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Executive Summary

The effect of prestress force magnitude on the natural bending frequencies

of prestressed concrete structures is something widely debated in literature

to date. It has major implications for the dynamic design and accurate

analysis of such structures, as accurate knowledge of the modal properties of

structures is a vital part of accurate prediction modelling and safe dynamic

design.

This Ph.D. thesis outlines the work carried out between September 2012

and August 2015 on a research project investigating how the application

of a prestress force affects the dynamic properties of prestressed concrete

structures. Steel and concrete test specimens have been tested both stat-

ically and dynamically to determine the change in their flexural/bending

stiffness according to the application of both external axial loads and post-

tensioning loads to the sections. A new simple linear mathematical model

predicting changes in natural frequency with increasing post-tensioning load

magnitude has also been proposed.

Dynamic impact testing has been conducted on four rectangular steel

hollow sections. Two sections with different slenderness ratios have been

externally axially loaded by jacking them against abutments in a large load

frame. Dynamic impact tests were conducted at incremental values of ex-

ternal axial load, and the natural frequencies and damping ratios were de-

termined by analysing the response signals obtained from an accelerometer

affixed to the beams during vibration. As such, the migration of the modal

properties with increasing external axial load could be determined. Simi-

lar testing was repeated on two identical rectangular hollow sections that

instead of being externally axially loaded by jacking them against exter-

nal abutments, were post-tensioned by threading a post-tensioning strand

through their hollow. The migration of the fundamental frequencies with

increasing post-tensioning load was determined and compared with the re-

sults for the externally axially loaded sections. The purpose of this research
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was to determine under what conditions the “compression-softening” effect

is valid.

A new simple linear mathematical model predicting changes in natural

frequency with increasing post-tensioning force for post-tensioned concrete

beams has been proposed. The model predicts linear changes in Young’s

Modulus, second moment of area, span length and mass per unit length with

increasing post-tensioning load magnitude, and subsequently calculates the

resulting changes in the natural frequency as a result of the changes in the

aforementioned parameters affecting natural frequency.

Static and dynamic testing was also conducted on nine different rein-

forced, post-tensioned concrete beams. Each beam had a different straight-

profiled post-tensioning strand eccentricity. The magnitude of the post-

tensioning force was increased incrementally and accelerometer impact re-

sponse signals were obtained at different post-tensioning load levels, from

which the natural frequency and damping ratios were obtained. A signal

processing algorithm was applied to each of the signals in order to eliminate

noise and isolate the correct bending frequency. The Fast Fourier Trans-

form (FFT) was used to convert the obtained response signals from the time

domain to the frequency domain, from which the natural frequencies were

determined by a peak-peaking algorithm, and the damping ratios were cal-

culated via the half-power bandwidth method. Static three-point bending

testing was also conducted at incremental values of post-tensioning force.

The mid-span deflection was measured for a given applied force, at each

value of post-tensioning load, and subsequently the flexural rigidity of the

section at different post-tensioning load levels could be determined.

The beams were then cracked by loading them in four-point bending. Fol-

lowing cracking of each of the beam sections the dynamic impact tests were

repeated, determining the fundamental bending frequency and damping ra-

tio at different post-tensioning load levels. The migration of the bending

frequency with increasing post-tensioning force magnitude was compared for

the cracked and uncracked cases. Conclusions are subsequently drawn as to

the effect of post-tensioning force magnitude on the natural frequencies of

post-tensioned concrete structures and the implication any effect may have

on design and analysis of these structures.
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1. Introduction

This thesis presents a study of the effect of post-tensioning force magnitude

and eccentricity on the modal properties, specifically fundamental bending

frequency and damping ratio, of straight-profiled post-tensioned concrete

beams. The purpose of the thesis is to determine if a statistically significant

relationship exists between post-tensioning force magnitude and the natural

frequency and damping ratios. The thesis presents the results of dynamic

testing and modelling of cracked and uncracked post-tensioned concrete

beam sections, as well as dynamic testing of some rectangular hollow steel

sections.

Chapter 1 introduces the thesis, presenting the background and motiva-

tion behind the body of work undertaken, a statement of the key objectives

of the studies conducted, and a thorough outline of the contents of each

chapter. Chapter 2 presents the state of the art of the topic to date, and

presents the mathematical prediction models for the change in fundamental

frequency with increasing prestress force magnitude, and presents the results

of laboratory testing conducted in this field previously. Chapter 3 presents

the main theory, techniques and tools behind modal analysis, in order to

provide the reader with a grounding in the main theory behind modal anal-

ysis as a prerequisite for reading Chapters 4, 6 and 7. Chapter 4 describes

the test set-up, and presents the results of dynamic testing conducted on

steel rectangular hollow sections. Chapter 5 presents a linear mathematical

model predicting changes in fundamental bending frequency with increas-

ing post-tensioning force magnitude through predicting changes in Young’s

Modulus, axial length, second moment of area and mass per unit length with

post-tensioning force magnitude. Chapter 6 presents the results of static and

dynamic testing on 9 uncracked post-tensioned concrete beam sections with

different straight-profiled post-tensioning strand eccentricities. Chapter 7

presents the results of dynamic testing on the same 9 post-tensioned con-

crete beam sections with different straight-profiled post-tensioning strand
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eccentricities, following cracking by four-point bending testing. Chapter 8

presents the main conclusions from the studies conducted and described

throughout the thesis in Chapters 2-7, describes some of the limitations of

the studies conducted, and provides some suggestions for future research in

the field.

1.1. Background

The effect of prestress force magnitude on the natural frequency of pre-

and post-tensioned concrete structures is something that has been widely

debated in literature to date (Quilligan et al., 2012), as discussed further

and in detail in Chapter 2. This has implications for the dynamic design

and analysis of all types of post-tensioned concrete structures. With the

increased use of pre- and post-tensioning, which helps engineers to span

greater distances while minimising the cross sectional dimensions of their

sections, the dynamic response of these structures becomes of greater im-

portance. Structures such as pre-cast post-tensioned concrete wind turbine

towers, pre- and post-tensioned concrete bridge girders, and pre- and post-

tensioned concrete floor slabs are just some such structures. These struc-

tures can be susceptible to extreme dynamic loading throughout their design

life. For example, offshore post-tensioned concrete wind turbine towers are

dynamic structures that are constantly subjected to a dynamic thrust in-

duced from the turbine, the gust of the wind on the turbine tower, and the

dynamic loading of the sea waves on the submerged section of the super-

structure. Furthermore, bridge girders are susceptible to constant dynamic

loading from the periodic passing of cars and heavy vehicles such as truck

freight and construction vehicles. The effect of dynamic wind loading on

bridge structures is also an important factor that must always be taken into

consideration, as outlined by incidents such as the dynamic (resonant) exci-

tation and subsequent collapse of the Tacoma Narrows Bridge, in Tacoma,

Washington in 1940. Furthermore, all types of structures, when built in

certain high risk locations, can be susceptible to extreme loading through

seismic ground motions caused by earthquakes. Strength is not the only

consideration in dynamic design, and often slender structures are suscep-

tible to significant vibration serviceability problems, the most high-profile

of such cases being the closure, retrofit and re-opening of the Millennium
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pedestrian footbridge over the Thames River in London in 2002. Such vibra-

tion serviceability problems are reported to be common in the case of slender

post-tensioned floor slabs (Pavic et al., 2001), and as such accurate and pre-

cise knowledge of the modal parameters of such post-tensioned floor slabs

are of great importance to their design. In addition, there are many anal-

ysis techniques that require accurate knowledge of the modal parameters

of the structure to be analysed. For example, in the Lagrangian approach,

accurate knowledge of the modal parameters, i.e. natural frequency, ωn,

damping ratio, ξn, and mode shape, Φn, is required, as the dynamic deflec-

tion model is based upon a linear combination of a series of pre-determined

mode shapes. Quilligan et al. (2012) applied this Lagrangian approach to a

pre-cast post-tensioned concrete wind turbine tower. The assumption was

made that the modal properties were unaffected by the magnitude of the

post-tensioning force, in accordance with the work conducted by Hamed and

Frostig (2006), and hence a linear elastic beam model was applied to the

post-tensioned concrete wind turbine tower. This highlights the importance

of the problem at hand. If a relationship does exist between post-tensioning

force and the modal properties then it must be taken into account in the

Lagrangian model in order to model the dynamic deflection of such post-

tensioned wind turbine towers accurately. As such, structural engineers

should be able to monitor and estimate changes in the natural bending fre-

quency of prestressed concrete structures over the course of their design life

to ensure their safety and serviceability and as a result, the prediction of

the change in natural frequency of prestressed concrete structures over time

is of great importance.

Furthermore, if a correlation between prestress force and natural fre-

quency is found, it allows for the determination of the prestress loss over

the design life of a prestressed concrete structure through non-destructive

testing.

1.2. Motivation

Prestress force decreases over time due to concrete creep, steel relaxation,

anchorage pull in and other factors. If this decrease in prestress force magni-

tude is accompanied by a correlated change in modal properties, i.e. natural

frequency, damping ratio and mode shape, then this will have implications
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in the dynamic design and analysis of pre- and post-tensioned concrete

structures and also as mentioned in Section 1.1 previously, in the field of

System Identification. Significant changes in fundamental frequency due to

decreasing post-tensioning load would allow the post-tensioning force to be

determined from non-destructive dynamic testing.

Furthermore, as outlined in Section 1.1, accurate knowledge of the modal

parameters is required in order to accurately estimate dynamic behaviour

through the Lagrangian approach. If the modal parameters are significantly

affected by post-tensioning force magnitude, then this needs to be taken into

account to accurately simulate the dynamic behaviour of dynamic structures

such as post-tensioned concrete wind turbine towers.

1.3. Objectives

The main research objective of this project is to determine if there is a

relationship between the magnitude of the prestressing force in pre- and

post- tensioned concrete structures, and the dynamic characteristics of those

structures, primarily the natural bending frequencies, (ωn) and the damp-

ing ratios (ξn). This will be determined through operational modal analysis

conducted in the laboratory on both post-tensioned steel rectangular hol-

low sections (RHSs), and on both cracked and uncracked post-tensioned

reinforced concrete beams.

The main research objective has been subsequently broken down into a

number of specific research objectives, outlined below;

1. Determine the validity of the “compression-softening” effect.

The “compression-softening” effect states that the natural frequency

will decrease for an externally axially loaded slender section, as the

section begins to soften. It is based on Euler buckling theory and

it has been argued that this effect can be applied to pre- and post-

tensioned concrete sections. The validity of this theory is put to the

test, through dynamic testing of steel RHS sections.

2. Determine whether “compression-softening” holds only for

‘slender’ members. To determine the validity of the “compression-

softening” effect for both slender and stocky sections, and to compare
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the dynamic response of the slender/stocky rectangular hollow sec-

tions.

3. Determine how the dynamic properties of steel sections change

with increasing axial force. To determine the effect of both ex-

ternal axial load and post-tensioning force magnitude on the modal

properties of rectangular steel hollow sections, and to compare both

cases.

4. To create a model to predict changes in natural frequency

with increasing post-tensioning force magnitude. To create

a simple mathematical model that predicts changes in fundamental

bending frequency with increasing post-tensioning force magnitude

and varying post-tensioning strand eccentricity.

5. Investigate how the dynamic properties of uncracked post-

tensioned reinforced concrete sections change with increas-

ing axial force. To investigate how the modal properties, specifi-

cally damping ratio and fundamental frequency, of 9 uncracked post-

tensioned concrete beams are affected by different post-tensioning load

levels.

6. Determine how the dynamic properties of uncracked post-

tensioned reinforced concrete sections change with varying

prestress force eccentricity. To determine how the modal prop-

erties of the post-tensioned concrete beams are affected by different

straight-profiled post-tensioning strand eccentricities.

7. Investigate how the dynamic properties of cracked post ten-

sioned reinforced concrete sections change with increasing

axial force. To investigate how the modal properties of 9 cracked

post-tensioned concrete beams are affected by different post-tensioning

load levels.

8. To compare the effect of changing post-tensioning force mag-

nitude on the dynamic properties of cracked and uncracked

post-tensioned concrete sections. To compare the effect of post-

tensioning force magnitude on both cracked and uncracked concrete

beam sections and to compare the response of both type of sections.
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9. To compare the results of the generated model to the results

obtained from dynamic testing. A comparison of the simple math-

ematical model to the obtained experimental results in order to test

the accuracy of the model.

1.4. Organisation of Thesis

This thesis is made up of eight chapters, outlined as follows;

Chapter 1 provides an introduction to the topic of the effect of post-

tensioning force on the modal properties of pre- and post-tensioned concrete

structures. The objectives of this work and an outline of this thesis are also

presented.

Chapter 2 presents a state of the art review of current research in the

area of the effect of post-tensioning force on the modal properties of pre-

and post-tensioned concrete structures. The literature review outlines the

relevant models used in literature to date to predict changes in fundamen-

tal frequency with increasing pre- and post-tensioning force magnitude, the

differences, and their limitations. It also tracks the methodology and results

of experimental studies that have already been conducted in the field.

Chapter 3 provides an introduction to some of the basic theory, concepts

and tools of modal analysis/modal testing. It provides necessary back-

ground in the theory, tools and techniques behind experimental dynamic

testing and provides the reader with a concise introduction, background

and basis of these important aspects, which become relevant in later chap-

ters. It outlines the theoretical basis behind experimental modal analysis

and some of the specific tools and techniques used to conduct the analy-

sis. It outlines the measurement techniques behind collecting good dynamic

data, and outlines some specific techniques behind digital signal processing,

providing sufficient theoretical basis for further chapters.

Chapter 4 describes the testing procedure and results for the dynamic test-

ing of externally axially loaded and post-tensioned steel rectangular hollow

sections. The fundamental natural bending frequency of the beam sections

6



and the corresponding damping ratios have been calculated from the mea-

sured dynamic response of the beam to a series of impact hammer strikes

at a series of increasing axial load levels.

Chapter 5 outlines a linear mathematical model developed in MATLAB

to predict changes in natural frequency with increasing post-tensioning

load magnitude for post-tensioned concrete beams. The model predicts

changes in the parameters affecting natural frequency with increasing post-

tensioning load level, such as changes in span length, changes in second

moment of area, changes in mass per unit length, and changes in Young’s

Modulus.

Chapter 6 describes the static and dynamic testing of 9 different straight-

profiled uncracked post-tensioned concrete beams, with different post ten-

sioning strand eccentricities. The results of the changes in fundamental

frequency and damping ratio with increasing post-tensioning load level are

presented. The predictions of the model outlined in Chapter 5 are com-

pared to the results obtained from testing.

Chapter 7 presents the results of dynamic testing conducted on the same

9 straight-profiled concrete sections in a cracked (damaged) state. The

changes in fundamental frequency and damping ratio of the cracked post-

tensioned concrete beams with increasing post-tensioning force are pre-

sented, and the results are compared to that for the uncracked beam sec-

tions. The cracking procedure of the 9 post-tensioned beams via four-point

bending tests is also outlined.

Chapter 8 concludes the thesis by outlining how the objectives detailed in

Chapter 1 have been achieved. In addition, recommendations are made for

future work to further develop an understanding of the potential changes

in modal properties of post-tensioned concrete structures with increasing

post-tensioning load magnitude.

Appendices present the results of all statistical significance testing, for

the steel sections, the concrete sections and the cracked concrete sections

in table format, along with the Nomenclature for the mathematical terms
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presented throughout the thesis.
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2. Literature Review

The correct estimation of the modal parameters (natural frequency, damp-

ing ratio and mode shapes) of all structures is a requirement of sound struc-

tural design. In recent years, there have been significant advances in the

fields of pre- and post-tensioning, allowing structural engineers to make use

of longer spans. Prestressed concrete is a technology primarily used to re-

duce design serviceability problems in structures. In recent years, more

and more concrete structures are designed as prestressed sections, for ex-

ample, most recently in the field of post-tensioned concrete offshore wind

turbine towers. This is in addition to the pre-existing practice of pre- and

post-tensioned concrete bridge girders and pre- and post-tensioned concrete

floors. Offshore wind turbines are dynamic machines that can be suscep-

tible to extreme site-specific dynamic loads, due to the effect of the wind,

waves, and also potentially, to seismic loads. Bridge girders tend to span

long distances and are susceptible to repetitive dynamic loading from traf-

fic, and may also be susceptible to other dynamic environmental effects.

The correct estimation of the modal parameters enables potential negative

vibration serviceability problems or even extreme structural resonance con-

ditions to be identified and subsequently avoided. The effect of prestress

force magnitude on the modal properties of such structures is not currently

well established.

The effect of prestress force magnitude on the natural frequency of pre-

stressed concrete structures has many implications, specifically in the pre-

stressed concrete bridge industry and for post-tensioned concrete wind tur-

bine towers. Prestress force decreases over time due to concrete creep, steel

relaxation, anchorage pull in and other factors. Structural engineers should

thus be able to monitor or estimate changes in the natural bending frequency

of prestressed concrete structures over the course of their design life to en-

sure their safety and serviceability. Additionally, the correct estimation of

the effect that prestress loss has on the natural bending frequencies of such
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structures is directly related to the adequacy and accuracy of estimating

the extreme dynamics of these structures. As a result, the prediction of the

change in natural frequency of prestressed concrete structures over time is

of great importance. However, there is currently widespread disagreement

and confusion over the effect that prestress force magnitude has on natural

bending frequency.

This chapter aims to present the individual prediction models that have

been suggested for use to date, to compare and contrast them, and to com-

ment on their validity. Currently there are three distinct arguments among

researchers; the natural vibration frequency of prestressed concrete struc-

tures decreases as the magnitude of the prestressing force is increased, the

natural vibration frequency of prestressed concrete structures is unchanged

by prestress force magnitude, the natural vibration frequency of prestressed

concrete structures increases as the magnitude of the prestressing force is

increased. A variety of different models have been formulated to date in

favour or in critique of these viewpoints. The majority of experimental

modal analysis on dynamic test results suggest that there is an increase in

natural bending frequency with increasing prestressing force. On the other

hand, (external) axial loads in combination with bending loads on beams

theoretically predicts a decrease in natural bending frequency with increas-

ing axial loading. However, a non-linear kinematic model, accounting for

large deflections and moderate rotations will show that the final equation

of motion of a pre- or post- tensioned concrete structure is independent of

the magnitude of the prestressing force.

2.1. Introduction

This chapter presents the current state of the art of predicting the possible

change in natural vibration frequencies with varying prestress force magni-

tude for prestressed concrete structures. This is a problem that has implica-

tions for all types of prestressed concrete structures, but particularly in the

field of prestressed concrete bridges and more recently for post-tensioned

concrete wind turbine towers. The effect that the applied prestressing force

has on the dynamic behaviour of a prestressed concrete beam is a topic that

has been widely debated amongst researchers in the field of civil and struc-

tural engineering for many years (Quilligan et al., 2012). The arguments
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can be organised into the following 3 categories;

1. The natural vibration frequency of prestressed concrete structures

tends to decrease as the magnitude of the prestressing force is in-

creased. This is known as the “compression-softening” effect and is

based on classical Euler-Bernoulli beam theory of an externally axi-

ally loaded homogeneous beam (Chan and Yung, 2000; Dai and Chen,

2007; Dall’Asta and Leoni, 1999; Law and Lu, 2005; Miyamoto et al.,

2000; Raju and Rao, 1986; Tse et al., 1978). It is based on the as-

sumption that a prestressing force is equivalent to an external axial

load, and is modelled as a percentage of the critical Euler buckling

load.

2. The natural vibration frequency of prestressed concrete structures is

unaffected by prestress force magnitude. This argument has been

taken to the fore by Hamed and Frostig (2006), who present a non-

linear kinematic model and conclude that the final equation of motion

for the vibrating beam system is independent of the prestress force

magnitude, and consequently that the natural vibration frequency of

prestressed concrete structures is not affected by the magnitude of the

prestressing force.

3. The natural vibration frequency of prestressed concrete structures

tends to increase as the magnitude of the prestressing force is in-

creased. This has found to be the case in numerous empirical stud-

ies conducted (Hop, 1991; Saiidi et al., 1994; Zhang and Li, 2007),

however, a satisfactory mathematical model predicting the increase

in natural frequency with increasing prestressing force has yet to be

formulated, despite some attempts (Kim et al., 2004; Zhang and Li,

2007).

2.1.1. Frequency decreases with increasing prestressing force

Many authors have argued that the natural vibration frequency of pre-

stressed concrete structures tends to decrease as the magnitude of the pre-

stressing force increases (Chan and Yung, 2000; Dall’Asta and Leoni, 1999;

Miyamoto et al., 2000; Raju and Rao, 1986; Tse et al., 1978). Various

mathematical models have been formulated, based on a linear kinematic
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framework (“Kirchhoff’s kinematic model”) highlighting this. It considers

small deflection theory only and does not take into account large displace-

ments and moderate rotations about the axis of bending. The “compression-

softening” equation, as first outlined by Tse et al. (1978) is given as;

ωn =

√(nπ
`

)4 EI

m
−
(nπ
`

)2 N

m
(2.1)

where ωn is the natural frequency of the beam in radians per unit time, n

is the mode number, ` is the span length, N is the axial compressive force

(positive), m is the beam mass per unit length, E is Young’s modulus of

elasticity and I is the second moment of area, with respect to the centroid

of the cross section.

There are arguments suggesting that this “compression-softening” effect,

as first set out by Tse et al. (1978) is not valid for prestressed concrete

structures. Firstly, the main assumptions made by Chan and Yung (2000);

Dall’Asta and Leoni (1999); Raju and Rao (1986); Miyamoto et al. (2000);

Tse et al. (1978) take into account an external axial load being applied to

a homogeneous section. In the case of prestressed concrete, neither of these

assumptions are valid. According to some authors (Bažant and Cedolin,

1987; Deák, 1996; Jain and Goel, 1996), “compression-softening” is only

applicable to external axial loads and the prestressing force cannot be con-

sidered as such as it is internal to the structure. Bourne (2013) also presents

a similar argument, summarised in Figure 2.1.

Furthermore, as pointed out by Saiidi et al., concrete is not a homoge-

neous material and is susceptible to cracks. Saiidi et al. (1994) showed

experimentally that the application of Equation 2.1 to prestressed concrete

beams is erroneous. This is discussed at length in Section 2.5.1. Equa-

tion 2.1 is based on Euler buckling theory, which is only applicable to ho-

mogeneous externally axially loaded beams, such as steel beams. The main

assumption of applying the “compression-softening” effect is that the pre-

stressing force in the strand is equivalent to an external axial load of equal

magnitude applied to the beam ends. This has been refuted by many au-

thors who state that the prestressing force is not equivalent to an externally

applied axial load as it is internal to the structure and as a result cannot

cause Euler buckling to occur (Bartlett, 1987; Bourne, 2013; Dall’Asta and

Leoni, 1999; Deák, 1996; Jain and Goel, 1996).
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Figure 2.1.: Prestressing cannot cause buckling to occur (Bourne, 2013)

2.1.2. No change in frequency with increasing prestressing

force

Hamed and Frostig (2006) presented a rigorous mathematical proof indicat-

ing that the magnitude of the prestressing force does not affect the natural

frequencies of prestressed concrete beams. A non-linear kinematic frame-

work was adopted, in comparison with the aforementioned linear kinematic

framework presented in other studies (Chan and Yung, 2000; Dall’Asta and

Leoni, 1999; Miyamoto et al., 2000; Tse et al., 1978). This enabled large dis-

placements and moderate rotations to be accounted for. It was subsequently

mathematically demonstrated that the governing equation of motion (vibra-

tion equation) for the beam is independent of axial force, for bonded and

unbonded prestressing tendons. Dall’Asta and Dezi (1996) through math-

ematical modelling, Kerr (1976), through mathematical modelling, backed

up by experimental testing and Dai and Chen (2007), through a finite ele-

ment analysis, all concluded that there was a change in natural frequency

with varying prestressing force, however, they suggested that the magnitude

of the change is negligible and subsequently concur with Hamed and Frostig

(2006) in stating that the magnitude of the prestress force has no effect on

the natural vibration frequency of prestressed concrete structures, within
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practical ranges of prestressing force. Other authors (Bartlett, 1987; Deák,

1996) also concur with this, however, their respective discussions are not

backed up by any form of mathematical or experimental proof.

2.2. Frequency increases with increasing

prestressing force

Experimental evidence is relatively abundant to suggest that the natural fre-

quency of prestressed concrete structures actually increases with increasing

magnitude of prestressing force (Ho et al., 2012; Hop, 1991; Lu and Law,

2006; Saiidi et al., 1994; Williams and Falati, 1999; Zhang and Li, 2007;

Zhang et al., 2012). Experimental modal analysis has been conducted on a

series of vibration tests, both in-situ and in the lab indicating that natural

frequency increases with increasing prestressing force. Saiidi et al. (1994),

who initially assumed the “compression-softening” argument to hold true

for prestressed concrete beams, suggest the reason behind this is due to the

effect of the prestressing force on the closure of micro-cracks that have been

induced in the prestressed concrete section, and the subsequent increase

in stiffness in the section as a result. However, this has not been proven

conclusively, either experimentally or theoretically. Mathematical models

have also been formulated indicating the increase in natural frequency with

increasing prestressing force (Kim et al., 2004; Zhang and Li, 2007).

Furthermore, there is significant evidence to suggest that the natural fre-

quency of prestress concrete structures is not only sensitive to the magnitude

of the prestressing force but is also sensitive to the tendon profile within the

section and the tendon eccentricity (Dall’Asta and Leoni, 1999; Hop, 1991;

Miyamoto et al., 2000). The tendon profile and eccentricity alters the net

second moment of area of the cross section, thus directly affecting the bend-

ing stiffness and hence natural frequency of the beam section. The models

tracking an increase in natural frequency with increasing prestressing force

tend to focus on stiffness alteration, or the increase in flexural rigidity, EI,

of the section with increasing prestressing force.
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2.3. Objective

The objective of this chapter is to present the reader with the variety of dif-

ferent approaches that have been suggested by researchers to date to predict

the change in natural bending frequency of prestressed concrete structures

with varying prestress force magnitude. It is clear that currently there is

a great deal of ambiguity as to which of the three arguments holds true.

Experimental methods tend to show an increase in natural frequency with

increasing prestressing force. Albeit, this increase tends to be small for prac-

tical ranges of prestressing force and it has been argued that the increase is

negligible (Dall’Asta and Dezi, 1996; Kerr, 1976). Classical mechanics tends

to point in the direction of the “compression-softening” effect (Miyamoto

et al., 2000; Tse et al., 1978), but the validity of the assumption that an

internal prestressing force in the tendon is equivalent to an external axial

load has been refuted (Bartlett, 1987; Bourne, 2013; Dall’Asta and Leoni,

1999; Deák, 1996; Jain and Goel, 1996).

The different models predicting the change in natural bending frequen-

cies with magnitude of prestressing force for simply supported prestressed

concrete beams are outlined in the following sections. The models are cat-

egorised into three distinct groups. Firstly, there is the derivation from

classical mechanics of the aforementioned “compression-softening” effect by

Tse et al. (1978) and the subsequent improvements to the model by firstly

the inclusion of shear and rotary inertia in the formulation (Raju and Rao,

1986), and secondly the addition of geometric effects for external tendons in

the “queen-post” arrangement (Miyamoto et al., 2000). These models pre-

dict a decrease in natural bending frequency with increasing prestressing

force.

Secondly, the bending stiffness (flexural rigidity, EI) alteration models

are presented. Numerous models based on both empirical findings and ana-

lytical modelling from first principles have focused on the change in flexural

rigidity, EI, of the section with varying prestress force. Some authors track

changes in stiffness empirically and present empirical predictions based on

linear regression analysis of the results obtained (Saiidi et al., 1994; Zhang

et al., 2012), Williams and Falati (1999) take an ACI code-based approach,

tracking the change in effective second moment of area, Ie, with applied mo-

ment (Williams and Falati, 1999; Kong and Evans, 1987; ACI Committee
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318, 2008). Other studies focus on the change in flexural rigidity from first

principles (Dall’Asta and Dezi, 1996; Kim et al., 2004), in which Kim et al.

(2004) present a “tension-strength” model, adding the flexural rigidity of a

taut string to that of the concrete section and calculating the axial short-

ening of the concrete section due to the axial prestressing force. Finally,

Zhang and Li (2007) present a model similar to Kim et al. (2004) in that

the flexural rigidity of a taut string is added to that of the concrete section,

but include the effect of shear inertia.

2.4. “Compression-softening” (Tse et al., 1978)

The “compression-softening” argument was put forward by Tse et al. (1978).

It is valid for externally axially loaded Euler-Bernoulli beams that are sus-

ceptible to buckling failure. The theory is based on Euler buckling theory

and states that the closer a beam gets to its Euler buckling load, Pcr, the

less stiff the beam becomes in bending, and thus the natural bending fre-

quencies of the beam are decreased. Through the assumption of undamped

simply harmonic motion, the appropriate boundary conditions for a simply

supported beam and the appropriate mode shapes of vibration for a simply

supported beam, it can be shown that the nth natural bending frequency of

a simply supported beam under axial tension is given by Tse et al. (1978);

ωn =

√(nπ
`

)2 T

m
+
(nπ
`

)4 EI

m
(2.2)

where T is the axial tensile force. If T = 0, the natural frequency is that of

a simply supported beam;

ωn =
(nπ
`

)2
√
EI

m
(2.3)

If EI = 0, the equation is that of a flexible taut string where the tension

will act as to stiffen the beam, thereby increasing its natural frequency;

ωn =
(nπ
`

)√ T

m
(2.4)

By making the substitution T = −N , and introducing an axial compressive

load in place of the axial tensile load, Equation 2.1 is obtained, and is

referred to in the literature as the “compression-softening” effect. In the
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case of axial tension it is known as the “tension-stiffening” effect, and is

analogous to the so-called “centrifugal-stiffening” effect seen with rotating

wind turbine blades. The free-body diagram as considered by Tse et al.

(1978) is outlined in Figure 2.2.

Figure 2.2.: Free Body Diagram; Lateral vibration of beam with axial ten-
sion (Tse et al., 1978)

The tension, T , is assumed constant for small deflections of the beam and

the other effects are negligible. m is the mass per unit length, the slope,

θs = ∂u
∂x , V is the shear force and the deflection, u = u(x, t), which is a

function of both position along the beam and time. From Newton’s second

law, which simply states and the sum of the external forces acting on a

body must equal the rate change of momentum, i.e Σ(externalforces) =

mass× acceleration, the dynamic force equation can be written as;

m
∂2u

∂t2
dx = −

(
V +

∂V

∂x
dx

)
+ V + T

(
θs +

∂θs
∂x

dx

)
− Tθs (2.5)

which can be reduced to;

m
∂2u

∂t2
dx = −∂V

∂x
+ T

∂2u

∂x2
(2.6)

by making the substitution θs = ∂u
∂x . Furthermore, by acknowledging Euler-
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Bernoulli beam theory, the relationship between moment and shear can be

described as;

V =
∂M

∂x
(2.7)

beam curvature and moment are related by;

M = EI
∂2u

∂x2
(2.8)

therefore Equation 2.6 becomes;

m
∂2u

∂t2
= − ∂2

∂x2

(
EI

∂2u

∂x2

)
+ T

∂2u

∂x2
(2.9)

Equation 2.9 is the beam equation under the effect of axial tension. The

sign of T is reversed if the beam is under compression. Considering an

undamped system, it is assumed that a mode of vibration is harmonic, as

for discrete systems, therefore the solution must be of the form;

u(x, t) = φ(x) sin (ωt+ ψ) (2.10)

where ωn is the nth natural frequency of vibration of the beam, and φ(x) is

the eigenfunction describing the modeshape of the beam at the frequency

ω. By substituting Equation 2.10 into Equation 2.9 and simplifying, the

following is obtained;

EI
d4φ

dx4
− T d

2φ

dx2
−mω2φ = 0 (2.11)

By letting the solution of the problem take the form: φ = Cesx, where

C and s are arbitrary constants, it can be shown that the corresponding

characteristic equation of the differential equation in Equation 2.11 is;

EIs4 − Ts2 −mω2 = 0 (2.12)

The quadratic roots of Equation 2.12 are;

s2
1,2 =

T

2EI

[
1±

(
1 +

4mω2EI

T 2

) 1
2

]
(2.13)

The quadratic roots must be real and of opposite sign. By letting s1 = ±a
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and s2 = ±jb where j =
√
−1, the following solution to Equation 2.11 is

obtained;

φ = C1 sinh ax+ C2 cosh ax+ C3 sin bx+ C4 cos bx (2.14)

The boundary conditions of a simply supported beam are;

φ|x=0 =
d2φ

dx2

∣∣∣∣
x=0

= φ|x=` =
d2φ

dx2

∣∣∣∣
x=`

= 0 (2.15)

Tse et al. (1978) states that it can be shown from these conditions that

C1 = C2 = C4 = 0 and that C3 sin b` = 0 i.e. b` = nπ for n = 1, 2, 3, ....

The natural frequency is obtained by equating;

b2 =
(nπ
`

)2
= − T

2EI

[
1±

(
1 +

4mω2EI

T 2

) 1
2

]
(2.16)

after some simplifications the following is obtained;

ω2
n =

(nπ
`

)2 T

m
+
(nπ
`

)4 EI

m
(2.17)

As stated previously, if T = 0, the natural frequency is that of a simply

supported beam. If EI = 0, the equation is that of a flexible taut string,

the tension will act as to stiffen the beam, thereby increasing its natural

frequency. The sign of T is reversed if the beam is under compression,

obtaining Equation 2.1. This is referred to in the discussed literature as the

“compression-softening” effect.

Figure 2.3 shows the results of applying Equation 2.1 to a simply sup-

ported prestressed concrete beam whose properties are outlined in Table 2.1.

In Figure 2.3c the magnitude of the externally applied axial force is in-

creased in values of 10% of its Euler buckling load, Pcr, up to Pcr, for the

first three natural bending modes (n) of the beam. A decrease in natural

bending frequencies is observed. In the case where n = 1 and N = Pcr,

the natural frequency drops to zero. This is a special case of Equation 2.1,

i.e. ωn = 0 for n = 1 and N = Pcr = π2EI
`2

. The beam is deemed to have

already buckled in it’s first mode shape and therefore mathematically, ac-

cording to Equation 2.1 is already deemed to be ‘vibrating’ in its first mode

at a frequency of 0Hz. At that axial load level, it is considered to be able

to vibrate in its second or third mode at 260Hz and 638Hz respectively.
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Figure 2.3.: Change in bending freq. with increasing axial compressive force.

Table 2.1.: Parameters for simply supported beam used to calculate natural
bending frequency of beams in Figure 2.3 using Equation 2.1

Property Value Unit

Breadth, b 150 mm
Height, h 200 mm
Cross Sectional Area, A 0.03 m2

Span, ` 2.0 m
Young’s Modulus, E 26.88 GPa
Second Moment of Area, I 1× 10−4 m4

Density of reinforced concrete, ρ 24 kN/m3

Mass per unit length, m = ρ×A 73.39 kg/m
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Figures 2.3c and 2.3d represent the same data, however on the y-axis, the

natural frequency is normalised as a percentage of its ‘virgin’ natural fre-

quency. Figure 2.3a and Figure 2.3b also represent the same data, however

the x-axis is extended to include the buckling conditions for the second and

third bending modes of vibration, which reach 0Hz at n = 2, N = 4Pcr and

n = 3, N = 9Pcr respectively. The individual buckling mode shapes for the

first three modes of vibration of a simply supported beam are represented

in Figure 2.4.

 

 

n=1
n=2
n=3

Figure 2.4.: Modeshapes for the first three bending vibration modes.

As pointed out by Saiidi et al. (1994), Equation 2.1 can be written in a

dimensionless form;

Z = 1− 1

n2
X (2.18)

where Z is an index showing the sensitivity of the square of the frequency

22



to changes in the axial load index;

Z = Y/Yo (2.19)

where;

Y =
ω2
n

(EI/mL4)
(2.20)

and;

Yo = (nπ)4 (2.21)

The parameter X is the ratio of the axial load to the buckling load and is

given by;

X =
N

(π2EI/L2
e)

(2.22)

This indicates that the sensitivity of the change in frequency with axial load

decreases significantly for higher modes of vibration (Saiidi et al., 1994),

which is represented graphically in Figure 2.5.
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Figure 2.5.: Sensitivity of change in square of frequency to increasing axial
load index (Saiidi et al., 1994)

Many authors (Bartlett, 1987; Bourne, 2013; Dall’Asta and Leoni, 1999;

Deák, 1996; Jain and Goel, 1996) argue that the application of the “com-

pression softening” effect to a prestressed concrete beam is erroneous from

the outset, for a number of different reasons. It has been argued that a

prestressing force should be considered as an internal force within the sys-

23



tem and is not equivalent to an externally applied axial load (Dall’Asta

and Leoni, 1999). Deák (1996) argues Equation 2.1 is applicable only to an

“external axial compressive force that maintains its original line of action

during the vibration of the member, thus being converted into an eccentric

force with respect to the axis of the beam.” In essence, the arguments seem

to point in the direction that a prestressing force should not be considered

to cause the beam to buckle in accordance with Euler buckling theory and

therefore Equation 2.1 is not applicable.

2.4.1. Miyamoto et al. (2000) model

From the outset, it should be stated that in this study, the intention is

to include only prestressed concrete beams with internal tendons, however

Miyamoto et al. (2000) present a study on the behaviour of a composite

(steel-concrete) prestressed girder strengthened with external tendons, in a

so-called “queen-post” arrangement, as shown in Figure 2.6a. The model is

fundamentally different from the others from the beginning as it considers

a composite girder with external tendons. Other research focuses primarily

on single material beams (steel or concrete) that are prestressed internally

(i.e. the tendon lies within the confines of the beam cross section). On

closer inspection it should be noted that the mathematical formulation by

Miyamoto et al. (2000) is identical to Tse et al. (1978) save for the inclusion

of the geometric terms relating to the external prestressing strand layout.

Miyamoto et al. (2000) acknowledges the “compression-softening” effect and

states that in “...theory, prestressing lowers the natural frequency of the

girder; thus using external prestressing tendons the vibration characteristics,

which include the natural frequency of the existing structural system are

affected.”

The analytical distributed mass model derived by Miyamoto et al. (2000)

consists of the “compression-softening” effect, as outlined by Tse et al.

(1978), in addition to geometric terms accounting for the profile of the ex-

ternal prestressing tendons, such as the angle of the tendons, θ, the distance

from the support to the deviator, a, and the starting eccentricity of the ten-

don from the centroid of the cross section, e.
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(b)

Figure 2.6.: (a) Composite steel-concrete beam studied by Miyamoto et al.
(2000); (b) Distibuted mass model as suggested by Miyamoto
et al. (2000)

Miyamoto et al. (2000) Analytical Model

According to Miyamoto et al. (2000), the flexural vibration of a girder sub-

jected to a prestressing force exerted by external tendons is expressed as;

∂2

∂x2

(
EsIvs

∂2y

∂x2

)
+

∂2

∂x2
(Pty)− ∂2

∂x2
(Mp) = −ΣγiAi

g

∂2y

∂t2
(2.23)

where EsIvs is the flexural rigidity of the girder, γi is the unit weight of the

girder and Ai is the cross-sectional area of the girder. Pt is the magnitude of

the prestressing force and Mp is the bending moment due to the prestressing

force. Pt and Mp can be expressed as;

Ptc = P 0
tc + ∆Ptc (2.24)

Mp =
(
P 0
tc + ∆Ptc

)
e+

(
P 0
ts + ∆Pts

)
a (2.25)

Ptc is the component of horizontal direction of prestressing force, Pts is the

vertical component of the prestressing force, ∆Ptc is the horizontal com-
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ponent of the increase in prestressing force due to flexural vibration, ∆Pts

is the vertical component of the increase in the prestressing force due to

flexural vibration. e is the eccentricity of the prestressing tendons (i.e. the

distance of the prestressing tendon from the neutral axis of the composite

section), a is the distance of the deviators from each end of the beam in the

queen-post arrangement, as shown in Figure 2.6a (Miyamoto et al., 2000).

∂2

∂x2

(
EsIvs

∂2y

∂x2

)
+

∂2

∂x2

(
P 0
tc + ∆Ptc

)
y

− ∂2

∂x2

[(
P 0
tc + ∆Ptc

)
e+

(
P 0
ts + ∆Pts

)
a
]

= −ΣγiAi
g

∂2y

∂t2

(2.26)

Miyamoto et al. argue that since ymax << e and therefore ∆Ptc.y <<

∆Ptc.e, the value of ∆Ptc.y is negligibly small and therefore (2.26) can be

written as;

EsIvs
∂4y

∂x4
+P 0

tc

∂2y

∂x2
−
[
e
∂2

∂x2
(∆Ptc) + a

∂2

∂x2
(∆Pts)

]
= −ΣγiAi

g

∂2y

∂t2
(2.27)

where ∆Pt is the amount of change in the tendon tension due to flexural

vibration, which varies with vibrational displacement. Therefore, Miyamoto

et al. (2000) assume that ∆Pt is proportional to the maximum value of

vibrational displacement, y, and assume that it is infinitesimal and can

hence calculate ∆Pt from the elasticity equation δ0 + (∆Pt cos θ) δ1 = 0,

where;

∆Pt cos θi =

∫ (
mM
EsIvs

)
dx∫ (

m2

EsIvs

)
dx + `

EsAvs
+ `t

EtAt

(2.28)

∆Pt cos θi =
P`2

8EsIvs
(e. cos θi + a. sin θi)

`
EsIvs

(e. cos θi + a. sin θi)
2 + `

EsAvs
+ `t

EtAt

(2.29)

P is the applied prestressing load, Et is the Young’s Modulus of the tendon,

At is the cross sectional area of the tendon and `t is the tendon length. The

authors disregard the shear force as it is assumed that it is negligibly small.
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Rearranging (2.28), ∆Pt can be expressed as;

∆Pt =
` (e. cos θi + a. sin θi)

8 cos θi

[
(e. cos θi + a. sin θi)

2 + λ
]P (2.30)

where;

λ =
Ivs
Avs

+
EsIvs
EtAt

`t
`

(2.31)

` is the span of the composite steel-concrete section and `t is the length of

the external prestressing tendon, Avs is the area of the composite girder, Ivs

is the second moment of area of the composite girder. The static midspan

deflection of the composite girder is calculated using the following formula

(Miyamoto et al., 2000);

yp =
`3

48EsIvs
P (2.32)

Substituting (2.32) into (2.31), Miyamoto et al. (2000) obtains an expression

for the displacement as a function of the change in prestressing force, ∆Pt;

yp =
`2 cos θi

[
(e. cos θi + a. sin θi)

2 + λ
]

6EsIvs (e. cos θi + a. sin θi)
∆Pt (2.33)

where yp is the static midspan deflection of the composite girder under the

applied load P . The authors then produce an expression for the upward

movement of the girder (y∆Pt) due to the change in force in the prestressing

tendon, ∆Pt;

y∆Pt =
M∆Pt

8EsIvs
`2

=
e. cos θi + a. sin θi

8EsIvs
`2∆Pt (2.34)

The vibration displacement, y can then be calculated from the relationship

y = yp − y∆Pt , giving;

y =
(4 cos θi − 3) (e cos θi + a sin θi)

2 + 4λ cos θi
24EsIvs (e cos θi + a sin θi)

`2∆Pt (2.35)
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Rearranging, Miyamoto et al. (2000) express ∆Pt as a function of y;

∆Pt =
24EsIvs (e cos θi + a sin θi)

`2 (µ+ 4λ cos θi)
y (2.36)

where;

µ = (4 cos θi − 3) (e cos θi + a sin θi) (2.37)

Subbing (2.36) into (2.27) and rearranging, Miyamoto et al. (2000) obtain;

EsIvs
∂4y

∂x4
+

(
P 0
tc −

24EsIvs
`2

v

µ+ 4λ cos θi

)
∂2y

∂x2
= −ΣγiAi

g

∂2y

∂t2
(2.38)

where;

v = (e cos θi + a sin θi)
2 (2.39)

The solution to (2.38) is of the form;

y = X(x)eiωnt (2.40)

Since the composite girder is simply supported, the mode shape, X(x) takes

the form;

X(x) = D sin
nπ

`
x (2.41)

for n=(1,2,3...), where D is an arbitrary constant. Substituting (2.40) and

(2.41) into (2.38) and rearranging, Miyamoto et al. (2000) obtain the fol-

lowing;

EsIvs

(nπ
`

)4
−
(
P 0
tc −

24EsIvs

`2
v

µ+ 4λ cos θi

)(nπ
`

)2
=

ΣγiAi
g

ω2
n (2.42)

Solving for ωn, the following is obtained;

ωn = av

(nπ
`

)2
ξ (2.43)

28



ξ is given by;

ξ =

√√√√[1−
(
`

nπ

)2 P 0
tc

EsIvs
+

24

(nπ)2

v

µ+ 4λ cos θi

]
(2.44)

av =

√
EsIvs
m

(2.45)

m is the mass per unit length of the beam. ξ is a term containing the

“compression-softening” formula in addition to geometric terms describing

the path of the prestressing tendons. By setting ξ = 1, Equation 2.43

becomes the natural bending frequency equation for a simply supported

beam with zero prestressing force. According to the authors, if ξ > 1, the

influence of the tendon arrangement is said to be greater than the horizontal

component of the initial prestressing force , the strengthening with external

tendons increases the natural frequency. For values of ξ in the range 0 <

ξ < 1, the influence of the horizontal component of the prestressing force is

large and the strengthening decreases natural frequency. By setting θi = 0,

a = 0 and e = 0, Equation 2.43 reduces to Equation 2.1, as obtained in Tse

et al. (1978), as ξ becomes;

ξ =

√√√√[1−
(
`

nπ

)2 P 0
tc

EsIvs

]
(2.46)

by setting θ = 0, a = 0, ξ becomes;

ξ =

√√√√[1−
(
`

nπ

)2 P 0
tc

EsIvs
+

24

(nπ)2

e2

e+ 4λ

]
(2.47)

Equation 2.47 indicates that when the geometric effect of the increasing

eccentricity is greater than the effect of the “compression-softening” term,

an increase in natural frequency can be predicted. This was also found to

be the case experimentally (Miyamoto et al., 2000). Impact hammer tests

were carried out on a composite steel-concrete girder in the “queen-post”

arrangement. It was found that for the less eccentric tendons (e/ysl = 0.1)

the natural vibration frequencies tended to decrease as the magnitude of

the prestressing force was increased, in accordance with the “compression-

softening” effect. For the configuration with the more eccentric tendons
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(e/ysl = 1.0) it was found that the natural vibration frequencies tended to

increase as the magnitude of the prestressing force was increased (Miyamoto

et al., 2000). This is discussed further in Section 2.12.1.

Figure 2.7 displays the results of applying Equations 2.43, 2.45 and 2.47

to the simply supported beam outlined in Table 2.1 with varying prestress

force eccentricity, e. It can be seen from Figure 2.7 that Equations 2.43, 2.45

and 2.47 predict that increasing the prestress force eccentricity acts as to in-

crease the natural frequency of the beam with respect to zero prestress force

eccentricity. This can be attributed to the geometric effect of increasing the

second moment of area, I, and subsequently the flexural rigidity, EI of the

beam. Figure 2.8 charts the aforementioned “compression-softening” effect

for a range of different prestress force eccentricities. As before, the more

eccentric the tendon, the higher the first natural bending frequency for a

given level of prestress force, as the second moment of area of the section is

increased in accordance with the parallel axis theorem.
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Figure 2.7.: Change in NF with varying eccentricity of prestress force for
various prestress force magnitudes

2.4.2. Raju and Rao (1986) model

Raju and Rao (1986) present a paper in which the effect of the magnitude

of the prestress force on the free vibration behaviour of a simply supported

prestressed concrete beam is studied, accompanied by the effects of rotary

and shear inertia through a Rayleigh-Ritz formulation. The effect of rotary

and shear inertia has been ignored by Tse et al. (1978) and Miyamoto et al.
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Figure 2.8.: Change in NF with varying prestress force for various eccentric-
ities of prestressing strand

(2000). The kinematic relations have been altered from Tse et al. (1978) to

include the effect of rotary and shear inertia. Beam curvature is given as

(Raju and Rao, 1986);

ψx = −
(
∂2w

∂x2
+
∂γ

∂x

)
(2.48)

as opposed to an Euler-Bernoulli beam, in which the curvature is considered

to be a function of the transverse displacement only, and independent of

shear inertia, such that (Tse et al., 1978);

ψx = −
(
∂2w

∂x2

)
(2.49)

ψx is the beam curvature, w is the transverse displacement, γss is the shear

rotation and x is the axial coordinate. The strain energy, U , and the kinetic

energy, TKE , for a beam of length ` is given as (Raju and Rao, 1986);

U =
EI

2

∫ `

0

[(
∂2w

∂x2
+
∂γss
∂x

)2

+
5

12 (1 + ν) r2
γ2
ss

]
dx (2.50)

TKE =
mω2

2

∫ `

0

[
w2 + r2

(
∂w

∂x
+ γss

)2
]

dx (2.51)

where E is the Young’s Modulus of elasticity, I is the second moment of

area, r is the radius of gyration, m is the mass per unit length, ν is Poisson’s
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ratio for concrete (u 0.3), γss is the shear strain and ω is the natural circular

frequency. Raju and Rao also point out that a shear factor of 5/6 has been

assumed in Equation 2.50. The work done by the external axial load, Pext,

is given by;

W =
Pext

2

∫ `

0

(
∂w

∂x

)2

dx (2.52)

For a simply supported beam, the assumed mode of vibration is;

w = a sin
(nπx

`

)
(2.53)

The deformation mode for shear rotation, γss is assumed from the similarity

between ∂w
∂x and γss and is given as;

γss = b cos
(nπx

`

)
(2.54)

where n is the mode number and a and b are the unknown coefficients for

the amplitude of vibration. The authors apply the Rayleigh-Ritz method,

in which the total potential energy is minimised with respect to a and b;

∂

∂a
(U −W − TKE) = 0 (2.55)

∂

∂b
(U −W − TKE) = 0 (2.56)

Following the implementation of the Rayleigh-Ritz method, which is a en-

ergy minimisation technique, tracking total energy as the superposition of

strain energy, kinetic energy, and work done by an external axial load acting

on the system, expressions are obtained for the critical load parameter;

λb =
Pext`

2

EI
(2.57)

and the frequency parameter;

λf =
mω2`4

EI
(2.58)

The solution is identical to that by Tse et al. (1978) but that it includes

the effect of shear and rotary inertia. The critical load parameter is found
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to be;

λb =
π2

12(1+ν)π2

5β2 + 1
(2.59)

rearranging, and simplifying, the following critical buckling load is obtained

Raju and Rao (1986);

PCR =
5β2

12 (1 + ν)π2 + 5β2

π2EI

`2
(2.60)

where β = `/r is the slenderness ratio and ν is the Poisson’s ratio for the

material. The frequency parameter, λf is given as a function of the critical

load parameter, λb;

λf =
B −

√
B2 − 4C

2
(2.61)

where B and C are functions of mode number, n, slenderness ratio, β,

Poisson’s ratio, ν and the critical load parameter, λb;

B = (nπβ)2 +
5

12 (1 + ν)

(
β4 + (nπβ)2

)
− (nπ)2 λb (2.62)

C =
5

12 (1 + ν)
(nπβ)4 − (nπβ)2

[
(nπ)2 +

5β2

12 (1 + ν)

]
λb (2.63)

rearranging Equation 2.50, the nth natural frequency, ωn is given as;

ω2
n =

EI

m`4

[
B −

√
B2 − 4C

2

]
(2.64)

It was found that the natural frequency of these beams decreased with

increasing prestressing force and for a given prestressing force that the nat-

ural frequencies of the prestressed concrete beams increased for increasing

slenderness ratios, β at a given axial load value. It was concluded that

the effect of shear deformation and rotary inertia is significant for higher

modes of vibration, even for slender beams and that the effect of an axial

compressive load is significant for the lower modes of vibration (Raju and

Rao, 1986).

Table 2.2 shows the numerical difference between predictions for the first
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Table 2.2.: Comparison of including (Raju and Rao, 1986) against excluding
(Miyamoto et al., 2000) the effect of rotary and shear inertia on
the “compression-softening” effect

Axial force (kN) Miyamoto et al.
(2000) [Hz]

Raju and Rao
(1986) [Hz]

% Diff. (%)

0 83.27 81.98 1.56%
10 83.22 81.93 1.56%
20 83.17 81.88 1.56%
30 83.12 81.82 1.57%
40 83.06 81.77 1.57%
50 83.01 81.72 1.57%
60 82.96 81.67 1.57%
70 82.91 81.62 1.57%
80 82.86 81.57 1.57%
90 82.81 81.51 1.57%
100 82.76 81.46 1.58%
110 82.70 81.41 1.58%
120 82.65 81.36 1.58%
130 82.60 81.31 1.58%
150 82.50 81.20 1.58%
160 82.45 81.15 1.59%
170 82.40 81.10 1.59%
180 82.34 81.05 1.59%
190 82.29 80.99 1.59%
200 82.24 80.94 1.59%

natural bending frequency of the simply supported beam described in Ta-

ble 2.1 using Equation 2.1, including the effect of rotary and shear inertia

(Raju and Rao, 1986) and excluding the effect of rotary and shear inertia

(Miyamoto et al., 2000; Tse et al., 1978). The fourth column shows the

average percentage difference between the two values and indicates that the

inclusion of the rotary and shear inertia causes the predicted values for the

natural frequency to decrease somewhere in the region of 1.56 − 1.59% for

the range of prestressing force shown in column 1.

Figure 2.9 shows the linear increase in average percentage difference in

natural bending frequency prediction with increasing axial force magnitude.

As can be seen from the graph, the magnitude is significant in relation to the

change in natural bending frequency over the given range of axial forces and

therefore, the effect of rotary and shear inertia ought to be included in any
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Figure 2.9.: (a) & (b) Effect of Including Shear and Rotary Inertia in the
Natural Bending Frequency prediction of Simply Supported
Beams using Equation 2.1; (c) & (d) Ave. % diff. in NF predic-
tion using Equation 2.1 between including and excluding Shear
and Rotary Inertia with increasing axial force magnitude

frequency prediction, as pointed out by Raju and Rao (1986). Figure 2.9

indicates that the inclusion of shear and rotary inertia is relatively more

important than the change in prestressing force in the calculation of natural

bending frequencies of prestressed concrete beams.

Bartlett (1987) and Bažant and Cedolin (1987), like many (Dall’Asta and

Leoni, 1999; Deák, 1996; Jain and Goel, 1996) before them consider that it is

erroneous to treat a prestress load as an external axial load, and that it may

only be valid in cases where the beam has been jacked against permanent

abutments or in some cases when the prestressing force is induced by high-
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strength steel wires which are anchored to the end faces of the beam with

extremely large internal voids compared to the area of the beam cross section

(Bartlett, 1987). According to Bartlett (1987) “this assumption is wrong

for all cases of pretensioned and post-tensioned grouted beams” and is also

not valid for post-tensioned, ungrouted beams where “the duct dimensions

are small compared to the vibration deflection amplitudes.”

A more generic solution to the one formulated by Raju and Rao (1986)

is suggested by Bert (1987). It is pointed out that the solution proposed

by Raju and Rao (1986) is only valid for a simply supported beam with

Poisson’s ratio, ν = 0.3 and for rectangular cross sections, as a shear factor,

k = 5/6 is assumed. The following modifications to the model suggested by

Raju and Rao (1986) are proposed by Bert (1987):

λb =
π2

Exπ2

kGxz
+ 1

(2.65)

B = (nπβ)2 +
kGxz
Ex

(
β4 + (nπβ)2

)
− (nπ)2 λb (2.66)

C =
kGxz
Ex

(nπβ)4 − (nπβ)2

[
(nπ)2 +

kGxz
Ex

]
λb (2.67)

where Ex is the Young’s modulus in the axial direction, Gxz is the transverse

shear modulus in the plane of vibration and k is the shear factor for the

given cross section. As a result, Bert (1987) claims that “it is clear that

the effect of the axial load and transverse shear deformation is much more

pronounced for composite beams that for isotropic ones.”

2.5. Stiffness Alteration Models

Many authors (Saiidi et al., 1994; Williams and Falati, 1999; Zhang et al.,

2012) produce empirical based stiffness alteration models to track the in-

crease in natural frequency with increasing prestress force. Through em-

pirical studies and subsequent experimental modal analysis of prestressed

concrete beams with varying prestress force magnitude it has been found

experimentally, that there is an increase in natural frequency with increas-

ing prestressing force (Ho et al., 2012; Hop, 1991; Lu and Law, 2006; Saiidi

et al., 1994; Williams and Falati, 1999; Zhang and Li, 2007; Zhang et al.,
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2012). Other authors have produced mathematical and finite element mod-

els based on the “tension-strength” model, tracking an increase in natural

frequency with increasing prestress force (Kim et al., 2004; Zhang and Li,

2007).

2.5.1. Saiidi et al. (1994) model

Saiidi et al. (1994) conducted experimental modal analysis on both a pre-

stressed concrete bridge in service and simply supported prestressed con-

crete beams. It was found in both cases that the natural frequencies in-

creased with increasing prestress force magnitude. Since the data obtained

through both field and laboratory testing contradicted predictions made in

accordance with the “compression-softening” effect, Saiidi et al. calculated

the equivalent flexural rigidity, EIeff , for each experimentally measured

value of prestressing force at each prestressing load level, using the modi-

fied version of Equation 2.1 (Saiidi et al., 1994);

(EI)eff = m

(
`

nπ

)4 [
ω2
n +

(nπ
`

)2 N

m

]
(2.68)

The authors attributed the conflict between the measured and predicted

data to initial microcracking that had occurred in the beam section, pri-

marily due to shrinkage. It was suggested that the effect of the prestressing

force was therefore to close the cracks, thereby enhancing the stiffness of the

section (Saiidi et al., 1994). No work has been conducted to prove that the

increase in stiffness can be attributed to the closure of microcracks. Linear

regression analysis was then applied to develop an empirical relationship be-

tween applied prestressing force and equivalent flexural rigidity. The data

for prestressing forces of 18kN or less was excluded as it was considered to

be affected by the crack at midspan that is not normally expected in pre-

stressed members and because the average prestress force for these points

was small. In place of the omitted data an artificial data point, EcIg was

added for the case of zero prestress. A least-square regression best-fit line

was then forced to pass through this point. An empirical relationship was

hence obtained and is outlined in Equation 2.69 (Saiidi et al., 1994);

(EI)eff =

(
1 + 1.75

N

f ′c

)
EIg (2.69)
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N is the magnitude of the prestressing force measured in Newtons, N and

f ′c is the concrete strength in units of N/mm2. Equation 2.69 represents

the empirical relationship between effective flexural rigidity and the magni-

tude of the prestressing force for a simply supported beam with a straight

prestressing tendon passing through the centroid of the section. It shows

that there is a gain in equivalent flexural rigidity for increasing magnitude

of prestressing force. This empirical relationship was then applied to the

Golden Valley bridge to estimate the effective flexural rigidity according to

the magnitude of prestressing force (Saiidi et al., 1994). Once (EI)eff had

been obtained, then Equation 2.68 was used to calculate the first natural

frequencies. The calculated first natural frequencies of the Golden Valley

bridge using the revised effective flexural rigidities calculated using Equa-

tion 2.69 were found to be within 6% of the measured data. Furthermore,

the calculated results were found to decrease at the same rate as the mea-

sured data (Saiidi et al., 1994).

It was found through field testing of a simply supported post-tensioned

bridge and laboratory testing of a simply-supported post-tensioned con-

crete beam that the measured first natural frequencies for both bridge and

beam followed the opposite trend to that predicted by the “compression-

softening” effect (Saiidi et al., 1994). The theoretical prediction for ho-

mogeneous members is that as the prestress force decreases the frequency

increases as a reduction of axial load should stiffen the element (Tse et al.,

1978). It was in fact found that as the prestress force increased, the natural

bending frequencies of both the bridge and beam increased. As pointed out

previously, it was suggested that as the prestress force decreases, e.g. over

time due to steel relaxation, concrete creep etc. more microcracks open up

in the concrete and the member softens (Saiidi et al., 1994). No cracked

analysis was conducted to verify this. It should also be pointed out that

Equation 2.69 is based on empirical evidence only and also includes the di-

mensional parameter, N/f ′c. As a result, the left hand side of Equation 2.69

has units of Nmm2, whereas the right hand side of the equation contains a

multiple of the dimensional term, N/f ′c added to a dimensionless constant.

As a result, Equation 2.69 is not dimensionally consistent. The authors also

state that since the data for the Golden Valley bridge showed, for practical

ranges of prestress force, the change in natural frequencies for prestressed

concrete members is very small even for the fundamental mode, and since
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changes in structural parameters such as degree of fixity at supports, mass,

section properties etc. can affect frequency and introduce variation of the

order of the measured changes in frequency, it is not feasible to use vibration

data to determine prestress losses (Saiidi et al., 1994).

2.5.2. Zhang et al. (2012) model

Dynamic testing on two unbonded fully prestressed concrete beams was

conducted by Zhang et al. (2012). It was found that the natural frequency

of the beams increased with increasing prestressing force magnitude. The

authors explore the change in frequencies in terms of the change in elastic

modulus, and a modified formula is presented;

(EI)n =

(
1 +

2000000N

nEconcIconc

)
EconcIconc (2.70)

where N is in kN. The authors consider fully prestressed concrete beams

only that have been guaranteed not to crack or buckle under service load-

ing. As a result the second moment of area of the beams are deemed to

remain constant. Hence the changes in the Young’s Modulus, E, has been

investigated. The following formula is obtained as the variation in E with

prestressing force magnitude (Zhang et al., 2012);

E = E0

(
1 +

mN`2

250E0I0

)
(2.71)

The authors consider that there are limitations to the models put forward

by Saiidi et al. (1994) and Kim et al. (2004). They point out that Saiidi

et al. assume that stiffness is related to concrete strength only, and the

so-called “tension-strength” model as put forward by Kim et al. considers

only the effect on the prestressing steel and neglects the effect of concrete

compaction. The model put forward by Kim et al. is outlined in Section 2.8.

2.5.3. Williams and Falati (1999) model

Williams and Falati (1999) describe an extensive programme of modal test-

ing on a post-tensioned concrete one-way spanning slab strip at 50% of full

scale. The slab itself was prestressed in one direction only, and was treated

and analysed in the same manner as a vibrating beam, using the formula for

a vibrating beam to predict vibration frequency. The slab was constructed
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with high slenderness and therefore low natural frequency, giving a high

likelihood of vibration serviceability problems (Williams and Falati, 1999).

It was found experimentally that the natural frequencies of prestressed con-

crete structures increase with increasing prestressing force, and that the

damping decreases. No discernible effects on the mode shapes was reported

(Williams and Falati, 1999). The authors also point out that the level of

cracking of the concrete is an important factor in determining the stiffness

and damping of the floor. They attempted to estimate the effective second

moment of area of the cross section at each level of prestressing force. Ac-

cording to the authors; “the effective second moment of area of a cracked

section, averaged over it’s length, depends on the loss of effective depth due

to cracking” (Williams and Falati, 1999). This is a code-based approach

(ACI Committee 318, 2008);

Ie =

(
Mcr

Ma

)3

Iu +

[
1−

(
Mcr

Ma

)3
]
Icr (2.72)

where Ma is the maximum gross moment and Mcr and the cracking moment.

The level of cracking in the slab depends on the design tensile stress, ft,

where for a reinforced beam;

ft =
Mcryt
I

(2.73)

However, when prestressing is present, the stress is reduced to;

ft =
Mcryt
I
− P

A
− Peyt

y
(2.74)

This indicates that increasing the prestressing force increases the magnitude

of the cracking moment, or if the section is already cracked, has the effect of

reducing the level of cracking. This leads to overall stiffening of the system

and subsequent increase in the natural frequency. Williams and Falati also

consider that fewer cracks also reduce sources of energy dissipation and lead

to lower damping.

The authors found that by applying the equation for natural frequency of

a simply supported beam in conjunction with Equation 2.72, there was an

acceptable agreement with experimental values, indicating that the changes

in natural frequency with level of prestressing force are due mainly to

changes in the amount of cracking. These discrepancies have been at-
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tributed to the difference between ideal and experimental boundary con-

ditions (Williams and Falati, 1999).

2.6. Dall’Asta and Dezi (1996) model

Dall’Asta and Dezi (1996) in response to Saiidi et al. (1994) produced a

model stating that the increase reported in natural frequency with increasing

prestressing force by Saiidi et al. was theoretically predictable and produced

a model based on Kirchhoff’s kinematic relations. Applying Kirchhoff’s

kinematic model;

εxx(x, z) =
duo
dx
− z d

2w

dx2
(2.75)

to a prestressed concrete beam with constant cross section and length, and

solving leads to the following;

ω2
n =

n4π4

m`4

[(
Eb −

N

Ab

)
Ib +

(
Ecab +

N

Acab

)
Icab

]
(2.76)

where m is the mass per unit length of the beam. According to the au-

thors, for practical ranges of prestressing force the N/Ab term is negligible

compared to the Eb term. Furthermore, it is also pointed out that the mag-

nitude of the Ic term is negligible compared to the magnitude of the Ib term.

As a result, the authors conclude, from mathematical modelling that the

effect of the prestress force on the beam bending frequencies is negligible

(Dall’Asta and Dezi, 1996);

ω2
n ≈

n4π4

mL4
EbIb (2.77)

2.7. Jain and Goel (1996) model

Jain and Goel (1996), in their discussion in response to the paper presented

by Saiidi et al. (1994), state, as both Deák (1996) and Dall’Asta and Dezi

(1996) suggested, that an externally applied compressive axial force softens

a beam laterally and the natural vibration frequencies decrease. Jain and

Goel also state, like Deák and Dall’Asta and Dezi before, that this cannot

be applied to the situation where the axial force is applied by prestressing

cables that are themselves anchored to the end faces of the beam, making
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the axial force an internal force of the system. The authors illustrate this by

deriving the first natural vibration frequency of a simply supported beam by

energy methods. Since the fundamental mode shape of a simply-supported

uniform beam with and without axial force is sinusoidal, the exact value of

fundamental frequency can be obtained by equating the maximum kinetic

energy of the system to the maximum potential energy of the system. The

beam deflection, v(x, t), under the first mode may be expressed as (Jain and

Goel, 1996);

v(x, t) = A sin
(πx
`

)
sinωt (2.78)

where A in the amplitude of vibration at midspan. The kinetic energy

during vibration is described as;

KE =

∫ `

0

1

2
m

(
∂2v

∂x2

)
dx

=
1

4
mω2A2` cos2 ωt (2.79)

The potential energy in the beam is defined as the flexural deformation

minus the work done by externally applied force due to movement of two

ends of the beam;

PE =

∫ `

0

1

2
EI

(
∂2v

∂t2

)
dx−N

∫ `

0

1

2

(
∂v

∂x

)2

dx

=

(
π4EIA2

4`3
− π2NA2

4`

)
sin2 ωt (2.80)

Equating Equations 2.79 and 2.80 Jain and Goel obtained the following,

concurring with Equation 2.1 obtained by Tse et al. (1978);

ω2
1 =

π4EI

m`4
− π2N

m`2
(2.81)

Jain and Goel argue that for the case where the axial force is applied by the

use of prestressing tendons, there is no externally applied axial load and as

a result, the second term in Equation 2.81 does not appear and therefore
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the equation reduces to the following;

ω2
1 =

π4EI

m`4
(2.82)

Equation 2.82 is the equation for the natural frequency of a simply supported

beam, and therefore Jain and Goel conclude that the natural frequency of a

simply supported prestressed beam is independent of the magnitude of the

prestressing force.

2.8. Tension-Strength model, (Kim et al., 2004)

Kim et al. (2004) report on a non-destructive method to detect prestress loss

in beam-type prestressed concrete bridge structures. An analytical model is

formulated to estimate changes in the natural frequency of prestressed con-

crete bridges according to changes in the magnitude of the prestressing force.

In addition, an inverse solution algorithm is presented in order to predict

prestress loss based on measured changes in natural frequency. This section

sets out to explore the utilisation of tracking changes in the dynamic modal

properties of a structure as a non-destructive means of damage detection.

Kim et al. point out that prestressing force is introduced in order to con-

trol crack initiation, reduce deflection and to add strength to prestressed

members. Prestress loss occurs due to elastic shortening and bending of

concrete, creep and shrinkage of concrete, steel relaxation, anchorage pull-

in and frictional loss between the tendon and surrounding materials (Kim

et al., 2004). The authors point out that unless a prestressed structure,

such as a prestressed bridge, is instrumented at the time of construction,

the prestress force cannot be directly monitored and therefore alternative

methods must be sought. According to Kim et al., the non-destructive eval-

uation methods from previous works such as Saiidi et al. (1994), Miyamoto

et al. (2000), Saiidi et al. (1996) is based on the following considerations;

1. the loss of prestress force in the structure is related to the change in

structural stiffness,

2. the loss of prestress force changes the vibration characteristics of the

structure, and,
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3. the change in structural stiffness can be estimated by monitoring

changes in vibration characteristics of the structure.

2.8.1. Prestressed beam model

Kim et al. (2004) presents an alternative tension-strength model with straight

concentric tendons, in which the change in length of the prestressed con-

crete beam due to prestressing force is modelled. The model is outlined in

Figures 2.10, 2.11 and 2.12 (Kim et al., 2004). The axial shortening of the

PSC beam due to prestressing force is modelled, resulting in a decrease of

span length;

δL = L− Lr (2.83)

There is also an expansion of the cross section due to Poisson’s effect. The

composite flexural rigidity of the prestressed beam is given as the sum of

the flexural rigidity of the tendon plus the flexural rigidity of the concrete

beam section such that;

ErIr = EconcIconc + EsIs (2.84)

The governing differential equation, as presented by Kim et al. (2004) is

given by;

∂2

∂x2

(
ErIr

∂2y

∂x2

)
+mr

∂2y

∂t2
= 0 (2.85)

mr is the mass per unit length of the prestressed beam in kg/m and is given

as the sum of the mass per unit length of the prestressing tendon plus the

mass per unit length of the concrete beam section;

mr = ρcAconc + ρsAs (2.86)

The authors derive the equivalent flexural rigidity of the tendon by analysing

the flexural vibration of a cable under uniform tension, and produce the

governing differential equation;

−N ∂2y

∂x2
+ ρsAs

∂2y

∂t2
= 0 (2.87)
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N
x

y L

(a)

(b)

Figure 2.10.: (a) PSC beam under axial force (Kim et al., 2004); (b) Euler-
Bernoulli beam under axial force (Kim et al., 2004)

Many authors (Kim et al., 2004; Miyamoto et al., 2000; Saiidi et al., 1994)

consider that no successful attempt has yet been made to determine the

relationship between prestress loss and the change in modal parameters.

The equivalent flexural rigidity of the tendon is derived by analysing the

flexural vibration of a cable under uniform tension (Kim et al., 2004);

ω2
nc

=

(
nπ

Lr

)2 N

ρsAs
(2.88)

It is then assumed that there is a beam equivalent to the cable under tension

with the same modal properties and the nth natural frequency is given as;

ω2
nc

=

(
nπ

Lr

)4 EsIs
ρsAs

(2.89)

Through equating Equation 2.88 and 2.89, the equivalent flexural rigidity

of the tendon is obtained as a function of the prestressing force, N ;

EsIs =

(
Lr
nπ

)2

N (2.90)

the following is therefore obtained (Kim et al., 2004);

ErIr = EconcIconc +

(
Lr
nπ

)2

N (2.91)
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(a)

(b)

Figure 2.11.: (a) PSC beam under initial deformation (Kim et al., 2004);
(b) Beam of equivalent flexural rigidity (Kim et al., 2004)

(a)

(b)

Figure 2.12.: (a) Cable under tension load (Kim et al., 2004); (b) Beam with
equivalent flexural rigidity (Kim et al., 2004)

ErIr is assumed to be constant along the entire length of the beam. Apply-

ing appropriate boundary conditions to the governing differential equation

and substituting for ErIr, the following equation is obtained for the change

in natural frequency of a simply supported prestressed beam with mag-

nitude of prestressing force, according to the “tension-strength” model as

proposed by Kim et al. (2004);

ω2
n =

(
nπ

Lr

)4 1

mr

(
EconcIconc +

(
Lr
nπ

)2

N

)
(2.92)

where Lr is the length of the prestressed beam following elastic shortening,
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in accordance with normal strain, given as;

Lr = L

(
1− δL

L

)
= L

(
1− N

AconcEconc

) (2.93)

Kim et al. (2004) state that when Aconc/L
2
r << 1, the axial compression

effect is negligible if the prestressing force, N , is less than the yielding

condition. Furthermore, it is pointed out that in the “residual-tension”

model outlined, the effective flexural rigidity of the beam is written in terms

of the deformed beam span length and the magnitude of the prestressing

force, and hence the natural frequency of the beam can be inferred.

2.8.2. Inverse Solution

The inverse solution to Equation 2.92 is presented by Kim et al. (2004) as

a means of monitoring the structural health of the beam;

(N)n = ω2
nmr

(
Lr
nπ

)2

− EconcIconc
(
nπ

Lr

)2

(2.94)

Having calculated N from Equation 2.94, it can be substituted back into

Equation 2.91 to obtain the equivalent flexural rigidity of the beam section

and hence monitor the structural health of the prestressed beam. By assum-

ing no change in the beam’s geometry and material properties occur due to

changes in the prestressing force, the authors obtain the first variation of

the prestress force;

(δN)n = δω2
nmr

(
Lr
nπ

)2

(2.95)

where (δN)n is the change in the prestressing force that can be identified

by the nth mode and δω2
n is the change in the square of the nth natural

frequency due to prestress loss (Kim et al., 2004). Kim et al. express the

relative change in prestress force that can be identified by the nth mode as;

(
δN

N

)
n

=
δω2

nmr

(
Lr
nπ

)2
ω2
nmr

(
Lr
nπ

)2 − EconcIconc (nπLr

)2 (2.96)
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rearranging, the following is obtained;(
δN

N

)
n

=
δω2

n

ω2
n − ω̄n2

(2.97)

where ω̄n is the virgin natural frequency (i.e. the natural frequency of a

simply supported beam with zero prestressing force) and is given as;

ω̄n
2 =

(
nπ

Lr

)4 EconcIconc
mr

(2.98)

2.8.3. Verification of Model vs. Saiidi et al. (1994)

Kim et al. (2004) applied the analytical “tension-strength” model outlined

in Equation 2.92 to a beam with identical properties to that tested by Saiidi

et al. (1994) and compared the results. It was found that for the first mode,

the analytical model over-predicted the natural frequencies by an average

of 4.4%. For the second mode, it was found that the analytical “tension-

strength” model under-predicted the natural frequencies by an average of

4.8%. The results obtained by Kim et al. (2004) are outlined in Table 2.3.

2.8.4. Detection of prestress loss

Prestress loss is detected from an inverse solution of the prestressed concrete

beam models. The authors measure the relative change in prestressing force

using the formula:

δN

Nf
=

δω2
n

ω2
nf − ω̄2

n

=
ω2
nf − ω2

nd

ω2
nf − ω̄2

n

(2.99)

where ω̄n is the theoretical natural frequency with prestress force, N = 0. It

was found that for prestress loss prediction, the analytical model provided

a better approximation than the FE model.

2.8.5. Conclusions

A methodology to non-destructively detect prestress loss in PSC structures

has been presented by Kim et al. (2004). An analytical model to estimate

natural frequencies of prestressed concrete bridges under various prestress

forces was developed, the so-called “tension-strength” model. Finally, Kim

et al. produced an inverse-solution algorithm to predict prestress-loss in

48



T
ab

le
2.

3.
:

R
es

u
lt

s
ob

ta
in

ed
b
y

K
im

et
al

.
(2

00
4)

C
as

e
P

S
(k

N
)

E
x
p

.
F

re
q
.

(H
z)

(S
ai

id
i

et
al

.,
1
99

4)
K

im
et

a
l.

(2
0
0
4
)

M
o
d

el
P

re
d

.
F

re
q
.

(H
z)

K
im

et
a
l.

(2
0
0
4
)

F
E

P
re

d
.

F
re

q
.

(H
z)

f 1
f 2

f 1
f 2

f 1
f 2

f 1
f 2

f 1
f 2

%
d

.
%

d
.

%
d
.

%
d

.

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1
)

(1
2
)

1
0.

00
11

.4
1

43
.9

9
1
1
.4

1
4
5
.6

4
0
.0

%
-3

.7
%

1
1
.2

0
4
4
.0

5
1
.9

%
-0

.1
%

2
15

.7
1

12
.0

9
44

.1
1

11
.8

3
4
6
.0

6
2
.1

%
-4

.4
%

1
1
.6

9
4
4
.5

5
3
.3

%
-1

.0
%

3
27

.0
5

13
.4

7
44

.8
9

12
.1

3
4
6
.3

7
1
0
.0

%
-3

.3
%

1
2
.0

3
4
4
.8

9
1
0
.7

%
0
.0

%
4

36
.4

9
12

.8
9

44
.6

9
12

.3
7

4
6
.6

3
4
.0

%
-4

.3
%

1
2
.3

1
4
5
.1

6
4
.5

%
-1

.1
%

5
57

.2
5

13
.6

3
45

.6
2

12
.8

9
4
7
.1

8
5
.5

%
-3

.4
%

1
2
.9

0
4
5
.7

4
5
.3

%
-0

.3
%

6
81

.8
1

14
.4

9
45

.5
7

13
.4

7
4
7
.8

3
7
.1

%
-5

.0
%

1
3
.5

7
4
6
.4

0
6
.4

%
-1

.8
%

7
91

.2
6

14
.7

2
46

.3
2

13
.6

9
4
8
.0

7
7
.0

%
-3

.8
%

1
3
.8

2
4
6
.6

5
6
.1

%
-0

.7
%

8
12

1.
46

14
.7

2
45

.8
6

1
4
.3

6
4
8
.8

5
2
.4

%
-6

.5
%

1
4
.5

8
4
7
.4

0
1
.0

%
-3

.4
%

9
13

0.
91

14
.9

7
46

.1
0

1
4
.5

7
4
9
.1

0
2
.7

%
-6

.5
%

1
4
.8

1
4
7
.6

2
1
.1

%
-3

.3
%

10
13

2.
80

15
.0

7
45

.8
7

14
.6

1
4
9
.1

5
3
.1

%
-7

.1
%

1
4
.8

6
4
7
.6

7
1
.4

%
-3

.9
%

49



PSC structures. Kim et al. (2004) produced an analytical model showing

that the natural vibration frequencies of a prestressed concrete structure in-

crease with increasing prestressing force, in accordance with the test results

obtained by Saiidi et al. (1994).

2.9. Zhang and Li (2007) model

Zhang and Li (2007) conducted dynamic testing on three bonded and two

unbonded fully prestressed concrete beams. The results of the testing indi-

cate that the frequency of PSC beams increase with increasing prestressing

force magnitude, in line with the findings of other authors (Hop, 1991; Kim

et al., 2004; Saiidi et al., 1994). The authors state that the results differ from

the “compression-softening” theory as a prestressed concrete beam cannot

be considered to be an isotropic, homogeneous, linear elastic material, nor

can it be considered to be externally axially loaded, therefore “compression-

softening” theory is not valid. Rather an orthotropic linear-elastic model

has been formulated to analyse the relationship between prestress force mag-

nitude and natural bending frequency of prestressed concrete beams (Zhang

and Li, 2007). In the mathematical model presented, the prestressing ten-

don is considered to carry an axial tension, NT , whereas the concrete and

the ordinary reinforcing steel are considered to carry an axial compression,

NT . Since the cross sectional area and second moment of area of the pre-

stressing strand is much smaller than the concrete beam and the diameter

is much smaller than it’s length, the authors neglect the effect of moment

inertia and shear deformation of the prestressing strand, and include only

the effect of bending deformation stiffness in analysing beam vibration. The

equivalent stiffness of the prestressing tendon, EsIs, is given by Kim and

Stubbs (2002) and Kim et al. (2004) as;

EsIs =
`2NT

(nπ)2 (2.100)

As a result, Zhang and Li (2007) give the bending stiffness of the prestressed

concrete beam as;

EIeff = EcIc +

(
`

nπ

)2

N (2.101)
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Figure 2.13.: Free Body Diagram; Zhang and Li (2007) model

Figure 2.13 shows the free-body diagram derived by Zhang and Li (2007)

to derive their final equation of motion of a prestressed concrete beam.

Letting the X axis lie through the centroid of the beam cross section, with

right corresponding with the positive X direction, and the Y axis is positive

vertically downwards, then the positive Z axis agrees with the right-hand

rule. Zhang and Li express the displacement components of the beam as;{
U(x, y, z, t) = u(x, t) + yϕ(x, t)

V (x, y, z, t) ∼= v(x, t)
(2.102)

u(x, t) is the plane displacement along the X axis and ϕ(x, t) is the angular

displacement of the cross section along the abscissa, x. v(x, t) is the sectional
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displacement along the Y axis. The normal and shear strain is given as;
εx =

dU

dx
=

du

dx
+ y

dϕ

dx

γxy =
dU

dy
+

dV

dx
= ϕ(x, t) +

dv

dx

(2.103)

Hooke’s Law states; {
εx

γxy

}
=

[
s11 s16

s61 s66

]{
σx

τxy

}
(2.104)

where s11, s16, s61 and s66 are ’softness factors’. Zhang and Li then substi-

tute Equation 2.103 into Equation 2.104 and take the surface integral. The

authors then multiply y to both sides of the equation and take the surface

integral again, obtaining the following;
ϕ+

dv

dx
= s16

Tx
Ac

+ s66
Qy
Ac

Ic
dϕ

dx
= s11Mz + s16

∫∫
A
τxyydAc

(2.105)

Tx is the tensile stress along the X axis, Qy is the shear stress along the Y

axis, Mz is the bending moment about the Z axis, Ic is the second moment of

area of the beam cross section about the Z axis, and Ac is the cross sectional

area of the concrete beam. When the equivalent stiffness of the prestressed

tendon is added to the flexural stiffness of the prestressed concrete beam,

Equation 2.105 becomes (Zhang and Li, 2007);
Qy = k

Ac
s66

(
ϕ+

dv

dx

)
Mz =

(
Ic
s11

+

(
`

nπ

)2

N

)
dϕ

dx

(2.106)

k is the effective shear factor. The relationship between Qy and Mz is;
Mz +N∆ +Qydx−N ∂v

∂x
+ ρIc

∂2ϕ

∂t2
dx−

(
Mz +N∆ +

∂Mz

∂x
dx

)
= 0

Qy + ρAc
∂2v

∂t2
dx + p(x, t)−

(
Qy +

∂Qy
∂x

)
= 0

(2.107)
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where ρIc
∂2ϕ
∂t2

is the ”inertia force of inertia moment”. N∆ is the moment

due to eccentricity. The inertial force per unit length, ρAc
∂2v
∂t2

, is considered

to be negligible by Zhang and Li (2007). The self-weight of the beams are

also ignored. Equation 2.104 is further simplified as;
∂Mz

∂x
+N

∂v

∂x
−Qy = ρIc

∂2ϕ

∂t2

∂Qy
∂x

= ρAc
∂2v

∂t2

(2.108)

Substituting Equation 2.106 into Equation 2.108 the following is obtained;

(
Ic
s11

+

(
l

nπ

)2

N

)
∂2ϕ

∂x2
+N

∂v

∂x
− kAc

s66

(
ϕ+

∂v

∂x

)
− ρIc

∂2ϕ

∂t2
= 0

kAc
s66

(
∂ϕ

∂x
+
∂2v

∂x2

)
− ρAc

∂2v

∂t2
= 0

(2.109)

Following the application of kinematic relations and Hooke’s law, Zhang

and Li obtain expressions for shear force and bending moment as a function

of distance along the horizontal axis of the beam (x). Furthermore, follow-

ing a force balance on an infinitesimal segment of the prestressed concrete

beam, and substituting for flexural rigidity and the assumed mode shapes

of vibration, the governing equations of motion for the beam are obtained

(Zhang and Li, 2007);

ρ2Ic
s66

k
ω4 −

(
ρAc + ρIc

(nπ
`

)2
(
s66

ks11
+ 1

))
ω2+(

Ic
s11

+

(
`

nπ

)2

N

)(nπ
`

)4
+
(nπ
`

)2
N = 0

(2.110)

The softness factors are given as s11 = 1/E, s66 = 2(1 + ν)/E, Iz = Ic

Zhang and Li (2007). Poisson’s ratio is given as ν = 0.2, and the effective

shear factor as k = 1.2. Equation 2.110 then becomes;

ρ2Ic
2

E
ω4 −

(
ρAc + 3ρIc

(nπ
`

)2
)
ω2+(

EcIc +

(
`

nπ

)2

N

)(nπ
`

)4
+
(nπ
`

)2
N = 0

(2.111)
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ω is calculated from Equation 2.111 by deleting two imaginary numbers

and one irrational item. The results indicated an increase in natural fre-

quency with increasing prestress force and the analytical prediction for the

first bending mode agree well with the experimental results (Zhang and Li,

2007). It should be pointed out however that solution of Equation 2.111

in it’s current guise does not lend itself to the conclusion that an increase

in the magnitude of the prestressing force, N , leads to an increase in the

natural bending frequency of prestressed concrete beams. By making the

substitutions;

A = ρ2Ic
2

E

B = −
(
ρAc + 3ρIc

(nπ
`

)2
)

C =

(
EcIc +

(
`

nπ

)2

N

)(nπ
`

)4
+
(nπ
`

)2
N

λ = ω2

(2.112)

Equation 2.111 becomes;

Aλ2 +Bλ+ C = 0 (2.113)

The real solution of Equation 2.111 is therefore given by;

ω =

√
−B +

√
B2 − 4AC

2A
(2.114)

The C term increases linearly with increasing magnitude of prestressing

force, N , therefore, the determinant
(
B2 − 4AC

)
must decrease with in-

creasing C. As a result, it must be concluded from this model that the

natural frequency of prestressed concrete structures must decrease with in-

creasing prestress force magnitude, N , contrary to what has been reported

by Zhang and Li (2007).

2.10. Non-linear kinematic modelling, (Hamed

and Frostig, 2006)

Hamed and Frostig produce a non-linear kinematic model presenting the
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effect that the magnitude of the prestressing force has on the natural fre-

quency of prestressed concrete beams with both bonded and unbonded ten-

dons. The equations of motion for the prestressed beam and associated

boundary and continuity conditions are rigorously derived using the varia-

tional principle of virtual work following Hamilton’s principle (Hamed and

Frostig, 2006);

∫ t2

t1

δ (T − (U + V )) dt = 0 (2.115)

where T is the kinetic energy, U is the internal potential energy, V is the

external potential energy and δ is the variational operator. The authors

state that the mathematical model derived is rigorous and general, and

valid for any type of boundary and continuity conditions, as well as tendon

profile. The kinematic assumptions made by Hamed and Frostig (2006) are

those of large displacements and moderate rotations, in order to take into

account the compressive force effect caused by the prestress force. It should

be noted that for the case of free vibration, V = 0. The non-linear kinematic

model contains the
(
dw
dx

)2
term, which is omitted by Dall’Asta and Dezi

(1996) when using Kirchhoff’s kinematic model of small displacements. uo

is the longitudinal deformation of the beam at the centroid, w is the vertical

deformation of the concrete beam, u is the longitudinal deformation of the

concrete beam. wcab and ucab are the vertical and longitudinal deformations

of the cable respectively (Hamed and Frostig, 2006);

εxx(x, z) =
duo
dx

+
1

2

(
dw

dx

)2

− z d
2w

dx2
(2.116)

The prestressing tendon is also subject to the same kinematic relations of

large displacements and moderate rotations;

εxx,cab(x, zcab) =
ducab
dx

+
1

2

(
dwcab
dx

)2

−
(
dzcab
dx

)(
dwcab
dx

)
(2.117)

Comparing Equation 2.116 with the kinematic relations derived by Dall’Asta

and Dezi, it can be seen that Dall’Asta and Dezi have ignored the non-linear(
dw
dx

)2
term. They have used Kirchhoff’s kinematic model, which considers

only small deformations and rotations, whereas the kinematic model used
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by Hamed and Frostig (2006) considers large displacements and moderate

rotations.

Hamed and Frostig point out the shortcomings of previous similar studies

conducted on the effect that the prestress force has on the natural vibra-

tion frequencies of prestressed concrete beams. Firstly, Hamed and Frostig

point out that Saiidi et al. (1994) have not considered the perturbed cable

tension and eccentricity due to beam vibrations, and therefore the use of

Equation 2.1 is erroneous. The authors argue that Dall’Asta and Dezi (1996)

produce a linear kinematic model only and therefore the non-linear effects

associated with the non-linear change in eccentricity of the compressive force

in the concrete beam and the tension force in the tendon are beyond the

capabilities of the proposed model. This is outlined in Equation 2.118;

εxx(x, z) =
duo
dx
− z d

2w

dx2
(2.118)

Hamed and Frostig also claim that despite Deák (1996) stating that the

prestress force does not reduce the natural frequency of prestressed con-

crete beams, it is not supported by any analytical or mathematical proof.

Similarly, it is argued that despite Jain and Goel (1996) arguing that the

prestress force is internal to the beam section and therefore cannot act as to

reduce the natural frequency of prestressed concrete beams, it lacks an ap-

propriate mathematical model to verify the argument. Hamed and Frostig

state that Raju and Rao (1986) show that the prestress force reduces the

natural frequencies of lower modes based on a Rayleigh-Ritz formulation

that describes the prestress force as an external axial force only. Miyamoto

et al. (2000) produced an incremental formulation of the equations of motion

of a prestressed composite girder and have included the change in tendon

force along with compressive force along the girder. They calculated that the

natural frequencies decrease as the amount of prestressing force increases,

however, Hamed and Frostig argues that this is due to the fact that the

change in tendon eccentricity has been ignored. Dall’Asta and Leoni (1999)

have presented a general formulation for the vibration of beams prestressed

with internal frictionless cables. As highlighted by Hamed and Frostig,

again the model is based on kinematic relations of small displacements and

the formulation for the beam does not include the effect of the compres-

sive force and therefore yields erroneous results. Despite not considering
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the compressive force effects, Dall’Asta and Leoni (1999) indicate that the

natural frequency decreases as the prestress force increases. Finally, Hamed

and Frostig offers a critique on Kerr (1976). Kerr (1976) uses a linear for-

mulation for the study of the dynamic response of a prestressed beam. It

is argued by Hamed and Frostig that this simple linear analysis is not able

to determine the change in cable force and eccentricity during vibration of

the beam and it is limited to straight cables that pass directly through the

centroid of the beam.

Mathematical Model - Bonded Tendons

The following is the mathematical model as derived by Hamed and Frostig

(2006) for the case of a prestressed concrete beam with bonded tendons.

Hamilton’s principle, as set out in Equation 2.115 requires that;

δL =

∫ t2

t1

δ (T − (U + V )) = 0 (2.119)

The first variation of kinetic energy is given by;

δT =

∫
Vbeam

ρẇδẇdv (2.120)

ρ is the mass density of the concrete. The mass of the cable is neglected.

w is the displacement of the beam in the vertical direction, therefore ẇ as

the first time derivative of the displacement, is the velocity of the beam in

the vertical direction. Vbeam is the volume of the concrete beam. The first

variation of the internal potential energy is;

δU =

∫
Vbeam

σxxδεxxdv +

∫
Vcab

σxx,cabδεxx,cabdv

+

∫ `

0
δ [λ1(x)(w − wcab)] dx +

∫ `

0
δ [λ2(x)(u− ucab)] dx

(2.121)

where σxx is the longitudinal normal stress in the concrete beam, σxx,cab

is the stress in the cable, εxx is the longitudinal normal strain in the con-

crete beam, εxx,cab is the strain in the cable, Vcab is the volume of the cable

and λ1(x) and λ2(x) are Lagrange multipliers. The Lagrange multipliers

are actually the vertical and longitudinal components of the force that the
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prestress cable exerts on the concrete beam, and they impose identical de-

formations on the concrete beam and the cable (Hamed and Frostig, 2006).

wcab and ucab are the vertical and longitudinal deformations of the cable

respectively. w is the vertical deformation of the concrete beam and u is

the longitudinal deformation so that;

u = u0 − zcab
dw

dx
(2.122)

u0 is the longitudinal deformation of the concrete beam at its centroid and

zcab is the cable eccentricity measured downwards from the centre of grav-

ity of the concrete beam. The governing equations of motion and associ-

ated boundary and continuity conditions are derived by Hamed and Frostig

(2006) using Equations 2.119, 2.120, 2.121, 2.122 along with the kinematic

relations of large displacements and moderate rotations as outlined in Equa-

tions 2.116 and 2.117. After significant algebraic manipulations, integration

by parts, and acknowledging that the unknown deformations will take the

following form in the case of free vibrations;

w(x, t) = w(x)sin(ωt+ φ) (2.123)

The equations of motion are reduced to two non-linear governing equations

as follows;

mω2w +
d2Mxx

dx2
+

d

dx

(
(Nxx,cab +Nxx)

dw

dx

)
+

d

dx

(
Nxx,cab

dzcab
dx

)
− d

dx

(
dNxx

dx
zcab

)
= 0

(2.124)

dNxx

dx
+
dNxx,cab

dx
= 0 (2.125)

where;

Nxx,cab = EAcab

[
Nxx

EA
− zcab

d2w

dx2

]
(2.126)

Hamed and Frostig outline that in general the equations are non-linear with

variable coefficients and are solved using the Multiple Shooting Method,

which is a numerical algorithm for the solution of an ordinary differential

equation (ODE) boundary value problem (Stoer and Bulirsch, 2010). The
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authors have shown that one of the boundary conditions is given by;

Nxx +Nxx,cab = 0 (2.127)

Hamed and Frostig state that hence the global axial force in the prestressed

beam is null throughout the length of the beam, changing Equation 2.124

to a linear differential equation;

mω2w +
d2Mxx

dx2
+

d

dx

(
Nxx,cab

dzcab
dx

)
− d

dx

(
dNxx

dx
zcab

)
= 0 (2.128)

It is argued that despite the last two terms surviving, they are linear terms

with variable coefficients as the eccentricity of the cable, zcab is a known

function. The authors go on to state that as a result, the principle of

superposition may be applied for all solution steps and the solution of the

free vibration problem of a prestressed beam does not require considering

the stresses that exist in the beam prior to vibration. As a result, Hamed

and Frostig (2006) conclude that the magnitude of the prestress force does

not effect the natural frequencies of bonded pre-stressed beams.

Hamed and Frostig (2006) then go on to formulate the above result in-

crementally and hence compare the formulation to the mathematical mod-

els created by Saiidi et al. (1994), Raju and Rao (1986), Miyamoto et al.

(2000), Chan and Yung (2000) and Dall’Asta and Dezi (1996). After apply-

ing Hamilton’s principle for an incremental formulation and neglecting the

second order terms (∆2), the equations of motion change into the following

two governing differential equations;

mω2∆w + ∆
d2M

dx2
+

d

dx

(
∆Nxx,cab

dzcab
dx

)
− d

dx

(
∆
dNxx

dx
zcab

)
(2.129)

∆
dNxx

dx
+ ∆

dNxx,cab

dx
= 0 (2.130)

where;

∆Nxx,cab = EAcab

[
∆Nxx

EA
− zcab∆

d2w

dx2

]
(2.131)
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As before, the authors state that these equations reveal that the effect of the

static axial force disappears and therefore the magnitude of the prestress

force does not affect the natural frequencies of prestressed concrete beams.

Hamed and Frostig then proceed to compare the above model to others

formulated in the literature. The authors categorise the models into two

distinct types; the “compressed beam” model, as in Saiidi et al. (1994), Raju

and Rao (1986), Miyamoto et al. (2000) and Chan and Yung (2000), and

the “small displacement” kinematic model (Dall’Asta and Dezi, 1996). It is

stated that the compressed beam model does not consider the prestressing

cable at all, and thus the equations of motion for the compressed beam

model are formulated by omitting the equations of motion for the cable,

yielding;

−m∆ẅ +
d

dx

(
Nxx∆

dw

dx

)
+

d

dx

(
∆Nxx

dw

dx

)
+ ∆

d2M

dx2
= 0 (2.132)

∆
dNxx

dx
= 0 (2.133)

The second category is the “small displacement” kinematic model, as for-

mulated by Dall’Asta and Dezi (1996). Hamed and Frostig point out that

kinematic relations of small displacements are used for the concrete beam

model, referred to as “Kirchhoff’s kinematic model” by Dall’Asta and Dezi

(1996). The kinematic relation is described by Equation 2.134;

εxx(x, z) =
du0

dx
− z d

2w

dx2
(2.134)

As pointed out by Hamed and Frostig, the use of this kinematic relation

cancels the non-linear terms in the governing equation of the concrete beam

leading to the following equations of motion;

−m∆ẅ + ∆
d2M

dx2
−∆λ1 −

d

dx
(∆λ2zcab) = 0 (2.135)

∆
dNxx

dx
−∆λ2 = 0 (2.136)

∆
dNxx,cab

dx
+ ∆λ2 = 0 (2.137)
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d

dx

(
Nxx,cab∆

dwcab
dx

)
+

d

dx

(
∆Nxx,cab

(
dzcab
dx

+
dwcab
dx

))
+ ∆λ1 = 0

(2.138)

−∆w + ∆wcab = 0 (2.139)

−∆u0 + zcab∆
dw

dx
+ ∆ucab = 0 (2.140)

The authors point out that the magnitude of the static axial force in the

cable prior to the vibration stage (Nxx,cab) affects the dynamic behaviour of

the beam in this model. They suggest that although the beam vibrates in

small displacements in service, a non-linear approach that accounts for large

displacements and moderate rotations ought to be used in order to describe

the effect of the axial forces in the tendons and the overall behaviour of the

prestressed concrete beam.

Mathematical Model - Unbonded Tendons

A similar mathematical model is hence formulated by Hamed and Frostig

(2006) for the case of unbonded tendons, using Hamilton’s principle, how-

ever, a term is introduced in the first variation of internal potential energy

taking into account the change in prestress force of the unbonded tendon,

through a constraint stating that the change in length of the concrete fi-

bre adjacent to the cable is equal to the change in length of the unbonded

tendon as per Equation 2.141;

δU =

∫
Vbeam

σxxδεxxdv +

∫
Vcab

σxx,cabδεxx,cabdv +

∫ `

0
δ [λ1(x)(w − wcab)] dx

+ δ

[
λ

(∫ `

0
εxx(z = zcab)dx−

∫ `

0
εxx,cabdx

)]
(2.141)

where λ is the Lagrange multiplier representing the increase in the prestress-

ing force. According to Hamed and Frostig, the increase is assumed to be

uniform along the beam since there is no friction between the tendon and

the concrete beam for unbonded tendons. The same kinematic relations

of large displacements and moderate rotations have been used. Having ap-
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plied Hamilton’s principle as before and after a series of integration by parts,

algebraic manipulations and application of the appropriate boundary con-

ditions, the equations of motion are reduced to three non-linear governing

equations as follows (Hamed and Frostig, 2006);

mω2w +
d2M

dx2
+

d

dx

(
(Nxx,cab +Nxx)

dw

dx

)
+N

d

dx

(
Nxx,cab

dzcab
dx

)
= 0

(2.142)

dNxx

dx
= 0 (2.143)

dNxx,cab

dx
= 0 (2.144)

As with the bonded case, Equation 2.143 and Equation 2.144 coupled with

the boundary conditions;

Nxx,cab − λ = 0 (2.145)

Nxx + λ = 0 (2.146)

yields;

Nxx(x) +Nxx,cab(x) = 0 (2.147)

As a result, like for the bonded case, the global axial force in the prestressed

beam is null throughout its length, changing Equation 2.142 to a linear

differential equation;

mω2w +
d2M

dx2
+N

d

dx

(
Nxx,cab

dzcab
dx

)
= 0 (2.148)

Hamed and Frostig (2006) conclude again that the solution of the free vi-

bration problem of a prestressed beam with unbonded tendons does not

require considering the stresses that exist in the beam prior to vibration, as

the equations of motion are linear. This leads again to the conclusion that

the magnitude of the prestress force does not affect the natural frequencies

of prestressed beams with unbonded tendons also. As before, it is observed

that the magnitude of the prestress force prior to vibration affects the natu-
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ral vibration behaviour when small deflection theory is used, but as pointed

out for the bonded case, the approach does not account for the non-linear

effects of the compressed force (Hamed and Frostig, 2006).

Summary

Hamed and Frostig, in their dynamic analysis of vertical free vibration

of prestressed concrete beams take into account compressive force effects

and changes in prestress force and in cable eccentricity. The concrete

beam model follows Euler-Bernoulli assumptions and moderate deforma-

tions, namely large displacements and moderate rotations. The constitutive

relationships of the concrete and the prestressed concrete follow Hooke’s law,

and the effect of longitudinal vibrations and rotary inertia are considered

negligible.

Having developed a non-linear kinematic, analytical model for the dy-

namic behaviour of uncracked prestressed concrete beams with bonded and

unbonded tendons, and having rigorously derived the equations of motion

and subsequent boundary and continuity conditions using the variational

principle of virtual work following Hamilton’s principle, it has been mathe-

matically rigorously proven that the magnitude of the prestress force does

not affect the natural frequencies of bonded or unbonded prestressed beams

(Hamed and Frostig, 2006). As a result, it is proposed that the natural

frequencies of bonded prestressed beams can be determined through linear

elastic beam theory with an equivalent moment of inertia of the composite

section, while the natural frequency of unbonded beams can be determined

by the proposed model (Hamed and Frostig, 2006). It should be noted how-

ever, that no analysis has been conducted on the effect that the magnitude

of the prestressing force has on crack closing and subsequent increase in

stiffness of the beam section. Furthermore, the additional joint stiffness

induced by the prestressing force for precast, post-tensioned concrete wind

turbine towers cannot be captured by this model. Finally, the mathemati-

cal model is in disagreement with the dynamic testing carried out by Saiidi

et al. (1994) and Hop (1991) to name but a few.

63



0 50 100 150 200
74

74.5

75

75.5

76

76.5

77

Prestress force magnitude (kN)

N
at

ur
al

 F
re

qu
en

cy
, ω

 (
H

z)

 

 

Saiidi et al. (1994)
Kim et al. (2004)
DallAsta & Dezi (1996)
Zhang et al. (2012)
Miyamoto et al. (2000)

(a)

0 50 100 150 200
50

60

70

80

90

100

Prestress force magnitude (kN)

N
at

ur
al

 F
re

qu
en

cy
, ω

 (
H

z)

 

 

Saiidi et al. (1994)
Kim et al. (2004)
DallAsta & Dezi (1996)
Zhang et al. (2012)
Miyamoto et al. (2000)

(b)

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Prestress force magnitude (kN)

%
 c

ha
ng

e 
in

 N
at

ur
al

 F
re

qu
en

cy
 (

%
)

 

 

Saiidi et al. (1994)
Kim et al. (2004)
DallAsta & Dezi (1996)
Zhang et al. (2012)
Miyamoto et al. (2000)

(c)

0 50 100 150 200
−50

−40

−30

−20

−10

0

10

20

30

40

50

Prestress force magnitude (kN)

%
 c

ha
ng

e 
in

 N
at

ur
al

 F
re

qu
en

cy
 (

%
)

 

 

Saiidi et al. (1994)
Kim et al. (2004)
DallAsta & Dezi (1996)
Zhang et al. (2012)
Miyamoto et al. (2000)

(d)

Figure 2.14.: (a)&(b) First Natural Frequency (Hz) with increasing PS force
(kN) for different models; (c)&(d) % change in first Natu-
ral Frequency (Hz) with increasing PS force (kN) for different
models

2.11. Summary of models

Figure 2.14 shows a graphical representation of the difference between the

main models present in the literature (Dall’Asta and Dezi, 1996; Miyamoto

et al., 2000; Kim et al., 2004; Saiidi et al., 1994; Zhang et al., 2012). Fig-

ures 2.14c and 2.14d indicate that the % change in natural frequency for the

given (practical) prestress force levels of 0kN - 200kN is very small. The

models predict a change in first natural bending frequency of the beam spec-

ified in Table 2.1 within the range of −1.5% to +1.5%. It has been argued

previously that the magnitude of the observed change in natural frequency

is negligible (Dai and Chen, 2007; Dall’Asta and Dezi, 1996; Kerr, 1976).
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Figure 2.9 indicates that including the effect of shear and rotary inertia can

have a difference of 1.56%, which indicates that the inclusion of shear and

rotary inertia is relatively just as important as prestress force effects in this

practical range. Furthermore, the accuracy that structural engineers can

predict the natural bending frequency of prestressed concrete beams is gov-

erned by boundary condition assumptions, and assumptions of the material

properties that have a much greater uncertainty than the ±1.5% reported

for this beam under the current range of prestress force magnitude.

Table 2.4.: Summary of the mathematical models presented in Figure 2.14

Author Prediction Model

Kim et al. (2004) ω2
n =

(
nπ
Lr

)4
1
mr

(
EcIc +

(
Lr

nπ

)2
N
)

Saiidi et al. (1994) ω2
n = (nπ` )4

(
1+1.75 N

f′
c

)
EIg

m

Zhang et al. (2012) ω2
n = (nπ` )4

E0

(
1+ mN`2

250E0I0

)
I

m

Dall’Asta and Dezi (1996) ω2
n = n4π4

m`4

[(
Eb − N

Ab

)
Ib +

(
Ec + N

Ac

)
Ic

]
”Compression Softening” Chan and
Yung (2000); Law and Lu (2005);
Miyamoto et al. (2000); Tse et al.

(1978)

ω2
n =

(nπ
`

)4 EI

m
−
(nπ
`

)2 N

m

Figure 2.14 shows that three models, namely Saiidi et al., Kim et al. and

Zhang et al., predict that there is an increase in the first natural bending

frequency with increasing prestress force magnitude. Kim et al. predict the

greatest rate of increase, whereas Zhang et al. predict the lowest rate of

increase. This is observed from the relative slopes of the lines. The other

two models, namely Dall’Asta and Dezi and Miyamoto et al. predict a de-

crease in the first natural bending frequency with increasing prestress force

magnitude. Miyamoto et al. agree with the “compression-softening” and

predict a greater rate of decrease than Dall’Asta and Dezi. Differentiation

of the prediction models in Table 2.4 with respect to N indicates the relative

rates of increase/decrease of the predicted first natural bending frequency.
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2.12. Experimental Works

Table 2.5.: Summary of experimental approaches

Author
(Year)

Type of
testing

No. ac-
celerometers

No.
excitation

points

Conclusion

Saiidi et al.
(1994)

Field Testing 8No.; equally
spaced

1No. @ 1
4

span
ωn ↓ with ↓

N .

Lab Testing 7No.; equally
spaced

2No. @ 1
4

span; 2No.
@ 1

2 span

ωn ↑ with ↑
N .

Miyamoto
et al. (2000)

Field Testing 9No.; 3No. @
midspan of
each of 3
girders

15No. @
various

locations on
bridge deck

ωn ↓ with ↑
N .

Lab Testing 5No.; equally
spaced

1No. @ 1
4

span; 1No.
@ 1

2 span

ωn ↑ with ↑
N for

e/ysl = 1.0;
ωn ↓ with ↑

N for
e/ysl = 0.1.

Ho et al.
(2012)

Lab Testing 7No.; equally
spaced

1No. @ 1
4

span
ωn ↑ with ↑

N .

Lu and Law
(2006)

Lab Testing 7No.; equally
spaced

1No. @ 1
4

span; 1No.
@ 3

8 span

ωn ↑ with ↑
N .

Many empirical studies have been conducted into how prestress force mag-

nitude affects natural bending frequencies of prestressed concrete beams (Ho

et al., 2012; Hop, 1991; Kerr, 1976; Lu and Law, 2006; Miyamoto et al., 2000;

Saiidi et al., 1994; Williams and Falati, 1999; Zhang and Li, 2007; Zhang

et al., 2012). The majority of these studies have reported the general trend

that natural bending frequencies tend to increase with increasing prestress

force magnitude (Ho et al., 2012; Hop, 1991; Lu and Law, 2006; Saiidi et al.,

1994; Williams and Falati, 1999; Zhang and Li, 2007; Zhang et al., 2012).

The exception are the experimental studies conducted by Miyamoto et al.
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(2000) and Kerr (1976).

2.12.1. Miyamoto et al. (2000)

Miyamoto et al. conducted field impact tests on a composite steel girder

bridge, strengthened with external tendons and laboratory impact ham-

mer testing on composite steel-concrete girder strengthened with external

tendons. This study is fundamentally different from the other studies con-

ducted in the literature in two ways, firstly the tendons are external to the

beam section and secondly, the girder tested is a steel I-beam with compos-

ite concrete deck. Other research focuses on single material beams (steel or

concrete) that are prestressed internally, i.e. the tendon lies within the con-

fines of the cross section. The composite girder with external tendons was

set up in the Queen-post arrangement as shown in Figure 2.6a. The ratio

of the eccentricity, e to the distance from the neutral axis of the composite

section to the bottom flange, ysl was varied. The tendon material was also

varied to examine the effect of change in EA on natural bending frequency.

Two impact points for the impact hammer were located at `/4 and `/2 with

response points located at ` = 0, `/4, `/2, 3`/4 and `. In order to min-

imise experimental error, Miyamoto et al. recorded 10 waveform patterns

for each set of test conditions and for each impact point. A mean transfer

function was then obtained by averaging 8 of the 10 Fast Fourier Transform

(FFT) results. For the girder configuration with the less eccentric tendons

(i.e. e/ysl = 0.1), it was found that the natural vibration frequencies tend

to decrease as the magnitude of the prestressing force is increased. For the

configuration with the more eccentric tendons (e/ysl = 1.0), it was found

that the natural vibration frequencies tend to increase as the magnitude of

the prestressing force is increased. It should be noted that no constant in-

crease or decrease in natural vibration frequency is observed in either case.

There is an overall decreasing trend for the less eccentric tendons and an

overall increasing trend for the more eccentric tendons, but there is some

variation within the data. The authors conclude that for a less eccentric

tendon arrangement (e/ysl = 0.1) the introduction of a prestressing force

makes the axial compressive component of the prestressing force acting on

the girder dominant and thereby decreasing the natural vibration frequency.

It is concluded for the more eccentric arrangement (e/ysl = 1.0) that since

67



the larger eccentricity increases the transformed second moment of area

of the composite section significantly and therefore increases the apparent

flexural rigidity (bending stiffness) of the composite section, and because

the axial compressive component of the prestressing force is smaller than

in the less eccentric case, an increase in the natural vibration frequency is

therefore observed.

2.12.2. Kerr (1976)

Kerr (1976) conducted experimental modal analysis on a steel cantilever

beam. The beam, which consisted of two spring steel strips, connected

together by aluminium cross bars, was mounted on a shake table. A pre-

stressing rod was threaded through the centroid of the beam cross-section

and the prestress force was induced using a weight and pulley. Kerr con-

sidered that the effect of the inertia of the weight on the end of the pulley

upon the lateral response of the beam was negligible (Kerr, 1976). The nat-

ural frequency of the system was obtained by increasing the frequency of

the shake table during testing until the resonance condition was reached. A

stroboscopic light was used to maintain high accuracy. Kerr concluded that

the obtained test results coincide with the analytical findings that the cen-

trally placed prestressing force, P has no effect on the natural frequencies

(Kerr, 1976).

2.12.3. Saiidi et al. (1994)

Saiidi et al. (1994) conducted field testing on the Golden Valley bridge,

near Reno, Nevada. The bridge tendons were instrumented from the time

of stressing meaning a direct estimate of the magnitude of the actual pre-

stressing force in the bridge was available at any time. From field testing

on the Golden Valley bridge it was found that there was a reduction in the

first mode frequencies with decreasing magnitude of prestressing force, i.e.

with increasing prestressing loss. No consistent trend in second mode fre-

quencies was observed. Subsequently, laboratory tests were conducted. A

12’ (3.66 m) simply supported beam was jacked at one end with a grade 250

seven-wire straight concentric strand placed in a 25 mm diameter duct that

was ungrouted. The beam had a breadth of 4” (101.6 mm) and depth of

5” (127 mm) and the duct was placed in the centre. It was reinforced both
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longitudinally and in the transverse direction with grade 60 bars. Saiidi

et al. (1994) reported the specimen developed a small crack at midspan un-

der self-weight during handling. The beam was instrumented with 7 equally

spaced accelerometers that measured the vertical acceleration response of

the beam, and a mechanical gauge was mounted at midpoint to measure ver-

tical deflection. Both impact hammer tests and three-point static bending

tests were conducted with different prestressing forces. It should be noted

that the jack was disconnected from the beam during vibration testing to

avoid the effect of the jack’s mass on the beam’s vibration response. The

prestressing force was varied from zero up to a maximum of 131.5 kN and

back down to zero again. Four sets of free vibration data were collected for

each axial force, two of which the beam was excited by impact at midspan

and the other two the impact was applied at quarter span. Like with the

field testing described, the Fast Fourier Transform method was used to anal-

yse the frequencies and modal amplitudes. The data obtained for the free

vibration testing indicated that the first natural frequency increased as the

prestressing force was increased. This coincides with the findings from the

field testing on the Golden Valley bridge. The second mode frequencies were

also found to increase generally but were found not to be as sensitive.

2.12.4. Hop (1991)

Hop (1991) conducted dynamic testing on 19No. prestressed concrete beams.

It was found that for the majority of prestressed beams the natural frequen-

cies increased with increasing prestressing force. The frequencies increased

by a maximum value of 10% at a stress level of 150 daN/cm2. However,

for the eccentrically prestressed beam it was found that the frequencies

increased up to a threshold value and then began to decrease again back

to the “virgin frequency” (i.e. the natural vibration frequency of a non-

prestressed beam) at a stress level of 150 daN/cm2. The beams were then

retested twenty years later, and it was found that the virgin natural fre-

quency of 13 out of the 15 beams retained for testing had increased over

time, by an average amount of 5%. This was attributed to the gain in con-

crete strength over time due to the continuation of the hydration reaction,

which continues indefinitely in the presence of moisture. The Young’s mod-

ulus of the concrete was estimated to be 14% greater in 1980 than it had
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been twenty years previously, attributing to the increase in frequency.

2.12.5. Zhang and Li (2007)

Zhang and Li (2007) conducted dynamic testing on three bonded and two

unbonded fully prestressed concrete beams. The results of the testing indi-

cate that the frequency of PSC beams increase with increasing prestressing

force magnitude, in line with the findings of Saiidi et al. (1994) and Hop

(1991). Linear and curved prestressing tendons were both used. It was

found that the measured frequencies of the beams with the linear tendon

profile for the first two modes of vibration increased with a steady trend

as the magnitude of the prestressing force increased. For the curved ten-

don profile, a general increase in natural frequency was observed, but the

trend does not follow a steady pattern and varies widely as the prestressing

force is increased, for both modes of vibration. For all modes of vibration,

the measured increase in natural frequency is of the order of 5% of the ex-

perimentally determined virgin natural frequency. Zhang et al. conducted

further dynamic testing on two unbonded fully prestressed concrete beams

(Zhang et al., 2012). It was again found that the natural frequency of the

beams increased with increasing prestressing force magnitude. 2 No. simply

supported, unbonded prestressed beams, each spanning 3m in length were

tested. A straight concentric strand was used as the prestressing steel with

a standard tensile strength of 1860 MPa. 5No. accelerometers were laid out

along the length of the beam. According to Zhang et al., in order to guar-

antee the accuracy, the sampling frequency for the first natural frequency

was 100 Hz. The sampling frequency for the second and third modes was

taken to be 500 Hz and 1000 Hz respectively. It was found that the nat-

ural frequency of prestressed concrete beams increase with the increase in

prestressing force.

2.12.6. Williams and Falati (1999)

A paper by Williams and Falati describes an extensive programme of modal

testing on a post-tensioned concrete one-way spanning slab strip at 50% of

full scale (Williams and Falati, 1999). The slab was constructed with high

slenderness and therefore low natural frequency, giving a high likelihood of

vibration serviceability problems. The slab was designed as a one-way span-
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ning, simply supported slab with a span length of 5.1m, breadth, b = 1.0m,

and depth, d = 135mm. The prestress was introduced by 4No. 15.7mm

diameter unbonded Freyssinet super strands, with a characteristic breaking

load of 265kN. When fully stressed, they provided a prestressing force of

175kN. The slab was also reinforced with 10mm diameter high yield steel

bars at 125mm centres, giving a reinforcement ratio of As/bh = 0.5%. Ac-

cording to the authors, this amount of reinforcement was sufficient to allow

the slab to carry its own self-weight in the absence of the prestressing force,

which, was necessary in order to enable the effect of prestress level to be

investigated (Williams and Falati, 1999). Two methods of slab excitation

were used - instrumented hammer and electro-magnetic shaker. The natural

frequencies and mode shapes were extracted from the frequency response

functions (FRFs) in the usual way. Damping was determined in two ways:

firstly by curve fitting the FRF peaks and using the half-power bandwidth

method, and secondly by exciting the slab in a particular mode and then

switching off the shaker and calculating the logarithmic decrement of the

subsequent decaying vibrations (Williams and Falati, 1999). The slabs were

tested at zero prestress, each tendon stressed to 100kN (57% of its design

prestress), and with each tendon stressed to 175kN (full design prestress).

It was found experimentally that the natural frequencies of the prestressed

concrete one-way spanning slab increased with increasing prestressing force,

and that the damping decreased. No discernible effects on the mode shapes

were reported (Williams and Falati, 1999).

2.12.7. Ho et al. (2012)

Ho et al. (2012) conducted dynamic tests on a lab-scaled post-tensioned

concrete T-beam, 6m in length, to determine the experimental modal pa-

rameters for a set of prestress cases. 7No. accelerometers were placed along

the length of the girder at 1m intervals. The impact was applied in the

vertical direction by an electromagnetic shaker 0.75m from the right hand

support of the beam. 7No. accelerometers were used to measure the dy-

namic responses at a sampling frequency of 1 kHz (Ho et al., 2012). The

axial prestress forces were introduced into the tendon by stressing the ten-

don with a jack at one end and anchoring the tendon at the other face of

the beam. A load cell was installed at the left end in order to measure the
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applied prestress force. It should be noted that during the measurement,

the stressing jack was removed from the girder to avoid the influence of the

jack weight on the dynamic characteristics of the test structures (Ho et al.,

2012). It was found that the first and second natural frequencies decreased

as the magnitude of the prestressing force decreased. The frequency domain

decomposition (FDD) technique was used to extract the natural frequencies

and corresponding mode shapes from the acceleration signals (Ho et al.,

2012). It was reported that the mode shapes were not changed significantly

due to change in prestressing force (Ho et al., 2012).

2.12.8. Lu and Law (2006)

Lu and Law (2006) carried out experimental work on a prestressed concrete

beam in the laboratory. The beam tested was 4.0m in length, with a 200mm

× 150mm uniform cross section, with a clear span of 3.8m. A 7 wire strand

was placed in a 57mm ungrouted duct at the beam centroid. The beam

was instrumented with 7 equally spaced accelerometers, measuring the ver-

tical acceleration. The sampling rate was 2000Hz. The equivalent flexural

rigidity of the prestressed concrete beam was found to increase with pre-

stressing. The equivalent mass per unit length of the beam was also found

to have been increased, due to axial shortening under prestressing force and

the additional mass of the prestressing strand. Subsequently, it was found

that the first three natural frequencies increased after prestressing.

2.13. Cracked Prestressed Concrete Sections

The effect of prestress force magnitude on the modal properties (frequency,

damping and mode-shape) of uncracked prestressed concrete structures is

something that has been widely debated among researchers to date, as out-

lined in previous sections.

The effect of pre- and post-tensioning force magnitude on the natural

bending frequencies of cracked prestressed concrete structures is something

that is more established, and widely agreed upon. Saiidi et al. (1994) report

an increase in natural frequency with increasing post-tensioning force. As

pointed out by Bruggi et al. (2008) the tests carried out by Saiidi et al.

(1994) were conducted on cracked beam sections only. Uncracked sections
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were not tested. Williams and Falati (1999) present a formula to calculate

the average effective second moment of area of a cracked concrete cross

section. The effect of crack closure in accordance to this method is that

it increases the effective second moment of area of the cross section, and

subsequently the natural bending frequencies. Hop (1991) agrees, reporting

a decrease in natural bending frequencies with increased cracking, and states

that increasing the prestressing force acts as to close the cracks, stiffen the

section and increase the natural bending frequencies of the beam sections.

Grace and Ross (1996) also report a decrease in girder stiffness leading to

a decrease in natural frequency also attributing it to cracking in the cross

section. Unger et al. (2006) state that a loss in post-tensioning increases

the appearance of cracks which reduces the bending stiffness and subsequent

natural frequencies of the system. De Roeck (2003) concurs, stating that “a

loss of pre-stress will result in a measurable change in eigenfrequencies only

if it is accompanied by originating cracks.” Hamed and Frostig (2004) also

report that large cracking damage yields drastic reduction in the natural

frequencies of cracked prestressed concrete beams.

Pavic et al. (2001) agree that “concrete cracking and excessive static de-

flection in a prestressed post-tensioned slab can be overcome to a large extent

by the careful choice of the amount and location of the prestress” but ar-

gue that “no amount of prestressing, however, will significantly improve the

floor dynamic behaviour since this is governed largely by slab stiffness, mass

and damping on which different levels of prestressing do not have major in-

fluence.” Dall’Asta and Dezi (1996) consider it is possible to determine the

prestressing force by measuring the natural frequency of a PSC structure in

its cracked state only. Rodŕıguez et al. (2010) acknowledges this fact in rela-

tion to post-tensioned concrete wind turbine towers, stating that uncracked

towers “maintain their original stiffness and frequency of oscillation” but

once the towers are cracked and the cracks have been decompressed, “any

perturbations of the tower will only mobilise a smaller stiffness, an effect

that will be shown by the vibration frequencies.”

There is however, disagreement when it comes to the effect of prestress

force on the damping ratios for cracked prestressed concrete structures.

Kato and Shimada (1986) state that there are hardly any changes in damp-

ing values, whereas Blakeley et al. (1970) report damping of PSC structures

to be lower than that of RC structures, quoting damping ratios of 1-2%
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before cracking of the member and 3-6% after cracking.

2.14. Conclusions

It is clear from this discussion that there is a lack of agreement between

researchers in the field as to the effect that prestress force magnitude has

on the natural bending frequency of uncraked prestressed concrete beams.

There are currently three distinct arguments;

1. The natural vibration frequency of prestressed concrete structures

tends to decrease as the magnitude of the prestressing force is in-

creased (Chan and Yung, 2000; Dai and Chen, 2007; Dall’Asta and

Leoni, 1999; Law and Lu, 2005; Miyamoto et al., 2000; Raju and Rao,

1986; Tse et al., 1978).

2. The natural vibration frequency of prestressed concrete structures is

unaffected by prestress force magnitude (Hamed and Frostig, 2006).

3. The natural vibration frequency of prestressed concrete structures

tends to increase as the magnitude of the prestressing force is in-

creased (Hop, 1991; Kim et al., 2004; Saiidi et al., 1994; Zhang and

Li, 2007).

A satisfactory mathematical model is yet to be formulated predicting

the change in natural frequency with increasing prestressing force, however,

the model suggested by Kim et al. (2004) has the best agreement with

experimental results. It should be noted that the magnitude of the predicted

change in natural frequency is very small for practical ranges of prestressing

force, and could be considered to be negligible. Furthermore, as highlighted

by Ho et al. (2012), recently the interest on variability of dynamic properties

of bridges (i.e. natural frequency, mode shape, damping ratio) caused by

environmental effects such as temperature, humidity, wind and other factors

is increasing. Studies such as those conducted by Cornwell et al. (1999) and

Peeters and De Roeck (2001) report frequency differences in the ranges of 6%

and 14-18% respectively due to normal environmental changes. The change

in natural frequency due to prestress loss may be negligible as a result.

Furthermore, no statistical significance tests have yet been conducted on

the data to determine whether the observed changes in natural frequency
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with prestress force magnitude is simply due to random variation or whether

it is systematic. The majority of experimental studies conducted indicate

that the natural frequency of prestressed concrete structures increases with

increasing prestressing force magnitude (Ho et al., 2012; Hop, 1991; Lu and

Law, 2006; Saiidi et al., 1994; Williams and Falati, 1999; Zhang and Li,

2007; Zhang et al., 2012).

The effect of prestress force magnitude on the natural frequency of cracked

prestressed concrete structures is something that is more widely established

and agreed upon. Authors agree that for cracked pre- and post-tensioned

concrete structures the effect of the post-tensioning force is to close cracks,

stiffen the section and therefore increase the natural bending frequencies of

the cracked pre- and post-tensioned concrete structures (Saiidi et al., 1994;

Bruggi et al., 2008; Williams and Falati, 1999; Hop, 1991; Grace and Ross,

1996; Unger et al., 2006; De Roeck, 2003; Hamed and Frostig, 2004; Pavic

et al., 2001; Rodŕıguez et al., 2010).

The problem of the effect of prestress force magnitude on the natural

bending frequency of prestressed concrete beams has implications in many

fields, such as in prestressed bridge design, post-tensioned floor slabs, and

even post-tensioned concrete wind turbine tower design. Prestress force

magnitude decreases over time due to concrete creep, steel relaxation, an-

chorage pull-in and other effects. The natural bending frequency of pre-

stressed concrete bridges and post-tensioned concrete wind turbine towers

may change over time according to the effect of prestress loss. It is impor-

tant for structural engineers to be able to account for any subsequent change

in natural frequency over time due to prestress loss, as it may become a crit-

ical design parameter affecting the long term performance of the structure.

Furthermore, if the change in natural frequency with prestress force magni-

tude can be determined, this can be related to the well established Eurocode

2 (British Standards Institute, 2004) formula for predicting prestress loss

with time, and subsequently a model for the variation in natural frequency

over time due to prestress loss could be formulated.
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3. Modal Testing - Basics

This chapter presents the main theory, techniques and tools behind modal

analysis. The purpose of this chapter is to provide the reader with a ground-

ing in the main theory behind modal analysis as a prerequisite for reading

Chapters 4, 6 and 7.

3.1. Introduction

This thesis describes and outlines the mathematical modelling and sub-

sequent experimental modal testing of post-tensioned steel and concrete

beams in the lab. The purpose of modal testing is to determine empirically

the dynamic (modal) properties of the tested specimens. The modal prop-

erties of interest are the natural frequencies, ωn, the corresponding damping

ratios, ξ, and the corresponding mode shapes of vibration, Φn. This thesis

aims to establish if any relationship exists between the modal properties,

primarily the fundamental bending frequency, ω1, and the magnitude of the

post-tensioning force, N , for post-tensioned concrete structures. The re-

sults of the experimental work conducted is outlined in Chapters 4, 6 and 7.

The purpose of this chapter is to introduce the reader to some of the basic

theory, concepts and tools of experimental modal analysis/modal testing.

The chapter is organised as follows; Section 3.2 outlines the theoretical

basis behind experimental modal analysis and some of the specific tools and

techniques used to conduct the analysis. Section 3.3 outlines the measure-

ment techniques behind collecting good dynamic data, including outlining

the basic steps behind conducting modal analysis. Section 3.4 outlines some

specific techniques behind digital signal processing, in order to prepare the

dynamic signals for analysis when they are collected. This chapter provides

necessary background in the theory, tools and techniques behind experimen-

tal dynamic testing and provides the reader with a concise introduction,

background and basis of these aspects prior to reading Chapters 4, 6 and 7.
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3.2. Experimental Modal Analysis

The following sections describe the method behind experimental modal anal-

ysis and present the basic theory of the test method described in the latter

parts of this thesis, specifically, Chapters 4, 6 and 7. The following de-

scription draws heavily upon the work of Ewins (2000), Avitabile (2001b)

and Biloŝová (2011) who are considered leaders in the field of modal testing

and analysis. According to Ewins (2000) ‘Modal Testing’ is defined as the

“processes involved in testing components or structures with the objective

of obtaining a mathematical description of their dynamic or vibration be-

haviour.” Avitabile (2001a) considers modal testing as a process in which

a structure is described in terms of its natural characteristics or dynamic

properties, namely frequency, ωn, damping, ξ, and mode shape, Φn.

Why is modal analysis conducted, and what is it used for? The primary

reason is to identify the modal parameters (natural frequency, damping &

mode shapes) of real structures. In doing so, the resonant frequencies and

the excited mode shape can be determined (Ewins, 2000; Biloŝová, 2011).

This is important, as, in structural dynamics, the response of the systems

amplifies as the frequency of the applied dynamic force gets closer and

closer to the natural frequency of the structure. The response reaches a

maximum when the rate of oscillation of the dynamic force exciting the

structure matches the natural frequency of the structure. This is know as

‘structural resonance’ and can cause significant vibration problems in

real structures, most famously with the collapse of the Tacoma Narrows

Bridge in Tacoma, Washington, as a result of extreme structural resonance.

Experimentally obtained values of the modal parameters can be used as

model validation for a theoretical model such as a Finite Element (FE)

analysis. However, as pointed out by Ewins (2000); Biloŝová (2011), this

requires precise determination of the natural frequencies and an accurate

measurement of the experimental mode shapes of vibration. Modal testing

may also be used to generate a mathematical model for a component part

of a complex structure that may be included in the overall model for the

structure (Ewins, 2000; Biloŝová, 2011). Finally, it may also be used as a

determination technique for dynamic excitation forces.

In the context of this thesis, modal testing has been used solely as a

tool to determine the structural vibration properties of a variety of simple
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steel and concrete structures. Specifically, modal testing has been used as

a tool to determine if a relationship exists between post-tensioning force

magnitude, N , and the natural bending frequencies, ωn, for a variety of

pre- and post-tensioned steel and concrete structures tested in the lab.

3.2.1. Theoretical Basis of Modal Testing

Modal testing enables the characteristic dynamic properties of a structural

system to be identified empirically. According to Ewins (2000), such a dy-

namic structural system is best described by three different types of model,

as outlined in Figure 3.1, namely;

1. Spatial Model. The spatial model is the description of the physical

characteristics of the structure, namely its mass, stiffness and damp-

ing characteristics that are described by matrices [M ], [K] and [C]

respectively.

2. Modal Model. The modal model describes the structures natural

vibration characteristics in terms of a set of natural frequencies (eigen-

values, λ2) modal damping factors, and vibration mode shapes (Φ).

3. Response Model. The response model describes exactly how the

given structure will respond under certain excitation conditions. This

is dependent on the properties of the structure, but also on the nature

and magnitude of the excitation. A set of Frequency Response Func-

tions (FRFs) are generated describing the response of the structure to

a given excitation (Ewins, 2000).

Figure 3.1.: Theoretical Modal Analysis (Ewins, 2000)
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The generalised equation of motion for an MDOF (multi degree of free-

dom) structure is given by;

[M ] {ẍ(t)}+ [C] {ẋ(t)}+ [K] {x(t)} = {F (t)} (3.1)

where [M ] is the mass matrix of the structure, [C] is the damping matrix,

[K] is the stiffness matrix, {x(t)} is a time dependent vector of displace-

ments of the structure and {F (t)} is a time dependent force vector exciting

the structure. An eigensolution is then performed and a modal transfor-

mation equation is used to convert these coupled equations into a set of

uncoupled single DOF systems in a new coordinate system, known as the

“Modal Space”;

[
M
]
{p̈}+

[
C
]
{ṗ}+

[
K
]
{p} = [U ]T {F} (3.2)

where M , C and K are the modal mass, modal damping and modal stiffness

matrices. The transformation from the physical space to the modal space

is a process where a complicated set of coupled physical equations are re-

duced to a simple set of uncoupled single DOF systems (Avitabile, 2001a).

Figure 3.2 schematically shows the reduction of the spatial model into the

modal model, and this is defined as “Experimental Modal Analysis”, where

a complicated set of coupled physical equations are reduced to a simple set

of uncoupled SDOF systems, i.e. Equation 3.1 is reduced to Equation 3.2.

Figure 3.2.: Experimental Modal Analysis (Ewins, 2000)

3.2.2. Frequency Response Function (FRF)

The Frequency Response Function (FRF) is defined as the ratio of the out-

put response of a structure due to an applied force. By taking the Fourier

Transform (FT) of both the input signal and the output signal, they are
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converted from the time domain into the frequency domain. The ratio of

the output signal to the input signal in the frequency domain is defined as

the FRF. Due to the nature of the Fourier Transform, the functions are

complex, with real and imaginary terms, and can be described in terms of

magnitude and phase (Avitabile, 2001a).

FRF = H (jω) =
Ô (jω)

Î (jω)
(3.3)

where Ô (jω) and Î (jω) are defined as the Fourier Transform of the output

and input signals in the time domain respectively. They are given mathe-

matically as;

Ô (jω) =

(
1

2π

)∫ +∞

−∞
o (t) e−jωtdt (3.4)

Î (jω) =

(
1

2π

)∫ +∞

−∞
i (t) e−jωtdt (3.5)

Figure 3.3 shows a schematic of the modal analysis outlining the defi-

nition of the Frequency Response Function (FRF) as the system transfer

function in the frequency domain. Both the input and output signals are

converted from the time domain to the frequency domain by means of the

Fourier Transform. The FRF is then defined as the ratio of the output

signal in the frequency domain to the input signal in the frequency domain.

The coherence function is defined as the cross-correlation of the output and

input signals, and measures the causality of the signals, i.e. the amount of

correlation between the input and output signal. Analysis of the FRF gives

information about the modal properties of the structural system. Specifi-

cally, the peaks in the FRF are used to identify the experimental natural

bending frequencies of the structural system, through peak-picking algo-

rithms.

The experimental modal testing carried out and described in Chapters 4,

6 and 7 describe the results of output-only modal analysis. The output sig-

nal only was measured. No measurement signal was taken of the dynamic

impacts used to excite the respective structural systems tested, i.e. of the

dynamic input signals. In this way, the experiments conducted are consid-

ered as output-only dynamic tests. These tests are becoming increasingly
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Figure 3.3.: Modal Analysis; determination of system transfer function
(FRF)

common, especially in the field of Operational Modal Analysis (OMA), in

which the modal parameters of a structure are determined from the struc-

tures response to ambient vibration conditions. Consequently, in the testing

conducted and described later in the thesis, determination of the FRF and

coherence functions is not possible. The modal properties are instead ex-

tracted from the Fourier Transform representations of the system output

signals.

3.2.3. Fourier Series

The main assumption underlying all forms of modal analysis is that any

dynamic response signal may be represented, in the time domain, as an

infinite series of sinusoids, each with their own unique amplitude and fre-

quency. The amplitudes are considered as the modal contribution of each

mode of vibration to the overall dynamic signal, whereas the frequencies

are defined as the natural vibration frequencies of the structural system, for

the corresponding mode shape of vibration. All other seemingly random

portions of the vibration response are considered as a noise components of

the system, and as such, asystematic. As such, it is important to represent

each dynamic signal as an infinite series of sinusoids.
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The Fourier Series is a mathematical technique to represent any periodic

time (T ) signal, x(t) as an infinite series of sinusoids;

x (t) =
1

2
a0 +

∞∑
n=1

(ancosωnt+ bnsinωnt) (3.6)

where;

ωn =
2πn

T
(3.7)

where T is the natural period of the periodic signal to be represented in

seconds. The coefficients are given by;

a0 =
2

T

∫ T

0
x (t) dt

an =
2

T

∫ T

0
x (t) cosωntdt (3.8)

bn =
2

T

∫ T

0
x (t) sinωntdt

Alternatively, the Fourier Series can also be written in terms of magnitude

and phase information;

x (t) = c0 +
∞∑
n=1

cncos(ωnt+ φn) (3.9)

where the magnitude, cn and phase, φn are given by;

cn =
√
a2
n + b2n

(3.10)

φn = tan−1

(
− bn
an

)
Alternatively, making use of Euler’s Formula, ejθ = cosθ+jsinθ, the Fourier

Series may also be expressed in the form (Ewins, 2000);

x (t) =

+∞∑
−∞

Xne
jωt (3.11)
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where;

Xn =
1

T

∫ T

0
x (t) e−jωntdt (3.12)

3.2.4. Fourier Transform

In signal processing, dynamic signals are often thought of in the time do-

main, i.e. as functions of time. Often, to engineers and analysts, it is more

beneficial to represent the signals in the frequency domain. Despite the fre-

quency domain being less intuitive than the time domain, it is often easier to

manipulate and subsequently interpret the signals in the frequency domain.

For example, the identification of the natural frequencies of the structural

system becomes trivial in the frequency domain by invoking peak-picking

algorithms. The Fourier Transform is used to convert the impact response

signals obtained during dynamic testing described in Chapters 4, 6 and 7

from the time domain into the frequency domain.

The Fourier Transform is a mathematical technique that converts sig-

nals from their time domain representation, and describes them in terms of

their frequency content. The time signal is decomposed into its individual

frequency components in the frequency domain. Some mathematical opera-

tions are easier to perform in the frequency domain rather than in the time

domain. Engineers make use of this by converting to the frequency domain,

applying the desired operations and then transforming back into the time

domain. The Fourier transform is defined mathematically as;

f̂ (ω) =

(
1

2π

)∫ +∞

−∞
f (t) e−jωtdt (3.13)

where t is the variable in the time domain and ω is the variable in the

frequency domain. The inverse transform is defined as;

f (t) =
1

2π

∫ +∞

−∞
f̂ (ω) ejωtdω (3.14)

3.2.5. Discrete Fourier Transform

The Fourier Transform, as described in Section 3.2.4, is only applicable

to continuous functions, i.e. analogue signals. However, often in signal

processing and Fourier Analysis, there is a requirement to compute the
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Fourier Transform of a discrete time signal, i.e. a signal that is described

only at discrete time intervals. For example, in computing, and data logging,

an analogue signal is discretised into a digital signal, and is only defined by a

discrete number of points. The number of points that define a digital signal

is determined by the sampling rate of the analogue to digital converter

(ADC) of the data logger.

The above form of the Fourier Transform, as outlined in Equation 3.13, is

incompatible with such signals, and requires a numerical integration tech-

nique. The Discrete Fourier Transform, or DFT, of a function defined only

at N discrete points is defined mathematically as (Ewins, 2000);

x (tk) =

N−1∑
n=0

Xne
2πjnk/N (3.15)

where;

Xn =
1

2

N∑
k=1

xke
−2πjnk/N (3.16)

Alternatively, this can be expressed in series form;

x (tk) =
1

2
a0 +

N/2∑
n=1

(
ancos

2πnk

N
+ bnsin

2πnk

N

)
(3.17)

where;

a0 =
2

N

N∑
k=1

xk

an =
1

N

N∑
k=1

xkcos
2πnk

N
(3.18)

bn =
1

N

N∑
k=1

xksin
2πnk

N

The DFT assumes that the function, x(t) is periodic. The DFT representa-

tion is only valid for the specific values xk used in the discretised description

of x(t) (Ewins, 2000).
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3.2.6. Fast Fourier Transform (FFT)

The DFT is a computationally expensive algorithm, of the order of O
(
N2
)
.

Cooley and Tukey (1965) proposed the Fast Fourier Transform (FFT), which

is an algorithm to perform a DFT of the order of O (N logN), with sig-

nificant computational savings as a result. The FFT is used extensively

throughout the course of this thesis as a means of converting the structural

response signals, obtained from the dynamic testing conducted and outlined

and described fully later, in Chapters 4, 6 and 7, from the time domain to

the frequency domain via the signal processing toolbox in MATLAB (MAT-

LAB, 2014).

3.2.7. Single Degree of Freedom (SDOF) System

Figure 3.4 shows the basic model for single degree of freedom dynamic

systems, characterised by their mass, m, stiffness, k, and critical viscous

damping parameter, c, or hysteretic damping parameter, d. SDOF systems

are the simplest vibratory systems that can be described. x(t) is the time-

variant displacement of the SDOF system and f(t) is the applied time variant

force.

Figure 3.4.: Single Degree of Freedom (SDOF) Oscillator (Ewins, 2000)

Undamped systems

Damping is defined as “an influence within or upon an oscillatory system

that has the effect of reducing, restricting or preventing oscillation.” Exam-
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ples include viscous drag in mechanical systems (Wikipedia, 2015b). Con-

sider the idealised case of undamped simple harmonic motion (SHM), i.e.

when f(t) = 0. The governing (homogeneous) equation of motion is given

as;

mẍ+ kx = 0 (3.19)

The solution x(t) = Xejωt requires that;

Xejωt
(
k − ω2m

)
= 0 (3.20)

The non-trivial solution gives;

ω =

√
k

m
(3.21)

Therefore the modal model consists of a single mode of vibration, at a

single characteristic natural frequency, ω, as expected for SDOF systems.

In a frequency response analysis, consider excitation of the form (Ewins,

2000);

f(t) = Fejωt (3.22)

where X and F are complex, containing both frequency and phase informa-

tion. The equation of motion is now;

(
k − ω2m

)
Xejωt = Fejωt (3.23)

The response model, or the Frequency Response Function (FRF), H(jω) is

given as;

H(jω) =
X

F
=

1

k − ω2m
(3.24)

There are different types of FRF, depending on the response parameter

in question. The response parameters that can be measured are the dis-

placement, X, the velocity, V , and the acceleration, A. The generic FRF

is known by different terms, depending on the response parameter used to

calculate it, as outlined in Table 3.1. They are represented generically by

the mathematical term H(jω).
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Table 3.1.: Different Frequency Response Functions

Response Parameter Symbol Name Inverse

Frequency Response H(jω)
Function, FRF

Displacement, X α(jω) Receptance Dynamic stiffness
Admittance
Dynamic compliance
Dynamic flexibility

Velocity, V Y (jω) Mobility Mechanical
impedance

Acceleration, A A(jω) Inertance Apparent mass
Accelerance

3.2.8. Viscous Damping

Adding a viscous damper, and considering free vibration, as shown in Fig-

ure 3.4 (when f(t) = 0), Equation 3.19 becomes;

mẍ+ cẋ+ kx = 0 (3.25)

The general solution is in the form x(t) = Xest, where s is complex as

opposed to imaginary (Ewins, 2000). This requires that;

Xest
(
ms2 + cs+ k

)
= 0 (3.26)

The non-trivial solution is given as;

s1,2 = − c

2m
±
√
c2 − 4km

2m
(3.27)

= −ξω ± jωD

where;
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ω =

√
k

m

ξ =
c

2
√
km

(3.28)

ωD = ω
√

1− ξ2

This implies a modal solution of the form (Ewins, 2000);

x(t) = Xe−ξωtejωDt

(3.29)

= XejωDt−ξωt

This is a single vibration mode with a complex natural frequency containing

an imaginary (oscillatory) part (ωD = ω
√

1− ξ2) and a real (decay) part

(damping rate of ξω). The physical significance of this can be seen in

Figure 3.5, which has been reproduced from Ewins (2000).

X

t

x
(t
)

Oscillatory Frequency
ωD = ω

√

1 − ξ2

Exponential Decay
Xe

−ξωt

Figure 3.5.: Free vibration characteristics of a damped SDOF system
(Ewins, 2000)
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Finally, as for the undamped case, considering the forced response when

f(t) = Fejωt, the equation of motion becomes;

(
−ω2m+ jωc+ k

)
Xejωt = Fejωt (3.30)

yields a FRF of the form;

H(jω) =
1

(k − ω2m) + j(ωc)
(3.31)

which is complex and contains both magnitude and phase information. As

pointed out by Ewins (2000), viscous damping is a poor representation of

the damping that occurs in real structures. There is evidence to suggest

that structural damping is actually itself frequency dependent. Structural

damping is comprised of hysteretic damping due to the material properties

from which they are made and friction damping that exists between joints in

the structure. As a result, Ewins (2000) suggests a modified equation which

satisfies the requirement that the energy lost per cycle is independent of

frequency, d = ωc.

3.2.9. Representation of FRF data

A Bode plot is a plot of the modulus of the FRF versus frequency with

phase versus frequency, i.e. Figure 3.6a and Figure 3.6d represented with

one another in the same graph. Figure 3.6 shows the magnitude, phase,

real and imaginary plots of an SDOF system as a function of frequency.

The SDOF system in question is an idealised system for the purposes of

representation. The system has a resonant frequency defined at ω1 = 78Hz,

which is concurrent with the peaks in Figures 3.6a, 3.6b and 3.6c, and the

phase change evident in Figure 3.6d. The synthesised response signal had

a peak amplitude arbitrarily defined as unity, A = 1. The viscous damping

ratio, xi, was given as 2%, ξ = 0.02. The input signal itself was defined

as an idealised dirac-delta function with amplitude A = 1. The impulse

response, o(t), of the system was defined as;

o(t) = Aeωt(j−ξ) (3.32)

It can be seen from Figure 3.6d that at resonance condition, the phase

angle shifts by 180o. Due to the large frequency range over which these
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plots are defined, the plots are sometimes defined on a logarithmic scale, as

in Figure 3.7. When plotted on a log scale, there are some patterns that

can be recognised (Ewins, 2000), namely;

• straight line in low frequency range;

• peak in the resonant region, and;

• straight line in high frequency range.

The maximum frequency that can be plotted is known as the Nyquist

Frequency, and is defined as half of the sampling rate of a discrete time

signal. For example, if a signal has been sampled at a rate of 10,000Hz in

the time domain, then the frequency content up to 5,000Hz can be captured.
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Figure 3.6.: (a) Magnitude; (b) Real; (c) Imaginary, and; (d) Phase informa-
tion plotted as a function of frequency, ω, for a simple idealised
SDOF oscillator response
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Plots of the real part of the FRF vs. frequency and the imaginary part

of the FRF vs. frequency are shown (Figures 3.6b and 3.6c.) Here, it can

be seen that the phase change through the resonant region is characterised

by a sign change in the imaginary part. Log scales are not useful here,

as there is a need for negative values (Ewins, 2000). Figure 3.8a shows the

Nyquist or Argand plane plot of real part vs. imaginary part of FRF. When

analysed in conjunction with the 3D plot of real part vs. imaginary part

vs. frequency (Figure 3.8b), it is clear that the resonant frequencies in the

Argand plane are those that are furthest away from the rest, as all other

frequencies are very closely spaced (Ewins, 2000).
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Figure 3.7.: Magnitude of FRF vs. Frequency on Log scale
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Figure 3.8.: Plots of; (a) Real vs. Imaginary data (b) 3D plot of Imaginary
vs. Frequency vs. Real data
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3.2.10. Multi Degree of Freedom (MDOF) System

Figure 3.9.: 2 DOF Oscillator

Figure 3.9 shows a generalised two degree of freedom system. For an un-

damped MDOF system with N degrees of freedom, the governing equation

of motion is written in matrix form as;

[M ] {ẍ(t)}+ [K] {x(t)} = {f(t)} (3.33)

where [M ] and [K] are N × N mass and stiffness matrices respectively,

and {x(t)} and {f(t)} are N × 1 vectors of time varying displacements

and forces (Ewins, 2000). Under free vibration conditions, {f(t)} = 0, the

solution takes the following form;

{x(t)} = {X}ejωt (3.34)

where {X} is an N×1 vector of time-independent amplitudes (Ewins, 2000).

Substitution into Equation 3.33 leads to the following;

(
[K]− ω2[M ]

)
{X}ejωt = {0} (3.35)

The non-trivial solution yields;

‖[K]− ω2[M ]‖ = 0 (3.36)

Solving for {ω2} gives aN×1 vector of natural frequencies, {ω1, ..., ωr, ..., ωN}.
Substitution of these values back into Equation 3.34 yields a corresponding
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set of relative values for {X}, i.e. {ψ}r, which is the corresponding mode

shape to the rth natural frequency. The complete solution is expressed in

two N ×N eigenmatrices;

[
. . . ω2

r
. . .][ψ] = {0} (3.37)

The spatial model is defined by [M ] and [K], while the modal model is de-

fined by the two eigenmatrices [ω2
r ], [ψ]. The eigenvalue vector, i.e. natural

frequencies, are unique, but the eigenvector matrix, i.e. mode shapes is not

(Ewins, 2000).

3.2.11. Orthogonality

The modal model possesses the property of orthogonality;

[ψ]T [M ] [ψ] = [mr]

(3.38)

[ψ]T [K] [ψ] = [kr]

from which; [ω2
r ] = [mr]

−1[kr], where mr and kr are the modal mass and

modal stiffness of mode r respectively. These values are scaled arbitrarily

and are therefore mass normalised. The mass-normalised eigenvectors, [Φ]

have the property Ewins (2000);

[ψ]T [M ] [ψ] = [mr]

(3.39)

[ψ]T [K] [ψ] = [kr]

The relationship between the mass-normalised mode shape for mode r, {Φ}r
and its general form {ψ}r is;

{Φ}r =
1
√
mr
{ψ}r (3.40)

where; mr = {ψ}Tr [M ]{ψ}r. Proof of the orthogonality properties given

by Ewins (2000); for a particular mode, the equation of motion for free
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vibration is given as;

(
[K]− ω2

r [M ]
)
{ψ}r = {0} (3.41)

Premultiplying by the transpose of a different eigenvector;

{ψ}Ts
(
[K]− ω2

r [M ]
)
{ψ}r = 0 (3.42)

The same goes for other eigenvectors;

(
[K]− ω2

s [M ]
)
{ψ}s = {0} (3.43)

If this is transposed and postmultiplied by {ψ}r, it gives;

{ψ}Ts
(

[K]T − ω2
s [M ]T

)
{ψ}r = 0 (3.44)

Since [M ] and [K] are generally symmetric, they are identical to their trans-

poses and Equation 3.41 and Equation 3.44 are combined to give;

(
ω2
r − ω2

s

)
{ψ}Ts [M ] {ψ}r = 0 (3.45)

which if ωr 6= ωs can only be satisfied if;

{ψ}Ts [M ] {ψ}r = 0; r 6= s (3.46)

also;

{ψ}Ts [K] {ψ}r = 0; r 6= s (3.47)

For the special case where r = s, or if ωr = ωs, Equations 3.46 and 3.47 do

not apply, but from Equation 3.42;

(
{ψ}Tr [K] {ψ}r

)
= ω2

r

(
{ψ}Tr [M ] {ψ}r

)
(3.48)

so that;

{ψ}Tr [M ] {ψ}r = mr

(3.49)

{ψ}Tr [K] {ψ}r = kr
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and;

ω2
r =

kr
mr

(3.50)

3.2.12. Forced Response Solution - FRF Characteristics

Consider a MDOF structure that is excited sinusoidally, where the excita-

tion force, f(t) is given as;

{f(t)} = {F}ejωt (3.51)

assuming that the solution takes the form; {x(t)} = {X}ejωt, where {F}
and {X} are N × 1 vectors of time-independent complex amplitudes, the

equation of motion becomes;

(
[K]− ω2 [M ]

)
{X}ejωt = {F}ejωt (3.52)

rearranging to solve for unknown responses;

{X} =
(
[K]− ω2 [M ]

)−1 {F} (3.53)

which is written as;

{X} = [H(jω)] {F} (3.54)

where [H(jω)] is the N ×N FRF matrix, or response model. The general

element in the FRF matrix is given as;

Hjk(jω) =

(
Xj

Fk

)
; Fm = 0; m = 1; N 6= k (3.55)

from Equation 3.53;

(
[K]− ω2 [M ]

)
= [H(jω)]−1 (3.56)

Premultiplying both sides by [Φ]T and postmultiplying both sides by [Φ] to

obtain;

[Φ]T
(
[K]− ω2 [M ]

)
[Φ] = [Φ]T [H(jω)]−1 [Φ] (3.57)
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or;

[(
ω2
r − ω2

)]
= [Φ]T [H (jω)]−1 [Φ] (3.58)

which lead to;

[H (jω)] = [Φ]
[(
ω2
r − ω2

)]−1
[Φ]T (3.59)

Therefore, the FRF matrix, [H(jω)] is symmetric (Ewins, 2000);

Hjk (jω) = (Xj/Fk) = Hkj (jω) = (Xk/Fj) (3.60)

where;

Hjk (jω) =

N∑
r=1

(Φjr) (Φkr)

ω2
r − ω2

=

N∑
r=1

(ψjr) (ψkr)

mr (ω2
r − ω2)

(3.61)

or;

Hjk (jω) =
N∑
r=1

rAjk
ω2
r − ω2

(3.62)

where rAjk is known as a modal constant for mode r. This solution can be

rolled out for various types and levels of damping, as outlined by Biloŝová

(2011) and presented in Table 3.2.

Table 3.2.: FRF Formulae and Natural Frequencies for all types of damping
(Biloŝová, 2011)

MDOF System FRF Equation

Undamped H(jω) =
∑N
r=1

(Φjr)(Φkr)
ω2

r−ω2

Proportional hysteretic H(jω) =
∑N
r=1

(Φjr)(Φkr)
ω2

r−ω2+jηrω2
r

Proportional viscous H(jω) =
∑N
r=1

(Φjr)(Φkr)

ω′2
r −ω2+2jωω′

rξr

General hysteretic H(jω) =
∑N
r=1

(Φjr)(Φkr)
ω2

r−ω2+jηrω2
r

General viscous H(jω) =
∑N
r=1

(
rRjk+j ω

ω′
r

)
r
Sjk

ω′2
r −ω2+2jωω′

rξr
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where ω
′2
r = ωr

√
1− ξ2

r and;

{rRk} = 2
(
ξrRe{rGk} − Im{rGk}

√
1− ξ2

r

)
{rSk} = 2Re{{rGk}} (3.63)

{rGk} = (θkr/ar) {θ}r

where {θ}r is the rth mode shape for a viscously damped system, and ar is

given by the orthogonality properties of a viscously damped system;

[Θ]T
[
C M

M 0

]
[Θ] = [ar] (3.64)

where [C] and [M ] are the damping and mass matrices for the given viscously

damped MDOF system.

3.3. Measurement Techniques

Section 3.2 outlines the theoretical background and basic mathematical

techniques required to conduct a full experimental modal analysis. It out-

lines the mathematical techniques required to represent the dynamic sig-

nals obtained appropriately in the time and frequency domain, such as

outlining the main concepts and theory behind Fourier Analysis in Sec-

tions 3.2.3, 3.2.4, 3.2.5 and 3.2.6. Furthermore, the single degree of freedom

(SDOF) and multiple degree of freedom (MDOF) concepts are introduced,

alongside concept of the frequency response function, which is defined as

the transfer function for a dynamic system.

The following section will focus primarily on the practical implementa-

tion of experimental modal analysis and how the various dynamic testing

techniques are applied in the laboratory. The quality of the signal collected

is of utmost importance, and highlighted in Section 3.3.1. The choice of test

specimen support conditions is dealt with in Section 3.3.2, the type of dy-

namic excitation is then referred to in Section 3.3.3. Throughout the course

of the testing conducted and described in this thesis, impact strikes were

used to dynamically excite the test specimens in all cases. Section 3.3.4 out-

lines the importance of choosing the correct sensory equipment, specifically,

an accelerometer. Section 3.3.5 details the difference between analysing op-
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erating data and modal data. The basic steps for impact testing are laid out

in Section 3.3.6. The implications of multiple input, multiple output dy-

namic testing are highlighted in Section 3.3.7. Finally, Experimental Modal

Analysis (EMA) requires knowledge of both the input force and the output

force. In output-only studies, the technique is most accurately referred to

as Operational Modal Analysis (OMA), which is discussed further in Sec-

tion 3.3.9. The aim of the following section is to focus on the practical

implementation of modal analysis in the laboratory.

3.3.1. Signal quality

The first thing that should be ensured when conducting modal testing in a

laboratory is that the quality of the signals obtained is of the highest quality.

Quality assurance of the measured dynamic data is of utmost importance.

Firstly the signals obtained should be of sufficient strength and clarity and

free of excessive noise (Ewins, 2000). Ewins (2000) reports that it’s often

the case that there’s a very large component of the signal in one frequency

range and it dictates the gain settings on amplifiers and analysers such that

the low level signal components are difficult to determine. This error has

been identified throughout the course of this thesis. The extent of the noise

issue is highlighted by some real data obtained from the experimental testing

conducted in the laboratory. Figure 3.10 shows both the time domain and

frequency domain output response of the tested structure, due to an impact

excitation. The peaks in the frequency domain are identified as the natural

frequencies of the structure. As evident in Figure 3.10b, the fundamental

bending frequency is evident at a frequency of approximately 69Hz, and the

2nd and 3rd harmonic frequencies are evident at frequencies of approximately

246Hz and 630Hz respectively. However, what is also evident is significant

noise - unwanted frequency components in the signal that are corrupting it.

This unwanted frequency content is attenuated by appropriate use of signal

processing and signal filtering that is outlined in detail in Chapters 4 and 6.

Another error identified is that sometimes, the component of vibration

out of the plane of measurement contaminates the output, giving misleading

information regarding the vibration of the structure (Ewins, 2000). This is

due to misalignment of the accelerometer due to tolerance errors in the

laboratory.
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Figure 3.10.: Unfiltered impact response signal (a) time domain; (b) fre-
quency domain

The following sections, Section 3.3.2- 3.3.9 deal with the modal test set-up

and implementation in the lab.

3.3.2. Support conditions

Having established that the quality of the dynamic data obtained is of ut-

most importance to the successful outcome of modal testing, it is now im-

portant to highlight the importance of setting up the test correctly in the

laboratory, and how the test set-up can affect the results. Firstly, the sup-

port conditions of the structure to be tested must be decided upon.

Throughout the course of this thesis, the description of dynamic test-

ing on a variety of test specimens is outlined. All test specimens have

been ‘grounded’. Specifically, each specimen has been designed to be simply

supported, i.e. rotation is allowed, but horizontal and vertical motion is

restricted. As pointed out by Ewins (2000), it is very difficult to provide

idealised support conditions in practice as all structures have their own

stiffness and cannot be regarded as truly rigid.

The support conditions are directly linked to the boundary conditions of

the differential equation of motion of the structure, and subsequently affect

the frequency of vibration of the structure. Since it is almost impossible

to ‘idealise’ these conditions in the laboratory, assumptions are generally

made, and in all cases described in this thesis, the tested structures are

assumed to be simply supported.
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3.3.3. Impact Excitation

Once the support conditions of the test specimen have been decided upon,

the next important decision to be addressed is how the structure is to be

excited under dynamic testing. There are different kinds of dynamic excita-

tion techniques. The most common tests include impact testing, sine sweep

testing, white noise testing, and even ambient vibration testing.

In the case of the testing conducted and described throughout the course

of this thesis, impact excitation was used to dynamically excite the spec-

imens. The impactor is usually fitted with a force transducer so that a

measurement of the dynamic impact force can be obtained. A measurement

of the input force is required in order to determine the frequency response

function (FRF), coherence function etc... However, throughout the course of

the tests conducted, the impactor was not fitted with a force transducer. In

this manner, the FRFs for the specimens were not determined. As a result,

the project is an output-only response study. The natural frequencies were

determined from transforming the time domain signals into the frequency

domain via the Fast Fourier Transform (FFT), and identifying the peaks

in the data. In this manner, the study should not be referred to as an Ex-

perimental Modal Analysis (EMA), as by definition, it requires knowledge

of the input force, but rather must be referred to as an Operational Modal

Analysis (OMA), in that output-only data is analysed.

Another important consideration in impact testing is the choice of the

impactor head material. Shrewd choice of the impactor head is of vital

importance to the outcome of the study, and the quality of the data ob-

tained. The tip material of the impactor determines the frequency range

of the data, as does the impact time. The frequency range of excitation

is determined by the stiffness of the contacting surfaces and the mass of

the impactor, and system resonance occurs at a frequency given by; (con-

tact stiffness/impactor mass)
1
2 . Above this frequency, it is very difficult

to transfer energy into the structure (Ewins, 2000). An infinitesimal im-

pact hammer response time has a completely flat frequency response and

therefore all frequencies are excited in such case, as shown in Figures 3.11a

and 3.11b. Avitabile (2001b) points out that the input spectrum should

be “reasonably flat” over the frequency range of concern. The input power

spectrum is controlled by the length of the time of the impact pulse, as
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shown in Figure 3.11. A long pulse in the time domain results in a short

or narrow frequency spectrum, whereas a short pulse in the time domain

results in a wide frequency spectrum (Avitabile, 2001b). The hammer tip is

responsible for the frequency spectrum excited, and in general, the harder

the tip, the wider the frequency range excited (i.e. the wider the Bandwidth

of the input signal) (Avitabile, 2001b). It is also possible to choose too hard

a hammer tip causing too much excitation at higher frequencies, causing all

of the modes of the structure to respond. However, practically, this is not

possible to achieve. The effect of increasing the impact time is shown in Fig-

ure 3.11. Impact hammer pulses have frequency content that is essentially

flat up to a certain frequency and then diminished from then on. There is

a direct relationship between the cutoff frequency and the pulse duration.

The shorter the length, the greater the frequency range (Ewins, 2000). This

is illustrated in Figure 3.11. This is also related to the stiffness of the con-

tacting surfaces and the mass of the impactor head. The stiffer the surfaces,

the shorter the pulse and therefore the greater the frequency range. In gen-

eral, as soft a tip as possible is used to inject all the input energy into the

frequency range of interest. If a stiffer tip is used, energy is being input into

vibrations outside the range of interest, at the expense of those inside that

range (Ewins, 2000). It is possible that the choice of a hard steel impactor

tip throughout the testing conducted, contributed significantly to the high

levels of noise reported in Figure 3.10, Section 3.3.1.
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Figure 3.11.: The effect of impact contact time on the input frequency spec-
trum; (a) 0.0001s time domain (b) 0.0001s frequency domain;
(c) 0.002s time domain (d) 0.002s frequency domain; (e) 0.005s
time domain (f) 0.005s frequency domain
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Another practical difficulty, and common problem experienced during

modal testing with impact excitation, as outlined by both Ewins (2000)

and Avitabile (2001b,a) is the ‘double-hit’, in which the structure rebounds

and strikes the hammer before the hammer can be pulled away. In these

cases, the frequency response is seen to have ‘holes’ at certain frequencies,

which can lead to erroneous results. A double impact causes a non-uniform,

non-flat input force spectrum, and as such, should be avoided at all costs,

as it invokes the possibility of missing critical frequency content due to the

destructive interference of the second hit on the original signal.

3.3.4. Choice of accelerometer

The choice of sensory equipment also affects the outcome of the tests signifi-

cantly. There are many types of dynamic sensors, such as force transducers,

velocity transducers, dynamic strain gauges, dynamic LVDTs etc... how-

ever the most common type of dynamic sensors are accelerometers, which

also was chosen as the dynamic sensor used throughout the modal testing

conducted.

Accelerometer sensitivities range between 1-10,000pC/g. In general, it

is better to choose an accelerometer with as high a sensitivity as possible.

However, the greater the sensitivity, the heavier the accelerometer, and the

lower the resonant frequency of the accelerometer itself, and hence the lower

the maximum working frequency (Ewins, 2000). In addition, the addition

of an accelerometer adds mass to a structure and subsequently alters the

natural frequency. However, the mass of the accelerometer in this case

is negligible compared to the mass of the relatively large-scale specimens

tested. Other issues with the choice of accelerometer include how it is

attached to the structure. In all tests conducted and described throughout

the course of this thesis, the accelerometer was affixed to the steel and

concrete specimens by means of a threaded stud. Evidently, this requires

modification of the structure, as holes need to be drilled in the structure to

accommodate affixing the measurement device. Again, this was considered

insignificant to the overall structural stiffness of the tested specimen(s). The

screwed stud has a particularly high frequency capability, but this may only

be obtained if the accelerometer is affixed exactly normal to the structure

surface. Misalignment will result in a corresponding loss of stiffness and
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therefore a lower cutoff frequency (Ewins, 2000).

The placement of the accelerometer on the structure is also of utmost

importance. If the accelerometer is placed close to the node of a mode of

vibration then it is very difficult to make an effective measurement of that

particular mode. As a result, during concrete testing the accelerometer was

placed 800mm from the support, between midspan and the support, in order

to clearly capture all of the first three natural bending modes of vibration,

as shown in Figure 3.12.
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Figure 3.12.: Positioning of accelerometer to capture first 3 modes of vibra-
tion

Ultimately the accelerometer used in the modal testing of the structures

was a Dytran model 3200b4 10,000g range accelerometer.

3.3.5. Operating data vs. Modal data

The difference between operating data and modal data is important. To

obtain modal data, knowledge of the input force characteristics is required,

and this must be compared to the output force characteristics in order

to obtain the FRFs, however, with operating data, the input force is not

measured, and the analysis is conducted on the output response of the

structure only. This is the fundamental difference between Experimental

Modal Analysis (EMA) and Operational Modal Analysis (OMA).

Recalling how a structure responds to any dynamic excitation;

Ô (jω) = H (jω) Î (jω) (3.65)
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The response is computed by multiplying the frequency response function

(FRF) by the input forcing function. It is important to note that the FRF

acts as a filter on the input force which results in some output response. The

excitation causes all modes of vibration to be activated and therefore the

response is the linear superposition of all the modes activated by the input

excitation (Avitabile, 2001b). With operating data, the input force or the

FRF is never measured, the output response only is measured. Therefore,

the measured deformations are the actual response of the structure due

to input excitation. The operating data itself is usually primarily some

combination of the first and second modes of vibration. Note that when

operating data is collected, instead of measuring FRFs, output spectra are

measured. The Modal data is contained in the FRFs whereas the Operating

data is contained in the output spectra. The natural frequencies of the

structure may still be extracted form the peaks in the output spectra, as

discussed later in this thesis.

3.3.6. Basic steps for impact testing

The following section outlines in detail the basic steps in conducting a modal

impact test in the laboratory. These steps were followed throughout the

modal testing conducted and described in Chapters 4, 6, and 7.

The excitation is initially applied to the structure using a hammer. If

the force transmitted to the structure is measured using an in-built force

transducer, then the test is referred to as an Experimental Modal Analysis

(EMA). If the input force is not measured, then the test is referred to

as an Operational Modal Analysis (OMA). The response of the structure

is measured using an accelerometer, or various accelerometers, distributed

at response points of the structure. In many data acquisition systems, a

pre-trigger delay is specified to capture the entire transient of the impact

device (Avitabile, 2001b). The data is then collected and a low-pass filter is

applied to filter out uninteresting high-frequencies and to prevent aliasing

from occurring (see Section 3.4.1). The data is then passed to an analogue

to digital converter (ADC) where the data is sampled and converted into

digital form. It is important that the data is sampled at a rate that captures

the frequency bandwidth of interest. The Nyquist frequency (ωNyq) is given

as half of the sampling rate of the data (ωs), i.e. ωNyq = ωs/2. This
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means that if the data is sampled at ωs = 10, 000Hz, then the maximum

bandwidth is ωNyq = 5, 000Hz.

Leakage (Section 3.4.3) will occur if the entire signal is not captured dur-

ing the acquired data sample (Avitabile, 2001b). Some form of windowing

(Section 3.4.4) may be required to minimise the effects of leakage on the

signal. For example, if the response signal does not decay to zero by the

end of the sample interval, an exponential window may be required to avoid

signal distortion following the Fourier Transform process (Avitabile, 2001b).

Following sufficient windowing and signal filtering in order to remove noise

and all other unwanted frequency components, the input signal and the

output signal in the time domain are converted into the frequency domain

using the Fast Fourier Transform technique. Following this, the Frequency

Response Function (FRF) is computed, as given in Equation 3.3, and out-

lined in Figure 3.3. Having determined the FRF, single degree of freedom

(SDOF) curve-fitting techniques are used to identify the natural frequencies

of the structural system through some sort of peak-picking algorithm. The

mode shapes are extracted from the data by measuring the relative ampli-

tude of each peak response at a specified frequency at the different locations

in the structure at which they are measured.

3.3.7. MIMO Testing

MIMO testing stands for multiple-input multiple-output testing, in which

the structure is excited at multiple input points, and its response is measured

at multiple output points. The careful choice of the input and output points

lead to the determination of the experimental mode shapes of the structure.

The following explanation will closely follow that described by Avitabile

(2001b). Consider the 3DOF cantilever structure shown in Figure 3.13.

Here, there are multiple dynamic input/excitation points, i, and multiple

dynamic output/response points, j. Since there are 3 input points and 3

response points, there are 9 possible complex-valued Frequency Response

Functions (FRFs) that may be computed. Let hi,j denote the complex-

valued FRF at response point j due to excitation at input point i. These

FRFs are organised in the form of a 3× 3 matrix of FRF data. Let H(jω)
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Figure 3.13.: 3DOF cantilever model with corresponding mode shapes
(Avitabile, 2001b)

denote such a matrix, and therefore is given as;

H(jω) =

 h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

 (3.66)

Note that frequency response is a complex number and therefore may be

described in terms of magnitude and phase, or in terms of real and imaginary

values. The data is shown in Figure 3.14.

Figure 3.14a shows the Magnitude of the FRF functions, Figure 3.14b

shows the Phase data, Figure 3.14c shows the Real data, and Figure 3.14d

shows the Imaginary data. From Figure 3.14, it is clear that the FRF matrix

is symmetric. This is due to the fact that the mass, damping and stiffness

matrices that describe the system are also symmetric (Avitabile, 2001a).

This property is known as reciprocity ; hi,j = hj,i. This effectively means

that the same measurement may be taken by exciting the structure at point

1 and measuring the response at point 3, as exciting the structure at point

3 and measuring the response at point 1. This leads to the conclusion that

in order to accurately describe the modal properties of a structural system,

it is possible to measure the response at multiple locations, and keep the

excitation point constant, or to measure the response at one location and

change the excitation point. In the studies conducted and described in

Chapters 4, 6, and 7, the latter was chosen, in that the response of the
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(a) (b)

(c) (d)

Figure 3.14.: FRF data for 3DOF cantilever model; (a) Magnitude; (b)
Phase; (c) Real; (d) Imaginary. (Avitabile, 2001a)

structure was measured at one location only, but the input location was

changed.

The mode shapes are extracted from the imaginary part of the frequency

response function, as outlined by Avitabile (2001a). By taking the ampli-

tude of the imaginary response at the corresponding first modal frequency,

ω1, the first bending mode of vibration may be obtained as shown in Fig-

ure 3.15. The first bending mode of vibration may be obtained from all 3

rows and all 3 columns of the FRF matrix. Figure 3.15a shows the extrac-

tion of the first bending mode from the 2nd row of the FRF matrix, and

Figure 3.15b shows the extraction of the first bending mode from the 3rd
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row of the FRF matrix.

(a)

(b)

Figure 3.15.: Extraction of first bending mode shape from FRF matrix; (a)
Row 2; (b) Row 3. (Avitabile, 2001a)

Consider now the extraction of the second mode shape of vibration from

the given data. Figure 3.16a shows the second row of the FRF matrix.

However, there is no amplitude for the second mode of vibration. This

highlights an important aspect of modal testing - the reference point can-

not be located at the node of a mode as the mode does not show up in the

FRF measurements and therefore the mode cannot be obtained. Similarly,

the mode is unattainable from the second column of the FRF matrix. Fig-

ure 3.16b shows the third row of the FRF matrix, where the second mode

shape of vibration can be extracted from the peak amplitude of vibration

of the imaginary part of the FRF (Avitabile, 2001a).

Finally, by adding more input-output measurement locations, then the

mode shapes may be represented more accurately as shown in the waterfall

plot in Figure 3.15 (Avitabile, 2001a).

3.3.8. Coherence function

The coherence function is a function used to assess the quality of the ob-

tained data. It gives an indication of how much of the output signal is
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(a)

(b)

Figure 3.16.: Extraction of second bending mode shape from FRF matrix;
(a) Row 2; (b) Row 3. (Avitabile, 2001a)

actually related to the input signal - i.e. a measurement of causality. Coher-

ence can only be evaluated for averaged measurements. If there is only one

average, there can be no variation relative to the one measurement made,

therefore the coherence must be 1.0. However, this is not an indication of

quality data. The coherence function may only be used to evaluate variation

on a set of averaged functions, therefore averaging is required (Avitabile,

2001b). Coherence is measured to ensure that there is a relatively good

casual relationship between the input and output signals, ensuring a good

measurement is made.

Since coherence measurements, by definition, require measurement of

both the input and output force, they have not been obtained in the testing

described throughout this thesis. An output-only study has been conducted

and described throughout the course of this thesis. Coherence is effectively

a measure of the correlation between the input and the output signals.

3.3.9. Operational Modal Analysis

Operational Modal Analysis (OMA) is the measurement of the modal prop-

erties of a structure based on ambient vibration data (i.e. vibration data
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Figure 3.17.: Waterfall plot of first 3 bending mode shapes of vibration
(Avitabile, 2001a)

collected from the structure under its normal operating conditions). These

structural systems are known as “output-only systems”. One of the main

features of this type of analysis is that the input forces do not need to be

measured. As pointed out by Avitabile (2001b), this is the biggest bene-

fit and greatest downfall of the method, as there is no guarantee that the

excitation will cause response of all of the desired system characteristics.

In output-only systems, the input force is not measured, but it is assumed

that it is generally broadband and excites a frequency band that defines the

operating characteristics of the system (Avitabile, 2001b). In the case of

impact testing, it is desirable to minimise the contact time of the impact in

order to maximise the range of frequencies excited. In theory, an infinitesi-

mal contact time will excite all frequencies, however, this is unattainable in

practice. Avitabile (2001b) also reports that in general, output-only systems

tend to predict much higher damping than exists in reality.

3.4. Digital Signal Processing

The Fourier Transform, as described in Section 3.2.4, is only applicable to

continuous functions, however, there is a requirement to conduct Fourier
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Analysis on a discrete time signal. An analogue signal is discretised into a

digital signal through data sampling. The number of points that define a

digital signal is determined by the sampling rate of the analogue to digital

converter (ADC) of the data logger.

The Fourier transform, in it’s simplest form states that a function x(t),

periodic in time, T , can be written in the form (Ewins, 2000);

x (t) =
a0

2
+
∞∑
n=1

(
an cos

2πnt

T
+ bn sin

2πnt

T

)
(3.67)

where an and bn are given by;

an =

(
2

T

)∫ T

0
x (t) cos

(
2πnt

T

)
dt

(3.68)

bn =

(
2

T

)∫ T

0
x (t) sin

(
2πnt

T

)
dt

When x(t) is discretised and of finite duration, so is fully defined by N

particular values of time (tk; k = 1, N), a finite Fourier series is written;

xk (= x (tk)) =
a0

2
+
∞∑
n=1

(
an cos

(
2πntk
T

)
+ bn sin

(
2πntk
T

))
; k = 1, N

(3.69)

The coefficients an or bn are the Fourier (spectral) coefficients for x(t) and

are often displayed in modulus and phase form; cn(= Xn) =
√
a2
n + b2n and

φn = tan−1 (−bn/an) (Ewins, 2000). The input signal is digitised by an A-D

converter and recorded as a set of N discrete values, evenly spaced in the

period T . In impact testing, this is wholly defined by the sampling rate. In

the testing described throughout the course of this thesis, the signals were

sampled at a rate of 10,000Hz, i.e. the signal was sampled at a rate of 10,000

times per second. There is a relationship between the sampling rate, ωs and

the range and resolution of the frequency spectrum (ωNyq, ∆ω). The range

of the spectrum is 0−ωNyq, where ωNyq is known as the Nyquist frequency

and is given by;

ωNyq =
ωs
2

=
1

2

(
2πN

T

)
(3.70)
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the resolution of the lines in the spectrum, ∆ω, is given by (Ewins, 2000);

∆ω =
ωs
N

=
2π

T
(3.71)

3.4.1. Aliasing

Aliasing is an error associated with digital signal processing (DSP) in which

the existence of very high frequency components in the signal are missed

as the sampling rate is not large enough. It is not possible to determine

any frequency greater than the Nyquist frequency, which is, by definition,

half the sampling rate. A signal of frequency ω and one of (ωs − ω) are

indistinguishable when represented as a discretised time history, causing a

distortion in the spectrum measured by the DFT (Ewins, 2000). Figure 3.18

illustrates the issue with signal aliasing. There are two signals - a low

frequency signal and a high frequency signal. The sampling rate is such

that the low frequency signal is captured however, the sampling rate is too

slow to capture the high frequency signal, and therefore the signal has been

‘aliased’.

 

 

Low freq signal
High freq signal
Sampling rate

Figure 3.18.: Aliasing (reproduced from Ewins (2000))

Figure 3.19 shows the effect of aliasing on the signals in the frequency
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domain. The highest frequency which can be included is the Nyquist fre-

quency, i.e. half the sampling rate. In the case of aliasing, as shown in

Figure 3.19, where the frequency components greater than the Nyquist fre-

quency are reflected or ‘aliased’ in the range 0− (ωs/2) (Ewins, 2000). The

solution to this is to use an anti-aliasing filter. The anti-aliasing filter is a

low pass, sharp cut-off filter, as shown in Figure 3.20b. The type of filter

implemented is usually a high order low pass Butterworth filter (Butter-

worth, 1930). Anti-aliasing filters are not automatically built-in to signal

analysers and data collectors. The reduced aliasing due to an anti-aliasing

filter can be seen in Figure 3.20c.
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Figure 3.19.: Effect of aliasing on a signal (Adapted from Ewins (2000))

3.4.2. Butterworth Filter

The Butterworth filter is a type of signal processing filter that is designed to

have as flat a frequency response as possible in the passband and was first

described by Butterworth (1930). The higher order the Butterworth filter,

the closer to ideal ‘brick wall’ response. However, a high order filter leads to

excessive passband ripple that will corrupt the original signal. Figure 3.21,

obtained from Wikipedia (2015a) shows the benefit of the Butterworth filter

over its rivals. The main benefit is in the smoothness of the frequency

response of the filter in both the passband and the stopband region, therefore

minimising signal corruption in both the stopband and passband of the

frequency domain. The passband region is the region in which the frequency

content is passed, whereas the stopband region is the region in which the

frequency content is attenuated by the filter.

The Butterworth filter is defined by Oppenheim et al. (1999) by their

property that the magnitude response is maximally flat in the passband.
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Figure 3.20.: Anti-aliasing filter process - adapted from Ewins (2000)

For an N th order lowpass filter, this means that the first (2N − 1) of the

magnitude squared function are zero at ω = 0. Furthermore, the magnitude

squared response is monotonic in both the passband and the stopband. The

magnitude-squared response of the continuous Butterworth lowpass filter is

given by;

|Hc(jω)|2 =
1

1 + (jω/jωc)
2N

(3.72)

Figure 3.22 shows superimposed Butterworth lowpass filters with differing

orders in the frequency domain. The Fast Fourier Transform (FFT) is used

to convert signals from the time domain into the frequency domain, as of-

ten, signal processing techniques are more intuitive to understand and to

implement in the frequency domain as opposed to the time domain. The

filter is then multiplied with the FFT of the signal in the frequency domain

to obtain the filtered signal. An idealised filter will eliminate all frequency

components in the stopband and pass all frequency components in the pass-
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Figure 3.21.: Comparison of different types of filters (Wikipedia, 2015a)

band, however, as shown in Figure 3.22, the cut-off is not absolute and

the frequency data is attenuated on either side of the cut-off frequency, ωc.

High order filters are preferable, however, the order must not be excessive as

this can cause significant passband and stopband ripple which corrupts the

signal and counteracts the benefit of using the Butterworth filter to begin

with.

3.4.3. Leakage

Leakage is a signal processing problem related to discrete signals and the

definition of the Fourier Transform. The Fourier Transform is defined in

Equation 3.13, and the integral is defined over the range of (−∞,+∞).

Leakage occurs due to the need to take only a finite length of time-history,

coupled with the assumption of periodicity (Ewins, 2000). The effect of leak-

age is displayed in Figure 3.23, adapted from Ewins (2000). Figures 3.23a

and 3.23b show the same perfectly periodic signal in both time and fre-
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Figure 3.22.: Butterworth filter, with various orders, N (Oppenheim et al.,
1999)

quency domain. Due to this perfect periodicity, the frequency domain rep-

resentation is a single line at the frequency of the sine wave (Ewins, 2000).

However, when the periodicity assumption is not valid and there is a dis-

continuity at the beginning or the end of the signal in the time domain, the

resulting frequency spectrum does not indicate the original frequency. This

frequency is actually not represented. Energy has ‘leaked’ into a number

of the spectral lines close to the true frequency and the spectrum is spread

over several lines (Ewins, 2000). Ewins (2000) suggests the following to

minimise the effects of leakage;

• changing duration of signal to match periodicity. This can only be

done if underlying signal is periodic.

• Increasing duration of measurement period. This results in finer fre-

quency resolution by reducing the separation between spectral lines.

• ‘Zero padding’ ; adding zeros before and after signal, which arti-

ficially removes the periodicity requirement. In the same manner,

impact signals experience minimal distortion due to leakage once the

signal is analysed over the appropriate region.

• ‘Windowing’ ; the original signal is modified in the time domain in

order to reduce the effect of leakage.

118



x(t)

t

T

(a)

|a
(ω
)|

m
ax

ω
)|

|a

^

^
(

ω
(b)

x(t)

t

T

(c)

|a
(ω
)|

m
ax

ω
)|

|a

^

^
(

ω
(d)

Figure 3.23.: Effect of leakage. Adapted from Ewins (2000)

3.4.4. Windowing

Windowing involves the modification of the signal in the time domain in

order to suppress the effects of unwanted frequency content and minimise

the effects of leakage, which as discussed in Section 3.4.3, corrupts the signal

in the frequency domain. The original signal is given as x(t), the windowed

signal, w(t) and the modified signal as x′(t), such that; x′(t) = x(t).w(t).

This operation can also be conducted in the frequency domain, however it

is given by; X ′(ω) = W (ω) ∗ X(ω), where ∗ is the convolution operator.

Figure 3.24, which has been adapted from Ewins (2000), shows different

types of windows and the resulting modified signals. Figure 3.24b shows

the Boxcar window, Figure 3.24e shows the Hanning window, Figure 3.24h

shows the Cosine-taper window and Figure 3.24k shows the Exponential

window.

Avitabile (2001b) point out that when conducting a modal test, the type

of input excitation can be selected such that the use of windows can be elimi-

nated. Recall that the Fourier Transform is defined in the range (−∞,+∞),

however, the data is only acquired over a very short space of time. Provided

that the signal acquired may be reconstructed periodically for all time, then

there is no leakage effect (Avitabile, 2001b). Weighted window functions are

used to minimise the effect of leakage by minimising the effect of discontinu-
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Figure 3.24.: Different types of windows; (a) Boxcar; (b) Hanning; (c) Co-
sine taper; (d) Exponential. Adapted from Ewins (2000)

ity when performing the FFT. Avitabile (2001b) warns that all windows

distort data, as they distort the peak amplitude and appear to indicate

more damping than actually exists. Avitabile (2001b) suggests in order to

avoid the use of windows to continuously sample a periodic repetition of the

data, or to completely observe the signal in one data sample. The latter

is obtained by choosing impulse/impact excitation as the type of dynamic

excitation.

3.4.5. Filtering

Filtering is the process of modifying the signal in the frequency domain to

remove unwanted frequency components from the signal, i.e. to filter them

out. It is a frequency domain process. As outlined by Ewins (2000), there

are five main filter types, namely;
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• low-pass (see Section 3.4.1)

• high-pass

• band-limited

• narrow-band

• notch
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Figure 3.25.: Different type of frequency filters; (a) Low-pass Butterworth
filter (b) High-pass Butterworth filter (c) Band-pass Butter-
worth filter (d) Stopband Butterworth filter

Figure 3.25 shows 5 different types of filters. Figure 3.25a shows a low-

pass Butterworth filter, passing all frequencies lower than the cut-off fre-

quency, ωc = 2500Hz and stopping all frequencies > ωc. Figure 3.25b shows

a high-pass Butterworth filter, passing all frequencies > ωc, and stopping
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all frequencies < ωc. Figure 3.25c shows a passband filter, passing the fre-

quencies 2000 < ω < 3000Hz and attenuating all frequencies outside of this

range. Figure 3.25d shows a Stopband filter and a specific type of Stop-

band filter, known as a ‘Notch’ filter. Stopband filters attenuate all filters

within a certain range, known as the ‘stopband’. When this range is very

small/specific, it is known as a ‘Notch’ filter. All the filters shown are 5th

order. In practice, all filters have a finite frequency range over which they

function and exhibit roll-off features near critical frequency regions. For

example, Figure 3.25a shows a low-pass Butterworth filter with cut-off of

2500Hz. The amplitude response of the filter at cut-off is equal to 1/
√

2.

This is equivalent to −3dB as dB = 10log10(A2), where A is the Amplitude,

or ‘Gain’ of the filter.

Filtering is a technique best conducted in the frequency domain such that

X ′(ω) = X(ω).F (ω) where F (ω) is the frequency domain representation of

the filter, X(ω) is the frequency domain representation of the original signal

and X ′(ω) is the frequency domain representation of the filtered signal. This

is the opposite to windowing, which is best performed in the time domain.

Inverse Fourier Transforms (IFTs) may be performed on these signals to

convert them back into the time domain. Filtering may also be performed

in the time domain in the same way that windowing may be performed in

the frequency domain, such that x′(t) = x(t)∗f(t), where f(t) is the IFT of

the frequency filter, x(t) is the original signal in the time domain and x′(t)

is the filtered signal in the time domain.

3.4.6. Zoom

Zooming in on the frequency range of interest in the frequency domain rep-

resentation of a signal is a common solution for the need for finer frequency

resolution. However, it is important that a bandpass filter is applied to the

signal to avoid the aliasing effects referred to previously in Section 3.4.1.

When using zoom to observe a narrow frequency range, it’s important to

ensure that as little vibration energy as possible is outside the frequency

range of interest (Ewins, 2000).
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3.4.7. Averaging

It is necessary to perform an averaging process involving several samples

before a result is obtained that can be used with confidence. The two major

considerations which determine the number of averages required are (Ewins,

2000);

• statistical reliability

• removal of spurious random noise from the signals

3.5. Summary

In this chapter, the reader has been presented with the main tools, tech-

niques and theory of the principles behind dynamic testing and specifically

modal analysis of structures. Some of these techniques have been used at

length through the experimental testing conducted throughout the course

of this project and described in detail in Chapters 4, 6 and 7. In all cases,

output-only testing has been conducted and the fundamental modal fre-

quencies have been extracted from a set of simple structural systems in the

lab. The structures tested were both in steel and in post-tensioned concrete.

Section 3.2 outlined the theoretical basis behind experimental modal anal-

ysis and some of the specific tools and techniques used to conduct the analy-

sis. Section 3.3 outlined the measurement techniques behind collecting good

dynamic data, including outlining the basic steps behind conducting modal

analysis. Section 3.4 presented some specific techniques behind digital sig-

nal processing, in order to prepare the dynamic signals for analysis. This

chapter provided necessary background in the theory, tools and techniques

behind experimental dynamic testing and serves as to provide the reader

with a concise introduction, background and basis of these aspects prior to

reading Chapters 4, 6 and 7.
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4. Dynamic impact testing of

post-tensioned steel rectangular

hollow sections; an investigation

into the “compression

softening” effect

This chapter describes the results of dynamic impact testing on externally

axially loaded steel rectangular hollow sections (RHSs) and compares the re-

sponse to that of post-tensioned steel RHSs. Both the fundamental natural

bending frequency of the beam sections and the corresponding damping ra-

tios have been calculated from the measured dynamic response of the beam

to a series of impact hammer strikes. The validity of the “compression-

softening” effect for post-tensioned sections is tested. The implications of

the research are vast, as currently, there is significant disagreement among

researchers about the effect of pre- and post-tensioning loads on the dy-

namic characteristics of structures. The fundamental bending frequencies

have been calculated and corresponding damping ratios have been calculated

from dynamic test results for each axial load level. The bending frequencies

have been calculated repeatedly while changing the axial load level and the

subsequent changes in both frequency and damping ratio, with increasing

axial load level have been analysed to determine if the results are statistically

significant. It has been determined that “compression-softening” theory is

not valid for pre- or post-tensioned steel sections.

4.1. Introduction

In order to isolate this problem, a study must first be conducted into the va-

lidity of the aforementioned “compression-softening” effect. Subsequently,
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the aim of this chapter is to report on the impact hammer testing and ex-

perimental modal analysis conducted on both externally axially loaded steel

rectangular hollow sections (RHSs), and their post-tensioned counterparts.

The purpose of the research is first to determine under what conditions

“compression-softening” theory holds true. The assumption that an exter-

nal axial load is dynamically equivalent to an internal post-tensioning force

is investigated in this chapter. Previous results dealing with the change in

fundamental frequency with increasing axial load for both externally axially

loaded RHSs and post-tensioned RHSs have been presented by Noble et al.

(2014b).

This chapter is organised as follows; Section 4.2 presents the details of

the initial design of the dynamic experiments on the steel RHSs in the lab.

Details of the sections themselves are presented, accompanied by materials

testing, and design checks of the buckling and bending capacity of the steel

RHS sections, along with estimations of the natural bending frequencies for

each beam section. Section 4.4 describes the experimental set-up in the

laboratory, for the dynamic tests conducted, while Section 4.5 describes

the set-up for the static tests. Section 4.6 describes the signal processing

procedure used on the obtained data, and the calculation of the fundamental

bending frequencies and damping ratios for the given beam and load case

combinations. Section 4.8 describes the experimental results obtained, and

describes the observed changes in fundamental natural bending frequency

and damping ratio with increasing axial load level. Section 4.11 outlines the

main conclusions of the chapter derived from the experimental results and

also outlines the results of statistical analysis on the obtained results, by

regressing both fundamental natural bending frequency and damping ratio

on axial load level.

4.2. Experimental Design

The following sections outline the details of the experimental set-up and

some of the design calculations behind the static and dynamic tests that

was performed on the steel rectangular hollow sections in the lab.
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4.2.1. Sections Tested

This chapter describes the results of static and dynamic testing conducted

on externally axially loaded and post-tensioned rectangular hollow steel

sections. Two different sections were tested, in order to investigate the

effect of slenderness ratios on the results. The individual sections tested

were a RHS 50×30×3 and a RHS 120×60×3. These sections were chosen

in order to have a slenderness ratio of approximately λ ≈ 60 and λ ≈ 120. In

member buckling design, it is found that sections with very low slenderness

ratios (λ < 30) these sections fail in axial crushing of the section. Sections

with slenderness ratio greater than 120 (λ > 120) tend to fail in a manner

consistent with Euler buckling theory, whereas sections with intermediate

slenderness (30 ≤ λ ≥ 120) tends to deviate from both crushing and Euler

buckling and fail in a combined manner. The purpose of the testing was to

determine whether ”compression-softening is valid to sections that behave in

accordance with Euler buckling only. Since the member length was limited

to approximately 1.5m in order to have specimens small enough to work with

in the laboratory, section cross section sizes were chosen in order to have

two different members with slenderness ratios ≈ 60 and ≈ 120 respectively.

Hence, the sections chosen were a RHS 50× 30× 3 and a RHS 120× 60× 3

which had slenderness ratios of ≈ 60 and ≈ 120 respectively for a simply-

supported beam span length of 1.5m. Figure 4.1 shows schematic diagrams

of the cross sections of each steel specimen tested. The sections were tested

in different load cases - externally axially loaded vs. post-tensioned, and

further detail is given in Section 4.4. The design details of the experimental

set-up is outlined further in Section 4.2.2.

4.2.2. Detailed Design of Experimental Set-up

The external axial load set-up, as shown later in Figure 4.11 required the

design of a pinned connection, in order to achieve the required mode-shape

of vibration and in order to compare the experimental modal frequencies

obtained from each load case/test set-up condition. The pinned connection

detail was fixed to the frame, and the sections were slotted into the pin-

ended connections, as shown in Figure 4.11. Figure 4.2 shows detailed

drawings for the male and female connection of the designed pin-ended

connection in grade S235 steel. The section sizes were designed to resist the
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Figure 4.1.: Rectangular hollow steel sections (RHSs) tested. All dimensions
are in mm.
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Figure 4.2.: Pinned Connection Details; (a) Male connection; (b) Female
Connection. All dimensions are in mm.

Figure 4.3 shows the pinned connections connected together, as designed

and manufactured in the lab. Figure 4.4 shows the pinned connections as

built and in-situ in the laboratory during testing. As shown in Figures 4.4c

and 4.4d, the pinned connections enabled rotation to occur at the supports
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and therefore the required mode-shapes of vibration could be obtained.
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Figure 4.3.: Pinned Connection Details; connected together.
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(c) (d)

Figure 4.4.: Pictures of the pinned connection in the lab.
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4.2.3. Coupon Testing

Young’s Modulus testing was carried out on some samples taken from the

steel specimens tested in the lab. The samples were prepared in accordance

with the method set out in the relevant British Standard - BS EN ISO 6892-

1:2009 Metallic materials Tensile testing Part 1: Method of test at ambient

temperature (British Standards Institute, 2009). The steel coupons were

prepared as shown in Figure 4.5.

300

150

180

30 50

R10

3

Figure 4.5.: Tensile Testing; Steel Coupons tested. All dimensions are in
mm.

The specimens were tested in a Zwick/Roell materials testing machine.

The specimens were clamped in place and gripped at either end in the

machine. Strain gauges were affixed to the machine and strain readings

were obtained. A Zwick incremental short-travel clip-on extensiometer was

clipped onto the coupon. The extensiometer measured the extension of the

section in mm under tensile loading. The machine was set running and it

applied a tensile force to the specimens. The strain gauges were used in

order to calibrate the extensiometer and for further accuracy. Figure 4.6

shows the Zwick/Roell materials testing machine used and the Zwick/Roell
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short-travel clip-on extensiometer used.

(a)
(b)

Figure 4.6.: Coupon test set up; (a) Zwick/Roell Materials testing machine;
(b) Zwick/Roell short-travel clip-on extensiometer

5 coupons were taken from each steel specimen and were tested in the

Zwick machine. The extensiometer values were converted into strain mea-

surements and the corresponding force values were converted into stress by

normalising by the cross sectional area. The corresponding stress-strain

readings were graphed against one another, with stress, σ, on the y-axis

and strain, ε, on the x-axis. The results for all 10 coupons tested are shown

in Figure 4.7. Figure 4.7a shows the results of coupon testing from Beam 1,

RHS 50× 30× 3, and Figure 4.7b shows the results of coupon testing from

Beam 2, RHS 120×60×3. As shown in Figure 4.7, the results indicate that

in fact, the specimens comprised of different grade steel. From the yield

values of the coupons, Beam 1, RHS 50×30×3, is grade S275 steel whereas

Beam 2, RHS 120× 60× 3, is grade S355.

Table 4.1 shows the estimation of the Young’s Modulus of Elasticity for

each of the beam specimens tested. The Young’s Modulus has been esti-

mated by calculating the ratio of the yield stress, σy, to the yield strain, εy,

i.e. Es = σy/εy, for each coupon. The mean, µ, and the standard deviation,

σ, of the results are also given. For Beam 1, RHS 50× 30× 3, the average

value of Young’s Modulus is 212GPa, which is consistent with the design
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Figure 4.7.: Coupon tests - Young’s Modulus (a) Beam 1 (b) Beam 2

value of 200− 210GPa for steel. The results for Beam 2, RHS 120× 60× 3

show an average value of approximately 200GPa, which is also consistent

with the expected design value.

Table 4.1.: Young’s Modulus testing of Beam coupons

Coupon # σy (MPa) εy E (GPa)

Beam 1

1 274.5 1.24× 10−3 221.4
2 272.0 1.68× 10−3 161.9
3 252.5 1.10× 10−3 229.5
4 264.2 1.08× 10−3 244.6
5 257.9 1.26× 10−3 204.7

µ1 264.2 1.27× 10−3 212.4
σ1 9.3 2.42× 10−4 31.7

Beam 2

1 300.0 1.52× 10−3 197.4
2 300.0 1.65× 10−3 181.8
3 300.0 1.43× 10−3 209.8
4 300.0 1.63× 10−3 184.1
5 300.0 1.33× 10−3 225.6

µ2 300.0 1.51× 10−3 199.7
σ2 0.0 1.35× 10−5 18.3
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Figure 4.8 shows some coupons following testing. Some coupons frac-

tured completely, while others did not, as shown. There is clear evidence of

elongation and subsequent necking in both of the coupons.

Figure 4.8.: Tensile Testing; Steel Coupons tested

4.2.4. Slippage of the coupons in the tensile testing machine

Figure 4.9 shows the results of the tensile testing on a zoomed-in scale, ac-

counting for the linear elastic portion of the constitutive model for steel. A

directly proportional (linear) relationship between stress and strain is pre-

dicted by elastic theory. As shown in Figures 4.9a and 4.9b, the obtained

results deviate from the perfectly linear elastic response predicted by the-

ory. This is due to the effect of slippage of the test coupons in the tensile

testing machine. Under tensile loading, the “feet” of the test coupon are

susceptible to slippage from the grip of the testing machine, hence, some

non-linear stress strain relationship is recorded, as indicated in both Fig-

ures 4.9a and 4.9b. The machine records a drop-off in load for a given strain

when the “feet” of the coupon slip in the machine’s vice.

Not only is there potential for slippage of the coupon within the vice

grips of the tensile testing machine, there is also potential for slippage of

the extremely sensitive extensiometer, which measures the strain of the

specimen being tested. Furthermore, the alignment of the grips is also a

factor that can affect experimental accuracy. If the grips are not perfectly

aligned, this will induce bending stresses in the specimen being tested, and

subsequently will cause lower tensile stress readings by altering the net stress
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(and subsequently strain) throughout the cross-section.

These are all factors that can affect the final result for the Young’s Mod-

ulus of Steel, however, as outlined in Section 4.2.3, the results obtained are

consistent with the predicted design value of Es = 200− 210GPa.
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Figure 4.9.: Coupon tests (zoomed in results) - Young’s Modulus (a) Beam
1 (b) Beam 2

4.2.5. Buckling Capacity of Members

The following design calculations follow the British Standards Institute

(2005) method for calculating the buckling capacity of the externally axi-

ally loaded steel strut shown in Figure 4.11. The British Standards Institute

(2005) method requires the classification of the cross section;

ε =
√

235/fy

=
√

235/235 (4.1)

= 1.0

where fy is the design yield strength of the steel in MPa. The section is

classified by the ratio between the web depth, c, to web thickness, t. For

sections subjected to compression only, Class 1 sections obey the following;
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c/t ≤ 33ε;

c/t ≤ 33ε

(50.0− 3× 3.0)/3.0 ≤ 33 (4.2)

13.67 < 33 XXX

This indicates that the section is Class 1. For Class 1 hot-rolled sections

such as these, buckling curve (a) is used (British Standards Institute, 2005),

Figure 4.10.

Figure 4.10.: Buckling curves pp. 59 Eurocode 3, British Standards Insti-
tute (2005)

The slenderness ratio is then calculated about both of the sections axes

- the weak axis and the strong axis. The radius of gyration, i, of the cross

section is calculated with respect to the relative axes, where i =
√
I/A,

therefore; ixx =
√
Ixx/A and similarly, iyy =

√
Iyy/A, where I is the second

moment of area about the given cross section axis and A is the cross sectional
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area.

λyy = LE/iyy

= 1624/11.6

= 140.0

(4.3)

λxx = LE/ixx

= 1624/17.5

= 92.8

The values for ixx and iyy are tabulated in the Tata Steel ‘Blue Book’ (Tata

Steel Europe Limited, 2013). The strut was tested in a pinned-pinned ar-

rangement, with rotation allowed to occur at both ends of the section by

means of hinge joints that were designed and fitted in the laboratory. As

such, the effective length, LE = ` = 1, 624 mm, where ` is the span length.

The relative slenderness is then calculated using the following;

λ1 = π
√
Es/fy

= π
√

210× 103/235 (4.4)

= 93.91

where Es is the Young’s Modulus of the steel and is taken to be 210GPa,

and;

λyy = λyy/λ1

= 140.0/93.91

= 1.49

(4.5)

λxx = λxx/λ1

= 92.8/93.91

= 0.99

Having obtained λyy and λxx, using linear interpolation with curve (a), Fig-
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ure 4.10, values for the buckling reduction factors, χxx and χyy are obtained.

χyy = 0.3724

(4.6)

χxx = 0.6656

The buckling resistance is given in Eurocode 3 as;

Nb,Rd =
χAfy
γm1

(4.7)

where Nb,Rd is the buckling resistance of a section about a given axis, A is

the cross sectional area, fy is the design yield strength of the steel, and γm1

is a material factor of safety, given as; γm1 = 1.1.

Nb,Rd,yy =
χyyAfy
γm1

=
(0.3724)(421)(235)

1.1
= 33.5 kN

(4.8)

Nb,Rd,xx =
χxxAfy
γm1

=
(0.6656)(421)(235)

1.1
= 59.9 kN (4.9)

The crushing strength of the member is also calculated in accordance with

Eurocode 3 (British Standards Institute, 2005);

Nc,Rd =
Afy
γm0

=
(421)(235)

1.05
(4.10)

= 94.2 kN

Finally, the Euler buckling capacity of the section about both axes are also

137



calculated;

PCR,yy =
π2EIyy
L2
E

=
π2(210× 109)(5.70× 10−8)

(1.624)2

= 44.8 kN

(4.11)

PCR,xx =
π2EIxx
L2
E

=
π2(210× 109)(12.8× 10−8)

(1.624)2

= 100.6 kN

The design loads for Beam 2 (RHS 120× 60× 3) are calculated in the same

manner and are outlined in Table 4.2.

Table 4.2.: Design loads of steel RHS sections tested

Beam 1 Beam 2
Property RHS 50× 30× 3 RHS 120× 60× 3

Steel Grade S235 S275 S355 S235 S275 S355
Nb,Rd,yy (kN) 33.9 34.7 35.7 185.6 209.5 251.8
Nb,Rd,xx (kN) 59.9 64.9 71.2 207.6 240.1 305.2
Nc,Rd (kN) 94.2 105.3 142.3 228.3 255.0 344.9
PCR,yy (kN) 44.8 44.8 44.8 506.1 506.1 506.1
PCR,xx (kN) 100.6 100.6 100.6 1,485.3 1,485.3 1,485.3

4.2.6. Bending Capacity of Members

To facilitate the 3-point bending tests conducted on the steel RHS sections,

the sections were analysed in accordance with Eurocode 3 (British Stan-

dards Institute, 2005) to determine their bending capacity. The analysis is

outlined in the following section. The bending capacity of a steel section is
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defined by the following;

Mc,Rd = Mpl,Rd (Class 1, 2)

(4.12)

Mc,Rd = Mel,Rd (Class 3)

where;

Mpl,Rd =
Wplfy
γm0

(4.13)

Mel,Rd =
Welfy
γm0

From Equations 4.1 and 4.2 in Section 4.2.5, we can deduce that the sections

are Class 1 sections, therefore, the bending capacity of the sections are given

by the plastic modulus, Wpl. The beams were tested about their weak axis

(z axis). The corresponding plastic modulus is given as Wpl,z, and obtained

from the Tata Steel Interactive Blue Book (Tata Steel Europe Limited,

2013). For steel grade S235, the bending capacity of the RHS 50 × 30 × 3

section is given as;

Mpl,Rd =
Wplfy
γm0

=
(4.58× 103)(235)

1.1
(4.14)

= 0.98 kN −m

Since the static testing carried out was in the form of 3-point bending for

a simply supported beam, the maximum bending moment is given at mid-

span as;

Mmax =
P`

4
(4.15)

where P is the magnitude of the point load and ` is the span length. The

equivalent point load to cause yield was then calculated in accordance with;
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Pmax,z =
4Mpl,Rd

`

=
(4)(0.98)

1.5
(4.16)

= 2.61 kN

which gives the maximum value of load before yield occurs in accordance

with Eurocode 3. This value was divided by a factor of 1.35, giving a

maximum allowable point load applied to the steel sections during the static

3-point bending tests conducted; Pallow,z = 2.61/1.35 = 1.93kN . The design

bending moments and maximum allowable point loads applied to the beam

sections are given in Table 4.3. The calculations have been conducted for

varying steel grade (S235, S275 & S355). Later, it will be shown that for

the RHS 120 × 60 × 3 section, at a post-tensioning load level of 140kN, a

50% reduction in load carrying capacity was observed.

Table 4.3.: Bending capacity of beam sections in accordance with EC3
(British Standards Institute, 2005)

Beam 1 Beam 2
Property RHS 50× 30× 3 RHS 120× 60× 3

Steel Grade S235 S275 S355 S235 S275 S355
Wpl,z (cm3) 4.58 4.58 4.58 21.5 21.5 21.5
Mpl,z (kN −m) 0.98 1.15 1.48 4.59 5.38 6.94
Pmax,z (kN) 2.61 3.07 3.95 12.24 14.35 18.51
Pallow,z (kN) 1.93 2.27 2.93 9.07 10.63 13.71

4.2.7. Calculation of Natural bending frequencies

The natural bending frequencies of the steel rectangular hollow sections were

calculated in accordance with the formula for a simply-supported beam;

ωn =
(nπ
`

)2
√
EI

m
(4.17)

where n is the mode number, ` is the span length, E is the Young’s Modulus

of Elasticity, I is the second moment of area of the cross section and m is
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the mass per unit length of the beam. Taking the design Young’s Modulus

of Elasticity of the steel to be Es = 210GPa and the second moment of area,

I, and mass per unit length of the beam, m in accordance with Table 4.4.

Table 4.4.: Properties of the beam sections

Beam 1 Beam 2
Property RHS 50× 30× 3 RHS 120× 60× 3

Iz (cm4) 5.70 64.4
m (kg/m) 3.30 8.01

The natural bending frequency for the beam sections were calculated as

follows;

ωn =
(nπ
`

)2
√
EI

m

=

(
(1)π

(1.624)

)2
√

(210× 109)(5.70× 10−8)

3.30
(4.18)

= 225.4 rad/s

In order to convert from natural circular frequency in radians per second to

Hertz (Hz), or oscillations per second, the following formula; ω = 2πf , where

f is the frequency in Hz and ω is the frequency in rad/s, is used. Therefore,

f = ω/2π = 225.4/2π = 35.9Hz. Table 4.5 shows the prediction of the first

three natural bending frequencies for each of the RHS sections tested in

accordance with the properties outlined in Table 4.4 and Equation 4.17.

Table 4.5 shows the predicted natural bending frequencies, using the de-

sign Young’s Modulus for steel, Es = 210GPa. Table 4.6 shows the pre-

dicted natural bending frequencies, using the Young’s Modulus calculated

for each of the steel coupons tested and outlined in Section 4.2.3, and in

Table 4.1.

For Beam 1, the design value of 210GPa is very similar to the mean of

the 5 samples tested and outlined in Table 4.1, given as 212.4GPa. This has

minimal effect on the prediction for the fundamental bending frequencies,

as highlighted in Table 4.5 and Table 4.6. For Beam 2, from the Young’s

Modulus Testing conducted and discussed in Section 4.2.3, the Young’s
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Table 4.5.: Calculation of natural bending frequency of steel RHS sections

Case 1 Case 2

Figure # Figure 4.11 Figure 4.12
Span, ` (m) 1.624 1.500

Beam 1 n = 1, ω11 (Hz) 35.9 42.0
RHS n = 2, ω21

(Hz) 143.5 168.2
50× 30× 3 n = 3, ω31

(Hz) 322.8 378.4

Beam 2 n = 1, ω12
(Hz) 77.4 90.7

RHS n = 2, ω22 (Hz) 309.6 362.9
120× 60× 3 n = 3, ω32 (Hz) 696.5 816.4

Table 4.6.: Calculation of natural bending frequency of steel RHS sections
with different Young’s Modulus

Case 1 Case 2

Beam 1 n = 1, ω11 (Hz) 36.1 42.3
RHS E=212.4GPa n = 2, ω21 (Hz) 144.3 169.1

50× 30× 3 n = 3, ω31
(Hz) 324.7 380.6

Beam 2 n = 1, ω12
(Hz) 75.4 88.3

RHS E=199.7GPa n = 2, ω22
(Hz) 301.3 353.2

120× 60× 3 n = 3, ω32 (Hz) 677.3 794.6

Modulus was found to be similar to the predicted design value. The mean

of the 5 samples tested was found to be 199.7GPa.

4.3. Type of prestressing

There are two main types of prestressing;

1. External Prestressing: when prestressing is achieved by elements

located outside the member cross section, it is called “external pre-

stressing”. The tendons can lie outside the member, or inside the

hollow of the section.

2. Internal Prestressing: when the prestressing is achieved by ele-

ments located inside the extents of the member cross section (most
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commonly by embedded tendons inside the extents of the concrete

cross section), it is known as “internal prestressing”. Most of the

applications of prestressing are internal prestressing.

In the case of the post-tensioned rectangular hollow steel sections tested

and described in this chapter, the post-tensioning strand is threaded through

the hollow, external to the extents of the steel cross section, and as such,

the post-tensioned rectangular steel hollow sections are externally pre-

stressed.

4.4. Dynamic Testing

Figure 4.11.: Case 1; External axial load case.

Dynamic impact hammer testing was conducted on 4No. grade S235 steel

RHSs, with a design Youngs Modulus of 210GPa. The results of coupon

testing are reported in Section 4.2.3. The properties of the steel sections are

outlined in Table 4.8 and Table 4.9. Figure 4.11 shows the external axial

load case (case 1), where dynamic impact hammer testing was carried out

on 2No. specimens, a RHS 50 × 30 × 3 (Beam 1) and a RHS 120 × 60 × 3

(Beam 2), respectively. Each section had a different slenderness ratio, as

outlined in Table 4.9. The purpose of varying the slenderness ratio was to

test the validity of Equation 2.1 for slender members, which are expected

to fail, in compression, close to an Euler buckling condition, and stocky

members, which show deviation from classical Euler buckling theory.

The test programme is outlined in Table 4.7. Four separate dynamic tests

were carried out, as outlined in Figure 4.7. Two different beam sections were

tested, namely a RHS 50× 30× 3, and a RHS 120× 60× 3. Each beam was

tested for two differing load cases, namely, an external axial load case, and
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a post-tensioning load case. Dynamic impact hammer testing was carried

out on each of the beam sections to determine the fundamental bending

frequency at varying values of axial load. The purpose of the testing is to

determine under what conditions “compression-softening” theory holds true.

It is postulated that “compression-softening” is valid only for externally

axially loaded slender sections, as it is based on Euler buckling theory.

Euler buckling theory is very accurate for long, slender sections, but deviates

from empirical data for stocky sections, hence test have been conducted on

sections with a slenderness, λ ≈ 60, and on sections with a slenderness,

λ ≈ 120.

Table 4.7.: Test programme for steel rectangular hollow sections

# Description Beam Case ` λ Load Type Figure

1 Beam 1 Case 1 1 1 1.624 139 Ext. Axial Figure 4.11
2 Beam 1 Case 2 1 2 1.624 64 Ext. Axial Figure 4.11
3 Beam 2 Case 1 2 1 1.500 128 Post-tension Figure 4.12
4 Beam 2 Case 2 2 2 1.500 59 Post-tension Figure 4.12

Table 4.8.: Properties of steel RHS sections tested

Property RHS 50× 30× 3 RHS 120× 60× 3

Beam # Beam 1 Beam 2
m (kg/m) 3.41 8.12
A (cm2) 4.34 10.30
Izz (cm4) 5.94 65.50

Since Equation 2.1 is consistent with Euler buckling theory, it was ex-

pected that the dynamic results for the stocky section would deviate from

the compression-softening theory. The test specimen was placed in the small

test frame and inserted into two pinned connection joints. One pin was fixed

directly to the frame. The other was attached to a load cell, which was in

turn connected to a 300 ton loading jack. The jack was mounted on the

other side of the frame, as shown in Figure 4.11. A hydraulic hand pump

was connected to the loading jack to vary the external axial load. Impact
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hammer testing was conducted on the 2 test specimens at different axial

load levels until failure had occurred.

Table 4.9.: Properties of experimental cases

Case 1 Case 2

Figure # Figure 4.11 Figure 4.12
Span, ` (m) 1.624 1.500
Slenderness Beam 1, λzz1 139 128
Slenderness Beam 2, λzz2 64 59
Beam 1, ω11 (Hz) 35.9 42.0
Beam 2, ω12

(Hz) 77.4 90.7

Figure 4.12 shows the post-tensioned load case (case 2) where impact

hammer testing was carried out on the same RHSs. The sections were

post-tensioned using a 15.7mm Freysinnet 7 wire concentric strand. The

strand was anchored with the appropriate collets either side of two 300 ton

loading jacks. A load cell and a baseplate were positioned between the jack

and the end of the steel RHS section, helping to evenly transfer the post-

tensioning load into the section. Two jacks and two load cells were used

in order to balance the mass under vibration. Multiple load cells ensured

an even distribution of post-tensioning load throughout the length of the

section. The post-tensioned section was supported on either side by knife-

edge supports that were a distance of 1.500m apart. One of the jacks was

connected to a hydraulic hand pump to transfer a post-tensioning load into

the section.

The Multiple Input, Multiple Output (MIMO) method of dynamic impact

testing was implemented, in which there were multiple dynamic excitation

points and multiple instrumentation response points. Five equally spaced

input locations were used as both input points and response points as shown

in Figure 4.13. Strain gauges were placed at each of the response points,

labelled L1-L5, and an accelerometer was mounted at mid-span on each

section, at location L3. Ten strikes of the sledge hammer were applied at

each input point for each load increment, for repeatability, giving a total of

50 frequency data points per axial load level.
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Figure 4.12.: Case 2; post-tensioned load case

Figure 4.13.: Instrumentation of steel specimens

4.5. Static Testing

Static 3 point bending tests were conducted on both Beam 1 and Beam 2

for the post-tensioned load case (Beam 1, case 2 and Beam 2, case 2). The

apparatus was set up as outlined in Figure 4.12 and Figure 4.13. The beams

were supported at a span distance of 1.500m by two knife-edge supports in

the form of equal angle sections. Jacks were placed on either end of the

respective beams and a 15.7mm diameter Freyssinet post-tensioning strand

was threaded through the hollow in the respective RHS beams. The post-
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tensioning load level was increased, and at each load increment, a point load

was applied at midspan by an external reaction frame (Figure 4.12). The

corresponding deflection was measured using an LVDT placed at midspan.

The load-deflection relationship enabled the static flexural rigidity of the

beams to be calculated at each post-tension load increment using the fol-

lowing deflection equation for a simply supported beam, with a point load

at midspan;

δ =
P`3

48EI
(4.19)

where δ is the midspan deflection of the beam, P is the magnitude of the

midspan point load, ` is the span length between supports, E is the Young’s

Modulus of elasticity of the material (in this case S235 steel), and I is the

second moment of area of the beam about the axis of bending. Rearrang-

ing Equation 4.19 allows the effective static flexural rigidity, EIeff to be

calculated;

EIeff =
P`3

48δ
(4.20)

The corresponding static-equivalent prediction for the nth natural fre-

quency of the post-tensioned RHS section is then given as;

ωn =
(nπ
`

)2
√
EIeff
m

(4.21)

This has been compared to the values that were obtained dynamically

and the results are given in Section 4.8.

4.6. Calculation of Fundamental Natural

Frequency, ω1

Following collection of the impact hammer data, the raw signal (acceleration-

time data) was imported into MATLAB (MATLAB, 2014). The Fast Fourier

Transform (FFT) was then performed on the acceleration data in the time

domain in order to represent the signal in the frequency domain. A peak

picking algorithm was then used to identify the peaks in the frequency do-

main. The peak picking method is the simplest means of determining the

modal characteristics in the frequency domain, in which the natural frequen-
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cies correspond to the peaks in the FFT (Ewins, 2000), however as pointed

out by Foti et al. (2014) “this method is not reliable when the different modes

of vibration are not sufficiently separated from each other.”

Figure 4.14.: Signal Processing Procedure

The raw signal contained significant electrical noise. In some cases, a

“zero drift” in the accelerometer was observed. Subsequently, the peaks in

the frequency domain were initially difficult to determine. A signal process-

ing algorithm was developed in MATLAB (MATLAB, 2014) and is outlined

in Figure 4.14. The signals were processed to eliminate noise and remove

the zero drift. The processed acceleration data was then smoothed in the

time domain and the FFT was recomputed. Finally, the data was smoothed

in the frequency domain. Following smoothing in the frequency domain, the

peak picking algorithm was reused and the peaks were again determined.

The search bands for the fundamental frequency of each beam were defined

as 15-45Hz for Beam 1 and 60-85Hz for Beam 2. The raw data and the pro-

cessed data were compared, and following processing, the structural peaks
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were much easier to identify. The peaks in the frequency domain were iden-

tified as the natural frequencies of the structural system. This algorithm is

required to deal with the high levels of noise associated with impact hammer

testing of these types of metallic sections.
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Figure 4.15.: Signal processing (a) and peak identification (b); Beam 1 Case
1

Figures 4.15-4.18 show typical accelerometer response for each beam and

case combination. Figures 4.15a-4.18a show the accelerometer signals in

both the time and frequency domain, before the signal was processed to

eliminate noise (blue) and after signal processing (red). The natural vibra-

tion frequencies of the respective structural systems are identified as the

peaks in the frequency domain. The peaks are initially difficult to deter-

mine in the unfiltered (blue) signals, however, following processing (red)

the peaks become readily identifiable. The zero drift in the signal has been

removed, along with the 50Hz electrical noise and all of its harmonics, using

a high-order notch (bandpass) filter. Finally, a high pass filter is invoked,

removing all low frequency noise, below the expected first natural frequency

peak.

Figures 4.15b-4.18b show the processed signal in both the time and the

frequency domain. The scale of the acceleration axis in the time domain

of each signal is significantly reduced from Figures 4.15a-4.18a to Fig-

ures 4.15b-4.18b, indicating the extent of of the amplitude attributable to

noise components. For the Figures shown, the reduction in amplitude is

between ×500, for Figure 4.17 and ×2250, for Figure 4.15. The peaks are
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Figure 4.16.: Signal processing (a) and peak identification (b); Beam 1 Case
2

identified in Figures 4.15b-4.18b as the yellow points. The first 20 peaks in

the range of 0-1000Hz have been identified.
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Figure 4.17.: Signal processing (a) and peak identification (b); Beam 2 Case
1

4.7. Calculation of Damping Ratio, ξ

The damping ratio, ξ of the beams were calculated for each axial load level

using the half-power bandwidth method, as outlined by Clough and Pen-
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Figure 4.18.: Signal processing (a) and peak identification (b); Beam 2 Case
2

zien (1993), Chopra (2012) and Wu (2014). According to Wu (2014), the

half-power bandwidth method enables evaluation of damping from forced

vibration tests without knowing the applied force, and is thus used in vi-

bration and modal testing. By assuming that the damping ratio, ξ, is small

and that the frequency at maximum amplitude is approximately equal to

the undamped fundamental frequency, ω1, the classical result relating the

damping ratio to the half-power bandwidth can be written as;

ξ =
ωb − ωa

2ω1
(4.22)

where ωa and ωb are the half-power frequencies (i.e. the frequencies of

the function at Max. Amplitude/
√

2). As pointed out by Wu (2014), the

classical result is only valid for damping ratios less than 0.1, and is not a

good prediction for ξ > 0.1. An example of the calculation of the damping

ratio in accordance by the half-power bandwidth method is shown in Fig-

ure 4.19. Figure 4.19 shows a graph of the frequency domain representation

of the impulse response signals obtained from the steel beams tested. Fig-

ure 4.19a shows the relative modal amplitude mapped against frequency for

the fundamental mode, in the range of 0-100Hz. The half-power bandwidth

method, as described in Equation 4.22 requires the determination of the

frequencies of the function at Max. Amplitude/
√

2=0.7071. This is shown

in Figure 4.19b. Once these values have been determined (denoted ωa and
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ωb), and the natural frequency has been determined from peak picking, the

damping ratio, ξ, may be calculated in accordance with Equation 4.22.
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|â
(ω

)|
m
a
x
|â
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Figure 4.19.: Half-power bandwidth method of calculation of damping ratio,
ξ

Both the fundamental frequencies, ω1, and the respective damping ratios,

ξ, have been calculated for increasing axial load levels, and the results are

presented in Figures 4.20 and 4.21, in conjunction with Table 4.10. The

fundamental frequencies have been identified as the main peak in the ex-

pected range. The damping ratios have been calculated in accordance with

the half-power bandwidth method.

Table 4.10 shows the calculated linear regression intercept parameter (β0),

and slope parameter (β1) when regressing ξ1 on N for all four permutations

of beam (i) and load cases (j). The corresponding linear regression equa-

tions are obtained by substituting into the following formula;

ξ1 = β0,ij + β1,ijN (4.23)

4.8. Fundamental Bending Frequencies, ω1

Figure 4.22 shows the peaks in the frequency domain for each axial load

level and for each impact hammer test conducted. There are 50 iterations

of the impact response signals at each axial load level. The relative modal

amplitude is displayed on the vertical axis, while the horizontal plane con-
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Figure 4.20.: Regression analysis; ξ vs. N for different steel beams; (a)
Beam 1, Case 1; (b) Beam 1, Case 2; (c) Beam 2, Case 1; (d)
Beam 2, Case 2.

sists of the frequency axis (Hz) and the axial load level (kN). The size of

the data point is directly related to the relative modal amplitude. The

modal amplitude has been normalised by dividing by its maximum value,

expressed as |â(ω)|
max|â(ω)| . The relative participation of each mode to the over-

all dynamic response of the beams can be compared in these graphs. For

example, for both post-tensioned beams (Beam 1, case 2, Figure 4.22b &

Beam 2, case 2, Figure 4.22d) it can be seen that the overall response of the

beam is quite complex and contains a significant proportion due to many

modes. In comparison, for the externally axially load case (Beam 1, case

1, Figure 4.22a & Beam 2, case 1, Figure 4.22c), the dominance of the first
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Table 4.10.: Statistical analysis on regression parameters for ξ1 on N

B/C Reg. P. Value SE t-value t-crit. p 95% CI

B1 C1 β0,11 0.0458 0.0032 14.2186 1.9720 0.0000 (0.0395,0.0522)
β1,11 -0.0010 0.0002 -5.3699 1.9720 0.0000 (-0.0013,-0.0006)

B1 C2 β0,12 0.1371 0.0062 22.1801 1.9643 0.0000 (0.1249,0.1492)
β1,12 -0.0021 0.0002 -9.8760 1.9643 0.0000 (-0.0026,-0.0017)

B2 C1 β0,21 0.0344 0.0010 35.8787 1.9644 0.0000 (0.0325,0.0363)
β1,21 -0.0002 0.0000 -19.4633 1.9644 0.0004 (-0.0002,-0.0001)

B2 C2 β0,22 0.0714 0.0017 41.2609 1.9647 0.0000 (0.0680,0.0748)
β1,22 -0.0004 0.0000 -24.6953 1.9647 0.0000 (-0.0004,-0.0004)

mode is more readily identifiable. This is exceptionally clear for Beam 2,

case 1 in Figure 4.22c, where the dominance of the first mode of vibration

is evident.

Comparing Figure 4.22 to Figure 4.23, which presents the estimated fun-

damental frequency as a function of axial load level, leads to an interesting

observation. When the total response of the structural system is complex,

with components that can be attributed to many different modes, as can be

seen in Figures 4.22b and 4.22d, and to a lesser extent, Figure 4.22a, the

scatter in the prediction of the first natural frequency is very high, as can

be seen in Figures 4.23b, 4.23d and 4.23a and indicated by the standard

deviation in the data. However, in the case where the response of the struc-

tural system is significantly dominated by the fundamental frequency, as in

Figure 4.22c, the standard deviation is significantly decreased and the pre-

diction of the first natural frequency is very precise, with an extremely low

standard deviation, as shown in Figure 4.23c. It should be noted that for

lower values of axial load, the response is slightly more complex for Beam

2, Case 1 (Figure 4.23c), with many modes contributing to the response.

Consequently, a much higher scatter in the prediction of the fundamental

frequency and a smaller standard deviation, is observed.

In order to analyse the significance of the changes observed in the esti-

mation of the natural frequency of the sections with increasing axial load, a

linear regression analysis was applied to each beam and load case combina-

tion. The results are presented in Figure 4.26 in conjunction with Table 4.11.

It should be pointed out to begin with that the purpose of this regression
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Figure 4.21.: Normal Probability Plots of Damping Ratio, ξ for each
beam/load case combination; (a) Beam 1, Case 1; (b) Beam
1, Case 2; (c) Beam 2, Case 1; (d) Beam 2, Case 2.

analysis is not for interpolation, extrapolation or prediction of any values

of fundamental frequency based on axial load level, but rather as a tool to

analyse the statistical significance of the changes observed in the data. Ta-

ble 4.11 shows the regression parameters and the results of statistical t-tests

charting whether the linear regression intercept and slope parameters are

statistically significantly different from zero or not for each beam and load

case combination. A significance level of α = 0.05 has been chosen for the

tests. In each beam/load case combination a statistically significant change

in fundamental frequency with increasing axial load level has been observed.

For Beam 1, case 1, a statistically significant decreasing trend is observed,
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|â
(ω

)|

Axial Load, N (kN)Frequency, ω
n ,

 (Hz)

(d)

Figure 4.22.: Graph of peaks in frequency, load and relative modal ampli-
tude, 3D-space; (a) Beam 1, Case 1; (b) Beam 1, Case 2; (c)
Beam 2, Case 1; (d) Beam 2, Case 2.

indicating that the natural frequency of an externally axially loaded slender

steel section will decrease with increasing external axial load. For Beam 1,

case 2, a statistically significant decreasing trend is again observed, however

the rate of change (magnitude of the regression slope parameter) is not as

large as that for Beam 1, case 1. This indicates that the rate of change of

frequency with increasing axial load level is different for an external axial

load (case 1) than it is for the post-tensioned load case (case 2). This can

be seen clearly in Figure 4.24. From Figure 4.24a, it is clear that the trend

observed by the externally axially loaded slender section follows that pre-

dicted by “compression-softening”. However, evidently, the post-tensioned

section that has been tested both statically and dynamically follow a differ-

ent trend to that predicted by compression softening. Albeit, a statistically

significant decreasing trend is observed, yet it is not of the rate exhibited
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Figure 4.23.: Observed changes in ω1 with N for different steel beams; (a)
Beam 1, Case 1; (b) Beam 1, Case 2; (c) Beam 2, Case 1; (d)
Beam 2, Case 2.

by the externally axially loaded section and predicted by the theory. Inter-

estingly, Figure 4.24b indicates that in the static case, the results followed a

trend similar to that predicted by compression softening. However, in both

the dynamic cases, for the stocky and slender sections, the results deviated

significantly with what was predicted by compression softening. The ex-

ternally axially loaded section displayed a statistically significant increasing

trend, whereas the post-tensioned section displayed a statistically signifi-

cant decreasing trend. However, the trend did not match that predicted

by compression softening. From the tests conducted and the results pre-

sented in Figure 4.24, it is concluded that “compression-softening” theory

is valid for externally axially loaded sections only, and not for any kind of

post-tensioned sections.
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Figure 4.24.: Means of dynamic test results plotted with static 3 point bend-
ing data and Equation 2.1 (a) Beam 1 (b) Beam 2.

For Beam 2, case 1 a statistically significant increasing trend is observed,

indicating that for an externally axially loaded stocky section, the natural

bending frequency increases with increasing external axial force. However,

it is questionable whether a linear fit is correct in this case, as, from Fig-

ure 4.23c and 4.26c, a non-linear second order, or possibly an asymptotic

trend is identifiable. For beam 2, case 2, again a statistically significant

decreasing trend in natural bending frequency with increasing axial load

level is observed, however the magnitude of the regression slope parameter

is less than for both Beam 1 - load case combinations.

Figure 4.24 compares the prediction of the change in fundamental bend-

ing frequency of the beam sections according to “compression-softening”

theory (Equation 2.1) to the means of the dynamic results for the external

axial load case (load case 1), the post-tensioned load case (load case 2), and

the results of the static-equivalent frequency of the post-tensioned load case

(3PB Data). Figure 4.24a shows the results for Beam 1, RHS 50× 30× 3,

with a slenderness ratio of between 128 and 139, depending on the load case,

as outlined in Table 4.9. It can be seen from Figure 4.24a that the external

axial load case shows some good agreement in terms of the decreasing trend

in fundamental bending frequency with increasing external axial load. The

Beam 1 case 1 line and the “compression-softening” line are almost parallel.

The frequency of the external axial load case has been shifted down however,

and this may be attributed to lack of ideal conditions. The entire structural
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system consists of a frame and loading jack, which would act as to lower

the bending frequencies. Buckling was reported at an external axial load of

40kN. The predicted failure load in accordance with EC3 is 34.7kN, as out-

lined in Table 4.2 in Section 4.2.6. Buckling occurred when the section was

loaded axially to 40kN and the beam was struck laterally with the impact

hammer during dynamic testing. As a result, it was impossible to obtain an

estimation of the natural frequency at this load level. However, the trend

is still observable up to this point. The Beam 1 case 2 line indicates the

change in the mean of the frequencies due to an increasing post-tensioning

load, that is induced in the section by the way of a post-tensioning strand

threaded through the beam hollow and jacking against either end of the

beam to elongate the strand. It can be seen from Figure 4.24a that the

post-tension load case (case 2) does not follow the same trend as either

the external axial load case or that predicted by “compression-softening”

theory (Equation 2.1). However, it does follow a very similar trend to the

static prediction of the frequency due to 3-point bending tests (3PB Data),

as described in Section 4.5. A downwards shift to the dynamic measure-

ment of the fundamental frequency is again observable. It can be concluded

that, for slender sections, that are expected to behave in good agreement

with Euler buckling theory, that “compression-softening” is indeed valid for

externally axially loaded members. However, Equation 2.1 is not applicable

to post-tensioned structures. In this case, a slight decreasing trend in the

fundamental frequency is observable, however it is not of the same rate as

predicted by Equation 2.1. It can be concluded, that for slender members, a

post-tensioned load is not dynamically equivalent to an external axial load.

Figure 4.24b, shows the results for Beam 2, RHS 120 × 60 × 3. It has a

slenderness ratio of approximately 60, as outlined in Table 4.9, and, accord-

ing to code-based approaches, such as Eurocode 3 (EC3) (British Standards

Institute, 2005), is expected to deviate from Euler buckling theory as a re-

sult. It can be seen that both the external axial load case (Beam 2, case 1)

and the post-tensioned load case (Beam 2, case 2) deviate greatly from the

trend expected in accordance with Equation 2.1. The static 3-point bending

prediction of the frequency (3PB Data) follows a similar decreasing trend,

as predicted by Equation 2.1, however, an initial increase is observed, with

seating load, as in Figure 4.24. There is also a downward shift in the 3-point

bending prediction of the frequency from Equation 2.1, which again can be
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attributed to the lack of ideal conditions, and the effect of the weight of the

jacks on the beam response. In summary, it can be concluded that stocky

sections, with low and medium slenderness ratios do not follow the trend

predicted by “compression-softening” theory, neither for the external axial

load case (load case 1) or for the post-tensioned load case (load case 2). It

was found, as expected that “compression-softening” is only valid for exter-

nally axially loaded slender members (with a slenderness ratio greater than

approximately 120) that behave in accordance with Euler buckling theory.

Figure 4.27 shows a Normal probability paper plot for the measured val-

ues of the fundamental frequencies of each of the four beam and load case

combinations. Data normality is determined visually if the data follows a

linear trend. The implication of data normality is that the data stems from

the same normal parent distribution with one mean and standard devia-

tion. The implication of this is that if the data stems from one normal

parent distribution, the reason for any changes an simply be due to random

error/variation, and not due to any sort of systematic effect. From visual

inspection of the plots, it may be considered that both post-tensioned load

cases (Figures 4.27b and 4.27d) are in fact visually consistent with what

would be expected from data Normality, including the deviation in the tails

of the plot, i.e. the extreme values. Data normality must be rejected for

both external axial load cases (Figures 4.27a and 4.27c). This indicates,

that for both post-tensioned steel sections that the measured natural bend-

ing frequencies come from the same normal parent distribution. As such,

since the obtained results come from the same parent distribution, the devi-

ation may be attributed to random error, and not to any systematic effect.

As such, it indicates that any observed changes are due to random effects

and there is no systematic relationship between post-tensioning force and

fundamental bending frequency. However, for the externally axially loaded

steel beams, data Normality must be rejected on the basis of visual in-

spection of Figures 4.27a and 4.27c. As such, this indicates that since the

measured values of fundamental frequency with changing axial load level

are not likely to be from the same parent distribution, we must reject the

hypothesis that the effects are random, and must attribute the changes to

some systematic effect. This narrative is supported when Figure 4.27 is

analysed in conjunction with the corresponding Figures for each beam/case

combination in Figure 4.26. Despite all four beam/load case combination
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displaying statistically significant changes when subjected to a first order

linear regression analysis, as outlined in Table 4.11, it can be seen from Fig-

ure 4.26 that the decreasing trend predicted by the “compression-softening”

effect is evident for the externally axially loaded slender section. This is fur-

ther enforced by the fact that data normality has been rejected on the basis

of Figure 4.27a. However, for both post-tensioned cases, despite showing a

statistically significant decreasing trend, the rate of decrease is not of the

magnitude predicted by “compression-softening”, the error in the estima-

tion of the frequency is large, and the data shows evidence of being from

the one parent distribution, leading to the conclusion that the effects are

random and supporting the evidence that “compression-softening” is only

valid for externally axially loaded slender sections, and is not valid for any

type of post-tensioned section. It should also be noted, that in the case of

the externally axially loaded stocky beam section, there is strong evidence

of a statistically significant increasing trend in fundamental frequency with

increasing external axial load, and this supports the idea that “compression-

softening” is only valid for externally axially loaded slender sections, as they

are the sections that are susceptible to the Euler buckling phenomenon.

Figure 4.20 shows a linear regression analysis by regressing the measured

damping ratio, ξ, on the axial load level, N . When analysed in conjunction

with Table 4.10, this indicates that there is a statistically significant de-

creasing trend in estimation of the damping ratio with increasing axial load

level. Figure 4.21 shows the Normal Probability Papers of the measured

damping ratio for each of the four beam and load case combinations. Using

the visual method, normality must be rejected for all four beam and load

cases.

Table 4.11 shows the calculated linear regression intercept parameter (α0),

and slope parameter (α1) when regressing ω1 on N for all four permutations

of beam (i) and load cases (j). The corresponding linear regression equa-

tions are obtained by substituting into the following formula;

ω1 = α0,ij + α1,ijN (4.24)
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(c) Beam 2, Case 1
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(d) Beam 2, Case 2

Figure 4.25.: Observed changes in ξ with N for different steel beams

4.9. Beam Failure Conditions

The failure conditions for each of the four beam and load case combinations

were very different. Table 4.12 charts the failure load of the external axially

loaded sections, and compares the values to what is predicted in accordance

with EC3 (British Standards Institute, 2005) (Nb,Rdyy), what is predicted

from Euler buckling theory (PCRyy) and what is predicted from crushing

of the member, in accordance with EC3 (British Standards Institute, 2005)

(Nc,Rd). Figure 4.28 shows the beam failure conditions in the laboratory.

The slender section, beam 1 - RHS 50 × 30 × 3, as shown in Figure 4.28a,

failed in a manner consistent with what is predicted by Euler buckling the-

ory at a load of 40 kN, which is 15.3% greater than the EC3 design load of

34.7kN, and 22.5% less than the critical load predicted by Euler buckling

theory. The stocky section, Beam 2 - RHS 120 × 60 × 3, as shown in Fig-
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Figure 4.26.: Regression analysis; ω1 vs. N for different steel beams; (a)
Beam 1, Case 1; (b) Beam 1, Case 2; (c) Beam 2, Case 1; (d)
Beam 2, Case 2.

ure 4.28b, failed in a local manner, close to the support at a value of 260kN.

Interestingly, this value is similar to the design buckling load in accordance

with EC3 (British Standards Institute, 2005). However, as expected, for a

stocky section, it is well below the predicted Euler buckling critical load of

506.1kN.

No failure condition was reached for the slender post-tensioned section

(i.e. Beam 1, case 2). In the case of the post-tensioned stocky section, a

plastic hinge formed at midspan at an axial load of 140kN, combined with

a midspan point load of 6kN. This can be seen in Figure 4.28c. The section,

in accordance with EC3 British Standards Institute (2005), is designed to

resist a midspan point load of 12.24kN, therefore, at a post-tension load of

140kN, a 50% reduction in load carrying capacity was observed.

163



Table 4.11.: Statistical analysis on regression parameters for ω1 on N
B/C Reg. P. Value SE t-value t-crit. p 95% CI

B1 C1 α0,11 28.7612 0.5574 51.5969 1.9720 0.0000 (27.6620,29.8605)
α1,11 -0.3236 0.0308 -10.5204 1.9720 0.0000 (-0.3842,-0.2629)

B1 C2 α0,12 27.6906 0.3709 74.6608 1.9643 0.0000 (26.9621,28.4192)
α1,12 -0.0477 0.0130 -3.6845 1.9643 0.0003 (-0.0732,-0.0223)

B2 C1 α0,21 71.3579 0.2682 266.0298 1.9644 0.0000 (70.8310,71.8848)
α1,21 0.0084 0.0023 3.5894 1.9644 0.0004 (0.0038,0.0130)

B2 C2 α0,22 75.6530 0.3855 196.2659 1.9647 0.0000 (74.8956,76.4103)
α1,22 -0.0239 0.0037 -6.5195 1.9647 0.0000 (-0.0311,-0.0167)
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Figure 4.27.: Normal Probability Plots of Fundamental Bending Frequency,
ω1 for each beam/load case combination; (a) Beam 1, Case 1;
(b) Beam 1, Case 2; (c) Beam 2, Case 1; (d) Beam 2, Case 2.
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Table 4.12.: Failure conditions of RHS sections, Case 1

Property RHS 50× 30× 3 RHS 120× 60× 3

Beam # Beam 1 Beam 2
Nb,Rdyy

(kN) 34.7 251.8
PCRyy (kN) 44.8 506.1
Nc,Rd (kN) 105.3 344.9
Failure Reported (kN) 40 260

(a) (b)

(c)

Figure 4.28.: Failure conditions of RHS sections; (a) Beam 1, Case 1; (b)
Beam 2, Case 1; (c) Beam 2 Case 2.

4.10. Discussion of Accuracy of Experimental

Results

This chapter presents the results of both static and dynamic testing on

steel rectangular sections. In all cases, the fundamental frequency and the

damping ratio were determined through analysis of impact response signals
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from each of the beam sections at different axial load levels. In some cases,

the accuracy of the estimation of the natural frequency, and subsequently

the damping ratio is poor, with a relatively large standard deviation. For

instance, this can be observed in Figure 4.23. The standard deviation in

the estimation of the fundamental frequency in case of the steel beams, is as

large as 8.5Hz in some cases. In these cases there is a complex contribution

of all modes to the overall structural dynamic response of the vibrating

beam, and the fundamental vibration mode does not dominate as expected.

During testing of the steel specimens, significant “rattle” was noticed as

a result of construction tolerance in the pin-ended joint connections, and

in some cases due to “jumping” of the beam specimens off the knife edge

supports following dynamic excitation with a hammer. Rattle and jumping

cause a non-linear dynamic response, in which the boundary conditions of

the structure are constantly changing throughout the vibration, and this

can cause the aforementioned complex dynamic response and significant

contribution of the higher modes. As such, this inaccuracy in the estimation

of the modal parameters is attributed to this rattle/jumping and subsequent

non-linear dynamic response and contribution of the higher modes to the

overall structural vibration.

The results for the externally axially loaded stocky steel section (Beam

2, Case 1), as shown in Figure 4.23c, at a certain seating load, the accuracy

of the estimation of the natural frequency is greatly improved due to the

removal of the rattle. In this case, the beam section fitted tightly into

the pinned support fixture, and no rattle was reported. Once the seating

load was reached and the rattle was removed, the fundamental mode of

vibration dominated the response of the beam section, and the standard

deviation of the estimation of the natural frequency drops significantly from

approximately 3.57Hz down to 0.15Hz for 50 data points. In such a case,

the estimation of the fundamental frequency is extremely accurate, and

highlights the inaccuracies in the other results.

In all cases, the error in the estimation of the bending frequency may

have been minimised by measuring the dynamic input force, increasing the

number of excitation points, and increasing the number of response points.

In the case of the steel sections, the non-linear effects of rattle should be

minimised to obtain precise estimations of the fundamental bending fre-

quency.
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4.11. Conclusions

The above results have been obtained after gathering and analysing 1750

different dynamic response measurements, including the cases of slender and

stocky sections that have been both post-tensioned and externally axially

loaded. The volume of data collected enabled a statistical analysis of the

results for a combination of beam and load cases to be conducted. The main

conclusions derived from this broad study are as follows;

1. An externally axially loaded slender section displays good agreement

with the “compression-softening” effect, as the obtained results have

shown. A post-tensioned slender section deviates from what is ex-

pected from “compression-softening” theory, however, does display a

decreasing trend in fundamental bending frequency, ω1, with increas-

ing post-tensioning load.

2. An externally axially loaded stocky section does not follow the trend

predicted by “compression softening” theory. A statistically signifi-

cant increasing trend in ω1 is observed with increasing axial load level.

A post-tensioned stocky section also deviates from “compression-softening”

theory, however a statistically significant decreasing trend was ob-

served.

3. Post-tension load is phenomenologically different to an external axial

load and is not equivalent to an external axial load.

4. A post-tensioning load does not cause Euler buckling to occur.

5. “Compression-softening” is not valid for pre- or post-tensioned struc-

tures, therefore the use of Equation 2.1 is erroneous for all types of

post-tensioned structures.

6. In all cases, a decrease in damping ratio, ξ, is observed with increasing

axial load level.

7. The precision of prediction of the fundamental frequency is related to

the complexity of dynamic response of the signal, and the proportion

of dynamic response attributed to the fundamental mode.
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The main implications of the results are that the “compression-softening”

equation must be eliminated from discussion of all forms of post-tensioned

structures, as the effect of an external axial load and a post-tensioning load

on the dynamics of post-tensioned structures are different on a phenomeno-

logical level.

Further research is required to determine exactly how the fundamental

frequency of pre- and post-tensioned concrete structures changes with in-

creasing post-tensioning force, however, based on the above results, the fun-

damental frequency of pre- and post-tensioned concrete structures are not

predicted to behave in accordance with “compression-softening” theory.

The statistical significance of the regression slope and intercept parame-

ters for regressing both fundamental bending frequencies, ω1, and Damping

Ratios, ξ, on applied axial load, N , for all beam and load case combinations

are given in Table 4.11 and Table 4.10. Statistical t-tests have been car-

ried out to determine if the regression slope and intercept parameters are

statistically significantly different from zero, or not.

Linear regression lines have been fitted to the data and the results are

observed in Figures 4.26 and 4.20. The Normality of both the fundamental

bending frequency and the damping ratios have been tested by plotting

the results on a Normal Probability Paper, and the results are displayed

in Figures 4.27 and 4.21. As outlined previously, since data Normality is

to be rejected for both external axial load cases, the observed changes in

fundamental bending frequency may be attributed to systematic effects due

to the magnitude of the external axial load. However, in the case of the post-

tensioned load case, since data Normality cannot be rejected for the entire

data set, the observed changes are likely to be due to random effects and

should not be attributed to any sort of systematic effect, lending support

to the theory that the “compression-softening” effect is valid for externally

axially loaded slender sections only, and is not applicable to any type of

post-tensioned structures.
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5. Modelling effect of prestress

force on natural bending

frequency

This chapter presents a linear mathematical model predicting changes in

fundamental bending frequency with increasing post-tensioning force mag-

nitude. Changes in Young’s Modulus, axial length, second moment of area

and mass per unit length with increasing post-tensioning force magnitude

are calculated, and subsequently, the changes in fundamental bending fre-

quency are determined.

The chapter outlines the development of a theoretical prediction model

and applies the results to a series of 9 different straight-profiled post-tensioned

concrete beams that were subsequently tested in the laboratory, and out-

lined in Chapters 6 and 7. The properties of the beam sections modelled

(Beams 1-9) are outlined fully in Chapter 6, and reference should be made

to Section 6.6.1 and Figures 6.14, 6.17 and 6.19 specifically for full details

of the modelled beams.

5.1. Introduction

This chapter outlines the results of mathematical modelling in MATLAB

(MATLAB, 2014) in order to predict the effect of prestress force magni-

tude, N , and eccentricity, e, on the natural frequencies of prestressed con-

crete structures, ωn. A simple linear mathematical model is proposed by

predicting changes in each of the parameters outlined in Equation 5.1 with

increasing post-tensioning force magnitude. Changes in span length of the

post-tensioned concrete sections were modelled in accordance with axial

shortening, `(N), as outlined in Section 5.2. Changes in Young’s Modu-

lus of the concrete with increasing post-tensioning force magnitude, E(N),
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were modelled in accordance with a model presented by Attard and Setunge

(1996), as outlined in Section 5.3. Changes in second moment of area of the

cross section with increasing post-tensioning load, I(N), were modelled in

accordance with a binary model outlined in Section 5.4. Finally, changes in

the mass per unit length of the cross section due to axial shortening, m(N),

were modelled and outlined in Section 5.5. These changes in the parame-

ters are then combined as outlined in Equation 5.1, providing a prediction

for the change in natural bending frequency with increasing post-tensioning

force magnitude;

ωn(N) =

(
nπ

`(N)

)2
√
E(N)I(N)

m(N)
(5.1)

A sensitivity analysis on the effect that changing each parameter has

on the changes in fundamental bending frequency, highlighting the rela-

tive importance of the changes in each individual parameter, is outlined

in Section 5.6. Section 5.7 outlines the predicted changes in fundamental

frequency, ω1, with increasing post-tensioning load magnitude, N , for the

9 uncracked post-tensioned concrete beams that tested in the lab, as de-

scribed in detail in Chapter 6. Section 5.8 compares the changes predicted

by the new model proposed in this chapter with the models previously pro-

posed by Saiidi et al. (1994), Zhang et al. (2012), Dall’Asta and Dezi (1996),

Miyamoto et al. (2000) and Kim et al. (2004). Section 5.9 outlines the results

of some Finite Element Modelling conducted in Autodesk Robot Structural

Analysis (Autodesk ROBOT Structural Analysis Professional 2012 - Stu-

dent Evaluation Version, 2012) to predict the ‘virgin’ fundamental bending

frequency (i.e. the fundamental frequency for zero post-tensioning load) of

the beams tested. Finally, the conclusions drawn from the modelling con-

ducted and described throughout this chapter are outlined in Section 5.10.

5.2. Axial shortening, `(N)

The effect of the post-tensioning force, N , on the span length, `, of the

concrete beams has been modelled in accordance with axial shortening. The
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normal stress, σn, due to a compressive axial force is given by;

σn =
N

Ac
(5.2)

where N is the post-tensioning load magnitude and Ac is the gross area

of the concrete cross section. The axial strain due to the applied stress is

given as;

εn =
δ`

`
(5.3)

where δ` is the change in span length due to axial shortening and ` is the

original span length. In accordance with Hooke’s Law, which states that,

for materials in the linear elastic range, the stress, σ, is directly proportional

to the strain, ε, and the constant of proportionality is known as the Young’s

Modulus of Elasticity, Ec, and is a measure of the relative stiffness of a

material, such that;

Ec =
σn
εn

(5.4)

Substituting Equations 5.2 and 5.3 into Equation 5.4, the following is

obtained;

δ` =
N`

AcEc
(5.5)

The span length is then modified as a function of the post-tensioning load

level, N , such that `(N) is given by;

`(N) = `− δ`

= `− N`

AcEc
(5.6)

= `

(
1− N

AcEc

)
Figure 5.1 shows the change in length of the modelled post-tensioned con-

crete beam with increasing post-tensioning force magnitude due to the effect

of axial shortening. As shown in Figure 5.1, the effect of axial shortening is

very very slight. The modelled beam decreases in length by 0.02% over the

practical ranges of post-tensioning load shown.
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Figure 5.1.: Change in axial length of post-tensioned concrete beam with
increasing post-tensioning load magnitude on different scales;
(a) and (b)

Figure 5.2 shows the change in predicted fundamental bending frequency

from axial shortening. By keeping all of the other variables constant, and

just changing the length of the post-tensioned concrete beam;

ωn(N) =

(
nπ

`(N)

)2
√
EI

m
(5.7)

where `(N) is given by Equation 5.6 such that;

ωn(N) =

 nπ

`
(

1− N
AcEc

)
2√

EcI

m
(5.8)

and Ec, I and m are kept constant. The change in predicted natural

frequency, over the modelled, practical range of post-tensioning force mag-

nitude, is of the order of +0.04% as shown in Figure 5.3. This is a very

small change in predicted natural frequency due to the effect of axial short-

ening on the span length of the post-tensioned concrete beam, and may be

considered to be negligible.
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Figure 5.3.: Percentage change in ω1 by changing `(N) while keeping the
other parameters constant, on different scales (a) and (b)

5.3. Change in Young’s Modulus with

post-tensioning force, E(N), (Attard and

Setunge, 1996)

This section outlines the predicted changes in the Young’s Modulus of Elas-

ticity of the post-tensioned concrete sections with increasing post-tensioning

load magnitude in accordance with the stress-strain model for concrete pro-

posed by Attard and Setunge (1996). The model is split into two distinct

models - specifically, one for unconfined concrete, and the other for con-
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fined concrete. An analysis of the predicted changes in natural bending

frequencies has been conducted in both cases, as outlined in Sections 5.3.1

and 5.3.2.

5.3.1. Unconfined Stress-Strain Model

The change in the Young’s Modulus of Elasticity of the post-tensioned con-

crete section with increasing post-tensioning force has also been modelled.

This change has been modelled in accordance with a paper written by At-

tard and Setunge (1996), entitled “Stress-Strain Relationship of Confined

and Unconfined Concrete”. First, an empirical formula is used to calculate

the static elastic modulus of concrete, Ec, based on the work of Pauw (1960)

and subsequently adopted into code (ACI Committee 318, 2008; American

Concrete Institute, 1989) and outlined by Attard and Setunge (1996);

Ec = 0.043ρ1.5
√
f ′c MPa (5.9)

where ρ is the surface dry unit weight in kg/m3 and f ′c is the concrete

cube strength in MPa, and taken to be f ′c = 33MPa for the purposes of

this modelling. This value has been deduced as the characteristic concrete

strength based upon materials testing conducted on the concrete in the

laboratory. The characteristic cube strength is defined as the strength below

which 5% of all samples fall. The results of the material testing are outlined

further in Chapter 6, Section 6.3.2. The density of concrete was taken to

be; ωc = 24kN/m3 and was converted to ρ in kg/m3 by the following; ρ =

1000ωc/g, where g = 9.81m/s2, the acceleration due to gravity, therefore;

Ec = 0.043ρ1.5
√
f ′c

= 0.043

(
(1000)(24)

9.81

)1.5√
33 (5.10)

= 29.9 GPa (5.11)

Attard and Setunge (1996) suggest the following equations for the strain

at peak uniaxial compression, depending on the aggregate type used in the
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concrete;

εc =
f ′c
Ec

4.26
4
√
f ′c

MPa (Crushed aggregates) (5.12)

εc =
f ′c
Ec

3.78
4
√
f ′c

MPa (Gravel aggregates) (5.13)

For the purposes of the modelling conducted, crushed aggregates were

used in the concrete mix and therefore the strain at peak uniaxial compres-

sion, εc is given as;

εc =
f ′c
Ec

4.26
4
√
f ′c

=
33

29.9× 103

4.26
4
√

33
= 0.002 (5.14)

The stress, fic, and strain, εic, at the inflexion point on the graph is given

as;

εic = εc
(
2.5− 0.3ln

(
f ′c
))

(5.15)

fic = f ′c
(
1.41− 0.17ln

(
f ′c
))

MPa (5.16)

therefore;

εic = (εc)
(
2.5− 0.3ln

(
f ′c
))

= (0.002) (2.5− 0.3ln (33))

= 0.0028 (5.17)

fic = f ′c
(
1.41− 0.17ln

(
f ′c
))

= (33) (1.41− 0.17ln (33))

= 26.91 MPa (5.18)
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Figure 5.4.: Stress - strain model for confined and unconfined concrete as
presented by Attard and Setunge (1996)

For the uniaxial case, f0 = fc and ε0 = εc, the ascending curve boundary

conditions, as shown in Figure 5.4, are given by;

(a) at f = 0, df/dε = Eti

(b) at f = f0, df/dε = 0

(c) at f = f0, ε = ε0

(d) at f = fpl, ε = f/Ec

Eti is the initial tangent modulus at zero stress, and Ec is the secant

modulus, measured at a stress of fpl, which is usually given as 0.45f ′c (Attard

and Setunge, 1996). The equation for the stress-strain relationship is given

as;

Y =
AX +BX2

1 + CX +DX2
(5.19)

where Y = f/f0 and X = ε/ε0, and the coefficients, A, B, C and D are

given, for ε ≤ εc as;
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A (ε ≤ εc) =
Etiε0
f0

B (ε ≤ εc) =
(A− 1)2

α
(

1− fpl
f0

) +
A2 (1− α)

α2 fpl
f0

(
1− fpl

f0

) − 1

C (ε ≤ εc) = (A− 2)

D (ε ≤ εc) = (B + 1) (5.20)

and coefficients A, B, C and D are given, for ε > εc, as;

A (ε > εc) =
fic
εcεic

(εic − εc)2

f ′c − fic
B (ε > εc) = 0

C (ε > εc) = (A− 2)

D (ε > εc) = 1 (5.21)

5.3.2. Confined Stress-Strain Model

For the case of a confined stress-strain model, it requires the definition of a

second point on the descending curve, ε2i. First, the split cylinder strength

of the concrete must be determined from;

fsp = 0.32
(
f ′c
)0.67

MPa (No silica fume) (5.22)

fsp = 0.62
√
f ′c MPa (Silica fume) (5.23)

For the purposes of the modelling, no silica fume was used in the produc-

tion of the concrete, therefore;

fsp = 0.32
(
f ′c
)0.67

= 0.32 (33)0.67

= 3.33 MPa (5.24)

The tensile strength of the concrete is therefore given as (Attard and

177



Setunge, 1996);

ft = 0.9fsp

= (0.9)(3.33)

= 3.00 MPa (5.25)

The confining pressure in the concrete is then calculated. This is a passive

confining pressure and indicates, according to Mander et al. (1988) and

Attard and Setunge (1996), that confined concrete is an anisotropic material

as it has different confining pressures in different directions for assymetric

cross sections, resulting in different values of Young’s Modulus. In this

case, the minimum value of confining pressure was chosen. First the area

of confining steel in each direction must be calculated in accordance with

(Mander et al., 1988);

Asx = 2× πφ2
s

4

Asy = 2× πφ2
s

4
(5.26)

where Asx and Asy are the areas of confining steel in the x and y direction

of the cross section respectively, and φs is the diameter of the shear link.

The area of the confined concrete is calculated by first calculating the length

of the individual sides;

bc = b− 2× (cover + φs/2)

dc = h− 2× (cover + φs/2) (5.27)

where h is the total height of the cross section, b is the total breadth

of the cross section (Mander et al., 1988). The lateral confining pressure

in the x and y direction is then calculated. This is a passive pressure and

is defined according to the confining steel design stress and confining steel

cross sectional area;
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flx = fyh
Asx
sdc

fly = fyh
Asy
sbc

(5.28)

where s is the design spacing between the shear links, and fyh is the

factored design yield stress of the shear (confining) reinforcement, fyh =

fyh/γm1 = 500/1.05 = 476.2MPa. The confining pressure, fr is given by;

fr = min (flx, fly) (5.29)

A factor representing the effectiveness of the confinement, k, is calculated

(Attard and Setunge, 1996);

k = 1.25

[
1 + 0.062

fr
f ′c

] (
f ′c
)−0.21

MPa (5.30)

The ultimate strength of the confined concrete is then calculated (Attard

and Setunge, 1996);

f0 = f ′c

(
fr
ft

+ 1

)k
MPa (5.31)

where ft is the tensile strength of the concrete, given by Equation 5.25.

The strain at confined peak stress was then calculated using Equation 5.32;

ε0 = εc

[
1 +

(
17− 0.06f ′c

)(fr
f ′c

)]
MPa (5.32)

however, it must be pointed out that Equation 5.32 is not dimension-

ally consistent and is a result of regression modelling (Attard and Setunge,

1996). The ascending curve is as per the unconfined stress-strain model in

Section 5.3.1, Equation 5.20. The descending curve boundary conditions,

as shown in Figure 5.4, are given by (Attard and Setunge, 1996);

(a) at f = f0, df/dε = 0

(b) at f = f0, ε = ε0

(c) at f = fi, ε = εi

(d) at f = f2i, ε = ε2i = 2εi − ε0
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A (ε > εc) =

[
ε2i − εi
ε0

] [
ε2iEi

(f0 − fi)
− 4εiE2i

(f0 − f2i)

]
B (ε > εc) = (εi − ε2i)

[
Ei

(f0 − fi)
− 4E2i

(f0 − f2i)

]
C (ε > εc) = (A− 2)

D (ε > sεc) = (B + 1) (5.33)

where Ei = fi/εi and E2i = f2i/ε2i. In order to establish the full stress-

strain relationship for confined concrete, the parameters required are the

confined peak stress, strain at peak stress, elastic modulus, stress and strain

at inflection point, and the stress and strain at a second point, defined

by f2i,ε2i (Attard and Setunge, 1996). The stress and strain at the point

of inflection was calculated using an empirically based regression equation

(Attard and Setunge, 1996);

fi = f0

 fic
f ′c
− 1

5.06
(
fr
f ′c

)0.57
+ 1

+ 1

 MPa (5.34)

The strain at the inflection point is calculated using a similar analysis

(Attard and Setunge, 1996);

εi = ε0

 εic
εc
− 2

1.12
(
fr
f ′c

)0.26
+ 1

+ 2

 (5.35)

Attard and Setunge (1996) report that the same trends are observed for

the stress corresponding to a strain of 2εi − ε0;

f2i = f0

 f2ic
f ′c
− 1

6.35
(
fr
f ′c

)0.62
+ 1

+ 1

 (5.36)

where the universal values can be calculated from;

f2ic = f ′c
(
1.45− 0.25ln

(
f ′c
))

MPa (5.37)
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5.3.3. Modelling changes in frequency due to changes in

Young’s Modulus

Sections 5.3.1 and 5.3.2 describe the unconfined and confined stress-strain

model for concrete as proposed by Attard and Setunge (1996). This model

was subsequently applied to the concrete tested in the lab. The tangent

modulus was taken to be Eti = 26.8GPa, as measured through Young’s

modulus testing (cylinder testing) in the lab. The details and results of the

testing conducted are outlined further in Chapter 6, Section 6.3.3. The

results of the unconfined and confined stress-strain model for the given

concrete is shown in Figure 5.5a. The peak strength for the unconfined

case is defined by the characteristic cube strength, f ′c = 33MPa, and the

strain at peak stress was calculated to be εc = 0.002;
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Figure 5.5.: The stress-strain model for confined and unconfined concrete
(Attard and Setunge, 1996), on different scales (a) and (b)

Figure 5.5 is in line with what was expected from Figure 5.4. It shows the

axial stress as a function of strain, i.e. σ (ε). In accordance with Hooke’s

law, by computing the differential, the Young’s Modulus of Elasticity, E

is obtained, such that; E = dσ
dε . This enables the Young’s Modulus of

Elasticity to be expressed as both a function of stress and of strain, such

that; E (σ) and E (ε). Figure 5.7 shows the Young’s Modulus as a function

of stress, and indicates that for small initial increments in stress, the Young’s

Modulus of Elasticity increases up to a threshold value. This is intuitive, as

the compression of the concrete matrix increases it’s stiffness initially. Once
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the concrete matrix had been fully compressed, no additional stiffness is to

be gained, and a drop off in stiffness is subsequently observed. Figure 5.6

shows the Young’s Modulus of the given concrete as a function of the axial

strain in the concrete, E (ε) and Figure 5.7a shows the Young’s Modulus as

a function of the axial stress, E (σ);
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Figure 5.6.: Young’s Modulus of Elasticity, E as a function of strain, ε, i.e.
E (ε)

There are two values of Young’s Modulus defined at any given stress

level, however, there is a unique value of Young’s Modulus for a given

strain. In the case of the testing conducted in the lab, the axial stress

levels were very low and calculated based on the axial stress due to the ap-

plied post-tensioning load, i.e. σn = N/Au where N is the post-tensioning

load level, i.e. N = {0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200}kN and Au

is the equivalent cross sectional area of the concrete cross section, account-

ing for the presence of reinforcing steel, and making allowances for the cross

sectional area lost due to the presence of the post-tensioning strand, internal

to the cross section, such that Au = 31, 918mm2. Consequently, the axial

stress, σn = {0, 0.63, 1.25, 1.88, 2.51, 3.13, 3.76, 4.39, 5.01, 5.64, 6.27}MPa.

It should be noted from Figures 5.6 and 5.7a that negative values for

Young’s Modulus are predicted at stresses and strains exceeding the ul-

timate strength/strain of the material. The concrete is deemed to have

crushed at the ultimate strength and subsequently has no meaningful stiff-

ness/load bearing capacity. The concept of negative stiffness is not accurate

and is merely a symptom of the definition of Young’s Modulus (i.e. the first

derivative of stress as a function of strain). Since the stress-strain graph
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displays negative slope for stress and strain greater than ultimate values,

the theoretical value of Young’s Modulus is negative. This is not deemed to

be of any physical significance. The corresponding values of Young’s Mod-

ulus for both the unconfined and confined cases are then interpolated from

the Figure 5.7b, as shown.
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Figure 5.7.: Young’s Modulus of Elasticity, E as a function of stress, σ, on
different scales (a) and (b) i.e. E (σ)

Table 5.1 shows the interpolated values of Young’s Modulus based on

the values of axial load, and subsequent axial normal stress, for both the

confined and unconfined case, coupled with the predicted corresponding

fundamental bending frequencies. These frequencies have been calculated

by assuming all parameters remain constant, but varying the Young’s Mod-

ulus with increasing post-tensioning load magnitude, as outlined in Equa-

tion 5.38;

ωn(N) =
(nπ
`

)2
√
Ec(N)I

m
(5.38)

Whereas the predicted change in axial length of the beam sections (axial

shortening) due to increasing post-tensioning load led to a minor change in

fundamental bending frequency, in the range of +0.05% over the given range

of post-tensioning force, the subsequent changes in fundamental bending fre-

quency due to increasing Young’s Modulus with increasing post-tensioning

load magnitude are relatively much larger, predicted to be roughly +6/8%

over the practical ranges of post-tensioning force tested, depending on whether
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Table 5.1.: Interpolation of Young’s Modulus from corresponding axial
stress

N σn Euc Ec ωuc ωc
(kN) (MPa) (GPa) (GPa) (Hz) (Hz)

0 0 26.8000 26.8000 74.9437 74.9437
20 0.6266 27.3747 27.4476 75.7429 75.8437
40 1.2532 27.9009 28.0434 76.4674 76.6624
60 1.8798 28.3810 28.5889 77.1225 77.4045
80 2.5064 28.8169 29.0856 77.7125 78.0740
100 3.1330 29.2107 29.5346 78.2417 78.6743
120 3.7596 29.2638 29.9372 78.7132 79.2086
140 4.3862 29.8780 30.2942 79.1303 79.6795
160 5.0128 30.1545 30.6066 79.4956 80.0893
180 5.6394 30.3946 30.8751 79.8115 80.4399
200 6.2661 30.5994 31.1006 80.0800 80.7331

the confined or unconfined case is taken into account, as shown in Figure 5.8.
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Figure 5.8.: Change in ω1 with N due to changes in E

5.4. Change in Second Moment of area with

post-tensioning force, I(N)

The change in second moment of area of the cross section is modelled using

two different models in this section. Firstly, the Binary Model is outlined
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in Section 5.4.1, in which the second moment of area is taken as either the

uncracked second moment of area, Iu, if the tensile stress in the bottom

fibre of the beam is less than the cracking strength of the concrete, ft,

or the cracked second moment of area, if the tensile stress in the bottom

fibre of the beam exceeds ft. Secondly, the Williams and Falati (1999)

(American Concrete Institute, 1989) model is used to model the changes

in the second moment of area, as outlined previously in Section 2.5.3, and

further in Section 5.4.3.

5.4.1. Binary Model

The change in second moment of area, I, with increasing post-tensioning

force magnitude, N , has also been modelled, i.e. I(N). The model is a

binary type model. In this model, the stress level in the bottom fibre of

the cross section is calculated. If the stress in the bottom fibre is greater

than the tensile strength of the concrete, it is concluded that cracking must

occur in the bottom fibre. If cracking occurs, the cracked second moment of

area of the concrete cross section, Ic, should be used. If however, the stress

in the bottom fibre of the cross section is less than the tensile strength

of the concrete, the concrete cross section will remain uncracked and the

uncracked second moment of area, Iu, is used. This is outlined in full in

Equation 5.39;

I(N) =

{
Iu, σb(N) ≤ ft
Ic, σb(N) > ft

(5.39)

where the stress level in the bottom fibre, σb, is a function of the post-

tensioning load level, N , i.e. σb(N), and ft is the tensile strength of the

concrete. The tensile strength, ft, is calculated from the ACI method (ACI

Committee 318, 2008; American Concrete Institute, 1989) outlined in Equa-

tion 5.25. Conservatively, a comparison is made with a concrete with a ten-

sile strength of 0MPa. Firstly, the maximum bending moment, at mid-span

due to self weight of the simply-supported concrete specimens tested was

calculated using Equation 5.40;

Mx=`/2 =
ωc`

2

8
(5.40)

where Mx=`/2 is the bending moment at mid-span due to the beam self-
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weight, ωc is the applied force per unit length due to the self weight of the

post-tensioned concrete beams tested, and ` is the span length of the beam,

i.e. the distance between the continuous supports. The bending stress at

midspan due to the applied moment due to self-weight was then calculated

using;

σb,SW = −
Mx=`/2ymax

Iu
(5.41)

where σb,SW is the bottom fibre stress due to beam self-weight, ymax =

h − xu, where h = 200mm is the overall depth of the cross section and xu

is the uncracked neutral axis depth.

The moment due to the applied post-tensioning force was then calculated

by multiplying the applied post-tensioning force, N , by the eccentricity, e,

i.e. the moment due to post-tensioning force, MPS = N.e. The eccentricity

(i.e. the distance from the uncracked neutral axis to the centroid of the

post-tensioning strand) that promoted cracking in the bottom fibre was

defined to be negative, whereas the eccentricity that promoted an upward

pre-camber of the beam was deemed to be positive. Hence, the moment due

to the self-weight of the beam, by this sign convention, is deemed negative,

as per Equation 5.41.

σb,PS = ±MPSymax
Iu

(5.42)

The normal axial stress due to the applied post-tensioning force creates

a compressive stress (positive) throughout the entire cross section and is

given as;

σb,n = +
N

Au
(5.43)

The net stress on the bottom fibre is then calculated using Equation 5.44;

σb = σb,n + σb,SW + σb,PS (5.44)

substituting Equations 5.41, 5.42, and 5.43 into Equation 5.44 gives the

bottom fibre stress as a function of the post-tensioning load magnitude, N ;
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σb(N) =
N

Au
−
Mx=`/2ymax

Iu
± Neymax

Iu

=
N

Au
− ymax

Iu

(
Mx=`/2 ±Ne

)
(5.45)

=
N

Au
− 1

zb

(
Mx=`/2 ±Ne

)
where zb = Iu/ymax is the section modulus about the bottom fibre.

5.4.2. Effect of Binary Model on different beam sections

The binary relationship as outlined in Equation 5.39 is applied to all 9 post-

tensioned concrete beams tested, obtaining predictions for the changes in

second moment of area, I, with increasing post-tensioning force magnitude.

All beams have a different post-tensioning strand eccentricity, e. Beam 1

has a post-tensioning strand eccentricity (e=0mm), Beams 2-5 have post-

tensioning strand eccentricity that promote an upward pre-camber of the

section and act as to introduce a net compressive stress in the bottom fibre.

Beams 6-9 have the opposite effect. Their eccentricity is such that tensile

stress and cracking is promoted in the bottom fibre of the section. Figure 5.9

shows the predicted changes in effective second moment of area, Ie, for Beam

1 (e=0mm) with increasing post-tensioning force magnitude, N , as per the

conditions outlined in Equation 5.39 and Equation 5.45. The graph shows

the effect with concrete of two different tensile strengths. The green dashed

line shows the effect of concrete with a tensile strength of ft = −3.00MPa,

as given in Equation 5.25 in accordance with ACI code-based approaches

(ACI Committee 318, 2008; American Concrete Institute, 1989), whereas

the red solid line shows the effect of concrete with a tensile strength of

ft = 0MPa. In the case of the concrete with zero tensile strength, the

effective second moment of area of the cross section jumps from the cracked

value at zero post-tensioning force, Ie = Ic at N = 0, to the uncracked value

at a post-tensioning force of 20kN, Ie = Iu at N = 20kN .

Figure 5.10 shows the predicted relationship between post-tensioning load

magnitude, N , and effective second moment of area, Ie, for Beams 2-5, which

have straight-profiled post-tensioning strand eccentricities of e=+13mm,

+26mm, +39mm and +52mm respectively. The effect of the post-tensioning

187



0 50 100 150 200
0.9

0.95

1

1.05

1.1

1.15x 10
8

Prestress force, N (kN)

E
ffe

ct
iv

e 
S

ec
on

d 
M

om
en

t o
f A

re
a,

 I e (
m

m
4 )

 

 

f
t
=0MPa

f
t
=−3MPa

Figure 5.9.: Change in I with N for Beam 1 (e=0mm)

force is to promote compression in the bottom fibre, closing cracks and sub-

sequently increasing the second moment of area from the cracked value, Ic,

to the uncracked value, Iu.

Figure 5.11 shows the predicted relationship between post-tensioning load

magnitude, N , and effective second moment of area, Ie for Beams 6-9, which

have straight-profiled post-tensioning strand eccentricities of e=-13mm, -

26mm, -39mm and -52mm respectively. The effect of the post-tensioning

force is to promote cracking in the bottom fibre. As the post-tensioning force

increases, the cracks on the bottom fibre open up, and as such, at high values

of post-tensioning force and high values of negative post-tensioning strand

eccentricity, the effective second moment of area is predicted to transition

from the uncracked value ot the cracked value, as shown in Figure 5.11d.

Figures 5.12-5.14d show the effect of changing the effective second moment

of area, Ie, with increasing post-tensioning force magnitude, N , i.e. I(N),

on the fundamental bending frequencies, ω1, of the 9 post-tensioned concrete

beams tested in the lab, while keeping all other variables constant, as per

Equation 5.46;

ωn(N) =
(nπ
`

)2
√
EI(N)

m
(5.46)

Figures 5.15-5.17d show the predicted percentage change in fundamental

bending frequency, ω1, with increasing post-tensioning force magnitude, N .

The predicted percentage change is between -12% and +10% for Beam 6

(e=-13mm) and Beam 9 (e=-52mm) respectively. This is on par with the

predicted percentage change due to changes in Young’s Modulus with in-
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Figure 5.10.: Change in I with N for (a) Beam 2 (e=+13mm); (b)
Beam 3 (e=+26mm); (c) Beam 4 (e=+39mm); (d) Beam 4
(e=+52mm)

creasing post-tensioning load magnitude, N , i.e. E(N). This indicates that

the effect of modelling changes in Young’s Modulus, E(N), is as important

as modelling changes in second moment of area, I(N), and that the changes

in span length due to axial shortening, `(N) are negligible in comparison.

5.4.3. Williams and Falati (1999) Model

Williams and Falati (1999) proposed a model for the variation in second mo-

ment of area of a specimen with differing applied moment. This is based on

an ACI code based approach (American Concrete Institute, 1989), wherein
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Figure 5.11.: Change in I with N for (a) Beam 6 (e=-13mm); (b) Beam 7
(e=-26mm); (c) Beam 8 (e=-39mm); (d) Beam 9 (e=-52mm)

the second moment of area is expressed as a function of the applied moment,

Ma. This is compared to the cracking moment for the section, Mcr, and

the second moment of area for the section is expressed as a weighted linear

combination of the value of the uncracked second moment of area of the

section, Iu, and the uncracked second moment of area of the section, Ic.

The model proposed by Williams and Falati (1999) (American Concrete

Institute, 1989) is outlined in Section 2.5.3. Equation 5.47 outlines the

calculation of the second moment of area as a function of the applied moment

to the section in accordance with Williams and Falati (1999) and American
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Figure 5.12.: Change in ω1 with varying I(N) for Beam 1 (e=0mm), while
keeping all other parameters constant

Concrete Institute (1989).

Ie =

(
Mcr

Ma

)3

Iu +

[
1−

(
Mcr

Ma

)3
]
Icr (5.47)

where Ma is the maximum gross moment and Mcr and the cracking moment.

The level of cracking in the slab depends on the design tensile stress, ft,

where for a reinforced beam;

ft =
Mcryt
I

(5.48)

However, when prestressing is present, the stress is reduced to;

ft =
Mcryt
I
− P

A
− Peyt

y
(5.49)

This indicates that increasing the prestressing force increases the magnitude

of the cracking moment, or if the section is already cracked, has the effect

of reducing the level of cracking. This leads to overall stiffening of the

system and subsequent increase in the natural frequency. Including the self

weight of the section, the applied moment for the uncracked beam sections

at midspan is given as Ma = ωsw`
2/8 − N.e, where ωsw is the applied

uniformly disdributed load due to the beam self-weight, N is the applied

prestress force, and e is the eccentricity of the post-tensioning strand from

the neutral axis. This is outlined fully in Section 2.5.3, and is the basis of

the calculation of the natural frequency as a function of the second moment
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Figure 5.13.: Change in ω1 with varying I(N) for (a) Beam 2 (e=+13mm);
(b) Beam 3 (e=+26mm); (c) Beam 3 (e=+39mm); (d) Beam
4 (e=+52mm), while keeping all other parameters constant

of area;

ωn (N) =

(
nπ

` (N)

)√
E (N) Ie (N)

m (N)
(5.50)

where;

Ie (N) =

(
Mcr

ωsw`2/8−N.e

)3

Iu +

[
1−

(
Mcr

ωsw`2/8−N.e

)3
]
Icr (5.51)

Figure 5.18 shows both the predicted variation of the second moment of
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Figure 5.14.: Change in ω1 with varying I(N) for (a) Beam 6 (e=-13mm);
(b) Beam 7 (e=-26mm); (c) Beam 8 (e=-39mm); (d) Beam 9
(e=-52mm), while keeping all other parameters constant

area, I with increasing post-tensioning force magnitude, N , in accordance

with the Williams and Falati (1999) model (American Concrete Institute,

1989) (Figure 5.18a), and the subsequent predicted variation in the funda-

mental frequency, ω1 (Hz), with increasing post-tensioning force magnitude,

N (Figure 5.18b) for both confined and unconfined concrete case, in accor-

dance with Section 5.3, for Beam 1 (e = 0mm). For Beam 1, the magnitude

of the applied moment, Ma is small relative to the cracking moment, Mcr,

for all values of post-tensioning force, as it is due to the self-weight of the

beam only, since e = 0 and therefore Ma = ωsw`
2/8∀N . Consequently, the

second moment of area remains as the uncracked value, Iu for all values
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Figure 5.15.: Percentage change in ω1 with varying I(N) for Beam 1
(e=0mm), while keeping all other parameters constant

of post-tensioning force magnitude, and predicted changes in the natural

frequency are due to predicted changes in the Young’s Modulus E(N), the

mass per unit length m(N), and the span length of the beam `(N), as

outlined in Sections 5.3, 5.5 and 5.2 respectively, such that;

ωn (N) =

(
nπ

` (N)

)√
E (N) Iu
m (N)

(5.52)

Beams 2,3,6 and 7 follow the same pattern as Beam 1, in which the com-

bination of post-tension force magnitude and eccentricity is not significant

enough to make a substantial difference to the predicted second moment

of area of the section, and the second moment of area remains unchanged

as it’s uncracked value, Iu, as with Beam 1, outlined above. Subsequently,

the predicted changes in frequency are due to variation in Young’s Mod-

ulus, mass per unit length, and span length of the beam only for Beams

1,2,3,6&7.

Figure 5.19 shows the variation in the predicted variation of the second

moment of area, I with increasing post-tensioning force magnitude, N , in

accordance with the Williams and Falati (1999) model (American Concrete

Institute, 1989) (Figure 5.19a), and the subsequent predicted variation in

the fundamental frequency, ω1 (Hz), with increasing post-tensioning force

magnitude, N (Figure 5.19b) for both confined and unconfined concrete

case, in accordance with Section 5.3, for Beam 4 (e = +39mm). In this

case, there is a predicted drop-off in the second moment of area for post-
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Figure 5.16.: Percentage change in ω1 with varying I(N) for (a) Beam
2 (e=+13mm); (b) Beam 3 (e=+26mm); (c) Beam 3
(e=+39mm); (d) Beam 4 (e=+52mm), while keeping all other
parameters constant

tensioning force values greater than and equal to 800kN approximately. It

should be noted that this value of post-tensioning load was not possible

to obtain during testing with one 15.7mm diameter post-tensioning strand

only as the strand is rated to a value of 280kN maximum. As a result,

these values are practically unattainable. Furthermore, for the sections

modelled and tested, the crushing strength of the concrete beam section is

estimated to be 900kN. The second moment of area rapidly drops off from

it’s uncracked value, Iu, to it’s cracked value, Ic, and causes the natural

frequency to drop off further as a result.
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Figure 5.17.: Percentage change in ω1 with varying I(N) for (a) Beam 6
(e=-13mm); (b) Beam 7 (e=-26mm); (c) Beam 8 (e=-39mm);
(d) Beam 9 (e=-52mm), while keeping all other parameters
constant

Figure 5.20 shows the variation in the predicted variation of the second

moment of area, I with increasing post-tensioning force magnitude, N , in

accordance with the Williams and Falati (1999) model (American Concrete

Institute, 1989) (Figure 5.20a), and the subsequent predicted variation in

the fundamental frequency, ω1 (Hz), with increasing post-tensioning force

magnitude, N (Figure 5.20b) for both confined and unconfined concrete

case, in accordance with Section 5.3, for Beam 5 (e = +52mm). In this

instance, the drop off in second moment of area is predicted to occur at

a much lower value of approximately 200kN, due to the combination of
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Figure 5.18.: (a) Variation in I with N , for Beam 1, according to Williams
and Falati (1999); (b) Subsequent variation in ω with N , for
Beam 1, according to Williams and Falati (1999).
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Figure 5.19.: (a) Variation in I with N , for Beam 4, according to Williams
and Falati (1999); (b) Subsequent variation in ω with N , for
Beam 4, according to Williams and Falati (1999).

post-tensioning load magnitude and post-tensioning strand eccentricity.

Figure 5.21 shows the variation in the predicted variation of the second

moment of area, I with increasing post-tensioning force magnitude, N , in

accordance with the Williams and Falati (1999) model (American Concrete

Institute, 1989) (Figure 5.21a), and the subsequent predicted variation in

the fundamental frequency, ω1 (Hz), with increasing post-tensioning force
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Figure 5.20.: (a) Variation in I with N , for Beam 5, according to Williams
and Falati (1999); (b) Subsequent variation in ω with N , for
Beam 5, according to Williams and Falati (1999).

magnitude, N (Figure 5.21b) for both confined and unconfined concrete

case, in accordance with Section 5.3, for Beam 8 (e = −39mm). For Beam

8, the eccentricity of the post-tensioning strand is such that it promotes

cracking in the bottom fibre, and, as a result, there is a value of post-

tensioning force at which the section cracks, and there is a corresponding

immediate drop in the predicted second moment of area of the cross section.

From this point onwards, the additional axial load helps to close cracks and

move the second moment of area from Ic back towards Iu. This has similar

implications for the bending frequency, where a clear sudden drop in bending

frequency is predicted, at this can be seen in Figure 5.21b.

Figure 5.22 shows the variation in the predicted variation of the second

moment of area, I with increasing post-tensioning force magnitude, N , in

accordance with the Williams and Falati (1999) model (American Concrete

Institute, 1989) (Figure 5.22a), and the subsequent predicted variation in

the fundamental frequency, ω1 (Hz), with increasing post-tensioning force

magnitude, N (Figure 5.22b) for both confined and unconfined concrete

case, in accordance with Section 5.3, for Beam 9 (e = −52mm). Similarly

to Beam 8, the eccentricity of the post-tensioning strand is such that it

promotes cracking in the bottom fibre, and, as a result, there is a value of

post-tensioning force at which the section cracks, and there is a correspond-

ing immediate drop in the predicted second moment of area of the cross
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Figure 5.21.: (a) Variation in I with N , for Beam 8, according to Williams
and Falati (1999); (b) Subsequent variation in ω with N , for
Beam 8, according to Williams and Falati (1999).

section. Since the eccentricity is greater in this case for Beam 9 than it is

for Beam 8, the value of pos-tensioning force magnitude at which the sud-

den drop is predicted to be at approximately 180kN, as opposed to 550kN

for Beam 8. interestingly, this is within the 0-200kN range tested on the

concrete beams that is described in depth in Chapter 6.
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Figure 5.22.: (a) Variation in I with N , for Beam 9, according to Williams
and Falati (1999); (b) Subsequent variation in ω with N , for
Beam 9, according to Williams and Falati (1999).

Section 5.4.4 compares the Binary Model described and outlined in Sec-
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tion 5.4.1 to the Williams and Falati (1999) Model (American Concrete

Institute, 1989), and the implications it has for the prediction of the funda-

mental frequency of the post-tensioned concrete beam sections.

5.4.4. Comparison of Binary Model with Williams and

Falati (1999) Model

This section sets out to compare the Binary Model described and outlined in

Section 5.4.1 to the Williams and Falati (1999) Model (American Concrete

Institute, 1989) described in Section 5.4.3, and the implications each model

has on the fundamental bending frequency of 9 different post-tensioned

concrete beams, with differing post-tensioning strand eccentricities that are

subsequently tested and described in full in Chapter 6.

No comparison can be drawn from comparing the models for Beams

1,2,3,6 or 7 as the post-tensioning strand eccentricity in each of these beams

is not great enough to induce a moment great enough to cause the beam

to crack, and therefore, no reduction in second moment of area is predicted

for Beams 1,2,3,6 or 7. However, as outlined in Section 5.4.3, specifically

in Figures 5.19, 5.20, 5.21 and 5.22, the post-tensioning strand eccentricity

was great enough to induce a cracking moment in the section, and hence

to predict a drop off in the second moment of area, from its uncracked

value, Iu, towards its cracked value, Ic. These results are compared to

the results obtained for the Binary Model outlined in Section 5.4.1 in Fig-

ures 5.23, 5.24, 5.25 and 5.26.

Figure 5.23a compares the variation in second moment of area, I, with

varying post-tensioning force magnitude, N , for Beam 4 (e=+39mm) for

both the binary model and the Williams and Falati (1999) model (American

Concrete Institute, 1989). The Williams and Falati (1999) model predicts

a slight drop off in I at post-tensioning load magnitudes of approximately

900kN, however, the binary model predicts that I = Iu∀N . Figure 5.23b

shows the subsequent predicted changes in fundamental frequency when

either model is considered. It is clear from Figure 5.23b that the small

differences in modelling I make little difference to the prediction of the

fundamental frequency of the beam sections, albeit, the Williams and Falati

(1999) model slightly under predicts the frequency relative to the Binary

model in this case, for Beam 4.
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Figure 5.23.: (a) Variation in I with N , for Beam 4, comparison of Binary
Model to Williams and Falati (1999) Model; (b) Subsequent
variation in ω withN , for Beam 4, comparison of Binary Model
to Williams and Falati (1999).

Figure 5.24a compares the variation in second moment of area, I, with

varying post-tensioning force magnitude, N , for Beam 5 (e=+52mm) for

both the binary model and the Williams and Falati (1999) model (American

Concrete Institute, 1989). In this case, for Beam 5, with a greater post-

tensioning strand eccentricity, the Williams and Falati (1999) model predicts

a drop off in I at a value of approximately 200kN, since the moment induced

in the section is greater than the cracking moment of the section at values

of post-tensioning force greater than 200kN. However, the binary model, as

before indicates that I = Iu∀N , since the net stress in the bottom fibre

is compressive. In this case, there is a clear difference that each model

has for the prediction of the fundamental frequency. It can be seen in

Figure 5.24b that the Williams and Falati (1999) model again under predicts

the frequency relative to the binary model, as was the case with Beam 4

previously. However, in this case, the discrepancy is much more obvious as

the value of I is predicted to decrease by a much greater amount than with

Beam 4.

Beam 4 and 5 have post-tensioning strand eccentricities that promote

compression in the bottom fibre, and tension in the top fibre, however,

Beams 8 and 9 have post-tensioning strand eccentricities that promote ten-

sion in the bottom fibre and compression in the top fibre. Since the binary
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Figure 5.24.: (a) Variation in I with N , for Beam 5, comparison of Binary
Model to Williams and Falati (1999) Model; (b) Subsequent
variation in ω withN , for Beam 5, comparison of Binary Model
to Williams and Falati (1999).

model states that I = Iu when σb (the stress in the bottom fibre) is greater

than −ft (the tensile strength of the concrete), and I = Ic when σb is less

than −ft, it indicates that a drop off in I is expected for large combinations

of N and e (post-tensioning force magnitude and eccentricity). Figure 5.25

compares the variation in second moment of area, I, with varying post-

tensioning force magnitude, N , for Beam 8 (e=-39mm) for both the binary

model and the Williams and Falati (1999) model (American Concrete Insti-

tute, 1989). Figure 5.25 shows that for sections that promote tension in the

bottom fibre, the Williams and Falati (1999) model grossly under predicts

the value of I to be much less than the cracked second moment of area Ic.

There is a sudden drop-off from the uncracked value, Iu, in the case of the

binary model, to the cracked value, Ic, and in the case of the Williams and

Falati (1999) model, a value much less than Ic. Subsequent post-tensioning

load application acts as to close cracks and stiffen the structure, pushing the

value of I back upwards towards the cracked design value of Ic. This has

obvious implications for the prediction of the fundamental frequency, and

indicates that, for Beam 8, the initial drop-off in frequency occurs at a lower

value of post-tensioning force (approximately 500kN as opposed to 650kN

in this case) and that again, also, the Williams and Falati (1999) model

under predicts the frequency of the beam relative to the binary model, as
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is the case with the previous beams that were studied.
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Figure 5.25.: (a) Variation in I with N , for Beam 8, comparison of Binary
Model to Williams and Falati (1999) Model; (b) Subsequent
variation in ω withN , for Beam 8, comparison of Binary Model
to Williams and Falati (1999).

Figure 5.26 compares the variation in second moment of area, I, with

varying post-tensioning force magnitude, N , for Beam 9 (e=-52mm) for

both the binary model and the Williams and Falati (1999) model (American

Concrete Institute, 1989). As with Beam 8 (Figure 5.25), a sudden drop-

off in I is predicted. In the case of Beam 9, this drop-off is predicted to

occur at a similar post-tensioning load magnitude (approximately 180kN)

in the case of the Williams and Falati (1999) model and the binary model.

However, as observed with Beams 4,5 and 8 previously (Figures 5.23, 5.24,

and 5.25), the Williams and Falati (1999) model under predicts the value

of the second moment of area, I, relative to the binary model. As a result,

the Williams and Falati (1999) model also under predicts the frequency of

the beam section in comparison to the binary model. As with Beam 8, the

value of I is theoretically predicted to fall below its carcked design value of

Ic, and any further post-tensioning force added to the system from then on

is predicted to close cracks and stiffen the beam (i.e. the post-tensioning

force is predicted to initially soften the beam and any subsequent addition

of post-tensioning load added after a threshold value is predicted to stiffen

the beam), that is to say that the post-tensioning load is predicted to have

the dual effect of both softening and subsequently stiffening the beam.
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Figure 5.26.: (a) Variation in I with N , for Beam 9, comparison of Binary
Model to Williams and Falati (1999) Model; (b) Subsequent
variation in ω withN , for Beam 9, comparison of Binary Model
to Williams and Falati (1999).

In summary, the Williams and Falati (1999) model (American Concrete

Institute, 1989) under predicts both the second moment of area, and as

a result, the fundamental frequency of the beam sections when compared

to the binary model, as outlined when comparing Beams 4,5,8&9 in Fig-

ures 5.23, 5.24, 5.25, and 5.26. The Williams and Falati (1999) model theo-

retically allows values of I that are less than Ic to be predicted, as outlined

in Figures 5.25, and 5.26, which may be a downside of the model.

5.5. Change in mass per unit length with

post-tensioning force, m(N)

The change in mass per unit length, m, with increasing post-tensioning

force magnitude, N , of the post-tensioned concrete beam sections has also

been modelled, i.e. m(N), and the subsequent changes in natural bending

frequency, ωn have also been calculated, as per Equation 5.53;

ωn(N) =
(nπ
`

)2
√

EI

m(N)
(5.53)
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Firstly, the total mass of the post-tensioned concrete sections was calculated,

by first calculating the mass of both the reinforced concrete and the post-

tensioning steel as per Equation 5.54 and 5.55;

mc =
1000ρc (Au) (1× 10−6)

g
(5.54)

mps = ρps (Aps) (1× 10−6) (5.55)

where ρc = 24kN/m3 is the weight density of concrete, Au is the adjusted

area of the reinforced concrete section, accounting for the presence of re-

inforcing steel. ρps = 7, 810kg/m3 is the mass density of the prestressing

steel used in the experimentation, and Aps is the cross sectional area of the

prestressing steel strand. The total mass of the steel and the concrete is

then calculated as per Equation 5.56 and 5.57;

Mc = mc` (5.56)

Mps = mps` (5.57)

where ` = 2.0m is the original span length of the post-tensioned concrete

section. The total mass of the post-tensioned concrete section was then

calculated;

Mtot = Mc +Mps (5.58)

The mass per unit length of the section was calculated in accordance with

the axial shortening model outlined in Equation 5.6, Section 5.2;

m(N) =
Mtot

`(N)

=
Mtot

`
(

1− N
AcEc

) (5.59)

Figure 5.27 shows the effect of post-tensioning force magnitude on the mass

per unit length of the section due to axial shortening effects. Since axial

shortening causes the span length to decrease ever so slightly over the tested

range, it follows that the mass per unit length of the cross section should

increase, ever so slightly, as the mass of the section remains constant, but

the denominator, the span length, `(N), decreases as the post-tensioning

force magnitude, N , increases.
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Figure 5.27.: Change in m, with N due to axial shortening effects

Figure 5.28 shows the effect of the small changes in mass per unit length

due to axial shortening effects, m(N), on the fundamental bending fre-

quency, ω1, of the post-tensioned concrete beams tested in the lab. The

mass per unit length of the sections increases with increasing post-tensioning

force magnitude, due to axial shortening of the member. Since the mass per

unit length, m(N), is the denominator in Equation 5.53, this means that the

natural bending frequency decreases with increasing post-tensioning force

magnitude due to the subsequent change in mass per unit length.
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Figure 5.28.: Change in ω1 due to changes in m(N) only

Figure 5.29 shows the percentage change in natural frequency due to

the corresponding changes in mass per unit length with increasing post-
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tensioning force magnitude. The changes are negligible over the practical

ranges of post-tensioning force modelled, in the range of -0.0125%, as shown

in Figure 5.29. These changes are negligible in comparison to the changes

induced by altering the second moment of area of the cross section, I(N),

and the Young’s Modulus, E(N).
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Figure 5.29.: Percentage change in ω1 due to changes in m(N) only

5.6. Sensitivity analysis on the parameters

The following section reports on the results of a sensitivity analysis on the

modelled parameters, E(N), I(N), `(N), and m(N), comparing the effect

of changes in each of the parameters modelled on the fundamental bending

frequencies, ω1, of the post-tensioned concrete beams. Figure 5.30 shows the

predicted percentage change in natural bending frequencies with increasing

post-tensioning force magnitude, due to changes in the individual parame-

ters, I(N), E(N), `(N), and m(N), for the 9 different post-tensioned con-

crete beams modelled and tested in the lab. What is clear from the graphs,

is that the effect of changes in frequency due to axial shortening, `(N),

and due to changes in mass per unit length, m(N), are negligible compared

to the changes in second moment of area, I(N), and changes in Young’s

Modulus, E(N). In the extreme examples, changes due to second moment

of area, I(N), account for changes in fundamental frequency between -12%

and +10%, and the changes in Young’s Modulus, E(N), account for changes

of up to +8% in fundamental bending frequency. The changes in frequency

due to axial shortening and change in mass per unit length are negligible
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in comparison. Changes in Young’s Modulus and second moment of area

with increasing post-tensioning force magnitude dominate the subsequent

changes in fundamental bending frequency.
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Figure 5.30.: Sensitivity study; % change in ω1 due to changes in individual
parameters I(N), E(N), `(N), and m(N) for (a) Beam 1; (b)
Beam 7; (c) Beam 8; (d) Beam 9

5.7. Prediction of changes in fundamental

frequency with increasing post-tensioning

force, ω1(N)

Figure 5.31 shows the prediction of the change in natural bending frequency

for Beam 1 (e=0mm) and Beam 9 (e=-52mm) based on the proposed model

outlined in Sections 5.1 to 5.6. The model predicts changes in the range of

+8% to -5% as shown in Figure 5.33. The model is based on modelling linear
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changes in the parameters outlined in Sections 5.2 to 5.5, in accordance with

Equation 5.1. Figures 5.31a and 5.31b show the predicted model for con-

crete with different assumed tensile strengths. The concrete with a tensile

strength, ft = 0MPa is represented by the solid red line, whereas the con-

crete with a tensile strength of ft = 3.00MPa is represented by the dashed

green line. For Beam 1 (e=0mm), an overall increasing trend in fundamental

bending frequency with increasing post-tensioning load magnitude is pre-

dicted. For the case of the concrete with a tensile strength of ft = 0MPa,

there is a jump in the predicted frequencies at a post-tensioning load value

of 20kN as the concrete is deemed to have moved from a cracked to an

uncracked condition, therefore the second moment of area moves from the

cracked to the uncracked value, i.e. Ic to Iu. Conversely, in the case of the

concrete with a tensile strength of ft = 3.00MPa, no such jump is predicted

as the second moment of area is deemed constant at the uncracked value, Iu,

for all values of post-tensioning load, N . For Beam 9 (e=-52mm), the eccen-

tricity of the post-tensioning strand is such that it promotes cracking in the

bottom fibre. Consequently, for the case of concrete with a tensile strength

of ft = 3.00MPa, at high values of post-tensioning load magnitude, N , a

sudden decrease in second moment of area is predicted as it jumps from the

uncracked value, Iu down to the cracked value, Ic due to the tensile stress

in the bottom fibre exceeding ft. Despite an initial predicted increase in

fundamental frequency, ω1, with increasing post-tensioning force, N , there

is an overall decreasing trend in the prediction over the modelled range of

post-tensioning force, due to this decrease in I.

It should also be pointed out, that for greater values of post-tensioning

force, the Young’s Modulus is predicted to decrease significantly with in-

creasing axial normal stress, after reaching a maximum value, therefore,

as crushing of the concrete occurs, the stiffness is predicted to decrease

significantly, and the natural frequency is also predicted to decrease as a

result, over a greater range of post-tensioning force than tested and origi-

nally modelled. This is illustrated in Figure 5.32. Figure 5.32a shows the

predicted fundamental frequency, ω1, with increasing post-tensioning load

magnitude, N , for both the confined and unconfined concrete case. As

shown, the predicted frequency drops to zero for the unconfined concrete at

a post-tensioning load value of approximately 1100kN. This is due to the

predicted decrease in Young’s Modulus for high values of axial stress, as
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Figure 5.31.: Prediction of the change in ω1 with increasing N for the pro-
posed model, for (a) Beam 1 (e=0mm); (b) Beam 2 (e=-52mm)

outlined in Figure 5.7a. Figure 5.32b shows the predicted change in fre-

quency for the case of unconfined concrete, with different concrete tensile

strengths, as outlined previously.
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Figure 5.32.: Predicted variation in ω1 with increasing N over greater post-
tensioning force range for (a) unconfined vs. confined con-
crete; (b) confined concrete with different tensile strength,
ft = 0MPa, ft = 3.00MPa

This model will be compared to obtained results for the beams tested,

and outlined further in Chapter 6, Section 6.8.6.
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5.8. Comparison of proposed model with existing

models

The proposed model is compared with the predicted changes from the mod-

els proposed by Saiidi et al. (1994), Zhang et al. (2012), Dall’Asta and

Dezi (1996), Miyamoto et al. (2000) and Kim et al. (2004). The proposed

model, by changing each of the parameters, E(N), I(N), `(N) and m(N),

predicts a percentage change in the region of +8% for the modelled range

of post-tensioning force (0-200kN). This predicted change is greater than

predicted by the models suggested by other authors (Saiidi et al., 1994;

Zhang et al., 2012; Dall’Asta and Dezi, 1996; Miyamoto et al., 2000; Kim

et al., 2004). The model will be compared to obtained results for the beams

tested, and outlined in Chapter 6, Section 6.8.6. It will be shown that there

is good agreement between the proposed model and the obtained results,

however, due to the absence of a statistical significant relationship between

post-tensioning force magnitude and fundamental bending frequency, the

paper written by Hamed and Frostig (2006) suggesting, due to second order

non-linear effects that there is no relationship between post-tensioning force

magnitude and fundamental frequency is deemed to be the most accurate.

Furthermore, Peeters and De Roeck (2001) point out that frequency dif-

ferences in the range of 14-18% are reported due to normal environmental

changes such as temperature changes, lack of ideal support conditions, ma-

terial variability etc. The changes in fundamental frequency predicted by

the cited models is therefore considered negligible in relation to these large

environmental effects.

To recap from Chapter 2, in order to facilitate a comparison of the above

models, Saiidi et al. (1994) present an empirical model predicting changes

in fundamental frequency with increasing post-tensioning force magnitude.

The effective flexural rigidity of the tested specimens was back-calculated

from the results of impact hammer testing on post-tensioned concrete beam

sections (Equation 2.68). Subsequently, a first order regression prediction

model was fitted to the obtained data, resulting in a dimensionally incon-

sistent prediction of the flexural rigidity of each specimen and varying val-

ues of post-tensioning force (Equation 2.69). The corresponding natural

frequencies are subsequently calculated from the effective flexural rigidity.

Note that the beam specimen this model was based on was reported by
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Figure 5.33.: Proposed model vs. existing models (Saiidi et al., 1994;
Kim et al., 2004; Miyamoto et al., 2000; Zhang et al., 2012;
Dall’Asta and Dezi, 1996), for (a) Beam 1 (e=0mm); (b) Beam
2 (e=-52mm)

the authors to have a crack at midspan. The authors attributed all ob-

served changes in frequency to the closure of micro-cracks present in the

concrete, and not to the crack that formed under self weight while lifting

the specimens.

Miyamoto et al. (2000) present a model based upon “compression soft-

ening” theory, in which provisions are included in the model for the geo-

metric effects of the eccentricity of the post-tensioning tendon. This model

is based on the assumption that an external axial load is equivalent to a

post-tensioning load. The final equation of motion is derived from first

principles based on Kirchoff’s linear kinematic relations, and is valid only

for small displacements. As outlined in Chapter 4, a post-tensioning force

should not be treated as equivalent to an external axial load (Noble et al.,

2015a). As a result, this model is not considered to be suitably applicable

to post-tensioned concrete sections.

Zhang et al. (2012) suggest another empirically based model exploring

changes in Young’s Modulus as a function of changes in post-tensioning

force magnitude. However, the changes in Young’s Modulus were again

determined from back calculating in a similar manner to Saiidi et al. (1994),

however, the authors state that since the specimens remained uncracked

throughout the course of testing, the observed increases in frequency were

due to changes in Young’s Modulus only. The regression model derived from
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the testing conducted is also dimensionally inconsistent (Equation 2.71) and

therefore the model is deemed unsuitable for use.

Kim et al. (2004) produce a “tension-strength” model in which the flexural

vibration frequency of a cable under tension is considered to be equal to the

vibration frequency of a beam with the same cross sectional properties as the

cable. Equating, this leads to the expression of the flexural rigidity of the

steel prestressing cable as a function of the post-tensioning force, in direct

contrast with “compression-softening” theory, the force is now considered as

an equal, but opposite stiffening effect. This stiffening effect is added to the

flexural rigidity of the concrete beam specimen and an increase in natural

frequency with increasing prestressing force is subsequently predicted. The

model produced by Kim et al. (2004) is the opposite to the compression

softening model and the interaction of the stiffening effect with a softening

effect on the beam section (as conducted by Dall’Asta and Dezi (1996)) is

ignored.

Dall’Asta and Dezi (1996) derive the final equation of motion from first

principles using Kirchoff’s linear kinematic relations. The effect of the pre-

stressing according to the authors acts as a combination of softening of the

beam section under compressive load and stiffening of the post-tensioning

strand due to tensile load. The authors however consider the second mo-

ment of area of the cable to be negligible in all practical cases, and also

consider the N/Ab term to be negligible also, and subsequently consider

that the post-tensioning force has little or no effect on natural frequency

(Equations 2.76, 2.77).

Hamed and Frostig (2006) present a non-linear kinematic model. The

final equation of motion of the vibrating pre- and post-tensioned concrete

beams are found to be independent of pre- and post-tensioning force mag-

nitude. The non-linear mathematical model allows for large displacements

and moderate rotations as opposed to the small displacements of Kirchoff’s

linear kinematic relations (Sections 2.10).

The model proposed in this Chapter does not return to the theoreti-

cal derivation of the final equations of motion as these have been covered

ad nauseum by previous authors (Tse et al., 1978; Miyamoto et al., 2000;

Dall’Asta and Dezi, 1996; Hamed and Frostig, 2006). The proposed model

instead considers the derivation of the natural frequency of a simply sup-

ported Euler-Bernoulli beam and predicts the changes in each of the pa-
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rameters affecting natural frequency, as a function of post-tensioning force

(Equation 5.1). The eccentricity of the post-tensioning force is accounted

for in the calculation of the transformed second moment of area of the

cross section as a function of post-tensioning force (Section 5.4). The jump

from cracked value of second moment of area (Ic) to the uncracked value

of second moment of area (Iu) is also accounted for and these are two big

strengths of the proposed model. Another important strength of the pro-

posed model is that it accounts for changes in Young’s Modulus as a function

of post-tensioning force in accordance with the empirical model derived by

Attard and Setunge (1996). One of the most encouraging properties of

this model is that it allows for the predicted drop-off in frequencies after

the crushing strength of the concrete has been reached, as per Figure 5.32.

Another strength of the model includes the provision of the reduction in

the prediction of frequency with post-tensioning force if the strand profile

and post-tensioning force magnitude is such that it causes flexural cracking

to occur in the cross-section, as evident in Figure 5.33b. The final main

strength of the model is that it is a simple mathematical model that can be

easily implemented for more complex, real world post-tensioned structural

systems, and is not restricted to simply-supported post-tensioned concrete

beams, as some of the other derived mathematical models are. The main

weakness of the proposed model is the suitability of the empirically based

Attard and Setunge (1996) model is yet to be determined for an application

such as post-tensioning. Furthermore, the Attard and Setunge (1996) does

make use of regression prediction modelling in some areas, as outlined in

Section 5.3, and in some cases the models are also not dimensionally con-

sistent, as with some of the other models presented. The proposed model

also predicts changes in frequency that are much larger than the changes

predicted by existing models.

Ultimately, the model presented and suggested by Hamed and Frostig

(2006) seems to be the most appropriate for use in the case of the uncracked

concrete beam sections, especially when comparison is made with the results

of testing conducted in Chapter 6. This model is the most mathematically

robust and accounts for the inclusion of large displacements and moderate

rotations.

214



5.9. Finite Element Modelling

Finite Element Modelling was conducted in Autodesk ROBOT Structural

Analysis Professional 2012 - Student Evaluation Version (2012) to predict

the natural bending frequencies of the post-tensioned concrete beams tested.

There is no provision for modelling post-tensioning accurately in the soft-

ware, and subsequently it was used to predict the ‘virgin’ fundamental bend-

ing frequency (i.e. the fundamental frequency for zero post-tensioning load).

The effect of the strand on the beam cross section was neglected. FE soft-

ware such as Autodesk ROBOT Structural Analysis Professional 2012 -

Student Evaluation Version (2012) treats a post-tensioning load as equiv-

alent to an external axial load and therefore uses “compression-softening”

theory as the basis for the FE Modelling. Since this is deemed inappropri-

ate and erroneous for post-tensioned structures (Noble et al., 2015a), this

highlights the unsuitability of many commercial software packages to tackle

such a problem, and highlights the need for a viable mathematical model

that can accurately predict changes in fundamental frequency with chang-

ing post-tensioning force. As such, the purpose of this FE modelling was to

check the closed form solution against the FE Model prediction for increas-

ing degree of freedom (DOF) simply supported concrete beam systems.

Table 5.2 shows the results of FE modelling on the modal analysis of

a reinforced concrete beam with similar properties to the post-tensioned

concrete beams tested in the lab. The depth, d = 200mm, the breadth,

b = 150mm, and the Young’s Modulus, Ec = 28.6GPa. Figure 5.34 shows

the lumped mass FE model applied to the reinforced concrete beam sec-

tion. Figure 5.34a shows the geometric properties of the beam modelled,

Figure 5.34b shows a representation of the first bending 3 mode shapes of

vibration, Figure 5.34c shows the lumped mass model for representing the

beam as a single degree of freedom (SDOF) system, Figure 5.34d shows

the lumped mass model for the 10 degree of freedom representation of the

beam system. Figure 5.35 shows the results of the FE modelling and modal

analysis for both the SDOF system and the 10 DOF system.

Table 5.2 compares the results of the FE estimation of the fundamental

bending frequency for the reinforced concrete beam sections to the closed

form solution. There is good agreement between the FE modelling con-

ducted and the closed form solution, with the percentage difference varying
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Figure 5.34.: (a) Geometric properties of the reinforced concrete beams
tested; (b) Representation of the first 3 bending mode shapes
of vibration; (c) Single degree of freedom (SDOF) represen-
tation of beam system; (d) 10 DOF representation of beam
system

between -0.68% and +0.04% from the closed form solution. Figure 5.36

illustrates the convergence of the FE solution as the number of degrees of

freedom is increased.

5.10. Conclusions

In this chapter the results of mathematical modelling in MATLAB to model

the effect of prestress force, N , on the natural frequencies of prestressed con-

crete structures, ωn was outlined. A linear model was presented by tracking
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(a)

(b)

Figure 5.35.: Results of the FE modelling - estimation of the fundamental
bending frequency for (a) 1 dof (b) 10 dof

Table 5.2.: Predictions of fundamental frequencies for RC Beam - FE Model

Type ω1,c(Hz) % Diff.

Closed Form Solution 78.05 0

FE Model (1 DOF) 77.519 -0.68
FE Model (2 DOF) 78.002 -0.06
FE Model (3 DOF) 78.062 +0.02
FE Model (4 DOF) 78.076 +0.03
FE Model (5 DOF) 78.081 +0.04
FE Model (6 DOF) 78.083 +0.04
FE Model (7 DOF) 78.084 +0.04
FE Model (8 DOF) 78.085 +0.04
FE Model (9 DOF) 78.085 +0.04
FE Model (10 DOF) 78.085 +0.04

changes in each of the parameters outlined in Equation 5.1 with increasing

post-tensioning force magnitude. Changes in span length, `(N), Young’s

Modulus, E(N), second moment of area, I(N), and mass per unit length,

m(N), was modelled. A sensitivity analysis on the effect of changing the

above parameters, highlighting the relative importance of the changes in

each individual parameter was outlined. The predicted changes in funda-

mental frequency with increasing post-tensioning load magnitude for the 9

Beams tested was detailed. The changes predicted by the new proposed

model was compared with the models previously proposed by Saiidi et al.

(1994), Zhang et al. (2012), Dall’Asta and Dezi (1996), Miyamoto et al.

(2000) and Kim et al. (2004). Finite Element Modelling was conducted to

predict the ‘virgin’ fundamental bending frequency of the beams tested.
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Figure 5.36.: Convergence of the estimation of fundamental bending fre-
quency through FE modelling by increasing no. dofs

It was found that;

1. The proposed model presented in this chapter predicts an initial in-

crease in natural bending frequencies, ωn, of the modelled post-tensioned

concrete beams with increasing post-tensioning load magnitude, N ,

over the range of post-tensioning force tested in the lab (0-200kN), as

shown in Figure 5.31. However, when modelled over a greater range of

post-tensioning force, the frequency is initially predicted to increase,

and then drop off as the concrete begins to crush under post-tensioning

force magnitude (Figure 5.32).

2. The proposed model predicts a greater initial increase in fundamen-

tal bending frequency than any of the existing models proposed by

other authors (Saiidi et al., 1994; Kim et al., 2004; Miyamoto et al.,

2000; Dall’Asta and Dezi, 1996; Zhang et al., 2012), as shown in Fig-

ure 5.33. As outlined in Section 5.8, modelling the changes in the

parameters affecting natural frequency with varying post-tensioning

force magnitude is a novel approach, and has not been conducted to

date.

3. The proposed model is a linear kinematic model that accounts for

small deflections only (i.e. Kirchoff’s kinematic model) and models

changes in Young’s Modulus, second moment of area, span length, and

mass per unit length with increasing post-tensioning force magnitude,
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i.e. E(N), I(N), `(N), m(N), as per Equation 5.1.

4. The effect of changing the Young’s Modulus, E(N), and second mo-

ment of area, I(N), with increasing post-tensioning force magnitude

are of similar importance with regard to the subsequent changes in

bending frequency, and is much greater than the effect of changing

span length, `(N), and mass per unit length, m(N),, which can be

considered negligible in comparison.

5. By taking non-linear kinematic effects into account, and allowing

for large displacements and moderate rotations, Hamed and Frostig

(2006) have proved that the final equation of motion for a post-

tensioned concrete beam is independent of post-tensioning force mag-

nitude, therefore there is no relationship between natural frequency

and post-tensioning force magnitude. This is to be evaluated through

experimentation in Chapter 6, and is found to be the most suitable

model for uncracked post-tensioned concrete specimens.
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6. Dynamic impact testing of

uncracked post-tensioned

concrete beams

This chapter describes the outcome of static 3-point bending testing and

output only experimental modal analysis on 9 uncracked post-tensioned

concrete beams. Static 3-point bending testing and dynamic impact testing

were conducted on each of the 9 beams at different levels of post-tensioning

force. The Fast Fourier Transform (FFT) was implemented on the dynamic

accelerometer impact response data, and the fundamental frequencies of

the simply supported post-tensioned concrete beams were determined by a

peak-picking algorithm at each post-tensioning load level. The tests were

repeated 10 times at each impact location to ensure repeatability of the ex-

periment. There were 3 impact locations per post-tensioning load level, and

there were 11 post-tensioning load levels at which the beams were tested. A

first-order linear regression model was then applied to the measured funda-

mental bending frequencies with increasing post-tensioning load. Statistical

significance tests were then conducted on the recorded data to determine if

any statistically significant changes in fundamental bending frequency with

increasing post-tensioning load was observed, for both static and dynamic

results. The results obtained for the static 3-point bending tests were then

compared and contrasted with the results obtained from dynamic testing.

6.1. Introduction

The prediction of the change in natural vibration frequencies with varying

prestress force magnitude for prestressed concrete (PSC) structures is a

particularly important problem. It has implications in the field of PSC

bridge girders and for post-tensioned concrete wind turbine towers, both
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of which are structures that are susceptible to extreme dynamic excitation.

The effect of applied prestressing force on the dynamic behaviour of pre- and

post- tensioned structures is a widely debated topic (Quilligan et al., 2012).

Some authors argue that the natural vibration frequencies of PSC structures

tend to decrease as the magnitude of the pre-stressing force is increased.

This is known as the “compression-softening” effect and is based on classical

Euler-Bernoulli beam theory of an externally axially loaded homogeneous

beam (Tse et al., 1978; Raju and Rao, 1986; Dall’Asta and Leoni, 1999;

Miyamoto et al., 2000; Chan and Yung, 2000; Law and Lu, 2005; Dai and

Chen, 2007). Others (Dall’Asta and Dezi, 1996; Kerr, 1976; Dai and Chen,

2007) suggest that the NFs of PSC structures are unaffected by pre-stress

force magnitude. This argument has been taken to the fore by Hamed and

Frostig (2006), who present a non-linear kinematic model and conclude that

the final equation of motion for the vibrating beam system is independent of

the prestress force magnitude. Finally, there is also the argument that the

NFs of PSC structures tend to increase as the magnitude of the pre-stressing

force is increased. This has found to be the case in numerous empirical

studies, conducted (Saiidi et al., 1994; Hop, 1991; Zhang and Li, 2007)

however, a satisfactory mathematical model predicting the increase in NFs

with increasing pre-stressing force has yet to be formulated, despite some

attempts (Zhang and Li, 2007; Kim et al., 2004). A comprehensive review

of these models and studies has been outlined in Chapter 2. Prestress force

decreases over time due to concrete creep, steel relaxation, anchorage pull

in and other factors. Structural engineers should thus be able to monitor or

estimate changes in the natural bending frequency of PSC structures over

the course of their design life to ensure their safety and serviceability. As

a result, prediction of change in natural frequency of PSC structures over

time is of great importance.

The aim of this chapter is to report on results of both static and dy-

namic testing on uncracked post-tensioned concrete beams in the labora-

tory. The purpose of the research is to determine the relationship between

post-tensioning force magnitude and fundamental bending frequency for un-

cracked post-tensioned concrete beams. This chapter is organised as follows;

Section 6.3 describes the initial design of the concrete beam specimens, in-

cluding the mix design of the concrete, material testing, erection of formwork

and casting, an analysis on the bending capacity of the sections, the determi-
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nation of the rating of the prestressing strand used, and finally a prediction

of the natural bending frequencies of the sections. Section 6.5 describes

the set-up of two experiments in the laboratory. The first experiment is a

static 3-point bending tests conducted on 9 post-tensioned concrete beams

at different levels of post-tensioning force magnitude. The second exper-

iment is a dynamic impact test, conducted on the same 9 beams, at the

same post-tensioning load levels. Section 6.7 outlines the analysis of the

results from both static and dynamic test regimes. It also describes the

extensive signal-processing regime that was designed and implemented for

the dynamic signals obtained. Section 6.8 describes the results of the static

and dynamic experiments conducted, and compares the outcomes of both

sets of experiments. The change in both natural frequency and damping

ratio with increasing post-tensioning load magnitude for the uncracked con-

crete sections tested, are outlined as are the detailed statistical parameters

determining the statistical significance of the data collected and presented.

Section 6.10 summarises the chapter, drawing some significant conclusions.

6.2. Experimental Design

Table 6.1 outlines the different post-tensioned concrete beam specimens dy-

namically tested in the laboratory, in order to determine their fundamental

bending frequency with differing post-tensioning load magnitude. The con-

crete used in each beam specimen was C30/37, as specified in Section 6.3.1.

The beam sections were 200mm deep and 150mm wide, and spanned 2m

onto simple supports. The span to depth ratio for each beam section was

10:1. Each beam section was reinforced with 2 H8 hanger bars as top re-

inforcement, and 2 H12 bottom tensile reinforcement. H8 shear links were

provided at 200mm centres, and H10 U-bars were provided for continu-

ity and anchorage. The span of 2m was chosen in order to keep the test

specimens small enough to transport and lift around the laboratory easily.

The cross-sectional properties (breadth and depth) were chosen such that

minimum shear and bending reinforcement could be provided in accordance

with Eurocode 2 to mitigate cracking. The variable in the 9 test specimens

was the post-tensioning strand eccentricity. The greater the eccentricity,

the greater the predicted virgin fundamental bending frequency, due to the

increase in second moment of area attributed to the parallel axis theorem.
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The effect of post-tensioning force magnitude and eccentricity was intended

to be tested, and the effect of positive and negative eccentricity on the bend-

ing frequency, coupled with the interaction effects of both post-tensioning

force and strand eccentricity on the fundamental bending frequency was

also intended to be investigated. Testing the 9 beams with varying post-

tensioning strand eccentricities, as outlined in Table 6.1 enabled these tests

and subsequent comparison of the results to be conducted.

Table 6.1.: Experimental design - concrete test specimens

Beam e (mm) Predicted Freq (Hz)

1 0 78.05
2 +13 78.10
3 +26 78.30
4 +39 78.64
5 +52 79.12
6 -13 78.14
7 -26 78.37
8 -39 78.74
9 -52 79.26

6.3. Details of test set-up

The purpose of this section is to outline the detailed design and set-up of

the concrete specimens cast in the laboratory for the purpose of the static

and dynamic experimental tests conducted and described in this chapter

and in Chapter 7 following.

6.3.1. Concrete Mix Design

The concrete mix specified for the project was as follows, in accordance with

BS EN 1992-1-1:2004 (British Standards Institute, 2004);

1. Classification

- Exposure class XC1.

- Concrete inside building with low air humidity.

2. Consistence Class
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- Consistence Class S3.

- Slump 100-150mm.

- Slump test conducted on concrete upon delivery, in accordance

with BS EN 12350-2:2000 (British Standards Institute, 2000)

from the truck to determine whether or not it is to be accepted.

- A slump of 140mm was obtained upon completion of the stan-

dardised slump test.

3. Maximum aggregate size

- Max. aggregate size, Dmax = 20mm.

- 10mm aggregate was included to ensure good grading.

4. Compressive Strength

- Concrete class C30/37 was specified.

- fck,cyl = 30MPa, fck,cube = 37MPa.

- fck is defined as the characteristic strength of the concrete, de-

fined by the significance level of 5%, i.e. the concrete strength

below which 5% of all samples will fail.

- The target mean strength, TMS = fck+1.64σ, where σ is defined

as the population standard deviation.

5. Additions

- No additions were added to the mix.

6. Admixtures

- No additional admixtures were added to the mix.

- A plasticiser was added as standard.

The concrete mix specifications are summarised and outlined in Table 6.2.

The concrete itself was cast for use in a laboratory environment so it’s

durability class was not of great concern. Due to the tight, confined spaces

of the formwork, the consistency was important so as to ensure the concrete

flowed freely and developed sufficient bond with the reinforcement, however,

it was ensured that the mix was not too diluted so that a good homogeneous

mix was ensured and segregation was avoided.

During pouring of the post-tensioned concrete beam sections in the lab-

oratory, 10 concrete cylinders were cast and 12 concrete cubes were cast
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Table 6.2.: Summary of concrete specifications

Exposure class XC1
Consistence class S3
Slump class 100-150 mm
Slump 140 mm
Max. agg. size 20 mm
Incl. good grading 10 mm
Comp. Strength C30/37
fck,cyl 30 MPa
fck,cube 37 MPa
Additions NONE
Admixtures Plasticiser as standard

for Young’s Modulus and strength testing following curing of the concrete.

The strength testing procedure and results are presented in Section 6.3.2, in

accordance with the standard BS EN 12390-3:2001 (British Standards In-

stitute, 2001), and the Young’s Modulus testing procedure and results are

presented in Section 6.3.3, in accordance with the standard BS EN 12390-

13:2013 (British Standards Institute, 2013).

6.3.2. Strength Testing

Strength testing was carried out on concrete cube and cylinders cast from

the concrete batch used to cast the 9 post-tensioned concrete beams tested

throughout the course of the PhD project described in this thesis. Figure 6.1

shows the crushing of a cube in a compression testing machine in confor-

mance with EN 12390-4 (British Standards Institute, 2001). This testing

was carried out as a means of quality testing the concrete batch received

from the supplier, ensuring it reached the requested strength.

Four 100× 100× 100 mm concrete cubes were tested to failure in a com-

pression testing machine, conforming to EN 12390-4. The cubes were cast in

moulds using C30/37 designated concrete, with 100-150mm slump (i.e. con-

sistence class S3) which was used to pour 9 post-tensioned concrete beams.

The beams were cast for the purpose of impact hammer and modal testing at

varying post-tensioning force levels and for different post-tensioning strand

eccentricities. The date of the concrete pour was Thursday 27th February

2014 (27/02/2014).
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Figure 6.1.: Compression testing of concrete cube specimens

Twelve 100 × 100 × 100 mm concrete cubes were cast, each specimen

labelled DN1-DN12. Ten 150mm diameter × 300mm high concrete cylinders

were cast for the purpose of Young’s Modulus testing, and labelled DN1-

DN10. An accurate prediction of the Young’s Modulus of the concrete

is more important than strength in dynamic prediction modelling. The

Young’s Modulus testing is carried out on such cylinders, in accordance

with BS EN ISO 12390-3:2001 (British Standards Institute, 2001).

(a) (b)

Figure 6.2.: (a) 10 concrete cylinders cast for Young’s Modulus testing; (b)
12 concrete cube specimens cast for strength testing.

The concrete cubes were poured (trowelled) in 2 layers, with each layer
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being vibrated for 5 seconds on the shake table to ensure full compaction.

It was ensured by inspection that the duration of excitation was sufficient

enough to achieve full compaction but not overly excessive to induce bleed-

ing and segregation. The top surface was then floated off using a trowel.

The concrete cylinders were poured (trowelled) in 3 layers, with each layer

being vibrated for 5 seconds on the shake table to ensure full compaction.

It was ensured by inspection that the duration of excitation was sufficient

enough to achieve full compaction but not overly excessive to induce bleed-

ing and segregation. The top surface was then floated off using a trowel.

The cubes and cylinders were covered with damp hessian and sheet plastic

for the first 5 days while they were allowed to set and develop strength in

the moulds. The hessian was wetted every day with water. After 5 days,

the cubes and cylinders were removed from the moulds using the pressure

pump. The samples were then weighed and placed in a curing tank at 20oC

for a further 23 days, as shown in Figure 6.3.

(a)
(b)

Figure 6.3.: (a) Concrete specimens stored in curing tank at 20oC for a
further 23 days; (b) Cubes and cylinders stored in the curing
tank

Four cubes were removed from the curing tank on Thursday 27th March

2014 (27/03/2014) after 28 days curing, and tested to failure in a compres-

sion testing machine, conforming to EN 12390-4.

5 of the 6 surfaces of the cube were completely smooth and the final

surface was floated. It was ensured during testing that the cubes were

loaded into the compression testing machine with loading applied to two

surfaces. This was to ensure an even distribution of load throughout the
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specimens, which is required for satisfactory failure conditions to hold.

The loading rate in the compression testing machine was set at 0.4MPa/s

and the concrete cubes were tested until failure, which was defined as yield-

ing, i.e. a significant increase in deformation for little or no additional load,

or until the specimen could not withstand any further applied load. The

failure load of the specimens are outlined in Table 6.3, alongside the mass

and standard deviation of the strengths for the tested cube specimens.

Table 6.3.: Failure loads of tested concrete specimens

Specimen Mass (g) Failure
Load
(kN)

Failure
(MPa)

Failure
(nearest
0.5MPa)

% diff
from ave.

DN1 2416.5 415 41.5 41.5 -0.84%
DN2 2413.0 427 42.7 42.5 +1.55%
DN3 2411.7 429 42.9 43.0 +2.75%
DN4 2390.7 403 40.3 40.5 -3.23%

Average, µ (MPa) 41.85 41.88
Std. D., σ (MPa) 1.20 1.11

The concrete specified for use in the beam specimens was C30/37, which

indicates a characteristic cube strength of fck = 37.0MPa, below which

not more than 5% of all specimens should fall (at a one-sided significance

level of 0.10). Since the sample size is small (n=4), this means that the

number of degrees of freedom is defined by ν = n − 1 = 3. From the

studentised t-distribution with ν = 3 and a significance level of α = 0.05,

this means that the characteristic cube strength is defined by fck = µ −
2.35σ = 41.88 − 2.35 × 1.11 = 39.3MPa. This value of 39.3 > 37MPa,

which was the specified value, indicating that the actual concrete strength

is at least 37MPa, and in fact, the actual significance level is less than 0.05.

This indicates that the concrete was up to the requested standard.

Another important consideration during strength testing of concrete cube

specimens is to ensure that the specimens fail in a satisfactory manner, en-

suring homogeneity of the test specimen, and an even loading distribution.

All specimens failed in a manner consistent with the satisfactory require-

ments, set out in BS EN ISO 12390-3:2001 (British Standards Institute,

2001), as shown in Figure 6.4.

The uniformity of the concrete cube specimen failure conditions is high-
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Figure 6.4.: Satisfactory cube failure in accordance with IS EN 12390-3:2001
(British Standards Institute, 2001).

lighted in Figure 6.5, where Figure 6.5a and 6.5b show the failure conditions

for specimen DN1, and Figure 6.5c and 6.5d show the failure conditions for

specimen DN2.

Table 6.4 indicates the calculated mass density of the cube specimens

tested. The cubes and cylinders were covered with damp hession and sheet

plastic from when they were cast for 5 days. The hession was wetted each

day to ensure a sufficient moisture regime. After 5 days the specimens were

demoulded and placed in a curing tank for a further 23 days at 20 degrees

Celsius.

Table 6.4.: Apparent density of tested concrete specimens

Specimen Mass Density Density
(kg) (kg/m3) (nearest

10kg/m3)

DN1 2.4165 2416.5 2420
DN2 2.4130 2413.0 2410
DN3 2.4117 2411.7 2410
DN4 2.3907 2390.7 2390
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(a) (b)

(c) (d)

Figure 6.5.: Examples of satisfactory failure of concrete cube specimens; (a)
& (b) specimen DN1; (c) & (d) specimen DN2.

6.3.3. Young’s Modulus Testing

Young’s Modulus testing was carried out on concrete cylinder specimens

(300 mm in length, 150 mm in diameter), in accordance with BS EN 12390-

13:2013 (British Standards Institute, 2013). A concrete cylinder test spec-

imen was loaded under axial compression in a standardised compression

testing machine. The stresses and strains are recorded, and the slope of the

secant to the stress-strain curve was determined after three loading cycles.

The initial secant modulus of elasticity, EC,0, is defined as the secant slope

of the stress-strain curve at first loading. The stabilised secant modulus

of elasticity, EC,S , is the secant slope of the stress-strain curve after three

loading cycles.

Instrumentation was affixed to the sides of the cylinder test-specimens

during loading, in the form of extensiometers. The extensiometers either

measure strain directly or measure the change in length from which the
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strain can be calculated directly. The base or gauge length is defined as the

length of specimen used as the reference base for the strain measurement.

The base or gauge length was ensured to be between two-thirds of the

specimen diameter, and one-half of the specimen length.

(a) (b)

Figure 6.6.: Young’s Modulus test set-up; (a) Extensiometer placed on cylin-
der specimen (b) Cylinder loaded into compression testing ma-
chine

The specimens were cured and stored in accordance with EN 12390-2,

and stored in a curing tank at a steady temperature of 20oC from the time

of sufficient strength development (5 days) until 28 days, at which time the

specimens were tested.

The cylinder specimens were placed in the centre of the lower platen of

the standardised compressive testing machine. This ensures that the load

is applied evenly to both extensiometers. The compressive strength of the

cylinder specimens were first determined in accordance with EN 12390-3, as

this determines the maximum testing stress for the Young’s Modulus. This

is defined as fcm/3, where fcm is the characteristic cylinder strength of the

tested specimens, as shown in Figure 6.7.

The locking clamps of the extensiometer were released and using the

potentiometer knobs were adjusted on the amplifier until the % difference

between the two extensiometer readings was zeroed. The test was then

begun by starting the compression testing machine. The platen moved up

and the cycle of load application began for 3 load cycles. If the difference

between the two extensiometers exceeded 15% the test was stopped and

the extensiometers were rebalanced appropriately. The loading rate of the

compression testing machine was set at 0.6MPa/s as per EN 12390-3 (British
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fcm

Strain, 

Stress, σ

fcm/3

Figure 6.7.: Loading cycles of Young’s Modulus testing

Standards Institute, 2013). The stress was increased from the preload stress,

σp to the upper stress, σa = fcm/3 and held for no longer than 20s. The

corresponding strain is recorded for each stress value, and this cycle of

loading/unloading is repeated 3 times.

Figure 6.8.: Cycle for determination of stabilised secant modulus of elastic-
ity (British Standards Institute, 2013)
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The stabilised secant modulus of elasticity, EC,S is defined as;

EC,S =
∆σ

∆εs
=
σma − σmp
εa,3 − εp,2

(6.1)

where σa is the nominal upper stress, σp is the nominal preload stress, which

is an arbitrary value between 0.5MPa and σb. σb is the nominal lower stress,

which is an arbitrary value between 10% and 15% of fcm. εa,n is the average

strain at upper stress on loading cycle n, while εp,n is the average strain at

preload stress on loading cycle n. σma is the measured stress corresponding

to the nominal upper stress, σa and σmp is the measured stress corresponding

to the nominal preload stress, σp.

The results of the Young’s Modulus testing on the tested concrete speci-

mens labelled DN1 and DN2 are outlined in Table 6.5. The cylinder com-

pressive strengths of the specimens tested are outlined in Table 6.6. The

mean of the measured Young’s Modulus is calculated to be 26.88GPa.

Table 6.5.: Young’s Modulus test results for cylinder specimens DN1 and
DN2

Specimen DN1 DN2
Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3

σa 11.02 11.02 11.02 11.01 11.01 11.01 MPa
εa -0.420 -0.418 -0.419 -0.409 -0.409 -0.410

σp 0.86 0.86 0.85 0.86 0.87 0.86 MPa
εp -0.038 -0.040 -0.040 -0.031 -0.035 -0.034

EC,S 26.59 26.88 26.83 26.85 27.11 26.99 GPa

6.3.4. Casting of beam specimens

9 post-tensioned concrete beams were cast with different straight profiled

post-tensioning duct eccentricities. The beams were cast in wooden form-

work assembled in the laboratory, as shown in Figure 6.9. The reinforcement

cages were assembled in the laboratory by hand and welded together. The

cages consisted of 2 H12 diameter reinforcement bars as bottom reinforce-

ment, and 2 H8 “hanger” bars as top reinforcement. Four H10 U-bars were
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Table 6.6.: Concrete cylinder compression strength of 5 different specimens
tested

Specimen Mass Failure Failure
(kg) (MPa) (nearest 0.5MPa)

DN3 12.7517 31.2 31.0
DN4 12.6768 32.5 32.5
DN5 12.7331 35.7 35.5
DN1 12.6980 35.1 35.0
DN2 12.7779 34.6 34.5

µ 12.7275 33.8 33.7
σ 0.0406 1.90 1.89

affixed to the beam ends as continuation reinforcement, and as anchorage.

H8 shear links are placed at 200mm spacings as shear reinforcement, and

an additional 2 shear links are provided in the anchorage zone as “bursting”

reinforcement to resist the high bursting forces that the post-tensioning can

induce.

(a) (b)

Figure 6.9.: Concrete beam casting; (a) formwork; (b) concrete poured into
mould

The concrete was vibrated using a poker vibrator to ensure full com-

paction. This is important for strength and durability of the finished con-

crete specimen. The concrete was then floated off and covered in wet hessian

and further covered with polyurethane sheeting. The concrete was inspected

daily and was continually wetted to ensure the continuation of the hydration
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reaction and the development of the required strength.

The concrete beam specimens cast are outlined in detail in Figure 6.10.

The associated bar-bending schedules for the beams are also given in Ta-

ble 6.7.

Table 6.7.: Bar bending schedule for concrete specimens cast

Bar
Mark

Type No.
each

Total
No.

Length
(mm)

kg/m Tot.
Wt.
(kg)

Shape
code

A
(mm)

B
(mm)

01 H12 2 18 2200 0.888 35.2 01 2200
02 H8 2 18 2200 0.395 15.6 01 2200
03 H10 4 36 1390 0.617 30.8 13 520 110
04 H8 17 153 600 0.395 36.3 51 100 150

6.3.5. Bending Capacity of Members

The ultimate moment capacity, Mult, of the concrete sections was calculated,

given the areas of reinforcement; As,bot = 226.19mm2, As,top = 100.53mm2,

and the material properties; fck = 30MPa, fy = 500MPa, εult = 0.0035,

Es = 205GPa. Firstly, expressions for the compressive (C) and tensile (T )

forces, due to bending, in the concrete beam cross section are generated as

functions of the neutral axis depth, x;

C = b(0.8x)fck

= 150(0.8x)(30)

= 3600x (6.2)

The tensile force is calculated assuming that the steel has reached its design

yield value;

T =
As,botfy
γm1

=
(226.19)(500)

1.15
= 98.343 kN (6.3)
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(b)

Figure 6.10.: Concrete beam design; (a) along span; (b) cross section

The compressive force, C, and the tensile force, T , are equated in order to

calculate the neutral axis depth, x;

3600x = 98, 343

x = 27.32mm (6.4)

Having calculated the neutral axis depth, the assumption that the steel has

yielded should be verified;
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εs = 0.0035

(
161− 27.32

37.32

)
= 0.01712 > 0.002 XXX (6.5)

The bending moment capacity, Mult, can then be calculated;

Mult = T (d− 0.04x)

= (98, 343)[161− 0.4(27.32)]

= 14.76kN −m (6.6)

This calculation can be repeated, allowing for the minimal effect of the

compression reinforcement;

C = [b(0.8x) +As,top(m− 1)]fck

= [150(0.8x) + 100.53(6.65)](30)

= 3600x+ 20, 055.7 (6.7)

Replacing Equation 6.2 with Equation 6.7, a neutral axis depth of x =

21.75mm is calculated. The ultimate moment capacity is increased slightly

to MULT = 14.99kN −m, which corresponds to a 1.6% increase in ultimate

state moment capacity.

6.3.6. Strand rating

The strand used during post-tensioning was a Freyssinet 15.7mm diame-

ter 7-wire concentric strand with a yield strength, fy,ps = 1860MPa. The

tabulated cross sectional area of the strand is given as 150mm2, in accor-

dance with PR EN 10138-3:2006 (British Standards Institute, 2006). The

tensile capacity of the strand is therefore given as Fpk = 279kN . Code val-

ues specify that in prestressing design, the maximum allowable tensile force

in the strand should be limited to 0.7Fpk = 195kN . The post-tensioned

concrete beams were stressed no higher than 200kN in any case throughout

laboratory testing.
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Figure 6.11 shows the 15.7mm 7-wire concentric Freyssinet prestressing

strand and post-tensioning collet, as used in the post-tensioning of the 9

post-tensioned concrete beams tested in the laboratory.

(a)
(b)

Figure 6.11.: Freyssinet 7-wire 15.7mm concentric strand and pre-stressing
collet for anchorage

6.3.7. Prediction of Natural bending frequencies

The prediction of the natural frequency of the post-tensioned concrete beams

is outlined. An uncracked analysis and cracked analysis of the post-tensioned

concrete beams has been compared for zero post-tensioning force. The effect

of the post-tensioning force itself should act as to increase the neutral axis

depth and subsequently increase the frequency of vibration, where cracking

has occurred.

Uncracked Analysis

Taking moments about the top fibre to calculate the uncracked neutral axis

depth, x̄u, the following is obtained;

x̄u =

bh2

2 + π
(
mri

2 − ro2
) (

h
2 + e

)
+ (m− 1)

[
Ast

(
c+ φt

2

)
+Asb

(
h− c− φb

2

)]
bh+ π (mri2 − ro2) + (m− 1) (Ast +Asb)

(6.8)
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Figure 6.12.: Uncracked modelling

To calculate the uncracked second moment of area, Iu, of the section, the

parallel axis theorem is applied about the neutral axis;

Iu =
bh3

12
+ bh

(
x̄u −

h

2

)2

−

[
π

4
ro

4 + πro
2

(
h

2
+ e− x̄u

)2
]

+

[
π

4
ri

4 +mπri
2

(
h

2
+ e− x̄u

)2
]

+ (m− 1)Ast

(
x̄u − c−

φt
2

)2

+ (m− 1)Asb

(
h− x̄u − c−

φb
2

)2

(6.9)

Cracked Analysis

Taking moments about the top fibre to calculate the cracked neutral axis

depth, x̄c the following is obtained;

bx̄c
2

2
+

[
(m− 1)Ast

(
c+

φt
2

)
+mπri

2

(
d

2
+ e

)
+mAsb

(
h− c− φb

2

)]
=
[
bx̄c + (m− 1)Ast +mπri

2 +mAsb
]
x̄c

(6.10)
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Figure 6.13.: Cracked modelling

rearranging, the following quadratic equation is obtained;

bx̄c
2 + 2

[
(m− 1)Ast +mπri

2 +mAsb
]
x̄c

− 2

[
(m− 1)Ast

(
c+

φt
2

)
+mπri

2

(
d

2
+ e

)
+mAsb

(
h− c− φb

2

)]
= 0

(6.11)

making the following substitutions;

A = b (6.12)

B = 2
[
(m− 1)Ast +mπri

2 +mAsb
]

(6.13)

C = −2

[
(m− 1)Ast

(
c+

φt
2

)
+mπri

2

(
d

2
+ e

)
+mAsb

(
h− c− φb

2

)]
(6.14)

and solving the quadratic equation gives values for the cracked neutral axis

depth, x̄c;

x̄c =
−B ±

√
B2 − 4AC

2A
(6.15)
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The cracked second moment of area, Ic, of the section is subsequently cal-

culated;

Ic =
bx3
c

12
+ bxc

(
h

2
− xc

2

)2

+ (m− 1)Ast

(
xc − c−

φt
2

)2

+mπri
2

(
h

2
+ e− xc

)2

+mAsb

(
h− xc − c−

φb
2

)2
(6.16)

The prediction of the fundamental bending frequencies of each of the 9 un-

cracked and cracked post-tensioned concrete beams for zero post-tensioning

force magnitude are outlined in Table 6.8. The frequencies have been pre-

dicted based on the dynamic formula for a simply supported beam as out-

lined in Equation 6.20;

Table 6.8.: Predictions of cracked and uncracked fundamental frequencies
for PSC Beams

e xu xc Iu Ic ω1,u ω1,c Ic/Iu
(mm) (mm) (mm) (mm4) (mm4) (Hz) (Hz)

-52 99.58 49.37 1.12×108 6.56×107 79.26 60.78 0.59
-39 100.05 51.06 1.10×108 6.64×107 78.74 61.15 0.60
-26 100.53 52.71 1.09×108 6.75×107 78.37 61.66 0.62
-13 101.01 54.33 1.08×108 6.90×107 78.14 62.33 0.63
0 101.49 55.91 1.08×108 7.08×107 78.05 63.15 0.65

+13 101.96 57.47 1.08×108 7.30×107 78.10 64.12 0.67
+26 102.44 58.99 1.09×108 7.56×107 78.30 65.23 0.69
+39 102.92 60.49 1.10×108 7.85×108 78.64 66.48 0.71
+52 103.40 61.97 1.11×108 8.18×108 79.12 67.87 0.73

6.4. Type of prestressing

There are many types of prestressed concrete elements, many different tech-

niques for prestressing concrete, and varying degrees of prestressing. They

are summarised in the following sections.
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6.4.1. External vs. Internal prestressing

1. External Prestressing: when prestressing is achieved by elements

located outside the member cross section, it is called “external pre-

stressing”. The tendons can lie outside the member, or inside the

hollow of the section.

2. Internal Prestressing: when the prestressing is achieved by ele-

ments located inside the extents of the member cross section (most

commonly by embedded tendons inside the extents of the concrete

cross section), it is known as “internal prestressing”. Most of the

applications of prestressing are internal prestressing.

6.4.2. Pre-tensioning/Prestressing vs. Post-tensioning

Whereas the overarching term for pre-application of an axial stress through-

out a cross section is “prestressing”, there is a distinction to be made be-

tween pre-tensioning or pre-stressing and post-tensioning.

1. Pre-tensioning/Prestressing: the tensile load is applied to the ten-

dons before the concrete is cast, and the concrete is then cast around

the tendons. The concrete bonds to the prestressing steel, and once

it has cured and set, the strands are released. This tensile force is

released, transmitting a compressive force into the concrete.

2. Post-tensioning: the tendons are placed in a duct and the concrete

is cast around it. The concrete hardens and the tensile load is applied

to the tendons, after hardening of the concrete. The pre-compression

is transferred from the steel to the concrete by means of an anchoring

device at the ends of the post-tensioned element.

6.4.3. Linear vs. Circular prestressing

Prestressing can be categorised by the type of profile that the tendons fol-

low and the direction of the prestressing force throughout the element, as

outlined below;

1. Linear prestressing: when the prestressed members are straight or

flat, in the direction of prestressing, the prestressing is known as “lin-

ear prestressing”, however, the profile of the tendon may be curved,
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which is common to resist bending moments that arise in different lo-

cations along the span of multi-span beams, for example. Beams and

slabs are subjected to linear prestressing.

2. Circular prestressing: When the prestressed members are curved,

in the direction of prestressing, the prestressing is known as “circular

prestressing”. Tanks, silos, wind turbine foundations, and especially

nuclear reactors tend to make use of circular prestressing.

6.4.4. Full vs. Partial prestressing

The level of prestressing is also a means to distinguish;

1. Full prestressing: when the level of prestressing is such that no

tensile stress is allowed in the concrete under service load.

2. Limited prestressing: when the level of prestressing is such that

the tensile stress under service load is within the cracking stress of the

concrete.

3. Partial prestressing: when the level of prestressing is such that

under tensile stresses due to service load, the crack width is within an

allowable limit.

In the case of the pre-stressed beams tested and described throughout the

course of this chapter, the tendons have a linear profile, are embedded in

the extents of the concrete cross section, within a post-tensioning duct, and,

as such, the beams are internally linearly post-tensioned concrete beams.

Depending on the level of varying post-tensioning load, the beams are either

fully or partially prestressed.

6.5. Experimental Set-up

Section 6.3 outlined the design and subsequent materials testing of the con-

crete specimens to be tested in the static and dynamic experiments de-

scribed in detail in this section. This section describes the experimental

set-up of both static three point bending tests and dynamic impact testing

conducted on the 9 uncracked post-tensioned concrete beams at different
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post-tensioning load levels. Section 6.6 describes the concrete test speci-

mens tested in the laboratory. Section 6.6.1 outlines the set-up of the static

three point bending tests, while Section 6.6.2 outlines the set-up of the dy-

namic impact testing conducted. The analysis of the results obtained is

outlined in Section 6.7.

6.6. Concrete Test Specimens

The concrete beam test specimens tested in the laboratory were 2.3m long

post-tensioned concrete beams with minimum reinforcement provided, in

accordance with Eurocode 2 (British Standards Institute, 2004). The span

length between the simple supports was 2m. The beams were 200mm deep

and 150mm wide in cross-section. The concrete had a characteristic cube

strength, fck = 37MPa, as outlined in Section 6.3.2. The Young’s Modulus

of the concrete was determined experimentally to be Ec = 26.88GPa, as

outlined in Section 6.3.3. The beams were lightly reinforced with 2 H12

as bottom reinforcement and 2 H8 as hanger bars (top reinforcement). H8

shear links were provided at 200mm centres and an additional 2 H8 shear

links were provided in the anchorage zone as bursting reinforcement, in

accordance with the CIRIA method, and as shown in Figure 6.14, and as

outlined in Section 6.3.4. Cover to all reinforcement was specified to be a

minimum of 25mm (Noble et al., 2014a, 2015c).

2000LOAD CELL

LOADING
JACK/ACTUATOR

LOAD CELL & ACTUATOR FIXED
TO EXTERNAL FRAME

LOADING
JACK/ACTUATOR

15.7mm PRESTRESSING
STRAND

LVDT
ACCELEROMETER

9No. test specimens:

9No. 150 wide x 250 deep PS beams with following PS
bar/strand eccentricities:
e = -52, -39, -26, -13, 0, +13, +26, +39, +52

11No. PS Load testing levels:
P = 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 kN

2No. H8 SHEAR LINKS
PROVIDED @140MM FROM
BEAM FACE AS ADDITIONAL
BURSTING REINFORCEMENT
IN ACCORDANCE WITH CIRIA
METHOD

20MM THK
STEEL PLATE
200 X 150 MM

800

Figure 6.14.: Experimental set-up.

Figure 6.16 shows the set-up in the lab. Figure 6.16b shows the set-
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up of the jacks on either end of the beam. A 15.7mm diameter 7-wire

concentric Freyssinet pre-stressing strand, with a yield strength, fy,ps =

1860MPa was threaded through a 20mm diameter post-tensioning duct,

cast into the concrete beam. 20mm thick steel plates were placed on either

end of the beam. A 300 ton loading jack was placed on end against the steel

plate. A TML KCM-300kNA ‘through-hole compression’ load cell, rated to

300kN, was placed between the loading jack and the prestressing collet.

This arrangement was identical on each end of the beam, which helped

to balance the mass on either end of the beam. A prestressing collet was

fixed on the prestressing strand, such that when the jacks were elongated,

they jacked against the prestressing collet, gripping the strand and hence,

post-tensioning the concrete beam. The jack was controlled by means of a

hydraulic hand pump, as shown in Figure 6.16b (Noble et al., 2014a, 2015c).

6.6.1. Static 3-point bending tests

Three point static bending tests were conducted on post-tensioned concrete

beams in the laboratory, as shown in the schematic in Figure 6.14, and

later in Figure 6.16. 9 post-tensioned concrete beams were tested statically

through three point bending. The 9 beams each had a different straight-

profiled post-tensioning strand eccentricity, as outlined later in Figure 6.19.

The beams were placed underneath a small loading frame, which is rated

to 180 tons, in the laboratory, which in turn, is anchored onto a metre deep

reinforced concrete strong-floor. The loading ram was placed at midspan of

the beam as shown in Figure 6.14 and Figure 6.16. The loading ram was

attached to a hydraulic jack, which was controlled via hand pump.

P

Figure 6.15.: Measuring static deflection.
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Each of the 9 uncracked post-tensioned concrete beams were tested stat-

ically at different values of post-tensioning load. The post-tensioning load

levels were incremented in 20kN increments from 0-200kN. The lateral load

was applied to the beams in such a way that the deflection reading from the

dial gauges was never greater than 1mm, giving a minimum span/deflection

ratio of 2000, much greater than the code specified value of 250. In this

way, the test was deflection controlled. Furthermore, at such small values

of midspan deflection, flexural cracking was not induced in any of the sec-

tions. Deflection was measured by means of two right-angled steel plates

that were affixed to the beam section at mid-span as shown in Figure 6.15.

A measurement was taken at each beam face to account for possible torsion

of the beam section due to an asymmetrically applied load. Two deflection

and transverse load readings were taken at each beam face, at each post-

tensioning load level. This iteration was repeated once in order to minimize

error in the experiment.

(a) (b)

Figure 6.16.: Three-point static bending test set-up in laboratory.

The results of the static testing are presented and discussed in Sec-

tion 6.8.1, and the results presented in Table 6.9, and Figures 6.24 to 6.33.

6.6.2. Dynamic impact tests

Dynamic impact testing has been conducted on 9 post-tensioned concrete

beams. Figure 6.14 in conjunction with Figure 6.17 shows the experimental

set-up. Dynamic impact testing was conducted at three locations along the

length of the beam span, as outlined in Figure 6.17, labelled L1-L3. The

beam was struck 10 times at each location using an impact rig assembled
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Figure 6.17.: Instrumentation and set-up of dynamic test in laboratory

in the lab with a rope and pulley system. The impact rig in question can

be seen in the foreground of Figure 6.18a. Figure 6.18a shows the set-up

of the experiment as it was in the laboratory. The beam being tested can

be seen on the left hand side of the picture. Affixed to the beam was a

Dytran model 3200b4 10,000g range accelerometer. The accelerometer, 2

load cells and 4 strain gauges were connected to a System 6000 data logging

system. The data was sampled at a rate of 10,000Hz, ensuring a Nyquist

frequency of 5,000Hz. Since the fundamental bending frequency was ex-

pected to be approximately 78Hz, this sampling rate theoretically enabled

the first 8 bending modes of vibration to be detected by the instrumenta-

tion (i.e. 78 × 82 = 4, 992 Hz). The experiment was repeated at different

post-tensioning load levels, as outlined in Figure 6.14. The post-tensioning

load was increased in intervals of 20kN from 0-200kN. This helped ensure

repeatability of the experiment. Strain gauges were fixed at the three im-

pact locations (e1- e3) in order to obtain the mode shapes of vibration. The

accelerometer (A1) was strategically placed at a distance of 800mm from

the support, in order to identify all of the first three modes of vibration.

Placement at midspan would eliminate the opportunity to obtain the sec-

ond mode of vibration as it is a nodal point for the second mode. A fourth

strain gauge (ea1) was placed in the axial direction, close to midspan, in or-

der to compare the axial strain data with the pre-stress load data obtained

from the load cells (Noble et al., 2014a, 2015c, 2016). Figure 6.18 shows a

picture of the instrumentation as affixed to a beam in the laboratory. The

3 strain gauges can be seen affixed parallel to the direction of vibration at

the 3 impact locations. In Figure 6.18b, some light, superficial damage to

the concrete cover can be seen in the locations where the impact rig struck
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the beam.

(a) (b)

Figure 6.18.: (a) Experimental set-up in laboratory; (b) Instrumentation of
the beam sections.

Figure 6.19 shows the cross-sections of each of the 9 post-tensioned con-

crete beams tested. Each beam has a different post-tensioning strand ec-

centricity, as shown.

13 26 39

52

13 26 39

52

(a) Beam 1
e=0mm

(b) Beam2
e=+13mm

(c) Beam 3
e=+26mm

(d) Beam 4
e=+39mm

(e) Beam 5
e=+52mm

(f) Beam 6
e=-13mm

(g) Beam 7
e=-26mm

(h) Beam 8
e=-39mm

(i)  Beam 9
e=-52mm

Figure 6.19.: Cross sections of 9 beams tested.
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6.7. Experimental Analysis

Section 6.5 described the set-up of the static and dynamic testing on the

9 uncracked post-tensioned concrete beams in the laboratory, including de-

tails of the instrumentation used to monitor the beams during testing. This

section describes the analysis of the dynamic results obtained, including

the signal processing and peak picking regime invoked to extract the natu-

ral frequencies of the post-tensioned concrete beams, in Section 6.7.1. Sec-

tion 6.7.2 outlines the calculation of the damping ratios of the post-tensioned

concrete beams via the half-power bandwidth method.

6.7.1. Analysis of Dynamic data

The signal processing regime outlined had been reported previously (No-

ble et al., 2015c, 2016). Following collection of the impact hammer data

in the System 6000, the raw acceleration-time signals were imported into

MATLAB (MATLAB, 2014). The Fast Fourier Transform (FFT) was then

performed on the acceleration data in the time domain, representing the

signal in the frequency domain. A peak picking algorithm was used to

identify the peaks in the frequency domain. Sample results can be seen in

Figure 6.20, which shows the unprocessed noisy data in both the time and

the frequency domain. As shown, the fundamental bending frequency can

be identified from peak picking. The peak picking method is the simplest

means of determining the modal characteristics in the frequency domain, in

which the natural frequencies correspond to the peaks in the FFT, however

as pointed out by Foti et al. (2014) “this method is not reliable when the

different modes of vibration are not sufficiently separated from each other.”

The raw signal contained significant electrical noise. Subsequently, the

peaks in the frequency domain were initially difficult to determine. This is

outlined in Figure 6.20. The fundamental peak is readily identifiable at a

value of approximately 71.8Hz, as shown in Figure 6.20a and Figure 6.20b,

however all subsequent peaks are distorted due to high frequency noise com-

ponents in the signal. A signal processing algorithm was developed in MAT-

LAB (MATLAB, 2014) and is outlined in Figure 6.21. Following smoothing

in the frequency domain, the peak picking algorithm was reapplied and

the peaks were again determined. The search bands for the fundamental

frequency of each beam were defined as 55-85Hz (Noble et al., 2015c, 2016).
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Figure 6.20.: Unprocessed, noisy signal at different scales (a) and (b). Iden-
tification of fundamental bending frequency possible. Higher
modes unintelligible.

Figure 6.21.: Signal processing algorithm flow chart.

Following signal processing, the structural peaks were much easier to

identify as outlined in Figure 6.22a. The peaks in the frequency domain

were identified as the natural frequencies of the structural system, as shown

in Figure 6.22b. This algorithm is required to deal with the high levels

of noise associated with impact testing of concrete beams with a relatively
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high fundamental bending frequency, which is expected to be in the region

of 78Hz (Noble et al., 2015c, 2016).
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Figure 6.22.: (a) Signal Processing and (b) Peak Picking to identify correct
fundamental bending frequencies.

Figure 6.22 shows a typical accelerometer response of a post-tensioned

concrete beam. Figure 6.22a and 6.22b show the accelerometer signals in

both the time and frequency domain, before the signal was processed to

eliminate noise and after signal processing. The scale of the acceleration

axis in the time domain of each signal is significantly reduced following

signal processing, indicating the extent of the amplitude attributable to

noise components (Noble et al., 2015c, 2016).

6.7.2. Calculation of Damping Ratios, ξ

The damping ratio, ξ of the 9 uncracked post-tensioned concrete beams

were calculated for each axial load level using the half-power bandwidth

method, as described by Noble et al. (2015a). The half-power bandwidth

method enables evaluation of damping from forced vibration tests without

knowing the applied force, and is thus used in vibration and modal testing.

By assuming that the damping ratio, ξ, is small and that the frequency at

maximum amplitude is approximately equal to the undamped fundamental

frequency, ω1, the classical result relating the damping ratio to the half-

power bandwidth can be written as (Wu, 2014);

ξ =
ωb − ωa

2ω1
(6.17)
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ωa and ωb are the half-power frequencies (i.e. the frequencies of the function

at Max. Amplitude/
√

2). According to Wu (2014), the classical result is

only valid for damping ratio less than 0.1, and is not a good prediction for

ξ > 0.1. An example of the calculation of the damping ratio in accordance

by the half-power bandwidth method is shown in Figure 6.23, and using the

formula presented in Equation 6.17.
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Figure 6.23.: Half-power bandwidth method of calculation of damping ratio,
ξ, on different scales on x and y axis; (a) and (b)

6.8. Experimental Results

Section 6.7 outlined the analysis of the dynamic results obtained from the

dynamic impact testing of the 9 uncracked post-tensioned concrete beams

tested, including the signal processing regime and peak picking algorithm

used to identify the natural frequencies of the system. Furthermore, the

estimation of the damping ratios, via the half-power bandwidth method is

also presented.

In this section, the results of the static and dynamic testing will be de-

scribed and analysed. Section 6.8.1 presents the results and statistical signif-

icance of the three point static bending tests conducted. Section 6.8.2 out-

lines the results and statistical significance of the dynamic impact testing,

which include the three dimensional graphs of relative modal amplitude vs.

frequency and post-tensioning load level, and the regression analysis of the

fundamental frequency on post-tensioning load. Section 6.8.3 presents the
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comparison of the static and dynamic regression models. Section 6.8.4 de-

scribes the relationship between the damping ratios and the post-tensioning

force magnitude, including a regression analysis of damping ratios on post-

tensioning force magnitude. Finally, Section 6.8.6 compares the obtained

results to the mathematical prediction model outlined in Chapter 5.

6.8.1. Static Results

Static three-point bending tests were conducted on all 9 uncracked post-

tensioned concrete beams. The post-tensioning force magnitude was varied

and a point load was applied at midspan to the simply-supported post-

tensioned concrete beam. The deflection corresponding to each transverse

point load was measured, as described in Section 6.6.1 previously. This

was repeated twice for each beam tested to help reduce experimental error.

Both iterations were recorded and the results are displayed in Figures 6.25-

6.33, labelled as ‘Iteration 1’ and ‘Iteration 2’. A sample set of results are

displayed in Table 6.9. From the collected load-deflection data, the equiva-

lent static flexural rigidity, EI was estimated using the following equation

for deflection at midspan of a simply-supported beam due to a point-load

applied at mid-span;

δ =
P`3

48EI
(6.18)

Rearranging, the equivalent static flexural rigidity is given as;

EI =
P`3

48δ
(6.19)

The equation for the nth natural bending frequency of a simply-supported

beam is given as;

ωn =
(nπ
`

)2
√
EI

m
(6.20)

Where n is the mode number, ` is the span length, E is the Young’s Modulus

of Elasticity and I is the second moment of area of the cross section. In

order to obtain a predicted static-equivalent bending frequency, ωn,S the
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following substitution is made;

ωn,S =
(nπ
`

)2
√

P`3

48δm
(6.21)

This transformation from equivalent static flexural rigidity to fundamental

natural bending frequency (i.e. n = 1) is given for Beam 1 (e=0mm) in Fig-

ure 6.24. Sample data for Beam 3 (e=+26mm) is given below in Table 6.9.

The difference between the deflection data on either beam face is significant

in this instance, highlighting the extent of the error in the experiment, and

the possibility of torsion in the concrete beam section.

Table 6.9.: Sample static data for Beam 3 (e=+26mm)

N P δ1 δ2 EI1 EI2 EIave ω1,Save

(kN) (kN) (mm) (mm) (kNmm2) (kNmm2) (kNmm2) Hz

0.15 10.1 0.80 1.00 2.10E+09 1.68E+09 1.89E+09 63.08
0.16 10.5 0.79 1.00 2.22E+09 1.75E+09 1.98E+09 64.54
23.06 10.6 0.64 1.00 2.76E+09 1.77E+09 2.26E+09 68.96
23.00 10.7 0.63 1.00 2.83E+09 1.78E+09 2.31E+09 69.62
44.53 11.3 0.53 1.00 3.55E+09 1.88E+09 2.72E+09 75.58
44.39 11.5 0.55 1.00 3.48E+09 1.92E+09 2.70E+09 75.33
63.07 12.5 0.47 1.00 4.43E+09 2.08E+09 3.26E+09 82.74
62.95 12.5 0.48 1.01 4.34E+09 2.06E+09 3.20E+09 82.02
82.34 13.7 0.44 1.01 5.19E+09 2.26E+09 3.73E+09 88.47
82.26 13.4 0.44 1.00 5.08E+09 2.23E+09 3.65E+09 87.63
100.69 14.1 0.40 1.00 5.88E+09 2.35E+09 4.11E+09 92.96
100.72 14.5 0.43 1.01 5.62E+09 2.39E+09 4.01E+09 91.75
121.04 15.2 0.41 1.00 6.18E+09 2.53E+09 4.36E+09 95.67
120.77 15.3 0.40 1.00 6.38E+09 2.55E+09 4.46E+09 96.83
141.48 15.8 0.34 1.00 7.75E+09 2.63E+09 5.19E+09 104.42
141.31 15.7 0.40 1.00 6.54E+09 2.62E+09 4.58E+09 98.09
161.64 16.0 0.39 1.00 6.84E+09 2.67E+09 4.75E+09 99.92
161.20 16.4 0.40 1.00 6.83E+09 2.73E+09 4.78E+09 100.25
179.96 16.8 0.38 1.02 7.37E+09 2.75E+09 5.06E+09 103.08
179.49 16.5 0.36 1.00 7.64E+09 2.75E+09 5.19E+09 104.47
202.42 16.9 0.38 1.02 7.41E+09 2.76E+09 5.09E+09 103.38
201.54 16.7 0.37 1.00 7.52E+09 2.78E+09 5.15E+09 104.05

Figure 6.24a shows the measured change in static flexural rigidity, EI,

with increasing post-tensioning force magnitude for Beam 1 (e=0mm), and

Figure 6.24b shows the equivalent static prediction of the fundamental bend-

ing frequency using Equation 6.21. Figures 6.25-6.33 show the static predic-

tion of natural bending frequency based on the measured 3-point bending
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data for all 9 uncracked post-tensioned concrete beams for varying post-

tensioning force magnitude. In the case of Beams 1-6, a statistically signifi-

cant increasing trend is observed in predicted static-equivalent fundamental

bending frequencies with increasing post-tensioning force. In the case of

Beams 2-5, the effect of the post-tensioning strand eccentricity is to cause

the beams to camber upwards and the downward deflection to be reduced.

In the case of Beams 6-9, the effect of the post-tensioning strand eccen-

tricity is such as to induce further cracking in the bottom fibre and cause

further sagging in the simply supported beam, therefore a lesser magnitude

of midspan point load would be required to induce the 1mm deflection, and

therefore, the static flexural rigidity, and hence the natural bending fre-

quency is predicted to decrease. Beam 1 (e=0mm) has zero eccentricity,

and therefore no moment due to prestressing force. In this case, the axial

normal stress acts so as to ensure the entire section acts in pure compression,

significantly increasing its capacity to resist transverse load before cracking

occurs in the bottom fibre of the section.
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Figure 6.24.: (a) Beam 1 (e=0mm); Static, EI (b) Beam 1 (e=0mm); Dyn.
equiv. ω1

For Figures 6.25 to 6.30, it is determined that for Beam 1-6, a statisti-

cally significant increase in static-equivalent natural bending frequency with

increasing post-tensioning load magnitude is apparent. However, for Beam

7-9, no statistically significant trend can be identified in the data. This is

concurrent with what was predicted due to the different stress distributions

in the given sections. Beam 7-9 have eccentricities that promote further
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bending and cracking in the bottom fibre, and hence increasing the post-

tensioning load acts as to open cracks and theoretically decrease the bending

frequency. This has not been found experimentally. At best, from this data,

a non-significant statistical trend is all that can be observed.
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Figure 6.25.: Equivalent static frequency as a function of post-tensioning
load; (a) Beam 1 (e=0mm); Iteration 1 (b) Beam 1 (e=0mm);
Iteration 2
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Figure 6.26.: Equivalent static frequency as a function of post-tensioning
load; (a) Beam 2 (e=+13mm); Iteration 1 (b) Beam 2
(e=+13mm); Iteration 2

These static-equivalent bending frequencies shall be compared against

the measured natural bending frequencies obtained from dynamic impact

testing on the same post-tensioned concrete sections in Section 6.8.3.
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Figure 6.27.: Equivalent static frequency as a function of post-tensioning
load; (a) Beam 3 (e=+26mm); Iteration 1 (b) Beam 3
(e=+26mm); Iteration 2
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Figure 6.28.: Equivalent static frequency as a function of post-tensioning
load; (a) Beam 4 (e=+39mm); Iteration 1 (b) Beam 4
(e=+39mm); Iteration 2

6.8.2. Dynamic Results

Figure 6.34 shows sample results for Beam 2 (e=+13mm). Figure 6.34a

shows the peaks of the frequency domain representation of all 30 signals su-

perimposed on each other for each post-tensioning load level. In total, there

are 330 signals superimposed in the graph. The dominance of the fundamen-

tal bending mode of vibration is evident from this figure, due to the relative

contribution of this mode to the overall structural dynamic response of the
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Figure 6.29.: Equivalent static frequency as a function of post-tensioning
load; (a) Beam 5 (e=+52mm); Iteration 1 (b) Beam 5
(e=+52mm); Iteration 2

0 50 100 150 200
0

20

40

60

80

100

120

Prestress, N (kN)

F
re

qu
en

cy
, ω

1 (
H

z)

 

 

Observed Data
Fitted Least Square regression line:
ω

1
 = 61.3804 + 0.0643*N

95% CI
95% PI

(a)

0 50 100 150 200
0

20

40

60

80

100

120

Prestress, N (kN)

F
re

qu
en

cy
, ω

1 (
H

z)

 

 

Observed Data
Fitted Least Square regression line:
ω

1
 = 58.8722 + 0.0732*N

95% CI
95% PI

(b)

Figure 6.30.: Equivalent static frequency as a function of post-tensioning
load; (a) Beam 6 (e=-13mm); Iteration 1 (b) Beam 6 (e=-
13mm); Iteration 2

system. This dominance of the first bending mode was observed for all 9

beams tested. The vertical axis shows the normalised relative modal am-

plitude of the response of the system. Figure 6.34b represents Figure 6.34a

in two dimensions. The diameter of the data points is directly proportional

to the relative modal amplitude. All peaks in the frequency domain in the

range of 0-1000Hz are plotted against the post-tensioning load level of the

tested specimen. The fundamental bending frequency has been identified

to lie within the search bands of 55 to 85Hz. Figure 6.34c zooms in on
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Figure 6.31.: Equivalent static frequency as a function of post-tensioning
load; (a) Beam 7 (e=-26mm); Iteration 1 (b) Beam 7 (e=-
26mm); Iteration 2
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Figure 6.32.: Equivalent static frequency as a function of post-tensioning
load; (a) Beam 8 (e=-39mm); Iteration 1 (b) Beam 8 (e=-
39mm); Iteration 2

Figure 6.34b and shows the estimation of the first modal frequency from

peak picking of each of the 330 dynamic signals obtained, at different post-

tensioning load levels. The scatter in the estimation of the fundamental

frequency is noted to be large. Figure 6.34d shows some simple data ana-

lytics. The standard deviation, σ of the data ranges between 2 and 4Hz,

which is between 3 and 5% of the mean, µ of each data set (Noble et al.,

2015c).
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Figure 6.33.: Equivalent static frequency as a function of post-tensioning
load; (a) Beam 9 (e=-52mm); Iteration 1 (b) Beam 9 (e=-
52mm); Iteration 2

3D Graphs

Figures 6.35 to 6.37d show 3D graphs of normalised relative modal ampli-

tude of the response of the system versus frequency and post-tensioning

load level. As can be seen in each of the graphs, the dominance of the first

bending mode of vibration in the overall structural dynamic response of

the system is evident. Figure 6.35 shows the frequency response of Beam 1

(e=0mm) for each axial load level. Figure 6.36 shows the frequency response

of Beams 2, 3, 4 and 5, who have post-tensioning strand eccentricities that

promote upward camber and compression in the bottom fibre of the sec-

tion. Figure 6.37 shows the frequency response of Beams 6, 7, 8 and 9 who

have post-tensioning strand eccentricities that conversely, promote tension

in the bottom fibre. The importance of these graphs is that they highlight

the dominance of the first bending mode of vibration in the overall struc-

tural dynamic response of all 9 post-tensioned concrete beams tested in the

laboratory.

Regression Analysis

Figures 6.40 to 6.42 show the results of a linear regression analysis that has

been applied to the relationship between the fundamental bending mode of

vibration and the post-tensioning load level. The results for Beam No.2 have

been published previously (Noble et al., 2015c), but this chapter expands on
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|â
(ω

)|
m
ax

|â
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Figure 6.34.: (a) Processed signals in frequency domain as a function of axial
load (3D); (b) All modes plotted against axial load (2D); (c)
Zooming in on the fundamental bending frequency; (d) Simple
data analytics on the measured frequencies as a function of
axial force (Beam 2).

previous studies and reports on results for a whole suite of 9 post-tensioned

concrete beams. The smaller data points represent each individual estima-

tion of the fundamental frequency, while the larger data points represent the

mean of each data set. The inner dashed lines represents the 95% confidence

interval for the regression line, while the outer dashed lines are the 95% pre-

diction interval for an individual estimation. The results of statistical t-test

on the regression slope parameter, for each of the 9 beams tested, are dis-

played in Table A.4 in Appendix A.3 on page 337. It was found, for 6 of

the 9 uncracked post-tensioned concrete beams (namely, Beams 1,2,3,4,6,9)

that there is no statistically significant change in fundamental bending fre-

quency with prestress force magnitude. Three beams showed a statistically
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Figure 6.35.: Rel. Modal Amplitude vs. frequency and post-tensioning load;
Beam 1 (e=0mm)
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|â
(ω

)|
m
ax

|â
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|â
(ω

)|

Axial Load, N (kN)Frequency,ω
n , (Hz)

(d)

Figure 6.36.: Rel. Modal Amplitude vs. frequency and post-tensioning load;
(a) Beam 2 (e=+13mm); (b) Beam 3 (e=+26mm); (c) Beam
4 (e=+39mm); (d) Beam 5 (e=+52mm)

significant increase in fundamental bending frequency with increasing post-

tensioning force magnitude (namely Beams 5,7,8). Furthermore, Figure 6.38
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Figure 6.37.: Rel. Modal Amplitude vs. frequency and post-tensioning load;
(a) Beam 6 (e=-13mm); (b) Beam 7 (e=-26mm); (c) Beam 8
(e=-39mm); (d) Beam 9 (e=-52mm)

shows all data for Beam No.2 plotted on a normal probability paper plot.

All data points lie within the boundaries that would be expected if it were

from the same, Normal parent distribution. This further indicates that any

observed changes in natural frequency with post-tensioning load magnitude

is likely due to chance rather than any systematic effect. Similar results

have been observed for 6 of the 9 beams tested.

As outlined by Noble et al. (2015c), Figure 6.39 shows a comparison of

the different regression lines for each of the 9 beams plotted against one

another. Figure 6.39a shows the results for Beams 1-5 while Figure 6.39b

shows the results for Beam 1 and Beams 6-9. Theory would suggest that as

the eccentricity increases, the intercept values of the regression lines should

also increase, as there is increased second moment of area due to the parallel

axis theorem, and a subsequent expected increase in ‘virgin’ natural bending
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Figure 6.38.: All data for Beam 2 (e=+13mm) plotted on a normal proba-
bility paper, indicating data normality.

frequencies for the simply supported post-tensioned beams. However, as

shown in Figure 6.39, this is not the case. Statistically significant increases

in natural frequency with increasing post-tensioning load were observed for

Beam Nos. 5,7 & 8. All other beams displayed no statistically significant

changes in natural frequency. This is outlined further in Table 4.11. From

Figure 6.39 there is some evidence to suggest that the variation in the

fundamental frequency with increasing post-tensioning load magnitude is

greater for the largest values of eccentricity, e, as the trend for Beam 5

(e=+52mm) shows a much larger increase in frequency over the tested range

than for the other beams.

0 50 100 150 200
65

70

75

80

Axial force (kN)

N
at

ur
al

 F
re

qu
en

cy
, ω

 (H
z)

e=0mm
e=+13mm
e=+26mm
e=+39mm
e=+52mm

(a)

0 50 100 150 200
65

70

75

80

Axial force (kN)

N
at

ur
al

 F
re

qu
en

cy
, ω

 (H
z)

e=0mm
e=-13mm
e=-26mm
e=-39mm
e=-52mm

(b)

Figure 6.39.: Collated data of linear regression of fundamental bending fre-
quency as a function of post-tensioning load for (a) Beams 1-5
and (b) Beams 1, 6-9.

Table 4.11 shows the calculated linear regression intercept parameter
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(α0,i), and slope parameter (α1,i) when regressing ω1 on N for all 9 beams

(i). The corresponding linear regression equations are obtained by substi-

tuting into the following formula;

ω1 = α0,i + α1,iN (6.22)
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Figure 6.40.: Regression of ω1 on N ; Beam 1 (e=0mm)

6.8.3. Static vs. Dynamic results

Figure 6.43 to 6.45 shows the comparison between the static-equivalent pre-

diction of fundamental bending frequency to the measured frequencies from

the dynamic data. The linear regression lines for both the static-equivalent

predictions and the dynamic data are plotted against one another for each

of the 9 beams tested. For Beams 1,2,3,4,5,6 the static-equivalent prediction

of fundamental bending frequency shows a statistically significant increase

in the bending frequency with increasing post-tensioning force magnitude.

However, in comparison, the results from the dynamic testing show no statis-

tically significant trend in the data. For Beams 7,8 & 9, the static-equivalent

data shows no statistically significant trend with increasing post-tensioning

force magnitude.

6.8.4. Damping ratios

Figures 6.46 to 6.48 shows the results of a statistical regression analysis of

calculated critical damping ratios versus post-tensioning force magnitude.

Figures 6.46- 6.48d should be analysed in conjunction with Table A.6, which
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(d)

Figure 6.41.: Regression of ω1 on N ; (a) Beam 2 (e=+13mm); (b)
Beam 3 (e=+26mm); (c) Beam 4 (e=+39mm); (d) Beam 5
(e=+52mm)

outlines the statistical linear regression parameters, indicating the statisti-

cal significance of the changes observed in Figures 6.46- 6.48d. Beams 1,4

& 6 show no statistically significant relationship between damping ratio

and post-tensioning load level. Beams 2,8 & 9 show a statistically signifi-

cant decreasing trend in damping ratio with increasing post-tensioning load

level, while Beams 3,5 & 7 show a statistically significant increasing trend

in damping ratio with increasing post-tensioning load level. As such, the

testing results are inconclusive. No definitive statement on the relationship

between damping ratio and post-tensioning force magnitude can be made,

based on the obtained results, as depending on the beam tested, different

statistical significance conclusions have been observed. The value of the

critical damping ratio measured ranges between 0.23-5.01%, which is in the

range predicted for concrete structures.
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(d)

Figure 6.42.: Regression of ω1 on N ; (a) Beam 6 (e=-13mm); (b) Beam 7
(e=-26mm); (c) Beam 8 (e=-39mm); (d) Beam 9 (e=-52mm)
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Figure 6.43.: Comparing regression lines - static vs. dynamic results; Beam
1 (e=0mm)
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Figure 6.44.: Comparing regression lines - static vs. dynamic results; (a)
Beam 2 (e=+13mm); (b) Beam 3 (e=+26mm); (c) Beam 4
(e=+39mm); (d) Beam 5 (e=+52mm)

6.8.5. Comparison of results with existing models

Chapter 2 outlines a series of models predicting changes in natural frequency

with increasing post-tensioning force magnitude, compares and contrasts

the models, while offering critique on the validity and accuracy of each of

the models. Figures 6.49, 6.50 and 6.51 show the results obtained from

the dynamic impact hammer testing and subsequent frequency analysis on

the nine different uncracked post-tensioned concrete beams tested in the

laboratory, compared to the predicted changes in fundamental bending fre-

quencies according to the models proposed by Saiidi et al. (1994), Miyamoto

et al. (2000), Kim et al. (2004), Zhang et al. (2012) and Dall’Asta and Dezi

(1996).

Figure 6.49 shows good agreement between obtained results and the pre-

269



0 50 100 150 200
0

20

40

60

80

100

120

Axial force (kN)

N
at

ur
al

 F
re

qu
en

cy
, ω

 (
H

z)

 

 

Beam 6 − Dynamic
Beam 6 − Static 1
Beam 6 − Static 2

ω
1,D

=66.1165+0.0059N

ω
1,S1

=61.3804+0.0643N

ω
1,S2

=58.8722+0.0732N

(a)

0 50 100 150 200
0

20

40

60

80

100

120

Axial force (kN)

N
at

ur
al

 F
re

qu
en

cy
, ω

 (
H

z)

 

 

Beam 7 − Dynamic
Beam 7 − Static 1
Beam 7 − Static 2

ω
1,S1

=66.7005−0.0005N

ω
1,S2

=60.9159+0.0189N

ω
1,D

=69.6030+0.0445N

(b)

0 50 100 150 200
0

20

40

60

80

100

120

Axial force (kN)

N
at

ur
al

 F
re

qu
en

cy
, ω

 (
H

z)

 

 

Beam 8 − Dynamic
Beam 8 − Static 1
Beam 8 − Static 2

ω
1,D

=70.6975+0.0453N

ω
1,S1

=62.8552+0.0073N

ω
1,S2

=57.7603+0.0193N

(c)

0 50 100 150 200
0

20

40

60

80

100

120

Axial force (kN)

N
at

ur
al

 F
re

qu
en

cy
, ω

 (
H

z)

 

 

Beam 9 − Dynamic
Beam 9 − Static 1
Beam 9 − Static 2

ω
1,D

=66.3616−0.0032N

ω
1,S2

=64.1017−0.0159Nω
1,S2

=63.1564−0.0012N

(d)

Figure 6.45.: Comparing regression lines - static vs. dynamic results; (a)
Beam 6 (e=-13mm); (b) Beam 7 (e=-26mm); (c) Beam 8 (e=-
39mm); (d) Beam 9 (e=-52mm)
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Figure 6.46.: Regression of ξ on N ; Beam 1 (e=0mm)

diction models outlined by Saiidi et al. (1994), Miyamoto et al. (2000), Kim

et al. (2004), Zhang et al. (2012) and Dall’Asta and Dezi (1996). The re-
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(d)

Figure 6.47.: Regression of ξ on N ; (a) Beam 2 (e=+13mm); (b) Beam
3 (e=+26mm); (c) Beam 4 (e=+39mm); (d) Beam 5
(e=+52mm)

sults indicate that there is no statistically significant relationship between

post-tensioning force magnitude and fundamental bending frequency for the

beam with zero eccentricity, and as such, follows that predicted by Hamed

and Frostig (2006). However, the calculated linear regression line in this in-

stance, indicates a slightly increasing trend in fundamental frequency with

increasing post-tensioning force magnitude, and is bounded by the predic-

tion models outlined by Saiidi et al. (1994) and Kim et al. (2004).

Figures 6.50a-6.50d show the results for the beams labelled 2-5, with posi-

tive post-tensioning strand eccentricities, promoting tension in the top fibre

of the beam. Beams 2 & 3 (Figures 6.50a & 6.50b) indicate no statistically

significant increasing or decreasing trend in fundamental frequency with in-

creasing post-tensioning force magnitude, however, like Beam 1 previously,
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Figure 6.48.: Regression of ξ on N ; (a) Beam 6 (e=-13mm); (b) Beam 7
(e=-26mm); (c) Beam 8 (e=-39mm); (d) Beam 9 (e=-52mm)

0 50 100 150 200
−6

−4

−2

0

2

4

6

8

10

12

Prestress force magnitude (kN)

%
 c

h
an

g
e 

in
 N

at
u

ra
l F

re
q

u
en

cy
 (

%
)

 

 
Saiidi et al. (1994)
Kim et al. (2004)
DallAsta & Dezi (1996)
Zhang et al. (2012)
Miyamoto et al. (2000)
Beam 1 results
95% CI

Figure 6.49.: Comparison of obtained results to existing models; Beam 1
(e=0mm)

the plotted linear regression lines in this instance show an increasing trend

in fundamental frequency with increasing post-tensioning force magnitude,
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Figure 6.50.: Comparison of obtained results to existing models; (a)
Beam 2 (e=+13mm); (b) Beam 3 (e=+26mm); (c) Beam 4
(e=+39mm); (d) Beam 5 (e=+52mm)

and as before, the results are bounded by the prediction models proposed

by Saiidi et al. (1994) and Kim et al. (2004). Figure 6.50c shows a statisti-

cally significant decreasing trend in the fundamental bending frequency with

increasing post-tensioning force magnitude, and follows the “compression-

softening” model, as outlined by Miyamoto et al. (2000). Figure 6.50d shows

a statistically significant increasing trend in fundamental bending frequency

with increasing post-tensioning force magnitude, and the best fit linear re-

gression line plotted to the obtained data indicates an increase much greater

than any of the prediction models outlined previously (Saiidi et al., 1994;

Miyamoto et al., 2000; Kim et al., 2004; Zhang et al., 2012; Dall’Asta and

Dezi, 1996).

Figures 6.51a-6.51d show the results for the beams labelled 6-9, with neg-
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Figure 6.51.: Comparison of obtained results to existing models; (a) Beam 6
(e=-13mm); (b) Beam 7 (e=-26mm); (c) Beam 8 (e=-39mm);
(d) Beam 9 (e=-52mm)

ative post-tensioning strand eccentricities, promoting tension in the bottom

fibre of the beam. Figures 6.51a and 6.51d indicate good agreement with

the previous prediction models. Beam 6 (Figure 6.51a) indicates results in

close agreement with the prediction model proposed by Kim et al. (2004),

while Beam 9 (Figure 6.51d) indicates results in close agreement with the

“compression-softening” model outlined by Miyamoto et al. (2000). Fig-

ures 6.51b & 6.51c show statistically significant increasing trends in funda-

mental frequency with increasing post-tensioning force that is far greater

than predicted by the previous prediction models.

In summary, the majority of results obtained indicate good agreement

with the prediction models outlined in the literature, however, for some

beams, i.e. Figures 6.50d, 6.51b & 6.51c, the results indicated a much
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greater increase in fundamental bending frequency with increasing post-

tensioning force than predicted by the existing prediction models (Saiidi

et al., 1994; Miyamoto et al., 2000; Kim et al., 2004; Zhang et al., 2012;

Dall’Asta and Dezi, 1996).

6.8.6. Comparison of results with proposed model

In Chapter 5, a mathematical model was proposed, predicting the changes

in natural bending frequencies, ωn, of post-tensioned concrete structures

by increasing the post-tensioning force magnitude, N , i.e. ωn(N). The

proposed model is a linear kinematic model allowing for small deflections

only, in accordance with Kirchoff’s kinematic model. The second moment

of area of the cross section, the Young’s Modulus, the span length and the

mass per unit length of the beam section are all modelled as functions of

the post-tensioning force magnitude, i.e. I(N), E(N), `(N) and m(N), and

have a subsequent effect on the natural bending frequencies of the beams,

in accordance with Equation 5.1, Chapter 5.

Figures 6.52-6.54d show the comparison of the prediction model to the

observed results for the uncracked concrete beam sections. In some cases,

there is an acceptable level of agreement between the experimental re-

sults and the experimental observations such as for Beams 2,3,7,8 in Fig-

ures 6.53a, 6.53b, 6.54b and 6.54c, however, in others, there is poor agree-

ment between the prediction model and the observed results, such as for

Beams 4,6,9 in Figures 6.53c, 6.54a and 6.54d respectively. As outlined

in Chapter 5, Section 5.8, the models proposed by Dall’Asta and Dezi

(1996) and especially Hamed and Frostig (2006) fit best to the observed

data. For 6 of the 9 uncracked beams tested, no statistically significant

relationship between post-tensioning force and fundamental frequency was

observable. The other 3 beams displayed a slight statistically significant

increasing trend. The proposed model suggests increases greater than that

observed in all cases, and the most suitable models to fit to this data are

the ones suggested by Dall’Asta and Dezi (1996) and Hamed and Frostig

(2006). There is no indication of a decreasing trend in natural frequency

with increasing post-tensioning force magnitude, again highlighting the un-

suitability of applying the “compression softening” model to post-tensioned

concrete structures.
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There are many reasons for the deviation of the model from the experi-

mental results. For instance, the beams were modelled as idealised simply

supported beams on knife-edge supports. In reality, a pad footing was used

that allowed rotation to occur, therefore, lack of idealised support condi-

tions in the lab can cause deviation from the predicted results. Concrete

is a notoriously variable material, and variability in the material charac-

teristics, such as the Young’s Modulus, may also cause deviation of the

model from the experimental results. Temperature effects are said to in-

duce changes in natural frequency of between 6-18% (De Roeck, 2003), and

error due to changes in temperature may also be attributed to the devi-

ation in the prediction to the observed results. Furthermore, due to high

signal-to-noise ratio in the obtained results, the estimation of the correct

natural frequency experimentally is difficult due to some uncertainty in the

location of the peak in the frequency domain due to noise components in

the signal. Furthermore, non-linearities in the structural dynamic response

of the concrete beam sections may also be attributable for the difference

between the observations and the prediction, as the beams may “jump” off

their supports, which in turn, changes the boundary conditions of the or-

dinary differential equation, causing a non-linear response of the structure.

Also, in the prediction model, the mass of the jacks on either end of the

beam sections have not been taken into account in the prediction model,

and as such, if the mass were taken into account, it would serve as to lower

the prediction of the natural frequency, bringing the prediction model closer

to the observed results.
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Figure 6.52.: Comparison of experimental results to the proposed model;
Beam 1 (e=0mm)
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Figure 6.53.: Comparison of of experimental results to the proposed model;
(a) Beam 2 (e=+13mm); (b) Beam 3 (e=+26mm); (c) Beam
4 (e=+39mm); (d) Beam 5 (e=+52mm)

6.9. Discussion of Accuracy of Experimental

Results

The concrete data displays similar inaccuracies in the estimation of the nat-

ural frequency that were outlined previously in Chapter 4, Section 4.10, as

shown in Figures 6.40-6.42d, with standard deviation of the estimation of

the fundamental frequency ranging between 0.72Hz and 9.47Hz. In some

cases, with large standard deviation, the accuracy of the estimation of nat-

ural frequency is poor. This may be attributed to a low signal-to-noise ratio

of the response signals obtained, in which the structural signal is corrupted

by noise components, despite the signal processing algorithm used to re-

move the majority of the noise corrupting the signal, uncertainty remains
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Figure 6.54.: Comparison of of experimental results to the proposed model;
(a) Beam 6 (e=-13mm); (b) Beam 7 (e=-26mm); (c) Beam 8
(e=-39mm); (d) Beam 9 (e=-52mm)

regarding the location of the peak for the natural bending frequency, due

to a low signal to noise ratio within the given frequency search band. The

issue of low signal-to-noise ratio could have been avoided if a measurement

of the dynamic impact force was collected, as a measure of the quality of

the data can be obtained vis the coherence function, which measures the

causality of the output signal, i.e. the correlation of the input signal to the

output signal. As outlined in Chapter 3, the coherence function enables the

quality of the data obtained to be monitored, and as such, Experimental

Modal Analysis (EMA) would be preferable over Operational Modal Anal-

ysis (OMA), where practical. Furthermore, in some cases, the energy of

the impact excitation may not have been sufficient to excite the structure

sufficiently to have a sufficiently high signal-to-noise ratio to identify the
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structural vibration of the system. As shown, the dominance of first vibra-

tion mode is directly linked to the accuracy of estimation of first vibration

frequency. In all cases, the error in the estimation of the bending frequency

may have been minimised by measuring the dynamic input force, increas-

ing the number of excitation points, and increasing the number of response

points.

6.9.1. Effect of span-to-depth ratio

The span-to-depth ratio of the concrete beam sections were relatively small

in comparison to post-tensioned structures in practice. Post-tensioning al-

lows engineers to span greater distances for a given depth by minimising

the tensile stress throughout the section and minimising deflection under

loading. This allows the span-to-depth ratio to be increased, minimising

the amount of concrete required, and the self-weight of the structures. The

span-to-depth ratio of the post-tensioned concrete beams tested was rela-

tively small. The span length of the beams tested was set to be 2m, and

the depth of the section was 200mm, giving a span-to-depth ratio of 10:1.

This implies that the bending stiffness of the beam specimens is quite high,

resulting in a very high first natural bending frequency, estimated to be in

the region of 78Hz, as outlined previously in Chapter 6.

Such stiff structures are not anticipated to be susceptible to dynamic

vibration serviceability issues, in the same way that slender post-tensioned

floor slabs may be. Due to the high stiffness of the beams tested, the

signal-to-noise ratio during dynamic excitation was very low. This leads

to difficulties in accurately estimating the fundamental bending frequency,

as outlined in Section 6.9. The modal parameters were more difficult to

extract than they would have been for a very slender, wobbly, structure

with a low fundamental bending frequency. The beams were specified to

be such short spans in order to allow ease of casting and movement around

the laboratory. The cross-sectional depth was minimised, but needed to

be sufficiently large to allow for the inclusion of minimum reinforcement

in accordance with Eurocode 2 (British Standards Institute, 2004). As a

result, the span-to-depth ratio was small in relation to the ratios for post-

tensioned structures in practice, and resulted in very stiff test-specimens,

which contributed to the inaccuracy in the estimation of the fundamental
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bending frequency.

6.10. Conclusions

The prediction of the change in natural bending frequencies with varying

prestress force magnitude for PSC structures is an important problem, par-

ticularly in the field of PSC bridge girders and more recently for pre-cast,

post-tensioned concrete wind turbine towers, both of which are structures

that are susceptible to extreme dynamic excitation. Following this output-

only modal analysis study, it was concluded that no statistically significant

relationship was found between post-tension force magnitude and funda-

mental bending frequency for 6 of 9 simply supported post-tensioned con-

crete beams tested in the laboratory. The other 3 beams displayed a statisti-

cally significant increase in fundamental bending frequency with increasing

post-tensioning load.

The full conclusions of the study are outlined as follows;

1. The “compression-softening” effect is not valid for post-tensioned con-

crete structures. From the static and dynamic tests conducted, no

evidence of a decreasing trend in fundamental bending frequency with

increasing post-tensioning force magnitude has been found.

2. From the obtained static data, the static-equivalent prediction of the

fundamental bending frequency suggests that there is an increasing

trend in fundamental bending frequency with increasing post-tensioning

load magnitude.

3. However, from the obtained dynamic data, 6 of the 9 post-tensioned

concrete beams tested displayed no indication of any relationship be-

tween post-tensioning load magnitude and fundamental bending fre-

quency.

4. The dominance of the fundamental bending mode in the overall struc-

tural dynamic response of each of the 9 post-tensioned concrete beams

is evident from the 3D graphs produced.

5. The results are inconclusive regarding the relationship between the

change in critical damping ratio, ξ and the post-tensioning force mag-

nitude, N .
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6. Despite some theory predicting that there should be a direct rela-

tionship between post-tensioning strand eccentricity and fundamental

bending frequency, no such non-random systematic change could be

identified from the analysis of the obtained data.

Recently the interest on variability of dynamic properties of bridges (i.e.

natural frequency, mode shape, damping ratio) caused by environmental

effects such as temperature, humidity, wind and other factors is increasing

(Ho et al., 2012). Studies conducted (Peeters and De Roeck, 2001; Cornwell

et al., 1999) report frequency differences in the ranges of 6% and 14-18%

respectively due to normal environmental changes (e.g. temperature effects,

lack of ideal support conditions, material variability etc...). The change

in natural frequency due to prestress loss may therefore be considered as

negligible in relation to such large environmental effects.
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7. Dynamic impact testing of

cracked post-tensioned concrete

beams

Chapter 6 outlined the results of static and dynamic testing on 9 uncracked

post-tensioned concrete beams, and thoroughly described the experimen-

tal set-ups in the laboratory. The fundamental bending frequencies and

the damping ratios have been calculated from obtained dynamic impact re-

sponse data, as a function of increasing post-tensioning force magnitude. It

was found that there was no statistically significant relationship between the

post-tensioning force magnitude and the fundamental bending frequency for

the uncracked concrete sections. As a result, it was concluded that the mag-

nitude of the post-tensioning force does not affect the fundamental bending

frequency for uncracked concrete sections. It was found that there was

a statistically significant decrease in damping ratio with increasing post-

tensioning load magnitude.

This chapter describes how four-point bending tests were subsequently

performed on the 9 post-tensioned concrete beams previously described in

Chapter 6 in order to induce a damaged (cracked) state. The impact test-

ing, as previously described in Chapter 6 was repeated on the 9 cracked

post-tensioned concrete beam specimens and the changes in fundamental

frequency and damping ratio with increasing post-tensioning force magni-

tude were recorded. The purpose of this testing was to examine the effect

that crack closure has on the modal properties of cracked post-tensioned

concrete structures. It was found that for cracked post-tensioned con-

crete beams, there was a statistically significant relationship between post-

tensioning force magnitude and fundamental bending frequency. It will be

shown throughout the course of this chapter that the effect of the post-

tensioning force is to close the cracks and increase the natural bending
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frequency with increasing post-tensioning force magnitude. It will also be

shown that there is a threshold value of post-tensioning force at which the

beams begin to vibrate monolithically again, at which point, the increase

in fundamental frequency with increasing post-tensioning force becomes ev-

ident.

Section 7.1 briefly describes how the majority of researchers in this field

agree that the post-tensioning force closes cracks, therefore increasing the

bending frequency. Section 7.2 describes the experimental set-up of the four

point bending tests and subsequent repeat of the dynamic impact testing

on the cracked concrete specimens. Section 7.3 describes the experimental

analysis conducted on the cracked concrete results. Section 7.4 describes

the experimental results of the dynamic impact testing conducted on the

cracked post-tensioned concrete sections, including the change in funda-

mental bending frequency and changes in damping ratio with increasing

post-tensioning load magnitude, and compares the results obtained from

the cracked concrete beams to the uncracked beams. Section 7.6 outlines

the conclusions from the testing of the 9 cracked post-tensioned concrete

beams, highlighting that a relationship exists between natural frequncy and

post-tensioning force for cracked post-tensioned sections only, as opposed

to the uncracked sections outlined in Chapter 6.

7.1. Introduction

The effect of prestress force magnitude on the modal properties (frequency,

damping and mode-shape) of uncracked prestressed concrete structures is

something that has been widely debated among researchers to date (Quilli-

gan et al., 2012), as outlined fully in Chapter 2. The effect of pre- and post-

tensioning force magnitude on the natural bending frequencies of cracked

prestressed concrete structures is something that is more established, and

widely agreed upon. Saiidi et al. (1994) report an increase in natural fre-

quency with increasing post-tensioning force. As pointed out by Bruggi

et al. (2008) the tests carried out by Saiidi et al. (1994) were conducted on

cracked beam sections only. Uncracked sections were not tested. Williams

and Falati (1999) present a formula to calculate the average effective sec-

ond moment of area of a cracked concrete cross section. The effect of crack

closure in accordance with this method is that it increases the effective
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second moment of area of the cross section, and subsequently the natural

bending frequencies. Hop (1991) agrees, reporting a decrease in natural

bending frequencies with increased cracking, and states that increasing the

prestressing force acts as to close the cracks, stiffen the section and in-

crease the natural bending frequencies of the beam sections. Grace and

Ross (1996) also report a decrease in girder stiffness leading to a decrease in

natural frequency also attributing it to cracking in the cross section. Unger

et al. (2006) state that a loss in post-tensioning increases the appearance of

cracks which reduces the bending stiffness and subsequent natural frequen-

cies of the system. De Roeck (2003) concurs that prestress loss results only

in measurable changes in frequency if accompanied by originating cracks.

Hamed and Frostig (2004) also report that large cracking damage yields

drastic reduction in the natural frequencies of cracked prestressed concrete

beams.

Pavic et al. (2001) agree that prestressing is used to overcome excessive

cracking and static deflection but argue that prestressing does not signifi-

cantly improve dynamic behaviour, as that is governed by stiffness, mass and

damping, on which prestress force has little influence. Dall’Asta and Dezi

(1996) consider it is possible to determine the prestressing force by mea-

suring the natural frequency of a PSC structure in its cracked state only.

Rodŕıguez et al. (2010) acknowledges this fact in relation to post-tensioned

concrete wind turbine towers, stating that uncracked towers maintain their

original stiffness and frequency, but once the towers are cracked and the

cracks have been decompressed, any vibrations in the tower will mobilise

smaller stiffness, which will be shown by the vibration frequencies.

This chapter will describe the outcome of dynamic impact testing con-

ducted on nine cracked post-tensioned concrete beam sections in the labora-

tory. The results for one beam will be discussed in detail. The relationship

between the natural bending frequency and the post-tensioning force for

cracked concrete sections will be determined through dynamic impact test-

ing of the cracked beams. Comparisons will be made between the behaviour

of the uncracked beams and the cracked beams. The conclusions have pro-

found implications in the fields of system identification, damage detection

and structural health monitoring.
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7.2. Experimental Set-up

The following section outlines the set-up of the dynamic impact tests con-

ducted on the 9 cracked post-tensioned concrete beams. The testing con-

ducted was identical to the testing described at length in Section 6.5 in

Chapter 6. The tests were repeated on the same 9 post-tensioned concrete

beams, after the sections had been cracked by applying a four-point bend-

ing load. The cracking of the sections is described in Section 7.2.1 and

summarised by Figure 7.1 and Table 7.2.

Table 7.1 outlines the 9 different cracked concrete beams tested dynami-

cally to determine their fundamental bending frequency with varying post-

tensioning load magnitude. The concrete used in each beam specimen was

C30/37, as specified in Section 6.3.1, and outlined in Section 6.2. Like

with the uncracked sections, the variable in the 9 test specimens was the

post-tensioning strand eccentricity, however, in this case, a second variable

was introduced, namely the applied moment due to cracking. The effect of

post-tensioning force magnitude and eccentricity was intended to be tested,

and the effect of positive and negative eccentricity on the bending frequency,

coupled with the interaction effects of both post-tensioning force and strand

eccentricity on the fundamental bending frequency was also intended to be

investigated, as before. However, the effect of the level of cracking on the

fundamental bending frequencies was also intended to be tested. Testing

the 9 beams with varying post-tensioning strand eccentricities and varying

applied cracking moments, as outlined in Table 7.1 enabled these tests and

subsequent comparison of the results to be conducted.

7.2.1. Dynamic impact testing of cracked beams

Following dynamic impact tests in the lab on 9 uncracked post-tensioned

concrete beam sections, which have been described previously in Chapter 6

and in Noble et al. (2014a), 4-point bending was applied to each beam as

outlined in Figure 7.1, and Figure 7.2. A hydraulic loading ram was bolted

onto an external loading frame, which in turn was bolted onto a meter deep

strong floor in the laboratory, as shown in the schematic in Figure 7.1, and

in Figure 7.2. The loading ram was operated via a hydraulic hand pump,

and transferred a four-point bending load into the post-tensioned concrete

beam by means of a spreader beam, as shown in Figure 7.1, and in Fig-
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Table 7.1.: Experimental design - cracked concrete test specimens

Beam e (mm) Ma (kNm) Predicted Freq (Hz)

1 0 21.12 63.15
2 +13 20.70 64.12
3 +26 21.39 65.32
4 +39 23.25 66.48
5 +52 21.00 67.87
6 -13 18.90 62.33
7 -26 20.40 61.66
8 -39 20.40 61.15
9 -52 21.60 60.78

ure 7.2. A load cell was affixed to the loading ram in order to determine

the load applied to the spreader beam. It was ensured that the load was

applied at mid-span of the spreader beam to ensure an even distribution

of the four point loading onto the post-tensioned concrete beam, ensuring

symmetrical support reactions and a symmetrical shear and bending dis-

tribution throughout the beam span length. Figure 7.2b shows a typical

crack pattern in a damaged (yielded) post-tensioned concrete beam. The

flexure cracks occurred between the supports of the spreader beam, in the

area of maximum bending moment, as expected, while the diagonal shear

cracks formed in the areas between the beam supports and the points of

the spreader beam, in the areas of high shear, as expected, and as shown

in Figure 7.2b. The individual beams differed in that they had different

straight profiled post-tensioning strand eccentricities. The transverse load

was applied incrementally and the crack patterns were observed at different

values of load application. The loading increments and yield moment for

all 9 beams are outlined in Table 7.2. First, second and third cracks were

identified by visual inspection only, and were not determined scientifically

(Noble et al., 2015b).

The bending capacity of the post-tensioned concrete beams was deter-

mined to be approximately 15kN −m in Section 6.3.5 in Chapter 6. Ta-

ble 7.2 outlines the actual yield values and the real factor of safety, i.e. the

ratio between the measured beam bending capacity and the design beam

bending capacity outlined in Section 6.3.5. The average observed factor of

safety in Table 7.2 was 1.40.
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Figure 7.1.: Experimental set-up for cracked beam specimens

Table 7.2.: The incremental damage states of all 9 Beams until yielding

B# 1st crack 2nd crack 3rd crack Yield Myield FOS
(kN) (kN) (kN) (kN) (kN-m)

B1 24.6 41.3 49.8 70.4 21.12 1.41
B2 19.4 38.6 48.7 69.0 20.70 1.38
B3 19.3 39.7 50.2 71.3 21.39 1.43
B4 20.0 39.7 50.6 77.5 23.25 1.55
B5 20.0 40.0 52.8 70.0 21.00 1.40
B6 20.0 38.8 48.4 63.0 18.90 1.26
B7 20.0 38.9 50.0 68.0 20.40 1.36
B8 - 33.0 50.0 68.0 20.40 1.36
B9 - 30.1 49.0 72.0 21.60 1.44

Yielding was identified as the point where the beams could no longer hold

any additional load and deflections increased significantly. Visible structural

cracks formed in the section, as shown in Figure 7.2b. Vertical flexural

cracks formed in the area of high moment, between the span of the spreader

beam, whereas diagonal shear cracks formed in the areas between the end of

the spreader beam and the supports. This can also be seen in Figure 7.2b.

Following cracking, dynamic impact testing was conducted on the beams.

The set-up of the dynamic impact testing was identical to the set-up de-
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(a) (b)

Figure 7.2.: Four Point Bending test; (a) Set-up in lab; (b) Cracked concrete
beam

scribed in Chapter 6 previously. Figure 7.1 shows the experimental set-up.

An accelerometer was placed 800mm from one of the supports as shown,

enabling the first three modes of vibration to be captured. Three strain

gauges were placed equidistant between the support and mid-span, in order

to capture the mode shapes of vibration. The beam was struck ten times at

each strain gauge location using an impact rig assembled in the laboratory.

This ensured repeatability of the experiment and enabled the error in the

estimation of the frequencies to be calculated. This experimental procedure

was then repeated at incremental values of post-tensioning load, as out-

lined in Figure 7.1. The post-tensioning load was applied using a 15.7mm

Freyssinet post-tensioning strand, secured either side of the 300 ton loading

jacks as shown. The different straight profiled strand eccentricities are also

outlined in Chapter 6.

7.3. Experimental Analysis

Each beam was struck ten times at 3 different impact locations, for 11

different post-tensioning load levels. The response was measured by one

accelerometer and three strain gauges. As such, this method of dynamic

testing is known as the multiple input, multiple output (MIMO) method.

The Fast Fourier Transform (FFT) was then applied to the response signals

to convert into the frequency domain. No data was collected on the impact

signal, and as such, the frequency response functions (FRFs) of the beams

could not be determined. The FRFs are defined as the transfer function,

or the ratio between the input and output signals in the frequency domain.
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The study falls under the remit of Operational Modal Analysis (OMA) as

opposed to Experimental Modal Analysis (EMA). However, the FFTs of the

output signal were sufficient to determine the natural vibration frequencies

of the structural system, via a peak-picking method.

As outlined in Chapter 6, having calculated the FFTs of the signals, the

fundamental vibration mode was intelligible, however, due to the presence

of significant noise in the data, higher modes were not. In order to elimi-

nate this noise and identify higher modes, a signal processing technique was

established by the authors and applied to the raw data. Figure 7.3a and

Figure 7.3b show the results of two processed signals. The higher modes

are now intelligible. A peak picking algorithm is invoked to determine the

natural frequencies of the system. Figure 7.3a shows an accelerometer re-

sponse signal of a cracked beam for zero post-tensioning load, indicating a

structural dynamic response of the cracked beam for a non-fully prestressed

condition, in which the cracks are open. It is evident that the structural re-

sponse of the non-fully prestressed condition is complex. The fundamental

mode, in this case contributes most to the response, but its contribution is

not dominant. The contribution of the other modes is relatively similar.

Figure 7.3b shows an accelerometer response signal of the same cracked

beam for a post-tensioning load level of 180kN, indicating a structural dy-

namic response of the cracked beam for a fully prestressed condition. Here,

the dominance of the first mode of vibration is evident. The beam, when

fully prestressed, behaves monolithically and vibrates as one entity rather

than a series of individual cracked entities, and hence the dominance of

the first vibration mode returns. This response is in line with the response

of the uncracked ‘virgin’ beams. That is to say, that there seems to be a

threshold value of post-tensioning force at which the structural dynamic re-

sponse of the cracked concrete beams approaches the same response as was

evident for the uncracked beam sections, in which the fundamental mode of

vibration dominates the response (Noble et al., 2015b).

7.4. Experimental Results

The following section presents the results of the dynamic impact testing on

the 9 cracked post-tensioned concrete beams tested in the laboratory. Sec-

tion 7.4.1 presents 3D graphs of relative modal amplitude versus frequency
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Figure 7.3.: Structural dynamic response of cracked beam, Beam 1, e=0mm;
(a) for non-fully prestressed case; (b) for fully prestressed case

and axial load for all 9 cracked beams. The graphs indicate the relative

contribution of each mode to the overall structural dynamic response of the

beams. Section 7.4.2 presents the results of a first order linear regression

analysis of fundamental bending frequency versus post-tensioning load mag-

nitude for all 9 cracked beams. An analysis of the statistical significance of

the regression parameters is conducted to determine whether or not changes

in frequency with increasing post-tensioning load magnitude are significant

or not. Section 7.4.3 compares the first order linear regression models for

the uncracked and cracked beam sections, and Section 7.4.4 presents the

results of a first order linear regression analysis of damping ratio versus

post-tensioning force magnitude for all 9 cracked beams. An analysis of the

statistical significance of the regression parameters for the damping ratios

was also conducted.

7.4.1. 3D Graphs

Figures 7.4-7.6 show graphs of relative modal amplitude versus frequency

and post-tensioning load for all 9 cracked post-tensioned concrete beams

tested. Figure 7.4 shows the response for Beam 1, where the eccentric-

ity of the post-tensioning strand, e = 0. Figures 7.5a-7.5d shows the re-

sponse for Beams 2-5, in which the post-tensioning strand eccentricity is

such that it creates compression in the bottom fibre, inducing crack clo-

sure. Figures 7.6a-7.6d shows the response for Beams 6-9, in which the
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post-tensioning strand eccentricity is such that it creates tension in the bot-

tom fibre, causing the cracks to open further. As shown in all figures, the

structural dynamic response is different to that of the uncracked beams, in

which the fundamental frequency dominated the response, as shown in Fig-

ures 6.35-6.37d in Chapter 6. The structural dynamic response, as shown

in Figures 7.4-7.6d is complex in comparison, and the fundamental bending

vibration mode does not dominate, and the contribution of higher modes is

much more significant (Noble et al., 2015b).

0

100

2000

500

1000

0

1

|â
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Figure 7.4.: Rel. Modal Amplitude vs. frequency and post-tensioning load;
Cracked Beam 1 (e=0mm)

There is evidence however to suggest that the dominance of the funda-

mental bending mode returns at threshold values of post-tensioning load for

the cracked beam specimens. As can be seen from Figures 7.4,7.5b and 7.5d.

At threshold values of post-tensioning load, for Beams 1,3, and 5, the dom-

inance of the fundamental vibration frequency returns. Interestingly, the

return of the dominance of the first vibration mode in the case of Beams 1,3

and 5 corresponds to a statistically significant increase in the bending fre-

quency with increasing post-tensioning load magnitude. This is illustrated

further in Figure 7.8. No such trend is evident for the other beams, in which

the dominance of the fundamental vibration mode does not return. This

trend is only evident in the beam sections which promote compression in the

bottom fibre, thereby closing cracks, and increasing the bending stiffness.

This trend is not evident in any of the beam configurations that promote

cracking in the bottom fibre.

Figures 7.6a-7.6d show the typical response for the cracked post-tensioned

beams whose post-tensioning strand eccentricity causes the cracks to open in
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Figure 7.5.: Rel. Modal Amplitude vs. frequency and post-tensioning
load for cracked beams; (a) Beam 2 (e=+13mm); (b) Beam 3
(e=+26mm); (c) Beam 4 (e=+39mm); (d) Beam 5 (e=+52mm)

the bottom fibre. As such, the effect of post-tensioning does nothing to cause

the dominance of the fundamental bending vibration mode to return, as with

the beams whose eccentricity promotes crack closure in the bottom fibre,

as outlined in Figures 7.5a-7.5d. The structural dynamic response for these

beams remains complex, with significant contributions of the higher modes

of vibration to the overall structural dynamic response. This is attributed

to the presence of cracking.

Figure 7.7a shows the structural dynamic response of Beam 1 (e=0) in

its uncracked condition. The dominance of the first mode of vibration is

evident in this case, since the relative modal amplitude of the fundamental

bending mode accounts for a large proportion of the modal mass of the

structure. Figure 7.7b shows the structural dynamic response of Beam 1

in its cracked condition. In this case, the dominance of the first mode
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Figure 7.6.: Rel. Modal Amplitude vs. frequency and post-tensioning load
for cracked beams; (a) Beam 6 (e=-13mm); (b) Beam 7 (e=-
26mm); (c) Beam 8 (e=-39mm); (d) Beam 9 (e=-52mm)

of vibration is not clear. The structural dynamic response is much more

complex and the contribution of the higher modes of vibration are clearly far

more significant in the cracked case. This is evident up to a certain threshold

value of post-tensioning force. The dominance of the first vibration mode

again becomes apparent in the cracked case when the post-tensioning force

causes the structure to behave as one monolithic structure rather than a

series of cracked entities. This is the fully prestressed condition. In this

case, for Beam 1, e=0mm, it was identified to be at a value of 160kN. This

threshold value differs slightly for the other beams (Beam 3, Beam 5), but

the principle remains the same.

Figure 7.8 shows the relationship between the dominance of the funda-

mental bending mode and a statistically significant increasing trend in nat-

ural frequency with increasing post-tensioning load for the beams whose
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Figure 7.7.: Relative Modal Amplitude of cracked and uncracked beams
- a comparison (a) Beam 1, e=0mm, Uncracked; (b) Beam
1, e=0mm, Cracked; (c) Beam 3, e=+26mm, Uncracked; (d)
Beam 3, e=+26mm, Cracked; (e) Beam 5, e=+52mm, Un-
cracked; (f) Beam 5, e=+52mm, Cracked

post-tensioning strand configuration promotes crack closure in the bottom

fibre, namely Beam 1, 3 and 5. It is clear from Figure 7.8, that once a
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threshold value of post-tensioning force is reached, the cracked beams cease

to vibrate as a series of different cracked entities and rather begin to vibrate

as one monolithic beam specimen again. Once this occurs, there is a corre-

sponding statistically significant increase in fundamental bending frequency,

as shown in Figure 7.8.

It should be noted that despite Beams 2 & 4 also having post-tensioning

strand eccentricities that promotes upward camber and crack closure in the

bottom fibre, a similar trend to Beams 1,3 & 5 is not observable in the

data for these beams. Such a trend is not observable in Beams 6-9 either,

but since the post-tensioning strand eccentricity is such in these beams

as to promote cracking in the bottom fibre, and subsequently open existing

cracks further, this is consistent with what would be expected. In the case of

Beams 2 & 4 the non-linear dynamic response due to cracking is observable

at all levels of post-tensioning load, and the dominance of the first mode of

vibration (linear response) does not return. The reason for this is suggested

to be due to the high level of cracking and yielding of reinforcement. The

beams were under reinforced meaning the steel is designed to yield first

under flexural loading, and the beams were loaded to the point of yield

under four point bending, as outlined in Figure 7.1 and the magnitude of

the yield load for each beam is given in Table 7.2. It should be noted that

Beam 4 was subjected to a much higher load before yielding, supporting the

theory that the level of cracking and crack closure determines the value of

the threshold value of post-tensioning force required for monolithic response.

The factors affecting this are the eccentricity of the post-tensioning strand,

the level of post-tensioning force, and the level of cracking initially applied

to the structure. If, in some cases, the reinforcement has yielded in such

a manner that the cracks are forced open and cannot be sufficiently closed

to induce the monolithic response, the response would be expected to be as

observed for Beams 2 & 4 and this is suggested to be the reason for these

beams not displaying the same trends as observed for Beams 1,3 and 5 as

shown in Figure 7.8.

7.4.2. Regression Analysis

Figures 7.12-7.14d show the first order linear regression model applied to

the measured changes in fundamental bending frequency with increasing
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Figure 7.8.: Relationship between dominance of fundamental bending mode
and a statistically significant increasing trend in natural fre-
quency with increasing post-tensioning load for (a) & (b) -
Beam 1; (c) & (d) - Beam 3, and (e) & (f) - Beam 3
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post-tensioning force magnitude for the 9 cracked post-tensioned concrete

beams. Whereas it is acknowledged that linear regression analysis is not

strictly relevant for the case of cracked post-tensioned concrete beams, as

the nature of opening and closing cracks is inherently non-linear, the purpose

of the first order regression analysis is to compare the results obtained for

the uncracked beam sections, and demonstrate that they are inherently, sta-

tistically significantly different to the results obtained for the same concrete

sections following cracking. Figures 7.9-7.11d show the results obtained for

the dynamic impact testing of the cracked beam sections, without the lin-

ear regression analysis applied, and the aforementioned trends mentioned in

Section 7.4.1 are readily identifiable. The linear trend reappears once the

cracks have been closed, as shown in Figure 7.8.
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Figure 7.9.: Trends of ω1 vs. N ; Cracked Beam 1 (e=0mm)

In 7 of the 9 cracked post-tensioned concrete beams, a statistically signif-

icant decreasing trend in fundamental bending frequencies with increasing

post-tensioning force magnitude has been found, as outlined in Figures 7.12-

7.14d and in Table A.8. The statistically significant overall decreasing trend

in fundamental bending frequency with increasing post-tensioning load mag-

nitude may be considered counter-intuitive, however, the reason is hypoth-

esised to be due to the presence of cracking and non-monolithic response.

When the beam is fully cracked, it vibrates as a series of cracked entities.

The accelerometer is located in the span of one of these cracked portions of

the beam. In effect, the span length of vibration is shortened, and hence

the measured natural frequency is increased. As the post-tensioning force is

increased, these cracks begin to close and the beam approaches monolithic

response. As the cracks are closed, the effective span length is increased, un-
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Figure 7.10.: Trends of ω1 vs. N ; (a) Beam 2 (e=+13mm); (b) Beam
3 (e=+26mm); (c) Beam 4 (e=+39mm); (d) Beam 5
(e=+52mm)

til it reaches a maximum at the point of monolithic response. This increase

in span length is accompanied by a decrease in natural bending frequency

that is evident in Figures 7.12-7.14d. At this point, the span length is re-

turned to its maximum value, and the effect of the post-tensioning force is

to increase the second moment of area through crack closure, and also to

increase the Young’s Modulus in a similar manner. Subsequently, from this

value of post-tensioning force magnitude onward, a statistically significant

increasing trend in the fundamental bending frequency is observed. The

overall decreasing trend is attributed to an increase in effective span length

due to crack closure.

Figure 7.15a and Figure 7.15b show regression analysis of fundamental

frequency versus post-tensioning load for the same beam (Beam 1) in its

uncracked and cracked states. From the regression analysis of the uncracked
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Figure 7.11.: Trends of ω1 vs. N ; (a) Beam 6 (e=-13mm); (b) Beam 7
(e=-26mm); (c) Beam 8 (e=-39mm); (d) Beam 9 (e=-52mm)
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Figure 7.12.: Regression of ω1 on N ; Cracked Beam 1 (e=0mm)

case in Figure 7.15a, no statistically significant change in fundamental fre-

quency with increasing post-tensioning force can be observed, as previously

reported in Chapter 6. From first glance at the simple linear regression
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(c)

0 50 100 150 200
50

60

70

80

90

100

ω
1
 = 74.5332 − 0.0622N

Pretress Force, N (kN)

F
re

qu
en

ci
es

, ω
1 (

H
z)

 

 

Observed Data
Means
95% CI
95% PI

(d)

Figure 7.13.: Regression of ω1 on N for cracked beams; (a) Beam
2 (e=+13mm); (b) Beam 3 (e=+26mm); (c) Beam 4
(e=+39mm); (d) Beam 5 (e=+52mm)

analysis of the cracked beam case, an overall decreasing trend in funda-

mental frequency versus post-tensioning load is observed. However, when

analysed in conjunction with Figure 7.7b, it becomes apparent that there

are two distinct trends in the data. For the non-fully post-tensioned case

(0-160kN), the structural dynamic response is complex, the error in the esti-

mation of the natural frequency is high, the structure behaves dynamically

as a series of independent vibrating entities and a decreasing trend in funda-

mental frequency is observed. However, at a threshold post-tensioning load

level and upward (160-200kN), the dominance of the first vibration mode

returns, the error in the estimation of the fundamental frequency decreases,

the structure begins to behave monolithically again, and an increasing trend

can be observed for the final 3 data points. This increasing trend, has been

widely reported for cracked beam sections (Saiidi et al., 1994; Williams and
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(d)

Figure 7.14.: Regression of ω1 on N for cracked beams; (a) Beam 6 (e=-
13mm); (b) Beam 7 (e=-26mm); (c) Beam 8 (e=-39mm); (d)
Beam 9 (e=-52mm)

Falati, 1999; Grace and Ross, 1996; Unger et al., 2006; De Roeck, 2003;

Hamed and Frostig, 2004; Pavic et al., 2001; Dall’Asta and Dezi, 1996),

however, is not observed for uncracked beam sections (Hamed and Frostig,

2006; Dall’Asta and Dezi, 1996; Noble et al., 2014a). The stiffness of the

section is increased by increasing the prestressing force due to crack closure,

and the second moment of area moves from the cracked to the uncracked

value.

7.4.3. Comparison of uncracked and cracked beams

Figures 7.16-7.18d show the comparison between the simple linear regression

models for the cracked and uncracked beam cases. As discussed previously,

this is not strictly a reasonable comparison as two different trends can be
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(b)

Figure 7.15.: Regression analysis of fundamental frequency vs. post-
tensioning load for Beam 1 (e=0mm); (a) Uncracked; (b)
Cracked

observed in the cracked beam case. The initial fundamental frequencies

for the cracked beams are higher to begin with, which is counter-intuitive.

If it is considered that the beam in its damaged state behaves as a series

of different vibrating cracked entities rather than as one monolithic struc-

ture, then the span length of each individual vibration entity is significantly

reduced. Since the span length is a denominator in the equation for the pre-

diction of natural frequency for simply supported beams, this explanation

is consistent with what would be expected from theory. This span length

increases as the post-tensioning force increases and more and more struc-

tural cracks are closed, meaning the measured frequency decreases. On the

other hand, when the beam begins to vibrate again monolithically, the struc-

tural dynamic response becomes less complex and the fundamental mode

dominates, an increasing trend is observed in the frequency with increasing

post-tensioning force. At the threshold value of post-tensioning force, the

span length reaches its original value. From this point onwards, as shown in

Figure 7.12 an increasing trend in fundamental frequency is observed, and

this is attributed to the gain in geometric stiffness due to crack closure, in

accordance with previous research works (Saiidi et al., 1994; Williams and

Falati, 1999; Grace and Ross, 1996; Unger et al., 2006; De Roeck, 2003;

Hamed and Frostig, 2004; Pavic et al., 2001; Dall’Asta and Dezi, 1996). It

should be noted that this also leads to the conclusion that at some second

threshold value of post-tensioning force, the cracks in the beam will have
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been fully closed, at which point the beam behaves just as the uncracked

beam and there is no change in frequency with increasing post-tensioning

force. This occurs up to the point where the post-tensioning force is such

as to cause crushing in the concrete, at which point there exists another

threshold value of post-tensioning force above which the frequency starts to

decrease again due to the crushing in the concrete. However, it should be

pointed out that this may not be practicable as the post-tensioning strands

are rated to maximum forces much less than the crushing strength of the

cross sections. Another issue with this model is that this does not take into

account the effects that permanent, plastic deformation of the sections has

on the ability of the post-tensioning force to close cracks. Concrete is a

highly non-linear material, and when bonded to steel, as in reinforced con-

crete, the reinforcement steel may have reached its plastic limit and as such

may never return to its original state, meaning that any benefit of crack

closure from such state is limited by the second law of thermodynamics in

which the deformation may not be recovered since the energy has already

been dissipated through plastic deformation of the reinforcement.

It is evident from Figures 7.16-7.18d that the general trend for the un-

cracked beam is to favour a slight increase in fundamental frequency with

increasing post-tensioning force magnitude, although, as pointed out in

Chapter 6, this trend has not been found to be statistically significant in

the majority of cases. However, when compared to the regression mod-

els for the case of the cracked beams, it can be seen that the majority of

the cracked beams indicate a statistically significant decreasing trend in

fundamental bending frequency with increasing post-tensioning load mag-

nitude. The hypothesised reasons for this have been highlighted previously

in this section and also in Section 7.4.2 previously. However, what is clear,

is that the structural dynamic response and the relationship between post-

tensioning force and fundamental bending frequency is significantly different

for cracked and uncracked post-tensioned concrete beams.

Table 4.11 shows the statistical regression parameters - intercept param-

eter (α0,iuc/c), slope parameter (α1,iuc/c), standard error, t-values and 95%

confidence intervals when regressing ω1 on N for Beam 1, e=0 (i = 1) in its

cracked (c) and uncracked (uc) case. The corresponding linear regression

equations are obtained by substituting into Equation 7.1. Table 4.11 should
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Figure 7.16.: Regression of ξ on N ; Beam 1 (e=0mm)
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Figure 7.17.: Regression of ω1 on N , comparing uncracked and cracked
beams; (a) Beam 2 (e=+13mm); (b) Beam 3 (e=+26mm);
(c) Beam 4 (e=+39mm); (d) Beam 5 (e=+52mm)

be read in conjunction with Figure 7.16 for completeness.

ω1 = α0,i + α1,iN (7.1)
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Figure 7.18.: Regression of ω1 on N , comparing uncracked and cracked
beams; (a) Beam 6 (e=-13mm); (b) Beam 7 (e=-26mm); (c)
Beam 8 (e=-39mm); (d) Beam 9 (e=-52mm)

7.4.4. Damping Ratios

Figures 7.19-7.21d show the first order linear regression of damping ratios on

post-tensioning load magnitude for the 9 uncracked post-tensioned concrete

beams tested. Table A.9 outlines the statistical analysis on the regression

intercept and slope parameters for Figures 7.19-7.21d. The damping ratios

for the cracked post-tensioned concrete beam specimens were determined

from the half-power bandwidth method, as outlined in Section 6.7.2, Chap-

ter 6.

From the obtained results of changes in damping ratio with increasing

post-tensioning force magnitude, no solid conclusions can be made, as 3

beams displayed a statistically significant increasing trend in damping ra-

tio with increasing post-tensioning force magnitude, 2 beams displayed a
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statistically significant decreasing trend in damping ratio with increasing

post-tensioning force magnitude, and the remaining 4 beams displayed no

statistical significant relationship between post-tensioning force magnitude

and increasing post-tensioning load magnitude. As a result, no determinis-

tic conclusions can be drawn on the changes in damping ratio with increas-

ing post-tensioning load magnitude for the cracked post-tensioned concrete

beams tested.
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Figure 7.19.: Regression of ξ on N ; Cracked Beam 1 (e=0mm)

7.5. Discussion of Accuracy of Experimental

Results

In the case of the cracked beams, it was shown that a statistical significant

increasing trend in fundamental bending frequency was identified with in-

creasing post-tensioning load magnitude for the cracked beams, at a thresh-

old value of post-tensioning load, once monolithic behaviour returned. De-

spite the aforementioned error/imprecision in the estimation of the funda-

mental bending frequency, trends are observable in the case of the cracked

concrete beams. As outlined in Section 7.4, the increasing trend in fre-

quency with increasing post-tensioning force, due to crack closure is observ-

able over a certain threshold value of post-tensioning force. This threshold

value has been determined to be the value of post-tensioning force above

which the dominance of the first bending mode returns and the beam vi-

brates as a monolithic structure, rather than as a series of cracked enti-

ties. This indicates that, provided these trends exist, and despite the er-

ror/imprecision in the estimation of the frequency, the trends are observable
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Figure 7.20.: Regression of ξ on N for cracked beams; (a) Beam
2 (e=+13mm); (b) Beam 3 (e=+26mm); (c) Beam 4
(e=+39mm); (d) Beam 5 (e=+52mm)

through this methodology. Therefore, it may be concluded that, in the case

of the uncracked post-tensioned concrete beams, no relationship was found

between natural frequency and post-tensioning load magnitude, however,

in the case of the cracked post-tensioned concrete beams, over the afore-

mentioned monolithic threshold, the effect of the post-tensioning force is to

close the cracks and increase the bending frequency. The initial trend is a

decreasing one due to the decreased effective span length due to cracking.

This effective span length is increased as the cracks are closed until the

point of monolithic response. From this point onwards, for Beams 1,3 & 5,

as outlined in Chapter 7, Section 7.4, the increasing trend in frequency with

increasing post-tensioning force, due to crack closure is observable. In all

cases, the error in the estimation of the bending frequency may have been
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Figure 7.21.: Regression of ξ on N for cracked beams; (a) Beam 6 (e=-
13mm); (b) Beam 7 (e=-26mm); (c) Beam 8 (e=-39mm); (d)
Beam 9 (e=-52mm)

minimised by measuring the dynamic input force, increasing the number

of excitation points, and increasing the number of response points. Fur-

thermore, the points made in Section 4.10 regarding the “jumping” of the

specimen from the supports and the resulting non-linear dynamic response

and the effect of the span to depth ratio on the precision and accuracy of

the estimation of the fundamental frequency also holds true for the cracked

beam specimens. As before, the error in the estimation of the bending fre-

quency may have been minimised by measuring the dynamic input force,

increasing the number of excitation points, and increasing the number of

response points.
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7.6. Conclusions

Whereas there is significant disagreement among researchers as to the effect

of prestress force magnitude on the natural vibration frequency of uncracked

prestressed and post-tensioned concrete sections Quilligan et al. (2012), the

effect of prestressing force on the bending frequency of cracked pre- and post-

tensioned sections is more established. Researchers agree that, for cracked

pre- and post-tensioned concrete beams, increasing the post-tensioning force

acts as to close the cracks, increase the second moment of area of the cross

section, resulting in an increase in the natural bending frequencies (Sai-

idi et al., 1994; Williams and Falati, 1999; Grace and Ross, 1996; Unger

et al., 2006; De Roeck, 2003; Hamed and Frostig, 2004; Pavic et al., 2001;

Dall’Asta and Dezi, 1996). The findings of these authors are based on the

presumption of monolithic response of the cracked structure being tested.

This is found to be the case in the experiments conducted and described

in this chapter in that after the threshold level of post-tensioning force, at

which the dominance of the first mode returns and the beam begins to vi-

brate monolithically again, the clear increasing trend is evident, specifically

for Beams 1,3 & 5.

For the uncracked beam sections, the fundamental mode of vibration

dominates the structural dynamic response and no statistically significant

change in the fundamental vibration frequency can be observed. As such,

for uncracked pre- and post-tensioned concrete beams, the prestressing force

does not change the dynamic stiffness significantly. Pavic et al. (2001)

concluded similar, stating that the dynamic properties are dependent on

mass, stiffness and damping properties, on which prestressing does not have

a major influence. It should also be noted that the error in the estimation

of the frequency is high. Changes in frequency are affected by temperature

effects, lack of ideal support conditions and material variability, which is

reported to be in the order of 6-18% (Peeters and De Roeck, 2001; Cornwell

et al., 1999), therefore any potential effect of prestressing force on dynamic

properties is lost within this error.

For the cracked beam sections, the implications of prestressing force on

dynamic properties is more apparent. For the cracked beam sections, it was

found that the structural dynamic response was far more complex than for

the uncracked beams. There is no clearly dominant vibration mode and the
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response comprised of all modes of system. However, at threshold values

of post-tensioning force there is evidence of dominance of the first vibra-

tion mode. This threshold post-tensioning load value is the load value at

which the structure begins to vibrate monolithically again. The trend from

this point onwards is easily identified. There is an increase in fundamental

frequency with increasing post-tensioning force. This is attributed to crack

closure and the subsequently increase the flexural stiffness of the member,

as reported by previous authors (Saiidi et al., 1994; Williams and Falati,

1999; Grace and Ross, 1996; Unger et al., 2006; De Roeck, 2003; Hamed

and Frostig, 2004; Pavic et al., 2001; Dall’Asta and Dezi, 1996).

The implications that this has for system identification, and structural

health monitoring are profound. The above suggests that the identification

of the existing prestressing force in uncracked prestressed concrete struc-

tures is not feasible through measurement of the natural frequency of the

structure only, due to the confounding variables (temperature effects, sup-

port conditions, material properties). However, the existence of the rela-

tionship between the frequency and the level of cracking in the structure

does allow for the calculation of the damage (cracking) state of the structure

from the measurement of the natural frequency (De Roeck, 2003; Kim and

Stubbs, 2002; Li et al., 2013) and application of the formula presented by

Williams and Falati (1999).

The conclusions may be summarised as follows;

1. For the uncracked post-tensioned concrete beam sections, there is

no statistically significant relationship between post-tensioning force

magnitude and fundamental bending frequency evident from the data

collected and presented in Chapter 6.

2. For the cracked post-tensioned concrete beam sections, there is a sta-

tistically significant change in the fundamental bending frequencies

with increasing post-tensioning load magnitude.

3. There is an overall statistically significant decreasing trend in funda-

mental bending frequency with increasing post-tensioning load mag-

nitude, as evident from Figures 7.12-7.14d.

4. This counter-intuitive decreasing trend is attributed to the increase

in effective span length of the cracked beam. The beam in its fully
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cracked state has an effective span length that is less that the actual

span length due to the presence of cracking.

5. The overall structural dynamic response for the cracked post-tensioned

concrete beams is complex. The fundamental bending mode does

not dominate the structural response, as with the uncracked beam

sections. The contribution of higher modes to the overall structural

response is significant, and there is evidence of coupling of the modes.

This is evident from Figures 7.4-7.6d.

6. There has been shown to be a threshold value of post-tensioning load

at which the cracked post-tensioned concrete beams begin to vibrate

monolithically again, in which the dominance of the first mode of

vibration returns. This is evident from Figures 7.4-7.6d.

7. Once the beam begins to vibrate monolithically again, it is assumed

that the effective span length returns to its maximum value. From

this point onwards a statistically significant increasing trend in funda-

mental bending frequency is observed with increasing post-tensioning

load magnitude, for beams that promote crack closure in the bottom

fibre, as evident in Figure 7.8. It is acknowledged that once the cracks

are fully closed the beam begins to behave as an uncracked beam, and

no relationship between post-tensioning force and frequency is to be

found. This is provided that the level of cracking is such that the

plastic limit of the reinforcement in the under reinforced beams has

not been reached. It is also acknowledged that the trend referred to is

observable for Beams 1,3, & 5, however was not observed in the case

of Beams 2 & 4, as outlined in Section 7.4.

The above findings, in conjunction with the findings outlined in the con-

clusions of Chapter 6 (Section 6.10) have profound implications in the fields

of System Identification (SI) and Structural Health Monitoring (SHM). It

has been suggested that, for post-tensioned concrete structures, the mag-

nitude of the post-tensioning force may be deduced from knowledge of the

modal properties of the structure, which can be obtained easily through

non-destructive testing. The results obtained and reported in Chapter 6

indicate that there is no statistically significant relationship between post-

tensioning load magnitude and fundamental bending frequency. Therefore,
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the identification of the magnitude of the post-tensioning force based on

the modal parameters is not deemed possible for uncracked concrete sec-

tions. The lack of correlation between post-tensioning force magnitude and

modal properties may be attributed to the presence of confounding variables

such as lack of ideal support conditions, temperature effects, and material

variability of concrete.

However, in the case of the cracked post-tensioned concrete sections, a

clear statistically significant relationship between post-tensioning force mag-

nitude and fundamental bending frequency is evident, as outlined above.

This clearly shows that the effect of post-tensioning force magnitude on

the natural frequency of such beams is different depending on whether the

beam is accompanied by originating cracks or not. This has implications in

the field of Structural Health Monitoring (SHM), in which the fundamental

frequency can be used not only as an indicator of damage and damage detec-

tion, but also as an indicator of the magnitude of the post-tensioning force

for cracked post-tensioned concrete sections. This is in line with the findings

of De Roeck (2003), who state that prestress loss results only in measur-

able changes in frequency if accompanied by originating cracks, Dall’Asta

and Dezi (1996) who state it is possible to determine the prestressing force

by measuring the natural frequency of a PSC structure in its cracked state

only, and Rodŕıguez et al. (2010), who state that uncracked towers main-

tain their original stiffness and frequency, but once the towers are cracked

and the cracks have been decompressed, any vibrations in the tower will

mobilise smaller stiffness, which will be shown by the vibration frequencies.
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8. Conclusions &

Recommendations

This chapter outlines the main conclusions and recommendations arising

from the modelling, analysis and results presented in Chapters 2-7, espe-

cially the conclusions from Chapter 2, which presents the current state of

the art of the field to date, including a series of mathematical prediction

models predicting changes in natural bending frequency with increasing

post-tensioning force magnitude, Chapter 4, which presents the results of

dynamic impact testing on steel rectangular sections for a series of differ-

ent load cases, Chapter 5, which presents a simple new proposed linear

mathematical model to predict changes in natural bending frequency with

increasing post-tensioning force magnitude, Chapter 6, which presents the

analysis and results of both static and dynamic testing of 9 uncracked post-

tensioned concrete beams, and Chapter 7, which presents the analysis and

results of dynamic testing of the same 9 post-tensioned concrete beams,

following cracking by four-point bending.

The chapter is organised as follows; Section 8.1 presents a short intro-

duction to the chapter and a recap of the objectives that were outlined in

Chapter 1. Section 8.2 presents and summarises the main conclusions of

the work carried out, and described throughout the course of the thesis.

Section 8.3 summarises the work carried out and described throughout the

course of the thesis and describes how the objectives presented in Chapter 1

and repeated in Section 8.1, have been achieved throughout the course of

the work undertaken. Section 8.4 presents the main findings of the work

conducted and outlines the main recommendations for future work in the

field.
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8.1. Review of Objectives

The main objectives of the study were previously outlined in Chapter 1 and

are repeated below;

1. Determine the validity of the “compression-softening” effect.

The “compression-softening” effect states that the natural frequency

will decrease for an externally axially loaded slender section, as the

section begins to soften. It is based on Euler buckling theory and

it has been argued that this effect can be applied to pre- and post-

tensioned concrete sections. The validity of this theory is put to the

test, through dynamic testing of steel RHS sections.

2. Determine whether “compression-softening” holds only for

‘slender’ members. To determine the validity of the “compression-

softening” effect for both slender and stocky sections, and to compare

the dynamic response of the slender/stocky rectangular hollow sec-

tions.

3. Determine how the dynamic properties of steel sections change

with increasing axial force. To determine the effect of both ex-

ternal axial load and post-tensioning force magnitude on the modal

properties of rectangular steel hollow sections, and to compare both

cases.

4. To create a model to predict changes in natural frequency

with increasing post-tensioning force magnitude. To create

a simple mathematical model that predicts changes in fundamental

bending frequency with increasing post-tensioning force magnitude

and varying post-tensioning strand eccentricity.

5. Investigate how the dynamic properties of uncracked post-

tensioned reinforced concrete sections change with increas-

ing axial force. To investigate how the modal properties, specifi-

cally damping ratio and fundamental frequency, of 9 uncracked post-

tensioned concrete beams are affected by different post-tensioning load

levels.

6. Determine how the dynamic properties of uncracked post-

tensioned reinforced concrete sections change with varying
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prestress force eccentricity. To determine how the modal prop-

erties of the post-tensioned concrete beams are affected by different

straight-profiled post-tensioning strand eccentricities.

7. Investigate how the dynamic properties of cracked post ten-

sioned reinforced concrete sections change with increasing

axial force. To investigate how the modal properties of 9 cracked

post-tensioned concrete beams are affected by different post-tensioning

load levels.

8. To compare the effect of changing post-tensioning force mag-

nitude on the dynamic properties of cracked and uncracked

post-tensioned concrete sections. To compare the effect of post-

tensioning force magnitude on both cracked and uncracked concrete

beam sections and to compare the response of both type of sections.

9. To compare the results of the generated model to the results

obtained from dynamic testing. A comparison of the simple math-

ematical model to the obtained experimental results in order to test

the accuracy of the model.

8.2. Main conclusions of the work

The main conclusions of the work, as outlined in Chapters 4, 5, 6, 7, are

outlined below;

Chapter 4

1. An externally axially loaded slender section displays good agreement

with the “compression-softening” effect, as the obtained results have

shown. A post-tensioned slender section deviates from what is ex-

pected from “compression-softening” theory, however, does display a

decreasing trend in fundamental bending frequency, ω1, with increas-

ing post-tensioning load.

2. An externally axially loaded stocky section does not follow the trend

predicted by “compression-softening” theory. A statistically signifi-

cant increasing trend in ω1 is observed with increasing axial load level.
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A post-tensioned stocky section also deviates from “compression-softening”

theory, however a statistically significant decreasing trend was ob-

served.

3. Post-tension load is phenomenologically different to an external axial

load and is not equivalent to an external axial load.

4. A post-tensioning load does not cause Euler buckling to occur.

5. “Compression-softening” is not valid for pre- or post-tensioned struc-

tures, therefore the use of Equation 2.1 is erroneous for post-tensioned

concrete structures.

6. In all cases, a decrease in damping ratio, ξ, is observed with increasing

axial load level.

7. The precision of prediction of the fundamental frequency is related to

the complexity of dynamic response of the signal, and the proportion

of dynamic response attributed to the fundamental mode.

Chapter 5

1. The proposed model presented in this chapter predicts an initial in-

crease in natural bending frequencies, ωn, of the modelled post-tensioned

concrete beams with increasing post-tensioning load magnitude, N ,

over the range of post-tensioning force tested in the lab (0-200kN), as

shown in Figure 5.31. However, when modelled over a greater range of

post-tensioning force, the frequency is initially predicted to increase,

and then drop off as the concrete begins to crush under post-tensioning

force magnitude (Figure 5.32).

2. The proposed model predicts a greater initial increase in fundamen-

tal bending frequency than any of the existing models proposed by

other authors (Saiidi et al., 1994; Kim et al., 2004; Miyamoto et al.,

2000; Dall’Asta and Dezi, 1996; Zhang et al., 2012), as shown in Fig-

ure 5.33. As outlined in Section 5.8, modelling the changes in the

parameters affecting natural frequency with varying post-tensioning

force magnitude is a novel approach, and has not been conducted to

date.
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3. The proposed model is a linear kinematic model that accounts for

small deflections only (i.e. Kirchoff’s kinematic model) and models

changes in Young’s Modulus, second moment of area, span length, and

mass per unit length with increasing post-tensioning force magnitude,

i.e. E(N), I(N), `(N), m(N), as per Equation 5.1.

4. The effect of changing the Young’s Modulus, E(N), and second mo-

ment of area, I(N), with increasing post-tensioning force magnitude

are of similar importance with regard to the subsequent changes in

bending frequency, and is much greater than the effect of changing

span length, `(N), and mass per unit length, m(N), which can be

considered negligible in comparison.

5. By taking non-linear kinematic effects into account, and allowing

for large displacements and moderate rotations, Hamed and Frostig

(2006) have proved that the final equation of motion for a post-

tensioned concrete beam is independent of post-tensioning force mag-

nitude, therefore there is no relationship between natural frequency

and post-tensioning force magnitude.

Chapter 6

1. The “compression-softening” effect is not valid for post-tensioned con-

crete structures. From the static and dynamic tests conducted, no

evidence of a decreasing trend in fundamental bending frequency with

increasing post-tensioning force magnitude has been found.

2. From the obtained static data, the static-equivalent prediction of the

fundamental bending frequency suggests that there is an increasing

trend in fundamental bending frequency with increasing post-tensioning

load magnitude.

3. However, from the obtained dynamic data, there is no indication of any

relationship between post-tensioning load magnitude and fundamental

bending frequency.

4. The dominance of the fundamental bending mode in the overall struc-

tural dynamic response of each of the 9 post-tensioned concrete beams

is evident from the 3D graphs produced.
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5. The results are inconclusive regarding the relationship between the

change in critical damping ratio, ξ and the post-tensioning force mag-

nitude, N .

6. Despite theory predicting that there should be a direct relationship

between post-tensioning strand eccentricity and fundamental bending

frequency, no such non-random systematic change could be identified

from the analysis of the obtained data.

Chapter 7

1. For the uncracked post-tensioned concrete beam sections, there is

no statistically significant relationship between post-tensioning force

magnitude and fundamental bending frequency evident from the data

collected and presented in Chapter 6.

2. For the cracked post-tensioned concrete beam sections, there is a sta-

tistically significant change in the fundamental bending frequencies

with increasing post-tensioning load magnitude.

3. There is an overall statistically significant decreasing trend in funda-

mental bending frequency with increasing post-tensioning load mag-

nitude, as evident from Figures 7.12-7.14d.

4. This counter-intuitive decreasing trend is attributed to the increase

in effective span length of the cracked beam. The beam in its fully

cracked state has an effective span length that is less that the actual

span length due to the presence of cracking.

5. The overall structural dynamic response for the cracked post-tensioned

concrete beams is complex. The fundamental bending mode does

not dominate the structural response, as with the uncracked beam

sections. The contribution of higher modes to the overall structural

response is significant, and there is evidence of coupling of the modes.

This is evident from Figures 7.4-7.6d.

6. There has been shown to be a threshold value of post-tensioning load

at which the cracked post-tensioned concrete beams begin to vibrate

monolithically again, in which the dominance of the first mode of

vibration returns. This is evident from Figures 7.4-7.6d.
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7. Once the beam begins to vibrate monolithically again, it is assumed

that the effective span length returns to its maximum value. From

this point onwards a statistically significant increasing trend in funda-

mental bending frequency is observed with increasing post-tensioning

load magnitude, for beams that promote crack closure in the bottom

fibre, as evident in Figure 7.8. It is acknowledged that once the cracks

are fully closed the beam begins to behave as an uncracked beam, and

no relationship between post-tensioning force and frequency is to be

found. This is provided that the level of cracking is such that the

plastic limit of the reinforcement in the under reinforced beams has

not been reached. It is also acknowledged that the trend referred to is

observable for Beams 1,3, & 5, however was not observed in the case

of Beams 2 & 4, as outlined in Section 7.4.

8.3. Summary of Work and Fulfilment of

Objectives

This thesis presented the methodology and results behind an experimental

and numerical study conducted in order to determine if a statistically signif-

icant relationship between natural bending frequency and post-tensioning

force magnitude is present for post-tensioned concrete structures. A thor-

ough literature review was conducted on the current state of the art of the

topic in the literature, and the current prediction models for changes in

fundamental bending frequency with increasing post-tensioning load were

compared and contrasted, highlighting some of their strengths and also some

of their shortcomings.

Empirical testing was conducted on a series of rectangular hollow sec-

tions. These steel specimens were subjected to different axial load cases

- an external axial load case, and a post-tensioned load case. The migra-

tion of the bending frequency with increasing axial load magnitude was

determined through dynamic testing for both beam load cases, and for rect-

angular hollow sections with different slenderness ratios. A comparison was

made between the migration of the frequency with increasing axial load

magnitude for both beam load cases. As a result, conclusions could be

made on the validity of the “compression-softening”, and its suitability
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for application to pre- and post-tensioned concrete structures.

Subsequently, a simple, linear mathematical model was proposed predict-

ing the changes in natural bending frequency with increasing post-tensioning

force magnitude, for simply supported post-tensioned concrete beams with

differing straight-profiled post-tensioning strand eccentricities. The model

indicates a slight increase in natural frequency over practical ranges of post-

tensioning force, however, does predict a theoretical peak, and a subsequent

drop-off in frequency as the concrete begins to crush and lose strength under

axial loading. Conclusions are drawn based on this model and it’s suitability

for application for both pre- and post-tensioned concrete structures.

Further static and dynamic testing was then conducted on 9 different

simply-supported, uncracked post-tensioned concrete beams in the labora-

tory. Dynamic impact testing was conducted at increasing post-tensioning

force magnitudes and a relationship between the post-tensioning force and

the modal properties (fundamental bending frequency and damping ratio)

was determined. The frequency was determined from peak-picking of the

response signals in the frequency domain, and the damping ratio was deter-

mined via the half-power bandwidth method. Conclusions could hence be

drawn about the relationship between post-tensioning force and the modal

properties through a thorough statistical analysis of the data.

Following testing of the uncracked sections, the sections were cracked via

four-point bending and the dynamic tests were repeated on the cracked post-

tensioned concrete sections. Again, the fundamental frequency and damping

ratio were determined as previously for increasing values of post-tensioning

force for the cracked beam sections. The results for the uncracked and

cracked post-tensioned concrete beams were compared and contrasted, and

conclusions could be drawn regarding the different relationships between

post-tensioning force magnitude and modal properties for both cracked and

uncracked post-tensioned concrete sections.

Each of the objectives outlined previously in Chapter 1, and further out-

lined in Section 8.1, have been achieved, and the main conclusions are out-

lined in Section 8.4.

Section 8.4 summarises the main findings of the work to date, while Sec-

tion 8.2 previously, summarised all of the conclusions drawn from Chap-

ters 4, 5, 6, and 7.
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8.4. Summary of Findings and Recommendations

for Future Work

The main findings of the study are summarised in this section, and Sec-

tion 8.4.1 outlines some suggestions for future research work following on

from the work conducted and described throughout the course of this thesis.

Following the dynamic testing conducted on the steel sections, it was

concluded that the “compression-softening” effect is only valid for externally

axially loaded slender sections, and is not valid for stocky sections, nor is

it valid for post-tensioned sections. The “compression-softening” effect is

based on Euler buckling theory. Post-tensioning load cannot cause Euler

buckling to occur as the post-tensioning strand is bounded by the extents of

the cross section, and therefore the eccentricity of the axial force relative to

the neutral axis is limited. Subsequently, Euler buckling does not occur, and

the “compression-softening” effect is not valid for any type of pre- or post-

tensioned structures. Furthermore, following steel testing, it was determined

that the precision of prediction of the fundamental frequency is related to

the complexity of dynamic response of the signal, and the proportion of

dynamic response attributed to the fundamental mode. The greater the

dominance of the fundamental mode, the more precise the measurement of

the fundamental frequency through peak-picking.

From the simple linear mathematical model proposed, predicting changes

in natural frequency with increasing post-tensioning force magnitude, it was

concluded that over practical ranges of post-tensioning force, the natural

frequency is predicted to increase slightly. However, as the range of post-

tensioning force is extended into impractical regions (due to limits imposed

by the strand tensile load capacity), a drop-off in frequency is predicted

as the concrete crushes and loses strength. The proposed model predicts a

greater initial increase in fundamental bending frequency than any of the

existing models proposed by other authors (Saiidi et al., 1994; Kim et al.,

2004; Miyamoto et al., 2000; Dall’Asta and Dezi, 1996; Zhang et al., 2012).

However, it should be noted that by taking non-linear kinematic effects

into account, and allowing for large displacements and moderate rotations,

Hamed and Frostig (2006) have proven that the final equation of motion

for a post-tensioned concrete beam is independent of post-tensioning force

magnitude, therefore there is no relationship between natural frequency and
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post-tensioning force magnitude.

Through the static and dynamic testing conducted on the 9 uncracked

post-tensioned concrete beam sections, there were conflicting findings. From

the obtained static data, the static-equivalent prediction of the fundamen-

tal bending frequency suggests that there is an increasing trend in funda-

mental bending frequency with increasing post-tensioning load magnitude,

however, from the obtained dynamic data, there is no indication of any re-

lationship between post-tensioning load magnitude and fundamental bend-

ing frequency. It was concluded, through dynamic testing, that for the

uncracked post-tensioned concrete beams, post-tensioning force magnitude

does not significantly affect the natural bending frequency, especially in the

presence of confounding variables such as lack of ideal support conditions,

temperature effect and material variability. Subsequently, it was concluded

that non-destructive dynamic testing cannot be used as a system identifi-

cation technique to determine the prestress loss for pre- and post-tensioned

concrete structures. Furthermore, this implies that the prestress force mag-

nitude need not be taken into account in design and analysis of pre- and

post-tensioned concrete structures, and a simple linear beam-column anal-

ysis is sufficient to accurately describe post-tensioned concrete structures.

Finally, through dynamic testing conducted following cracking of the post-

tensioned concrete sections, it was determined that there is a threshold value

of post-tensioning load at which the cracked post-tensioned concrete beams

begin to vibrate monolithically again, in which the dominance of the first

mode of vibration returns. Once the beam begins to vibrate monolithically

again, a statistically significant increasing trend in fundamental bending

frequency is observed with increasing post-tensioning load magnitude, for

beams that promote crack closure in the bottom fibre. As such, the effect

of post-tensioning force is to close the cracks, increase the beam stiffness,

and hence the natural bending frequency. This has implications in the field

of damage detection/structural health monitoring, in which the correlation

between crack closure, stiffness and fundamental frequency can be used in

practice. Through conducting non-destructive dynamic testing on post-

tensioned concrete structures that are accompanied by pre-existing cracks,

the post-tensioning loss and the cracking level in the section can, theoret-

ically be determined, from the degradation in the natural frequency over

time.
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In summary, “compression-softening” is not valid for pre- or post-tensioned

concrete beams. There is only a relationship between post-tensioning force

and natural frequency where the concrete section is cracked. In such cases,

the effect of post-tensioning force is to close the cracks and increase the

natural frequency. No such relationship exists between natural frequency

and post-tensioning force for uncracked beam sections.

8.4.1. Recommendations for Future Work

There is plenty of scope for further research in this area. This section will

outline some of the suggested possibilities for future investigation in this

area;

Different span-to-depth ratios. Testing could be conducted on a series

of different post-tensioned concrete sections, with varying span-to-depth ra-

tios. As outlined in Section 6.9.1, the span-to-depth ratio of the tested sec-

tions was actually quite small in comparison to real pre- and post-tensioned

concrete structures, consequently, the bending stiffness was high and the

fundamental bending frequency was also high. It is postulated that the ef-

fect of post-tensioning force magnitude on the natural bending frequencies

may in fact be significant for extremely slender structures, with very high

span-to-depth ratios. Experimental modal analysis should be conducted on

a variety of post-tensioned concrete beams, with differing span-to-depth ra-

tios, at increasing post-tensioning force magnitudes, and comparison of the

results should be made, to see the effect of the span-to-depth ratio on the

results.

Different post-tensioning strand profiles. The 9 beams tested each had

a different straight-profiled post-tensioning strand eccentricity. The effect

of different strand profiles on the natural frequency of post-tensioned con-

crete structures should also be investigated. For example, parabolic strand

profiles are also popular for simply-supported structures, as this profile max-

imises the eccentricity at mid-span, where the deflections are greatest. Other

post-tensioning strand profiles are used, depending on the support condi-

tions. For example, two-span pre- and post-tensioned structures tend to

make use of triple-parabolic profiles, with maximum positive eccentricities
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in the middle spans, and minimum negative eccentricity at the middle sup-

port, where hogging is induced. The effect of prestress force magnitude on

different profiled sections should be investigated, to determine the effect of

the profile on the dynamics of the sections.

Pre-stressed beams/Grouted post-tensioned concrete beams. The

beams tested and described throughout the course of this thesis were un-

grouted post-tensioned concrete beams. In practice, all forms of prestressing

and the majority of post-tensioning makes use of grouting to bind the strand

to the surrounding concrete. The effect of this bond, and it’s relationship

with the prestress/post-tensioning force magnitude should be investigated.

The strand should be instrumented, and experimental modal testing should

be conducted over time in order to measure the migration of frequency over

time. The prestress force will decrease over time due to losses, and the re-

lationship between prestress force and natural frequency can subsequently

be determined.

Different reinforcement ratios. The reinforcement provided in the con-

crete beams tested was the minimum reinforcement in accordance with Eu-

rocode 2 (British Standards Institute, 2004). Reinforcement was provided

in order to prevent cracking from occurring under beam self-weight during

lifting around the laboratory. The effect of the reinforcement ratio on the

dynamics of the post-tensioned structures should be investigated. A series

of post-tensioned concrete beams with different reinforcement ratios could

be cast, and similar dynamic testing conducted at increasing post-tensioning

load magnitudes to compare the effect of reinforcement ratios on the mi-

gration of natural bending frequency with increasing post-tensioning load

magnitude.

Different concrete strengths/Young’s Modulus. The concrete used

to cast the test specimens was chosen as C30/37. The effect of concrete

strength on the dynamic behaviour of the post-tensioned concrete beams

should also be investigated. There is a direct correlation between concrete

strength and Young’s Modulus. The concrete strength also directly affects

the cracking (tensile) strength of the concrete. A series of post-tensioned

concrete beams should be cast with different concrete strengths, and the
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testing outlined above should be repeated, determining the natural fre-

quency at each post-tensioning load level for each of the different concrete

strength beams, in order to determine the effect of concrete strength on the

migration of the bending frequency with increasing post-tensioning force.

Different support conditions. The beams tested and described through-

out the course of this thesis were simply supported, using pad foundations

that allowed rotation to occur at the supports. They were not idealised

simple ‘knife-edge’ supports. Further testing should be conducted on post-

tensioned concrete beams with differing support conditions. For instance,

the typical two span beam with an internal support, and triple parabolic

tendon profile should be tested in a similar manner in order to determine if

the presence of parasitic moments due to prestressing will effect the results

obtained in any way. ‘Parasitic’ or ‘secondary’ moments arise in statically

indeterminate post-tensioned concrete structures, where the post-tensioning

force causes a moment due to the resistance of the internal support to the

upward camber that would be induced in the supports absence.

Continuous monitoring of prestressed concrete structures. Prac-

tical non-destructive dynamic testing should be conducted on new pre-

and post-tensioned concrete structures, such as post-tensioned concrete

wind turbine tower, prestressed concrete bridge birders and pre- and post-

tensioned concrete floor slabs. The strands should be instrumented from

the time of construction and non-destructive dynamic testing conducted

periodically over time, as the prestress force decreases. The purpose of this

testing is to account for the in-situ behaviour of such structures and to ac-

count for the presence of the confounding variables such as the temperature

effects and the lack of idealised support conditions. Ambient vibration test-

ing may be carried out continuously to estimate the migration of the modal

properties over time.

Expanded numerical model. The mathematical model proposed in

Chapter 5 should be expanded to take into account all support conditions

and all different strand profiles. The model, in its current guise is only ap-

plicable to simply-supported post-tensioned concrete beams with straight-

profiled post-tensioning strand eccentricities - this should be expanded to
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account for all section sizes, strand profiles and support conditions.

Analysis of potential interaction effects. An analysis of the poten-

tial interaction effects between post-tensioning force and eccentricity on the

modal properties of such pre- and post-tensioned structures should be con-

ducted. An analysis on such interaction effects was not conducted through-

out the course of this study, as the results for such were inconclusive, and

no evidence of such interaction effects was evident.

Analysis of the point of monolithic response of post-tensioned

structures. An analysis of the point at which structures vibrate in a

monolithic manner, and the factors affecting monolithic response for post-

tensioned structures should be undertaken. For example, a simple lab-

oratory experiment should be undertaken on a simple stacked masonry or

wooden block structure, which is threaded with a post-tensioning strand/string

to determine the post-tensioning force value at which the structure stops

behaving as a series of stacked blocks, and begins vibrating as one mono-

lithic structure.

Investigation of postulated “virtual effective length”. The postula-

tion for the observed initial increase in fundamental frequency of the tested

sections when they were cracked as opposed to their uncracked state and

the explanation of the increase in frequency in relation to a “virtual effec-

tive length” of the cracked section, as discussed in Section 7.4.3 is to be

tested further, as it is acknowledged that this is merely a postulation for an

effect observed during testing, and that this requires further proof/testing

in order to be validated or discredited.
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A. Appendices

A.2. Steel results

The statistical significance of the regression slope and intercept parameters

for regressing both fundamental bending frequencies, ω1 and Damping Ra-

tios, ξ on applied axial load, N , for all beam and load case combinations for

the steel rectangular hollow sections tested and outlined in Chapter 4 are

given in Table A.1 and Table A.2. Statistical t-tests have been carried out to

determine if the regression slope and intercept parameters are statistically

significantly different from zero, or not.

Linear regression lines have been fitted to the data and the results are

observed in Figures A.1 and A.3. The Normality of both the fundamental

bending frequency and the damping ratios have been tested by plotting

the results on a Normal Probability Paper, and the results are displayed in

Figures A.2 and A.4.

A.2.1. Fundamental Bending Frequencies, ω1

Table A.1 shows the calculated linear regression intercept parameter (α0),

and slope parameter (α1) when regressing ω1 on N for all four permuta-

tions of beam (i) and load cases (j). The corresponding linear regression

equations are obtained by substituting into the following formula;

ω1 = α0,ij + α1,ijN (A.1)

A.2.2. Damping Ratios, ξ

Table A.2 shows the calculated linear regression intercept parameter (β0),

and slope parameter (β1) when regressing ξ1 on N for all four permuta-

tions of beam (i) and load cases (j). The corresponding linear regression
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Figure A.1.: Regression analysis; ω1 vs. N for different steel beams; (a)
Beam 1, Case 1; (b) Beam 1, Case 2; (c) Beam 2, Case 1; (d)
Beam 2, Case 2.

Table A.1.: Statistical analysis on regression parameters for ω1 on N
B/C Reg. P. Value SE t-value t-crit. p 95% CI

B1 C1 α0,11 28.7612 0.5574 51.5969 1.9720 0.0000 (27.6620,29.8605)
α1,11 -0.3236 0.0308 -10.5204 1.9720 0.0000 (-0.3842,-0.2629)

B1 C2 α0,12 27.6906 0.3709 74.6608 1.9643 0.0000 (26.9621,28.4192)
α1,12 -0.0477 0.0130 -3.6845 1.9643 0.0003 (-0.0732,-0.0223)

B2 C1 α0,21 71.3579 0.2682 266.0298 1.9644 0.0000 (70.8310,71.8848)
α1,21 0.0084 0.0023 3.5894 1.9644 0.0004 (0.0038,0.0130)

B2 C2 α0,22 75.6530 0.3855 196.2659 1.9647 0.0000 (74.8956,76.4103)
α1,22 -0.0239 0.0037 -6.5195 1.9647 0.0000 (-0.0311,-0.0167)

equations are obtained by substituting into the following formula;

ξ1 = β0,ij + β1,ijN (A.2)
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Figure A.2.: Normal Probability Plots of Fundamental Bending Frequency,
ω1 for each beam/load case combination; (a) Beam 1, Case 1;
(b) Beam 1, Case 2; (c) Beam 2, Case 1; (d) Beam 2, Case 2.

Table A.2.: Statistical analysis on regression parameters for ξ1 on N
B/C Reg. P. Value SE t-value t-crit. p 95% CI

B1 C1 β0,11 0.0458 0.0032 14.2186 1.9720 0.0000 (0.0395,0.0522)
β1,11 -0.0010 0.0002 -5.3699 1.9720 0.0000 (-0.0013,-0.0006)

B1 C2 β0,12 0.1371 0.0062 22.1801 1.9643 0.0000 (0.1249,0.1492)
β1,12 -0.0021 0.0002 -9.8760 1.9643 0.0000 (-0.0026,-0.0017)

B2 C1 β0,21 0.0344 0.0010 35.8787 1.9644 0.0000 (0.0325,0.0363)
β1,21 -0.0002 0.0000 -19.4633 1.9644 0.0004 (-0.0002,-0.0001)

B2 C2 β0,22 0.0714 0.0017 41.2609 1.9647 0.0000 (0.0680,0.0748)
β1,22 -0.0004 0.0000 -24.6953 1.9647 0.0000 (-0.0004,-0.0004)
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Figure A.3.: Regression analysis; ξ vs. N for different steel beams; (a) Beam
1, Case 1; (b) Beam 1, Case 2; (c) Beam 2, Case 1; (d) Beam
2, Case 2.
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Figure A.4.: Normal Probability Plots of Damping Ratio, ξ for each
beam/load case combination; (a) Beam 1, Case 1; (b) Beam 1,
Case 2; (c) Beam 2, Case 1; (d) Beam 2, Case 2.
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A.3. Uncracked Concrete Results

The results of the statistical analysis on the uncracked concrete sections, as

described in Chapter 6 are outlined in this section. Section A.3.1 presents

the statistical analysis of static equivalent fundamental frequencies at in-

creasing post-tensioning load magnitude. Section A.3.2 presents the statis-

tical analysis of the calculation of the dynamic frequency of the uncracked

post-tensioned concrete beams, and Section A.3.2 presents the statistical

analysis of the calculation of the damping ratio of the uncracked post-

tensioned concrete beams.

A.3.1. Static Results, ω1,S1, ω1,S2

Table A.3 shows the results of the statistical analysis on the static equivalent

of the fundamental frequency with increasing post-tensioning load magni-

tude for the uncracked concrete sections. Table A.3 provides supplemental

information to that laid out in Chapter 6.

A.3.2. Dynamic Results

Table A.4 presents the statistical analysis on the regression parameters of

regression natural frequency on post-tensioning load magnitude for the un-

cracked post-tensioned concrete sections, and Table A.5 indicates and sum-

marises the general trends observed in accordance with the results and con-

clusions arising from Table A.4.

Frequencies, ω1,D

Table A.4 shows the calculated linear regression intercept parameter (α0),

and slope parameter (α1) when regressing ω1 on N for all nine number

beams (i). The corresponding linear regression equations are obtained by

substituting into the following formula;

ω1 = α0,i + α1,iN (A.3)
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Table A.3.: Statistical analysis on regression parameters for ω1,S1 and ω1,S2

on N

B# Reg. P. Value SE t-value t-crit. p 95% CI

B1 α0,1 59.7233 1.6972 35.19 2.2622 0.0000 (55.8840,63.5626)
α1,1 0.1675 0.0142 11.76 2.2622 0.0000 (0.1353,0.1997)
α0,1 58.7176 5.5784 10.53 2.2622 0.0000 (46.0984,71.3368)
α1,1 0.2755 0.0468 5.88 2.2622 0.0002 (0.1696,0.3813)

B2 α0,2 47.7036 1.0101 47.22 2.0796 0.0000 (45.6029,49.8043)
α1,2 0.0735 0.0087 8.44 2.0796 0.0000 (0.0553,0.0916)
α0,2 41.7939 1.2572 33.24 2.0860 0.0000 (39.1716,44.4163)
α1,2 0.0879 0.0105 8.36 2.0860 0.0000 (0.0660,0.1099)

B3 α0,3 74.0030 2.3010 32.16 2.0860 0.0000 (69.2032,78.8028)
α1,3 0.2981 0.0193 15.48 2.0860 0.0000 (0.2579,0.3383)
α0,3 60.2774 0.5241 115.01 2.0860 0.0000 (59.1841,61.3707)
α1,3 0.0907 0.0044 20.69 2.0860 0.0000 (0.0816,0.0999)

B4 α0,4 66.8800 0.6230 107.35 2.0860 0.0000 (65.5804,68.1796)
α1,4 0.1363 0.0052 26.04 2.0860 0.0000 (0.1253,0.1472)
α0,4 64.1038 0.5541 115.70 2.0860 0.0000 (62.9481,65.2596)
α1,4 0.1541 0.0047 33.06 2.0860 0.0000 (0.1444,0.1638)

B5 α0,5 66.5409 0.8758 75.98 2.0860 0.0000 (64.7140,68.3679)
α1,5 0.1072 0.0073 14.67 2.0860 0.0000 (0.0919,0.1224)
α0,5 63.8006 0.9855 64.74 2.0860 0.0000 (61.7448,65.8564)
α1,5 0.1200 0.0082 14.64 2.0860 0.0000 (0.1029,0.1371)

B6 α1,6 61.3804 0.6625 92.65 2.0860 0.0000 (59.9984,62.7623)
α1,6 0.0643 0.0055 11.61 2.0860 0.0000 (0.0528,0.0759)
α1,6 58.8722 0.4548 129.46 2.0860 0.0000 (57.9237,59.8208)
α1,6 0.0732 0.0038 19.22 2.0860 0.0000 (0.0653,0.0812)

B7 α0,8 66.7005 0.7977 83.62 2.0860 0.0000 (65.0366,68.3644)
α1,8 -0.0005 0.0067 -0.07 2.0860 0.9462 (-0.0144,0.0135)
α0,7 60.9159 0.4011 151.88 2.0860 0.0000 (60.0792,61.7525)
α1,7 0.0189 0.0034 5.65 2.0860 0.0000 (0.0119,0.0259)

B8 α0,8 62.8552 0.4784 131.38 2.0860 0.0000 (61.8572,63.8532)
α1,8 0.0073 0.0041 1.77 2.0860 0.9462 (-0.0013,0.0159)
α0,8 57.7603 0.2238 258.10 2.0860 0.0000 (57.2935,58.2271)
α1,8 0.0193 0.0019 10.31 2.0860 0.0000 (0.0154,0.0232)

B9 α0,9 63.1564 0.5440 116.10 2.0860 0.0000 (62.0216,64.2911)
α1,9 -0.0012 0.0045 -0.27 2.0860 0.7921 (-0.0107,0.0083)
α0,9 64.1017 0.9121 70.28 2.0860 0.0000 (62.1992,66.0043)
α1,9 -0.0159 0.0077 -2.07 2.0860 0.0516 (-0.0319,0.0001)

Damping ratios, ξ

Table A.6 shows the calculated linear regression intercept parameter (β0),

and slope parameter (β1) when regressing ξ on N for all nine number beams
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Table A.4.: Statistical analysis on regression parameters for ω1,D on N

B# Reg. P. Value SE t-value t-crit. p 95% CI

B1 α0,1 68.6585 2.0515 33.4680 1.9672 0.0000 (64.6228,72.6942)
α1,1 0.0033 0.0204 0.1635 1.9672 0.8702 (-0.0368,0.0434)

B2 α0,2 72.0282 0.3415 210.9027 1.9672 0.0000 (71.3563,72.7000)
α1,2 0.0025 0.0029 0.8589 1.9672 0.3910 (-0.0032,0.0082)

B3 α0,3 71.8116 0.4017 178.7481 1.9672 0.0000 (71.0213,72.6020)
α1,3 0.0035 0.0034 1.0310 1.9672 0.3033 (-0.0031,0.0101)

B4 α0,4 71.1915 0.3728 190.9584 1.9672 0.0000 (70.4581,71.9249)
α1,4 -0.0043 0.0031 -1.3659 1.9672 0.1729 (-0.0104,0.0019)

B5 α0,5 67.6526 0.5805 116.5487 1.9672 0.0000 (66.5107,68.7946)
α1,5 0.0211 0.0049 4.2831 1.9672 0.0000 (0.0114,0.0307)

B6 α1,6 66.1165 0.4804 137.6213 1.9672 0.0000 (65.1714,67.0616)
α1,6 0.0059 0.0040 1.4877 1.9672 0.1378 (-0.0019,0.0138)

B7 α0,7 69.6030 0.3444 202.1280 1.9677 0.0000 (68.9254,70.2806)
α1,7 0.0445 0.0029 15.4322 1.9677 0.0000 (0.0388,0.0502)

B8 α0,8 70.6975 0.3820 185.0695 1.9684 0.0000 (69.9456,71.4494)
α1,8 0.0453 0.0038 11.9044 1.9684 0.0000 (0.0378,0.0528)

B9 α0,9 66.3616 0.6663 99.5991 1.9672 0.0000 (65.0509,67.6724)
α1,9 -0.0032 0.0054 -0.5856 1.9672 0.5586 (-0.0137,0.0074)

Table A.5.: Observed trends in uncracked beam data

B# e (mm) ω1(N) ξ(N)

B1 0 - -
B2 +13 - ↘
B3 +26 - ↗
B4 +39 - -
B5 +52 ↗ ↗
B6 -13 - -
B7 -26 ↗ ↗
B8 -39 ↗ ↘
B9 -52 - ↘

(i). The corresponding linear regression equations are obtained by substi-

tuting into the following formula;

ξ = β0,i + β1,iN (A.4)
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Table A.6.: Statistical analysis on regression parameters for ξ on N

B# Reg. P. Value SE t-value t-crit. p 95% CI

B1 β0,1 0.0211 0.0096 2.2022 1.9672 0.0283 (0.0023,0.0400)
β1,1 0.0000 0.0001 0.1699 1.9672 0.8652 (-0.0002,0.0002)

B2 β0,2 0.0370 0.0022 17.1074 1.9672 0.0000 (0.0327,0.0412)
β1,2 -0.0001 0.0000 -6.4672 1.9672 0.0000 (-0.0002,-0.0001)

B3 β0,3 0.0056 0.0012 4.8365 1.9672 0.0000 (0.0033,0.0078)
β1,3 0.0000 0.0000 4.1999 1.9672 0.0000 (0.0000,0.0001)

B4 β0,4 0.0338 0.0014 24.4342 1.9672 0.0000 (0.0311,0.0365)
β1,4 -0.0000 0.0000 -0.8902 1.9672 0.3740 (-0.0000,0.0000)

B5 β0,5 0.0362 0.0021 16.9762 1.9672 0.0000 (0.0320,0.0404)
β1,5 0.0000 0.0000 2.5735 1.9672 0.0105 (0.0000,0.0001)

B6 β1,6 0.0298 0.0013 22.4369 1.9672 0.0000 (0.0272,0.0324)
β1,6 -0.0000 0.0000 -0.0969 1.9672 0.9228 (-0.0000,0.0000)

B7 β0,7 0.0366 0.0018 20.7348 1.9675 0.0000 (0.0332,0.0401)
β1,7 0.0001 0.0000 6.5090 1.9675 0.0000 (0.0001,0.0001)

B8 β0,8 0.0469 0.0016 29.4815 1.9672 0.0000 (0.0438,0.0501)
β1,8 -0.0000 0.0000 -2.4571 1.9672 0.0145 (-0.0001,-0.0000)

B9 β0,9 0.0420 0.0022 19.3577 1.9672 0.0000 (0.0377,0.0462)
β1,9 -0.0001 0.0000 -2.8821 1.9672 0.0042 (-0.0001,-0.0000)

Table A.7.: Observed trends in cracked beam data

B# e (mm) ω1(N) ξ(N)

C1 0 ↘ ↗
C2 +13 ↘ ↘
C3 +26 ↘ ↘
C4 +39 - -
C5 +52 ↘ ↗
C6 -13 ↘ -
C7 -26 ↘ ↗
C8 -39 - -
C9 -52 ↘ -
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A.4. Cracked Concrete Results

Section A.4.1 outlines the statistical analysis conducted on the natural fre-

quency values obtained from the testing described on the cracked post-

tensioned concrete beam sections in Chapter 7, whereas Section A.4.2 out-

lines the statistical analysis conducted on the damping ratios calculated

from the testing described on the cracked post-tensioned concrete beam

sections in Chapter 7.

Table A.8 shows the statistical analysis on the regression parameters for

regressing fundamental natural frequency on post-tensioning load magni-

tude for the uncracked post-tensioned concrete beams tested, while Ta-

ble A.9 shows the statistical analysis on the regression parameters for re-

gressing damping ratio on post-tensioning load magnitude for the uncracked

post-tensioned concrete beams tested.

A.4.1. Fundamental Frequency, ω1

Table A.8.: Statistical analysis on regression parameters for ω1 on N

B# Reg.P. Value SE t-value t-crit. p 95% CI

C1 α0,1 77.4329 0.4465 173.4027 1.9680 0.0000 (76.5541,78.3117)
α1,1 -0.0725 0.0038 -18.8934 1.9680 0.0000 (-0.0801,-0.0650)

C2 α0,2 74.7752 0.4102 182.2883 1.9677 0.0000 (73.9681,75.5824)
α1,3 -0.0252 0.0034 -7.4582 1.9677 0.0000 (-0.0318,-0.0185)

C3 α0,3 72.5801 0.5957 121.8356 1.9677 0.0000 (71.4078,73.7523)
α1,3 -0.0498 0.0049 -10.1514 1.9677 0.0000 (-0.0595,-0.0402)

C4 α0,4 73.8955 3.2289 22.8860 1.9687 0.0000 (67.5389,80.2521)
α1,4 -0.0512 0.0320 -1.5981 1.9687 0.1112 (-0.1143,0.0119)

C5 α0,5 74.5332 0.4785 155.7534 1.9691 0.0000 (73.5909,75.4754)
α1,5 -0.0622 0.0040 -15.5862 1.9691 0.0000 (-0.0700,-0.0543)

C6 α1,6 76.9604 0.5600 137.4217 1.9672 0.0000 (75.8587,78.0621)
α1,6 -0.0622 0.0047 -13.1872 1.9672 0.0000 (-0.0715,-0.0529)

C7 α0,7 70.7515 0.4381 161.4799 1.9672 0.0000 (69.8896,71.6134)
α1,7 -0.0073 0.0037 -1.9806 1.9672 0.0485 (-0.0145,-0.0000)

C8 α0,8 73.1886 0.6833 107.1066 1.9737 0.0000 (71.8399,74.5373)
α1,8 -0.0071 0.0057 -1.2449 1.9737 0.2148 (-0.0185,0.0042)

C9 α0,9 73.7652 0.4917 150.0268 1.9746 0.0000 (72.7943,74.7361)
α1,9 -0.0230 0.0048 -4.8378 1.9746 0.0000 (-0.0324,-0.0136)
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A.4.2. Damping ratios, ξ

Table A.9.: Statistical analysis on regression parameters for ξ on N

B# Reg.P. Value SE t-value t-crit. p 95% CI

C1 β0,1 0.0222 0.0019 11.6138 1.9680 0.0000 (0.0184,0.0259)
β1,1 0.0001 0.0000 3.0821 1.9680 0.0022 (0.0000,0.0001)

C2 β0,2 0.0353 0.0016 22.4737 1.9677 0.0000 (0.0322,0.0384)
β1,2 -0.0000 0.0000 -3.1060 1.9677 0.0021 (-0.0001,-0.0000)

C3 β0,3 0.0325 0.0013 25.5978 1.9677 0.0000 (0.0300,0.0350)
β1,3 -0.0000 0.0000 -3.4188 1.9677 0.0007 (-0.0001,-0.0000)

C4 β0,4 0.0388 0.0086 4.5197 1.9687 0.0000 (0.0219,0.0557)
β1,4 -0.0000 0.0001 -0.2157 1.9687 0.8294 (-0.0002,0.0001)

C5 β0,5 0.0215 0.0019 11.4405 1.9691 0.0000 (0.0178,0.0252)
β1,5 0.0001 0.0000 4.4532 1.9691 0.0000 (0.0000,0.0001)

C6 β1,6 0.0285 0.0019 14.9605 1.9672 0.0000 (0.0248,0.0323)
β1,6 -0.0000 0.0000 -1.1019 1.9672 0.2713 (-0.0000,0.0000)

C7 β0,7 0.0259 0.0016 15.7808 1.9672 0.0000 (0.0227,0.0292)
β1,7 0.0000 0.0000 2.4878 1.9672 0.0133 (0.0000,0.0001)

C8 β0,8 0.0303 0.0022 13.5779 1.9737 0.0000 (0.0259,0.0347)
β1,8 -0.0000 0.0000 -0.4120 1.9737 0.6808 (-0.0000,0.0000)

C9 β0,9 0.0302 0.0015 19.8011 1.9746 0.0000 (0.0272,0.0332)
β1,9 0.0000 0.0000 0.6187 1.9746 0.5370 (-0.0000,0.0000)
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A.5. Conferences Attended

A list of the conferences attended so far are given in Table A.10;

Table A.10.: Conferences attended

Conference Date Venue Poster Paper Oral

BCRI 2012 06-07/09/2012 DIT, TCD
IStructE YRC 2013 14/03/2013 London
DAMAS 2013 08-10/07/2013 TCD
IStructE YRC 2014 05/03/2014 London X
CERI 2014 28-29/08/2014 QUB X X
ACSMS 23 09-12/12/2014 Byron Bay, Australia X X
IStructE YRC 2015 14/04/2015 London X X
IOMAC 2015 10-14/05/2015 Gijón, Spain X X
DAMAS 2015 24-26/08/2015 Ghent, Belgium X X
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A.6. List of Publications

A list of conference and journal publications stemming from the work con-

ducted and described throughout this thesis is given in Sections A.6.1 and A.6.2

respectively.

A.6.1. Conference Papers

1. Noble, D., Nogal, M., O’Connor, A., and Pakrashi, V. (2014). Impact

hammer testing on post-tensioned steel RHS sections; an investiga-

tion of the “Compression Softening” effect. In Proceedings of Civil

Engineering Research in Ireland Conference, volume I, pages 427-432.

Civil Engineering Research Association of Ireland.

2. Noble, D., Nogal, M., O’Connor, A., and Pakrashi, V. (2014). The

effect of prestress force magnitude on the natural frequencies of pre-

stressed concrete structures. In Proceedings of the 23rd Australasian

Conference on the Mechanics of Structures and Materials (ACMSM23),

volume I, pages 333-338. Southern Cross University.

3. Noble, D., Nogal, M., O’Connor, A., and Pakrashi, V. (2015). The

effect of post-tensioning force magnitude and eccentricity on the nat-

ural bending frequency of cracked post-tensioned concrete beams. In

Proceedings of 11th International Conference on Damage Assessment

of Structures (DAMAS) 2015, pages xxx-xxx. 11th International Con-

ference on Damage Assessment of Structures (DAMAS) 2015.

4. Noble, D., Nogal, M., O’Connor, A., and Pakrashi, V. (2015c). Out-

put only investigation of the effect of post-tensioning force on nat-

ural frequencies of post-tensioned concrete beams. In Proceedings

of International Operational Modal Analysis Conference (IOMAC),

pages 197-204. International Operational Modal Analysis Conference

(IOMAC).

A.6.2. Journal Papers

1. Noble, D., Nogal, M., O’Connor, A., and Pakrashi, V. (2015a). Dy-

namic impact testing on post-tensioned steel rectangular hollow sec-
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tions; an investigation into the “compression-softening” effect. Jour-

nal of Sound and Vibration, 355:246-263.

2. Noble, D., Nogal, M., O’Connor, A., and Pakrashi, V. (2016). The

effect of prestress force magnitude and eccentricity on the natural

bending frequencies of uncracked prestressed concrete beams. Journal

of Sound and Vibration, 365:22-44.
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Nomenclature

[C̄] Modal damping matrix of given structure

[K̄] Modal stiffness matrix of given structure

[M̄ ] Modal mass matrix of given structure

[C] Damping matrix of given structure

[H(jω)] Frequency response function (FRF)

[K] Stiffness matrix of given structure

[M ] Mass matrix of given structure

β Slenderness ratio, β = `/r

∆Pt Change in tendon tension due to flexural vibration N

∆Ptc Horizontal component of increase in prestressing force due to flexural

vibration N

∆Pts Vertical component of increase in prestressing force due to flexural

vibration N

` Span length of the beam m

`t Length of tendon m

εxx Axial strain

γ Shear strain

γi Unit weight of the girder kN/m3

γss Beam shear rotation

λb Critical load parameter
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λf Frequency parameter

ν Poisson’s ratio for concrete

ω1 Fundamental bending frequency rad/s

ωn nth natural bending frequency rad/s

φ(x) Eigenfunction describing modeshape of beam

Φn nth fundamental bending mode shape

ψx Beam curvature

ρ Weight density of reinforced concrete, kN/m3

ρc mass density of concrete kg/m3

ρs mass density of prestressing steel kg/m3

θi Initial angle of the post-tensioning tendons

θs Slope of FBD of beam in Figure 2.2

ξ Damping ratio

{F (t)} Time dependent force vector exciting the structure

{x(t)} Time dependent vector of displacements of the structure

A Cross sectional area, mm2

a Distance from the support to the deviator mm

Ab Beam cross sectional area m2

Ai Cross sectional area of girder cross section mm2

As Cross sectional area of prestressing steel strand m2

At Cross sectional area of tendon mm2

Acab Cable cross sectional area m2

Aconc Cross sectional area of concrete section m2

b Breadth of rectangular cross section, mm
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C, s Arbitrary constants

E Young’s Modulus of Elasticity N/m2

e Eccentricity of the tendon from the centroid of the cross section mm

Eb Young’s Modulus of beam N/m2

Es Young’s Modulus of the steel girder N/m2

Et Young’s Modulus of tendon N/m2

Ex Young’s Modulus in the axial direction N/m2

Ecab Young’s Modulus of cable N/m2

Econc Young’s Modulus of concrete N/m2

EI Flexural rigidity of cross section N −m2

f ′c Characteristic concrete cube strength MPa

ft Design tensile strength of concrete MPa

Gxz Transverse shear modulus in plane of vibration

h Height of rectangular cross section, mm

I Second moment of area of the beam cross section m4

Ie Effective second moment of area of the cross section m4

Ir Second moment of area of composite cross section m4

Is Second moment of area of prestress steel cross section m4

Iu Uncracked second moment of area m4

Iconc Second moment of area of concrete cross section m4

Icr Cracked second moment of area m4

Ivs Second moment of area of steel girder m4

k Shear factor for given cross section N/m2

Lr Span length after axial shortening m
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M Bending moment in beam N −m

m Mass per unit length of the beam kg/m

Ma Maximum gross moment N −m

Mp Bending moment due to the prestressing force N −m

mr mass per unit length of the prestressed beam kg/m

Mcr Cracking moment N −m

N Magnitude of the external axial compressive load N

n nth bending vibration mode

P Applied prestressing load N

Pt Magnitude of the prestressing force N

Pcr Critical Euler buckling load N

Pext External axial load

Pts Vertical component of the prestressing force N

r Radius of gyration

T Axial tensile force N

t Time variable s

TKE Kinetic energy

U Strain energy

u Deflection of beam m

V Shear force in beam N

W Work done by external load, P

w Beam transverse displacement

X Axial load index; ratio of axial load to Pcr

x Horizontal Cartesian coordinate
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y Vertical Cartesian coordinate

ymax Distance from neutral axis to extreme fibre mm

Z Sensitivity index of square of frequency to axial load index
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