were freely

rising bubbles, a direct comparison with the regime map of Bhaga and Weber [12] or even

that of Wallis [29] is not possible. This is due to two factors. Firstly, the sliding surface itself

changes the boundary conditions, with a liquid film also existing between the bubble and

surface. Secondly, the initial conditions also change: in almost all cases, bubbles will impact

the surface before subsequently sliding.

33



2.2. SLIDING BUBBLES

2.2.1 Sliding Bubble Mechanics

Consider a two-phase flow in a tube, where the gas phase exists as large, bullet-shaped

bubbles separated by liquid. “Large” in this case means the bubble volume is such as to

fill the diameter of the tube entirely. If the ratio of bubble length to diameter is greater

than 1.5, the velocity is independent of bubble length [21]. These bubbles are referred to

as slugs, or Taylor bubbles, and have been studied in detail for tubes of circular and square

cross-section. In the 1960s, these were expanded to include tubes inclined away from the

vertical configuration. For inclined tubes, the bubbles tended to cling to the upper wall, and

reached a maximum velocity at an inclination angle of approximately 45�. This was observed

for circular tubes by Zukoski [61], who also found that once the Reynolds number exceeded

a critical value of Re = 200, the propagation rates became largely independent of the viscous

forces. The results also showed that as the Eötvös number increased, the Froude number for

a vertical tube rapidly approached a limiting value, whereas at inclination it continued to

increase. This indicates that bubbles within tubes can reach higher terminal velocity when

inclined than when vertical. Maneri & Zuber [62] focused on bubbles in inclined ducts of

square cross section, characterising the motion of inclined bubbles into one of three regimes.

The first of these was the properties dependent regime, which extended from a = 0� to 60�

from the horizontal. In this regime, the bubble velocity was influenced by the duct geometry

and the fluid properties, with a rise velocity that was twice that of the vertical case. As a

increased up to 80�, there was a transition corresponding to a sharp decrease in rise velocity.

Finally, the bubbles reached the inertial dominant regime, ranging from a = 80� to 90� from

the horizontal, with a rise velocity similar to the vertical case and independent of the fluid

properties.

By the 1990s, bubbles in constricted geometries had been studied for a number of

configurations. However, one case that was missing was that of bubble rise under an inclined

plate in a large container, which was resolved by Maxworthy [63]. For this configuration,

the effects of all of the walls apart from the inclined one could be ignored. Maxworthy [63]

used large air bubbles (5 ml to 60 ml) sliding under an inclined plate in water, obtaining plan

and side view images for a large range of inclination angles. Figure 2.18 shows sketches

of a plan and side view for a large bubble at a = 25�, and a photograph of a 60 ml bubble,
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also at a = 25�, modified to show the radius of curvature. Indeed, the side view photographs

showed that large bubbles had a leading edge of essentially constant radius of curvature, for

all angles tested.

Figure 2.18: (a) Plan and side view sketches of a large sliding bubble at a = 30�, (b) side view
photograph for V = 60 ml, a = 25�, edited to show the leading radius of curvature, Maxworthy [63].

Experimental results were represented in terms of the Froude number, 1 = UT
(gV 1/3)1/2

and the modified Froude number Fr2 =
UT

(gV 1/3sina)1/2 , which took into account the surface

inclination angle. The drag coefficient was found by equating the buoyancy force and the

drag force felt by the bubble, which for a spherical cap bubble is CD = 1.65/Fr2
1. These

parameters are all shown on figure 2.19 (a) for a single bubble volume, although the modified

Froude number was shown to remain reasonably constant with increasing volume. A Froude

number was constructed using the radius of curvature of the bubble as a length scale, and is

shown in figure 2.19 (b). Maxworthy [63] also performed a numerical analysis based on the

methods of Davies & Taylor [64], who assumed that the flow over the bubble leading edge

was equivalent to that over an oblate spheroid, moving parallel to its circular cross-section.

The relation between the ellipticity of this spheroid and the surface inclination angle assumed

inviscid, irrotational flow, and constant pressure along the surface of the ellipsoid, meaning

that the decrease in static pressure had to be balanced by the increase in hydrostatic pressure.

The Davies-Taylor method is only valid when a = p/2, but the author was able to expand

this such that the surface pressure is zero in an integral sense over the whole surface. The

ellipticity and resultant Froude number based on this method are also shown in figure 2.19 (b).

There was a reasonable agreement between these values and numerical results, suggesting
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that the inviscid assumption used was valid. The numerical results matched the experimental

values more closely at relatively larger inclination angles, which was attributed to the greater

relative effect of surface tension and contact angle effects at low Reynolds numbers.

Figure 2.19: (a) Froude number and drag coefficient versus surface inclination angle, a . Fr1 is the
modified Froude number, and takes into account the surface inclination angle. Fr2 does not. The
drag coefficient is calculated from CD = 1.65

Fr12 . (b) Open shapes: Froude number based on radius of
curvature. Double-dashed curve: the derived equation for ellipticity. Straight line: experimental
results for Froude number. Maxworthy [63].

Tsao and Koch [65] performed experiments on smaller, spherical bubbles of de = 1-

1.4 mm impacting a slanted surface that was oriented at angles between 10� and 85� to

the horizontal. After impact, bubbles acted in one of two ways. When the inclination

angle a was less than 55�, the bubble slid steadily along the wall, with a shape that was

almost spherical but will some deformation against the wall. At these inclination angles

and corresponding Reynolds and Weber numbers (45-200 and 0.03-0.4, respectively), it was

found empirically that the drag coefficient, Cd could be fit with the curve 100/Re, in contrast

with Cd = 48/Re for a spherical bubble rising in the absence of a wall. The inertial lift force

was also calculated, and found to be insufficient to balance the buoyancy force. Instead, the

lift force was attributed to the liquid film layer between the bubble and the wall, within which

the viscous forces dominate. The authors claimed that viscous lift is capable of balancing the

buoyancy force. The authors used a scaling analysis to predicted the thickness of the liquid
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film between the bubble and the surface, which was found to be of the order of 10 µm. This

was sufficiently thick to dominate the Van der Waals’ forces that exist between the bubble

and wall; however, it was observed qualitatively that very small inclination angles or bubble

volumes lead to the bubbles sticking to the surface rather than sliding. At angles greater than

55�, the bubble bounced repeatedly along the wall, with no observable loss in amplitude after

30 bounces. This would be in contrast with an elastic particle, which with a coefficient of

0.95 would bounce to only 5% of its initial height after 30 bounces. The authors concluded

that rather than the energy dissipation being immeasurably small, the bouncing was instead

maintained through an energy balance between translational, rotational and deformation

modes of bubble motion.

A more recent study by Perron et al. [66] used a plexiglass surface with a between

2� and 10� to the horizontal and bubble volumes varying from 3 to 90 ml to quantify the

sliding bubble shape regime. The authors showed that the terminal velocity does not increase

linearly with volume, instead having distinct regimes, each corresponding to a different

shape. These regimes are identified in figure 2.20, and in order of increasing volume are

defined as immobile, crawling, semi-rigid, oval oscillating, deformed and bulged. At the

lowest Reynolds number for a = 4�, the bubbles are immobile, with the in-plane component

of the buoyancy force balanced by the difference in contact angles between the upper and

lower ends of the bubble. This regime results from the surface inhomogeneities of the sliding

surface and possible Van der Waals’ forces: that is, if the surface was perfectly smooth, this

regime would not exist due to the non-zero component of the buoyancy force acting on the

bubble. When the bubble volume was increased, the bubbles were found to move slowly,

with strongly attenuated motion. Bubbles in this regime were referred to as crawling bubbles.

With a further increase in volume, the wetting film at the bubble nose was penetrated, and

the bubbles transitioned to semi-rigid bubbles. These were almost circular in shape, except

that the radius of curvature was slightly larger at the nose than the rear. These bubbles

experienced minor sinusoidal path oscillations. As the volume was increased, the bubbles

became elongated in the direction perpendicular to motion and the periodic shape oscillations

became more pronounced. These bubbles are defined as oval oscillating. With further volume

increases, the bubbles became deformed, which the authors claimed was caused by the release

of asymmetric three-dimensional trailing vortices. At the largest volume, the bubbles formed
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two distinct tails on either side, experiencing a near-constant drag coefficient. These were

referred to as bulged bubbles. Figure 2.20 shows the latter four regimes (the first two are

spherical like the semi-rigid bubbles but smaller), as well as the relationship between both

aspect ratio and terminal velocity with bubble volume. Perron et al. [66] also compared

the terminal velocity to the experimental data of Chen et al. [67], finding that although the

terminal velocity increased with inclination angle, it did not do so linearly. This is because

the inclination angle influenced the magnitude of the buoyancy force, which in turn deformed

the bubble shape. As before, viscosity and surface tension determined the shape for smaller

bubbles, while larger bubbles were dominated by inertial effects.

V

b/
a

Figure 2.20: Shapes of bubbles moving under an inclined surface with increased volume from left
to right. The regions are characterised as (A) - Static, (B) - Crawling, (C) - Semi-regid, (D) - Oval
oscillating, (E) - Deformable, (F) - Bulged. (b) Variation of the aspect ratio as a function of the bubble
volume at low inclination angle (a < 10�). The letters (A) through (F) correspond to the outlined
bubble shapes. (c) Bubble terminal velocity versus diameter at low surface inclination angles, with
data of Chen et al. [67] provided for comparison, Perron et al. [66].

Perron et al. [66] also performed a force balance on the bubbles, solving for the bubble
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drag coefficient by means of a kinematic approach. The authors considered a bubble at

terminal velocity and equated the buoyancy and drag forces. These were given by the

following expressions:

Fb = DrV gsina (2.1)

Fd =CDAT
rLU2

T
2

(2.2)

where Dr is the difference in density between the fluid and bubble, which for air bubbles is

⇡ rL, V is the bubble volume and a the surface inclination angle. The authors considered

the frontal area, AT , through which the bubble contacts the surface, to be circular. While this

method allows for the calculation of CD for comparison between different studies, such an

analysis can be problematic from a physical standpoint. This will be discussed in more detail

in chapter 5.

V = 0.05 ml
V = 0.1 ml
V = 0.2 ml
V = 0.4 ml

(a) (b)

(c)

Figure 2.21: Bubble shape and path variations for a heated surface (plan and side view) inclined at
30� to the horizontal for a 7.23 mm bubble, (b) bubble velocity versus time for different volumes, (c)
sequential images showing large shape oscillations upon the introduction of tracer particles, Donnelly
et al. [68].

The current study builds on the work of Donnelly et al. [4; 68; 69], who performed an

investigation into the effect of a single air bubble sliding under a heated inclined surface. The

experimental rig used was a tilting glass tank, inclined at 30� to the horizontal. Bubbles of
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approximately 5-9 mm equivalent diameter slid under a thin aluminium foil heated to 32�C,

obtaining simultaneous measurements of bubble motion and heat transfer from the surface.

It was found that bubbles, which were in the ellipsoidal regime, exhibited sinusoidal path

oscillations. The authors attributed this motion to the asymmetrical generation and shedding

of vortices, with one vortex shed for each half period of path oscillation, as was found for

rising bubbles by Brücker [39]. The bubble shape fluctuations were closely linked to the

path oscillations. At larger bubble volumes, there was a loss in planar symmetry along the

major axis of the bubble, with a subtle periodic shape oscillation. The bubble interface was

also found to recoil sharply back towards the bubble after the bubble reached its maximum

x-displacement from the mean, likely due to shedding a vortex. This caused the bubble to

change direction. There was found to be little difference in bubble motion for a heated and

unheated foil at lower bubble volumes, although the presence of a natural convection thermal

boundary layer caused the heated tests to exhibit a greater mean velocity. At higher volumes,

a thinning of the bubble tips was observed along with a rougher interface, both of which

were attributed to the thermal boundary layer at the surface. The authors also measured

parameters such as bubble velocity, ellipticity and force. Interestingly, bubbles were found

to occasionally exhibit markedly different behaviour, characterised by the bubble initially

rising rectilinearly before experiencing an onset of strong x-velocity fluctuations. This was

referred to as the “transitional” mode, and was attributed to the shedding of a large quantity

of material from the bubble wake. Another key finding of this study was that the addition of

the glass tracer particles required to perform PIV altered the bubble behaviour dramatically.

Rather than the sinusoidal path expected, all bubble volumes tested took a rectilinear path,

with the bubble shape experiencing dramatic oscillations from oblate to prolate. The bubble

velocity was also significantly larger in this case than before. This was attributed to the tracer

particles acting as surfactants: however, this contradicted much of the work on freely rising

bubbles discussed in section 2.1, which explained the effect of surfactants was to reduce the

bubble velocity. Additionally, other work in the literature did not face the same problem

when performing PIV measurements. Without doubt, the possibility of the flow measurement

system fundamentally altering the flow behaviour is a serious issue, and will be addressed in

the current study. The key bubble mechanics results from Donnelly et al. [68] are provided

in figure 2.21, showing the bubble motion in the plan and side view, the bubble velocity as a
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function of time and images of the bubble shape upon the addition of tracer particles.

Debisshop et al. [70] numerically modelled bubbles rising in an inclined channel in two

dimensions using a boundary integral method, with and without insoluble surfactant. For the

surfactant case, linear and non-linear relationships between surface tension and surfactant

concentration were both considered. For a sliding bubble, the surfactants were found to

accumulate at the rear of the bubble due to convection along the interface. Thus, the surface

tension was less at the rear of the bubble, allowing for a greater deformation of the interface.

With increasing surfactant concentration, the bubbles became more elongated and slender.

Crucially, for sliding bubbles, the addition of the surfactant was found to increase the bubble

velocity. This is in agreement with the experiments of Donnelly [68], and is the opposite to

the situation for freely rising bubbles. For sliding bubbles, surfactants could also be used to

cause otherwise static bubbles to detach from the surface by altering the adhesion or drag

forces, which could have applications in dislodging gas microbubbles in cardiac surgery [71].

Delauré et al. [40] extended their qualitative analysis of Brücker’s [39] model to include

the influence of an inclined surface on the bubble path and dynamics. The authors claimed that

for both inclined and vertical walls, the bubble passage was followed by its wake, shedding

vortices that were convected upwards. With this shedding, the flow at the surface should

experience strong variations both in magnitude and direction. The authors considered the

scenario of an ideal hairpin vortex impacting on an inclined surface with its plane of symmetry

perpendicular to the surface. In this case, the flow at the surface should be influenced by both

streamwise and transversal vortices, i.e. the head and tail of the hairpin vortex should induce

vertical flow components of opposite signs. As the hairpin is convected upwards from its

head to tail, the induced flow components could tilt successively towards and away from the

horizontal direction. The authors admitted that this analysis was idealised, since in reality

the shape and strength of the legs of the vortex hairpin are unsteady, and evolve following

complex and largely unpredictable patterns as in Lunde and Perkins [24].

Masliyah et al. [72] experimentally measured drag coefficients for freely rising and

sliding air bubbles (de = 1.7� 2.9 mm) at small Weber numbers. For rising bubbles, the

buoyancy and drag forces were equated to find the general drag coefficient, as shown in

figure 2.22 (a). Due to the deformation of the bubble at the wall, the drag coefficient for a

sliding bubble could not be characterised in terms of the Reynolds number alone; instead,
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the experimental data was collapsed by the Reynolds and Eötvös numbers. This provided an

empirical fit for the drag coefficient, given as:

CD =

✓
16
Reb

◆h⇣
1+0.007Re0.65

b

⌘⇣
1+1.31(Eocosa)0.51

⌘i
(2.3)

which is valid for Reb = 0�130, Eo= 0.4�1.7 and a = 35��90�. Figure 2.22 (b) compares

this equation and experimental data to the 16/Re relation for creeping flow obtained by

boundary layer theory. The authors also found a fore and aft asymmetry of the sliding

bubbles; a situation that was not present for a bubble resting on a horizontal surface nor a

rigid sphere rising along an inclined surface. As the parameters tested in the current study

are outside this defined range, it is not possible to apply this correlation to the current study.

Figure 2.22: (a) Drag coefficient as a function of Reynolds number for freely rising bubbles, (b) drag
coefficient as a function of Reynolds number for sliding bubbles, given by equation 2.3, Masliyah et
al. [72].

The existence of a liquid film between the bubble and the surface, predicted by boundary

layer theory, is well known, and forms an important part of the sliding bubble behaviour.

Inside the liquid film, there are two additional types of force that act on the bubble. Del

Castillo et al. [73] explained that the first of these are the Van Der Waals’ forces that act

between the bubble and the surface, causing bubbles to stick at low angles. The second force

is the electrical double layer, described by Grahame [74] and Guldbrand et al. [75]. The

double layer refers to two parallel layers of charge around the sliding surface. The first layer

was found to be the surface charge, consisting of ions adsorbed onto the surface chemically,

while the second layer comprised ions attracted to the surface via the Coulomb force. Del

Castillo et al. [73] looked at the microscopic Van Der Waals’ forces and the electrical double
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layer acting in the liquid film by changing the salt concentration of water and aqueous KCl

solutions. It was found that there was an electrical double layer repulsion that occurred since

both the surface and the air-water interface were negatively charged, which dominated over

the Van Der Waals’ forces, acting as an additional, disjoining pressure in the liquid film.

These forces played a key role at very low inclination angles (a = 1��5�). Addlesee & Kew

[76], [77] predicted the liquid film thickness by assuming a velocity profile polynomial that

satisfied the conditions of no slip at the wall, no shear at the free surface and a flow per unit

width of the boundary layer at the nose of the bubble. A first estimate of this film thickness

is:

d f =

r
vD
U

(2.4)

The resultant equation for the film thickness required the bubble velocity; for this, the

authors used a semi-analytic solution based on the experiments of Maxworthy [63] that also

took into account the inclination angle. The authors found that the liquid film thickness was

in the range of 200-400 µm for a < 15�, with a substantial rise at larger inclination angles.

This was close to the empirical findings of Kenning [78]. The results were typically in the

range of 200 to 400 µm, although beyond angles of 15� a substantial rise in the thickness

was found. This lead the authors to claim that the liquid film thickness was determined by

flow phenomena, rather than by heat transfer.

Podvin et al. [79] derived a model based on lubrication theory to describe the interaction

of a bubble with an inclined wall. Bubble sizes of 1�2 mm were studied. The model used

was two-dimensional, focusing on the forces in the tangential and transverse directions (i.e.

lateral oscillations were ignored). The equations of motion for the bubble centroid were

obtained from applying the following force balance:

rbV
dU
dt

= Fbuoyancy +Fdrag +Faddedmass +Fhistory +Fwall (2.5)

Some of these terms will come into the force balances being used in chapter 5. Note the

use of the history force, also known as the Basset force. Notoriously difficult to implement

(i.e. ignored by many models), the Basset term describes the force due to the lagging

boundary layer development as the bodies moving through the fluid are accelerated. There is
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also an additional wall force, Fwall , which the authors claimed acted via an excess pressure

exerted on the top of the bubble, which corresponded to a deformation of the interface.

The flow between the bubble and the wall is a film, which the authors subsequently solved

using lubrication theory, assuming the pressure and velocity were uniform in the liquid film

between bubble and surface. This model was then compared to experiments where bubbles

of 1.2 - 1.8 mm diameter were allowed to reach terminal rising velocity before impacting an

inclined surface. As in the case of Tsao and Koch [65], there were three regimes of behaviour.

At low angles (0��10�), the bubbles bounced 2-3 times before stopping moving, as has been

shown by Donoghue et al. [80] for a bubble impacting a horizontal surface. For moderate

wall inclinations up to a critical angle (10��55�), the bubble slid under the wall at a constant

speed. Occasionally in this regime, there was an occurrence of transient bouncing, where

the bubbles bounced several times with decreasing amplitude before sliding motion began.

Finally, for large wall inclinations > 55�, the bubble experienced steady bouncing of constant

amplitude. The model was able to predict the rebound amplitude well, although the drag in

the tangential direction was likely under-predicted when the bubble was close to the wall.

Figure 2.23 shows the force balance in the normal and tangential directions for a 1.02 mm

diameter bubble impacting a surface at 45�. Note that in the normal direction, the buoyancy

is balanced by the wall force, whereas in the tangential direction, the buoyancy is balanced

by drag. In both cases, the added mass force is only significant at the moment of bubble

impact. In the tangential direction, the wall force is equal to zero and is hence omitted from

the force balance in the current study.

Legendre et al. [81] performed a numerical analysis on a bubble sliding at some initial

velocity Ub along a horizontal wall in a liquid at rest to find the lift, drag and added mass

coefficients. This involved solving the full Navier-Stokes equations in a boundary-fitted

domain, with a no-slip boundary condition at the wall and zero normal velocity and stress

on the bubble interface. The authors found the lift coefficient to be inversely proportional to

Re0.5, which they attributed to the shear generated on the wall by flow moving around the

bubble. The drag coefficient in this case was slightly larger than for a freely rising bubble,

attributed to the additional dissipation induced by the rigid wall. For Reynolds numbers

above 50, the drag for this configuration was found to be controlled by viscous effects. To

find the added mass coefficient, the bubble was modelled as having a time-dependent radius
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Figure 2.23: Force balance in (a) the tangential direction and (b) the normal direction for a 1.02 mm
diameter bubble impacting and sliding under a wall inclined at a = 45�, Podvin et al. [79].

r(t). It was found that the added mass effect had contributions normal and tangential to the

wall, and could be given by potential theory for viscous solutions.

2.2.2 Sliding Bubbles and Heat Transfer

Boiling heat transfer is ubiquitous to many applications, including heat exchangers, manufac-

turing processes and advanced cooling applications. Boiling is characterised by the formation

of vapour bubbles that grow and subsequently detach from the surface, the dynamics of which

are complex, depending on parameters such as the excess wall temperature, nature of the

surface and the properties of the fluid. If we consider applications such as bubble nucleation

on the surface of a horizontal tube (i.e. within a shell-and-tube heat exchanger) or nucleation

on a downward-facing surface (as occurs in the production of aluminium), it is clear that the

motion of a bubble, be it vapour or gas, disrupts the liquid in the system. This fluid mixing

is known to substantially increase local heat transfer coefficients. The precise heat transfer

contribution of sliding vapour bubbles is a function of bubble nucleation, detachment from

the surface and sliding along or under the surface.

Cornwell [8] studied the influence of bubbly flow on boiling from a tube, with the author

splitting the heat transfer coefficient into constituent parts in order to quantify the influence

of bubbly flow on heat transfer. That is:

h = h f c +hsb +hnb (2.6)
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where the notional parts are the contribution of forced liquid convection at the local fluid

velocity, h f c, the contribution of bubbles that slide along the surface hsb and that of bubbles

which nucleate as in pool boiling hnb. The sliding bubble term consisted of two parts: that due

to turbulence in the liquid boundary layer and that due to the evaporation of the micro-layer

under the bubble. Experiments were performed in a tube bundle heated to provide a mean

bundle heat flux, with a test tube that had its own heating setup. To study the constituent

parts individually, initial experiments were performed on the test tube at a low heating

level, insufficient to generate nucleation. By heating the tube further, the commencement of

nucleation could be defined. Separate experiments in single phase liquid conditions allowed

for measurement of the forced convective heat transfer coefficient, meaning hsb could be

found by subtraction. Cornwell [8] found that the presence of bubbles caused a many-fold

increase in heat transfer from the tubes to the liquid. This was found to occur even at low

wall superheat, where no nucleation was occurring, with the author postulating that this was

due to the bubbles in the flow sliding around the tube. Additionally, even when boiling did

occur at higher DT values, the heat transfer due to forced convection and sliding bubbles

fully accounted for that on the upper tubes, with nucleation suppressed at these locations.

This work was extended by Houston & Cornwell [6] to include non-evaporating air bubbles.

The same experimental setup as before was used with R113, with air bubbles injected below

the tubes. The authors found that bubbly flow turbulence was a prominent mechanism in

heat transfer enhancement, and although the evaporation of the bubbles was a major factor

in heat transfer enhancement, at low heat fluxes it is not significantly larger than the bubbly

flow turbulence. This led the authors to conclude that the heat transfer due to translating

bubbles was at least as important as the mechanism within the thermal boundary layer under

the bubble. Indeed, the disturbance effects alone accounted for a third of the heat transfer.

Yan et al. [7], and subsequently Kenning & Yan [82], used liquid crystal thermography

to investigate the contribution of sliding vapour bubbles to heat transfer, calculating the heat

flux and associated heat transfer coefficient by performing an energy balance on a heated

wall. Due to the heat input from the surface, the vapour bubble grew in time. By relating this

growth to the rate of heat flow into the bubble, the authors found that the heat flux from the

wall was insufficient to explain the growth; instead, there had to be some heat flow to the

bubble from the surrounding superheated fluid. There was no hot spot observed under the
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bubble, which led the authors to assume there existed a continuous layer of liquid beneath the

bubble, which is referred to as the liquid micro-layer. The authors analytically estimated the

thickness of this layer to be of the order 100�200 microns. The measurements of Kenning

& Yan [82] confirmed that the evaporation of this micro-layer was consistent with the cooling

of the wall during bubble growth.

In a follow-up study, Yan et al. [83] looked at steam bubbles sliding under an inclined

plate at low superheats, using the experimental techniques outlined above. The authors

confirmed the existence of a cooled wake region approximately the width of the bubble, with

a local heat transfer coefficient of three to five times the undisturbed value. Immediately

behind the leading edge, a rapid reduction in wall temperature was observed; however,

there remained a region of slightly elevated temperature near the rear edge of the bubble.

Temperature distribution plots showed that at moderate surface inclination angles (30�-50�),

the cooling effects persisted long after bubble passage, spreading into the bulk fluid and

affecting a region 50% wider than the bubble. These effects lasted even after the bubble left

the plate. Some occurrences of bubble sticking were observed at the lower surface inclination

angle of 15�. For the thin walls required for liquid crystal thermography, the evaporative

pre-cooling of the wall beneath the bubble reduced the amount of available DT to drive

convective heat transfer. This meant that there would be little heat transfer in spite of a

large heat transfer coefficient, although this effect is dependent on wall properties, such as

thickness (it would be reduced for thicker walls). Experiments with curved surfaces showed

that bubbles approaching from below tended to stick to the surface, causing a hot spot by

drying out the liquid micro-layer, inducing elevated temperatures. The bubble subsequently

grew in size to some critical diameter, at which point it began to slide. In doing so, the bubble

took the dry spot with it, which occasionally acted to create unstable nucleation sites across

the plate.

Bayazit et al. [84] performed experiments to quantify the heat transfer enhancement

offered by a sliding vapour bubble sliding at 12� to the horizontal in FC-87, a dielectric

perfluorocarbon fluid. The results showed that the bubble grew rapidly due to evaporation,

with the bubble shape changing from hemispherical to a cap shape. Figure 2.24 shows the

contour plot of the change in wall temperature, measured using liquid crystal thermography,

at two instances after the bubble passing. In these figures, the bubble is moving from left
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to right, with the initial wall temperature subtracted. Analysis of these images revealed a

triangular thermal wake growing behind the bubble with sharp lateral edges, with the wall

temperature not recovering quickly from this thermal depression. At the sharp edges, thin

shear layers were observed shedding. The authors claimed these were possibly small-scale

vortices shedding from the bubble extrema. As the bubble grew, the size of the wake similarly

rescaled. The effect of the sliding bubble was substantial, accounting for a third of the total

temperature change between the wall and bulk fluid. The authors also measured the terminal

velocity of the bubble, somewhat surprisingly achieving strong agreement with the adiabatic

gas bubble results of Maxworthy [63]. Hollingsworth et al. [85] also used liquid crystal

thermography measurements of sliding vapour spherical cap bubbles in FC-87, finding the

maximum heat transfer coefficients to be of the order of 2.5 kW/m2K. Such values were

found to occur in very sharply peaked curves that moved with the bubble.

(b)

Figure 2.24: (a) Evolution of vapour bubble shape at a = 12�, (b) contour plot of the change in wall
temperature at 280 ms after the passage of a vapour bubble. The solid red line represents the bubble
outline. The original surface temperature is shown in white, blue represents a drop of 1�C, and red a
drop of 4�C, Bayazit et al. [84].

Sateesh et al. [86] performed an analysis of pool boiling on non-horizontal surfaces.

The authors created a model incorporating different contributions to heat transfer, including

microlayer evaporation, transient conduction and natural convection, placing a particular

emphasis on sliding bubbles. The authors found that the contributions of the various mecha-

nisms changed over the range of control parameters, which were governed by different fluids,

pressures and wall superheats. This model agreed well with experimental results obtained

by Wang and Dhir [87] for a = 90� and Barthau and Hahne [88] for a horizontal cylinder.

For the surface inclined at 90� in water, it was found that for a low superheat of 5K, the heat
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transfer due to sliding bubbles accounted for half the total heat transfer.

Qiu and Dhir [89] performed an experimental study to find the flow pattern and heat

transfer associated with a vapour bubble sliding under a downward facing, heated silicon

wafer immersed in working fluid PF-5060. In this work, key to the current study, the authors

sought to explain some of the conflicting studies in the literature regarding dry-out, micro-

layer thickness and the relative contributions of various mechanisms to heat transfer. To

achieve this, the authors used holographic interferometry and PIV to measure the fluid

temperature and velocity, respectively, with the polished silicon wafer chosen to remove

possible nucleation sites. Meanwhile, separate element heaters along the surface allowed

the wall superheat to be maintained at a near-uniform level. At a < 60�, the bubble volume

increased as the bubble traversed the surface, with the shape changing from spherical to an

elongated spheroid. At a > 60�, the sliding bubbles reverted to being spherical and initially

slid along the surface, before lifting off and striking the surface, subsequently experiencing a

“hopping” motion. This lift off meant that the forces that acted to push the bubble towards the

wall could not balance the forces lifting it away. As with Maxworthy [63], increasing the

inclination angle led to a large sliding velocity. Also observed was a wedge-like liquid gap

between bubble and surface for plate angles between 15� and 60�, which seemed to penetrate

into the bubble base. The angle of this apparent wedge decreases with increasing bubble

volume. At low inclinations (a < 15�), the bubble was found to be elongated significantly

along its major axis, with the bubble covering the entire width of the baseplate (49 mm) at

the lowest angles. Values for the film thickness varied from 160 to 64 µm from the front

to the back of the bubble, in broad agreement with Kenning et al. [82]. This changing film

thickness indicated an increasing temperature gradient across the bubble, with the authors

observing new, “fresh” fluid entering the liquid layer as the bubble slid under the surface.

This is in contradiction with the findings of Kenning et al. [82], who modelled the conduction

as inviscid flow diverting around the bubble base.

The associated flow patterns of the sliding vapour bubble were reported for a near-

horizontal and near-vertical case, corresponding to a = 15� and 75�. Measurements were

taken at a point 11.5 mm downstream of the bubble, at which stage the bubbles were generally

large. Holographic interferometry provided visualisation as a series of fringe patterns, shown

in figure 2.25 (a) for a bubble at a = 15� with a low wall superheat and low liquid subcooling.
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(a)

(b)

Figure 2.25: (a) Fringe pattern of a sliding bubble with small superheat and subcooling (q = 15�,
Tw �Tsat = 0.8�C, DTsub = 0.4�C,Ra = 1.0 x 109). (b) Fringe pattern of a sliding bubble with small
superheat but large subcooling (q = 15�, Tw �Tsat = 0.4�C, DTsub = 2.7�C,Ra = 2.4 x 109), Qiu &
Dhir [89].

In this range, large, wave-like motion was observed in the liquid to the rear of the bubble.

At the frontal top of the bubble, the fringes of fluid turned towards and around the spherical

cap, indicating that hot liquid originally in the thermal boundary layer was diverted to the

top of the bubble as a result of sliding motion. In the far wake to the rear of the bubble, it

can be observed that the effects of the bubble lasted a relatively long time, with outer fringes

spreading into the liquid bulk. Increasing the liquid subcooling caused a different pattern

in the wake, shown in figure 2.25 (b). In this case, large vortices were formed downstream

of the bubble at t = 0.032 and 0.118s, detaching from the disturbed thermal boundary layer

and moving outwards to the thermal bulk, rotating in an anticlockwise direction before being

dissipated. The denser fringes in these vortices indicated that an eddy of hot fluid was being

removed from the surface. Smaller vortices were also formed between the bulk fluid and

the thermal boundary layer. Some of these were found to increase in size, while others

dissipated while still inside the thermal boundary layer. The authors also found that the

period of efficient heat removal from the surface was followed by a degradation in heat

removal, caused by a reduction in temperature difference between the surface and the bulk

liquid. The heat transfer at the farthest location from the bubble release was increased by 10%.
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Although this improvement is tiny, bubbles were only present on the surface of the heater

for less than 1% of the measurement time. PIV measurements at a = 30� were consistent

with the visualisation, revealing that fluid was pushed outwards away from the wall at the

front of the bubble. Meanwhile, to the rear of the bubble, liquid was pulled inwards, with a

vortical structure observed. Li al. [90] performed a three dimensional numerical simulation

of a single vapour bubble sliding on a downward facing heated surface. This involved

solving the continuity, momentum and energy equations using a finite-difference method,

with the level-set method used to find the bubble shape. The numerical findings matched the

experiments of Qiu et al. [89] well, with the bubble growing in size as it slid along the heated

surface, changing in shape from spherical to ellipsoid, and finally to a spherical cap. The

wall heat flux downstream of the bubble was significantly greater than that upstream, with

the flow pattern obtained showing the bubble pushing the liquid away from the wall in front

and a vortex to the rear. The numerical model for the bubble shape deviated slightly from the

experimental work Qiu et al. [89] in that it did not show the sharp thinning of the bubble at

the tips visible at larger bubble volumes.

Donnelly et al. [69] also performed heat transfer measurements using liquid crystals to

quantify the heat transfer coefficient for air bubbles of ⇡ 6 mm equivalent diameter sliding

under a heated inclined surface in water, defining the enhancement factor h⇤ as the ratio of

forced convective heat transfer to natural convection and revealing a maximum enhancement

of 1.8 for a = 30�. However, the method of liquid crystals has its limitations for highly

transient flows, for which the liquid crystal layer may not respond sufficiently to rapid

fluctuations in temperature. As such, infrared thermography seems a logical alternative

to this method. By using a high-speed thermal camera and at thin heated foil, it should

be possible to resolve the surface temperature more accurately. This was confirmed by

Donnelly et al. [68], who later performed heat transfer measurements on a heated foil to

determine the dimensionless temperature difference T ⇤ = Ts�T•
T0�T•

and h⇤ at the surface, using

the energy balance developed by Stafford et al. [91]. Figure 2.26 shows measurements of

these two values for de = 5.8 mm, a = 30� with the bubble shape and path overlaid. In the

wake of the bubble was an extended region of reduced surface temperature and increased

heat transfer coefficient due to forced convection, approximately 3�4 times that of natural

convection levels. This zone was approximately the width of the bubble base immediately
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behind the bubble and widened to approximately 1.5 times the bubble diameter at the base of

the interrogation window. The authors claimed that these regions of cooling were related to

both the displacement of fluid in the thermal boundary layer via bluff body convection and

secondary mixing caused by vortex shedding in the bubble wake. To the immediate rear of the

bubble (up to one diameter downstream of the bubble) was a region of significantly increased

heat transfer, although the surface temperature in this zone was not significantly lower than

the rest of the region. The authors claimed this region was conceivably the recirculation

region to the rear of the bubble, which was found to travel with the bubble as it traversed the

surface, with very little cool fluid allowed to enter the recirculating zone. Further downstream

of the bubble, in images taken 1 s later, the surface temperature plots revealed regions of

ellipsoidal cooling separated by regions of less intense cooling. At this point, the structures

had reduced in strength but spread out, with the affected area approaching twice the bubble

diameter at the base of the interrogation window.

ΔT* h*ΔT* h*

Figure 2.26: Heat transfer results for the 5.76 mm diameter bubble sliding under a heated surface
at a = 30circ at two instances 1 second apart. The first two images show the non-dimensionalised
temperature difference, T ⇤, the following two the non-dimensionalised convective heat transfer
coefficient, h⇤. The bubble shape and path are also shown overlaid on these plots. Donnelly et al. [68].

Donnelly et al. [68] also noted that the cooled regions on the heated surface tended to

overshoot the bubble path, as the cooled region was advected upwards and outwards due to

the associated movement of the bubble and upwards due to the moving thermal boundary

layer. Although transient, the heat transfer enhancement was found to last a significant time:

between 30 and 60 seconds depending on the bubble volume. Also found in figure 2.26 was

that the heat transfer in the near bubble wake was greater when the bubble was nearer the
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bottom of the interrogation window than when it was near the top. This was explained by

considering that the thermal boundary layer grew in thickness as it moved up the surface,

with reduced scope for drawing cooler fluid towards the surface. Finally, the observation

was made that parts of the surface in the near wake of the bubble experienced a heat transfer

coefficient below that of natural convection levels, as shown by the white arrow on figure 2.26.

These occurred immediately across from the advancing regions of cooling, on the inside

of the bubble path. These regions of suppressed heat transfer were in agreement with the

work of Delauré et al. [40], who noticed small regions of suppressed heat transfer upon

interaction between a single rising bubble and free convection flow from an inclined heated

copper block.

There are other possible modes of interaction between bubble and surface that can occur in

the industrial applications previously mentioned: for instance, impingement and subsequent

bouncing against a wall. Donoghue et al. [80] considered the convective heat transfer and

bubble motion due to a single air bubble impacting and bouncing on a heated horizontal foil,

also measured using the heated-thin-foil technique. The effect that a single bouncing bubble

had on the surface temperature was found to be significant, with its effect lasting as long as 8

s due to the wake of the bubble following its initial impact. Upon the bubble impacting the

surface, a substantial, spatially symmetric variation in convective heat transfer was observed.

Within an area the approximate size of the bubble, large, rapid fluctuations in convective

heat flux were observed. Rather than just solely the degradation in heat transfer observed

in Donnelly et al. [68], on some occasions a negative heat flux was observed, indicating

that warm liquid was momentarily in contact with the previously cooled surface. Upon

striking the surface, the bubble bounced, with the wake found to spread significantly in the

opposite direction to the bubble’s motion. Once the bubble had returned to the surface, the

film separating the bubble and surface ruptured, which resulted in an immediate rise in the

surface temperature in this region. Figure 2.27 (a) shows the instantaneous heat flux 10 ms

after the impact of a 2.8 mm bubble released at a height of 30 mm. The heat flux along the

black line is plotted in figure 2.27 (b) as a function of time, with each line spaced 2ms apart.

For this particular test, this showed the left side of the bubble to impact before the right hand

side. The bubble then bounced, leaving the surface after 8 ms, which resulted in a drop in

heat flux, although the surface temperature continued to drop. The convective heat transfer
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due to a single bouncing bubble was found to be significant, and appropriate models will

need to take this into account. However, in the current study, surface inclination angles below

the onset of bouncing are used.

(a) (b)

Figure 2.27: (a) Convective heat flux for a 2.8 mm diameter bubble 10 ms after impacting a horizontal
heated surface, with the flux along the black line shown as a function of time in (b), where each line is
2ms apart. Donoghue et al. [80].

2.3 Bluff Body Flows

Up to this point, relevant numerical and experimental studies regarding bubble mechanics

have been discussed. The discussion of wake structures has been limited to that of rising

bubbles, with no study to date quantifying the sliding bubble wake in a rigorous manner. To

aid in this quantification process, let us take a step back from bubbles and take a more broad

view of vortex structures in the field of fluid mechanics. This section will start by examining

the structures formed next to a wall in turbulent flow, before moving onto flow past bluff

bodies next to a wall. Understanding wall turbulence and structures shed behind bluff bodies

will aid considerably in interpreting the wake structures later observed.

2.3.1 Turbulent Wall Flow

Turbulent flow is ubiquitous in the world around us, and much of the driving force behind

understanding vortex structures in fluid mechanics comes from the field of turbulence. In

his seminal paper describing turbulent flow, Adrian [92] claimed that key to the study of

turbulence is the breaking down of the multi-scaled, complex types of turbulent motion
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into more elementary organised motions, discretising turbulent motion into smaller scale

eddies. How does one define such an eddy? The author explained that by continuity, all

fluid motions possess spatial coherence. For an eddy, the motion must have some form of

temporal coherence. Theodorsen [93] proposed a model of a near-wall eddy in the late 1950s

by using a conceptual approach. The author considered a flow travelling with a velocity U

past a wall, and a vortex filament oriented spanwise to the mean flow, perturbed by some

small upward motion. The further away part, or “head”, of the vortex should experience

a greater mean flow velocity, and as such would be convected downstream faster than the

lower-lying part. Theodorsen [93] claimed it logically followed that the sections connecting

these two parts should be stretched, causing the structure to lift away from the wall into still

higher mean velocity, resulting in more stretching of these two “legs”. This was named the

horseshoe vortex, and is depicted in figure 2.28 (a) . These structures were also known as

horseshoe eddies or hairpin vortices, with the latter term being used in the current study.

Theodorsen [93] supported this with a sketch based on the smoke visualisations that have

since been attributed to Weske, which was reproduced in Adrian et al. [92] and is provided

in figure 2.28 (b). At the time, it was not possible to measure vorticity; if it were, it likely

would have been established that the loops of smoke were in fact vortices.

(a)

(b)

(c)

Figure 2.28: (a) Depiction of a horseshoe vortex from, (b) sketch entitled “The Horseshoe” by
Theordsen [93] (c) schematic of a hairpin eddy attached to the wall defined by y = 0, with the inclined
shear layer also shown. Provided by Adrian [92].
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Unfortunately, this work met with some resistance, as in the field of fluid mechanics at the

time, there was a divergence of opinions on how vorticity operated [92]. As such, the hairpin

vortex structure went years without any significant breakthroughs. The advent of techniques

such as large eddy simulation (LES), direct numerical simulation (DNS) and PIV proved to

be a catalyst for studies on coherent structures. These powerful numerical and experimental

techniques cab provide full fields of velocity, vorticity and pressure for visualisation, and as

such offered the means to unify previously conceptual models. This resulted in a revival in

the study of near-wall turbulent vortices in the 1980’s and 1990’s. An updated version of the

horseshoe structure was provided by Adrian [92], and is shown in figure 2.28 (c). For this

structure, the hairpin head was combined with two short, counter-rotating quasi-streamwise

vortex legs. The head, neck and legs are labelled on the diagram. The author claimed

that inside the structure, the flow was swept up from around the eddy and thrust upwards,

with vortex induction from the vorticity elements in each leg and in the head creating a

concentrated flow. In outward regions, the fluid flowed downwards and was weaker than the

ejection, as the induction from the vortex elements was not as focused. Due to this induction,

the eddy propagated in the direction Q2 in figure 2.28 (c). In a Lagrangian frame moving

with the eddy, the surrounding flow appeared to follow the motion of Q4. These opposing

points created a stagnation point where they cancelled, along with an inclined shear layer

consistent with experimental observations.

A major conclusion of DNS and PIV was that the hairpin vortex structures occurred most

often in packets; namely groups of hairpin vortices travelling with nearly equal velocities.This

minimal dispersion in velocity propagation is also necessary for the structures to have

temporal coherence, rather than descending into random turbulence. An example of a vortex

packet is provided in figure 2.29 (a), which shows the DNS of Zhou et al. [94]. The flow

configuration in this case consisted of an initial eddy and a turbulent mean flow. A hairpin

vortex was found to occur at the wall, and grow in all directions. Of interest is that as well as

this primary hairpin vortex (denoted on the diagram as PHV), a downstream hairpin vortex

(DHV) and a secondary hairpin vortex (SHV) also formed. The downstream vortex was

created by protrusions on the downstream face of the conditional eddy being pulled out into a

pair of streamwise vortices, acting in the same way as the wall-attached legs. The secondary

vortex was created by the interaction of the low-speed fluid that moved upwards due to
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induction from the legs with the high-speed fluid above the legs, which led to an arch-shaped

vortex roll-up. This formation of new hairpin vortices is referred to as auto-generation [94].

Figure 2.29: (a) DNS simulation of a packet of hairpins that evolves from an initial conditional eddy
in a turbulent mean flow at Re = 180. The shaded regions are isosurfaces of the vorticity. Also marked
are the primary hairpin vortex (PHV), secondary hairpin vortex (SHV) and downstream hairpin vortex
(DHV), taken from Zhou et al. [94], (b) evolution of a hairpin packet at Re = 180, (c) evolution of a
similar packet with 5% noise added to simulate growth in a turbulent environment provided by Kim
for [92].

Figure 2.29 (b) is taken from the video accompanying the paper of Adrian [92], provided

by Kim for Adrian [92]. It shows the Large Eddy Simulation (LES) for the growth of a packet

out of a symmetric eddy, which displayed a similar form to figure 2.29 (a). The authors also

added a small amount of noise (5%) to the formation of the same hairpin, as in figure 2.29 (c).

Interestingly, although it developed chaotically, the hairpin packet retained the same general

properties of the clean packet, with the distances between successive vortices approximately

the same. Further evidence was provided in the literature that these hairpin vortices occur in

streamwise succession, with the size of the vortices increasing downstream. The growth of

hairpin vortex packets, therefore, provides a mechanism to transport vorticity from the wall

in turbulence, although it does not do so exclusively, as turbulence is also produced away

from the wall. Nonetheless, the components of the hairpin vortex discussed will be useful

for the next section, when the flow will be considered on a macro-scale in the wake of bluff
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bodies.

2.3.2 Bluff Body Flow

Hairpin vortices have now been identified as a prevalent, coherent structure in wall turbulence.

However, it will become apparent that they are not limited to such small scales, and exist

in the wakes of solid objects. The purpose of this section is to investigate studies on bluff

bodies that show similar boundary conditions to a sliding bubble. In the 1950s, Rosenhead

[95] speculated that the only possible 3-D configuration of the flow field behind a sphere

was a set of asymmetrical vortex loops, based on the experimental work of Marshall &

Stanton [96]. Achenbach [32] built on this by experimentally visualising the vortex structures

behind spheres, obtaining the schematic shown back in figure 2.6 (c). Metzler [97] made

observations on the separated laminar wake behind a hemisphere, noting that under certain

conditions symmetric, controlled hairpin vortices were generated. These findings were the

basis for one of the key works in hairpin vortices. Thus, upon noting the observations of

Metzler [97], Acarlar and Smith [98] performed an in-depth study of the vortex structures

generated by the interaction of a hemispherical protuberance on a flat plate in cross-flow

within a developing laminar boundary layer. This configuration and the range of Reynolds

numbers tested are similar to that used in the current study. Their experimental work used

flow visualisation and hot-film anemometry techniques to investigate the vortex structures.

With a hemispherical protrusion, a stationary standing vortex was generated at the leading

edge of the hemisphere. Tests were also performed with a teardrop-shaped protrusion, which

did not have a standing vortex, but had a largely similar hairpin structure. This meant that the

standing vortex had little effect on the production of hairpin vortices, at least for the Reynolds

number range tested (340 - 3000). The standing vortex varied from the hairpin vortices in

the sense that it was not shed periodically. Figure 2.30 shows a schematic of the interactions

between the sequential hairpin vortices generated. Such sketches were interpretations of

dual-view picture sequences of flow patterns created using hydrogen bubble visualisation.

The authors, using the directions denoted on the diagram, proposed that low-speed fluid

within the legs would be advected away from the surface by the legs, with fluid just outside

the legs moving towards the surface.
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(a)

(b)

Figure 2.30: Schematics of the near-wake structures in the wake of a hemisphere on a flat plate, where
arrows indicate both flow and rotation. Shown in (a) are the vortex legs, head and tip, and shown in
(b) is the low-pressure backflow region, referred to as the base pressure. Acarlar & Smith [98].

Figure 2.31: (a) End view of the hemisphere, showing the standing vortex formed on either side and
the hairpin vortex moving away from the surface, (b) top, side and end view showing the motion of
fluid particles at A and B to A0 and B0, Acarlar & Smith [98].

The authors indicated that hairpin vortex formation took place in the near wake (0 - 3

radii downstream), with the structures evolving and growing immediately afterwards (3-15

radii downstream). In the far wake (15-80 R), secondary structures were generated due to
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the interactions between sequential vortices, which initiated chaotic behaviour. To explain

the mechanism of hairpin vortex formation, the authors hypothesised that it was the process

of build-up and release of concentrated vorticity, in which the base pressure (a low pressure

region downstream of the hemisphere) was crucial. They claimed that once the boundary

layer separated from the body, it dragged fluid downstream with it, with the outer flow field

acting to narrow the region between the separated boundary layer and the wall, which in

turn caused the fluid streamlines to curve inwards. In order to balance the pressure across

the curved streamlines, a centrifugal force field should be developed, as explained by Willie

et al. [99]. The proposed mechanism for vortex formation therefore was the interaction

of the potential flow with this base pressure, which would cause the vortex lines to spiral

inwards, concentrating to form a vortex tube. After this concentration, vorticity was said to

be discharged as discrete hairpin vortices, with a subsequent vortex appearing directly after

the previous hairpin was discharged. This low-pressure region is identified in figure 2.30

(b), which shows the near wake of the protrusion. Figure 2.31 (a) shows the streamlines

some distance downstream of the hemisphere. Taking a cross section of the hairpin vortex

in this plane revealed a counter-rotating vortex pair, which pushed fluid away from the

surface, drawing in fluid laterally from approximately y/R = 0.4 (any fluid approaching the

surface at a lower height than this was discharged through the downstream extensions of

the standing vortex). A schematic illustrating the motion of fluid particles for the top, side

and rear views is provided in figure 2.31 (b). The authors found that upstream fluid that

approached the hemisphere at a height greater than y/R = 0.4, denoted as A, passed into the

hairpin formation zone (i.e. the near wake), orbiting the core of the counter-rotating legs

before being carried away by the vortex to the location A0, while fluid at less than y/R = 0.4

was transported to the location B0. Finally, the experiments also revealed secondary vortical

structures in multiple planes. A weak counter-rotating pair of vortices was generated to the

sides of the original hairpin vortex, while a second set was generated at 90� to these, on the

plane of symmetry. The authors claimed that all secondary vortices were generated by the

rolling up of the three-dimensional shear layer, which itself was created by the interaction

of higher-speed outer boundary layer flow with the low-momentum fluid lifted up from the

wall by the counter-rotating "legs" of the original hairpin vortex. These secondary vortices

increased the complexity of the flow structure to the point that the flow could be construed
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as turbulent. The striking comparison observed between these hairpin vortices and those in

turbulent boundary layers led the authors to strongly suggest that hairpin vortices were a

basic flow structure of the latter.

Figure 2.32: Plan and side views of numerically modelled flow over a hemisphere at Re = 700:
standing vortex (a), interlaced tails (b), hairpin head (c), and bridge (d). Contours mapped onto l2 = 1
surface represent pressure (light: high, dark: low). Tufo et al. [100].

Tufo et al. [100] performed a numerical simulation on a hemispherical protrusion in a

flat-plate boundary layer, intended to follow closely the experiments of Acarlar & Smith [98].

This model numerically integrated the unsteady incompressible Navier-Stokes equations,

with discretisation based on the spectral element method (SEM). Two dimension simulations

along the plane of symmetry found that the flow downstream of the hemisphere experienced

very little unsteadiness, although near-wall flow activity was found to grow downstream of

the protrusion. As before, hairpin vortex heads and tips moved away from the flat plate,

while the hairpin tails stretched and moved towards the wall. The 3-D simulations, with side

and top views for Re = 700 displayed in figure 2.32, showed excellent agreement with the

aforementioned experiments. Identified on this figure were the standing vortex upstream of

the protrusion (a), the interlacing vortex tails (b), the hairpin head (c) and a vortex bridge

(d). The vortex bridge, which is a common form of vortex reconnection in viscous flows,

was observed by Acarlar & Smith [98] to separate from the hairpin and lift off as a separate

vortex ring. In the numerical simulations, the ring was dissipated by viscosity so quickly that
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the liftoff was not observed. The numerical results also showed evidence of interlacing of

successive vortex tails, along with the aforementioned secondary structures. These became

more pronounced at higher Reynolds numbers.

The work of Stewart et al. [101] combined numerical and experimental methods to

investigate the wake behind a solid sphere rolling at a wall over a range of Reynolds numbers

and sphere rotation rates. The experimental setup consisted of a sphere, fixed in a position

< 1% of its 9 mm diameter away from a moving wall in cross flow, while the numerical

method solved the viscous, incompressible Navier-Stokes equations using SEM, as in Tufo

[100]. For both methods, four distinct wake modes were identified: two steady and two

unsteady. At low Reynolds numbers, the steady modes maintained a planar symmetry about

the centre of the sphere, with the particular modes found to be highly dependent on the

Reynolds number and sphere rotation rate. For the case of forward rolling, the steady wake

consisted of a compact recirculation zone behind the sphere. With increasing Reynolds

number, this recirculation zone developed into two streamwise vortices a short distance

downstream of the sphere, with the recirculation region growing in strength. With further

increases, the wake was found to undergo a smooth transition to unsteady flow, with vorticity

being rolled up and shed over the top of the sphere surface; this resulted in the formation of

hairpin vortices that were subsequently transported downstream. This was referred to as the

symmetric mode. For a sphere that was in reversed rolling, the steady wake was found to

take the form of a streamwise vortex pair that originated at the sides of the sphere. As the

Reynolds number increased, this wake took the form of a counter-rotating spiral vortex pair

that was half a wavelength out of phase, with a slight divergence of the wake downstream.

An excellent qualitative agreement was observed between the numerical and experimental

results. The forward rotation case bore the most similarity to a sphere or hemisphere in a

free stream. Figure 2.33 and 2.34 show examples of some of these modes. The authors also

calculated the wake-induced drag force on the sphere. A plot of drag coefficient is provided

in Figure 2.34 for the forward rotating sphere, with the fluctuations in CD corresponding to

the shedding of hairpin vortices. Indeed, the variations in the value of the local maximum

drag indicated that hairpin vortices of different strengths were being shed by the sphere,

despite the fact that it was laterally constrained.

Unfortunately, it is not possible to directly extrapolate the results from this section to
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Figure 2.33: Numerical (left) and experimental (right) results for the steady sphere wake under
forward rotation (top), with numerical results at Re = 50 and 100, experimental results at Re = 100,
and reverse rotation (bottom) at Re = 100, Stewart et al. [101].

Figure 2.34: Numerical (left) and experimental (right) results for the unsteady sphere wake under
forward rotation (top), both at Re = 200, and reverse rotation (bottom) with numerical results at
Re = 300, experimental at Re = 200. Below this is a plot of the fluctuating drag coefficient as a
function of time, Stewart et al. [101].

the wake of a sliding bubble. This is in part due to the different boundary conditions at the

surface (no-slip for a bluff body versus zero stress for a bubble). Additionally, the solid bodies

examined were laterally constrained. As the bubbles being studied here are in the ellipsoidal

regime, they experience path oscillations, adding another layer of complexity to the wake

structures. Veldhuis et al. [102] also performed Schlierein visualisation on hollow plastic

spheres rising in water, with a density of 4�5% lower than water. At Reynolds numbers of

500, as was observed for De Vries et al. [37] behind zigzagging bubbles, two counter-rotating

threads in the wake were formed, crossing at the centreline of the zigzag path, with the

force directed towards the centre-line. Close to the sphere, each of the vortices developed a
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“kink”, As these kinks developed downstream of the sphere, they came together, combining

into a hairpin vortex. Unlike Lunde and Perkins [24], who interpreted the flow pattern as a

series of hairpin vortices of alternating signs, Veldhuis et al. [102] instead suggested that

the streamwise vorticity at the surface of the sphere did not change sign, with the legs of

similarly signed hairpin vortices crossing at the path centreline. Increasing the Reynolds

number caused a more irregular wake structure, with a clearly defined near wake structure

and a double-threaded wake containing hairpin loops and secondary structures.

Figure 2.35: (left) Sequence of stereoscopic views showing process of hairpin vortex formation around
a rising sphere at Re = 576, (right) the more chaotic wake structures observed at larger Reynolds
numbers of 920 and 1350, respectively, Veldhuis et al. [102].

2.4 Summary

An extensive review of the literature surrounding bubbly flow and solid body wake mechanics

has been provided. It is clear that extensive work exists for bubbles rising in an unbounded

medium, in terms of their dynamics, wake mechanics and interactions. However, those

rising in constricted geometries have received far less attention: to the knowledge of the

author, no study has experimentally or numerically quantified the wake to the rear of a bubble

sliding under a heated surface. As such, a study of near wall bluff bodies proves useful

in understanding what possible forms the structures to the rear of a sliding bubble could

take. Furthermore, the interactions of multiple sliding bubbles have not been studied in any

great detail, despite their prevalence in two-phase tube bundles and other applications. The

gaps in literature identified will aid in deciding the scope of the current study, which will be
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discussed in the following chapter.
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Chapter 3

Research Motivation & Objectives

A review of the literature surrounding bubbly flow and solid body wake mechanics has been

provided. This chapter uses the findings of the review to highlight the limitations in these

fields, identifying the gaps in the literature that will provide the motivations for this work.

The objectives and scope of this study are also defined.

3.1 Motivation for this Research

Two-phase flow is a thriving field, with much research ongoing in liquid-liquid and liquid-gas

systems. A comprehensive review of the literature has been provided for rising and sliding

gas and vapour bubbles. Rising bubbles have been studied in terms of their shape, velocity,

path and wake behaviour, with particular attention being paid to the latter. The review has also

highlighted the complexity associated with the interaction between multiple rising bubbles.

These interactions are highly complex and dependent on the system properties; however, they

can largely be split into bubble-bubble and bubble-wake interactions, with both interactions

found to create an increase in turbulent mixing in the liquid phase. Rising bubbles, at least

those in Newtonian fluids, have been studied in the literature in great detail. However,

although bubbles sliding in constricted geometries have many applications, particularly with

regards to two-phase cooling, their associated body of work is far smaller. A fundamental

knowledge of the physics of sliding bubbles is necessary for a more complete understanding

of two-phase flows and optimisation of two-phase convective heat transfer. Studies to date

on sliding bubbles have examined the bubble mechanics and the convective heat transfer
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enhancement offered. The review on rising bubbles showed the wake to be integral to bubble

path instabilities and motion, while prior research on sliding bubbles indicated the importance

of the wake for convective heat transfer. For gas bubbles, this is particularly relevant in

situations with low wall superheats. To de-couple the interdependent parameters that impact

convective heat transfer, an air-water system is used. This means that phase change, and

initially heat transfer, will be ignored. For a greater insight into the possible nature of the

wake, a discussion of the fields of near-wall turbulence and bluff body flows was provided.

To the knowledge of the author, no study to date has quantified the wake structures of sliding

bubbles in the same way as Brücker [39] or Zenit & Magnaudet [41] did for rising bubbles

or Acarlar and Smith [98] did for a hemispherical protrusion on a flat plate. Understanding

the wake structures of sliding bubbles will not only address this gap but will provide an

explanation as to why the bubbles are so effective at enhancing heat transfer and promoting

turbulent mixing in the wake. The current study will build substantially on the body of work

in the literature by quantifying the sliding bubble wake, by performing PIV measurements in

multiple 2-D, 2-C planes to build up a three-dimensional construction of the flow field. The

influences of this wake on bubble motion and heat transfer will also be explored.

Although understanding the structure and dynamics of the sliding bubble wake is nec-

essary for the optimisation of two-phase convective heat transfer, it is unlikely that real

engineering systems will involve a single sliding bubble. The current study intends to address

this shortcoming by expanding the body of knowledge on sliding bubbles to include that of

an in-line bubble pair. The literature review on freely rising interacting bubbles showed that

the effect of bubble interactions is to increase the degree of mixing in the bulk fluid, causing

an amplification of turbulence in the wake. There are many types of bubble interaction, e.g.

dancing, drafting, coalescence, and breakup. What these phenomena all have in common is

that they are all triggered by a trailing bubble entering the wake of a leading bubble. As such,

it is the bubble-wake interactions that are of most importance, as this initial capture leads

to all subsequent bubble motion. From a fluid mechanics perspective, the greater turbulent

mixing of a bubble pair should result in an increase in convective heat transfer. However,

due to the complex interactions that occur between the bubbles and the thermal boundary

layer, this is not a trivial problem. Again, to the author’s knowledge, there exists no study

involving characterising the wake-driven motion of a sliding bubble pair. In order to achieve
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this understanding, it will be necessary to first examine the shape, path and wake of a single

sliding bubble in detail, for a range of bubble volumes and inclination angles. Next, it will

be observed which of these parameters change when observing a bubble-wake interaction.

Finally, the flow structures and heat transfer enhancement offered by multiple sliding bubbles

can be studied. The current study intends to achieve this understanding through experimental

measurement, analysis and interpretation.

3.2 Problem Description

The flow under consideration is shown in figure 3.1 for a side view. An air bubble of either

5.8 mm or 7.2 mm equivalent spherical diameter de is injected into an tank of water inclined

at some angle a to the horizontal. At the top of this tank is a sliding surface, 50 mm above

the injection site. Due to the difference in density between the air inside the bubble and the

surrounding fluid, the bubble feels a buoyancy force, Fb, which acts in the opposite direction

to gravity. The bubble will thus rise a vertical distance sz =
50

cosa mm before impacting the

surface. This dynamic impact creates a new initial condition for the bubble, which will also

change as a function of the surface inclination angle. This process is not under consideration

in the current study, although it is certainly an area that requires future work. Additionally,

between the surface and the bubble is a liquid film, within which the viscous forces dominate.

This alters the boundary condition at the surface and deforms the bubble shape. At moderate

inclination angles, the bubble will slide along the underside of the inclined surface at some

velocity Ub. Knowing this velocity, a rough estimate of the film thickness can be made using

equation 2.4, which works out to be of the order of 20 µm, a physically reasonable value.

Addlesee & Kew [77], however, showed that this film thickness changes from the front to

the rear of the bubble, adding further complexity to its dynamics. For this experiment, the

bubble and its surrounding flow will be measured on a larger scale, meaning it is not possible

to measure the film thickness directly. This is simply due to the choice of scale, since a

phenomenological study of all scales is beyond the scope of most experimental studies.

The presence of the inclined surface means that the bubble only experiences the compo-

nent of the buoyancy force parallel to the surface, i.e. Fb sina . The component of this force

normal to the surface pushes the bubble against the liquid film. At low inclination angles,
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Figure 3.1: Schematic of an air bubble sliding underneath a heated, inclined surface

surface forces such as Van Der Waals’ effects and electro double-layer repulsion can cause

the bubble to stick to the surface; however, these low inclination angles are not considered in

the current study. Within the bubble, the pressure of the gas acts outwards, and is sufficient

to oppose the atmospheric and hydrostatic pressure acting on the bubble. Additionally, the

surface tension force acts to oppose the formation of new liquid surface area, resulting in a

no-stress boundary condition along the bubble interface. The surface tension also influences

the contact angle, defined as the angle formed between the air-water interface and the solid

boundary. This depends on the properties of the liquid, gas and surface, with many numerical

models adopting a constant contact angle boundary condition. The bubble is deformable and

inertialess; however, it must displace the liquid in order to travel. This displaced fluid, which

is known as added mass, certainly has inertia! Thus, the “momentum” of the bubble is really

the momentum of the bubble and the fluid it displaces.

For the case of the current study, the bubble is intended to have reached its terminal

velocity by the time it is observed. When the surface is heated, a thermal boundary layer

exists on the underside of the surface, transferring heat to the water via natural convection. In

a natural convection boundary layer, the surface temperature Ts changes as a function of the

vertical displacement. When the bubble slides under the surface, it will disrupt this thermal

boundary layer, changing the mechanism of heat transfer from free to forced convection.

This will move fluid from the cooler bulk (T•) to the surface, improving heat transfer rates.

There are some aspects of bubble motion not captured by the schematic in figure 3.1. For

instance, the bubbles in the current study undergo undulating path oscillations and complex

shape fluctuations triggered by the initial conditions of the bubble impact, the liquid film and
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by instability. This means that the bubble velocity will not be constant, instead fluctuating

about a mean value. Thus, the measurements of the bubble path, shape, wake and heat

transfer enhancement will be taken in a parallel plane. In the parallel plane, the fluctuating

bubble shape is found to be elliptical. However, the shape oscillations are far smoother and

less chaotic than the freely rising ellipsoidal bubbles defined by the Bhaga and Weber regime

map [12]. As such, we will define the bubbles in the current study as stable ellipsoids. Using

the experimental techniques outlined in the next chapter, measurements will be taken of the

dynamics of the bubble and its wake for the case of a single bubble and an in-line bubble pair.

3.3 Research Objectives

Having identified the relevant gaps in the literature, the key objectives of this study are as

follows:

• To experimentally quantify the flow structures in the wake of a sliding air bubble

by performing particle image velocimetry (PIV) in multiple 2-D planes to deduce a

three-dimensional wake structure.

• To study the path, shape and dynamics of a single sliding bubble and use this informa-

tion to understand what changes during a bubble-wake interaction occurring between

an in-line bubble pair.

• To link the wake mechanics to bubble shape, path, and heat transfer measurements for

both single bubble and in-line bubble pairs, thereby providing a foundation for future

optimisation of convective heat transfer enhancement.
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Chapter 4

Experimental Apparatus

This chapter describes the experimental apparatus used to achieve the outlined objectives,

namely the measurement of the motion, wake structures and heat transfer associated with

single and multiple sliding bubbles. For this, two configurations are necessary: one to explore

the bubble and fluid motion and one for the heat transfer enhancement.

4.1 Case 1: Bubble and Fluid Motion

The structure for measuring bubble and fluid motion consists of an inclined glass tank

mounted in an aluminium support structure and a PMMA surface under which the bubble

slides. The tank is an open top box of internal dimensions 300⇥ 108⇥ 200 mm3 with a

bubble injection system mounted in the base. Two stainless steel wheels, brackets and a steel

rod are used to secure the tank in place at inclination angles, a , of 20�, 30� and 40� to the

horizontal. Angles are measured using an inclinometer accurate to within 0.1�. The tank is

filled with deionised water or a mixture of deionised water and 10 µm diameter hollow glass

spheres (Dantec Dynamics 80A6011) as tracer particles for PIV measurements. Deionised

water is used rather than distilled water due to its uniformity between batches, meaning more

consistent fluid properties between tests. The base support structure is comparatively large in

comparison to the tank as the camera is mounted to the tank in one of two possible locations,

meaning that there must be space for the tank to rotate for all camera positions and inclination

angles.

The surface under which the bubbles slide is a 6 mm thick, 290⇥105 mm2 PMMA sheet
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that forms the underside of a box mounted into the support structure. A hole drilled near the

top of this box prevents the air pressure in the tank increasing upon bubble injection. PMMA

was chosen as a sliding surface because of its transparency for surface lighting. The sliding

surface is hydrophilic, meaning its contact angle is less than 90 degrees, while the contact

angles change between the front and the back of the bubble. The surface is maintained clean

and free from aberrations. When tracking the bubble’s motion, backlighting is achieved by

mounting a 40 W LED light above the tank. LEDs provide white light with very little change

in temperature, meaning there is no discernible change in liquid properties with respect to

time. In order to diffuse the light, a sheet of high quality tracing paper is mounted to the top

of the tank. This provides sharp, clear high speed images, with the bubble forming a dark

outline on a light background. An exposure time of 30 µs ensures no saturation in these

images. The bubble dynamics are discussed in terms of a single plane parallel to the surface.

PC
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Image from Donnelly et al. [4]

Figure 4.1: Schematic of the experimental apparatus used for the parallel plane configuration and
the x� y� z notation adopted. For the bubble motion setup, illumination is provided by the LED
light, while for the fluid motion setup, it is provided by the laser sheet. A reference side image from
Donnelly et al. [4] is provided for reference.

To track the bubble and fluid motion, a Phantom v311 high speed camera is used. This

camera has a 12-bit widescreen 1280⇥800 CMOS sensor and 1 µs minimum exposure time,

20 µm pixel size and 8 GB internal storage. This allows for a maximum frame-rate of 3250

Hz at maximum resolution up to 500,000 Hz at reduced resolutions. The camera is controlled
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by a dedicated computer using the Phantom Camera Control 1.3 (PCC) software package.

For these experiments, a framerate of 1000 Hz is more than sufficient to capture the full

spatial and temporal bubble and fluid behaviour, while the exposure time varies between

20-60 µs. The camera is fitted with a Nikon AF Nikkor 50 mm f/1.4 D lens, commonly

used in high-speed measurements. These lenses offer very low radial image distortion as well

as letting in large amounts of light. A lens aperture setting of f/2.8 ensures a sufficient depth

of focus for the current study. The tank support structure includes two mounts for the high

speed camera, meaning the camera is in the same position relative to the surface regardless of

inclination angle. Figure 4.1 shows a reference side image of the bubble taken from Donnelly

et al. [4]. Such measurements are not provided in the current study since the oscillations

of the bubble would be out of plane, meaning the bubble would move in and out of focus,

meaning high-fidelity image tracking is not possible. The current study seeks instead to link

the parallel plane motion to the fluid motion and surface heat transfer. Although the fluid

motion and surface heat transfer are 3-d flow phenomena, the surface itself (i.e. what is being

cooled) is two-dimensional. Thus, using solely a parallel plane to resolve the bubble motion

is not a major disadvantage of this work.

Particle image velocimetry (PIV) is based on the principle of illuminating small, neutrally

buoyant seeding particles in the working fluid, using a high intensity stroboscopic light sheet,

and tracking the displacement of these particles. The current study uses an Optotronics VA-II-

2000-532 continuous wave laser (2 W maximum power, beam divergence 3±0.2 mrad), a 3.9

mm focal length plano-concave cylindrical lens and an adjustable lens mount to provide a 1.2

mm thick green plane of 532 nm wavelength. For better z-axis control, the laser is mounted

on a separate tripod rather than to the tank itself, and is aligned using a laser alignment sheet

before every test.

Measurements are performed in three planes in two mutually perpendicular directions.

These are highlighted in figure 4.2. There are two measurement planes parallel to the surface

at heights of sz = 3 mm and 9 mm and one perpendicular plane at sy = 60 mm that looks at

the streamwise flow structures after the bubble has passed through the plane. The selection of

the parallel planes was based on a heuristic approach. Reflections from the bubble interface

are a significant issue for two-phase PIV, and can restrict the efficacy of the measurement.

To overcome this, many studies use fluorescent particles and a suitable optical bandstop
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(a) parallel plane: x-y

h = 9mm

h = 3mm
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Figure 4.2: Schematic of the (a) parallel and (b) perpendicular PIV measurement planes. Note that the
thickness of the liquid film has been exaggerated.

filter to remove the laser excitation wavelength. In the current study, a different approach is

adopted. Thus, the bubbles are fixed in the z-direction by the surface and have a height in

the z-direction of approximately 5 mm. It transpires that the majority of the reflections occur

when the bubble-liquid interface at its outermost point intersects the laser sheet. However,

if the plane bisects the bubble, the reflections are reduced significantly. This motivates the

selection of the 3 mm parallel plane height to examine the structures in the near wake of

the bubble and the 9 mm height, below the maximum extent of the bubble, to study fluid

motion away from the bubble. The PIV evaluation process will be discussed in greater detail

in section 4.2. A full rendering of the experimental apparatus for the fluid motion testing is

provided in figure 4.3.

4.1.1 Bubble Injection

The method of introducing bubbles to the surface is key to this study. A solution is required

that delivers bubbles of repeatable volumes to the surface in a controlled manner, for both

a single bubble and an in-line bubble pair. Furthermore, the injection system cannot block

the view of the high speed camera or laser plane when performing bubble and fluid motion

measurements. The solution developed for the current study is shown in figure 4.4. Bubbles

are introduced to the surface by an injector system comprising of an acetal copolymer box,

gas-tight syringes (model Hamilton 1000 series GASTIGHT, 5 ml), silicone rubber tubing, a

syringe needle, a pair of syringe pumps (NE-1000 from New Era Pump Systems, Inc.) and a

rotating plate. The acetal box is mounted on a polycarbonate flange bonded to the base of the

tank using UV-cured glue. When performing a test, a series of small bubbles are introduced
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Figure 4.3: Rendering of experimental apparatus for fluid motion testing with part of the top bars
removed, with an exploded view of the injection system at the base of the tank.

into the cylindrical bubble chamber via the syringe pump/s and the 5 mm diameter tubing,

coalescing inside the chamber to form either one or two bubbles of known size.

On top of this chamber sits a 2 mm thick circular acetal top plate, which contains 5 mm

diameter holes corresponding to the chamber locations. Upon turning a stainless steel rod,

the holes in the chamber are aligned with the holes in the top plate. This causes the bubble or

bubbles to rise, impact the surface and slide up into the measurement region. Upon reaching

the measurement region, the bubbles are at their terminal velocity and exhibit no bouncing

behaviour. There is some variation in the initial rise cycle of the bubbles, which is the case

since the injector must be sufficiently far from the surface to not block the view of the camera
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Figure 4.4: Plan and elevation view of bubble injection system.

in the perpendicular plane. Additionally, numerous tests have been performed to show that

the direction of plate rotation does not alter the initial displacement of the bubble, with

successive tests having opposite spanwise displacements despite the same plate rotation.

4.2 Case 2: Heat Transfer

The review of literature on sliding bubble heat transfer has revealed that the cooling patterns

observed are dynamic and have short temporal scales. To resolve the convective heat transfer

at such scales, an electrically heated, thin, metal foil and high-speed infrared thermography

are utilised. Heated foils have been used extensively for heat transfer measurements in the

literature due to their ease of implementation and to the high spatial and temporal resolution

that can be achieved. For this experiment, the foil must be allowed reach a steady state

temperature, Ts, before the introduction of the bubble, while maintaining a temperature

gradient, DT , between itself and the bulk fluid. One option to maintain this temperature

difference could be a flow loop/heat exchanger combination, although this fluid motion would

alter the thermal boundary layer that exists on the surface. Instead, an experimental structure
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4.2. CASE 2: HEAT TRANSFER

is utilised that is geometrically similar to that in section 4.1 but has with dimensions of 400

⇥ 400 ⇥ 300 mm3, allowing for a greater volume of bulk fluid. Again, the tank contains the

sliding surface and a mount for the bubble injection system. The sliding surface in this case

is the heated foil section; this forms the base of a PMMA piece which is mounted into the

top of the tank. A schematic of this apparatus is shown in figure 4.5.

δf (y') Ub

T = Ts(y)

δT(y)

T = T∞

Pump 1

α

Pump 2

PC
DAQ

Thermocouples

IR glass

air gap

heated
foil

IR camera

Injector

Spacer

thermal b.l.

Figure 4.5: Schematic of the experimental apparatus used for heated tests, which uses a stainless steel
foil and infrared camera.

4.2.1 Heated Foil

The foil in this case is a 25 µm thick, 130 ⇥ 250 mm2 AISI 316 stainless steel foil man-

ufactured by Goodfellow. The foil is bonded to a pair of copper busbars using thermally

conductive epoxy to ensure good electrical contact and uniform heat generation. Each copper

bar has two connections on each end, which receive power via 5 mm diameter copper cables

from a Lambda GENESYS GEN6-200 DC power supply. This power supply is able to

provide 6 volts and 200 amps in either constant voltage or constant current modes. The latter

is used in the current study, as it allows the foil to be heated to a desired temperature.
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(a) (b) (c)
I: lower view

II: upper view
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Figure 4.6: Rendering of heated foil and surrounding PEEK 1000 structure, with a lower view (I)
showing the busbars and tensioning brass bars (a), the tensioned foil (b) , the stainless steel plate (c)
and an upper view (II) showing the ledge for the sapphire glass and embedded thermocouple (d).

When the foil is heated, thermal expansion, and thereby warping, can occur. To reduce

this problem and to ensure the surface is sufficiently smooth, the foil is tensioned by a pair of

brass tensioners mounted in a support structure made from Polyether ether ketone (PEEK)

1000 plastic. One of these brass bars is fixed in place in the support structure, while the

other can be adjusted by four screws that pass through the brass and the copper. By adjusting

these screws, the foil tension can be controlled. The busbars, tensioner and foil are shown

in figure 4.6 (a) and (b). PEEK 1000 plastic is utilised in the foil support due to its high

temperature rigidity at temperatures in excess of 200 �C. On the water side of the foil is a

stainless steel plate that prevents water from coming in contact with the electrical contacts. A

rectangular section machined into this plate forms the foil surface under which the bubbles

slide, while a 3 mm chamfer on the upper edge of this section prevents bubbles from gathering
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4.2. CASE 2: HEAT TRANSFER

at the lip between the foil and plate. The stainless steel plate, which is shown in figure 4.6 (c),

is sealed to the PEEK plastic by means of 32 screws (M5⇥60 mm), two neoprene gaskets

and an O-ring.

On the observation side of the foil, a lip is machined into the PEEK support structure, 3

mm above the foil. A piece of infrared transparent sapphire glass sits on this ledge, creating

an insulating air gap between itself and the foil. This air acts as a thermally insulating barrier,

ensuring that the majority of heat generated in the foil is convected to the water below rather

than through the air above. Additionally, if this gap is sufficiently small, the heat transfer

on the air side can be modelled as one-dimensional conduction. This will be quantified

in section 5.3. This requires a second temperature measurement, achieved by inserting a

thermocouple through a 1.5 mm hole drilled halfway up the 3 mm ledge. The observation

side of the foil is shown in figure 4.6 (d). Finally, the observation side of the foil is painted

to reduce the reflectivity of the foil and provide a known emissivity value for the thermal

camera. This is performed using black paint and a spray gun, and its thickness measured by

use of a micrometer. This value, among others, will be discussed in section 5.3.

4.2.2 Infrared Camera

To capture high speed IR images, a FLIR SC6000 camera is used in conjunction with the

FLIR ExaminIR software package and a high speed data recorder (HSDR). This camera

features an Indium Antimonide (InSb) focal plane array (FPA) measuring 640 ⇥ 512 pixels,

which is sensitive to light in the 3-5 µm range, otherwise known as the mid-wavelength

infrared (MWIR) range. This sensor is cooled by an internal Stirling engine, which reduces

its temperature to approximately 78 K to prevent the sensor being flooded by the camera’s

own infrared light. The camera is mounted directly to the top of the tilting tank, observing

the foil through a 25 mm lens. To reduce external reflections, the test surface and camera are

surrounded by a black card enclosure.

At 640 ⇥ 512 pixels, the maximum framerate is 126 Hz. For high quality thermal mea-

surements of transient phenomena, it is necessary to balance spatial and temporal accuracy.

Thus, a smaller window size is adopted, measuring 320 ⇥ 256 pixels, which allows for a

maximum framerate of 400 Hz. As the image is no longer full frame, an offset value is also
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4.2. CASE 2: HEAT TRANSFER

selected. In order to reduce reflections from the IR glass, the camera is mounted at a slight

angle (5�), with the centre of the area of interest offset from the centre of the focal array.

This prevents the camera from observing its own sensor due to internal lens reflections, also

known as the Narcissus effect [103]. Offsets of 112 and 100 pixels were chosen in the x and

y directions, respectively. The IR camera has a 14 bit range sensor, corresponding to 16383

possible measurement levels, otherwise known as counts. An integration time of 1.4 seconds

at 400 Hz ensured the highest calibrated temperature (not exceeding 50�C) corresponds to a

count value of approximately 14000, preventing saturation of the sensor. A rendering of the

experimental apparatus including the IR camera is provided in figure 4.7.

Figure 4.7: Rendering of experimental apparatus from two views, showing the IR camera and its view
of the heated foil.
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4.2.3 Calibration

The detector of the IR camera requires a temperature calibration and a non-uniformity

correction (NUC) in order to convert from counts to temperature and ensure every pixel

of the FPA exhibits the same behaviour. The NUC is required since the optics introduce

inhomogeneities to the FPA due to the lens and IR window, which results in the camera

reading a uniform temperature source as non-uniform. To perform a NUC, a flatfield black

body is heated to a high and then a low temperature, in this case: 40�C (corresponding

to 0.8 times the maximum calibrated temperature) and 21�C (room temperature). At each

temperature, the black body is placed such that it fully occupies the interrogation window

of the thermal camera, and 16 images are recorded and averaged. At each temperature, the

ExaminIR software corrects the raw signals of the pixels by individual gains and offsets to

the respective mean values.
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Figure 4.8: Calibration curve for infra-red camera, including 95% confidence limits and a 4th order
polynomial fit given by equation 4.1.

The calibration of the thermal camera is performed in-situ, with the sapphire window in

place. This ensures that the effects of paint emissivity and the sapphire window, which in

practice transmits ⇡ 90�95% of the infra-red light, are taken into account. The camera is set

to the same settings as during testing and the tank is filled with tap water at room temperature.

To change the water temperature, an open flow loop is formed between the tilting test tank, a

chiller (Grant RC 1400G) and an external reservoir. By adjusting the flow rate through this

loop using a ball valve, a steady flow of 3 L/min is achieved. The chiller ensures accurate
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4.2. CASE 2: HEAT TRANSFER

temperature control in slowly increasing the water temperature from 15�C to 50�C. A certified

RTD (resistance temperature detector) master probe is used as a temperature reference. Thus,

the foil temperature can be calibrated off this probe at a range of temperatures. This is based

on the assumption that the foil surface reaches the same temperature as the adjacent water,

which is anticipated to be the case due to the small thickness of the foil and the insulating

effect of the air gap above it. Count values are recorded every 1�C, with the water being

left to settle for several seconds before taking each measurement to reduce the effects of

larger-scale fluid motion. Count values are also averaged over a 100 px ⇥ 50 px region

of the foil to reduce the effect of noise. This allows for direct conversion from measured

counts to temperature values. A plot of RTD temperature versus counts is shown in figure 4.8.

Applying a 4th order fit to these data yields the equation:

Ts =�1.5839⇥10�14c4 +7.6832⇥10�10c3 �1.4181⇥10�5c2 +0.1226c�387.5179

(4.1)

The uncertainty of this measured fit at a count level of 10,000 is 0.45% at a confidence

level of 95% . This corresponds to ± 0.14�C at approximately 30�C, which is not visible on

figure 4.8 but will be discussed further in section 5.3.

A pair of T-type thermocouples are used to measure the temperature of the bulk water

and the insulating air gap. These are calibrated simultaneously against the master RTD

probe by immersing all three probes in a constant temperature water bath and varying its

temperature from 10�C to 60�C over increments of 5�C. The calibration curves for these two

thermocouples are shown in figure 4.9. The equations of the 1st-order line fits to this data

are:

TRT D = 0.9968Tair �0.0008 (4.2)

TRT D = 0.9968Twater +0.0247 (4.3)
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Figure 4.9: Calibration curves for the (a) air and (b) water thermocouples, including the linear fits of
equations 4.2 and 4.3.

4.3 Experimental Procedure

There are some minor differences in the experimental procedure depending on the experimen-

tal apparatus being used. One key difference is the use of distilled water in the heated foil

tests. This is necessary since the deionised water used for the bubble/fluid motion experiments

contains dissolved oxygen, which when heated would result in microbubbles forming on

the surface and suppressing heat transfer between foil and water. However, for the adiabatic

tests it is advantageous to use deionised water due to its homogeneity and known surface

tension. This is particularly pertinent to the fluid motion tests with seeded water, which are

more sensitive to the purity of the fluid.

4.3.1 Bubble and Fluid Motion

The inclined tank is first set to the desired inclination angle (20�, 30� or 40� to the horizontal)

and filled with deionised water. For the case of the fluid motion tests, 20 ml of 1%w/v tracer

particle solution is added. These particles have been stored overnight in deionised water and

are siphoned from the centre of the beaker, thereby removing particles of densities greater or

less than that of the water. Next, the surface is bolted into the top of the tank and the infusion

pumps are primed. The high speed camera is mounted to the tank and is set to record for up

to 4 seconds at 1000 Hz. Either the LED back light (bubble motion) or the continuous wave

laser (fluid motion) is turned on, depending on the measurement setup. Next, the desired

volume of air (0.1 or 0.2 ml) is specified on one or both of the infusion pumps, which is
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introduced via the syringe(s) to the injector at a rate of 1 ml/min. The user triggers the camera

and turns the baseplate 1/4 turn clockwise, thereby releasing either one or two bubbles to the

surface. The recorded images are exported as a multi-frame .tif file. For the bubble motion

setup, these are imported directly into MATLAB. For the fluid motion case, the files are first

renamed and then imported into the TSI Insight 4G package for PIV vector processing. The

system is allowed to settle for 10 minutes between tests.

4.3.2 Heat Transfer

The inclined tank is at an inclination angle of 30�, with the heated foil assembly and IR

camera mounted to the tank. The high speed camera is set to record for up to 5 seconds at 400

Hz, writing files to the HSDR. The power supply is set to 63.9 A constant current, and the foil

is allowed to reach an approximately uniform temperature by allowing surface heating for

10 minutes. The bubbles are injected in the same manner as for the bubble motion case and

the temperature readings of the air and water thermocouples are also recorded. After each

test, the power supply is powered off to prevent excessive heating of the bulk fluid between

tests. The recorded images are saved as a FLIR .sfmov movie file, which purpose-written

code converts into a three dimensional array of x,y temperatures and time in MATLAB. The

system is allowed to settle for 10 minutes before the foil is switched back on for the next test.
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Chapter 5

Experimental Analysis & Uncertainty

This chapter explains the techniques applied in the analysis, post-processing and interpretation

of the data obtained using the experimental methods outlined in chapter 4. The three key

areas in this study, namely bubble motion, fluid motion and heat transfer, will be discussed

individually. The uncertainty associated with each of these measurements will also be

quantified.

5.1 High Speed Image Processing

The raw images from the high speed camera are processed in MATLAB in order to obtain

information about the sliding bubble mechanics. This requires high speed tracking of the

bubble centroid and boundary. This study takes a novel approach to bubble tracking, using a

combination of object-based tracking methods. The various steps of this tracking process are

shown in figure 5.1 for the case of a streamwise in-line sliding bubble pair.

First, the images acquired from the high speed camera at 1000 Hz are exported as an

uncompressed multi-page .tif file. This file is read into MATLAB as an image stack of

grayscale images, each of resolution 800⇥1280 pixels. The mean of the first 10 images in

the stack is assigned as the background image, without any bubble in-frame. For each frame

in the stack containing a bubble, as in figure 5.1 (a), the generated background image is first

subtracted. The resultant image is median filtered and converted to a binary image using

Otsu’s method [104]. This method selects a threshold value, th, to minimise the intra-class

variance of a distribution of grayscale pixels by maximising the inter-class variance, i.e.
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finding the optimal separation of a bimodal distribution. The thresholding algorithm uses this

value to convert to binary with the equation:

g(x,y) =

8
<

:
1 i f f (x,y) > th

0 i f f (x,y)  th
(5.1)

The resulting binary image, shown in figure 5.1 (b), provides the bubble shape to single

pixel precision. Occasionally, other regions on the image are also detected by the algorithm.

These are typically several pixels in size, and can be removed by sorting the tracked regions

in ascending size using the MATLAB function regionprops, which finds the properties of

non-zero regions in a binary image. In addition to the area, this function can also be used to

track the bubble centroid, bounding box (the smallest rectangle containing the full bubble)

and convex hull (a per-pixel boundary of the object). When there are two large objects in

frame (i.e. an in-line bubble pair), they are sorted based on the y-position of the centroid.

This is provided the trailing bubble does not interact with or overtake the leading bubble,

which is the case for the current study.

Traditional object tracking methods, also known as “blob analysis”, often use this centroid

value to define the mechanics of the bubble, including the velocity and acceleration. However,

the accuracy of these measurements is limited by aliasing, as the bubble boundary is based off

a per-pixel value. This results in a non-physical “jagged” bubble shape being tracked. More

importantly, calculation of the centroid based on the average of these aliased edge points adds

a bias error to the centroid calculation. This error is small in magnitude, with the centroids

tracked in figure 5.1 (c) appearing accurate. However, significant issues arise when calculating

the velocity and acceleration of the centroid based off this values, as this systemic error is

multiplied by 2p ⇥103 and (2p ⇥103)2, respectively. Smoothing methods can be employed

to reduce this noise; however, the current study takes a different approach. The methods

outlined previously are employed, but are only used to find the bounding boxes around each

bubble rather than the centroids. The bounding boxes are padded by 20 pixels in the x and y

directions (figure 5.1 (c)), and are applied to the original background-subtracted grayscale

bubble image. The image inside each box is subsequently sensitised and interpolated in

order to increase the edge resolution. Sensitisation is achieved by converting to floating-point

representation and performing median filtering and morphological closing. Morphological

88



5.1. HIGH SPEED IMAGE PROCESSING

closing probes the image with a structuring element, which in this case is a disk shape. Such

operations do not rely on numerical values, but only on the relative ordering of the image,

which makes this a useful method of detecting the approximately disk-shaped bubble and

removing non-disk shaped noise. Interpolation using a spline method is subsequently used to

increase the resolution by a factor of 4. This sensitised background-subtracted image is shown

in figure 5.1 (d). A low-level contour function is applied to this image using the threshold

value, th. This results in a reasonable sub-pixel representation of the bubble perimeter, shown

in figure 5.1 (e). This can be performed to track both the leading and trailing bubbles to

sub-pixel representation, as in figure 5.1 (f).

bubble image subtracted & binarised bubbles identified

sensitised imagelow−level contourtracked perimeters

major & minor axes interpolated: n = 17 interpolated: n = 360

(a) (b) (c)

(d)(e)(f)

(h) (i)(g)

θb

a

Figure 5.1: The image processing operations applied to each frame containing a bubble.
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From this enhanced image, a more accurate description of the bubble centroid can be

obtained. Traditional object tracking methods base the dynamics of the tracked body on the

displacement of its centroid. Although this approach is physically sensible, its application

to two-phase phenomena results in a loss in the rich dynamics of the bubble. This arises

from the deformable bubble interface, experiencing complex changes in shape, particularly

when captured in the wake of a leading bubble. To capture a more complete picture of the

bubble dynamics, it would be advantageous to track the bubble interface, in addition to the

centroid. This is not achievable with the bubble perimeter plots obtained thus far, as the

number of points in the perimeter varies as a function of bubble shape, meaning that it would

not be possible to track the evolution of a particular point on the bubble’s edge. A method is

therefore necessary to discern and track key edge points.

To interpolate the edge data to n points, some reference points on the bubble interface are

necessary. In this study, the major and minor axes are used for this. These can be found based

on the central moment of the edge data, which in two dimensions is the covariance matrix

of the edge data. This involves applying a multivariate normal distribution to the perimeter

data, with the contour lines of this distribution forming ellipses (i.e. the shape of the bubble).

The directions and length of the ellipse’s axes are given by the eigenvectors and eigenvalues

of the covariance matrix of the edge data. The first eigenvector, which describes the bubble

major axis, is the direction along the bubble in which the edge data experiences the greatest

variance, while the second eigenvector (the minor axis) is the direction of greatest variance

orthogonal to the first eigenvector. These form the known reference points on the bubble

perimeter, and are shown in figure 5.1 (g). With these reference points found, the edge data

is converted into polar coordinates and interpolated onto n points from �p to p about the

major and minor axes. This is shown in figure 5.1 (h) for n = 17. This results in the same

number of tracked locations in each frame, meaning the behaviour at each of these points

can be tracked spatio-temporally. In reality, the arbitrarily chosen n = 17 is too small to fully

resolve this behaviour; 360 points around the bubble perimeter are used instead. Other useful

data can also be derived from this representation of the bubble, such as the major and minor

axis length (denoted by a and b respectively) and the bubble’s orientation, q , which is the

inverse tangent of the major axis. In the current study, the shape of the bubble is considered

in terms of its eccentricity, defined as the ratio of the distance between the two foci and the
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major axis length. Eccentricity can be thought of as the extent of elongation of an ellipse,

where 0 in this case is a perfect circle and 1 is a flat line, although these do not scale linearly.

It is given by:

e =

s

1�
✓

b
a

◆2

(5.2)

This description has described a single iteration of the tracking algorithm. The algorithm

performs the above steps for all images in the stack, finding the edge and centroid data in the

manner outlined above. Finally, the image is calibrated by finding the length in pixels of a

known length on the image (for all tests, this is the width of the PMMA surface). The mean

of the bubble x-position is also subtracted such that the bubble fluctuates about a mean of

sx = 0.
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Figure 5.2: (a) zooming in on a section of the bubble x-position versus time graph for the raw sx data,
the same data smoothed with a low-pass filter and finally the same data fitted with a 6th order sum
of sines fit. (b) propagation of these displacement fluctuations when calculating vx for each of these
three cases.

Even with this enhanced tracking capability, there are still issues when calculating

derivatives. Figure 5.2 (a) shows that although the x-displacement versus time curve appears

smooth, zooming in on a small region of the bubble path reveals minute fluctuations in

the centroidal position. These are propagated if the bubble velocity and acceleration are

calculated directly, resulting in the noisy data in figure 5.2 (b). A logical approach would be

to apply a smoothing spline to the displacement data before taking its derivative. However,

a basic low pass filter does not remove all of these fluctuations, as shown by the red line

91



5.1. HIGH SPEED IMAGE PROCESSING

in figure 5.2 (b). The smoothing in this figure remains too “faithful” to the errors in the

centroidal tracking algorithm. However, smoothing further can run the risk of excessive

smoothing, which can mean losing the real dynamics. This smoothing would also have to be

optimised for each individual test, as the errors in centroidal calculation are different for each

case (due to changes in lighting, reflections, bubble interface rebounds, etc.) This problem is

solved by considering that the bubbles in the current study have an undulating, approximately

sinusoidal path. Thus, by expressing the displacement in the x-direction as a sum of sinusoids,

it is possible to both dramatically reduce the residual errors and be physically appropriate

(blue lines on figure 5.2). Similarly, the y-displacement can be expressed as the superposition

of the best-fit first-order polynomial (describing the mean vertical displacement due to

buoyancy) and a sum-of-sines fit on the residuals of this polynomial.

These curve fits are applied to the displacement data using the in-built MATLAB curve-

fitting toolbox. This fits a periodic function given by:

y =
n

Â
i=1

ai sin(bix+ ci) (5.3)

where a is the amplitude, b is the frequency and c is the phase content for each sine series.

This equation bears similarity to a Fourier series, although it includes the phase constant c

instead of an intercept term. The toolbox calculates optimised start points for the fit based on

the data set. The calculation of the velocity and acceleration is simply the case of finding

the first and second derivatives of these curves. The advantage of this approach is that it is a

general case, which means that it can be applied to all tests without the need for further tuning.

Furthermore, it is not limited to the centroid, and can be applied to any of the approximately

sinusoidal curves traced by each point along the bubble interface.

Thus far, the bubble centroid, velocity and acceleration can be calculated directly from

the edge data. Let us return to the 1-d force balance of Perron et al. [66] introduced in section

2.2. Using the same rationale, it is possible to calculate the forces in the x and y directions of

the bubble by using Newton’s second law SF = ma. This mass term takes into account both

the mass of the air inside the bubble and the added mass of the fluid accelerated and displaced

by the bubble. The symmetric added-mass tensor CM depends only on the geometry of

the body and confinement effects of the tank. This is characterised by the dimensionless
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added mass coefficient, CAM, which is the added mass divided by the displaced fluid mass.

For small, spherical bubbles, Magnaudet & Eames [25] showed that CAM = 0.5. For larger,

deformable bubbles, the relationship is more complex, given by Klaseboer et al. [105] as

CAM = 0.62c �0.12, where c is the aspect ratio of the bubble.

Using a 1-d kinematics approach, this net force must be balanced by the buoyancy and

drag forces. The equation of motion for the bubble in the streamwise direction can be written

as:

CAMV
d2sy

dt2 =V gsina � p
8

CD

✓
D

dsy

dt

◆2

(5.4)

Thus, given the dimensions and displacement of the bubble, it is possible to calculate the

forces acting on the bubble in the spanwise and length directions, along with the fluctuating

drag coefficient, CD. This allows for comparisons with values obtained in the literature,

which use a similar approach. However, it is important to note that this simplified analysis is

fundamentally flawed and provides indicative values only for drag coefficient. This all stems

from the limiting the bubble motion to a single degree of freedom to assess the force system

results. In reality, the forces experienced by the bubble are complex and three-dimensional.

For instance, this approach ignores the interaction between the bubble interface and the fluid

or wall. The surface tension force, surface drag force, and Basset force will all be neglected

by the model. Additionally, the added mass term is based only on the parallel projection of

the bubble shape.

Therefore, the approach taken is as follows. The forces and drag coefficients calculated by

this method will be presented and discussed briefly, since this was an approach that has been

used in the literature. Furthermore, the force plots are simply the acceleration data scaled by

the added mass term that changes only slightly with the bubble shape, meaning a discussion

of the force analysis in this case is analogous to that of the accelerations experienced by the

bubble.
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5.2 Particle Image Velocimetry

In this section, the concepts behind the particle image velocimetry (PIV) measurement

technique will be described. The key work describing PIV is the exemplary “Particle Image

Velocimetry, A Practical Guide” by Raffel et al. [106]. PIV offers many advantages as a

flow measurement technique as it is non-intrusive and offers whole-field measurements. The

robust nature of PIV is due to its simplicity. It is based on the principle of illuminating small,

neutrally buoyant seeding particles in the working fluid using a high intensity stroboscopic

light sheet, and tracking the displacement of these particles in time. Tracer particles are

assumed ideal if they follow the motion of the fluid exactly and do not alter the flow. The

velocity is measured indirectly as a displacement D(X; t 0, t 00) of the tracer particles in a time

interval Dt = t 00 � t 0. This is an integral approach [107], given by:

D
�
X; t 0, t 00

�
=

Z t 00

t 0
v [X(t), t]dt (5.5)

where v [X(t), t] is the velocity of the tracer particle. For ideal particles, the particle

velocity v is exactly equal to the local fluid velocity, u [X(t), t]. In reality, the particle velocity

is an approximation of the local fluid velocity to within a finite error e , that is:

kD�u ⇧Dtk< e (5.6)

The error, e , can be negligible in cases where the spatial and temporal scales of the flow are

considerably larger than the spatial resolution and the particle lag.

Consider next the illumination of these particles. For spherical particles with a diameter

dP, the incident light experiences Mie scattering, proportional to the square of the particle

diameter. The amount of light scattered by a particle due to Mie scattering is dependent

on the angle between light sheet and camera, with the ideal case being a camera that is

placed perpendicular to the light sheet. Ideally, the light sheet should be thin, of high

intensity and have accurate timing control. For this reason, lasers are synonymous with

PIV. Generally, the greater the sheet intensity is, the larger the signal-to-noise (SNR) ratio.

Double-pulsed Nd:YAG lasers, which are based on neodymium-doped yttrium aluminium

garnet, are commonly used in high speed PIV. A series of cylindrical concave lenses expand
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the beam into a thin plane. These lasers allow a very short time delay between laser pulses,

which is necessary for high speed flows.
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Figure 5.3: Laser and camera timings for (top) double-pulsed and (bottom) continuous PIV.

In the current study, the flow fields instead are evaluated frame-by-frame using a continu-

ous wave laser, as opposed to the double-pulsed systems more common to stroboscopic PIV

measurement. This is because temporal resolution of the time scales of the flow requires a

very short repetition rate between successive image pairs: while double pulsed lasers can

offer unbounded timing between each pulse (Dt), the time between successive image pairs

does not usually permit time-resolved measurements, with most commercial PIV systems

limited to just 15 Hz repetition rate. In this study, the relatively low flow velocity and the

high frame-rate of the camera (and consequently short reciprocal exposure time) allows good

stroboscopic imaging of the tracer particles, without streaking, in lieu of a high frequency

double-pulsed laser. The difference between the two methods is highlighted in figure 5.3.

Although the double-pulsed laser offers a very short time delay, t , between the laser pulses,

the time Dt is large, of the order of 15 Hz. Additionally, PIV can only be performed at every

second set of frames I1�2, I3�4, etc. The timings for the continuous wave laser are shown in

figure 5.3. In this case, the particles are illuminated with a continuous wave laser and are

recorded using a high-speed camera. The “pulse” is now the camera exposure, and the Dt is

the camera frame-rate. Using a continuous wave laser can therefore in many cases provide
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extremely high temporal resolution at a fraction of the cost and complexity of double-pulsed

systems. This comes with the caveat that the exposure time, in this case 30 µs, is much

longer than the 5 ns for a pulsed Nd:YAG laser and the 100 ns of a pulsed Nd:YLF laser,

meaning high-speed particle images are prone to streaking.

Once the particle images have been obtained, they are processed using the TSI Insight 4G

software package. At its core, the PIV algorithm involves locating each tracer particle and

measuring its distance travelled in the time Dt. Particles are tracked using correlation, which

measures the similarity in intensity between two images. For instance, auto-correlation, or

the similarity between an image matrix I1 and itself, reaches its maximum value at dx = 0,

dy = 0, or when the two images are perfectly aligned on top of one other. In three dimensions,

the correlation at this point forms a positive peak. Mathematically, this can be expressed as:

CI1,I1(sx,sy) =
Z

A
I1(x,y)I1(x+dx,y+dy)dxdy (5.7)

In order to track the particles in time, cross correlation is used, correlating two successive

images against each other. When performed between two image matrices I1, I2 that are Dt

apart, the cross correlation has its maximum value when the two images are as similar as

possible. This can be expressed as:

CI1,I2(sx,sy) =
Z

A
I1(x,y)I2(x+dx,y+dy)dxdy (5.8)

If the flow velocity is non-zero, the maximum correlation will no longer be at [dx= 0,dy= 0],

and instead will be at some finite integer value. This process would be trivial if the image

contained just a single particle, but PIV requires a high particle density to resolve the full

spatial and temporal scales of the flow, meaning the identification of individual particles

can prove challenging. To achieve this, the PIV image is split into sub-windows called

interrogation regions. Each of these regions is cross-correlated to the nearest pixel, with the

strength of correlation determining the quality of the PIV. To move to sub-pixel accuracy, a 3-

point Gaussian fit is performed in the horizontal and vertical direction on the cross-correlation

map, with the peak position adjusted to the maximum of this fit. The correlation strength

of PIV, denoted as RD, is the value of the resultant peak. The cross correlation C(s) can be

expressed as:
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Figure 5.4: PIV correlation peak, taken from Raffel et al. [106]

C(s) = RC +RF +RD (5.9)

where RC is the convolution of the mean intensities of the image (essentially the constant

background level) and RF is the correlation between the mean and fluctuating image intensi-

ties. These can be reduced by subtracting the mean image intensity from images I1 and I2,

thereby increasing the signal-to-noise ratio. Figure 5.4 shows the contribution of the terms in

equation 5.9 to a cross correlation.

The noise level of the correlation due to in-plane, out-of-window particle displacement

cannot be solved by decreasing Dt. Instead, the interrogation windows are shifted by a

distance dr. To determine this distance, multigrid analysis is used. First, the displacement

calculation is performed based on a relatively large sub-window (in this case, 64 ⇥ 64

pixels). The displacement of this large sub-window, dr1 is found, and the window shifted

by this amount. Next, the displacement is calculated in a smaller sub-window of 32 ⇥ 32

pixels. The window is then shifted again based on this new displacement dr2. This can be

performed multiple times, with the total movement given as the sum of each displacement

dr = dr1 + dr2 + ... etc. Modern PIV algorithms can increase accuracy further by using

window deformation, where images are deformed based on the surrounding predictors by a

spline function, providing a greater amount of particles per interrogation window.

5.2.1 Vector Field Processing

An example of a typical parallel plane PIV image is provided in figure 5.5, showing that high

quality particle images can be obtained without the use of a double-pulsed laser or fluorescent
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tracer particles. Also visible is the saturation image at the bubble boundary due to minor

reflections from the laser.
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Figure 5.5: Raw PIV image showing bubble and minor reflections (left), zooming in on the two
highlighted regions to show the particles per interrogation window and the saturation of near-bubble
PIV (right).

All PIV vectors for the current study are evaluated using the Insight 4G V3V package

provided by TSI and are post-processed in MATLAB in order to present instantaneous

velocity and vorticity plots. In the parallel plane tests, the PIV algorithm in Insight applies

a multi-pass, multi-grid correlation with image deformation [108] and Gaussian sub-pixel

fitting that decreases in size from 64 ⇥ 64 to 32 ⇥ 32 pixels, in 3 passes, applying a 50%

window overlap for the first pass and a 75% overlap in the subsequent two passes. Figure 5.5

shows that there are significantly more than the minimum recommended 10 particles in each

initial interrogation window contributing to the correlation.

To improve accuracy, the vectors are post-processed. Modern PIV algorithms possess

options such as filling regions where the PIV algorithm has failed to identify a correlation

peak by interpolating the local vectors, which is often used for time-averaged flows. However,

the spatial and temporal scales of time-resolved flows make recursive hole filling a dangerous

“black box” approach, returning data that at best are over-averaged and at worst are entirely
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false. Thus, the current study places an emphasis on obtaining high-quality images rather than

applying extensive post-processing techniques, with the only post-processing step applied

being that of bad vector replacement. Occasionally, the primary correlation peak identified in

correlation is an outlier, with a significantly higher RMS velocity than its neighbours. To

correct for this, the algorithm also exports the second and third highest peaks from each

correlation plane. If one of these two peaks are within the designated velocity range (i.e. <

1.5 times the RMS velocity of the neighbouring vectors), the bad vector is replaced with this

new result. In the perpendicular plane, the same techniques are applied but with a smaller

window size of 32 ⇥ 32 to 16 ⇥ 16 pixels.

The Insight software exports displacement and velocity data as .txt files. A purpose-

written MATLAB algorithm reads in these files and performs a calibration based on a known

distance on images taken in each plane. PIV yields the velocity gradient tensor, which the

algorithm converts into a series of instantaneous 2-D representations of the velocity and

vorticity fields. Vorticity describes the changes in the velocity vector in an infinitesimal

distance perpendicular to the vector. Strictly, the vorticity,
�!
W , is a pseudovector field defined

as the curl of the velocity vector U. In a two dimensional field (x,y), the vorticity is parallel

to the z axis. The vorticity, Wz, can thus be expressed as:

Wz = —⇥U =

✓
dV
dx

� dU
du

◆
�!z (5.10)

Traditionally, PIV struggles to resolve vectors near solid boundaries, both fixed (i.e. near

wall PIV) and moving (i.e. the bubble). In the current study, the PIV algorithm identifies the

bubble as a collection of particles moving at the bubble velocity UT . This makes it challenging

to distinguish between the bubble and the near wake, which is in close association with

the bubble at a velocity close to UT . To amend this, the position of the bubble in the raw

PIV images is also tracked in MATLAB. It is not possible to use the algorithm described

in section 5.1, which requires a well-defined, sharp bubble boundary. Instead, the bubble is

tracked using Otsu’s method [104] from the median filtered raw PIV image for each frame

containing a bubble. This returns the approximate bubble shape and path, allowing for a

distinction between the bubble and the near wake.

The perpendicular measurement plane is fixed in space at sy = 60 mm from the base of the
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parallel plane interrogation window. This provides a view of the time-varying cross section

of the fluid mixing in both the streamwise and normal directions. For these measurements,

the phase angle, f , is defined as the location along the bubble’s undulating path at which it

passes through the laser plane. The dependency of PIV measurements in this configuration

on the phase angle will be explored in chapter 7. In this configuration, coherent regions of

in-plane streamwise vorticity are identified at different instances in time. Thus, the methods

of Zenit & Magnaudet [41] discussed in section 2.1.2 can be employed to reconstruct the

streamwise wake structures to the rear of the bubble. This is achieved by converting the

vorticity at different instances in time into a cross section of a vortex element, with the

distance between adjacent cross sections Dsy given by Dsy = Ubt. Strictly, this method

represents the Lagrangian vorticity at a short time (or short distances) behind the bubble.

This can also be considered as an implementation of Taylor’s frozen turbulence, which claims

that if the turbulence intensity is sufficiently small, the advection contributed by turbulent

circulations is small and the advection of the turbulence field can be attributed to the mean

flow. This method cannot be used to show a complete three-dimensional wake structure, as

it will become apparent that the flow structures downstream of the near wake are advected

through the plane at a velocity considerably less than Ub. Indeed, it is not possible to solve

this method from an Eulerian reference plane. Instead, the third dimension of the plots is the

distance Dsy, which describes the distance the fixed measurement plane is behind the bubble

if it were to continue sliding indefinitely. Despite these limitations, this approach provides

useful visualisations of the flow structures in a time/space plot, particularly in terms of the

downstream mixing offered by the bubble.

5.2.2 PIV Effectiveness

Successful PIV measurements require the identification of the displacement correlation peak

RD, implying that it is advantageous to maximise its amplitude. Keane and Adrian [109]

have studied this process in great detail, and have specified the following two “design rules”

for PIV, which form a guide for determining PIV effectiveness. The first of these is:

NIFIFO > 7 (5.11)
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In this equation, the term NI refers to the number of particles per interrogation window, of

which should be at least 10. The size of the particles in the PIV images is also an issue in

determining PIV effectiveness, where optimal particle images are approximately 2 pixels

in size. Above this value, random errors will spread the maximum cross-correlation over

more than one pixel, while at low particle image sizes a phenomenon known as pixel locking

(or peak locking) occurs. This effect is caused by the tendency of the sub-pixel Gaussian

estimator to bias displacement values towards integer values. In figure 5.5, the average

particle size is 2-3 pixels, while NI is ⇡ 35 in an interrogation window with no bubble but

reduces in windows that are partially obscured by the bubble boundary. The influence of

in-plane displacement on the loss of correlation, FI , is given by:

FI(Dx,Dy) =
✓

1� |Dx|
DI

◆✓
1� |Dy|

DI

◆
(5.12)

where Dx,Dy are the particle displacements and DI is the interrogation window size. To

minimise this loss, the particle displacement |Dx| should be less than 0.25DI , which is

otherwise known as the quarter-window rule. However, a displacement of greater than 1 pixel

is necessary due to bias errors. Typically, bias errors in PIV are reduced by optimising the

pulse spacing Dt. For flows with a high dynamic range, defined as the ratio of the maximum

to minimum resolvable displacement, or DRv = Dsmax/Dsmin, very low displacements will be

biased between 0 and Dsmin, creating low-level noise in low velocity regions. To increase

the dynamic range, low velocity images (i.e. in the far wake of the bubble), are processed

at larger separations Dt, to ensure a sufficiently large particle displacement, while a small

amount of low-level noise due to bias errors in zero-velocity regions is tolerated in images

with a high dynamic range (i.e. images of the near wake).

The quality of PIV is also linked to the out-of-plane loss of correlation FO. Particular

attention should be paid to this for the current study, where the flow structures are evolving

in three dimensions. The loss in correlation FO is given by:

FO(Dz) =
✓

1� |Dz|
Dz0

◆
(5.13)

The allowable out-of-plane displacement Dz is |Dz| < 0.25Dz0, where Dz0 is the light

sheet thickness of 1.5 mm. Chapter 7 will show that in the current study the majority of the
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fluid motion is parallel to the surface. This means that FO is small for the parallel plane

measurements. However, this creates some issues in the perpendicular plane, where the

in-plane displacement is small. As a result, a compromise is required between processing

at a larger Dt to allow for sufficient in-plane pixel displacement and preventing the Dz term

exceeding the maximum allowable value. This means that effective PIV in the perpendicular

measurement plane is not possible in the high-velocity regions in the near wake. At these

instances in time, flow visualisation will be provided to deduce the fluid motion rather than

PIV.

The second design equation developed by Keane and Adrian [109] describes the loss of

correlation by spatial gradients and is given as:

M|DU |Dt < dt (5.14)

where M is the magnification and |DU | is change in flow velocity. If the spatial gradients

due to large shearing components or high acceleration are too large, the correlation strength

decreases. Thus, the design rule of Keane & Adrian [109] recommends spatial gradients

within the particle image diameter, or D(D(x))< dt , meaning that these gradients should be

less than 2 pixels. Keane & Adrian [109] showed that if NIFIFO > 5, the probability of a

valid RD peak being detected is greater than 90%. By obeying these design rules, high quality

velocity data are obtained without interpolative filling or smoothing. For each test presented

in this study, the in-built vector validation method of Insight 4G has been found to detect a

valid RD peak in every interrogation window.

5.3 Thermal Image Processing

This section details the techniques used to convert the temperature plots obtained from the

thermal camera to the convective heat flux associated with the sliding bubble, q00conv. For this

energy balance, the relevant properties of the foil and paint layers are provided in table 5.1.

Values for the paint density, thermal conductivity and heat capacity are taken from the work

of Raghu & Phillip [110], who measured the thermal properties of paint samples using the

PA scanning technique. The foil properties are provided by the manufacturers, Goodfellow,
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while the foil and paint thickness are measured using a micrometer.

Table 5.1: 1 Foil properties for SS-316, provided by Goodfellow. 2 Thermal properties of paint
samples, Raghu & Phillip [110].

Thickness, d Density, r Thermal conductivity, k Heat capacity, Cp
⇥10�6m kg/m3 W/mK J/kgK

Foil 25 ±1 7960 1 16.3 1 502 1

Paint 28 ±3 1295 2 0.57 2 2835 2

As a first step in the thermal analysis, it is necessary to establish whether the temperature

at the observation side of the foil can provide quantitative information on the convective heat

transfer on the water side. This is achieved by performing a lumped thermal capacitance

analysis on the system, which describes the temperature of a solid as spatially uniform at any

instant in time during a transient process. To validate this method, the Biot number, Bi, is

used. This is a dimensionless quantity that provides a measure of the temperature gradient in

the solid relative to the temperature difference between the surface and the fluid. Incorpera et

al. [111] stated if the Biot number is significantly less than unity, it can be assumed that the

temperature is uniform within the solid at any time during the transient process, that is:

Bi =
hmaxLc

k
< 0.1 (5.15)

where hmax is the highest heat transfer coefficient observed and k is the thermal conductivity

of the material. Lc is the characteristic length of the surface, which reduces to a half-thickness,

L, for a plane wall of thickness d cooled from both sides (that is: 2L = d ). The maximum

heat transfer coefficient observed during the tests is found to be hmax = 1600 W/m2K. Using

this and the constants from table 5.1 results in a Biot number of 1.2⇥10�3 for the foil and

39.3⇥10�3 for the paint layer. This means that the lumped capacitance approach is valid for

the current configuration and it is possible to proceed to the energy balance.

5.3.1 Element Energy Balance

Within the foil, heat generated by the Joule effect is dissipated by convection and other

secondary heat transfer modes. The desired quantity is the convective heat flux, which can

be found by performing an energy balance on a section of the foil. Consider a differential
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control volume consisting of both the foil and paint layer, forming a cuboid of dimensions

dx⇥dy⇥ (dp +d f ). This is illustrated in Figure 5.6. Performing a conservation of energy

balance on this volume yields:

Ėin + Ėgen � Ėout = Ėst (5.16)

where Ėin and Ėout describe the energy transport across the surfaces of the control volume,

Ėgen is the thermal energy generated within the control volume and Ėst is the thermal energy

stored within the control volume. Note that heat is transferred through adjacent foil elements

by lateral conduction, and from the air and water sides by a combination of conduction,

radiation and convection. By taking the approach outlined in Incropera et al. [111] and

Stafford et al. [91] to find the constituent terms in figure 5.6 and grouping like terms together,

the following expression is obtained:

qx, f +qy, f +qx,p +qy,p + q̇gendxdyd f�

qx+dx, f �qy+dy, f �qx+dx,p �qy+dy,p�

qconv �qcd �qrad �qcap = 0 (5.17)

where the q terms are in Watts. The subscripts f and p denote heat transfer through the

foil and paint layer, respectively, q̇gen is the heat generated by Joule heating, qrad is the

rate of radiative exchange from the foil to the surroundings, qcd is the heat loss on the

air side of the foil and qconv is the convective heat loss from the foil; this is the desired

parameter. Additionally, as the experiment is not steady state, the energy stored within the

foil is non-zero, meaning the term qcap must be added to describe the changes in internal

energy within the control volume in response to temporal fluctuations in surface temperature.

By representing the conduction heat flux perpendicular to the control volume edges at x and

y using Fourier’s law, equation 5.17 can be rewritten as:
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Figure 5.6: Illustration of heat transfer through a single element with a surface area of dx⇥dy with
thickness of, d f oil , dpaint for the foil and paint layer respectively.

�
k f d f + kpdp

�✓∂ 2T
∂x2 +

∂ 2T
∂y2

◆
dxdy+ q̇gend f dxdy�

q00convdxdy�q00cddxdy�q00raddxdy�q00capdxdy = 0 (5.18)

It is assumed that the electrical energy generation is distributed evenly through out all the

elements within the foil, meaning the Joule heating can be calculated on an element by

element basis. This energy balance is thus applied to every pixel of the thermal image,

therefore dx = dy. Dividing by dx2 we can arrange the energy balance in terms of q00conv as:

q00conv = q00gen �q00cond �q00rad �q00cap �
�
k f d f + kpdp

�✓∂ 2T
∂x2 +

∂ 2T
∂y2

◆
(5.19)

Each constituent term in equation 5.19 will now be examined. For each of the fluctuating

terms, a figure showing the surface temperature distribution and heat flux at the bubble will

be provided. The heat generated within each element by the Joule effect is:

q00gen =
I2

elecRelec

dx2 (5.20)

105



5.3. THERMAL IMAGE PROCESSING

where Ielec is the current through one foil element of resistance Relec. This resistance of the

foil can be found using:

Relec = relec
w

Acs
(5.21)

where relec is the electrical resistivity of the foil, w is the length of foil parallel to the current

flow (i.e. the width of the foil) and Acs is the cross-sectional area, i.e d f ⇥ l. The power

generated by one volumetric element of size d f ⇥ dx2, is calculated by splitting the foil

into elements of size dx2. To verify this calculation, the voltage drop across the foil was

measured using a voltmeter, providing a value for q00gen within 2% of that determined from

equation 5.20.

On the observation side, the mode of heat transfer is natural convection. However, the

majority of the natural convection correlations provided in the literature are for the mean

Nusselt number, which is not applicable to time-variant systems. The purpose of the sapphire

glass is to create a stagnant air gap above the foil that limits the heat lost to the air to one-

dimensional conduction. This is only the case if there is no recirculation in the air gap. For a

rectangular cavity, Ostrach [112] showed that for any inclination angle a , there is no flow

within the gap if the Rayleigh number is less than a critical value. That is:

RaL,c =
1708
cosa

(5.22)

Although this critical Rayleigh number initially appears very small, its associated char-

acteristic length is the thickness of the cavity, z, which in this case is only 3 mm. Although

the temperature at inside of the sapphire glass layer is not known, an unrealistic worst-case

scenario of Ts �Tglass = 25�C is still two orders of magnitude less than the critical value for

flow to occur. Thus, in the air gap, Fourier’s law can be applied, yielding:

q00cd = kair
dT
dz

(5.23)

where kair is the thermal conductivity of air and dT/dz is the temperature gradient across the

air gap to the glass. This temperature gradient is measured using the embedded thermocouple

and assumes a uniform gradient across the entire gap, i.e. d2T/dz2 = 0. This calculated
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conductive heat flux is shown for typical temperature distribution in figure 5.7, alongside the

surface temperature, with positive heat transfer indicating heat transfer from the air gap into

the foil.
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Figure 5.7: (a) Instantaneous surface temperature and (b) instantaneous conduction within the 3 mm
air gap, q00cd for de = 5.7 mm, a = 30� and a mean superheat DT = 10�C. Positive values indicate heat
flow into a foil element.

Note the conduction levels in figure 5.7 indicate that heat is in fact flowing from the air

gap into the foil. It has been established that this is due to the copper busbars, which form

the sides of the air gap, being at a temperature of 50�C and thereby heating the air to above

the foil temperature. However, since the Rayleigh number remains sufficiently low to prevent

recirculation within the air gap, the sole mode of heat transfer remains 1-D conduction into

the foil. As such, the temperature gradient, be it positive or negative, can be inferred by the

thermocouple. This term contributes under 1% to the overall convective heat flux, as will

become apparent presently.

Heat is also transferred from the foil to the surroundings via radiation, although this term

is small due to the comparatively low wall superheats under investigation. The radiative heat

loss is negligible on the water side due to the low emissivity of stainless steel and the fact

that the adjacent water is opaque. On the observation side, the heat lost from radiation can be

estimated by:

q00rad = es
�
T 4

s �T 4
surr

�
(5.24)
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where e is the surface emissivity, s is the Stefan-Boltzman constant, Ts is the surface

temperature and Tsurr assumes the surrounding walls are at the ambient air temperature. The

instantaneous heat flux due to radiation, q00rad , is illustrated in figure 5.8 for the same case as

figure 5.7.
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Figure 5.8: (a) Instantaneous surface temperature and (b) instantaneous heat transfer by radiation,
q00rad , from the foil to the surroundings.

The heat transfer through lateral conduction within the foil, q00lc, requires calculation of

the Laplacian, —2T , of the surface temperature field. It is given by:

q00lc =
�
k f d f + kpdp

�✓∂ 2T
∂x2 +

∂ 2T
∂y2

◆
(5.25)

where d and k are the thickness and thermal conductivity of the foil or paint from table 5.1.

The Laplacian is solved by the MATLAB function grad, which implements the central-

difference method to solve the spatial derivatives in the main field and automatically switches

to first order differences near the edges of the field. Additionally, a median filter is applied

to the temperature data before the derivatives are taken, as applying a second order partial

derivative to noisy data acts to amplify the noise. Figure 5.9 shows that this term is larger

than either the conduction or the radiation.

Finally, the unsteady term that accounts for the storage effects within the foil, q00cap, can

be quantified using the relation:

q00cap =
�
r fCp f d f +rpCppdp

� ∂T
∂ t

(5.26)
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Figure 5.9: (a) Instantaneous surface temperature and (b) instantaneous heat transfer due to lateral
conduction, q00lc. Positive values indicate heat flow into a foil element.
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Figure 5.10: (a) Instantaneous surface temperature and (b) energy storage term, q00cap.

where r and Cp are the density and the specific heat, respectively, of an element, and ∂T
∂ t is the

change in temperature with respect to time. This term is extremely sensitive to noise from the

infra-red camera sensor. To reduce noise, the surface temperature at each instant in time, Ts,

is weighted over 5 images, from Tt�2 to Tt+2, with the temperature data filtered using Pascal’s

Triangle. Furthermore, the temporal derivative is calculated as the gradient of 5 instances of

Ts. As the cooling phenomenon under investigation is rapid and transient, a large value of
∂T
∂ t is observed. This contributes to a storage term that dominates the energy balance, with

maximum flux values in excess of 60 times that of the next largest term (lateral conduction).

This means that the experimental results are strongly dependent on the properties of the
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foil and paint and on the temporal resolution of the camera. The impact of this term on the

uncertainty of measurement will be discussed further in section 5.4.
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Figure 5.11: (a) Instantaneous surface temperature and (b) instantaneous convective heat flux from the
foil to the bulk fluid, q00conv.

Figure 5.11 shows the resultant convective heat flux, q00conv ,where positive heat transfer

indicates heat flow from the surface to the bulk fluid. It is also observed that although the

bubble significantly enhances the convective heat transfer, it also creates some small local

regions of negative heat flux. This is in agreement with the findings of Donoghue et al. [80]

and will be discussed in greater detail in chapter 9.

5.3.2 Natural Convection

When the foil is heated, there exists a relative motion between the cooler fluid in the liquid

bulk and the warmer fluid adjacent to the surface. The heated fluid is less dense than the

surrounding fluid and rises, but is impeded slightly by the inclined surface, meaning the heat

transfer due to natural convection is not as effective as transferring heat to the fluid as if

it were upwards-facing and horizontal. Thus, the thermal boundary layer that exists at the

surface changes with the distance sy, and consequently so too does the surface temperature.

A number of Nusselt number correlations exist for heated inclined surfaces, although these

typically relate to constant surface temperature boundary conditions rather than the constant

flux boundary condition in the current study. Rich [113] suggested that natural convection

coefficients could be determined for vertical plate correlations by replacing g with gsina
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when computing the Grashof number, and to use this modified Grashof number to solve the

problem as if it were a vertical plate. A Nusselt number correlation valid for the entire range

of RaL is that of Churchill and Chu [114]:

Nu =

0

BB@0.825+
0.387Ra

1
6

h
1+(0.492/Pr)

9
16

i 8
27

1

CCA

2

(5.27)

Alternatively, an empirical correlation for Nusselt number at a uniform surface tempera-

ture was developed by Fujii & Imura [115]. Taking the temperature at L/2 to be the mean

surface temperature, the Nusselt number is:

Nu = 0.56(GrPr cosa)
1
4 (5.28)

where a is measured from the vertical and the characteristic length scale is the length of the

surface, L. For this relation, the fluid properties are calculated at a modified film temperature,

Tf = Ts �0.25(Ts �T•) and the volumetric expansion coefficient, b , at the film temperature.

The correlations thus far have assumed an infinite bulk fluid. In reality, the glass tank

forms an enclosure that inhibits free convective fluid flow. There exists a number of correla-

tions for the Nusselt number in an inclined enclosure which may be more applicable to the

current study than those in an infinite fluid. For laminar natural convection in a rectangular

enclosure heated from the side with an aspect ratio (H/L), where H is the sy dimension of

the heated foil and L is the distance from the foil to the base of the tank, Berkovsky & Petrov

[116] suggested the following correlations:

NuH(90�) = 0.22
✓

Pr
0.2+Pr

RaH

◆0.28✓ L
H

◆0.09

(5.29)

which is valid for 2 < H/L < 10, Pr < 105, RaH < 1013, and:

NuH(90�) = 0.18
✓

Pr
0.2+Pr

RaH

◆0.29✓ L
H

◆�0.13

(5.30)

which is valid for 1 < H/L < 2, 10�3 < Pr < 105, RaHPr/(0.2+Pr)> 103. In the current

study, H
L ⇡ 2, meaning both equations for Nu can be used. For an inclined enclosure with
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the heated surface on top, the Nusselt number is lower than this, since the surface restricts

the motion of the fluid. For an inclination angle, a , between 0� and 90�, the Nusselt number

obtained by equation 5.29 or 5.30 is modified using the correlation of Caton [117]:

L
H

NuH(a) = 1+


L
H

NuH(90�)�1
�

sina (5.31)

All of the relations thus far are for a uniform wall temperature, whereas in reality the

heated foil is at a nominal uniform wall flux. In solving these equations, Ts is taken to be the

temperature at L/2. The heat transfer coefficients obtained from these various correlations are

shown in table 5.2. Note there is significant deviation between the heat transfer coefficients

obtained.
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Figure 5.12: (a) surface to bulk water temperature difference DT = Ts �T• and (b) instantaneous
convective heat flux from the foil to the bulk fluid, q00conv.

Figure 5.12 shows the experimental surface temperature and heat transfer coefficient

due to natural convection. For the current study, the experimentally obtained heat flux due

to natural convection is approximately 2100 W/m2, while h is found using the relation

q00 = hDT . Thus, the experimental value for the heat transfer coefficient at a wall superheat

of Te = 10�C is ⇡ 220 W/m2K, although this decreases further up the foil due to the thermal

boundary layer. This is within 7% of the value calculated from equation 5.29 for a cavity with
H
L ⇡ 2. The correlations for an infinite bulk fluid provide far larger values for heat transfer

coefficient, suggesting that the confinement effects of the glass tank are significant.
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Table 5.2: Natural convection heat transfer for a downward facing inclined heated surface.

Equation Ra Nu h [W/m2K]
5.27 1.44⇥1010 351 946
5.28 1.44⇥1010 194 524
5.29 and 5.31 2.88⇥1010 87.9 237
5.30 and 5.31 2.88⇥1010 106 287

5.4 Uncertainty Analysis

This section will detail the methods employed to determine the uncertainty in the calculations

for the three experimental configurations. Errors or uncertainties can generally be classified

into two categories, namely precision and bias errors. Precision errors, also known as random

errors, can come from a variety of sources, most often the “least count” of an analog scale.

Precision errors cause scatter in experimental data, which can be quantified by means of

statistical analysis. Bias errors, also known as systemic errors, are due to deviations that are

not due to chance alone. For instance, an improperly calibrated device will consistently over

or under-predict a measurement.

5.4.1 Precision Uncertainties

In the case of determining single point measurements, such the paint thickness measurement,

the standard error is required. The mean of N samples xi is:

x̄ =
1
N

N

Â
i=1

xi (5.32)

If the measured values scatter about this mean, it allows for a calculation of the standard

deviation, Sx, as:

Sx =

s
1

N �1

N

Â
i=1

(xi � x̄)2 (5.33)

The standard error of the mean is the standard deviation of the sample-mean’s estimate of

a population mean, Sx̄, which is:

Sx̄ ⇠=
Sxp
N

(5.34)

113



5.4. UNCERTAINTY ANALYSIS

This analysis is used where the output of the system does not depend on the input. For

situations where this is not the case (i.e. fitted curves), an analogous approach is taken. For

a least-squares curve fit of a data set (xi, yi), a linear fit of the data set is replaced by (xi,

Yi). Analogous to the standard deviation of a sample, the standard error for a curve-fit is as

follows:

SY =

r
1

N �2 ÂD2
i (5.35)

where Di = Yi � Ŷ and Ŷ is the result from the least squares fit Ŷ = mx+ c. Given a curve fit,

it would be advantageous to estimate the probable error in a measurement, otherwise known

as precision uncertainty. If we are a certain percentage C% confident that the true value of

a measurement Xi lies in the interval Xi ±PX , PX is therefore the precision uncertainty at a

confidence level of C%. Typical studies take C = 95% [118]. Thus, the precision errors for

the curve fit of data (xi, Yi) is:

PŶ = tn ,%

s

S2
Y


1
N
+

(x� x̄)2

Sxx

�
(5.36)

where SY is the standard error as defined by Equation 5.35 and the value tn ,% encloses 95%

of a t-student distribution with n = N �2 degrees of freedom. Finally:

Sxx = Âx2
i �

✓
1
N

◆�
Âxi

�2 (5.37)

Thus, it is the precision of the curve fit that is of interest when determining uncertainty,

rather than the precision of any one data point that makes up the curve. Equation 5.36 is

applied to all fitted curves in the current study to evaluate their associated uncertainty.

5.4.2 Propagation of Precision Uncertainties

Consider a result r, which is determined from the values of J measured variables Xi that are

statistically independent. That is:

r = r (X1,X2, . . . ,XJ) (5.38)
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This section concerns the propagations of uncertainties in Xi into the result r. The overall

uncertainty in r can be solved using the Taylor series method (TSM). Coleman and Steele

[119] derived the uncertainty in the result, Ur, as:

Ur
2 =

✓
∂ r

∂X1

◆2

U2
X1 +

✓
∂ r

∂X2

◆2

U2
X2 + . . .+

✓
∂ r

∂XJ

◆2

U2
XJ (5.39)

where the UXi are the uncertainties in the variables Xi. This equation can be non-dimensionalised

by dividing both sides by r2 and multiplying each term on the right-hand-side by (Xi/Xi)2.

This gives:

Ur
2

r2 =

✓
X1

r
∂ r

∂X1

◆2✓UX1

X1

◆2

+

✓
X2

r
∂ r

∂X2

◆2✓UX2

X2

◆2

+ . . .+

✓
XJ

r
∂ r

∂XJ

◆2✓UXJ

XJ

◆2

(5.40)

where Ur/r is the relative uncertainty of the result. In this section, equation 5.40 is solved for

the bubble motion and heat transfer analyses.

5.4.3 Uncertainty in Bubble Motion

In tracking the bubble motion, we will consider the base case of a = 30� de = 5.8 mm. The

uncertainty in bubble displacement is dependent on the precision errors of the curve fits that

are applied to the displacement data in the sx and sy directions. For a = 30� de = 5.8 mm,

this is equivalent to a mean value of ±0.02 mm in both directions at a confidence level of

95%. The displacement, s, between the bubble centroid [x1, y1] at time t1, and [x2, y2] at time

t2 is:

s =
q

(x2 � x1)2 +(y2 � y1)2 (5.41)

Thus, by applying equation 5.39 to this expression, the uncertainty in displacement can

be found:

U2
s =

✓
∂ s

∂X1

◆2

U2
X1 +

✓
∂ s

∂X2

◆2

U2
X2 +

∂ s
∂Y1

2

U2
Y1 +

✓
∂ s
∂Y2

◆2

U2
Y2 (5.42)

where U2
X1 , U2

X2 etc. are the 95% confidence limits in each of the 6th order sum-of-sines
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curves fitted to the centroid data. Finally, the value Us is divided by its displacement s to

find its relative uncertainty. Since the bubble velocity fluctuates as it traverses the surface,

so too does its displacement. Thus, the quantities here are averaged over the whole test.

Furthermore, the relative uncertainty in position, Us/s is a function of the camera frame-

rate. When sampling at 1000 Hz, Us/s = 12.8%. In reality, this represents a worst-case

scenario. Recall from figure 5.2 that although the bubble displacement curve appears smooth,

the bubble algorithm introduces low-level noise. This noise has the additional effect of

increasing the size of the 95% confidence limits, thereby increasing the relative uncertainty.

To reduce the relative uncertainty when calculating quantities that are a function of the

bubble velocity, the frame-rate is halved. While this decreases the temporal resolution, this

doubles the displacement s, meaning Us/s = 6.4%. The Phantom v311 specifications features

a 500 ns inter-frame time. For a worst case scenario, this value is doubled, which gives

UDT/DT = 0.05%. Due to the high timing accuracy of the camera, the velocity uncertainty,

Uv/v, and acceleration uncertainty, Ua/a, are also 6.4%.

The accuracy in a , measured using a digital micrometer, is ±0.05�, which results in a

relative uncertainty of 0.2%. For the added mass coefficient, an error is introduced into the

major and minor axes. Since the aliased image is interpolated and sensitised by a factor

of 4, it is assumed that the uncertainty in calculating the major and minor axes is ±1
4 px,

which results in a relative uncertainty in the added mass coefficient, UCAM/CAM, of 5.1%. In

terms of the bubble volume, a low flow rate and small syringe needle, combined with visual

inspection of the raw bubble images, results in a relative uncertainty of 5%. This corresponds

to an uncertainty in bubble diameter of 1.7%.

This approach can also be used to find the uncertainty in the force and and added mass

terms. This is more for illustrative purposes, since the 1-d kinematics approach itself is

fundamentally flawed. The uncertainty in force measurement is:

✓
UF

F

◆2

=

✓
UCAM

CAM

◆2

+

✓
UV

V

◆2

+

✓
Ua

a

◆2

= (5.11%)2 +(5%)2 +(6.44%)2 (5.43)

This gives a relative uncertainty of 9.6%. Finally, the uncertainty in the derived drag

coefficient is a function of added mass, bubble diameter, acceleration, velocity and inclination
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angle, given by:

✓
UCD

CD

◆2

=

✓
CAMa

CAMa�gsina

◆2✓UCAM

CAM

◆2

+

✓
CAMa

CAMa�gsina

◆2✓Ua

a

◆2

+

✓
gacosa

CAMa�gsina

◆2✓Ua
a

◆2

+

✓
Ude

de

◆2

+4
✓

Uv

v

◆2

(5.44)

This results in an uncertainty in calculating the drag coefficient of 12.9%. The results for

the relative uncertainty in bubble motion are summarised in table 5.3 for de = 5.8 mm and

a = 30�. The major source of the uncertainty in these calculations is the scatter in the

centroid of the bubble tracking algorithm. This is an inherent limitation of basing the bubble

mechanics on the centroid, as it is based on the average of the dynamically changing bubble

interface. Therefore, it is likely to be the changes in bubble shape and the rebounding of the

interface that are causing the scatter in centroid data, rather than the capabilities of the bubble

tracking algorithm.

Table 5.3: Relative uncertainty for measured and derived parameters

Measurement Symbol Uncertainty [%]
Position s 6.4
Time t < 0.1
Velocity v 6.4
Acceleration a 6.4
Diameter de 1.7
Inclination angle a 0.2
Added mass coefficient CAM 5.1
Force F 9.6
Drag coefficient CD 12.9

5.4.4 Uncertainty in Fluid Motion

The last twenty years have seen a massive expansion of PIV as a flow measurement and

analysis technique. However, a rigorous framework regarding the uncertainty of these

methods was not in place during this expansion. As a result of this, there is no one unified

theory to quantify PIV measurement uncertainty. This is a major issue facing PIV, especially

since measurements involve the coupled uncertainty of the instrumentation and the algorithm.
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Developing a fundamental methodology in quantifying this uncertainty is a significant

challenge currently facing the PIV community [120], and different methods for estimating

the local uncertainty have been studied. Wilson and Smith [121] compared PIV velocity fields

to the known particle displacement for a rectangular jet flow. For a specific combination of

displacement, shear, particle image density and particle image diameter, the four-dimensional

uncertainty response was determined, termed the “uncertainty surface”. Flow gradients, large

particle images and insufficient particle image displacements resulted in elevated uncertainty

in measurements of turbulence levels. Persoons et al. [122] built upon the earlier work of

Persoons and O’Donovan [123], proposing the multiple pulse separation (MPS) technique to

improve the dynamic range of PIV. The authors used a customised timing system to acquire

double-frame images with successive different pulse separation values. To determine the

optimum pulse separation, a metric was devised based on determining the local uncertainty

by performing a Reynolds decomposition on the PIV displacement field.

The issue in applying these methods to the fluid motion measurements in the current

study is that they require the calculation of mean and turbulent flow statistics. The temporal

flow structures observed in the current study have no physical “mean” value, meaning such

techniques cannot be employed. Hence, a more generalised uncertainty expression would

be useful. Charonko and Vlachos [124] developed a method for measuring error bounds

to within a given confidence interval for a specific, individual measurement. The authors

found that a strong correlation exists between the observed error and the correlation peak

ratio (i.e. the ratio of the height of the first peak to the second in the spatial correlation

domain). This correlation was found to hold regardless of flow condition and image quality.

Xue et al. [120] expanded this work, positing that the signal-to-noise-ratio (SNR) metrics

calculated from the PIV correlation plane can be used to quantify the quality of correlation,

and subsequently the uncertainty of an individual measurement. The relationship between

SNR and uncertainty was explored for both the robust phase correlation (RPC) and standard

cross correlation (SCC) processing for synthetic PIV images. However, the methodology in

applying these methods to the particle images in the bubble wake is unclear, particularly in

regions containing the moving bubble boundary.

One further aspect of the uncertainty is the loss in timing control when using a continuous

wave laser as opposed to double-pulsed systems. The camera sensor observes the flow
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travelling at some velocity U in a brief exposure time Dt = 60 µs. It follows that if Dt or U

are large, the sensor will observe a particle “streak” rather than the particle itself, resulting in

a reduction in correlation strength. In the current study, the flow velocity is sufficiently small

as to avoid streaking or excessive displacement. Ultimately, the transient nature of the flow

observed in this case leads to difficulty in ascertaining an uncertainty metric to apply. As

such, care has been taken in maximising the strength of correlation in the PIV measurements,

which are performed with no interpolative filling or smoothing and are subsequently validated

by the Insight 4G package. Since the main function of this measurement technique is to

identify coherent structures in the sliding bubble wake, the high quality vectors obtained are

considered sufficiently accurate for the current study. This comes with the caveat that future

work on the correlation metrics of transient flows could provide improved insight into the

uncertainty involved with such measurements.

5.4.5 Uncertainty in Heat Flux

To find the uncertainty in the measured heat flux, the Taylor series method is again used,

applying equation 5.40 to each term in the foil energy balance (equation 5.19). This takes

into account the uncertainties of the curves fitted to the calibration of the IR camera and the

thermocouples, the precision of the current measurements and the foil and paint properties.

However, errors across each pixel of the FPA are not independent of each other. The

correlation between adjacent pixels in space or time can influence the experimental results

and needs to be accounted for. In the case where the result r is influenced by two correlated

variables X1 and X2, we can write:

br
2 =

✓
∂ r

∂X1

◆2

+

✓
∂ r

∂X2

◆2

+2rX1,X2

✓
∂ r

∂X1

◆✓
∂ r

∂X2

◆
b12 (5.45)

where b12 is the product of the precision uncertainties (b1 and b2) of each variable (X1 and X2).

The term rX1,X2 is the Pearson product-moment correlation coefficient, which measures the

degree of correlation between the two variables. In the current study, the final term in equation

5.45, also known as the covariance term, is added to the lateral conduction and the heat storage

terms, since these terms involve operations between adjacent pixels on the FPA in space and

time, respectively. The degree of correlation is found by applying an autocorrelation analysis
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on the temporal derivatives in the heat storage term and a cross-correlation analysis on the

spatial derivatives in the lateral conduction term.
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Figure 5.13: (a) instantaneous convective heat flux from the foil to the bulk fluid, q00conv, (b) instanta-
neous uncertainty in heat flux, for a = 30�, de = 5.8 mm.

Figure 5.13 shows an example of the convective heat flux and its associated uncertainty

at a particular instant in time. Table 5.4 shows the typical absolute and relative uncertainty

values for the thermal measurements. Although the uncertainty of the curve fits applied to

the thermal data is small, that of the surface temperature can propagate into the terms and

have a significant effect. The uncertainty in heat flux at natural convection levels (i.e. with

no bubble present) is approximately 350 W/m2. This is in agreement with Donoghue et al.

[80], who found the uncertainty in heat flux at natural convection to be approximately 300

W/m2. An analysis of the heat generated in the foil, q̇gen, found its uncertainty to be an order

of magnitude less than this value. Hence, the uncertainty in heat flux at natural convection

is due to noise in the thermal camera, rather than to the calculation of the heat generated in

the foil. For all tests, this results in an uncertainty of 16�18%, considerably larger than the

3.5% of Donoghue et al. [80]. The reason for this is that significantly less heat is passed

through the foil in the current study, as tests are performed here at comparatively low wall

superheats. The values of uncertainty in the bubble wake are of greater relevance here. The

increased magnitude of the constituent terms results in a greater local uncertainty of ⇡ 1400

W/m2. This corresponds to an uncertainty of ⇡ 10% in the bubble wake, mainly due to the

propagation of noise on the thermal camera into the energy balance. In the far wake, the
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absolute uncertainty decreases, although the relative uncertainty can increase significantly

in areas where suppressed heat transfer causes q00conv to be low and hence U 00
q conv/q00conv to

become very large.

Table 5.4: Absolute and relative uncertainty for the measured thermal data

Measurement Symbol
Absolute

Uncertainty
Relative

Uncertainty [%]
Surface temperature Ts 0.14�C –
Water temperature T• 0.12�C –
Air temperature Ta 0.15�C –
Convective heat flux:
natural convection q00nat 340 - 365 W/m2 16 – 18

Convective heat flux:
near wake q00conv 800 - 1400 W/m2 9 – 11

Convective heat flux:
far wake q00conv 340 - 800 W/m2 11 – 20
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Chapter 6

Bubble Motion

When the bubble departs the injector, the difference in density between it and its surrounding

medium generates a buoyancy force on the bubble, which acts in the opposite direction to

gravity and is equal in magnitude to the weight of fluid displaced. A secondary force, namely

drag, acts against this buoyancy. As the bubble rises, work is done on the surrounding fluid at

a rate proportional to the buoyancy force times the bubble velocity. Initially, the bubble rises

rectilinearly, at low velocity, with all of the work being dissipated by the viscosity of the fluid.

However, as the velocity of the bubble increases further, a point will be reached at which the

low viscosity water is unable to dissipate all of this work. This induces an instability in the

bubble wake, which is manifested by oscillations in the bubble shape and path [13]. Thus,

the fluid around the bubble is not accelerated uniformly, creating pressure differences around

the bubble interface. At this point, the bubble transitions to a distorted helical rise pattern.

In an open medium, the buoyancy causes the bubble to accelerate vertically until the drag

force is equal and opposite, with the bubble reaching a nominal terminal rise velocity. In this

current study, after rising 30 mm the bubble impacts the inclined surface. It now experiences

the component of the buoyancy force parallel to the surface [66] . If this buoyancy force is

sufficiently large (which is the case for all tests in the current study), the bubble will slide

along the underside of the surface, experiencing undulating oscillations in shape and path.

As the bubble begins to slide under the surface, the buoyancy force is again opposed

by a drag force that acts parallel to the surface in the direction of decreasing depth. When

the buoyancy force is matched by the drag force acting in the opposite direction, the bubble
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reaches its sliding terminal velocity UT . This sliding terminal velocity is not constant due

to the oscillatory path of the bubble, with the bubble accelerating and decelerating as it

traverses the surface. This chapter provides measurements of the sliding bubble mechanics at

a distance of 80 mm beyond the injection location, by which time the bubbles have reached

terminal sliding velocity. The results presented in this chapter serve as a general introduction

to sliding bubble behaviour, both for a single bubble and an in-line bubble pair. Chapters 7

and 8 will expand this to include information about the wake and resultant heat transfer.

6.1 Single Bubble Motion

This section investigates the motion of a single air bubble for equivalent diameters of 5.8

mm and 7.2 mm sliding under a surface inclined at 20�, 30� and 40� to the horizontal. Five

tests are performed for each set of parameters, with analysis of high speed video recordings

providing measurements of physical quantities based on the bubble centroid and edge data.

Mean and time-fluctuating values of successive tests show some minor deviation, since the

quantities are being measured over only 1-2 bubble path wavelengths and are sensitive to

fluctuations. In terms of the bubble path, “spanwise” will refer to motion in the x-direction,

while “length” refers to motion in the y-direction.

6.1.1 Shape and Path

Figures 6.1 and 6.2 present the centroidal path and instantaneous shape in the x� y plane

for single sliding bubbles of equivalent diameters of 5.7 mm and 7.2 mm respectively. The

projected bubble outline is shown on these figures at spacings of 14 ms apart for inclination

angles of 20�, 30� and 40�. The position sy = 0 corresponds to the location of the first tracked

bubble centroid, 80 mm upstream of the bubble injection site, while sx = 0 corresponds

to the mean spanwise position. For the 5.7 mm bubble (figure 6.1), the bubble shape is

ellipsoidal, as predicted by the regime map of Bhaga and Weber [12]. In all cases, the bubble

experiences undulating changes in path, with an amplitude and frequency dependent on the

surface inclination angle. The bubble also experiences changes in shape, although these are

subtle and will be discussed later in greater detail. At the lowest inclination angle of 20�, the
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Figure 6.1: Instantaneous bubble shape and path for a bubble of de = 5.7 mm sliding under a surface
inclined at (a) 20�, (b) 30� and (c) 40� to the horizontal. The bubble outline is provided at spacings of
14 ms apart.

bubble experiences low frequency, low amplitude path oscillations. As the inclination angle

is increased, so too are the amplitude and frequency these undulating oscillations. Changes

in bubble orientation can also be observed, with the bubbles tilting in the direction in which

they are travelling. The effect of increasing the bubble diameter to 7.2 mm (figure 6.2) is to

increase the buoyancy force and thus the bubble velocity. This results in a more elongated

bubble shape, although the frequency of oscillation remains largely the same as before.

Interestingly, for all tests at a = 40� the amplitude and frequency of the oscillations is lower

than for the 5.7 mm bubble, which could be due to the large buoyancy force damping the path

oscillations of the bubble.
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Figure 6.2: Instantaneous bubble shape and path for a bubble of de = 7.2 mm sliding under a surface
inclined at (a) 20�, (b) 30� and (c) 40� to the horizontal. The bubble outline is provided at spacings of
14 ms apart.

6.1.2 Velocity and Acceleration

The bubble velocity and acceleration are calculated as the first and second derivatives of

the curves fitted to the displacement data, measured both at the bubble centroid and at 360

discrete points around the bubble interface. An analysis of the edge data is presented to

support the observations made from the centroid data. In this chapter, the velocity and

acceleration based on the edge data are provided for a = 30�, de = 5.8 mm, while data based

off the centroid are detailed for all parameters tested.

Figure 6.3 (a) shows the path traced out by the endpoints of the bubble in figure 6.1,

coloured by the local velocity magnitude v =
q

v2
x + v2

y , along with the x-acceleration ax the

and y-acceleration ay. The equivalent parameters based off the bubble centroid are provided

in figure 6.3 (b) and (c) for reference. The spanwise edges of the bubble reach their maximum

and minimum velocity at the local extrema of bubble path, on the outside and inside of the
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Figure 6.3: (a) Path traced out by the edge data of the bubble major axis at a = 30�, de = 5.8 mm,
coloured by the values at these points for (i) the velocity magnitude v =

q
v2

x + v2
y , (ii) the acceleration

in the x-direction ax =
dvx
dt , and (iii) the acceleration in the y-direction, ay =

dvy
dt . (b) Velocity and (c)

acceleration as a function of time based off the centroid data.
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path, respectively. This is due to the undulating path taken by the bubble, with the outside

edge travelling a greater distance in a given time, giving rise to a larger velocity component.

The centroidal velocity magnitude plot shows that the bubble velocity oscillates at twice

the path oscillation frequency, with a local maximum in velocity corresponding to a local

extrema in shape.
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Figure 6.4: (a) The notation used when defining the phase angle, f(t), (b) schematic showing the
velocity vector,

�!
V at different phase angles. The maximum velocity occurs when the x-component is

at a minimum and the velocity vector is aligned with the buoyancy force, Fb.

The velocity magnitude in figure 6.3 is the magnitude of the bubble velocity vector,
�!
V ,

which has a magnitude and direction dependent on the location of the bubble along its path,.

This location is defined by the phase angle, f(t), shown in figure 6.4 (a). For the current

study, f = 0� corresponds to a zero spanwise position, while f = 90� is the local minimum in

spanwise position. Figure 6.4 (b) shows the direction of
�!
V at different phase angles. Recall

that the bubble is experiencing a constant buoyancy force FB, with the path undulations

triggered by an instability in the bubble wake. For all surface inclination angles and bubble

volumes examined, the y-component of the velocity is larger than the x-component due to

this buoyancy force. Thus, it follows that the bubble reaches its maximum velocity when the

direction of its velocity vector is directly in line with the buoyancy force, which maximises

vy and hence vmag. This occurs at the local spanwise path extrema, namely f = 90� and

f = 270�. As the bubble travels towards its zero spanwise displacement, it experiences a
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velocity component in the spanwise direction, with its major axis tilting by an orientation

angle q . At zero spanwise displacement (sx = 0 mm), the orientation ,q , is maximum and
�!
V

is at a minimum. As the bubble travels towards its next local extrema, the velocity vector

aligns itself with the direction of the buoyancy force, increasing in magnitude.

The centroid plots in figure 6.3 also show that for this particular test the bubble velocity

is decreasing as a function of time. This is also visible from the edge data, where the velocity

magnitude of each successive inside edge is decreasing with each oscillation. Such behaviour

was observed for a quarter of all tests, with the majority of cases fluctuating about a steady

mean velocity. This change in motion is a result of the coupling that exists between the

bubble, surrounding fluid and the surface. Occasionally, this will cause a significant amount

of liquid to be shed from the near wake. This was referred to as “transitional” motion by

Donnelly [68], who found this to occur in a number of different modes: steadily decreasing,

sliding rectilinearly, or sliding rectilinearly before reverting to oscillatory motion. Donnelly

[68] claimed that this behaviour was linked to the build-up and subsequent ejection of a

significant amount of liquid from the bubble wake at the local extrema in bubble path. This

large ejection of fluid causes a comparatively higher x-component of
�!
V , therefore resulting

in a lower velocity magnitude. This greater x-component causes the sharper turns the bubble

makes nearer the top of the surface.

This is supported by figure 6.3, which presents the edge data coloured by the spanwise

acceleration, ax. A positive value of ax indicates an acceleration in the positive spanwise

direction, and vica versa. The maximum acceleration in this direction also occurs at the

bubble extrema, with close to zero acceleration at zero displacement. Thus, ax fluctuates

between its maximum value and zero at twice the path displacement. A key region of interest

is on the outside of the bubble path sy = 85 mm, after which the bubble velocity decreases

significantly. At this location, the outside edge of the bubble experiences a large acceleration

in the positive direction, which initiates a sharp turn to the right. This acceleration is a

result of a force, Fx, that restores the bubble towards the zero displacement. This force is

the reaction force to the fluid shed into the bubble wake, which will be discussed in greater

detail in chapter 7. For now, it is sufficient to state that the significant acceleration at sy = 85

mm supports this theory of transitional behaviour. The third plot in figure 6.3 (a) shows the

y-component of the acceleration, ay, where a positive ay means the bubble is accelerating
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in the direction of the buoyancy force. Analysis of the major axis edge data shows that ay

is maximum as the bubble approaches a local extremum and its velocity vector is aligned

with the buoyancy force. Meanwhile, the inside of the path at maximum displacement has

ay close to 0. Conversely, the maximum deceleration occurs as the bubble approaches the

zero displacement. After the ejection of material into the wake at sy = 85 mm, the bubble

experiences a large deceleration in the opposite direction of the buoyancy force, thereby

decreasing the magnitude of
�!
V .
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Figure 6.5: Velocity magnitude, ax and ay calculated at 360 points around the bubble, for a = 30�,
de = 5.8 mm, with each row corresponding to the locations on the bubble path identified by (a-d).

For the same test, figure 6.5 expands the edge data across the entire bubble interface,

using 360 points at four instances in time, marked as (a-d) on the bubble path. This provides

an insight into the circumferential distribution of velocity and acceleration around the bubble,

and allows a more in-depth analysis of the key region around sy = 85 mm that was previously
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identified as significant. In the location (a) in figure 6.5, the bubble is approaching its

local minimum in position, with the large velocity on the outside of the path. The velocity

magnitude transitions circumferentially to the minimum velocity on the right hand side of the

bubble, with its magnitude largely symmetrical about the bubble major axis. The bubble is

decelerating in the spanwise direction across its entire interface, since the bubble is moving

in the negative spanwise direction but its acceleration is in the positive spanwise direction.

The outside of the bubble path is accelerating in the direction of the buoyancy force as the

bubble approaches its local minimum in path. This local minimum occurs in figure 6.5 at

the location (b). At this instant in time, the bubble velocity on the outside edge is at its local

maximum. The bubble shape is also notably ellipsoidal at this point, with slightly sharper tips

along its major axis. On the outside of its path, the bubble experiences a large acceleration

in the positive spanwise direction, while the bubble has close to zero acceleration in the

direction of the buoyancy force.

ax,base =1m/s 2

ax,front = 0 ax,top =-1m/s2

ax,base = 0 m/s2

interface recoiling: 
spheroidal shape

highest vx, thus lowest vmag

interface rebounding: 
base stretched

Figure 6.6: Sketch showing the interface rebounding and recoiling, corresponding to the locations (c)
and (d) on figure 6.5.

At the point (c), the velocity vector of the bubble is now at an angle q from the buoyancy

force, with the major axis of the bubble tilting by q from the horizontal. As the bubble returns

towards its zero displacement, the circumferential velocity magnitude decreases, with a local

minimum at the inside edge of the major axis. The distribution of spanwise acceleration is

now asymmetrical about the bubble major axis, with the bottom of the bubble accelerating in

the positive direction but the top having ax ⇡ 0. This indicates a rebounding of the bubble

interface, corresponding to the base of the bubble being stretched when the bubble leaves

a turn and decelerates, and recoiling soon after. This significant rebounding of the bubble

interface results in a large spanwise component of velocity, which in turn leads to a significant

deceleration of the bubble in the vertical direction. This results in a low circumferential
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velocity and the bubble experiencing a large tilt of q ⇡ 30� (location (d) on figure 6.5) and a

more spherical shape. A sketch identifying the rebounding and recoiling process is shown

in figure 6.6. Thus, it has been shown that the bubble shape fluctuates from ellipsoidal at

the path extrema to more spheroidal at zero displacement. At the location (d), the top of

the bubble experiences a spanwise deceleration as it approaches its next local extrema. The

outside of the bubble path is also experiencing a positive acceleration in the direction of

buoyancy. The superposition of these forces will subsequently act to tilt the bubble in the

counter-clockwise direction, thereby repeating the cycle identified in (a-d) for the upcoming

local maximum in the bubble path.
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Figure 6.7: Time-varying (solid lines) and mean (dashed lines) velocity magnitude |v| =p
(vx)2 +(vy)2 in mm/s for the (a) 5.8 mm and (b) 7.2 mm bubble at a = 20� (�), 30� (�) and

40� (�).

To this point, the edge data have been used to provide an insight into the bubble mechanics.

For the remainder of this section, bubble motion based on the centroid measurements will

be discussed. Figure 6.7 shows the time-varying and mean bubble velocity for each surface

inclination angle for de = 5.8 mm (a) and de = 7.2 mm (b). Note that the velocity scale is the

same for (a) and (b). Figure 6.7 (a) shows the velocity for the 5.8 mm bubble for the three

inclination angles studied. Increasing the inclination angle results in a larger buoyancy force

and a larger mean velocity magnitude. As the velocity magnitude fluctuates at twice the path

oscillation frequency, it is evident that the higher path frequencies previously observed at

larger a result in larger frequency velocity fluctuations. The buoyancy force also scales with

the bubble volume, as is evident in figure 6.7 (b). The frequency of velocity oscillation is

largely independent of the bubble volumes, with the exception being the tests at a = 40�,
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which have high-frequency velocity fluctuations for the 7.2 mm bubble, despite having a

comparatively low amplitude path. These high order fluctuations are likely due to interface

deformations around the bubble base that are damped out due to the large buoyancy force.

The increase in mean velocity magnitude from 30� to a = 40� is also larger than for the

equivalent 5.8 mm diameter bubble. This can be explained by considering the more damped

path of the bubble at a = 40�, de = 7.2 mm. The oscillations of the bubble are lower in

amplitude, corresponding to a lower spanwise velocity component and thus a greater velocity

magnitude.
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Figure 6.8: Mean velocity magnitude for all tests as a function of surface inclination angle for the 5.8
mm bubbles (⇥) and 7.2 mm bubbles (�). Also shown are the overall mean velocity (solid and dotted
lines) for each bubble diameter and the mean of all tests obtained by Donnelly [68] at a = 30�.

The mean velocity from each test is condensed into figure 6.8, along with the average

results at 30� for an unheated surface taken from Donnelly [68]. Tests that exhibited extreme

transitional behaviour (i.e. those transitioning from a rectilinear to a sinusoidal path) were

not considered. Some deviation exists between tests due to slightly varying initial conditions

and because the velocity is being averaged over 1-2 wavelengths only. These differences in

velocity are more pronounced at higher bubble Reynolds numbers, where the bubble diameter

and velocity are larger. The upper limit for terminal velocity, U•, can be found based on the

drag on a freely rising spherical bubble of diameter de. This is 215.2 mm/s for de = 5.8 mm

and 258.6 mm/s for de = 7.2 mm. These values, along with a variety of useful dimensionless

parameters derived form the mean velocity measurements, are shown in table 6.1. The sliding

bubble velocity tends towards these upper limit values with increasing inclination angle,
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although this will begin to tail off at some critical angle, expected to be around 50�, with the

onset of bubble bouncing.

Table 6.1: Bubble velocity and dimensionless parameters.

a [�] de [mm] Ub [mm/s] U• [mm/s] Re Eö We St Mo
20 5.76±0.15 158.5 215.2 875 4.52 2.01 0.15 2.56⇥10�11

7.23±0.08 178.6 258.6 1286 7.12 3.23 0.18 2.56⇥10�11

30 5.76±0.15 183.1 215.2 1050 4.52 2.68 0.18 2.56⇥10�11

7.23±0.08 198.5 258.6 1429 7.12 3.95 0.2 2.56⇥10�11

40 5.76 ±0.15 199.5 215.2 1145 4.52 3.18 0.25 2.56⇥10�11

7.23 ±0.08 223 258.6 1606 7.12 4.99 0.23 2.56⇥10�11

The range of Reynolds and Eötvös numbers in table 6.1, along with the constant Morton

number, are in the oblate ellipsoidal regime of Bhaga and Weber [12]. The Weber number

increases from 2�5, where the critical value between the surface tension and inertia dom-

inated shape regimes is We = 3. Thus, these ellipsoidal bubbles will be affected both by

surface tension and intertia. Although the precise mechanism of vortex shedding has not been

discussed thus far, the Strouhal number does not scale significantly with increasing Reynolds

number.

6.1.3 Force and Drag Coefficient
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Figure 6.9: Net force in the x-direction (�) and y-direction (�) as a function of time for de = 5.8 mm,
a = 30� (left axis), x-displacement as a function of time (right axis)

This section presents the forces calculated by the 1-d kinematics approach. The net

forces SFx and SFy take a similar shape to the acceleration and fluctuate about a mean of

zero. The net forces in the spanwise direction fluctuate at the path frequency, with the bubble
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experiencing zero net x-force (or acceleration) at zero displacement and maximum force at

maximum displacement. The forces along the length of the bubble path fluctuate at twice

the path frequency, with the bubble experiencing zero net y-force and zero acceleration at

both maximum and zero displacement. Figure 6.9 illustrates this by plotting these forces

and the bubble path as a function of time for a = 30�, de = 5.8 mm. The net spanwise

force/acceleration at any point tries to restore the bubble towards its mean displacement

sx = 0. The net forces in the y-direction reflect the bubble accelerating as it approaches a turn

to a local extrema of position, at which point SFy is zero. As the bubble returns towards its

zero displacement, it experiences a deceleration. Finally, at zero displacement, the net forces

are balanced, although this configuration is not stable for ellipsoidal bubbles. The magnitude

of these forces increases with surface inclination angle and volume.
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Figure 6.10: Time-averaged drag coefficient as a function of Reynolds number for all tests here, with
the sliding bubble results of Donnelly [68] at a = 10�, Peron et al. [66] at a = 10� and the rising
bubble results of Clift et al. [21] provided for comparison.

Plots of average drag coefficient versus Reynolds number have been performed in the

literature, meaning the 1-d force analysis can at least provide a useful means of comparison

between various studies. Figure 6.10 compares the temporally averaged drag coefficients

of the current study with the unheated results of Donnelly [68], the experiments of Peron

et al. [66] at their maximum inclination angle tested of 10�, and the drag coefficient for a

freely rising bubble taken from Clift et al. [21]. Perron et al. [66] showed that increasing

the surface inclination angle increased the drag coefficient, which likely continues until the

onset of bouncing (45�50�). This means that the average results for drag coefficient show

135



6.1. SINGLE BUBBLE MOTION

qualitative agreement with the results of Perron et al. [66] and Donnelly [68].

6.1.4 Eccentricity and Orientation
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Figure 6.11: x-displacement, sx as a function of time, coloured by (a) the orientation of the bubble,
measured in degrees, and (b) the eccentricity of the bubble, for which an eccentricity of 0 indicates a
perfect sphere and an eccentricity of 1 is a line segment.

The bubble tilt and shape have been referred to numerous times up to this point, and

are examined more formally in this section. The shape is expressed in terms of eccentricity,

which is zero for a perfect sphere and unity for a line segment. The shape regime map

of Bhaga and Weber [12] shows that the bubble shape transitions from spherical to oblate

ellipsoids with increasing Reynolds number. Thus, it is not surprising that the bubble shape

is dependent on its velocity, with a high-eccentricity, elongated shape at the path extrema

and a more rounded shape at zero displacement. The orientation angle, q , is the angle made

between the bubble major axis and the positive x-axis. While it traverses the surface, the

major axis of the bubble is orientated perpendicular to the direction that it travels; thus, q

is zero at the local extrema and path and is maximum at the zero displacement. Figure 6.11

shows the spanwise position, sx, for a bubble with a = 30�, de = 5.8 mm as a function of

time, coloured by the orientation and eccentricity. The instant in time t = 0.42 s on figure 6.11

corresponds to the bubble shedding a large quantity of fluid into its wake, which results in

the bubble taking a spheroidal shape at t = 0.5 s due to its decreased velocity magnitude.

The bubble orientation for all parameters is shown in figure 6.12. In each test, the

magnitude of the bubble tilt is dependent on the component of the bubble velocity vector in

the spanwise direction, and fluctuates at the path frequency. Some higher order changes in
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orientation are observed, which could be due to higher order changes in shape corresponding

to the interface rebounding. For the 7.2 mm diameter bubbles (b), the orientation at a = 40�

is lower than expected, indicative of a low spanwise component of the bubble velocity vector

at this large Reynolds number.
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Figure 6.12: Time-varying orientation q in degrees for the (a) 5.8 mm and (b) 7.2 mm bubble at a =
20� (�), 30� (�) and 40� (�).
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Figure 6.13: Time-varying (solid lines) and mean (dashed lines) eccentricity |v|=
p

1� (b/a)2 for
the (a) 5.8 mm and (b) 7.2 mm bubble at a = 20� (�), 30� (�) and 40� (�). An eccentricity of 0
indicates a perfect sphere, whereas an eccentricity of 1 is a line segment.

Figure 6.13 shows the mean and time-varying eccentricity for all parameters tested. The

bubble eccentricity has the same frequency and a similar shape to the velocity magnitude,

although there are some higher-order fluctuations visible due to the recoiling and rebounding

of the bubble boundary. The eccentricity generally increases with increasing inclination angle

and bubble volume, although the mean values are influenced by rapid changes in bubble

shape and have less physical meaning. Typically, the 5.8 mm bubbles have a larger path
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amplitude and a greater spanwise component of velocity, meaning they experience more

dramatic shape oscillations. Increasing the bubble diameter increases the Reynolds number

and thereby the bubble’s “oblateness”. At the largest Reynolds number corresponding to 40�,

the oblate bubble shape experiences only minor fluctuations.

6.1.5 Contaminated Systems

To this point, the bubble velocity has been used as they key parameter in determining the

bubble behaviour. However, the mechanics of two-phase systems is highly dependent on

the fluid properties. In section 2.1, it was explained that contaminants in the liquid phase,

also called surfactants, build up on the rear face of the bubble, inducing a Marangoni stress

and a partial slip boundary condition. This behaviour remains the same for sliding bubbles,

although the sliding surface adds a further layer of complexity to proceedings, as impurities

can adhere to the underside of the surface. It is useful to investigate the influence of surfactants

on sliding bubble motion, particularly to determine if the addition of PIV seeding particles

will cause a transition to contaminated motion. In order to trigger such motion, 18.75 µl

of liquid soap is added to the deionised water in the tank, corresponding to 0.0075% v/v

concentration, consistent with that of Tomiyama et al. [27]. Figure 6.14 shows a range of

measured quantities for a = 30�, de = 5.8 mm.

The addition of impurities to the liquid phase dramatically changes the surface tension of

the fluid and fundamentally alters the bubble motion. The amplitude of the path oscillations

has decreased significantly, with the bubble instead experiencing high-frequency, large

magnitude shape changes and an orientation of ⇡ 0�. The velocity magnitude plot is high-

magnitude and repeating, with a mean velocity significantly larger than for a bubble sliding

in deionised water. This finding is in conflict with the literature on rising bubbles, which

describes the partial slip boundary conditions resulting in increased drag and a dampening

of the bubble oscillations. However, in the case of a sliding bubble, by damping the path

oscillations the velocity vector becomes aligned with the buoyancy force. Although the

presence of the partial-slip boundary condition could be retarding the motion as for rising

bubbles, the removal of the vx component has a greater influence on the bubble velocity.

These findings are in agreement with that of Donnelly [68] and DeBisshop et al. [70] for
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Figure 6.14: Shape and path of a bubble with a = 30�, de = 5.8 mm in an impure fluid (left), temporal
variation of the bubble velocity, eccentricity and force (right).

sliding bubbles.

As the path oscillations are close to zero, variations in velocity are caused only by the

changing bubble shape. The bubble shape takes on a similar repeating structure to the

velocity plot, with high magnitude shape changes from oblate to rounded and a greater mean

eccentricity than the oscillating bubble case. Unlike the oscillating bubble, SFy > SFx due to

the low amplitude of the path oscillations. These path oscillations are visible on the SFx plot

on Figure 6.14, while the SFy curve shows the bubble being accelerated in the direction of

buoyancy as its shape becomes more stretched, decelerating after the interface recoils.

Further insight into this motion is provided by figure 6.15, which shows the velocity

and acceleration of the major axis for the same test. The velocities of the bubble tips are

not symmetrical about the bubble’s minor axis, which would be the case if the bubble was

sliding entirely rectilinearly. However, the low-amplitude path results in the velocity having

a stronger component on alternating sides, generally increasing directly before and after the
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Figure 6.15: Path traced out by the edge data of the bubble major axis in an impure system at a = 30�,
de = 5.8 mm, coloured by the values at these points for (i) the velocity magnitude v =

q
v2

x + v2
y , (ii)

the acceleration in the x-direction ax =
dvx
dt , and (iii) the acceleration in the y-direction, ay =

dvy
dt .

bubble shape recoils (i.e. changes from oblate to spherical). Although the net force in the

x-direction is apparently low, high-magnitude fluctuations in acceleration acting in opposite

directions are observed on the ax plot. Since the net force is calculated based off the (low

amplitude) spanwise displacement of the bubble centroid, these significant fluctuations are

not accounted for. This shows the usefulness of the bubble edge point tracking in determining

two-phase system behaviour. The acceleration on either side of the bubble interface acts to

stretch the bubble out or to compress it. The acceleration in the direction of buoyancy also

reveals the edges of the major axis accelerating and decelerating as the bubble is stretched

and compressed.
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Figure 6.16: Parameters calculated at 360 points around the bubble in a contaminated system for
a = 30�, de = 5.8 mm, at the locations on the bubble path identified by (a-d). The first column is
velocity magnitude, the second is x-acceleration, the 3rd is y-acceleration.

Finally, the circumferential velocity and acceleration are calculated at 360 points around

the bubble interface at the four instances in time (a-d). At (a), the bubble is beginning to

elongate across its major axis. At this point, the top of the bubble is moving with the largest

velocity. An analysis of the edge data shows that the top of the bubble is in fact accelerating

back towards the bubble centroid, rebounding inwards as the sides are stretched. At this

point, the interfacial spanwise acceleration is close to zero except at the edges of the major

axis. At these points, either side of the bubble are stretching outwards. At the point (b),

the bubble has elongated and has a shape that is asymmetrical about its major axis, due to

only the top of the bubble having rebounded towards the centroid. The acceleration in the

y-direction at (b) shows that base of the bubble is experiencing an acceleration in the positive

y direction, indicating it is about to rebound towards the centre. Thus, there is a phase lag
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between the top and bottom of the bubble rebounding. At the position (c), the bubble base

has just rebounded and is at maximum elongation. This results in a large circumferential

velocity, particularly on the outside of the bubble interface since it is at a local minimum sx

in position. The y-acceleration is of interest here, as it now acts in the opposite direction,

stretching the bubble along its minor axis and compressing the major axis of the bubble.

Finally, at the position (d), the major axis of the bubble has become compressed, with a low

circumferential velocity. The bubble has largely reverted to the same behaviour as seen in (a),

and promptly continues this cycle.

6.2 Multiple Bubble Motion

When considering the applications of two-phase flows, it is likely that real engineering

systems will involve more than one sliding bubble. The literature on interacting rising

bubbles describes the bubble-bubble interactions, such as dancing, kissing and occasional

coalescence of two bubbles, with these interactions heavily dependent on the fluid properties

and the presence of surfactants. There are many types of bubble-bubble interactions, which

are extremely sensitive to a large range of parameters. Studies on bubble swarms often negate

this by taking a global, statistical approach in their analysis. However, what these interactions

have in common is that they are all initiated by one bubble entering the wake of another.

Therefore, studying the mechanics of a trailing bubble can provide insight into the bubble

mechanics of more complex systems. The following section presents results of the same

quantities previously tested for a 5.8 mm diameter bubble pair at all three surface inclination

angles, released in a streamwise in-line configuration (that is, one after the other), with the

trailing bubble 4�5 bubble diameters downstream of the leading bubble.

6.2.1 Shape and Path

Figure 6.17 shows the leading and trailing bubbles at an instant in time when the leading

bubble is 0.05 s from the end of its path for all surface inclination angles. The paths taken by

both bubbles are shown, along with dashed lines to show the path the bubbles take after this

instant in time. The mean separation in the y-direction between the two bubbles across these
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Figure 6.17: Bubble path shown for two 5.8 mm diameter bubbles sliding under the surface, released
in an in-line formation for a = 20�, 30� and 40�. The average distance between leading bubble (�)
and trailing bubble (�) is 24.5± 0.5 mm. The bubble shapes are shown at an instant in time where the
leading bubble is 0.05 s from leaving the interrogation window.

tests is dy = 24.5±0.5 mm, which changes as a function of time due to the oscillatory bubble

paths. Figure 6.17 shows that although the two bubbles are at different phase angles, their

paths are in phase and opposite in amplitude. Interestingly, this configuration is found to be

true for all tests in the current study for dy < 7de. This arrangement is also in agreement with

the freely rising bubble experiments of Fan & Tsuchiya [13] and Brücker [39], and is also

independent of the initial displacement of the bubbles. This can be observed for the a = 20�

test, in which the trailing bubble exhibits transitional behaviour, adopting a path with a large

wavelength. Both bubbles enter the measurement region travelling in the positive spanwise

direction, but a short time after passing through the the leading bubble wake, the trailing

bubble path becomes aligned in-phase with the leading bubble. For the leading bubble, the

frequency and amplitude of motion is unaffected by the trailing bubble, but the trailing bubble

experiences significantly larger path amplitudes than those of single bubbles, for all surface
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inclination angles.

6.2.2 Velocity and Acceleration

The velocity and acceleration of the trailing bubble at a = 30� is shown in figure 6.18 for

the centroid and edge data. The leading bubble path is also provided. For a trailing bubble,

the mechanics of the bubble interface are fundamentally altered. As was the case for a

single bubble, the velocity magnitude is large on the outside of the path and low velocity

on the inside of the path. However, in this case the edge data on the major axis also exhibit

secondary, high frequency velocity fluctuations that act on alternating sides of the bubble.

This is reflected by the centroidal velocity data, which shows a larger mean and fluctuating

velocity than a single bubble. The high order changes in velocity occur at twice the frequency

of the base velocity fluctuations, and correspondingly four times the path frequency. High

velocity regions occur at phase angles of 0�, 90�, 180� and 270�. Two of these correspond

to the trailing bubble entering the wake of the leading bubble, which it does at its zero

displacement since the path are in phase. The other two phase angles are at the local extrema

in spanwise path, with the bubble outside edge found to decrease slightly in velocity as it

turns the path. This is conceivably due to the bubble interface rebounding after the initial

change in velocity.

The spanwise acceleration of the trailing bubble centroid is not significantly different

from the single bubble case, although the peaks of the curves are more flattened. For the edge

data, some minor fluctuations in ax occur where the bubble paths intersect, which will be

discussed presently. Since ax is largely similar in magnitude for single and trailing bubbles,

it follows that the induced motion by the bubble wake is in the direction of buoyancy. The

third plot on figure 6.18 shows the acceleration in this direction. The bubble acceleration ay

fluctuates at the same frequency as its velocity but with a phase lag, accelerating towards the

previously identified high velocity regions.

The rapid fluctuations of these quantities requires a more in-depth analysis of the bubble

interface. This is provided in figure 6.19 at instances in time 25 ms around the key location

of sy = 50 mm, which corresponds to the trailing bubble intersecting the path of the leading

bubble. In the first row at location (a), the bubble is turning towards the zero displacement,
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Figure 6.18: (a) Path traced out by the edge data of the trailing bubble major axis at a = 30�, de = 5.8
mm, coloured by the values at these points for (i) the velocity magnitude v =

q
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x + v2
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acceleration in the x-direction ax =
dvx
dt , and (iii) the acceleration in the y-direction, ay =

dvy
dt . The

leading bubble path is shown as the dashed line. (b) Velocity and (c) acceleration as a function of time
based off the centroid data.
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Figure 6.19: Parameters calculated at 360 points around the trailing bubble, for a = 30�, de = 5.8
mm, at the locations on the bubble path identified by (a-d). The first column is velocity magnitude, the
second is x-acceleration, the 3rd is y-acceleration.

with a behaviour consistent with the single bubble shown in figure 6.5 (c), with the one

exception to this being the acceleration in the y-direction. At this phase angle, ay was found

to decrease at all locations around the bubble interface for a single bubble, while in this case

there is an acceleration on the inside edge of the bubble. This is likely due to the trailing

bubble passing through the non-stationary fluid in the wake of the leading bubble, which

moves in the direction of buoyancy. This acceleration results in a subsequent increase in

velocity on this inside edge, which can be observed 25 ms later at the location (b). The

portion of the trailing bubble that has intersected the leading bubble’s path experiences an

increase in velocity. The superposition of the bubble velocity vector and this wake-induced

acceleration causes the bubble to experience a clockwise rotation, which is opposite to the

counter-clockwise rotation expected at this phase angle. Depending on the strength of the

146



6.2. MULTIPLE BUBBLE MOTION

fluid in the wake of the leading bubble and the initial velocity vector of the trailing bubble,

this motion can result in a momentary “rocking” of the bubble interface, with the orientation

of the bubble remaining the same sign. However, in this case, the induced tilt change is

sufficiently strong to change the orientation completely, as can be observed in figure 6.19

at location (c). The bubble takes on a rounded shape, even though the velocity of the edge

data is not low in magnitude. This is again in contrast to the single bubble case, wherein

a spherical shape occured at regions of minimum circumferential velocity. At this instant,

the right hand side of the bubble has entered the leading bubble wake, and experiences a

sharp acceleration in the direction of buoyancy. The left hand side of the bubble is longer

intersecting the fluid from the leading bubble wake, and as such begins to decelerate. The

x-acceleration of the bubble base is also affected, experiencing an acceleration in the positive

spanwise direction.

The result of these various accelerations can be seen in row (d), where the bubble is

approaching its local minimum in path displacement. The inside edge of the bubble path

has increased significantly in velocity, while the bubble has become elongated in shape.

After this point, the bubble interface will rebound again such that when it reaches its local

minimum in path displacement, the maximum velocity will be at the outside edge of the

bubble. This interaction between the two bubbles is very complex, with the moving fluid

to the rear of the leading bubble having a profound effect on the mechanics of the trailing

bubble. The key influence of the leading bubble wake is to induce high-frequency changes

in the circumferential velocity of the trailing bubble, with each side of the bubble being

accelerated when it passes through the leading bubble wake and decelerated when it leaves

the wake. This asymmetrical circumferential acceleration causes intricate changes in the

trailing bubble shape and orientation, which will be discussed presently.

Figure 6.20 shows the mean and fluctuating centroidal velocity of the leading (a) and

trailing (b) bubbles for all three inclination angles. The mean velocity does not always

increase as in figure 6.18, as the fluctuations are being averaged over 1-2 wavelengths only,

which is a small sample size. The amplitude and frequency of the trailing bubble velocity

fluctuations are larger than the leading bubble for all tests. For a = 20�, recall that the trailing

bubble initially experiences somewhat transitional behaviour, with the bubble sweeping a

long arc at t = 0.22 s, after which its velocity increases substantially. The trailing bubble

147



6.2. MULTIPLE BUBBLE MOTION

velocity for a = 30� has been discussed in detail, and that at a = 40� is largely similar,

with a repeating structure of high magnitude peaks corresponding to the bubble being at

its maximum sx and the secondary peaks corresponding to induced velocity by the leading

bubble.
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Figure 6.20: Time-varying (solid lines) and mean (dashed lines) velocity magnitude |v| =p
(vx)2 +(vy)2 in mm/s for the (a) leading and (b) trailing bubbles at a = 20� (�), 30� (�) and 40�

(�).

6.2.3 Eccentricity and Orientation

The leading bubble wake induces significant changes in shape and orientation of the trailing

bubble. Figure 6.21 shows the path of the leading (a,c,e) and trailing bubbles (b,d,f) coloured

by the eccentricity for all three inclination angles. The leading bubble paths are shown on

the trailing bubble plots as dashed lines. For a = 20�, the trailing bubble experiences little

changes in shape until it intersects the leading bubble path, with the shape oscillating after

this point. For a = 30�, the trailing bubble experiences dramatic shape oscillations between

oblate and approximately spherical, with the bubble shape again at its most spherical at

the mean path displacement and most oblate at the path extrema. Some secondary shape

oscillations also occur due to the wake-induced motion in the process described in figure

6.18. A key point is that the bubble shape no longer matches its velocity, as was the case for

the single bubble case. The same is true for a = 40�, although the fluctuations in shape are

larger.

Finally, the orientation, q , is shown in figure 6.22. As was explored in figure 6.19,

passing through the leading bubble wake induces changes in orientation in the trailing bubble.
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Figure 6.21: x-displacement, sx as a function of time, coloured by the eccentricity for the leading (left)
and trailing (right) bubbles, at a = 20� (a,b), 30� (c,d) and 40� (c,d) .

However, the magnitude of induced orientation change is complex and difficult to predict,

as it depends on the velocity of the fluid in the wake of the leading bubble and the velocity

vector of the trailing bubble. At a = 20�, the bubble travels with relatively little tilt until

the bubble moves into the wake of the leading bubble, adopting the in-phase bubble path,

at which point it increases rapidly. At a = 30�, the induced motion on the trailing bubble

is sufficient to change the sign of the orientation angle, with these mechanics having been

discussed in detail around figure 6.19. At a = 40�, the leading bubble causes secondary

fluctuations in the leading bubble orientation, although these are not sufficient to change the

sign of q .

6.3 Summary

This chapter has investigated the motion of both a single bubble and an an-line bubble pair

sliding under an inclined surface for a range of bubble diameters and surface inclination

angles, for clean and contaminated water. Quantities describing the mechanics of these
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Figure 6.22: Orientation, q , for the (a) leading and (b) trailing bubbles at a = 20� (�), 30� (�) and
40� (�).

sliding bubbles, such as shape, velocity and orientation, have been investigated, with a

key focus on the changes that occur in these during a bubble-wake interaction. Basing the

mechanics of a sliding bubble solely on the motion of its centroid results in many of the

dynamic aspects of the flow being ignored. The tracking algorithm introduced in section

5.1 has allowed for the mechanics of the bubbles to be expressed in terms of its centroid

and interface, providing a more complete description of sliding bubbles. All bubbles in

the current study are in the ellipsoidal regime defined by the Reynolds, Weber and Morton

numbers, and thus experience undulating path and shape oscillations as they traverse the

surface, with a velocity that fluctuates about a mean at twice the path frequency. In some

cases, the mean velocity was found to decrease in time. An analysis of the bubble edge data

revealed this is due to the bubble taking sharper turns due to the ejection of a large quantity

of liquid into the wake, resulting in a reaction force that slows the bubble in the vertical

direction. A force balance was performed on the sliding bubble, showing that the forces

do not remain in equilibrium, with the bubbles experiencing net forces in the spanwise and

length directions due to this wake instability. The mean of net forces acting on the bubble

was zero, and a fluctuating drag coefficient was observed.

Two-phase flows are heavily dependent on the purity of the system. It was found that the

addition of a minute amount of surfactant fundamentally altered the mechanics of the bubble.

In a contaminated system, bubbles were found to rise almost rectilinearly, experiencing large,

repeating shape oscillations due to the partial slip condition that exists at the rear of the

bubble. Unlike rising bubbles, this has the effect of increasing the bubble velocity, as this
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damping of the shape oscillations results in the velocity vector remaining aligned with the

buoyancy force. For multiple bubbles, it was found that the bubble paths adopt an in-phase,

opposite amplitude path that appears to be the most stable configuration for an in-line bubble

pair. The trailing bubbles experienced high frequency circumferential changes in velocity

and acceleration, accompanied by variations in shape and orientation. These mechanics have

been attributed to the trailing bubble entering and exiting the leading bubble wake, with all

subsequent bubble-bubble interactions triggered by this initial bubble-wake interaction. For a

more complete discussion, an understanding of the fluid motion in the leading bubble wake

is necessary. As such, this analysis of bubble mechanics will continue in chapter 7 when the

wake structures of sliding bubbles have been presented.
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Chapter 7

Fluid Motion

This chapter presents velocity and vorticity measurements for single and paired sliding

bubbles in three measurement planes, using the PIV processing techniques outlined in section

5.2. An analysis of these results will be combined with the findings in the literature on rising

bubbles and bluff bodies, together with the bubble mechanics from chapter 6, to characterise

the wake motion associated with sliding bubbles.

Section 6.2 showed how the addition of minute amounts of surfactant completely altered

the bubble behaviour. Through experimentation, it has been found that contaminated system

behaviour is not caused by the introduction of the PIV tracer particles: rather, the effect

can be triggered either by the lack of fluid purity or by sedimentation gradients within the

tank. The system purity is maintained as high as possible during testing by using deionised

water. However, even if ideal, perfectly neutrally buoyant particles are used, the motion of the

bubble can create sedimentation gradients by carrying tracer particles to the surface. To avoid

this, tests are performed soon after the introduction of the deionised water and particles, with

the water changed every 8 hours of testing to prevent transition to impure behaviour. Velocity

and vorticity measurements are performed for the same range of parameters discussed in

chapter 6, although these are predominately discussed for the base case of a = 30�.

7.1 Parallel Plane

In the parallel plane, two measurement planes are used at heights (distanaces from the

inclined surface) corresponding to sz = 3 mm and sz = 9 mm, as illustrated in figure 4.2. The
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discussion will centre around single and multiple bubbles of 5.8 mm and 7.2 mm diameter in

each of these planes for a = 30�, although the influence of changing the inclination angle on

the strength of the wake structures will also be examined. On these instantaneous velocity

and vorticity plots, the bubble shape calculated from the raw PIV images is overlaid, along

with the pathline of the bubble over its traverse of the measurement area. The surface is again

unheated for these tests.

7.1.1 Single Bubble: sz = 3 mm

Figure 7.1 shows the instantaneous velocity magnitude and vorticity for a = 30�, de = 5.8

mm, sz = 3 mm. This provides instantaneous measurements of the flow field at three instances

in time: t = t0, and t = t0 +0.2 s and t = t0 +0.4 s. For the vorticity plot, positive vorticity is

counter-clockwise rotation (gold), while negative vorticity is clockwise (blue). The bubble,

tracked from the raw PIV image, is shown in white.

The first instant in time in the sequence, figure 7.1 (a) and (d), corresponds to the bubble

centroid at the position sy = 60 mm. In both velocity and vorticity plots, the significant motion

induced by the bubble in the surrounding fluid is immediately apparent. The difference in

location between the bubble’s traverse pathline and the regions of non-zero velocity and

vorticity show the advection of the flow during the time scale of the bubble’s transit. These

occur both along the length and spanwise directions, resulting in a wake structure that

“overshoots” the bubble path. The bubble, which in figure 7.1 (a) and (d) is at a local

minimum in spanwise position, accelerates the quiescent fluid directly in front of it. On either

side of the bubble, counter-rotating regions of circumferential vorticity are observed at the

tips of the bubble major axis, which are the locations of maximum interface curvature. For a

region extending to 1�2 bubble diameters downstream of the bubble base, the near wake is

observed, which is defined as that moving in direct association with the bubble (the near wake

is occasionally referred to as the attached wake for this reason). As was observed by Brücker

[39] for freely rising bubbles, vortex shedding is found to occur at each local extrema of the

bubble path. This occurs because at these locations, the bubble and its previous near wake

have opposite spanwise components of velocity, thereby separating. At the equatorial edges

of the bubble, the vorticity on the inside of the bubble path is larger in magnitude than that
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Figure 7.1: Fluid velocity magnitude Vmag =
p

U2 +V 2 [mm/s] (top) and vorticity W =curl(U) [1/s]
in a parallel plane at sz = 3 mm for a = 30�, de = 5.8 mm, with the approximate bubble shape and
path overlaid. Each image in this sequence is Dt = 0.2 s apart.

on the outside, causing the bubble to rotate towards the inside of its path. This dominant

vorticity component results in the replenishment of the near wake with the fluid from the

inside of the bubble path. Approximately 1-2 bubble diameters downstream, the opposite

direction of vorticity is stronger in magnitude, extending downstream to form the “tongue”
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shaped regions of vorticity also identified by Brücker [39].

The second image in each sequence, figure 7.1 (b) and (e), shows both the near and far

wake of the bubble, which is now at a local maximum in spanwise position at the location

sy = 100 mm. In the far wake, the affected regions of fluid have increased in size but

decreased in magnitude, by this time having significantly overshot the bubble path. Thus, the

far wake takes the general form of comparatively high velocity regions at the path extrema

and comparatively low fluid velocity separating these areas. Finally, for the last image

pair 0.2 seconds later, the strength of velocity and vorticity in the wake have decreased in

magnitude substantially. The shed structures continue to spread into the bulk fluid, albeit

doing so at a lower velocity. This is due to a combination of viscous dissipation in the fluid

and out-of-plane motion normal to the surface.
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Figure 7.2: Velocity magnitude along a defined slice of the surface at sy = 61 mm for de = 5.8 mm,
a = 30�, with successive lines corresponding to 20 ms intervals.

The temporal evolution of the local velocity is provided in figure 7.2 along the horizontal

line in figure 7.1 (e) corresponding to sy = 61 mm. This plot starts at a time t0, directly after

the base of the bubble has passed through sy = 61 mm. At this location the bubble is at a local

minimum of spanwise position. As was found in figure 7.1, the near wake occurs directly

after the bubble passage and moves at close to the bubble velocity, acting over an area two

bubble diameters in size. At this local minimum, the bubble changes direction due to the

wake instability, travelling in the positive spanwise direction. The now detached near wake

continues on its original course in the negative spanwise direction. This results in the peak of

the velocity profiles shifting to the left. The local maxima of the velocity distribution here

also decrease dramatically, as do their gradients. By t = 0.2 s after the bubble passage, the
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local peak in velocity has reduced to 10% of the maximum value observed in the near wake.
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Figure 7.3: Vorticity distribution in the near wake of the de = 5.8 mm bubble at instances in time 20
ms apart, with velocity vectors omitted.

Figure 7.3 shows the temporal vorticity distribution in the near wake at instances in time

20 ms apart, as the bubble completes one wavelength of motion. The relative strength of

the vorticity components on either side of the major axis is linked to the phase angle of the

bubble’s path. The fluid motion is observed to begin some small distance upstream of the

bubble, where the bubble accelerates the fluid directly in front of it. This leads into a pair

of counter-rotating regions of vorticity around the bubble circumference, approximately 2

bubble diameters in size in the spanwise direction. These form the near wake, travelling

at approximately the bubble velocity. At the inversion points of the bubble path, fluid is

separated from the near wake, shedding a vortical structure that also moves normal to the

surface. At this point of separation, the vorticity of the fluid on the inside of the bubble path is

of greater magnitude, drawing fluid into the near wake from this side. This repeating process

is clearly visible in figure 7.3, which results in the variations in bubble mechanics reported

by chapter 6.

The effect of increasing the bubble diameter to 7.2 mm is shown in figure 7.4. Although

the general nature of the wake structures changes very little, the magnitudes of velocity

and vorticity increase somewhat, as too does the size of the affected region. Again, the
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Figure 7.4: Fluid velocity magnitude Vmag =
p

U2 +V 2 [mm/s] (top) and vorticity W =curl(U) [1/s]
in a parallel plane at sz = 3 mm for a = 30�, de = 7.2 mm, with the approximate bubble shape and
path overlaid. Each image is Dt = 0.2 s apart.

overall wake structure consists of a near wake that stretches up to 1.5 bubble diameters

downstream of the bubble base, and a far wake downstream of the bubble. The wake evolves

in a similar manner to the 5.8 mm case, but is slightly more chaotic, with some secondary,

“tailed” structures at the base of each discrete shed region. These tail-shaped regions will

158



7.1. PARALLEL PLANE

be discussed shortly. The advection effects in the far wake are also noticeable, lasting for a

significantly longer time and overshooting the bubble path to a greater extent. The temporal

evolution of the local velocity for de = 7.2 mm is provided in figure 7.5 along the horizontal

line corresponding to sy = 45 mm on figure 7.4 (e). In this case, both the velocity magnitude

and the affected region are larger than the equivalent de = 5.8 mm plot. A secondary peak

is also observed in the positive spanwise direction as the bubble wake is advected into the

measurement region. The larger advection effects are also visible here, as the local velocity

after 0.2 s is now approximately 20% the peak value in the near wake, as opposed to 10% for

the de = 5.8 mm bubble.
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Figure 7.5: Velocity magnitude along a defined slice of the surface at sy = 45 mm for de = 7.2 mm,
a = 30�, with each line corresponding to a 20 ms interval.

Figure 8.12 shows the temporal vorticity distribution in the near wake for de = 7.2

mm. Although the magnitude and size of the affected region are larger than for the de = 5.8

mm bubble, the separation of fluid from the near wake occurs in a similar manner. Also

highlighted on figure 8.12 are zones of interaction between regions of opposite fluid rotation

that occur following the separation from the near wake. These measurements are indicative of

a complex 3-dimensional wake structure that sheds from the near wake at each path extrema.

To show these key flow features better, supporting sketches for both bubble diameters are

provided in figure 7.7. The regions of highest vorticity, direction of fluid entrainment and the

“tongued” regions where the vortex separates from the near wake are all identified.

The flow structures observed thus far are in a plane that bisects the near wake of the

bubble, revealing an attached near wake extending to 1�2 bubble diameters downstream

of the bubble that travels in close association with the bubble, with opposite directions of
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Figure 7.6: Vorticity distribution in the near wake of the de = 7.2 mm bubble at instances in time 20
ms apart.
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Figure 7.7: Sketch showing the near-wake circumferential vorticity distribution for both bubble
diameters, with the flow features identified in the PIV data identified.

vorticity on either side of this zone. It will be observed shortly using additional measurement

planes that these structures move away from the surface in the normal direction. Thus, the

fluid velocity in the far wake reduces due to both viscous dissipation and out-of-plane fluid

motion. As such, measurements of the fluid motion in the far can provide a useful means of

quantifying the bubble-induced fluid motion, as well as comparing the strength of structures

at different surface inclination angles and diameters. This was performed by Roig et al. [125],

who found an exponential decay in the mean vorticity in the wake of a bubble rising within a
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thin gap. In the current study, fluid motion experiments for sz = 3 mm have been performed

for both volumes at a = 20�, 30�, and 40�. It is found that the strength of the wake structures

shed by the bubble scales with bubble volume due to advection effects. Increasing the surface

inclination angle results in a greater energy in the wake due to the higher bubble velocity, as

well as a higher path frequency. These plots are largely similar to the a = 30� case and for

brevity are not shown here.

0 5 10 15 20 25

10−2

10−1

100

s
y
/d

e

ε/
U

T2

20 deg, 0.1 ml
20 deg, 0.2 ml
30 deg, 0.1 ml
30 deg, 0.2 ml
40 deg, 0.1 ml
40 deg, 0.2 ml

Figure 7.8: Flow enstrophy, normalised by UT
2, versus the dimensionless distance from the bubble to

the interrogation window, sy/de, for the range of surface inclination angles and bubble volumes tested
in the current study.

However, perhaps a better way of quantifying the energy of the flow rather than the mean

vorticity is the flow enstrophy. The enstrophy can be thought of as the quantity directly

related to the kinetic energy of a fluid model; specifically, that due to dissipation effects in

the fluid. Under certain conditions, this quantity is proportional to the rate of decay of the

flow’s energy. The enstrophy of a two-dimensional flow field can be expressed as:

e =
1
2

Z

s
(—⇥u)2 ds (7.1)

Therefore, to quantify the global effect of the sliding bubble on the surrounding fluid,

it is necessary to solve for the surface integral of the square of the vorticity field. Chapter

5 showed that the PIV algorithm erroneously detects velocity vectors within the bubble

boundary. As such, the enstrophy calculation concerns the flow field after the bubble has

left the interrogation window. Figure 7.8 shows a logarithmic plot of enstrophy in the flow
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field with respect to the dimensionless distance from the bubble to the top of interrogation

window, Dsy/de, for all values of a and de. To collapse this data, the in-plane enstrophy is

normalised by the square of the terminal bubble velocity measured for each test in chapter 6:

i.e. e⇤ = e/U2
T . Essentially, this graph shows the behaviour of the liquid phase as a ratio of

the kinetic energies of the bubble and the vortices generated. The decay rate of enstrophy in

the flow is exponential, and is largely consistent for the range of parameters studied. This is

due to both viscous dissipation and out-of-plane motion. Since convective heat transfer is

dependent on the fluid motion, it is expected that the surface cooling should experience a

similar decay.
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Figure 7.9: Contours representing positive (� �) and negative (�) isocontours of vorticity in the
sz = 3 mm, mapped to the equivalent bubble location on the corresponding bubble motion path at two
pathwise locations. The bubble paths for the fluid motion test (�) and the bubble motion test (� �)
and the bubble eccentricity at each location are also provided

Figure 7.9 links the bubble mechanics to the vortex shedding by spatially mapping the

bubble motion from chapter 6 for a = 30�, de = 5.8 mm to isocontours of vorticity in the

sz = 3 mm plane at two instances in time corresponding to the bubble being at its local

minimum and local mean in path. The changes in circumferential velocity around the bubble

interface occur due to the oscillatory bubble path, which itself is caused by the wake instability

due to the large size of the bubble. This results in a two-way coupling between the fluid in
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the bubble wake and the deformation of the bubble interface. At the local minimum in path,

fluid from the near wake separates and is replenished from the inside of the bubble path. At

this location, the bubble’s velocity vector is aligned with the buoyancy force and its shape

is comparatively ellipsoidal (e = 0.76), while the outside edge of the bubble traces a larger

path and has a larger velocity. As the instability returns the bubble to its mean displacement,

its near wake continues to be replenished by fluid on the inside of its path. Meanwhile, the

velocity vector of the bubble is no longer aligned with the buoyancy force and experiences

a lower velocity magnitude around its interface. This lower velocity corresponds to a shift

downwards in the regime map in figure 2.1, resulting in a more spheroidal shape of e = 0.61.

This means that the major axis of the ellipse, and correspondingly the affected region of fluid,

are smaller at this point. This behaviour repeats as the bubble traverses the surface.

7.1.2 Single Bubble: sz = 9 mm

The velocity and vorticity in the sz = 9 mm plane for a = 30�, de = 5.8 mm are provided in

figure 7.10. This measurement plane is sufficiently far from the surface as to be unaffected

by the immediate passage of the bubble. Instead, this plane captures a cross section of the

fluid motion normal to the surface in the far wake. One issue with PIV in this plane is that

the bubble is still visible and is detected by the algorithm as a collection of particles with a

velocity UT , despite there being no motion in-plane. This is addressed by masking the velocity

vectors in the vicinity of the tracked bubble. Note also that the scales of velocity and vorticity

in this case are lower than those in the sz = 3 mm plane, indicating the majority of high-

velocity fluid motion remains close to the surface. In figure 7.10, instantaneous snapshots

of the flow field are provided at the locations t = t0, and t = t0 +0.2 s and t = t0 +0.4 s. In

this plane, the far field velocity is of greater interest, and thus t0 corresponds to sy = 100 mm

rather than sy = 60 mm.

The PIV results in this plane reveal the three-dimensional nature of the wake, as the

measurement plane is beneath the base of the bubble yet detects significant fluid motion.

Additionally, the divergence of the velocity field, — ·U, is non-zero and shows the direction

of normal velocity W is away from the surface. A short time after the bubble passage,

fluid enters the plane approximately 3 bubble diameters upstream of the previous spanwise
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Figure 7.10: Fluid velocity magnitude Vmag =
p

U2 +V 2 [mm/s] (top) and vorticity W =curl(U) [1/s]
in a parallel plane at sz = 9 mm for a = 30�, de = 5.8 mm, with the approximate bubble shape and
path overlaid. Each image is Dt = 0.2 s apart.

path extrema. This indicates that the wake structures initially shed at the local extrema in

path are advected along the length of the bubble’s pathline before they enter the sz = 9 mm

plane. In this plane, the lower velocity magnitude results in slightly decreased coherency.

Nonetheless, approximately ellipsoidal-shaped regions of enhanced velocity are visible, again

with secondary “tailed” regions stretching to the rear of these regions. However, it is the
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vorticity that is of most interest in figure 7.10. The high velocity regions correspond to

coherent, counter-rotating regions of vorticity, which are believed to be the two-dimensional

cross section of the legs of a hairpin vortex passing through the plane, shed in the near wake

at the previous inversion points of the bubble path. This is most noticeable in the region

[sx,sy] = [�10,80] mm, which indicates that the bubble has shed a large amount of fluid into

its wake at this location. The resultant changes in bubble mechanics due to this shedding

have been discussed in chapter 6.

An analysis of this time-resolved PIV reveals that large temporal velocity gradients exist

within the primary shed vortices, where the high-velocity fluid region corresponds to the

hairpin vortex legs appearing in plane suddenly but persisting for a significant time. At the

second instant in time (figure 7.10 (b) and (e)), the vortex cores have become stretched and

elliptical in shape, while the fluid in these regions has increased in velocity. The direction

of vorticity causes the two components of each core to separate laterally, spreading into the

initially quiescent fluid on either side of the vortex pair. Low-magnitude vortex pairs are also

visible in the far wake, which is consistent with a complex 3-dimensional wake structure

in which there interactions occur between the primary vortex structures and the bulk fluid.

These secondary structures in the far wake act to further mix the bulk fluid, which can be

seen in the last image pair, 0.2 s later. The velocity magnitude in this plane has began to

decrease due to viscous dissipation and further out-of-plane effects.
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Figure 7.11: Vorticity along a defined slice of the surface at sy = 85 mm for de = 5.8 mm, a = 30�,
with each line corresponding to a 40 ms interval.

Figure 7.11 shows the vorticity across the slice of the surface at the line sy = 85 mm in

figure 7.10 (e) plane at instances in time 40 ms apart. As before, t = 0 s is directly after the
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passage of the bubble. The in-plane vorticity is low directly after the bubble passage, but over

the next 80 ms a counter-rotating vortex pair enters the plane, corresponding to the vortex

shed at the previous local minimum in path. This is subsequently advected in the negative

spanwise direction due to the momentum of the bubble. The effects of the bubble on fluid

motion in this plane also last for a significant time, with the vortex pair having reduced in

magnitude to 10% of its maximum value after 0.4 s.

The effect of increasing the bubble diameter has a more profound effect on the wake

structures in the sz = 9 mm plane than in the sz = 3 mm plane. An analysis of the perpendicular

plane PIV that will be presented in section 7.2 reveals that the increased volume does not

extend the bubble in the normal (sz) direction; instead, the major axis in the parallel plane

grows. However, the greater advection effects of this larger bubble volume results in a flow

velocity and vorticity that are 50% larger than the 5.8 mm bubble, and thus more coherent

wake structures. The velocity and vorticity for sz = 9 mm, a = 30�, de = 7.2 mm are shown

in figure 7.12. The elliptical regions of high-magnitude velocity previously discussed are

instantly identifiable, as are the trailing regions of affected fluid below these. Regarding these

secondary structures, a video analysis of the PIV data reveals that moments after the bubble

reaches a local extremum, there is some small amount of fluid motion at this location in the

sz = 9 mm plane. Thus, these tail-shaped structures consist of fluid that rolls over the bubble

base at these local extrema. Further on in time, the counter-rotating vortex pairs enter the

measurement window upstream of this location, with the original structure remaining at its

initial position.

As these flow structures evolve in time, the direction of vorticity is such as to draw in

fluid laterally from either side of the vortex pair, resulting in bulk fluid motion normal to the

surface over a region far larger than the bubble diameter. The direction of fluid motion in

these vortex legs can cause can cause one component to detach and spread laterally, as shown

in figure 7.12 (e) at sy = 50 mm. The in-plane effects of the vortex structure at this height

from the surface last for a significant time but eventually reduce due to further out-of-plane

motion and dissipation effects. Figure 7.13 shows the vorticity across the slice of the surface

at sy = 75 mm at instances in time 40 ms apart. This structure was shed at the previous local

maximum in spanwise position, and thus is advected in the positive spanwise direction. The

magnitude of the vorticity is also larger than for the 5.8 mm bubble.
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Figure 7.12: Fluid velocity magnitude Vmag =
p

U2 +V 2 [mm/s] (top) and vorticity W =curl(U) [1/s]
in a parallel plane at sz = 9 mm for a = 30�, de = 7.2 mm, with the approximate bubble shape and
path overlaid. Each image is Dt = 0.2 s apart.

Supporting sketches of the fluid velocity in this plane are provided in figure 7.14 (note

the de = 5.8 mm sketch has been flipped left to right for easier comparison). The vortex

tails, direction of fluid motion and the signifcant overshoot of the structures are all identified.

Recall that the attached and detached tails correspond to the fluid that rolls up over the bubble

base, spreading into the sz = 9 mm plane at the local extrema in spanwise position some time
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Figure 7.13: Vorticity along a defined slice of the surface at sy = 75 mm for de = 7.2 mm, a = 30�,
with each line corresponding to a 40 ms interval.
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Figure 7.14: Sketches of the far wake in the sz = 9 mm plane for both bubble diameters 0.2 s after
bubble passage. The nature, overshoot and direction of the moving fluid are shown.

Throughout this section, hairpin vortices have been identified as the dominant mechanism

of vortex shedding in the bubble wake. Figure 7.15 shows a sketch of the wake structures in

both parallel planes, anticipated from the literature on rising bubbles and bluff bodies. These

sketches are for a sphere in cross-flow, taken from Fan & Tsuchiya [13] and based on the

experiments of Achenbach [32]. This reveals an attached near wake to the rear of the sphere

and a far wake consisting of discrete hairpin vortex loops. The sketch has been modified to

show the sliding surface, measurement planes and the cross-sections of the wake structure

that one might expect to observe at the two heights sz = 3 mm and sz = 9 mm. The PIV fluid

motion results obtained in these two planes are in strong agreement with this, although this

image does not show the path oscillations observed behind ellipsoidal bubbles. In reality, the
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z = 3 mm

z = 9 mm

z = 3 mm

z = 9 mmvortex head

near wake

vortex legs

vortex tail

Figure 7.15: Sketch from Fan & Tsuchiya [13], based on the experiments on solid spheres of
Achenbach [32], modified to show the sliding surface and the projection of the expected flow structures
in each of these planes (solid blue lines).

hairpin vortex loops are more similar to those of the rising bubbles of Brücker [39] in this

aspect.

sx

s y

−9

−3 y

sx

s z
[m
m
]

wake advected
upstream before

entering z = 9 mm
plane

s

"tongue-like"
region of vorticity

fluid
entrainment

into new near
wake

direction of
separating wake

hairpin
vortex legs

Figure 7.16: Contours representing positive and negative values of vorticity from both planes (sz = 3
mm plane is coloured, sz = 9 mm plane is black), spatially mapped based on the bubble path. Key
components of the wake structure are also identified.

Figure 7.16 spatially maps the bubble paths in both parallel planes to show the evolution

of the flow normal to the surface. The relative strength of vorticity in both planes is shown by
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the contour plots, while the key aspects of the wake previously detailed are also highlighted.

For clarity, the sz = 3 mm plane is coloured and the sz = 9 mm plane is black, and the

aspect ratio in the z direction is non-unity. This spatial mapping reveals that the initial

bubble-induced fluid disturbance is close to the surface, before the hairpin loops spread away,

normal to the surface. The legs of these hairpin loops bisect the sz = 9 mm plane, having

been advected a significant distance along the length of the bubble path before doing so.

Figure 7.16 also indicates that the bubbles appear to shed a single primary hairpin vortex at

each maximum in displacement. This is in agreement with the experimental work of Brücker

[39] and Lunde & Perkins [33]. Note that the numerical study of Gaudlitz et al. [47] observed

many hairpin vortices shedding for each half-cycle in bubble path, a difference in behaviour

that the authors attributed to the effect of surfactants in the PIV studies.

7.1.3 Multiple Bubbles

The mechanics of bubble-wake interactions were discussed in chapter 6, but a full understand-

ing of this behaviour requires a knowledge of the wake structures. This section focuses on the

velocity and vorticity of an an-line bubble pair, using the wake structures previously defined

for single sliding bubbles as a starting point. In this section, the PIV data are discussed in

detail for a single test with de = 5.8 mm, a = 30�, as the composition of the structures does

not change significantly with inclination angle.

Figure 7.17 shows the velocity and vorticity for an in-line bubble pair with an average

separation dy =25 mm, for a = 30�, de = 5.8 mm. The bubbles take a similar in-phase path

configuration to that observed in chapter 6. The opposite signs of the bubble amplitudes result

in a larger affected region than for the single bubble case, and consequently a greater mixing

of the fluid next to the surface. The vorticity plots reveal a complex interaction between the

fluid shed from the leading bubble and the near wake of the trailing bubble, which will be

discussed presently. In the first image in the sequence (figure 7.17 (a) and (d)) , the leading

bubble is approaching its maximum spanwise displacement, while the trailing bubble is at its

maximum. When the bubble paths intersect, the trailing bubble encounters the fluid that has

separated from the leading bubble. This region of fluid acts in the direction of buoyancy, due

to advection effects, while it also has a spanwise component, the direction of which depends
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Figure 7.17: Fluid velocity magnitude Vmag =
p

U2 +V 2 [mm/s] (top) and vorticity W =curl(U) [1/s]
in a parallel plane at sz =3 mm for an in-line bubble pair 25 mm apart in the y-direction with a = 30�,
de = 5.8 mm, with the approximate bubble shapes and paths overlaid. Each image is Dt = 0.2 s apart.

on whether it was shed at a local maximum or minimum in path. Therefore, as the trailing

bubble enters this region of fluid, it is accelerated both in the direction of buoyancy and in

the direction determined by the path of the leading bubble. For instance, at the first image

sequence, the trailing bubble is about to pass through fluid shed from the leading bubble at

its previous local minimum in path, which will subsequently accelerate the trailing bubble in
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the negative spanwise direction. This means that as the trailing bubble returns to its mean

position, it is accelerated in the direction in which it was originally travelling.

In figure 7.17 (b) and (e), 0.2 s later, the bubble paths are about to intersect again, this

time with the trailing bubble now moving in the positive spanwise direction. Passing through

the fluid shed by the leading bubble from its previous local maximum will again accelerate

the bubble in its current direction. This coupling of the leading bubble wake and the trailing

bubble accentuates the trailing bubble path oscillations, as well as inducing changes in shape

as discussed in chapter 6. A further 0.2 s later, the fluid velocity in the far wake is significantly

larger than for the single bubble case, forming a double-threaded far wake structure that

appears to be a superposition of the two bubble wakes. This is not strictly the case, in fact,

due to the interactions between the fluid from each bubble wake that occurs at the path

intersection points.
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Figure 7.18: Vorticity distribution in the near wake of the trailing bubble (de = 5.8 mm), with the
bubble at instances in time 20 ms apart. The bubble velocity vector (�) and leading bubble near-wake
motion (� �) are also shown.

Figure 7.18 examines the flow field around the trailing bubble at intervals of 20 ms, to

better show these interactions. The images (a) - (d) correspond to the bubble travelling

towards its local minimum, being accelerated by the fluid shed at the previous local minimum

of the leading bubble wake. The direction of fluid motion in the near wake of the leading
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Figure 7.19: Sketch supporting figures 7.17 and 7.18, showing the direction of the bubble and fluid
motion.

bubble is indicated on the figure. The next four images (e) - (h) show the motion towards a

local maximum in spanwise position. This shows that the direction of the near wake that has

separated from the leading bubble is such as to encourage spanwise motion in the original

direction of the trailing bubble. A supporting sketch in figure 7.19 shows the bubble wake

interactions for the first image sequence at t0 and an instance in time 40 ms later, revealing

the repeating nature of the trailing bubble velocity enhancement.

(a ) (b) (c)

trailing bubble 
aligned with 

leading bubble 
wake

trailing bubble
moves in opposite
direction to leading

bubble wake

single bubble multiple bubbles: stable multiple bubbles: unstable

Figure 7.20: Sketch showing (a) the motion in the bubble wake, (b) the motion of an in-line bubble
pair observed in the current study and (c) the unstable configuration that occurs if the two paths are
identical.
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The motion induced by the leading bubble wake on the trailing bubble explains why the

amplitude of the trailing bubble path is larger, and can also provide an explanation for the

in-line, opposite amplitude configuration adopted by the bubbles both in figure 7.17 and

in the bubble motion experiments in chapter 6. To show why this is the case, figure 7.20

considers what would occur if the bubble paths were not in this configuration, i.e. if they

were identical in amplitude and phase with a separation of dy = 25 mm. In this case, as the

trailing bubble intersects the leading bubble wake, its spanwise velocity component will be

opposite to that of the fluid it is passing through (figure 7.20 (c)). The induced motion of the

leading bubble wake, therefore, would tend to reverse the spanwise motion of the trailing

bubble. Thereby, the opposite amplitude, in-phase path configuration that the bubbles adopt

appears the most stable configuration in terms of the induced wake motion.

spheroidal oblate

interface rebounding

Figure 7.21: Subtle changes in trailing bubble shape from raw PIV images at the instances in time 20
ms apart identified in figure 7.18.

Figure 7.21 shows the raw images of the trailing bubble for the same instances in time

as presented in figure 7.18. These remain consistent with the single bubble case discussed

in chapter 6, transitioning from approximately spheroidal at the mean of the bubble path to

oblate at the local path extrema. There are some deviations from single bubble behaviour

that occur when the trailing bubble passes through the leading bubble wake, such as the base

of the bubble interface rebounding at the location highlighted on figure 7.21. However, since

these changes are subtle, it is necessary to combine the data from the fluid motion and bubble
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motion tests to make further insights.
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Figure 7.22: Spatial alignment of the bubble and fluid motion at two instances in time. The fluid
velocity field is indicated by the arrows, while the top colour bar (green) refers to the vorticity field
and the bottom colour bar (red) is the velocity about the bubble interface.

Figure 7.22 spatially aligns the bubble and fluid motion for the trailing bubble, zooming

in on a small section of the wake where the trailing bubble intersects the leading bubble

wake. Note the use of a second colour map is necessary to show the interfacial velocity of

the bubble. It is now possible to confirm the assertions made in chapter 6 about the increase

in velocity experienced by the trailing bubble. In the first image, the trailing bubble is at

returning towards its local mean position and is not intersecting the leading bubble wake. At

this location, its velocity is consistent with the single bubble test. However, in the second

image, the right hand side of the trailing bubble has intersected the wake of the leading

bubble, which has a positive spanwise component. This causes a rapid increase in the velocity

of the bubble interface at this location and a subsequent rebounding of the bubble interface.

This results in high order velocity fluctuations around the trailing bubble interface as different

parts of the bubble enter the high-speed fluid in the leading bubble wake. As was discussed in

chapter 6, this motion can result in a momentary “rocking” of the bubble interface, resulting
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in rapid changes in orientation. This is dependent on both the trailing bubble velocity vector

and the velocity of fluid shed by the leading bubble wake.

−20 −15 −10 −5 0 5 10 15 20

0

50

100

150

200

s
x

[mm]

V
m

ag
[m

m
/s

]

−20 −15 −10 −5 0 5 10 15 20

0

50

100

150

200

s
x

[mm]

V
m

ag
[m

m
/s

]

0 ms
20 ms
40 ms
60 ms
80 ms
100 ms
120 ms
140 ms
160 ms
180 ms

leading bubble trailing bubble

Figure 7.23: Velocity along a defined slice of the surface at sy = 45 mm for the bubble pair, with each
line corresponding to a 20 ms interval.

The influence of a sliding bubble pair on the local fluid velocity can be inferred from

figure 7.23 at the location sy = 45 mm. Note that the peak at t = 100 ms corresponds to

the trailing bubble entering the slice: this value should be taken with caution since the PIV

measurements within the bubble interface are not accurate. The near wake of each bubble

is advected in different directions, resulting in an affected region of fluid four times the

bubble equivalent diameter. Thus, the two bubbles and their associated wake motion lead to

considerable mixing over a spanwise area 4 bubble diameters in size.
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Figure 7.24: Non-normalised flow enstrophy, versus the distance from the bubble to the interrogation
window, sy/de, for an in-line bubble pair, with the values for two single bubbles of de = 5.8 mm and
7.2 mm provided for reference.

Solving for the enstrophy of the flow field can show the effect of a second bubble on the
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kinetic energy of the fluid. Figure 7.24 shows the non-normalised enstrophy for the bubble

pair, in addition to single bubbles of diameter 5.8 mm and 7.2 mm at a = 30�. It is apparent

that the induced motion in the flow field is significantly larger than that for the corresponding

single bubble tests, promoting further mixing. Chapter 8 will look at these bubble-wake

interactions from a heat transfer perspective, exploring whether this greater fluid mixing is

linked to improved heat transfer rates.

7.2 Perpendicular plane

Up to this point, the wake structures have been noted to spread away from the surface in

the normal direction, although the nature of this motion has not yet been quantified. The

experiments in this section will study the fluid motion in a single perpendicular plane fixed

in space, through which the bubble and its wake enter at different times. The objective of

this section is to quantify the fluid motion normal to the surface offered by a single sliding

bubble, particularly in terms of the extent of far wake mixing involved.

When performing PIV in this plane, the laser and camera are maintained in a fixed

position at sy = 60 mm. It follows that since the bubbles follow an undulating path, each

bubble will enter the plane at a specific phase angle, while PIV provides a series of snapshots

of the cross-section of its wake at different instances in time. This means that the far wake

structures undergo interactions and dissipation before entering the measurement plane. It

transpires that the key parameter in understanding these streamwise structures is the phase

angle, since the nature and strength of the structures observed depends on the bubble entry

point. Thus, tests in this section are presented at a constant bubble diameter of de = 5.8 mm

and surface inclination angle of a = 30� but for three different phase angles corresponding

to a local maximum, local minimum and mean in path. Figure 7.25 shows the location

of these phase angles on the bubble path, along with an illustration of the bubble wake to

explain how the choice of phase angle influences the fluid motion observed. Section 7.1.

showed that as the near wake separates from the bubble at the extrema, it overshoots the

wake. Thus, when measuring the streamwise flow structures, it is expected that when f is at a

local extrema, the near wake fluid motion will be rapidly advected out of plane. Additionally,

as was discussed in chapter 5, the out-of-plane motion in the near wake does not allow for
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effective PIV processing; at these locations, the raw images are used to infer the fluid motion.
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Figure 7.25: Recalling the definition of the phase angle, f (a), and demonstrating its relevance to the
streamwise wake structures (b) in terms of the magnitude and direction of structures observed.

7.2.1 Local Minimum sx: f ⇡ 90�

In this section, results are presented for an entry point at f ⇡ 90� on figure 7.25. To resolve

the near wake motion, it is necessary to use the raw images to visualise the fluid motion.

Figure 7.26 shows the raw PIV images at two instances in time, corresponding to 0 and 100

ms, respectively, after the bubble passage, where the position sz = 0 denotes the surface and

sx = 0 is the bubble entry point. Note that this entry point sx = 0 is at the local minimum

in streamwise position. To show the motion of the particles, they are averaged over a time

interval of 10 ms and 20 ms respectively, and an analysis of the raw image sequence is

performed to infer the direction of this motion. As the bubble enters the plane, fluid is

observed to roll up over the bubble base, consistent with the sz = 9 mm PIV measurements.

After the bubble passage in figure 7.26 (a), the streamwise fluid in the near wake forms

a high velocity, counter-clockwise rotating region that overshoots the bubble path in the

negative spanwise direction, again consistent with the parallel plane tests. At the same time,

a region of fluid beneath the surface is advected towards the surface, conceivably due to the

recirculation region that exists in the near wake. Further in time (b), the eddy initially shed

at the local minimum has continued to overshoot the bubble path, while the region of fluid

beneath the entry point has reduced in strength.

Figures 7.27 and 7.28 present plots of the velocity and vorticity fields for f = 90�.

Measurements are first provided at the time t0, 0.2 s after the bubble passage, with five further

instances in time Dt = 0.5 s apart provided. The surface is denoted by the white line at

178



7.2. PERPENDICULAR PLANE

s
x

[mm]

s z
[m

m
]

t = 0−10 ms

−15 −10 −5 0 5 10 15

0

5

10

15

s
x

[mm]

s z
[m

m
]

t = 100−120 ms

−15 −10 −5 0 5 10 15

0

5

10

15

(a ) (b)

Figure 7.26: Raw images of the near wake averaged over time intervals 10 ms and 20 ms respectively,
starting at two instants in time 0 and 100 ms after the bubble passage for a = 30�, de = 5.8 mm,
f = 90�.

sz = 0 and the entry point indicated by the white circle (this does not move with the bubble).

Note the velocity and vorticity magnitudes are significantly lower than in the parallel plane

measurements.

Focusing first on the bubble velocity, figure 7.27 (a) shows a high velocity, counter-

clockwise rotating region of fluid moving in the negative spanwise direction, in agreement

with the second image in figure 7.26. This initial fluid disturbance due to the near wake

remains close to the surface, i.e. within 2 bubble diameters at 0.2 s. Note that the velocity

vectors below sz = 15 mm are as a result of bias errors due to the relatively low flow velocity

at this location. In figure 7.27 (b), 0.5 seconds later, this eddy has diminished rapidly in

strength. Rather than viscous dissipation, this reduction in velocity is due to out-of-plane

motion. At this instant, a small quantity of fluid that was shed at the previous downstream

local maximum begins to enter the plane to the right of the entry point.

One second after the bubble passage (figure 7.27 (c)), a significant volume of fluid has

entered the measurement plane from this local maximum in path. This region is large in

size and in magnitude, and acts to draw fluid away from the surface. An analysis of the raw

image sequence reveals that this region is the cross section of a large, discrete structure that

begins to enter the measurement plane 0.7 seconds after the bubble passage. This region is

large in size since it has spread during this time before entering the plane. A low-magnitude

secondary structure has also entered the plane at the location of the previous primary vortex,

remaining close to the surface and spreading in a negative streamwise direction. In figure 7.27

(d), there has been further in-plane mixing, spreading up to 4 bubble diameters away in the
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Figure 7.27: Fluid velocity magnitude Vmag =
p

U2 +V 2 [mm/s] in a perpendicular plane at sy = 60
mm for a = 30�, de = 5.8 mm, f = 90�, with the bubble having travelled through the plane, away
from the viewer. The surface is denoted by the white line at sz = 0 mm, and the in-plane entry plane
of the bubble shown by the white circle. Each image is Dt = 0.5 s apart, while the first image t0 is 0.2
seconds after the bubble passage.

direction normal to the surface. The magnitude of the velocity in the interrogation window

has also decreased, which is attributed mainly to viscous dissipation as the structure remains

in-plane. At the final two instances in time (figure 7.27 (e) and (f)), the velocity magnitude
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continues to decrease, while the primary and secondary structures begin to join, forming a

low velocity, large-scale structure that spreads out to the fluid bulk and persists for many

seconds after the bubble passage.
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Figure 7.28: Fluid vorticity Wy =curl(U) [1/s] in a perpendicular plane at sy = 60 mm for a = 30�,
de = 5.8 mm, f = 90�, with each image Dt = 0.5 s apart, with the first image t0 0.2 seconds after the
bubble passage.

The vorticity in the perpendicular plane at the same instances in time is provided in
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figure 7.28. The high velocity regions identified in figure 7.27 correspond to counter-

rotating pairs of vorticity. This corresponds to the legs of the hairpin vortices that were shed

downstream of the measurement plane entering the measurement plane at different times. In

the far wake, the direction of counter-rotating vorticity is such as to draw fluid away from the

surface in the normal direction, advecting fluid up to 4 bubble diameters from the surface.

There also exists some secondary vortical structures, which can temporally evolve, dissipate

or move out of plane. These structures can also interact with the primary vortex pairs and the

fluid bulk, leading to complex fluid motion.

In these experiments, a three-dimensional wake is being observed at various instances in

time. Figure 7.29 reconstructs the in-plane mixing as isosurfaces of vorticity at Wy =±1.3

s�1, allowing for the temporal evolution of vorticity to be examined in greater detail for three

different views. Recall from chapter 5 that the dimension along the length of the bubble

path, Dsy, is a measure of the distance between the bubble and the measurement plane at that

instant in time. Since this value is large, the axes are normalised by the bubble diameter. The

z-axis is also flipped to better show the fluid motion. The PMMA surface is represented by

the white rectangle, and the bubble outline and velocity vector are shown at the origin.

The extent of fluid mixing offered by the sliding bubble is evident in figure 7.29. The fluid

motion in the streamwise plane persists for longer than 5 seconds after the bubble passage and

spreads up to 5 bubble diameters both laterally and normal to the surface. Various features of

the three dimensional wake structure are also visible, which exist in-plane as counter-rotating

regions of vorticity. This is consistent with the cross-section of the legs of a hairpin vortex

structure shed at the local path extrema. The first of these regions is denoted as A and is

shed at the local minimum of the bubble path as it enters the measurement plane at f = 90�.

At this location, the fluid in the wake is at high velocity, and is advected through the plane

rapidly. This fast-moving region remains within 2 bubble diameters of the surface. One

second after the bubble passage, a second structure B enters the plane on the opposite side of

the bubble path. This corresponds to the hairpin vortex shed at the previous local maximum

in bubble path being advected into the plane. This region is high in velocity and spreads

away from the surface, causing significant mixing. The secondary fluid structures observed

are consistent with the findings of Acarlar and Smith for a near-wall bluff body flow [98].

One example of this is the secondary vortex pair B0, which could be due to the interactions
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Figure 7.29: Three views of the streamwise reconstruction of vorticity for isosurfaces of Wy =±1.3
at sy = 60 mm for a = 30�, de = 5.8 mm, f = 95�. The surface is shown in white, while the z-axis is
flipped for clarity. A 3-D representation of the bubble is shown on the origin, while Dsy is the distance
between each slice of vorticity and the bubble at that point. The key structures A, B and B⇤ are also
highlighted.

between the hairpin vortex loops at B and the quiescent bulk fluid before the structure entered

the plane.
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7.2.2 Local Maximum sx: f ⇡ 270�

Next, the wake structures are studied for a test where the bubble enters the measurement

plane at f = 270�. In this case, the position sx = 0 is the local streamwise maximum of the

bubble. Ideally, this should be a mirror image of that at f = 90� but it will become apparent

that this is not the case, although the structures are broadly similar to those at f = 90�. This

section will focus on why these differences in behaviour occur.
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Figure 7.30: Raw images of the near wake averaged over time intervals 10 ms and 20 ms respectively,
starting at two instants in time 0 and 100 ms after the bubble passage for a = 30�, de = 5.8 mm,
f = 270�.

Figure 7.30 shows the flow visualisation results directly after the bubble has passed

through the plane. This is very similar to the f = 90� case, except with fluid now being shed

in the positive streamwise direction corresponding to the local maximum of the bubble’s path.

Again, the near wake of the bubble draws fluid towards the surface in the normal direction.

An analysis of the raw PIV video sequence again shows the vortex to the right of the bubble

to be advected upstream quickly.

Figure 7.31 provides the velocity at the same instances in time as for the f = 90� case. In

figure 7.31 (a), 0.2 s after the bubble passage, fluid in the near wake is advected in the positive

spanwise direction, but has decreased rapidly in magnitude by 0.5 seconds later in figure 7.31

(b). At the instant in time (b), a large region of fluid has entered the plane at sx < 0, moving

away from the surface in the normal direction. More fluid has entered the plane at DT = 0.5

s than was the case for the f = 90� test, which could be due to the bubble taking sharper

turns after shedding a large quantity of fluid from its wake, as in the “transitional behaviour”

regime discussed in chapter 6. Additionally, there is a ⇡ 5� uncertainty in determining the
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Figure 7.31: Fluid velocity magnitude Vmag =
p

U2 +V 2 [mm/s] in a perpendicular plane at sy = 60
mm for a = 30�, de = 5.8 mm, f = 270�, with each image Dt = 0.5 s apart and the first image t0 0.2
seconds after the bubble passage.

phase angle; this could also be a factor due to the dependence of the observed structures on

the phase angle. After 1 second (figure 7.31 (c)), the structure has split into discrete regions:

one acting close to the surface and one moving away from the surface in the normal direction.

Of the two, the former is greater in magnitude, meaning that as this structure evolves, it

does so predominately in the spanwise direction, meaning there is less motion normal to
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the surface than for f = 90�. This behaviour is consistent with the bubble taking a shorter

wavelength path, shedding more fluid in the spanwise direction at each sharp path extremum.

This causes an affected region in the spanwise plane of up to 6 bubble diameters from where

the bubble entered the plane. At Dt = 1.5 s after the bubble passage in figure 7.31 (d), the

structure has evolved to a single region moving solely in the negative spanwise direction,

with little fluid motion in the normal direction, aside from a secondary structure that has

detached from beneath the primary region. Further in time (figure 7.31 (e) and (f)), these

regions dissipate in strength.

The vorticity in the perpendicular plane reveals that as the high velocity region enters the

plane in figure 7.32 (b), its cross section is initially a combination of two counter-rotating

vortex pairs. At Dt = 0.5 s and Dt = 1 s, the primary vortex pair moves away from the surface

in the normal direction and the secondary pair remains in relatively close proximity to the

surface. Further in time, the vortex pairs dissipate rapidly. It has previously been ascertained

that each vortex pair corresponds to the legs of a hairpin vortex. In this case the second

vortex pair could be as a result of the bubble shedding a large quantity of fluid as it undergoes

transitional behaviour. Thus, although the fluid motion induced by the bubbles at f = 90�

and f = 270� is broadly consistent, some deviations exist. This is likely due to the wake

being a complex, three-dimensional structure which varies in velocity with f , while previous

work indicated the amount of liquid shed by the bubble at each path extrema can vary [68].

The reconstruction of the vortical structures at Wy =±1.3 s�1 in the streamwise direction

for f = 270� is provided in figure 7.33. Initially, clockwise vorticity emanates from the right

of the bubble. This mixing continues several diameters downstream, and is visible at the

location A. The in-plane mixing of this structure does not last for a significant time, as this

fluid is advected rapidly out of plane. At 25 bubble diameters downstream, the large-scale

structure B enters the plane. This structure can be split into 3 vortex pairs, starting with the

pair B, which appears in the measurement window comparatively far from the surface and

continues to spread into the bulk fluid normal to the surface. Next is the high speed fluid,

B0, which starts close to the surface under the pair B. Several bubble diameters downstream,

a second pair B00 enters the plane in the negative spanwise direction. These two secondary

structures join together in time.
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Figure 7.32: Fluid vorticity Wy =curl(U) [1/s] in a perpendicular plane at sy = 60 mm for a = 30�,
de = 5.8 mm, f = 270�, with each image Dt = 0.5 s apart, with the first image t0 0.2 seconds after the
bubble passage.

7.2.3 Local Mean sx: f ⇡ 0�

The final test examined in the perpendicular plane is f ⇡ 0�, or the mean spanwise displace-

ment. The near-wake visualisation in figure 7.34 reveals a clockwise rotating region that

overshoots the bubble path in the positive spanwise direction, corresponding to the vortex
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Figure 7.33: Three views of the streamwise reconstruction of vorticity for isosurfaces of Wy =±1.3 at
sy = 60 mm for a = 30�, de = 5.8 mm, f = 270�. The key structures A, B, B0 and B00 are highlighted.

shed at the previous local maximum. This initial region is greater in magnitude than either of

those observed when the phase angle was at the local extrema in path. This can be explained

by considering that the near wake shed at the previous local maximum is initially advected

into the plane, in contrast to the tests at the local extrema, wherein the near wake is rapidly

advected out of plane.
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Figure 7.35 shows the velocity for f ⇡ 0�. Note that the flow structures in this plane are

provided at later instances in time than for the previous two tests, as more interesting far wake

behaviour is observed. Furthermore, the high velocity in the near wake means that it is not

possible in this case to perform effective PIV until 0.3 s after the bubble passage, as opposed

to the 0.2 s previously chosen. The scale of the colour bar for this test has also been reduced

slightly in order to show the far wake structures better, while the large range in spanwise

motion means the x-axis limits change between figures. At the time t0 in figure 7.35 (a), the

clockwise rotating region acting in the positive spanwise direction is visible, introducing a

large quantity of fluid to the surface in this plane. One second later (figure 7.35 (b)), the

clockwise motion continues in the positive spanwise direction. The fluid velocity magnitude

has reduced significantly at the location of the primary vortex since it has been advected

out of plane. At Dt = 2 s (figure 7.35 (c)), this structure has decreased further in strength,

dying out completely by Dt = 3 s in figure 7.35 (d). At this point, the wake shed at the

previous local minimum in path (i.e. with a phase angle delay of 270�) enters the plane. The

fluid in this region is low in velocity due to viscous dissipation, but can still be observed

to move away from the surface, forming a coherent structure that exists up to five seconds

after the passage of the bubble (figure 7.35 (e) and (f)). Fluid motion in this plane acts over a

significant area, spanning 8 bubble diameters in the spanwise direction.

The vorticity for this test in figure 7.36 can be seen to have a high magnitude in the near

wake but a low magnitude in the far wake, hence the colour bar axis limits are reduced to

better show the latter. The complex vortex pairs that exist in the near wake are the cross-
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Figure 7.34: Raw images of the near wake averaged over time intervals 10 ms and 20 ms respectively,
starting at two instants in time 0 and 100 ms after the bubble passage for a = 30�, de = 5.8 mm,
f = 0�.
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Figure 7.35: Fluid velocity magnitude Vmag =
p

U2 +V 2 [mm/s] in a perpendicular plane at sy = 60
mm for a = 30�, de = 5.8 mm, f = 0�, with each image Dt = 1 s apart and the first image t0 0.3
seconds after the bubble passage.

section of intricate mixing structures and have been observed previously for the other phase

angles. The subsequent structures that enter the plane take the form of counter-rotating pairs

that temporally increase in size but decrease in strength.

The reconstructed isosurfaces of vorticity are shown for this test in figure 7.37. To identify

the low-strength, far-wake structures, a lower magnitude isosurface is chosen in the bottom
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Figure 7.36: Fluid vorticity Wy =curl(U) [1/s] in a perpendicular plane at sy = 60 mm for a = 30�,
de = 5.8 mm, f = 0�, with each image Dt = 1 s apart and the first image t0 0.3 seconds after the
bubble passage.

image, of Wy =±0.8 s�1, while the top two images are Wy =±1.3 s�1 as before. The far

wake structure is only shown in the bottom image, as the reduced scale of the image results

in lower resolution. The fluid disturbance caused by the near wake of the bubble, A, is greater

in velocity and persists for a longer time than the corresponding region A for f = 90� and

270�, forming the coherent pair A0. This leads in to the second primary region that enters the
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Figure 7.37: Top two views are of the streamwise reconstruction of vorticity for isosurfaces of
Wy =±1.3, bottom Wy =±0.8 at sy = 60 mm for a = 30�, de = 5.8 mm, f = 0�. The key structures
A, A0, B and C are also highlighted.

plane at B, which corresponds to fluid shed from the previous local maximum in path. This

fluid enters the plane earlier than for the f = 90� or 270� cases, and its motion remains close

to the surface. Finally, a greater distance downstream of the bubble, a third structure C enters

the plane, which is the fluid shed at the previous local minimum of the bubble path. This far

wake structure is consistent with those seen in the previous tests in that it is a greater distance
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from the surface, extending up to four bubble diameters away.
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Figure 7.38: Sketch explaining the variation in the flow structures observed in the perpendicular PIV
measurement planes at f = 0� and f = 90� at two times t0 and t1 approximately 0.5 s apart. The
bubble location and path are provided, and the arrows indicate the motion of the shed fluid in the
bubble wake.

A sketch showing the dependence of the wake structures observed on the phase angle

is provided in figure 7.38. The bubble and its path are shown for both phase angles at two

instants in time, t0 and t1. The direction of the bubble wake is indicated on the figure by

means of arrows; this is shed from the bubble at the local path extremum and continues

to overshoot the path in the spanwise and length directions. When the bubble enters the

plane at f = 0�, high velocity fluid from the near wake shed at the previous local maximum
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(f = 270�) follows soon after, and is advected through the plane and in the positive spanwise

direction. This results in a high magnitude region of vorticity in the near wake for the f = 0�

case. At some time t1 later, the wake shed at the previous local minimum of path (f = 90�)

enters the plane, with low velocity. For the bubble at f = 90�, the wake separates from the

bubble as it enters the plane; however, the momentum of the bubble means that this structure

is advected through the plane rapidly and appears lower in magnitude than the f = 0� test. At

a time t1 later, the wake structure shed at the previous local maximum (f = 270�) enters the

plane. Although the structures observed at different phase angles vary slightly, the isosurfaces

of vorticity presented in the current section are indicative of a wake structure that separates

from the bubble at the extrema of bubble path and spreads normal from the surface. This

initially causes a significant disturbance of the bulk fluid in the near wake, which acts close to

the surface. Later in time, the wake structure decreases in strength but spreads away normal

to the surface, causing a large affected region of fluid.

7.3 Summary

This chapter has investigated the flow structures in the wake of both single sliding bubbles

and in-line bubble pairs. Measurements have been performed in 3 planes for a range of bubble

diameters and surface inclination angles, although the majority of the findings presented

relate to a = 30�. Two separate parallel measurement planes have been used to understand

the motion of the bubble wake in the direction of the bubble’s momentum. The overall wake

structure deduced from PIV velocity and vorticity fields consists of a near wake that moves in

close association with the bubble, which forms a recirculation region to the rear of the bubble.

Fluid separates from this near wake at twice the path frequency at each extremum of path

displacement. In the normal direction, fluid rolls up over the bubble base, moving away from

the surface in a similar fashion to the flow over near-wall bluff bodies discussed in chapter 2.

The far wake takes the form of asymmetrical, oppositely-oriented hairpin vortices that spread

into the bulk fluid. This vortical structure bears some similarity to the hairpin vortices shed

by near-wall bluff bodies and freely rising bubbles. However, the flow structures differ from

rising bubbles as they are constricted by the presence of the surface, while they differ from

near-wall bluff bodies in that they shed at alternating sides of the bubble due to the bubble
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path oscillations.

In a plane perpendicular to the bubble, streamwise PIV measurements have revealed

periodically shed vortices that develop in coherent pairs. In the recirculation region to the rear

of the bubble, fluid is also drawn towards the surface. These vortices spread outwards into the

bulk fluid, increasing in size but decreasing in strength rapidly due to viscous dissipation and

out-of-plane motion. The data in this plane show the extent of the mixing offered by a single

sliding bubble, creating an affected region normal to the surface many bubble diameters in

size, and fluid motion persisting for several seconds after the bubble passage. The point on

its oscillating path through which the bubble enters the measurement plane, represented by a

phase angle, affects the nature and strength of the wake structures observed.

Additionally, the effect of introducing a bubble pair to the surface was to promote fluid

mixing. However, whether this enhanced fluid mixing has a positive effect on convective heat

transfer rates from the surface remains to be seen, since the interactions between the bubble

and the thermal boundary layer will lead to further complexity. This will be addressed in the

following chapter.
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Chapter 8

Heat Transfer

This chapter presents surface temperature and convective heat flux measurements for single

and multiple sliding bubbles by solving the energy balance presented in section 5.3. This is

of relevance for the current study since many of the applications of sliding bubbles concern

convective heat transfer. The review of the literature in chapter 2 revealed the effectiveness

of sliding air bubbles at enhancing heat transfer at relatively small superheats. This chapter

will explore this heat transfer enhancement for air bubbles, with a plate inclined at a = 30�

and de = 5.8�7.2 mm; the spatial and temporal evolution of the surface temperature will be

presented and compared to those of the literature. Section 7.2 revealed that introducing a

pair of bubbles in an in-line formation to the surface caused improved mixing of the bulk

fluid, although it has been noted that this may not necessarily result in enhanced heat transfer.

Thus, the key objective of this chapter is to understand the role that bubble-wake interactions

play in convective cooling. This will provide a basis for future optimisation of two-phase

air-water convective heat transfer.

As the temperatures of the fluid body and the heated surface differ, a thermal boundary

layer develops at the surface. With increasing distance from the leading edge (in this case

the base of the foil section), the effects of heat transfer spread further into the fluid and the

thermal boundary layer grows. For vapour bubbles, contributions to the overall heat transfer

have been found to come from the evaporation of the liquid micro-layer present between the

bubble and heated surface and from disturbances to the thermal boundary layer caused by the

motion of the bubble. For the gas bubbles considered in the current study, all convective heat
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transfer is due to the bubble-induced bulk fluid motion. One key parameter in this case is the

surface-to-fluid temperature difference, Te. In the current study, Te is kept intentionally low

at ⇡ 10�C to understand the convective effects of the air bubbles and prevent any alternate

modes of heat transfer known to occur at larger Te, such as nucleate boiling. Note that this

value changes somewhat due to the developing thermal boundary layer on the underside of

the surface, as was observed in section 5.3.2.

8.1 Single Bubbles

In this section, the surface temperature and convective heat flux are presented for single

bubbles of diameter de = 5.8 and 7.2 mm sliding under a heated surface inclined at a = 30�

to the horizontal, with a mean Te ⇡ 10�C. To account for the developing thermal boundary

layer and allow for easy comparison between tests, the temperature plots are expressed in

terms of the non-dimensional surface temperature DT ⇤. This is given by:

DT ⇤ =
Ts �T•
T0 �T•

(8.1)

where Ts is the local instantaneous surface temperature, which was shown on figure 5.12.

T0 is the surface temperature with no bubble present and T• is the bulk fluid temperature.

Therefore, DT ⇤ is equal to 0 when the surface is at the bulk fluid temperature and 1 when it is

at its original temperature. The convective heat flux is similarly non-dimensionalised and can

be considered as an enhancement ratio of forced to natural convection, q⇤:

q⇤ =
q00conv
q00nat

(8.2)

where q00conv is the local, instantaneous convective heat flux and q00nat is the convective heat

flux with no bubble present.

8.1.1 Convective Heat Flux: de = 5.8 mm

Figure 8.1 shows the dimensionless surface temperature and enhancement ratio at three

instances in time 0.2 s apart, consistent with the timeframe of the sz = 3 mm plane PIV results
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Figure 8.1: Dimensionless temperature DT ⇤ (top) and convective flux enhancement q⇤ (bottom) for
de = 5.8 mm, a = 30� and a mean superheat Te = 10�C, taken at instances in time corresponding to
t = 0 s (a,d), t = 0.2 s (b,e) and t = 0.4 s (c,f).

of section 7.1. Immediately apparent is the excellent agreement between the surface cooling

patterns and the wake structures previously observed. The bubble forms a “snake”-like cooled

region that is advected along the length and spanwise directions, overshooting the bubble

path. In figure 8.1 (a), the bubble is at the position sy = 60 mm. In the wake of the bubble is
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an extended region of reduced surface temperature, which is approximately the width of the

bubble base immediately to the rear of the bubble and widens to approximately 1.5 bubble

diameters at the base of the interrogation window. The lowest surface temperature is observed

at the base of the interrogation window. In this far wake, the surface temperature distrubtion

takes the form of a series of small elliptical regions within the wake. The near wake of the

bubble introduces fresh fluid from the bulk to the surface; this can result in complex far-wake

surface cooling patterns due to interactions between this fluid and the thermal boundary layer.

Thus, a secondary region of surface cooling can be observed emanating from the wake at the

region highlighted on figure 8.1 (a). This “plume” shaped structure is not visible in the fluid

motion tests, and is likely the result of a secondary hairpin vortex interacting with the fluid at

the boundary layer.

The bubble passage results in regions of significant local convective heat flux enhancement

relative to natural convection levels. These regions start directly to the rear of the bubble and

can extend further downstream than the near wake (4-5 bubble diameters rather than 1-2).

Typically, large convective heat transfer corresponds to regions with a high fluid velocity,

although some enhancement can be observed in the slow-moving far wake. At the rear of

the bubble, the convective heat transfer forms a triangular-shaped region that starts at the

major axes of the bubble. This enhancement is consistent with a recirculation region at the

rear of the bubble, as observed by Qiu & Dhir [89]. Downstream of the bubble, local heat

flux enhancements of up to 6 times natural convection levels are visible, corresponding to

the outside of the wake structure shed at the previous local minimum in path. These take

the form of small, elliptical-shaped regions of cooling within the wake. On the inside of

the bubble path is a small region of suppressed heat flux, where the local temperature is

increased. These regions will be examined in greater detail later. Further downstream in the

far wake, the heat flux has reduced to ⇡ 2.5 times that of natural convection levels at the base

of the interrogation window.

Figure 8.1 (b) and (e) show the results 0.2 s later, at which time the bubble is at sy ⇡ 100

mm. The surface temperature in the far wake has reduced further, although the convective

heat transfer enhancement has dropped to under twice that of natural convection levels. Note

that the local convective flux at the bubble, shown in figure 8.1 (e), is lower than that in the

first image (d). This is most likely due to the increased thickness of the thermal boundary
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layer at the top of the foil, which means that the fluid being drawn in towards the surface is

at a higher temperature, thereby reducing the relative enhancement effect. Another region

of suppressed heat flux is visible on the inside of the bubble path. Finally, a further 0.2

seconds later in figure 8.1 (f), the convective heat flux in the far wake has reduced to 1.5 times

that of natural convection and the minimum surface temperature in figure 8.1 (c) remains at

DT ⇤ = 0.6, which corresponds to a decrease of 4�C. As the cooled region evolves temporally,

it is advected up the foil at a more significant rate than the fluid motion tests; this is due to the

motion of the thermal boundary layer at the surface. In the far wake, some smaller regions of

low surface temperature begin to join together into larger elliptical regions.

 (a) ΔT*  (b) q*  (c) ΔT* and q* 

direction of 
wake motion

enhancement 
in reciruclation 

region

low 
temperature

high heat 
transfer at 

previous local 
maximum

convective 
heat transfer 
on outside of 

wake

Figure 8.2: Sketch of (a) DT ⇤ and (b) q⇤ in support of figure 8.1, revealing the features of interest for
heat transfer enhancement. These two are spatially mapped in (c).

Figure 8.2 provides supporting sketches of DT ⇤ and q⇤ distributions corresponding to the

first instant in time in figure 8.1. Note that the surface temperature in (a) does not decrease

significantly until some time after the bubble passage: the minimum surface temperature in

this region is observed at the previous local minimum in bubble path. This minimum surface

temperature corresponds to a local maximum in convective heat transfer in figure 8.2 (b),

which exists as a series of smaller enhanced areas which are conceivably linked to different

parts of the complex hairpin vortex structure impacting the surface. Although the temperature

observed at the bubble is not as low as in the far wake, the thermal gradients are large at

this location. This results in significant convective heat transfer in the near wake as the

comparatively cool bubble and its recirculation region remove heat from the surface. Finally,

when DT ⇤ and q⇤ are spatially aligned, as shown in figure 8.2 (c), we can observe that the

convective heat transfer enhancement takes place on the outside edge of the bubble wake.
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This implies that the maximum convective heat transfer corresponds to the “tongue” shaped

regions on the outside of the bubble path, which were described by Brücker and observed

from the fluid vorticity data in chapter 7. These similarities will be discussed further in

section 8.1.2.
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Figure 8.3: Dimensionless temperature DT ⇤ (a) and convective flux enhancement q⇤ (b) for de = 5.8
mm, a = 30�, Te = 10�C along a slice of the surface at sy = 45 mm, with data shown at 20 ms intervals,
where 0 ms corresponds to the bubble about to enter the slice.

Figure 8.3 shows the time-resolved dimensionless temperature difference and the dimen-

sionless heat flux enhancement for this test along a horizontal line at sy = 45 mm, taken at

intervals 20 ms apart. For t = 0 s, which is just before the bubble crosses the line, DT ⇤ and

q⇤ are both equal to unity. 20 ms later, by which time the bubble has entered the line, there is

relatively little change in surface temperature, although there is considerable convective heat

transfer enhancement that occurs across a distance approximately that of the bubble diameter.

As time elapses (up to 60 ms), this convective heat transfer initially increases in the near wake

up to 6 times natural convection , with a corresponding decrease in surface temperature to a

minimum of DT ⇤ = 0.84. As the position sy = 45 mm denotes an approximate local minimum

in spanwise position, it follows that this cooled fluid is advected in the negative spanwise
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direction. Also observable are the regions of suppressed heat flux, where in this case q⇤ drops

to below natural convection levels. These regions of suppressed heat transfer are found at

the same locations where the initial heat transfer enhancement occurs, and correspond to

a recovery in surface temperature. Later in time, the local convective flux levels steadily

reduce from q⇤ = 4 down to under q⇤ = 2, while the temperature slowly continues to drop to

under DT ⇤ = 0.8. The local evolution of convective heat transfer is similar to that observed

in chapter 7 for fluid motion, although the cooling effects persist for a longer time.
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Figure 8.4: Dimensionless temperature DT ⇤ for de = 5.8 mm over a 60⇥60 section of the far wake at
three instances in time 1.875 s apart.

In the far field, the convective heat transfer enhancement factor returns to unity but the

gradual increase in surface temperature continues, since it takes time for the surface to recover

from the thermal depression. As the foil begins to recover, the cooled regions experience

an advection more significant and complex than was evident from the fluid motion tests

in chapter 7; this is due to the natural convection boundary layer on the underside of the

foil moving the cooling structures up the foil. Figure 8.4 shows the surface temperature

distribution of the surface over three instants in time 1.875 s apart, where the instant in

time in figure 8.4 (a) corresponds to that of figure 8.1 (c). Over time, the local minimum

in temperature observed increases, as too does the size of the affected areas. The smaller

elliptical areas of low surface temperature have now joined together fully at each local

extremum of the wake and are advected significantly upstream. Upstream of these local

extrema, the secondary “plume” shaped cooling regions are visible, which are likely the

further interaction of the hairpin vortices with the thermal boundary layer.
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Figure 8.5: The mean (�) and minimum (�) dimensionless surface temperature DT ⇤ as a function of
time for a = 30�, de = 5.8 mm.

Figure 8.5 shows the spatially averaged and minimum dimensionless surface temperatures

for this test. Before the introduction of the bubble, the minimum and averaged normalised

surface temperatures are approximately unity. As the bubble enters the interrogation window,

the average temperature slowly decreases, while the minimum temperature sharply decreases.

This minimum temperature is observed a significant distance downstream of the bubble in

the far wake. At 0.2 s after the recording started, the minimum temperature begins to slowly

recover, although the mean temperature continues to fall due to the cooled region spreading

laterally and affecting a larger area. The surface temperature recovers slowly from this

thermal depression, taking between 8-15 seconds to recover fully back to its initial values.

In order to explore further the complex process of heat flow associated with a bubble

sliding under the heated surface, the instantaneous convective heat flux for the 5.8 mm bubble

and its near wake is shown at 10 ms intervals in figure 8.6. In general, as the bubble travels

further up the surface, the local maximum heat transfer decreases in magnitude due to the

increasing thermal boundary layer thickness. As the bubble traverses the surface, distinct

variations occur in the convective heat flux, which are linked to the phase angle of the bubble.

As was discussed for figure 8.1, convective heat transfer starts at the bubble major axes and

extends back in a v-shaped region, resulting in comparatively little convective heat transfer at

the base of the bubble minor axis. Downstream of the bubble, the convective heat transfer

enhancement takes the form of small elliptical regions within the near wake, which are

conceivably linked to the different components of a hairpin vortex structure impacting the

surface. This occurs on the outside of the wake. On the inside of the wake, small regions
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Figure 8.6: Convective flux enhancement, q⇤, in the near wake for a = 30�, de = 5.8 mm provided at
instances in time 10 ms apart. The regions of interest A and B are also shown.

of suppressed heat transfer are visible. At some instances, this value is sufficiently low as

to be negative. Why does this occur? Consider the region of negative convective flux, A,

identified in figure 8.6. Prior to this image sequence, the bubble passed over the point A as it

approached its local minimum in path, resulting in high convective flux levels and a decrease

in surface temperature. However, upon reaching its local minimum, the bubble changes

direction and its near wake separates, continuing to move in the negative spanwise direction.

Thus, although the bubble passes over A, its near wake does not. Since there is now no cool

fluid being brought to the surface at the location A, its surface temperature recovers, resulting
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in suppressed or even negative convective heat flux.

Continuing the image sequence, a second suppressed region appears at the inside of the

next local extremum, denoted as B. This behaviour thereby repeats as the bubble traverses

the surface; namely the development of regions of negative heat flux at regions where the

bubble passed through but its wake does not. Note that this suppressed convective heat

transfer only occurs at regions in the wake where the surface temperature has already been

reduced (i.e. following a period of enhancement). This can be observed on the surface

temperature line plot in figure 8.3, and means that the overall effect of the sliding bubble is to

increase convective heat transfer and decrease the mean surface temperature. Despite this,

the instantaneous local heat flux levels are nuanced.
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Figure 8.7: Logarithmic plot of the dimensionless temperature DT ⇤ (top) and convective flux en-
hancement q⇤ (bottom) for de = 5.8 mm, a = 30� as a function of time for the key location A on
figure 8.6.

Figure 8.7 shows the evolution in DT ⇤ and q⇤ at the point A on figure 8.6 as a function of

logarithmic time. This can be split into four zones. First, in the zone (i), there is no bubble at

A, with DT ⇤ and q⇤ ⇡ 1. As the bubble passes over point A (ii), there is a decrease in surface

temperature and a corresponding enhancement in convective flux. After the bubble passage,
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the near wake does not pass through A, which results in the surface recovering its temperature

and a decrease in the instantaneous heat flux to below natural convection levels (iii), which is

observed in figure 8.6 (b). Further in time (iv), the far wake downstream has been advected

into A, resulting in a decrease in surface temperature and an increase in convective flux to 1.5

times natural convection levels. Eventually, DT ⇤ and q⇤ tend back towards unity, although

the former takes longer to achieve.

It is now possible to make a comparison between the values obtained for DT ⇤ and q⇤ with

those of the literature. Donnelly et al. [4] found a normalised surface temperature DT ⇤ = 0.3

in the far wake for de = 5.8 mm, which is lower than the 0.6 observed in the current study.

However, this was for a case with the surface at a that was closer to the water temperature

(Te ⇡ 6�C). The cooling effect of ellipsoidal bubble was ⇡ 4�C, the same as the current study.

The authors found a corresponding heat transfer coefficient of 6 times natural convection

levels, which is largely consistent with that observed here. Finally, the characteristic time

scale of heat transfer coefficient was found by Donnelly et al. to be approximately 8-10

seconds. This is in agreement with the work of Zun et al. [49]. The current study indicates

that this is dictated by the temperature difference DT , since the convective heat flux decreases

more rapidly than this (see figure 8.7). It is worth noting that although there is good agreement

between these three studies, the rate of surface temperature recovery varies depending on

the heat capacity of the foil and the surrounding liquid. Thus, the temperature recovery is

specific to each experimental setup. For instance, if the bubble were sliding over a heated

block, this recovery in temperature would be very different. For a bouncing bubble impacting

a heated surface, Donoghue et al. [80] observed a maximum enhancement of ⇡ 18 times

natural convection levels, significantly larger than the current study. However, this value was

only observed momentarily at the bubble impact. Additionally, the large bubble velocity (UT

= 0.33 m/s) and high superheat of Te ⇡ 30�C contributed to this large local enhancement.

Thus, the convective heat transfer measurements obtained for de = 5.8 mm are consistent

with the literature on air bubbles.
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8.1.2 Convective Heat Flux: de = 7.2 mm

The influence on DT ⇤ and q⇤ of increasing the bubble diameter to 7.23 mm is shown in

figure 8.8. As was evident from the fluid motion results, the increased bubble velocity results

in greater fluid advection. This means a larger affected area of enhancement, although the

surface cooling and heat flux enhancement levels are largely similar to the 5.8 mm test.

Additionally, the greater bulk motion of the fluid leads to slightly larger values of convective

flux in the far wake. Also identified on figure 8.8 is the formation of secondary shed structures

at the maximum of the bubble path. Note again that the convective heat transfer plots take

the form of small, elliptical regions of cooling that are visible along the outside of the bubble

path up to 5 diameters downstream of the bubble. The shape of the heat transfer profiles

is again in agreement with the equivalent PIV results, and evolve in the far wake to form

isolated, ellipsoidal regions of cooling, joined by regions of less intense cooling. At the first

instant in time, the v-shaped region of cooling in the near wake is very large, and is followed

downstream by significant convective cooling up to 5 bubble diameters downstream. Over

the three images, there also appear to be fewer regions of suppressed heat transfer. This will

be discussed shortly. At a wall superheat of 10�C, it appears that the effect of increasing the

bubble volume on surface temperature is to provide surface cooling over a larger area, rather

than a decrease in the local temperature.

Figure 8.9 shows these trends over a horizontal line at sy = 60 mm. Although the minimum

DT ⇤ is only slightly lower than that of the de = 5.8 mm test, the affected area is larger, acting

over an area two bubble diameters in size at 0.2 s after the bubble passage. At sy = 60 mm,

the convective heat transfer does not drop below natural convection levels. The magnitude of

q⇤ at these instants in time is slightly lower than the previous test, although the global values

of convective heat flux are not significantly different between these two bubble volumes, only

the area over which it acts.

The far field temperature plots for de = 7.2 mm are shown in figure 8.10. The cooled

structures in this case spread across the entire interrogation window, while structures from

the previous local minimum and local maximum in path are advected into the measurement

region. The fluid shed at the previous local minimum forms a “teardrop” shaped cool region,

consistent in shape with the head of a hairpin vortex impacting the surface. At the same
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Figure 8.8: Dimensionless temperature DT ⇤ (left) and convective flux enhancement q⇤ (right) for
de = 5.8 mm, a = 30�, DT = 10�C along a slice of the surface at sy = 45 mm, with data shown at 20
ms intervals, where 0 ms corresponds to the bubble entering the slice.

time, the “plume” shaped cooled region shed by the previous local maximum has entered the

window, having been advected by 60 mm up the foil. The surface-averaged and minimum

temperatures for de = 7.2 mm are shown in figure 8.11. The minimum temperature is similar

to that for the de = 5.8 mm bubble, while the mean temperature is only slightly larger in this
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Figure 8.9: Dimensionless temperature DT ⇤ (left) and convective flux enhancement q⇤ (right) for
de = 7.2 mm, a = 30�, Te = 10�C along a slice of the surface at sy = 60 mm, with data shown at 20
ms intervals, where 0 ms corresponds to the bubble entering the slice.
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Figure 8.10: Dimensionless temperature DT ⇤ in a 60⇥60 section of the far wake at three instances in
time 1.875 s apart for de = 7.2 mm.

case, since the temperature is being averaged over a comparatively large area. Again, these

temperatures are specific to this particular apparatus.

Figure 8.12 shows the convective heat flux in the near wake at 10 ms intervals for de = 7.2

mm. At this bubble size, there is significant convective heat flux in the far wake outside of
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Figure 8.11: The spatially averaged mean (�) and local minimum (�) dimensionless surface tempera-
ture DT ⇤ as a function of time for a = 30�, de = 7.2 mm.

the viewing window. It is also clear that there is a relationship between the bubble’s phase

angle and the local convective heat transfer enhancement in the near wake. At the locations

in the bubble path where the near wake has just separated from the bubble (i.e. directly after

the extrema in path), high convective heat flux is observed in the near wake. As the bubble

returns from this extremum to its mean position, there is little convective heat transfer in the

near wake, although it persists at the previous local extremum. At the local extrema in path,

the regions in convective heat transfer are also large in size, most noticeable at the region

A. As the bubble traverses the surface, there are some regions of suppressed heat transfer,

although these are smaller in size and magnitude than for the de = 5.8 mm test and dissipate

rapidly. Recall that suppressed heat transfer is observed at locations on the surface where the

bubble passes but its wake does not. Hence, the increased advection and affected surface area

associated with the 7.2 mm bubble means that there are fewer locations along the bubble’s

path where this occurs. Finally, the cooling structure is less stable for this bubble volume;

fluid often separates from the wake at the extrema in path to form cooling “plumes”.

To this point, the cooling structures in the wake of a single sliding bubble have been

discussed while making reference to the fluid motion experiments from chapter 7. Figure 8.13

looks at this mechanism in greater detail by spatially aligning the bubble wake with the

thermal measurements. This is a somewhat qualitative comparison, since minor fluctuations

in the local heat transfer are linked to a complex three-dimensional wake that features subtle

differences between tests. Additionally, secondary cooling structures have been found in the

case of a heated surface that do not occur under adiabatic conditions. Despite this, mapping
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Figure 8.12: Convective flux enhancement, q⇤, in the near wake for a = 30�, de = 7.2 mm provided
at instants in time 10 ms apart. The regions of interest A and B are also shown.

the two experiments remains instructive. Figure 8.13 (a) shows the local fluid velocity

mapped to the surface temperature. The far wake experiences a significant thermal depression

with little fluid motion or convective cooling. The reason for this is that the bubble and its

near wake initially introduces cool fluid to the surface at high velocity. In the far wake, the

fluid has reduced in velocity but is still below the surface temperature. The specific heat

capacity of the water and the resistance of the foil mean that it takes some time to recover

from this thermal depression. Also observed is the difference between the two measurement

setups, wherein the secondary “plumes” due to the interaction between the wake and the
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Figure 8.13: PIV velocity (a) and vorticity (b) for a = 30�, de = 7.2 mm. Spatially mapped onto these
plots are the normalised surface temperature (a) and convective heat flux (b) from the heated tests.

thermal boundary layer are visible only for the heated tests.

Figure 8.13 (b) shows the instantaneous fluid vorticity mapped convective heat flux at

the same instant in time. The highest convective flux identified at this instant is observed

at the vortex that has separated from the near wake at the previous local minimum in path.

This corresponds to the dominant component of vorticity at the structure that has separated

from the bubble that forms a “tongue” shape. This flow region was identified as a key feature

in the near wake, both by Brücker [39] and in the fluid motion study of chapter 7. The

perpendicular plane PIV experiments showed a near wake structure that drags fluid towards

the surface, consistent with the recirculation region to the rear of the bubble identified in the

literature. The convective heat transfer experiments reveal that it takes a short time for this

fluid to impact this surface. This indicates that it is the recirculation region to the rear of

the bubble, rather than the bubble itself, that is contributing most significantly to convective
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heat transfer. These regions of enhanced cooling do not last for an extended time due to

the viscous dissipation of the fluid, meaning that the mode of heat transfer in the far wake

reverts to natural convection. This natural convection is still larger than the base levels, since

the fluid introduced to the surface by the bubble is cooler. In time, this fluid increases in

temperature, meaning the heat transfer settles to the original natural convection levels.

8.2 Multiple Bubbles

Section 8.1 showed the convective heat flux and surface cooling associated with single

bubbles at a = 30�, revealing surface cooling that is dependent on the bubble volume and

where the bubble is on its path. Thus, it is likely that the introduction of an in-line bubble

pair will add further intricacy to the heat flux results due to the bubble-wake interactions

discussed in section 7.1.3. The surface temperature and heat flux for an in-line bubble pair

are provided in figure 8.14, first at three instances in time 0.2 s apart. In this case, the leading

and trailing bubble major axes are highlighted on the figure for clarity. It is apparent that

the cooling regions adopt a configuration consistent with the fluid motion tests, although

the convection of the wake is greater. A convective heat flux pattern is observed that at first

appears a superposition of two single bubble tests in an opposite configuration, although the

local cooling at the trailing bubble is more complex. At the first instant in time (figure 8.14

(d)), a region of suppressed heat transfer has appeared in front of the trailing bubble just as it

prepares to intersect the leading bubble wake. At the second instant in time (figure 8.14 (e)),

there is a region of high convective heat flux just behind the trailing bubble, which has just

intersected the leading bubble wake. Finally, after a further 0.2 s the convective flux levels

have dropped significantly, while the surface slowly begins to recover its temperature. The

surface cooling forms a double-threaded pattern wherein the secondary plumes also interact

with the primary wake structure.

Figure 8.15 shows the time-resolved dimensionless temperature difference and the di-

mensionless heat flux enhancement at sy = 45 mm for an in-line bubble pair. The trends

here are similar to those of the equivalent local velocity plot in chapter 7, although the heat

transfer enhancements do not dissipate as quickly as does the fluid velocity. The leading

bubble enters the line at sx < 0 mm and the trailing bubble enters 20 ms later at sx > 0 mm .
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8.2. MULTIPLE BUBBLES

The surface cooling and convective flux for the leading bubble are advected in the negative

spanwise direction. After some time, the surface temperature begins to recover in the wake

of the leading bubble, resulting in suppressed heat transfer. This does not occur in the wake

of the trailing bubble. The far field temperature plots for the in-line bubble pair shown in
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Figure 8.14: Dimensionless temperature DT ⇤ (top) and convective flux enhancement q⇤ (bottom) for
a bubble pair with de = 5.8 mm, a = 30� and a mean superheat DT = 10�C, taken at instances in time
corresponding to t = 0 s, t = 0.2 s and t = 0.4 s.

215



8.2. MULTIPLE BUBBLES

−15 −10 −5 0 5 10 15
0

2

4

6

s
x

[mm]

q*

0 ms
20 ms
40 ms
60 ms
80 ms
100 ms
120 ms
140 ms
160 ms
180 ms
200 ms

−15 −10 −5 0 5 10 15
0.7

0.8

0.9

1

s
x

[mm]

∆
T*

temperature recovery
for leading bubble

suppressed heat flux
for leading bubble

only

(a )

(b)

Figure 8.15: Dimensionless temperature DT ⇤ (a) and convective flux enhancement q⇤ (b) for an in-line
bubble pair with de = 5.8 mm, a = 30�, DT = 10�C along a slice of the surface at sy = 45 mm, with
data shown at 20 ms intervals, where 0 ms corresponds to the leading bubble about to enter the slice.

s
x
[mm]

s y
[m
m
]

−20 0 20
40

60

80

100

s
x
[mm]

s y
[m
m
]

−20 0 20
40

60

80

100

s
x
[mm]

s y
[m
m
]

−20 0 20
40

60

80

100

∆ T*
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

(a ) (b) (c)

plumes

Figure 8.16: Dimensionless temperature DT ⇤ for an in-line bubble pair with de = 5.8 mm over a
60⇥60 mm2 section of the far wake at three instances in time 1.875 s apart.

figure 8.16 are consistent with the superposition of the temperature fields for two single

bubbles. Thus, structures from the previous local minimum and local maximum from each

bubble are advected into the plane, affecting a large area. In particular, the secondary “plume”

on the left hand side of the bubble wake is noticeable here.
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Figure 8.17: The mean (�) and minimum (�) dimensionless surface temperature DT ⇤ as a function
of time for an in-line bubble pair with a = 30�, de = 5.8 mm.

In terms of the global temperature decrease, as shown in figure 8.17, the introduction of

the second bubble does not decrease the minimum surface temperature noticeably more than

a single sliding bubble does. This is due to the opposite amplitudes of the bubble paths: for

the majority of the time, the bubbles are cooling different parts of the foil. When the bubble

paths do intersect, the complex interactions that occur can decrease the temperature, but this

effect is small. The spatially averaged surface temperature does decrease from the single

bubble case, although the magntiude of this effect depends strongly on the area over which

the temperature is averaged.

Figure 8.18 details the convective heat transfer enhancement in the near wake of the

trailing bubble at 10 ms intervals. The complex heat flux enhancement means the trailing

bubble major axis is provided on the images for clarity. The cooling structure evolves

dynamically due to bubble-wake interactions and to interactions between the bubbles and

the thermal boundary layer. As the leading bubble traverses the surface, it forms similar

regions of enhanced and suppressed convective cooling on the outside and inside of the

wake, respectively, as identified in figure 8.6. Initially, the trailing bubble is travelling in the

positive spanwise direction towards its mean in position. As the trailing bubble approaches

the leading bubble wake, a region of suppressed heat transfer appears just in front of the

trailing bubble, highlighted as A1 on figure 8.18. This region lasts for the next ⇡ 30 ms, until

the trailing bubble has intersected the leading bubble wake. Further on in time, the trailing

bubble exits the leading bubble wake and reaches its local maximum in path (figure 8.18 (d) –

(f)). At this time, a region of large convective heat transfer can be observed in its near wake,
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Figure 8.18: Convective flux enhancement, q⇤, in the near wake of an in-line bubble pair for a = 30�,
de = 5.8 mm provided at instances in time 10 ms apart. The regions of interest A and B are also shown.

marked as B1. This enhancement is consistent with single bubble behaviour. The next path

intersection contributes to the low heat transfer at the point A2 and later on a corresponding

region of high heat transfer, B2, appears in the near wake of the trailing bubble at the next

local minimum of path. Thus, the local convective heat transfer is at a minimum as the

trailing bubble approaches the leading bubble wake and is at its mean spanwise position,

while it is at a maximum as the trailing bubble leaves the leading bubble wake, approaching

its local maximum in path.

The key aspect to the convective heat transfer of an in-line bubble pair identified in
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Figure 8.19: Sketch of an in-line bubble pair that provides an explanation for the regions of suppressed
heat transfer identified in figure 8.18.

figure 8.18 is the suppressed convective flux that occurs where the trailing bubble intersects

the leading bubble wake. Figure 8.19 provides a sketch explaining this process. At the

instant in time t0, the leading bubble displaces the hot fluid initially at the surface, while

the recirculation region in its near wake draws cool fluid to the surface, thereby enhancing

the convective heat transfer. Now consider what happens at the later time t0. As the trailing

bubble intersects the leading bubble wake, it now displaces the cold fluid that the leading

bubble previously introduced to the surface. This leads to a small region of suppressed

heat transfer just ahead the trailing bubble passage, although the is still a zone of enhanced

convective heat transfer at the trailing bubble and in its near wake. As the trailing bubble exits

the leading bubble wake, it is now entering a region that has not yet been cooled, thereby

cooling in the same manner as a single bubble. As such, when considering the improved

turbulent mixing offered by an in-line bubble pair, it is important to take into account the

localised, transient regions of suppressed heat transfer, especially for two-phase applications

of such flows. These regions of suppressed heat transfer, however, do not reduce the overall

enhancement effect of the bubble pair.

Finally, the temporal evolution of the surface temperature and convective heat flux at

the location A1 from figure 8.18 are provided in figure 8.20. This can be split into four key

regions. First, there is a decrease in temperature and increase in local convective heat flux

corresponding to the first bubble entering the region A1 (i). As the trailing bubble approaches

this region, it displaces the cooler fluid at A1, which results in the surface temperature
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Figure 8.20: Logarithmic plot of the dimensionless temperature DT ⇤ (a) and convective flux enhance-
ment q⇤ (b) for an in-line bubble pair with de = 5.8 mm, a = 30� as a function of time for the key
location A1 on figure 8.18.

recovering and a decrease in the heat flux to below natural convection levels (ii). Next, the

trailing bubble enters the region, corresponding to a decrease in surface temperature and a

secondary increase in the local convective heat flux, although the latter is lower in magnitude

than that of the first bubble (iii). Finally, as the convective heat transfer is above natural

convection levels, the surface temperature continues to drop (iv).

8.3 Summary

This chapter has examined the enhancement in convective heat transfer from an inclined

heated foil during the transient sliding process for single bubbles of two bubble diameters

and for an in-line bubble pair for de = 5.8 mm at a wall superheat of Te = 10�C. This has

been investigated in terms of both the local and global variation in surface temperature in the

near and far wake. Additionally, the temporally changing convective heat transfer in the near

wake of the bubble was explored at a variety of locations along the bubble’s undulating path.

220



8.3. SUMMARY

A substantial variation in convective heat flux was found to occur in the near wake of the

bubble. Local convective heat flux levels of up to 14 kW/m2 were observed on the outside

of the bubble wake, while at the inside of the wake these flux levels could drop to below

natural convection levels, even becoming negative on occasion. This behaviour is attributed

to the wake structure, revealing the importance of the bubble wake in two-phase convective

heat transfer applications. Downstream of the bubble, a drop in foil temperature of ⇡ 4�C is

observed for some time, although the convective heat flux has reduced. This is due to the

near wake advecting cooler fluid from the liquid bulk to the surface. By spatially mapping

the surface heat transfer measurements to the previously obtained PIV velocity and vorticity

plots, it was possible to link regions of enhanced heat transfer to fluid features shed from the

bubble at the path extrema.

A key objective of this section is to understand the role that bubble-wake interactions

play in convective cooling. Introducing two bubbles to the surface in an in-line configuration

results in greater spatially averaged convective heat transfer, since the opposite paths the

bubbles take mean the convective cooling is spread over a larger area. However, it has been

found that as the trailing bubble intersects the leading bubble wake, it can displace the cool

fluid already at the surface and lead to momentarily suppressed heat transfer. Thus, although

the net effect of a bubble pair is to increase convective heat transfer rates, the coupled

interactions between the bubble, wake and boundary layer means that the instantaneous

values can fluctuate significantly. The relationship between the bubble mechanics, fluid

motion and heat transfer will be discussed further in the next chapter.
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Chapter 9

Discussion

This study has sought to improve our understanding of the physics of a sliding bubble, by

using a variety of experimental and analytical techniques. Chapter 6 presented a study of

the dynamics of single and a pair of sliding air bubbles: namely their motion, path and

shape. The bubble mechanics was explored both in terms of the centroidal and interfacial

behaviour. Chapter 7 detailed the flow field measurements in the wake of a single and a pair

of sliding bubbles using the particle image velocimetry technique in several measurement

planes. Finally, chapter 8 reported on the convective heat flux enhancement offered by sliding

bubbles.

Although these three aspects of bubble behaviour are measured separately using different

experimental methods, they are inextricably linked by the bubble wake. All of the results

observed in this study, be it the mechanics, bubble-bubble interactions, turbulent mixing or

heat transfer, can be related back to the bubble wake. In essence, a bubble and its wake have a

symbiotic relationship. This chapter will discuss the nature of this relationship with reference

to “Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions" by Fan & Tsuchiya

[13], an important resource on this topic.

It seems appropriate that the start point for this discussion should be the structure and

nature of the wake. While multiphase systems typically consist of bubble swarms, it is

possible to focus on the general case of a single bubble and its wake, and to consider

subsequently the effects related to its interaction with other bubbles or wakes. Recall from

chapter 2 that when the relative motion between the bubble and the fluid is small (i.e. de < 1
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mm), the contour of the bubble forms part of a fluid streamline. As the Reynolds number

increases, the flow will start to separate from the bubble, re-joining downstream to form the

wake. The mechanics within the wake are varied and complex, but it can generally be split

into two regions. First is the near wake, which travels in close association with the bubble.

This region is associated with the phenomena that occur near the body base, such as the

growth, formation and shedding of vortices. The remainder of the wake is downstream of

this and is referred to as the far wake, the structure of which does not depend strongly on the

type of body [13]. For a more rigorous description of the wake, see section 2.1.2.

The overall wake structure deduced from the PIV experiments was found to consist of a

near wake that moves in close association with the bubble, with fluid separating from this

near wake at twice the path frequency at each extremum of path displacement. In the near

wake, fluid is also drawn towards the surface. In the far wake, fluid spreads away from

the surface in the form of asymmetrical, oppositely-oriented hairpin vortices generated in

the near wake. This vortical structure bears some similarity to the hairpin vortices shed by

near-wall bluff bodies [98; 100; 101] and freely rising bubbles [24; 39; 41]. However, it

differs from rising bubbles in that it is constricted by the presence of the surface and differs

from near-wall bluff bodies since it is shed at alternating sides of the bubble due to its path

oscillations. Although this structure is consistent with most of those observed in the literature,

it deviates from the numerical study of Gaudlitz & Adams [47], who observed many hairpin

vortices shedding for each half-cycle in bubble path for a rising bubble. The authors claimed

that the deviation between their numerical data and published experimental studies was

due to the influence of surfactants in PIV experiments, citing experiments using Schlieren

photography in pure water to support this claim [37; 102]. This is at odds with the results

observed in this study, where the introduction of surfactants was found to fundamentally

alter the wake and path of the bubble, whereas the use of PIV particles did not result in a

transition to this contaminated type of behaviour. An alternative explanation of the apparent

discrepancy between the pure fluid Schlieren experiments and those observed by PIV is that

the latter is observing a 2-D, 2 component cross section of a complex, three dimensional wake

structure, in which each shed structure can contain many secondary components; these could

conceivably be multiple hairpins. This is an issue inherent to inferring three-dimensional

behaviour from two-dimensional data, although it is not as pressing an issue as it may at first
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appear. This is because the key application of this sliding bubble flow is surface cooling,

which itself is two-dimensional.

The bubble wake has been recognised as a key factor in inducing liquid mixing, for

instance in gas-liquid-solid fluidised beds [13]. PIV results obtained in a perpendicular plane

revealed that the fluid shed from the near wake spreads outwards into the bulk fluid, in both

the spanwise and normal directions, increasing in size but decreasing in strength due to

viscous dissipation. A single 5.8 mm diameter sliding bubble and its wake can affect a region

of fluid up to 8 bubble diameters in size in the spanwise direction and 5 diameters in the

normal direction. This fluid motion can persist for many seconds after the bubble passage,

indicating the effectiveness of the wake as a mixing mechanism.

The interaction between the bubble interface and its surrounding fluid determines the

shape and path of the bubble. In a low viscosity fluid such as water and at intermediate

bubble diameters, the work done by the bubble on the surrounding fluid cannot be dissipated

entirely by viscosity. Instead, some energy is released through turbulent dissipation in the

wake. This generates an instability in the wake, which in turn imposes a secondary motion

on the bubble, causing an undulating bubble path. The bubble shape is also controlled by the

flow around the bubble, and can be described in terms of the dynamic pressures acting on the

deformable bubble interface. Since the density and viscosity of the air inside the bubble is

small, the pressure of the gas inside the bubble is constant. Upstream from the bubble, at its

front stagnation point, the local fluid velocity is equal to zero. By Bernoulli’s principle, this

results in an inward push against the front of the bubble. At either side of the bubble, the fluid

must accelerate around the bubble interface, which corresponds to a decreased pressure. The

effect of this adverse pressure gradient is for the bubble sides to protrude outwards, forming

an oblate shape. Downstream of the bubble, this negative pressure is not recovered due to the

presence of the wake. The precise bubble shape is a function of the Reynolds, Morton and

Eötvös numbers. In the current study, the bubbles are in the ellipsoidal regime, meaning the

effects of both surface tension and inertia of the surrounding medium are important.

An analysis of the bubble centroid and interface showed the variation in bubble dynamics

that occur due to the path instability. The difference in density between the bubble and the

fluid means the bubble experiences a buoyancy force in the opposite direction to gravity. In

this case, the inclination of the surface scales the buoyancy by the sine of the inclination
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angle [66]. If the bubble were to slide rectilinearly, its buoyancy force would be opposed

by a constant retarding drag force, meaning that at terminal velocity, the two will equal.

However, if the bubble is of intermediate size, the dynamics become more complex. The

bubble now takes on an oscillatory path, meaning that its velocity vector is only aligned with

the buoyancy force at the local extrema of its path. At all other locations along the bubble

path, the bubble velocity vector is not aligned with the buoyancy force, resulting in bubble

dynamics that fluctuate temporally. This indicates a drag force, and therefore drag coefficient,

that are not constant. The bubble shape depends heavily on its Reynolds number; thus, this

fluctuating velocity results in a shape that oscillates from oblate at the high velocity path

extrema to more spheroidal at the mean position.

Thus far, the wake has been shown to determine the mechanics of a single bubble.

Progressing to a consideration of bubble pairs, the importance of bubble-wake interactions

to multiphase applications has already been discussed, since all bubble-bubble interactions

will involve this initial wake capture. Upon intersecting the wake of the leading bubble,

trailing bubbles have been found to be accelerated due to the local pressure defect in the

leading bubble wake region. For unsteady bubbles, the extent of the interaction causing an

acceleration is limited by the critical bubble spacing, which Tsuchiya et al. [51] estimated to

be 5-7 times the bubble diameter (in this study, the bubbles are at a spacing of 4 diameters

apart). The trailing bubble is thereby accelerated by the leading bubble, resulting in an

increased centroidal velocity and a more oblate bubble shape. Additionally, the bubbles were

found to adopt paths that are in phase but opposite in amplitude. PIV experiments revealed

fluid separating from the near wake of the leading bubble at the local extrema in path. Upon

entering this separated fluid, the trailing bubble is accelerated not only in the direction of

buoyancy but also in the spanwise direction corresponding to that of the shed fluid structure.

When the bubbles adopt this in-phase, opposite amplitude path, the shed fluid accelerates

the trailing bubble in the direction it is originally travelling in, implying that this is the most

stable configuration for an interacting in-line bubble pair. In passing through the leading

bubble wake, the trailing bubble also experiences rapid deformations around its interface.

This results in complex trailing bubble dynamics, including a bubble shape that is no longer

directly proportional to the bubble velocity.

Gas bubbles are known to increase heat transfer from adjacent surfaces by disturbing the
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thermal boundary layer at the surface. Indeed, at low wall superheats, Houston & Cornwell

[6] found that even for vapour bubbles, the disturbance effects alone accounted for a third the

of heat transfer. Thus, the findings in the current study on air bubbles can also be of relevance

to vapour bubble behaviour. Sliding air bubbles were found to enhance local convective heat

transfer rates by up to 6-7 times that of natural convection alone, suppressing the surface

temperature for a period of 20 seconds after the bubble passage. The nature of the convective

heat transfer enhancement is complex, with some regions of suppressed, even negative heat

transfer being observed. Chapter 8 also revealed that the maximum local convective heat

transfer occurs inside the near wake, where the direction of fluid motion is towards the

surface, thereby introducing cooler fluid from the bulk and enhancing convective heat transfer.

Within the wake, small, elliptical regions of enhanced heat transfer were observed. This is

consistent with either a single hairpin vortex with multiple secondary components or multiple

hairpins being shed at each inversion of path. In any case, the wake is responsible for the

majority of the convective heat transfer. The wake structures also experience significant

advection effects due to the thermal boundary layer, spreading over a significant region of

the surface and reducing its mean temperature further. Finally, the cooling structures for an

in-line bubble pair were discussed. Surface heating creates additional complexity in these

bubble-wake interactions, since the trailing bubble can momentarily decrease convective heat

transfer by displacing cool fluid initially at the surface. However, since this effect is small,

introducing multiple bubbles to the surface remains a more efficient mechanism of enhancing

convective heat transfer.
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Chapter 10

Conclusions

The characteristic behaviour of single bubbles and in-line bubble pairs sliding under an

inclined surface has been experimentally investigated. This involved a study of the bubble

motion, fluid motion and the associated heat transfer. To aid in the interpretation of the

results and to highlight the limitations of the current research in this field of two-phase flow,

a comprehensive review of the literature was performed. This included an in-depth study of

the mechanics of single and interacting rising bubbles, the wake structures of rising bubbles

and bluff bodies, and the heat transfer associated with sliding bubbles.

For the experimental investigation, an apparatus has been designed and built that allows

for an injection of 1 or 2 bubbles of 5.8 mm and 7.2 mm equivalent diameter to a surface

inclined at 20�, 30� and 40� to the horizontal, in adiabatic or heated surface conditions.

Three different measurement configurations allow for measurement of the bubble motion,

fluid motion and surface heat transfer. Extensive analysis has been performed on the data

obtained from each experimental setup, using advanced techniques to obtain an improved

understanding of these flow phenomena. This study has found the overall wake structure for a

sliding bubble to consist of a near wake that moves in close association with the bubble and a

far wake in which fluid moves normal to the surface in the form of asymmetrical, oppositely-

oriented hairpin vortices generated in the near wake. This wake plays an important role in

the bubble motion, convective heat transfer, bulk fluid mixing and bubble-wake interactions,

and thus a greater understanding of these processes has been made possible.
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10.1. OUTCOMES

10.1 Outcomes

The key outcomes of this work are:

• The development of a novel object tracking algorithm, which provides new insight into

the mechanics of single bubbles and how the wake influences bubble-wake interactions

in terms of the bubble interfaces.

• The characterisation of the sliding bubble wake structure by use of PIV for both a

single bubble and an in-line bubble pair. PIV in multiple planes has also provided

information on bubble-wake interactions and the turbulent mixing of the fluid.

• The development of a continuous wave PIV system, which offers 70 times the temporal

resolution of an equivalent double-pulsed system while maintaining high quality time-

resolved PIV with no interpolation or recursive hole filling.

• The usage of high speed thermography to characterise the effects of this wake structure

on convective heat transfer from a heated surface, which is key to optimising future

two-phase systems.

10.2 Future Work

Although significant contributions have been made by the current work, the field of two-phase

fluid mechanics is vast and multi-layered. This study has answered some questions, but

raised others. Indeed, each of the three experimental techniques used in this work could be

extended. To study the bubble dynamics, a bubble tracking algorithm has been developed that

provides measurements of the bubble edge data. For a sliding bubble, the interface does not

experience significant rebounds; it would thus be useful to extend this algorithm to systems

with more complex mechanics, such as impacting rising bubbles or vapour bubble formation.

This study has shown significant convective heat transfer enhancements due to the

introduction of air bubbles to a heated surface. As a next step, it could be advantageous

to take this research closer towards industrial applications. This could be achieved either

by minimising the power input for an air bubble based cooling system or by modifying the
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experimental apparatus to measure the interactions between two vapour bubbles, wherein the

contribution of micro-layer evaporation, bubble growth and phase change to heat transfer

would make for interesting results.

The PIV technique chosen for the current study does not allow for a focus on the liquid

film between the bubble interface and the solid wall. Alternative techniques could be

employed to resolve this important small-scale behaviour, such as micro particle image

velocimetry (µPIV) and micro particle shadow velocimetry (µPSV). Indeed, the latter has

recently been demonstrated to be an affordable, effective solution in measuring common

two-phase flows at small scales [126].

In recent years, 3-D PIV techniques have expanded from comparatively simple stereo-

scopic techniques with 1 mm z-resolution to fully 3-D Tomographic PIV, which uses 5+

cameras and a laser that is reflected off a series of concave mirrors to create an illuminated

volume. Although this method faces challenges in calibration and analysis, it is an area that

is receiving significant attention within the field of fluid mechanics. This attention is justified,

since it yields stunning, CFD-like plots from actual validated flow measurements. Tomo-

graphic PIV could be combined with fluorescent particles to find the 3-D, time-fluctuating

wake structures behind bubbles and bluff bodies. When one considers the advancements

PIV has made in the twenty years since its inception, such future applications seem nearly

inevitable!
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