
Program Generation for Intel AES New Instructions
Thesis submitted for the degree of Doctor in Philosophy

2011

Raymond Keith Scott Manley

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or

any other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or

allow the Library to do so on my behalf, subject to Irish Copyright Legislation and

Trinity College Library conditions of use and acknowledgement.

Raymond Keith Scott Manley

i

Acknowledgements

The work presented in this dissertation could have not been completed without the

knowledge, experience, and support of my supervisor, Dr. David Gregg. He ensured

several years ago that I got the opportunity to study in Ireland. I am as equally

thankful to him for that as I am for his influence on my academic pursuits.

I would also like to thank Jason McCandless, Kevin Williams, Paul Biggar, Nicholas

Nash, and Bobb Crosbie. As far as research groups go, the members of our group were

a social and enjoyable bunch to talk to, both inside and outside the office.

I could not have done any of this work without funding. I would like to thank

IRCSET (The Irish Research Council for Science, Engineering and Technology) and

Intel Ireland for providing me this unique opportunity.

I would like to thank all my friends on both sides of the pond and specifically to my

proofreaders: Aoife Carolan, Marianne Cassidy, and Sophie Geary. Finally, I would

like to thank my parents. I know they would have liked to see me more over this

period, but they have been incredibly understanding and supporting of my endeavours

throughout the years. This work is dedicated to them.

iii

Abstract

High-performance primitive libraries are used to replace parts of sub-optimal code with

optimized implementations. These libraries often come in the form of highly-optimized

assembly routines, which raises several issues. Small changes to assembly routines

can require significant rewrites. New versions of microarchitectures will often require

changes in the assembly to keep code both efficient and functional. Maintaining mul-

tiple versions of the same basic piece of assembly code is a costly software engineering

problem. One approach to solving this problem is using a program generator.

AES-NI is an instruction-set extension on Intel processors that implement a full

round of AES encryption in a single instruction. Existing libraries use hand-tuned

assembly language to overlap the execution of multiple AES instructions to extract

maximum performance. In this dissertation, we argue that using a program generator is

suitable substitute for writing highly-optimized assembly routines that use AES-NI. We

present a program generation system that seamlessly integrates high-level algorithmic

choices with scheduling strategies that exploit instruction-level parallelism.

This program generation system returns AES implementations that achieve near

optimal performance. We also show that the generator is dynamic enough to take

exploratory approaches when optimizing code. As a result, this dissertation also con-

tributes two novel encryption modifications. For CTR mode, we present a “mixed-

mode” operation that combines traditional lookup table optimizations with AES-NI

instructions. In cyclic modes, such as CBC, we show how manipulating the xor in-

structions can shorten the chain of dependent operations. These optimized implemen-

tations are found using an adapted simulated annealing algorithm. We show these

implementations can achieve similar or superior cycle per byte times compared to the

high-performance library versions provided by Intel. The end result is a program gen-

eration technique that could potentially be adapted to optimize other algorithms that

rely on instruction-set extensions.

v

Contents

Abstract v

List of Tables xi

List of Figures xiii

List of Code Listings xv

1 Motivation 1

1.1 Thesis . 3

1.2 Contributions . 3

1.3 Relevant Academic Publications . 5

1.4 Dissertation Outline . 5

2 Background 7

2.1 Architectural Features . 7

2.1.1 Instruction Pipelining . 7

2.1.2 Superscalar . 9

2.1.3 Simultaneous Multithreading 10

2.1.4 Vector/SIMD . 11

2.1.5 Autovectorization . 12

2.2 Software ILP Optimizations . 13

2.2.1 Instruction Scheduling . 13

2.2.2 Loop Unrolling . 13

2.2.3 Software Pipelining . 14

2.2.4 Modulo Scheduling . 15

2.3 Program Generation . 17

2.3.1 Domain Specific Code Generators 18

2.3.2 Traversing the Search Space . 19

vii

CONTENTS

2.3.3 Simulated Annealing . 21

2.4 Streaming Languages . 23

3 Vector Code Generation for GPPs 27

3.1 Introduction . 28

3.2 Brook . 29

3.3 Modifications to Brook . 30

3.3.1 Modifying the Code Generator 31

3.3.2 Modifying the Runtime . 31

3.4 Generating Vector Code . 32

3.4.1 General operations . 32

3.4.2 Arrays . 33

3.4.3 Conditional Assignments . 34

3.4.4 For loops inside kernels . 35

3.4.5 Reduce Kernels . 35

3.4.6 Selective Vectorization . 36

3.5 Results . 37

3.5.1 Analyzing Performance . 38

3.6 Related Work . 42

3.7 Conclusion . 43

4 AES Encryption in Software and Hardware 47

4.1 AES . 48

4.2 Block Cipher Modes . 51

4.2.1 Parallel Modes . 51

4.2.2 Cyclic Modes . 52

4.2.3 Combined Encryption and Authentication 56

4.3 AES Software Acceleration . 57

4.4 AES Hardware Acceleration . 61

4.5 Intel AES-NI . 64

4.6 Conclusion . 66

5 CTR and CBC Program Generation 67

5.1 Introduction . 67

5.2 CTR and CBC Code Generation . 69

5.2.1 CTR Optimizations . 70

5.2.2 Optimizations for Both Modes 73

viii

CONTENTS

5.2.3 CBC Optimizations . 73

5.2.4 Simulated Annealing . 75

5.3 Results . 76

5.3.1 Cycles per Byte . 78

5.3.2 Selective-Exhaustive Searches 78

5.3.3 Guided Search using Simulated Annealing 86

5.4 Conclusion . 89

6 Generalized AES Program Generation 91

6.1 Introduction . 91

6.2 GEN1 vs. AES-GEN . 93

6.2.1 Function Stitching . 94

6.2.2 Cycles per Round . 94

6.3 The AES-GEN Program Generator . 95

6.3.1 Algorithmic Choices with Cheetah 96

6.3.2 The ILP Optimizer . 98

6.3.3 Code Tuning . 101

6.4 Generator Flexibility with Parallel Algorithms 102

6.4.1 Counter (CTR) . 102

6.4.2 Electronic Codebook (ECB) . 107

6.4.3 Performance Observations for CTR and ECB Modes 109

6.5 Algorithmic Variations with Cyclic Algorithms 110

6.5.1 Cipher-Block Chaining (CBC) 110

6.5.2 PCBC, CFB, and OFB . 113

6.5.3 Applicability of XOR Optimizations to Other AES Modes . . . 115

6.6 Combining Algorithms via Function Stitching 116

6.6.1 Galois/Counter Mode (GCM) 116

6.6.2 Counter with CBC-MAC (CCM) 118

6.7 Experimental Results . 119

6.7.1 Generated Code Performance 120

6.7.2 AES-GEN vs Hand-tuned Assembly 124

6.7.3 Why Not Optimize with a Standard Compiler? 128

6.8 Related Work . 131

6.9 Conclusion . 132

ix

CONTENTS

7 Final Thoughts 133

7.1 Security . 133

7.2 Future Work . 134

7.2.1 High-level Choices . 135

7.2.2 ILP Optimizations . 135

7.2.3 Traversing the Search Space . 137

7.3 Applicability to Other Applications . 138

7.3.1 Generality . 138

7.3.2 Instruction Scheduling for Out-of-Order Architectures 140

7.4 Assessment of Contributions . 141

7.5 Conclusion . 143

Bibliography 145

Appendix A Commonly Used Acronyms 157

Appendix B Additional Tables 159

Appendix C Additional Source Code Listings 161

Appendix D “Sandy Bridge” Results 177

x

List of Tables

3.1 Level 1 cache misses incurred during kernel execution 39

3.2 Level 2 cache misses incurred during kernel execution 40

4.1 AES-NI Instruction Set . 65

5.1 GEN1 Simulated Annealing Results . 87

5.2 GEN1 Results vs. Intel HPL . 87

5.3 GEN1 vs. Baseline Results . 87

6.1 AES-GEN Results, CTR mode (cycles/round) 103

6.2 AES-GEN Results, CTR mode (cycles/byte) 106

6.3 AES-GEN Results, CBC mode (cycles/byte) 112

6.4 AES-GEN Results, GCM mode (cycles/byte) 117

6.5 AES-GEN Results, CCM mode . 119

6.6 AES-GEN Results for all modes . 121

6.7 AES-GEN SMT Results for all modes 123

6.8 AES-GEN vs. Standard Compiler Results 129

B.1 ECB finite results for various modes . 159

B.2 ECB-128 finite results with various input sizes 159

B.3 AES-GEN Results, GCM mode using SMT (cycles/byte) 159

B.4 CTR finite results, AES-GEN vs. Intel ASM 160

B.5 CBC finite results, AES-GEN vs. Intel ASM 160

D.1 AES-GEN Results for all modes (Sandy Bridge) 177

D.2 AES-GEN SMT Results for all modes (Sandy Bridge) 178

xi

List of Figures

2.1 Generic five-stage processor pipeline . 8

2.2 Generic superscalar pipeline. 9

2.3 SIMD processing . 11

2.4 Software pipelining example . 15

2.5 Modulo scheduling example . 16

2.6 Compiling a Streaming Program . 24

3.1 Compiling a Streaming Program in Brook 30

3.2 Data swizzling . 31

3.3 Conditional assignments in vector mode. 35

3.4 Autovectorization Experimental Results 38

4.1 AES round encryption process . 50

4.2 Electronic Code Book (ECB) mode . 53

4.3 Counter (CTR) mode . 53

4.4 Cipher-block Chaining (CBC) mode . 53

4.5 Propagating Cipher-block Chaining (PCBC) mode 55

4.6 Cipher Feedback (CFB) mode . 55

4.7 Output Feedback (OFB) mode . 55

4.8 Galois/Counter Mode (GCM) authentication 57

5.1 XOR Tree for CBC Mode . 76

5.2 Simulated CTR results with 2 cycle latency on Core 2 80

5.3 Simulated CTR results with 5 cycle latency on Core 2 80

5.4 Simulated CBC4 results with 2 cycle latency on Core 2 82

5.5 Simulated CBC4 results with 5 cycle latency on Core 2 82

5.6 CTR results on Core i5 . 84

5.7 CBC4 results on Core i5 . 84

5.8 Results, streams vs. interleaving distance in CBC (Core i5) 86

xiii

LIST OF FIGURES

6.1 Structure of the AES-GEN System. 95

6.2 Structure of the ILP Optimizer. 98

6.3 CTR R1 128, Initiation Interval vs. Latency Set. 101

6.4 ECB Results with 1K buffer . 108

6.5 ECB 128 results with various input buffer sizes 108

6.6 CBC algorithm implementations . 111

6.7 PCBC algorithm implementations . 113

6.8 CFB algorithm implementations . 114

6.9 OFB algorithm implementations . 115

6.10 GCM 128 Results using SMT . 118

6.11 Counter Results, AES-GEN vs. Intel Assembly 126

6.12 CBC Results, AES-GEN vs. Intel Assembly 127

xiv

List of Code Listings

2.1 Simulated annealing pseudocode. 22

3.1 Stream source code, general operations. 32

3.2 Generated vector code, general operations. 33

3.3 Stream source code, array lookups. 33

3.4 Generated vector code, array lookups. 34

3.5 Stream source code, for-loops . 35

3.6 Generated vector code, for-loops . 36

4.1 Pseudo-AES code using ECB block cipher mode 48

4.2 Using AES-NI in AES-128 CTR mode. 65

5.1 Using AES-NI in AES-128 CBC mode. 69

5.2 Interleaving three iterations in CTR mode. 70

5.3 Software pipelining with an initiation interval of 2 72

5.4 Interleaving three encryption streams in CBC mode. 75

5.5 Psuedocode of our implementation of simulated annealing. 77

6.1 Cheetah templated AES-128 Counter code. 97

6.2 Modulo scheduling example, standard CTR. 99

6.3 AES CTR (round 1) encryption in C using AES-NI instructions. 104

6.4 AES CTR (round 2) encryption in C using AES-NI instructions. 105

6.5 AES-128 ECB Encryption loop . 107

6.6 Strict interleaving four streams of CFB mode 130

C.1 Fastest scheduled CTR (round 1) code found by AES-GEN. 161

C.2 Fastest scheduled CTR (round 2) code found by AES-GEN. 167

xv

Chapter 1

Motivation

There is no shortage of sensitive information that is transmitted on a daily basis.

Medical records, financial transactions, and military communications1 are all examples

of sensitive information that we do not want to freely share with others. To prevent

unintended parties from accessing this type of information, encryption is the only

answer. Encryption is a vital and necessary component of communicating through

several media.

Encryption (or more generally, cryptography) often conjures an image of mathe-

maticians trying to detect patterns in some sort of encrypted text vital to national

security. However, modern cryptography actually encompasses several disciplines of

study. Mathematical, electrical engineering, and computer science concepts must be

combined in order for modern encryption processes to work effectively. As such, the

study of modern cryptology surrounding these topics is massive and often appeals to

specific fields. Mathematicians are generally concerned with the security and complex-

ity of an encryption algorithm which is referred to as cryptanalysis. Engineers and

computer scientists find themselves with the task of implementing these algorithms in

hardware and software.

Implementing encryption algorithms on modern architectures has its downside. It

can be costly in both time and power requirements. Crucial financial transactions for

both investment firms and personal credit card based purchases alike depend on data

being encrypted and decrypted as fast as possible for optimal usability. Implementing

fast encryption software can be problematic for developers.

The Advanced Encryption Standard (AES) [Daemen and Rijmen, 2002; The Na-

tional Institute of Standards and Technology (NIST), 2001] is a common and widely

used method of encrypting data on computer networks. AES was developed as a suc-

1or, perhaps more topical: US embassy cables

1

Chapter 1: Motivation

cessor to the Data Encryption Standard (DES), which for many years was the most

analyzed, important, and widely used cryptoalgorithm [Smid and Branstad, 1988]. Se-

quential software implementations of the AES algorithm take large amounts of CPU

clock time. The AES algorithm uses repeated byte substitutions, shifts, and bitwise

xor operations to encrypt the data. Generalized byte substitutions are difficult to im-

plement efficiently in software. Optimized software implementations combine multiple

operations with table lookups. These optimized solutions still require 10 to 14 memory

operations to encrypt every byte of data. Due to the importance of using AES, faster

implementations are required.

In January 2010, in order implement these costly AES instructions on-chip, In-

tel released the Westmere microarchitecture that dedicated an instruction-set exten-

sion called AES New Instructions (AES-NI) [Gueron, 2010] to its x86 64 architecture.

These instructions have dramatically increased the performance of traditional AES im-

plementations by an order of magnitude. The instructions have high throughput rates,

but long latencies. Achieving good encryption performance using these instructions

requires the use of hand-tuned assembly libraries. However, relying on assembly li-

braries has its problems. Assembly implementations are not necessarily optimal for all

systems. As new hardware emerges, existing assembly libraries need to be re-evaluated

and modified to reflect architectural features. Modifying an algorithm even slightly

can require massive changes at the assembly-level and in turn limits exploratory ap-

proaches to solving problems. Making both architectural and algorithmic changes to

assembly code is incredibly expensive and time-consuming.

With AES-NI being included on new architectures from the world’s market share

leader of computer microprocessors, opportunities to use local encryption2 are rapidly

increasing. Using AES-NI effectively is rapidly becoming an important problem to

solve. Different processor architectural properties greatly affect the performance of

AES-NI code. This dissertation presents a program generation system that can build

and search many possible AES implementations in a short time-span to find a near

optimal solution. Based on the impressive results of this system, it is reasonable to

suggest that the scope of these techniques could be widened by further research; the

generator could possibly be adapted to optimize other algorithms that use instruction-

set extensions.

2Such as encrypting entire hard-disks, subsections of a hard-disk for private user account files, or
compressed file archives.

2

1.1 Thesis

1.1 Thesis

This dissertation argues that using AES-NI instructions effectively is not a trivial pro-

cess. Current sequentially executing AES-NI based implementations rely too much

on the out-of-order architecture to exploit instruction-level parallelism. The thesis

of this work is that using a generalized program generator is an effective solution

for easily finding near optimal AES implementations that use AES-NI instructions

and it serves as a suitable alternative to generating assembly code. We argue that a

program generator can accomplish this with three important techniques: (1) making

high-level algorithmic changes automatically allows significant opportunities for opti-

mization. Combining these changes seamlessly with traditional optimizations, such

as (2) scheduling the AES code to exploit instruction-level parallelism, is a valuable

strategy. The program generator also (3) finely tunes arguments that affect (1) and

(2) and searches this space using an adapted simulated annealing algorithm that finds

a solution quickly. This system allows near optimal AES code to be generated for any

base architecture supporting AES-NI in a variety of execution environments3.

1.2 Contributions

This dissertation makes the following contributions:

• Vector Code Generation — In Chapter 3, we find generating vector code is

an effective strategy to map streaming languages to general purpose processors.

Using a streaming language as a framework to generate vector instructions is

a minor, but important contribution. We found that this strategy worked, but

allowed us to investigate different systems for code generation.

• AES Program Generation — In Chapter 5, we present a program genera-

tor that builds CTR and CBC AES implementations. We show this generator

can build AES code that performs similarly to hand-coded assembly language

libraries. The generator automatically tunes implementations to the underlying

architecture.

• Flexible Program Generation — In Chapter 6, we present a generalized pro-

gram generation system that can easily schedule optimized AES code from high-

level source files. We present evidence that using software pipelining and modulo

3Execution environments such as sequential execution, encryption using simultaneous multi-
threading, or encrypting multiple streams simultaneously

3

Chapter 1: Motivation

scheduling can lead to very good schedules and superior performance for paral-

lelizable AES modes.

• Algorithmic Choices — We explore the use of automating algorithmic choices

through the use of optimizations such as: assigning round keys to registers, set-

ting restrict pointers, adding software prefetch directives, and xor optimizations.

These choices make small but crucial changes in encryption runtime. Making

these changes manually is difficult if one has to completely reschedule the code.

We find applying these algorithmic changes seamlessly with other optimizations

is important in achieving best performance.

• Exploiting xor for Cyclic Modes — With block ciphers, the plaintext of

each block must be added into the key stream at some point. This is done with

an xor operator. Xor is both an associative and a commutative logical operation.

We propose a novel way of generating AES code that exploits its mathematical

properties. Doing this results in a reduction of the dependency chain and allows

additional parallelism within the loop body. We also exploit this property at

different “levels” within the generation system.

• Function Stitching — For function stitched code (like combined encryption/au-

thentication GCM mode), our program generation system can still schedule code

effectively. In assembly, function stitching requires merging two assembly func-

tions. Rescheduling two merged functions in assembly code is difficult. We show

the ease of finding an optimized schedule in our system by using loop fusion to

merge encryption and authentication functions.

• Simulated Annealing — Our program generation systems can effectively pro-

duce an infinite number of possible AES solutions. With an adapted simulated

annealing algorithm, we show that it is a useful code tuning tool to traverse the

search space quickly while finding a good solution.

• Assembly Code Alternative — The work in Chapters 5 and 6 present two dif-

ferent program generators. In both cases, we find that using a program generator

to build AES code is a suitable alternative to writing assembly. This is shown

in two ways. First, we are able to generate AES implementations that achieve

similar or superior performance compared to reported cycles/byte figures docu-

mented by Intel’s hand-tuned assembly listings. Secondly, the importance of this

contribution is compounded by our inability to reproduce the results reported by

Intel, using their assembly listings.

4

1.3 Relevant Academic Publications

1.3 Relevant Academic Publications

In chronological order, from earliest:

(1) Mapping Streaming Languages to General Purpose Processors through Vectoriza-

tion — Raymond Manley and David Gregg — The 22nd International Workshop

on Languages and Compilers for Parallel Computing 2009 — Newark, DE, USA

— Volume 5898 of Lecture Notes in Computer Science, pp. 95–110. Springer

Berlin / Heidelberg.

(2) Code Generation for Hardware Accelerated AES — Raymond Manley, Paul Ma-

grath, and David Gregg — 21st IEEE International Conference on Application-

specific Systems Architectures and Processors(ASAP), 2010 — Rennes, France

— pp. 345 –348.

(3) A Program Generator for Intel AES-NI Instructions — Raymond Manley and

David Gregg — 11th International Conference on Cryptology in India, Indocrypt

2010 — Hyderabad, India — Volume 6498 of Lecture Notes in Computer Science,

pp. 311–327. Springer.

The work in publications listed above was primarily conducted by the author of

this dissertation under the supervision of Dr. David Gregg. Additional background

research was provided by Paul Magrath in (2). Mike O’Hanlon at Intel Shannon,

provided feedback and suggestions for our work in addition to facilitating early access

to AES-NI hardware for work done in both (2) and (3). Vinodh Gopal at Intel provided

additional feedback on our work in (3).

1.4 Dissertation Outline

The title of this dissertation is Program Generation for Intel AES New Instructions.

The work presented in this document covers topics that relate to the generation of code

using instruction-set extensions. Following this introductory chapter, the dissertation

continues with a background of architectural features, software ILP optimizations, code

generation and streaming languages. Chapter 3 presents work on the automatic code

generation for vector instructions for stream applications on general purpose processors.

We narrow down the scope of code generation to a single and important problem and an

in-depth background and literary survey on AES encryption, block cipher modes, and

both software and hardware optimizations for AES is provided in Chapter 4. Chap-

ter 5 presents our first system to generate AES code for both CTR and CBC modes,

5

Chapter 1: Motivation

using a “static” program generator that both simulates and fully supports AES-NI

instructions. Expanding code generation for other AES modes, Chapter 6 presents the

generalized AES program generator system that argues our thesis statement. Finally,

this dissertation concludes with our final thoughts in Chapter 7. This final chapter

contains a critique of our work, future work ideas and an assessment of our contribu-

tions. Appendix A contains a glossary of acronyms commonly used throughout this

dissertation. Appendix B is attached for “finite” values of graphs found in Chapter

6. Appendix C contains full optimized and scheduled code listings. Appendix D in-

cludes AES-GEN performance results when running on a different microarchitecture

that supports AES-NI—Sandy Bridge.

6

Chapter 2

Background

This chapter provides background material and literature surveys on the topics neces-

sary to the discussion of the work presented in this dissertation. Namely: Architecture

in Section 2.1, Software ILP Optimizations in Section 2.2, Program Generation in

Section 2.3, and Streaming Languages in Section 2.4.

2.1 Architectural Features

As this dissertation deals with exploiting instruction-level parallelism (ILP) when using

high latency instructions through code generation, this section provides background on

the architectural features that enable these optimizations. The following techniques

that improve ILP deal with an idea that latency, or the number of clock cycles an

instruction takes to complete, is not uniform for all instructions. In addition, the

number of clock-cycles that must elapse before a new instruction can be issued (or the

throughput) will also affect the amount of ILP that can be exploited on multi-issue

architectures.

2.1.1 Instruction Pipelining

On multiple-issue architectures, pipelining is a technique that allows machine level

instructions to be completed in stages. The number of stages that exist in the pipeline

and how the stages are grouped varies for each processor. An instruction will “occupy”

a stage in the pipeline, allowing multiple instructions to be executed in parallel.

A new instruction is issued when the instruction currently in the first stage moves

on to the second stage and so on. The pipeline stages are designed to be as balanced

as possible, or each stage should complete in a unified number of clock cycles. Stages

7

Chapter 2: Background

Cycle
Instruction 0 1 2 3 4 5 6 7 8

1 if id ex mem wb
2 if id ex mem wb
3 if id ex mem wb
4 if id ex mem wb
5 if id ex mem wb

Figure 2.1: Generic five-stage instruction pipeline.

are often broken down into several additional stages for instructions that take longer

to complete within the pipeline. The number of stages implemented on a processor is

influenced by the latency and throughput of its instruction set. While the length of

pipelines has gradually increased since their widespread adoption in the 1980s, more

stages does not necessarily result in reduction of run-time. The Pentium 4 has a 31

stage pipeline [Hinton et al., 2001], but the Core i7 has reduced this number to 14 [Intel

Corp., 2011]. The classic five-stage instruction pipeline [Hennessy and Patterson, 1992]

is shown in Figure 2.1 with the following stages:

1. (IF) Instruction Fetch Instructions are fetched from the cache.

2. (ID) Instruction Decode Instructions are decoded in divided into parts needed

for execution.

3. (EX) Execute Now decoded, instructions execute and take a variable number

of cycles to complete, depending on type of instruction.

4. (MEM) Memory Operations This stage accommodates long-latency memory

operations if the executing instruction needs to fetch data.

5. (WB) Write-back Write results of the instruction back to memory.

More complex pipelines are sometimes designed with additional stages to accom-

modate instruction-set extensions to the architecture. For example, this dissertation

mentions the aesenc instruction multiple times which has a 2 cycle throughput and a 6

cycle latency on the Intel Westmere processor [Akdemir et al., 2010]. For this to work,

multiple stages must exist to allow for possibly three of these instructions to execute

in parallel. While a pipeline has the ability to execute multiple instructions in parallel,

data dependency between instructions will cause the pipeline to stall.

8

2.1 Architectural Features

On in-order processors, if an instruction is held up in a particular stage, the pro-

cessor must wait to push instructions down the pipeline. This stall wastes clock cycles

while the processor waits to complete the instruction. Stalls are caused by structural

stalls, control stalls, or data stalls. Structural stalls happen when a multiple instruc-

tions require the same processor resource. Control stalls occur with conditional state-

ments that could change the target of the following instruction. Branch predictors try

to prevent these stalls. Data stalls occur when an instruction has a data dependency

on another instruction already in the pipeline. The instruction cannot continue until

its predecessor completes executing. There are a number of possible solutions to pre-

vent and/or limit these pipeline stalls. However, limiting data stalls are of particular

interest to us1.

Cycle
Instruction 0 1 2 3 4 5 6 7 8

1 if id ex mem wb
2 if id ex mem wb

3 if id ex mem wb
4 if id ex mem wb

5 if id ex mem wb
6 if id ex mem wb

7 if id ex mem wb
8 if id ex mem wb

9 if id ex mem wb
10 if id ex mem wb

Figure 2.2: Generic superscalar pipeline.

2.1.2 Superscalar

Instructions on a single-issue scalar processor execute sequentially and process one or

two operands. Functional units that are not needed while the current instruction is

being executed remain idle when they could be doing something useful. Superscalar

architectures were designed to improve instruction scheduling by dispatching instruc-

tions to idle functional units. A superscalar architecture is a multiple-issue processor

1As we will see in Chapter 4, the AES algorithm is a block-cipher that has a chain of dependent
encryption rounds and executing these rounds will cause data stalls.

9

Chapter 2: Background

which implements a form of instruction-level parallelism by executing more than one

instruction at a time on different functional units. Figure 2.2 shows a superscalar

pipeline that fetches and executes two instructions at a time.

Using a superscalar pipeline allows the CPU to have greater throughput than its

clock speed would suggest and would normally process more than one instruction per

clock cycle. The ability to parallelize at this level depends on several factors. One such

factor is the number and types of functional units. Different functional units can process

different types of instructions. For example, given a processor has a functional unit that

can process integer and float operations and a functional unit that can process integer

and memory operations, two integer operations could be completed in parallel, whereas

two sequential float instructions would cause a stall. The data dependency between

instructions is also checked by the hardware at run time to ensure that programs

execute properly. This is a important limitation of superscalar hardware to note, as

other optimization techniques must be exploited in these instances.

2.1.3 Simultaneous Multithreading

Research has shown that superscalar architectures are limited at saturating the avail-

able resources (functional units) with multi-issue processors [Eggers et al., 1997]. Si-

multaneous multithreading (SMT) is a modern architectural feature on superscalar

CPUs that implements hardware multithreading by permitting independent threads

of execution in an effort to better utilize processor resources. To do this, instructions

are issued from independent threads to multiple functional units. While increased

resources are required to fetch instructions from multiple threads and keep thread in-

formation, the use of SMT will theoretically allow instructions from different threads

to be used by idle parts of the processor. This is why SMT is implemented on a su-

perscalar processor. This technique is very similar to superscalar pipelines but with

multiple instruction queues to fetch from.

Work by Tullsen et al. [1995] showed that SMT has potential to increase resource

usage on single-chip multiprocessors. They compared SMT to single-chip multiprocess-

ing. While the two systems have similar organization layouts—both have their own

set of registers, multiple functional units, and high issue-bandwidth—they have a very

different strategy for partitioning and scheduling resources. Multiprocessing issues in-

structions to a fixed number of functional units to complete each thread. SMT can

change this assignment every cycle. This allows for more efficient use of functional

units.

On Intel processors since the Pentium 4 (and including the ones used for experiments

10

2.1 Architectural Features

Figure 2.3: SIMD example, a single instruction is applied to multiple data.

found in this thesis), hyper-threading is the term used for Intel’s SMT implementation

[Intel Corp., 2011]. Intel implements SMT by addressing two virtual or logical proces-

sors for every one physical processor. It is possible to pin a process to one of these

virtual processors, but this remains transparent to the operating system. The hard-

ware does this so the operating system can think it is scheduling multiple processes

simultaneously on “different processors”, allowing the processor to send instructions

down the pipeline from multiple threads. This limits structural stalls.

2.1.4 Vector/SIMD

SIMD (Single Instruction, Multiple Data) is a technique employed to achieve data level

parallelism. On modern architectures, SIMD serves as a vector processor. In SIMD

computer architecture [Flynn, 1972], the computer exploits multiple data streams

against a single instruction stream in order to perform operations that may be eas-

ily parallelized. This is shown in Figure 2.3. By processing multiple data elements in

parallel, SIMD processors provide a way to utilize data parallelism in applications that

apply a single operation to all elements in a vector.

The idea behind SIMD programming is that one can perform the same action on

several elements in parallel. On general purpose processors, the “vector processor”

comes in the form of extensions to the instruction set architecture (ISA). For example,

an instruction-set extension (ISE) on the x86 architecture is Streaming SIMD Exten-

sions (SSE) [Intel Corp., 2011]. Other processors also have vector processing ISEs,

such as: AltiVec for the PowerPC architecture [Freescale Semiconductor, 1999] and

VIS on UltraSparc [Kohn et al., 1995]. SSE is a SIMD instruction set extension to the

x86 architecture. SSE has access to eight 128-bit registers. The 64-bit extension to

the x86 architecture (x86 64), adds an additional eight vector registers to use. XMM0

through XMM15 can be accessed in 64-bit operating mode, while only XMM0 through

11

Chapter 2: Background

XMM7 can be accessed in 32-bit operating mode. Other generations of SSE have been

added to current x86 architectures. The latest iteration of SSE is version 4.2 which

was released in 2009.

Intrinsics

Compilers are limited in applying vectorization from high-level code without addi-

tional annotations. While writing assembly-level vector instructions can be done,

a set of macros called intrinsics exist to allow high-level language programmers to

make use of SIMD instructions. Intrinsics are written as high-level language functions

that often have a 1:1 correspondence to their assembly level counterparts. Code that

uses intrinsics can also benefit from further low-level optimizations applied by a high-

level language compiler as he compiler will manage register allocation and instruction

scheduling. Instrinsics are also used in source-to-source translators and code generators

that attempt to automatically vectorize code.

2.1.5 Autovectorization

While it is relatively easy to incorporate the advantage of using vectors while writing

code on the assembly level, automatically generating vector code from high-level lan-

guages remains a serious challenge. Data dependency and loop analysis are key research

points in vectorization [Wolfe, 1990; Allen and Kennedy, 1987]. Current autovectoriza-

tion techniques are generally limited to transforming loops when a number of require-

ments are known and/or met. For example, gcc requires several conditions to be met

in order to vectorize loops [Naishlos, 2004; Nuzman and Zaks, 2006]. If values of suc-

cessive iterations of a loop are dependent on its predecessor, data dependency prevents

the vectorization of loops. Data alignment becomes a problem as vector registers gen-

erally require data to be aligned to a specific boundary (most commonly quad-word).

Interleaved data (found in user defined structures) also causes data-alignment issues.

Control-flow structures, such as if statements, are difficult to vectorize as conditionals

may affect only some elements currently loaded into a vector. Many autovectorization

techniques are not implemented by stand-alone compilers. Autovectorization is often

more effective when tuning for specific algorithms where memory boundaries and con-

ditional flow in loops are known. Autovectorization is a combination of both hardware

and software ILP optimization techniques.

12

2.2 Software ILP Optimizations

2.2 Software ILP Optimizations

Hardware mechanisms to improve instruction-level parallelism can only go so far. For

in-order architectures, exploiting ILP depends entirely on the compiler. Preventing

stalls in the pipelines on superscalar machines depend on the sequence of instructions

and which resources they wish to use. Both in-order and out-of-order execution archi-

tectures can benefit from high-level code that encourages standard compilers to exploit

ILP in software using different instruction scheduling techniques.

2.2.1 Instruction Scheduling

Compilers use instruction scheduling to expose more instruction-level parallelism for

superscalar architectures. On in-order architectures, the compiler uses instruction

scheduling to re-arrange the operations into groups that can be independently exe-

cuted. A simple but effective list scheduling algorithm can be applied to a basic block

to create the independent groups and this can result in a near optimal scheduling so-

lution [Lawler et al., 1987]. Groups are created by building a data dependence graph

(DDG), in which operations are represented by nodes with directed edges that show

dependencies between the operations. Exploiting ILP when scheduling basic blocks

which execute repeatedly is an important problem.

2.2.2 Loop Unrolling

The majority of running time in most programs is spent iterating over a loop or several

loops. Until recently, with the advent of streaming languages for example, the basic

blocks of loops are usually not written to be executed in parallel in a high-level language.

Usually, the iterations of the loop can be executed in parallel, and loop unrolling

is a common way to exploit ILP. This allows out-of-order architectures to execute

instructions from several iterations of the loop body that is likely to be subject to

flow-dependency in single iterations. Unrolling is an easy optimization to implement

in compilers and existing compilers apply it to loops to great effect [Lowney et al.,

1993]. However, unrolling loops do have some drawbacks. Unrolling means more code

and code growth can be a sensitive issue in things like embedded processors. Unrolling

also suffers based on the degree of unrolling. If loops are unrolled by a degree that is

not evenly divisible by the number of iterations, a scalar “clean-up” loop is necessary to

execute remaining iterations. With small loops, this can seriously affect any speedup

potential. With these drawbacks in mind, there is a technique that can solve both

13

Chapter 2: Background

these problems while continuing to exploit ILP.

2.2.3 Software Pipelining

Software pipelining is an instruction scheduling technique that takes instructions from

several loop iterations and combines them to build a new, parallelized basic block

[Lam, 1988]. Figure 2.4 shows how code from a simple loop is scheduled using software

pipelining. In Figure 2.4a, the control flow graph representation shows a loop with

four statements. Using an acyclic schedule (shown in Figure 2.4b), the statements are

executed sequentially. In Figure 2.4c, software pipelining is applied to the loop and

the four statements are scheduled to execute simultaneously, exploiting ILP. This is

achieved by breaking down software pipelining into three stages:

1. The prologue contains all instructions that are required to be executed before the

instructions of the current loop that will be included in the loop body.

2. The loop body is referred to as the kernel or steady state, as once the program

reaches this point, this body of code will repeat until it must exit. The kernel

contains all instructions needed to complete one iteration of the loop, but as

instructions will be from different iterations, they can be scheduled in parallel.

3. When the kernel finishes executing, some loop iterations are still live. The epi-

logue consists of code required to finish these iterations correctly.

While Figure 2.4 shows a simple four statement loop body, the number of statements

from each iteration included inside the steady state needs to be flexible. It might be

pertinent to allow long-latency instructions to be scheduled further down the pipeline,

or across several kernel stages. Low-latency instructions may be grouped together and

executed in a single pipeline stage. The “length” of the kernel is measured in machine

cycles and is known as the initiation interval (ii). This value can be adjusted to exploit

different levels of ILP. The ii sets the throughput of the pipeline.

The use of the three stages creates tighter ILP schedules while solving the problem

of code growth and the need for a clean up loop. While software pipelining expands

code, the growth is quite small in comparison to unrolling and affects performance

less. Stifling code growth within the loop is the most important [Rau, 1994] and the

software pipelining kernel is the same size as the original loop body. However, for

multiple iterations to be executed the same loop body, variable renaming and copies

must be included [Lam, 1988] to send data from one loop iteration to the next. This

14

2.2 Software ILP Optimizations

B

C

A

D

(a) Original
CFG

A

B

C

D

(b) Acyclic schedule

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Prologue

Kernel

Epilogue

(c) Software pipelining

Figure 2.4: Software pipelining example. Images taken from [Gregg, 2001]

can increase register pressure, but the variables created by the renaming and copy

instructions can be optimized out at compile time.

The prologue and epilogue also contribute to code growth, but the amount is dic-

tated by how many loop iterations exist in the kernel. Inherently, the instructions in

both stages can also be out-of-order which benefits during global instruction scheduling.

Compilers can unroll loops to high degrees, causing an inflated number of instructions

scheduled and this increases compensation code which is needed to support the over-

lapped iterations. Software pipelining also does not require an expensive clean up loop,

as the epilogue finishes the loop cleanly.

2.2.4 Modulo Scheduling

The initiation interval determines how a software pipelining kernel is built. From our

experience, we used ii slightly differently in Chapters 5 and 6. In Chapter 5, the

throughput is measured in number statement lines without any regard to what their

corresponding throughput and latency would be at the machine level. In Chapter 6, we

can assign specific values to each statement in the graph and ii value will schedule them

accordingly. The approach we used to build our software pipelined loops in Chapter 6

is called modulo scheduling [Rau and Glaeser, 1981]. Modulo scheduling is a method of

implementing software pipelining in loops that do not contain branches that produces

good code while minimizing code growth.

Figure 2.5 shows how code from a simple loop would be pipelined using modulo

scheduling. In Figure 2.5a, the original source code shows a loop body that loads two

15

Chapter 2: Background

load x
load y
mul
store

x = a[i]

t = x * y
c[i] = t

y = b[i]

(a) Original code

0

1

2

3

load x load y

mul

store

cycle
FU1 FU2

(b) Acyclic schedule

load x load y

mul

store

load x load y

mul

store

load x load y

mul

store

0

1

2

3

4

5

6

7

cycle

II = 2

(c) Overlapping execution

load x load y

mul

store

load x load y

mul

store

Prologue

Kernel

Epilogue

(d) Software pipelined
schedule

load x load y
cycle

FU1 FU2

0,2,4,...

1,3,5,... mulstore

(e) Modulo reservation
table

Figure 2.5: Modulo scheduling example. Images taken from [Gregg, 2001]

16

2.3 Program Generation

values from separate arrays, multiplies these values together, and stores the result into

a third array. Given that the load and store instructions take one cycle each and the

multiply takes two cycles, the acyclic schedule for this loop on a processor with two

functional units is scheduled as seen in Figure 2.5b. There is no cyclic dependency

from one iteration to the next; each iteration completes in four cycles and successive

iterations can be overlapped and execute in parallel as shown in Figure 2.5c using an ii

value of 2. Figure 2.5d, shows the software pipelined schedule of the loop. The prologue

contains the first three instructions. The kernel then contains the loads of x[i+1] and

y[i+1] executes mul on those values while the previous iteration’s mul instruction

finishes and stores the value in t[i] before the loop continues. The epilogue then

contains the clean up code, which in this case is a store. The order in which these

instructions execute is listed in Figure 2.5e. While software pipelining and modulo

scheduling are very effective techniques for instruction scheduling, they are many other

methods to optimize entire algorithms or programs and is sometimes done with a

program generator (or code generator).

2.3 Program Generation

The origin of early code generators were “superoptimizers” and “peephole optimizers”.

The scope of these optimizers were limited to small programs or sections of a pro-

gram to reduce the number of instructions in a program through instruction selection,

constant folding, and removing redundant code. Massalin [1987] created a “superopti-

mizer” to find the fewest instructions required to compute a given function. However,

the author states that often this technique is only practical for programs that have 13

machine instructions or less, and the effectiveness is largely dependent on the target

architecture (and which instructions are available). Peephole optimizers were often in-

tegrated into code generators. Davidson and Fraser [1984] described techniques on how

to automatically generate peephole optimizations using a description of the underlying

architecture. Fraser and Wendt [1988] extended this work to integrate a set of peephole

optimizations with a näıve code generator to create an automatic code generator and

optimizer that could be retargetted to different architectures with minimal effort.

The scheduling optimizations listed in the previous section are solutions that, when

applied, are optimized for a given architecture. As the architectural features change

for new processors, the scheduling optimizations will often need to be recalculated for

optimal (or near-optimal) performance. Scheduling is also not the only optimization

that must be considered when compiling for a different platform. When presented

17

Chapter 2: Background

with the challenge of optimizing an algorithm, many optimization techniques need to

be considered. A system that considers these architectural or algorithmic changes, and

generates an optimized version of the code is called a program generator.

Iterative program generators take a piece of code and try to find the fastest ver-

sion by trying combinations of different techniques to optimize the code, just like a

programmer would by hand. The difference is that a code generator does not have to

make guesses like a programmer would. An iterative program generator can try all the

conceivable combinations of the optimization techniques to find the best solution. The

lack of user intervention is convenient and cost saving. The work involved in optimizing

even a small piece of code can take weeks by hand. A code generator can generate

all the combinations possible almost instantly. While it completes a time-consuming

search for a solution, it requires no attention. In exchange for this one expensive search,

the time saved by running a faster version of the code on a continual basis is desirable.

2.3.1 Domain Specific Code Generators

There are several well known code generators (also referred to as library generators)

that focus on a particular subset of problems. One of the most successful code gener-

ators is Fastest Fourier Transform in the West (FFTW) [Frigo et al., 2005; Frigo and

Johnson, 1998]. It is a library for computing the discrete Fourier transform (DFT) and

is designed to adapt to hardware features to maximize performance. It is able to tune

code for machine-specific instruction-set extensions, like SIMD, and uses a specialized

compiler to generate optimized implementation of discrete cosine and sine transforms

from the parent DFT algorithm. The DFT algorithm can be of real- or complex-type

valued arrays of varied size and dimensions. Depending on these defined algorithmic

properties and the underlying architecture, the derived DFT algorithm could work very

differently from machine to machine.

FFTW generates this code in two parts. The FFTW planner (the code generator)

is invoked and the user must specify the shape of the input data (type values and array

dimension sizes) of the problem to be solved. The planner measures the actual run time

of many different plans and returns the fastest. This is often a time-consuming process

but as DFTs are computationally expensive, it is often worth while for “performance-

critical” applications. Without getting into the mathematics behind DFTs, FFTW

solves a problem first by reducing the defined vector rank of a DFT to a single (possibly

multi-dimensional) DFT. This single DFT must then be reduced to a sequence of one-

dimensional DFTs. These one-dimensional DFTs are then solved by a known DFT

algorithm. Since these steps can be executed out of order and/or interleaves, searching a

18

2.3 Program Generation

series of plan-permutations eventually returns a “correct” plan. These transformations

yield various solutions that will nest loops differently with varying vector sizes and so

on. The cost to compute the DCT given these high-level code constructs is calculated

given the architectural properties. This is how a “correct” plan is determined.

Whaley et al. [2000] presents a code generator called ATLAS, which generates

linear algebra routines and focuses the optimization process on the implementation

of matrix multiplication. Like the FFTW planner, the parameter values of a matrix

multiplication implementation influence how the code is generated. The generator

tries multiple values for the tile size and loop unrolling degrees and evaluates the costs

of the various configurations. The almost exhaustive search proceeds by generating

different versions (different sizes) of matrix multiplication that are dependent on the

input values.

SPIRAL, or Signal Processing Implementation Research for Adaptable Libraries, is

another code generation library. SPIRAL can generate code for several subsets and

formulae associated with digital signal processing (DSP), such as linear transformations

[Püschel et al., 2005]. Through SPIRAL, researchers have investigated the use of

automatic vectorization of both the Discrete Fourier Transform (DFT) [Franchetti and

Püschel, 2003] and the FFT [Franchetti and Püschel, 2007].

In those works, Franchetti and Püschel discuss the difficult process of exploiting

SSE instructions on scalar code. In addition, they also mention the problem of finding

an optimal solution when generating code for a target architecture. They offer a specific

dynamic programming search to find a “good match” between the formula space and

architecture it is being mapped to. Of more direct relevance is their work on the SPL

compiler [Xiong et al., 2001]. The SPL compiler, developed for SPIRAL is a system

that uses formula transformations and intelligent search strategies to create optimized

DSP libraries.

2.3.2 Traversing the Search Space

As mentioned earlier, early code generators had a limited scope for optimization. In-

struction sets were smaller and “useful programs” were about a dozen machine instruc-

tions long. With Massalin [1987]’s superoptimizer, he considered that it was feasible

to exhaustively search every possible program. However, he concedes that the search

grows exponentially with each additional instruction.

Frigo et al. [2005] states that finding a correct plan can be a very time-consuming

process for FFTW. FFTW and ATLAS can both use exhaustive searches as their search

spaces are finite, but code generators often have to traverse a search space which rapidly

19

Chapter 2: Background

expands with small options that can be turned on and off that may or may not improve

the code depending on another option’s state. Consider the optimization flags that

could be passed to gcc alone. The resulting possibilities of a complex program could

be in the billions. There needs to be a way to search the search space more efficiently

because exhaustively trying all combinations is rarely computationally feasible. Several

techniques have been developed to traverse these vast search spaces.

PEAK is a system introduced by Pan and Eigenmann [2006b] which considers a

feedback-directed approach to making the most use of 38 of gcc’s on/off optimization

flags2. They find solutions quickly (in comparison to other iterative compilation tech-

niques) by creating program “sections”. PEAK detects which parts of the program

could benefit from optimization and places them into a “section”. The system then

profiles each applies compiler optimizations independently to these sections. Once each

section is tuned, the program is compiled and given to the user. To traverse the ex-

ponential search space, they apply an algorithm called combined elimination [Pan and

Eigenmann, 2006a]. This algorithm combines several ideas to reduce the search space.

It first identifies which optimizations increase runtime. Then it iteratively tries to elim-

inate each negative-optimization one at a time. The authors claim similar performance

gains can be achieved from a search that takes several minutes, as opposed to a few

hours.

Related work by Hoste and Eeckhout [2008] attempts to find the best gcc op-

timizations again amongst an even greater search space3. Their system, Compiler

Optimization Level Exploration (COLE), uses a multi-objective search based on an

evolutionary algorithm to adjust for code size, code quality, and/or compilation time.

Acovea is a tool developed by Ladd [2009] that uses genetic algorithms to find the best

options when compiling a program with gcc. Similar ideas have been proposed for code

generators.

Work on using machine-learning algorithms to find the best general compiler op-

tions when tuning code for a particular target has also been investigated. Li et al.

[2005] used SPIRAL to demonstrate the power of using machine learning techniques in

automatic algorithm selection and optimization. Li et al. argue that while generators

like SPIRAL and FFTW can find near-optimal performance for a particular machine

just by using empirical searches, these algorithms have only been shown to work with-

out considering the characteristics of input data. By using genetic algorithms and a

classifier system that consider and adapt specifically to input data, Li et al. are able

2These options create 238 combinations, and are used in their experiments.
3The authors state a search space of greater than 260.

20

2.3 Program Generation

to increase performance of classic sorting algorithms. They argue that using a genetic

algorithm is necessary because the deep cache hierarchy and complex architectural fea-

tures in modern systems are not considered when studying the complexity of sorting

algorithms.

The MILEPOST GCC project [Fursin et al., 2008] also uses machine learning during

the gcc compilation process for a broader range of inputs and hardware targets. What

is unique about their approach is that gcc may be used to compile any program that

could target a number of different platforms. As such, the machine learning compiler

they describe can automatically adjust its optimization heuristics to make applications

faster, reduce the code size, or even the compilation time. To train the machine-

learning algorithm, they use a set of 500 random sequences that each applied a range

of compiler flags turned on and off to a benchmark. They found that while being a

time-consuming process, this training pass worked effectively to build other code when

run on a particular architecture.

Expanding on the MILEPOST project, Leather et al. [2009] presented work that

automatically finds “features” of a given program that are likely to be improved by the

machine-learning techniques. It sends feature data to the machine learning tool and

in return, influences the genetic algorithm. Tournavitis et al. [2009] extended work on

MILEPOST as well by adapting machine-learning to generating auto-parallelized code.

The authors argued that weaknesses exist in traditional parallelizing compilers (such as

autovectorizing compilers—see Section 2.1.5). They found that adapting the learning

techniques to this problem found more code that could be parallelized compared to

that found by other automatic tools. The work far exceeds other tools and comes close

to performance of manually parallelized code, such as manually tuned OpenMP.

The heuristic methods mentioned this section are based on genetic programming

approaches, decision trees, and the k-nearest neighbours classifier to perform machine-

learning. There are other methods of traversing a search space without narrowing the

scope. One such algorithm is simulated annealing.

2.3.3 Simulated Annealing

Simulated annealing is a heuristic search algorithm that employs probabilistic reason-

ing to increase the search space [Aarts and Korst, 1988; Skiena, 1998]. It increases

the search space by allowing for occasional steps in the wrong direction by jumping

to inferior solutions. This jump is random based on the current “temperature”. The

transition probability from solutioni to solutionj (where si and sj are defined as the

cost of each solution) at temperature T is defined as: P (si, sj, T) = e(si−sj)/(kBT) where

21

Chapter 2: Background

Listing 2.1: Simulated annealing pseudocode.

1 Simulated Annealing ()
2 Create i n i t i a l s o l u t i o n S
3 I n i t i a l i z e temperature t
4 repeat
5 for i = 1 to i t e r a t i o n−l ength do
6 Generate a random t r a n s i t i o n from S to S [i]
7 i f (C(S) >= C(S [i])) then S = S [i]
8 else i f (e ˆ(C(S) − C(S [i])) / (k∗ t)) > random [0 , 1)) then S = S [i]
9 Reduce temperature t

10 until (no change in C(S))
11 Return S

kB is Blotzmann’s constant. Using simulated annealing has been found to be an ef-

fective solution for graph partitioning and traveling salesman problems4[Kirkpatrick,

1984].

This equation is used in the simulating annealing algorithm to accept or reject the

current solution. The solutions are evaluated by a cost function. In the beginning, the

search can and should be quite erratic in direction, but always testing a neighbouring

solution. One of the ideas behind simulated annealing is that bad solutions are accepted

earlier in an effort to prevent the search from being stuck in local minima. As the search

goes on, the probability of accepting bad solutions reduces. This is done through a

temperature variable that “cools down” when progress is made. Once the temperature

is fairly low, the algorithm suggests that it has found a good solution and is more likely

to test solutions closer to the “good” solution.

Finding a practical cooling solution requires a trial-and-error approach and needs

to be tailored for the cost function used (function C(S) in Listing 2.1). This function

evaluates the solution and returns a value or cost. The temperature variable itself

cools down exponentially after every set number of iterations. The temperature rapidly

cools because good solutions are starting to become evident. Solutions will always be

accepted if the cost of the current solution is lower than the cost of the previous solution.

In addition, the probability function noted above is compared against a random value

between 0 and 1. If it the probability function is greater than the random number,

then the solution is accepted regardless of cost. A general outline of the simulated

annealing algorithm is shown with pseudocode in Listing 2.1.

4In Chapters 5 and 6, we use simulated annealing to find solutions among a search space that is
computationally infeasible to search exhaustively.

22

2.4 Streaming Languages

2.4 Streaming Languages

As discussed in the previous section, using a program generator can be a way to expose

parallelism in a program. However, some algorithms have properties that are simple

and straightforward enough to benefit from a set of optimizations geared for parallel

processing. The essential idea of stream processing is that large quantities of data

are brought into local memory, manipulated with a single or very few instructions,

stored back into memory and then are unlikely to be used again. An example of this

type of application5 is presented in work by Manavski [2007], in which they implement

the AES encryption algorithm using a stream language. This programming paradigm

has been implemented in a series of streaming languages designed to easily exploit

parallel processing. Streaming languages were originally (and concurrently) developed

for specialized streaming processors, such as RAW [Taylor et al., 2004] and Imagine

[Khailany et al., 2001]. Stream processing then found a home on the more commonly

found graphics card (GPU) through CUDA [NVIDIA, 2007] and gaming processors,

such as the Cell BE [Zhang, 2007], which led to the idea that streaming languages

could provide the necessary structure to effectively map their code onto general-purpose

processors. More recent streaming efforts like OpenCL [Munshi, 2009] have partnered

several corporate entities to develop an open standard for specifying these languages.

Streaming languages are often defined very differently. They can be developed as

simple libraries that target a specific processing unit. Rapidmind [Monteyne, 2008]

(and later, Intel Array Building Blocks Intel Corp. [2010b]) do this for GPPs. CUDA

specifically targets NVIDIA GPUs. OpenCL tries to optimize stream processing by

targeting both GPPs and GPUs simultaneously. Some streaming languages, such as

Brook [Buck et al., 2004], are defined by simply extending a more familiar language

such as C/C++. Others, like StreamIt [Thies et al., 2002], were created with the belief

that an entirely new language is essential to representing the stream model. Both

platforms share common attributes such as facilities to read and write stream data,

kernels (or filters), and control techniques such as reductions. Kernels are defined as

the function that operates on all elements of a stream. Both platforms also have a

compiler to generate code and a runtime (or back-end) to serve as the computational

engine. Figure 2.6 shows the general process of compiling a stream program with Brook

and Streamit.

The computational intensity property of streaming is represented by a kernel. Ker-

nels operate on every element in the stream and are the only place individual stream

5And an application important to this dissertation

23

Chapter 2: Background

Figure 2.6: General Process of compiling a Streaming Program in Brook and Streamit.

elements can be accessed. It is usually required that streams be initialized and writ-

ten back out to normal arrays to keep the streams separated between the main body

of the program and kernels. In Brook, this is done with a set of runtime functions

called streamRead and streamWrite. It ensures that the language implementation is

in complete control of the data structures.

When compiling streaming code, a source-to-source translation is commonly used

on the source with resulting output in another high-level language [Das et al., 2006;

Amarasinghe et al., 2005]. This allows the C++ compiler to apply low-level optimiza-

tions. When translating the kernels, a loop is generated to iterate through the size

of the input stream(s). The code contained within the kernel function is then evalu-

ated within the loop for every single element of the stream. Further optimizations are

applied, dependent on the target architecture.

The other part of compiling and executing a stream program is the runtime. The

responsibilities of the runtime vary depending on the target architecture. The run-

times are stand-alone back-ends that allow a programmer to write stream programs

independently of the architecture they run on. Specific optimizations are also built

into runtimes to make certain features more efficient on a given platform [Advanced

Micro Devices, Inc., 2007]. The runtimes are linked with the streaming application at

compile time. Some of the responsibilities of a runtime include: checking the stream

size during kernel invocation, bounds checks on array indexing, and managing threads.

The runtime also manages the interaction between the kernels and the main body of

the program.

A streaming application’s data parallelism property, in its most basic sense, is a

single instruction, multiple data construct. In stream processing, the single instruction

24

2.4 Streaming Languages

is the kernel which is operating on the multiple data represented by the stream itself.

The term vectorization however, generally refers to the transformation from a scalar

set of instructions to vector code that utilizes vector processors more effectively.

25

Chapter 3

Using Streaming Languages to

Automatically Generate Vector

Code for General Purpose

Processors

Making good use of vector/SIMD hardware is a research topic that has been going

for decades. Making the most of parallel execution is critical for significant speedups.

The vector instructions on common x86 machines usually do 2 to 4 instructions in

place of their scalar equivalents. Many vector instructions on modern architectures

have similar throughput and latency times compared to their scalar equivalents as

well. Often, disassembling code that has been compiled by gcc or icc will reveal that

common multiply or add instructions simply use vector instructions and operate only

on the lower bits, ignoring up to three possible operations that could be computed

at the same cost. Much of the autovectorization research mentioned in Section 2.1.4

has many limitations and requirements that must be met for compilers to effectively

vectorize scalar code. This chapter investigates using streaming languages to encourage

better vector code generation for general purpose processors that have instruction-set

extensions to accommodate SIMD processing.

Streaming languages were originally aimed at streaming architectures, but work

has shown the stream programming model to be useful in exploiting parallelism on

general purpose processors as described in Section 2.4. Research in mapping stream

code onto GPPs deals with load balancing and generating threads based on hardware

features. In this chapter, we look into improving problems associated with stream

data locality and stream data parallelism on GPPs. We argue that automatically

27

Chapter 3: Vector Code Generation for GPPs

generating vectorized code for these streaming operations is a potential solution. We

use the streaming language Brook as our syntax base and augment it to generate vector

intrinsics targeting the x86 architecture. This compiler uses both existing and novel

strategies to transform high-level streaming kernel code into vector instructions without

requiring additional annotations. We compare our system’s results to existing mapping

strategies aimed at using stream code on GPPs. When evaluating performance, we see

a wide range of speedups from a few percent to over 2x and discuss the effectiveness of

using vector code over scalar equivalents in specific application domains.

3.1 Introduction

As the demand for large scale multimedia processing increases, a high-level abstrac-

tion to represent the inherent parallelism found in certain applications has yet to be

agreed upon. However, the stream programming model continues to be proposed as

such a platform [Owens et al., 2002]. Faced with an ever increasing processor core

count, streaming languages become an attractive solution as general-purpose proces-

sors (GPPs) start to mirror the architectural structure of the more traditional targets

like GPUs. Traditional programmers require new tools and new representation mod-

els [Zhang et al., 2007] to make use of this advanced hardware. While some streaming

languages have focused primarily on generating code for GPUs to perform general com-

putation, others have put effort into adequately making use of the streaming model on

GPPs [Buck et al., 2004; Amarasinghe, 2006] and it is not without challenges.

Previous research into mapping streaming languages on GPPs have led some [Talla

et al., 2003; Gummaraju and Rosenblum, 2005; Gummaraju et al., 2007] to conclude

that without the addition of extra hardware on the processor or chipset, it would be

difficult for GPPs to match the performance of their GPU counterparts for programs

that need high floating point operations per second (FLOPS) rates to process large

chunks of memory—such as digital signal processing operations.

We believe there are software solutions to counteract the memory bandwidth bot-

tlenecks and low peak FLOPS rates on GPPs. The stream programming model is

most suitable for applications that include three main properties: computational in-

tensity, data locality, and data parallelism. GPPs can handle heavy computational

workloads. Data that is fetched from memory once or twice to feed kernel operations

during runtime and never used again favours the stream processing model. Conversely,

traditional GPP caching algorithms that emphasize temporal and spatial locality are

not as beneficial in the stream model.

28

3.2 Brook

With work being done on load balancing and generating threads intelligently based

on GPP hardware features—such as core count and cache sizes [Kudlur and Mahlke,

2008; Gummaraju et al., 2008; wei Liao et al., 2006]—we look at a technique to improve

the problems with stream data locality and stream data parallelism on GPPs. We argue

generating vectorized code for streaming operations is a potential solution. Due to the

nature of reading, writing and executing streams, we believe that building a compiler

that exploits the vector hardware on today’s GPPs allows us to make a case for further

research into mapping streams onto these architectures. In this chapter:

• We outline both existing and modified vectorization techniques that can be used

within the stream framework.

• We show that vectorization is an effective strategy to map stream code to general

purpose processors.

• We analyze application and algorithm properties to suggest reasons for different

levels of vectorization effectiveness when generating stream code.

The chapter is organized as follows: Section 3.2 describes the Brook streaming lan-

guage. In Section 3.3, we elaborate on the modifications required to the stream compiler

and the stream runtime to integrate our vectorization techniques. The strategies and

techniques required to generate vector code are outlined in Section 3.4. Section 3.5

presents and offers analysis on our experimental results including speedup and cache

miss data over several backends. Work related to this chapter is mentioned in Section

3.6. Section 3.7 summarizes the conclusions presented in this chapter.

3.2 Brook

The work presented in this chapter extends a streaming language backend for general

purpose processors. Specifically, it extends streaming backends that use a compilation

process that operates similarly to Brook. Brook is a streaming language (see Section

2.4) designed to incorporate the streaming model of data parallel processing and com-

putational intensity as an extension to ANSI C. This allows the programmer to have

a comfortable and familiar environment to build streaming applications. Brook com-

piles a stream program using a process shown in Figure 3.1. For work described in

this chapter, the stream runtime is the CPU backend, and the compiler targets this

instead of other runtimes (such as the GPU). Any additions or extensions to Brook,

often require modifying both the runtime and the stream code generator. We need to

modify both to implement autovectorization techniques.

29

Chapter 3: Vector Code Generation for GPPs

Figure 3.1: Compiling a Streaming Program in Brook using the CPU backend.

3.3 Modifications to Brook

Due to the cooperation of the generated code and the runtime when executing a stream

program, changes need to be reflected in the stream compiler. In our case, we build

upon and modify Brook to implement classical and our own vectorization techniques.

Generating this vectorized code requires us to modify the runtime to support the dif-

ference in the way a stream was being represented in memory. Likewise, augmenting

the runtime to support certain hardware features requires code to be generated differ-

ently. While we talk about the specific techniques of generating vector code later on,

we modify both the code generator and the runtime. That work is discussed in Section

3.4. The implementation of our techniques uses Brook v0.5 Beta1 [Buck et al., 2004]

as the base platform and our code targets the x86 architecture.

Autovectorization

Autovectorization is a technique that automatically converts scalar code into vector

code, as described in Section 2.1.5. The autovectorizer we implement with Brook

generates code that uses the most common mathematical operations. However, more

advanced instructions become equally useful to us for specific problems. The majority

of instructions we use are the ones that process single-precision floating-point values

(SP FP). For example, with Intel’s C/C++ intrinsics (detailed in Section 2.1.4), these

values are stored in 128-bit __m128 vector registers. The registers hold four 32-bit SP

FP values. Data is loaded into a vector register by the _mm_load_ps(float*) intrinsic

which takes a pointer to the start of a block of memory which contains four consecutive

SP FP values. Generating vector intrinsics requires us to make modifications to a

stream compiler.

30

3.3 Modifications to Brook

Figure 3.2: Swizzling data from an Array of Structures to a Structure of Arrays.

3.3.1 Modifying the Code Generator

The code generator creates the “for-loop function” that iterates through the size of

the stream and parses the internal kernel code. The runtime requires a function to be

created that calls the “for-loop function” and kernel code. We modify the stream loop

and the data representation as both are necessary modifications.

We change the loop to index every n elements, where n is the SIMD size, or the

number of values which are packed into the vector register. The value n changes

depending on the data type used. As the intrinsics require a pointer to the start of the

block of values, we are required to change the argument list since we now iterate over

n elements. If the streaming language allows structures to be defined, like Brook does,

we must modify the argument list further by expanding the arguments to as many

separate streams as necessary representing each data field of the structure.

3.3.2 Modifying the Runtime

The runtime manages several things during execution that alleviates certain burdens

from generating verbose code. However, changing the code generator requires us

to make changes to the runtime and vice-versa due to their co-dependence. Multi-

dimensional data representation needs to be implemented by both. For example, a

stream of structures (containing three floats named x, y and z) will essentially be an

array of structures (AoS). To make use of vectorization techniques, data needs to be

swizzled so it can be represented as a structure of arrays (SoA). Swizzling is a technique

that shuffles horizontal data in memory to be represented vertically. In other words,

data is realigned so we can perform vector operations on x[0-3], y[0-3], and z[0-3]

all at the same time, rather than its original representation of x[0], y[0], z[0], x[1],

y[1], z[1] ... and so on. This is visually represented in Figure 3.2.

31

Chapter 3: Vector Code Generation for GPPs

Listing 3.1: Stream source code, general operations.

1 ke rne l void k (f loat inStream1<>, f loat inStream2<>,
2 out f loat outStream<>){
3 outStream += inStream1 ∗ inStream2 ;
4 }

Since stream languages require that all streams be initialized before being used by

a kernel, we swizzle the data at this point. To swizzle the data, we also use vector

intrinsics. After the kernel executes and we write the stream back to memory, the

data is swizzled back to AoS format. This allows the behaviour of structures to never

change for the programmer. Intel’s optimizations manual [Intel Corp., 2011] details an

algorithm for swizzling multi-dimensional data.

3.4 Generating Vector Code

When translating the Brook kernel, the block statement containing the original code

is parsed. To generate our vectorized code, we use a C++ parser and code generator.

It also has the ability to exit out of our vector mode and generate the standard Brook

generated code if our compiler cannot produce equivalent vectorizable code. The re-

mainder of this section deals with some of the general and more interesting techniques

used to automatically generate vectorized code within a stream compiler.

3.4.1 General operations

Generating the intrinsics for general computation, assignments, and declarations are

fairly straightforward. When the grammar finds an expression like expr1 ‘+’ expr2,

it generates the equivalent intrinsics instruction (_mm_add_ps(expr1, expr2)).

Assignment expressions such as unary_expr = expr use the previously defined

__m128 variables as much as possible. Since output streams are the only modifiable

streams in a kernel, we only write variables back to memory at the very end of each

kernel iteration. With results not needing to be used in subsequent iterations we store

data using _mm_stream_ps() which does not pollute the cache. General operations are

produced from the source seen in Listing 3.1 and the generated code is seen in Listing

3.2.

32

3.4 Generating Vector Code

Listing 3.2: Generated vector code, general operations.

1 stat ic void k c p u i n n e r (const f loat ∗ inStream1 ,
2 const f loat ∗ inStream2 ,
3 f loat ∗ outStream){
4 m128 v0 , v1 , v2 ;
5 v0 = mm load ps (inStream1) ;
6 v1 = mm load ps (inStream2) ;
7 m128 t 0 = mm mul ps (v0 , v1) ;
8 m128 t 1 = mm add ps (v2 , t 0) ;
9 v2 = t 1 ;

10 mm stream ps (outStream , v2) ;
11 }

Listing 3.3: Stream source code, array lookups.

1 ke rne l void k (f loat streamIndex<>, f loat array [] ,
2 out f loat outStream<>){
3 outStream = array [streamIndex] ;
4 }

3.4.2 Arrays

Lookups

The challenge with vectorized array lookups occurs when indexing on a value that

is not known during compilation time. If the index is known, then we use constant

expansion to load the same value into all four slots of the vector register. However,

real world problems need to index on more than constants and we see this in programs

using a stream of values as the index for an array. Even knowing the addresses of the

four elements to load into a vector register will not help as there is no instruction to

load values from four different memory locations. The compiler generates scalar code

to accomplish the task.

When generating code for an array lookup, the index vector currently holds the

four index values. In Brook, these can be, and often are, floating point values. If there

is some computation needed to calculate the index, this can all be done in vector mode

before the four values are requested from memory. Iterating through with a for-loop,

the four array values are stored into a second array. Upon loop completion, these

values are then loaded into vector format so they can be used with other vectorized

operations. Array lookup code is produced from the source seen in Listing 3.3, and the

generated code is seen in Listing 3.4.

33

Chapter 3: Vector Code Generation for GPPs

Listing 3.4: Generated vector code, array lookups.

1 stat ic void k c p u i n n e r (const f loat ∗ streamIndex ,
2 f loat ∗ array , f loat ∗ outStream){
3 // . . .
4 f loat TVF0 [4] ;
5 for (i =0; i <4; i++)
6 TVF0[i] = array [(int) streamIndex [i]] ;
7 v2 = t 0 = mm load ps (TVF0) ;
8 // . . .
9 }

Float2 Indexing

Augmenting floating point indexing support, Brook allows a float2 structure to act

as an index for 2-dimensional arrays. Float2 structures contain float x and float y

components. These act as the first and second index values when accessing an array.

Where i is of type float2, array[i] is essentially equivalent to array[i.x][i.y]. Our

compiler treats float2s as two separate float variables and does the appropriate pointer

math required to access the data. We then use the same strategy as described earlier

for loading array values.

3.4.3 Conditional Assignments

Vectorizing if and if/else statements is difficult. When a conditional statement is

evaluated in vectorized code, the “true” elements need to perform different actions to

those of the evaluated “false” elements. This technique is not suited for easy vectoriza-

tion. Conditional assignments suffer from a similar problem. Conditional assignments

reduce to a single true expression and a single false expression. We only need to assign

those single values to the appropriate elements. Conversely, an entire block of code

may follow when vectorizing if statements.

To enable conditional assignments in kernels, we augment a well known bit-masking

technique as shown in Figure 3.3 for inclusion in a streaming compiler. Defined roughly

as conditional ? true_expr : false_expr, the conditional evaluation will produce

a vector filled with four values, each having a value of 0xFFFFFFFF or 0x0. We bitwise

and this with true_expr and produce a temporary vector. The false_expr is then

used with the andnot value of the conditional, producing a second vector. The two

vectors are combined with the or operation giving us a result vector filled with the

correct assignments for each element.

34

3.4 Generating Vector Code

COND TRUE_EXPR

1

0

0

1

5

5

5

5

1. cond AND true_expr = x

AND

5

0

0

5

=

X !COND FALSE_EXPR

0

1

1

0

3

3

3

3

2. cond ANDNOT false_expr = y

AND

0

3

3

0

=

Y X Y

5

0

0

5

0

3

3

0

3. x OR y = result

OR

5

3

3

5

=

RESULT

Figure 3.3: Conditional assignments in vector mode.

Listing 3.5: Stream source code, for-loops

1 ke rne l void k (f loat inStream<>, f loat outStream<>){
2 // . . .
3 for (i = 0 . 0 ; i < 5 . 0 ; i += 1 . 0)
4 outStream += inStream ;
5 // . . .
6 }

3.4.4 For loops inside kernels

At first glance, vectorizing loops found inside kernels seemingly run into the same

problems that face normal loop vectorization. However, since the loop inside a kernel

is really focusing on at most one element of the stream, we can assume a few things.

To clarify, we do not vectorize inner loops1. We generate scalar code to process them

with the vectorization code that would likely surround the inner loop bodies to process

the streams.

Our code generator will produce code for loops that are countable2. While it is

conceivable that the loop’s conditional statement could use a stream or some other

dynamic element, we feel accounting for this would occur in very extreme cases and

would generally break the essential concepts about streaming applying the same kernel

on every element in a stream. Given this concession, we generate loop code using a set

of goto statements as we can see in Listing 3.5 and Listing 3.6.

3.4.5 Reduce Kernels

A reduction kernel in the stream model is simply a function that performs a mathemat-

ical operation over every element in a stream and returns a result or a set of results.

Due to this, reduction kernels have very restrictive rules. They only support operations

1Inner loops are loops that are inside kernels.
2Countable loops have lengths that are known at compilation time.

35

Chapter 3: Vector Code Generation for GPPs

Listing 3.6: Generated vector code, for-loops

1 stat ic void k c p u i n n e r (const f loat ∗ inStream ,
2 const f loat ∗ outStream){
3 // . . .
4 void∗ f o r 0 t a r g e t ;
5 FOR 0 TOP :
6 t 0 = mm cmplt ps (v2 , mm set1 ps (5 .000000 f)) ;
7 f o r 0 t a r g e t = (mm cvtt s s s i 32 (t 0)) ?
8 && FOR 0 BLOCK : && FOR 0 END ;
9 goto ∗ f o r 0 t a r g e t ;

10 FOR 0 POST :
11 v2 = t 0 = mm add ps (v2 , mm set1 ps (1 .000000 f)) ;
12 goto FOR 0 TOP ;
13 FOR 0 BLOCK :
14 v1 = t 1 = mm add ps (v1 , v0) ;
15 goto FOR 0 POST ;
16 FOR 0 END :
17 // . . .
18 }

that are associative and commutative. In Brook, two types of reduction kernels are

supported. The first reduces a stream of input to an output stream. The size of the

output stream must divide evenly into the size of the input stream. Providing this

is the case, the stream will reduce into its smaller counterpart by combining every n

elements, where n is inputsize/outputsize. For example, an input stream of size 50

will reduce to a 5 element stream by combining every 10 elements into the 5 elements.

The second type of reduction kernel takes an entire input stream and reduces it

to a single scalar value. Our compiler only attempts to vectorize the reduction of this

type of reduction. A variable is used to keep a running total through each “4-element”

iteration of the loop. Upon completing the loop, a simple summation of the four

elements contained in the vector is returned from the “for-loop function” as a single

value.

3.4.6 Selective Vectorization

Selective vectorization is considered when performance penalties may be incurred when

vector code is used in place of scalar code. From examining the properties of streaming

applications we notice that there will be times when vectorization is not the best

option. We make a conscious decision to not always vectorize things like array accesses,

reduction kernels and loops that occur inside kernels. Our compiler can be passed a

flag to generate scalar code in place of vector code for these cases.

36

3.5 Results

In programs where a value from an array is assigned to an output stream, the entire

kernel could be left in scalar mode. This will depend on application properties. Certain

reduction kernels can also be left in scalar mode, depending on their complexity. The

size of the input and output streams of the reduction kernel will determine whether

or not it is worthwhile to vectorize. We talk more about our reasoning for selective

vectorization in detail from our results in Section 3.5.

3.5 Results

Using original Brook source code and running it through our vectorizing compiler,

our experiments test the techniques we described in Section 3.4. The vectorized code

generated is compiled with our modified runtime. A streamlined scalar and single-

threaded CPU version is used as the baseline. The original Brook CPU backend is

an unsuitable baseline as it contains large amounts of suboptimal code which heavily

skews performance results. The original Brook CPU backend was included mainly for

debugging purposes and is provided for interest only. Recognizing this, we felt it was

important to provide a more realistic comparison. The baseline we use is essentially a

scalar version of the code we generate for the vector version. Using this as the baseline

highlights the differences between the scalar and vector implementations. A set of

multi-core backend results is also provided. The OpenMP pragmas are generated at

compile time. This backend multi-threads the scalar baseline on a quad core machine—

again, not multi-threading the original Brook CPU code.

We take an in-depth look at benchmarks bitonicsort, a parallel sorting algorithm;

bsearch, a parallel binary search; conjgrad, an iterative sparse matrix solver; imgproc,

an application to apply a 3x3 mask across an image; throughput, a benchmark calcu-

lating memory bus bandwidth; spMatrix, a sparse matrix solver; jpg, for compressing

images; and dct, a discrete cosine transform. The benchmark suite is a combination

of applications included with Brook and others ported from StreamIt. The experiment

was carried out on a Intel Xeon quad-core machine at 2.16GHz with 12 GB of RAM

running Ubuntu. All backends were compiled by icc with -O3. Thirty iterations were

executed for each benchmark and the median times were used for comparison. The

variance of the results in both the optimized baseline and vectorized backend are quite

small. With bitonicsort for example, the variance in running time is less than 1%.

The largest variance occurs with jpg, and this is only 3% of total runtime.

37

Chapter 3: Vector Code Generation for GPPs

 0

 0.5

 1

 1.5

 2

 2.5

bitonicsort bsearch imgproc throughput dct jpg conjgrad spMatrix

S
p
e
e
d
u
p

Benchmarks

Speedups vs. Optimized Backend

Baseline

Original Brook
OpenMP

Vectorized

Figure 3.4: Performance of the original Brook implementation, OpenMP, and our
vectorized backend against the scalar baseline.

3.5.1 Analyzing Performance

For our comparison, we generate streamlined scalar CPU code for our baseline. This is

compared to a baseline version with OpenMP and our vectorized backend. We provide

numbers for the original Brook backend, but do not discuss these results due to reasons

mentioned earlier. The eight benchmarks we chose exhibit the vector code generating

techniques discussed in Section 3.4. Results of these benchmarks are shown in Figure

3.4. The vectorized version of stream code which our system generates performs better

than an optimized single element backend and the optimized OpenMP backend running

on four CPU cores. The range of speedups is quite high. We see a minimal speedup

in conjgrad of just a few percent and a maximum speedup of 2.46x with throughput.

Analyzing the properties of the benchmarks allows us to suggest reasons for the varying

levels of effectiveness vectorization has on stream code. We also provide Level 1 and

Level 2 cache miss data on the median runs of the benchmarks, found in Table 3.1 and

Table 3.2, respectively. These results are generated with PapiEx [Mucci, 2009].

38

3.5 Results

Table 3.1: Table of Level 1 cache misses incurred during kernel execution.

L1 Misses
Benchmark Baseline w/ OpenMP Vectorized

bsort 8,819,090 8,840,260 6,000,600
bsearch 2,495,320 3,498,000 3,498,000
conjgrad 2,543,280 2,550,040 2,132,620

dct 49,981 62,700 93,354
jpg 100,057 290,654 180,665

imgproc 4,485 10,228 4,291
spMatrix 4,937 23,802 5,050

throughput 13,044,800 7,602,920 1,130,710

On Random Accesses

Data locality is an important property of the streaming model. As such, when ran-

dom data is requested in stream kernels, performance takes a hit. This behaviour is

highlighted in conjgrad, bsearch, and jpg. All these benchmarks feature a large de-

pendency on non-sequential array accesses. With bsearch, performance loss is stymied

because it is an algorithm suitable for parallelization. Since four values are running

through the algorithm at the same time in vector mode, if an element is not found,

it will still be able to use that information in the next iteration. We observe little

performance lost to the overhead of the and/andnot/or algorithm displayed in Section

3.4.3. The number of cache misses in the vectorized version with randomized data

tends to be quite high in comparison.

Benchmark jpg performs slower than its dct counterpart. This is interesting since

the discrete cosine transform is used in the jpeg algorithm. The decrease in performance

is a result of quantization and zig-zag bit encoding after the DCT is applied. Array

accesses dominate these functions, however, our system also does selective vectoriza-

tion. In this case, the quantization/zig-zag kernel executing only scalar code resulted

in a 4% increase in performance over the version that was completely vectorized. The

overall speedup using selective vectorization is 1.12x.

Similar use of arrays occur in conjgrad and spMatrix as several small kernels

execute sequentially to iteratively solve sparse matrices. Some of the small kernels

are automatically vectorized by icc when the -O3 flag is set. This explains why our

generated intrinsics version is only slightly faster than the scalar—turned vector by

icc—version. In other benchmarks, kernels are too complex to be exploited by the

automatic vectorization found in both icc and gcc. We still achieve a small speedup

when we generate the vector code for these two benchmarks ourselves. The Intel C

39

Chapter 3: Vector Code Generation for GPPs

Table 3.2: Table of Level 2 cache misses incurred during kernel execution.

L2 Misses
Benchmark Baseline w/ OpenMP Vectorized

bsort 709,605 5,166,490 3,101,300
bsearch 44 70 200,239
conjgrad 631 500 753,862

dct 22,460 25,778 63,193
jpg 56,960 345,790 138,062

imgproc 502 2,518 616
spMatrix 637 6,056 683

throughput 1,263,530 3,444,500 694,378

Compiler will do some autovectorization optimizations if possible in the benchmark

code. The baseline numbers, then, provide a fair comparison between what a standard

compiler can do with aggressive optimization using its built-in vectorization strategies

and the code our autovectorizer can generate.

On Computational Intensity

Heavy workloads with large data sets test all three streaming properties of compu-

tational intensity, data locality, and data parallelism. The benchmarks that include

kernels which depend on large amounts of computation show us better results. This

occurs because as more cycles are used to complete the kernel, the overhead of swiz-

zling data has less impact on overall runtime. Since we load 16 bytes per parameter in

vector mode and kernels require at minimum two parameters (one input and one out-

put stream), we have already (at best) requested a full cache-line of data. Subsequent

iteration values are more likely to be in cache when the kernel completes. Our L1 and

L2 cache figures suggest this to be the case.

Both imgproc and dct are similar in this way. They both contain a computationally

expensive kernel with the former applying a mask across an image and later being a

mathematically intensive function with internal summation loops. With imgproc, there

are array accesses, but they are more predictable and also index with float2 values.

We use the technique in Section 3.4.2 and all of the pointer math is done in vector

mode.

Dct also contains array accesses. These accesses reference a relatively small table

of values necessary to perform the DCT algorithm. Floating point mod operations and

other long latency instructions are used around these table lookups and the benefits

are seen in the CPU pipeline. In throughput, the benchmark reads in 4 MB of 4-

40

3.5 Results

dimensional data, performs 2 billion operations and writes the data back to memory.

This gives us our best speedup at 2.46x. Even our best performing benchmark has

a quite modest speedup considering that the SIMD size is 4—thus, expecting figures

closer to a 4x speedup. With throughput, this is the only benchmark that is clearly

dominated by data parallel processing and its performance is affected by swizzling. In

this case, swizzling data both before and after kernel execution accounts for nearly 65%

of throughput’s total execution time.

Some research has gone into vectorizing interleaved data [Nuzman et al., 2006] and

we may be able to apply some of those techniques to our compiler. Streaming languages

often have structures to represent multi-dimensional data and finding ways to diminish

the penalty, or perhaps eliminating some of the need, of swizzling data. We do see in

Figures 3.1 and 3.2 that re-swizzling the data ends up causing fewer cache misses in

computationally intensive benchmarks like throughput. It is a matter of finding the

right balance between kernel execution time and minimizing the amount of data cache

misses.

On Other Mapping Strategies

While we have spent most of our discussion on comparing our vectorized version to the

optimized scalar baseline, a few notes need to be said about the multi-core backend.

This backend takes our baseline implementation and adds multi-threading support pro-

vided by OpenMP. When executing different parts of the stream kernel on different

cores, it may be expected that multi-threading would achieve some speedup. We found

this to be very unlikely in experiments. We do use the existing threading implementa-

tion that Brook uses, so we concede that a more efficient implementation is possible.

Using the scalar CPU backend for Brook is very slow as it was originally designed

for testing purposes. Applying multi-core execution to this original backend showed

healthy speedups and argued that mapping Brook stream code using threads was an

excellent solution. We found when multi-threading an optimized scalar baseline does

not actually achieve comparable speedups.

Work with MCUDA [Stratton et al., 2008], which retargets GPU code by trans-

forming kernel functions into CPU threaded loops, shows that using four threads fails

to outperform serially executed code. When adding OpenMP directives to our scalar

baseline, results show a significant overhead of using threads. However, it is important

to reiterate that performance of the multi-threaded version also suffers from bench-

marks that are not dominated by data parallel processing. Our data suggests that

vectorization is a useful alternative to parallelize stream code (even when the pro-

41

Chapter 3: Vector Code Generation for GPPs

grams are not easily parallelizable) and could be investigated further and possibly in

conjunction with multi-core support.

One of the reasons of exploring multi-core and vectorization at the same time would

be to improve code areas which are not easily vectorizable. Our compiler generates vec-

tor code for all the kernels present in the benchmarks provided. Although, constructs

like irregular array accesses and if statements are difficult to vectorize effectively. Scalar

code is generated for those lines, leaving the remaining code inside the kernel in vector

mode. This is why we see speedups (although small) in benchmarks which are not

completely parallelizable. We must generate vector code directly with intrinsics be-

cause autovectorizers in gcc and icc are unable to recognize that most stream kernels

are even possible to vectorize.

3.6 Related Work

The last few years has seen research in streaming languages targeting general purpose

processors. One streaming language that has been targeting GPP support is StreamIt

[Thies et al., 2002]. StreamIt was designed to bridge the gap between performance and

programmability. The semantics of the language are designed for hierarchical stream

structures like pipelines, split-joins, and the feedback loop. Using these constructs

paves the way for better analysis and optimization when StreamIt source is trans-

lated to a general language—especially when dividing workloads across several cores.

Other stream implementations also have similar GPP mapping strategies. Streamware

[Gummaraju et al., 2008] suggests splitting workloads across hardware resources while

considering processor and cache configurations. The runtime takes cache hierarchy into

consideration and ensures that stream kernels are executed on the core closest to where

the data is currently stored. Our work differs to these implementations as we increase

GPP performance of streaming languages using vector registers rather than exclusively

utilizing multiple cores.

While little work has been published directly relating with the use of vectoriza-

tion in streaming languages, examining the internals of Brook and presentation notes

regarding commercial stream implementation RapidMind3 [Monteyne, 2008] suggests

that there is some generation of SIMD instructions. However, there is a significant

body of literature that presents strategies, limitations, and problems when compiling

for multimedia and vector processors from general high-level language code such as

FORTRAN and C++. This work offers some direction despite focusing on classical

3RapidMind was merged with Intel Ct to form Intel Array Building Blocks.

42

3.7 Conclusion

vectorization problems such as: loop analysis, unaligned memory references, and data

dependency. These problems are generally not present given the programming con-

straints of the stream model. As the stream model is essentially a for-loop, work on

vectorizing loops has been extensively examined. In work presented by Krall and Lelait

[2000], they generate vector code from a combination of their own methods and “clas-

sic” vectorization algorithms developed by Allen and Kennedy [1987]. In the system

by Krall and Lelait, vector code is generated after unrolling the loop as it decreases

the need for data dependency analysis. Loops are unrolled in their system dependent

on the data type that is being used and what is supported by the UltraSPARC Visual

Instruction Set.

Ren et al. [2003] provided insight on the widening gap between traditional vector-

ization and generating vector code for newer multimedia ISAs. By studying code in

the Berkeley Multimedia Workload (BMW), the authors were able to identify limi-

tations of high-level languages that inhibit the exploitation of classical vectorization

techniques. However, they also concede that multimedia extension sets contain specific

instruction sets that limit functionality for general programming use. Larsen et al.

[2005] consider another approach and exploit parallelism by utilizing both vector and

scalar constructs with selective vectorization. This reduces the semantic limitations of

high-level languages for vector code generation and makes use of the vector instructions

available. We expand on this idea with vectorizing on streaming languages by allowing

certain parts of the kernel (and even entire kernels) to remain in scalar form. This

approach could cause the portability of vectorization to decrease even further than

current methods.

Multi-platform vectorization was investigated by Nuzman and Henderson [2006].

They present work on gcc’s autovectorizer and the implications in developing it. While

a decent amount of the work deals with memory alignment issues across different

architectures, the discussion on using basic and general instructions was applicable to

us due to our own experience in generating code with an up-to-date and even future

ISAs (Intel AVX, SSE4) and lower generational ones (MMX, SSE). The paper also has

some material on reduction idioms which are similar to the reduction kernels found in

streaming languages.

3.7 Conclusion

In this chapter, we investigated the use of GPPs as a target architecture for compiling

streaming languages through vectorization. We augment traditional techniques with

43

Chapter 3: Vector Code Generation for GPPs

some of our own to generate vector intrinsics within the framework of the streaming

model. We showed that due to some of the restrictions inherited by the stream pro-

gramming model, our compiler produces code that takes advantage of often dormant

SIMD/vector processing power found on today’s general purpose processors.

Using the vector registers allows GPPs to better manage data locality and accounts

for significant speedups in stream applications. Using vectorization to map stream code

to GPPs under our framework runs faster compared to other mapping strategies. While

multi-threaded implementations are useful and applicable in many stream programs,

exploiting vectorization should not be as overlooked as a strategy for mapping stream

code to GPPs. We also found that performance problems which plague vectorization,

such as swizzling memory, can be minimized depending on the characteristics of the

application and using a combination of both scalar and vector code can also be useful.

We see vectorization as a driving force behind increasing GPP performance of

stream programs. With little research in streams and vectorization, we believe there

is an even greater performance potential as additional optimization ideas are investi-

gated. All of our vector code generation is done transparently to the programmer. In

other autovectorizing implementations, loop analysis and/or hinting code is required

to generate code effectively. Analysis often finds that loops are not primed for vec-

torization. The stream model is a platform ripe for vectorization as it alleviates these

pressures. The model also outlines rules and restrictions needed to effectively vectorize

scalar code.

The work presented in this chapter showed that implementing an autovectorizing

mechanism resulted in good speedups when the algorithms used a stream of data that

did not have to be rearranged in memory before processing them. It was important

to know that making transformations from scalar to vector representations could give

overall performance improvements. It encouraged further thought on the subject. But,

could we be using the instruction-set extensions effectively? We already could generate

the vector instructions, but we needed to improve those generated instructions. One

further idea was to integrate improved instruction selection techniques. Another idea

was to integrate loop fusion so fewer memory operations would be required. Ultimately,

we thought that focusing on more specific algorithms would give greater insight on how

to best optimize in a more general case.

An interesting problem arose when discussing our streaming research with Intel. A

soon-to-be-released instruction-set extension included several long latency vector in-

structions to support an algorithm that operated much like a streaming program. The

properties of the algorithm would lend itself well to being optimized as a stream pro-

44

3.7 Conclusion

gram, but could the work we did be applied to this problem? Ultimately, we felt there

was a different and better approach to optimize this code. With the (then) upcoming

release of a new microarchitecture from Intel specifically designed for encryption, we

investigated how we could best generate algorithms that used this instruction set.

45

Chapter 4

AES Encryption in Software and

Hardware

Cryptography is a concept dating back to Ancient Egypt and was essentially synony-

mous with encryption. Encryption is the translation of data into a secret code. This

is done in an attempt to keep information secure. To read an encrypted file, you must

have access to a secret key or password that enables you to decrypt it. Third parties

without access to the shared secret key are unable to easily access the data or informa-

tion that has been encrypted. Unencrypted data is called plain text while encrypted

data is referred to as cipher text. There are two main types of encryption: asymmetric

encryption (also known as public key encryption) and symmetric encryption.

Asymmetric encryption is a form of encryption where keys come in pairs. What

one key encrypts, only the other can decrypt. The public key is usually used as the

encryption key and distributed freely, as only the holder of the private key is able to

read the data that has been encrypted with the public key. Symmetric encryption is

a form of encryption where the same key is used for both encryption and decryption.

The key must be kept secret, and is shared by the message sender and recipient. This

form of encryption can usually be performed much more quickly and efficiently than

asymmetric encryption. In practice, asymmetric encryption is usually used to encrypt

an insecure communication channel in order to allow for the exchange of the secret

key for the symmetric encryption that will be used for the rest of the communications.

This technique effectively combines the strengths of the two forms of encryption and is

the basis of the SSL/TLS family of encryption protocols, including HTTPS, that are

used everyday for online banking and shopping.

The material presented in this chapter serves as background on the AES encryp-

tion mode and includes a survey of research related to optimizing the AES algorithm.

47

Chapter 4: AES Encryption in Software and Hardware

Listing 4.1: Pseudo-AES code using ECB block cipher mode

1 def AES Encrypt (p l a in t ex t , c iphe r t ex t , key sched , k ey s i z e , b locks) :

3 key = key sched

5 i f (k e y s i z e == 128) :
6 keys = 10
7 e l i f (k e y s i z e == 192) :
8 keys = 12
9 e l i f (k e y s i z e == 256) :

10 keys = 14

12 for i in range (0 , b locks) : # for each b l o c k
13 r e s u l t = xor (p l a i n t e x t [i] , key [0])

15 for j in range (1 , keys −1): # key rounds
16 r e s u l t = SubBytes (r e s u l t)
17 r e s u l t = ShiftRows (r e s u l t)
18 r e s u l t = MixColumns (r e s u l t)
19 r e s u l t = AddRoundKey(r e s u l t , key [j])

21 r e s u l t = SubBytes (r e s u l t)
22 r e s u l t = ShiftRows (r e s u l t)
23 r e s u l t = AddRoundKey(r e s u l t , key [keys])

25 c i p h e r t e x t [i] = r e s u l t

Chapters 5 and 6 of this dissertation deal directly with optimizing the various AES

modes. Understanding the algorithmic properties of these modes alone is important to

understanding why the problem is important and how others have approached it.

An overview of the AES mode is featured in Section 4.1 and roughly explains

the encryption process that actually converts plaintext into ciphertext. AES is

used to encode every 16-byte block of data. In order to encode a stream of blocks, a

number of block-cipher modes can be used and their properties are described in Section

4.2. Optimization approaches for AES in both software and hardware are featured in

Sections 4.3 and 4.4, respectively. The Intel AES New Instructions are described in

Sectiongen-aes-ni. A summary and conclusion is offered in Section 4.6.

4.1 AES

AES is one of the most popular algorithms used in symmetric encryption. Originally

published as Rijndael [Daemen and Rijmen, 2000], AES was adopted as a standard

by the U.S. government in November 2001 [The National Institute of Standards and

48

4.1 AES

Technology (NIST), 2001]. The standard uses a fixed block size of 128-bits (16 bytes)

and uses key sizes 128-, 192-, or 256-bits. Further mathematical properties of AES

encryption are defined in the standard but are not provided here as this dissertation

deals with optimizing AES implementations. The AES algorithm can be described

with four major steps:

1. Key Expansion: Using the Rijndael key schedule, the k round keys are ex-

tracted from the 128-, 192-, or 256-bit key.

2. Initial Round: The initial round uses bitwise xor to combine the plaintext

with the first round key; this is known as AddRoundKey.

3. Rounds: k − 1 rounds operate on the result state from the initial round. The

state is defined as a 4× 4 array of bytes and the following occurs to this 16 byte

block of data, also shown in Figure 4.1:

(a) SubBytes—each byte of the state is substituted with another byte, referred

to as the Rijndael S-box, using a lookup table.

(b) ShiftRows—each row of the state is cyclically rotated a constant number

of steps.

(c) MixColumns—each column of the state is multiplied by a fixed polynomial.

(d) AddRoundKey—Similar to initial round, add the round key to the current

state with bitwise xor.

4. Final round: The final round is identical to previous rounds, without applying

MixColumns.

The AES algorithm uses these steps to convert plaintext into ciphertext . Apply-

ing these rounds in reverse will decrypt the ciphertext back into plaintext. Practical

implementations of AES often require encrypting and decrypting of input sizes greater

than 128-bits. Encrypting plaintext data that is larger than the defined block size1

requires the use of a block cipher mode of operation [Ehrsam et al., 1976]. It should

be noted that in AES, the key expansion only has to be performed once for any given

secret key. In these block ciphers, the round keys are computed during key expansion

and are reused for each block.

1In other words, encrypting a series of blocks—for example, AES encrypts 128-bit (16-byte) blocks.
So, 64 bytes will represented as a series of four 16-byte blocks.

49

Chapter 4: AES Encryption in Software and Hardware

1,2

a a a

aa
1,1
aa

a
2,1
a a a

aaa

0,0
a
0,1 0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0
a
3,1 3,2 3,3

b

2,1

1,2

b b b b

bbbb

b b b b

bbb

0,0 0,1 0,2 0,3

1,0 1,1 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

SubBytes

S

(a) SubBytes

ShiftRows

a a a a

aaaa

a a a a

aaaa

a a a a

aaaa

a a a a

aaaa

No

change

Shift 1

Shift 2

Shift 3

(b) ShiftRows

1,2

a a a

aa1,1
a

a

a
2,1
a a a

aaa

0,0

a
0,1

0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 a
3,1

3,2 3,3
b

1,2

b b b

bbb

b
2,1
b b b

bb

0,0

b
0,1

0,2 0,3

1,0

b
1,1

1,3

2,0 2,2 2,3

3,0 b
3,1

3,2 3,3

MixColumns

(c) MixColumns

2,1

1,21,1

a a a a

aaaa

a a a a

aaaa

0,0 0,1 0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

k k k k

kkkk

k k
2,1

k

k k

kkk

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

b

2,1

1,2

b b b b

bbbb

b b b b

bbb

0,0 0,1 0,2 0,3

1,0 1,1 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

AddRoundKey

(d) AddRoundKey

Figure 4.1: AES Round encryption process. Images are public domain.

50

4.2 Block Cipher Modes

4.2 Block Cipher Modes

A block cipher is a cipher that operates on fixed-length groups of bits, termed blocks.

Block cipher modes of operation [Flynn, 1972] are used to encrypt variable length mes-

sages with a single key without sacrificing security. A block cipher mode can implement

other encryption methods other than AES, but for the needs of this dissertation, we re-

fer to these modes as defined for use with AES. Block ciphers can also be defined for use

with authentication. There are nine National Institute of Standards and Technology

(NIST) approved block ciphers [Dworkin, 2001, 2005, 2007b,a, 2010]:

• Six Confidentiality modes—ECB, CBC, OFB, CFB, CTR, XTS-AES.

• One Authentication mode—CMAC.

• Two Combined confidentiality and authentication modes—CCM and GCM.

The following modes are important to provide background and related research as

they are mentioned throughout this dissertation. The modes which are discussed in

Chapters 5 and 6 are explained in the following sections. They are divided into three

categories that have unique properties that affect how we generated code: Parallel

Modes, Cyclic Modes, and Authentication Modes.

4.2.1 Parallel Modes

Block cipher modes that can encrypt multiple blocks simultaneously have the obvious

benefit of being able to be computed in parallel. On out-of-order architectures, the

modes featured in this section run faster than the cyclic dependent modes featured

in the following section. These modes can benefit from instruction-level optimizations

like software pipelining, which is an important part of this dissertation. The simplest

parallel block cipher mode to implement is ECB.

Electronic Code Book (ECB)

Electronic code book (ECB) is a confidentiality mode described by Dworkin [2001] as

a mode that operates in a similar fashion to using code words in a code book. Using

a key, the ECB mode applies an encryption block cipher directly to the plaintext

and outputs the ciphertext . There is no additional code in the block unrelated to

the AES rounds and no dependency from one block to the next, making ECB perhaps

the simplest and most straight-forward block cipher mode. This is shown in Figure

4.2. While this dissertation does not deal primarily with the security benefits of these

51

Chapter 4: AES Encryption in Software and Hardware

block cipher modes, ECB has one undesirable trait that should be mentioned. Each

block is encrypted entirely independently, so a given block of plaintext will always

result in the same ciphertext. This means that repeating patterns in the plaintext

may result in repeating patterns in the ciphertext. Such an outcome makes ECB

susceptible to certain types of attack. This makes ECB undesirable for use in many

applications that require encryption. However, the security problem with ECB can be

overcome by adding an pseudo-random element.

Counter (CTR)

As introduced by Diffie and Hellman [1979], Counter (CTR) is a confidentiality mode

that takes the block cipher concept and converts it in a stream cipher. A stream

cipher combines plaintext data with pseudo-random data. This is usually done with

a bitwise xor operation, as can be seen in the CTR diagram found in Figure 4.3. While

the counter can actually be any sequence of bits that will not repeat often, a simple

increment is adequate and is generally used. This counter value is often combined with

the initialization vector (IV) or nonce. The IV/nonce are values used once to pseudo-

randomly seed the encryption process. Figure 4.3 details the other parts of the Counter

algorithm. The AES rounds are applied to the combined nonce and incremented value.

After the last round of encryption, the result is combined with the plaintext using a

bitwise xor and stored to ciphertext. Note that blocks in CTR mode can be encrypted

in parallel as there is no cyclic dependency from one iteration to the next. [Lipmaa

et al., 2001] presented a cryptanalysis on the security and performance of CTR mode.

In the cryptanalysis, the authors argue that CTR should be standardized by the NIST

because it is a mode that can encrypt blocks in parallel without sacrificing security.

They go on to claim that Counter mode’s perceived disadvantages are often based on

misinformation.

4.2.2 Cyclic Modes

We classify Block cipher modes that use a “feedback” value in the loop as cyclic modes.

These modes have a long chain of dependent instructions when using AES, which

prevents block parallelization. In our work with cyclic modes, we focus on reducing

this dependency chain as much as possible. The most widely used cyclic mode is CBC.

52

4.2 Block Cipher Modes

Figure 4.2: Electronic Code Book (ECB) mode encryption.

Figure 4.3: Counter (CTR) mode encryption.

Figure 4.4: Cipher-block Chaining (CBC) mode encryption.

53

Chapter 4: AES Encryption in Software and Hardware

Cipher-Block Chaining (CBC)

Cipher-block chaining (CBC) mode was developed by [Ehrsam et al., 1978] and is

a cyclic dependent mode of operation that requires that each block of plaintext is

combined with the previous block’s ciphertext using an xor operation. The visual

representation of CBC encryption is shown in Figure 4.4. The first block uses an

initialization vector to make identical messages unique when encrypting a message.

All other blocks will be dependent on all preceding blocks that have been encrypted

so far. In serial implementations, CBC would not be much slower than CTR code.

On processors (like certain embedded systems) that do not have superscalar or out-of-

order architectures, the cyclic dependency does not limit performance. However, on

architectures that do support those features, other optimizations need to be applied

to those modes to improve performance. CBC does have increased security benefits as

even small changes in the plaintext will cause dramatic differences in the ciphertext

of all successive blocks. However, it is possible to decrypt ciphertext using only two

adjacent blocks and this allows CBC decryption to be executed in parallel.

PCBC, CFB, and OFB

Propagating Cipher-Block chaining (PCBC) mode is not included in the list

of standardized block ciphers published by the NIST mentioned in the beginning of

this section. The origins and exact definition of PCBC are not clearly known [Mitchell,

2005]. A generally accepted definition of the algorithm, such as the one used by [Meyer

and Matyas, 1982], calls for PCBC to prevent small errors isolated to adjacent blocks

to not affect the all remaining blocks. As shown in Figure 4.5, this is done with a

second xor of the current block of plaintext after it has been encrypted using AES.

It is not a widely used mode.

Cipher Feedback (CFB) mode is another confidentiality mode that is also cyclic

dependent. It is very similar to CBC mode, as can be seen in Figure 4.6. The main

algorithmic difference is the plaintext is xor’d just prior to storing the result to

ciphertext. The ciphertext, like the other cyclic modes is used as feedback to en-

crypt the next block. Like CBC, it can also decrypt in parallel.

Output Feedback (OFB) mode is designed to be a synchronous stream cipher by

only generating key stream blocks. The result of the key stream blocks is combined

with the plaintext using an xor just prior to storing to ciphertext. However, the

54

4.2 Block Cipher Modes

Figure 4.5: Propagating Cipher-block Chaining (PCBC) mode encryption.

Figure 4.6: Cipher Feedback (CFB) mode encryption.

Figure 4.7: Output Feedback (OFB) mode encryption.

55

Chapter 4: AES Encryption in Software and Hardware

plaintext never directly influences the encryption stream. The IV is encrypted, and

the result from the block cipher is re-encrypted for each block. This can be seen clearly

in Figure 4.7. This mode does allow for some error correction as changing a single bit

in the plaintext will flip the bit in the corresponding location of the ciphertext.

4.2.3 Combined Encryption and Authentication

Most of the confidentiality modes have been listed in the sections that deal with par-

allel and cyclic modes. The NIST, as mentioned at the start of this section, defines

block cipher standards for authentication and combined encryption/authentication.

Authentication, in terms of computer based cryptology, is verifying that data has been

transmitted and received correctly. CMAC (or CBC-MAC) is a NIST approved authen-

tication mode [Dworkin, 2005]. From the name, it could be deduced that CMAC works

essentially like CBC mode. Instead of converting blocks into ciphertext, CMAC up-

dates an authentication tag after encrypting every block that computes a value that

can be used to error check an entire encryption stream. Further modes are defined that

combine the encryption and authentication process, allowing one to securely send text

and ensure it was received correctly.

CCM (Counter with CBC-MAC) is a NIST defined [Dworkin, 2007b] combined

encryption and authentication block cipher mode. As the name suggests, the mode

combines Counter (for encryption) and CBC-MAC (for authentication). This mixes a

parallel mode with a cyclic mode and suffers from the same problems inherited from

CBC mode. However, as AES implementations targeted more parallel architectures, a

mode that could encrypt and authenticate in parallel was developed.

Galois/Counter Mode (GCM)

Galois/Counter Mode (GCM) is a widely used combined encryption/authentication

mode defined by Dworkin [2007a]. GCM combines CTR encryption mode with the

Galois authentication mode. GCM uses CTR to encrypt the actual data, while Galois

field multiplication used for authenticating the message can be easily computed in

parallel, allowing better performance than when authentication is done using chaining

modes (such as CBC). From Figure 4.8, we can see that CTR encryption is performed

and the ciphertext is fed into an authentication function. This function, known as

the GHASH, is defined by McGrew and Viega [2004]. The GHASH function creates a

tag at the start of encryption based on the initial counter value. Going into the loop, a

new tag is updated after encrypting each block. Upon completion of the loop, GHASH

56

4.3 AES Software Acceleration

Figure 4.8: Galois/Counter Mode (GCM) encryption and authentication mode.

is applied once more and combined with the tag generated at the start of the loop.

However, this shows that there is a dependency between tags within the encryption

loop.

4.3 AES Software Acceleration

The crossover of cryptography into computer science and engineering started with the

advent of computers and open (or unclassified) research is relatively recent. A good

body of text could be devoted to a history lesson on cryptography on modern architec-

tures, dating back to IBM’s development of the formerly standardized Data Encryption

Standard [(DES), 1977] in the mid-1970s. However, this dissertation deals specifically

with using code generation to exploit instruction-level parallelism to optimize the AES

algorithm, so this section presents a literary overview on research that deals with

improving the performance of encryption code. We start our survey of literature of

software optimizations in this section and follow it with hardware optimizations. One

of the most common software optimizations for AES is the use of one or more lookup

tables [Bartolini et al., 2009].

57

Chapter 4: AES Encryption in Software and Hardware

Lookup Tables

In general, the SubBytes, ShiftRows, and MixColumns round operations can be com-

bined in software to increase the performance of AES encryption. The instructions can

be combined and transformed into a series of table lookups. These tables contain the

pre-computed values of the round operations that trade computational instructions for

memory operations. This trade-off often results in good code on platforms that can

handle the extra space required for the lookup tables. In many studies in both this

section and in Section 4.4, speedups listed are compared against non-optimized AES2

and against a well known software-optimized version of AES, published by Gladman

[2003, 2009]. Gladman’s AES implementations are written in both C and x86 assembly

and use table lookups to reduce execution time spent during AES encryption rounds.

His implementations are usually used as they are considered to be the fastest AES

implementations written in C, which can be compiled for multiple architectures.

Instruction Selection

Work by Bernstein and Schwabe [2008] presents new AES software speed records using

several documented techniques. They provide a breakdown of the execution of an AES

round as such:

• 16 shift instructions

• 16 mask instructions

• 16 load instructions (for table lookups)

• 4 load instructions (for round keys)

• 16 xor instructions

This is a total of 68 instructions with 20 loads and 28 integer operations. In AES-128

(10 rounds), they listed that each block of plaintext in the loop body will contain

680 AES round related instructions and a total of 720 instructions (additional xor,

loads and stores for block cipher modes), which acts as their baseline figure. Their

work aims to reduce the total number of cycles at the assembly level. One way they

achieve this is through the use of more complicated instructions that could perform

several standard instructions in place of one (similar to vectorization). For example,

the PowerPC architecture has a “combined shift-and-mask instruction” that does both

2Generally using scalar instructions, or others if currently available on the target architecture.

58

4.3 AES Software Acceleration

tasks in a single instruction which will reduce the combined 320 shifts and masks to

160 instructions per block. They also look at swapping long latency instructions with

cheaper equivalents. Round key re-computation is an example of this, as loading each

round key can be more costly than simply expanding the key on-the-fly. Keeping keys

in registers3 is another technique which we implement and discuss in more detail later

on in Section 5.2.2.

Hamburg [2009] presents work that replaces parts of the AES algorithm with vector

permute instructions found on Intel’s SSSE3 and PowerPC Altivec. He claims that us-

ing this method makes AES immune to known timing attacks because the techniques

avoid data-dependent and key-dependent branches as well as memory references (like

those used in lookup tables). On Intel SSSE3, he uses the pshufb instruction which im-

plements a 16-way shuffle. On the Altivec, this same method is computed via the vperm

instruction. This vector permutation is used to implement several types of inversion

and effectively replace the MixColumns procedure. The resulting matrix calculations

using vector permute is faster via interleaving the scalar and vector code required to

perform inversion. Hamburg also considered using scalar operations to perform some

of the xors, but found that passing data between vector and scalar units reduced any

improvement. His work finds a 1.5x speedup over implementations on the PowerPC

G4e, but slower on x64 by 41% compared to bitsliced implementations.

Bitslicing

Bitslicing, as used here, is also referred to as SWAR (or SIMD within a register). In

this context, bitslicing essentially means dividing a single register into bitwise chunks

and processing the parts in parallel. For example, a register would hold a value that

uses all 128-bits, but is divided into four 32-bit slices so the value can be processed

on a 32-bit processor in parallel. Work by both Rebeiro et al. [2006] and Matsui

and Nakajima [2007] showed how using bitslices could dramatically improve the AES

algorithm through existing architectures.

Rebeiro et al. [2006] present a bitslice implementation of AES and benchmark it

on several common superscalar architectures and their SIMD instruction sets–Intel

Pentium 4, AMD Athlon 64, and the Intel Core 2. With the Pentium 4 and its 31

stage pipeline, they interleave 128-bit bundles and 64-bit bundles to allow the SIMD

and logical (scalar) operations to effectively compute in parallel. Because of the deep

pipeline, this strategy results in good encryption per second rates. The same inter-

3Keeping keys in registers is also referred to as “key caching”, and we use the term “localkeys” in
later chapters.

59

Chapter 4: AES Encryption in Software and Hardware

leaving strategy does not work as well on the Athlon 64 and Core 2 processors. The

Athlon 64 splits 128-bit instructions into independent 64-bit instructions which saves

little clock time. The authors note that the presence of 3 address generation units save

the implementation due to an increase of efficiency with memory operations. The Core

2 has three SSE execution units that will process 128-bit data natively. This causes

their bitslicing implementation to be less efficient than just processing everything using

128-bit chunks.

Work by Matsui and Nakajima [2007] shows that the Core 2 can achieve signifi-

cant speedups through bitslicing due to its improved SIMD architecture. The authors

cite that the problems with bitslicing in prior research that targeted 64-bit proces-

sors (like the Core 2) are based on implementations that used 64-bit general registers.

They rewrote the implementation for full 128-bit register support and targeted a 64-bit

processor. This opens 16 total 128-bit (SIMD) registers for use. Additional registers

reduce register pressure by storing keys in registers and using fewer table lookups which

results in a 2% smaller code size. The work by Matsui and Nakajima [2007] interleaves

this improved SIMD and scalar code and they achieve 9.2 cycles/block (or 0.96 cy-

cles/byte). However, there are two problems with this strategy. First, because the

plaintext and ciphertext must be converted to bitsliced format, the cost of this

transformation is not included. Secondly, the plaintext can only be 2048-byte chunks

due to the transformation.

Memory Re-organization

Bertoni et al. [2003] approach the AES software implementation problem from a dif-

ferent direction (while comparing their work with Gladman’s). Recall the 4x4 state

matrix in Figure 4.1. The focus in the work by Bertoni et al. [2003] is to transpose the

data representation of the state matrix in software to exploit data locality and use fewer

instructions. Fewer instructions are used for the computationally expensive ShiftRows

and MixColumns steps of the AES algorithm. They allocate smaller lookup tables for S-

box and inverse S-box transformations while depending on the processor to compute all

other operations. As SubBytes operates on single bytes, this operation changes little.

They change ShiftRows to now operate on columns and they introduce a completely

revised MixColumns operation that reduces the number of Galois Field calculations.

They also improve AddRoundKey step when AES implementations use an on-the-fly

key expansion (as opposed to pre-calculating the key schedule). The speedups they

achieve are mostly accomplished through the improvement of MixColumns operations.

These operations consist of bitwise xor, masking, shift, conditional xor instructions,

60

4.4 AES Hardware Acceleration

but their transposition of the state matrix allows some of these operations from a single

column to compute in parallel. Gladman’s implementation applies these transforma-

tions sequentially.

4.4 AES Hardware Acceleration

The previous section outlined many pieces of work that have proposed various software

optimizations to increase AES performance. From this work, it is clear how difficult it

is to improve the AES algorithm through software. AES is a computationally expen-

sive algorithm and has multiple steps that need to be performed repeatedly on large

blocks of data. None of that description suggests that native AES implementations

will run well on general purpose processors. One belief is that new hardware should

be designed specifically for encryption processes. Crucial to achieving this, Paar [2002]

argues that with the complexity of interdisciplinary cryptography research, implement-

ing future encryption modes should use hardware-software co-design. In fact, as Paar

declares, “The efficiency of an implementation algorithm often depends heavily on the

details of the target platform, e.g., on the instruction set or the pipeline structure of

a processor.” This is very true of the AES algorithm, as we see in Chapters 5 and 6

of this dissertation, as we target specific platforms that use cryptographic instructions

with defined latencies and throughput values.

As mentioned earlier in this dissertation in Section 2.1.4, multimedia instruction-set

extensions are added to existing general purpose processors to compute vector data.

Adding hardware support for encryption through an instruction-set extension has been

suggested by many as a possible solution. [Bartolini et al., 2009] give an overview of the

implications of designing and implementing an ISE that is tailored for cryptographic

applications. They discuss that despite support for basic rotate operations required

by most encryption processes, Intel, Alpha, and SPARC processors have significant

limitations without instructions to handle permutations, substitutions, and extraction.

Implementing S-box and MixColumns on GPPs

According to Bartolini et al. [2009], 32-bit microprocessors and 8-bit micro-controllers

were thought to handle AES well, but the steps implemented for each round key (as

mentioned in Section 4.1) require several memory re-orderings and are sufficiently com-

plex enough to limit encryption bandwidth. Optimized software implementations use

lookup tables, but can be a problem for devices that are memory constrained. Even on

general systems that do not have memory constraints, software implementations can be

61

Chapter 4: AES Encryption in Software and Hardware

quite slow. For applications that require maximum speed, special “crypto”-processors

have been used but these often can only support specific algorithm parameters—such

as key size. With these problems in mind, new special instruction-set extensions that

dedicate instructions for the S-box and MixColumns operations of the AES algorithm

are offered as potential solutions.

Bertoni et al. [2006] proposes a generalized instruction-set extension for 32-bit pro-

cessors, using an ARM processor simulator for proof of concept. The instructions they

propose to add come from analyzing the clocktime used by different parts of the AES

algorithm during its encryption phase (and not key generation). The AES implementa-

tion they analyze uses three lookup tables. They find that most time is spent doing the

individual steps of the AES rounds we detailed in Section 4.1 and decide to dedicate

some instructions to hardware. They propose instructions SBox and SMix to perform

their respective transformations in two different ways: a set to apply the transforma-

tions one byte at a time, and a separate set of instructions for processing 32-bit words.

The authors achieve a speedup of 3.45x on one-byte processing and 2.56x on word size

processing. They achieve this by adding four additional registers to a CPU that allow

access to single bytes from each register in parallel.

Work by Tillich and Groschdl [2006] proposes similar byte and word size processing

extension instructions for 32-bit processors (simulated with SPARC). Their equivalent

SBox and SMix instructions differ by calculating one byte of the result while being able

to choose the source and destination locations. In Bertoni et al. [2006], the source and

destination operands are not needed because the changes are handled by the register

file. Their word size processing, noted as sbox4 and smix4, are used to parallelize

four-byte operations. The sbox4 instruction can also perform a byte-wise rotation

that will make the particular transformations needed to support key expansion during

encryption or decryption (S-box or inverse S-box). The smix4 instruction performs

the necessary MixColumns (or its inverse for decryption) on four-bytes at a time as well.

The authors find a speedup of 8.35x using these new instructions with a pre-computed

key schedule and unrolling the loop an unspecified number of times.

Implementing S-box and MixColumns on Other Architectures

Implementing S-box and MixColumns has also been proposed for architectures other

than commonly found processors. Tillich and Herbst [2008] expand on their previous

work and suggest instructions for S-box and MixColumns for micro-controllers, such

as those used used in wireless sensor networks. These “tiny processor cores” usually

need to use less power, process smaller blocks of code, use less RAM, while instruction

62

4.4 AES Hardware Acceleration

latencies are kept low. In order to meet these demands, they propose three instructions

to speed up AES encryption on a customized pipelined functional unit. AESENC(1,2)

and AESDEC(1,2) are designed to handle the encryption and decryption, respectively,

of a single AES round processes with two invocations. A third helper instruction is

included for S-box and its inverse.

Kosaraju et al. [2006] suggests acceleration techniques for AES on VLSI implemen-

tations. They propose two major architecture pieces. The first piece of the architecture

is for the data unit. This looks and feels very similar to the work mentioned in the

last few paragraphs in relation to the S-box and MixColumns instructions. The second

piece of architecture is used for key scheduling. With S-box instructions already im-

plemented in the other piece of hardware, additional hardware is included to perform

shifts on the least significant 32 bits of the key, a ByteSub, and xor with the “round

constant”. Tillich and Groschdl [2007] have further work on accelerating AES on VLSI,

with specific instructions and hardware tailored for computing elliptic curve cryptogra-

phy (ECC), which is a critical mathematical component when using symmetric ciphers

like AES. In this work, the focus is on optimizing MixColumns and its inverse function.

Full Hardware Implementations

Other special hardware has been designed to fully support AES encryption. These are

platform dependent and are known as cryptographic accelerators. The UltraSPARC T1

in 2005 included a cryptographic accelerator [Sun and Lin, 2007]. On the UltraSPARC

T1, the accelerator targeted modular arithmetic operations and accelerated public-

key cryptography. The UltraSPARC T2 added additional features to accelerate bulk

encryption (used by AES), secure hashing, and additional public key algorithms that

used ECC. The use of an accelerator on-chip4 reduces CPU utilization, I/O bandwidth

requirements, and limit additional latencies. Another on-chip cryptographic accelerator

has been developed by Intel. This instruction-set extension is called AES-NI and, as

we focus a lot of work on optimizing AES implementations using this instruction set,

it is explained in much greater detail in Section 4.5. Due to these features, on-chip

accelerators are particularly effective for encrypting small-data inputs—such as packets.

However, off-chip implementations also exist.

Algredo-Badillo et al. [2006] present work on implementing CBC on an FPGA.

They specifically design the processor with the cyclic dependency in mind and keeping

hardware utilization low. They retain basic algorithm functionality, so basic modules

like registers or multiplexers need not be removed. To gain higher throughput, registers

4As opposed to off-chip accelerators—such as an FPGA.

63

Chapter 4: AES Encryption in Software and Hardware

were actually added for data multiplexing and storing keys. In combination with that

and replacing distributed memory with dual-port memory this strategy reduced the

critical paths, resulting in less hardware and faster code.

As mentioned, a software optimization for AES is using lookup tables. An idea pre-

sented by McLoone and McCanny [2003] extends this idea to the FPGA. They designed

a fully pipelined AES implementation on an FPGA that replaces slow and complex

instructions with lookup table values. The values in the lookup table are precomputed

and stored on chip and this strategy nets a 1.2x speedup with other lookup table based

implementations and 6x overall speedup against other FPGA implementations.

Multimedia extensions such as SSE and MMX on general purpose processors have

been covered in Section 2.1.4. A relatively recent instruction set extension called AES-

NI debuted in January 2010 on certain Core i5 and Core i7 processors that included

the “Westmere” microarchitecture5.

4.5 Intel AES-NI

The Intel Advanced Encryption Standard New Instructions (AES-NI) includes six in-

structions [Gueron, 2010] to support AES encryption, decryption and key expansion.

These instructions are listed in Table 4.1. AES-NI also includes an instruction perform-

ing carry-less multiplication, which would aid in performing finite field arithmetic—

used in advanced block cipher encryption (and, as seen later, GCM authentication).

These hardware-based primitives provide a security benefit apart from their speed ad-

vantage by avoiding table-lookups and hence protecting against software side channel

attacks (attempts to discover the secret key by observing and analyzing the flow of

information in the computer during the encryption process). The aesenc instruction

performs a full “round” of encryption in a single instruction. The AES algorithm con-

sists of 10, 12 or 14 “rounds of encryption”, which corresponds to using key sizes of

128-, 192-, or 256-bits, respectively. With these new instructions, the code for encrypt-

ing a single block consists of a chain of 10, 12, or 14 aesenc instructions. The output of

each round becomes the input to the next round, so each round must complete before

the subsequent one can start. This dependency can be seen in the loop of Listing 4.2,

which implements AES Counter mode (see Section 4.2.1).

In the current hardware implementation of AES-NI, the aesenc instruction has

a latency of six cycles [Akdemir et al., 2010]. Encrypting a 16-byte block using a

128-bit key requires ten rounds or at least 60 cycles to complete. However, a new

5And later on “Sandy Bridge” microarchitecture.

64

4.5 Intel AES-NI

Table 4.1: AES-NI Instruction Set as described by [Gueron, 2010].

Instruction Description
AESENC Perform one round of AES encryption
AESENCLAST Perform final round of AES encryption
AESDEC Perform one round of AES decryption
AESDECLAST Perform final last round of AES decryption
AESKEYGENASSIST Assist in generating the AES key schedule for encryption
AESIMC Assist in converting key schedule for decryption

using inverse mix columns
PCLMULQDQ Carry-less multiply

Listing 4.2: Using AES-NI in AES-128 CTR mode.

1 void AES CTR Encrypt (m128i ∗ p la in t ex t , m128i ∗ c iphe r t ex t ,
2 m128i ∗ key , long long ivec , long nonce , int b locks){
3 int i = 0 ;
4 m128i one = mm set epi32 (0 , 1 , 0 , 0) ;
5 m128i BSWAP = mm setr ep i8 (7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , 1 5 , 1 4 , 1 3 , 1 2 , 1 1 , 1 0 , 9 , 8) ;
6 m128i r e s u l t ;
7 m128i p l a i n ;

9 m128i counte r b l ock = mm setze ro s i128 () ;

11 counte r b l ock = mm inser t ep i64 (counter b lock , ivec , 1) ;
12 counte r b l ock = mm inser t ep i32 (counter b lock , nonce , 1) ;
13 counte r b l ock = m m s r l i s i 1 2 8 (counter b lock , 4) ;
14 counte r b l ock = mm shu f f l e ep i8 (counter b lock , BSWAP) ;

16 for (i = 0 ; i < b locks ; i ++){
17 counte r b l ock = mm add epi64 (counter b lock , one) ;
18 r e s u l t = mm shu f f l e ep i8 (counter b lock , BSWAP) ;
19 r e s u l t = mm xor si128 (r e s u l t , key [0]) ;
20 r e s u l t = mm aesenc s i128 (r e s u l t , key [1]) ;
21 r e s u l t = mm aesenc s i128 (r e s u l t , key [2]) ;
22 r e s u l t = mm aesenc s i128 (r e s u l t , key [3]) ;
23 r e s u l t = mm aesenc s i128 (r e s u l t , key [4]) ;
24 r e s u l t = mm aesenc s i128 (r e s u l t , key [5]) ;
25 r e s u l t = mm aesenc s i128 (r e s u l t , key [6]) ;
26 r e s u l t = mm aesenc s i128 (r e s u l t , key [7]) ;
27 r e s u l t = mm aesenc s i128 (r e s u l t , key [8]) ;
28 r e s u l t = mm aesenc s i128 (r e s u l t , key [9]) ;
29 r e s u l t = mm aesenc la s t s i 128 (r e s u l t , key [1 0]) ;
30 r e s u l t = mm xor si128 (r e s u l t , p l a i n t e x t [i]) ;
31 c i p h e r t e x t [i] = r e s u l t ;
32 }
33 }

65

Chapter 4: AES Encryption in Software and Hardware

aesenc instruction can be started every two cycles. Therefore, with parallel modes of

operation, such as AES CTR, the encryption of multiple blocks can be overlapped.

Intel provides a library of hand-tuned assembly routines which overlap the exe-

cution of AES instructions [Gueron, 2010]. The library uses standard techniques for

exploiting instruction-level parallelism (ILP), such as manually unrolling loops and

manually interleaving the instructions from the unrolled iterations. For example, the

AES CTR version unrolls the loop four times and interleaves the resulting instructions.

The assembly code is carefully written to make good use of processor resources and

achieves excellent performance.

4.6 Conclusion

Optimizing AES has been a well covered and researched topic since its standardization

in 2001. It is clear that optimizations in both hardware and software look to improving

the logical operations of the rounds which are executed repeatedly. These instructions

are relatively simple, but are often costly. We have discussed work that sought to

improve this through the use of new instruction-set architectures—by augmenting ex-

isting ones or using VLSI/FPGAs. Implementing S-box and MixColumns as hardware

instructions would be incredibly beneficial as AES spends the majority of clock time

performing these tasks. Other research looked at more practical solutions through the

use of software optimizations. Substituting computations for table lookups and sub-

stituting two small instructions for a longer one were commonly explored techniques.

Most of the the instruction-set extensions proposed in Section 4.4 were theoretical.

Instructions were assigned various latency and throughput values for virtual pipelined

functional units for general purpose processors, coprocessors, micro-controllers, VLSI

and FPGA architectures. Related to the hardware research, data transformations and

bitslicing were explored as ways to increase parallel computation of AES.

Until the release of cryptographic accelerators, speeding up the AES algorithm

for practical implementations needed to be done via software. The advent of Intel’s

AES-NI reduced the need for faster software-optimized AES. However, despite the in-

structions being fast and easy to implement, little work in general has been published

on scheduling these instructions that exploit instruction-level parallelism. In this dis-

sertation, and specifically in Chapters 5 and 6, we explore the usefulness of using

software pipelining and interleaving as possible techniques to speed up block cipher

modes in AES.

66

Chapter 5

A Program Generator for

Hardware Accelerated AES CTR

and CBC Modes

Implementations of the AES algorithm often contain several code sections that can

be fine tuned for optimal performance. However, these optimizations are usually done

by hand, which can be a lengthy, labour intensive process. We present a system that

can generate billions of variants of the AES encryption code to find the best solution

for a particular microarchitecture. We apply both common loop optimizations and

ones specific to AES. We evaluate the generated code on hardware with built-in AES

support using both selective-brute force and guided searches. Our generator achieves

significant speedups over straightforward implementations of the CTR and CBC block

cipher modes.

5.1 Introduction

Data must be encrypted if it is to remain confidential when sent over computer net-

works. Encryption solves many problems involving invasion of privacy, identity theft,

fraud, and data theft. However for encryption to be widely used, it must be fast.

The problem is so important that recent Intel processors provide hardware support

for encryption. These instructions implement key stages of the Advanced Encryption

Standard (AES), allowing encryption to be completed more quickly and using less

power. The AES algorithm consists of several ‘rounds’ of encryption, each of which

involves a relatively complicated computation. This new hardware support allows an

entire round to be implemented with just a single instruction. This chapter presents a

67

Chapter 5: CTR and CBC Program Generation

code generator that creates CTR and CBC block-cipher mode implementations using

AES encryption.

The use of code generators to find which combination of optimization techniques

yields an optimized result is an established technique for solving problems in optimizing

for modern architectures. It is ideal for optimizing a small piece of code that uses a

vast amount of processing time and to which the best optimizations are not obvious.

Code generators have been very successfully applied to several domains such as ATLAS,

Spiral, and FFTW (see Section 2.3). The motivation for a code generator is to avoid

the problems with code maintenance and code readability that almost inevitably result

from hand-tuned assembly specific to the architecture it is written for. A code generator

can tune itself to the architecture it is running on to find the best combination of

optimizations for that architecture, while remaining readable and maintainable as it

can be written in a high-level language, such as C++.

AES encryption costs are greatly reduced with Intel’s Westmere microarchitecture

[Benadjila et al., 2009] and its instruction set extension [Gueron, 2010] (AES-NI) im-

plements key stages of the AES algorithm. Due to this, our code generator focuses on

optimizing the AES algorithm itself, rather than the mathematics required to trans-

form plaintext into encrypted data—which is handled by these new instructions.

Our generator can create billions of different AES implementations, regardless of ar-

chitecture, using vector intrinsics based on several optimizations to the AES algorithm,

while maintaining correctness. We believe our system is a valuable resource to find an

optimized AES implementation on a given target architecture.

In this chapter:

• We show our generator finds optimized variants with an average speedup of 1.29x

with 128-bit key sizes and 1.38x with 256-bit key sizes over all standard compiler

baselines.

• We show that a simple generator can find a good variation of the code without

any specific knowledge of the target microarchitecture.

• We offer a viable alternative to maintaining multiple versions of hand-optimized

code.

• We show simulated annealing is an effective and quick method to find a solution

in a wide search space.

The remainder of this chapter is organized as follows: The optimization techniques

we implement in the code generator to create CTR and CBC implementations are

68

5.2 CTR and CBC Code Generation

Listing 5.1: Using AES-NI in AES-128 CBC mode.

1 void AES CBC Encrypt (m128i ∗ p la in t ex t , m128i ∗ c iphe r t ex t ,
2 m128i ∗key , m128i feedback , int b locks){

4 int i = 0 ;
5 m128i r e s u l t = feedback ;

7 for (i = 0 ; i < b locks ; i ++){
8 r e s u l t = mm xor si128 (p l a i n t e x t [i] , r e s u l t) ;
9 r e s u l t = mm xor si128 (r e s u l t , key [0]) ;

10 r e s u l t = mm aesenc s i128 (r e s u l t , key [1]) ;
11 r e s u l t = mm aesenc s i128 (r e s u l t , key [2]) ;
12 r e s u l t = mm aesenc s i128 (r e s u l t , key [3]) ;
13 r e s u l t = mm aesenc s i128 (r e s u l t , key [4]) ;
14 r e s u l t = mm aesenc s i128 (r e s u l t , key [5]) ;
15 r e s u l t = mm aesenc s i128 (r e s u l t , key [6]) ;
16 r e s u l t = mm aesenc s i128 (r e s u l t , key [7]) ;
17 r e s u l t = mm aesenc s i128 (r e s u l t , key [8]) ;
18 r e s u l t = mm aesenc s i128 (r e s u l t , key [9]) ;
19 r e s u l t = mm aesenc la s t s i 128 (r e s u l t , key [1 0]) ;
20 c i p h e r t e x t [i] = r e s u l t ;
21 }
22 }

detailed in Section 5.2. Discussion of our experimental results on multiple platforms

can be found Section 5.3. We summarize the contributions of this chapter and offer

our conclusions in Section 5.4.

5.2 CTR and CBC Code Generation

Our generator (GEN1) creates C source code variations of the AES encryption loop in

both CTR and CBC mode which have been described in Section 4.2. Standard imple-

mentations of CTR and CBC, using AES-NI instructions can be seen in Listings 4.2

and 5.1, respectively1. This generator is more “static” in comparison to our generator

mentioned in Chapter 6. It generates CTR and CBC code from scratch without any

input source code as a guide. Any algorithm changes to CTR and CBC modes would

require adding additional functionality to GEN1. GEN1 generates C code and uses

compiler intrinsics to specify the Intel AES instructions. Optimizations are turned on

and off by a set of flags that traverse a wide search space. These variants are further

optimized at low-level by gcc or icc.

GEN1 can create implementations of CTR and CBC with all three key sizes. CTR

1Code for both modes are shown with inner loop unrolled.

69

Chapter 5: CTR and CBC Program Generation

Listing 5.2: Interleaving three iterations in CTR mode.

1 for (i = 0 ; i < b locks − 3 ; i += 3){
2 i t 0 r e s u l t = nonce = mm add epi64 (nonce , one) ;
3 i t 1 r e s u l t = nonce = mm add epi64 (nonce , one) ;
4 i t 2 r e s u l t = nonce = mm add epi64 (nonce , one) ;
5 i t 0 r e s u l t = mm xor si128 (i t 0 r e s u l t , key [0]) ;
6 i t 1 r e s u l t = mm xor si128 (i t 1 r e s u l t , key [0]) ;
7 i t 2 r e s u l t = mm xor si128 (i t 2 r e s u l t , key [0]) ;
8 i t 0 r e s u l t = mm aesenc s i128 (i t 0 r e s u l t , key [1]) ;
9 i t 1 r e s u l t = mm aesenc s i128 (i t 1 r e s u l t , key [1]) ;

10 i t 2 r e s u l t = mm aesenc s i128 (i t 2 r e s u l t , key [1]) ;
11 i t 0 r e s u l t = mm aesenc s i128 (i t 0 r e s u l t , key [2]) ;
12 i t 1 r e s u l t = mm aesenc s i128 (i t 1 r e s u l t , key [2]) ;
13 i t 2 r e s u l t = mm aesenc s i128 (i t 2 r e s u l t , key [2]) ;
14 // remaining rounds
15 }

mode is a stream cipher which encrypts a counter value and is xor’d with plaintext,

making it ripe for parallelizable optimizations. CBC mode has a cyclic dependency

that occurs because the result of each encrypted block is then used when encoding the

next block. This dependency requires different optimization strategies than CTR.

While some optimizations are specific to each mode, there are some that are com-

mon to both, such as: completely unrolling the inner loop, software prefetching, and

holding a varying number of key values in registers. Also, interleaving can be applied

to both CTR and CBC modes—though they do slightly different things. The generator

has several optimizations that make both major and minor differences in performance.

The search space for optimizations is very large. Using only interleaving options

yields 221,184 variants. With a 256-bit key, and considering holding individual keys in

registers in conjunction with interleaving, this number is multiplied by 215 yielding a

search space of over seven billion possible combinations in CTR mode alone. There are

additional variants with software pipelining. In CBC mode, there are over 2.6 million

variants with a search space of using up to five different encryption streams. Again,

this number is multiplied by 215 yielding a search space of over 85 billion possible CBC

implementations that GEN1 can produce.

5.2.1 CTR Optimizations

A full set of possible optimizations to CTR mode are as follows:

• localkeys (0-14) [215] — Value encourages keys to be kept in registers.

• interleave factor (0-15) — How many iterations to unroll and interleave.

70

5.2 CTR and CBC Code Generation

• interleave distance (0-17) — Affects the how and where the code is interleaved

after unrolling.

• software pipelining initiation interval (0-17) — Varies the ii value.

• software prefetching to cache OR register — Adds software prefetching

instructions.

• prefetch source (1-[interleave factor]) — Determines which plaintext to fetch.

• prefetch distance (0-[interleave factor-1]) — Determines where fetch instruction

is placed.

• restrict pointers (on/off) — Adds restrict pointers.

• streaming store (on/off) — Adds streaming stores in place of normal stores.

These optimizations are explained in greater detail in the sections immediately

following. The order in which they are presented is roughly based on the effectiveness

of optimizations when applied to CTR code. Further discussion of the effectiveness of

applying these optimizations is provided in Section 5.3.

Interleaving Iterations in CTR

In CTR mode, interleaving means unrolling the encryption loop by a factor of x

and instructions for these unrolled iterations are arranged in a non-contiguous manner.

CTR mode has no dependency from encrypting one block to the next, so this is easily

accomplished. This strategy allows key values to be used more frequently in succession

and to encourage the compiler to keep them in a register. An example of interleaving

in CTR can be seen in Listing 5.2. In this example, the loop has been unrolled three

times, and round 1 from different iterations of the loop are interleaved, with key1 being

used in rapid succession.

Interleave distance plays an important part in adjusting the “cushion” between

interleaved iterations in the loop body. Setting this variable distance will push the

next iteration down x lines. The higher the value, the more of the previous iteration

will have completed before the current iteration starts. When the interleave distance is

maximized, this would generate code that looks exactly the same as simply unrolling

the loop.

71

Chapter 5: CTR and CBC Program Generation

Listing 5.3: Software pipelining with an initiation interval of 2

1 /∗ pre so f tware p i p e l i n i n g code (pro logue) ∗/

3 // so f tware p i p e l i n i n g loop (k e rne l)
4 for (i = 0 ; i < (blocks −8); i += 1){
5 s p 0 r e s u l t = mm xor si128 (s p 0 r e s u l t , p l a i n t e x t [i]) ;
6 s p 1 r e s u l t = mm aesenc s i128 (s p 1 r e s u l t , key [1 3]) ;
7 s p 2 r e s u l t = mm aesenc s i128 (s p 2 r e s u l t , key [1 1]) ;
8 s p 3 r e s u l t = mm aesenc s i128 (s p 3 r e s u l t , key [9]) ;
9 s p 4 r e s u l t = mm aesenc s i128 (s p 4 r e s u l t , key [7]) ;

10 s p 5 r e s u l t = mm aesenc s i128 (s p 5 r e s u l t , key [5]) ;
11 s p 6 r e s u l t = mm aesenc s i128 (s p 6 r e s u l t , key [3]) ;
12 s p 7 r e s u l t = mm aesenc s i128 (s p 7 r e s u l t , key [1]) ;
13 s p 8 r e s u l t = mm xor si128 (s p 8 r e s u l t , key [0]) ;
14 c i p h e r t e x t [i] = s p 0 r e s u l t ;
15 s p 1 r e s u l t = mm aesenc la s t s i 128 (s p 1 r e s u l t , key [1 4]) ;
16 s p 2 r e s u l t = mm aesenc s i128 (s p 2 r e s u l t , key [1 2]) ;
17 s p 3 r e s u l t = mm aesenc s i128 (s p 3 r e s u l t , key [1 0]) ;
18 s p 4 r e s u l t = mm aesenc s i128 (s p 4 r e s u l t , key [8]) ;
19 s p 5 r e s u l t = mm aesenc s i128 (s p 5 r e s u l t , key [6]) ;
20 s p 6 r e s u l t = mm aesenc s i128 (s p 6 r e s u l t , key [4]) ;
21 s p 7 r e s u l t = mm aesenc s i128 (s p 7 r e s u l t , key [2]) ;
22 s p 0 r e s u l t = s p 1 r e s u l t ;
23 s p 1 r e s u l t = s p 2 r e s u l t ;
24 s p 2 r e s u l t = s p 3 r e s u l t ;
25 s p 3 r e s u l t = s p 4 r e s u l t ; // c l ean up copy v a r i a b l e s
26 s p 4 r e s u l t = s p 5 r e s u l t ;
27 s p 5 r e s u l t = s p 6 r e s u l t ;
28 s p 6 r e s u l t = s p 7 r e s u l t ;
29 s p 7 r e s u l t = s p 8 r e s u l t ;
30 }
31 /∗ pos t so f tware p i p e l i n i n g code (e p i l o gu e) ∗/

Software Pipelining

Software pipelining divides several iterations into distinct parts. Software pipelining

is described in detail in Section 2.2.3. The size of the parts depend on the initiation

interval. The ii value can be a maximum of 17 (in 256-bit mode) as the intervals

are based on the number of lines of code in the loop body. In Listing 5.3, which

shows Counter in 256-bit mode, the ii is set to 2. This creates nine pipeline intervals.

However, inside the loop, only one full set of instructions used in the AES algorithm

exist while they operate on several different blocks. This limits code growth within the

loop body and can be seen in Listing 5.3.

Both software pipelining and interleaving Counter code exploit ILP. Generating

interleaved code creates good ILP code in the middle of the loop but messy schedules

exist in the beginning and end of the loop block due to the xor instructions and the

72

5.2 CTR and CBC Code Generation

load and store instructions. Software pipelining will instead look for a cleaner solution

that has only one set of instructions, operating on parallel iterations. Since the same

keys are used to encode every block and there is no cyclic dependency with successive

iterations, software pipelining can be used as a way to decrease the dependency between

encryption rounds within each encryption block. However, this optimization strategy

can only be used with generating CTR code.

5.2.2 Optimizations for Both Modes

The remaining optimizations generally work for both modes. The streaming store

option is an intrinsic function that writes vector data to memory without polluting the

cache. Using C restrict pointers for the plaintext, ciphertext, and key value arrays

can also be turned on and off to provide the compiler with pointer aliasing information.

We also make use of other software optimizations by specifically using prefetching and

preloading of plaintext data. Prefetching uses an x86 instruction to specifically move

data (in our case, plaintext) into a specified level of cache. Preloading code generates

code that specifically assigns plaintext to a variable to encourage it to stay in cache

and reduce cache misses. The location of prefetch and preload instruction in code is

varied by the source and distance parameters. The source declares which iteration it

will preload/prefetch and the distance is how far away it will place this directive.

Localkeys

The number of keys that are assigned as variables can also be varied. As mentioned,

128, 192, and 256-bit key sizes use 10, 12, and 14 keys respectively. We encourage

the compiler to store these keys in registers by assigning them to local variables. This

is useful because depending on the number of free vector registers, n keys can be

loaded into registers and rarely (if ever) evicted during the duration of the encryption

process. The number of registers available varies depending on the operating system

or hardware. So where all keys could be stored in registers on one machine may not

work as well on another machine. Another variation is not only the number of keys,

but which specific keys. We utilize a bit-vector to decide which individual keys will be

assigned to local variables. For example, a bit-vector of 110101 will assign keys 0, 2,

4, and 5 to local variables while the rest remain in memory.

5.2.3 CBC Optimizations

A full set of possible optimizations to CBC mode are as follows:

73

Chapter 5: CTR and CBC Program Generation

• streams (1-5) — Generate n streams.

• localkeys (0-14)[215] — same as CTR mode.

• unroll (0-15) — Unrolls n iterations for all streams.

• interleave (on/off) — Interleaves the streams.

• interleave distance (0-17) — Affects placement of interleaved code.

• software prefetching to cache OR register — same as CTR mode.

• prefetch source (2-[interleave factor]) — same as CTR mode.

• prefetch distance (0-[interleave factor-1]) — same as CTR mode.

• restrict pointers (on/off) — same as CTR mode.

• streaming store (on/off) — same as CTR mode.

• xor (on/off) — change first two xor operations.

The optimizations specific to CBC are explained in greater detail in the sections im-

mediately following. As before, the order in which they are presented is roughly based

on the effectiveness of optimizations when applied to CTR code. Further discussion of

the effectiveness of applying these optimizations is provided in Section 5.3.

Interleaving Streams in CBC

Due to the cyclic dependency of CBC, any improvements must be made to the imple-

mentation itself. To get better overall performance with CBC code, multiple encryption

streams must be used. These are independent streams with separate key schedules and

plaintext inputs. As CTR operated on multiple iterations to hammer the AES unit,

interleaving streams in CBC is a similar strategy. Instead of multiple iterations, a sin-

gle iteration from each encryption stream is interleaved in the loop body and minimizes

the cyclic dependency on each stream from one iteration to the next. An example of

this method of interleaving streams is shown in Listing 5.4.

Interleave distance plays an important part as GEN1 can also modify the distance

between the start of each interleaved stream. Due to the cyclic dependence, this tends

to have a greater impact on CBC performance than increasing the interleave distance

with CTR mode. Increasing the distance in CBC mode spreads out the long-latency

plaintext loads generated at the top of the loop and improves performance.

74

5.2 CTR and CBC Code Generation

Listing 5.4: Interleaving three encryption streams in CBC mode.

1 m128i s t 0 r e s u l t = s t0 f e edback ;
2 m128i s t 1 r e s u l t = s t1 f e edback ;
3 m128i s t 2 r e s u l t = s t2 f e edback ;

5 for (i = 0 ; i < b locks ; i += 1){
6 s t 0 r e s u l t = mm xor si128 (s t 0 p l a i n t e x t [i] , s t 0 r e s u l t) ;
7 s t 1 r e s u l t = mm xor si128 (s t 1 p l a i n t e x t [i] , s t 1 r e s u l t) ;
8 s t 2 r e s u l t = mm xor si128 (s t 2 p l a i n t e x t [i] , s t 2 r e s u l t) ;
9 s t 0 r e s u l t = mm xor si128 (s t 0 r e s u l t , s t 0 key [0]) ;

10 s t 1 r e s u l t = mm xor si128 (s t 1 r e s u l t , s t 1 key [0]) ;
11 s t 2 r e s u l t = mm xor si128 (s t 2 r e s u l t , s t 2 key [0]) ;
12 s t 0 r e s u l t = mm aesenc s i128 (s t 0 r e s u l t , s t 0 key [1]) ;
13 s t 1 r e s u l t = mm aesenc s i128 (s t 1 r e s u l t , s t 1 key [1]) ;
14 s t 2 r e s u l t = mm aesenc s i128 (s t 2 r e s u l t , s t 2 key [1]) ;
15 // remaining rounds
16 }

XOR Modification

As mentioned above, the cyclic dependency of CBC prevents certain optimization op-

portunities. However, anything that we can do to reduce the length of the dependency

chain for each block would be of great use to us. We reduce the dependency chain of the

xor tree of the original implementation in Figure 5.1a by using xor on the plaintext

and key0 and placing it in a temporary variable. The feedback variable result causes

the cyclic dependency, so the xor and load of plaintext can use cycles before result

is needed. This is seen in Figure 5.1b.

5.2.4 Simulated Annealing

To manage all the different optimizations when generating CTR and CBC code, we

use simulated annealing. As mentioned in Section 2.3.3, simulated annealing is a

heuristic search algorithm that employs probabilistic reasoning to increase the search

space [Skiena, 1998]. The goal of using simulated annealing in conjunction with our

generated code is to use a guided search to reduce the time it takes to find a solution.

Exhaustively trying all possible flags is not computationally feasible. In Listing 5.5, we

outline the pseudo code we use to implement simulated annealing. The listing includes

one of our slight modifications to the classic algorithm to keep track of a global best

solution.

75

Chapter 5: CTR and CBC Program Generation

(a) (b)

Figure 5.1: Reducing the dependency chain in CBC Mode by modifying the XOR
tree—5.1a without xor modification, 5.1b with xor modification.

5.3 Results

Our experimental results with GEN1 show how AES, in both CTR and CBC modes,

perform on various platforms. On non-AES enabled microarchitectures, GEN1 is able

to simulate the times using various replacement instructions that have documented

latencies. While these experiments cannot actually perform encryption, they give us

two insights. First, from a practical point of view, using non-AES instructions allowed

us to develop and test our generator before the AES hardware became publicly available

in early January 2010. Second, the visual representation of the results in this section are

shown using the same parameters, but with three different latencies. These graphs show

the difficultly in predicting performance in advance when trying to find a solution and

also shows how slight changes in the latency value can dramatically alter the potential

solutions.

This allows the generator to be run with a number of different latency values for

each round of encrypting a block. The idea behind simulating encryption with various

latency figures is to determine how the AES algorithm would perform, given instruc-

tions take x cycles, on a particular microarchitecture. As part of this research pre-dated

the commercial release of the Westmere microarchitecture, this allowed us to examine

potential results of our work and theorize how these implementations work if latency

decreases for the hardware instructions. We later gained access to Westmere hardware

76

5.3 Results

Listing 5.5: Psuedocode of our implementation of simulated annealing.

1 anneal ()
2 c0 = cos t (de fau l t arguments)
3 t = s ta r t t empera tu r e
4 g = c0 #g l o b a l b e s t s e t to i n t i a l arguments
5 while i < i t e r a t i o n s :
6 j = 0
7 while j < c o o l i n g s t e p s :
8 new args = random arg ∗ weight
9 c1 = cos t (new args)

10 d e l t a = (c1 − c0) / c0
11 i f c1 < g : #keep g l o b a l b e s t
12 g = c1
13 i f d e l t a < 0 :
14 c0 = c1
15 else i f (eˆ(−d e l t a /(k∗ t) >= random [0 , 1)) :
16 c0 = c1
17 j++
18 t = t ∗ reduce
19 i++

and tested GEN1 with actual AES instructions and these experimental results are also

found in this section.

Timing using RDTSC and Median Values

The values included in the results for GEN1 are found by selecting the median time

of the encryption loop over 150,000 times. The performance values are captured by

surrounding the encryption loop with reads of the time stamp counter (RDTSC). We

run the experiment so many times to eliminate outliers, because our variance can be

quite high. The individual encryption runs are so fast (in terms of clock time), the

smallest influence can affect the data. We are still very confident in our results for

the following reason: When timing AES implementations at over 150,000 runs per

experiment, over 99.9% of the results ran within 1% of the reported values2 shown in

this chapter and in Chapter 6. A very small 2/100ths of a percent (or less than 50

runs) of the experiments ran greater than 1% of our reported value. These outliers are

10 to 20 times slower, which cause a very high variance and this performance decrease

is caused by other tasks on the machine, such as context switches.

The Core 2 data was gathered on a quad-core 2.4GHz machine running 64-bit

Ubuntu emulating the AES instructions with other long-latency instructions. The Core

2In other words, using an example, CTR-128’s median result is a runtime of about 1310 cycles.
Over 99.9% of our tests ran within 13 cycles of this value. Similar behaviour occurred with CBC.

77

Chapter 5: CTR and CBC Program Generation

i5 is a dual core machine running at 3.2GHz with 64-bit Ubuntu and implementing the

actual AES instructions in hardware. Generated code is compiled by icc with -O3

enabled.

5.3.1 Cycles per Byte

When benchmarking and discussing the performance of encryption implementations

on a system, one of the most common units to use is cycles per byte. Simply, cycles

per byte (c/b) is the number of clock cycles it requires to encrypt (or decrypt) 1 byte

of data. As AES is a block-cipher, and these blocks are 16-bytes each, we compute this

value with:
total # of cycles

blocks× 16

The lower this value is, the less time an encryption algorithm takes to do its job. One

of the benefits of using this unit is that it allows one to weigh the performance/security

trade off. For example, AES 128-bit implementations will likely be faster than AES-256

as there are 4 additional rounds to compute in the algorithm. However, using a 256-bit

key may be more secure.

Megabits per Second

Megabits per Second is a unit that is also commonly used when discussing encryption

performance on GPUs, such as in work by Harrison and Waldron [2008]. GPUs often

transfer large amounts of data back and forth from the chip and have the ability to

have many pipelines to process the data in parallel, so they require a larger scale to

compare their effectiveness. To convert cycle per byte figures to megabits per second

requires the following equation:(
CPU Clock Speed (Ghz)

Cycles per Byte

)
÷ 109 × 8× 1024 = Megabits per Second

5.3.2 Selective-Exhaustive Searches

As mentioned earlier, GEN1 can create literally billions of implementation variations on

both the CTR and CBC modes. After trial and error, and observation, we did a number

of “selective-exhaustive” searches. What this means is that we saw patterns in the data

that showed us which optimization parameters had more influence on performance

than others. Before we implemented simulated annealing, we did selective-exhaustive

searches and from the results, narrowed the scope of current optimization values while

78

5.3 Results

we introduced other optimizations that had smaller effects on performance.

In the experimental phase, this data pointed us in directions that further could

improve performance. The data compiled from this strategy also enabled us to generate

graphs to show an important contribution of this thesis—that generating code for for

AES-NI instructions is non-obvious and non-trivial. As we chased 10ths and 100ths of

a cycle per byte improvements in running time, it became even more obvious that we

cannot project exactly how smaller optimizations affected the performance of GEN1

scheduled code for Counter and CBC.

Platform: Intel Core 2

The microarchitecture on Intel’s Core 2 does not include support for AES. When run-

ning the generator on the Core 2 platform, we present two sets of results that substitute

the AES instructions with other instructions. We present results with the PMADDWD,

documented with a 2 cycle latency and with the MULSD instruction, documented with

a 5-cycle latency [Intel Corp., 2011].

In Counter mode, there are billions of possible variations. We ran experiments on

small cross sections of these possibilities that gave us results ranging from 0.98 to 5.0

cycles per byte. The general observations about the data suggest that both software

pipelining and interleaving are very useful in Counter mode. Only 30 variants run

within 0.10 c/b of the fastest version. Of those, ten are software pipelined versions

with initiation intervals of 2 or 3 with the remainder being various interleaved factors

of 5 and 8 through 16. The keys held in registers are generally quite high to the max

of 14. Both 13 and 14 keys are held in registers in over half of the top performing runs.

Simulated AES on the Core 2 seems to run best with variants that exploit higher

levels of instruction-level parallelism (ILP). Tight software pipelining and modest values

of interleaving run best. We also find when using software pipelining or interleaving,

streaming store becomes a noticeable and positive attribute in performance. In both

scenarios, the newly created ciphertext must be stored back to memory and streaming

store works best when there are several stores at the same time, which there are with

software pipelining and interleaving with small interleave distances.

In Figure 5.2, the graph shows a subset of implementations simulating AES imple-

mented with an instruction that has a latency and throughput of 2 cycles. The effect of

the number of keys held in a registers is not represented well graphically in the figure.

The number of keys does have some effect, but the initiation interval value has a much

greater influence on performance. The best ii values are in the 2 to 5 range. This value

essentially sets the granularity of using ILP. Figure 5.3 has a similar graphical pattern.

79

Chapter 5: CTR and CBC Program Generation

0

7

14

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

keys in
registers

cy
cl

es
/b

yt
e

initiation interval

Core 2, Simulated CTR 256
using software pipelining with 2 cycle latency

Figure 5.2: Simulated CTR in 256-bit mode results on a Core 2 using a 2 cycle latency
and a 1K input buffer. Shown using different software pipelining intervals and various
number of keys (inclusive) in registers.

0

7

14

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

keys in
registers

cy
cl

es
/b

yt
e

initiation interval

Core 2, Simulated CTR 256
using software pipelining with 5 cycle latency

Figure 5.3: Simulated CTR in 256-bit mode results on a Core 2 using a 5 cycle latency
and a 1K input buffer. Shown using different software pipelining intervals and various
number of keys (inclusive) in registers.

80

5.3 Results

Keys in registers make only small differences while ii values from 2-5 are clearly the

better solutions.

In both figures, generating code with lower ii values created schedules that can

pipeline instructions well. These ii values create groups of 2 to 4 instructions with 3

to 5 intervals or so. Notice the peaks with ii values of 1 and 9. With an ii value of 1,

each instruction in the loop has its own interval and requires 17 copies to send results

down the pipeline. This also causes an incredible amount of code growth that spends

very little time inside the steady state with the small input value of 1024 bytes. The

peak at the ii value of 9 generates code that strictly interleaves two halves of the AES

algorithm. This strict interleaving does not help much and keeps the load and store

(despite being in different intervals) as side by side instructions, resulting in very poor

performance.

When simulating CBC mode on the Core 2, the performance is even less predictable

than the Counter results. However, from Figures 5.4 and 5.5 which display results

from varying interleaving degrees and localkeys for four streams, there are still some

noticeable patterns. With 1, 2, 3 and 4 streams, we see cycles/byte ranges of 5.13-

5.49, 2.57-2.93, 1.74-3.0, and 1.71-3.03 cycles/byte respectively. Looking at the data

gathered with streams > 2 data, there is a clear trend that the best performing

implementations use far fewer keys in registers. Considering that every stream will try

to assign k number of keys to registers, as the value of k gets larger, register pressure

increases. While CBC has a large chain of dependent instructions, as with the ii values

from Counter code that will optimally use 2 to 4 pipeline intervals, we see that with 2

to 5 streams (2 to 5 pipelines) of parallel encryption also works well.

Figures 5.4 and 5.5 show the results of simulating CBC in 256-bit mode using four

streams of data with 2 and 5 cycle latency instructions, respectively. Keys in registers

is shown to have a much greater effect in these figures as we have mentioned. What

contorts the graph more, however, is the interleave distance. This value pushes the

start of the next stream down a certain number of instructions. This encourages the

compiler to schedule loads farther apart and not in succession before streams get strictly

interleaved.

In both figures, the lower and higher end interleave distance values perform badly.

In the first case, low distance values force the loads and stores to execute in succession.

With four streams, this is a really bad solution. With the other case, high distance

values will essentially create the same affect as unrolling the loop. CBC4 has several

long chains of dependent instructions that will execute in succession. Despite this,

we still get good performance in comparison to single- or even two-stream numbers.

81

Chapter 5: CTR and CBC Program Generation

1

9

17

0.9

1.0

1.1

1.2

1.3

1.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

interleave
distance

cy
cl

es
/b

yt
e

keys in registers

Core 2, Simulated CBC 256
with four streams with 2 cycle latency

Figure 5.4: Simulated CBC with four streams in 256-bit mode results on Core 2 using
a 2 cycle latency and a 1K input buffer. Shown using different interleave distances and
various number of keys (inclusive) in registers.

1

9

17

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

interleave
distance

cy
cl

e
s/

b
yt

e

keys in registers

Core 2, Simulated CBC 256
with four streams with 5 cycle latency

Figure 5.5: Simulated CBC with four streams in 256-bit mode results on Core 2 using
a 5 cycle latency and a 1K input buffer. Shown using different interleave distances and
various number of keys (inclusive) in registers.

82

5.3 Results

The compiler can still generate code which allows for out-of-order architectures like the

Core 2 to parallelize the encryption of the four streams even if the high-level code is

not interleaved. There are distance values that work well, however. These tend to be

in the 2 to 6 range. This will allow the initial xor with plaintext from each stream

to be separated in the loop, waiting to load while the other AES instructions complete

and limiting the number of stalls.

The instructions we used to simulate the (then forthcoming) AES instructions,

provided key results on how to improve this and our future generator. But, after

running these experiments on AES-enabled hardware, we quickly found that these

simulations were just that—simulations. The behaviour and results on the Core i5

were much different and much more volatile.

Platform: Intel Core i5 (Westmere)

Initially, our generator was built for hardware that did not include special hardware

instructions to complete AES encryption. We were fortunate to be given access to an

internal Intel Westmere machine early on to get preliminary numbers. With the public

release of the Core i5 “Clarkdale” processors, we were able to test our numbers more

thoroughly on the Westmere microarchitecture. We found interesting results and some

surprising behaviours when replacing simulated instructions with the actual aesenc

calls, due to the difference of defined throughput and latency values for each set of

instructions. We simulated results on Core 2 with instructions with small latency and

small throughput values. The aesenc instruction has a 2 cycle throughput, but a 6

cycle latency [Akdemir et al., 2010].

The Counter results on Westmere reflected the latency and throughput of the in-

struction set. Using a selective-exhaustive search on a subset of possible variants, we

find a range of running times from 1.73 c/b to over 6.0 c/b. Only 25 variants run

within 0.1 c/b of each other, so Westmere numbers are more greatly affected by the

optimizations used by our generator. Similarly to the Core 2 numbers however, we

find that mid-range (6-12) interleaving values tend to run best. Software pipelining

initiation intervals of 2 and 3 are also good. Small ii values increase ILP (as does inter-

leaving with minimal distances of 1-3), but it also increases register pressure. Software

pipelining also requires a number of copies at the end of the loop. These were not

optimized out at low level compilation by icc.

Nearly all of the fastest 200 variants use 10 or more keys. Among this selection,

prefetching upcoming plaintext seems to also be beneficial. If the loop is unrolled 10

times, then GEN1 can insert instructions to prefetch the a single piece of plaintext

83

Chapter 5: CTR and CBC Program Generation

0

7

14

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

keys in
registers

cy
cl

es
/b

yt
e

initiation interval

Core i5, CTR 256 with software pipelining

Figure 5.6: CTR in 256-bit mode results on a Core i5 using a 1K input buffer. Shown
with different software pipelining intervals and various number of keys (inclusive) in
registers.

0

9

17

2.0

2.2

2.4

2.6

2.8

3.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

interleave
distance

cy
cl

es
/b

yt
e

keys in registers

Core i5, CBC 256 with four streams

Figure 5.7: CBC with four streams in 256-bit mode results on Core i5 using a 1K input
buffer. Shown with different interleave distances and various number of keys (inclusive)
in registers.

84

5.3 Results

for [i+1] through [i+10]. Which iteration of plaintext that is prefetched seems to

be irrelevant, but the distance between where the plaintext is loaded into a register

and where it is actually used tends to perform best at a distance of 3 iterations. This

means that if plaintext[i+6] is going to be loaded into a register, the instruction

to do so is placed during the execution of the third iteration. Prefetching tends to

reduce c/b by small margins, but can squeeze out a few percent to get that extra bit

of performance across the board.

In Figure 5.6, the results are shown for software pipelining on Westmere. There is

a clear trend that smaller ii values are better with valleys in the graph showing local

minimums at ii values of 2, 3 and 8. The ii value of 9 shows sub-par performance

and adjusting the number of registers makes little difference. As with the Core 2

data, the ii value of 9 essentially divides the AES loop in half, thus offering little

optimization. Lower ii values mean a higher number of iterations that have little to

no dependency inside the encryption loop and maximize the ability of exploiting ILP.

Figure 5.6 shows that ii values less than 9 work best for pipelining the new instructions.

The performance tends to level out with ii values above 9, as the code generated does

not change much with higher values. The number of keys held in registers has a greater

affect on the Core i5 with ii values >= 9 than the affect they have on the Core 2 results

for software pipelining with much rougher edges on the graph.

In CBC mode, we see Westmere numbers stabilize and even run slightly faster than

CTR numbers (when working with 4 stream buffers). From 1 to 4 streams, we see a

range of 1.71 c/b to 5.23 c/b. Figure 5.7 showcases data for 4 stream buffers in CBC

mode with varying interleave distances and key values held in registers. There is a

clear trend towards small interleave distances. Smaller interleave distances in CBC

increases ILP by reducing the dependency from one instruction to the next—both the

key value and the result value used are independent for each stream buffer. Figure

5.8 reiterates this value by keeping optimization values constant and focusing on the

difference of performance between the number of streams and interleave distance. CBC

with 3 or 4 streams rapidly lose performance when distance is increased over 7 which

would generate code with large amounts of data dependency.

Optimizations like streaming store, restrict and prefetching/preloading have not

been mentioned much in detail as they generally improve already improved optimiza-

tions. They can improve a variant by a few percent. This shows us that a generator is

useful for finding which set of these minor optimizations can improve a variant—even

if minimal. The combination of these smaller optimizations with the larger impact

ones like interleaving, software pipelining, and keys in registers give us a significant im-

85

Chapter 5: CTR and CBC Program Generation

Figure 5.8: Performance graphs streams vs. interleaving distance in CBC.

provement over the standard compiler baselines. This is discussed in the next section

with more detail.

5.3.3 Guided Search using Simulated Annealing

We experimented with simulated annealing on Westmere. The selective-exhaustive

experiments we conducted ran in batches of often more than 40,000 variants. This

is a very small subset of possible combinations and even one of these small subsets

takes several hours to complete (including compilation time). Our simulated annealing

implementation tries 1500 solutions and completes in under an hour. Its initial solution

applies no optimizations (flags to zero or off). When flags are changed, greater weights

are given to the number of localkeys and the interleaving factor. Lower weights are

given to on/off options. In both CTR and CBC modes, annealing was able to traverse

much more of the search space to find variants that ran faster than the selective-

exhaustive searches found. Running exhaustive searches on even small subsets took

hours to complete, whereas simulated annealing took under an hour to complete and

came up with a better result.

Applying simulated annealing to variants with CTR code with a 1K input buffer

yielded a top performance of 1.434 c/b with software pipelining and 1.398 c/b using

86

5.3 Results

Table 5.1: Best found results generating AES-128 and AES-256 code using Simulated
Annealing with GEN1 using 1K and 32K input buffers. Values shown in cycles/byte.

AES-128 AES-256
Encryption Mode 1K 32K 1K 32K
CTR – general version 1.398 1.264 1.867 1.771
CTR – software pipelined 1.434 1.318 1.887 1.756

CBC – 1 stream of encryption 4.156 4.066 5.656 5.566
CBC – 2 parallel streams of encryption 2.083 2.033 2.834 2.785
CBC – 3 parallel streams 1.394 1.357 1.910 1.876
CBC – 4 parallel streams 1.305 1.279 1.831 1.787
CBC – 5 parallel streams 1.305 1.266 1.794 1.766

Table 5.2: Results in comparison with documented Intel HPL results reported by
[Gueron, 2010] using 1K input buffers in AES-128 and AES-256 modes. Values shown
in cycles/byte.

AES-128 AES-256
Encryption Mode Intel GEN1 Intel GEN1
CTR 1.38 1.398 1.88 1.867
CBC – 1 stream 4.15 4.156 5.65 5.656
CBC – 4 streams 1.33 1.305

Table 5.3: Comparing GEN1 to icc baseline results in AES-128 and AES-256 modes
using 32K input buffers. Results shown in cycles/byte.

AES 128 (32K buffer) AES 256 (32K buffer)
Mode Baseline Best Speedup Baseline Best Speedup
CTR 1.85 1.264 1.46 2.79 1.771 1.58
CTR-SP 1.85 1.318 1.40 2.79 1.756 1.59
CBC-1 4.67 4.066 1.15 6.06 5.666 1.07
CBC-2 2.02 2.033 0.99 2.72 2.785 0.98
CBC-3 1.71 1.357 1.26 2.67 1.876 1.42
CBC-4 1.76 1.279 1.38 2.69 1.787 1.51
CBC-5 1.77 1.266 1.40 2.69 1.766 1.52

87

Chapter 5: CTR and CBC Program Generation

all other possible optimizations as seen in Table 5.1. As CTR is parallelizable, its

inherently performs quite well when we apply software pipelining to the code, the

number of keys held in registers is often a factor that is far more “searchable” when

using annealing. As possible key configurations can be up to 215 in 256-bit mode, this

is a massive number of possible solutions if searched exhaustively.

The selective-exhaustive experiments we ran with CBC was again only a subset

of billions of possible combinations and annealing is used to reduce search time. We

modify the argument weights to account for the different properties of CBC mode.

The xor optimization is shown to be helpful in most situations so we give it a smaller

weight than even turning on and off streaming store and restrict. Interleaving is either

on or off, but the algorithm’s trace shows that it rarely steps out of interleaved mode.

We tune the argument weights for CBC-specific optimizations. Table 5.1 shows GEN1

CBC results encrypting 1 to 5 streams at a time. GEN1 finds that encrypting two

streams of CBC instead of one produces nearly a 2x speedup when using a 1K input

buffer. Encrypting 3 to 5 streams in parallel does so at a rate around 1.3 c/b.

When AES-NI was introduced by Intel [Gueron, 2010], the work included hand-

tuned assembly listings of CTR and CBC and related performance figures. In Table

5.2, we provide several comparison points with this work and the best running variants

found by GEN1. The figures reported by Gueron [2010] use 1K input buffers. Table

5.2 shows that GEN1 CTR code performs slightly slower in 128-bit mode and slightly

faster in 256-bit mode. With the cyclic dependency of CBC, we are glad to essentially

match the reported Intel numbers with a single stream and perform slightly faster with

four streams.

An argument for the usefulness of the generator is shown in the results found in

Table 5.3. Here, the baselines are the CTR and CBC implementations compiled by

icc. Using a 128-bit key size, there is average speedup of 1.292x over the baselines.

In 256-bit mode, the average speedup is higher at 1.38x. This table shows clearly

that a standard compiler has difficulty optimizing the encryption loop. Our largest

speedups are for CTR and CBC implementations that use four or five streams. GEN1

creates code that will exploit ILP better than icc can—whether it is with interleaving

or software pipelining. With CBC4 and CBC5, the code becomes very complicated

and icc is unable to schedule the streams optimally, causing the loads and stores to be

grouped together. Interleave distance is an important optimization with GEN1. The

CBC2 results show some interesting behaviour. GEN1 only finds code that is slightly

slower. Encrypting two streams, even in parallel, will not maximize AES instruction

throughput. A standard compiler like icc can easily schedule the basic block for CBC2,

88

5.4 Conclusion

because like CBC1, there is little we can do to improve the performance of those modes.

5.4 Conclusion

In this chapter, we presented a code generator that creates optimized AES implementa-

tions for CTR and CBC modes. To find an optimized implementation, GEN1 generates

billions of versions the AES encryption loop. Searching even small subsets of the possi-

ble combinations yields speedups of 1.42x. GEN1 uses common optimizations, such as

loop unrolling and software prefetching to generate these implementations. In addition,

it also makes optimizations specific to implementing the AES algorithm, such as round

interleaving and adjusting the number of keys held in registers. These optimization

strategies are featured in detail in Section 5.2 of this chapter.

To evaluate this system, we evaluated the generated code on architectures that both

did and did not include hardware supported AES instructions. On architectures that

did not include AES-NI, performance was simulated using other documented latency

instructions. This was done to show how architectural properties can influence the

search for the best optimizations. The generator can search this space without any

insight into hardware specifics, such as cache sizes, number of registers, or even the

instruction set available to implement AES. GEN1 can find CTR and CBC variants

by simply re-running the tool on any architecture.

In order to encrypt data using AES with a block cipher mode efficiently, implemen-

tations are often optimized by hand. The generator is a viable alternative to maintain-

ing hand-optimized code when new microarchitectures are introduced—saving both

time and money. We saw in our results that GEN1 was able to produce CTR and CBC

implementations that performed comparably to hand-tuned versions provided by Intel.

In an effort to save time to find an optimized AES loop, we implemented simulated

annealing as a guided search heuristic. We found and showed that it performed very

well on both platforms and in both CTR and CBC modes. In addition to running a very

small fraction of the search space (only 1500 variants), the algorithm found variants that

performed better than ones found in selective-exhaustive searches. Results found with

annealing showed that standard compilers cannot optimize block-ciphers effectively in

most cases.

Using a code generator to find optimized implementations is a good system to

find which version runs fast on a target platform in order to perform an already very

common everyday task—AES encryption.

89

Chapter 6

A Generalized AES Program

Generator for Instruction-Level

Parallelism and Algorithmic Choice

Recent Intel processors include hardware instructions that implement a full AES round

in a single instruction. Existing libraries use hand-tuned assembly language to overlap

the execution of multiple AES instructions and extract maximum performance. We

present a program generator that creates optimized AES code automatically from a

simple, annotated C version of the code. We show how this generator can be used

to rapidly create highly optimized versions of AES in several modes including CTR,

ECB, CBC, PCBC, CFB, OFB, GCM and CCM. The resulting code generated has

performance that is equal to, or up to 8% faster than the hand-tuned assembly libraries

from Intel.

6.1 Introduction

As described in Chapter 5, Intel has recently extended its popular x86 architecture

to support the Advanced Encryption Standard (AES) [The National Institute of Stan-

dards and Technology (NIST), 2001; Daemen and Rijmen, 2002]. The new instructions

perform a full AES round in a single instruction. Making good use of these instruc-

tions is not simple because they have a latency of several cycles. Good performance

depends on the execution of multiple AES instructions being overlapped in the proces-

sor’s pipeline, while also carefully managing other resources such as registers. Existing

compilers do not do this well, so Intel provides a library of highly-optimized assembly

routines implementing various AES modes [Gueron, 2009, 2010].

91

Chapter 6: Generalized AES Program Generation

Assembly code is both expensive and difficult to understand, maintain or modify.

The need for assembly language programming is a major barrier to experimenting

with new variations of the code. New versions of architectures often require changes in

the assembly. Maintaining multiple versions of the same basic piece of assembly code

is a costly software engineering problem. As newer versions of architectures appear,

sub-optimal code may be used simply to avoid creating yet another version.

Assembly programming also makes it difficult to combine multiple algorithms into a

single piece of code. For example, it is often faster to do encryption and authentication

together rather than separately, by interleaving the code from each algorithm [Gopal

et al., 2010a]. However, if the code for each algorithm consists of hand-tuned assembly

library routines, manually creating a combined version is a cumbersome engineering

task. In contrast, our generator can automatically intermingle two pieces of code with

little programmer effort.

This chapter describes a program generator that takes an annotated C version of

AES code, generates many different variants and automatically finds a variant of the

code that runs well on the target processor. The system is flexible enough that the

cryptographer can specify different ways of varying the code using several strategies.

These strategies are also described. The generator uses an iterative, feedback-directed

approach to finding efficient code for the particular architecture.

The main contributions of this chapter are:

• We automate the application of low-level optimizations used in the Intel library.

• We present an automated system to search for the best variation of optimizations,

and show that the resulting code can be equal to or faster than hand-tuned

assembly.

• We show that using mixed-mode CTR can run “faster than optimal” by replacing

some AES-NI instructions with “traditional” table lookups.

• We show that exploiting the properties of xor can speed up cyclic modes like

CBC, PCBC, CFB and OFB.

• We show the ease of optimizing combined encryption/authentication algorithms

like GCM and CCM using function stitching.

• We show that this system can be re-targeted and adapted for hardware optimiza-

tions like simultaneous multithreading.

92

6.2 GEN1 vs. AES-GEN

The remainder of this chapter is organized as follows: An overview comparison of

the generators in this chapter (AES-GEN) and the previous chapter (GEN1) is provided

in Section 6.2. Our implementation of the program generator is described in Section

6.3. A breakdown of optimizations and features are in Sections 6.4—6.6. The flexibility

of the generator with parallel algorithms, such as CTR and ECB modes, is discussed

in Section 6.4. Making algorithmic variations with cyclic dependent modes is discussed

in Section 6.5. Combining algorithms using function stitching is discussed in Section

6.6. An analysis of our experimental results appears in Section 6.7 with related work

mentioned in Section 6.8, respectively. Our conclusions are offered in Section 6.9.

6.2 GEN1 vs. AES-GEN

Building the previous generator detailed in Chapter 5, our results were good because we

implemented code generation ideas for the high latency AES-NI instructions that were

first emulated on hardware that did not support them, and later on actual hardware.

Under time pressures of publication, these results were extremely good compared to the

baseline, and decent when comparing them against the hand-tuned assembly version.

Closer inspection of the disassembled generated code revealed shortcomings. GEN1

also lacked the ability to directly influence the way the code was scheduled with the

exception of using interleave distance, but the distance would only move the first

instruction of an iteration down n lines and the remaining iteration instructions would

be generated in lockstep with parallel iterations from that starting point. When we

wanted to apply software pipelining techniques to the loop, we could only apply it to

the number of lines and could not allow instructions to span several intervals.

Any modifications and further optimizations would need to be hard coded into the

generator and specifically tailored for the way they would work in CTR and CBC

modes. Directly related to those shortcomings, GEN1 could only support two encryp-

tion modes. In addition, new and faster results with other modes were being published

by Intel and we were curious if we could match and/or beat these values. Our solution

was to create a completely different tool from scratch that would provide a framework

that could:

1. Allow us to generate code for other encryption modes, and

2. Greater flexibility over how the code is generated.

From the experience of implementing our ideas with GEN1 and the supporting

experimental results, we found optimizations could be classified as either major or mi-

93

Chapter 6: Generalized AES Program Generation

nor. Major optimizations like interleaving, unrolling, and software pipelining yielded

the highest influence on encryption performance. These instruction-level parallelism

optimizations were implemented in a separate stage of the new system. The minor op-

timizations like key values and xor modifications were implemented in a different stage

of the system that could modify the algorithm easily. This separation of optimization

allowed us to experiment with different implementations. These two key tools allow us

to generate code with incredible flexibility—including the ability to easily scheduled

multiple loops.

6.2.1 Function Stitching

As mentioned in Section 4.2.3, authentication is often used in conjunction with encryp-

tion. This ensures that the message is both secure and correct when it is transmitted

from one source to another. The authentication process can be executed separately

from encryption in different loops. Combined authentication and encryption modes,

like the ones we discuss in this chapter will incorporate both processes in the same

basic block.

To improve execution time of combined modes, Gopal et al. [2010a] from Intel

suggest a process called function stitching. This process literally interleaves sections

of both processes with each other. We emulate this process and are able to adjust the

level of “stitching” between processes in the generator by applying instruction latencies

in the generator to a data dependency graph.

6.2.2 Cycles per Round

In the discussion of results for GEN1, most of the figures are stated in cycles/byte.

While this is the common measurement for dealing with cryptographic performance,

we present an additional figure—cycles/round. This is the number of cycles it takes

per round of AES encryption. Recall that it takes 10 rounds of encryption with a

128-bit key, 12 rounds with a 192-bit key, and 14 with a 256-bit key. To determine

cycles/round, we use:
total # of cycles

rounds(key size)× blocks

.

We provide this unit of measurement because it helps us to determine how close

to optimal the AES-GEN generated code is. As we know that an aesenc instruction

can be issued every two cycles, and an aesenc instruction is used for every round, our

94

6.3 The AES-GEN Program Generator

Figure 6.1: Structure of the AES-GEN System.

performance goal is 2 cycles per round regardless of the mode, the input size, and the

key schedule.

6.3 The AES-GEN Program Generator

Our generator, which we refer to as AES-GEN, automates many of the optimization

techniques used in GEN1 and adds some additional ones. The main benefit of this

system of creating variants is that it is more generalized. AES-GEN can be used to

generate code for any of the AES modes and can find efficient code for any processor

with the AES-NI instruction set1.

AES-GEN uses a multi-stage system to find a potential solution to implement a

particular AES mode. The structure of the system is shown in Figure 6.1. The input

to the system is annotated C code which implements a certain AES mode, which can

be seen in Listing 6.1. These annotations can be used to express algorithmic variants

and other information. The general process is as follows:

1. The algorithmic variations are handled by a tool called Cheetah. Cheetah outputs

a legal C/C++ file which is sent to the ILP optimizer.

2. The ILP optimizer schedules the code after converting to a simple version of

static single assignment (SSA) form [Cytron et al., 1991] and building a data

dependency graph (DDG).

1Of course, as described in Section 5.3.2, encryption round instructions could still be replaced with
other instructions for simulation purposes.

95

Chapter 6: Generalized AES Program Generation

3. The optimized scheduled code is then compiled by a standard compiler like gcc

or icc.

4. The unoptimized native solution seeds initial solution required by the code tun-

ing script, which is powered by an augmented simulated annealing algorithm.

Arguments are modified by the code tuning script and a new version of the code

is created.

This iterative process is repeated thousands of times, until an efficient variant of

the code is found. A more detailed description of the AES-GEN system is described

in the sections immediately following.

6.3.1 Algorithmic Choices with Cheetah

Our generator builds code using two stages. The first stage relates to choices in the

basic source code that is generated. For example, setting the number of key values to be

stored in registers by assigning them to variables, using streaming stores, and making

various xor modifications. We call these algorithmic variants. Cheetah [Rudd, 2007]

is a Python-powered template engine, which we use essentially as a macro-expansion

tool. We use Cheetah to make high-level source code changes to the input which is

used by the ILP optimizer. The primary use of Cheetah is to make these optimizations

to the various AES implementations:

• Manage local key values: A keymask is used to determine which key values

will be assigned to variables.

• Manage constants: Constants within the loop can also be assigned as a con-

stant to a register, rather than kept in memory. This can trade off lookup time

with register pressure, just like key values.

• Manage the number of streams used in cyclic modes: Create function

arguments, separate names for each stream’s plaintext, ciphertext and key

schedule.

• Manage the xor optimization: More on this is found later in 6.5.1, with

varying degrees of manipulating xor within the AES encryption loop.

Cheetah manages and generates these various small, but large number of, op-

timizations that can affect the performance of AES code. This allows the genera-

tor to handle all the remaining optimizations through scheduling and other changes

96

6.3 The AES-GEN Program Generator

Listing 6.1: Cheetah templated AES-128 Counter code.

1 void AES CTR Encrypt (m128i ∗ p la in t ex t , m128i ∗ c iphe r t ex t ,
2 m128i ∗ key , long long ivec , long nonce , int b locks){
3 int i = 0 ;
4 m128i one = mm set epi32 (0 , 1 , 0 , 0) ;
5 m128i BSWAP = mm setr ep i8 (7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 , 1 5 , 1 4 , 1 3 , 1 2 , 1 1 , 1 0 , 9 , 8) ;
6 m128i r e s u l t ;
7 m128i p l a i n ;

9 $ k e y s t o b e d e c l a r e d // Cheetah v a r i a b l e f o r key d e c l a r a t i o n s

11 m128i counte r b l ock = mm setze ro s i128 () ;

13 counte r b l ock = mm inser t ep i64 (counter b lock , ivec , 1) ;
14 counte r b l ock = mm inser t ep i32 (counter b lock , nonce , 1) ;
15 counte r b l ock = m m s r l i s i 1 2 8 (counter b lock , 4) ;
16 counte r b l ock = mm shu f f l e ep i8 (counter b lock , BSWAP) ;

18 for (i = 0 ; i < b locks ; i ++){
19 counte r b l ock = mm add epi64 (counter b lock , one) ;
20 r e s u l t = mm shu f f l e ep i8 (counter b lock , BSWAP) ;
21 r e s u l t = mm xor si128 (r e s u l t , $key0) ;
22 r e s u l t = mm aesenc s i128 (r e s u l t , $key1) ;
23 r e s u l t = mm aesenc s i128 (r e s u l t , $key2) ;
24 r e s u l t = mm aesenc s i128 (r e s u l t , $key3) ;
25 r e s u l t = mm aesenc s i128 (r e s u l t , $key4) ; // A l l keys are a l s o
26 r e s u l t = mm aesenc s i128 (r e s u l t , $key5) ; // Cheetah v a r i a b l e s
27 r e s u l t = mm aesenc s i128 (r e s u l t , $key6) ;
28 r e s u l t = mm aesenc s i128 (r e s u l t , $key7) ;
29 r e s u l t = mm aesenc s i128 (r e s u l t , $key8) ;
30 r e s u l t = mm aesenc s i128 (r e s u l t , $key9) ;
31 r e s u l t = mm aesenc la s t s i 128 (r e s u l t , $key10) ;
32 r e s u l t = mm xor si128 (r e s u l t , p l a i n t e x t [i]) ;
33 c i p h e r t e x t [i] = r e s u l t ;
34 }
35 }

97

Chapter 6: Generalized AES Program Generation

Figure 6.2: Structure of the ILP Optimizer.

that affect the encryption loop itself. A sample template is shown in Listing 6.1.

Cheetah variables are preceded by a $ sign. In the listing, $key0 will either be re-

placed with key[0] if the key will be kept in memory or key0 with an accompanying

const __m128i key0 = key[0]; instruction included where $keys_to_be_declared

is shown.

6.3.2 The ILP Optimizer

After all the algorithmic variations have been applied to the input source code, further

optimizations that are aimed at exploiting instruction-level parallelism are applied in

the second stage. These optimizations include loop unrolling, interleaving, and software

pipelining. These optimizations are applied and then scheduled by the ILP optimizer.

The process of applying ILP optimizations is shown in Figure 6.2. The ILP optimizer

parses the input using lexer and grammar tools. This parsing stage converts the code

to SSA form and builds the DDG.

After the DDG has been created, the optimizer uses two scheduling phases. The

basic block scheduler applies a standard list scheduling algorithm [Skiena, 1998] to the

data dependence graph to generate code that can be executed in parallel. For example,

if the loop is unrolled with an unrolling factor of two, and there are no data depen-

dencies between iterations, the basic block scheduler builds a data dependence graph

that includes statements from both iterations. The instructions from both iterations

are interleaved in the generated code, which usually allows them to execute in parallel.

The generator uses variable renaming to eliminate false data dependencies. Figure 6.2

shows how the ILP optimizer works.

The ILP optimizations applied in this stage are based on standard compiler opti-

mizations for VLIW architectures [Fisher, 1983]. Like a standard VLIW compiler, we

model data dependencies and build schedules of statements based on these data depen-

98

6.3 The AES-GEN Program Generator

Listing 6.2: Modulo scheduling example, standard CTR.

1 /∗ pro logue ∗/
2 for (i = 0 ; i < b locks − 4 ; i++){
3 s p 0 r e s u l t 1 1 = mm aesenc la s t s i 128 (s p0 r e su l t 1 0 , key [1 0]) ;
4 s p 1 r e s u l t 8 = mm aesenc s i128 (s p 1 r e s u l t 7 , key [7]) ;
5 s p 2 r e s u l t 5 = mm aesenc s i128 (s p 2 r e s u l t 4 , key [4]) ;
6 s p 3 r e s u l t 2 = mm aesenc s i128 (s p 3 r e s u l t 1 , key [1]) ;
7 sp4 counte r b l o ck = counte r b l ock = mm add epi64 (counter b lock , one) ;
8 s p 0 r e s u l t 1 2 = mm xor si128 (sp0 r e su l t 1 1 , p l a i n t e x t [i]) ;
9 s p 1 r e s u l t 9 = mm aesenc s i128 (s p 1 r e s u l t 8 , key [8]) ;

10 s p 2 r e s u l t 6 = mm aesenc s i128 (s p 2 r e s u l t 5 , key [5]) ;
11 s p 3 r e s u l t 3 = mm aesenc s i128 (s p 3 r e s u l t 2 , key [2]) ;
12 s p 4 r e s u l t = mm shu f f l e ep i8 (sp4 counte r b lock , BSWAP) ;
13 c i p h e r t e x t [i] = s p 0 r e s u l t 1 2 ;
14 s p 1 r e s u l t 1 0 = mm aesenc s i128 (s p 1 r e s u l t 9 , key [9]) ;
15 s p 2 r e s u l t 7 = mm aesenc s i128 (s p 2 r e s u l t 6 , key [6]) ;
16 s p 3 r e s u l t 4 = mm aesenc s i128 (s p 3 r e s u l t 3 , key [3]) ;
17 s p 4 r e s u l t 1 = mm xor si128 (s p 4 r e s u l t , key [0]) ;
18 // v a r i a b l e copy c leanup
19 }
20 /∗ ep i l o gu e ∗/

dencies. However, unlike a standard VLIW compiler, we do not attempt to accurately

model processor resources. We assume that we do not have a clear idea of the available

resources and generate a large number of different variants of the code instead. We use

iterative feedback and machine learning to find a variant of the code that fits the actual

machine resources. The result is that our generator does a reasonable job of finding

good code for any current or future processors supporting the Intel AES instructions.

Nonetheless, we need some way to affect the amount of ILP that is exposed by the

generated code. Exposing more ILP usually results in more code growth, more variable

renaming and greater register pressure. We can adjust the ILP in several ways, while

limiting code growth. We often use modulo scheduling [Rau, 1994] instead of loop

unrolling. Modulo scheduling is a form of software pipelining where the length of the

loop kernel is fixed in advance and instructions are scheduled based on a measure of

their dependency modulo value.

Each statement in the source code has a latency value, which is a notional number of

cycles that it will take to theoretically execute. AES-GEN uses these notional latencies

when building the schedule. By increasing or decreasing the latencies of statements,

the ordering of the statements in the schedule can be changed, which in turn affects the

amount of ILP in the schedule. For basic block scheduling, the ordering of statements

is determined entirely by the latencies.

Our modulo scheduler can also control the amount of exposed ILP by varying

99

Chapter 6: Generalized AES Program Generation

the initiation interval. Note, we redefine the use of ii for this chapter2. When used

with AES-GEN, the ii is the number of notional cycles that elapse between starting

successive iterations of the loop. Lower ii values result in higher amounts of instruction-

level parallelism that exist in the generated code. By varying both the ii and the latency

of the instructions in the loop, a very large space of possible modulo schedules for the

loop can be explored. Figure 6.2 shows a possible transformation of the standard CTR

loop (from Listing 4.2) when latencies are set to 2 cycles per instruction and an ii of 6.

This new system also allows us to span instructions over several intervals. For example,

we can set the latency of an instruction to 12 cycles, but set the ii to 4, causing the

instruction to run through three intervals before it is used again.

AES-GEN uses annotated C code as input, as was shown in Figure 6.1. Therefore,

prototype implementations of AES code can be fed into the generator immediately to

give us quick feedback on its performance on the target architecture. This allows an

exploratory approach when thinking about new ways to write the AES code. With

an assembly language implementation, the cost of experimenting with new ways of

writing the code is very high. Every change made may require a completely different

schedule and register allocation. AES-GEN allows us to write a straightforward C

implementation of the code and then it handles all low-level details associated with

finding a good schedule.

Using different ii values in conjunction with different latency sets yields very dif-

ferent results. A subset of instructions will be pushed into different intervals of the

schedule and can make different changes. Of course, the interval in which these in-

structions are placed will be dependent on the latency set values that correspond to

each instruction. This effect is illustrated in the 3-D surface graph seen in Figure 6.3.

This graph shows the turbulent search space with adjusting only two (albeit, impor-

tant) parameters and does not consider the influence of other optimizations, such as

key values in registers.

The resulting scheduled code can look very intimidating and the two examples

found in Appendix C show two “solutions” to CTR code, which are discussed later. It

is clear from a even a quick glance that this code would be very difficult to schedule

by hand. The ILP optimizer and AES-GEN does this seamlessly with ease. AES-GEN

finds a solution after traversing a very large search space, and this requires the final

stage of the system which ties everything together—the code tuning stage.

2The definition of ii in Chapter 5 assumes that the latency of all instructions is one cycle

100

6.3 The AES-GEN Program Generator

Figure 6.3: CTR R1 128, Initiation Interval vs. Latency Set.

6.3.3 Code Tuning

After the optimizations are applied in the first two stages, AES-GEN then compiles

and benchmarks the newly generated code. The performance of this variation is used

by the code tuning script to modify the optimization parameters to generate the next

potential variation. In Section 5.2, we discussed the broad scope of billions of possible

variations for generating CTR and CBC implementations with GEN1. With AES-

GEN, many of the optimizations like interleaving are done with the data dependency

graph and interleave distance is accomplished through setting latencies. Because of

these options and the generalizations with both the algorithmic and ILP optimization

options, the scope of variations that AES-GEN can generate is effectively unlimited.

This code tuning strategy is part of the larger AES-GEN system, as shown in Figure

6.1. The code tuning process starts with a pseudo-C source file template with Cheetah

annotations. Cheetah handles algorithmic variation parameters to set the number

of constants used in the encryption loop to be assigned to registers. This creates a

legal C source file that is used as input into AES-GEN. AES-GEN, as detailed earlier

in Chapter 6.3, applies the latency values to the data dependency graph and uses the

101

Chapter 6: Generalized AES Program Generation

initiation interval to schedule the code. AES-GEN output is compiled by icc, executed,

and using the simulated annealing algorithm mentioned in Section 2.3.3, optimization

parameters are adjusted in an effort to improve the code. We go through 1500 variations

using annealing, before doing a second 1500 iteration pass with a refined set of possible

arguments—based on the best optimization values from the first pass.

For the implementations generated by AES-GEN, we redesigned the simulated an-

nealing tuning script that we used with GEN1. As AES-GEN is a more general-case

program generator, the code tuning script also needs to suit general-case algorithms as

well. This script now uses an argument file that will anneal with two sets of arguments:

those to Cheetah and those to the ILP optimizer. Cheetah template variables will be

assigned separate weights and modified independently of the parameters to AES-GEN.

This allows AES-GEN to remain isolated to scheduling the code based on latencies

and the number of pipeline intervals for any piece of code, while custom arguments to

Cheetah which are algorithm dependent can still be adjusted by the annealing script

with ease.

6.4 Generator Flexibility with Parallel Algorithms

The results with GEN1 showed us that Counter, which is a parallelizable algorithm,

performed extremely well when the generator created code that used the interleaving

strategy, and good when using software pipelining. This section focuses on how AES-

GEN can easily generate very good (and even better than optimal) code for different

implementations of parallelizable algorithms such as CTR and ECB.

6.4.1 Counter (CTR)

A key limitation in GEN1 was the ability to easily and quickly create and test different

AES implementations. However, with GEN1, we were only able to reasonably test a

plain, straight-forward version of Counter. Our results in Section 5.3 showed us that

we had a good concept and we could come close, if not match the performance of

hand-tuned assembly code.

Mixed-mode operation

As mentioned in Section 4.5, the _mm_aesenc_si128 and its related instructions have

a 6 cycle latency and can be issued every 2 cycles. GEN1 created Counter implemen-

tations with performance that approached the theoretical maximum performance of 2

102

6.4 Generator Flexibility with Parallel Algorithms

Table 6.1: Performance of AES-GEN CTR code in cycles per AES round. Results for
CTR (round 1) and CTR (round 2) reference 4080B, while CTR (standard) references
32K.

Encryption Mode AES-128 AES-256
1K buffer 4080B buffer* 1K buffer 4080B buffer*

CTR (standard) 2.194 2.013 2.143 2.007
CTR (round 1) 2.043 1.864 2.013 1.905
CTR (round 2) 2.237 2.077 1.982 1.854

cycles/round. We needed to modify the Counter algorithm in addition to adding more

optimization strategies to the generator to further improve the results. Our idea for

improving Counter performance was to combine both AES-NI and scalar instructions

for round encryption. The scalar instructions are based on a more traditional AES

implementation that would have been required to perform an AES block cipher prior

to the release of AES-NI using table lookups.

Our implementations used counter-mode caching [Bernstein and Schwabe, 2008]

to reduce the number of table lookups in combination with AES-NI. We created two

versions using this mixed-mode strategy: CTR Round 1 (shown in Listing 6.3) which

uses a scalar counter and table lookups to perform the first round of encryption. CTR

Round 2 (seen in Listing 6.4) uses the same strategy, but for the first two rounds.

These versions also convert the counter increment to scalar operations. Those

operations can now be combined with the scalar code for encrypting the first round.

This reduces the use of the AES unit and frees up one to three vector registers as the

counter and round key(s) can now be stored in scalar registers.

These versions of CTR work only for inputs of up 4080 bytes (255 blocks). This

limitation can be overcome, but at the cost of a more complicated implementation.

However, despite the size limitation, the mixed-mode AES CTR code is still valuable.

AES is commonly used to encrypt data packets in wireless networks, which are typically

less than 2K in length. Tables 6.1 and 6.2 show results of these implementations with

input sizes of 1024 bytes and 4080 bytes3.

Faster than “Optimal” CTR

We used this flexibility to create implementations of AES CTR mode that are faster

than the “optimal” code. The Intel AES instructions implement a full round of AES

in a single instruction. On the Intel Westmere microarchitecture, the AES instructions

3CTR (standard) is reported with 1K and 32K input buffers

103

Chapter 6: Generalized AES Program Generation

Listing 6.3: AES CTR (round 1) encryption in C using AES-NI instructions.

1 void AES CTR Encrypt (m128i ∗ p la in t ex t , m128i ∗ c iphe r t ex t ,
2 m128i ∗ key , long long ivec , long nonce ,
3 int b locks){

5 m128i r e s u l t , r e s u l t 0 , r e s u l t 1 ;
6 m128i fake key , saved r1 , table mask ;
7 m128i counte r b l ock = mm setze ro s i128 () ;
8 unsigned s ca l a r key0 , s c a l a r r e s u l t 0 , s c a l a r r e s u l t 1 ;
9 unsigned my counter , s c a l a r c o u n t e r = 0 ;

10 int i = 0 ;

12 counte r b l ock = mm inser t ep i64 (counter b lock , ivec , 1) ;
13 counte r b l ock = mm inser t ep i32 (counter b lock , nonce , 1) ;
14 counte r b l ock = m m s r l i s i 1 2 8 (counter b lock , 4) ;

16 r e s u l t 0 = mm xor si128 (counter b lock , key [0]) ;
17 s c a l a r k e y 0 = mm extract ep i32 (key [0] , 3) ;
18 r e s u l t 1 = mm inser t ep i32 (r e s u l t 0 , s c a l a r k e y 0 & 0xFFFFFF, 3) ;
19 saved r1 = mm aesenc s i128 (r e s u l t 1 , key [1]) ;
20 table mask = mm cvts i32 s i128 (tab l e3 [0]) ;
21 saved r1 = mm xor si128 (saved r1 , table mask) ;

23 for (i = 0 ; i < b locks ; i ++){
24 my counter = s c a l a r c o u n t e r ++;
25 s c a l a r r e s u l t 0 = ((bswap (s c a l a r k e y 0)) & 0xFF) ˆ my counter ;
26 table mask = mm cvts i32 s i128 (tab l e3 [s c a l a r r e s u l t 0]) ;
27 r e s u l t 1 = mm xor si128 (saved r1 , table mask) ;

29 r e s u l t = mm aesenc s i128 (r e s u l t 1 , key [2]) ;
30 r e s u l t = mm aesenc s i128 (r e s u l t , key [3]) ;
31 r e s u l t = mm aesenc s i128 (r e s u l t , key [4]) ;
32 r e s u l t = mm aesenc s i128 (r e s u l t , key [5]) ;
33 r e s u l t = mm aesenc s i128 (r e s u l t , key [6]) ;
34 r e s u l t = mm aesenc s i128 (r e s u l t , key [7]) ;
35 r e s u l t = mm aesenc s i128 (r e s u l t , key [8]) ;
36 r e s u l t = mm aesenc s i128 (r e s u l t , key [9]) ;

38 f ake key = mm xor si128 (key [1 0] , p l a i n t e x t [i]) ;
39 r e s u l t = mm aesenc la s t s i 128 (r e s u l t , f ake key) ;
40 c i p h e r t e x t [i] = r e s u l t ;
41 }
42 }

104

6.4 Generator Flexibility with Parallel Algorithms

Listing 6.4: AES CTR (round 2) encryption in C using AES-NI instructions.

1 void AES CTR Encrypt (m128i ∗ p la in t ex t , m128i ∗ c iphe r t ex t ,
2 m128i ∗ key , long long ivec , long nonce , int b locks){

4 int i = 0 ;
5 m128i p la in , r e s u l t , counte r b l ock = mm setze ro s i128 () ;
6 unsigned s c a l a r c o u n t e r = 0 , s ca l a r key0 , s c a l a r r 0 , s c a l a r r 1 ;
7 unsigned idx0 , idx1 , idx2 , idx3 , v0 , v1 , v2 , v3 , my counter ;
8 m128i r0 , fake key , t0 , t1 , t3 , t4 , t5 , t6 ;
9 m128i r1 , saved r1 , r e su l t 2 , s a v e d r e s u l t 2 ;

10 m128i t a b l e e n t r i e s , second round output ;
11 unsigned f i r s t r o u n d o u t p u t x 0 ;

13 counte r b l ock = mm inser t ep i64 (counter b lock , ivec , 1) ;
14 counte r b l ock = mm inser t ep i32 (counter b lock , nonce , 1) ;
15 counte r b l ock = m m s r l i s i 1 2 8 (counter b lock , 4) ;
16 r0 = mm xor si128 (counter b lock , key [0]) ;
17 s c a l a r k e y 0 = mm extract ep i32 (key [0] , 3) ;
18 r1 = mm inser t ep i32 (r0 , s c a l a r k e y 0 & 0xFFFFFF, 3) ;
19 saved r1 = mm aesenc s i128 (r1 , key [1]) ;
20 f i r s t r o u n d o u t p u t x 0 = mm extract ep i32 (saved r1 , 0) ˆ tab l e3 [0] ;
21 r e s u l t 2 = mm inser t ep i32 (saved r1 , 0 , 0) ;
22 s a v e d r e s u l t 2 = mm aesenc s i128 (r e s u l t 2 , key [2]) ;
23 t a b l e e n t r i e s = mm set epi32 (tab l e1 [0] , t ab l e2 [0] , t ab l e3 [0] , t ab l e0 [0]) ;
24 second round output = mm xor si128 (s aved r e su l t 2 , t a b l e e n t r i e s) ;

26 for (i = 0 ; i < b locks ; i += 1){
27 my counter = s c a l a r c o u n t e r ++;
28 s c a l a r r 0 = (bswap (s c a l a r k e y 0) & 0xFF) ˆ my counter ;
29 s c a l a r r 1 = tab l e3 [s c a l a r r 0] ˆ f i r s t r o u n d o u t p u t x 0 ;
30 idx0 = s c a l a r r 1 & 0xFF ;
31 idx1 = (s c a l a r r 1 >> 8) & 0xFF ;
32 idx2 = (s c a l a r r 1 >> 16) & 0xFF ;
33 idx3 = (s c a l a r r 1 >> 2 4) ;
34 t0 = mm cvts i32 s i128 (tab l e0 [idx0]) ;
35 t1 = mm cvts i32 s i128 (tab l e3 [idx3]) ;
36 t3 = mm unpacklo epi32 (t0 , t1) ;
37 t4 = mm cvts i32 s i128 (tab l e2 [idx2]) ;
38 t5 = mm cvts i32 s i128 (tab l e1 [idx1]) ;
39 t6 = mm unpacklo epi32 (t4 , t5) ;
40 t a b l e e n t r i e s = mm unpacklo epi64 (t3 , t6) ;
41 r e s u l t 2 = mm xor si128 (second round output , t a b l e e n t r i e s) ;
42 r e s u l t = mm aesenc s i128 (r e s u l t 2 , key [3]) ;
43 r e s u l t = mm aesenc s i128 (r e s u l t , key [4]) ;
44 r e s u l t = mm aesenc s i128 (r e s u l t , key [5]) ;
45 r e s u l t = mm aesenc s i128 (r e s u l t , key [6]) ;
46 r e s u l t = mm aesenc s i128 (r e s u l t , key [7]) ;
47 r e s u l t = mm aesenc s i128 (r e s u l t , key [8]) ;
48 r e s u l t = mm aesenc s i128 (r e s u l t , key [9]) ;
49 f ake key = mm xor si128 (key [1 0] , p l a i n t e x t [i]) ;
50 r e s u l t = mm aesenc la s t s i 128 (r e s u l t , f ake key) ;
51 c i p h e r t e x t [i] = r e s u l t ;
52 }
53 }

105

Chapter 6: Generalized AES Program Generation

Table 6.2: Performance of AES-GEN CTR code measured in cycles per byte. Results
for CTR (round 1) and CTR (round 2) reference 4080B, while CTR standard references
32K.

Encryption Mode AES-128 AES-256
1K buffer 4080B buffer* 1K buffer 4080B* buffer

CTR (standard) 1.371 1.258 1.875 1.756
CTR (round 1) 1.277 1.165 1.761 1.667
CTR (round 2) 1.398 1.298 1.734 1.622
CTR Intel (HPL) 1.38 1.88

have a throughput of one instruction every two cycles. Therefore, if an implementation

of AES CTR completes each round in an average of a little over 2 cycles per round,

we consider it close to optimal. Table 6.1 shows the cycles/round for our generated

versions of AES-CTR. These implementations are almost optimal, especially for large

inputs.

Our implementations of AES achieve good performance by keeping the hardware

AES unit running at maximum capacity. However, while the AES unit is saturated,

the rest of the processor core is largely idle. If we could use these other idle resources

to implement some of the AES CTR rounds, we might be able to exceed the speed of

the optimal code.

The results in Table 6.2 show that replacing round 1 with scalar instructions and

table lookups is faster than using the AES-NI equivalent. With a 1K buffer, the

128- and 256-bit implementations of AES using this method achieves a 7.3% and a

6.5% reduction in runtime, respectively. Eliminating a single AES instruction could

theoretically reduce runtime in 128-bit mode by 10%, and by 7.1% in 256-bit mode;

we consider this to be an excellent result. Replacing 2 rounds with table lookups

performs worse when using 128-bit keys—running slower than both Intel HPL and

CTR (standard), but achieves a 1.08x speedup using a 256-bit key with both 1K and

4080Byte buffers. We believe that the results in Tables 6.1 and 6.2 demonstrate that it

is possible for AES CTR to run faster than the optimal possible runtime when using just

Intel AES instructions. These are also the first implementations—to our knowledge—

that complete an AES round in under two cycles. Listings C.1 and C.2 in Appendix C

show these “faster-than-optimal” solutions in full4. They are incredibly complex and

would be a significant software engineering task to attempt to build something similar.

4These listings were generated from the initial source files shown in Listings 6.3 and 6.4, respectively.

106

6.4 Generator Flexibility with Parallel Algorithms

6.4.2 Electronic Codebook (ECB)

Electronic Codebook (ECB) is a simple block-cipher mode with parallelizable iterations

like Counter (see Section 4.2.1). However, as Listing 6.5 shows, ECB does not have a

counter variable and inserts plaintext data at the beginning of the loop, rather than

at the end. Due to the simplicity of ECB’s algorithm, there are not as many useful

latency configurations to experiment with. The load and store in ECB are at either

end of the loop, however, the modulo scheduler should place the load in a good location

several intervals ahead.

Listing 6.5: AES-128 ECB Encryption loop

1 for (i = 0 ; i < b locks ; i ++){
2 r e s u l t = mm xor si128 (p l a i n t e x t [i] , key [0]) ;
3 r e s u l t = mm aesenc s i128 (r e s u l t , key [1]) ;
4 /∗ more rounds ∗/
5 r e s u l t = mm aesenc la s t s i 128 (r e s u l t , key [1 0]) ;
6 c i p h e r t e x t [i] = r e s u l t ;
7 }

Despite the simple algorithm, AES-GEN is able to maximize the performance of

ECB. At this point, all we can do is adjust the latencies up and down so that the

scheduler will make slightly different generation combinations. The modulo scheduler

as expected, does a good job on spreading out the load and store over several intervals.

We test with the load and store taking anywhere from 6 to 10 cycles each while all the

aesenc rounds are uniformly set at 10, 12 or 14 cycles each.

The results yielded by AES-GEN did not come very close to the reported results

from Intel’s hand-tuned assembly presented by Gueron [2010]. We denote these values

as Intel HPL. The fastest result AES-GEN found with ECB 128 with was 1.355 c/b

with a 1K input buffer. We more or less expect this result because the normal CTR

implementation comes in at 1.371 c/b. As ECB has one less xor instruction and spreads

out the load and store, this seems reasonable. We became curious as to why our results

were so different to the published results as we have previously had great success with

generating similar numbers in other modes. We decided to test the assembly code

listed by Gueron on our own platform (this is denoted as Intel ASM).

We were unable to reproduce the numbers documented in the Intel HPL [Gueron,

2010] despite using the exact same code as listed in that work. The reported result

from Intel HPL cites 1.26 c/b for ECB 128 with a 1K buffer, but running their assembly

code on our testing platform (Intel ASM) ran at 1.359 c/b. Similarly, this behaviour

repeated with AES-192 and AES-256 modes, as illustrated in Figure 6.4 with exact

107

Chapter 6: Generalized AES Program Generation

Figure 6.4: ECB Results with 1K buffer as reported by Intel [Gueron, 2010] (Intel
HPL), Intel assembly code running on our testing platform (Intel ASM), and AES-
GEN.

Figure 6.5: ECB 128 results with various input buffer sizes. Shown with Intel assembly
code running on our testing platform (Intel ASM) and AES-GEN.

108

6.4 Generator Flexibility with Parallel Algorithms

values in Table B.1. The results from using Intel ASM on our machine are in lockstep

with the AES-GEN results, as expected. We believe this shows that AES-GEN is a far

more portable system than hand-tuned assembly. Further proof of this is benchmarking

against the assembly for different sizes. The results in Figure 6.5 show that with lower

input we generate implementations with slightly better performance in comparison to

how the Intel assembly runs on our machine, but our speedups increase as the input

size increases as AES-GEN searches for different suitable implementations.

6.4.3 Performance Observations for CTR and ECB Modes

The CTR and ECB code AES-GEN builds shows that the same modulo scheduled code

works well for both small and large input buffer sizes. With GEN1, we often saw that

tests with small input sizes had smaller improvements over the results reported by Intel

than experiments with large inputs. In both GEN1 and assembly implementations, the

encryption loop is often unrolled. This requires a second loop to encrypt remaining

blocks when the number of blocks does not divide evenly into the unrolling degree.

This second loop is slow, which is a problem for very small inputs which spend a large

proportion of time in the second loop. With modulo scheduling there is a single loop,

which flows smoothly from one iteration to another.

With the ease of generating code variants from different source files using AES-

GEN, we are able to explore optimizations very specific to each AES mode without

significant rewrites as would be necessary with hand-tuned assembly. Specifically to

CTR, the 16-byte counter value must be incremented for each block. If the loop is

unrolled, counter increments are scheduled together as they are the first statements

of each iteration. However, this creates a data dependency from one increment to the

next, which slightly limits ILP. Splitting the counter into multiple variables is a possible

solution [Gueron, 2010], but this increases register pressure. With modulo scheduling,

the statements from multiple iterations are overlapped seamlessly and there is only a

single copy of each statement within the generated loop body. For a loop such as the

one for CTR with a 128-bit key schedule, where an iteration of the loop takes around

20 cycles, the cyclic data dependence from the counter increment is too small to affect

the schedule.

109

Chapter 6: Generalized AES Program Generation

6.5 Algorithmic Variations with Cyclic Algorithms

Unlike CTR and ECB, cyclic modes do not pipeline well for obvious reasons. The four

cyclic block-ciphers are CBC, PCBC, CFB, and OFB. They are all very similar to each

other. These cyclic block-ciphers encrypt the input plaintext directly and in order

to eliminate patterns in the ciphertext, the output of encrypting one 16-byte block

is used as input into the next block. This results in a large cyclic data dependency

in the code, which prevents pipelining of the encryption. This dependence makes

these modes slow and optimization is difficult. On the other hand, the difficulty of

optimizing these modes make any speedup very welcome. With GEN1, we optimized by

encrypting multiple streams concurrently. With AES-GEN, we take the same approach

but consider algorithmic variations of the cyclic code to test new ideas for faster cyclic

block-cipher performance.

6.5.1 Cipher-Block Chaining (CBC)

We are already quite familiar with CBC from the previous chapter. It first performs

an xor on the current block’s plaintext with the previous block’s ciphertext. It

then does a second xor on the result and key0. We implemented this in GEN1 as an

optimization for CBC as mentioned in Section 5.2.3. Further investigation yielded an

idea to decrease the length of the dependency chain by additionally exploiting the xor

operation.

Figure 6.6a shows a C translation of the assembly code in the Intel hand-optimized

high-performance AES encryption library [Gueron, 2010]. The code is a direct imple-

mentation of standard descriptions of CBC mode [Ehrsam et al., 1976]. It combines the

result (variable r in the code) from the previous block of encryption with plaintext

of the current block, using an xor operation. It then applies the standard AES encryp-

tion algorithm to the result. The cyclic dependency in the loop includes all statements

except two: the first statement in the loop, which loads the plaintext and the last

statement, which stores the encrypted block to memory. This long cyclic dependency

prevents any significant exploitation of instruction-level parallelism in the CBC loop.

It is possible to slightly shorten the length of the cyclic dependence in the CBC loop.

The first two statements in the cyclic data dependency are xor operations. As the xor

operator is both commutative and associative, these expressions can be rewritten to

increase the amount of exploitable ILP.

Neither the value in plain nor the value in key0 depends on any value computed

within the cyclic data dependence. Figure 6.6b shows a version of the code with the

110

6.5 Algorithmic Variations with Cyclic Algorithms

load of the plaintext and the first xor operation scheduled to execute in parallel with

the encryption code for the previous block.

while(i < size){

p = plain[i];

r = xor(r, p);

r = xor(r, key0);

r = aesenc(r, key1);

r = aesenc(r, key2);

/* more rounds */

r = aesenc(r, key8);

r = aesenc(r, key9);

r = enclast(r, key10);

cipher[i] = r;

i++;

}
(a)

while(i < size){

r = xor(r, tmp);

r = aesenc(r, key1);

r = aesenc(r, key2);

/* more rounds */

r = aesenc(r, key8);

p = plain[i+1];

tmp = xor(p, key0);

r = aesenc(r, key9);

r = enclast(r, key10);

cipher[i] = r;

i++;

}
(b)

while(i < size){

r = aesenc(r, key1);

r = aesenc(r, key2);

/* more rounds */

r = aesenc(r, key9);

p = plain[i+1];

tmp = xor(p, key0);

fake = xor(tmp, key10);

r = enclast(r, fake);

correct = xor(r, tmp);

cipher[i] = correct;

i++;

}
(c)

Figure 6.6: AES CBC algorithm implementations with (a) no xor modifications, (b)
partial xor optimizations, and (c) full xor modifications

With very careful programming, it is possible to further reduce the length of the

cyclic dependency. Recall from Section 4.1 that the final round of AES encryption

involves three steps:

1. substitute bytes,

2. shift rows,

3. add round key.

The add round key step is an xor operation, where the result of the previous steps

are combined with the key using xor. All three steps are implemented with a single x86

aesenclast instruction. The result of the aesenclast is used to store the ciphertext

to memory and is also fed into the next round using an xor operation. Given that the

last stage of aesenclast is an xor computation, we can combine the aesenclast and

xor statements.

Performing this transformation removes the second xor operation from the cyclic

data dependence. However, a problem occurs because the result of the aesenclast

operation is not just used in the encryption of the next block. The result is also stored

to memory as the ciphertext. It is possible to repair the result coming from the

aesenclast operation, at the cost of adding another xor operation to the code.

111

Chapter 6: Generalized AES Program Generation

Table 6.3: Performance of AES CBC versions found in Figure 6.6 in cycles per byte.

Encryption Mode AES-128 AES-256
1K buffer 32K buffer 1K buffer 32K buffer

CBC version (a) 4.539 5.315 6.042 6.815
CBC version (b) 4.156 4.067 5.656 5.567
CBC version (c) 3.851 3.759 5.351 5.259
CBC Intel (HPL) 4.15 5.65

Figure 6.6c shows code implementing this strategy. This version of the code contains

an additional xor operation in comparison with all the other versions, so more work

must be done on each iteration of the loop. However, both original xor operations have

been removed from the cyclic data dependence. To our knowledge, we are the first to

propose this way of writing AES CBC code.

CBC XOR Performance

We compared the three different versions of the AES CBC code, each with their own

strategy for dealing with the xor operations. Table 6.3 shows the performance of each

of the three versions, alongside performance numbers from Intel’s high-performance,

hand-tuned assembly version [Gueron, 2010].

As these results show, removing the xor operations from the cyclic dependence

chain makes a significant difference to performance. The version that removes both

instructions from the cyclic dependence gives the best performance, even though it

increases code size. Moving the load of the plaintext and the first xor operation

forward affects the performance of our CBC implementations.

The influence of moving the load operation forward is particularly visible for the

32K inputs as version (a) of Figure 6.6 does not move the load and cache misses cause

poor performance. Although Intel’s hand-tuned assembly version of the code uses the

same approach as in Figure 6.6a, it performs faster. Our version in Figure 6.6c is

nonetheless faster than the assembly, because it uses a fundamentally more efficient

approach.

A final question is whether we could further improve the performance of our code

in Figure 6.6c by more careful programming or writing in assembly. To address this

question we compute the number of cycles per round of AES encryption. Given that

the code is dominated by a large cyclic dependency of AES instructions, the best we

can hope to do is perform the encryption in 6 cycles per round. Additional CBC results

in Table 6.6 show the performance of each version of our CBC code in cycles per round

112

6.5 Algorithmic Variations with Cyclic Algorithms

while(i < size){

p = plain[i];

r = xor(r, p);

r = xor(r, key0);

r = aesenc(r, key1);

r = aesenc(r, key2);

/* more rounds */

r = aesenc(r, key8);

r = aesenc(r, key9);

r = enclast(r, key10);

cipher[i] = r;

r = xor(r, p);

i++;

}
(a)

while(i < size){

r = aesenc(r, key1);

r = aesenc(r, key2);

/* more rounds */

r = aesenc(r, key8);

r = aesenc(r, key9);

tmp = xor(plain[i], key0);

tmp = xor(plain[i+1], tmp);

fake = xor(tmp, key10);

r = enclast(r, fake);

correct = xor(r, tmp);

cipher[i] = correct;

i++;

}
(b)

Figure 6.7: AES PCBC algorithm implementations—(a) without xor modifications,
(b) with xor modifications.

completed and suggest that our CBC version (c) is already quite close to optimal and

that any possible remaining speedups from careful coding are likely to be small.

6.5.2 PCBC, CFB, and OFB

PCBC, CFB, and OFB are all additional cyclic-modes with various security benefits as

was covered in Section 4.2.2. Like CBC, we also present two different versions of code

for these cyclic modes. We have seen with CBC results that reducing the dependency

chain as much as possible is the best idea so we present figures on both the non-

xor version and the fully exploited xor versions. As the cyclic modes share many

algorithm properties with each other, the xor optimization strategy is very similar for

all the modes. Again, due to the flexibility of the generator, we can test both versions

for each of these implementations simply by using another high-level source input file.

Propagating Cipher-Block Chaining (PCBC)

The Propagating Cipher-Block Chaining mode of operation is identical to CBC but

has an additional xor of the result with the same plaintext after it has been stored as

ciphertext. This is done before it feeds back into the start of the encryption process

for the next block, as seen in Figure 6.7a. Instead of simply adding an additional xor

to the optimized version of CBC code in Figure 6.6c, we can combine the second xor

with plaintext in PCBC with the tmp value. When we need to correct the output for

113

Chapter 6: Generalized AES Program Generation

while(i < size){

p = plain[i];

r = xor(r, p);

r = xor(r, key0);

r = aesenc(r, key1);

r = aesenc(r, key2);

/* more rounds */

r = aesenc(r, key9);

r = enclast(r, key10);

cipher[i] = r;

r = xor(r, p);

i++;

}
(a)

while(i < size){

r = aesenc(r, key1);

r = aesenc(r, key2);

/* more rounds */

r = aesenc(r, key9);

p = plain[i];

tmp = xor(p, key0);

fake = xor(tmp, key10);

r = enclast(r, fake);

correct = xor(r, key0);

cipher[i] = correct;

i++;

}
(b)

Figure 6.8: AES CFB algorithm implementations—(a) without xor modifications, (b)
with xor modifications.

the ciphertext, we use tmp to xor the bits of plaintext[i+1] out of the result. This

shortens the dependency chain and now allows the load instructions for plaintext[i]

and plaintext[i+1] to be scheduled while the encryption rounds complete. The

optimized PCBC algorithm can be seen in Figure 6.7b.

Cipher Feedback (CFB)

Cipher Feedback mode is similar to CBC but its implementation moves the xor of

the result and the plaintext after the aesenc rounds. This can be seen in Figure

6.8a. Optimizing xor with CFB requires slight changes to the to the fully xor’d CBC

code in Figure 6.6c. The main difference between the optimized CBC and CFB code

is the result must be corrected, prior to storing to ciphertext. With the xor of the

plaintext already at the end of the loop, we correct the ciphertext with an xor with

key0, as seen in Figure 6.8b.

Output Feedback (OFB)

Output Feedback is similar to Cipher Feedback but the xor of the result and the

plaintext at the end of the encryption rounds is only stored to the ciphertext and

is not used as feedback into the next block of encryption. This can be seen in Figure

6.9a. Optimizing xor with OFB is different to the other cyclic modes as the dependency

chain is isolated to the encryption rounds. We are still able to make optimizations by

applying xor to both key0 and key10. Since keys 0 and 10 will never change for each

114

6.5 Algorithmic Variations with Cyclic Algorithms

while(i < size){

p = plain[i];

r = xor(r, p);

r = xor(r, key0);

r = aesenc(r, key1);

r = aesenc(r, key2);

/* more rounds */

r = aesenc(r, key8);

r = aesenc(r, key9);

r = enclast(r, key10);

cipher[i] = xor(p, r);

i++;

}
(a)

fake = xor(key0, key10);

while(i < size){

r = aesenc(r, key1);

r = aesenc(r, key2);

/* more rounds */

r = aesenc(r, key8);

r = aesenc(r, key9);

p = plain[i];

r = enclast(r, fake);

correct = xor(r, key0);

cipher[i] = xor(p, correct);

i++;

}
(b)

Figure 6.9: AES OFB algorithm implementations—(a) without xor modifications, (b)
with xor modifications.

stream of encryption, we can move this instruction outside the loop completely and

treat it as a constant. Again, we need to correct the result before storing the result.

We do this by performing an xor on key0. Prior to storing the data, an xor is down

with the corrected data and the plaintext without affecting the result to be fed back

as input to encrypt the next block. These changes can be seen in Figure 6.9b.

6.5.3 Applicability of XOR Optimizations to Other AES Modes

Note that in AES CTR mode the result of the last AES round is combined with the

plaintext using an xor operation. The technique we use in Figure 6.6c can also be

used to reverse the order of these two operations in AES CTR. This slightly reduces the

length of the long chain of data dependencies in AES CTR. The code in Listings 6.3

and 6.4 show Counter in mixed mode operation which include this optimization. Given

that AES CTR is fully parallelizable, there is no large-scale execution speed benefit.

However, shortening the long dependence chain in CTR mode has three benefits.

First, it reduces the execution time of very short inputs. With short inputs the

execution time is dominated by latency of one execution rather than throughput of

many blocks. Secondly, where loop unrolling is used to implement AES-CTR, there

needs to be a final sequential loop which deals with any iterations that are not an even

multiple of the unrolling degree (this is one of the major reasons we do not advocate

loop unrolling). Shortening the long dependence chain speeds up this loop. Finally,

when creating modulo schedules, the number of iterations overlapped in the schedule

115

Chapter 6: Generalized AES Program Generation

depends on the length of the dependence chain that is being pipelined. A slightly

shorter dependence chain means slightly less overlapping of iterations, which means

slightly less code growth and register pressure.

6.6 Combining Algorithms via Function Stitching

Many applications require both encryption and authentication of the same data. In

AES, there are several modes of operation that perform this task. Galois/Counter Mode

(GCM) [McGrew and Viega, 2004] combines both the aforementioned Counter mode

(CTR) of encryption with Galois authentication. Counter with CBC-MAC (CCM)

uses CTR for encrypting data and CBC for the authentication. Both these modes are

described in more detail in Section 4.2.3.

The GCM algorithm operates by applying a GHASH function after a block of data

has been encrypted in CTR mode. Due to this behaviour, there are opportunities to

get speedups by overlapping the execution of both algorithms using a process called

function stitching [Gopal et al., 2010a]. Function stitching is similar to loop fusion.

However, where loop fusion generally takes entire selections of multiple loops and places

them within a single loop body, function stitching attempts to interleave instructions

from their original loop bodies to encourage ILP.

Writing code that schedules statements from two algorithms together in the same

loop is tedious and time-consuming. Often the two algorithms contain different mixes

of instructions, which create good opportunities for exploiting ILP between the al-

gorithms. However, manual scheduling is always difficult. AES-GEN simplifies this

problem greatly. We simply provide sequential code for the two algorithms in the same

loop. The generator builds the data dependency graph and attempts to find a good

software pipeline that overlaps the execution of the two algorithms.

6.6.1 Galois/Counter Mode (GCM)

Intel provides C code listings of GCM code [Gueron and Kounavis, 2010] and we have

adapted both the one- (1x) and four-at-a-time (4x) implementations for use in our

generator. GCM encrypts data using Counter mode and authenticates it by applying

the GHASH to the encrypted blocks. The main loop body of our GCM 1x and 4x

implementation both contain CTR encryption and fully inlines the GHASH function.

The modulo scheduler mixes statements from both “functions” in the schedule. With

larger input sizes, we are able to achieve speedups by applying AES-GEN to function

116

6.6 Combining Algorithms via Function Stitching

Table 6.4: Performance of AES GCM 128 with 1K, 4K, and 16K input buffers in
cycles/byte.

Encryption Mode AES-128
1K buffer 4K buffer 16K buffer

GCM 1x AES-GEN 5.175 4.892 4.883
GCM 1x Intel C 5.49 5.36 5.33

GCM 4x AES-GEN 3.964 3.597 3.505
GCM 4x Intel C 4.16 3.88 3.70
GCM 4x Intel HPL 3.85 3.60 3.54

stitched code. This can be seen in Table 6.4.

The results in Table 6.4 show that our generator is able to overlap the execution of

the AES encryption code and the Galois field multiplication using modulo scheduling.

As GCM is essentially CTR encryption followed by authentication, we can safely say

that the GHASH function takes the majority of run time. The GHASH function has

a large dependency chain but despite this, speedups are achieved in both 1x and 4x

versions by pulling out several instructions from GHASH and replacing them with

constants.

We improved the C input code for GCM by using associativity rules to replace

sequential chains of xor operations with balanced trees of xor operations. There are

a number of constants that can be computed outside the loop. Like assigning key

values to variables, we introduce a mechanism to control which of these constants will

be stored in memory (or in registers). Even with these improvements, it is difficult

to fully match the GCM 4x performance reported by Intel [Gueron and Kounavis,

2010]. Each loop iteration contains 40 to 56 long-latency AES-NI instructions. We

find variants that have slight speedups with 4K and 16K buffers, but are unable to

quite match the performance of the 1K buffer. We suspect that the biggest reason for

not being able to match the hand-tuned assembly version is due to the compiler. We

suspect that low-level optimizations are not being exploited in full. This is a basis for

one of several ideas to improve our GCM results as we mention in Section 7.2.

Further work from Gopal et al. [2010b] provided results of function stitched GCM

code running two separate threads of encryption using Intel’s hyper-threading (or simul-

taneous multithreading). As this paper documented the fastest GCM implementations

known to us, we implemented a test platform to search for the GCM implementation

variant that worked best with two threads running simultaneously. With very small

input sizes, we were unable to come very close to their performance.

117

Chapter 6: Generalized AES Program Generation

Figure 6.10: GCM 128 Results with various input sizes using simultaneous multithread-
ing, Intel function stitching vs. AES-GEN.

We have seen that performance gains when using these AES hardware instructions

are due to exploiting instruction-level parallelism. The modulo scheduler does an ex-

cellent job at generating code for this purpose. However, the good code that is often

generated uses many latency intervals. If the number of intervals is 6, this requires at

least six blocks of data to execute properly and would need several times the number

of blocks to see any sort of speedup. This behaviour is visible in Figure 6.10. At six

blocks (or 96 Bytes), AES-GEN is slower by 0.735 c/b. This difference is cut nearly

in half when the input goes to 12 blocks, then over half again with 24 blocks. At

48 blocks, AES-GEN comes within 0.1 cycles a byte and eventually performs slightly

better after 192 blocks. The discrete results of Figure 6.10 are listed in Table B.3 with

additional SMT data found in Section 6.7.1.

6.6.2 Counter with CBC-MAC (CCM)

CCM is another authentication that combines two algorithms. With CTR being used

for encryption, the authentication is done with CBC-MAC. CBC-MAC is identical to

CBC but does not store ciphertext, as it is just trying to compute an authentication

tag. In this particular mode, the amount of aesenc rounds necessary to encrypt and

118

6.7 Experimental Results

Table 6.5: Performance of AES CCM, AES-GEN CCM vs. CBC-1 (theoretical best)
in cycles/byte.

Encryption Mode AES-128 AES-256
1K buffer 32K buffer 1K buffer 32K buffer

CCM 3.867 3.754 5.378 5.272
CBC-1 3.851 3.759 5.351 5.259

authenticate each block is double. For instance, with a 128 bit key size, there are

20 rounds required for each block in CCM mode. Though, as we have seen with

multiple streams, the AES unit can be flooded with instructions while maintaining

good performance. Since AES instructions can be issued every two cycles, we actually

find that CCM will effectively be performance bound by the cyclic dependence of the

CBC-MAC authentication and is unable to be pipelined well. In this case, our baseline

for these instructions, would be our best results for CBC-1. The closer we come to

CBC-1 results, the better our CCM performance is. These values can be compared in

Table 6.5. Also in that table are cycle/round figures for CCM which are half of the

CBC-1 figures. This is due to twice as many AES rounds in the encryption loop.

6.7 Experimental Results

All of the implementations generated by AES-GEN were tested on an Intel 3.2GHz

Core i5 650 machine (cpu family 6, model 37), with all power management disabled,

lightly loaded, and running 64-bit Linux. When comparing to Intel’s performance,

we denote Intel HPL as documented numbers as found in [Gueron, 2010; Gueron and

Kounavis, 2010; Gopal et al., 2010b] and we denote Intel assembly code compiled and

executed on our test platform (as mentioned) as Intel ASM.

All code is compiled with the Intel C Compiler (icc) with -O2. We found that

-O3 often slightly decreased performance—particularly on the cyclic and authentica-

tion modes. Our thoughts on why this happens and related material are found in our

concluding chapter. We call our generated code from a simple timing harness that

provides a random input of plaintext, a random key schedule, and a random initial-

ization vector. We use the processor’s time stamp counter to measure timings and

report the median time of over 150,000 runs5. Our timings include only the encryption

itself, not the key expansion. A slightly different timing mechanism is used for results

5See Section 5.3 for a detailed explanation and validation of using the median value. The additional
experiments for other block-cipher modes conducted in this chapter also exhibit similar variance
behaviour.

119

Chapter 6: Generalized AES Program Generation

that use simultaneous multithreading, which is discussed later.

6.7.1 Generated Code Performance

Benchmarking AES-GEN’s performance requires some thought. Abstractly, a good

metric to show the usefulness of the AES-GEN system is the fact that it can generate

implementations with optimizations that would normally be done by hand. However,

more concretely, the results in Table 6.6 show AES-GEN to be a far better system

for making optimizations automatically that would normally be done manually. We

consider three main comparisons:

(a) Comparing against calculated (or theoretical) optimal results.

(b) Comparing against the fastest documented numbers of these modes.

(c) Comparing against the implementation baselines which are optimized and compiled

by standard compilers.

We believe that these comparisons show multiple supporting arguments for the use

of a code generator to solve the AES algorithm that use the AES-NI instructions. This

is because (a) coming close to theoretical best results means good performance overall

without the need for known results to compare against, (b) comparing with hand-tuned

assembly shows we have some of the fastest implementations known at this time and

that we can automate manual optimizations, and (c) shows how current tools cannot

optimize as easily or as well as some might think, thus showing the need for using a

code generator to solve this problem.

General Results

The results in Table 6.6 show the execution time of generated code for all implementa-

tions in cycles per byte and cycles per completed AES round—using both 128 and 256

key sizes. As mentioned, as an AES instruction can be issued every two cycles, the the-

oretical optimal figure for any AES implementation should be about 2 cycles/round.

Of course, there are additional instructions in these algorithms, but as the aesenc

instructions have a long-latency, we want AES-GEN to schedule these effectively. Con-

sulting Table 6.6, we see that we come very close to 2 cycles/round for most of our

implementations. Using the cycle/round figure is also helpful as the baseline number

holds no matter which key size we use.

120

6.7 Experimental Results

Table 6.6: Performance of AES-GEN generated code in cycles/byte and cycles/round.
(*) Results for CTR (round 1) and CTR (round 2) reference 4080B, all others reference
32K.

AES-128 AES-256
Encryption cycles/byte cycles/round cycles/byte cycles/round
Mode 1K 32K* 1K 32K* 1K 32K* 1K 32K*

Parallel Modes
CTR 1.371 1.258 2.194 2.013 1.875 1.756 2.143 2.007
CTR-R1* 1.277 1.165 2.043 1.864 1.761 1.667 2.013 1.905
CTR-R2* 1.398 1.298 2.237 2.077 1.734 1.622 1.982 1.854
ECB 1.363 1.258 2.181 2.013 1.867 1.759 2.134 2.010

Cyclic Modes
CBC1 3.851 3.753 6.162 6.005 5.351 5.253 6.115 6.003
CBC2 1.933 1.877 3.093 3.003 2.683 2.627 3.066 3.002
CBC3 1.282 1.262 2.051 2.019 1.791 1.762 2.047 2.014
CBC4 1.288 1.256 2.061 2.010 1.783 1.752 2.038 2.002
CBC5 1.288 1.270 2.061 2.032 1.784 1.757 2.039 2.008

PCBC1 3.851 3.760 6.162 6.016 5.351 5.264 6.115 6.016
PCBC2 1.933 1.877 3.093 3.003 2.684 2.627 3.067 3.002
PCBC3 1.293 1.261 2.069 2.018 1.796 1.764 2.053 2.016
PCBC4 1.286 1.256 2.058 2.010 1.822 1.787 2.082 2.042
PCBC5 1.300 1.297 2.080 2.075 1.846 1.826 2.110 2.087

CFB1 3.851 3.753 6.162 6.005 5.351 5.264 6.115 6.016
CFB2 1.928 1.877 3.085 3.003 2.680 2.627 3.002 3.002
CFB3 1.293 1.260 2.069 2.016 1.796 1.762 2.053 2.014
CFB4 1.287 1.254 2.059 2.006 1.808 1.772 2.066 2.025
CFB5 1.284 1.260 2.054 2.016 1.784 1.762 2.039 2.014

OFB1 3.851 3.760 6.162 6.016 5.531 5.265 6.321 6.017
OFB2 1.930 1.877 3.088 3.003 2.680 2.627 3.063 3.002
OFB3 1.294 1.258 2.070 2.013 1.800 1.763 2.057 2.015
OFB4 1.293 1.261 2.069 2.018 1.824 1.792 2.085 2.048
OFB5 1.312 1.299 2.099 2.078 1.784 1.787 2.039 2.042

Authentication Modes
GCM 1x 5.175 4.825 8.280 7.720 5.574 5.262 6.370 6.014
GCM 4x 3.964 3.627 6.342 5.803 4.543 4.037 5.192 4.614
CCM 3.867 3.754 3.094 3.003 5.378 5.272 3.073 3.013

121

Chapter 6: Generalized AES Program Generation

There are a few exceptions to this 2 cycle/round number. First, there are the

numbers that come in less than 2 cycles/round. This was discussed in depth in Section

6.4.1, as our CTR variants were actually able to break this barrier by using a mixed-

mode implementation. Secondly, there are cyclic modes that encrypt a single input

buffer and run at about 6 cycles/round. This is also a calculated best. Since the rounds

in cyclic mode cannot be executed in parallel, the best possible outcome with a 6 cycle

latency instruction is 6 cycles per instruction—and that is what we achieve. Cyclic

modes encrypting two streams halves this value, which is again expected. Thirdly,

authentication modes have different theoretical bests depending on the implementation.

With GCM, it is difficult to calculate a best possible result as we have noted in previous

discussion that the bulk of the execution is done in the GHASH function, which is

dependent on the encryption being finished. However, with CCM, we compared its

performance with that of CBC1 performance. As CCM uses CBC for authentication,

AES-GEN cannot generate code that performs faster than CBC1. However, it should

be noted that the cycle/round figures are half what we would expect from CBC1. This

is because CTR is performing the encryption and thus is using the AES unit as well.

Given these exceptions, we see that in nearly all cases, AES-GEN can generate

implementations that achieve effectively-optimal performance. Regardless of input

buffer size or the number of keys, AES-GEN finds near optimal solutions for nearly

every mode.

Simultaneous Multithreading

It was mentioned in Section 6.6.1, that work from Intel documented very fast results

in GCM mode when used with hyper-threading technology. We discussed specific

result comparisons with Intel in that section, but the experiment left us curious about

other SMT performance numbers for the other AES implementations. We compiled

these results by modifying our current testing platform to run two instances of an

implementation concurrently on separate threads that are pinned to a single core using

processor affinities. Each of the two threads would execute over 150,000 times, with

separate key schedules and input values randomly generated at runtime. To keep in

line with the experimental setup used by Gopal et al. [2010b], we use:

total # of cycles

2× input buffer size

to calculate cycles/byte for the SMT results. SMT results are shown in Table 6.7.

With parallel modes, we see relatively small improvements compared to scalar ex-

122

6.7 Experimental Results

Table 6.7: Performance of AES-GEN generated code in cycles/byte and cycles/round
in SMT mode, pinned to a single core. (*) Results for CTR (round 1) and CTR (round
2) reference 4080B, all others reference 32K.

AES-128 AES-256
Encryption cycles/byte cycles/round cycles/byte cycles/round
Mode 1K 32K* 1K 32K* 1K 32K* 1K 32K*

Parallel Modes
CTR 1.264 1.250 2.022 2.000 1.754 1.749 2.005 1.999
CTR-R1* 1.150 1.132 1.840 1.811 1.644 1.630 1.879 1.863
CTR-R2* 1.270 1.214 2.032 1.942 1.724 1.635 1.970 1.869
ECB 1.234 1.250 1.974 2.000 1.729 1.746 1.976 1.995

Cyclic Modes
CBC1 1.941 1.878 3.106 3.005 2.691 2.627 3.075 3.002
CBC2 1.275 1.259 2.040 2.014 1.772 1.755 2.025 2.006
CBC3 1.257 1.252 2.011 2.003 1.749 1.755 1.999 2.006
CBC4 1.257 1.267 2.011 2.027 1.760 1.763 2.011 2.015
CBC5 1.261 1.285 2.018 2.056 1.758 1.766 2.009 2.018

PCBC1 1.941 1.888 3.106 3.021 2.689 2.634 3.073 3.010
PCBC2 1.278 1.259 2.045 2.014 1.751 1.763 2.001 2.015
PCBC3 1.260 1.254 2.016 2.006 1.770 1.767 2.023 2.019
PCBC4 1.263 1.263 2.021 2.021 1.769 1.774 2.022 2.027
PCBC5 1.271 1.286 2.034 2.058 1.757 1.777 2.008 2.031

CFB1 1.940 1.877 3.104 3.003 2.689 2.636 3.073 3.013
CFB2 1.273 1.259 2.037 2.014 1.772 1.757 2.025 2.008
CFB3 1.253 1.252 2.005 2.003 1.758 1.757 2.009 2.008
CFB4 1.255 1.256 2.008 2.010 1.762 1.760 2.014 2.011
CFB5 1.256 1.272 2.010 2.035 1.755 1.759 2.006 2.010

OFB1 1.939 1.885 3.102 3.016 2.701 2.635 3.087 3.011
OFB2 1.273 1.257 2.037 2.011 1.787 1.771 2.042 2.024
OFB3 1.256 1.254 2.010 2.006 1.757 1.756 2.008 2.007
OFB4 1.254 1.254 2.006 2.006 1.756 1.761 2.007 2.013
OFB5 1.257 1.271 2.011 2.034 1.751 1.764 2.001 2.016

Authentication Modes
GCM 1x 4.111 3.979 6.578 6.366 4.586 4.381 5.241 5.007
GCM 4x 3.107 2.775 4.971 4.440 3.515 3.161 4.017 3.613
CCM 2.637 2.603 2.110 2.082 3.793 3.757 2.167 2.147

123

Chapter 6: Generalized AES Program Generation

ecution. While nearly all the CTR and ECB versions run extremely close to or under

2 c/b, many patterns seen in scalar execution do not appear here. Perhaps the most

curious behaviour is ECB with 32K input buffers. With SMT, AES code in both

128- and 256-bit mode showed a general pattern of larger input sizes actually taking

longer to complete. With CTR-R1, our fastest implementation of Counter, we see very

small improvements when going from 1K to 32K inputs of less than 0.02 c/b in both

128- and 256-bit mode. This starts to suggest that we have basically hit maximum

possible performance and there is simply no room to improve on an already parallel,

already optimized algorithm. Nonetheless, these versions still run faster than their

scalar counterparts.

Cyclic modes also show some curious behaviour. In all of the cyclic modes that

encrypt a single stream, we immediately see 50% reduction in runtime. Encrypting two

streams with SMT also reduces runtime by a healthy yet also expected margin. What

is curious is encrypting with 3–5 streams in SMT mode. These numbers only improve

a mere 0.05 c/b, and in some cases, perform worse than their scalar counterparts.

Consider encrypting 5 streams in CBC; running two threads of this implementation

means one core must process 10 streams of encryption, each with their own set of keys,

and their own input buffer. At this point, we are flooding the AES unit with work, and

it is not surprising that we are unable to get any better than 2 cycles/round without

making algorithmic changes, as we do with Counter.

Simultaneous multithreading is potentially interesting because it is likely it would

be easier to develop a real world system that processed many different scenarios. With

multiple stream cyclic modes, input sizes must be of identical size across the streams.

SMT could potentially be used to encrypt different types of data in different modes.

Under our system, we can easily check and optimize for that scenario. By simply

re-running the code tuning mechanism and we could see how to best optimize with

different modes with different input sizes or key sizes that need to be run simultane-

ously. We also believe these results show the flexibility of AES-GEN to generate good

variants. Like the scalar results, most of these variants clock at close to 2 cycle/byte

and shows the code generator’s ability to generate good results in (effectively) an entire

different set of implementations.

6.7.2 AES-GEN vs Hand-tuned Assembly

One of the aims of AES-GEN is to automatically generate code that makes good use

of the AES-NI instructions, rather than having to write the assembly code by hand.

If the generated code is as efficient as the assembly language, then we get the benefits

124

6.7 Experimental Results

of maintainability, retargetability and flexibility without sacrificing performance. The

results in Table 6.6 show that we have largely achieved that goal. In all cases but one,

our generated code achieves performance that is at least as good as the documented

assembly results. The exception is GCM, where our code is slightly slower for 1K

inputs, but faster for larger input sizes (see Table 6.4).

Results in previous sections show our generator produces variants that are as fast

or faster than the documented Intel hand-tuned results [Gueron, 2010; Gueron and

Kounavis, 2010; Gopal et al., 2010b]. To significantly improve upon the assembly

numbers in both CTR and CBC, we made algorithmic variations to the C code before

we let the ILP optimizer try to find an optimal schedule. This shows the usefulness and

versatility of AES-GEN in general. With CTR, we re-write the counter from a vector

to a scalar value. With CBC, optimizing with additional encryption streams requires

minimal effort. Retuning the code with xor optimizations is equally easy with our

system. For GCM, we collapse the xor chains into trees and let the modulo scheduler

interleave the encryption and GHASH function as much as possible. These high-level

changes, written in C, are easy to make and Cheetah can generate these algorithmic

variants—as described in Section 6.3.1—automatically.

During our discussion of the ECB assembly results in Section 6.4.2, we mentioned

that we found some peculiar data when we tried to reproduce the documented Intel

numbers for ECB encryption using Intel code on our machine. Running their assembly

code on our machine yielded nearly the exact same cycle/byte figures for 1K input

buffers as we were able to get using AES-GEN. We thought it would be interesting to

see how the assembly listings in their white papers would perform on our test machine

and stack them up against what AES-GEN can produce. The CTR and CBC results

found in Figures 6.11 and 6.12 come from using code found in the Intel AES-NI sample

library [Intel Corp., 2010a] which includes high-performance assembly listings.

Figure 6.11 displays the results of running Intel’s assembly and our generated

Counter code in variety of key sizes and input buffers. We see that in all key size

modes, AES-GEN is able to generate faster running code compared to running the

assembly on our machine. Exact numbers can be found in Table B.4. In 128-bit mode,

we find an average speed up with 1K to 32K buffers to be nearly 6%. This is our highest

average speedup, but also the smallest cycle/byte decrease in performance from 1K to

32K, reducing execution time by less than 0.3%. Both 192- and 256-bit modes have

about a 2% reduction in execution time with larger input buffers. Our average speedup

decreases slightly when using more keys. With a 192-bit key size, it drops to 5.2% and

4.6% with 256-bits. Despite this, we see speedups of over 6% with 1K input buffers for

125

Chapter 6: Generalized AES Program Generation

Figure 6.11: Results for Counter using normal mode operation with various key sizes
and input buffers. Shown comparing AES-GEN vs. Intel Assembly running on our
machine.

these two modes.

Figure 6.12 displays a similar comparison of Intel assembly and AES-GEN. In this

figure, we compare the performance of single stream CBC. Again, in all modes, AES-

GEN generates code that is much faster than the assembly. Further numbers are shown

in Table B.5. We see very small changes in CBC performance with different input sizes

in all modes while having overall speedups against the assembly version. This is once

again due to the cyclic dependency. There is not much opportunity to optimize the

CBC with a single stream. We see almost identical speedups comparing different input

sizes for each key size mode: using 128-bits, there is an 11.8% average speedup; in

192-bit mode, there is a 10.1% average speedup; in 256-bit mode, there is an 8.7%

average speedup.

With the Intel assembly listings that we could get to compile and run properly, the

published numbers from Intel are much better than running the implementations they

used to get those numbers on our own machine. We think this shows that a single

assembly listing for a particular problem is not necessarily a good idea. Engineers

spend large amounts of time crafting these implementations to run as fast as possible

on a particular machine and it is clear that those numbers are not replicable on our

testing platform. Using a code generator with tuning can tailor an implementation

126

6.7 Experimental Results

Figure 6.12: Results for single-stream CBC with no xor optimizations with various key
sizes and input buffers. Shown comparing AES-GEN vs. Intel Assembly running on
our machine.

without knowing a systems available, exact, real-time resources and configuration.

In many cases we are still able to find faster running implementations than the

documented numbers as well. A pattern that tends to emerge for these assembly

implementations is that they seem to be optimized for small input buffers. With

GCM, we were unable to find a matching or faster 1K variant compared to Intel’s, but

as seen in Table 6.4 we are faster on both the 4K and 16K values documented by Intel.

The code inside the encryption and authentication loop is fairly complicated and it

would not be easy to manually write different versions for optimal performance. We

were not able to get the GCM assembly code from Intel working on our machine.

With ECB, our results are essentially identical for 1K values across the board.

However, with higher input sizes, we see once again that our implementations are

faster. ECB is a very straightforward algorithm with essentially a load, a store and

10 aesenc instructions. While we are satisfied with matching the performance of the

Intel assembly, we believe there are possible optimizations to ECB6 that could be tested

easily with AES-GEN and perhaps perform better than even documented numbers.

6Such as using mixed-mode or xor optimizations.

127

Chapter 6: Generalized AES Program Generation

6.7.3 Why Not Optimize with a Standard Compiler?

Many of the techniques we use to optimize the AES implementations are standard com-

piler optimizations to exploit instruction-level parallelism. Most of these techniques

have been implemented in compilers, particularly compilers for VLIW architectures

[Fisher, 1983]. In principle, a standard compiler could do most of these optimizations.

However, exploiting instruction-level parallelism is not a priority for compilers that tar-

get out-of-order architectures. We include Table 6.8 to show that a standard compiler

(icc) cannot compete with our code generator. The results from both testing platforms

in Table 6.8 use 1K input buffers. We find an overall average speedup of 1.37x in

128-bit mode and a 1.45x speedup in 256-bit mode.

Even a quick glance at Table 6.8 shows the large performance gap between even

aggressive optimization with a standard compiler compared to AES-GEN. In the pre-

vious chapter, it was mentioned that doing selective-exhaustive searches would help us

determine where to optimize the code further. Based on the final results from AES-

GEN, it would be hard to predict performance based on the results obtained from using

a standard compiler. We see this behaviour with several data points in Table 6.8.

If we only looked at the icc results, we would never consider using CTR (round 2)

over other Counter modes. It runs very slow in comparison to the CTR-R1 code and

is even slightly slower than the straight forward CTR code. However, from Table 6.6,

we see that CTR (round 2) with AES-GEN gives us the fastest Counter results with

a 256-bit key size with various input sizes. In addition, CTR-R2 gives us our highest

speedup against a standard compiler of nearly 1.9x. There is a similar finding with

cyclic modes.

For streams > 2 with all cyclic modes, we find that a standard compiler follows a

similar trend to how AES-GEN generated code performs. AES-GEN clearly generates

faster code, but it is not really obvious how what number of streams is optimal to use

with either platform. This pattern has been seen in both the overall results in Table

6.6 and the SMT results in Table 6.7. This is not necessarily surprising given the cyclic

dependency, but allows us to once again mention that generating good code for cyclic

mode is tricky, any speedups are welcome, and issuing as many AES instructions in

parallel as possible is generally a good idea.

The cyclic results also show another interesting pattern. While we could simply

interleave n streams and compile them with icc, this is not likely to produce good

code. Multiple stream implementations issue many AES instructions, however, if the

basic block of all streams are strictly interleaved (as shown in Listing 6.6), the loads

and stores of all streams will be executed in succession. Waiting for four or five loads

128

6.7 Experimental Results

Table 6.8: Performance of AES-GEN generated code compared icc -O3 compiled code
in cycles/byte using 1K input buffers for all key sizes.

AES-128 AES-256
Encryption 1K input buffer 1K input buffer
Mode icc gen speedup icc gen speedup

Parallel Modes
CTR 2.000 1.371 1.459 3.273 1.875 1.746
CTR-R1* 1.828 1.277 1.431 2.902 1.761 1.648
CTR-R2* 2.160 1.398 1.545 3.285 1.734 1.894
ECB 2.023 1.363 1.484 2.695 1.867 1.443

Cyclic Modes
CBC1 4.281 3.851 1.112 5.781 5.351 1.080
CBC2 2.258 1.933 1.168 3.029 2.683 1.129
CBC3 1.892 1.282 1.476 2.935 1.791 1.639
CBC4 1.920 1.288 1.491 2.916 1.783 1.635
CBC5 1.916 1.288 1.488 2.926 1.784 1.640

PCBC1 4.402 3.851 1.143 5.902 5.351 1.103
PCBC2 2.285 1.933 1.182 3.098 2.684 1.154
PCBC3 2.091 1.293 1.617 3.103 1.796 1.728
PCBC4 2.067 1.286 1.607 3.018 1.822 1.656
PCBC5 2.023 1.300 1.556 3.035 1.846 1.644

CFB1 4.281 3.851 1.112 5.785 5.351 1.081
CFB2 2.256 1.928 1.170 3.035 2.680 1.132
CFB3 1.953 1.293 1.510 2.978 1.796 1.658
CFB4 1.904 1.287 1.479 2.938 1.808 1.625
CFB5 1.930 1.284 1.503 2.977 1.784 1.669

OFB1 4.222 3.851 1.096 5.723 5.531 1.035
OFB2 2.152 1.930 1.115 3.033 2.680 1.132
OFB3 1.970 1.294 1.522 2.943 1.800 1.635
OFB4 1.900 1.293 1.469 2.938 1.824 1.611
OFB5 1.927 1.312 1.469 2.916 1.784 1.635

Authentication Modes
GCM 1x 7.820 5.175 1.511 9.340 5.574 1.676
GCM 4x 4.300 3.964 1.085 4.777 4.543 1.052
CCM 4.254 3.867 1.100 5.793 5.378 1.077

Average speedup 1.37x 1.45x

129

Chapter 6: Generalized AES Program Generation

Listing 6.6: Strict interleaving four streams of CFB mode

1 for (i = 0 ; i < b locks ; i ++){
2 /∗ xor wi th r e s u l t s ∗/
3 /∗ encryp t ion rounds 1 to 9 ∗/
4 s t 0 r e s u l t = mm aesenc la s t s i 128 (s t 0 r e s u l t , s t 0 key [1 0]) ;
5 s t 1 r e s u l t = mm aesenc la s t s i 128 (s t 1 r e s u l t , s t 1 key [1 0]) ;
6 s t 2 r e s u l t = mm aesenc la s t s i 128 (s t 2 r e s u l t , s t 2 key [1 0]) ;
7 s t 3 r e s u l t = mm aesenc la s t s i 128 (s t 3 r e s u l t , s t 3 key [1 0]) ;
8 s t 0 r e s u l t = mm xor si128 (s t 0 p l a i n t e x t [i] , s t 0 r e s u l t) ;
9 s t 1 r e s u l t = mm xor si128 (s t 1 p l a i n t e x t [i] , s t 1 r e s u l t) ;

10 s t 2 r e s u l t = mm xor si128 (s t 2 p l a i n t e x t [i] , s t 2 r e s u l t) ;
11 s t 3 r e s u l t = mm xor si128 (s t 3 p l a i n t e x t [i] , s t 3 r e s u l t) ;
12 s t 0 c i p h e r t e x t [i] = s t 0 r e s u l t ;
13 s t 1 c i p h e r t e x t [i] = s t 1 r e s u l t ;
14 s t 2 c i p h e r t e x t [i] = s t 2 r e s u l t ;
15 s t 3 c i p h e r t e x t [i] = s t 3 r e s u l t ;
16 }

will significantly stall the pipeline. AES-GEN will create a data dependency graph

that looks like this but, to improve the code, we define thousands of possible latency

sets and let code tuning find where to best place these loads and stores.

The relatively small speedups for GCM 4x and CCM can be explained. GCM

has a massive bottleneck in the GHASH function. To counteract this bottleneck,

Gueron and Kounavis unrolls the loop four times to encrypt four blocks in parallel and

uses a modified GHASH that computes authentication tag for the ciphertext of all

four blocks. The GHASH function must complete before the next four blocks finish

encrypting. AES-GEN will create an additional pipeline interval to encrypt the next

four blocks as the previous four blocks’ tag is being computed, but as most of the time

is spent in the GHASH function, AES-GEN will not create a schedule as good as CTR-

R1 or even the normal CTR code. CCM also has a cyclic dependency in computing

the tag, and thus there is the expected, about the same, 10% speedup as we see for

CBC1. With GCM 1x, we see a speedup of over 1.5x as we can have more pipeline

intervals as the GHASH function on a single block is faster to compute than the GCM

4x version.

The standard compilation results show that AES-GEN an important tool to fully

experiment with different AES implementations. Implementing efficient AES code

would be much more straightforward if standard compilers incorporated good modulo

schedulers. However, adding such a scheduler and other sophisticated optimizations

needed for a compiler to reorder memory operations would be a significant engineering

task. Out-of-order pipelines are sufficiently complex that a compiler can rarely predict,

130

6.8 Related Work

in advance, exactly which code ordering is likely to be best, so an approach that uses

experimentation is valuable. AES-GEN was built to be flexible enough to explore

specific optimizations for general problems.

6.8 Related Work

The most closely related to work to ours has been from various outlets at Intel, includ-

ing its hand-tuned assembly language library [Gueron, 2010; Gueron and Kounavis,

2010] for the AES-NI instructions. Both this library and our generator use standard

techniques for optimizing assembly code in the presence of long-latency instructions.

The main difference is that our generator automates the process of applying these and

other optimizations. Although our performance is similar, the generated code is actu-

ally very different. We use modulo scheduling to execute multiple iterations together,

whereas the Intel code uses loop unrolling to achieve the same goal. The Intel library

code also achieves significant code size savings by combining the AES code for different

key sizes.

Akdemir et al. [2010] present performance results for CBC using AES-NI on multi-

core processors. To achieve speedups with CBC, they utilize multiple cores and multiple

threads. They also present a method for overlapping the execution of the key expansion

with the encryption. Our implementations do not consider this technique, but would

be worth looking into as our attempts with function stitching with GCM provided

excellent results.

Gopal et al. [2010a] proposed using function stitching as cryptographic applica-

tions often process pairs of independent algorithms. In AES GCM, for example, both

encryption and authentication algorithms are serially executed. In their work, they

present several different stitching techniques, among them stitching CBC with SHA-1

[Eastlake and Jones, 2001] which are executed in parallel within a single composite

function to achieve better speeds—often at the speed of only the longer executing por-

tion. Gopal et al. [2010b] optimized GCM further in a white paper released while

our paper was under review by improving the GHASH function. They treat constants

differently while encrypting four blocks at a time. We have implemented a similar

technique as an algorithmic variant to assign any permutation of constants used in the

GHASH function to registers.

131

Chapter 6: Generalized AES Program Generation

6.9 Conclusion

AES-GEN is used to generate code that uses the Intel AES instructions. The generator

reads in annotated source code and uses iterative methods to try to find a variant of

the source code which executes fast on the target hardware. The generator is also

a useful experimental tool for programmers. The ability to make small, exploratory

changes to an algorithm that can be easily scheduled differently and quickly evaluated

is extremely valuable.

Our results show that AES-GEN creates faster code without a massive increase in

code size, due to its good modulo scheduler. We have implemented several algorithmic

variants of AES CTR, CBC and GCM modes. Our standard implementations of AES

counter perform almost exactly the same as the hand-tuned assembly code, which is a

good result. However, we also discuss additional implementations that are faster than

anything published by Intel; to our knowledge, we have the fastest cycle per round

implementations of AES CTR and AES CBC on the Westmere architecture.

With AES-GEN, it is easy for us to generate CBC code that operates on any number

of input streams, as we simply make those changes in high-level C code and re-run the

generator. We also presented dependency reduction strategies for the cyclic-dependent

algorithm by exploiting the properties of the xor operation. These strategies yielded

good results and testing these changes would have been a time-consuming task if one

were to make the changes in assembly.

Similarly with GCM, we were able to try a number of techniques in an attempt

to improve GCM code generation with minimal effort. Trying to optimize multiple

algorithms running in the same loop body as GCM does would be tedious in assembly.

AES-GEN’s modulo scheduler is very effective at building good function stitched code.

Our goal was to maximize the performance of the Intel AES-NI instructions. We

believe that we have done that. AES-GEN generates many variations of the AES

algorithm and a good solution tuned to any particular architecture that supports AES-

NI is found quickly.

132

Chapter 7

Final Thoughts

In the previous chapter, we presented a system that generated many variations of AES

code with excellent results. However, are our results worth anything if the implemen-

tations are secure to use? We dedicate some discussion to the security issues in Section

7.1. As we found at the conclusion of our first generator in Chapter 5, AES-GEN

also has limitations when generating good code. In Section 7.2 of this chapter, we

present some ideas to increase the functionality to AES-GEN that could compete with

hand-tuned assembly more closely. We also discuss the potential of using our system

in a more generalized context in Section 7.3. Section 7.4 contains an assessment of our

contributions that we believe support our thesis. We conclude the chapter, and this

dissertation, in Section 7.5.

7.1 Security

While this dissertation focuses on the using AES-New Instructions effectively, this

particular instruction-set extension is used for cryptography, and this means there are

potential security issues. As mentioned in Section 5.3.1, the cycles/byte unit can be

used to see which modes run the fastest overall. This can possibly come at the cost of

security—using 128-bit key is much faster than using a 256-bit key, but a 256-bit key

takes longer to break. While this dissertation makes no claim of expertise in security

benefits or weaknesses of AES, a few key points should be discussed to alleviate security

concerns. Most of the security issues surrounding our work is inherited by the Intel

AES instructions.

In Gueron [2010], the security issues of Intel AES-NI are addressed. The use of

on-chip, dedicated AES instructions actually mitigate several types of attacks. Soft-

ware side channel attacks are common when targeting a multi-tasking platform (such

133

Chapter 7: Final Thoughts

as an x86 processor). Because cryptography processing would be shared with multi-

ple processes on common processors, information can unintentionally “leak” and allow

unauthorized processes to gain insight on memory access patterns or execution flow.

The long execution and processing times of scalar operations can encourage cache tim-

ing attacks. Fast software implementations also use lookup tables which span multiple

cache lines. The cache timing attacks continually perform data reads to fill the cache

with its own data. It then measures the latency of these read operations and can

identify which cache lines which have been evicted by the encryption process running

in parallel. Analyzing this data can be used to determine which parts of the lookup

tables are being used. This information would then be used to determine the secret

key.

AES-NI is designed to prevent these types of attacks. This is because the latency

of the encode and decode instructions are data independent1. No lookup tables are

required as all computations used in the AES are done on-chip. Our work uses these

instructions “properly” and generating them in different combinations do not affect the

security strengths as claimed by Intel. However, we present one caveat. For our CTR

(round 1) and (round 2) modes, we use a mixed-mode strategy to implement “faster

than optimal” CTR solutions. This was done by instructing 1 or 2 AES rounds to be

done using conventional lookup tables. There is a potential danger in using lookup

tables. These implementations can leak data. We have no proof exactly how much

of a risk there would be using these implementations, as only 1 or 2 rounds would be

using memory operations. However, if these modes were found to be unsafe, they can

still be useful on non-multi-tasking platforms. These modes could be used for isolated

platforms, such as embedded systems.

7.2 Future Work

In Section 6.3, we described AES-GEN as a multi-stage system that generates AES

implementations. It uses a combination of algorithmic choices, ILP optimizations, and

an adapted simulated annealing algorithm to find near optimal solutions. As such, there

are multiple points for potential improvement to this automated program generator.

1This is shown by cycle/round results in Chapter 6

134

7.2 Future Work

7.2.1 High-level Choices

When GEN1 and AES-GEN returned AES implementations that achieved similar per-

formance to Intel’s documented numbers, we were satisfied with the results. This

showed that we could automate the techniques used by assembly programmers to

achieve comparable performance. However, as we mention in Section 6.4.1, gener-

ating even faster code required high-level algorithm modifications. Similarly, achieving

noticeably better results for the cyclic dependent block ciphers required a high-level

modification as mentioned in Section 6.5.

GCM is a “function stitched” algorithm. We would have liked to have taken more

time to explore possible algorithmic choices to GCM to increase performance under

our system. While we did make some changes, as described in Section 6.6.1, our

results show that AES-GEN produces GCM code that runs slightly slower than those

published by Gueron and Kounavis [2010] and Gopal et al. [2010b] with using some

small input sizes.

The authentication tag used in GCM has a cyclic dependency from one block to

the next2 due to the GHASH function. AES-GEN cannot schedule the GHASH code

effectively. When AES-GEN attempts to look for a solution, it includes most of this

code as a giant block without scheduling it over several pipeline intervals. However,

it does interleave GHASH instructions with Counter instructions. We believe that a

closer look at using AES-NI with the GHASH function will yield some opportunities for

faster code. Luckily, AES-GEN is incredibly flexible in taking exploratory approaches

with high-level algorithmic change.

Petabricks [Ansel et al., 2009] is a language for describing algorithmic choices, but

it works by allowing multiple definitions of functions. Our work has shown that for

generating AES code, the algorithmic choices need to be described at a much finer

grain. If we were to simply define multiple versions of the AES functions, we would

need to provide many thousands (or more) versions. An interesting problem is how

fine grained algorithmic choice might be described in a language similar to Petabricks.

7.2.2 ILP Optimizations

Our program generator process takes input source code, makes algorithmic changes,

applies ILP optimizations and schedules code, which is then compiled by a standard

compiler. We found the quality of assembly code generated with both gcc and icc was

somewhat poor. While we still achieve good results in Section 6.7, they show that

2In GCM 4x, the dependency is every four blocks

135

Chapter 7: Final Thoughts

there is very little performance opportunity to be gained. However, when compiling

code that used software pipelining, we noticed assembly code included extra copies

that we would have thought to be removed by the compiler. We would like greater

control of the assembly code. A tool like MAO: An Extensible Micro-Architectural

Optimizer [Thuresson, 2010] could be useful in helping to gain better control of the

assembly. MAO takes basic blocks in assembly, converts them to an IR, applies low-

level optimizations and returns transformed assembly code.

“Sandy Bridge”

It would be interesting to see how AES-GEN produces code when targeting a different

microarchitecture. Attached in Appendix D are two tables of results that show the

performance of AES-GEN on the “Sandy Bridge” microarchitecture3. Sandy Bridge

also includes AES-NI, but documents the aesenc instruction at a very different 8 cycle

latency and 1 cycle throughput [Intel Corp., 2011]. This hardware change produces

quite different results compared to the Westmere architecture (results which are well

documented throughout this dissertation). The overall running times (cycles/byte)

are much better on Sandy Bridge, but as they are preliminary results, based on little

changes to the AES-GEN system, built on experience with Westmere, the results are

preliminary. We do, however, believe these to be very good results, but without direct

comparisons from Intel, we cannot say with any certainty how good they are. We

can say, that according to Intel’s optimization manual [Intel Corp., 2011], maximizing

CTR performance requires a new assembly implementation which now unrolls the loop

8 times. To find our solution, we simply ran the generator on the new system to find

an optimal variant.

It would also be interesting to see how AES-GEN produces code when targeting a

very different microarchitecture. We have shown AES-GEN to work well on the out-

of-order Westmere Core i5 and probably well on Sandy Bridge. However, AES-NI

could possibly be included on new generations of Intel Atom processors. The Atom

also implements simultaneous multithreading, but uses a 16 stage in-order pipeline.

Targeting an in-order execution processor would show that our contributions are im-

portant, as the system should be able to adapt to the new architecture easily.

3These results were compiled after the initial submission of this dissertation, due to hardware not
being released until January 2011. Table D.1 shows normal execution results, while Table D.2 shows
code running in SMT mode. The test setup is the very similar to the setup mentioned in Section 6.7,
but the clock speed is slower at 2.1ghz.

136

7.2 Future Work

7.2.3 Traversing the Search Space

Benchmarking every possible solution that AES-GEN can generate is computationally

infeasible. In order to reduce the time, AES-GEN uses an adapted simulated annealing

algorithm to find a solution. Again, we achieve good results so it is hard to criticize a

system that works well. The “trace” logs show what parameter is changed during each

cooling step, the current set of optimizations and how fast they run, and whether or

not it has been accepted or rejected by the algorithm as a good solution. Simulated

annealing, as described in Section 2.3.3, involves a random element that affects the

decision to accept or reject. This characteristic means that starting with the same

source file and the same set of tuning arguments is likely to return a very different

trace—but ultimately a near optimal result as we have shown.

We modify the traditional simulated annealing algorithm to keep track of a global

best. This was necessary as the runtime differences between solutions can be 10ths or

100ths of a cycle per byte. This ends up causing many of the 1500 variations created

each time AES-GEN is run to be rejected; this causes the search to become stuck

in local minima. We introduced a second change to the algorithm to counteract this

behaviour which we did by forcing the system to “jump” back to one of the global

solutions if nothing had improved after a certain number of steps.

Small additions to the simulated annealing algorithm could increase the number of

good solutions. This could be accomplished by the following:

• Establishing Ranges — The trace of annealing Counter code shows that good

initiation interval value ranges are established quickly. When the ii value is

outside the optimal range, other minor, but important optimizations could be

turned on to generate good code. The annealing process often stays in these

local minima when it would preferable for it to explore applying these minor

optimizations inside the good ii range. Detecting patterns and establishing these

good ranges in an effort to further optimize code would be a key improvement.

This could possibly be implemented by assigning argument weights dynamically.

• Smarter jumps — As the search progresses, the annealing algorithm changes

the argument set to a neighbouring solution. What we found while investigating

the traces was that despite the functionality to revert back to a good solution

if progress has not been made, it often just retraces the bad steps. When these

jumps happen, it would be beneficial for a different step size or a different weight

to ensure that this path is not retraced.

137

Chapter 7: Final Thoughts

• Additional tuning sets — In some cases, we generated code that gcc and icc

could not further improve. As we noted in Section 6.7, compiling with -O2 often

yielded better performance than compiling with -O3. Because of this observation,

including an additional step may further improve compiled code. It could be

included as a separate argument set used by the code tuning mechanism. These

could be done similarly to the aforementioned Acovea [Ladd, 2009], which tries

different combinations of compiler flags to find an optimal set.

These techniques would make simulated annealing a “smarter” algorithm. It would

prevent a large number of solutions from being rejected while exploring greater por-

tions of the search space. The combination of these simulated annealing improvements

and adding additional argument sets for both compiler flags and/or post-compiled op-

timizations would create a much stronger system. This stronger system could also be

slightly adapted to generate optimal solutions for general applications. As mentioned

in Section 2.3.2, there is a large body of research that explores using learning algorithms

to generate code. It would also be interesting to try different learning algorithms with

our system to see if we could find solutions in shorter time-frames. Currently, our

generator explores 1500 variants per pass. However, using simulated annealing works

well. It returns near optimal solutions in a relatively short time frame.

7.3 Applicability to Other Applications

Fast implementation of problems other than AES often rely on high-performance li-

braries that are tuned to specific architectures. These are often highly-optimized, hand-

tuned assembly routines which cause significant software engineering issues. Maintain-

ing assembly language routines is difficult, because even small changes in assembly

routines may require a substantial rewrite, even if only to redo the allocation of regis-

ters. Also, when new versions of the microarchitecture appear, existing routines may

be sub-optimal, and new versions may need to be built. In addition, when multiple

versions of assembly routines exist the maintenance problem becomes much larger. One

approach to this problem that has been successful is to build program generators that

automatically tune the generated code to the microarchitecture.

7.3.1 Generality

In this dissertation, we found that using a program generator to find good AES im-

plementations was a successful approach. It seamlessly merges three techniques to

138

7.3 Applicability to Other Applications

generate good code. From the experience gained compiling this work, we believe that

this strategy can be extended to a wider range of applications. What we propose is

a generalized system that could do iterative instruction scheduling, while considering

algorithmic choices.

Algorithmic choices are problem-specific choices that the programmer makes. It is

often possible to make small changes in the algorithm, or even use a completely different

algorithm to solve a problem. For example, there are many sorting algorithms and it

is often faster to switch between algorithms depending on the size of data and the

machine architecture. Sorting program generators exist which select good algorithms

and switch-over points for a particular machine [Li et al., 2004; Bida and Toledo, 2007].

An important choice appears in CTR code, where the programmer must chose between

several different strategies for incrementing the counter. A complication arises because

the counter is a big-endian value, but Intel architectures are little-endian, and one must

choose how to address this problem. Exploring this choice was crucial in finding the

best CTR code as found in Section 6.4.1. Generalizing the choices that could be made

by the generator is a small engineering task that could prove very interesting.

One of the major results of this dissertation is a “proof of concept”. The concept

is a program generator can be used to effectively optimize an algorithm (AES) that

uses instruction-set extensions (AES-NI) to maximize performance. There is another

dissertation worth of research that could be done applying our concept to more general

algorithms. Specifically, programs that contain loops that contain long-latency and

varying throughput times would be an ideal candidate to run through the generator.

The ultimate goal of AES-GEN is to exploit as much ILP as possible by scheduling in-

dependent groups of instructions close together. There is potential in the ILP optimizer

alone for easy rescheduling of multiple algorithms in a single loop.

Even more specifically, digital Signal Processing (DSP) problems and floating-point

intensive algorithms can usually make use of advanced multimedia functions (which are

instruction-set extensions) found on common x86 processors. Many of the instructions,

found in SSE4.1 and SSE4.2 for example, have long latency, but fast throughput times

[Intel Corp., 2011]. These streaming extensions are included to improve DSP and

floating-point operations with dedicated hardware in a fraction of the time it would

take using just scalar operations (just like AES). The behaviour of these algorithms

(and the instructions they use) could be similar enough to AES. One would have

to extend our program generation techniques to support these problems effectively.

However, this dissertation focuses on improving AES implementations and we have

no results to unequivocally say that this system can be applied to any problem that

139

Chapter 7: Final Thoughts

uses instruction-set extensions. Ultimately, our system is very generalized, and an

interesting followup to this research will be to find suitable algorithms to test it with.

The high-level choices enable exploratory approaches to be take, but the choices cannot

be used effectively without a good schedule.

7.3.2 Instruction Scheduling for Out-of-Order Architectures

Instruction scheduling is a well-studied problem, and a wealth of very sophisticated

compiler techniques has been developed for simple basic blocks, for loops, and for more

general code. These techniques have been developed primarily for VLIW architec-

tures, where resource constraints are very well defined. Instruction scheduling is also

used by compilers for out-of-order superscalar architectures, to help the processor ex-

ploit instruction-level parallelism. Our generator builds quite complex schedules, using

techniques such as modulo scheduling, reordering memory operations and scheduling

operations speculatively. These sorts of schedules are much more complex than the

basic block scheduling found in most compilers. We found that this iterative approach

to instruction scheduling has some significant advantages for the Intel processor we

used in our experiments.

The first major advantage of iterative instruction scheduling is that a good model of

the execution resources of the machine is not needed. The detailed operation of modern

out-of-order processors is often not well documented. The broad scheduling rules can

be found in Intel manuals. However, there may be special cases and exceptions that

are simply undocumented. More importantly, the program generator can adapt itself

to future, unknown architectures without modification.

A second advantage of iterative instruction scheduling arises with out-of-order pro-

cessors. Out-of-order processors dynamically reorder and schedule instructions and

rename registers within the reorder buffer. In other words, out-of-order processors

do a lot of the same things that our program generator is trying to do. This is im-

portant because instruction schedulers always try to reorder instructions so that fully

independent instructions are scheduled together. However, re-ordering instructions in

software is not free. It usually increases register pressure and techniques such as mod-

ulo scheduling and global instruction scheduling cause code growth. On an out-of-order

processor, it is not always necessary to schedule independent instructions together. We

just need to schedule them close enough to each other so the out-of-order logic will ex-

ecute them together. We know of no other compiler approach to instruction scheduling

that is able to figure out how close together instructions need to be for them to be

executed in parallel because out-of-order processors are too complex to easily analyze

140

7.4 Assessment of Contributions

such things. But an iterative scheduling approach can, by trial and error, find schedules

that bring instructions close enough for parallel execution, while minimizing the costs

of reordering instructions in software.

A third advantage of iterative instruction scheduling is that it can adapt to different

execution environments, such as processors with simultaneous multi-threading. When

tuning an iterative code generator, we run many variations of the code on the processor

and measure the performance. If we plan to run the code in parallel with other known

code on a SMT processor, we could run that other code during training. This will allow

the generated code to adapt itself to the behaviour and resource usages of the other

code4. The result may not be perfect, because the behaviour of either or both codes

may depend on when they start and on user input. But it is possible that generated

code can adapt itself to running efficiently alongside the other code. Furthermore,

we can also take into account the running time of the other code, and try to find a

variation of the generated code that has minimum impact on the other code. We know

of no other instruction scheduling strategy that can adapt itself to SMT execution.

7.4 Assessment of Contributions

In Chapter 3, we explored the idea of automatic vector code generation for general

purpose processors. This dissertation deals with using code generation systems to op-

timize instruction-set extensions. We found using streaming languages as a framework

to generate code that used SIMD instructions was an effective solution. But, what we

thought was a robust environment to work with, we found that better program genera-

tion techniques could be found by focusing on a particular algorithm—AES. We built a

“static” generator to implement two modes, but eventually developed AES-GEN which

is flexible and robust to high-level source code changes.

Being able re-generate a solution from high-level changes to the source code has

some crucial advantages. Exploring new AES implementations is easy. In Chapter 5,

we first introduced the “local keys” concept. The generators can assign very specific

subsets of the round keys to registers. We found that the effect of these configurations

can make small, but important reductions in runtime. There are 215 possible local

key configurations and this explodes the search space. Also in Chapter 5, we showed

how easily we could generate good code with a set number of streams for CBC mode.

4We when benchmarked encryption using SMT, we used two copies of the same code; it could
easily be adapted to test different AES implementations (or different input sizes, key sizes, etc.) at
once.

141

Chapter 7: Final Thoughts

Adapting assembly code to use multiple streams is very difficult. Intel’s assembly li-

brary includes code listings for CBC that use 1 and 4 streams. Intel’s CBC-4 numbers

run close to 2 cycles per round. However, we later showed in Section 6.7 that, with

our optimizations, using 3 streams is actually enough to achieve the “optimal” 2 cy-

cles/round figure. These types of algorithmic choices are just not easy to explore with

assembly implementations.

Another very important algorithmic choice the system considers is exploiting the

properties of the xor operator. This is an important contribution as cyclic modes have

a long dependency chain of operations from one block to the next and any speedup is

desirable. While multiple streams can be used to reduce cycle per byte times, single

stream implementations are more practical. Obtaining any speedup in these modes

is desirable. We improve single stream5 execution of the cyclic modes by combining

xor operations that load each block of plaintext with the final round of the AES

algorithm. To our knowledge, we are the first to propose this strategy, as detailed in

Section 6.5. Results in Table 6.3 showed that fully exploiting this property with CBC

achieved a 1.17x speedup in 128-bit mode, and a 1.13x speedup in 256-bit mode over

not applying xor optimizations. In correspondence with Vinodh Gopal6 at Intel, he

related to us that he believes we have the fastest known CBC implementations using

AES-NI. However, just like all the algorithmic changes mentioned in this dissertation,

encoding these choices at low-level has unknown effects for the rest of the assembly.

Making these choices will affect the way the code is scheduled.

Another important technique critical to generating code AES implementations is

generating a good schedule for the code. In Chapter 5, we exploited ILP by interleaving

blocks and software pipelining in CTR mode and interleaving streams in CBC mode.

Scheduling loads and stores apart from each other in both modes was important to

achieve good performance. In Chapter 6, we improved this technique with an ILP

optimizer, as detailed in Section 6.3.2. This ILP optimizer used modulo scheduling to

generate code within the loop and allowed much greater flexibility on the placement

of instructions. With this technique we were able to quickly generate schedules for

our mixed-mode CTR code. The Counter implementations, shown in Listings 6.3 and

6.4, mixed scalar table lookup-based instructions with the AES-NI instructions. The

ILP optimizer was able to schedule the memory operations required by table lookups

effectively with the remaining rounds that used AES-NI instructions. These CTR

implementations yielded our fastest CTR numbers7.

5We also improve multiple streams through the usage of xor, but the impact is less noticeable.
6His work has been cited throughout this dissertation: [Gopal et al., 2010a,b; Akdemir et al., 2010].
7To our knowledge, they are also the fastest published CTR implementations.

142

7.5 Conclusion

Scheduling code for function stitched loops has also been shown to be a viable

strategy with the ILP optimizer. With combined authentication/encryption modes,

such as GCM and CCM, two functions that would normally be placed in separate

loops are fused together and must be scheduled together accordingly. Fusing these

functions together in assembly is difficult, but has been done for GCM in work by

Gueron and Kounavis [2010]; Gopal et al. [2010a]. The GCM code from Gueron and

Kounavis [2010] unrolls the loop four times and places the GHASH function after the

encryption is done. Our ILP optimizer pipelines some of the Counter encryption code

while interleaving it with the GHASH code. The performance we achieve from using

the ILP optimizer and the algorithmic choices could not be achieved without the use

of a code tuning algorithm.

The generators in Chapter 5 and 6 used an adapted simulated annealing algorithm

to traverse the search space. We found that using selective-exhaustive searches could

be used to quickly test whether optimizations were worth investigating. However, even

selective-exhaustive searches test 40,000+ implementations at time. Benchmarking

that many variants takes hours to complete and generally does not return a near

optimal result. Using simulated annealing on very small subsets of only 1500 variants

returned solutions in a fraction of the time of selective-exhaustive searches. By tuning

both major and minor optimizations to each AES implementation, we showed that

seamlessly integrating these three techniques into a program generator is a suitable

alternative to generating assembly code.

7.5 Conclusion

Using AES-NI instructions effectively is not a trivial process. Obtaining good perfor-

mance from the instructions requires the use of hand-tuned high-performance assembly

libraries. The libraries, provided by Gueron [2010]; Gueron and Kounavis [2010]; Intel

Corp. [2010a], use a simple schedule to achieve good performance from the AES-NI

instructions. It appears that the code runs well on out-of-order architecture, but it

remains to be seen if performance would hold on different architectures. Assembly

code can require significant modifications as new hardware emerges, which is an ex-

pensive and time-consuming task. This dissertation argues that a program generator

can be a suitable alternative to generating assembly code for AES implementations. In

Chapter 5, we were able to produce similar performing code to hand-tuned assembly

for both CTR and CBC code. In Chapter 6, we expanded the generator to implement

additional block cipher modes to, in some cases, build superior code to assembly.

143

Chapter 7: Final Thoughts

This dissertation showed that a program generator is an effective solution for build-

ing near optimal AES implementations that use AES-NI instructions. A program

generator accomplishes this by using three important techniques: algorithmic choices,

easily exploiting instruction-level parallelism, and code tuning. The flexibility of the

generator allowed high-level changes to the code to be explored as possible optimiza-

tions, while instruction-level parallelism was exploited through the use of a good sched-

uler that targeted a number of execution environments. Work on optimal scheduling

is usually reserved for in-order architectures. To our knowledge, there is no litera-

ture that deals with finding optimal schedules on out-of-order architectures as they

are too complex for analysis since they dynamically reorder instructions. Independent

instructions only need to be grouped “close together” to exploit ILP. This sums up

why our program generator is so important. Our program generator applies many

different optimizations to a single piece of code without the need to profile the target

system. As machines with special purpose instructions such as AES-NI become more

widespread, our techniques are likely to become increasingly important for generating

high-performance code. A program generator produces fast code in a short time.

144

Bibliography

Aarts, E. and J. Korst (1988). Simulated Annealing and Boltzmann machines.

Advanced Micro Devices, Inc. (2007, November). AMD Brook+. Advanced Micro De-

vices, Inc. http://ati.amd.com/technology/streamcomputing/AMD-Brookplus.

pdf.

Akdemir, K., M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guilford, E. Ozturk, G. Wol-

rich, and R. Zohar (2010). Breakthrough AES Performance with Intel AES New

Instructions (White Paper). Intel Corp. http://software.intel.com/file/27067.

Algredo-Badillo, I., C. Feregrino-Uribe, and R. Cumplido (2006). Design and Im-

plementation of an FPGA-Based 1.452-Gbps Non-pipelined AES Architecture. In

M. Gavrilova, O. Gervasi, V. Kumar, C. Tan, D. Taniar, A. Lagan, Y. Mun, and

H. Choo (Eds.), Computational Science and Its Applications - ICCSA 2006, Vol-

ume 3982 of Lecture Notes in Computer Science, pp. 456–465. Springer Berlin /

Heidelberg.

Allen, R. and K. Kennedy (1987). Automatic Translation of FORTRAN Programs

to Vector Form. ACM Transactions on Programming Languages and Systems 9,

491–542.

Amarasinghe, S. (2006, November). StreamIt A Programming Language for the Era

of Multicores.

Amarasinghe, S., M. I. Gordon, M. Karczmarek, J. Lin, D. Maze, R. M. Rabbah, and

W. Thies (2005). Language and Compiler Design for Streaming Applications. Int.

J. Parallel Program. 33 (2), 261–278.

Ansel, J., C. Chan, Y. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amarasinghe

(2009). PetaBricks: a language and compiler for algorithmic choice. ACM SIGPLAN

Notices 44 (6), 38–49.

145

http://ati.amd.com/technology/streamcomputing/AMD-Brookplus.pdf
http://ati.amd.com/technology/streamcomputing/AMD-Brookplus.pdf
http://software.intel.com/file/27067

BIBLIOGRAPHY

Bartolini, S., R. Giorgi, and E. Martinelli (2009). Instruction Set Extensions for Cryp-

tographic Applications. In . K. Ko (Ed.), Cryptographic Engineering, pp. 191–233.

Springer US.

Benadjila, R., O. Billet, S. Gueron, and M. J. B. Robshaw (2009). The Intel AES In-

structions Set and the SHA-3 Candidates. In Advances in Cryptology - ASIACRYPT

2009, Lecture Notes in Computer Science 5912, pp. 162–178. Springer Verlag.

Bernstein, D. J. and P. Schwabe (2008). New AES Software Speed Records. In IN-

DOCRYPT ’08: Proceedings of the 9th International Conference on Cryptology in

India, Berlin, Heidelberg, pp. 322–336. Springer-Verlag.

Bertoni, G., L. Breveglieri, P. Fragneto, M. Macchetti, and S. Marchesin (2003). Effi-

cient Software Implementation of AES on 32-Bit Platforms. In CHES ’02: Revised

Papers from the 4th International Workshop on Cryptographic Hardware and Em-

bedded Systems, London, UK, pp. 159–171. Springer-Verlag.

Bertoni, G. M., L. Breveglieri, F. Roberto, and F. Regazzoni (2006). Speeding Up

AES By Extending a 32 bit Processor Instruction Set. Application-Specific Systems,

Architectures and Processors, IEEE International Conference on 0, 275–282.

Bida, E. and S. Toledo (2007). An automatically-tuned sorting library. Software:

Practice and Experience 37 (11), 1161–1192.

Buck, I., T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan

(2004). Brook for GPUs: stream computing on graphics hardware. In SIGGRAPH

’04: ACM SIGGRAPH 2004 Papers, New York, NY, USA, pp. 777–786. ACM.

Cytron, R., J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck (1991). Effi-

ciently computing static single assignment form and the control dependence graph.

ACM Trans. Program. Lang. Syst. 13 (4), 451–490.

Daemen, J. and V. Rijmen (2000). The Block Cipher Rijndael. In CARDIS ’98:

Proceedings of the The International Conference on Smart Card Research and Ap-

plications, London, UK, pp. 277–284. Springer-Verlag.

Daemen, J. and V. Rijmen (2002). The design of Rijndael: AES — the Advanced

Encryption Standard. Springer-Verlag.

Das, A., W. J. Dally, and P. Mattson (2006). Compiling for stream processing. In PACT

’06: Proceedings of the 15th international conference on Parallel architectures and

compilation techniques, New York, NY, USA, pp. 33–42. ACM.

146

BIBLIOGRAPHY

Davidson, J. W. and C. W. Fraser (1984). Automatic generation of peephole optimiza-

tions. In Proceedings of the 1984 SIGPLAN symposium on Compiler construction,

SIGPLAN ’84, New York, NY, USA, pp. 111–116. ACM.

(DES), D. E. S. (1977). FIPS PUB 46-3. US NBS .

Diffie, W. and M. Hellman (1979, March). Privacy and authentication: An introduction

to cryptography. Proceedings of the IEEE 67 (3), 397 – 427.

Dworkin, M. (2001). Recommendation for Block Cipher Modes of Operation. NIST

Special Publication 800-38A. http://csrc.nist.gov/publications/nistpubs/

800-38a/sp800-38a.pdf.

Dworkin, M. (2005). Recommendation for Block Cipher Modes of Operation: The

CMAC Mode for Authentication . NIST Special Publication 800-38B. http://

csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf.

Dworkin, M. (2007a). Recommendation for Block Cipher Modes of Operation: Ga-

lois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D. http:

//csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

Dworkin, M. (2007b). Recommendation for Block Cipher Modes of Operation: The

CCM Mode for Authentication and Confidentiality . NIST Special Publication

800-38C. http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_

updated-July20_2007.pdf.

Dworkin, M. (2010). Recommendation for Block Cipher Modes of Operation:

The XTS-AES Mode for Confidentiality on Storage Devices. NIST Special

Publication 800-38E. http://csrc.nist.gov/publications/nistpubs/800-38E/

nist-sp-800-38E.pdf.

Eastlake, D. E. and P. E. Jones (2001). US Secure Hash Algorithm 1 (SHA1). http:

//www.ietf.org/rfc/rfc3174.txt?number=3174.

Eggers, S., J. Emer, H. Leby, J. Lo, R. Stamm, and D. Tullsen (1997). Simultaneous

multithreading: a platform for next-generation processors. Micro, IEEE 17 (5), 12

–19.

Ehrsam, W., C. Meyer, J. Smith, and W. Tuchman (1978, February 14). Message

verification and transmission error detection by block chaining. US Patent 4,074,066.

147

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://www.ietf.org/rfc/rfc3174.txt?number=3174
http://www.ietf.org/rfc/rfc3174.txt?number=3174

BIBLIOGRAPHY

Ehrsam, W. F., C. H. W. Meyer, R. L. Powers, J. L. Smith, and W. L. Tuchman (1976,

06). Product block cipher system for data security. Patent. US 3962539.

Fisher, J. A. (1983). Very Long Instruction Word architectures and the ELI-512. In

ISCA ’83: Proceedings of the 10th annual international symposium on Computer

architecture, New York, NY, USA, pp. 140–150. ACM.

Flynn, M. (1972). Some Computer Organizations and Their Effectiveness. IEEE Trans.

Comput. C-21, 948+.

Franchetti, F. and M. Püschel (2003). Short Vector Code Generation for the Discrete

Fourier Transform. In International Parallel and Distributed Processing Symposium

(IPDPS).

Franchetti, F. and M. Püschel (2007). SIMD Vectorization of Non-Two-Power Sized

FFTs. In International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), Volume 2, pp. II–17.

Fraser, C. W. and A. L. Wendt (1988). Automatic generation of fast optimizing code

generators. In Proceedings of the ACM SIGPLAN 1988 conference on Programming

Language design and Implementation, PLDI ’88, New York, NY, USA, pp. 79–84.

ACM.

Freescale Semiconductor (1999). AltiVec Technology Programming Interface Man-

ual. Freescale Semiconductor. http://www.freescale.com/files/32bit/doc/

ref_manual/ALTIVECPIM.pdf.

Frigo, M. and S. G. Johnson (1998). FFTW: An adaptive software architecture for

the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing,

Volume 3, pp. 1381–1384. IEEE.

Frigo, M., Steven, and G. Johnson (2005). The design and implementation of FFTW3.

In Proceedings of the IEEE, pp. 216–231.

Fursin, G., C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks, B. Mendelson,

P. Barnard, E. Ashton, E. Courtois, F. Bodin, E. Bonilla, J. Thomson, H. Leather,

C. Williams, and M. O’Boyle (2008, June). MILEPOST GCC: machine learning

based research compiler. In Proceedings of the GCC Developers’ Summit.

Gladman, B. (2003). Implementations of AES (Rijndael) in C/C++ and as-

sembler. http://gladman.plushost.co.uk/oldsite/cryptography_technology/

rijndael/.

148

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://gladman.plushost.co.uk/oldsite/cryptography_technology/rijndael/
http://gladman.plushost.co.uk/oldsite/cryptography_technology/rijndael/

BIBLIOGRAPHY

Gladman, B. (2009). AES and Combined Encryption/Authentication Modes. http:

//gladman.plushost.co.uk/oldsite/AES.

Gopal, V., W. Feghali, J. Guilford, E. Ozturk, G. Wolrich, M. Dixon, M. Locktyukhin,

and M. Perminov (2010a, April). Fast Cryptographic Computation on Intel Architec-

ture Via Function Stitching (White Paper). http://download.intel.com/design/

intarch/PAPERS/323686.pdf.

Gopal, V., E. Ozturk, W. Feghali, J. Guilford, G. Wolrich, and M. Dixon (2010b,

August). Optimized Galois-Counter-Mode Implementation on Intel Architecture

Processors. http://download.intel.com/design/intarch/PAPERS/324194.pdf.

Gregg, D. (2001, June). Compilation Techniques for Instruction Level Parallelism in

the Presence of Loops and Branches. Ph. D. thesis, Technische Universitaet Wien.

Gueron, S. (2009). Intel’s New AES Instructions for Enhanced Performance and Secu-

rity. In Fast Software Encryption - FSE 2009, Lecture Notes in Computer Science

5665, pp. 51–66. Springer Verlag.

Gueron, S. (2010). Intel Advanced Encryption Standard (AES) Instructions Set (White

Paper). Intel Corp. http://software.intel.com/file/24917.

Gueron, S. and M. E. Kounavis (2010). Intel Carry-Less Multiplication Instruction

and its Usage for Computing the GCM Mode (White Paper). Intel Corp. http:

//software.intel.com/file/24918.

Gummaraju, J., J. Coburn, Y. Turner, and M. Rosenblum (2008). Streamware: pro-

gramming general-purpose multicore processors using streams. SIGOPS Oper. Syst.

Rev. 42 (2), 297–307.

Gummaraju, J., M. Erez, J. Coburn, M. Rosenblum, and W. J. Dally (2007). Architec-

tural Support for the Stream Execution Model on General-Purpose Processors. In

PACT ’07: Proceedings of the 16th International Conference on Parallel Architec-

ture and Compilation Techniques, Washington, DC, USA, pp. 3–12. IEEE Computer

Society.

Gummaraju, J. and M. Rosenblum (2005). Stream Programming on General-Purpose

Processors. In MICRO 38: Proceedings of the 38th annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, Washington, DC, USA, pp. 343–354. IEEE

Computer Society.

149

http://gladman.plushost.co.uk/oldsite/AES
http://gladman.plushost.co.uk/oldsite/AES
http://download.intel.com/design/intarch/PAPERS/323686.pdf
http://download.intel.com/design/intarch/PAPERS/323686.pdf
http://download.intel.com/design/intarch/PAPERS/324194.pdf
http://software.intel.com/file/24917
http://software.intel.com/file/24918
http://software.intel.com/file/24918

BIBLIOGRAPHY

Hamburg, M. (2009). Accelerating AES with Vector Permute Instructions. In Proceed-

ings of the 11th International Workshop on Cryptographic Hardware and Embedded

Systems, CHES ’09, Berlin, Heidelberg, pp. 18–32. Springer-Verlag.

Harrison, O. and J. Waldron (2008). Practical symmetric key cryptography on modern

graphics hardware. In Proceedings of the 17th conference on Security symposium,

Berkeley, CA, USA, pp. 195–209. USENIX Association.

Hennessy, J. L. and D. A. Patterson (1992). Computer Architecture; A Quantitative

Approach (1st ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Hinton, G., D. Sager, M. Upton, D. Boggs, et al. (2001). The Microarchitecture of the

Pentium® 4 Processor. In Intel Technology Journal. Citeseer.

Hoste, K. and L. Eeckhout (2008). COLE: Compiler Optimization Level Exploration.

In Proceedings of the 6th annual IEEE/ACM international symposium on Code gen-

eration and optimization, CGO ’08, New York, NY, USA, pp. 165–174. ACM.

Intel Corp. (2010a). Download the Intel AESNI Sample Li-

brary. Intel Corp. http://software.intel.com/en-us/articles/

download-the-intel-aesni-sample-library/.

Intel Corp. (2010b). Intel Array Building Blocks for Linux* OS Users Guide. In-

tel Corp. http://software.intel.com/sites/products/documentation/arbb/

arbb_userguide_linux.pdf.

Intel Corp. (2011). Intel 64 and IA-32 Architectures Optimization Reference Manual.

Intel Corp. http://www.intel.com/Assets/PDF/manual/248966.pdf.

Khailany, B., W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens,

B. Towles, A. Chang, and S. Rixner (2001). Imagine: Media Processing with Streams.

IEEE Micro 21 (2), 35–46.

Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies.

Journal of Statistical Physics 34 (5), 975–986.

Kohn, L., G. Maturana, M. Tremblay, A. Prabhu, and G. Zyner (1995). The visual

instruction set (VIS) in UltraSPARC. In Proceedings of the 40th IEEE Computer

Society International Conference, COMPCON ’95, Washington, DC, USA, pp. 462–.

IEEE Computer Society.

150

http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://software.intel.com/sites/products/documentation/arbb/arbb_userguide_linux.pdf
http://software.intel.com/sites/products/documentation/arbb/arbb_userguide_linux.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf

BIBLIOGRAPHY

Kosaraju, N. M., M. Varanasi, and S. P. Mohanty (2006). A High-Performance VLSI

Architecture for Advanced Encryption Standard (AES) Algorithm. VLSI Design,

International Conference on, 481–484.

Krall, A. and S. Lelait (2000). Compilation Techniques for Multimedia Processors.

International Journal of Parallel Programming 28, 347–361.

Kudlur, M. and S. Mahlke (2008). Orchestrating the execution of stream programs

on multicore platforms. In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN

conference on Programming language design and implementation, New York, NY,

USA, pp. 114–124. ACM.

Ladd, S. R. (2009). Acovea: Using Natural Selection to Investigate Software Complex-

ities. http://www.coyotegulch.com/products/acovea/.

Lam, M. (1988). Software pipelining: an effective scheduling technique for VLIW

machines. SIGPLAN Not. 23 (7), 318–328.

Larsen, S., R. Rabbah, and S. Amarasinghe (2005). Exploiting Vector Parallelism in

Software Pipelined Loops. In MICRO 38: Proceedings of the 38th annual IEEE/ACM

International Symposium on Microarchitecture, Washington, DC, USA, pp. 119–129.

IEEE Computer Society.

Lawler, E., J. Lenstra, C. Martel, B. Simons, and L. Stockmeyer (1987). Pipeline

Scheduling: A Survey. Research Report RJ-5738, IBM .

Leather, H., E. Bonilla, and M. O’Boyle (2009). Automatic Feature Generation for

Machine Learning Based Optimizing Compilation. In CGO ’09: Proceedings of the

2009 International Symposium on Code Generation and Optimization, Washington,

DC, USA, pp. 81–91. IEEE Computer Society.

Li, X., M. Garzarán, and D. Padua (2004). A dynamically tuned sorting library. In

Code Generation and Optimization, 2004. CGO 2004. International Symposium on,

pp. 111–122. IEEE.

Li, X., M. J. Garzaran, and D. Padua (2005). Optimizing Sorting with Genetic Algo-

rithms. In CGO ’05: Proceedings of the international symposium on Code generation

and optimization, Washington, DC, USA, pp. 99–110. IEEE Computer Society.

Lipmaa, H., P. Rogaway, and D. Wagner (2001). CTR-mode encryption.

151

http://www.coyotegulch.com/products/acovea/

BIBLIOGRAPHY

Lowney, P., S. Freudenberger, T. Karzes, W. Lichtenstein, R. Nix, J. O’donnell, and

J. Ruttenberg (1993). The multiflow trace scheduling compiler. The journal of

Supercomputing 7 (1), 51–142.

Manavski, S. (2007, November). CUDA Compatible GPU as an Efficient Hardware

Accelerator for AES Cryptography. In Signal Processing and Communications, 2007.

ICSPC 2007. IEEE International Conference on, pp. 65 –68.

Massalin, H. (1987). Superoptimizer: A Look at the Smallest Program. SIGPLAN

Not. 22 (10), 122–126.

Matsui, M. and J. Nakajima (2007). On the Power of Bitslice Implementation on Intel

Core2 Processor. In P. Paillier and I. Verbauwhede (Eds.), Cryptographic Hardware

and Embedded Systems - CHES 2007, Volume 4727 of Lecture Notes in Computer

Science, pp. 121–134. Springer Berlin / Heidelberg.

McGrew, D. A. and J. Viega (2004). The Galois/Counter Mode of Oper-

ation (GCM). http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/

gcm/gcm-spec.pdf.

McLoone, M. and J. V. McCanny (2003). Rijndael FPGA Implementations Utilising

Look-Up Tables. The Journal of VLSI Signal Processing 34, 261–275.

Meyer, C. H. and S. M. Matyas (1982). Cryptography: A New Dimension in Computer

Data Security. Wiley, New York :.

Mitchell, C. J. (2005). Cryptanalysis of Two Variants of PCBC Mode When Used

for Message Integrity. In C. Boyd and J. M. Gonzlez Nieto (Eds.), Information

Security and Privacy, Volume 3574 of Lecture Notes in Computer Science, pp. 560–

571. Springer Berlin / Heidelberg.

Monteyne, M. (2008). RapidMind Multi-Core Development Platform. RapidMind Inc.,

Waterloo, Canada, February .

Mucci, P. J. (2009). PapiEx - Execute arbitrary application and measure hardware

performance counters with PAPI. http://icl.cs.utk.edu/~mucci/papiex/.

Munshi, A. (2009). The OpenCL Specification. Khronos OpenCL Working Group,

l1–15.

Naishlos, D. (2004, June). Autovectorization in GCC. In GCC Summit.

152

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://icl.cs.utk.edu/~mucci/papiex/

BIBLIOGRAPHY

Nuzman, D. and R. Henderson (2006). Multi-platform Auto-vectorization. In CGO ’06:

Proceedings of the International Symposium on Code Generation and Optimization,

Washington, DC, USA, pp. 281–294. IEEE Computer Society.

Nuzman, D., I. Rosen, and A. Zaks (2006). Auto-vectorization of interleaved data for

SIMD. SIGPLAN Not. 41 (6), 132–143.

Nuzman, D. and A. Zaks (2006, June). Autovectorization in GCC - two years later. In

GCC Summit.

NVIDIA (2007). Compute Unified Device Architecture Programming Guide. NVIDIA:

Santa Clara, CA.

Owens, J. D., S. Rixner, U. J. Kapasi, P. Mattson, B. Towles, B. Serebrin, and W. J.

Dally (2002). Media Processing Applications on the Imagine Stream Processor.

Computer Design, International Conference on 0, 295.

Paar, C. (2002). The future of the art of cryptographic implementations. In Position

Statement for the STORK Workshop, Brussels.

Pan, Z. and R. Eigenmann (2006a). Fast and Effective Orchestration of Compiler Op-

timizations for Automatic Performance Tuning. In Proceedings of the International

Symposium on Code Generation and Optimization, CGO ’06, Washington, DC, USA,

pp. 319–332. IEEE Computer Society.

Pan, Z. and R. Eigenmann (2006b). Fast, automatic, procedure-level performance

tuning. In Proceedings of the 15th international conference on Parallel architectures

and compilation techniques, PACT ’06, New York, NY, USA, pp. 173–181. ACM.

Püschel, M., J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,

F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo

(2005). SPIRAL: Code Generation for DSP Transforms. Proceedings of the IEEE,

special issue on “Program Generation, Optimization, and Adaptation” 93 (2), 232–

275.

Rau, B. and C. Glaeser (1981). Some scheduling techniques and an easily schedulable

horizontal architecture for high performance scientific computing. In Proceedings of

the 14th annual workshop on Microprogramming, pp. 183–198. IEEE Press.

Rau, B. R. (1994). Iterative modulo scheduling: an algorithm for software pipelining

loops. In MICRO 27: Proceedings of the 27th annual international symposium on

Microarchitecture, New York, NY, USA, pp. 63–74. ACM.

153

BIBLIOGRAPHY

Rebeiro, C., D. Selvakumar, and A. Devi (2006). Bitslice Implementation of AES.

In D. Pointcheval, Y. Mu, and K. Chen (Eds.), Cryptology and Network Security,

Volume 4301 of Lecture Notes in Computer Science, pp. 203–212. Springer Berlin /

Heidelberg.

Ren, G., P. Wu, and D. Padua (2003). A Preliminary Study on the Vectorization

of Multimedia Applications for Multimedia Extensions. In In 16th International

Workshop of Languages and Compilers for Parallel Computing, pp. 420–435.

Rudd, T. (2007). Cheetah - The Python-Powered Template Engine. http://www.

cheetahtemplate.org/.

Skiena, S. S. (1998). The Algorithm Design Manual. New York, NY, USA: Springer-

Verlag New York, Inc.

Smid, M. and D. Branstad (1988, May). Data Encryption Standard: past and future.

Proceedings of the IEEE 76 (5), 550 –559.

Stratton, J., S. Stone, and W. mei Hwu (2008, July). MCUDA: An Efficient Imple-

mentation of CUDA Kernels for Multi-core CPUs. In 21st Annual Workshop on

Languages and Compilers for Parallel Computing (LCPC’2008).

Sun, N. and C.-C. Lin (2007, November). Using the Cryptographic Accelerators in the

UltraSPARC R© T1 and T2 Processors. http://www.sun.com/blueprints/0306/

819-5782.pdf.

Talla, D., L. K. John, and D. Burger (2003). Bottlenecks in Multimedia Processing

with SIMD Style Extensions and Architectural Enhancements. IEEE Trans. Com-

put. 52 (8), 1015–1031.

Taylor, M. B., W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann,

P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank,

S. Amarasinghe, and A. Agarwal (2004). Evaluation of the Raw Microprocessor: An

Exposed-Wire-Delay Architecture for ILP and Streams. In ISCA ’04: Proceedings

of the 31st annual international symposium on Computer architecture, Washington,

DC, USA, pp. 2. IEEE Computer Society.

The National Institute of Standards and Technology (NIST) (2001). Specification for

the Advanced Encryption Standard (AES). The National Institute of Standards and

Technology (NIST).

154

http://www.cheetahtemplate.org/
http://www.cheetahtemplate.org/
http://www.sun.com/blueprints/0306/819-5782.pdf
http://www.sun.com/blueprints/0306/819-5782.pdf

BIBLIOGRAPHY

Thies, W., M. Karczmarek, and S. P. Amarasinghe (2002). StreamIt: A Language for

Streaming Applications. In CC ’02: Proceedings of the 11th International Conference

on Compiler Construction, London, UK, pp. 179–196. Springer-Verlag.

Thuresson, M. (2010). MAO - An Extensible Micro-Architectural Optimizer. http:

//code.google.com/p/mao/.

Tillich, S. and J. Groschdl (2006). Instruction Set Extensions for Efficient AES Imple-

mentation on 32-bit Processors. In L. Goubin and M. Matsui (Eds.), Cryptographic

Hardware and Embedded Systems - CHES 2006, Volume 4249 of Lecture Notes in

Computer Science, pp. 270–284. Springer Berlin / Heidelberg.

Tillich, S. and J. Groschdl (2007). VLSI Implementation of a Functional Unit to

Accelerate ECCandAES on 32-Bit Processors. In C. Carlet and B. Sunar (Eds.),

Arithmetic of Finite Fields, Volume 4547 of Lecture Notes in Computer Science, pp.

40–54. Springer Berlin / Heidelberg.

Tillich, S. and C. Herbst (2008). Boosting AES Performance on a Tiny Processor Core.

In T. Malkin (Ed.), Topics in Cryptology CT-RSA 2008, Volume 4964 of Lecture

Notes in Computer Science, pp. 170–186. Springer Berlin / Heidelberg.

Tournavitis, G., Z. Wang, B. Franke, and M. F. O’Boyle (2009). Towards a holistic

approach to auto-parallelization: integrating profile-driven parallelism detection and

machine-learning based mapping. In PLDI ’09: Proceedings of the 2009 ACM SIG-

PLAN conference on Programming language design and implementation, New York,

NY, USA, pp. 177–187. ACM.

Tullsen, D. M., S. J. Eggers, and H. M. Levy (1995). Simultaneous multithreading:

maximizing on-chip parallelism. In Proceedings of the 22nd annual international

symposium on Computer architecture, ISCA ’95, New York, NY, USA, pp. 392–403.

ACM.

wei Liao, S., Z. Du, G. Wu, and G.-Y. Lueh (2006). Data and Computation Transforma-

tions for Brook Streaming Applications on Multiprocessors. In CGO ’06: Proceedings

of the International Symposium on Code Generation and Optimization, Washington,

DC, USA, pp. 196–207. IEEE Computer Society.

Whaley, C., A. Petitet, and J. J. Dongarra (2000). Automated Empirical Optimization

of Software and the ATLAS Project. Parallel Computing 27, 2001.

155

http://code.google.com/p/mao/
http://code.google.com/p/mao/

BIBLIOGRAPHY

Wolfe, M. J. (1990). Optimizing Supercompilers for Supercomputers. Cambridge, MA,

USA: MIT Press.

Xiong, J., J. Johnson, R. W. Johnson, and D. Padua (2001). SPL: A Language and

Compiler for DSP Algorithms. In Programming Languages Design and Implementa-

tion (PLDI), pp. 298–308.

Zhang, X. D. (2007, August). A Streaming Computation Framework for the Cell

Processor. M.eng. thesis, Massachusetts Institute of Technology, Cambridge, MA.

Zhang, X. D., Q. J. Li, R. Rabbah, and S. Amarasinghe (2007, December). A

Lightweight Streaming Layer for Multicore Execution. In Workshop on Design,

Architecture and Simulation of Chip Multi-Processors, Chicago, IL.

156

Appendix A

Commonly Used Acronyms

AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard New Instructions

AoS Array of Structures

ASM Assembly (Intel)

CBC Cipher-Block Chaining

CBC-MAC Cipher-Block Chaining Message Authentication Code

CCM Counter with CBC-MAC

CFB Cipher Feedback

CPU Central Processing Unit

CTR Counter

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DDG Data Dependency Graph

DSP Digital Signal Processing

ECB Electronic Code Book

FFTW Fastest Fourier Transform in the West

GCC GNU C Compiler

157

Appendix A: Commonly Used Acronyms

GCM Galois/Counter Mode

Ghz Gigahertz

GPP General Purpose Processor

GPU Graphics Processing Unit

HPL High Performance Library (Intel)

ICC Intel C Compiler

ILP Instruction Level Parallelism

ISA Instruction-set Architecture

ISE Instruction-set Extension

OFB Output Feedback

OOO Out-of-Order (architecture)

PCBC Propagating Cipher-Block Chaining

SSA Single Static Assignment

SSE Streaming SIMD Extensions

SIMD Single Instruction, Multiple Data

SMT Simultaneous Multi-Threading

SoA Structure of Arrays

VLIW Very Long Instruction Word

XOR Exclusive Or

158

Appendix B

Additional Tables

Table B.1: ECB Results, as shown in Figure 6.4. Results are shown in cycles/byte.

Keysize
128 192 256

Intel (HPL) 1.26 1.51 1.76
Intel (ASM) 1.359 1.61 1.859
AES-GEN 1.355 1.605 1.855

Table B.2: ECB Results, as shown in Figure 6.5. Results are shown in cycles/byte.

Input Buffer Size
1K 2K 4K 8K 16K 32K

Intel (ASM) 1.359 1.311 1.288 1.276 1.269 1.266
AES-GEN 1.355 1.307 1.278 1.264 1.258 1.255

Table B.3: AES-GEN vs. Intel GCM 128 SMT Results, as shown in Figure 6.10.
Results are shown in cycles/byte.

GCM 128 (Cycles/Byte)
Buffer Size (B) Intel AES-GEN Difference

96 5.79 6.525 0.735
192 4.15 4.562 0.412
384 3.48 3.677 0.197
768 3.13 3.223 0.093
1536 2.96 2.994 0.034
3072 2.88 2.891 0.011
6144 2.83 2.828 -0.002
12288 2.81 2.794 -0.016

159

Appendix B: Additional Tables

Table B.4: CTR Results as shown in Figure 6.11. Results are shown in cycles/byte.

Input Buffer
Encryption Mode 1K 2K 4K 8K 16K 32K
CTR 128 (GEN) 1.363 1.313 1.282 1.266 1.258 1.255
CTR 128 (ASM) 1.443 1.392 1.357 1.339 1.330 1.325
CTR 192 (GEN) 1.617 1.564 1.531 1.516 1.509 1.505
CTR 192 (ASM) 1.720 1.650 1.610 1.591 1.582 1.572
CTR 256 (GEN) 1.867 1.814 1.782 1.766 1.759 1.755
CTR 256 (ASM) 1.980 1.900 1.865 1.843 1.832 1.826

Table B.5: CBC Results as shown in Figure 6.12. Results are shown in cycles/byte.

Input Buffer
Encryption Mode 1K 2K 4K 8K 16K 32K
CBC 128 (GEN) 3.851 3.801 3.775 3.763 3.757 3.753
CBC 128 (ASM) 4.276 4.260 4.226 4.212 4.206 4.200
CBC 192 (GEN) 4.602 4.551 4.525 4.513 4.507 4.503
CBC 192 (ASM) 5.057 5.022 4.991 4.964 4.957 4.954
CBC 256 (GEN) 5.351 5.300 5.276 5.263 5.257 5.253
CBC 256 (ASM) 5.810 5.759 5.746 5.716 5.708 5.704

160

Appendix C

Additional Source Code Listings

Listing C.1: Fastest scheduled CTR (round 1) code found by AES-GEN.

1 void AES CTR Encrypt (m128i ∗ p la in t ex t , m128i ∗ c iphe r t ex t ,

2 m128i ∗key , long long ivec , long nonce , int b locks){
3 int i = 0 ;

4 m128i r e s u l t x ;

5 m128i p l a i n ;

6 const m128i key0 = key [0] ;

7 const m128i key1 = key [1] ;

8 const m128i key3 = key [3] ;

9 const m128i key4 = key [4] ;

10 const m128i key5 = key [5] ;

11 const m128i key6 = key [6] ;

12 const m128i key7 = key [7] ;

13 const m128i key8 = key [8] ;

14 const m128i key9 = key [9] ;

15 m128i counte r b l ock = mm setze ro s i128 () ;

16 unsigned s c a l a r c oun t e r = 0 , s ca l a r key0 , s c a l a r r e s u l t 0 , s c a l a r r e s u l t 1 ;

17 unsigned my counter ;

18 m128i r e s u l t 0 ;

19 m128i f ake key ;

20 m128i r e su l t 1 , saved r1 , table mask ;

21 counte r b l ock = mm inser t ep i64 (counte r b l ock , i v e c , 1) ;

22 counte r b l ock = mm inser t ep i32 (counte r b l ock , nonce , 1) ;

23 counte r b l ock = mm sr l i s i 1 28 (counte r b l ock , 4) ;

24 r e s u l t 0 = mm xor si128 (counte r b l ock , key0) ;

25 s c a l a r k ey0 = mm extract epi32 (key0 , 3) ;

26 r e s u l t 1 = mm inser t ep i32 (r e s u l t 0 , s c a l a r k ey0 & 0xFFFFFF , 3) ;

27 saved r1 = encrypt round (r e s u l t 1 , key1) ;

28 table mask = mm cvts i32 s i128 (tab l e3 [0]) ;

29 saved r1 = mm xor si128 (saved r1 , table mask) ;

30 m128i sp0 f ake key ;

31 unsigned sp0 my counter ;

32 m128i s p 0 r e s u l t 1 ;

33 m128i s p 0 r e s u l t x ;

34 m128i s p 0 r e s u l t x 1 ;

35 m128i s p 0 r e s u l t x 2 ;

36 m128i s p 0 r e s u l t x 3 ;

161

Appendix C: Additional Source Code Listings

37 m128i s p 0 r e s u l t x 4 ;

38 m128i s p 0 r e s u l t x 5 ;

39 m128i s p 0 r e s u l t x 6 ;

40 m128i s p 0 r e s u l t x 7 ;

41 m128i s p 0 r e s u l t x 8 ;

42 unsigned s p 0 s c a l a r c oun t e r ;

43 unsigned s p 0 s c a l a r r e s u l t 0 ;

44 m128i sp0 tab le mask ;

45 m128i sp1 f ake key ;

46 unsigned sp1 my counter ;

47 m128i s p 1 r e s u l t 1 ;

48 m128i s p 1 r e s u l t x ;

49 m128i s p 1 r e s u l t x 1 ;

50 m128i s p 1 r e s u l t x 2 ;

51 m128i s p 1 r e s u l t x 3 ;

52 m128i s p 1 r e s u l t x 4 ;

53 m128i s p 1 r e s u l t x 5 ;

54 m128i s p 1 r e s u l t x 6 ;

55 m128i s p 1 r e s u l t x 7 ;

56 m128i s p 1 r e s u l t x 8 ;

57 unsigned s p 1 s c a l a r c oun t e r ;

58 unsigned s p 1 s c a l a r r e s u l t 0 ;

59 m128i sp1 tab le mask ;

60 m128i sp2 f ake key ;

61 unsigned sp2 my counter ;

62 m128i s p 2 r e s u l t 1 ;

63 m128i s p 2 r e s u l t x ;

64 m128i s p 2 r e s u l t x 1 ;

65 m128i s p 2 r e s u l t x 2 ;

66 m128i s p 2 r e s u l t x 3 ;

67 m128i s p 2 r e s u l t x 4 ;

68 m128i s p 2 r e s u l t x 5 ;

69 m128i s p 2 r e s u l t x 6 ;

70 m128i s p 2 r e s u l t x 7 ;

71 m128i s p 2 r e s u l t x 8 ;

72 unsigned s p 2 s c a l a r c oun t e r ;

73 unsigned s p 2 s c a l a r r e s u l t 0 ;

74 m128i sp2 tab le mask ;

75 m128i sp3 f ake key ;

76 unsigned sp3 my counter ;

77 m128i s p 3 r e s u l t 1 ;

78 m128i s p 3 r e s u l t x ;

79 m128i s p 3 r e s u l t x 1 ;

80 m128i s p 3 r e s u l t x 2 ;

81 m128i s p 3 r e s u l t x 3 ;

82 m128i s p 3 r e s u l t x 4 ;

83 m128i s p 3 r e s u l t x 5 ;

84 m128i s p 3 r e s u l t x 6 ;

85 m128i s p 3 r e s u l t x 7 ;

86 m128i s p 3 r e s u l t x 8 ;

87 unsigned s p 3 s c a l a r c oun t e r ;

88 unsigned s p 3 s c a l a r r e s u l t 0 ;

89 m128i sp3 tab le mask ;

90 m128i sp4 f ake key ;

91 unsigned sp4 my counter ;

162

92 m128i s p 4 r e s u l t 1 ;

93 m128i s p 4 r e s u l t x ;

94 m128i s p 4 r e s u l t x 1 ;

95 m128i s p 4 r e s u l t x 2 ;

96 m128i s p 4 r e s u l t x 3 ;

97 m128i s p 4 r e s u l t x 4 ;

98 m128i s p 4 r e s u l t x 5 ;

99 m128i s p 4 r e s u l t x 6 ;

100 m128i s p 4 r e s u l t x 7 ;

101 m128i s p 4 r e s u l t x 8 ;

102 unsigned s p 4 s c a l a r c oun t e r ;

103 unsigned s p 4 s c a l a r r e s u l t 0 ;

104 m128i sp4 tab le mask ;

105 m128i sp5 f ake key ;

106 unsigned sp5 my counter ;

107 m128i s p 5 r e s u l t 1 ;

108 m128i s p 5 r e s u l t x ;

109 m128i s p 5 r e s u l t x 1 ;

110 m128i s p 5 r e s u l t x 2 ;

111 m128i s p 5 r e s u l t x 3 ;

112 m128i s p 5 r e s u l t x 4 ;

113 m128i s p 5 r e s u l t x 5 ;

114 m128i s p 5 r e s u l t x 6 ;

115 m128i s p 5 r e s u l t x 7 ;

116 m128i s p 5 r e s u l t x 8 ;

117 unsigned s p 5 s c a l a r c oun t e r ;

118 unsigned s p 5 s c a l a r r e s u l t 0 ;

119 m128i sp5 tab le mask ;

120 m128i sp6 f ake key ;

121 unsigned sp6 my counter ;

122 m128i s p 6 r e s u l t 1 ;

123 m128i s p 6 r e s u l t x ;

124 m128i s p 6 r e s u l t x 1 ;

125 m128i s p 6 r e s u l t x 2 ;

126 m128i s p 6 r e s u l t x 3 ;

127 m128i s p 6 r e s u l t x 4 ;

128 m128i s p 6 r e s u l t x 5 ;

129 m128i s p 6 r e s u l t x 6 ;

130 m128i s p 6 r e s u l t x 7 ;

131 m128i s p 6 r e s u l t x 8 ;

132 unsigned s p 6 s c a l a r c oun t e r ;

133 unsigned s p 6 s c a l a r r e s u l t 0 ;

134 m128i sp6 tab le mask ;

135 sp0 fake key= mm xor si128 (key [10] , p l a i n t e x t [i]) ;

136 s p 0 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

137 sp0 my counter= sp0 s c a l a r c oun t e r ;

138 s p 0 s c a l a r r e s u l t 0= ((bswap (s c a l a r k ey0)) & 0xFF) ˆ sp0 my counter ;

139 sp0 tab le mask= mm cvts i32 s i128 (tab l e3 [s p 0 s c a l a r r e s u l t 0]) ;

140 s p 0 r e s u l t 1= mm xor si128 (saved r1 , sp0 tab le mask) ;

141 s p 0 r e s u l t x= encrypt round (sp0 r e su l t 1 , key [2]) ;

142 sp1 fake key= mm xor si128 (key [10] , p l a i n t e x t [1 + i]) ;

143 s p 1 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

144 sp1 my counter= sp1 s c a l a r c oun t e r ;

145 s p 1 s c a l a r r e s u l t 0= ((bswap (s c a l a r k ey0)) & 0xFF) ˆ sp1 my counter ;

146 sp1 tab le mask= mm cvts i32 s i128 (tab l e3 [s p 1 s c a l a r r e s u l t 0]) ;

163

Appendix C: Additional Source Code Listings

147 sp0 r e s u l t x 1= encrypt round (sp0 r e su l t x , key3) ;

148 s p 1 r e s u l t 1= mm xor si128 (saved r1 , sp1 tab le mask) ;

149 s p 1 r e s u l t x= encrypt round (sp1 r e su l t 1 , key [2]) ;

150 sp0 r e s u l t x 2= encrypt round (sp0 r e su l tx1 , key4) ;

151 sp2 fake key= mm xor si128 (key [10] , p l a i n t e x t [2 + i]) ;

152 s p 2 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

153 sp2 my counter= sp2 s c a l a r c oun t e r ;

154 s p 2 s c a l a r r e s u l t 0= ((bswap (s c a l a r k ey0)) & 0xFF) ˆ sp2 my counter ;

155 sp2 tab le mask= mm cvts i32 s i128 (tab l e3 [s p 2 s c a l a r r e s u l t 0]) ;

156 sp1 r e s u l t x 1= encrypt round (sp1 r e su l t x , key3) ;

157 sp0 r e s u l t x 3= encrypt round (sp0 r e su l tx2 , key5) ;

158 s p 2 r e s u l t 1= mm xor si128 (saved r1 , sp2 tab le mask) ;

159 s p 2 r e s u l t x= encrypt round (sp2 r e su l t 1 , key [2]) ;

160 sp1 r e s u l t x 2= encrypt round (sp1 r e su l tx1 , key4) ;

161 sp3 fake key= mm xor si128 (key [10] , p l a i n t e x t [3 + i]) ;

162 s p 3 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

163 sp0 r e s u l t x 4= encrypt round (sp0 r e su l tx3 , key6) ;

164 sp3 my counter= sp3 s c a l a r c oun t e r ;

165 s p 3 s c a l a r r e s u l t 0= ((bswap (s c a l a r k ey0)) & 0xFF) ˆ sp3 my counter ;

166 sp3 tab le mask= mm cvts i32 s i128 (tab l e3 [s p 3 s c a l a r r e s u l t 0]) ;

167 sp2 r e s u l t x 1= encrypt round (sp2 r e su l t x , key3) ;

168 sp1 r e s u l t x 3= encrypt round (sp1 r e su l tx2 , key5) ;

169 sp0 r e s u l t x 5= encrypt round (sp0 r e su l tx4 , key7) ;

170 s p 3 r e s u l t 1= mm xor si128 (saved r1 , sp3 tab le mask) ;

171 s p 3 r e s u l t x= encrypt round (sp3 r e su l t 1 , key [2]) ;

172 sp2 r e s u l t x 2= encrypt round (sp2 r e su l tx1 , key4) ;

173 sp4 fake key= mm xor si128 (key [10] , p l a i n t e x t [4 + i]) ;

174 s p 4 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

175 sp1 r e s u l t x 4= encrypt round (sp1 r e su l tx3 , key6) ;

176 sp4 my counter= sp4 s c a l a r c oun t e r ;

177 s p 4 s c a l a r r e s u l t 0= ((bswap (s c a l a r k ey0)) & 0xFF) ˆ sp4 my counter ;

178 sp0 r e s u l t x 6= encrypt round (sp0 r e su l tx5 , key8) ;

179 sp4 tab le mask= mm cvts i32 s i128 (tab l e3 [s p 4 s c a l a r r e s u l t 0]) ;

180 sp3 r e s u l t x 1= encrypt round (sp3 r e su l t x , key3) ;

181 sp2 r e s u l t x 3= encrypt round (sp2 r e su l tx2 , key5) ;

182 sp1 r e s u l t x 5= encrypt round (sp1 r e su l tx4 , key7) ;

183 s p 4 r e s u l t 1= mm xor si128 (saved r1 , sp4 tab le mask) ;

184 s p 4 r e s u l t x= encrypt round (sp4 r e su l t 1 , key [2]) ;

185 sp0 r e s u l t x 7= encrypt round (sp0 r e su l tx6 , key9) ;

186 sp3 r e s u l t x 2= encrypt round (sp3 r e su l tx1 , key4) ;

187 sp5 fake key= mm xor si128 (key [10] , p l a i n t e x t [5 + i]) ;

188 s p 5 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

189 for (i = 0 ; i < b locks −6; i += 1){
190 sp5 my counter= sp5 s c a l a r c oun t e r ;

191 s p 5 s c a l a r r e s u l t 0= ((bswap (s c a l a r k ey0)) & 0xFF) ˆ sp5 my counter ;

192 sp5 tab le mask= mm cvts i32 s i128 (tab l e3 [s p 5 s c a l a r r e s u l t 0]) ;

193 sp0 r e s u l t x 8= en c r y p t f i n a l (sp0 r e su l tx7 , sp0 f ake key) ;

194 sp1 r e s u l t x 6= encrypt round (sp1 r e su l tx5 , key8) ;

195 sp2 r e s u l t x 4= encrypt round (sp2 r e su l tx3 , key6) ;

196 sp4 r e s u l t x 1= encrypt round (sp4 r e su l t x , key3) ;

197 s p 5 r e s u l t 1= mm xor si128 (saved r1 , sp5 tab le mask) ;

198 c i ph e r t e x t [i] = sp0 r e s u l t x 8 ;

199 sp1 r e s u l t x 7= encrypt round (sp1 r e su l tx6 , key9) ;

200 sp2 r e s u l t x 5= encrypt round (sp2 r e su l tx4 , key7) ;

201 sp3 r e s u l t x 3= encrypt round (sp3 r e su l tx2 , key5) ;

164

202 sp4 r e s u l t x 2= encrypt round (sp4 r e su l tx1 , key4) ;

203 s p 5 r e s u l t x= encrypt round (sp5 r e su l t 1 , key [2]) ;

204 s p 6 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

205 sp6 fake key= mm xor si128 (key [10] , p l a i n t e x t [6 + i]) ;

206 sp0 fake key = sp1 fake key ;

207 s p0 s c a l a r c oun t e r = sp1 s c a l a r c oun t e r ;

208 sp0 my counter = sp1 my counter ;

209 s p 0 s c a l a r r e s u l t 0 = s p 1 s c a l a r r e s u l t 0 ;

210 sp0 tab le mask = sp1 tab le mask ;

211 s p 0 r e s u l t 1 = sp1 r e s u l t 1 ;

212 s p 0 r e s u l t x = sp1 r e s u l t x ;

213 sp0 r e s u l t x 1 = sp1 r e s u l t x 1 ;

214 sp0 r e s u l t x 2 = sp1 r e s u l t x 2 ;

215 sp0 r e s u l t x 3 = sp1 r e s u l t x 3 ;

216 sp0 r e s u l t x 4 = sp1 r e s u l t x 4 ;

217 sp0 r e s u l t x 5 = sp1 r e s u l t x 5 ;

218 sp0 r e s u l t x 6 = sp1 r e s u l t x 6 ;

219 sp0 r e s u l t x 7 = sp1 r e s u l t x 7 ;

220 sp1 fake key = sp2 fake key ;

221 s p1 s c a l a r c oun t e r = sp2 s c a l a r c oun t e r ;

222 sp1 my counter = sp2 my counter ;

223 s p 1 s c a l a r r e s u l t 0 = s p 2 s c a l a r r e s u l t 0 ;

224 sp1 tab le mask = sp2 tab le mask ;

225 s p 1 r e s u l t 1 = sp2 r e s u l t 1 ;

226 s p 1 r e s u l t x = sp2 r e s u l t x ;

227 sp1 r e s u l t x 1 = sp2 r e s u l t x 1 ;

228 sp1 r e s u l t x 2 = sp2 r e s u l t x 2 ;

229 sp1 r e s u l t x 3 = sp2 r e s u l t x 3 ;

230 sp1 r e s u l t x 4 = sp2 r e s u l t x 4 ;

231 sp1 r e s u l t x 5 = sp2 r e s u l t x 5 ;

232 sp2 fake key = sp3 fake key ;

233 s p2 s c a l a r c oun t e r = sp3 s c a l a r c oun t e r ;

234 sp2 my counter = sp3 my counter ;

235 s p 2 s c a l a r r e s u l t 0 = s p 3 s c a l a r r e s u l t 0 ;

236 sp2 tab le mask = sp3 tab le mask ;

237 s p 2 r e s u l t 1 = sp3 r e s u l t 1 ;

238 s p 2 r e s u l t x = sp3 r e s u l t x ;

239 sp2 r e s u l t x 1 = sp3 r e s u l t x 1 ;

240 sp2 r e s u l t x 2 = sp3 r e s u l t x 2 ;

241 sp2 r e s u l t x 3 = sp3 r e s u l t x 3 ;

242 sp3 fake key = sp4 fake key ;

243 s p3 s c a l a r c oun t e r = sp4 s c a l a r c oun t e r ;

244 sp3 my counter = sp4 my counter ;

245 s p 3 s c a l a r r e s u l t 0 = s p 4 s c a l a r r e s u l t 0 ;

246 sp3 tab le mask = sp4 tab le mask ;

247 s p 3 r e s u l t 1 = sp4 r e s u l t 1 ;

248 s p 3 r e s u l t x = sp4 r e s u l t x ;

249 sp3 r e s u l t x 1 = sp4 r e s u l t x 1 ;

250 sp3 r e s u l t x 2 = sp4 r e s u l t x 2 ;

251 sp4 fake key = sp5 fake key ;

252 s p4 s c a l a r c oun t e r = sp5 s c a l a r c oun t e r ;

253 sp4 my counter = sp5 my counter ;

254 s p 4 s c a l a r r e s u l t 0 = s p 5 s c a l a r r e s u l t 0 ;

255 sp4 tab le mask = sp5 tab le mask ;

256 s p 4 r e s u l t 1 = sp5 r e s u l t 1 ;

165

Appendix C: Additional Source Code Listings

257 s p 4 r e s u l t x = sp5 r e s u l t x ;

258 sp5 fake key = sp6 fake key ;

259 s p5 s c a l a r c oun t e r = sp6 s c a l a r c oun t e r ;

260 }
261 sp2 r e s u l t x 4= encrypt round (sp2 r e su l tx3 , key6) ;

262 sp5 my counter= sp5 s c a l a r c oun t e r ;

263 s p 5 s c a l a r r e s u l t 0= ((bswap (s c a l a r k ey0)) & 0xFF) ˆ sp5 my counter ;

264 sp1 r e s u l t x 6= encrypt round (sp1 r e su l tx5 , key8) ;

265 sp5 tab le mask= mm cvts i32 s i128 (tab l e3 [s p 5 s c a l a r r e s u l t 0]) ;

266 sp4 r e s u l t x 1= encrypt round (sp4 r e su l t x , key3) ;

267 sp0 r e s u l t x 8= en c r y p t f i n a l (sp0 r e su l tx7 , sp0 f ake key) ;

268 sp3 r e s u l t x 3= encrypt round (sp3 r e su l tx2 , key5) ;

269 sp2 r e s u l t x 5= encrypt round (sp2 r e su l tx4 , key7) ;

270 s p 5 r e s u l t 1= mm xor si128 (saved r1 , sp5 tab le mask) ;

271 s p 5 r e s u l t x= encrypt round (sp5 r e su l t 1 , key [2]) ;

272 sp1 r e s u l t x 7= encrypt round (sp1 r e su l tx6 , key9) ;

273 sp4 r e s u l t x 2= encrypt round (sp4 r e su l tx1 , key4) ;

274 c i ph e r t e x t [i] = sp0 r e s u l t x 8 ;

275 sp3 r e s u l t x 4= encrypt round (sp3 r e su l tx3 , key6) ;

276 sp2 r e s u l t x 6= encrypt round (sp2 r e su l tx5 , key8) ;

277 sp5 r e s u l t x 1= encrypt round (sp5 r e su l t x , key3) ;

278 sp1 r e s u l t x 8= en c r y p t f i n a l (sp1 r e su l tx7 , sp1 f ake key) ;

279 sp4 r e s u l t x 3= encrypt round (sp4 r e su l tx2 , key5) ;

280 sp3 r e s u l t x 5= encrypt round (sp3 r e su l tx4 , key7) ;

281 sp2 r e s u l t x 7= encrypt round (sp2 r e su l tx6 , key9) ;

282 sp5 r e s u l t x 2= encrypt round (sp5 r e su l tx1 , key4) ;

283 c i ph e r t e x t [1 + i] = sp1 r e s u l t x 8 ;

284 sp4 r e s u l t x 4= encrypt round (sp4 r e su l tx3 , key6) ;

285 sp3 r e s u l t x 6= encrypt round (sp3 r e su l tx5 , key8) ;

286 sp2 r e s u l t x 8= en c r y p t f i n a l (sp2 r e su l tx7 , sp2 f ake key) ;

287 sp5 r e s u l t x 3= encrypt round (sp5 r e su l tx2 , key5) ;

288 sp4 r e s u l t x 5= encrypt round (sp4 r e su l tx4 , key7) ;

289 sp3 r e s u l t x 7= encrypt round (sp3 r e su l tx6 , key9) ;

290 c i ph e r t e x t [2 + i] = sp2 r e s u l t x 8 ;

291 sp5 r e s u l t x 4= encrypt round (sp5 r e su l tx3 , key6) ;

292 sp4 r e s u l t x 6= encrypt round (sp4 r e su l tx5 , key8) ;

293 sp3 r e s u l t x 8= en c r y p t f i n a l (sp3 r e su l tx7 , sp3 f ake key) ;

294 sp5 r e s u l t x 5= encrypt round (sp5 r e su l tx4 , key7) ;

295 sp4 r e s u l t x 7= encrypt round (sp4 r e su l tx6 , key9) ;

296 c i ph e r t e x t [3 + i] = sp3 r e s u l t x 8 ;

297 sp5 r e s u l t x 6= encrypt round (sp5 r e su l tx5 , key8) ;

298 sp4 r e s u l t x 8= en c r y p t f i n a l (sp4 r e su l tx7 , sp4 f ake key) ;

299 sp5 r e s u l t x 7= encrypt round (sp5 r e su l tx6 , key9) ;

300 c i ph e r t e x t [4 + i] = sp4 r e s u l t x 8 ;

301 sp5 r e s u l t x 8= en c r y p t f i n a l (sp5 r e su l tx7 , sp5 f ake key) ;

302 c i ph e r t e x t [5 + i] = sp5 r e s u l t x 8 ;

303 }

166

Listing C.2: Fastest scheduled CTR (round 2) code found by AES-GEN.

1 void AES CTR Encrypt (m128i ∗ p la in t ex t , m128i ∗ c iphe r t ex t ,

2 m128i ∗key , long long ivec , long nonce , int b locks){
3 int i = 0 ;

4 m128i p l a i n ;

5 const m128i key0 = key [0] ;

6 const m128i key3 = key [3] ;

7 const m128i key6 = key [6] ;

8 const m128i key9 = key [9] ;

9 const m128i key11 = key [11] ;

10 const m128i key12 = key [12] ;

11 const m128i key13 = key [13] ;

12 m128i counte r b l ock = mm setze ro s i128 () ;

13 unsigned s c a l a r c oun t e r = 0 , s ca l a r key0 , s c a l a r r 0 , s c a l a r r 1 ;

14 unsigned idx0 , idx1 , idx2 , idx3 , v0 , v1 , v2 , v3 , my counter ;

15 m128i r0 , f ake key ;

16 m128i t0 , t1 , t3 , t4 , t5 , t6 ;

17 m128i r1 , saved r1 , r e su l t 2 , s aved r e su l t 2 ,

18 t a b l e e n t r i e s , second round output ;

19 unsigned f i r s t r ound ou tpu t x0 ;

20 m128i r e s u l t x ;

21 counte r b l ock = mm inser t ep i64 (counte r b l ock , i v e c , 1) ;

22 counte r b l ock = mm inser t ep i32 (counte r b l ock , nonce , 1) ;

23 counte r b l ock = mm sr l i s i 1 28 (counte r b l ock , 4) ;

24 r0 = mm xor si128 (counte r b l ock , key0) ;

25 s c a l a r k ey0 = mm extract epi32 (key0 , 3) ;

26 r1 = mm inser t ep i32 (r0 , s c a l a r k ey0 & 0xFFFFFF , 3) ;

27 saved r1 = encrypt round (r1 , key [1]) ;

28 f i r s t r ound ou tpu t x0 = mm extract ep i32 (saved r1 , 0) ˆ tab l e3 [0] ;

29 r e s u l t 2 = mm inser t ep i32 (saved r1 , 0 , 0) ;

30 s av ed r e s u l t 2 = encrypt round (r e s u l t 2 , key [2]) ;

31 t a b l e e n t r i e s = mm set epi32 (tab l e1 [0] , t ab l e2 [0] , t ab l e3 [0] , t ab l e0 [0]) ;

32 second round output = mm xor si128 (s av ed r e s u l t 2 , t a b l e e n t r i e s) ;

33 m128i sp0 f ake key ;

34 unsigned sp0 idx0 ;

35 unsigned sp0 idx1 ;

36 unsigned sp0 idx2 ;

37 unsigned sp0 idx3 ;

38 unsigned sp0 my counter ;

39 m128i s p 0 r e s u l t 2 ;

40 m128i s p 0 r e s u l t x ;

41 m128i s p 0 r e s u l t x 1 ;

42 m128i s p0 r e su l t x 10 ;

43 m128i s p0 r e su l t x 11 ;

44 m128i s p 0 r e s u l t x 2 ;

45 m128i s p 0 r e s u l t x 3 ;

46 m128i s p 0 r e s u l t x 4 ;

47 m128i s p 0 r e s u l t x 5 ;

48 m128i s p 0 r e s u l t x 6 ;

49 m128i s p 0 r e s u l t x 7 ;

50 m128i s p 0 r e s u l t x 8 ;

51 m128i s p 0 r e s u l t x 9 ;

52 unsigned s p 0 s c a l a r c oun t e r ;

53 unsigned s p 0 s c a l a r r 0 ;

167

Appendix C: Additional Source Code Listings

54 unsigned s p 0 s c a l a r r 1 ;

55 m128i sp0 t0 ;

56 m128i sp0 t1 ;

57 m128i sp0 t3 ;

58 m128i sp0 t4 ;

59 m128i sp0 t5 ;

60 m128i sp0 t6 ;

61 m128i s p 0 t a b l e e n t r i e s ;

62 m128i sp1 f ake key ;

63 unsigned sp1 idx0 ;

64 unsigned sp1 idx1 ;

65 unsigned sp1 idx2 ;

66 unsigned sp1 idx3 ;

67 unsigned sp1 my counter ;

68 m128i s p 1 r e s u l t 2 ;

69 m128i s p 1 r e s u l t x ;

70 m128i s p 1 r e s u l t x 1 ;

71 m128i s p1 r e su l t x 10 ;

72 m128i s p1 r e su l t x 11 ;

73 m128i s p 1 r e s u l t x 2 ;

74 m128i s p 1 r e s u l t x 3 ;

75 m128i s p 1 r e s u l t x 4 ;

76 m128i s p 1 r e s u l t x 5 ;

77 m128i s p 1 r e s u l t x 6 ;

78 m128i s p 1 r e s u l t x 7 ;

79 m128i s p 1 r e s u l t x 8 ;

80 m128i s p 1 r e s u l t x 9 ;

81 unsigned s p 1 s c a l a r c oun t e r ;

82 unsigned s p 1 s c a l a r r 0 ;

83 unsigned s p 1 s c a l a r r 1 ;

84 m128i sp1 t0 ;

85 m128i sp1 t1 ;

86 m128i sp1 t3 ;

87 m128i sp1 t4 ;

88 m128i sp1 t5 ;

89 m128i sp1 t6 ;

90 m128i s p 1 t a b l e e n t r i e s ;

91 m128i sp2 f ake key ;

92 unsigned sp2 idx0 ;

93 unsigned sp2 idx1 ;

94 unsigned sp2 idx2 ;

95 unsigned sp2 idx3 ;

96 unsigned sp2 my counter ;

97 m128i s p 2 r e s u l t 2 ;

98 m128i s p 2 r e s u l t x ;

99 m128i s p 2 r e s u l t x 1 ;

100 m128i s p2 r e su l t x 10 ;

101 m128i s p2 r e su l t x 11 ;

102 m128i s p 2 r e s u l t x 2 ;

103 m128i s p 2 r e s u l t x 3 ;

104 m128i s p 2 r e s u l t x 4 ;

105 m128i s p 2 r e s u l t x 5 ;

106 m128i s p 2 r e s u l t x 6 ;

107 m128i s p 2 r e s u l t x 7 ;

108 m128i s p 2 r e s u l t x 8 ;

168

109 m128i s p 2 r e s u l t x 9 ;

110 unsigned s p 2 s c a l a r c oun t e r ;

111 unsigned s p 2 s c a l a r r 0 ;

112 unsigned s p 2 s c a l a r r 1 ;

113 m128i sp2 t0 ;

114 m128i sp2 t1 ;

115 m128i sp2 t3 ;

116 m128i sp2 t4 ;

117 m128i sp2 t5 ;

118 m128i sp2 t6 ;

119 m128i s p 2 t a b l e e n t r i e s ;

120 m128i sp3 f ake key ;

121 unsigned sp3 idx0 ;

122 unsigned sp3 idx1 ;

123 unsigned sp3 idx2 ;

124 unsigned sp3 idx3 ;

125 unsigned sp3 my counter ;

126 m128i s p 3 r e s u l t 2 ;

127 m128i s p 3 r e s u l t x ;

128 m128i s p 3 r e s u l t x 1 ;

129 m128i s p3 r e su l t x 10 ;

130 m128i s p3 r e su l t x 11 ;

131 m128i s p 3 r e s u l t x 2 ;

132 m128i s p 3 r e s u l t x 3 ;

133 m128i s p 3 r e s u l t x 4 ;

134 m128i s p 3 r e s u l t x 5 ;

135 m128i s p 3 r e s u l t x 6 ;

136 m128i s p 3 r e s u l t x 7 ;

137 m128i s p 3 r e s u l t x 8 ;

138 m128i s p 3 r e s u l t x 9 ;

139 unsigned s p 3 s c a l a r c oun t e r ;

140 unsigned s p 3 s c a l a r r 0 ;

141 unsigned s p 3 s c a l a r r 1 ;

142 m128i sp3 t0 ;

143 m128i sp3 t1 ;

144 m128i sp3 t3 ;

145 m128i sp3 t4 ;

146 m128i sp3 t5 ;

147 m128i sp3 t6 ;

148 m128i s p 3 t a b l e e n t r i e s ;

149 m128i sp4 f ake key ;

150 unsigned sp4 idx0 ;

151 unsigned sp4 idx1 ;

152 unsigned sp4 idx2 ;

153 unsigned sp4 idx3 ;

154 unsigned sp4 my counter ;

155 m128i s p 4 r e s u l t 2 ;

156 m128i s p 4 r e s u l t x ;

157 m128i s p 4 r e s u l t x 1 ;

158 m128i s p4 r e su l t x 10 ;

159 m128i s p4 r e su l t x 11 ;

160 m128i s p 4 r e s u l t x 2 ;

161 m128i s p 4 r e s u l t x 3 ;

162 m128i s p 4 r e s u l t x 4 ;

163 m128i s p 4 r e s u l t x 5 ;

169

Appendix C: Additional Source Code Listings

164 m128i s p 4 r e s u l t x 6 ;

165 m128i s p 4 r e s u l t x 7 ;

166 m128i s p 4 r e s u l t x 8 ;

167 m128i s p 4 r e s u l t x 9 ;

168 unsigned s p 4 s c a l a r c oun t e r ;

169 unsigned s p 4 s c a l a r r 0 ;

170 unsigned s p 4 s c a l a r r 1 ;

171 m128i sp4 t0 ;

172 m128i sp4 t1 ;

173 m128i sp4 t3 ;

174 m128i sp4 t4 ;

175 m128i sp4 t5 ;

176 m128i sp4 t6 ;

177 m128i s p 4 t a b l e e n t r i e s ;

178 m128i sp5 f ake key ;

179 unsigned sp5 idx0 ;

180 unsigned sp5 idx1 ;

181 unsigned sp5 idx2 ;

182 unsigned sp5 idx3 ;

183 unsigned sp5 my counter ;

184 m128i s p 5 r e s u l t 2 ;

185 m128i s p 5 r e s u l t x ;

186 m128i s p 5 r e s u l t x 1 ;

187 m128i s p5 r e su l t x 10 ;

188 m128i s p5 r e su l t x 11 ;

189 m128i s p 5 r e s u l t x 2 ;

190 m128i s p 5 r e s u l t x 3 ;

191 m128i s p 5 r e s u l t x 4 ;

192 m128i s p 5 r e s u l t x 5 ;

193 m128i s p 5 r e s u l t x 6 ;

194 m128i s p 5 r e s u l t x 7 ;

195 m128i s p 5 r e s u l t x 8 ;

196 m128i s p 5 r e s u l t x 9 ;

197 unsigned s p 5 s c a l a r c oun t e r ;

198 unsigned s p 5 s c a l a r r 0 ;

199 unsigned s p 5 s c a l a r r 1 ;

200 m128i sp5 t0 ;

201 m128i sp5 t1 ;

202 m128i sp5 t3 ;

203 m128i sp5 t4 ;

204 m128i sp5 t5 ;

205 m128i sp5 t6 ;

206 m128i s p 5 t a b l e e n t r i e s ;

207 sp0 fake key= mm xor si128 (key [14] , p l a i n t e x t [i]) ;

208 s p 0 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

209 sp0 my counter= sp0 s c a l a r c oun t e r ;

210 s p 0 s c a l a r r 0= (bswap (s c a l a r k ey0) & 0xFF) ˆ sp0 my counter ;

211 s p 0 s c a l a r r 1= tab l e3 [s p 0 s c a l a r r 0] ˆ f i r s t r ound ou tpu t x0 ;

212 sp0 idx3= (sp0 s c a l a r r 1>> 24) ;

213 sp0 idx2= (sp0 s c a l a r r 1>> 16) & 0xFF ;

214 sp0 idx1= (sp0 s c a l a r r 1>> 8) & 0xFF ;

215 sp0 idx0= sp 0 s c a l a r r 1& 0xFF ;

216 sp0 t1= mm cvts i32 s i128 (tab l e3 [sp0 idx3]) ;

217 sp0 t4= mm cvts i32 s i128 (tab l e2 [sp0 idx2]) ;

218 sp0 t5= mm cvts i32 s i128 (tab l e1 [sp0 idx1]) ;

170

219 sp0 t0= mm cvts i32 s i128 (tab l e0 [sp0 idx0]) ;

220 sp1 fake key= mm xor si128 (key [14] , p l a i n t e x t [1 + i]) ;

221 s p 1 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

222 sp1 my counter= sp1 s c a l a r c oun t e r ;

223 s p 1 s c a l a r r 0= (bswap (s c a l a r k ey0) & 0xFF) ˆ sp1 my counter ;

224 sp0 t6= mm unpacklo epi32 (sp0 t4 , sp0 t5) ;

225 sp0 t3= mm unpacklo epi32 (sp0 t0 , sp0 t1) ;

226 s p 1 s c a l a r r 1= tab l e3 [s p 1 s c a l a r r 0] ˆ f i r s t r ound ou tpu t x0 ;

227 s p 0 t a b l e e n t r i e s= mm unpacklo epi64 (sp0 t3 , sp0 t6) ;

228 s p 0 r e s u l t 2= mm xor si128 (second round output , s p 0 t a b l e e n t r i e s) ;

229 s p 0 r e s u l t x= encrypt round (sp0 r e su l t 2 , key3) ;

230 sp1 idx3= (sp1 s c a l a r r 1>> 24) ;

231 sp1 idx2= (sp1 s c a l a r r 1>> 16) & 0xFF ;

232 sp1 idx1= (sp1 s c a l a r r 1>> 8) & 0xFF ;

233 sp1 idx0= sp 1 s c a l a r r 1& 0xFF ;

234 sp0 r e s u l t x 1= encrypt round (sp0 r e su l t x , key [4]) ;

235 sp1 t1= mm cvts i32 s i128 (tab l e3 [sp1 idx3]) ;

236 sp1 t4= mm cvts i32 s i128 (tab l e2 [sp1 idx2]) ;

237 sp1 t5= mm cvts i32 s i128 (tab l e1 [sp1 idx1]) ;

238 sp1 t0= mm cvts i32 s i128 (tab l e0 [sp1 idx0]) ;

239 sp0 r e s u l t x 2= encrypt round (sp0 r e su l tx1 , key [5]) ;

240 sp2 fake key= mm xor si128 (key [14] , p l a i n t e x t [2 + i]) ;

241 s p 2 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

242 sp2 my counter= sp2 s c a l a r c oun t e r ;

243 s p 2 s c a l a r r 0= (bswap (s c a l a r k ey0) & 0xFF) ˆ sp2 my counter ;

244 sp1 t6= mm unpacklo epi32 (sp1 t4 , sp1 t5) ;

245 sp1 t3= mm unpacklo epi32 (sp1 t0 , sp1 t1) ;

246 s p 2 s c a l a r r 1= tab l e3 [s p 2 s c a l a r r 0] ˆ f i r s t r ound ou tpu t x0 ;

247 s p 1 t a b l e e n t r i e s= mm unpacklo epi64 (sp1 t3 , sp1 t6) ;

248 s p 1 r e s u l t 2= mm xor si128 (second round output , s p 1 t a b l e e n t r i e s) ;

249 s p 1 r e s u l t x= encrypt round (sp1 r e su l t 2 , key3) ;

250 sp0 r e s u l t x 3= encrypt round (sp0 r e su l tx2 , key6) ;

251 sp2 idx3= (sp2 s c a l a r r 1>> 24) ;

252 sp2 idx2= (sp2 s c a l a r r 1>> 16) & 0xFF ;

253 sp2 idx1= (sp2 s c a l a r r 1>> 8) & 0xFF ;

254 sp2 idx0= sp 2 s c a l a r r 1& 0xFF ;

255 sp1 r e s u l t x 1= encrypt round (sp1 r e su l t x , key [4]) ;

256 sp0 r e s u l t x 4= encrypt round (sp0 r e su l tx3 , key [7]) ;

257 sp2 t1= mm cvts i32 s i128 (tab l e3 [sp2 idx3]) ;

258 sp2 t4= mm cvts i32 s i128 (tab l e2 [sp2 idx2]) ;

259 sp2 t5= mm cvts i32 s i128 (tab l e1 [sp2 idx1]) ;

260 sp2 t0= mm cvts i32 s i128 (tab l e0 [sp2 idx0]) ;

261 sp1 r e s u l t x 2= encrypt round (sp1 r e su l tx1 , key [5]) ;

262 sp3 fake key= mm xor si128 (key [14] , p l a i n t e x t [3 + i]) ;

263 s p 3 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

264 sp0 r e s u l t x 5= encrypt round (sp0 r e su l tx4 , key [8]) ;

265 sp3 my counter= sp3 s c a l a r c oun t e r ;

266 s p 3 s c a l a r r 0= (bswap (s c a l a r k ey0) & 0xFF) ˆ sp3 my counter ;

267 sp2 t6= mm unpacklo epi32 (sp2 t4 , sp2 t5) ;

268 sp2 t3= mm unpacklo epi32 (sp2 t0 , sp2 t1) ;

269 s p 3 s c a l a r r 1= tab l e3 [s p 3 s c a l a r r 0] ˆ f i r s t r ound ou tpu t x0 ;

270 s p 2 t a b l e e n t r i e s= mm unpacklo epi64 (sp2 t3 , sp2 t6) ;

271 s p 2 r e s u l t 2= mm xor si128 (second round output , s p 2 t a b l e e n t r i e s) ;

272 s p 2 r e s u l t x= encrypt round (sp2 r e su l t 2 , key3) ;

273 sp1 r e s u l t x 3= encrypt round (sp1 r e su l tx2 , key6) ;

171

Appendix C: Additional Source Code Listings

274 sp0 r e s u l t x 6= encrypt round (sp0 r e su l tx5 , key9) ;

275 sp3 idx3= (sp3 s c a l a r r 1>> 24) ;

276 sp3 idx2= (sp3 s c a l a r r 1>> 16) & 0xFF ;

277 sp3 idx1= (sp3 s c a l a r r 1>> 8) & 0xFF ;

278 sp3 idx0= sp 3 s c a l a r r 1& 0xFF ;

279 sp2 r e s u l t x 1= encrypt round (sp2 r e su l t x , key [4]) ;

280 sp1 r e s u l t x 4= encrypt round (sp1 r e su l tx3 , key [7]) ;

281 sp3 t1= mm cvts i32 s i128 (tab l e3 [sp3 idx3]) ;

282 sp3 t4= mm cvts i32 s i128 (tab l e2 [sp3 idx2]) ;

283 sp3 t5= mm cvts i32 s i128 (tab l e1 [sp3 idx1]) ;

284 sp3 t0= mm cvts i32 s i128 (tab l e0 [sp3 idx0]) ;

285 sp0 r e s u l t x 7= encrypt round (sp0 r e su l tx6 , key [10]) ;

286 sp2 r e s u l t x 2= encrypt round (sp2 r e su l tx1 , key [5]) ;

287 sp4 fake key= mm xor si128 (key [14] , p l a i n t e x t [4 + i]) ;

288 s p 4 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

289 sp1 r e s u l t x 5= encrypt round (sp1 r e su l tx4 , key [8]) ;

290 sp0 r e s u l t x 8= encrypt round (sp0 r e su l tx7 , key11) ;

291 sp4 my counter= sp4 s c a l a r c oun t e r ;

292 s p 4 s c a l a r r 0= (bswap (s c a l a r k ey0) & 0xFF) ˆ sp4 my counter ;

293 sp3 t6= mm unpacklo epi32 (sp3 t4 , sp3 t5) ;

294 sp3 t3= mm unpacklo epi32 (sp3 t0 , sp3 t1) ;

295 s p 4 s c a l a r r 1= tab l e3 [s p 4 s c a l a r r 0] ˆ f i r s t r ound ou tpu t x0 ;

296 s p 3 t a b l e e n t r i e s= mm unpacklo epi64 (sp3 t3 , sp3 t6) ;

297 s p 3 r e s u l t 2= mm xor si128 (second round output , s p 3 t a b l e e n t r i e s) ;

298 s p 3 r e s u l t x= encrypt round (sp3 r e su l t 2 , key3) ;

299 sp2 r e s u l t x 3= encrypt round (sp2 r e su l tx2 , key6) ;

300 sp1 r e s u l t x 6= encrypt round (sp1 r e su l tx5 , key9) ;

301 sp0 r e s u l t x 9= encrypt round (sp0 r e su l tx8 , key12) ;

302 for (i = 0 ; i < b locks −5; i += 1){
303 sp4 idx0= sp 4 s c a l a r r 1& 0xFF ;

304 sp4 idx1= (sp4 s c a l a r r 1>> 8) & 0xFF ;

305 sp4 idx2= (sp4 s c a l a r r 1>> 16) & 0xFF ;

306 sp4 idx3= (sp4 s c a l a r r 1>> 24) ;

307 sp4 t0= mm cvts i32 s i128 (tab l e0 [sp4 idx0]) ;

308 sp4 t5= mm cvts i32 s i128 (tab l e1 [sp4 idx1]) ;

309 sp4 t4= mm cvts i32 s i128 (tab l e2 [sp4 idx2]) ;

310 sp4 t1= mm cvts i32 s i128 (tab l e3 [sp4 idx3]) ;

311 sp4 t3= mm unpacklo epi32 (sp4 t0 , sp4 t1) ;

312 sp4 t6= mm unpacklo epi32 (sp4 t4 , sp4 t5) ;

313 s p 5 s c a l a r c oun t e r = s c a l a r c oun t e r = s c a l a r c oun t e r + 1 ;

314 sp5 fake key= mm xor si128 (key [14] , p l a i n t e x t [5 + i]) ;

315 sp0 r e su l t x 10= encrypt round (sp0 r e su l tx9 , key13) ;

316 sp1 r e s u l t x 7= encrypt round (sp1 r e su l tx6 , key [10]) ;

317 sp2 r e s u l t x 4= encrypt round (sp2 r e su l tx3 , key [7]) ;

318 sp3 r e s u l t x 1= encrypt round (sp3 r e su l t x , key [4]) ;

319 s p 4 t a b l e e n t r i e s= mm unpacklo epi64 (sp4 t3 , sp4 t6) ;

320 sp5 my counter= sp5 s c a l a r c oun t e r ;

321 sp0 r e su l t x 11= en c r y p t f i n a l (sp0 r e su l tx10 , sp0 f ake key) ;

322 sp1 r e s u l t x 8= encrypt round (sp1 r e su l tx7 , key11) ;

323 sp2 r e s u l t x 5= encrypt round (sp2 r e su l tx4 , key [8]) ;

324 sp3 r e s u l t x 2= encrypt round (sp3 r e su l tx1 , key [5]) ;

325 s p 4 r e s u l t 2= mm xor si128 (second round output , s p 4 t a b l e e n t r i e s) ;

326 s p 5 s c a l a r r 0= (bswap (s c a l a r k ey0) & 0xFF) ˆ sp5 my counter ;

327 c i ph e r t e x t [i] = sp0 r e su l t x 11 ;

328 sp1 r e s u l t x 9= encrypt round (sp1 r e su l tx8 , key12) ;

172

329 sp2 r e s u l t x 6= encrypt round (sp2 r e su l tx5 , key9) ;

330 sp3 r e s u l t x 3= encrypt round (sp3 r e su l tx2 , key6) ;

331 s p 4 r e s u l t x= encrypt round (sp4 r e su l t 2 , key3) ;

332 s p 5 s c a l a r r 1= tab l e3 [s p 5 s c a l a r r 0] ˆ f i r s t r ound ou tpu t x0 ;

333 sp0 fake key = sp1 fake key ;

334 s p0 s c a l a r c oun t e r = sp1 s c a l a r c oun t e r ;

335 sp0 my counter = sp1 my counter ;

336 s p 0 s c a l a r r 0 = s p 1 s c a l a r r 0 ;

337 s p 0 s c a l a r r 1 = s p 1 s c a l a r r 1 ;

338 sp0 idx3 = sp1 idx3 ;

339 sp0 idx2 = sp1 idx2 ;

340 sp0 idx1 = sp1 idx1 ;

341 sp0 idx0 = sp1 idx0 ;

342 sp0 t1 = sp1 t1 ;

343 sp0 t4 = sp1 t4 ;

344 sp0 t5 = sp1 t5 ;

345 sp0 t0 = sp1 t0 ;

346 sp0 t6 = sp1 t6 ;

347 sp0 t3 = sp1 t3 ;

348 s p 0 t a b l e e n t r i e s = s p 1 t a b l e e n t r i e s ;

349 s p 0 r e s u l t 2 = sp1 r e s u l t 2 ;

350 s p 0 r e s u l t x = sp1 r e s u l t x ;

351 sp0 r e s u l t x 1 = sp1 r e s u l t x 1 ;

352 sp0 r e s u l t x 2 = sp1 r e s u l t x 2 ;

353 sp0 r e s u l t x 3 = sp1 r e s u l t x 3 ;

354 sp0 r e s u l t x 4 = sp1 r e s u l t x 4 ;

355 sp0 r e s u l t x 5 = sp1 r e s u l t x 5 ;

356 sp0 r e s u l t x 6 = sp1 r e s u l t x 6 ;

357 sp0 r e s u l t x 7 = sp1 r e s u l t x 7 ;

358 sp0 r e s u l t x 8 = sp1 r e s u l t x 8 ;

359 sp0 r e s u l t x 9 = sp1 r e s u l t x 9 ;

360 sp1 fake key = sp2 fake key ;

361 s p1 s c a l a r c oun t e r = sp2 s c a l a r c oun t e r ;

362 sp1 my counter = sp2 my counter ;

363 s p 1 s c a l a r r 0 = s p 2 s c a l a r r 0 ;

364 s p 1 s c a l a r r 1 = s p 2 s c a l a r r 1 ;

365 sp1 idx3 = sp2 idx3 ;

366 sp1 idx2 = sp2 idx2 ;

367 sp1 idx1 = sp2 idx1 ;

368 sp1 idx0 = sp2 idx0 ;

369 sp1 t1 = sp2 t1 ;

370 sp1 t4 = sp2 t4 ;

371 sp1 t5 = sp2 t5 ;

372 sp1 t0 = sp2 t0 ;

373 sp1 t6 = sp2 t6 ;

374 sp1 t3 = sp2 t3 ;

375 s p 1 t a b l e e n t r i e s = s p 2 t a b l e e n t r i e s ;

376 s p 1 r e s u l t 2 = sp2 r e s u l t 2 ;

377 s p 1 r e s u l t x = sp2 r e s u l t x ;

378 sp1 r e s u l t x 1 = sp2 r e s u l t x 1 ;

379 sp1 r e s u l t x 2 = sp2 r e s u l t x 2 ;

380 sp1 r e s u l t x 3 = sp2 r e s u l t x 3 ;

381 sp1 r e s u l t x 4 = sp2 r e s u l t x 4 ;

382 sp1 r e s u l t x 5 = sp2 r e s u l t x 5 ;

383 sp1 r e s u l t x 6 = sp2 r e s u l t x 6 ;

173

Appendix C: Additional Source Code Listings

384 sp2 fake key = sp3 fake key ;

385 s p2 s c a l a r c oun t e r = sp3 s c a l a r c oun t e r ;

386 sp2 my counter = sp3 my counter ;

387 s p 2 s c a l a r r 0 = s p 3 s c a l a r r 0 ;

388 s p 2 s c a l a r r 1 = s p 3 s c a l a r r 1 ;

389 sp2 idx3 = sp3 idx3 ;

390 sp2 idx2 = sp3 idx2 ;

391 sp2 idx1 = sp3 idx1 ;

392 sp2 idx0 = sp3 idx0 ;

393 sp2 t1 = sp3 t1 ;

394 sp2 t4 = sp3 t4 ;

395 sp2 t5 = sp3 t5 ;

396 sp2 t0 = sp3 t0 ;

397 sp2 t6 = sp3 t6 ;

398 sp2 t3 = sp3 t3 ;

399 s p 2 t a b l e e n t r i e s = s p 3 t a b l e e n t r i e s ;

400 s p 2 r e s u l t 2 = sp3 r e s u l t 2 ;

401 s p 2 r e s u l t x = sp3 r e s u l t x ;

402 sp2 r e s u l t x 1 = sp3 r e s u l t x 1 ;

403 sp2 r e s u l t x 2 = sp3 r e s u l t x 2 ;

404 sp2 r e s u l t x 3 = sp3 r e s u l t x 3 ;

405 sp3 fake key = sp4 fake key ;

406 s p3 s c a l a r c oun t e r = sp4 s c a l a r c oun t e r ;

407 sp3 my counter = sp4 my counter ;

408 s p 3 s c a l a r r 0 = s p 4 s c a l a r r 0 ;

409 s p 3 s c a l a r r 1 = s p 4 s c a l a r r 1 ;

410 sp3 idx3 = sp4 idx3 ;

411 sp3 idx2 = sp4 idx2 ;

412 sp3 idx1 = sp4 idx1 ;

413 sp3 idx0 = sp4 idx0 ;

414 sp3 t1 = sp4 t1 ;

415 sp3 t4 = sp4 t4 ;

416 sp3 t5 = sp4 t5 ;

417 sp3 t0 = sp4 t0 ;

418 sp3 t6 = sp4 t6 ;

419 sp3 t3 = sp4 t3 ;

420 s p 3 t a b l e e n t r i e s = s p 4 t a b l e e n t r i e s ;

421 s p 3 r e s u l t 2 = sp4 r e s u l t 2 ;

422 s p 3 r e s u l t x = sp4 r e s u l t x ;

423 sp4 fake key = sp5 fake key ;

424 s p4 s c a l a r c oun t e r = sp5 s c a l a r c oun t e r ;

425 sp4 my counter = sp5 my counter ;

426 s p 4 s c a l a r r 0 = s p 5 s c a l a r r 0 ;

427 s p 4 s c a l a r r 1 = s p 5 s c a l a r r 1 ;

428 }
429 sp4 idx0= sp 4 s c a l a r r 1& 0xFF ;

430 sp4 idx1= (sp4 s c a l a r r 1>> 8) & 0xFF ;

431 sp4 idx2= (sp4 s c a l a r r 1>> 16) & 0xFF ;

432 sp4 idx3= (sp4 s c a l a r r 1>> 24) ;

433 sp3 r e s u l t x 1= encrypt round (sp3 r e su l t x , key [4]) ;

434 sp2 r e s u l t x 4= encrypt round (sp2 r e su l tx3 , key [7]) ;

435 sp4 t0= mm cvts i32 s i128 (tab l e0 [sp4 idx0]) ;

436 sp4 t5= mm cvts i32 s i128 (tab l e1 [sp4 idx1]) ;

437 sp4 t4= mm cvts i32 s i128 (tab l e2 [sp4 idx2]) ;

438 sp4 t1= mm cvts i32 s i128 (tab l e3 [sp4 idx3]) ;

174

439 sp1 r e s u l t x 7= encrypt round (sp1 r e su l tx6 , key [10]) ;

440 sp0 r e su l t x 10= encrypt round (sp0 r e su l tx9 , key13) ;

441 sp3 r e s u l t x 2= encrypt round (sp3 r e su l tx1 , key [5]) ;

442 sp2 r e s u l t x 5= encrypt round (sp2 r e su l tx4 , key [8]) ;

443 sp1 r e s u l t x 8= encrypt round (sp1 r e su l tx7 , key11) ;

444 sp0 r e su l t x 11= en c r y p t f i n a l (sp0 r e su l tx10 , sp0 f ake key) ;

445 sp4 t3= mm unpacklo epi32 (sp4 t0 , sp4 t1) ;

446 sp4 t6= mm unpacklo epi32 (sp4 t4 , sp4 t5) ;

447 s p 4 t a b l e e n t r i e s= mm unpacklo epi64 (sp4 t3 , sp4 t6) ;

448 s p 4 r e s u l t 2= mm xor si128 (second round output , s p 4 t a b l e e n t r i e s) ;

449 s p 4 r e s u l t x= encrypt round (sp4 r e su l t 2 , key3) ;

450 sp3 r e s u l t x 3= encrypt round (sp3 r e su l tx2 , key6) ;

451 sp2 r e s u l t x 6= encrypt round (sp2 r e su l tx5 , key9) ;

452 sp1 r e s u l t x 9= encrypt round (sp1 r e su l tx8 , key12) ;

453 c i ph e r t e x t [i] = sp0 r e su l t x 11 ;

454 sp4 r e s u l t x 1= encrypt round (sp4 r e su l t x , key [4]) ;

455 sp3 r e s u l t x 4= encrypt round (sp3 r e su l tx3 , key [7]) ;

456 sp2 r e s u l t x 7= encrypt round (sp2 r e su l tx6 , key [10]) ;

457 sp1 r e su l t x 10= encrypt round (sp1 r e su l tx9 , key13) ;

458 sp4 r e s u l t x 2= encrypt round (sp4 r e su l tx1 , key [5]) ;

459 sp3 r e s u l t x 5= encrypt round (sp3 r e su l tx4 , key [8]) ;

460 sp2 r e s u l t x 8= encrypt round (sp2 r e su l tx7 , key11) ;

461 sp1 r e su l t x 11= en c r y p t f i n a l (sp1 r e su l tx10 , sp1 f ake key) ;

462 sp4 r e s u l t x 3= encrypt round (sp4 r e su l tx2 , key6) ;

463 sp3 r e s u l t x 6= encrypt round (sp3 r e su l tx5 , key9) ;

464 sp2 r e s u l t x 9= encrypt round (sp2 r e su l tx8 , key12) ;

465 c i ph e r t e x t [1 + i] = sp1 r e su l t x 11 ;

466 sp4 r e s u l t x 4= encrypt round (sp4 r e su l tx3 , key [7]) ;

467 sp3 r e s u l t x 7= encrypt round (sp3 r e su l tx6 , key [10]) ;

468 sp2 r e su l t x 10= encrypt round (sp2 r e su l tx9 , key13) ;

469 sp4 r e s u l t x 5= encrypt round (sp4 r e su l tx4 , key [8]) ;

470 sp3 r e s u l t x 8= encrypt round (sp3 r e su l tx7 , key11) ;

471 sp2 r e su l t x 11= en c r y p t f i n a l (sp2 r e su l tx10 , sp2 f ake key) ;

472 sp4 r e s u l t x 6= encrypt round (sp4 r e su l tx5 , key9) ;

473 sp3 r e s u l t x 9= encrypt round (sp3 r e su l tx8 , key12) ;

474 c i ph e r t e x t [2 + i] = sp2 r e su l t x 11 ;

475 sp4 r e s u l t x 7= encrypt round (sp4 r e su l tx6 , key [10]) ;

476 sp3 r e su l t x 10= encrypt round (sp3 r e su l tx9 , key13) ;

477 sp4 r e s u l t x 8= encrypt round (sp4 r e su l tx7 , key11) ;

478 sp3 r e su l t x 11= en c r y p t f i n a l (sp3 r e su l tx10 , sp3 f ake key) ;

479 sp4 r e s u l t x 9= encrypt round (sp4 r e su l tx8 , key12) ;

480 c i ph e r t e x t [3 + i] = sp3 r e su l t x 11 ;

481 sp4 r e su l t x 10= encrypt round (sp4 r e su l tx9 , key13) ;

482 sp4 r e su l t x 11= en c r y p t f i n a l (sp4 r e su l tx10 , sp4 f ake key) ;

483 c i ph e r t e x t [4 + i] = sp4 r e su l t x 11 ;

484 }

175

Appendix D

“Sandy Bridge” Results

Table D.1: Performance of AES-GEN generated code on Sandy Bridge. (*) Results for
CTR (round 1) and CTR (round 2) reference 4080B, all others reference 32K.

AES-128 AES-256

Encryption cycles/byte cycles/round cycles/byte cycles/round

Mode 1K 32K* 1K 32K* 1K 32K* 1K 32K*

Parallel Modes

CTR 0.945 0.791 1.512 1.266 1.313 1.102 1.501 1.259

CTR-SX 1.020 0.845 1.632 1.352 1.344 1.151 1.536 1.315

CTR-R1* 0.994 0.890 1.590 1.424 1.309 1.182 1.496 1.351

CTR-R2* 1.238 1.119 1.981 1.790 1.523 1.353 1.741 1.546

ECB 0.910 0.754 1.456 1.206 1.238 1.056 1.415 1.207

Cyclic Modes

CBC1 5.117 5.004 8.187 8.006 7.117 7.004 8.134 8.005

CBC2 2.561 2.502 4.098 4.003 3.561 3.502 4.070 4.002

CBC3 1.710 1.670 2.736 2.672 2.379 2.335 2.719 2.669

CBC4 1.285 1.255 2.056 2.008 1.787 1.755 2.042 2.006

CBC5 1.035 1.022 1.656 1.635 1.436 1.653 1.641 1.889

CBC6 0.911 0.907 1.458 1.451 1.225 1.217 1.400 1.391

CBC7 0.859 0.889 1.374 1.422 1.162 1.219 1.328 1.393

CBC8 0.898 0.937 1.437 1.499 1.205 1.191 1.377 1.361

Authentication Modes

GCM 1x 3.930 3.669 6.288 5.870 4.242 3.894 4.848 4.450

GCM 4x 3.250 2.815 5.200 4.504 3.613 3.126 4.129 3.573

CCM 5.121 5.005 4.097 4.004 7.137 7.010 4.078 4.006

177

Appendix D: “Sandy Bridge” Results

Table D.2: Performance of AES-GEN generated code on Sandy Bridge in SMT mode.
(*) Results for CTR (round 1) and CTR (round 2) reference 4080B, all others reference
32K.

AES-128 AES-256
Encryption cycles/byte cycles/round cycles/byte cycles/round
Mode 1K 32K* 1K 32K* 1K 32K* 1K 32K*

Parallel Modes
CTR 0.865 0.809 1.384 1.294 1.189 1.129 1.359 1.290
CTR-SX 0.873 0.831 1.397 1.330 1.203 1.127 1.375 1.288
CTR-R1* 0.867 0.823 1.387 1.317 1.207 1.162 1.379 1.328
CTR-R2* 1.051 0.979 1.682 1.566 1.365 1.303 1.560 1.489
ECB 0.885 0.881 1.416 1.410 1.254 1.108 1.433 1.266

Cyclic Modes
CBC1 2.568 2.504 4.109 4.006 3.568 3.505 4.078 4.006
CBC2 1.290 1.252 2.064 2.003 1.790 1.754 2.046 2.005
CBC3 0.910 0.884 1.456 1.414 1.250 1.228 1.429 1.403
CBC4 0.851 0.842 1.362 1.347 1.166 1.156 1.333 1.321
CBC5 0.846 0.868 1.354 1.389 1.164 1.189 1.330 1.359
CBC6 0.876 0.915 1.402 1.464 1.193 1.220 1.363 1.394
CBC7 0.893 0.968 1.429 1.549 1.222 1.278 1.397 1.461
CBC8 0.916 0.986 1.466 1.578 1.232 1.283 1.408 1.466

Authentication Modes
GCM 1x 3.414 3.168 5.462 5.069 3.773 3.525 4.312 4.029
GCM 4x 2.701 2.367 4.322 3.787 3.059 2.766 3.496 3.161
CCM 2.604 2.523 2.083 2.018 4.477 4.426 2.558 2.529

178

	Abstract
	List of Tables
	List of Figures
	List of Code Listings
	Motivation
	Thesis
	Contributions
	Relevant Academic Publications
	Dissertation Outline

	Background
	Architectural Features
	Instruction Pipelining
	Superscalar
	Simultaneous Multithreading
	Vector/SIMD
	Autovectorization

	Software ILP Optimizations
	Instruction Scheduling
	Loop Unrolling
	Software Pipelining
	Modulo Scheduling

	Program Generation
	Domain Specific Code Generators
	Traversing the Search Space
	Simulated Annealing

	Streaming Languages

	Vector Code Generation for GPPs
	Introduction
	Brook
	Modifications to Brook
	Modifying the Code Generator
	Modifying the Runtime

	Generating Vector Code
	General operations
	Arrays
	Conditional Assignments
	For loops inside kernels
	Reduce Kernels
	Selective Vectorization

	Results
	Analyzing Performance

	Related Work
	Conclusion

	AES Encryption in Software and Hardware
	AES
	Block Cipher Modes
	Parallel Modes
	Cyclic Modes
	Combined Encryption and Authentication

	AES Software Acceleration
	AES Hardware Acceleration
	Intel AES-NI
	Conclusion

	CTR and CBC Program Generation
	Introduction
	CTR and CBC Code Generation
	CTR Optimizations
	Optimizations for Both Modes
	CBC Optimizations
	Simulated Annealing

	Results
	Cycles per Byte
	Selective-Exhaustive Searches
	Guided Search using Simulated Annealing

	Conclusion

	Generalized AES Program Generation
	Introduction
	GEN1 vs. AES-GEN
	Function Stitching
	Cycles per Round

	The AES-GEN Program Generator
	Algorithmic Choices with Cheetah
	The ILP Optimizer
	Code Tuning

	Generator Flexibility with Parallel Algorithms
	Counter (CTR)
	Electronic Codebook (ECB)
	Performance Observations for CTR and ECB Modes

	Algorithmic Variations with Cyclic Algorithms
	Cipher-Block Chaining (CBC)
	PCBC, CFB, and OFB
	Applicability of XOR Optimizations to Other AES Modes

	Combining Algorithms via Function Stitching
	Galois/Counter Mode (GCM)
	Counter with CBC-MAC (CCM)

	Experimental Results
	Generated Code Performance
	AES-GEN vs Hand-tuned Assembly
	Why Not Optimize with a Standard Compiler?

	Related Work
	Conclusion

	Final Thoughts
	Security
	Future Work
	High-level Choices
	ILP Optimizations
	Traversing the Search Space

	Applicability to Other Applications
	Generality
	Instruction Scheduling for Out-of-Order Architectures

	Assessment of Contributions
	Conclusion

	Bibliography
	Appendix Commonly Used Acronyms
	Appendix Additional Tables
	Appendix Additional Source Code Listings
	Appendix ``Sandy Bridge'' Results

