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Summary 
This thesis focusses on the development of an experimental and computational 

framework for the non-invasive analysis of the passive mechanical properties of living 

human skeletal muscle tissue. This is relevant to many areas of research including impact 

biomechanics and rehabilitation engineering.  

 Although constitutive models have been proposed for muscle tissue these have 

been insufficiently validated for human tissue which requires non-invasive methods. 

Non-invasive analysis of the mechanical properties of soft tissue requires non-invasive 

mechanical exciting and inverse analysis of non-invasively measured experimental 

boundary conditions such as tissue deformation and applied load.  

Magnetic Resonance Imaging (MRI) provides excellent soft tissue contrast 

without ionizing radiation. In addition it allows for the measurement of soft tissue 

anatomy, architecture and deformation boundary conditions. Hence for mechanical 

excitation a novel MRI compatible and computer controllable soft tissue indentation 

device was developed and implemented with an accurate high acquisition rate (100Hz) 

optical force sensor capable of viscoelastic force registration.  

In order to measure the resultant deformation SPAtial Modulation of the 

Magnetisation (SPAMM) tagged MRI was used. Traditional SPAMM tagging methods 

require large numbers of repetitions of motion cycles causing repeatability difficulties 

and volunteer discomfort. However for this thesis a unique set of high speed SPAMM 

tagged MRI techniques, and fully automatic post-processing methods based on Gabor 

wavelet filtering, were developed allowing for the measurement of complex dynamic 3D 

deformation following the combination of just 3 motion cycles. The SPAMM tagged MRI 

techniques were validated using marker tracking in a silicone gel phantom and 

underwent in-vivo evaluation whereby sub-voxel accuracy and precision levels were 

reported.  

 Constitutive models for passive skeletal muscle tissue were evaluated using 

inverse Finite Element (FE) Analysis (FEA) based fitting to experimental data from the 

literature. It was shown that current models do not allow appropriate modelling of 

anisotropy. A new constitutive law was proposed which formed a close match to the data 

and was based on Gaussian weighting of transverse and longitudinal direction 

contributions of a spherical fibre distribution model.  
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Finally an FE modelling framework was presented whereby detailed anatomically 

accurate 3D FE models can be generated from anatomical MRI and where diffusion 

tensor MRI based fibre directions could be incorporated as well.  

 A bank of experimental data was created for MRI based volunteer upper arm 

indentation for use in future biomechanical studies consisting of anatomical and 

diffusion tensor MRI data, 3D displacement vector fields and indentation force data.  

 Future work will focus on the application of the experimental and computational 

methods presented to the analysis of skeletal muscle tissue mechanical properties.  
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1 INTRODUCTION 
1.1  Rationale of the study 
This thesis focusses on the development of an experimental and computational 

framework for the non-invasive analysis of the passive mechanical properties of skeletal 

muscle tissue. Of interest here is the development of methods to non-invasively analyse 

the non-linear and anisotropic elastic and viscoelastic properties of passive living skeletal 

muscle tissue.  

 The analysis of passive skeletal muscle soft tissue mechanical properties is 

relevant to many fields of research including the well-known applications to: impact 

biomechanics1-3, rehabilitation engineering4-7, tissue engineering8, 9, skeletal muscle 

behaviour simulation during gait10 and surgical simulation11-14. Less well-known are the 

applications to the study of: soft tissue drug transport15, 16, extra-ocular muscle disorders 

17, oro-facial movements18, and in zoology, caterpillar locomotion19 and the simulation of 

squid tentacle strike to catch prey20.  

Experimental work on the mechanical properties of muscle tissue have largely 

focussed on excised tissue samples (e.g. for compression21 and tension22) demonstrating 

skeletal muscle tissue to be non-linear, viscoelastic and anisotropic. Constitutive models 

have also been proposed (e.g.23, 24) however the anisotropic properties of such models 

have not been evaluated for multiple load directions. In addition, current constitutive 

modelling approaches model muscle tissue as reinforced in the fibre direction while 

recent experimental data21, 22 demonstrates that the transverse direction is most 

dominant. Hence appropriately validated models for anisotropy have not been presented 

to date. 

Translation of constitutive property analysis to living human tissue presents with 

significant challenges and requires non-invasive methods. Apart from validation of 

constitutive models for living human tissue, non-invasive mechanical property analysis 

has many medical applications such as: lesion detection25 , pressure ulcer research26, 27,  to 

distinguish healthy and pathologic muscle28, or for the assessment of limb 

immobilisation and contracture29. However the non-invasive evaluation of detailed 

constitutive models describing the complex mechanical (anisotropic, non-linear and 

viscoelastic) properties of soft tissues require: non-invasive mechanical tissue excitation 
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and inverse analysis of detailed non-invasively measured experimental boundary 

conditions (including 3D tissue deformation and fibre architecture). Some authors have 

used indentation tests on skeletal muscle30, 31, but the tissue was then assumed to be 

isotropic and linear in elastic and viscoelastic properties. In addition elastography 

methods have been employed (using image based analysis of small strain wave 

propagations) for soft tissue. However elastography has only been applied to small strain 

measures and often linear elasticity is assumed (see review article32). In contrast, non-

invasive imaging methods that allow detailed measurement of human soft tissue motion 

and deformation (due to known loading conditions), combined with inverse FEA allow 

for the evaluation of more complex and large strain constitutive models.  

Magnetic resonance imaging (MRI) is an ideal modality for the non-invasive 

analysis of soft tissue biomechanics as it provides excellent soft tissue contrast without 

exposing subjects to ionizing radiation. In addition it allows for the measurement of 

various biomechanical boundary conditions required for inverse analysis of tissue 

properties, such as 3D tissue geometry (segmentable from anatomical MRI), 3D 

architecture (based on diffusion tensor MRI e.g.33) and accurate 3D soft tissue 

deformation measurement (e.g. based on tagged MRI, see review article34). 

Non-invasive mechanical excitation of tissue (e.g. indentation) for mechanical 

property analysis inside an MRI scanner requires accurate computer controllable and MRI 

compatible actuators and force sensors. Ensuring safety and compatibility of such 

systems is not trivial. Although MRI compatible actuators and force sensors have been 

developed for other applications such as MRI robotics (e.g.35, 36), MRI guided surgical 

interventions (e.g.37-39), MRI based catheterisation (e.g.40), functional MRI (e.g.41, 42) and 

the study of pressure ulcer development (e.g.43), to date no computer controlled MRI 

based actuator system suitable for human skeletal muscle tissue mechanical property 

investigation has been proposed.  

Once mechanical excitation has been applied, MRI can be employed for the non-

invasive measurement of 3D soft tissue deformation. MRI based methods to study soft 

tissue deformation of human soft tissue in-vivo is also relevant to many research areas; 

for instance, the analysis of organ and bowel motility44, the assessment of tumor 

motion45, the study of cardiac biomechanics46 and preoperative planning47. However 

current MRI based techniques for the measurement of soft tissue deformation, such as 

SPAtial Modulation of the Magnitisation (SPAMM) tagged MRI, employ segmented 
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acquisitions requiring the combination of large numbers of motion cycles. This has 

confined the application of SPAMM tagged MRI to the analysis of highly repeatable and 

periodic movements and has mainly been applied to the heart46, 48, 49. Recently other 

tissue types have also been analysed for repeatedly induced motions of the tongue50 (16 

volunteer speech repetitions per slice), brain51 (144 volunteer rotational head 

accelerations) and eyes52 (>135 repeated left to right eye movements). For the purpose of 

mechanical indentation based mechanical property investigation these methods thus 

result in repeatability constraints and possible discomfort, highlighting the need to 

develop faster SPAMM techniques requiring a minimum of repeated motion cycles.  

 

1.2 Objectives of the study 
This thesis focusses on the development of a framework of computational and 

experimental methods for the non-invasive analysis of skeletal muscle tissue mechanical 

properties. Since MRI is the most suitable non-invasive modality and large strain is of 

interest, indentations will be applied during which force measurements are required, 

hence our first objective is: 

1) To design and validate an MRI compatible soft tissue indentation system and force 

sensor 

Since MRI based deformation measurement was challenging at the start of this thesis and 

required validation the second objective evaluates an alternative imaging method for 

deformation measurement combined with indentation and inverse FEA, namely digital 

image correlation (DIC), the second objective is thus: 

2) To evaluate the indentation and inverse FEA based derivation of constitutive 

parameters based on DIC based deformation measurement.  

The third objective for this thesis relates to the fact that MRI based motion measurement 

methods require validation: 

3) To develop and evaluate methods to validate MRI derived soft tissue deformation.  

The fourth objective concerns the MRI based measurement of deformation during the 

indentation: 

4) To develop MRI based techniques and post-processing methods to measure 3D soft 

tissue deformation in-vivo using a minimum of motion cycles.  
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The inverse FEA based constitutive parameter identification framework requires an 

appropriate starting constitutive model with initial parameters based on excised animal 

tissue data. This model needs to capture anisotropy for the transverse, longitudinal and 

intermediate direction responses. Hence the fifth objective was: 

5) To develop a constitutive modelling framework capturing the anisotropic, non-linear 

and viscoelastic mechanical properties of skeletal muscle tissue. 

Finally once an MRI compatible indentor has been used to apply indentation to a 

volunteer muscle site, force was measured using an MRI compatible force sensor and 

deformation was measured using SPAMM tagged MRI, one can start with the derivation 

of inverse FEA procedures for constitutive parameter identification. Thus the final 

objective was: 

6) To develop methods to derive detailed anatomical models from MRI data incorporating 

fibre architecture allowing for the evaluation of tissue anisotropy. 

 

1.3 Outline of the thesis 
 

Theoretical framework 

This chapter highlights: the theory of continuum mechanics, basics of MRI, and the 

basics of image processing.  

 

Literature review 

The following topics are discussed: the anatomy and physiology of skeletal muscle and its 

relation to the mechanical properties, experimental and computational modelling studies 

on the mechanical properties of skeletal muscle tissue, a brief discussion on non-invasive 

imaging modalities, MRI compatible actuators and sensor devices, MRI based 

measurement of soft tissue deformation and finally validation methods for MRI derived 

motion and deformation measurement.  

 

Study I: A Novel MRI Compatible Soft Tissue Indentor and Fibre Bragg Grating Force Sensor 

In this study the computer controlled MRI compatible indentor and high sampling rate 

force sensor system are described and its validation and calibration results are discussed.  
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Study II: Digital Image Correlation and Finite Element Modelling as a Method to Determine 

Mechanical Properties of Soft Tissue 

Since the development of MRI techniques was initially challenging study II evaluates the 

more straight-forward (but limited to surface measurements) alternative of DIC 

combined with inverse FEA for bulk material property assessment.   

 

Study III: A Validation Framework for MRI Based Deformation Measurement 

In order to validate MRI derived deformation measures study III describes a validation 

framework for MRI derived deformation measurement based on tracking of markers in a 

silicone gel phantom. A marker tracking algorithm is proposed and independently 

validated.  

 

Study IV: The MRI Based Measurement of Static 3D Soft Tissue Deformation 

This study introduces novel SPAMM tagged MRI techniques and semi-automatic post-

processing methods for the derivation of 3D static deformation measurements following 

just 3 motion cycles.  

 

Study V: The MRI Based Measurement of Dynamic 3D Soft Tissue Deformation 

This study expands the SPAMM tagged MRI techniques for dynamic 3D deformation 

measurements following only 3 motion cycles. In addition a novel fully automatic 

methodology is presented.  

 

Study VI: Constitutive Modelling of Skeletal Muscle Tissue 

Using experimental data on uni-axial loading of muscle tissue for tension and 

compression at varying load angles, an array of common constitutive models is put to the 

test. It is demonstrated that current models do not accurately model anisotropy and 

tension compression non-linearity of muscle tissue and a novel constitutive model is 

proposed incorporating longitudinal and transverse fibrous contributions.  

 

Study VII: MRI Based Derivation of Detailed Finite Element Models Incorporating Fibre 

Architecture 

A semi-automatic methodology is presented allowing for the construction of detailed 

anatomically accurate FE models derived from anatomical and diffusion tensor MRI 
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incorporating skin, muscle and fat tissue and muscle fibre directions. Thus enabling the 

study of anisotropy.  

 

Discussion, conclusions and future work 

The last chapter summarises the results for this thesis and the implications and 

limitations of the work presented and mentions recommendations for future work.  
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2.1 Introduction 
The current study involves constitutive modelling, finite element modelling and analysis, 

non-invasive imaging and digital image processing. In order to provide the reader with an 

understanding of the theory behind these areas, prior to presenting a review of the 

literature, this section discusses the basics of continuum mechanics, magnetic resonance 

imaging and digital image processing.  

2.2 Basics of continuum mechanics  

2.2.1  Introduction 

This section describes the basics of vector and tensor algebra and continuum mechanics. 

For a more detailed discussion the reader is referred to specialised literature (e.g. on 

tensor algebra53 and continuum mechanics54-59).  

2.2.2  Vector and tensor algebra 

Physical quantities definable by a single real number are known as scalars and exhibit 

only magnitude. Vectors however are physical quantities with both direction and 

magnitude (in 3D vectors can be graphically represented by arrows as shown Figure 2.1). 

The magnitude (or length or norm) of a vector 𝐚 is denoted |𝐚| and is defined by: 

 |𝐚| = √𝐚 ⋅ 𝐚 2-1 

A vector with a magnitude of 1 is called a unit vector. The dot (or inner or scalar) product 

of two vectors produces a scalar defined by: 

 𝐚 ∙ 𝐛 = |𝐚||𝐛| cos 𝜃 2-2 

with 𝜃 the angle between the two vectors. Two vectors are orthogonal if their dot product 

equals zero.  

According to the parallelogram law when two vectors are added or subtracted a new 

vector is obtained (top left in Figure 2.1). A 3D Euclidean vector space can be defined, 

denoted by 𝔼3, where the following properties hold (see also Figure 2.1):  

 

𝐚 + 𝐛 = 𝐛 + 𝐚  

(𝐚 + 𝐛) + 𝐜 = 𝐚 + (𝐛 + 𝒄) 

𝐚 + 𝟎 = 𝐚 , and 𝐚 + (−𝐚) = 𝟎 , with 𝟎 the zero vector 

𝛼(𝛽𝐚) = (𝛼𝛽)𝐚 

2-3 
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𝛼(𝐚 + 𝐛) = 𝛼𝐚 + 𝛼𝐛, and 𝐚(𝛼 + 𝛽) = 𝛼𝐚 + 𝛽𝐚 

𝐚 ∙ 𝐛 = 𝐛 ∙ 𝐚 

(𝐚 ⋅ 𝐛) ∙ 𝐜 = 𝐚 ∙ (𝐛 ∙ 𝒄) 

𝛼(𝐚 ∙ 𝐛) = (𝛼𝐚) ∙ 𝐛 = 𝐚 ∙ (𝛼𝐛) 

𝐚 ∙ 𝐚 ≥ 0, and if 𝐚 ∙ 𝐚 = 0 then  𝐚 = 𝟎 

This is displayed graphically in Figure 2.1.  

 

Due to equation 2-2 the projection of a vector 𝐚 along a unit vector 𝐞 is given by:  

 𝐚 ⋅ 𝐞 = |𝐚| cos𝜃 2-4 

Hence unit vectors allow expression of vector components along the direction of the unit 

vector and allow formulation of what is known as a right-handed orthonormal Cartesian 

basis of 𝔼3: 

 ℇ = {𝐞1, 𝐞2, 𝐞3} 2-5 

where 𝐞𝑖 represent three mutually orthogonal unit vectors with the property: 

 𝐞i ∙ 𝐞j = 𝛿𝑖𝑗, with 𝑖, 𝑗 = 1,2,3 2-6 

Where 𝛿 denotes the Kronecker delta 

 𝛿𝑖𝑗 = �1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗 2-7 

The orthonormal basis ℇ allows for the expression of any vector 𝐚 in terms of its three 

projected components (or coordinates) 𝑎𝑖 (Figure 2.2) and can be uniquely represented by 

the linear combination: 

Figure 2.1 Geometric representation of vector addition (top left), the negative vector (top right), the 
zero vector (bottom left) and scalar vector multiplication 



  - 10 -

 

 𝐚 = 𝑎1𝐞1 + 𝑎2𝐞2 + 𝑎3𝐞3 = �𝑎𝑖𝐞i

3

i=1

 2-8 

which, employing Einstein’s summation convention (unless otherwise stated, whenever 

an index is repeated in the same term a summation across this index is implied) can be 

written as: 

 𝐚 = 𝑎𝑖𝐞𝑖 2-9 

The scalars 𝑎𝑖are termed the Cartesian (or rectangular) components of 𝐚. 

 

This allows for the column or matrix notation of the vector 𝐚 expressed in ℇ as: 

 𝐚 = �
𝑎1
𝑎2
𝑎3
� 2-10 

The gradient of a vector 𝐚 with respect to 𝒙 is denoted with the symbol ∇ and is defined: 

 ∇x𝐚 =
∂𝐚i
∂𝒙𝑗

 2-11 

The cross (or vector or outer) product of the vectors 𝐚 and 𝐛 is defined by:  

 𝐚 × 𝐛 = �
𝑎1
𝑎2
𝑎3
� × �

𝑏1
𝑏2
𝑏3
� = �

𝑎2𝑏3 − 𝑎3𝑏2
𝑎3𝑏1 − 𝑎1𝑏3
𝑎1𝑏2 − 𝑎2𝑏1

� 2-12 

and produces a new vector 𝐚 × 𝐛 which is orthogonal to both 𝐚 and 𝐛 (Figure 2.3). The 

magnitude of the cross product, which equals the area of the parallelogram defined by the 

vectors 𝐚 and 𝐛, is given by: 

 |𝐚 × 𝐛| = |𝐚||𝐛| sin𝜃 2-13 

Figure 2.2 The projections of the vector 𝒂 in the 
orthonormal Cartesian basis ℇ  
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The properties of the cross product can be summarised by:  

 

𝐚 × 𝐛 = −(𝐛 × 𝐚) 

𝐚 × 𝐛 = 𝟎, then 𝐚 and 𝐛 are linearly dependent (parallel) 

(𝛼𝐚) × 𝐛 = 𝐚 × (𝛼𝐛) = 𝛼(𝐚 × 𝐛) 

𝐚 ∙ (𝐛 × 𝐜) = 𝐛 ∙ (𝐜 × 𝐚) = 𝐜 ∙ (𝐚 × 𝐛), (known as triple scalar product 

and equals volume of parallelepiped defined by 𝐚, 𝐛 and 𝐜) 

𝐚 × (𝐛 + 𝐜) = (𝐚 × 𝐛) + (𝐚 × 𝐜) = 𝐚 × 𝐛 + 𝐚 × 𝐜 

2-14 

The so-called dyad of a vector pair e.g. 𝐚 and 𝐛 is given by their tensor product denoted by  

𝐚⨂𝐛 and produces a second-order tensor (vectors are first order tensors). The dyad can 

be illustrated in Cartesian component notation as: 

 𝐚⨂𝐛 = �
𝑎1
𝑎2
𝑎3
� [𝑏1 𝑏2 𝑏3] = �

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

� 2-15 

The tensor product has the following properties: 

 

(𝐚⨂𝐛)𝐜 = 𝐚(𝐛 ∙ 𝐜) 

(𝐚⨂𝐛)(𝐜 + 𝐝) = 𝐚(𝐛 ∙ 𝐜 + 𝐛 ∙ 𝐝) = (𝐚⨂𝐛)𝐜 + (𝐚⨂𝐛)𝐝 

(𝐚⨂𝐛)(𝛼𝐜) = 𝛼(𝐚⨂𝐛)𝐜 = 𝛼(𝐛 ∙ 𝐜)𝐚 

𝐜⨂(𝐚 + 𝐛) = 𝐜⨂𝐚 + 𝐜⨂𝐛, and (𝐚 + 𝐛)⨂𝐜 = 𝐚⨂𝐜 + 𝐛⨂𝐜 

(𝛼𝐚)⨂(𝛽𝐛) = 𝛼𝛽(𝐚⨂𝐛) 

2-16 

Any second-order tensor may be expressed as a linear combination of dyads with respect 

to the orthonormal basis ℇ, e.g. for instance the second-order tensor 𝐀:  

 𝐀 = 𝐴𝑖𝑗𝐞𝑖⨂𝐞𝑗 = �
𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴13
𝐴31 𝐴32 𝐴33

� 2-17 

Second-order tensors are geometric objects describing linear mappings between scalars, 

vectors or other tensors. For instance 𝐀 may act as a rotation tensor, rotating the vector 

Figure 2.3 The cross product of two 
vectors produces a new orthogonal vector 
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𝐚 at an angle 𝜃 around an axis coinciding with 𝐞𝟑 to the new vector 𝐛 (Figure 2.4). This 

type of linear mapping may be written as: 

 𝐀𝐚 = 𝐛 2-18 

where in this case the tensor 𝐀 would have the form:  

 𝐀 = �
cos 𝜃 − sin𝜃 0
sin𝜃 cos 𝜃 0

0 0 1
� 2-19 

 

The so-called (second-order) identity tensor 𝐈 can be expressed as:  

 𝐈 = 𝐞𝑖⨂𝐞𝑖 = �
1 0 0
0 1 0
0 0 1

� 2-20 

The inverse of a tensor 𝐀 is denoted 𝐀−1 and is defined such that:  

 𝐀𝐀−1 = 𝐀−1𝐀 = 𝐈 2-21 

The determinant of a tensor 𝐀 is denoted: det(𝐀) and has the properties: 

 det(𝐀𝐁) = det𝐀det𝐁, and det𝐀T = det𝐀 2-22 

Properties of second-order tensors can be summarised as: 

 

𝐀 + 𝐁 = 𝐁 + 𝐀 

𝐀 + (𝐁 + 𝐂) = (𝐀 + 𝐁) + 𝐂 

(−1)𝐀 = −𝐀, the negative tensor 

𝟎𝐚 = 𝒐, and 𝐀 + (−1)𝐀 = 𝟎, with 𝟎 the zero tensor 

1𝐀 = 𝐈𝐀 = 𝟎 + 𝐀 = 𝐀 

𝐀(𝐚 + 𝐛) = 𝐀𝐚 + 𝐀𝐛 

𝐀(𝛼𝐚) = 𝛼(𝐀𝐚) = (𝛼𝐀)𝐚 = 𝛼(𝐀𝐚) 

(𝐀 + 𝐁)𝐚 = 𝐀𝐚 + 𝐁𝐚 

(𝛼 + 𝛽)𝐀 = 𝛼𝐀 + 𝛽𝐀 

2-23 

Another tensor operator is the double-dot (or double contraction) operator which yields a 

scalar quantity. For the two tensors 𝐀 and 𝐁 it can be written as:  

Figure 2.4 Vector rotation following 
rotation tensor multiplication 
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 𝐀 ∶ 𝐁 = 𝐁 ∶ 𝐀 = tr(𝐀T𝐁) = tr(𝐁T𝐀) = tr(𝐀𝐁T) = tr(𝐁𝐀T) 2-24 

where tr(𝐀) and 𝐀T (with 𝐀 = (𝐀T)T) denote the trace and transpose of the tensor 𝐀 

respectively. Properties of the double-dot operation include:  

 

𝐈:𝐀 = tr(𝐀) 

𝐀 ∶ (𝐁𝐂) = (𝐁T𝐀) ∶ 𝐂 = (𝐀𝐂T) ∶ 𝐁 

𝐀 ∶ (𝐚⨂𝐛) = 𝐚 ∙ 𝐀𝐛 

2-25 

An example use of the double dot operator is the mapping of tensor quantities along a 

certain direction, for instance the mapping of strain tensor 𝐄 along a texture (e.g. fibre) 

direction specified by the vector 𝐚 as 𝐄 ∶ (𝐚⨂𝐚). In the special case when the texture 

vector 𝐚 is aligned with one of the directions of ℇ then the double dot operator can be 

thought of as a “selector” of the tensor element in that direction since 𝐄 ∶ (𝐚⨂𝐚) =  𝐄 ∶

(𝐞𝑖⨂𝐞𝑖) = 𝐄𝑖𝑖.  

Tensors can be subjected to eigenvalue decomposition. For a second-order tensor 𝐀 the 

eigenvalue problem is formulated as:   

 𝐀𝐧𝑖 =  λ𝑖𝐧𝑖, with 𝐧𝑖 ≠ 𝟎 and 𝑖 = 1,2,3 (no summation) 2-26 

Here the scalars λ𝑖 reflect the eigenvalues and 𝐧𝑖 the normalised eigenvectors of 𝐀. The 

eigenvectors 𝐧𝑖 are mutually orthogonal and thus form an orthonormal basis 𝒩 =

{𝐧1,𝐧2,𝐧3}. Since 𝒩 forms an orthonormal basis, if a tensor is symmetric the following 

expression, known as the spectral decomposition can be obtained:  

 𝐀 = �λ𝑖𝐧𝑖⨂𝐧𝑖

3

𝑖=1

 2-27 

If 𝒩 is assumed as the orthonormal basis then (using equation 2-9) 𝐀 can be reduced to 

the following diagonal matrix form: 

 𝐀 = �
λ1 0 0
0 λ2 0
0 0 λ3

� 2-28 

Since the eigenvalues λ𝑖 describe a physical property of a tensor they are independent of 

the chosen coordinate system. This allows for the formulation of derived invariants such 

as the 3 so-called principal scalar invariants, e.g. for the tensor 𝐀: 

 

𝐼1 = λ1 + λ2 + λ3 = tr(𝐀) 

𝐼2 = λ1λ2 + λ1λ3 + λ2λ3 =
1
2
��tr(𝐀)�2 + tr(𝐀2)� = tr(𝐀)−1 det(𝐀) 

𝐼3 = λ1λ2λ3 = det(𝐀) 

2-29 
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Another tensor decomposition is the representation of a tensor 𝐀 into the sum of its so-

called spherical and deviatoric part: 

 𝐀 =
1
3

tr(𝐀)𝐈 + dev(𝐀) 2-30 

where the deviatoric operator is defined as: 

 dev(𝐀) = 𝐀 −
1
3

tr(𝐀)𝐈 2-31 

 

2.2.3  The continuum hypothesis 

The main assumption underlying continuum mechanics is that the material body 

analysed is a continuum and is uniformly distributed throughout regions of space. In 

other words the material is regarded indefinitely divisible; it can be continually sub-

divided into infinitesimal small elements which still exhibit the same properties as the 

bulk material. For a uniform material this assumption is valid up to the so-called 

mesoscopic scale (i.e. a scale where the dimensions of the body analysed are large in 

comparison to the characteristic lengths (e.g. a grain of sand, inter-atomic space) of the 

body 54).  

2.2.4  Motion 

Consider a body Ω suspended in 𝔼3 with orthonormal basis  ℇ = {𝐞1, 𝐞2, 𝐞3} and material 

point 𝑃 at time 𝑡 (Figure 2.5).  

 
Figure 2.5 A continuum material body in the Lagrangian and 
Eulerian configuration 
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The body 𝛺 is in motion from its reference (Lagrangian) configuration ℛ0 at time t=0 to 

the new or current (Eulerian) configuration ℛ𝑡 at time t=t. The vectors 𝑿 and 𝒙 are the 

position vectors of any point 𝑃 in 𝛺 with respect to the Lagrangian and Eulerian 

configuration respectively that undergo a displacement 𝐮. The motion 𝝌 of point 𝑃 is 

defined by an equation of the form: 

 𝒙 = 𝝌(𝑿, 𝑡)  𝑿 = 𝝌−𝟏(𝒙, 𝑡) 2-32 

The displacement vector 𝐮 represents the displacement of the point 𝑃 from its original to 

its final position p can be defined by: 

 𝐮(𝑿, 𝑡) = 𝐱(𝑿, 𝑡) − 𝑿   𝐮(𝒙, 𝑡) = 𝒙 − 𝑿(𝒙, 𝑡) 2-33 

2.2.5  Deformation 

Differentiating of equation 2-32 with respect to the Lagrangian coordinates leads to:  

 𝜕𝒙 = 𝐅𝜕𝑿 2-34 

where 𝐅 represents the deformation gradient tensor as: 

 𝐅 =
𝜕𝒙
𝜕𝑿

= 𝛻𝑿𝐮 + 𝐈 2-35 

The deformation gradient tensor transforms any elementary segment 𝜕𝑿 of 𝛺 in the 

Lagrangian configuration into a segment ∂𝒙 in the Eulerian configuration. The inverse of 

𝐅 is known as 𝐃 and is defined as: 

 𝐃 = 𝐅−1 =
𝜕𝑿
𝜕𝒙

 2-36 

and transforms any elementary segment ∂𝒙 of 𝛺 in the Eulerian configuration into a 

segment ∂𝑿 in the Lagrangian configuration. Now consider the deformation of a volume 

element (Figure 2.6).  

 

A volume element in the Lagrangian configuration d𝑉 with its sides aligned with the 

orthogonal basis vectors is defined by: 

Figure 2.6 A volume element in the Lagrangian (left) and 
Eulerian (right) configuration 
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 dV = (𝜕𝑿1 × 𝜕𝑿2) ⋅ 𝜕𝑿3 2-37 

and in the Eulerian configuration: 

 dv = (𝜕𝒙1 × 𝜕𝒙2) ⋅ 𝜕𝒙3 2-38 

The Lagrangian and Eulerian configurations are related according to: 

 dv = 𝐽dV 2-39 

The quantity 𝐽 is referred to as the Jacobian of the deformation gradient tensor and is 

defined by: 

 𝐽 =
dv
dV

= det �
∂𝒙
∂𝑿�

= det(𝐅) 2-40 

In the Lagrangian configuration no deformation has occurred and therefore 𝐽 equals 1. 

However 𝐽 will also equal 1 during isochoric deformation (deformation without a change 

in volume). A material is incompressible if any deformation it undergoes is isochoric.  

2.2.6  Stretch and rotation 

In Figure 2.7 let 𝐚 and 𝐚′ be unit vectors along d𝑿 and d𝒙 respectively and let d𝑆 be the 

length of an arc element in the Lagrangian configuration and d𝑠 the length of an arc 

segment in the Eulerian configuration.  

 
The following relationships can then be defined:  

 
d𝑿 = dS𝐚 

d𝒙 = ds𝐚′ 
2-41 

Equation 2-34 can then be written as ds𝐚′ = 𝐅dS𝐚 leading to: 

 λ𝐚′ = F𝐚, with 𝜆 = d𝑠
d𝑆

 2-42 

Where the 𝜆 is known as the stretch ratio, or simply stretch. In the special case where the 

vector 𝐚 is aligned with 𝐚′ the vector 𝐚 is actually an eigenvector of 𝐅 and 𝜆 an eigenvalue. 

However the vectors 𝐚 and 𝐚′ are generally not aligned and thus the vector 𝐚 is not always 

the eigenvector. This means that the deformation due to 𝐅 consists of two parts: a stretch 

Figure 2.7 Arc segments in the Lagrangian (left) 
and Eulerian (right) configuration 
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and a change in orientation. These parts can be separately expressed following what is 

known as polar decomposition: 

 𝐅 = 𝐐𝐔 = 𝐕𝐐  2-43 

Here 𝐐 is an orthogonal tensor and 𝐔 and 𝐕 are (positive definite symmetric tensors) 

related to 𝐅 according to:  

 
𝐔2 = 𝐅T𝐅 

𝐕2 = 𝐅𝐅T 
2-44 

The tensor 𝐐 is often referred to as the rotation tensor and 𝐔 and 𝐕 are known as the 

right and left stretch tensors.  

Now equation 2-34 can then be rewritten: 

 d𝒙 = (𝐐𝐔)d𝑿 = 𝐐(𝐔d𝑿) 2-45 

The transformation from the Lagrangian to the Eulerian configuration due to 𝐅 can thus 

be seen as being composed of two operations: a tri-axial stretch due to the tensor 𝐔 and a 

rigid body transformation (rotation, translation) due to the tensor 𝐐. Since 𝐔 is positive 

definite and symmetric it has one set of mutually orthogonal eigenvectors and three 

corresponding eigenvalues. The eigenvectors describe the direction of the eigenvalues, 

which are often referred to as the principal stretches 𝜆1, 𝜆2 and 𝜆3. A similar analysis can 

be made using the tensor 𝐕. However in this case the rigid body transformation due to 𝐐 

precedes the stretch transformations due to 𝐕. The tensor 𝐕 has the same eigenvalues as 

𝐔. The tensors 𝐐 (rotates, translates), 𝐔 (stretches) and 𝐕 (stretches) any elementary 

segment d𝑿 of 𝛺 in the Lagrangian configuration into a segment d𝒙 in the Eulerian 

configuration. Recall equation 2-42, squaring both sides gives: 

 𝜆2 = 𝐚 ⋅ (𝐅T𝐅)𝐚 = 𝐚 ⋅ 𝐔2𝐚 = 𝐚 ⋅ 𝐂𝐚  2-46 

The tensor 𝐔2 is better known as the tensor 𝐂 or the (right) Cauchy-Green tensor and can 

be used to calculate 𝜆 when the vector 𝐚 is known. Similarly the inverse relationship can 

be obtained for the square of the tensor 𝐕2:  

 1
𝜆2

= 𝐚′ ⋅ (𝐅𝐅T)−1𝐚 = 𝐚′ ⋅ 𝐁−1𝐚′ 2-47 

The tensor 𝐁 is often referred to as the Finger tensor and its inverse 𝐁−1 is known as the 

Cauchy deformation tensor or Eulerian deformation tensor. Because of their relation 

with the left and right polar decompositions of the deformation gradient tensor 𝐅 the 

tensors 𝐁 and 𝐂 are also known as the left and right Cauchy-Green tensors respectively. 

Since the tensors 𝐔 and 𝐕 have the same eigenvalues (the principal stretches) the 
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eigenvalues of the tensors 𝐁 and 𝐂 are also the same; the square of the principal 

stretches: 𝜆𝑖
2. The invariants 𝐼𝑖 of 𝐁 and 𝐂 are defined by: 

 

𝐼1 = tr(𝐂) = 𝜆1
2 + 𝜆2

2 + 𝜆3
2

𝐼2 =
1
2
�tr(𝐂)2 − tr(𝐂2)� = tr(𝐂−1) det(𝐂) = 𝜆1

2𝜆2
2 + 𝜆2

2𝜆3
2 + 𝜆1

2𝜆3
2

𝐼3 = det(𝐂) = det(𝐅T𝐅) = det(𝐅)2 = 𝐽2 = 𝜆1
2𝜆2

2𝜆3
2

 2-48 

2.2.7  Strain 

The before mentioned stretch measures and the deformation gradient tensor 𝐅 are 

fundamental finite deformation measures defining changes of material elements during 

motion. However it is often convenient to derive a measure of the change in length per 

unit of initial length. Such a quantity is known as a strain. A large variety of strain 

measures have been proposed but in general their Lagrangian (left) and Eulerian (right) 

expressions have the form:  

 �
1
𝑛

(𝐔n − 𝐈) 𝑛 ≠ 0
ln(𝐔) 𝑛 = 0

   �
1
𝑛

(𝐕n − 𝐈) 𝑛 ≠ 0
ln(𝐕) 𝑛 = 0

 2-49 

This section discusses the three most commonly used strain measures: Linear strain, 

Green-Lagrange strain and Logarithmic strain.  

In classical engineering the linear strain tensor 𝜺 is common (also referred to as 

the small, infinitesimal, engineering, Cauchy or Biot strain tensor) and is defined as 

(𝑛 = 1 in equation 2-49):  

 𝛆 = 𝐔 − 𝐈 =
1
2

(𝐅T + 𝐅) − 𝐈 2-50 

For a line segment undergoing a stretch λ the linear strain is thus: 𝜀 = 𝜆 − 1.  

The Green-Lagrange strain 𝐄 is given by (𝑛 = 2 in equation 2-49): 

 𝐄 =
1
2

(𝐔2 − 𝐈) =
1
2

(𝐂 − 𝐈) =
1
2

(𝐅T𝐅 − 𝐈) 2-51 

In this case the Green-Lagrange strain in a line segment subjected to a stretch 𝜆 is: 

𝐸 = 1
2

(𝜆2 − 1). 

The logarithmic (or Hencky) strain tensor 𝐇 is defined as (𝑛 = 0 in equation 2-49): 

 𝐇 = ln(𝐔) 2-52 

For a line segment subjected to a stretch 𝜆 the Logarithmic strain is therefore: 𝐻 = ln(𝜆). 
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Figure 2.8 shows the three strain measures as a function of (1D) stretch. It is clear 

that in the small stretch domain the three measures converge. However at larger 

compressive and tensile stretches the graphs diverge.  

As the graph for the linear strain indicates a linear relationship with stretch exists 

such that for uni-axial loading interpretation of linear strain is intuitive since a stretch of 

1.02 simply corresponds to a tensile strain of 2%. However linear strain is only valid for 

infinitesimal strain levels and is therefore not commonly used for biological soft tissue. 

However the Green-Lagrange strain and logarithmic strain are suitable for large finite 

strains and are therefore more commonly used in finite strain and biological soft tissue 

applications.  

2.2.8  Stress 

In continuum mechanics stresses in a body are due to two types of forces, external and 

internal forces. External forces act on part or the whole of the boundary surface. When an 

external force acts on the whole volume of the body (e.g. gravity) it is referred to as a 

body force. Internal forces act on (imaginary) surfaces within the body. Figure 2.9 shows 

a surface element d𝑠 belonging to the continuum body 𝛺 in the Lagrangian and an 

Eulerian configuration.  

Figure 2.8 Linear, logarithmic and Green-Lagrange strain as a function of stretch 
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Since stress is force over unit area, the stress due to an infinitesimal force d𝑓 acting on a 

surface element d𝑠 of 𝛺 can be defined as:  

 d𝐟 = 𝐭d𝑠 = 𝐓d𝑆 2-53 

Then due to Newton’s law of action and reaction we obtain: 

 𝐭(𝒙, 𝑡,𝐧) = −𝐭(𝒙, 𝑡,−𝐧)  𝐓(𝑿, 𝑡,𝐍) = −𝐓(𝑿, 𝑡,−𝐍) 2-54 

Here 𝐭 represents the Cauchy traction vector acting on the surface element d𝑠 with 

surface normal 𝐧 at location 𝒙. The Cauchy traction vector is the force per unit area of the 

current configuration. The traction vector 𝐓 is known as the first Piola-Kirchhoff traction 

vector and it is the force per unit area of the reference configuration.  

According to Cauchy’s stress theorem there exist two unique tensors 𝛔 and 𝐏 such that:  

 𝐭(𝒙, 𝑡,𝐧) = 𝛔(𝒙, 𝑡)𝐧  𝐓(𝑿, 𝑡,𝐍) = 𝐏(𝑿, 𝑡)𝐍 2-55 

The tensor 𝛔 is known as the Cauchy (or true) stress tensor and the tensor 𝐏 is referred 

to as the first Piola-Kirchhoff or Lagrangian stress tensor. The two tensors are related to 

each other as: 

 
𝛔 = 𝐽−1𝐏𝐅T 

𝐏 = 𝐽𝛔𝐅−1 
2-56 

In matrix notation 𝛔 is: 

 𝛔 = �
𝜎11 𝜎21 𝜎31
𝜎12 𝜎22 𝜎32
𝜎13 𝜎23 𝜎33

� 2-57 

The columns of 𝛔 are the components of the traction vectors acting on planes orthogonal 

to the basis ℇ. Figure 2.10 shows a graphical representation of the stress components 

acting on an infinitesimal cubic material element of 𝛺 aligned with ℇ. Because the Cauchy 

Figure 2.9 A surface element in the Lagrangian (left) and Eulerian 
(right) configuration 
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stress tensor is symmetric it has six independent components (𝜎12 =  𝜎21,𝜎13 =

𝜎31,𝜎23 =  𝜎32).  

 
The Piola-Kirchhoff stress tensor is asymmetric and often symmetric stress formulations 

are preferred. However the Piola-Kirchhoff stress tensor can be decomposed as: 

 𝐏 = 𝐅𝐒 2-58 

Here the tensor 𝐒 is symmetric and is known as the second Piola-Kirchhoff stress tensor 

and can be related to 𝛔 and 𝐏 via: 

 
𝐒 = 𝐽𝐅−1𝛔𝐅−T = 𝐅−1𝐏 = 𝐒T 

𝛔 = 𝐽−1𝐅𝐒𝐅T 
2-59 

It is often convenient to work with the so-called Kirchoff stress tensor 𝛕 which differs 

from the Cauchy stress tensor by the Jacobian 𝐽:  

 𝛕 = 𝐽𝛔 2-60 

2.2.9  Strain energy 

In a (thermodynamic) continuum the first law of thermodynamics states there must be a 

balance of both thermal and mechanical energy. Under isothermal conditions however 

(or when thermal effects are ignored) this reduces to balance of mechanical energy: 

 𝒫𝑒𝑥𝑡(𝑡) =
𝑑𝒦(𝑡)
𝑑𝑡

+
𝑑𝛱𝑖𝑛𝑡(𝑡)

𝑑𝑡
 2-61 

which states that the external mechanical power 𝒫𝑒𝑥𝑡 equals the rate of change of the 

kinetic energy 𝒦 of the mechanical system plus the rate of change of the internal 

mechanical work 𝛱𝑖𝑛𝑡. The internal mechanical work 𝛱𝑖𝑛𝑡 is due to internal stresses and 

can be written as:  

Figure 2.10 Schematic representation of stress tensor 
components acting on a material element 
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 𝛱𝑖𝑛𝑡(𝑡) = �Ψ𝑑𝑉
𝛺

= �Ψ𝐽−1𝑑𝑣
𝛺

 
2-62 

The symbol Ψ denotes a scalar function known as the Helmholtz free-energy function 

which, under the isothermal conditions mentioned, coincides with the internal strain 

energy and can therefore be considered solely a function of a deformation or strain 

tensor. For an isotropic material we may thus express the Helmholtz free-energy function 

purely in terms of deformation measures such the tensors 𝐅, 𝐂, the invariants 𝐼𝑖 or the 

principal stretches 𝜆𝑖: 

 Ψ(𝐅) = Ψ(𝐂) = Ψ(𝐼1, 𝐼2, 𝐼3) = Ψ(𝜆1, 𝜆2, 𝜆3) 2-63 

Because of this the Helmholtz free-energy function is often referred to as the strain-

energy density function. Strain-energy density functions are important for the 

formulation of constitutive laws since derivatives of it with respect to deformation 

measures yield stress measures. For homogeneous hyperelastic materials for instance the 

following relations can be made between Ψ and selected stress tensors:  

 

𝐏 =
∂Ψ(𝐅)
∂𝐅

= 2𝐅
∂Ψ(𝐂)
∂𝐂

 

𝐒 = 𝐅−1
∂Ψ(𝐅)
∂𝐅

= 2
∂Ψ(𝐂)
∂𝐂

=
∂Ψ(𝐄)
∂𝐄

 

𝛔 = 𝐽−1𝐅 �
∂Ψ(𝐅)
∂𝐅

�
T

= 2𝐽−1𝐅
∂Ψ(𝐂)
∂𝐂

𝐅T 

𝛕 = 2𝐅
∂Ψ(𝐂)
∂𝐂

𝐅T = 2𝐁
∂Ψ(𝐁)
∂𝐁

=
∂Ψ(𝛆)
∂𝛆

 

2-64 

2.2.10   Constitutive equations 

2.2.10.1  Introduction 

The continuum mechanics relations presented in the previous sections are not material 

specific and hold for any continuum. They do not describe a specific material response to 

loading conditions. In order to do that, constitutive equations need to be developed. 

Constitutive equations aim to relate parameters such as strain, strain-rate etc. to the 

state of stress at any point in a continuum body at any time. The current thesis and 

therefore this section focusses on solid mechanics and therefore only common 

constitutive theories for solid materials will be discussed. Figure 2.11 shows a typical 

stress strain curve for an engineering material such as steel. The deformation due to 

stress can be split up into elastic (recoverable) deformation and plastic (un-recoverable) 
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deformation. The term elasticity refers to a materials ability to recover from deformation 

once the stresses are removed and the term plasticity refers to a materials ability to 

undergo irreversible deformations. The current thesis focusses on elastic soft tissue 

behaviour and as such plasticity is not discussed here. Instead this section discusses the 

following constitutive theories: linear elasticity, non-linear elasticity and viscoelasticity.  

 

2.2.10.2  Linear elasticity 

An elastic solid that undergoes an infinitesimal deformation and for which the governing 

material law is linear is called a linear elastic solid55. Figure 2.11 shows the shape of a 

typical stress strain curve for a uni-axial tensile test on such a linear elastic solid material. 

The theory of linear elasticity states that the stress at any time is directly proportional to 

the strain and is independent of strain history. Therefore for a certain deformed 

configuration there exists a single unique stress state. The stress (σ) strain (ε) 

relationship in Figure 2.11 can be described by an equation of the form σ=Eε. This 

constitutive equation is a special case of a material law known as Hooke’s law. The 

constant E is known as the Young’s Modulus and defines the slope of the curve and is 

effectively the stiffness of the material. The generalised form of Hooke’s law for a 

homogeneous and isotropic linear elastic material relates the Cauchy stress 𝛔 to the 

linear strain tensor 𝛆 as: 

 
𝛔 = λ𝐈tr(𝛆) + 2µ𝛆 

𝛆 =
1
2µ �

𝛔 −
λ

3λ + 2µ
tr(𝛔)𝐈� 

2-65 

These relationships introduce two elastic moduli µ and λ referred to as the Lamé 

parameters. Alternatively this relationship can be written in matrix form: 

Figure 2.11 A typical stress strain curve for a linear 
elastic material 
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⎢
⎢
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⎡
σ11
σ22
σ33
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⎥
⎥
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⎤
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⎢
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⎥
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⎥
⎤
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where 𝐸 and 𝜈 represent the Young’s modulus and Poison’s ratio respectively which can 

be related to the Lamé parameters using: 

 

𝐸 =
µ(3λ + 2µ)
λ + µ

 

𝜈 =
λ

2(λ + µ) 

λ =
2µ𝜈

1 − 2𝜈
=

𝐸𝜈
(1 + 𝜈)(1 − 2𝜈) 

µ =
λ(1 − 2𝜈)

2𝜈
=

𝐸
2(1 + 𝜈) 

𝜅 = λ +
2
3
µ =

µ𝐸
3(3µ − 𝐸) =

2µ(𝜈 + 1)
3(1 − 2𝜈) 

2-67 

where 𝜅 represents the bulk modulus. The parameter µ is also known as the shear 

modulus. 

 Many engineering materials can be successfully modelled using linear elasticity 

especially at infinitesimal strains. However for materials like polymers, rubbers and 

biological soft tissues which are non-linear and capable of undergoing large deformations 

the infinitesimal analysis and linearity assumptions are not valid. 

 

2.2.10.3  Non-linear elasticity 

In order to capture non-linear elasticity it is often convenient to work with the strain-

energy density function Ψ for the derivation of stress formulations. Constitutive laws 

based on a strain-energy density function are referred to as Green elastic or hyperelastic 

laws. Various forms of Ψ have been proposed in the literature some are based on physical 

laws and some on experimental observations. A brief selection of common constitutive 

laws is presented here.  
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A general formulation is the so-called polynomial hyperelastic60 given by the 

strain-energy density function: 

 Ψ(𝐼1, 𝐼2) = � 𝑐𝑖𝑗(𝐼1 − 3)𝑖(𝐼2 − 3)𝑗
𝑁

𝑖,𝑗=0

 2-68 

Here 𝐼𝑖 are the strain invariants (equation 2-48) and 𝑐𝑖𝑗 are material constants (with 𝑐00 =

0). Various strain energy formulations can be obtained by using different combinations of 

these constants. For instance for 𝑁 = 1 and 𝑐11 = 0 the formulation reduces to the so 

called Mooney-Rivlin hyperelastic:  

 Ψ(𝐼1, 𝐼2) = 𝑐01(𝐼1 − 3) + 𝑐10(𝐼2 − 3) 2-69 

If in addition 𝑐10 = 0 the model reduces to the Neo-Hookean hyperelastic: 

 Ψ(𝐼1) = 𝑐01(𝐼1 − 3) 2-70 

 Another commonly used model is the Ogden hyperelastic model (see also 56, 57, 61, 

62). Its strain energy function for incompressible materials is defined by: 

 Ψ(𝜆1, 𝜆2, 𝜆3) = �
𝜇𝑖
𝛼𝑖
�𝜆1

𝛼𝑖 + 𝜆2
𝛼𝑖 + 𝜆3

𝛼𝑖 − 3�
𝑁

𝑖=1

 2-71 

Here 𝑁 is an integer (> 0) dictating the model order and in practise often 𝑁 < 4 since 

𝑁 = 3 is generally sufficient to achieve appropriate correlation56, 57, 61. The constants 𝜇𝑖 

are the shear moduli and 𝛼𝑖 are dimensionless constants. Again various strain energy 

formulations can be obtained by using different combinations of constants. When the 

following combination of constants is used: 𝑁 = 2, 𝛼1 = 2, 𝛼2 = −2, the Ogden model 

reduces to the Mooney-Rivlin model (equivalent to equation 2-69): 

 Ψ(𝜆1, 𝜆2, 𝜆3) =
𝜇1
2

(𝜆12 + 𝜆22 + 𝜆32 − 3) −
𝜇2
2

(𝜆1−2 + 𝜆2−2 + 𝜆3−2 − 3) 2-72 

When instead 𝑁 = 1 and 𝛼1 = 2 then the Ogden model reduces to a Neo-Hookean model 

(equivalent to equation 2-70):  

 Ψ(𝜆1, 𝜆2, 𝜆3) =
𝜇
2

(𝜆12 + 𝜆22 + 𝜆32 − 3) 2-73 

The above models are for incompressible materials (𝐽 = 1). For compressible 

hyperelastic materials we can decompose the deformation gradient tensor 𝐅 and Cauchy 

strain tensor 𝐂 into a volumetric (volume changing, dilation) part, and an isochoric 

(volume preserving, distortional, deviatoric) part56: 

 𝐅 = 𝐽
1
3𝑭�  2-74 
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𝐂 = 𝐽
2
3𝐂� 

Here J1/3 and J2/3 are associated with volumetric deformation and the so called modified 

deformation gradient tensor 𝑭� and the modified strain tensor 𝐂� are associated with the 

isochoric deformation (thus det�𝑭�� = det�𝐂�� = 1). Modified strain invariants and 

principal stretches may now be defined as:  

 

𝐼1� = 𝐽−
2
3𝐼1 

𝐼2� = 𝐽−
4
3𝐼2 

𝐼3� = 1 

𝜆̃𝑖 = 𝐽−
1
3𝜆𝑖  

2-75 

The strain-energy functions can also be rewritten as the sum of an isochoric part Ψiso�𝐂�� 

and a volumetric part Ψvol(𝐽) which is a function of the Jacobian: 

 
Ψ�𝐂�, 𝐽� = Ψiso�𝐂�� + Ψvol(𝐽) 

Ψ(𝜆1, 𝜆2, 𝜆3) = Ψ�𝜆̃1, 𝜆̃2, 𝜆̃3, 𝐽� = Ψiso�𝜆̃1, 𝜆̃2, 𝜆̃3� + Ψvol(𝐽) 
2-76 

Various forms of Ψvol(𝐽) have been proposed including the following, which is common 

in finite element implementations, such as FEBio (FEBio, Musculoskeletal Research 

Laboratories, The University of Utah, USA):  

 Ψvol(𝐽) =
1
2
𝜅(ln(𝐽)2) 2-77 

where 𝜅 is the bulk modulus. Compressible hyperelastic formulations of the before 

mentioned constitutive laws may thus be obtained by replacing the role of 𝜆𝑖 with 𝜆̃𝑖 and 

by adding Ψvol(𝐽).  

2.2.11  Modelling anisotropy 

So far the constitutive models discussed are for isotropic materials which exhibit 

equivalent mechanical properties in all directions. However many biological tissues 

present with anisotropy. This section summarises approaches to model anisotropy with 

focus on hyperelastic formulations commonly implemented in finite element software.  

For isotropic materials the strain energy function can be represented in terms of 

the Right Cauchy-Green tensor Ψ(𝐂). However for anisotropic materials the strain 

energy takes the form Ψ(𝐂,𝐀𝒊) such that it is also a function of a so called texture or 

structure tensor (see Ehret et al. 200763 and Itskov 200953): 
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 𝐀𝑖 = 𝐚𝑖⨂𝐚𝑖, and 𝑖 = 1,2. .𝑛 2-78 

where 𝐚𝑖 represent unit vectors describing material texture (e.g. fibre) directions in the 

reference configuration. The simplest form of anisotropy is transverse isotropy. A 

material is transversely isotropic if one of the material directions, specified by the vector 

𝐚, presents with altered mechanical properties and if the material behaviour is 

axisymmetric around this altered direction. The alteration of the mechanical properties 

(generally a fibre reinforcement) can be in modelled by also letting the strain-energy 

function depend on a unit vector field 𝐚(𝑿), representing texture directions in the initial 

configuration. In this case the material behaviour may be fully characterised by:  

 Ψ�𝐼1(𝐂), 𝐼2(𝐂), 𝐼3(𝐂), 𝐼4(𝐂,𝐚), 𝐼5(𝐂,𝐚)� 2-79 

where the invariants 𝐼1, 𝐼2, 𝐼3 are obtained as in equation 2-48 and the additional, so-

called pseudo-invariants, 𝐼4 and 𝐼5 are defined as: 

 
𝐼4 = 𝐚 ∙ 𝐂𝐚 

𝐼5 = 𝐚 ∙ 𝐂𝟐𝐚 
2-80 

The altered direction is often termed the fibre direction. The stretch along the fibre 

direction 𝜆𝑓 can be resolved via (analogous to equation 2-46):  

 𝜆𝑓 = √𝐚 ∙ 𝐂𝐚 = �𝐼4 2-81 

Similar to the relations 2-64 stress formulations can be derived using derivatives with 

respect to deformation measures. In this case summation across derivatives with respect 

to the invariants 𝐼𝑖 is convenient, for instance the second Piola-Kirchhoff stress tensor 

can be derived using:  

 𝐒 = 2�
∂Ψ
∂𝐼𝑖

∂𝐼𝑖
∂𝐂

5

𝑖=1

 2-82 

In addition transverse isotropic fibre reinforcement may be modelled by assuming that 

the material response, and thus the strain energy function, can be represented by the 

sum of an isotropic ground matrix response Ψ𝑔𝑚�𝐼1(𝐂), 𝐼2(𝐂), 𝐼3(𝐂)� (e.g. a Mooney-

Rivlin model) and a fibre reinforcement response Ψ𝑓�𝐼4(𝐂,𝐚), 𝐼5(𝐂,𝐚)�. Such modelling 

approaches take the form:  

 Ψ𝑡𝑜𝑡𝑎𝑙 = Ψ𝑔𝑚 + Ψ𝑓 2-83 

Any suitable formulation of Ψ𝑔𝑚 and Ψ𝑓 may be combined whereby the former may be 

decomposed into an isochoric and deviatoric contribution (as in relations 2-76) to allow 

for compressibility. In addition multiple fibre families may be superimposed in Ψ𝑓 to 
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achieve other types of anisotropy. A collection of multiple texture directions 𝐚𝑖 with 

𝑖 = 1,2. .𝑛 may then be formulated (e.g. ellipsoidal fibre distribution models64). For 

instance Ateshian et al.65 formulated the tension compression non-linear orthotropic 

model to model cartilage tissue employing three mutually orthogonal fibre families. The 

ground matrix response Ψ𝑔𝑚 was represented by a compressible Mooney-Rivlin model 

while the orthotropic fibre response Ψ𝑓 was modelled using the sum of the three fibre 

directions:  

 Ψ𝑓 = �Ψ𝑓𝑖

3

𝑖=1

�𝜆̃𝑖� 2-84 

with the individual fibre responses defined by: 

 Ψ𝑓𝑖�𝜆̃𝑖� = �𝜉𝑖�𝜆̃𝑖 − 1�𝛽𝑖 𝜆̃𝑖 > 1
0 𝜆̃𝑖 ≤ 1

, with 𝜉𝑖 ≥ 0 and 𝛽𝑖 ≥ 2 2-85 

As equation 2-85 shows for this formulation the fibre families only act in tension when 

𝜆̃𝑖 > 1. This allows modelling of slacking of fibres in compression and induces a basic 

form of tension compression non-linearity. Other types of fibre functions and conditions 

may be proposed here. For instance Blemker et al.23 modelled muscle tissue and only let 

fibres contribute after a threshold stretch has been exceeded to model fibres that are 

initially slacked. In addition these authors defined both passive and active fibre 

contributions. 

 In many cases anisotropic constitutive models are formulated using 

Ψ(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5). However as was remarked by Criscione et al. 200166 experimental 

validation of models formulated with these invariants may be difficult since even a 

simple isochoric uni-axial fibre stretch tests perturbs 𝐼1, 𝐼2, 𝐼4 and 𝐼5 and pure dilatation 

perturbs all of them. Hence the experimental determination of individual contributions is 

challenging. Therefore Criscione et al. 200166 proposed an alternative set of invariants 

which have physical meaning and can be independently evaluated experimentally. These 

invariants 𝛽1,𝛽2,𝛽3,𝛽4,𝛽5 such that Ψ(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5) = Ψ(𝛽1,𝛽2,𝛽3,𝛽4,𝛽5) take the 

following form in relation to the traditional invariants:  

 
𝛽1 =

1
2

ln(𝐼3) 

𝛽2 =
1
4

(3 ln(𝐼4) − ln(𝐼3)) 
2-86 
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𝛽3 = ln��
𝐼1𝐼4 − 𝐼5
2�𝐼3𝐼4

� + ��
𝐼1𝐼4 − 𝐼5
2�𝐼3𝐼4

�
2

− 1� = cosh−1 �
𝐼1𝐼4 − 𝐼5
2�𝐼3𝐼4

� 

𝛽4 = �
𝐼5
𝐼42

− 1 

𝛽5 =
𝐼1𝐼4𝐼5 + 𝐼1𝐼43 + 2𝐼3𝐼4 − 𝐼52 − 2𝐼2𝐼42 − 𝐼5𝐼42

�𝐼5 − 𝐼42��𝐼12𝐼42 + 𝐼52 − 2𝐼1𝐼4𝐼5 − 4𝐼3𝐼4
 

These 5 invariants respectively relate to: 1) volumetric strain, 2) distortional fibre strain, 

3) cross-fibre shear, 4) along-fibre shear and 5) the orientation of the along fibre shear 

plane relative to the cross-fibre shear diagonals. 

2.2.12  Viscoelasticity  

Elastic materials show a (non-)linear relationship between stress and strain, deform 

instantaneously due to stress and recover instantaneously once stress is removed. 

Viscous materials however (e.g. fluids) show a different behaviour. They demonstrate a 

strain rate dependency in part of the stress. Some materials demonstrate both elastic and 

viscous properties and are called viscoelastic58. In viscoelastic materials the stress 

depends not only on the current deformation but also on the history of the deformation, 

specifically its rate. A large variety of materials have viscoelastic properties, for instance 

various engineering materials (e.g. polymers) and biological materials67. When a 

viscoelastic material is suddenly strained and the strain is maintained constant 

afterwards, the corresponding stresses induced in the material decrease with time. This 

process is referred to as stress relaxation67. If the material is suddenly stressed, and then 

the stress is maintained constant afterward, a viscoelastic material continuous to deform. 

This phenomenon is called creep67. If a viscoelastic material is subjected to cyclic loading, 

the stress-strain relationship in the loading process is usually somewhat different from 

that in the unloading process, which is referred to as hysteresis 67. Stress relaxation, creep 

and hysteresis are features of viscoelastic materials. This section briefly discusses 

common linear and non-linear viscoelasticity modelling approaches. For a more detailed 

discussion the reader is referred to59, 67. 
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2.2.12.1  Linear viscoelasticity 

In order to simulate material properties it is often useful to use mechanical models such 

as springs and dashpots. The ideal spring (Figure 2.12a) can be used to represent the 

linear elastic solid.  

 
The stress in an ideal spring is elastic and can be expressed (in 3D) by the formula 

(equivalent to 2-65):  

 𝛔𝐞 = λ𝑆�tr(𝛆)�𝐈 + 2µ𝛆 2-87 

Just like a linear elastic material an ideal spring allows instant deformation and the stress 

is dependent only on the strain and the spring (material) constants λ𝑆 and µ. Similarly for 

a viscous material a mechanism that simulates the velocity dependent response can be 

used, the dashpot (Figure 2.12b). The stress equivalent to an ideal dashpot can be 

expressed by: 

 𝛔𝐯 = λ𝐷 �tr �
𝜕𝛆
𝜕𝑡��

𝐈 + 2η
𝜕𝛆
𝜕𝑡

 2-88 

For dashpots instant deformation is not allowed as the stress is dependent on the strain-

rate 𝜕𝛆
𝜕𝑡

 and the material constants λ𝐷 and η (dashpot viscosity).  

As mentioned before viscoelastic materials have both elastic and viscous 

properties. This behaviour can be modelled by combining springs and dash-pots. For the 

so called Voigt model (Figure 2.13a) the equation for the total stress is simply the sum of 

the elastic stress 𝛔𝐞 due to the spring and the viscous stress 𝛔𝐯 due to the dashpot. 

However unlike most solid materials the Voigt model does not allow instantaneous 

elasticity due to the parallel dashpot. To allow instantaneous elasticity a spring can be 

added such as in the Kelvin model or standard linear solid model (Figure 2.13b).  

Figure 2.12 A spring (A) and dashpot 
model (B) 



  - 31 -

 

 
However the internal strain components are unknown and the strain history may be 

complex. Therefore it is convenient to use the Boltzmann superposition principle which 

states that the total effect of applying several deformations is the sum of the effects of 

applying each one separately (see schematic representation in Figure 2.14). At time 𝜏 an 

infinitesimal strain increment 𝑑𝛆 then results in an infinitesimal stress increment 𝑑𝛔 at 

subsequent times 𝑡. The magnitude of this stress increment depends on the lapse of time 

since the strain increment was applied 54 and takes the form 𝑑𝛔(𝑡) = 𝐺(𝑡 − 𝜏)𝑑𝛆(𝜏).  

 
Using Boltzmann’s superposition principle this leads to the following convolution 

integral for the total stress for the Kelvin model:  

 𝛔(𝑡) = �𝐺(𝑡 − 𝜏)
𝑡

−∞

𝑑𝛆
𝑑𝜏
𝑑𝜏 2-89 

Here 𝐺 is the relaxation function defined by:  

 
𝐺(𝑡) = 𝜇∞ + 𝜇1𝑒

− 𝑡
𝜏𝜀  

𝜏𝜀 =
𝜂1
𝜇1

 
2-90 

However the Kelvin model is rather limited due to the fact that only 1 dashpot and 2 

springs are modelled. Hence it does not allow modelling of a continuous spectrum of 

Figure 2.13 A Voigt (A) and Kelvin model (B) 

Figure 2.14 Schematic representation of the Boltzmann 
superposition principle for viscoelasticity 
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relaxation. A more advanced general model of a linear viscoelastic material can be 

developed from an assembly of multiple springs and dampers59 for instance by repeating 

the parallel spring and dashpot array 𝑛 times (Figure 2.15).  

 

When 𝑛 = ∞ a continuous spectrum of relaxation can be achieved. The stress takes the 

same form however this time the relaxation function becomes:  

 
𝐺(𝑡) = 𝜇∞ + �𝜇𝑖𝑒

− 𝑡
𝜏𝜀𝑖

𝑛

𝑖=1

 

𝜏𝜀𝑖 =
𝜂𝑖
𝜇𝑖

 

2-91 

As is clear from these equations the relaxation function is composed of a series of 

negatively decaying exponentials. These series are known as Prony (or Dirichlet) series. 

The coefficients of the Prony series depend on the spring and dashpot constants which 

can be determined experimentally.  

 

2.2.12.2  Non-linear viscoelasticity 

Linear viscoelasticity discussed in the previous section has the same limitations as linear 

elasticity and is also an approximate theory only applicable to situations with 

infinitesimal strain and rotations54, 58. Many (non-Newtonian) fluids and solids are 

viscoelastic in that the stress depends on the deformation history, but this dependence is 

more complicated than a direct superposition of the form described in equation 2-89 54 

especially at finite deformation and rotation. For finite deformation of such materials the 

non-linear stress-strain characteristics must be accounted for 67. There are many 

different non-linear viscoelastic constitutive laws in the literature (see review 68) however 

here we will focus on the discretised quasi-linear theory of viscoelasticity by introduced 

Figure 2.15 Generalised model 
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Fung 197267, 69 since this is widely implemented in FEA software. For discretised quasi-

linear viscoelasticity70 the second Piola-Kirchhoff stress can be written in the following 

form:  

 𝐒(𝐄, 𝑡) = �𝐺(𝑡 − 𝜏)
𝜕𝐒𝒆(𝐄, 𝑡)

𝜕𝜏

𝑡

−∞

𝜕𝜏 2-92 

with 𝐒𝒆 the pure elastic stress derivable from ∂Ψ
(𝐄)

∂𝐄
 where Ψ may represent any suitable 

strain energy density function (e.g. a Mooney-Rivlin model70) including anisotropic 

material laws. The discrete relaxation function is defined by: 

 𝐺(𝑡) = 𝛾∞ + �𝛾𝑖𝑒
− 𝑡𝜏𝑖

𝑛

𝑖=1

 2-93 

with the parameters 𝛾𝑖 and 𝜏𝑖 dictating the viscoelastic behaviour. The parameters 𝛾𝑖 are 

constrained such that (ensuring that eventually 𝐒(𝐄, 𝑡) = 𝐒𝒆 following relaxation): 

 𝛾∞ + �𝛾𝑖

𝑛

𝑖=1

= 1 2-94 

Alternatively the stress response may be written as: 

 𝐒(𝐄, 𝑡) = 𝛾∞𝐒𝒆(𝐄, 𝑡) + � �𝛾𝑖𝑒
−𝑡−𝜏𝜏𝑖

𝜕𝐒𝒆(𝐄, 𝜏)
𝜕𝜏

𝑡

−∞

𝜕𝜏
𝑛

𝑖=1

 2-95 

As mentioned before, the elastic stress contribution 𝐒𝒆 may be due to an anisotropic 

constitutive formulation. However to the authors knowledge no constitutive 

formulations have been proposed whereby the viscoelastic constants (e.g. 𝛾𝑖 and 𝜏𝑖) are 

orientation dependant.  
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2.3 Basics of magnetic resonance imaging 

2.3.1  Introduction 

Nuclear magnetic resonance imaging, better known as magnetic resonance (MR) imaging 

(MRI), is the application of nuclear magnetic resonance (NMR) to radiological imaging 71. 

MRI is essentially based on measuring the response of matter to an externally applied 

electromagnetic field. In MRI tissue is exposed to an external magnetic field generated by 

a large coil. This external field causes all the tissue particles (e.g. protons) to align with 

this field in a certain way. This alignment is then modified by applying a series of 

radiofrequency pulses that match the frequency of the particles. During the time after 

these pulses the tissue particles will return (or relax) to their original orientation. This 

relaxation response can be measured and results in the MR signal. Gradient fields in all 

three dimensions result in a spatially varying signal thus enabling 3D imaging. In MRI 

the hydrogen nucleus (a proton) is the most dominant nucleus. It is found in water, lipids 

and other organic molecules. MRI provides excellent soft tissue contrast since soft tissues 

contain large quantities of water. Although the signal in MRI represents nuclear spin of 

hydrogen nuclei the signal can be interpreted in many different ways yielding many 

different types of tissue contrast.  

This section provides a brief description of the basic principles of MRI. A detailed 

discussion requires the theory of quantum electrodynamics (a combination of special 

relativity theory and quantum mechanics). This however, is beyond the scope of this 

study and thus instead the basics will be explained using some quantum mechanical but 

also more classical mechanical analogies. For a detailed description of NMR and MRI the 

reader is referred to specialised literature71, 72.  

2.3.2  Angular momenta and magnetic moments 

Nuclear magnetic resonance is one of a large range of phenomena associated with the 

interaction of electromagnetic radiation with matter or more precisely the interaction of 

atomic nuclear spin with an external magnetic field. In order to explain nuclear spin let’s 

consider an example in classical mechanics. In classical mechanics angular momentum is 

a term used for the rotation of an object around an axis. In a simple view of the celestial 

mechanics of earth and the sun for example (Figure 2.16, adopted from73) we can 
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associate two angular momenta with the movement of the earth: one due to the rotation 

of the earth around the sun and one due to the earth’s rotation around its own axis. The 

latter is referred to as spin. Although different in nature atomic particles and their 

building blocks, protons, neutrons and electrons also possess a property called spin.  

 

In MRI the hydrogen proton ( H11  present in water, lipids and other organic molecules) 

spins are the most relevant and dominant. Although strictly speaking incorrect the 

motions of the proton spin may be understood by imagining it as a spinning gyroscope 

that is also electrically charged. In MRI the external magnetic field results in a precession 

of the proton spin about the field direction and the actual imaging relies on the ability to 

manipulate the bulk precession of these hydrogen proton spins.  

Particles that possess both charge and spin must also have an effective loop of electric 

current around the same axis about which it is spinning. Not only is this current loop 

capable of producing its own magnetic field it is also capable of interacting with external 

magnetic fields. Consider an atomic nucleus with angular momentum 𝑱 suspended in an 

external static magnetic field (see Figure 2.17, adopted from73) denoted by the vector 

𝑩 = (0,0,𝐵𝑧) and aligned with the 𝑍-axis (the bore axis) of the MRI coordinate system.  

 

Now let 𝝁 be the associated magnetic moment defined by:  

 𝝁 = 𝛾𝑱 2-96 

Figure 2.16 Angular momenta in celestial 
mechanics 

Figure 2.17 Angular momentum 
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Here 𝛾 is the so called gyromagnetic ratio which is a constant for a particular nucleus. The 

magnetic moment 𝝁 can be thought of as a measure of both the ‘strength’ at which the 

current loop generates its own magnetic field and at which it interacts with external 

magnetic fields. The direction of 𝝁 coincides with the spin axis which in turn will tend to 

align itself with the external static magnetic field vector 𝑩. Similarly the precession of 𝝁 

tends to take place around the direction external field. The angular frequency of this 

precession is defined by: 

 ω0 = 𝛾𝐵𝑧 2-97 

A hydrogen proton in water has a gyromagnetic ratio 𝛾 of about 2.68x108 rad/s/T, which 

means that at an external field of 3T the spin precession takes place at a (radio)frequency 

of 127.8 MHz (γ/(2π)= 42.6 MHz/T) 71. This precession frequency is known as the Larmor 

frequency. 

2.3.3  Equilibrium alignment of spin 

For hydrogen proton spins (which are most relevant to MRI), suspended in an external 

magnetic field, quantum mechanics dictates that there are only two possible quantum 

spin states (see Figure 2.18): The so called spin up state in which 𝝁 is parallel to 𝑩 and 

the spin down state in which 𝝁 is anti-parallel to 𝑩.  

 
Thus in a way the proton can be imaged as a subatomic magnet with its own local north 

and south pole. This ‘magnet’ can either align parallel or anti-parallel to the external 

magnetic field. The energy levels associated with these configurations spin up and spin 

down and are defined as 𝐸↑ and 𝐸↓ respectively: 

 
𝐸↑ = −1

2
ℏ𝛾𝐵𝑧, and 𝐸↓ = 1

2
ℏ𝛾𝐵𝑧 

ℏ =
ℎ
2π

 
2-98 

Figure 2.18 Quantum spin states, spin up (left) 
spin down (right) 
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Here ℎ ≈ 6.2607 ⋅ 10−34 is Planck’s constant. The 𝐸↑ state is the lower energy 

configuration of the two and is therefore preferred. However as schematically illustrated 

in Figure 2.18 a hydrogen proton in the state 𝐸↑ is able to switch to the state 𝐸↓ by 

absorbing a photon with an energy equal to the quantum energy difference, 𝐸𝑝:  

 𝐸𝑝 = 𝐸↓ − 𝐸↑ = ℏ𝛾𝐵𝑧 = ℏ𝜔0 2-99 

This equation is known as the resonance condition.  

2.3.4  Dynamic equilibrium 

Although the lower energy state (spin up) is preferred the actual distribution of spins in a 

given volume also depends on temperature. The ratio between the number of protons 

that are in the spin up state 𝑁↑ with respect to the number in the spin down state 𝑁↓ in a 

given volume is defined by: 

 
𝑁↑
𝑁↓

= 𝑒−
ℏ𝜔0
𝑘𝑇 = 𝑒−

𝐸𝑝
𝑘𝑇  2-100 

The fraction 
𝐸𝑝
𝑘𝑇

 is the ratio between the quantum energy difference 𝐸𝑝 and the average 

thermal energy, 𝑘𝑇, with 𝑘 ≈ 1.3805 ⋅ 10−23 Boltzmann’s constant and 𝑇 temperature. 

At room (or body) temperature the average thermal energy is millions of times larger 

then 𝐸𝑝 resulting in an almost even distribution. There is however a slight excess of low 

energy state spins called the ‘spin excess’ 𝜉, which is then given by:  

 𝜉 = 𝑁
𝐸𝑝

2𝑘𝑇
 2-101 

With N the total number of spins.  

The spin of single protons is not detectable, instead the signal is averaged over 

macroscopic volumetric elements called voxels (volumetric 3D equivalents of pixels). 

These voxels contain large amounts of protons each with their own spin and magnetic 

moments. Figure 2.19a shows an atomic nucleus with spin and a magnetic moment 𝝁.  
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The spin of this atomic nucleus is the vector sum of the spins of its subatomic 

particles (e.g. protons). Thus the magnitude of this spin depends on both the atomic 

number and the mass number. The net spin angular momentum (and the current loops) 

of an atomic particle results in a net magnetic moment 𝛍 of the atomic particle. Similarly 

it can be shown that the expected behaviour of a large number of spins is equivalent to 

the classical behaviour of a net magnetization vector representing the sum of all 

individual magnetic moments. For instance one could analyse a small volume (or spin 

packet) in which 𝑴𝑝, represents the net magnetization vector (Figure 2.19b). On a larger, 

macroscopic scale the same applies to voxels. In dynamic equilibrium the macroscopic 

magnetization vector in each voxel 𝑴0 (Figure 2.19c) is aligned with 𝑩 and does not have 

transverse components 𝑴0 = �𝑀𝑥0,𝑀𝑦0,𝑀𝑧0� = (0,0,𝑀𝑧0), where: 

 
𝑀z0 =

𝜌0𝛾2ℏ2

4𝑘𝑇
|𝑩| 

𝜌0 =
𝑉
𝑁

 
2-102 

with 𝑁 the number of spins in the voxel, 𝜌0 the proton density and 𝑉 the voxel volume. 

Just like each individual spins magnetic moment the net magnetization vector precesses 

Figure 2.19 A particle with spin and magnetic moment 𝝁 (A), a spin 
packet (scale exaggerated) with a net magnetization 𝑴𝑝 (B) a voxel 
with a net magnetization 𝑴0 
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about the axis of the external magnetic field (and therefore with the 𝑍-axis of the MRI 

coordinate system, see Figure 2.17).  

2.3.5  Alteration of dynamic equilibrium 

As discussed the spin states (and therefore the dynamic equilibrium) can be altered 

through ‘transmission’ of photons with the appropriate energy level. For hydrogen 

protons exposed to a 3T external field this can be achieved using an electromagnetic wave 

of a frequency of 127.71 MHz (42.57MHz/T). This wave is known as a RF 

(radiofrequency) wave and is generated through alternating currents in coils in the 𝑥- and 

𝑦-axis of the MRI coordinate system. The magnetic component of the wave is denoted by 

𝐵1. The wave results in a change of orientation of the net magnetic moment in each 

voxel. The new net magnetization vector precesses about the field 𝐵1 with precession 

frequency:  

 𝜔1 = 𝛾𝐵1 2-103 

The new angle of the new net magnetization 𝑴𝟏 is defined by: 

 𝛼 = �𝛾𝐵1

𝑡

0

𝑑𝜏 = 𝛾𝐵1𝑡 = 𝜔1𝑡 2-104 

This angle is called the flip angle. Through an appropriate choice of 𝐵1. and 𝑡 any desired 

flip angle can be obtained. There are two main flip angles relevant to MRI. The 90 degree 

pulse, α = π
2

 where 𝑴𝟏 = (0,𝑀𝑧1, 0), here there is no longitudinal magnetisation as an 

equal amount of spins are in the high and in the low energy configuration, and the 180 

degree pulse, α = π where 𝑴𝟏 = (0,0,−𝑀𝑧1), here there the majority of spins is in the 

higher energy configuration. The RF field causes all spins rotate in phase. This important 

phenomenon is referred to as phase coherence. When the RF field is removed the system 

returns to its dynamic equilibrium and the net magnetization returns to 𝑴𝟎 =

(0,0,𝑀𝑧0). This returning to dynamic equilibrium is known as relaxation.  

2.3.6  Relaxation to dynamic equilibrium 

There are two types of relaxation processes distinguishable spin-lattice relaxation and 

spin-spin relaxation. Spin-lattice relaxation is the process of the longitudinal component 

of the net magnetization vector to grow from its modified state back to 𝑴𝟎, see Figure 

2.20 (adopted from73). This phenomenon is due to physical interactions of the spins with 
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the surrounding molecules or surrounding lattice. The time this process takes to 

complete is referred to as spin-lattice relaxation time or 𝑇1 and is related to 𝑀𝑧 through: 

 𝑀𝑧(𝑡) = 𝑀0 cos(𝛼) 𝑒
−𝑡
𝑇1 + 𝑀0(1 − 𝑒

−𝑡
𝑇1 ) 2-105 

Spin-spin relaxation is a process through which the transverse component of the net 

magnetization vector vanishes. The hydrogen protons are found in different types of 

molecular environments (e.g. bonded as H20, -OH or –CH3) which causes them to 

experience a slightly different magnetic field resulting in slightly different rotational 

frequencies. Therefore even though initially, after the RF pulse the spins are in phase 

they start to dephase and cancel each other out. This dephasing phenomenon occurs over 

a time known as the spin-spin relaxation time 𝑇2 and relates to the transverse 

magnetisation 𝑀𝑡 through: 

 𝑀𝑡(𝑡) = 𝑀𝑡0𝑒
−𝑡
𝑇2  2-106 

Where subscript 𝑡 denotes transverse and 0 values at time zero.  

Both 𝑇1 and 𝑇2 are dependant magnetic field strength but most importantly they 

depend on tissue type and are thus useful for image contrast. For all materials 𝑇1 is larger 

than 𝑇2. Table 2-1 shows a review of the literature of the 𝑇1 and 𝑇2 for tissue types at the 

field strength relevant to the current project (3 T). 

 
 

Figure 2.20: Schematic overview of MR experiment. The dynamic equilibrium state (top left) is altered using 
an RF pulse to achieve a desired flip angle (e.g. 2/π shown in top right). After the RF pulse is stopped the 
system then relaxes. The relaxation can be slit up into spin lattice relaxation (bottom left) and spin-spin 
relaxation (bottom right).  
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Tissue type / Reference T1 (ms) T2 (ms) 

Skeletal muscle 

In-vivo human knee 74 

In-vivo human paravertebral muscle 75 

In-vitro mouse skeletal muscle 76 

 

1420 ± 38.1  

898 ± 33 

1412 ± 13 

 

31.7 ± 1.90 

29 ± 4 

50 ± 4 

Cartilage 

In-vivo human knee cartilage 74 

In-vivo human knee cartilage 77 minimum 

and maximum  

In-vitro bovine cartilage 0º 76 

In-vitro bovine cartilage 55º 76 

 

1240 ± 107 

 

 

1168 ± 18 

1156 ± 10 

 

36.9 ± 3.81 

45.3 ± 2.5  

74.1 ± 5.4 

27 ± 3 

43 ± 2 

Synovial fluid 

In-vivo human knee joint synovial fluid 74 

 

3620 ± 320 

 

767 ± 48.8 

Lipid and fatty tissue 

In-vivo human knee joint  subcutaneous fat 74 

In-vivo human knee joint  marrow fat 74 

In-vivo human pelvic region subcutaneous fat 75 

 

371 ± 7.94 

365 ± 9.0 

382 ± 13 

 

133 ± 4.43 

133 ± 6.14 

68 ± 4 

Bone marrow 

In-vivo human bone marrow (L4 vertebra) 75 

 

586 ± 73 

 

49 ± 4 

Myocardial tissue 

In-vitro mouse heart 76 

 

1471 ± 31 

 

47 ± 11 

Table 2-1: Review of tissue T1 and T2 relaxation times at 3T 

2.3.7  Detecting the magnetization of the system 

As discussed above after an RF pulse the altered (flipped) net magnetization vector M 

precesses around 𝐵1. This induces currents in a receiver coil array. The signal in the x and 

y-directions can be expressed by:  

 
𝑠𝑥(𝑡) = 𝐴𝑒

−𝑡
𝑇2 𝑐𝑜𝑠(−𝜔0𝑡) 

𝑠𝑦(𝑡) = 𝐴𝑒
−𝑡
𝑇2 𝑠𝑖𝑛(−𝜔0𝑡) 

2-107 

where 𝐴 is a factor depending on number of excited spins. 
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2.3.8  Position encoding 

The signal acquired using the receiver coils is dependent on the frequency 𝜔, which in 

turn depends on the magnetic field strength (external and due to RF pulses) which, in the 

examples above, is homogeneous. Therefore in the situation described no spatial 

information was available in the signal and the entire subject would produce the same 

signal frequency. Encoding position in the obtained signal is possible by superimposing a 

series of linear magnetic field gradients. Since the frequency ω of the signal depends on 

the local field, this results in a spatially varying signal frequency. Thus in each voxel the 

net magnetization vector precesses about the field at a slightly different frequency. An 

example for a gradient in the z-direction for encoding slices will now be discussed and is 

illustrated in Figure 2.21 (Figure 2.21 is composed using images from 73 and 78.).  

 
Figure 2.21A shows a spin packet with all spins precessing in phase due to a 

homogeneous field. However, as shown in Figure 2.21B, by applying a field gradient in 

the z-direction the frequencies of the protons spins can be altered in the z-direction 

inducing signal frequency differences along this direction. These gradients fields (which 

are in the order of mT/m) thus serve to spatially encode slices and volumes. The addition 

of the spatially varying magnetic fields or gradient fields 𝐺 = �𝐺𝑥,𝐺𝑦,𝐺𝑧� = �0,0, 𝜕𝐵𝑧
𝜕𝑧
� 

produces a signal with a spatially varying Larmor frequency. In the example shown here 

in the z-direction: 

 𝜔(𝑧) = 𝛾(𝐵0 + 𝐺𝑧𝑧) 2-108 

Figure 2.21: Applying magnetic field gradients.  
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Consider the slice at z0. In order to excite the spins in this slice an RF pulse with a 

bandwidth of Δω centred at ω(z) is required.  

 𝛥𝜔 = 𝛾𝐺𝑧𝛥𝑧 2-109 

The slice thickness can then be calculated using: 

 𝛥𝑧 =
𝛥𝜔
𝛾𝐺𝑧

 2-110 

This relationship shows that the slice thickness is proportional to bandwidth of the RF 

pulse and inversely proportional to the gradient. In the example discussed here the 

within slice position encoding can be performed using magnetic field gradients in the x- 

and y-directions. In the example discussed earlier the slice direction coincided with the z-

direction, however in reality the RF coils are capable of producing gradients in any 

desired orientation not necessarily in the x-, y- and z-directions. Since the signal 

frequency varies spatially it is useful to use Fourier transform theory. The overall 

position encoding system in MRI is referred to as the k-theorem which states that the 

time signal is equivalent to the forward Fourier Transform of the desired image. After all 

data has been collected in the Fourier space (k-space) the inverse Fourier Transform 

yields the desired image, which represents the weighted spin density distribution in the 

selected slice or volume (see Figure 2.22, modified from 73). A full discussion of the k-

theorem is beyond the scope of the current study but can be found in specialised 

literature 71, 73. 

 
 

Figure 2.22: The k-theorem. MR data of the human brain in the k-space domain (A), the MR data in the image domain 
obtained via inverse Fourier transform of the k-space image (B) 
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2.3.9  Anatomical magnetic resonance imaging 

In anatomical MRI the intensity of a voxel depends on its density of mobile hydrogen 

protons and on how these protons respond to the externally applied magnetic fields 

(both static and fluctuating). This response depends on the chemical and biophysical 

environment of the protons which is described concisely by the T1 and T2 relaxation 

times79. Depending on the tissue type and size of tissue structure of interest a large 

number of possible imaging sequences can be used. For the current study sequences 

useful for 3D musculoskeletal modelling are of interest e.g. the standard pulse sequences, 

such as T1-weighted spin-echo imaging, spoiled gradient echo imaging, and proton-

density fast spin-echo imaging80. Imaging sequences of this type are implemented in the 

standard imaging sequence libraries of clinical MRI scanners79. Like many other MRI 

techniques anatomical MRI allows full 3D volume imaging of the anatomical structure 

and is thus a valuable tool for image based modelling80. Through post-processing of the 

3D image data (e.g. thresholding and segmentation) it is possible to construct detailed 3D 

models (Figure 2.23, reproduced from80) e.g. for finite element modelling. For structures 

like bone automatic segmentation methods have been developed, however the 

boundaries between muscles are not as well defined and as such to date, there exists no 

robust, automatic routine for segmenting muscle boundaries80.  

 

Figure 2.23: Musculoskeletal structures of the lower leg 
modelled from anatomical images.  
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2.3.10  MRI techniques based on motion induced phase shifts 

2.3.10.1  Principle of motion induced phase shift 

Section 2.3.8  discussed how hydrogen spins are in phase coherence when subjected to a 

homogeneous magnetic field and how the phase can be altered through the application of 

gradients. Figure 2.24 (modified from78) shows the phase coherence (left) and the phase 

difference after applying a first gradient (second from left). It is possible using a second 

gradient which is the exact inverse of the first gradient to return the proton spins to their 

original phase coherence. However phase coherence is only achieved when no movement 

occurred in between the application of the first and second gradient (top right). When 

movement occurs in the gradient direction phase coherence is not achieved (bottom 

right). After the two gradients stationary spins will be left with no net phase. Moving 

spins however will encounter different regions of the two gradients and will be left with a 

net phase proportional to the displacement in the time between the application of the 

first and second gradient, their velocity81, 82. This therefore yields a method to obtain 

images with a signal dependant on the amount of proton spin movement that occurred. 

In the example shown in Figure 2.24 the phase shift only occurs due to proton spin 

movement in the gradient (horizontal) direction. However multiple gradient directions 

can be combined following repeated acquisitions in order to analyse phase shift and 

motion in 3D.  

 Figure 2.24: Phase shift 
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2.3.10.2  Diffusion tensor MRI 

As mentioned before the phenomena of phase shift due to movement allows motion to be 

‘encoded’ within the image. Diffusion Tensor MRI (DTI) is a phase shift based technique 

that analyses the diffusive movement of water molecules (hydrogen protons) in tissues 

(e.g. in the brain in order of 10 μm in 50 milliseconds78). During diffusive movement 

water chooses the path of least resistance and will therefore diffuse along rather than 

through denser fibrous structures. By combining the information from diffusion 

sensitive images from multiple axes a diffusion tensor can be formulated (Figure 2.25, 

modified from78). The diffusion tensor eigenvalues (𝜆𝑖) and eigenvectors allow derivation 

of the so called diffusion ellipsoid (Figure 2.25b). The per voxel principle eigenvector 

direction (𝑣1 in Figure 2.25c) correlates with the average fibre direction within each voxel 

allowing mapping of average fibre orientations (e.g. for muscle tissue see Figure 2.26, 

reproduced from80). The technique has been extensively applied to imaging of the fibre 

architecture in the brain78, 83, but also in the heart84-86 and muscle33, 87-96 and other 

musculoskeletal tissues such as cartilage 97. For more information on the theory of DTI 

the reader is referred to: 78, 83, 98-100.  

 

 

Figure 2.25: Schematic illustration of Diffusion Tensor Eigenvalue, Eigenvector and fibre direction 
determination  

Figure 2.26: Fascicle trajectory mapping in skeletal 
muscle tissue.  
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2.3.10.3  Phase contrast MRI 

Phase contrast MRI is another motion induced phase shift based technique. This time the 

spin movement of interest is macroscopic. The principles are the same, two magnetic 

gradients fields are employed separated in time, one to create a phase shift and other to 

attempt to return the system to phase coherence. As mentioned before the net phase 

found due to movement is proportional to the velocity. Through phase sensitive imaging 

data can be constructed were each voxel has a magnitude due to signal intensity and a 

phase related to the velocity (strictly speaking displacement between gradients) of the 

proton spins in that voxel 81. Phase contrast MRI (PCMRI) aims to image the velocity of 

proton spins within the time between the gradients. The strength of the gradients and 

the interval between them sets the velocity scale which may be reliably detected, there 

exists a maximum velocity due to the fact that motion resulting in a phase change equal 

to 360˚ appears the same as 0˚ and cannot be distinguished from slower movements 81.  

Figure 2.27 (reproduced from101) explains the PCMRI process. In order to reduce the 

influence of phase changes not related to movement (e.g. due to field heterogeneities)82, 

101 the phase contrast image velocity map in one direction is obtained after a reference 

phase image is subtracted from the obtained velocity encoded image. One velocity 

component can be measured at a time. However through the combination of multiple 

repeated acquisitions at varying orientations (e.g. three mutually orthogonal directions) 

the 3D velocity vector can be computed throughout the image volume. 

 
In principle the phase and therefore a measure of velocity can be obtained for each voxel. 

However in practise the signal to noise ratio limits requires averaging of the signal of 

adjacent voxels. This limits the effective spatial resolution of this technique82. The signal 

Figure 2.27: Phase contrast MRI 
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to noise ratio also limits the accuracy of the corresponding derived displacements due to 

integration error82. The fact that multiple repeated image sets need to be acquired in 

order to generate one phase contrast map results in long acquisitions times. PC MRI has 

been widely used to study the motion of the heart (e.g.81, 101-110) however it has also been 

applied to imaging of movement in skeletal muscle111-115.  

 

2.3.10.4  Magnetic Resonance Elastography 

MR Elastography (MRE) is another technique based on phase shift imaging and aims to 

image mechanical property derived tissue parameters. Soft tissue is mechanically excited 

via an acoustic device generating low strain (e.g. <1%) shear waves in the tissue 

(frequencies of 90 to 150 Hz are typically used in skeletal muscle28). Gradients 

synchronized to the mechanical vibrations are then used to measure phase shift, which, 

when the information from several directions is combined allows for derivation of 3D 

displacement measures (due to these shear waves) at each voxel. Through inverse 

analysis of the shear wave propagation and attenuation it is possible to derive estimates 

of the theoretical shear modulus and viscosity of the tissue for the low strain levels and 

frequencies applied. Figure 2.28 (reproduced from32) demonstrates how the phase 

contrast MRI data can be post processed to obtain an image representing shear wave 

displacement (Figure 2.28a) and an image representing shear stiffness estimates (Figure 

2.28b).  

 

MRE has been applied to various tissue types including skeletal muscle (e.g. 28, 116-

121). Inverse analysis methods that allow for the derivation of the mechanical parameter 

estimates are often based on assumptions of isotropy (although recently also transversely 

Figure 2.28: MR elastography of an agarose gel phantom with an embedded stiffer object (stiffer 
gel). A displacement image a) showing shear waves (300Hz) propagating through the phantom gel 
and a shear stiffness image b) showing the stiffer object.  
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isotropy122) and linear elasticity or employ simple rheological models such as the Voigt 

model (see section 2.2.12.1 ). Due to the assumptions and current limitation to small 

strain the mechanical property estimates are more useful for diagnostic purposes (e.g. to 

imaging of breast lesion mechanical property alterations25) rather than for detailed 

anisotropic, non-linear and large strain constitutive property analysis.  

 

2.3.11  Tagged Magnetic Resonance Imaging 

As discussed in section 2.3.5 , it is possible using RF pulses to alter the state of hydrogen 

proton spins and the resulting magnetization vector e.g. to flip the net magnetization at 

a desired angle. This can be done selectively in space e.g. to excite only a certain region of 

interest. It is however also possible to use RF pulses to perturb the local magnetization. 

In such regions the signal can be reduced to background noise. This concept of 

introducing such an artificial manmade removal of signal is known as spin tagging and 

was first used to study blood flow by Morse and Singer 1970123 and later Zerhouni et al. 

1988124 used this concept to analyse myocardial mechanics. Axel and Dougherty 1989125, 

126 improved the MRI tagging further and developed a technique called SPAtial 

Modulation of Magnetization (SPAMM) that uses non-selective excitation to produce a 

periodic modulation of the magnetisation and parallel tag surfaces (initially planar) 

throughout the entire imaging volume within a few milliseconds. Figure 2.29 shows a 

schematic illustration of the SPAMM tagging process. An RF pulse is used to induce a flip 

angle to the magnetisation vector. A dephasing gradient is then used such that phase now 

varies in space along the direction of the gradient. This leads to the conical magnetisation 

vector distribution shown in the bottom left of Figure 2.29. A second RF pulse then flips 

the conical magnetisation by the same angle as the initial. This induces the flipped cone 

shown in the bottom right of Figure 2.29 where phase angle within the cone is dependent 

on the location in space along the gradient direction. Hence the Z-magnetisation 

magnitude varies sinusoidally in space along the gradient direction since some vectors are 

aligned with the Z-axis resulting in no net change of Z-magnetisation while for those at 

the bottom of the cone the Z-magnetisation is reduced. Therefore this technique creates 

sinusoidal signal modulation along the gradient direction visible as dark saturated 

surfaces or tag surfaces. Figure 2.29 illustrates what is known as first order or 1-1-

SPAMM tagging. Higher order SPAMM modulations further approximate a block 
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function modulation rather than the sinusoidal modulation of 1-1-SPAMM. The 

perturbed magnetisation (bottom right in Figure 2.29) relaxes back to equilibrium (top 

left in Figure 2.29) as a function of T1 relaxation. Hence the low intensity tag surfaces 

fade back to normal signal due to as a function of T1 (for skeletal muscle tissue T1 times 

are around 0.9-1.4 s, see Table 2-1). However prior to this the tag pattern is temporarily 

locked in the tissue and tissue deformation occurring after tag pattern deposition is 

reflected in the deformation of the tag pattern. 

 

Figure 2.30 (reproduced from34) shows a normal series of cardiac MRI (left) and a series 

of SPAMM tagged MR images (right). In this case two orthogonal direction where used to 

create a grid pattern. Basic tag sequences of this type are now integrated within the pulse 

sequence libraries of all clinical MRI machines34. Many variations of this technique have 

been developed to measure cardiac motion such as: CSPAMM127 (Complementary 

SPAMM) in which tags are maintained longer, DANTE128 consisting of a series of short RF 

pulses, effective on small imaging systems. Hybrid tagging and phase contrast related 

methods have also been developed, such as DENSE (Displacement Encoding with 

Stimulated Echoes129) and HARP (Harmonic Phase130), in which a uniform pattern of 

phase modulation is encoded into the tissue and the deformation of that pattern is 

Figure 2.29 Equilibrium magnetisation (top left), RF pulse induced magnetisation vector tilt (top[ right), gradient induced 
dephasing results in cone-like magnetisation vector distribution (bottom left), a second RF tilts the cone resulting in a 
sinusoidally modulated Z-magnetisation (bottom right). 
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detected34. However these techniques require acquisitions of additional repetitions with 

respect to traditional SPAMM.  

 

The spatial resolution of the strain computed from the tagged images is often defined as 

the distance between two adjacent tags49. In practice, the tag spacing must be chosen 

such that tag pairs can be resolved by image processing, requiring for instance 5–7 voxels 

separation between tags34. The optimal tag thickness (half the tag modulation period) has 

been reported in the range of 0.8 to 1.5 voxels131.  

  

Figure 2.30 Left: standard cardiac MR images. Right: for the 
same heart, location, and cardiac phase, the corresponding 
tagged MR images.  
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2.4 Basics of image processing 

2.4.1  Introduction 

A large portion of the current study involves 3D image processing. Hence the basics of 

image processing are here briefly highlighted. Since the current study involves mainly 3D 

imaging this is the focus of this section. For a more detailed description the reader is 

referred to more specialised literature (e.g. on medical imaging73, image processing132, 133.  

2.4.2  Background on image data 

A general definition of an image is a discrete representation or visualisation of a 

multidimensional measured signal or mathematical function. Figure 2.31 shows 

examples of how continuous functions (left) can be discretely represented or sampled to 

obtain 2D (A) or 3D (B) images (right). Image data is generally visualised using regular 

tessellations whereby the area (2D) or volume (3D) is subdivided in a finite number of 

equal image elements. In the case of 2D imaging the image elements represent area units 

referred to as pixels and are generally rectangular. For 3D imaging image elements 

represent volume units referred to as voxels and are usually hexahedral.  

 

Figure 2.31: Examples of a 2D image where the signal represents height of a surface visualised using coloured pixels 
(B) and a 3D image where the signal represents signal value/intensity in space visualised as coloured voxels and 
pixel-slices (C). On the left ideal continuous descriptions and on the right discrete image representations. 
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A 3D image takes the form 𝑓(𝑖, 𝑗,𝑘) and can be represented as a 3D matrix. The variables 

(𝑖, 𝑗, 𝑘) belong to the image coordinate system whose orthonormal basis is aligned with 

the image matrix row, column and slice directions respectively. Since an image is 

effectively signal intensities in space stored in matrix form it enables image processing 

using various mathematical and matrix operations. The image coordinate system is 

convenient since integer valued image coordinates are simply indices of voxels within the 

image matrix. However the image coordinate system does not take into account the 

possibly non-uniform voxel dimensions (the spacing in the row, column or slice 

direction), or the location and orientation in space of the imaging field of view (FOV) (see 

Figure 2.32). Other coordinates systems may be formulated that do take these into 

account. For instance the voxel dimensions can be taken into account using a so called 

local Cartesian coordinate-system (𝑥, 𝑦, 𝑧) which is relatable to the image coordinate-

system as: 

 (𝑥,𝑦, 𝑧) = �𝑣𝑗 �𝑗 −
1
2�

, 𝑣𝑖 �𝑖 −
1
2�

, 𝑣𝑘 �𝑘 −
1
2�
� 2-111 

where 𝑣 = �𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘� are the voxel dimensions (the offset of 1
2
 is due to the fact that the 

first voxel has the index (1,1,1) and its corner forming the image origin at �1
2

 , 1
2

 , 1
2
 �). In 

some cases the FOV is defined with respect to an external coordinate system in which it 

is translated and rotated. If this orientation is of interest the local Cartesian coordinates 

(𝑥,𝑦, 𝑧) can be translated and rotated accordingly to define the image data within a 

global external Cartesian coordinate system 𝑓(𝑥′,𝑦′, 𝑧′). This is often useful in order to 

appropriately overlay image data from repeated and varying FOV orientations and voxel 

sizes.  

 

Figure 2.32 Spherical symmetric Gaussian function partially visualised using a mid-slice and voxels. Visualisation based 
on: Image coordinates showing (false) isotropic voxel appearance and distorted shape (A), Local Cartesian coordinate 
system taking voxel dimensions into account, note anisotropic voxels (B), Example global Cartesian coordinate system 
taking into account voxels dimensions, and their location and orientation in a global frame of reference (i.e. the field of 
view was translated and rotated with respect to some arbitrarily adopted reference coordinate system).  
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Two types of imaging processes can be defined (see Figure 2.33): 1) at each voxel 

the signal value matches the signal sampled at the voxel centre, or 2) at each voxel the signal 

matches the average of the signal across volume of the voxel. The former is thus a pure 

sampling of a function at discrete locations (and visualisation using points would strictly 

speaking be more appropriate than volume elements) while the latter volume averaging 

can be viewed as a discrete convolution of the continuous function with the voxel 

element. The latter is most common in imaging applications including photography and 

MRI. 

 

2.4.3  Segmentation and filtering 

Image segmentation or feature extraction techniques aims to convert image matrices to 

binary logic arrays whereby ones describe the feature of interest and zeros the rest of the 

image. The simplest form of segmentation is thresholding whereby the feature of interest 

is assumed to exhibit specific intensity characteristics (for instance the blue feature in 

Figure 2.31B can be segmented as all voxels with intensities lower than 0.2). More 

complex feature extraction methods involve filtering techniques.  

A common operation in image processing is filtering or masking. Figure 2.34 

shows an example where a Gaussian filter is used to average or blur signal intensities 

allowing for the suppression of noise.  

Figure 2.33 A solid sphere function (signal is 0 or black inside and 1 or white outside) imaged using a finite (shown as 
transparent) set of voxels (A), imaging of the sphere by sampling the function at the voxel centre coordinates leading to voxel 
signal intensities of either zeros or ones (B), the same sphere imaged by averaging the function across each voxel volume 
leading to intermediate signal due to partial volume effects (C).  
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In the case of Figure 2.34 a 2D 5x5 filter was employed. The filtering occurs by marching 

this filter across the image and for each voxel a new signal is derived by taking the sum of 

the multiplication between its filter environment (here rectangular 5x5 region 

surrounding voxel) and the filter. The filter generally sums to 1 such that it does not 

induce signal alterations in homogeneous image regions. For a hexahedral filter 𝐅 and 

image 𝐌 the filtered image 𝐌𝒇 can be derived using: 

 

𝐌𝒇(𝑖, 𝑗, 𝑘) = 

� � � 𝐌�𝑖 + 𝑖𝑓 − 𝑛𝑖 , 𝑗 + 𝑗𝑓 − 𝑛𝑗 ,𝑘 + 𝑘𝑓 − 𝑛𝑘�𝐅�𝑖𝑓 , 𝑗𝑓 ,𝑘𝑓�
2𝑛𝑘−1

𝑘𝑓=1

2𝑛𝑗−1

𝑗𝑓=1

2𝑛𝑖−1

𝑖𝑓=1

 
2-112 

with �𝑛𝑖 ,𝑛𝑗 ,𝑛𝑘� denoting the index for the middle element in 𝐅. The operation of 

marching across the images is referred to as convolution and can be written as: 

 𝐌𝒇 = 𝐌 ∗ 𝐅 2-113 

where the operator ∗ denotes convolution. For large image data sets convolution can be 

computationally expensive. However following the convolution theorem, convolution in 

the image domain is equivalent to multiplication in the Fourier domain leading to the 

more computationally efficient expression: 

 𝐌𝒇 = ℱ−1�ℱ{𝐌}ℱ{𝐅}� 2-114 

where and ℱ{ } and ℱ−1{ } represent the Fourier transform and inverse Fourier 

transform respectively.  

 Filters can be specifically designed to suppress or enhance features of interest. For 

instance Gaussian filters, as mentioned earlier, may be employed for blurring and noise 

suppression while other filters can be employed for enhancement of line or edge features 

in image data. 

Figure 2.34 A 2D image containing a central high signal (white) square eroded by noise (A), a Gaussian blurring or averaging 
filter (B), the filtered result showing suppressed noise at the cost of blurring (C).  
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2.4.4  Spatial transformations 

The coordinate descriptions for images can be subjected to spatial transformations 

including rigid (translations and rotations) and non-rigid transformations 

(deformations). The spatial transformations can also be subdivided into: 1) Global spatial 

(or affine) transformations, acting homogeneously on the entire image, or 2) locally varying 

transformations. 

Global spatial transformations can be reduced to the following form:  

 �

𝑥′
𝑦′
𝑧′
1

� = 𝐓 �

𝑥
𝑦
𝑧
1

� 2-115 

whereby the original coordinates (𝑥,𝑦, 𝑧) are transformed or mapped to (𝑥′,𝑦′, 𝑧′) using 

a transformation matrix 𝐓. A transformation matrix can be decomposed as 𝐓 = 𝐃𝐑𝐒 

defining a displacement 𝐃, rotation 𝐑 and a deformation transformation tensor 𝐒 

respectively. These can be defined as: 

 

𝐃 = �

1 0 0 𝑑𝑥
0 1 0 𝑑𝑦
0 0 1 𝑑𝑧
0 0 0 1

�, 𝐑 = �

𝑒11 𝑒21 𝑒31 0
𝑒12 𝑒22 𝑒32 0
𝑒13 𝑒23 𝑒33 0
0 0 0 1

� and 

𝐒 = �

𝑠𝑥𝑥 𝑠𝑥𝑦 𝑠𝑥𝑧 0
𝑠𝑥𝑦 𝑠𝑦𝑦 𝑠𝑥𝑦 0
𝑠𝑥𝑧 𝑠𝑥𝑦 𝑠𝑧𝑧 0
0 0 0 1

� 
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were the displacement is defined by the vector 𝐝 components and the rotation is defined 

by the components of the rotated orthonormal basis vectors {𝐞1, 𝐞2, 𝐞3}. Finally a global 

deformation is defined using the tensor 𝐒 where the diagonal elements represent uniform 

scaling or stretch and the off diagonal components represent shearing. The coordinate 

transformation discussed in section 2.4.2  for mapping between the image coordinate 

system and Cartesian coordinate systems is a type of rigid transformation and can thus 

be formulated using displacement, rotations, and scaling tensors (whereby the 

displacement and rotation define the Cartesian orthonormal basis with 𝐝 defining the 

origin and {𝐞1, 𝐞2, 𝐞3} the axis orientations, and the voxel dimensions defining the 

scaling with 𝑆𝑎𝑎 = 𝑣𝑎). Examples of global deformations, due to 𝐒, are as illustrated in 

Figure 2.35. Such type of deformations result in a homogeneous image deformation.  
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For local, non-rigid transformations, deformation is a function of space and can thus be 

inhomogeneous. Local non-rigid transformations are common in image registration 

techniques (see section 2.4.5 ) whereby multiple image sets of similar objects, which may 

be deformed with respect to each other, are matched using deformation maps. A large 

array of local non-rigid geometric transformations have been proposed (see review 

article134) including those based on mechanical material models (e.g. linear elasticity). In 

general the local non-rigid transformations employed impose a smoothness and 

regularization on the deformation and thus effective involve assumptions on the nature 

of the deformation and mechanical properties of the imaged object (e.g. level of 

homogeneity, isotropy, elasticity and compressibility).  

2.4.5  Image correlation and registration 

The above spatial transformations can be used to correct for motion that occurred 

between repeated acquisitions or for overlaying of image data derived from different 

imaging modalities. Methods to achieve this are digital image correlation (DIC) (e.g.135) 

Figure 2.35 An example image (A) subjected to global scaling in the x-direction (B), shear in the x-direction (C) and combined 
scaling and shear in the x-direction (D). 
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and image registration (review articles134, 136). With these techniques image pairs are 

adjusted with respect to each other using spatial transformations such that a similarity 

measure for the image sets is maximised. In addition to matching shifted or deformed 

image date sets for direct comparison, the techniques allow for the quantification of the 

motion and deformation between two image sets. Since DIC is relevant to this thesis it is 

highlighted in more detail.  

In DIC displacement is derived from images of a surface undergoing motion and 

deformation. If the images are acquired at two orientations using for instance two 

camera angles, 3D surface displacements can be derived. In essence the technique relies 

on matching of points between an un-deformed reference image and a deformed image 

set. However due to disturbances such as noise and non-uniqueness of pixels, matching 

individual pixels is not possible. Instead the technique aims to match signal distributions 

within small regions in the image known as subsets. This illustrates the necessity for 

appropriate contrast within the subsets and hence surfaces are often painted with a 

random speckle pattern. Figure 2.36 highlights the DIC technique and illustrates subsets 

(green regions) in an example reference image (A) and an image of a deformed state (B). 

The reference image subset (Figure 2.36A) is moved and deformed until an appropriate 

match (Figure 2.36C) is obtained with the target image (the true image of the deformed 

state Figure 2.36B). The deformation is generally assumed uniform within each subset.  

 

To obtain a correlation between the two image-sets the subsets are iteratively altered 

(using optimisation routines) until a similarity measure has been maximised. Derivation 

of similarity measures requires a comparison between the target image and the deformed 

reference image. However, as the differences in pixel grid lines (red mesh lines) in Figure 

2.36B and Figure 2.36C show the deformed reference image cannot simply be compared 

to the target image. First the deformed image of the reference state needs to be defined 

Figure 2.36 An example reference image (A), an image of a deformed state (B) and the reference image deformed to obtain a 
match to the image of the deformed state (C). A subset is shown outlined in green 
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on the same grid as the target image. This is done through (e.g. bilinear or cubic) 

interpolation.  

Various similarity measures are in use in DIC (and image registration), an example 

is the normalised cross correlation coefficient 𝐶 defined by: 

 𝐶 =
∑𝑀𝑡𝑀𝑑

�∑𝑀𝑟
2 ∑𝑀𝑑

2
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where 𝑀𝑡 and 𝑀𝑑  represent the target image (the image for the deformed state) and the 

reconstructed (interpolated on the same grid as 𝑀𝑡) deformed reference image 

respectively.  
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3 LITERATURE REVIEW 
3.1 Introduction 
This thesis involves the formulation of a framework for the non-invasive determination 

of the passive anisotropic and non-linear material properties of living human skeletal 

muscle tissue using non-invasive imaging and inverse FEA. Hence the following topics are 

discussed: 1) The anatomy and physiology of skeletal muscle and its relation to the mechanical 

properties, 2) A review of experimental and computational modelling studies on the mechanical 

properties of skeletal muscle tissue, 3) A brief discussion on non-invasive imaging modalities, 4) 

MRI compatible actuators and sensor devices, 5) MRI based measurement of soft tissue 

deformation and finally 6) Validation of MRI derived motion and deformation 
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3.2 Skeletal muscle anatomy and physiology 

3.2.1  Introduction 

Over 40% of human weight is composed of muscle tissue. Together the three types: 

skeletal, cardiac and smooth muscle tissue are responsible for all types of active 

mechanical movement within the human body. The skeletal muscles in the human body 

perform a variety of functions. Less obvious but very important functions are to aid in 

breathing (muscles in the chest), vision (ocular muscles that adjust eye orientation and 

provide focus) and hearing (muscles of the middle ear influencing movement of the 

auditory ossicles). Most of the functions are mechanical in nature such as to: produce 

skeletal movement, maintain active and passive body posture and position, provide 

support and protection for soft tissues (protection against impact), guard entrances and 

exits. However not all of skeletal muscle tissue’s functions are mechanical in nature, it 

also aids in the maintenance of body temperature and the storage of nutrient reserves.  

 The mechanical behaviour of muscle tissue is a function of its particular 

constituents and structural architecture. Depending on muscle type skeletal muscle is 

composed of about 70-80% water, 3% fat and 10% collagen137. Elastin represents less 

than 1% of muscle tissue dry weight138. This section describes the structure and 

physiology of skeletal muscle tissue relevant to the current study. Since the mechanical 

properties of passive skeletal muscle are of interest the focus will be on the structure and 

function related to the passive (rather than active) mechanical properties of muscle 

tissue. The general anatomical information presented here, unless otherwise referenced 

was summarised from139-141.  

3.2.2  Skeletal muscle tissue architecture 

The levels of organisation of skeletal muscle are shown in Figure 3.1 (composed using 

images from142).  
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The outer surface of the muscles is wrapped in a dense layer of collagen fibres known as 

the epimysium. This layer separates the muscle from surrounding tissues and organs. As 

shown in Figure 3.2 (modified from143) the collagen fibres in the epimysium are arranged 

in two plies of parallel fibres at +/-55° with respect to the main fascicle direction143.  

 

Internally the epimysium is continuous with the perimysium which has a similar collagen 

network organisation and wraps around individual fascicles (Figure 3.1B) and connects 

Figure 3.1 The organisation of skeletal muscle. The muscle body (A), the 
fascicle (B), the muscle cell/fibre (C) and the myofibril (D).  

Figure 3.2 Light micrograph of collagen fibres of the epimysium 
of bovine skeletal muscle tissue. Blue and green lines highlight 
the muscle fascicle and collagen fibre orientations respectively.  
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adjacent fascicles. The fascicles (Figure 3.1A-B) are bundles of muscle fibres (or muscle 

cells) (Figure 3.1C). The perimysium contains not only connective tissue fibres but also 

blood vessels and nerves that serve the muscle. Individual muscle fibres are separated by 

a connective tissue layer known as the endomysium which, at the margins of fascicles, are 

connected to the perimysium by perimysial junction plates144. The endomysium also 

loosely interconnects the adjacent muscle fibres and contains capillaries and nerve fibres 

that control the muscle fibre activation. Figure 3.3 (composed using images from145) 

shows the edomysial connective tissue in three levels of magnification showing its 

honeycomb-like tubular appearance in cross section (Figure 3.3A-B) and quasi-random 

collagen fibre arrangement (Figure 3.3C).  

 

At either end of the muscle the collagen fibres of the three connective tissue structures 

(epi-, peri- and endomysium) merge and become continuous with tendon or aponeurotic 

sheets, which in turn may become continuous with bone matrix at muscle attachment 

sites. The complex arrangement of the collagen fibres of the connective tissue structures 

have been reported to result in a non-linear elastic behaviour (e.g. for the epimysium146). 

Muscle cells (Figure 3.1C) contain specialised protein filaments of actin and 

myosin located in myofibrils (Figure 3.1D) and are arranged into repeated groups (which 

give the cells a striated appearance). The basic contractile unit of myofibrils is known as 

the sarcomere (Figure 3.4 modified from140). When a muscle is activated the protein 

myosin forms bonds with actin and the filaments slide in relation to each other and 

allows for stiffness enhancement and powerful contraction. The actin and myosin 

filaments are also connected via a protein structure called titin (Figure 3.4). Titin 

filaments act like springs and have been reported to be the source of viscoelasticity of the 

sarcomere147 and to be responsible for both the elasticity140, 148 and the viscoelasticity of 

skeletal myofibrils149, 150.  

Figure 3.3 Scanning Electron Micrograph images following NaOH digestion of bovine sternomandibularis muscle. Cross 
sectional view of the collagen structures of the perimysium and endomysium (x100) (A), oblique view of approximately 
honeycomb–like endomysium structures (x3200) (B) and a close-up of the quasi-random felt-work of collagen fibre in the 
endomysium (x12200) (C).  
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3.2.3  Muscle tone and passive stiffness enhancement 

Nerve stimulation (e.g. through voluntary control) is able to trigger action potentials 

resulting in active contraction of muscles. However passive living skeletal muscle tissue 

(even during rest and deep sleep) maintains a certain level of activity. The goal of this 

activation is not to produce movement but to produce a certain amount of tension and 

therefore stiffness in the muscle tissue. This ‘resting’ activity resulting in tissue stiffness 

is referred to as muscle tone. Muscle tone serves to stabilise the positions of bones and 

joints and is involved in maintenance of balance and posture and aids in the protection 

against impact. In the current thesis skeletal muscle tissue is termed passive if it is not 

actively (e.g. voluntarily) contracted. However in the biomechanical literature the word 

‘passive’ is also used for (freshly) dead muscle tissue which lacks muscle tone. However 

depending on time post-mortem, dead muscle tissue may present with enhanced stiffness 

and tension due to rigor mortis (see for instance151).  

Muscle (and tendon) tissue also contain mechano-sensitive structures, such as 

muscle spindles, which allow protective stiffening or contraction of the muscle in 

response to muscle (e.g. sudden excessive) stretch. This protective effect is referred to as 

the myotatic reflex152. Living human passive muscle is therefore capable of increasing its 

stiffness as a response to elongating stretch and in shortening the opposite is true153, 154.  

 

 

  

Figure 3.4: Schematic representation of part of the molecular structure of the sarcomere which is repeated along the muscle 
fibre length.  
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3.2.4  Muscle fibre type, distribution and orientation  

Skeletal muscle tissue is composed of two main types of fibres: glycolytic and oxydative 

fibres. Glycolytic fibres, also called white or fast muscle fibres are large and densely 

packed with myofibrils. This type of cell is specialised to use stored reserves of glycol to 

produce fast powerful contractions. Oxidative fibres, also called red (since they contain a 

red protein called myoglobin similar to haemoglobin) or slow muscle fibres contain less 

myofibrils and are specialised for endurance. They therefore rely less on stored energy 

and more on a continuous supply and aerobic assimilation of glucose which is why they 

are surrounded by more capillaries. Since the concentration of myofibrils varies with fibre 

type if is not surprising that the mechanical properties of these fibre types also vary155-157. 

Since skeletal muscle generally possesses both strength and endurance they are often a 

mixture of both glycolytic and oxidative muscle fibres the ratio of which depends on the 

type of muscle and may alter as a function of its particular use in an individual.  

 Since muscle tissue is anisotropic its local mechanical properties also depend on 

local muscle fibre direction21, 158, 159. Figure 3.5 (anatomical images from141) shows some of 

the muscles in the upper arm and shoulder. As the figure demonstrates the fibre 

arrangement and orientations vary from one muscle to another. On the bottom of Figure 

3.5 some schematic representations of simplified muscle fibre arrangements are shown. 

The largely parallel arrangement in the biceps brachii is known as fusiform while the 

arrangement of the pectoralis major muscle is known as convergent. Some other 

schematic representations of simplified muscle fibre arrangements such as a parallel (e.g. 

sartorius), unipennate (e.g. extensor digitorum longus), bipennate (e.g. rectus femoris) 

and multipennate (e.g. deltoid) are also shown.  
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3.2.5  Conclusions 

Muscle tissue is anisotropic due to its fibre architecture. The non-linear mechanical 

behaviour of skeletal muscle tissue is due to the architecture and constituents of the 

muscle fibres (e.g. titin, actin and myosin features) and also its connective tissue 

structures. The latter are composed of complex collagen fibre arrangements which may 

relate to passive anisotropy of muscle tissue. Hence realistic modelling of the mechanical 

properties of muscle tissue should account for anisotropy introduced by both types of 

features. 

Muscle fibres contain myofibrils with actin and myosin filaments which following 

activation produce active contraction and stiffness enhancement. However passive living 

muscle tissue at rest also presents with a mild degree of stiffness enhancement due to a 

rest activity called muscle tone. In addition muscle tissue is capable of enhancing 

stiffness (activity level) as a protective mechanism against (e.g. violent) stretch. Hence 

for passive mechanical property analysis induced muscle deformations should be mild 

Figure 3.5: The musculature of the upper limb and chest (top left and right) and in the bottom schematic representations of 
typical fibre orientations within skeletal muscles. From left to right: A parallel, unipennate, bipennate and multipennate fibre 
arrangement.  
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enough not to trigger this protective reflex. No data on (compressive) deformation 

rate/magnitude thresholds were found in the literature.  

Depending of muscle site and particular function, muscles present with varying 

types of fibre arrangements. Fusiform muscles have largely parallel oriented fibres and 

this relative simplicity thus makes such muscles (e.g. the biceps brachii) most suitable for 

indentation and mechanical property investigation within the current thesis.  

 

3.3 Skeletal muscle tissue mechanical behaviour 

3.3.1  Introduction 

The mechanical properties of materials describe its stress and strain relationship. In 

experimental mechanical property investigation the material response to known loading 

is analysed in order to understand the stress strain relationship of the material. 

Traditionally mechanical property investigation involves subjecting material samples to 

mechanical, such as tensile and compressive, testing. In the case of biological soft tissues 

this involves excising tissue samples and has thus largely been applied to animal tissue. 

However the mechanical properties of animal tissue may differ from human tissue. In 

addition biological materials may present with altered mechanical properties in-vitro and 

post-mortem (e.g. rigor mortis effects in skeletal muscle tissue, see151) with respect to 

living tissue in-vivo due to the altered biophysical conditions. Hence non-invasive 

approaches on living human tissue, mainly based on elasticity imaging, have also been 

developed.  

 This section reviews the relevant literature on the experimental investigation into 

the mechanical properties of passive skeletal muscle tissue and both invasive and non-

invasive approaches will be discussed. Focus is placed on research relevant to constitutive 

modelling of passive 3D mechanical behaviour of muscle tissue.  

3.3.2  Invasive mechanical property assessment and 

analysis of excised tissue samples 

3.3.2.1  Compressive behaviour 

Some authors have investigated muscle behaviour using indentation tests. Gefen et al. 

2005 30 performed indentation tests on surgically exposed rat gracilis muscles. Assuming 
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linear and isotropic behaviour they reported long term shear moduli in the range of 

0.345-0.730 kPa. Similarly Palevski et al. 200631 performed high speed indentation tests 

on porcine gluteus maximus muscle samples. Muscle was considered as an isotropic linear 

(visco)elastic material with a long term shear modulus of 0.700±0.300 kPa.  

Other authors have used compressive testing on excised tissue samples. Grieve 

and Armstrong 1988160 conducted compression tests on porcine muscle samples and 

stress strain curves for samples subjected to unconfined uni-axial loading at varying load 

rates are shown in Figure 3.6 (reproduced from160). Samples were frozen on the day of 

slaughter and defrosted for testing and fibre orientation with respect to loading was not 

reported. However these curves demonstrate non-linearity and viscoelasticity of the 

tissue samples.  

 

Aimedieu et al. 2003161 conducted dynamic compression (5-30 Hz) on porcine 

gluteus maximus samples. The analysis was however limited to simple Voigt model 

spring-dashpot parameters which are not directly usable for realistic (3D) constitutive 

modelling. The Voigt stiffness parameter showed a monotonous increase with load 

frequency (5 Hz: 8.5 kN/m up to 30 Hz: 347 kN/m).  

Van Sligtenhorst et al. 2006162 investigated the large strain (up to 80%) and high 

strain rate strain rate (1000 s-1 up to 2500 s-1) compressive behaviour of bovine muscle 

tissue samples for loading in the fibre direction. Their results (Figure 3.7, reproduced 

from162) demonstrated that due to viscoelasticity the stress is highly dependent on the 

strain rate. However aged tissue (>200 hours post mortem) was used.  

Figure 3.6: Unconfined compression of excised porcine muscle tissue at 
varying strain rates, reproduced from Grieve and Armstrong 1988. 
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Song et al. 2007163 conducted high strain rate (540 s-1 up to 3700 s-1) compression 

tests up to 50% on porcine muscle samples. Their results (Figure 3.8 reproduced from163) 

showed viscoelasticity and non-linearity in the compressive response in both the fibre 

and cross fibre directions and stresses were strongly dependant on strain-rate. They also 

reported anisotropy as this effect was found to be more pronounced in the cross fibre 

direction. The data was however presented in such a way that constitutive model 

evaluation is hindered.  

 

Bosboom et al. 2001 performed compression tests on surgically exposed rat 

tibialis anterior muscles in the transverse direction164. Ramp and hold (20 s) tests were 

conducted at constant speed (25 mm/s) at different strain levels. The results showed 

strain level dependant stress relaxation behaviour. Using plane stress FEA, and assuming 

isotropy, a constitutive law was formulated using a first order Ogden model (𝜇 = 15.6 ±

5.4 kPa and 𝛼 = 21.4 ± 5.7 kPa) to capture elasticity and viscoelasticity was modelled 

Figure 3.7: Typical stress strain data at various strain rates, reproduced 
from Sligtenhorst et al. 2006 

Figure 3.8: Stress-strain curves for a range of load rates for porcine muscle tissue in compression in the fibre (left) 
and cross-fibre (right) direction. Reproduced from Song et al. 2007 
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using a single term Prony series expansion (𝛾 = 0.549 ± 0.056 and 𝜏 = 6.01 ± 0.42 s) 

(see also section 2.2.12.2 ).  

Van Loocke et al. 200621 investigated the non-linear elastic properties of muscle tissue by 

subjecting fresh (tested within 2 hours post-mortem) cuboid porcine gluteus maximus 

samples to uni-axial unconfined quasi-static (30% strain at 0.05% s-1). In addition 

anisotropy was investigated by loading samples at the following angles 𝛼=0° (fibre 

direction), 30°, 45°, 60° and 90° (cross-fibre direction), with respect to the fibre direction. 

A schematic representation of the used loading configuration is shown in Figure 3.9. 

During the compression tests deformation was optically tracked with surface markers to 

compute Poisson’s ratios. The quasi-static compression results are shown in Figure 3.10 

(reproduced from21).  

 

 
The cross-fibre direction was stiffest and loading at 45° produced the softest response 

indicating a complex anisotropic behaviour. The Poisson’s ratios found are illustrated in 

Figure 3.11.  

Figure 3.9. Schematic representation of a cuboid sample showing muscle 
fibre direction 𝒂3 at an angle 𝛼 with respect to the loading axis 𝒆3 

Figure 3.10: Experimental data from compression tests on fresh porcine samples fitted with the SYM model. The fibre, 45˚ 
and cross-fibre direction (left), the additional 30˚ and 60˚ orientations (right). Reproduced from Van Loocke et al. 2006 
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A constitutive model was proposed to describe the anisotropic behaviour based on classic 

(non-fibre reinforced, two stiffness directions) transverse isotropy. However 

unfortunately the Poisson’s ratios measured and stiffness levels fitted are not compatible 

with a classic transversely isotropic model. For classic transverse isotropy 𝜐12
𝐸1

= 𝜐31
𝐸3

 (with 

𝐸𝑖 Young’s Moduli) and therefore 𝐸3
𝐸1

= 𝜐31
𝜐13

= 0.5
0.36

≈ 1.39, which dictates 𝐸3 > 𝐸1. 

However in order to let the cross-fibre direction be stiffest Van Loocke et al. 2006 

enforced the opposite 𝐸1 > 𝐸3 (𝐸1 = 𝐸2).  

Due to near incompressibility when the muscle is loaded in (unconfined) 

compression the Poisson’s effect induces a tensile expansion in the other directions. The 

Poisson’s ratios measured by Van Loocke et al. 2006 indicate that when muscle is 

compressed transverse to the fibre direction (𝐞2 in Figure 3.11) the fibre direction (𝐞3 in 

Figure 3.11) resists this tensile loading more than the other transverse direction (𝐞1 in 

Figure 3.11). This suggests a reinforcing structure exists in the fibre direction which is 

capable of resisting tension and which adds to the stiff response for transverse loading. 

In compressive loading in the fibre direction the Poisson’s effect is homogeneous in both 

transverse directions. The fact that loading in this direction produces a softer response 

than for transverse loading indicates that apparently the reinforcing structure does not 

contribute to the same extent in compression. This suggests that the reinforcing fibrous 

components which acted during Poisson’s effect induced tension for transverse loading 

are perhaps not contributing in compression due to fibrous buckling. This supports the 

hypothesis that the transverse and along fibre behaviour can be explained by a fibre 

reinforcing structure which is tension compression non-linear due to buckling of fibres in 

Figure 3.11. Schematic representation of a cuboid sample showing the various 
Poisson’s ratio from Van Loocke et al. 2006 and the fibre direction aligned with 𝒆3. 
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compression. The measured Poisson’s ratios and stiffness responses effectively exclude 

constitutive models that are not tension-compression non-linear.  

In a later study by Van Loocke et al. 2008158 similar experiments were conducted 

to study the viscoelastic behaviour of muscle tissue using stress-relaxation (30% strain at 

0.5 %/s-1, 1 %s-1, 5 %s-1 and 10 %s-1) compression tests on fresh porcine gluteus maximus 

samples. Loading was applied at 𝛼=0°, 45°, 60° and 90° with respect to the fibre direction. 

These experimental results are shown in Figure 3.12. The viscoelastic behaviour could be 

captured using a 5 term Prony series expansion (see also section 2.2.12.2 ) (however the 

elastic contribution was due to the transversely isotropic model proposed in Van Loocke 

et al. 200621). These data demonstrate that muscle tissue is viscoelastic in compression 

and that the effect varies depending on fibre angle.  

 

3.3.2.2  Tensile behaviour 

To date the passive tensile behaviour of skeletal muscle tissue has largely been limited to 

force length relationships when combined with active force-length models (e.g.165). Such 

data is however not directly suitable for detailed anisotropic mechanical property 

modelling and are thus not discussed. Only recently (many of the papers reviewed here 

Figure 3.12: Stress-relaxation curves, from van Loocke et al. 2008 , comparing muscle stress-relaxation behaviour 
at various (0.05% s-1, 0.5% s-1, 1%s-1, 5%s-1 and 10%s-1) and various fibre orientations (0˚, 45˚, 60˚ and 90˚). 



  - 73 -

 

were published within the year of writing this thesis) has the passive tensile behaviour 

been investigated in more detail and for multiple fibre orientations.  

Calvo et al. 201024 studied the passive tensile behaviour of fresh (tested within 10 

minutes) rat tibialis anterior muscles samples in the fibre direction (up to stretch of 1.72 

and a strain rate of 0.025 %s-1). A fibre reinforced transversely isotropic material model 

was fit to the experimental data with a strain energy density function described by:  

 Ψ𝑡𝑜𝑡𝑎𝑙 = Ψ𝑔𝑚 + Ψ𝑓 3-1 

Where Ψ𝑔𝑚 = 𝑐1(𝐼1 − 3) represents a Neo-Hookean ground matrix and the fibre strain 

energy function Ψ𝑓 is defined by: 

 Ψ𝑓 =

⎩
⎪
⎨

⎪
⎧
𝑐3
𝑐4
𝑒𝑐4�𝐼4−𝐼40� − 𝑐4�𝐼4 − 𝐼40� − 1 𝐼4𝑟𝑒𝑓 > 𝐼4 > 𝐼40

𝑐5�𝐼4 +
1
2
𝑐6 ln(𝐼4) + 𝑐7 𝐼4 > 𝐼4𝑟𝑒𝑓
0 𝐼4 < 𝐼40

 3-2 

With 𝐼4 the isochoric pseudo-invariant relatable to the fibre stretch as 𝜆̃𝑓 = �𝐼4 (see also 

section 2.2.11 ). Here 𝐼40 represents the stretch at which fibres start to act and 𝐼4𝑟𝑒𝑓 

where they are straightened. The mean experimental data (the mean parameters 

presented are ignored since average parameters of separate non-linear fits are invalid) 

and a model fit (𝑐1 = 1.00 ∙ 10−3 MPa, 𝑐3 = 5.39 ∙ 10−2 MPa, 𝑐4 = 0.78, 𝑐5 = 5.74, 𝑐6 =

−9.04, 𝑐7 = −4.88, 𝐼40 = 1.25, 𝐼4𝑟𝑒𝑓 = 3.19) are shown in Figure 3.13. The 

experimental data clearly show non-linearity in tension which the constitutive model is 

able to capture. However with the large amount of parameters used the uniqueness of the 

fit may be questioned. Especially given that the parameters were only fitted for fibre 

direction tensile loading which perturbs both the ground matrix and fibres 

simultaneously hindering the clear separation of their respective contributions. The 

parameters for the ground matrix were more than an order of magnitude lower than for 

the fibre contribution. It is likely that this difference is due to the rather linear Neo-

Hookean ground matrix used, which means that the non-linearity in this model is almost 

solely due to the fibre contribution. The parameter 𝐼40 was 1.25, hence the model 

predicts isotropic Neo-Hookean behaviour (no influence of fibres) until a fibre stretch of 

�𝐼40 ≈ 1.12 has been exceeded which is not in agreement with findings by other authors 

which demonstrate anisotropy in this region (e.g. 22, 166, 167). In addition since the 
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parameter 𝐼4𝑟𝑒𝑓 was 3.19 the model contains straightened fibres after a fibre stretch of 

�𝐼4𝑟𝑒𝑓 ≈ 1.79 has been exceeded. However the muscle test results used were only up to a 

tensile stretch of 1.72. Therefore it seems that during the curve fitting optimisation 𝐼4𝑟𝑒𝑓 

was pushed beyond the test range. Hence it appears that the curve fitting based 

optimisation did not allow fibres to be straightened yet in the range tested. Therefore the 

parameters: 𝐼4𝑟𝑒𝑓, 𝑐5, 𝑐6 and 𝑐7 do not have any contribution for the range tested and 

their values are not validated by the test data. This model was recently expanded by 

Grasa et al. 2011168 to include muscle pre-strain and evaluation for along fibre stretch 

only was presented.  

 

 

In a recent study by Nie et. al. 2011166 fresh porcine muscle tissue was subjected to tensile 

loading in the fibre and cross-fibre directions at strain rates of 0.05 %s-1, 0.4 %s-1, 0.4 %s-

1, 700 %s-1, 1400 %s-1 and 2100 %s-1. The results (Figure 3.14) show a non-linear tensile 

stress-strain response for both the fibre and cross-fibre direction. The response was also 

found to be highly dependent on strain rate in both directions due to viscoelasticity. 

Anisotropy in tension is evident and the cross-fibre directions presented with higher 

stress responses than the fibre directions.  

Figure 3.13: Average rat skeletal muscle stress –stretch curve 
and model fit. Reproduced from Calvo et al. 2010. 



  - 75 -

 

 

Morrow et al. 2011167 applied tensile testing to rabbit (extensor digitorum longus) 

muscle tissue samples. Tensile load at a strain rate of 0.05 %s-1 was applied in the fibre 

and cross-fibre directions and longitudinal shear tests were performed. Due to the way 

the data is presented it is not usable for detailed anisotropic constitutive model fitting. 

Instead Morrow et al. 2011 present linear moduli (average slope of curves in linear 

regions) which were 447±97.7 kPa, 22.4±14.7 kPa and 3.87±3.39 kPa respectively for 

the fibre tension, cross-fibre tension and along fibre shear tests respectively.  

In a recent study by Takaza et al. (unpublished)22 the tensile behaviour of fresh 

(within two hours post-mortem) porcine skeletal muscle tissue was investigated in great 

detail. Similar to the approach by Van Loocke et al. 200621 for compression, samples 

(approximately 10x10x50 mm) were subjected to uni-axial quasi-static tension at a strain 

rate of 0.05 %s-1 for the following fibre angles with respect to the load axis: 𝛼=0° (fibre 

direction), 30°, 45°, 60° and 90° (cross-fibre direction) (see also Figure 3.9). The average 

experimental curves are shown in Figure 3.15. The tissue was clearly anisotropic in 

nature as the response varied greatly with fibre angle. It appears that in tension the 

transverse direction plays an important role since the stress response increases 

dramatically as the fibre angle is rotated from 0° to 90° with respect to the load axis. The 

degree of non-linearity however appears to decrease with fibre angle.  

Figure 3.14:. Stress-strain curves of porcine muscle samples for the fibre direction (AL) 
and cross-fibre direction (TR). Reproduced from Nie et al. 2011. 
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Takaza et al. (unpublished)22 also recorded deformation using optical tracking of surface 

markers. This led to the derivation of Poisson’s ratios for tension which are schematically 

illustrated in Figure 3.16.  

 

Due to near incompressibility of muscle tissue tensile loading induces compressive 

contractile loads in the orthogonal directions to the load. The Poisson’s ratios measured 

by Takaza et al. (unpublished) indicate that for unconfined tensile loading in the 

transverse direction (𝐞2 in Figure 3.16) the fibre direction (𝐞3 in Figure 3.16) contracts 

more than the other transverse direction (𝐞1 in Figure 3.16). This indicates that the fibre 

Figure 3.15: The tensile response of porcine muscle tissue at various fibre orientations (0˚, 30˚, 45˚, 60˚ and 90˚). Thick 
curves describe the mean and thin curves above and below plus and minus one standard deviation. Reproduced from Takaza 
et al. (unpublished). 

Figure 3.16. Schematic representation of a sample showing the various Poisson’s ratio from Takaza 
et al. (unpublished) and the fibre direction aligned with 𝒆3. 
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direction is more compliant in Poisson’s effect induced contraction than the transverse 

or cross fibre direction.  

Takaza et al. (unpublished) also compared their fibre (L) and cross-fibre (T) results 

with the before mentioned papers by Calvo et al. 2010, Nie et al. 2011 and Morrow et al. 

2010, see Figure 3.17 (modified from22). 

 

As Figure 3.17 shows a large degree of variation exists in the literature. However all 

authors agree on non-linearity and anisotropy of muscle tissue in tension and the cross-

fibre direction is often reported to be stiffer than the fibre direction.  

3.3.3  Non-invasive mechanical property assessment 

In general the non-invasive analysis of the mechanical properties of soft tissue follows 

three main steps: 1) Mechanical excitation of the tissue of interest (e.g. indentation or 

vibration), 2) Measurement of experimental boundary conditions (geometry, loading conditions 

and resulting mechanical state of the tissue i.e. deformation), 3) inverse analysis of the 

experimental boundary conditions to yield constitutive parameters (e.g. inverse FEA of the 

mechanical experiment). Experimental set-ups may vary depending on the mechanical 

property of interest. For instance the study of linear elasticity may involve quasi-static 

deformations and force measurements. Non-linear elasticity requires multiple and large 

strain measurements. Anisotropy requires analysis of tissue architecture and detailed 3D 

deformation measurement. Viscoelasticity requires dynamic measurements. This section 

summarises efforts found in the literature to analyse the mechanical properties of muscle 

Figure 3.17: Comparison of fibre (L) and cross-fibre (T) tensile stress-stretch data from the literature. Modified 
from Takaza et al. (unpublished). 
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tissue non-invasively. The focus is on large strain (e.g. indentation) studies since these 

are most relevant to the current thesis.  

Several authors have conducted indentation experiments to non-invasively derive 

soft tissue mechanical parameter estimates. For instance Zheng et al. 1999169 performed 

indentation on volunteer leg soft tissue sites using a 9 mm in diameter hand-held 

ultrasound transducer. During indentation tissue thickness, a measure of compression 

level, was derived through ultrasound while probe indentation force was measured using 

a load-cell. The mechanical behaviour of skin, adipose and muscle tissue was jointly 

modelled assuming isotropic linear elasticity and Young’s modulus estimates could be 

derived through analytical solutions for the indentation problem. Similarly Vannah and 

Childress 1996170 studied the quasi-static bulk properties of muscular tissue in-vivo using 

indentation tests on volunteer posterior lower legs while indentor displacement and 

force were recorded. The mechanical behaviour was evaluated following CT scan derived 

FE modelling. Within the FE model skin, adipose and muscle tissue were jointly modelled 

as a single homogeneous and isotropic hyperelastic material. In comparable work by 

Tönük et al. 2004171 subject specific elastic and viscoelastic material behaviour of lower 

extremity residual limb soft tissue in amputees were studied. Here a soft tissue indentor 

was applied and assuming local homogeneity, isotropy and axisymmetric loading 

conditions (through inverse axisymmetric 2D FEA) constitutive parameters could be 

derived. However, all the above indentation studies assume isotropic behaviour and 

jointly model skin, adipose and muscle tissue as a single material and the inverse analysis 

is based on mostly external boundary conditions (indentation force and displacement) 

only or limited to ultrasound based tissue thickness measurement rather than 3D tissue 

deformation. Hence these methods find their main application in the estimation of 

mechanical conditions in amputee tissue and prosthesis interactions (e.g.5) and they do 

not allow for the investigation of anisotropic 3D constitutive behaviour.  

In a study focussed on the evaluation of the treatment of prophylaxis and venous 

disorder using compressive garments (tight leg socks), Dubuis et al. 2011172 performed 

inverse analysis to determine mechanical parameters of lower leg soft tissue. 

Compressive socks were applied to volunteers and CT scans were taken before and after 

sock application providing the initial and target geometry for FEA (see Figure 3.18, 

composed using images from172). Using knowledge on the mechanical properties of the 

sock material and the CT scan derived geometric boundary conditions material 
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parameters were determined using inverse FEA. The model parameters were adjusted 

until a best match was achieved for a cost function defined on the contour radii along the 

length axis of the bone (Figure 3.18D). The soft tissues were assumed to be nearly 

incompressible, homogeneous, isotropic and Neo-Hookean hyperelastic using the 

following decoupled Neo-Hookean formulation:  

 Ψ(𝐼1) =
µ
2

(𝐼1 − 3) +  
𝜅
2

(𝐽 − 1)2 3-3 

With µ the Neo-Hookean shear modulus and 𝜅 the bulk modulus. Bone was effectively 

modelled as rigid and two soft tissue material groups were modelled 1) skin and adipose 

tissue, 2) muscle and tendonous tissue (Figure 3.18).  

 

The material parameters which minimized the cost function were µ = 11.1 kPa and 

𝜅 = 1.06 MPa for material group 1 and µ = 5.8 kPa and 𝜅 = 1.16 MPa for material group 

2. The methods presented are appropriate for bulk material property assessment however 

anisotropic model evaluations require more detailed measures of internal strains rather 

than contour shape matching.  

 Using an MRI compatible loading device Tran et al. 2007173 subjected volunteers 

to indentation (driven by static weights) of forearm soft tissue and applied 2D inverse 

FEA to derive isotropic Neo-Hookean hyperelastic (similar to equation 3-3) parameters 

for skin (epidermis, dermis and hypodermis) and muscle tissue. As shown in Figure 3.19, 

the 2D inverse FEA parameter optimisation minimized the difference between simulated 

and experimental forces and MRI derived 2D contour shapes. The average Neo-Hookean 

parameters found for muscle were µ = 7.28 ± 0.52 kPa and 𝜅 = 143.78 ± 74.98 kPa.  

Figure 3.18. CT derived geometry (A), material boundaries (B), bone boundary (C) and FE model and a schematic illustration of 
the z axis and angle dependant contour radius for the cost function (D). Composed using images from Dubuis et al. 2011.  



  - 80 -

 

 

Ceelen et al. 2008174 used an approach akin to the current thesis. Indentation was 

applied to rat lower leg muscles inside an MRI scanner. During indentation the resulting 

tissue deformation was studied using 1D SPAMM tagged MRI (Figure 3.20A-B) and 

indentor force was also recorded. The latter was used for verification of indentation 

timing with respect to imaging. The SPAMM derived deformation data was used not for 

constitutive parameter identification but rather for the validation of the inverse FEA 

(Figure 3.20C, composed using images from) based estimation of strain levels in-vivo. 

Strain levels were estimated from 2D plane stress FEA under the assumption of a single 

incompressible and linear Neo-Hookean material behaviour for all soft tissues (skin, 

adipose and muscle) of the leg. Since the FEA derived stresses were normalised with 

respect to the Neo-Hookean stiffness parameter the constitutive model served only as a 

means of capturing the incompressibility and deformation levels observed.  

 

Blemker et al. 200523, 24 proposed a model for the passive and active behaviour of 

muscle tissue. An anisotropic strain energy density function was proposed of the form: 

 Ψ(𝐽,𝛽3,𝛽4) = Ψ𝑣𝑜𝑙(𝐽) + Ψ𝑑𝑒𝑣(𝛽3,𝛽4, 𝜆,𝛼) 3-4 

Figure 3.19. Experimental and simulated force displacement (left) and 2D contour shape (right) comparison for 
indentation of the forearm. Composed using images from Tran et al. 2007.  

Figure 3.20. 2D SPAMM tagged MRI in a rat leg in un-deformed (A) and deformed configuration (B) and an MRI derived 2D 
FEA model. Composed using images from Ceelen et al. 2008.  
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Where Ψ𝑣𝑜𝑙(𝐽) = 𝜅
2

ln(𝐽)2 describes the dilatational response and Ψ𝑑𝑒𝑣(𝛽3,𝛽4) the 

deviatoric response defined by: 

 Ψ𝑑𝑒𝑣(𝛽3,𝛽4, 𝜆,𝛼) = Ψ1(𝛽4(𝐼4, 𝐼5)) + Ψ2 �𝛽3(𝐼1, 𝐼4, 𝐼5)� + Ψ3(𝜆(𝐼4),𝛼) 3-5 

with 𝐼𝑖 the modified deviatoric strain invariants, 𝛽𝑖 the invariants due to Criscione et al. 

2001 66 (see section 2.2.11  and equations 2-86), 𝜆 the fibre stretch. The strain energy 

components Ψ1 and Ψ2 are given by: 

 
Ψ1(𝛽4) = 𝑐1𝛽4

2 

Ψ2(𝛽3) = 𝑐2𝛽3
2 

3-6 

where 𝑐1 and 𝑐2 represent along-fiber shear and cross-fibre shear material parameters 

respectively. Blemker et al. 200523 modelled the along fibre strain energy as 

Ψ3(𝜆(𝐼4),𝛼) = Ψ𝑝𝑎𝑠𝑠𝑖𝑣𝑒 �𝜆(𝐼4)� + Ψ𝑎𝑐𝑡𝑖𝑣𝑒(𝜆(𝐼4),𝛼) with 𝛼 a muscle activity parameter. 

However only the passive response Ψ𝑝𝑎𝑠𝑠𝑖𝑣𝑒 �𝜆(𝐼4)� is relevant to the current thesis and 

was formulated (similar to equation 3-2 used by Calvo et al. 2010 24) such that the passive 

force in the fibre 𝑓𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝜆) becomes: 

 𝑓𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝜆) =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑐3 �𝑒

𝑐4�
𝜆

𝜆𝑜𝑓𝑙
−1�

− 1� 𝜆𝑜𝑓𝑙 < 𝜆 < 𝜆∗

𝑐5
𝜆
𝜆𝑜𝑓𝑙

+ 𝑐6 𝜆 ≥ 𝜆∗

0 𝜆 ≤ 𝜆𝑜𝑓𝑙

 3-7 

Here 𝑃𝑖 are material parameters, 𝜆∗ is the stretch at which the fibre behaviour becomes 

linear and 𝜆𝑜𝑓𝑙 (so called optimal fibre stretch) is the stretch at which fibres start to act. 

The material model was partially evaluated by comparing regional strain averages from 

FEA simulations and in-vivo experimental deformation estimates derived from phase 

contrast MRI during (64 repetitions per image slice) biceps brachii contractions (from 

Pappas et al. 2002175). However since Blemker et al. 200523 used 𝜆𝑜𝑓𝑙 = 𝜆∗ = 1.4 the 

passive response is isotropic until a fibre stretch of 1.4 has been exceeded and once this 

has occurred the passive fibre response is linear (i.e. condition 𝜆𝑜𝑓𝑙 < 𝜆 < 𝜆∗ is never 

satisfied in equation 3-7). In addition for uni-axial loading (e.g. tension up to 1.4 or 

compressive loading) in the fibre direction 𝜆 ≤ 𝜆𝑜𝑓𝑙 leads to a zero contribution in the 

fibre direction and, since for this type of loading 𝛽3 = 𝛽4 = 0, the total deviatoric 

stresses are zero. Therefore in this case the material response is solely dictated by the 
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volumetric hydrostatic pressure term Ψ𝑣𝑜𝑙(𝐽). The passive material stiffness for this 

model is thus not fully defined for all types of loading directions.  

Another common approach to non-invasive investigation of the mechanical 

properties of soft tissue is elastography. In elastography the tissue surface is oscillated 

with a known frequency resulting in strain waves which propagate through the material. 

Through non-invasive imaging of the tissue deformation and inverse analysis of the 

speed and attenuation of the measured shear waves, theoretical shear stiffness and 

viscosity parameters can be derived for the specific deformation level and stimulus 

frequency. In general, elastography methods assume linear elasticity and local 

homogeneity. Two types of elastography methods are commonly applied to soft tissue 1) 

based on MRI, MR Elastography (MRE) (see review article32 and section 2.3.10.4 ) and 2) based 

on ultrasound imaging Ultrasound Elastography (USE) (see review article176). Figure 3.21 

summarises MRE116, 119, 121, 177-180 and USE181, 182 based shear modulus measures for muscle 

tissue reported in the literature. As demonstrated a formidable degree of variation exists 

in the values in the literature as the shear moduli reported vary more than an order of 

magnitude. Even for the same muscle type in human volunteers shear moduli ranging 

from 0.92±0.55 kPa182 up to 29.3±6.2 kPa117 are reported. The difference found may be 

due to subject variation, experimental set-up and hardware, muscle regions, analysis 

orientations, imaging modalities and inversion methods employed. In relation to 

inversion methods it has been shown that shear moduli may be under-/overestimated 

depending on how realistic the mechanical model is that is assumed in the inversion of 

the wave data183. In addition the incorporation of viscoelastic effects, which is not always 

included, is important for the accurate derivation of the shear modulus measurements184. 

It has also been shown that the local geometry effects (e.g. due to wave reflections and 

interactions) influence the measured wave speeds and may lead to artefacts in the elastic 

parameter derivation185.  

The majority of elastography methods in the literature assume linear elasticity 

and viscosity, isotropy and local homogeneity. In addition tension-compression non-

linearity is not incorporated. Recently inversion methods have been employed which also 

incorporate viscoelasticity and anisotropy (e.g.120, 180, 186). However in many cases simple 

rheological models such as the Voigt model120, 186 are employed. Due to the parallel spring 

and dashpot arrangement this model does not allow instantaneous elasticity and is 

therefore not suitable for constitutive modelling. Due to the current small strain (e.g. <3 
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%) limitations of elastography methods, and the assumptions of linearity currently 

required in the inversion of the image data, the techniques are thus more appropriate for 

diagnostic imaging of tissue stiffness changes (e.g. to detect lesions25 or liver fibrosis187) 

rather than for constitutive modelling. 

 

3.3.4  Comments on constitutive modelling of skeletal 

muscle tissue 

The previous sections already highlighted some of the constitutive modelling approaches 

in relation to experimental investigations. In small strain non-invasive elastography 

studies where the focus lies on small strain properties, soft tissue is often represented as 

linear and isotropic (see review article32). In large strain non-invasive external loading 

experiments (such as leg compression172) tissue is often represented by isotropic 

hyperelastic formulations. However skeletal muscle is anisotropic in both tension22 and 

compression21. In the current thesis modelling of the non-linear anisotropic behaviour of 

muscle is of interest.  

Figure 3.21. Summary of elastography derived shear modulus values for muscle tissue in the literature. Data entries are 
coloured according to study as indicated by the colorbar. 
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 The most common approach to modelling of transverse isotropy is to assume a 

strain energy function of the following general form: 

 Ψ = Ψ𝑔𝑚 + Ψ𝑓 3-8 

where Ψ𝑔𝑚 and Ψ𝑓 represent an isotropic ground matrix and a fibre contribution 

respectively. The fibre contribution is modelled using a single fibre family aligned with 

the axis of transverse isotropy. Inherent in this modelling approach is that Ψ𝑓 is added as 

a reinforcing structure to an isotropic ground matrix. Often tension compression non-

linearity is induced by letting Ψ𝑓 take a form similar to: 

 Ψ𝑓 = �
Ψ𝑓_𝑡𝑒𝑛𝑠𝑖𝑜𝑛 λ�𝑓 > 1

0 λ�𝑓 ≤ 1
 3-9 

where Ψ𝑓_𝑡𝑒𝑛𝑠𝑖𝑜𝑛 is the strain energy function for tension and λ�𝑓 the deviatoric fibre 

stretch. Therefore the reinforcing effect of Ψ𝑓 is strongest in tension and smallest (i.e. 

zero in compression) hence in general these models predict an increase in the stress 

response for tensile loading when the load angle is rotated from being orthogonal to 

being aligned with the fibre orientation and the opposite for compression. This approach 

may therefore not enable modelling of more complex anisotropic behaviour (e.g. the 

intermediate angle softening observed by Van Loocke et al. 200621).  

Recently other so called polyconvex hyperelastic approaches to modelling 

anisotropy based on generalised structure tensors have been proposed (e.g. Schröder et 

al. 2003188, Ehret et al. 200763) and related model formulations have been applied to the 

study of combined active and passive skeletal muscle behaviour (e.g. Odegard et al. 

2008189, Mathyr et al. 201010 and Ehret et al. 2011190). For instance Ehret et al. 2011190 

who modelled the passive properties of muscle using the strain energy function: 

 Ψ =
𝜇
4
�
1
𝛼
�𝑒𝛼�𝐼𝑝−1� − 1� +

1
𝛽
�𝑒𝛽(𝐾�−1) − 1�� 3-10 

here 𝜇, 𝛼 and 𝛽 are material parameters, 𝐼𝑝 and 𝐾� are so called generalised invariants: 

 

𝐼𝑝 =
𝑤𝑜
3

tr(𝐂) + (1 − 𝑤𝑜)tr(𝐂𝐀) 

𝐾� =
𝑤𝑜
3

tr(𝐂−1) + (1 − 𝑤𝑜)tr(𝐂−1𝐀) 

with  det(𝐂) = 1 

3-11 

with 𝑤𝑜 a weight factor (material parameter) for the isotropic (𝑤𝑜) and muscle fibre 

behaviour (1 − 𝑤𝑜). The texture tensor 𝐀 = 𝐚⨂𝐚 is defined by the unit vector 𝐚 

specifying the fibre direction. The term tr(𝐂𝐀) is the square of the stretch in the fibre 
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direction and tr(𝐂−1𝐀) relates to squared cross-sectional area of the fibre in the 

transverse direction. In this constitutive formulation the fibre reinforcement is not 

nulled in compression. Hence this transversely isotropic formulation predicts that the 

stiffer favoured direction is stiffer both in tension and compression. However the model 

was only evaluated for passive along fibre extension (experimental data from191). 

Nonetheless the authors agree that a single stress–stretch curve is insufficient to 

uniquely determine the material parameters of an anisotropic material. Recently Böl et al. 

2011192 employed the above model for passive skeletal muscle tissue in a study on the 

passive and active behaviour of muscle tissue in-vivo. A volunteer performed arm 

movements inside a scanner and multiple static anatomical MR images where acquired 

allowing FEA model construction. The passive model parameters were however derived 

again from only a single passive along fibre extension curve (experimental data by Calvo 

et al. 201024). This model has not been widely implemented in available FEA software.  

 In addition recently micromechanical modelling approaches have also been 

developed (see for instance Böl et al. 2010193 and Sharafi et al. 2010194). However these 

modelling approaches have not been widely implemented in available FEA software and 

are beyond the scope of this thesis.  

 There are many different non-linear viscoelastic constitutive laws in the literature 

(see review by Drapaca et al. 200768). The theory of quasi-linear viscoelasticity, also 

referred to as Prony series expansions (see and section 2.2.12.2 ) has been implemented 

for FEA (see implementation by Puso and Weiss 199870) and has been most widely used 

for the modelling of biological tissues (e.g. skeletal muscle158, 159, collagen195, ligaments 

and tendon196, plantar tissue197, arterial tissue198, kidney199 and brain200).  

3.3.5  Conclusions 

After reviewing the literature it becomes clear that mechanical properties of skeletal 

muscle tissue have been extensively researched. The literature available reports the 

mechanical behaviour of passive skeletal muscle tissue to be non-linear, anisotropic and 

viscoelastic in both tension and compression. In addition muscle tissue presents with 

tension compression non-linearity. The most detailed experimental investigations into 

the large strain and anisotropic non-linear elastic behaviour of skeletal muscle tissue is 

due to Takaza et al. (unpublished)22 and Van Loocke et al. 200621 for tension and 
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compression respectively. These experimental data may provide the basis for the 

formulation of constitutive laws for the anisotropic and non-linear elastic behaviour. In 

addition the viscoelastic property investigation for compression presented by Van Loocke 

et al. 2008158 allows for modelling of viscoelasticity for compression e.g. using Prony 

series expansion. 

Non-invasive attempts to characterise the mechanical properties of muscle tissue 

include:  

1) Indentation and external force displacement based analysis, whereby tissue 

properties are assumed isotropic and the constitutive behaviour of skin, adipose and 

muscle tissue is jointly modelled.  

 2) Ultrasound and MR elastography, are successful diagnostic stiffness assessment 

techniques whereby only small strain (<3%) mechanical property estimates have been 

presented based on assumptions of linearity, local homogeneity and often isotropy. The 

sensitivity of elastography derived parameters to experimental conditions (e.g. geometry) 

and mechanical property assumptions (e.g. linearity, Voigt behaviour) has resulted in 

literature values varying more than an order of magnitude.  

3) MRI based deformation measurement and model evaluation. Whereby MRI based 

deformation measurement such as phase contrast MRI or (1D) SPAMM tagged MRI is 

employed in combination with inverse analysis. These have largely been limited to 

isotropic model evaluations (e.g.174) or averaged regional strain estimates (in the case 

of23). Detailed 3D deformation measurement combined with anisotropic model 

evaluation has not been performed for skeletal muscle to date.  

To date the majority of constitutive modelling approaches for the non-linear 

elastic behaviour of passive muscle tissue have focussed on isotropic hyperelastic 

formulations. Transversely isotropic formulations are generally based on summing an 

isotropic hyperelastic ground matrix response and a single reinforcing fibre direction 

which only reinforces in fibre tension. Since the fibre contribution is added to the 

isotropic ground matrix as a reinforcing agent the approaches may not enable modelling 

of more complex anisotropic behaviour (e.g. the near 45 degree load angle softening 

observed by Van Loocke et al. 200621). In addition the models proposed have not been 

extensively validated using multi-directional anisotropic stress-strain information. 
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3.4 Non-invasive imaging modalities 
In the current thesis the mechanical properties of living human muscle tissue are of 

interest. In order to study living human muscle tissue in-vivo non-invasive imaging 

methods are required. A suitable imaging modality should fulfil the following 

requirements:  

1. Capable of 3D high resolution and high contrast imaging of human soft tissue 

anatomy allowing for segmentation of tissue types and for the construction of 

FEA models. 

2. Capable of 3D high resolution imaging of the muscle fibre architecture allowing 

mapping of fibre directions for FEA implementation of anisotropy.  

3. Capable of 3D fast and high resolution non-invasive imaging of complex 3D soft 

tissue deformation of muscle tissue.  

4. The modality should be flexible to allow image acquisition at positions and 

orientations freely defined by the user. 

5. The modality should not have significant negative biological and health side 

effects and preferable not employ ionizing radiation. 

The only imaging modality found to match these requirements is MRI. The available soft  

tissue contrast in MRI is currently the highest among all medical imaging modalities 79. 

MRI is non-invasive and employs non-ionizing radiofrequency waves and at present 

demonstrates no untoward biological effect79. In addition MRI provides the best 

combined sensitivity and specificity compared to conventional radiographs, nuclear 

medicine studies, musculoskeletal computer tomography (CT), and ultrasound 79. The 

nature of the MR signal allows for multiple types of analysis which enables imaging of 

anatomy, diffusion (and muscle fibre arrangements, e.g.33) and 3D tissue deformation 

(see review article34) and elasticity (see review article201). MRI was therefore chosen as the 

imaging modality for the current thesis. Further chapters therefore focus on MRI based 

investigations.  

 

3.5 MRI compatible actuator and sensor devices 
As discussed in section 3.3.3 the non-invasive analysis of the mechanical properties of 

soft tissue requires mechanical excitation, non-invasive measurement of experimental 

boundary conditions and inverse analysis. Mechanical excitation requires the 
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implementation of actuators (to mechanically palpate/excite the tissue) and sensor 

devices to measure the applied load. MRI safe and compatible actuation and sensing is 

non-trivial202 and therefore this section discusses MRI compatible actuator and force 

sensors. Since large strain analysis is of interest in the current thesis actuators relevant 

to indentation are the focus. In addition force sensors in the range relevant for soft tissue 

(around 0-15N) are discussed. Two main groups of actuators and sensors for the MRI 

environment can be distinguished: 1) Systems employing electric principles and/or 

ferromagnetic components in the MRI room and/or close to the imaging region and 2) Systems 

which are intrinsically MRI compatible since they employ non-conducting and non-

ferromagnetic materials and sensor signal transmission occurs using magnetically inert media 

within the MRI room. Of interest to the current thesis are actuator (indentor) systems 

which are intrinsically MRI compatible such that the devices do not significantly affect 

imaging and can safely be used in close proximity to the subject without posing safety 

risks. Such systems do not require device and cable shielding, signal filtering strategies or 

device anchoring. This group of sensor and actuator devices therefore forms the focus in 

this thesis. 

A large array of MRI compatible actuators (see review203) and sensor systems  (see 

review204) have been proposed. These have mainly been developed for application to MRI 

robotics (e.g.35, 36), MRI and guided surgical interventions (e.g.37-39), MRI based 

catheterisation (e.g.40) and functional MRI studies (e.g.41, 42). MRI compatible actuators 

and force sensors have also been applied, to a limited extent, to MRI based soft tissue 

mechanical property investigation. To date these have been limited to quasi-static 

deformation analysis26, 43, 173, 205-208, the evaluation of isotropic hyperelastic constitutive 

models26, 43, 173, 205-208, estimation of strain from 2D imaging26, 205, 209 or from finite element 

simulations26, 208. Force measurement is sometimes based on the application of static 

weights173 or by repeating the experiment outside the MRI environment208 or electric 

force sensors which suffer from MRI scanning induced electromagnetic interference43.  

The only computer controllable MRI compatible indentor and dynamic force 

sensing system for non-invasive tissue investigation found in the literature was 

presented in Stekelenburg et al. 200643. This system was recently used by Ceelen et al. 

2008174 to study rat lower limb muscle deformation (as discussed in section 3.3.3 ). 

However, currently the system is not applicable to human studies since it was developed 
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for animal experiments in a small bore (95 mm in diameter) MRI scanner. In addition it 

incorporates an electric force sensor the application of which is not of interest to the 

current thesis.  

To date a large array of MRI compatible force sensors have also been developed. 

Piezoelectric sensors have been proposed; however, these cannot be used to measure 

static forces37 and are therefore not ideally suited for quasi-static and viscoelastic (ramp 

and hold type) tissue property investigation. In addition they may induce image 

artefacts37 depending on proximity to the imaging region. MRI compatible force sensors 

for the application of needle deflection and force feedback measurement during 

catheterisation have also been developed40, 210 however these are applied to forces in the 

range 0-0.5N. Tada et al.211 presented an optical MRI compatible tri-axial force sensor 

based on a deformable structure and optical micrometry. A total of 5 optical fibres were 

used: 1 emitting fibre mounted on a movable component and 4 receptor fibres allowing 

monitoring of motion of the emitting fibre and thus derivation of force. The system was 

calibrated in the range of 0-15N and showed errors under 3 %. This complex force 

sensing system has also been applied to quasi-static compression tests to the human 

finger-tip for inverse FEA of the assumed isotropic hyperelastic mechanical properties207. 

During quasi-static compression tests in 5 steps up to 3.48 N the force was measured at 

1Hz. However the static force measurements showed standard deviations ranging from 

0.11 N (for a mean force of 1.7 N) up to 0.3 N (for a mean force of 2.35 N). The causes for 

the increased deviations, with respect to the calibration which reported errors under 3%, 

were not discussed. In addition the hydraulic compressor system used was not described 

in detail.  

Recently Song et al. 201139 designed an advanced fibre Bragg grating (FBG) based tri-

axial force sensor system for the tip of a robot arm for application to minimally invasive 

surgery. FBG sensors are optical fibres containing periodic perturbations of the refractive 

index along the fibre which act as local strain and temperature dependant wavelength 

specific reflectors. Monitoring of the reflected Bragg wavelengths due to fibre strain thus 

provides a force sensing mechanism. The system was calibrated for forced up to around 

10 N and a maximum force error of 0.5 N was recorded. This force range is rather low for 

application to soft tissue indentation and the robot arm features metallic components 

and hence the manipulator and force sensor design are not directly applicable to the 

current thesis. However FBG based force sensing in the MRI environment does seem to 
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have advantages over other force sensing systems. Song et al. 201139 highlights that since 

the measurand in FBG is wavelength encoded, the sensors are self-referencing, rendering 

it independent of fluctuating light levels. In addition FBG based sensors allow for 

miniaturisation of sensors due to their compact design.  

To the authors knowledge to date no combined computer controllable MRI 

compatible indentor and dynamic force sensor systems have been developed for 

application to human soft tissue indentation.  

 

3.6 MRI based measurement of soft tissue 
deformation 

Since MRI allows fast and 3D imaging with excellent soft tissue contrast without 

exposing subjects to ionizing radiation, it is an ideal modality for the study of soft tissue 

motion. As such, a large variety of MRI based methods to non-invasively analyse soft 

tissue deformation have been developed. These can roughly be subdivided into; 1) 

methods that rely on anatomical features (e.g. using correlation methods212, 213 or 

deformable models and non-rigid image registration214) and, since anatomical features 

may be insufficient, 2) methods that rely on implanted markers215, and finally 3) methods 

that rely on specialized MRI sequences and signal modulation, where phase contrast MRI 

methods129, 216 or methods based on SPAtial Modulation of the Magnetization 

(SPAMM)124, 125 are common34, 46, 49, 217. The latter is the focus of this thesis since it offers a 

relatively direct and possibly constraint free method for the derivation of large 3D strain 

measurements using comparatively low numbers of repetitions.  

In SPAMM tagged MRI sequences (see also section 2.3.11 ) the magnetization is 

modulated using radiofrequency pulses and magnetic field gradients, resulting in 

saturated bands in the magnetization distribution and, as a consequence, contrasting 

patterns in the image data. These patterns act as temporary markers locked in the tissue 

whose appearance reflects any underlying tissue motion. Typically SPAMM tagged MRI 

methods are gated and image acquisition is synchronized with the motion cycle (e.g. 

towards heartbeats using electrocardiograms). In addition they are fast, as only part of 

the k-space is acquired with each cycle, and acquisitions from multiple motion cycles are 

used to compose a dataset representing a single motion cycle. This has confined the 

application of SPAMM tagged MRI to the analysis of highly repeatable and periodic 
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movements such as those of the heart46, 48, 49. Recently other tissue types have also been 

analysed for repeatedly induced motions of the tongue50 (16 volunteer speech repetitions 

per slice), brain51 (144 volunteer rotational head accelerations) and eyes52 (>135 repeated 

left to right eye movements).  

Recently faster approaches have been developed for estimation of 2D lung tissue 

movement218, but these cannot be applied to other tissue sites or to a clinical setting as 

inhaled hyperpolarized 3He gas was used as a contrast medium, accelerating the image 

acquisition. Apart from repeatability constraints, discomfort and health issues may 

preclude the use of large numbers of repetitions limiting the applicability of current 

SPAMM tagged MRI approaches and analysis of tissue viscoelasticity and hysteresis is 

limited. In addition clinical conditions may impair the repeatable natural movement of 

tissues (e.g. cardiac arrhythmia).  

A wide array of advanced post-processing methods have been proposed for 

SPAMM tagged MRI; for instance using deformable models219, 220, spline models221-223, 

non-rigid image registration224, 225, optical flow methods226, 3D tag surface analysis227 and 

harmonic phase methods228. The post-processing methods in the literature involving 

deformable models, spline models and non-rigid image registration all inherently require 

assumptions on the nature of the deformation and/or the mechanical properties and 

models of the underlying tissue. Harmonic phase methods require non-trivial and error 

prone phase unwrapping. In addition, many of these methods require computationally 

intensive iterative optimization methods to be employed. It is possible to use the above 

approaches to investigate mechanical properties. However the constitutive model 

evaluation is limited to the model adopted and difference measures are based on the 

image data rather than more mechanically meaningful experimental parameters such as 

3D deformation, strain and strain rate. This thesis focusses on post-processing methods 

which allow derivation of the complex 3D deformation while minimizing assumptions on 

the mechanical properties or the nature of the deformation.  

 

3.7 Validation of MRI derived motion and 
deformation 

The techniques for tracking tissue deformation from (for example tagged) MRI are 

complex and require validation using an independent measure of deformation. Since 
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physically implanting markers is not feasible and anatomic landmarks are either absent 

or difficult to track, alternative methods have been employed. Young et al.229 recorded 

angular displacement of a silicone gel phantom using tagged MRI and evaluated the 

results using FEA and 2D surface deformation derived from optical tracking of lines 

painted on the phantom surface. Similarly, Moore et al.230 used optical tracking of surface 

lines on a silicone rubber phantom to validate MRI based deformation measures. 

However simple tensile stretch was applied and only a 2D measure of surface 

deformation was used. There were also temporal synchronisation issues between the 

optical and MRI data. In both of the optical validation studies above the error related to 

the optical tracking method was not quantified. Other authors have used implantable 

markers. For instance Yeon et al.231 used implanted crystals and sonomicrometric 

measurements for validation of tagged MRI of the canine heart. However the locations of 

the crystals were verified manually by mapping with respect to surface cardiac landmarks 

in the excised heart and matching problems between MRI and sonomicrometric 

measurements occurred. Neu et al.232, 233 evaluated a tagged MRI based deformation 

tracking technique for cartilage using spherical marker tracking in a silicone soft tissue 

phantom. However the marker centres were determined by manually fitting a circle to 

each marker in two orthogonal directions and imaging was performed on in-vitro samples 

using a non-clinical small bore 7.05 T scanner. 

This review shows that validation of in-vivo medical imaging techniques and image 

processing algorithms is challenging partially due to the lack of appropriate reference 

data. Although experimental validation methods using soft tissue MRI phantoms can be 

developed, the data derived from these often suffers uncertainties similar to those 

present in the target soft tissue. Therefore the validation method itself often lacks an 

appropriate reference. 

 

3.8 Summary and proposed approach 
Section 3.2 reviewed the architecture of skeletal muscle tissue demonstrating that 

it is anisotropic due to its fibre architecture and contains a complex connective tissue 

arrangement consisting of the main longitudinal muscle fibres which are interconnected 

and reinforced by connective tissue structures which are oriented transverse and oblique 

to the main fibre direction. Realistic modelling of the mechanical properties of muscle 
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tissue should account for anisotropy introduced by both types of features. This point is 

addressed in study VI, chapter 0. 

 

Section 3.3 reviewed experimental and computational studies on the mechanical 

properties of skeletal muscle tissue. It was shown that mechanical properties of skeletal 

muscle tissue have been extensively researched for both tension and compression. 

Although a large degree of variation is observed the literature available reports the 

mechanical behaviour of passive skeletal muscle tissue to be non-linear, anisotropic and 

viscoelastic in both tension and compression. In addition muscle tissue presents with 

tension compression non-linearity. The most detailed experimental investigations into 

the large strain and anisotropic non-linear elastic behaviour of skeletal muscle tissue is 

due to Takaza et al. (unpublished)22 and Van Loocke et al. 200621 for tension and 

compression respectively. These experimental data may provide the basis for the 

formulation of constitutive laws for the anisotropic and non-linear elastic behaviour.  

Non-invasive attempts to characterise the mechanical properties of muscle tissue 

have so far been largely limited to the analysis of isotropic behaviour or grouped bulk 

behaviour of different tissue types. Elastography methods have been limited to small 

strain and often assume linear isotropic properties.  

MRI based deformation measurement such as phase contrast MRI or SPAMM 

tagged MRI have been employed in combination with inverse analysis. However once 

again analysis has been limited to isotropic model evaluations (e.g.174) or averaged 

regional strain estimates (in the case of23). Detailed 3D deformation measurement 

combined with anisotropic model evaluation has not been performed for skeletal muscle 

to date.  

Constitutive modelling approaches for the non-linear elastic behaviour of passive 

muscle tissue have so far largely focussed on isotropic hyperelastic formulations. 

Transversely isotropic formulations are generally based on summing an isotropic 

hyperelastic ground matrix response and a single reinforcing fibre direction which only 

reinforces in fibre tension. Hence contributions due to transverse (or other non-

longitudinal) fibrous structures are not modelled. In addition the models proposed have 

not been extensively validated using multi-directional anisotropic stress-strain 

information. These points are addressed in study VI, chapter 0. 
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Section 3.4 highlighted that MRI offers excellent soft tissue contrast and is the 

only non-invasive and non-ionizing imaging modality allowing fast, high resolution and 

3D imaging of all required boundary conditions of interest to the current study, such as 

anatomy, deformation and fibre architecture.  

 

Section 3.5 reviewed currently available MRI compatible actuator systems and force 

sensors and concluded that to date no combined computer controllable MRI compatible 

indentor and dynamic force sensor systems have been developed for application to 

human soft tissue indentation. Hence such a system is proposed in study I, chapter 4. 

 

Section 3.6 reviewed current MRI based soft tissue deformation measurement 

techniques and demonstrated that current methods require the combination of large 

numbers of repetitions which result in repeatability constraints and for the current thesis 

volunteer discomfort during indentation. Therefore study IV chapter 7 and V chapter 8 

focus on static and dynamic methods respectively following a minimum of repetitions. 

  

Section 3.7 demonstrated that MRI based motion measurement techniques require 

validation and that to date validation techniques have been limited or the error related to 

the validation methods is unknown. To address validation study III chapter 6 proposes a 

silicone gel phantom containing trackable spherical markers.  

 

Non-invasive mechanical property assessment requires mechanical excitation, non-

invasive boundary condition measurement and inverse analysis. The current thesis 

focusses on the development of an experimental and computational framework for the 

non-invasive analysis of the complex (anisotropic, non-linear and viscoelastic) 

mechanical properties of passive skeletal muscle tissue.  

 

Figure 3.22 shows a diagram for the proposed approach. First an appropriate 

constitutive model and initial parameters are formulated based on data from the 

literature and are implemented in FEA. Then an indentation experiment is performed on 

healthy volunteers during which experimental boundary conditions are measured such 

as: 1) the geometry and fibre architecture, and 2) the indentation force and tissue 

deformation. The former is used for the construction of the FE model and for mapping of 
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the per element fibre directions. The indentation is then simulated using FEA yielding 

simulated measures of indentation force and soft tissue deformation. These are then 

compared to the true experimental force and deformation to derive difference measures 

for the optimisation based derivation of a new material parameter set. An iterative 

optimisation process composed of the following is then repeated until the difference 

measures are minimised: 1) FEA simulation, 2) comparison of FEA and experimental 

boundary conditions and 3) material parameter optimisation. This thesis relates to setting up 

and validating all the experimental and computational methods required in the diagram 

of Figure 3.22. 

 

 In study II chapter 5, the proposed framework in Figure 3.22 is evaluated with an 

alternative to MRI since implementation for MRI and anisotropic tissue presented with 

initial challenges. Therefore instead, the more limited but more straightforward non-

invasive imaging technique, Digitical Image Correlation (DIC) (see also section 2.4.5 ) was 

explored as an alternative to MRI based deformation boundary condition assesment.  

 

 
 

Figure 3.22 Diagram showing the proposed experimental and inverse FEA based determination of constitutive parameters.  
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4 STUDY I  
 

A Novel MRI Compatible Soft Tissue 
Indentor and Optical Fibre Bragg 

Grating Force Sensor 
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4.1 Introduction 
Section 3.5 of the literature demonstrated that to date no combined computer 

controllable MRI compatible indentor and dynamic force sensor systems have been 

developed for application to human soft tissue indentation. This study focusses on the 

design and validation of such a system for muscle tissue indentation.  

 MRI based biomechanical soft tissue investigations often require the 

implementation of actuators (to mechanically palpate/excite the tissue) and sensor 

devices (to measure the applied load). Designing such devices to be safe within the MRI 

environment and compatible with the imaging is non-trivial202. This study presents a 

novel MRI compatible soft tissue indentor implemented with a Fibre Bragg Grating (FBG) 

based optical force sensor for application to non-invasive soft tissue mechanical property 

investigation. When combined with the MRI based measurement of boundary conditions 

such as geometry, architecture and soft tissue deformation, it allows for inverse FEA 

based evaluation of constitutive laws.  

As discussed in section 3.5 systems which are intrinsically MRI compatible are of 

interest to the current thesis. These employ non-conducting and non-ferromagnetic 

materials and sensor signal transmission occurs using magnetically inert media within 

the MRI room. In addition these devices do not significantly affect imaging and can safely 

be used in close proximity to the subject without posing safety risks and do not require 

device and cable shielding, signal filtering strategies or device anchoring. As such a 

master slave system is presented here featuring an MRI compatible slave actuator 

(indentor) system composed of non-ferromagnetic and non-conducting materials. 

Embedded in the MRI actuator is a novel high speed MRI compatible force sensor based 

on optical FBG. This chapter outlines the design of the MRI compatible indentor system 

including the master-slave control system and force sensor. The system is evaluated for 

an MRI based investigation of soft tissue biomechanics using indentation of the upper 

arm of volunteers.  

 

4.2 Methods 
This section describes: 1) Fibre Bragg Grating Based optical force sensing, 2) The soft tissue 

indentor system, 3) Optical force sensor calibration and 4) Evaluation of the indentor system 
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performance. All signal and image processing methods were developed in MATLAB (The 

Mathworks Inc., USA).  

4.2.1  Fibre Bragg Grating Based optical force sensing 

In FBG a periodic perturbation of the refractive index is introduced along an optical fibre 

acting as a local wavelength specific reflector234, 235. The reflected (Bragg) wavelength 𝜆𝐵 

for a specific grating is defined by236: 

 𝜆𝐵 = 2𝜂𝑒𝑓𝑓Λ 4-1 

Here 𝜂𝑒𝑓𝑓 is the effective refractive index of the fibre core and Λ is the period of the 

grating. From this equation it is clear that 𝜆𝐵 is both strain and temperature dependant 

since 𝜂𝑒𝑓𝑓 varies with temperature and Λ is altered following longitudinal fibre strain and 

thermal expansion/contraction236. Under isothermal conditions a linear relationship 

exists between reflected wavelength and the applied strain where tensile and compressive 

strains increase and decrease the wavelength reflected respectively. For the current study 

only the mechanical strain induced effect is of interest since it is linearly dependent on 

the force exerted on the optical fibre. In order to separate the effect of mechanical strain 

from the effects of temperature fluctuations two gratings are placed close together in 

series whereby one is subjected to both mechanical strain and local temperature 

variations, while the other is isolated from mechanical strain and acts as a (temperature) 

reference grating. The wavelength reflected from the latter reference grating 𝜆𝑇 is thus 

purely a function of temperature and, together with the wavelength reflected from the 

former (strain) grating 𝜆𝑆, can be used to derive the mechanical fibre strain 𝜀 as237:  

 𝜀 =
1
𝑆𝜀
�𝑙𝑜𝑔 �

𝜆𝑆
𝜆𝑆0

� − 𝑙𝑜𝑔 �
𝜆𝑇
𝜆𝑇0

�� 4-2 

Here 𝑆𝜀 = 1.2 ± 0.03 𝑝𝑚/𝜇𝜀 represents the strain sensitivity. The subscript 0 denotes 

initial values and initial wavelengths which can be measured for an unloaded fibre prior 

to each testing session by taking the mean signal (e.g. across 1000 samples, over 10 

seconds) for both gratings.  

For the current study a high strength optical fibre (GeO2 doped silica glass fibre, 

ORCOMER® coated, 125 µm in diameter) containing two FBG gratings (Draw Tower 

Grating pair, FBGS International, Belgium) was used. The nominal Bragg wavelengths for 

the gratings used are 1532 nm and 1530 nm for the strain and reference grating 

respectively (hence as tensile strain is applied the reflected wavelength increases away 
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from the reference grating wavelength). The reflected wavelength peaks were acquired at 

1 kHz using an optical interrogator (SM130-700, Micron Optics Inc., USA). However for 

the current study the data was stored using a 10 point data interleave (running average 

of 10 consecutive data samples) resulting in an effective acquisition frequency of 100 Hz.  

Due to the brittle nature of the fibre material it is best to load fibres in tension 

rather than compression. In tension the fibres used are capable of supporting loads up to 

50 N (corresponding to a 5 % breakage strain). This is sufficient for the current study 

since forces in the range of 0-15 N are of interest (i.e. loads occurring during mild 

indentation of soft tissue).  

4.2.2  The soft tissue indentor system 

This section discusses the soft tissue indentor system in the following steps: 1) The MRI 

compatible soft tissue indentor assembly, 2) The MRI actuator assembly, 3) The indentor head 

and force sensor assembly, 4) Actuator motion control and data acquisition. For each section 

the most relevant parts are discussed with reference to an associated figure. 

 

4.2.2.1  The MRI compatible soft tissue indentor assembly 

The design for the MRI compatible soft tissue indentor assembly will now be discussed 

with reference to Figure 4.1. The MRI actuator body (1) is mounted on a support bridge 

(2) which is attached to two side plates (3) that are mounted onto the bottom plate (4). 

The whole assembly can be fixed on the scanner bed using a slide rail (5) and support 

ridge (6). The actuator orientation (blue arrows) can be adjusted using the adjustment 

screws (7) and (8) and slot (A) to set desired loading angle and maximum depth. The 

maximum indentation is set by placing the piston in its maximum deployed position, 

moving the actuator down until a desired maximum tissue indentation is reached and 

then securing the adjustment screws on the support bridge and side plates. The bridge 

set-up shown in Figure 4.1 can be used for indentation of extremity soft tissue sites such 

as the biceps region of the upper arm or the tibialis anterior region of the lower leg. For 

other tissue regions a different mounting structure can easily be incorporated. All parts 

are made of polyamide except for the MRI compatible actuator body which is discussed in 

the following section.  
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4.2.2.2  The MRI actuator assembly 

This section discusses the MRI actuator assembly with reference Figure 4.2. The tube 

connector (1) allows water driven by the master cylinder to enter the actuator chamber 

formed via parts (2) and (3). The tube connector (4) and the rubber seal (5) form a 

manual valve which can be opened to allow for air removal during filling of the system. 

Parts (2) and (3) clamp a soft rubber diaphragm (6) which deforms under the influence of 

water pressure as the piston shaft (7), attached via the ring (8) is pushed downwards (see 

right side of Figure 4.2). The maximum stroke is 44 mm. The use of a diaphragm ensures 

low initial friction. The piston contains a flat face such that it can be constrained from 

rotating using part (9). The bottom part of the piston contains the indentor head and 

force sensor assembly (10) which is discussed in the following section. All black parts in 

Figure 4.2 are constructed of polyoxymethylene and all white parts are polyamide except 

for the piston which is made of polytetrafluorethylene to ensure low friction.  

Figure 4.1 The MRI compatible indentor assembly. 
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4.2.2.3  The indentor head and force sensor assembly 

The indentor head and force sensor assembly is discussed with reference to Figure 4.3. 

The bottom of the piston shaft (1) is inserted into the piston head parts (2-3) which are 

able to slide relative to the piston shaft by an amount limited by the set screw (4). The 

piston head is 45 mm in diameter with rounded edges 6 mm in radius. Using set screws 

(5) the piston head parts (2-3) are attached to part (6) of the force sensor assembly 

(right) which is inserted into the piston shaft (1). Part (7) of the force sensor assembly is 

fixed to the piston shaft via the screw (8). The FBG sensor fibre (9) enters the piston head 

at site (A) where it is supported using a bolt (10). The fibre reference and strain gratings 

(8 mm long each and 18 mm apart) are located at sites (B) and (C) respectively. The fibre 

(9) runs through a central hole in parts (6) and (7) where it is glued (EPO-TEK 353ND, 

Epoxy Technology Inc., USA) at sites (D) using the glue injection holes at (E). Thus when 

a compressive force 𝐹𝐶  is applied to the bottom of the indentor head it slides with respect 

to the piston shaft, converting the load to a tensile force 𝐹𝑇 at the strain grating (C) while 

the temperature reference grating (B) remains unloaded. The force 𝐹𝐶  is directly 

proportional to the force 𝐹𝑇. Therefore due to the current design in the case of downward 

indentation with respect to gravity the weight of the indentor head components (0.94 N) 

first needs to be overcome. Hence for downward indentation only forces in excess of this 

weight can be recorded. Pre-tension can be introduced in the fibre using a screw (11) 

Figure 4.2 The MRI actuator assembly in a retracted (left) and outward state (right). 
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which also ensures that the weight of the indentor head assembly does not buckle the 

fibre.  

 

4.2.2.4  Actuator motion control and data acquisition 

The motion of the MRI compatible actuator discussed above is enabled via a computer 

controlled hydraulic master cylinder assembly placed outside the MRI room which will be 

discussed using Figure 4.4. A 24 V DC-motor (1) (FBG 0130821708, Bosch, UK) controls 

the movement of a steel hydraulic cylinder (2) (CP95SDB50-80, SMC Corporation, USA) 

via an attached stainless steel gear rack (3) forcing water in or out through the valve (4) 

which is linked to the MRI compatible actuator via a 12 mm diameter polyurethane tube. 

The DC-motor has an internal gear assembly with an internal to external gear-ratio of 

62:1. The internal axis contains two 90º offset Hall sensors. Counting of the Hall sensor 

pulse edges (rising and falling for both sensors) thus provides 248 position references per 

external axis rotation which translates into approximately 1 positional reference for each 

0.3 mm of MRI actuator motion. For the current study the Hall sensor outputs are used 

only for displacement control. Since the exact indentor placement and depth are set 

manually prior to scanning the actual indentation depth (final indentor displacement) 

was determined using segmentation of the indentation site from the MRI data.  

Figure 4.3 The indentor head (left) and force sensor assembly (right).  
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The motion of the master cylinder (and thus the MRI actuator) is regulated by 

computer control of the DC-motor. Custom control hardware and software (LabVIEW 

8.6, National Instruments Corporation, USA) incorporating two data acquisition units 

(USB 6009 and USB 6211, National Instruments Corporation, USA) were used for: 1) 

analysis of the Hall sensor signal, allowing position control and recording, 2) setting of 

FBG parameters and acquisition of FBG data over time based on TCP (Transmission 

Control Protocol) communication with the optical interrogator, and 3) motion triggering 

toward an MRI scanner generated TTL (Transistor-Transistor-Logic) trigger pulse. Motor 

speed was varied through pulse-width modulation of the input voltage. LabVIEW was run 

on a laptop PC, with a 32-bit Microsoft Windows Vista Business operational system, 3.5 

Gb RAM, and dual core 2.1 GHz processors. 

 

4.2.3  Optical force sensor calibration 

In order to relate the FBG derived fibre strain measure in equation 4-2 to fibre force, uni-

axial compression testing was done using a Zwick Z005 (Zwick GmbH & Co., Germany) 

equipped with a 50N load-cell. The system was subjected to three types of force 

controlled loading in the range of 0-15 N: 1) a stair case test (1 N steps at 0.25 N/s, followed 

by a 30 s hold phase, repeated 3 times), 2) a stair case test (1 N steps at 0.75 N/s, followed by 

30 s hold phase, repeated twice) and 2) high speed ramp loading (ramp up to 15 N at 5 N/s 

followed by 10 second hold and ramp down to 0 N). A 0.5 N pre-load was used for all tests.  

Figure 4.4 The hydraulic master cylinder assembly. 
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The staircase tests were used for calibration by segmenting the plateaus regions for 

both the load-cell and FBG strain curves. In order to determine a mapping from the FBG 

strain to force the average plateau forces for all tests (75 points, 15 for each of the 5 

tests) were used simultaneously. Both linear (scaling based) and non-linear (cubic spline 

based) mappings were investigated. Following calibration based on the staircase tests, the 

force curve for the high speed ramp loading was then predicted using the stair-case based 

calibration and was thus effectively used for verification purposes. 

4.2.4  Evaluation of the indentor system performance 

The intended application for the indentor is the non-invasive investigation of soft tissue 

mechanical properties whereby during indentation all boundary conditions required for 

inverse analysis are recorded. These boundary conditions include: 1) the indentation force 

derived from the FBG sensor, 2) the complex soft tissue deformation acquired using SPAMM 

(SPAtial Modulation of the Magnetisation) tagged MRI238, 239 , 3) the tissue geometry for the 

construction of FEA models derivable from anatomical MRI and 4) muscle tissue fibre 

architecture derivable from diffusion tensor MRI33 to allow for analysis of anisotropic material 

behaviour.  

In order to evaluate indentor system performance for the above application it was 

applied (Figure 4.5) for indentation of a silicone gel phantom (see chapter 6) and the 

upper arm region of volunteers (ethical approval and informed consent obtained from 

the Medical Ethical Committee, Academic Medical Centre, Amsterdam, The Netherlands). 

All the above mentioned boundary conditions were recorded during the experiments. 

However only the measurements relevant to the indentor system performance are 

highlighted in detail here as the soft tissue deformation measurements are presented 

elsewhere (see chapters 7 and 8). Since the quality of these measurements also illustrates 

the utility of the indentor system they are briefly summarized in the discussion section.  

The indentor system was evaluated in the following ways: 1) force measurement 

within the MRI environment, 2) Evaluation of indentor motion repeatability, 2) and 3) 

Evaluation of MRI compatibility.  

All scans were performed on a 3.0 T scanner (Philips Intera, Philips Healthcare, 

Best, The Netherlands) and Figure 4.5A-B highlights coil placement of the flexible surface 

coils used (Flex-M, Philips Healthcare, Best, The Netherlands) and Figure 4.5C-D shows 

iso-surface visualisations of the indented configurations and sample SPAMM tagged MRI 
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slices. In order to compute 3D soft tissue deformation SPAMM tagged MRI data was 

acquired in three mutually orthogonal directions238, 239. However for both the phantom 

and volunteer data one of the three SPAMM tagged MRI directions was used for 

demonstration of indentor performance.  

For the phantom tests repeated indentations were performed while a dynamic 

series (𝑛 = 60) of SPAMM tagged MRI data were acquired (1-1 SPAMM, 123 ms delay, 

177 ms 3D Transient Field Echo read-out, TR/TE 2.53/1.28 ms, field of view 120x120x39 

mm, acquisition matrix 80x52, 10 slices, reconstructed voxel size 0.93x0.93x1.5 mm). 

Timing of indentor motion with respect to imaging resulted in 11 image dynamics per 

indentation cycle and 5 complete repeated indentations per dynamic series.  

For the volunteer tests repeated indentations were performed while a dynamic 

series (𝑛 = 250) of SPAMM tagged MRI data were acquired (1-1 SPAMM, 100 ms delay, 

177 ms 3D Transient Field Echo read-out, TR/TE 2.42/1.19 ms, field of view 120x120x40 

mm, acquisition matrix 80x60, 10 slices, reconstructed voxel size 0.94x0.94x2 mm). 

Timing of indentor motion with respect to imaging resulted in 71 image dynamics per 

indentation cycle and 3 complete repeated indentations per dynamic series.  

Indentation cycles were triggered using a TTL pulse timed to start with the first 

dynamic or the first dynamic following completion of a deformation cycle.  
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4.2.4.1  Force measurement within the MRI environment 

During the indentation experiments the FBG derived force was recorded at 100 Hz. Since 

the force sensor is optical fibre based no interference with the MRI imaging is expected. 

Since skeletal muscle tissue is highly viscoelastic158, 159 it is expected that, for the 

indentation tests of ramp and hold type discussed above, force relaxation should be 

observed during the hold phase. To demonstrate the sensor’s performance in the MRI 

environment for application to soft tissue biomechanics, its ability to register this 

viscoelastic force history is demonstrated for two load rates of 10 mm/s and 20 mm/s.  

 

4.2.4.2  Evaluation of indentor motion repeatability 

In order to study repeatability of the indentor motion, the dynamic SPAMM tagged MRI 

series (see Figure 4.5C-D) for the phantom (𝑛 = 60 dynamics) and for the volunteer 

(n=250 dynamics) were analysed. The SPAMM tagging encodes for motion and are thus 

well suited for repeatability analysis. Each dynamic series can be represented as a 4D data 

set 𝑁𝑖,𝑗,𝑘,𝑑 where (𝑖, 𝑗,𝑘) represent voxel (row, column and slice) indices and 𝑑 the index 

for dynamics. In case a repeated periodic motion occurred during the dynamic series 

some of these dynamics are thus equivalent to each other with the exception of 

Figure 4.5 The MRI compatible indentor system positioned for indentation of the silicone gel 
phantom (A) and the upper arm of a volunteer (B). Coils are placed laterally to the regions of 
interest and can be secured to the side plates.  In addition iso-surfaces illustrating the 
indentation sites and selected SPAMM tagged MRI data slices are shown for the phantom (C) 
and volunteer (D). 
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differences induced by noise. In order to establish whether the indentor motion was 

indeed repeatable a 𝑛 × 𝑛 temporal sum of squared differences (SSD) matrix (SSDM) was 

created for both the phantom and volunteer data where all dynamics are compared to all 

others using: 

 𝑆𝑆𝐷𝑀𝑝,𝑞 = ��𝑁𝑖,𝑗,𝑘,𝑝 − 𝑁𝑖,𝑗,𝑘,𝑞�
2

𝑖,𝑗,𝑘

 
4-3 

where each entry in the matrix at (𝑝, 𝑞) reflects the sum of squared differences of 

dynamic 𝑝 with respect to dynamic 𝑞 for a random selection of 10000 voxels within the 

gel/tissue volume. The matrix SSDM is obviously symmetric around its diagonal where all 

entries are zero since here 𝑝 = 𝑞. However if a repeated periodic motion occurred during 

the dynamic series other parallel diagonals with minimal differences are to be found. For 

instance if a repeated motion with period 𝑥 (dynamics) occurred then multiple diagonal 

minima exist since the following entries in SSDM should all reflect only differences due 

to noise: [(𝑝,𝑝 + 𝑥) , (𝑝 + 1,𝑝 + 1 + 𝑥), (𝑝 + 2,𝑝 + 2 + 𝑥), … . ]. For the current study a 

period of 11 and 71 (see description of indentation experiment at the start of section 

4.2.4 ) should therefore be observable in the data for the phantom and volunteer data 

respectively (e.g. for the phantom data dynamic 1 is repeated at dynamic 12, 23 etc.). 

Analysis of parallel diagonal locations in the SSDM, showing difference magnitudes 

expected for noise (i.e. similar to differences between multiple static repetitions) thus 

allowed for demonstration of repeatability.  

 

4.2.4.3  Evaluation of the system MRI compatibility 

The MRI environment poses significant design challenges for the safe and appropriate 

functioning of both the device and the MRI scanner. In this study the following 

definition of MRI compatibility is used (for current definitions of MRI safety terminology 

see 202, 240. Although the term “MRI compatibility” is no longer favoured by the ASTM it is 

commonly used in the literature and hence also adopted here): A device or system is 

Magnetic Resonance (MR) compatible if, when used in the MR environment, is MR safe and has 

been demonstrated to neither significantly affect the quality of the [MRI data or its] diagnostic 

information, nor have its operations affected by the MR device. Since all of the device features 

presented, that are to be used in the MR environment are non-conducting (with the 

exception of the tap water used in the hydraulic system), non-metallic and non-magnetic 

the indentor system operation is not significantly affected by the MRI scanner and can be 
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termed MR safe using scientific rationale202. In addition all materials employed in the 

MRI environment (e.g. polyoxymethylene, polyamide, polytetrafluorethylene and 

polyurethane) exhibit appropriate magnetic susceptibility241 for MRI and thus it is likely 

that their influence on MRI data quality is minimal. Nonetheless to evaluate the effect of 

the indentor on MRI data quality, system performance was analysed in the MRI 

environment. MRI data was acquired for a silicone gel phantom (Figure 4.5). In order to 

study the effect of the indentor presence on image quality a dynamic series (n=100) of 

MRI data was acquired with and without the indentor present. The same sequence as 

above was employed however without the SPAMM pattern (177 ms 3D Transient Field 

Echo read-out, TR/TE 2.38/1.15 ms, field of view 120x120x40 mm, acquisition matrix 

80x60, 20 slices, reconstructed voxel size 0.94x0.94x2 mm). To study the effect of the 

presence of the indentor for each dynamic series, per voxel temporal signal to noise 

(SNR) ratios 𝑡𝑆𝑁𝑅 were derived for each data set (with and without the indentor) using:  

 𝑡𝑆𝑁𝑅𝑖𝑗𝑘 =
𝜇𝚤𝚥𝑘�����
𝜎𝚤𝚥𝑘����� √

𝑛 4-4 

where 𝜇𝚤𝚥𝑘����� and 𝜎𝚤𝚥𝑘����� represents the mean and standard deviation of voxel (𝑖, 𝑗, 𝑘) 

respectively across all dynamics. 

4.3 Results  

4.3.1  Optical force sensor performance 

Figure 4.6 shows the staircase test force curves used for calibration (3 repetitions for 0.25 

N/s and 2 for 0.75 N/s) and overlain the results for fitting based on the FBG strain signal. 

The current configuration of the sensor can only measure forces in excess of indentor 

head assembly weight. Hence all FBG derived force curves presented here start at 0.94N. 

Using linear scaling (scale-factor 970.20) followed by shifting (adding 0.94 N to 

compensate for the weight of the indentor head assembly) the FBG strain could be 

linearly related to force (Figure 4.6A). Although this showed an overall good correlation 

(Figure 4.6B) with the load-cell force (R2=0.99), force differences up to 0.16 N 

(corresponding to 3.2 % difference with respect to 5 N) occurred and a maximum 

difference percentage of 5.6 % was encountered (corresponding to a 0.056 N difference 

from 1 N). However all curves (Figure 4.6A) demonstrated a small degree of non-linearity 

of the FBG force sensor system. Linear mapping thus led to underestimation for low 
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forces where the curve was initially slightly concave followed by overestimation of larger 

>7N forces due to a mild convex curvature (see curvature in Figure 4.6B). Hence to take 

the mild non-linearity into account a cubic spline fit (MATLAB function CSAPE) was used 

to map the FBG strain to force (Figure 4.6C) producing a piecewise-polynomial form 

relating FBG-strain to force. The fit was constrained at the ends such that the end slopes 

match the slope of the cubic of the last 4 data points to allow for reasonable extrapolation 

in forces in the range 15-50 N (up to breakage). The cubic spline based mapping of the 

FBG strain to force, reduced the maximum error percentage to 3.1% (corresponding to a 

0.031 N difference from 1 N) and the maximum force error magnitude to 0.043 N 

(corresponding to 0.7% difference with respect to 6 N). The mean and standard deviation 

of the differences with respect to the load-cell force were 0 N (−2.23 ∙ 105 N) and 0.015 

N respectively. Figure 4.6B shows the high degree of correlation (Figure 4.6D) between 

the load-cell force and the FBG derived force (R2=1.00). The largest percentage difference 

coincided with the (1 N) first plateau measurements which is closest to 0.94 N, the lowest 

recordable force. If for all tests the first plateau is ignored, the maximum error 

percentage is 1.2 % (corresponding to a 0.024 N difference from 2 N).  

After calibration based on the stair-case tests the response for a ramp test at 5 

N/s was predicted (Figure 4.7). The differences with respect to the load-cell force were 

not found to increase for the higher load rate which is also apparent from the large 

degree of overlap in Figure 4.7.  
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Figure 4.6 The load-cell (thick black) and, overlain, the FBG derived (red) force history curves for the stair-case tests (A-C) 
and, the load-cell and FBG derived plateau forces plotted against each other to show correlation (B-D). Images (A-B) are for 
linear scaling while (C-D) are for cubic spline based mapping of FBG-strain to force. 
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Figure 4.8 shows sample force and displacement history curves for volunteer 

upper arm indentation within the MRI scanner. As expected, no signal interference from 

the MRI scanner was observed. Both sets of curves in Figure 4.8 demonstrate viscoelastic 

force decay during the hold phase of the load. In addition preconditioning is observed 

(Figure 4.8B) as the peak force is reduced during the first motion cycles. This is not a 

repeatability artefact but a well-known empirical finding for biological soft tissue. The 

loading rate for the first volunteer in Figure 4.8A (a male volunteer aged 30) was twice as 

high for the second volunteer in Figure 4.8B (a female volunteer aged 25). Besides 

indentation depth and subject to subject variation it is likely that the increase in 

viscoelastic response observed in the second volunteer can be explained by the increase in 

loading rate.  

Figure 4.7 The load-cell (thick black) and, overlain, the FBG 
derived (red) force history 



  - 113 -

 

 

4.3.2  Repeatability of indentor motion 

Figure 4.9A-D shows a visualisation of the sum of squared differences matrix (SSDM) for 

the phantom and volunteer data (due to symmetry only half of the matrix is shown). As 

mentioned in section 4.2.4.2 , periodic motions should be reflected in the SSDM as 

parallel diagonals showing minimal differences. These are visible for both the phantom 

and volunteer data. Each row in the SSDM describes a periodic signal starting on the left, 

on the main diagonal, with a zero magnitude difference (difference with respect to itself) 

the magnitudes alter but return to a minimum every 11th and 71st entry in the rows for 

the phantom and volunteer respectively. In order to visualise this periodic nature for all 

rows more appropriately Figure 4.9B and E show shifted or synchronised SSDMs. Here, 

starting at the bottom, each row of entries in the SSDM was shifted to the left by an 

amount equivalent to its corresponding row (or dynamic) number minus 1 (e.g. first row 

Figure 4.8 Sample displacement (dashed) and force (solid) curves for cyclic ramp and hold indentation 
tests for two different volunteer tests. Part (A) shows 19mm indentation at 10mm/s and a 12 s hold 
phase. Part (A) shows 13.3 mm indentation at 20mm/s and a 3s hold phase. 
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remains the same, second is shifted by 1, third by 2 etc.). This shifting effectively aligns 

or synchronises all the periodic difference variations in the SSDMs. The numbered labels 

in Figure 4.9B and E now clearly show that for the phantom and volunteer data the 

periodic signal exactly reflected the desired periods of 11 and 71 dynamics respectively. 

This is further illustrated in Figure 4.9C and F which are obtained by taking the mean of 

images Figure 4.9B and E in the row direction. As Figure 4.9C and F show clear minima 

exist at the appropriate locations (red dots) and differences rapidly increase to more than 

an order of magnitude higher for non-repeated dissimilar images. It was found that for 

static repetitions during the hold phases the mean and standard deviation of the SSD 

were 1.13 ∙ 106 and 0.25 ∙ 106 for the phantom data and 4.14 ∙ 104 and 0.60 ∙ 104 for the 

human data. These thus form the SSD values expected purely due to noise variations. The 

SSD values for acquisitions during indentor motion, which, according to applied indentor 

motion, should be equivalent, showed a mean and standard deviation of 1.14 ∙ 106 and 

0.52 ∙ 106 for the phantom data and 4.37 ∙ 104 and 0.94 ∙ 104 for the human data. Hence 

it may be concluded that the indentor presents with a highly repeatable motion since the 

differences expected due to noise are of equivalent magnitude to the differences between 

repeated indentor motions.  

 
 

Figure 4.9 Motion cycle repeatability results for the phantom (A-C) and volunteer (D-F). (A-D) show the SSDM’s. (B-E) show 
the shifted or “synchronised” SSDMs and (C-F) show derived mean SSD graphs (blue line) were red dots indicate the cycle 
repetition points. 
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4.3.3  MRI compatibility of indentor system 

Figure 4.10 below shows temporal SNR images derived for the phantom without (A) and 

with indentor present (B). It was found that throughout the field of view the temporal 

SNR levels were not significantly altered by the presence of the indentor. The overall 

mean and standard deviation of the temporal SNR levels for the phantom volume 

without indentor present were 500.18 and 207.08 respectively. When the indentor was 

added this became 501.95 and 200.45 respectively. This result was invariant under 

permutation of read-out directions and or slice orientations. However since the MRI 

actuator contains tap water, which presents with signal, certain read-out directions may 

present with fold-over due to this signal. However this can easily be avoided by 

alternating the read-out direction or by employing fold-over suppression techniques.  

 

4.4 Discussion 
A novel MRI compatible soft tissue indentor system and optical FBG based force sensor 

have been presented. The computer controlled indentor motion is highly repeatable since 

MRI acquisitions during repeated indentor motions did not induce significant additional 

variation on top of what is expected due to noise. In addition the indentor device and 

force sensor are fully MRI compatible as they are manufactured from non-ferromagnetic 

materials. The MRI compatibility was also evident following evaluation inside an MRI 

scanner and no negative effects such as SNR decrease and or image artefacts were 

observed.  

Following uni-axial compression testing the force sensor was calibrated for 

measurement of compressive forces up to 15 N and demonstrated a maximum force 

difference percentage of 3.1 % (corresponding to a 0.031 N difference from 1 N) and a 

Figure 4.10 Temporal SNR images for the phantom without (A) and with indentor present (B).  
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maximum force error magnitude of 0.043 N (corresponding to 0.7 % difference with 

respect to 6 N). Evaluation of the force sensor during soft tissue indentation 

demonstrated its ability to record viscoelastic force histories resulting from ramp and 

hold indentations. The MRI compatible force sensor and soft tissue indentor presented 

have a wide range of possible application such as MRI guided interventions37 and 

functional MRI41. In addition, as is relevant to the current thesis, when combined with 

inverse analysis and measurement of soft tissue deformation, it allows for the non-

invasive determination of the mechanical properties of living human soft tissue.  

  As referred to in section 4.2.4  the indentor system was evaluated for use in the 

non-invasive investigation of tissue biomechanics. Indentation tests were performed on a 

silicone gel phantom and the upper arm of volunteers. During indentation all boundary 

conditions required for inverse FEA analysis of the biomechanical tissue properties were 

acquired such as: 1) the indentation force derived from the FBG sensor, 2) the complex soft 

tissue deformation acquired using SPAMM (SPAtial Modulation of the Magnetisation) tagged 

MRI238, 239 , 3) the tissue geometry for the construction of FEA models derivable from 

anatomical MRI and 4) muscle tissue fibre architecture obtained from diffusion tensor MRI 33 to 

allow for analysis of anisotropic material behaviour. Figure 4.11 shows sample results for 

indentation of a volunteer with the indentor system. Following application of SPAMM 

tagged MRI in three mutually orthogonal directions dynamic 3D deformation could be 

measured (Figure 4.11A-B). In addition diffusion tensor MRI allowed for characterisation 

of fibre architecture throughout the region of interest (Figure 4.11C) and anatomical MRI 

scans provided the basis for the construction of detailed FEA models (Figure 4.11D). The 

MRI compatible indentor set-up was used for validation of SPAMM tagged MRI based 3D 

soft tissue deformation measurements in a silicone gel phantom and the upper arm of a 

volunteer (see chapters 7 and 8). The repeatable indentor motion allowed for the 

quantification of deformation measurement accuracy and precision at sub-voxel levels, 

further demonstrating the high level of repeatability of the indentor motion.  
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Figure 4.12 shows two alternative applications for the MRI compatible indentor system, 

large strain mechanical property investigation based on the combined use of SPAMM 

tagged MRI and MR Elastography (see Figure 4.12A and the preliminary study242) and for 

validation of motion compensation techniques for dynamic contrast enhanced imaging 

(Figure 4.12B). The indentor has also found application outside the MRI environment for 

inverse mechanical property analysis combined with digital image correlation243.  

 

Figure 4.11 SPAMM tagged MRI acquired during indentation (A) allowing derivation 
of 3D dynamic deformation measurements (units mm) (B). Diffusion tensor 
measurements provide fibre architecture (C) which together with anatomical MRI 
data allows for the construction of detailed finite element models (D). 

Figure 4.12 Example alternative applications of the MRI compatible actuator. For large strain MR Elastography (MRE) 
measurements (A) and mounted for use with a specialised coil and phantom for validation of motion compensation techniques 
during contrast enhanced imaging (B). 
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Various soft tissue loading devices have been used in the literature for MRI based 

tissue investigation. To date however: many have been limited to quasi-static 

deformation analysis26, 43, 173, 205-208, the evaluation of isotropic hyperelastic constitutive 

models26, 43, 173, 205-208, estimation of strain from 2D imaging26, 205, 209 or from finite element 

simulations26, 208. Force measurement is sometimes based on the application of static 

weights173 or by repeating the experiment outside the MRI environment208 or electric 

force sensors which suffer from MRI scanning induced electromagnetic interference43. 

Recently Fu et al. 2011209 used an MRI compatible indentor system to study leg tissue 

biomechanics and 2D strain estimates were derived for 7 frames per indentation cycle 

based on harmonic phase MRI. Detailed comparison to the current study is however 

hindered since the MRI compatible system was not fully described. To the authors’ 

knowledge this is therefore the first study to demonstrate a computer controllable MRI 

compatible indentor with an integrated high sampling rate (100 Hz) force sensor suitable 

for the non-invasive analysis of the complex anisotropic, viscoelastic and 3D mechanical 

behaviour of human soft.  

The current study employs FBG for MRI compatible force measurement and 

calibration demonstrated force difference percentages no larger than 3.1 % for forces up 

to 15 N (maximum force difference magnitude was 0.043 N). To date a large array of MRI 

compatible force sensors have also been developed. Piezoelectric sensors have been 

proposed; however, these cannot be used to measure static forces37 and are therefore not 

ideally suited for quasi-static and viscoelastic (ramp and hold type) tissue property 

investigation. In addition they may induce image artefacts37 depending on proximity to 

the imaging region. MRI compatible force sensors for the application of needle deflection 

and force feedback measurement during catheterisation have also been developed40, 210 

however these are applied to forces in the range 0-0.5 N. Tada et al.211 presented an 

optical MRI compatible tri-axial force sensor based on a deformable structure and optical 

micrometry. A total of 5 optical fibres were used: 1 emitting fibre mounted on a movable 

component and 4 receptor fibres allowing monitoring of motion of the emitting fibre and 

thus derivation of force. The system was calibrated in the range of 0-15 N and showed 

errors under 3 %. This complex force sensing system has also been applied to quasi-static 

compression tests to the human finger-tip for inverse analysis of the assumed isotropic 

hyperelastic mechanical properties207. During quasi-static compression tests in 5 steps up 
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to 3.48 N the force was measured at 1 Hz. However the static force measurements 

showed standard deviations ranging from 0.11 N (for a mean force of 1.7 N) up to 0.3 N 

(for a mean force of 2.35 N). The causes for the increased deviations, with respect to the 

calibration which reported errors under 3 %, were not discussed. In addition the 

hydraulic compressor system used was not described in detail hindering comparison to 

the system proposed in the current study. Tokuno et al.244 developed a force sensor based 

on optical micrometry and demonstrated accuracy within 1.6 % for forces up to 6 N. Song 

et al.39 designed an advanced FBG based tri-axial force sensor system for the tip of a robot 

arm for application to minimally invasive surgery. Forces where calibrated up to around 

10 N and a maximum force error of 0.5 N was recorded. As this review shows, the force 

sensor performance demonstrated in the current study is comparable to those in the 

literature.  

Some limitations of the proposed MRI compatible indentor and force sensor 

system are now discussed. The indentor system employs a hydraulic (tap water driven) 

master slave system. If imaging is performed using read-out directions aligned with the 

water filled actuator signal fold-over may occur. However this can easily be dealt with 

using alteration of the read-out direction, field of view adjustments or fold-over 

suppression techniques.  

At present the indentor stroke is limited to 44 mm. This is sufficient for 

application to (non-injury inducing) soft tissue indentation in human subjects. For other 

applications requiring a larger range of motion the design can be scaled up.  

Due to the way that compressive forces are converted to tensile forces in the FBG 

sensor within the current design, measurement of forces in the range 0~0.94 N are 

currently not possible since the weight of the indentor head (0.94 N) assembly needs to 

be overcome (only the case for downward indentation). The force measurement range 

0.94~15 N is however sufficient for many purposes including (non-damaging) large strain 

biomechanical soft tissue investigation.  

Other researchers have developed more complex tri-axial force sensor systems 

(e.g.39, 211, 244, 245) for MRI. However the uni-axial force measurements presented here 

ensured a simple and compact indentor design and are sufficient for comparison to 

inverse FEA as the same resultant uni-axial force can easily be generated as an output.  

For the current study the FBG signal was acquired at 1 kHz however a 10 point 

data interleave was used for the optical interrogator leading to an effective acquisition 
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rate of 100 Hz. Although 100 Hz is deemed sufficient for the applications of the current 

study, a sample rate up to 1 kHz is feasible with the employed optical interrogator (or 

higher using more advanced interrogators). However acquiring the sensor at 1 kHz was 

not possible in the current study given the limitations in computer speed and of the 

indentor control and data acquisition software used. The computer control system has to 

simultaneously record the FBG signals and record and control the DC-motor behaviour 

and monitor the MRI TTL pulse in real-time. As such in the future force measurement of 

up to 1 kHz will be possible with this indentor given improvements in computational 

power and improvements in the data acquisition software.  

With the exception of the optical interrogator system the proposed MRI 

compatible indentor system is relatively low cost. The MRI compatible indentor slave 

system components (used within MRI environment) are fabricated from non-conducting 

non-ferromagnetic materials which are all common engineering polymers (e.g. 

polyoxymethylene). All non-standard components can be manufactured using simple mill 

and rotating bench operations and all screws, tubes, fittings, the DC-motor and master 

cylinder are commercially available. If readers are interested in the design specifications 

or computer aided design files (based on Pro/Engineer, Parametric Technology Company, 

MA, USA) these can be made freely available upon request.  

Future work will focus on the application of the proposed MRI compatible 

indentor and force sensor system to the non-invasive investigation of skeletal muscle 

tissue mechanical properties. Since the system allows for dynamic force measurement 

and can be combined with the MRI based 3D fibre architecture and dynamic deformation 

measurement it thus allows for the evaluation of the complex (non-linear elastic, 

anisotropic and viscoelastic) 3D mechanical properties of soft tissue.  

 

4.5 Conclusions 
A novel MRI compatible indentor system is presented for the investigation of soft tissue 

biomechanics. A master slave system was developed whereby a computer controlled 

hydraulic master cylinder was used to provide highly repeatable motions to an MRI 

compatible actuator. To evaluate the system in the MRI environment and demonstrate 

its usefulness for soft tissue biomechanics investigation the system was used for 

indentation of a silicone gel phantom and the upper arm of volunteers. Repeatability was 
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evident from the fact that MRI data for static repetitions showed similar variations as 

those from dynamic motion repetitions. All indentor components in the MRI room are 

non-ferromagnetic and non-conducting and hence MRI safe and can be used in close 

proximity to the imaging subject. MRI compatibility was demonstrated following imaging 

of a phantom and the presence of the MRI actuator did not induce any artefacts or 

significant SNR changes. Embedded in the indentor assembly is a novel high sampling 

speed (currently 100 Hz) optical FBG based force sensor. The force sensor was calibrated 

for forces up to 15 N and demonstrated a maximum force difference of 3.1% (maximum 

force difference magnitude was 0.043 N). Application of the force sensor in volunteer 

upper arm indentation showed the sensor’s ability to register viscoelastic force decay 

resulting from ramp and hold indentation.  

Together with MRI modalities such as SPAMM tagged MRI, the indentor system 

allows for analysis of all boundary conditions required for the non-invasive investigation 

of the complex mechanical properties of soft tissue. Future work will focus on the use of 

the proposed system for the analysis of the non-linear elastic, anisotropic and viscoelastic 

mechanical properties of skeletal muscle tissue with application to the field of impact 

biomechanics and pressure ulcer prevention.  
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5 STUDY II  
 

DIC and inverse FEA for the 
Determination of the Mechanical 

Properties of Soft Tissue 
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5.1 Introduction 
As discussed in section 3.8 the current thesis aims toward a framework for the inverse 

FEA based non-invasive analysis of the mechanical properties of muscle tissue. The 

implementation with MRI and anisotropic tissue property assessment presented with 

initial challenges. Hence the more limited straightforward imaging method, digital image 

correlation (DIC), was assessed as an alternative to MRI in the inverse FEA based 

mechanical properties assessment of bulk soft tissue.  

DIC has been applied to biological soft tissues e.g. using 2D DIC: on the human 

tympanic membrane246, sheep bone callus247, human cervical tissue248 and recently also 

using 3D DIC: for the bovine cornea249 and mouse arterial tissue250. In all these studies 

the analysis is limited to planar tissue and/or superficial properties of excised tissue 

samples and thin tissue layers. The potential of using the surface measurements of 3D 

DIC to assess mechanical states throughout the bulk of a tissue has been suggested251 but 

not yet attempted. This chapter assesses, for the first time, the use of 3D DIC and inverse 

FEA to non-invasively determine the bulk material properties of a soft tissue phantom 

which could be applied in-vivo.  

 

5.2 Methods  
DIC is an optical method which uses tracking and image registration to measure high 

resolution 3D deformation. Using a two camera set-up (Figure 5.1A) and tracking of 

unique features such as speckles, within small image subsets (Figure 5.1B). DIC can be 

combined with an iterative FEA procedure to optimise the parameters of a constitutive 

model. To verify this method, indentation tests were performed on a silicone gel 

(SYLGARD® 527 A&B dielectric, Dow Corning, MI, USA) phantom (Figure 5.1C). The 

material parameters for a hyperelastic Neo-Hookean material model of the gel were 

determined by regression (using Prism 4.0, GraphPad Software Inc.) of the model against 

uni-axial compression tests up to 50 % strain on cubic samples (~10mm). The Neo-

Hookean strain-energy density is defined by:  

 Ψ�𝜆1�, 𝜆2�, 𝜆3�, 𝐽� =
𝜇
2
�𝜆1�

2
+ 𝜆2�

2
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Where 𝜆𝚤� = 𝐽−
1
3𝜆𝑖 represent the modified principal stretches and J the Jacobian. The 

parameters μ and κ define material stiffness and the Poisson’s ratio as: 
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 𝜈 =
3 �𝜅𝜇� − 2

6 �𝜅𝜇� + 2
 5-2 

The material was assumed nearly incompressible and thus in the fitting procedure κ was 

constrained to yield a Poisson’s ratio of 0.4997. The parameters found were: μ= 1.71 kPa, 

κ=2857 kPa (R2 =0.9979).  

 
The soft tissue phantom (Figure 5.1C) was moulded in a cylindrical polypropylene 

container and black paint speckles (0.2~2mm) were applied to the top surface of the gel. 

A circular indenter was then used to apply compression. A two camera DIC configuration 

(Limess Messtechnik & Software GmbH, Pforzheim, Germany) was used to record the 

deforming phantom and the movement of the speckle pattern for static compression up 

to 11.7 N load applied to the gel through the indentor. The indentor set-up was similar to 

that described in chapter 4 however the optical force sensor was not implemented and 

instead forces were applied to the top of the indentor using a set of known weights. 

Analysis software VIC-3D (DIC Software, Correlated Solutions, Inc., Columbia, SC, USA) 

was then used to calculate the deformation of the top surface of the gel and the indentor 

displacement (Figure 5.1C). To simulate the compression experiment an axisymmetric 

FEA model of the gel indentation was created using Abaqus 6.7-1 Standard (Dessault 

Systèmes, Suresnes Cedex, France). The container was assumed rigid (no deformation of 

the container was observed) and simulated by constraining the gel nodes that would be in 

contact with the container from moving in all directions. The piston was modelled as 

rigid and the gel phantom was modelled using the Neo-Hookean hyperelastic material 

Figure 5.1 The two camera DIC set-up (A), a close-up of speckles showing a subset (B) and the silicone gel phantom model 
and indentor piston with overlain the DIC derived top surface displacement (C).  
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model and meshed using 4-node quadrilateral elements. Since the silicone gel is sticky the 

gel/piston contact was modelled with no slip. The experimental displacement was applied 

to the piston. The material parameters were then iteratively altered until a good match 

with both the experimental indentor force and deformation was obtained. The upper 

region of the FEA model is shown in its initial and deformed state in Figure 5.2A and B 

respectively. 

 

5.3 Results 
The experimental and FEA results were compared using Matlab 7.4 R2007a (The 

Mathworks Inc., USA). The best match to the experimental data was achieved using 

μ=1.80 kPa and κ=2999 kPa (ν=0.4997) which are a close match to the parameters 

derived from uni-axial compression (μ =1.71 kPa, κ=2857 kPa). The experimental DIC 

results are 3D coordinates of points tracked on the top surface of the phantom and are 

shown in Figure 5.3. 

Figure 5.2 Top surface region of FEA model: (A) Initial FEA mesh, (B) 
deformed FEA mesh 
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In order to compare the 3D experimental deformation data with the axisymmetric 2D 

FEA deformation data, the 3D data was revolved around the central axes. This effectively 

“wrapped” all data points around the central axes and mapped them into a single plane. 

Figure 5.4A is a top view of the experimental surface at the maximum compression depth 

(16.75mm). The surface is shaded depending on the difference magnitude (mm) with the 

FEA results. The average difference magnitude observed is 0.4 mm with the largest 

differences around the centre near the indentor edge where correlation was poorer due to 

the inward curvature of the gel. A mirrored representation showing the 2D FEA results 

and the wrapped DIC results are shown in Figure 5.4B. The shape of the top surface in 

the FEA simulation forms a good match to the experimental shape (R2=0.81).  

Figure 5.3 A Delaunay triangulation of the data points tracked using DIC. Edges are shaded towards displacement 
magnitude (mm).  
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Figure 5.5 demonstrates that near incompressibility was a good assumption, as lowering 

ν results in divergence from the experimental deformation (μ was held constant).  

 
A parametric analysis for the parameter μ was performed using FEA simulations. The 

resulting indentor force displacement curves are shown in Figure 5.6. In addition to the 

experimental indentor force displacement data, curves are shown for the best match 

(using μ=1.80 kPa) and the μ derived from regression to uni-axial data (μ =1.71 kPa). To 

Figure 5.4 Comparing DIC and FEA deformation data. A 3D comparison of revolved FEA top surface with DIC 
surface (A), surface is coloured according to the error magnitude (mm). A 2D comparison showing the mirrored FEA 
top surface (black curve) and DIC points (red).  

Figure 5.5 Influence of choice of Poisson’s ratio on resulting FEA deformation at piston depth of 16.74mm. From top to 
bottom surface deformation for ν=0.4997(best match), ν=0.495, ν=0.49, ν=0.48, ν=0.47, ν=0.45, ν=0.4 and ν=0.3 
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indicate how altering μ influences the indentor force response, curves for μ=1.37 kPa and 

μ=2.05 kPa (20 % lower and 20 % higher than 1.71 kPa respectively) are also shown.  

 

5.4 Discussion and conclusions 
Figure 5.4, Figure 5.5 and Figure 5.6 demonstrate that the experimental indentor force 

and shape boundary conditions could be reproduced using μ=1.80 kPa and κ=2999 kPa 

(such that ν=0.4997). The shape of the top surface in the FEA simulation mainly depends 

on the choice of the Poisson’s ratio (Figure 5.5) and the force mainly on the choice of μ 

(Figure 5.6).  

The μ parameter for the best match ( μ=1.80) closely matches the μ parameter 

derived from independent uni-axial compression tests (μ=1.71). Using μ=1.71 in the FEA 

simulation results in predicted indentor force of 11.14 N which is a 95 % match to the 

experimental force (11.7 N). However it may be that the experimental indentor force was 

lower than 11.7 N because of possible friction in the indentation device due to the 

application of static weights on the indentor top.  

Furthermore, the shape of the deformed finite element surface in Figure 5.4 is a 

close match (𝑅2=0.81) to the experimental shape. The small difference may partially be 

related to the fact that the gel surface meniscus was not modelled (the initial surface in 

the FEA model is flat).   

Figure 5.6 Indentor force displacement curves. Experimental (solid), FEA best match to experimental (solid, square), 
FEA using fitted parameters (solid, star), FEA using 20% lower μ (solid, plus), FEA using 20% higher μ (solid, circle). 



  - 129 -

 

Overall these results demonstrate that when the correct bulk material properties are 

applied, the FEA model has a good capability of reproducing the experimental boundary 

conditions. It is therefore concluded that a two camera DIC configuration to record 3D 

surface deformation, in combination with FEA modelling, can be used to determine the 

bulk constitutive parameters of hyperelastic Neo-Hookean materials. The present work is 

limited to isotropic and elastic materials and thus application to anisotropic and 

viscoelastic materials requires further research. DIC is more straightforward than other 

imaging modalities such as MRI and, combined with FEA modelling, has the potential to 

characterize not only the superficial properties but also the underlying bulk constitutive 

properties for materials with arbitrary shapes undergoing large deformations. 
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6.1 Introduction  
As discussed in section 3.7 the techniques for tracking tissue deformation from (for 

example tagged) MRI are complex and require validation using an independent measure 

of deformation. In addition it was concluded that validation of in-vivo medical imaging 

techniques and image processing algorithms is challenging partially due to the lack of 

appropriate reference data and for common validation methods employed the errors 

associated with the validation methods are not quantified. In this chapter a novel 

technique for the validation of a 3D MRI based motion and deformation tracking is 

presented. The validation method, based on marker tracking in a novel silicone gel soft 

tissue phantom, was evaluated (and validated) using simulated magnitude MRI data since 

this allows full control and knowledge of marker locations and thus provides a ‘gold 

standard’ for method evaluation. In addition this allows for the independent analysis of 

geometric bias and of method performance across a wide range of realistic noise 

conditions.  

6.1.1  The tissue phantom 

The proposed validation configuration is a MR compatible indentor used to apply 

deformation to a phantom and provide an independent measure of deformation allowing 

validation of MRI based motion and deformation tracking. A silicone gel soft tissue 

phantom (Figure 6.1) was developed to represent deformation modes expected in the 

human upper arm due to external compression, as such the phantom resembles a 

cylindrical soft tissue region containing a stiff bone-like core. The gel (SYLGARD® 527 

A&B Dow Corning, MI, USA) has similar MR252 and mechanical properties243 to human 

soft tissue and has been used in numerous MRI based studies on soft tissue 

biomechanics229, 232, 253-260. Embedded in the gel are contrasting spherical 

polyoxymethylene balls of 3±0.05 mm diameter (The Precision Plastic Ball Co Ltd, 

Addingham, UK). The lack of signal in the markers in comparison to the high gel signal 

allows tracking.  
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6.1.2  MR Imaging 

The type of image data used in the current study is T2 magnitude MR images. 

Deformation can be measured using marker tracking methods applied to full volume 

scans taken at each deformation step. A full volume scan was performed on the tissue 

phantom using a 3 T scanner (Philips Achieva 3 T, Best, The Netherlands), isotropic 0.5 

mm voxels were used and the data was stored using the DICOM (Digital Imaging and 

Communication in Medicine) format. Figure 6.1 A and B show an example of an MR 

image and tagged MR image of a region of the phantom respectively. The voxel 

intensities of the images are 9 bit unsigned integers with values ranging from 0-511. The 

data was imported into Matlab 7.4 R2007a (The Mathworks Inc., USA) for image 

processing. The image data was normalised producing an average gel intensity of 0.39, 

while the average marker intensity was zero.  

6.1.3  Marker tracking method 

To track the movement of markers from the 3D MR data an image processing algorithm 

was developed in Matlab (The Mathworks Inc., USA). The centre point of each marker at 

each time-step can be found using 3 main steps: (1) masking, (2) adjacency grouping and (3) 

centre point calculation. 

Figure 6.1 An MR image of a gel region with markers (A), a tagged 
MRI region and (B) and the silicone gel soft tissue phantom 
containing the contrasting spherical markers (white balls) (C) 
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6.1.3.1  Masking 

Masking was performed to identify the central voxels for each marker. To reduce 

computational time the mask was only applied to voxels that qualify (based on intensity 

threshold) as potentially belonging to a marker. In addition a sparse cross-shaped mask 

was designed (Figure 6.2A) with just 12 voxels (significantly less than non-sparse cubic or 

spherical masks which would be around 729 and 250 voxels respectively). When the mask 

operates on a voxel 𝑣 with image coordinates (𝑖, 𝑗,𝑘), the image coordinates of the 12 

(surrounding) mask voxels (𝑖𝑚, 𝑗𝑚,𝑘𝑚) can be defined as: 

 �
𝑖𝑚
𝑗𝑚
𝑘𝑚

� = �
𝑖 + (1,−1,0,0,0,0,4,−4,0,0,0,0)
𝑗 + (0,0,1,−1,0,0,0,0,4,−4,0,0)
𝑘 + (0,0,0,0,1,−1,0,0,0,0,4,−4)

� 6-1 

Image processing masks are generally used as a spatial filter, however in this case the 

mask was used as a logic operator to find voxels matching the following criterion: A voxel 

𝑣 at location (𝑖, 𝑗, 𝑘) is classified as a central marker voxel when all the central cross mask 

voxels (see cross shape in Figure 6.2A) have intensities smaller than the intensity 

threshold 𝑇 and all of the outer voxels (see outer voxels in Figure 6.2A) have intensities 

higher than or equal to the intensity threshold 𝑇. In other words the following pseudo 

equation needs to be true: 

 �
𝑖𝑚(1: 6)
𝑗𝑚(1: 6)
𝑘𝑚(1: 6)

� < 𝑇   ∧    �
𝑖𝑚(7: 12)
𝑗𝑚(7: 12)
𝑘𝑚(7: 12)

� >= 𝑇 6-2 

Here all of the first six mask voxels (indicated with 1:6), of the mask coordinate collection 

(𝑖𝑚, 𝑗𝑚, 𝑘𝑚), represent the central cross elements and the last six (indicated with 7:12) 

represent the outer elements (see Figure 6.2A). Depending on the marker appearance in 

the image (see next section) up to 8 central marker voxels match this criterion and were 

found per marker.  

 

6.1.3.2  Adjacency grouping 

Calculating the marker centre point using only the central marker voxels identified using 

masking does not provide an accurate centre point determination (accurate to within a 

voxel at best) and is sensitive to marker appearance. The more voxels that are included 

(e.g. all) the better. To find and group voxels deemed to belong to the same marker a 

grouping algorithm was used. The central marker voxels found using masking were used 
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as starting points to group objects using adjacency analysis. The adjacency grouping is a 

stepwise process. Adjacency coordinate groups (ACGs) are created for all the voxels found 

using masking. The process starts with one of the voxels found using masking v’ and is 

assigned to be part of marker group 𝐺. The coordinates �𝑖𝑔, 𝑗𝑔,𝑘𝑔� of the ACG for this 

voxel 𝑣’ with coordinates (𝑖′, 𝑗′,𝑘′) is defined as:  

 �
𝑖𝑔
𝑗𝑔
𝑘𝑔
� = �

𝑖′ + (1,−1,0,0,0,0)
𝑗′ + (0,0,1,−1,0,0)
𝑘′ + (0,0,0,0,1,−1)

� 6-3 

The ACG contains all the directly adjacent voxels of the voxel 𝑣’ (its direct upper, lower, 

front, back, left and right neighbours). Any voxel 𝑣 with coordinates (𝑖, 𝑗,𝑘) is added to 

the marker group 𝐺 when its intensity is lower than 𝑇 and its coordinates are found 

within one of the ACGs of the marker group 𝐺. When a voxel is added to the marker 

group 𝐺 its ACG is added to the set of ACGs belonging to 𝐺 and this process is repeated. 

Voxels are added to a marker group until the group is no longer growing. Figure 6.2B 

shows how, starting with one central voxel, the surrounding low intensity voxels within 

the coordinate group �𝑖𝑔, 𝑗𝑔,𝑘𝑔� are added and when this is repeated all voxels 

representing the marker are grouped. After grouping the dimensions and number of 

voxels of the object were compared to what is expected for normal markers (e.g. a 

diameter of ~6 voxels and consisting of under 250 voxels) to filter out possible objects 

other than markers.  

 

6.1.3.3  Centre point calculation 

The centre point for each marker group was determined using weighted averaging. The 

centre coordinates (𝑖𝑐 , 𝑗𝑐 ,𝑘𝑐) of a marker composed of 𝑁 voxels is defined as:  

 (𝑖𝑐 , 𝑗𝑐 ,𝑘𝑐) = �
∑ 𝑤𝑎𝑖𝑎𝑁
𝑎=1

∑ 𝑤𝑎𝑁
𝑎=1

∑ 𝑤𝑎𝑗𝑎𝑁
𝑎=1

∑ 𝑤𝑎𝑁
𝑎=1

∑ 𝑤𝑎𝑘𝑎𝑁
𝑎=1

∑ 𝑤𝑎𝑁
𝑎=1

� 6-4 

Here (𝑖, 𝑗,𝑘) represent the coordinates of each of the voxels in the marker group. Since 

those voxels with intensities close to zero are more likely to belong to a marker than 

voxels with intensities close to the gel intensity, the weight 𝑤𝑎 for a voxel with intensity 

𝑧𝑎was defined as:  

 𝑤𝑎 = �1 − 𝑧𝑎
𝑇
�, with 𝑤𝑎 = 0 if 𝑧𝑎 > 𝑇 6-5 

Here 𝑇 represents a threshold which for a noiseless image could be set equal to the gel 

intensity (weights then represents the volume fraction of the gel present in the voxel). 
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6.1.4  Evaluation of marker tracking method using 

simulated magnitude MR image data 

The marker tracking method was evaluated using simulated magnitude MRI data because 

this allows full control and knowledge of marker locations and thus provides an 

appropriate ‘gold standard’ for method evaluation. The simulated data also allow one to 

isolate and study errors from different sources.  The marker tracking method was 

evaluated using algorithms developed in Matlab (The Mathworks Inc., USA) and involves 

the following steps: (1) Simulation of a noiseless image and analysis of geometric bias, and (2) 

Simulation of noisy magnitude MR data and analysis of the noise effects. The final noisy image 

data allows one to evaluate the performance of the method under varying noise 

conditions while the noiseless image allows for evaluation of the geometric bias implicit 

in the method.  

Figure 6.2 The cross-shaped mask (A), the adjacency based grouping process (B), a 3 
mm diameter sphere placed at the calculated marker centre (C). 
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6.1.5  Simulation of a noiseless image and analysis of 

geometric bias 

Since the marker image intensity values are zero, image data were simulated by 

multiplying an image representing gel volume fractions by the average normalised gel 

intensity. A 3D image space can be defined containing only markers and gel and can be 

expressed as a continuous binary function 𝑓(𝑖, 𝑗,𝑘) where 𝑓(𝑖, 𝑗, 𝑘) = 0  for all marker 

coordinates and 𝑓(𝑖, 𝑗,𝑘) = 1 for all gel coordinates. When this function is represented 

across voxels intermediate intensities arise as averaging occurs at each voxel where 

intensity is equivalent to the gel volume fraction within the voxel. The continuous binary 

function can however be approximated by a high resolution binary image. In order to 

simulate a volume fraction image at the desired (lower) resolution (cubic 0.5 mm voxels) 

involves simple averaging of the high resolution representation. High resolution binary 

images were created at 25 times the acquisition resolution. A 2D mid-slice of a high 

resolution (cubic 0.02 mm voxels) binary image is shown in Figure 6.3A. At this 

resolution the marker sphere is represented by over 1.7 million voxels and the volume is 

represented with less than 0.07% error. Figure 6.3B shows the corresponding volume 

fraction image at the averaged, acquisition resolution (cubic 0.5 mm voxels). By 

multiplying the obtained volume fraction image with the appropriate gel intensity 

(average normalised intensity 0.39) a noiseless simulated image is obtained.  

 
The appearance in Figure 6.3B is symmetric because the marker centre point coincides 

with a voxel corner. However the appearance of objects in images varies depending on 

Figure 6.3 A high resolution (uniform 0.02mm voxels) binary mid-slice image of a marker (A) and 
corresponding mid-slice at the MR acquisition resolution (uniform 0.5mm voxels) (B). 
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their location due to averaging across the voxels, which leads to a geometric bias affecting 

the marker tracking method. Figure 6.4A shows a marker sphere and the voxel in which 

its centre point is found. This voxel is named the Object Central Voxel (OCV), as 

previously described (Figure 6.4B). When a marker centre point coincides with the centre 

of its OCV appearance 1 is obtained. Similarly 2 up to 4 demonstrate the appearance of a 

marker when its centre coincides with the middle of a voxel face, the middle of a voxel 

edge and a voxel corner respectively. Appearances 1-4 are the most symmetric 

appearances obtainable. Other appearances however can be asymmetric such as case 5 

which is obtained when the marker centre coincides with the centre of the tetrahedron in 

Figure 6.4. Obviously when a marker is translated exactly one voxel in any orthogonal 

direction its appearance has not changed but simply shifted. In fact due to symmetry all 

possible appearances are uniquely defined by the tetrahedron shown in Figure 6.4B. All 

other appearances can be obtained by rotation and mirroring of the appearances in this 

tetrahedron. Since the centre point calculation in the marker tracking method is based on 

an average of marker voxel coordinates, it is sensitive to symmetry of the marker 

appearance and as such the error is also related to asymmetry.  
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Due to the repeated periodic appearance under translation in any of the orthogonal 

directions the marker appearances and geometric bias function therefore have a triple 

periodic form with minima coinciding with the symmetry points 1-4 discussed in Figure 

6.4. It is thus hypothesised that the magnitude of the geometric bias 𝐸 should follow a 

form similar to: 

 𝐸 ≈ �1
3

(sin(𝑖)2 +sin(𝑗)2 +sin(𝑘)2) 6-6 

Figure 6.5A illustrates an OCV for such a function whereby its elements are shaded 

toward the expected geometric bias if a marker were to be centred on that location. 

Figure 6.5B shows that the best regions of such a pattern coincide with OCV points 1-4 

Figure 6.4 A marker sphere showing OCV (A), an OCV showing the tetrahedron in which 
the appearance of markers varies uniquely (B). The most symmetric appearances mid voxel 
(1), mid face (2), mid edge (3) and voxel corner (4) and an asymmetric appearance for the 
middle of the tetrahedron (5). 
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and the worst regions furthest away from these regions with the worst points one quarter 

into the OCV in all directions.  

The geometric bias was investigated by simulating markers with their centre points 

coinciding with various locations within an OCV in the absence of noise. Due to the 

symmetry in the appearances as discussed above, simulations were performed in 1 octant 

of the OCV only using a grid of points. For visualisation purposes the results were then 

mirrored to obtain bias measures across the full OCV producing a 19x19x19 grid. A finer 

grid was then applied around the maximum bias to closely approximate the location of 

the real maximum bias. This process was repeated until the found maximum no longer 

varied significantly.  

 
 

Figure 6.5 The OCV showing the expected pattern for the magnitude of the geometric bias of the marker tracking method 
across the OCV (A), the best and worst regions highlighted (B), slice view and iso-surface for intermediate magnitude (C) 
and three slices through locations with the largest error magnitude with maxima shown as black dots (D). 
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6.1.6  Simulation of noisy magnitude MR data and analysis 

of the noise effects 

Noise is present in all MR image data, and the performance of the marker tracking 

method needs to be evaluated in the presence of appropriate noise in the simulated 

image. During MRI, signal is acquired in the frequency domain using receiver coils. To 

move to the image domain the signal can be sampled at discrete locations and 

reconstructed using inverse Fourier Transforms. For each reconstructed image voxel in 

Cartesian space the signal 𝑠 can be expressed as261:  

 𝑠 = 𝑠𝑅 + 𝑠𝐼 = 𝐴 + 𝑛𝑅 + 𝑖𝑛𝐼 , with  𝑖 = √−1 6-7 

where a 𝐴 is real signal (represents the noiseless simulated image) and 𝑛𝑅 and 𝑛𝐼 

represent real and imaginary noise components respectively. These independent noise 

components are identically distributed (with zero mean) and their Probability Density 

Function (PDF) is Gaussian261-263. The magnitude 𝑚 of a signal can be calculated using:  

 𝑚 = �(𝐴 + 𝑛𝑅)2 + 𝑛𝐼2 6-8 

The image intensities in magnitude MR images in the presence of noise follow a Rician 

distribution261-264 with a PDF given by265, 266: 

 𝑃𝑚�𝑚�𝐴,𝜎𝑔� =
𝑚
𝜎𝑔2

exp�
−(𝐴2 + 𝑚2)

2𝜎𝑔2
� 𝐼0 �

𝐴𝑚
𝜎𝑔2

�𝐻(𝑚) 6-9 

where 𝜎𝑔 represents the standard deviation of the Gaussian noise, 𝐻 represents the 

Heaviside step function (ensuring 𝑃𝑚 = 0 for 𝑚 = 0) and 𝐼0 is the 0 order modified 

Bessel function of the first kind. Figure 6.6 shows a surface plot of the Rician PDF for a 

range of signal to noise (SNR) ratios 𝐴
𝜎𝑔

. When the noise dominates and 𝐴
𝜎𝑔

 approaches 

zero the Rician PDF reduces to the Rayleigh PDF261, 262 (see blue dots in Figure 6.6). 

However, when the signal dominates ( 𝐴
𝜎𝑔

> 2 262) the Rician distribution behaves 

approximately Gaussian (red dots in Figure 6.6 are for a Gaussian PDF at 𝐴
𝜎𝑔

=6)261, 262. 

With the knowledge that when 𝐴 = 0 the Rician PDF reduces to the Rayleigh PDF, 𝜎𝑔 can 

be estimated by analysis of background noise using264: 
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 𝜎𝑔 ≈ �
1

2𝑁
�𝑚𝑖

2
𝑁

𝑖=1

 6-10 

Using this equation, and analysis of the background of a normalised T2 MR image of the 

silicone gel phantom, 𝜎𝑔 was estimated to be 0.02. Based on the average normalised gel 

intensity of 0.39 this corresponds to an SNR of 19.5. However, to evaluate the 

performance of the marker tracking method in the presence of noise, images were 

simulated at the worst location found by the geometric bias at a SNR of 5 up to 35. 

Simulations were performed 10000 times to obtain an estimate of the error distribution 

at the various SNR levels.  

 

6.2 Results 
The results are presented in two steps: 1) Evaluation of the geometric bias in the marker 

tracking method, and 2) Evaluation of the performance on the marker tracking method in the 

presence of noise. 

Figure 6.6 The Rician PDF at various A/σg ratios (0-6). When A/σg=0 the Rician PDF reduces 
to the Rayleigh distribution (blue dots) however as A/σg becomes >2 the Rician PDF behaves 
approximately Gaussian (red dots at A/σg =6) 
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6.2.1  Evaluation of the geometric bias in the marker 

tracking method 

Figure 6.7A shows the geometric bias error in the absence of noise in an Object Central 

Voxel (OCV). The colour in each element is the error (in units of voxels) of the marker 

tracking method for each point on the 3D grid. Figure 6.7B highlights the best and worst 

regions. Analysis demonstrated that overall the geometric bias of the marker tracking 

method ranges from 0 to a maximum of 5.560x10-3 (with a mean of 3.149x10-3 and a 

standard deviation of 7.771 x10-4) voxels. The error is 0 for the symmetric cases (points 

1-4 in Figure 6.4) while the maximum error occurs in locations close to one quarter into 

the OCV in all directions (0.23). The maximum errors are illustrated as black dots in 

Figure 6.7C.  

 

Figure 6.7 The OCV showing the magnitude of the geometric bias of the marker tracking method across the OCV 
(A), the best and worst regions highlighted (B), slice view and iso-surface for intermediate magnitude (C) and three 
slices through locations with the largest error magnitude with maxima shown as black dots (D). 
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6.2.2  Evaluation of the performance on the marker 

tracking method in the presence of noise. 

The performance of the marker tracking method for the noisy magnitude MR image 

simulations obtained from the 10000 simulations at each SNR of 5 up to 35 is presented 

next. As the SNR increases from 5 to 35 the maximum, mean and minimum voxel errors 

vary according to Figure 6.8A. The standard deviation is plotted in Figure 6.8B. Although 

for T=0.26 the maximum stays below 0.1127 in all cases, the method performs better 

when T is chosen depending on SNR. To illustrate this Figure 6.9 shows results for the 

SNR range 15-35 using T=0.32. Using a higher T means that the marker groups are 

composed of more voxels and thus a more accurate centre point can be calculated. The 

maximum voxel error for T=0.26 at a SNR=19.5 (estimated SNR level) is 4.25x10-2 voxels 

however using a T=0.32 in this case results in a more than threefold increase of the 

accuracy as the maximum error is reduced to 1.16x10-2 voxels. The optimum T value for a 

certain SNR can be determined using MR data simulations. Using simulations the error 

can be minimised for a given SNR by adjusting the T value.  

 

 

Figure 6.8 Results for SNR 5 up to 35 using T=0.26. The maximum (red dotted line), the mean (blue crossed line) and the 
minimum (green starred line) voxel error plotted against SNR (A), and the standard deviation plotted against SNR (B). 

Figure 6.9 Results for SNR 15 up to 35 using T=0.32. The maximum (red dotted line), the mean (blue crossed line) and the 
minimum (green starred line) voxel error plotted against SNR (A), and the standard deviation plotted against SNR (B). 
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6.3 Discussion 
Several MRI based motion tracking algorithms have been proposed in the literature: for 

example tagged MRI49 and phase contrast MRI101, but these all rely upon validation of the 

algorithms proposed. A review of the literature showed that the validation methods used 

for existing techniques are frequently incomplete, and this chapter presents a novel 

validation method for MRI based on motion tracking using a marker tracking algorithm 

which itself is validated against simulated MR image data. Simulated data was generated 

for the noise-free case as well as for a variety of different Rician distributed noise levels. 

The noise-free image data allowed analysis of the error related to the geometric bias 

independently from other error sources. Therefore the method proved to be robust with 

geometric bias errors of between 0-5.560x10-3 voxels and errors due to noise remaining 

below 0.1127 voxels for all cases simulated with signal to noise ratios from 5-35. These 

results were achieved for a global threshold value T=0.26. However altering the threshold 

value, based on the SNR may result in a significant increase in accuracy. The optimum T 

value for a certain SNR can be determined using MR data simulations. Using simulations 

the error can be minimised for a given SNR by adjusting the T value.  

The method proposed in this chapter has two main advantages. The first is that 

the data used for validation is simulated and therefore can be chosen to have desired 

levels of noise. This permitted evaluation of the marker tracking method for different 

levels of noise which has not been done previously. Secondly, since this validation 

method is based on MRI, the marker tracking experiment and the MRI based motion and 

deformation tracking can all be performed at the same time within the MR scanner.  

Although this method has been developed for application to tagged MRI on the upper 

arm, the methods presented here are not limited to this application and can be applied to 

validate other types of MRI based motion and deformation tracking techniques. 

Furthermore, these methods are independent of the chosen phantom shape. 

6.4 Conclusions 
A novel marker tracking method has been presented and validated using simulated MR 

image data. The marker tracking method is robust and the maximum geometric bias was 

5.560x10-3 voxels while the error due to noise remains below 0.1127 voxels for Rician 

noise distributions with signal to noise ratios from 5 up to 35. This appears to be the only 
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marker tracking algorithm suitable for the validation of MR based motion and 

deformation tracking of soft tissue which has been validated against a ‘gold standard’. 
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The MRI Based Measurement of 
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7.1 Introduction 
As highlighted in section 3.6 SPAMM tagged MRI based methods to derive soft tissue 

deformation involve a large amount of repetitions e.g. depending on the temporal and 

spatial resolution from 16 per slice50 to over a hundred51. Besides repeatability 

constraints, discomfort and health issues may preclude a large number of repetitions in 

practise. In the case of soft tissue indentation in the current thesis repeated indentations 

cause volunteer discomfort. In addition it hinders viscoelastic analysis. The purpose of 

the study presented here was therefore to reduce the number of repetitions required 

ensuring volunteer comfort and limiting repeatability artefacts and allowing expansion of 

SPAMM tagged MRI to less repeatable, and in the future, arbitrary and non-periodic 

movements for which there are currently no methods available.  

A novel method was developed to segment tag surfaces and track tag surface 

intersection points. Nevertheless, as highlighted in section 3.7, the derived displacement 

measurements require validation against a “gold standard” reference measure. Since such 

a reference measure is often not present in-vivo, many studies have used numerical and 

physical models for validation. However in many cases the reliability of the reference 

itself it not known or evaluated. In one study validation with implanted crystals and 

sonomicrometric measurements was performed231, but crystal locations were verified 

manually and matching problems between MR and sonomicrometric measurements 

occurred. In chapter 6 a novel validation framework for MRI based deformation 

measurement was proposed based on a deformable silicone gel phantom containing 

contrasting spherical markers. The “gold standard” reference is made available through 

marker tracking. The validation methodology was itself independently validated using 

image simulations (error smaller than 0.12 voxels) and therefore provides a reliable “gold 

standard” for the evaluation of the SPAMM derived deformation measurement. This 

validation approach was therefore adopted here.  

Since the purpose of the current study is to reduce the number of repetitions 

required, a novel non-triggered MRI sequence, based on SPAMM124, 125 is presented for 

the measurement of 3D soft tissue deformation, whereby a parallel tag pattern is 

introduced using a single 1-1 (first order) SPAMM pre-pulse. Subsequently a full 3D 

volume is acquired following a single 3D read-out. Post-processing methods for 

deformation derivation often involve assumptions on the mechanical nature of the 
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material and its deformation. Representing tags as surfaces and tracking the 

intersections of these surfaces computed in 3D offers a relatively simple method to 

derive 3D deformation. In addition this avoids issues related to through-plane motion 

and assumptions of zero displacement in the parallel (within tag surface) direction 

associated with 2D approaches.  

In order to derive 3D deformation the intersections of tag surfaces, which are 

segmented from three initially orthogonal 1-1 SPAMM data sets using a newly developed 

sheet marching algorithm are computed. This approach allows measurement of 3D 

deformation following just three motion cycles. To the best of our knowledge this makes 

the SPAMM tagged MRI based techniques presented here the fastest available for the 

non-invasive measurement of 3D soft tissue deformation. The deformation 

measurements were validated by indentation tests (using the custom designed MRI 

compatible soft tissue indentor described in chapter 4) and marker tracking (chapter 6) 

in a silicone gel phantom. In addition the performance of the method was evaluated in-

vivo using indentation of the biceps region of the upper arm of a volunteer. 

 

7.2 Methods 

7.2.1  MRI sequence design 

For the current study a novel non-triggered MRI sequence, based on SPAMM124, 125 was 

used which forms an expansion of a sequence earlier developed for 1D bowel motion 

estimation267 to the measurement of 3D soft tissue deformation. The sequence was 

applied to a silicone gel phantom for validation and to a volunteer for in-vivo evaluation. 

A schematic for the pulse sequence design is shown in Figure 7.1. A single 1-1 (first 

order) SPAMM pre-pulse (5ms) imposes a temporary sinusoidal modulation on the Z-

magnetization and thus also on the signal magnitude causing it to vary sinusoidally from 

normal to severely reduced. The reduced signal regions form a parallel surface pattern in 

the tissue (visible as low intensity lines in 2D slices). These surfaces are generally referred 

to as tags. After the tag pre-pulse a time delay is introduced (which is set depending on 

desired T1 contrast and magnitude of deformation) during which the tissue indentation 

occurs. Subsequently a full 3D volume is acquired following a single read-out (Transient 

Field Echo, TR/TE=2.9/1.8 ms, flip angle 8˚). A tag spacing of 6mm and 9mm were used 
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for the phantom and human volunteer respectively. A single SPAMM direction can be 

acquired in less than 1.5 s (pre-pulse 5 ms, time delay 300 ms, read-out 900 ms). The 

sequence was implemented on a 3.0 Tesla Philips Intera scanner (Philips Healthcare, 

Best, The Netherlands), scans were performed using two FLEX-M coils.  

Since the tag surface pattern is temporarily locked in the tissue (fades due to T1 

relaxation), the (static) deformation of the tissue, that occurred between pre-pulse and 

readout, is reflected in the deformation of the tag surface pattern. However in the 

absence of any within-surface reference points, a single set of tag surfaces only provides 

tag surface shape or an estimate of a single displacement component. To derive 3D 

displacements it is possible to combine three tag surface sets from initially orthogonal 

directions whereby each set provides a reference to within-surface deformation in the 

other directions. Therefore three data sets with mutually orthogonal tags were acquired 

for both the initial and deformed configuration. The intersection points of tag surfaces 

from three directions provide trackable material points, and three initial and three 

deformed data sets are required to derive 3D deformation.  

In many SPAMM tagged MRI studies acquisitions are gated for instance in cardiac 

applications49 by triggering the scan sequence towards the electrocardiogram in order to 

synchronize imaging with the heart motion cycle. However in the current study external 

loading (indentation) is applied to induce deformation and no physiological trigger is 

available. As such the external trigger dependence was removed. Instead the scanner was 

used to generate a 4 ms Transistor-Transistor Logic (TTL) pulse allowing for the 

appropriate and repeatable timing of the indentation. Scans were repeated for validation 

purposes according to the diagram shown in Figure 7.1. Table 7-1 provides a summary of 

the scanning parameters and configurations used in this study and illustrates three slices 

for each data set recorded. A continuous set of SPAMM dynamics (n=20) were acquired 

for each direction such that multiple initial and deformed data sets were obtained. 

However acquisitions continued as the indentor was slowly returned to its original 

position but these un-loading configurations were not used in the current study. 

Scanning parameters were optimized for each scan direction, leading to varying scan 

durations and thus the varying numbers of acquired initial and deformed configurations 

for each scan direction shown in Table 7-1. 
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Figure 7.1 Diagram of the SPAMM pulse sequence. The 1-1 SPAMM pre-pulse (phase A) modulates the signal followed by a desired time 
delay (phase B) after which a full volume read-out takes place (phase C). This can be repeated n times for each direction. 
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Initial configuration Deformed 

configuration 

Number of 

acquisitions 

Scan type Field of view 

size (mm) 

# 

slices 

Voxel 

dim.(mm) 

 

6 Initial 

7 Deformed 

 

XY 1-1 

SPAMM 

YZ slices 

 

130x130x52.5 35 1.35x1.35x1.5 

4 Initial 

4 Deformed 

XZ 1-1 

SPAMM 

XY slices 

 

253x253x45 15 0.88x0.88x3 

4 Initial 

4 Deformed 

YZ 1-1 

SPAMM 

XY slices 

 

253x253x45 15 0.88x0.88x3 

 

10 Initial 

5 Deformed 

 

XY 1-1 

SPAMM 

YZ slices 

 

130x130x67.5 45 1.35x1.35x1.5 

10 Initial 

5 Deformed 

 

 

XZ 1-1 

SPAMM 

YZ slice 

130x130x52.5 35 1.35x1.35x1.5 

10 Initial 

5 Deformed 

 

YZ 1-1 

SPAMM 

XZ slices 

130x130x67.5 45 1.25x1.25x1.5 

 

1 Initial 

1 Deformed 

 

T2 

Weighted 

XZ slices 

120x120x80 

 

160 0.47x0.47x0.5 

 

Table 7-1 The MRI acquisition matrix 
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7.2.2  The validation set-up: indentor and soft tissue 

phantom 

Validation of the soft tissue deformation measurement was achieved using indentation 

tests on a silicone gel phantom (Figure 7.2A). The phantom’s cylindrical shape (120mm 

long and 80mm in diameter) and stiff poly-oxy-methylene (POM) “bone-like” core 

(20mm in diameter) represents an idealized geometry of the upper arm, allowing 

simulation of comparable deformation modes. The silicone gel (SYLGARD® 527 A&B Dow 

Corning, MI, USA) simulates soft tissue as its stiffness243 and MRI properties252 are 

within the range of human soft tissue, and it has been used in numerous MRI based 

studies on soft tissue biomechanics229, 232, 253-260. The “gold standard” reference is created 

through the use of spherical POM balls of 3±0.05mm diameter (The Precision Plastic Ball 

Co Ltd, Addingham, UK) embedded within the gel volume. These markers have low signal 

compared to the gel and can be tracked from high resolution (0.5mm isotropic voxels) T2 

weighted images to provide an independent measure of deformation thus allowing for 

the evaluation of accuracy of the deformation measurement. The bottom row in Table 7-1 

shows three slices for the 𝑇2 weighted data in the initial and deformed configuration, in 

addition the segmented markers are shows as voxels. The marker tracking methods were 

described in chapter 6 and demonstrated errors under 0.12 voxels (0.05 mm). In addition 

to the phantom validation the ability to measure soft tissue deformation in-vivo was 

demonstrated using indentation tests on the biceps region of the upper arm (see Figure 

7.2B) of a healthy volunteer (female, age 24, height 1.65 m, weight 65 kg, ethical approval 

and informed consent obtained).  

The gel phantom and the volunteer’s upper arm were subjected to static transverse ramp 

(~12 mm) and hold (3 s) indentations (at a speed of ~40mm/s) using a custom designed, 

hydraulically powered and MRI compatible soft tissue indentor (Figure 7.2B and chapter 

4). The indentor head is cylindrical (45 mm in diameter) and its speed and depth can be 

varied via a computer controlled hydraulic master cylinder. As mentioned before 

appropriate and repeatable timing of the indentation was achieved via triggering towards 

a 4 ms TTL pulse generated by the scanner prior to imaging.  

Figure 7.2C and 2D illustrate several image slices with the tag-lines for the phantom and 

volunteer data in the initial and deformed configuration. In addition iso-surfaces are 
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shown which clearly indicate the circular indentation sites in the deformed configuration. 

For clarity all figures are presented with a similar 3D orientation such that the reader 

maintains a reference towards the orientation and location of the indentation.  

 

7.2.3  Deriving tissue deformation from the SPAMM tagged 

MRI data 

In order to extract soft tissue deformation from the SPAMM tagged MRI data was 

analysed using novel post-processing methods developed in Matlab (The Mathworks Inc., 

Natick, MA, USA). The MRI data (DICOM files) were uploaded and slices were combined 

into 3D volume matrices and the data was normalized towards maximum intensity. No 

filtering was applied. Post-processing was performed in the following steps: A) Logic 

masking, to identify potential tag-voxels, B) Connectivity analysis, to remove irregularities 

(e.g. anatomical disturbances), C) Sheet marching to segment the tags and fit surfaces, and 

finally D) Calculation of tag surface intersections, whereby tag surface intersection points 

for the initial and deformed configuration were used to derive the displacement vector 

field. The latter two geometric operations (C and D) occur in a regular Cartesian space 

(patient coordinate system) whereby the non-uniform voxel dimensions are taken into 

account. 

Figure 7.2 The silicone gel soft tissue phantom (A), the MRI compatible indentor placed at volunteers upper arm 
(B), iso-surface plot showing the indentation sites for the phantom (C) and volunteer (D).  
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7.2.3.1  Logic masking 

Logic masking was used to determine the tag surface orientation and to identify potential 

tag voxels. A 3D cross shaped mask was used to act as a logic operator testing the mask 

environment for certain criteria. The mask dimensions can be altered according to the tag 

thickness. The logic masking checks whether the outer mask elements are of higher 

intensity than the voxel it is centred on. The cross-shaped mask can be seen as being 

composed of three mutually orthogonal segments. The overall dominance of any one of 

these segments allows for the detection of global tag surface orientation. For voxels that 

are part of a tag surface there is at least one higher intensity element on both sides of one 

of the orthogonal segments. The result of this analysis step was a binary logic matrix. 

Figure 7.3A shows XZ 1-1 SPAMM data for the human volunteer. In Figure 7.3B the tag 

voxels for these slices, identified using masking are overlaid as voxels (grey and black). 

However MRI is complicated by noise, possible artefacts and, in addition anatomical 

features may induce additional intensity variations in-vivo. Such disturbances may result 

in false positives tag voxels (e.g. at the muscle/fat boundary in Figure 7.3). However tag 

surfaces are by definition continuous structures (in the absence of shearing) and this 

knowledge can be used a priori to correct for possible false positive tag voxels using the 

connectivity analysis presented next.  

 

7.2.3.2  Connectivity analysis 

In order to remove false positive tag voxels connectivity analysis was performed. A 

voxel’s tag connectivity in a certain direction was defined as the number of tag voxels it is 

connected to in this direction. For instance each tag voxel in a column of 𝑛 tag voxels has 

a connectivity of 𝑛 in the column direction. If a voxel is part of a continuous tag its 

connectivity in the perpendicular direction should reflect the thickness of the tag, while 

in the parallel directions it should reflect the local tag width and length respectively. 

These connectivity measures distinguish false positives from tag voxels and allows for 

their removal. Voxels discarded in this way, e.g. those near the bone and the muscle/fat 

boundary, are shown in grey in Figure 7.3B. For the phantom tag voxels that formed 

bridges between two adjacent tags (due to markers) were removed.  



  - 155 -

 

 

7.2.3.3  Sheet marching 

Segmentation of the tag surfaces was achieved using a novel sheet-marching algorithm in 

which tag surfaces were represented by cubic spline surfaces that “grow” using two 

moving fronts from manually determined start and end locations. Each surface grows 

from the extremities inwards and marches towards the opposite side guided by the tag 

voxels identified using masking and connectivity analysis. This process consists of two 

main steps which are repeated until the surface was complete: 1) Extrapolation of surface 

fronts, 2) Update extrapolated fronts using weighted averaging.  

 

Extrapolation of surface fronts  

Tag surfaces were represented as a cubic spline surfaces using a cubic smoothing spline 

function f  which minimizes (see Matlab csaps function and268): 

here yi represents the data value at coordinate xi and 𝜇 ∈ [0,1] controls the degree of 

smoothing, i.e. the “stiffness” of the marching sheet (µ=0 produces a linear least-squares 

fit while µ=1 produces the “natural” cubic spline interpolant), here  𝜇 = 0.05 was used. 

Using the cubic spline formulation and the currently defined tag surface (initially only 

the start and end points) the coordinates of the next steps inwards (on both fronts) are 

estimated using extrapolation.  

(1 − 𝜇)��𝑦𝑖 − 𝑓(𝑥𝑖)�
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Figure 7.3 Three slices for the human XZ 1-1 SPAMM data (A) and the same slices with overlaid tag-voxels, those that 
pass the connectivity analysis are shown in black while those that are discarded are shown in grey (B). 
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 Update extrapolated fronts using weighted averaging 

The next step is to update the extrapolated fronts using a weighted average of the 

potential tag voxels that are found on the tag surface and up to one tag thickness offset 

from the tag surface in both perpendicular directions. The manually determined tag 

surface start and end locations are also updated to remove possible user bias. The 

averaging weights are linearly derived from the voxel intensities such that low intensity 

voxels are favoured. These are more likely to be part of tags and this ensures that the 

surface closely follows the centre of the tags. After this update the next steps are 

extrapolated until the two moving fronts reach the opposite side of the field of view. The 

fronts thus cross each other after meeting in the middle and each coordinate is effectively 

updated twice. This is to remove possible “overshoot” and “undershoot” bias due to the 

marching direction of the sheet. Once the fronts have reached the opposite side a final 

surface is fitted to all data points using 𝜇 = 0.05. At surface locations where no tag-

voxels are found a void is introduced in the surface. Figure 7.4 illustrates the stepwise 

sheet marching for one of the phantom tag surfaces. Tag surfaces were segmented for 

both the phantom and volunteer data and for all directions and repetitions (see column 

3, Table 7-1). In addition a single average surface set was constructed from the various 

repetitions for each direction (Figure 7.5).  

 

Figure 7.4 Several slices for the phantom showing, from A to C a tag surface as it marches from the periphery of the data inwards. 
Tag voxels that guide the process are shown in black.  
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7.2.3.4  Calculation of tag surface intersections and displacement 

fields 

Figure 7.5 demonstrates how the average tag surfaces for the three orthogonal directions 

intersect each other. The next step was to find the intersections for these surfaces as 

these represent material points that can be tracked over time. This was done as follows: 

first the shape of a first surface was sampled onto all coordinates defining the second 

surface. Then the intersection curve of these two surfaces was found by solving where the 

subtraction of these surfaces equals zero. Finally the intersection point of all three 

surfaces can then be found by calculation of the intersection of this curve with the third 

surface. Using this approach all intersection points or tag points for the initial and final 

configurations could be found. Since tag surfaces were numbered this provided a 

reference to match corresponding tag points in both configurations. As such the initial 

and final coordinates could easily be used to construct a 3D displacement vector field, 

whereby the displacement was simply defined as the difference between the deformed 

and initial coordinate sets. This approach was followed for all individual surface sets and 

also for the overall average surface sets. Figure 7.6 shows the average vector fields 

(derived from the average surface sets) obtained for the phantom and volunteer data. The 

arrow orientations indicate displacement direction and the arrow lengths the magnitude 

of displacement. For both the phantom and volunteer data the displacement field 

demonstrates the inhomogeneous nature of the deformation induced by the indentation.   

Figure 7.5 The segmented tag surfaces for the phantom (A) and volunteer data (B) in the deformed configuration. 
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7.2.4  Analysis of precision and accuracy 

For the current study the following precision and accuracy measures were evaluated: 1) 

Precision of tag point location, 2) Precision of displacement magnitude and 3) Accuracy of 

displacement measurement in the phantom.  

As shown in column 3 of Table 7-1 each tagging direction was repeated several times. 

This allows for the generation of a large number of combinations of initial and deformed 

surface sets whose intersections yield the initial and deformed tag point sets. For 

instance, for the phantom data, there were 700 (10x10x7) possible combinations of 

initial and 150 (5x5x6) combinations of deformed tag point sets, resulting in 105000 

(700x150) possible displacement field combinations. The repetitions and combinations 

can be used to analyse the precision of the methods employed. However to limit 

computational time the precision was analysed by using 20 random combinations of 

initial and deformed surface sets which resulted in 20 initial and deformed tag point sets 

and 400 (20x20) displacement vector fields for both the volunteer and phantom data set. 

Each coordinate set was compared to the overall average coordinate sets to evaluate 

precision of tag point locations. Similarly, the precision of the displacement magnitude 

was assessed by comparison to the overall average displacement magnitude. Finally for 

the phantom the average displacement field was compared to the “gold standard” 

Figure 7.6 The average displacement fields for the phantom (A) and human volunteer data (B). Initial points are coloured towards the 
displacement magnitude (in mm) and the displacement vector arrows point towards the tag points in the deformed configuration 
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displacement measured using marker tracking. This was done by using the average 

displacement field and the initial marker locations to predict (using interpolation) the 

marker locations in the deformed configuration. The difference between this predicted 

displacement and the actual marker displacement provides a measure of the accuracy of 

the SPAMM tagged MRI based displacement measurement. Gaussian mixture 

distributions (see Matlab gmdistribution function and269) were used for statistical analysis 

of the tag point location precision and the displacement accuracy. The overall mean was 

defined as the quadratic mean of the means in the X, Y and Z directions while the overall 

standard deviation was defined as the square root of the mean Eigen-value of the co-

variance matrix. In addition root mean square (RMS) values were computed for 

comparison to values in the literature.  

 

7.3 Results  

7.3.1  Precision of tag point location 

As outlined in section 7.2, 20 random tag point sets were evaluated for both the initial 

and deformed configuration. For each tag point the location difference with respect to 

the corresponding average tag point was calculated. For the phantom and volunteer data 

41040 (2052 tag points/set and 20 random combinations) and 5760 (288 tag points/set 

and 20 random combinations) tag points were evaluated. Figure 7.7 shows scatter plots 

for all tag point location differences for the phantom (Figure 7.7A-B) and volunteer data 

(Figure 7.7C-D). Note that most points are concentrated at the centre and therefore 

overlap.  

For the phantom data the overall mean location difference and standard deviation were 3 

µm and 42 µm respectively for the initial configuration. Similarly for the deformed 

configuration the overall mean and standard deviation were 5 µm and 59 µm. The RMS 

values were 74 µm and 103 µm for the initial and deformed configuration respectively. 

The largest tag point location difference in the initial and deformed configurations was 

1.41 mm and 1.46 mm respectively. These outliers (differences larger than 250 µm) 

represented less than 1 % for both the initial and deformed configuration and are always 

found at the edges and corners of surfaces and surface interruptions (e.g. bone like core) 

where surface segmentation is based on less information. 
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Similarly for the volunteer data the overall mean and standard deviation were 3 µm and 

118 µm respectively for the initial configuration and 7 µm and 137 µm for the deformed 

configuration. The RMS values were 204 µm and 238 µm for the initial and deformed 

configuration respectively. The largest tag point location differences for the initial and 

deformed configuration were 0.75 mm and 1.27 mm respectively. Again these differences 

represented isolated cases that were rare in occurrence as differences of magnitudes over 

0.5mm represented only 0.9 % and 1.5 % for the initial and deformed configurations 

respectively. 

 

7.3.2  Precision of displacement magnitude 

For both the phantom and volunteer data a total of 400 displacement fields were derived 

from the 20 random tag point sets in the initial and deformed configurations. For each 

location the difference in displacement magnitude with respect to the corresponding 

average displacement magnitude (derived from the average surface set intersections see 

section 7.2.3.4  and 7.2.4 ) was calculated. To study the effect of displacement on the 

Figure 7.7 Tag point location difference scatter plots for the phantom (A and B) and human volunteer data (C and D) for both the 
initial (A and C) and deformed configuration (B and D). Color represents differences with respect to average (in mm), outer sphere 
radius is equal to the maximum difference.  
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precision of displacement magnitude measurement Figure 7.8A shows the distribution of 

displacement magnitude differences for the phantom data as a function of the average 

displacement magnitude. Figure 7.8B is a plot of the mean and standard deviation of the 

displacement magnitude differences as a function of the average displacement magnitude 

of the phantom data. Similarly for the volunteer data this is shown in Figure 7.8C-D.  

For both datasets the mean displacement magnitude differences varied little with 

increasing displacement. The overall mean and standard deviation for the phantom data 

was 6 µm and 75 µm respectively and for the volunteer data the mean and standard 

deviations were 5 µm and 169 µm respectively. However there were some outliers 

present for the higher displacement levels up to a maximum of 1.48 mm for the phantom 

and 1.13 mm for the volunteer data. Displacement magnitude differences larger than 0.5 

mm represented only 0.1 % and 0.2 % for the phantom and volunteer data respectively. 

As expected the larger differences occurred in locations where reduced surface 

information was available in the initial and or deformed configurations (see also section 

7.3.1 ). These were similarly identifiable allowing exclusion if desired. Since the 

deformation mode was indentation against a bone (or bone-like core), the larger 

displacements also coincide with locations where segmentation of tag surfaces was more 

challenging and or incomplete, e.g. the gap introduced by the bone. This therefore 

partially explains the slight increase in variation with displacement magnitude visible in 

Figure 7.8B-D.  
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7.3.3  Accuracy of displacement measurement in the 

phantom 

Figure 7.9A shows the marker locations in the initial (blue) and deformed configuration 

(green) for markers (n=34) that were properly embedded within (the convex hull) of the 

average displacement field (Figure 7.6A). Following comparison with marker 

displacement the accuracy of the tag point displacement measurement was evaluated. 

Using the average displacement field the marker locations in the deformed configuration 

were predicted (red in Figure 7.9A). Note how the predicted and measured marker 

locations in the deformed configurations overlap. The difference between the predicted 

marker displacement and the actual marker displacement provides a measure of the 

accuracy of the displacement measurement. Figure 7.9B shows the differences as a 3D 

scatter plot. The spheres shown are centred on the mean, 72 µm, and the inner sphere 

has a radius equal to the overall standard deviation, 289 µm, while the outer sphere 

radius represents the maximum difference observed (891 µm). The RMS values for the 

Figure 7.8 The normalised distributions of the displacement magnitude differences as a function of the average displacement magnitude 
for the phantom (A) and human volunteer data (C), and the mean displacement magnitude difference (green) and standard deviation 
(blue) as a function of the displacement magnitude for both the phantom (B) and human volunteer data (D).  
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displacement differences in the X, Y and Z directions were 253 µm, 354 µm and 278 µm 

respectively. The maximum difference was found near the edge of the displacement field 

where predictions were more limited due to the reduced amount of displacement 

information available here. No relationship with displacement magnitude was observed. 

  

7.4 Discussion 
Current SPAMM tagged MRI aproaches to non-invasively measure human soft tissue 

deformation in-vivo require the combination of many repeated motion cycles. This has so 

far generally limited the biomechanical and clinical applications of SPAMM tagged MRI 

to the study of highly repeatable and periodic movements such as those present in the 

heart46, 48, 49. Besides repeatability constraints, discomfort and health issues may not allow 

large numbers of repetitions. Therefore the current study presents the validation of a 

method aimed to reduce the number of repetitions required in recording soft tissue 

motion.  

A novel non-triggered MRI sequence based on SPAMM124, 125 for the measurement of soft 

tissue deformation following just three deformation cycles has been presented. The tag 

surface patterns were introduced following a single 1-1 (first order) SPAMM pre-pulse 

followed by a time delay during which the tissue was indented. Subsequently a full 3D 

Figure 7.9 The 34 markers in their initial (blue), deformed (green) and predicted deformed locations (red) (A), and a scatter plot for the 
difference between the measured and predicted marker locations in the deformed configuration. Points are colored towards the 
magnitude of the difference (mm) 



  - 164 -

 

volume read-out was performed to acquire the data from a single motion cycle. To derive 

true 3D deformation three tag surface sets from initially orthogonal directions were 

combined, whereby each set provides a reference to within surface-deformation in the 

other directions. Therefore for the current study, three mutually orthogonal tag data sets 

were acquired for both the initial and deformed configuration. Tag surfaces were 

segmented using a custom developed sheet marching algorithm. The intersection points 

of the segmented tag surfaces from three directions provided trackable material points 

throughout the volume and allowed for the measurement of 3D deformation. To our 

knowledge the presented methodology is the fastest SPAMM tagged MRI method 

available for the non-invasive measurement of 3D soft tissue deformation.  

Indentation tests using an MRI compatible soft tissue indentor and marker tracking were 

performed on a silicone gel soft tissue phantom to validate the ability of the proposed 

methodology to measure 3D soft tissue deformation. The derived displacement 

demonstrated sub-voxel accuracy with a mean displacement difference of 72 µm and a 

standard deviation of 289 µm. The performance of the methodology in-vivo was also 

demonstrated using indentation of the biceps region of the upper arm of a volunteer. In 

addition, several precision measures were evaluated for both the phantom and volunteer 

data. For the silicone gel phantom the tag point location precision showed a mean and 

standard deviation of 3 µm and 42 µm respectively for the initial configuration, and 5 µm 

and 59 µm respectively for the deformed configuration. Similarly for the volunteer, the 

tag point location precision showed a mean and standard deviation of 3 µm and 118 µm 

respectively for the initial configuration, and 7 µm and 137 µm respectively for the 

deformed configuration. In addition displacement magnitude precision was evaluated for 

both data sets. For the phantom the displacement magnitude precision showed a mean 

and standard deviation of 6 µm and 75 µm respectively and, similarly for the volunteer, a 

mean and standard deviation of 5 µm and 169 µm respectively. The sub-voxel accuracy 

and precision demonstrated in the phantom in combination with the precision 

comparison between the phantom and volunteer data provide confidence in the methods 

presented for measurement of soft tissue deformation in-vivo.  

Comparison of the validation results with previous studies is difficult since among other 

things the deformation modes and magnitudes investigated and the nature of the 

reference measure vary greatly. However, some comparison with previous methods is 

appropriate to demonstrate the benefits of the new approach. Young et al. 1993229 
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recorded angular displacement of a silicone gel phantom using tagged MR images and 

evaluated the results using numerical and analytical modelling and 2D surface 

deformation derived from optical tracking of lines painted on the phantom surface. A 

root mean square (RMS) error for the longitudinal translation between magnetic tags and 

the analytical model (verified by comparison with the optically measured deformation of 

the painted stripes) was 0.24 mm. Similarly, Chen et al. 2010219 recently validated their 

tagging methods using a numerical phantom and reported RMS errors ranging from 

0.15~0.37 mm (depending on cardiac phase). Xu et al. 2010226 validated 3D tagging 

analyzed using optical flow methods using simulated deformation. The displacement in 

X, Y and Z direction demonstrated RMS errors of 0.43 mm, 0.45 mm and 1 mm 

respectively. For the current study the measurement of deformation was validated using 

marker tracking in a silicone gel soft tissue phantom demonstrating sub-voxel accuracy 

with a mean displacement difference of 72 µm and a standard deviation of 289 µm (RMS 

values for the displacement differences in the X, Y and Z directions were 253 µm, 354 µm 

and 278 µm respectively). This demonstrates that despite the fact that only three 

deformation cycles were used, the accuracy and precision of the methodology presented 

are of similar order of magnitude to recent methods involving many repetitions.  

The present study has several limitations. The methods presented here have only been 

evaluated for static deformation measurement, since for each motion cycle the 

deformation only occurred during the time delay introduced between the pre-pulse and 

read-out phase. Future work will focus on the evaluation of the methods presented for 

dynamic motion analysis.  

Initial tag surface locations are currently determined from three initial configuration data 

sets. These can be acquired rapidly in series (each requiring less than 1.5 s). It is however 

possible to avoid the use of these initial configurations through certain assumptions 

about the initial state of tag surfaces. If tag surfaces in the deformed configuration can be 

segmented successfully and are sufficiently continuous (not sheared), and if their initial 

state is assumed planar, and if no rigid body movement occurred, then the planar 

segments of the tag surfaces in un-deformed regions can be used for approximation of 

initial tag surface shapes and locations. However this may result in inaccuracies as field 

in-homogeneities are known to result in non-planar initial tag surface shapes.  

Presently the sheet marching algorithm is seeded using manually determined start and 

end tag surface locations. However the validation presented here is independent of these 
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manually determined initial estimates since they were updated and replaced by 

coordinates based on the data. In the future it is possible to replace the manual seeding 

by automatic start and end location identification. 

Although only three motion cycles were combined to measure 3D deformation, allowing 

for the expansion of SPAMM tagged MRI to less repeatable motions. Ideally a full set of 

data should be acquired following a single acquisition, but currently the SPAMM tagged 

MRI sequence presented employs a single 1-1 SPAMM pre-pulse, thus providing a single 

direction for each read-out. Although this does not allow 3D analysis, it does allow for the 

estimation of 1D displacements associated with arbitrary and non-periodic tissue 

movements267.  

 

7.5 Conclusions 
A novel MRI sequence based on SPAMM for the measurement of 3D soft tissue 

deformation following just three deformation cycles has been developed. Its ability to 

measure soft tissue deformation was validated through indentation tests (using an MRI 

compatible soft tissue indentor) and marker tracking in a silicone gel phantom. In 

addition the technique’s ability to measure soft tissue deformation in-vivo was 

demonstrated using indentation of the biceps region of the upper arm of a volunteer. 

Following comparison to marker tracking in the phantom, the SPAMM tagged MRI 

derived displacement demonstrated sub-voxel accuracy and precision with a mean 

displacement difference of 72 µm and a standard deviation of 289 µm. Displacement 

magnitude precision was evaluated for both data sets. The standard deviations of 

displacement magnitude with respect to the average displacement magnitude were 75 µm 

and 169 µm for the phantom and volunteer data respectively. The sub-voxel accuracy and 

precision demonstrated in the phantom in combination with the precision comparison 

between the phantom and volunteer data provide confidence in the methods presented 

for measurement of soft tissue deformation in-vivo. Since only three motion cycles are 

required the presented methodology is, to our knowledge, the fastest currently available 

for the non-invasive measurement of 3D soft tissue deformation. This therefore allows 

for the expansion of the application of SPAMM tagged MRI to the analysis of less 

repeatable motion and to cases where a large number of repetitions is not clinically 
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feasible. Future work will focus on the evaluation of the methods presented for dynamic 

motion analysis. 
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8 STUDY V 
 

The MRI Based Measurement of 
Dynamic 3D Soft Tissue 

Deformation 
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8.1 Introduction 
As discussed in section 3.6 in SPAMM tagged MRI the tissue is temporarily 

magnetically tagged using a periodic signal modulation and tracking of the tag pattern 

allows measurement of deformation.  

Typically SPAMM tagged MRI methods require segmented acquisitions whereby 

an image set reflecting a single motion cycle is composed via repeated imaging of multiple 

motion cycles. In some studies of tissue biomechanics motions were repeated over a 

hundred times(e.g. 144 volunteer rotational head accelerations51, and >135 repeated left 

to right eye movements52). Hence SPAMM tagged MRI has mainly found application in 

the study of highly repeatable motions such as those occurring in the heart46, 48, 49. In the 

previous chapter indentation induced 3D skeletal muscle tissue deformation 

measurement was presented requiring the use of only 3 motion cycles. However the 

methods were validated only for static deformations (limiting viscoelastic analysis) and 

the post-processing methods were semi-automatic. The focus of the current study is thus 

to expand these methods to dynamic deformation measurements using automated 

analysis methods while maintaining the minimum of three repeated motions. Within the 

current study this ensures reduction of repeatability artefacts. However it also has the 

potential to widen the clinical application from the current analysis of highly periodic 

motion, to cases where motion is less repeatable or where large numbers of repetitions 

are not clinically feasible.  

Section 3.6 also discussed current post-processing methods for SPAMM tagged 

MRI (for instance using deformable models219, 220, spline models221-223, non-rigid image 

registration224, 225, optical flow methods226, and harmonic phase methods228). Many of the 

post-processing methods in the literature inherently require assumptions on the nature 

of the deformation and/or the mechanical properties of the underlying tissue or require 

computationally intensive iterative optimization methods to be employed.  

This chapter therefore presents a simple, computationally efficient and fully 

automatic post-processing framework featuring Gabor filtering based tag segmentation 

and orthogonal weighted averaging based triangulated surface fitting. Deformation is 

measured following tracking of mutually orthogonal surface triplet intersections. Since 

no regularizing (deformable/spline) model is required for computation of deformation, 

the post-processing framework presented avoids many of the assumptions on the tissue 
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deformation and is thus ideal for the analysis of complex deformation (i.e. involving 

tissue non-linearity, anisotropy and sliding induced shearing).  

A novel (non-segmented) SPAMM tagged MRI and post-processing framework is 

presented enabling fully automatic and continuous sampling of complex 3D dynamic 

tissue deformation using 3 motion cycles only. For validation the techniques are applied 

to the measurement of complex dynamic deformation in the silicone gel phantom 

containing markers (see chapter 6) which, when tracked, provide a reference measure of 

deformation enabling derivation of technique accuracy. In addition the techniques are 

applied to indentation induced deformation measurement in the upper arm of a 

volunteer for in-vivo evaluation.  

 

8.2 Methods 

8.2.1  The experimental set-up: indentor and soft tissue 

phantom 

In the current study 3D dynamic deformation is measured using continuously sampled 

dynamic SPAMM tagged MRI (section 8.2.2 ) applied in three orthogonal directions 

during three motion cycles. In order to validate the deformation measurements 

performance was evaluated in a silicone gel tissue phantom and in-vivo in the upper arm 

of a volunteer (Figure 8.1). A computer controlled MRI compatible indentor (chapter 4) 

with a flat circular (45 mm in diameter) head was used to apply repeated transverse 

indentation (~20 mm deep) to a silicone gel phantom and the biceps region of the upper 

arm of a volunteer. Since three repeated motion cycles are required for derivation of 3D 

deformation the indentor motion was triggered (using a scanner generated TTL pulse) to 

start after the first dynamic of each acquisition series. This first dynamic thus provides 

the initial un-deformed tag pattern state. A single motion cycle is defined as an 

indentation phase, a hold phase and a retraction phase. For validation of the deformation 

measurement the silicone gel soft tissue phantom (200 mm long and 120 mm in 

diameter containing a stiff 20 mm in diameter bone-like core) contains contrasting (low 

signal) spherical markers (3±0.05 mm in diameter). These markers were tracked (chapter 

6) from 𝑇2-weighted scans (0.5 mm isotropic) of the same field of view for the initial un-

deformed and the final deformed configuration. In addition phantom and in-vivo 
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accuracy measures could be derived from the fact that the displacement paths should 

return to their original location as displacement is recorded up to the end of the 

retraction phase of the motion cycle. For more information on the experimental set-up 

the reader is referred to chapters 4 and 7.  

 

8.2.2  MRI sequence 

For the current study a (non-ECG triggered) single-shot SPAMM tagged MRI sequence 

was employed which is a dynamically optimized version (read-out acceleration and delay 

reduction) of the sequence presented in chapter 7. A schematic for the pulse sequence 

design is shown in Figure 8.2. Table 8-1 provides a summary of the scanning parameters 

and configurations used in this study and illustrates several slices for each data set 

recorded. As the sequence diagram shows, following a 1-1 SPAMM tag pre-pulse (parts A) 

a short delay (parts B) was introduced during which the tissue and tag pattern deforms. 

Subsequently the image data is acquired using a single 3D Transient Field Echo (TFE) 

read-out (parts C). The 3D TFE read-out was configured with a Cartesian acquisition 

mode in k-space, the profile order was set to low-high, a radial turbo direction was used 

and half-Fourier was applied for acceleration (0.625 in the readout direction and 0.8 in 

the first phase encode direction). All scans were performed on a 3.0 T (Intera, Philips 

Health Care, Best, The Netherlands) MRI scanner using flexible surface coils with two 

elliptical elements (diameters of 14 and 17 cm) placed laterally to the upper arm (Figure 

8.1B). Each individual acquisition was non-segmented and not repeated and entire image 

volumes were acquired consecutively in time for each direction. For the phantom and 

volunteer imaging the motion was thus effectively continuously sampled at 3.3 Hz (123 

ms delay + 177 ms read-out) and 3.6 Hz (100 ms delay + 177 ms read-out) respectively. 

Figure 8.1 The experimental set-up showing the MRI compatible indentor used for 
indentation of a silicone gel phantom (A) and volunteer upper arm (B).  
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Full 3D dynamic deformation measurement is achieved through the combination of 

dynamic SPAMM data from 3 orthogonal directions, thus requiring 3 motion cycles. 

However for validation purposes multiple motion cycles (see Table 8-1) were recorded for 

each acquired SPAMM direction allowing analysis of technique accuracy and precision 

both in the phantom and in-vivo. Thus for the phantom and volunteer tests 11 and 37 

consecutive dynamics per motion cycle were acquired respectively (5 during indentation 

phase 1 during hold phase and 5 during retraction phase for the phantom, and 9 during 

indentation phase, 15 during hold phase and 13 during retraction phase for the 

volunteer). For the volunteer indentation was applied at a lower speed to ensure comfort 

and with a longer hold phase to allow for viscoelastic recovery. Although the overall 

deformation magnitudes are similar to those tested in chapter 7 the individual 

deformations for each dynamic were relatively low (compared to those occurring in 

chapter 7) since the deformation (occurring at ~12 mm/s) was continuously sampled at 

3.3-3.6Hz. 

During each dynamic acquisition motion is allowed to continue during the read-

out. Therefore temporal blurring may cause mild underestimation of the motion. The 

amount of underestimation is related to many factors including the nature of the read-

out and the deformation (speed and directions). The spatial characteristics of SPAMM 

tags correspond with specific peaks in the k-space domain, which define the bulk of the 

deformation information encoded in the tag pattern. However frequency components 

from the whole of the k-space domain contribute to the more detailed local deformation 

information encoded in the tag pattern. Therefore, since the read-out profile order was 

low-high, the latter is acquired towards to the end of the read-out sequence. As such it is 

expected that significant motion features are still acquired towards the end of the read-

out and no compensation of the possible underestimation is required.  
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Figure 8.2 Diagram of the SPAMM pulse sequence and 3D TFE read-out. The 1-1 SPAMM pre-pulse (A) modulates the 
signal followed by a desired time delay (B) after which a 3D volume is acquired (C). The acquisition can be repeated n times 
for each direction. 
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MRI data visualisations: 

Iso-surface of indented state, and a 

selection of 5 evenly spaced slices for each 

image data set 

Scan type 

# dynamics, 

#indentations 

TR/TE (ms) 

Read-out time (ms) 

Field of view (mm),  

Acquisition matrix, # 

slices 

Reconstructed voxel 

size (mm) 

Slice orientation, 

Tag parameters: 

𝑝𝑡 (mm), 𝜃𝑡 (°), 𝜓𝑡 

(°) 

Delay time (ms) 

Phantom imaging 

 

 

1-1 SPAMM 

12, 1 

2.39/1.16 

177 

 

120x120x39 

80x80, 13 

0.93x0.93x1.5 

 

Sagittal 

4, 0.5𝜋, 0 

123 

1-1 SPAMM 

48, 4 

2.38/1.53 

177 

120x120x39 

80x52, 13 

0.93x0.93x1.5 

Transversal 

4, 0,0 

123 

1-1 SPAMM 

48, 4 

2.53/1.28 

177 

120x120x39 

80x52, 13 

0.93x0.93x1.5 

Transversal 

4, 0.5𝜋, 0 

123 

T2-weighted 

2, 1 

2500/638 

10min 

120x120x80 

240x240, 160 

0.47x0.47x0.5 

Sagittal 

N.A. 

N.A. 

Volunteer imaging  

 

 

1-1 SPAMM 

150, 4 

2.45/1.21 

177 

 

100x100x40 

68x52, 10 

0.89x0.89x2 

 

Coronal 

6, 0.5𝜋, 0 

100 

1-1 SPAMM 

150, 4 

2.42/1.19 

177 

120x120x40 

80x60, 10 

0.94x0.94x2 

Transversal 

6, 0,0 

100 

1-1 SPAMM 

150, 4 

2.57/1.30 

177 

100x100x40 

68x52, 10 

0.89x0.89x2 

Transversal 

6, 0.5𝜋, 0 

100 

Table 8-1 The MRI acquisition matrix 

8.2.3  Spatial characteristics of SPAMM tags 

To aid the description of the analysis methods in section 8.2.4  the spatial characteristics 

of SPAMM tags are first briefly discussed. For a more detailed discussion on SPAMM 

tagged MRI the reader is referred to49. SPAMM tagging induces a periodic modulation on 
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the signal profile across the image volume and in the case of 1-1 (first order) SPAMM is 

approximately sinusoidal. Thus an un-deformed tagged image 𝑀𝑡 can roughly be 

expressed as the following type of modulation of a magnitude image 𝑀: 

 𝑀𝑡 ≈ �𝑀 ∙ �𝑚 + 𝐴 ∙ 𝑐𝑜𝑠 �
2𝜋𝑥𝑟
𝑝𝑡

��� 8-1 

Here 𝑝𝑡, 𝑚 and 𝐴 set the spatial tag period (or spacing), mean and amplitude of the 

modulation respectively across the direction 𝑥𝑟. Throughout this chapter tag 

modulations are expressed along 𝑥𝑟 belonging to the coordinates �𝑥𝑟,𝑦𝑟 , 𝑧𝑟� formed 

following rotation of (𝑥, 𝑦, 𝑧), expressed in a regular Cartesian coordinate system:  

 �𝑥𝑟,𝑦𝑟 , 𝑧𝑟� = 𝑅𝑡 ∙ (𝑥,𝑦, 𝑧) 8-2 

Where 𝑅𝑡 represents the rotation matrix: 

 𝑅𝑡 = �
𝑐𝑜𝑠(𝜃𝑡) 0 𝑐𝑜𝑠(𝜃𝑡)

0 1 0
−𝑠𝑖𝑛(𝜃𝑡) 0 𝑠𝑖𝑛(𝜃𝑡)

� �
𝑐𝑜𝑠(𝜓𝑡) −𝑠𝑖𝑛(𝜓𝑡) 0
𝑠𝑖𝑛(𝜓𝑡) 𝑐𝑜𝑠(𝜓𝑡) 0

0 0 1
� 8-3 

expressed using the Euler angles (𝜃𝑡 ,𝜓𝑡) which define an x-axis and z-axis rotation 

consecutively. The initial and un-deformed tag orientation and period are set during 

scanning. In the current study three mutually orthogonal SPAMM directions were 

applied and their orientation and frequency characteristics in the above notation are 

presented in Table 8-1. 

For each image data set a local Cartesian coordinate system (𝑥, 𝑦, 𝑧) is defined which 

is aligned with its image axes (voxel row, column and slice directions). The field-of-view 

location and orientation which are set during scanning determine the local coordinate 

system’s origin location and axes orientations. Local coordinate systems thus vary for 

each image data set and generally do not coincide with the overall scanner coordinate 

system (based on bore axis and perpendicular directions). The tag orientation parameters 

(𝜃𝑡,𝜓𝑡) are defined with respect to the local (not overall scanner) coordinate system. Thus 

for two image sets with orthogonal tag features in space (the overall scanner coordinate 

system) the respective tag orientation parameters (𝜃𝑡,𝜓𝑡) may be equivalent (Table 8-1) 

as long as the set field-of-view orientations are mutually orthogonal. Although 

throughout the work presented here computations are mainly performed in the overall 

scanner coordinate system the methods and results are presented in local coordinates 

systems for clarity as features may be oblique with respect to the global scanner 

coordinate system.  
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Although an un-deformed tagged image will have the features discussed above, tissue 

deformation causes them to vary spatially depending on the nature of the deformation 

(e.g. local orthogonal tension or compression will increase or decrease 𝑝𝑡 respectively and 

bending will locally perturb 𝜃𝑡 and 𝜓𝑡). However this can be taken into account during 

analysis and the periodic nature will remain advantageous in segmentation as will be 

discussed in section 8.2.4.1 . In addition field inhomogeneity and local material property 

differences may cause the tag features to be non-planar prior to the onset of 

deformation. As such for the current study dynamics acquired in the absence of motion 

were used as the reference state.  

The extrema (maxima and minima) of the periodic modulation are here referred to as 

tags or tag features and surfaces fitted to them as tag surfaces. An intersection point for a 

tag surface triplet is referred to as a tag point. In order to derive deformation the current 

study applies segmentation of the extrema and tracking of mutually orthogonal tag 

feature derived tag points. This leads to a trackable grid of tissue points with a 𝑝𝑡
2

 mm 

spacing (2x2x2 mm and 3x3x3 mm for the phantom and volunteer data respectively).  

8.2.4  Deriving tissue deformation from the SPAMM tagged 

MRI data 

In order to derive full 3D dynamic soft tissue deformation from the continuous dynamic 

SPAMM tagged MRI data a post-processing framework was created and implemented 

using MATLAB (7.8 R2009a The Mathworks Inc., Natick, MA). Magnitude MRI data was 

imported and normalized for each dynamic and post-processing was performed in the 

following 5 steps:  

1) Gabor filter analysis: The goal of this analysis step is a) to derive (filtered) image data 

sets which will aid in the successful segmentation of tags, and b) to derive per voxel tag 

surface normal orientations which will aid the surface fitting methods presented.  

2) Tag feature segmentation: The goal of this analysis step is to segment and separately 

group tags based on the Gabor image data sets.  

3) Orthogonal weighted-mean surface fitting: Using the per voxel tag orientations estimated 

from the Gabor filter bank a triangulated surface description is created where surface 

points are derived using orthogonal weighted means.  
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4) Tag surface intersection determination: Using the triangulated surface descriptions tag 

intersection points from the three mutually orthogonal directions are derived producing 

the tissue points trackable over time.  

5) Derivation of displacement fields: This analysis step produces the dynamic and 

cumulative displacement fields.  

 

8.2.4.1  Gabor Filter Analysis 

Due to the specific spatial characteristics of SPAMM tags (discussed in section 8.2.3 ) 

they can be enhanced using a filter which shares these characteristics, the Gabor filter270 

(see Figure 8.3A-B). A Gabor filter is a wavelet constructed by modulating a Gaussian 

envelope with a harmonic function (Figure 8.3A and B visualize a 1D and 3D example). 

For the current study magnitude SPAMM tagged MRI data is used and is analysed using 

the following type of 3D Gabor filter: 

 𝐺�𝑥𝑟 ,𝑦𝑟 , 𝑧𝑟 ,𝜎𝑝,𝜎𝑠,𝑝𝑔� = 𝑒
−12��

𝑥𝑟
𝜎𝑝
�
2
+�𝑦𝑟𝜎𝑠

�
2
+�𝑧𝑟𝜎𝑠

�
2
�
∙ �±𝑐𝑜𝑠 �

2𝜋𝑥𝑟
𝑝𝑔

�� 8-4 

Here 𝑝𝑔is the central period of the harmonic modulation and the parameters 

𝜎𝑝and 𝜎𝑠 define the size of the Gabor filter since they represent the perpendicular, and 

within-tag surface standard deviations respectively for the ellipsoidal Gaussian envelope. 

The ± denotes alteration of sign when tracking of the maxima (+) or minima (-) is of 

interest. Analogous to the equations and notation introduced in section 8.2.3  the 

modulation acts along the 𝑥𝑟 direction in the coordinate system �𝑥𝑟,𝑦𝑟 , 𝑧𝑟� formed 

following rotation of the system (𝑥,𝑦, 𝑧) with a rotation matrix defined using the Gabor 

angles �𝜃𝑔,𝜓𝑔�. Given its particular frequency, size and orientation, convolution with the 

Gabor filter will produce an image where features that locally resemble its appearance are 

amplified while others are suppressed. However, as discussed in section 8.2.3 , motion 

and deformation results in locally varying tag frequency and orientation. Therefore a 

common approach219, 271-273 is to employ an array or bank of filters, all with different 

spatial and frequency characteristics. A single filtered image can then be reconstructed by 

taking the maximum response of all filters for each voxel. For computational efficiency all 

convolutions were computed as: 

 𝑀𝑓 = ℱ−1�ℱ{𝑀𝑡} ∙ ℱ{𝐺}� 8-5 
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Here 𝑀𝑓represents the filtered image and ℱ{ } and ℱ−1{ }  denote the Fourier and 

inverse Fourier transform respectively.  

It is important to note that the choice of the Gabor parameters can affect the 

apparent deformation derived. For instance the standard deviations set the amount of 

blurring in their respective directions which might cause undesired averaging effects on 

the deformation. Therefore for the filter bank used 𝜎𝑝 was set at 
𝑝𝑔
3

. Hence in the 

direction orthogonal to the modulation the filters only act on a central and its two 

directly neighbouring extrema. For a visualisation of a similarly confined 1D Gabor 

wavelet see Figure 8.3A. The within-tag-surface standard deviation 𝜎𝑠 sets the amount of 

averaging across the surface (e.g. size of disks in Figure 8.3B) and large values will have a 

straightening effect on the tag shape while smaller values leave its original shape and 

detail intact. Using large standard deviations effectively has a smoothening and 

regularisation effect not only on the images, but also on the derived deformation. This 

however is desirable for segmentation as the effects of noise are suppressed allowing easy 

separation of more blur-scale invariant features such as tags. To harness this benefit 

without over-averaging the deformation the Gabor analysis presented here is split into 

two parts: a) Gabor scale-space filtering, and b) Gabor Filter Bank analysis. The former is 

only used as an aid in the separation and segmentation of tags while the latter is used for 

two purposes: a) Enhancement of tag appearance, b) Assessment of local tag orientation. 

The two types are schematically illustrated in Figure 8.4 and the parameters used are 

specified in Table 8-2.  

For the Gabor scale-space the orientation and central period were held constant 

while for both the perpendicular and within-surface standard deviations a scale-path or 

range was specified going from 𝑝𝑡 to 𝑝𝑡
3

 in 6 scale steps. For each scale-space filter a 

separate image was formulated leading to 6 scale-space images sets for each extrema (e.g. 

Figure 8.5B-C).  

For the Gabor filter bank however the filter orientation and central frequency 

were varied across 27 filter combinations. The within-surface standard deviation was 

held constant while the perpendicular standard deviation was constrained 
𝑝𝑔
3

 such that 

the filter design of Figure 8.3A is maintained. The maximum filter response (in the image 

domain) was used for each voxel producing two filtered image sets, one for each extrema 

(e.g. the maxima in Figure 8.5D). However the specific Gabor filter orientation that 
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produced the maximum response was also stored for each voxel as this is an estimate of 

the local tag surface orientation and can be used in surface fitting. Specifically it provides 

an estimate of the local surface normal vector 𝐧𝐬 since:  

 𝐧𝐬 = �
cos �𝜃𝑔�cos �𝜓𝑔�

sin �𝜓𝑔�
−𝑠𝑖𝑛 �𝜃𝑔�cos �𝜓𝑔�

� 8-6 

The surface normal estimates are only appropriate for locations that resemble the filter 

such as the central voxels for the tag extrema. The surface normal orientations are thus 

only used for these voxels.  

For each extrema type the Gabor filter analysis produced: 6 Gabor scale-space 

image sets (going from most to least blurred in 6 steps), a Gabor filter-bank optimized 

image set, and a surface normal estimation data set.  

 

 

 

 

  

Figure 8.3 1D representation of a Gabor wavelet (solid) 
composed using multiplication of Gaussian (dashed) with 
harmonic function (dashed-dotted) (A), 3D visualisation of 
Gabor wavelet showing 2D mid-slice and iso-surfaces (B).  

Figure 8.4 Schematic representation of the 
Gabor scale-space (A) and Gabor filter bank (B). 
Circle centre distance from origin, circle radius 
and location illustrate the Gabor central period, 
Gaussian envelope size and orientation 
respectively.  
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Gabor filter 

set type 

x-axis tilt  

 𝜽𝒈 (°) 

z-axis tilt  

 𝝍𝒈 (°) 

Central 

period 𝒑𝒈 

(mm) 

Perpendicula

r standard 

deviation 

𝝈𝒑 (mm) 

Within surface standard deviation 

𝝈𝒔 (mm) 

Gabor scale-

space filters 

(6 scale steps) 

𝜃𝑡 𝜓𝑡 𝑝𝑡 𝑝𝑡 →
𝑝𝑡
3  𝑝𝑡 →

𝑝𝑡
3  

Gabor filter 

bank 

(all 27 

combinations) 

3 variations: 

 𝜃𝑡 − 20 

 𝜃𝑡 

 𝜃𝑡 + 20 

3 variations: 

 𝜓𝑡 − 20 

 𝜓𝑡 

 𝜓𝑡 + 20 

3 variations: 

 𝑝𝑡 − 1 

 𝑝𝑡 

 𝑝𝑡 + 1 

𝑝𝑔
3  

𝑝𝑡
3  

Table 8-2 The Gabor filter designs  

 

8.2.4.2  Tag feature segmentation 

The first step in tag segmentation is to produce logic images reflecting whether voxels in 

all the Gabor-filtered image sets are potential tag voxels. An appropriate and adaptive 

threshold 𝑇𝑡𝑎𝑔 was half the mean of all voxels within a set with an intensity higher than 0 

(i.e. all significantly positively enhanced voxels, since features dissimilar or opposite in 

Figure 8.5 Image data that is unfiltered (A), and Gabor scale-space filtered images for the most blurred step (B) and an 
intermediate step (C) and Gabor filter-bank enhanced images (D). Maxima shown on the left, minima on the right. The scale-
space image show separate and straightened tag features while the filter-bank images maintain tag feature curvature.  
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nature to the Gabor filter become reduced or negative). The logic images 𝐿𝑡𝑎𝑔 for each 

Gabor image set 𝑀𝑓 were derived using:  

 
𝐿𝑡𝑎𝑔 = �

1 𝑀𝑓 ≥ 𝑇𝑡𝑎𝑔
0 𝑀𝑓 < 𝑇𝑡𝑎𝑔

 𝑇𝑡𝑎𝑔 = ∑𝑀ℎ
2∑𝐿ℎ

 𝑀ℎ = �
𝑀𝑓 𝑀𝑓 > 0
0 𝑀𝑓 ≤ 0

 𝐿ℎ = �
1 𝑀𝑓 > 0
0 𝑀𝑓 ≤ 0 

8-7 

Then a simple grouping algorithm was implemented whereby all potential voxels that are 

touching each other with one of their 6 faces are grouped together to form a tag feature. 

The initial tag features are formulated by grouping in the most blurred Gabor filtered 

image (Figure 8.5B and Figure 8.6A) since here all tag features are appropriately 

separated. As Figure 8.6 demonstrates the threshold 𝑇𝑡𝑎𝑔 segments the tag features with 

a thickness of about 𝑝𝑡
2

. Next the shape of each tag feature is adjusted using the following 

step wise process repeated for each less blurred Gabor scale-space image and finally also 

the Gabor filter-bank optimised image (thus a total of 7 tag feature adjustment steps):  

1) An orthogonal weighted average (perpendicular to tag feature orientation) of the 

voxel coordinates of the current tag feature shape is taken to provide reference 

coordinates of the voxels at the centre of the tag (leaving the tag feature 1 voxel 

thick).  

2) The tag feature shape for the next image set is then defined as all voxels that are 

classified as potential tag voxels and are touching one of the central tag voxels 

from the previous step (this regrows the tag features to their normal 𝑝𝑡
2

 thickness, 

this step can be repeated for tags with large 𝑝𝑡 relative to the voxel size). 

After the final step the tag shape has also been adjusted to the Gabor filter bank 

enhanced image which maintains features of deformation (Fig 5B). The segmentation 

also assigns each tag feature with a tag number enabling indexing of tag intersection 

points (section 8.2.4.4 ).  
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8.2.4.3   Orthogonal weighted-mean surface fitting 

A simple yet flexible surface fitting approach was derived as it can fit surfaces of any 

orientation and severe deformation and voids due to shearing or gaps. The first step in 

the surface fitting is the specification of orthogonal masks (see Figure 8.7). These are 

constructed using the per voxel derived surface normal 𝐧𝐬 (see equation 8-6). For each 

tag voxel with orthogonal neighbours (i.e lying at the centre of a tag feature) and voxel 

coordinates 𝐩𝐯, the orthogonal mask coordinates 𝐕𝐦 are defined as the collection of all 

voxels along the line (see arrows in Figure 8.7): 

 {(𝐩𝐯 − 𝐧𝐬ℎ𝑚), (𝐩𝐯 + 𝐧𝐬ℎ𝑚)} 8-8 

The parameter ℎ𝑚 is the mask height here set to 𝑝𝑡
4

. For each tag voxel with orthogonal 

neighbors a tag surface point 𝐩𝐬 can be derived using the orthogonal weighted average:  

 𝐩𝐬 =
∑𝐕𝐦𝐖𝐦
∑𝐖𝐦

 8-9 

where 𝐖𝐦 are the orthogonal mask weights linearly derived from the image signal 

intensities. When applied to all voxels with orthogonal neighbours this produces a set of 

points describing the surface where each point location was determined depending only 

on its local orthogonal neighbourhood. As such sharp transitions, gaps and shear 

interfaces are permissible and do not require special treatment. The next step is to 

assume a type of connectivity across these points to form the surface. This is done 

through a simple Delaunay triangulation whereby gaps and sheared interfaces are 

accounted for via removal of triangles with edge lengths longer than twice the largest 

voxel dimension of the image set (see gaps in Figure 8.8). Finally to suppress the effects 

of noise and to reduce the stepped appearance induced due to the discrete nature of 

voxels, the surfaces are mildly smoothened using surface smoothening (HC-Laplacian 

Figure 8.6 Segmented tag maxima features shown as voxels (shaded according to tag number) in the most blurred (A) and 
final Gabor bank filtered state (B). Axis units are in mm. 
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smoothening274 ensuring shape shrinkage is limited). The smoothening is based only on 

local connected neighbourhoods (Laplacian umbrella’s) and does not occur across gaps 

and sheared interfaces and thus such sharp transitions are appropriately maintained.   

 

 

 

8.2.4.4   Tag surface intersection determination 

Since the prior analysis step produced triangulated surfaces a logical and simple method 

for obtaining tag surface intersections is to compute triangle intersections. Each 

intersection point is uniquely defined by the intersection of a triangle triplet. If each 

surface contains 𝑛 triangles then 𝑛3 triplet combinations exist. Thus for computational 

efficiency the number of candidate triangles is first reduced. This is done by focusing the 

analysis only on those triangles that are closer than the longest occurring triangle edge 

length (based on nearest vertex search of Delaunay tessellation). For each surface this 

reduces the candidate triangles to only those located near a possible intersection point. 

The triangle intersection calculation is based on vector geometry. The intersection point 

𝐩 for three planes (triangles) is defined by: 

Figure 8.7 Schematic visualisation of a tag surface, two tag 
voxel locations 𝒑𝒗 and associated orthogonal masks 𝑽𝒎.  

Figure 8.8 Segmented surfaces for two of the phantom data sets. Note the triangulated appearance of the surfaces in and 
how sheared interfaces and gaps e.g. at the core location are dealt with (A) and how curvature (due to indentation in Y 
direction) is captured (B). Axis units are in mm.  
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 𝐩 =
(𝐱𝟏 ∙ 𝐧𝟏)(𝐧𝟐 × 𝐧𝟑) + (𝐱𝟐 ∙ 𝐧𝟐)(𝐧𝟑 × 𝐧𝟏) + (𝐱𝟑 ∙ 𝐧𝟑)(𝐧𝟏 × 𝐧𝟐)

det( [𝐱𝟏 𝐱𝟐 𝐱𝟑] )
 8-10 

where 𝐱𝟏, 𝐱𝟐 and 𝐱𝟑 are arbitrary points on each plane and 𝐧𝟏, 𝐧𝟐 and 𝐧𝟑 are the face-

normals. Next the validity of the intersection point (if existent) is determined by 

checking whether it is found either inside and/or on each of the triangle faces using: 

 

𝐿𝑜𝑛 = �1 ��𝐜𝟏 = 0 ∨�𝐜𝟐 = 0 ∨�𝐜𝟑 = 0� ∧ ��𝐜𝟏 ≥ 0 ∨�𝐜𝟐 ≥ 0 ∨�𝐜𝟑 ≥ 0�

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝐜𝟏 = (𝐯𝟐 − 𝐯𝟏) × (𝐩 − 𝐯𝟏), 𝐜𝟐 = (𝐯𝟐 − 𝐯𝟑) × (𝐩 − 𝐯𝟐), 𝐜𝟑 = (𝐯𝟑 − 𝐯𝟏) × (𝐩 − 𝐯𝟑) 

 

𝐿𝑖𝑛 = �1 𝑑1 = 1 ∧ 𝑑2 = 1 ∧ 𝑑3 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑑1 = 𝐜𝟏 ∙ 𝐧, 𝑑2 = 𝐜𝟐 ∙ 𝐧, 𝑑3 = 𝐜𝟑 ∙ 𝐧 

 

𝐿𝑣 = �1 𝐿𝑖𝑛 = 1 ∨ 𝐿𝑜𝑛 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

8-11 

Here 𝐯𝐢 represent the triangle vertex vectors and 𝐧 its face-normal. An intersection point 

𝐩 is valid (𝐿𝑣 = 1) if it is inside (𝐿𝑖𝑛 = 1) or on (𝐿𝑜𝑛=1) each of the triangles. 

Since the tag feature segmentation provides numbered indices for each tag surface, 

each intersection point, being an intersection point of a tag surface triplet for a certain 

dynamic, is thus uniquely specified by a 4 digit tag-index (𝑇1,𝑇2,𝑇3,𝑑), where 𝑑 is the 

dynamic number and 𝑇𝑖 the tag numbers for each direction. Thus each tag point position 

𝐩 was stored in the tag point array 𝐏(𝑇1,𝑇2,𝑇3,𝑑). This type of indexing avoids the need 

for tag intersection point tracking methods (e.g. point matching algorithms275). 

 

8.2.4.5  Derivation of dynamic deformation 

In the current study deformation is measured following tracking of intersections of tag 

surfaces in three sets of mutually orthogonal tag surfaces (although other types of 

intersecting oblique orientations are permissible and would not require alteration of the 

methods presented here). Since field in-homogeneities may cause the initial tag shape to 

be non-planar displacement is defined with respect to tag points derived from tag-

surfaces segmented for an initial configuration. The displacement array 𝐔 is thus defined 

by: 

 𝐔(𝑇1,𝑇2,𝑇3,𝑑𝑖) = 𝐏(𝑇1,𝑇2,𝑇3,𝑑𝑖) − 𝐏(𝑇1,𝑇2,𝑇3,𝑑0) 8-12 

where 𝑑0 is the appropriate reference or initial dynamic for the dynamic 𝑑𝑖. These per 

dynamic displacements are referred to as the individual displacement fields. The above is 
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schematically illustrated in Figure 8.9, as the tissue deforms the initial tags and 

intersections (light gray in Figure 8.9A) obtain a new location (dark gray in Figure 8.9A). 

This produces the first individual dynamic displacement field (green vectors in Figure 

8.9A). For each consecutive dynamic the deformed tissue is re-tagged (hence its initial 

coordinates may represent the same spatial coordinates but not the same tissue points as 

the previous dynamic) and undergoes an additional displacement (red vectors in Figure 

8.9B).  

Figure 8.9C-D shows a schematic derivation of the so called cumulative dynamic 

displacement. The deformed state of the first (or prior) dynamic (light grey in Figure 

8.9C) is mapped into the displacement field of the second (or current) dynamic 

(transparent vectors in Figure 8.9C). Through (natural neighbour and 3D Delaunay 

tessellation based) interpolation of the current displacement field onto the deformed 

state of the prior dynamic, it is possible to derive the displacement that the initial tissue 

points underwent during the second dynamic (dotted arrows in Figure 8.9C). The 

continuous mapping of the previous state into the current allows for the construction of 

a continuous cumulative displacement path over time (consecutive green and red arrows 

in Figure 8.9D).  

Each individual dynamic displacement measurement is derived following a single 

initial and a single deformed state hence possible displacement measurement errors are a 

function of two measurements. For the cumulative dynamic displacement however each 

displacement field is a function of all past measurements and thus measurement errors 

may propagate. A common approach is to apply regularization techniques and 

assumptions on the nature of the deformation and underlying constitutive properties. 

However implementation of such assumptions is not of interest to the current study. 

Therefore the approach presented here does not require a priori knowledge of the 

geometry and nature of the deformation and mechanical properties. Therefore 

cumulative displacement is derived using simple natural neighbour interpolation instead.  

For the current study the cumulative displacement measures are required in order 

to derive accuracy measures (e.g. marker displacement prediction, see section 8.2.5 ).  
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8.2.5  Analysis of precision and accuracy 

As shown in Table I continuous dynamic tagging was applied in each direction during 

repeated indentations. Due to the repetitions for each direction a multitude of 

combinations can be made for computation of tag surface intersections and displacement 

fields. In order to limit computational time random data set combinations were chosen 

leading to 6 tag point location sets per dynamic allowing computation of 36 individual 

displacement fields per dynamic. Using the mean of all combinations of individual 

displacement fields a single mean cumulative displacement field was derived. The 

following precision and accuracy measures were evaluated:  

1) Precision of tag point location 

For each dynamic the difference of each tag point location combination (𝑛 = 6) with 

respect to the mean tag point location for that dynamic was calculated. This allowed 

computation and analysis of difference scatter clouds for each dynamic.  

2) Precision of individual dynamic displacement 

For each dynamic the deviation of displacement magnitude of each individual 

displacement field combination (𝑛 = 36) with respect to the average individual 

displacement magnitude was calculated.  

3) Accuracy of cumulative dynamic displacement 

Since deformation is tracked up to the end of the retraction phase of the motion cycle 

differences between the initial coordinates and the final locations of the total cumulative 

displacement are a measure of accuracy both in the phantom and in-vivo.  

Figure 8.9 Derivation of dynamic displacement (A-B). Derivation of 
cumulative dynamic displacement (C-D).  
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4) Accuracy of displacement compared to marker tracking in the phantom.  

Using the mean cumulative displacement of the indentation phase of the motion cycle 

the marker locations in the deformed state can be predicted and compared to the real 

measured marker locations276. Comparison of true independently measured and 

predicted marker displacement marker thus yields a measure of the accuracy of the 

methods applied to the phantom.  

Statistical analysis was performed using fitting of Gaussian models  (see Matlab 

gmdistribution function and269) to the various difference measures. Each overall mean was 

defined as the root mean square (RMS) of the means in the X, Y and Z directions while 

the overall standard deviations are defined as the square root of the mean Eigen-value of 

the co-variance matrix. In addition RMS values were computed where appropriate 

allowing for comparison to values in the literature.  

 

8.3 Results  

8.3.1  Precision of tag point location 

For both the phantom and volunteer data 6 tag point location sets were derived for each 

dynamic and compared to the mean tag point locations for each dynamic. Figure 8.10A-B 

below shows the difference scatter plots for all tag points (all combinations and for all 

dynamics) where is n=449495 and n=232391 for the phantom and volunteer data 

respectively.  

For the phantom data the standard deviation was 44 µm (RMS of difference 

magnitudes 76 µm). The largest tag point location difference was 0.96 mm. Such outliers 

are however rare as differences larger than 0.28 mm were found in less than 1 % of tag 

points. Similarly for the human data the standard deviation was 92 µm (RMS of 

difference magnitudes 160 µm) and the largest tag point location difference found was 

1.73 mm. However, again such outliers are however rare since differences over 0.4 mm 

were found in less than 1 % of tag points.  

Figure 8.10C-D demonstrates that no clear relationship between the standard 

deviations and the respective dynamic exists for either the phantom of the volunteer 

data. 



  - 188 -

 

 

  

Figure 8.10 Tag point location difference scatter plots and circumspheres for all dynamics (A-B). Points shaded according to 
difference magnitude. In addition the means (dotted curve) and standard deviations (blocked curve) of the differences as a 
function of dynamic number (C-D). Images on the left are for the phantom and on the right are for the volunteer. All units 
are in mm. 
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8.3.2  Precision of individual dynamic displacement 

For both the phantom and volunteer data a total of 36 individual displacement fields 

(Figure 8.11) were derived for each dynamic and compared to the mean individual 

displacement for each dynamic. For the phantom data the overall standard deviation for 

the displacement magnitude differences was 61 µm (n=2567001). The largest difference 

found was 0.87 mm (outliers over 0.24 mm occurred in less than 1 % of cases). The 

standard deviation was 91 µm for the volunteer data (n=1388343). The largest difference 

found was 1.44 mm (outliers over 0.29 mm occurred in less than 1 % of cases).  

Similar to the tag-point precision results no relationship across dynamics was 

observed. In addition as the scatter plots and distributions in Figure 8.12 demonstrate, 

no relationship with displacement magnitude was observed as the standard deviation did 

not vary significantly with increasing displacements.  

 

Figure 8.11 One of the individual displacement fields during the indentation phase for 
the phantom (A) and volunteer data (B). Displacement vectors are shown as arrows 
shaded towards magnitude. All units are in mm. 
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8.3.3  Accuracy of cumulative dynamic displacement 

Through analysis of the entire deformation cycle (indentation, hold and retraction 

phase) a complete cumulative displacement vector path could be reconstructed (Figure 

8.13) for both the phantom and volunteer data. The complex nature of the deformation 

induced by the indentation is evident from the curved motion paths observed. For both 

the phantom and volunteer data sets the differences between the start and end locations 

of the motion paths were derived in order to calculate measures of accuracy of the 

cumulative displacement measurement. Figure 8.13D illustrates a selection of motions 

paths. For both the phantom and volunteer data it was found that differences were 

smallest for locations where displacement vectors maintain sufficient neighbours 

throughout all dynamics (such as region 1 in Figure 8.13D) while largest errors were 

Figure 8.12 Normalized distributions (grey curves and shaded surface) of the displacement magnitude differences (for all 
combinations and all dynamics) as a function of the mean displacement magnitude for the phantom (A) and human 
volunteer data (B). The XY-planes of the graphs show scatter-plots (black dots) for all differences. All units are in mm. 
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found at the periphery of the displacement field (e.g. region 2 Figure 8.13D) where 

natural neighbour interpolation used for computation of the cumulative displacement is 

more limited. Displacement vectors at the periphery were therefore not included in the 

further analysis. As is evident from the difference scatter plots in Figure 8.14 overall a 

good agreement was found with mean differences and standard deviations of 0.44 mm 

and 0.59 mm for the phantom (combination of 11 dynamics) and 0.40 mm and 0.73 mm 

for the human data (combination of 37 dynamics) respectively. As was mentioned in 

section 8.2.4.5  constraint free derivation of cumulative displacement may be sensitive to 

error propagation. Hence some large differences were found with maxima of 2.8 mm and 

3.5 mm respectively for the phantom and volunteer data. As shown in Figure 8.15 no 

significant relationship with (cumulative) displacement magnitude was found and the 

mean of the differences did not vary significantly with displacement. However for the 

phantom the mean of the difference was lower for displacement magnitudes under 5 mm 

but remain constant for larger displacements.  

 

Figure 8.13 The cumulative displacement for the phantom (A-B) and volunteer data (C-D). Vector fields are shown and 
individual arrows shaded towards magnitude “Slice” views are shown in B and D. In addition a selection of motion paths are 
illustrated (bottom of D) to show results for locations embedded in (D-1) or on the edge of the displacement field (D-2). All 
units are in mm. 
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8.3.4  Accuracy of displacement in the phantom 

Figure 8.16A shows the average cumulative displacement for the indentation part of the 

motion cycle and marker locations (n=15) within the field of view for the initial and final 

Figure 8.14 Scatter plots and their circumsphere for the cumulative displacement difference with respect to the initial for the 
phantom (A) and volunteer (B) data. Points are shaded according to difference magnitude. All units are in mm. 
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deformed configuration. Using the average displacement field the marker locations in the 

deformed configuration were predicted (red in Figure 8.16A) and could be compared to 

the true independently measured locations. The difference between the predicted marker 

displacement and the actual marker displacement provides a measure of the accuracy of 

the displacement measurement. The differences showed a mean of 0.35 mm and a 

standard deviation of 0.63 mm (X,Y and Z RMS values were 0.59, 1.02 and 0.41 mm 

respectively). The difference demonstrated no relationship with displacement magnitude. 

The largest difference found was 2.65 mm for a marker close to the edge of the 

displacement field, where the interpolation based computation of the cumulative 

displacement and marker prediction is based on a relatively limited number of points.  

 
 

8.4 Discussion 
A novel SPAMM tagged MRI and fully automatic post-processing framework for the 

measurement of complex 3D dynamic soft tissue deformation following just three 
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repeated motion cycles was presented. The techniques presented demonstrate dynamic 

measurement of complex 3D soft tissue deformation at sub-voxel accuracy and precision 

and were validated for 3.3-3.6 Hz sampling of deformation speeds up to 12 mm/s.  

A fully automatic post-processing framework is presented featuring the novel 

implementation of Gabor scale-space and filter bank assisted segmentation. In addition 

triangulated surfaces were fitted to the segmented tag extrema aided by Gabor filter bank 

derived estimates of local surface normal directions. Finally a dense grid (2x2x2 mm and 

3x3x3 mm for the phantom and volunteer respectively) of tag points could be tracked 

following computation of tag surface triplet triangle intersections. Despite the fact that 

the post-processing methods are conceptually simple they are highly flexible as they 

enable tracking of tag features at any oblique orientation and undergoing complex 

deformations.  

In the current study deformation is derived using 3 orthogonal SPAMM data sets 

and three repeated motion cycles only. This is a significant improvement over current 

methods involving many repetitions (e.g. in the order of 16 per slice50). Besides the 

reduction in scan time the presented methods have the potential to expand the 

application of SPAMM to the study of less periodic motions and motions which are (e.g. 

clinically) difficult to repeat. In this study the techniques are applied for indentation 

based biomechanical tissue investigation where the minimization to three motion cycles 

ensured volunteer comfort and avoided repeatability issues associated with tissue 

preconditioning.  

The soft tissue deformation measurement techniques were validated against 

marker tracking in a silicone gel phantom and evaluated in-vivo for the upper arm. Sub-

voxel accuracy and precision levels were found. Below a comparison to literature is 

presented however, comparison is challenging since deformation modes, speeds, 

magnitudes and validation measures vary considerably. Recently Chen et al. 2010219 

presented tagged MRI methods for cardiac deformation measurement whereby 

deformation was derived from the image data using Gabor filter banks, point matching 

and deformable models. Evaluation of their methods based a numerical phantom showed 

RMS displacement errors of 0.15~0.37 mm. Xu et al. 2010226 derived deformation from 

tagged MRI using optical flow methods and presented evaluation of the methods using 

simulated deformations showing X, Y and Z direction RMS errors of 0.43 mm, 0.45 mm 

and 1 mm respectively. In our previous work 238 where a similar validation set-up was 
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used for static deformation measurement, comparison to marker tracking in a silicone gel 

phantom showed a mean difference of 72 µm and a standard deviation of 0.29 mm. In 

addition displacement magnitude precision was analysed and the standard deviation for 

displacement differences with respect to overall mean displacement was 72 µm for the 

phantom and 169 µm in-vivo. The accuracy and precision levels presented in the current 

study are of a similar magnitude to those in the literature. For instance for the current 

study differences between true and predicted marker locations showed a mean of 0.35 

mm and a standard deviation of 0.63 mm.  

Since a major application of the work presented in this chapter is the non-invasive 

analysis of tissue mechanical properties a constraint free (no assumptions on the nature 

of the mechanical properties or deformation) methodology for the computation of 

cumulative displacement was employed. Methods for the derivation of cumulative 

displacement from individual displacement fields often involve deformable models219 and 

are akin to non-rigid registration methods (e.g. related to deformable image registration 

and finite element analysis277). However these approaches require a priori knowledge and 

assumptions on the nature of the deformation and/or the mechanical properties of the 

tissue and were thus not of interest to the current study. In cases where the mechanical 

behaviour and deformation of tissue is well understood the implementation of these 

methods (combined with the individual displacement measurements presented) may 

provide an improvement on the accuracy achieved with the constraint free derivation of 

cumulative displacement presented here.  

Some limitations need to be addressed. Due to the dynamic nature of the methods 

presented here motion occurring during the read-out is inevitable. This has a temporal 

averaging effect on the appearance of the tag features and as such may lead to 

underestimation of deformation. This effect is however deemed small especially given the 

presented results.  

The current study presents the validation of the measurement of complex 

dynamic 3D soft tissue deformation for ~3.3 Hz sampling of a 18 mm indentation (and 

retraction) at speeds of 12 mm/s leading to individual dynamic displacement magnitudes 

of up to 4 mm. Although the validation of higher speeds is not presented here the 

techniques are not limited to deformation speeds of 12 mm/s as the delay (which is user 

defined) and read-out (which depends on resolution but also scanner hardware) times can 

be adjusted for higher speeds e.g. to obtain similar displacements of 4mm in individual 
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dynamics. Hence the scanning protocol can be customized to the expected deformation 

speeds and magnitudes.  

Since one of the future applications is musculoskeletal in nature the current study 

employs two flexible musculoskeletal coils and volunteer position constraints resulted in 

a suboptimal positioning at the edge of the bore. More advanced coil types and 

positioning may thus yield better results.  

Currently three motion cycles are required for the computation of 3D 

deformation. Thus the methods presented are limited to the analysis of motion types 

which allow such repeatability reliably. For the application of computer controlled 

indentation presented such motions are easily and reliably repeated and synchronized 

using motion triggering. However un-triggered motion analysis of repeated motions can 

also be facilitated since temporal synchronization of the three SPAMM directions can be 

achieved in post-processing. Ideally however 3D deformation should be derivable from 

unrepeated motion. This would enable the imaging of non-periodic arbitrary motion  (e.g. 

bowel motion267). Although non-segmented acquisitions of grid tagged volumes 

(simultaneous tag modulation tagging in 3 mutually orthogonal directions in a single 

image volume) is possible, the triple saturation pattern significantly reduces signal 

intensities hindering analysis of deformation at present.  

Future work will focus on the combination of the current techniques with inverse 

finite element analysis for the analysis of the mechanical properties of human skeletal 

muscle tissue.  

 

8.5 Conclusions 
Novel SPAMM tagged MRI based methods are presented for high speed measurement of 

complex dynamic 3D soft tissue deformation following just 3 motion cycles. Deformation 

is derived using a novel and fully automatic Gabor filtering based post-processing 

framework. The techniques were validated using marker tracking in a silicone gel soft 

tissue phantom for indentation induced dynamic deformation measurement. In addition 

in-vivo evaluation for the measurement of indentation induced deformation of the biceps 

region of the upper arm was performed. The techniques presented demonstrate dynamic 

measurement of complex 3D soft tissue deformation at sub-voxel accuracy and precision 

and were validated for 3.3-3.6 Hz sampling of deformation speeds up to 12 mm/s. As 
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only 3 deformation cycles are required the techniques presented are to the authors’ 

knowledge the fastest currently available for the derivation of 3D dynamic deformation. 

This allows for the expansion of the SPAMM tagged MRI based measurement of dynamic 

deformation to cases where motion is less repeatable or where large numbers of 

repetitions are not clinically feasible. 
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STUDY VI 
 
Constitutive Modelling of Skeletal 
Muscle Tissue 
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8.6 Introduction 
Section 3.2.2 of the Literature review highlighted that skeletal muscle contains a complex 

multi-layered collagen fibre arrangement which may relate to passive anisotropy of 

muscle tissue (see also Figure 8.17 modified from 143). The passive mechanical properties 

of muscle tissue are thus not only a function of longitudinal connective tissue structures 

but also structures oblique to the fibre direction which are often not accounted for in 

constitutive modelling approaches.  

Section 3.3 of the Literature review discussed that mostly the passive mechanical 

are represented as either isotropic or using single (longitudinal) fibre family reinforced 

transverse isotropy models. It was also discussed that these models are often only 

evaluated for longitudinal loading and sometimes also transverse loading. Using uni-axial 

testing at various load angles (0°, 30°, 45°, 60° and 90° were tested) for compression and 

tension respectively Van Loocke et al. 2006 21 and Takaza et al. (unpublished)22 have 

shown that muscle tissue exhibits a complex anisotropic behaviour and also for 

intermediate load angles.  

Since common constitutive modelling approaches have not been evaluated for 

performance for the intermediate load angles, in this study a multiple of constitutive 

models were implemented and evaluated for their suitability to model the non-linear 

elastic and anisotropic behaviour of muscle tissue in tension and compression. First the 

mechanical behaviour of muscle tissue is reviewed presenting visualisation of anisotropy 

landscapes, then constitutive models will be discussed followed by inverse FEA based 

constitutive parameter optimisation. In addition, motivated by the fact that both 

longitudinal and transverse connective tissue contributions are important to the overall 

passive mechanical properties, a novel constitutive law is proposed which accounts for 

multiple fibre orientations and transverse reinforcement.  
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8.7 Methods 
Data processing and visualisation was performed using custom written MATLAB (7.8 

R2009a The Mathworks Inc., Natick, MA) codes. In addition MATLAB based optimisation 

and iterative FEA control software was created. FEA was performed using the freely 

available software FEBio (open source version 1.3.0.1540, Musculoskeletal Research 

Laboratories, The University of Utah, USA). 

8.7.1  The anisotropic and non-linear elastic properties of 

muscle tissue 

As discussed in section 3.3.2  the anisotropic and non-linear elastic properties of skeletal 

muscle tissue where investigated for compression and tension by Van Loocke et al. 200621 

and Takaza et al. (unpublished)22 respectively. Both authors subjected fresh porcine 

skeletal muscle tissue samples to uni-axial unconfined quasi-static loading (strain rate 

0.05% s-1) for load angles of 𝛼=0° (fibre direction), 30°, 45°, 60° and 90° (cross-fibre 

direction), with respect to the fibre direction. A schematic representation of the used 

loading configuration which will also aid discussion of constitutive modelling is shown in 

Figure 8.18. The muscle fibre direction, also termed the longitudinal direction, is defined 

by the vector 𝐚3 oriented at an angle α with respect to the loading axis 𝐞3. The transverse 

direction is defined by the plane described by 𝐚1 and 𝐚2. 
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In section 3.3.2  the quasi-static compression and tension test curves were 

discussed (see Figure 3.10 and Figure 3.15 respectively). Since the anisotropic behaviour 

is a function of both stretch and load orientation it can be represented by a surface. 

Hence to visualise the anisotropic behaviour more clearly periodic surface fits to the 

quasi-static load curves are shown in Figure 8.19. The complex anisotropic behaviour is 

now more clearly visible. Figure 8.20 shows the same surfaces except now the stresses 

have been normalised to the fibre direction loading response. Under the assumption of 

transverse isotropy these surfaces are periodic with load angle e.g. in the sense that the 

anisotropic response for loading at 45° is equivalent to that of -45°. 

For compression (Figure 8.19A and Figure 8.20A), a relative softening behaviour 

is observed for loading at angles between 0°-90° with an apparent minimum around 45°. 

Figure 8.20A shows that the fibre and cross-fibre directions are initially similar and that 

the cross-fibre direction gradually becomes stiffer in relation to the fibre direction. The 

intermediate angle softening is maintained across the loads tested (up to 30% 

compression) however this effect appears to reduce with increasing load. Geometrically 

this may be explainable by a gradual rotation of the fibres with respect the load axis since 

increasing levels of compression cause the fibres to become more orthogonal to the load 

axis, and thus more loaded in tension.  

For tension (Figure 8.19B and Figure 8.20B), as the load angle is rotated from the 

fibre direction the response becomes gradually stiffer and more linear. The relative 

difference effect appears to decrease with increasing load as the fibre direction is more 

non-linear and increases in stiffness with load.  

Figure 8.18. Schematic representation of a cuboid sample showing muscle 
fibre direction 𝒂3 at an angle 𝛼 with respect to the loading axis 𝒆3 
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It appears that the stress response for compression and tension is dramatically different 

as the tensile response appears more than two orders of magnitude higher for all loading 

directions. The term tension-compression non-linearity refers to materials exhibiting 

differences in behaviour for the two loading types. However this generally refers to 

deviations allong a certain loading direction. For instance for tension or compression of 

muscle allong the fibre direction one could model the stiffer reponse in tension due to 
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fibre extension and the softer response in compression due to fibre buckling. Having 

assumed such an approach the tension only fibres would however have the same 

mechanical properties irrespective of how that tension was induced. For instance 

compression induced tensile volumetric deformation. According to the Poisson’s ratios 

derived by Van Loocke et al. 2006 21 (see section 3.3.2.1 ) a transverse compressive 

stretch of 0.7 would induce a fibre direction stretch of almost 1.14. For continuum 

mechanical models assuming fibre reinforcement the magnitude of the associated stress 

contribution is however equivalent irrespective of wether it was a “direct” tension or 

Poisson’s effect induced tension. Hence modelling approaches assuming tension only 

fibres do not elliminate this type of linked tension compression behaviour. Instead such 

models would only present with tension compression non-linearity due to the geometric 

nature of the loading, i.e. allong fibre stretch of 1.3 is associated with a fibre stretch of 

1.3 while transverse compression at a stretch of 0.7 induces a tensile fibre stretch of 1.14. 

Assuming the experimental data are accurate and can complement each other it 

would appear that muscle tissue presents with a “volumetric” type of tension-

compression non-linearity. The nature of this effect in relation to the fibrous connective 

tissue and matrix components are not known. In the current study phenomelogical 

models are formulated and an approach is proposed to allow the material parameters to 

vary depending on mode of loading: tension or compression.  
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8.7.2  Constitutive modelling of non-linear elasticity 

In this study the following hyperelastic constitutive modelling approaches were evaluated 

using inverse FEA based fitting to the experimental tension and compression data 

discussed in the previous section: 1) Isotropic Ogden hyperelastic (ISO), 2) Fibre reinforced 

transversely isotropic Ogden hyperelastic (TISO), 3) Tension compression non-linear 

orthotropic Ogden hyperelastic (TCNL), 4) Ellipsoidal fibre distribution Ogden hyperelastic 
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(EFD) and finally a novel constitutive formulation the 5) Gaussian Modulated Spherical 

Fibre Distribution Ogden hyperelastic (GMSFD). 

The isotropic and ground matrix responses were all equivalently modelled using 

the following decoupled first order Ogden hyperelastic formulation: 

 Ψiso�𝐂�, 𝐽� = Ψdev_iso�𝐂�� + Ψvol_iso(𝐽) 8-13 

Here Ψdev_iso and Ψvol_iso represent the deviatoric and volumetric isotropic response 

respectively (𝐂� = 𝐅�T𝐅� the deviatoric right Cauchy Green Tensor, such that det�𝐂�� = 1 

and 𝐅 = 𝐽
1
3𝑭� the deformation gradient tensor, see section 2.2.10.3 ). Due to the near 

incompressibility of muscle tissue (reported for instance in 21, 22) the volume ratio or the 

Jacobian 𝐽 = det(𝐅) ≈ 1. The isotropic and ground matrix deviatoric contribution is 

defined by: 

 
Ψdev_iso�𝐂�� = Ψdev_iso�𝜆̃1, 𝜆̃2, 𝜆̌3� =

𝜇
𝛼
�𝜆̃1

𝛼 + 𝜆̃2
𝛼 + 𝜆̃3

𝛼 − 3� 

Ψvol_iso(𝐽) =
1
2
𝜅(ln(𝐽)2) 

8-14 

with 𝜇 and 𝛼 the Ogden model material parameters, 𝜅 the bulk modulus and 𝜆̃𝑖 = 𝐽−
1
3𝜆𝑖 

the deviatoric principal stretches. A non-linear ground matrix formulation was 

implemented (rather than the more linear Mooney-Rivlin type formulations often 

implemented) since for compression in the fibre direction (for which theoretically fibres 

are buckling and thus the response is solely due to the ground matrix) the behaviour is 

significantly non-linear. Obviously this isotropic formulation may only capture the 

average response and large deviations may occur depending on the degree of anisotropy. 

These were also quantified for this model.  

For the anisotropic formulations implemented the following strain energy 

function form is used: 

 Ψ�𝐚,𝐂�, 𝑱� = Ψiso�𝐂�, 𝐽� + Ψ𝑓�𝐚,𝐂�� 8-15 

where Ψiso�𝐂�, 𝐽� defines the isotropic ground matrix response (equation 8-14) and 

anisotropy is introduced through the addition of a fibre strain energy term Ψ𝑓�𝐚,𝐂��. The 

latter is a function of the global (muscle) fibre direction specified by the vector 𝐚 and 𝐂�. 

The fibre direction vector 𝐚 is analogous to 𝐚𝟑 in Figure 8.18. 

A common method for modelling transverse isotropy is to superimpose a single 

reinforcing fibre family onto the ground matrix response. For the current study such a 

model was evaluated in the form of a single fibre family reinforced transversely isotropic 
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Ogden hyperelastic (TISO). The following fibre strain energy term Ψ𝑓�𝐚,𝐂�� = Ψ𝑓�𝜆̃𝑓� 

was implemented: 

 Ψ𝑓�𝜆̃𝑓� = �
𝑐1 �𝑒𝑐2(𝜆�𝑓−1) − 1� 𝜆̃𝑓 > 1

0 𝜆̃𝑓 ≤ 1
 8-16 

where 𝑐1 and 𝑐2 are material parameters and 𝜆̃𝑓 = �𝐚 ∙ 𝐂�𝐚 is the deviatoric fibre stretch. 

Since for this type of model fibres only contribute for tensile fibre stretch this 

formulation thus introduces a degree of tension compression non-linearity. 

Geometrically the single fibre family used in this modelling approach describes a single 

periodic function with load angle. Since the fibre family can only add to the response of 

the ground matrix and is minimal for along fibre compression (i.e. zero) it cannot capture 

the intermediate angle softening observed by Van Loocke et al. 2006 21. Instead it will 

predict a gradually increasing contribution for rotation from perpendicular to parallel 

tensile loading. In addition the fact that the fibre family reinforces the material along the 

axis of transverse isotropy rather than orthogonal to it, this modelling approach cannot 

be used to model the tensile data by Takaza et al. (unpublished)22. Therefore the model is 

only presented for modelling in compression.  

 A more complex model featuring 3 initially mutually orthogonal fibre families is 

the tension compression non-linear orthotropic which Ateshian et al. 200765 introduced 

in combination with a Mooney-Rivlin ground matrix. However here, as discussed an 

Ogden ground matrix is implemented. The fibre strain energy Ψ𝑓�𝐚1,𝐚2,𝐚3,𝐂�� which is a 

function of three orthonormal texture directions 𝐚𝑖, takes the form:  

 Ψ𝑓�𝐚1,𝐚2,𝐚3,𝐂�� = �Ψ𝑓𝑠�𝐚𝑖 ,𝐂��
3

𝑖=1

 8-17 

where  

 
Ψ𝑓𝑠 �𝜆̃𝑓𝑖� = �

𝜉𝑖 �𝜆̃𝑓𝑖
2 − 1�

𝛽𝑖
𝜆̃𝑓𝑖 > 1

0 𝜆̃𝑓𝑖 ≤ 1
 

𝜉𝑖 ≥ 0,𝛽𝑖 ≥ 2 

8-18 

with 𝜉𝑖  and 𝛽𝑖 triplets of material parameters and 𝜆̃𝑓𝑖 = �𝐚𝑖 ∙ 𝐂�𝐚𝑖. For the current study 

the parameters are constrained as: 

 𝜉1 = 𝜉2 = 𝜉𝑇, 𝜉3 = 𝜉𝐿  and 𝛽1 = 𝛽2 = 𝛽3 =  𝛽 8-19 
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Since the fibre triplet only acts in tension it is clear that this model may enable modelling 

of more complex anisotropy. For instance, recalling Figure 8.18, for uni-axial compressive 

loading in the fibre direction 𝐚3 the fibres along 𝐚3 buckle and do not contribute while 

the fibres along 𝐚1 and 𝐚2 are both loaded in tension due to the Poisson’s effect induced 

expansion. However at 45° to the fibre direction both 𝐚2 and 𝐚3 initially buckle (while 𝐚1 

is still loaded in tension) hence this geometric and tension-compression non-linear effect 

allows one to model softening for intermediate angles. However this effect also highlights 

that since the model only contains three orthotropic tension compression non-linear 

fibres it does not reduce to a transversely isotropic model even under the constraints 

8-19 (e.g. the transverse loading response should be invariant to rotation around the axis 

of transverse isotropy, however for this model in transverse compression initially the 

largest response is obtained when loading is orthogonal to either 𝐚1 or 𝐚2 and lowest 

when loading is 45° to both 𝐚1 and 𝐚2). Hence the model is only used here to illustrate 

that more complex anisotropic behaviour can be introduced through the implementation 

of multiple tension compression non-linear fibre families and that geometrically the 

buckling leads to softening.  

A multiple fibre direction modelling approach which does reduce to transverse 

isotropy under the appropriate constraints are the models based on spherical fibre 

distributions. For instance Atheshian et al. 200964 proposed a model termed the 

ellipsoidal fibre distribution (EFD) Mooney-Rivlin. For the implementation used here the 

Mooney-Rivlin ground-matrix was again replaced by the Ogden form. The model contains 

spherically distributed fibres whose contributions follow an ellipsoidal form, whereby the 

constitutive parameters for each fibre are driven by an ellipsoidal function defined by its 

three axes. A spherically distributed set of fibres 𝐧𝑖 is introduced which are formulated in 

the local orthonormal basis 𝒜 = {𝐚1,𝐚2,𝐚3} defined by the local texture directions 

relative to the global orthonormal basis ℰ = {𝐞1, 𝐞2, 𝐞3}. In an associated spherical 

coordinate system with angles (Θ,Φ) the fibre vectors 𝐧𝑖 can be represented as: 

 𝐧𝑖 = cos(Θ𝑖) sin(Φ𝑖)𝐚1 + sin(Θ𝑖) sin(Φ𝑖) 𝐚2 + cos(Φ𝑖)𝐚3 8-20 

The strain energy for a single fibre Ψ𝑓𝑖 is defined as: 

 
Ψ𝑓𝑖�𝐧𝑖,𝐂

�� = �
𝜉(𝐧𝑖) �𝜆̃𝑓𝑖

2 − 1�
𝛽(𝐧𝑖)

𝜆̃𝑓𝑖 > 1

0 𝜆̃𝑓𝑖 ≤ 1
 

𝛽 ≥ 2 

8-21 
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here 𝜆̃𝑓𝑖 = �𝐧𝑖 ∙ 𝐂�𝐧𝑖 is the stretch along the fibre direction 𝐧𝑖. The parameter 𝜉(𝐧𝑖) and 

𝛽(𝐧𝑖) vary with fibre orientation according to the ellipsoidal function: 

 

𝜉(𝐧𝑖) = �
cos(Θ𝑖)2 sin(Φ𝑖)2

𝜉1
2 +

sin(Θ𝑖)2 sin(Φ𝑖)2

𝜉2
2 +

cos(Φ𝑖)2

𝜉3
2 �

−12
 

𝛽(𝐧𝑖) = �
cos(Θ𝑖)2 sin(Φ𝑖)2

𝛽1
2 +

sin(Θ𝑖)2 sin(Φ𝑖)2

𝛽2
2 +

cos(Φ𝑖)2

𝛽3
2 �

−12
 

8-22 

This model was implemented using the transversely isotropic constraints: 

 𝜉1 = 𝜉2 = 𝜉𝑇, 𝜉3 = 𝜉𝐿  and 𝛽1 = 𝛽2 = 𝛽𝑇, 𝛽3 = 𝛽𝐿 8-23 

Due to the spherical fibre distribution despite the fact that fibres only contribute in fibre-

tension (conversely to single fibre family reinforced transversely isotropic models) no 

compressive loading directions exists in which none of fibres contribute. In addition due 

to the presence of fibres at intermediate angles to the transverse and longitudinal 

directions (whose mechanical parameters are mapped in an ellipsoidal fashion and are 

thus intermediate rather than lower) this model is unlikely to be able to capture the 

intermediate softening found by Van Loocke et al. 2006 21.  

 The above existing constitutive modelling approaches all inherently lack the 

ability to model the complex anisotropic behaviour of skeletal muscle tissue 

appropriately. Therefore a new model is proposed based on spherical fibre distributions 

but rather than an ellipsoidal mapping as described by Atheshian et al. 200964, the 

constitutive parameters are a function of the summed Gaussian modulated behaviour for 

longitudinal and transverse fibrous contributions.  

Since muscle tissue presents with a complex connective tissue arrangement with 

fibrous structures orientated not only along but also orthogonal to the muscle fibre 

direction (see also section 3.2). Under the assumption of transverse isotropy (with 

respect to the main muscle fibre direction) any reinforcing structure, whether parallel or 

oblique to the fibre axis, presents with a periodic reinforcing behaviour under rotation of 

load angle (with respect to the main muscle fibre direction). For instance longitudinal 

fibrous structures capable of resisting tension act most in longitudinal extension and 

least in cross-fibre extension where the structures buckle due to the Poisson’s effect 

induced compression. Conversely transverse fibrous structures which are capable of 

resisting tension act most in transverse extension and least in longitudinal extension. 

Hence it was postulated that the complex transversely isotropic behaviour is 
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decomposable into the sum of periodic fibre reinforcing functions. It was assumed that 

such behaviour can be modelled by appropriate adjustment or modulation of the 

contribution of a spherically distributed set of tensile reinforcing fibres. Further it was 

assumed that for each fibre direction within this set the response can be modelled as the 

summed Gaussian weighted effect of a longitudinal and transverse contribution. These 

assumptions are motivated by the fibrous architecture of muscle tissue which is 

composed of multitude of orientations (see section 3.2.2 ) and the experimental stress-

stretch data. Figure 8.21A-C shows the final stresses (for tension up to a stretch of 1.12 

since this is where all curves exist) as a function of angle for both tension and 

compression experimental data. Recall that 0° represents the muscle fibre direction and 

90° the transverse direction. As Figure 8.21A shows, the final stresses (black curve) are 

highest for transverse compression and the minima around 45° is clearly visible. In 

addition shown as red and green curves are two Gaussian functions one centred at 0°, the 

other at 90 which represent longitudinal and transverse contributions respectively. As 

the blue dotted curve in Figure 8.21A shows, which represents the sum of the two 

contributions, the experimental final stress relationship with angle can be approximately 

represented by the sum of two Gaussian functions. Figure 8.21B shows the same data 

except for now transverse isotropy is assumed around the z-axis, the load angle is the 

positive angle with the Z-axis and the radius of the shape is the final stress. The same is 

shown for tension in Figure 8.21C-D. For both tension and compression the transverse 

direction loading produces the most dominant response and it is clear from Figure 8.21B-

D that in both cases the final stresses do not describe an ellipsoidal shape under the 

assumption of transverse isotropy. For compression the shape appears more like the sum 

of two approximate ellipsoidal functions which supports the summed contributions 

approach proposed here. For tension the shape is more like a torus due to the 

predominant nature of the transverse contribution. For both shapes the wireframe 

overlain in Figure 8.21B-D represents the double Gaussian modulated fit (equivalent to 

blue dots). This supports the hypothesis that a model implementing summed Gaussian 

weighted contributions of the transverse and longitudinal direction can be used to model 

the complex anisotropic behaviour observed. This constitutive modelling approach is 

purely phenomenological. However a physical interpretation of the Gaussian decay 

functions with angle may be possible following histological investigation. For instance it 

may represent density or stiffness changes of the fibres with angle. 
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The novel modelling approach, termed Gaussian Modulated Spherical Fibre 

Distribution Ogden hyperelastic (GMSFD) is based on the FEBio implementation of the 

ellipsoidal fibre distribution models. The strain energy for a single fibre Ψ𝑓𝑖 was defined 

as: 

 
Ψ𝑓𝑖�𝐧𝑖 ,𝐂

�� = �
𝜉(𝐧𝑖) �𝜆̃𝑓𝑖

2 − 1�
𝛽

𝜆̃𝑓𝑖 > 1

0 𝜆̃𝑓𝑖 ≤ 1
 

𝛽 ≥ 2 

8-24 

here 𝛽 is a (homogeneous) material parameter and 𝜆̃𝑓𝑖 = �𝐧𝑖 ∙ 𝐂�𝐧𝑖 is the stretch along 

the fibre direction 𝐧𝑖. The parameter 𝜉(𝐧𝑖) varies with fibre orientation and, rather than 

an ellipsoidal mapping as described by Atheshian et al. 200964, is a function of the 

summed Gaussian modulated behaviour for longitudinal and transverse fibrous 

contributions:  
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 𝜉(𝐧𝑖) = 𝜉𝐿𝑒
�−𝛾(𝐧𝑖)2

2𝜍𝐿2
�

+ 𝜉𝑇𝑒
�−(𝛾(𝐧𝑖)−𝜋/2)2

2𝜍𝑇2
�
 8-25 

where 𝜉𝐿 and 𝜉𝑇 are material parameters representing the longitudinal and transverse 

direction respectively. The variable 𝛾(𝐧𝑖) is the angle (in the range �0, 𝜋
2
�) of the fibre 𝐧𝑖 

with respect to the longitudinal direction (e.g. if 𝐚3 represents the global muscle fibre 

direction then 𝛾(𝐧𝑖) = acos(|𝑛𝑖3|)). The amplitude of the Gaussian functions are 𝜉𝐿 and 

𝜉𝑇. The extent of the contribution of the longitudinal and transverse fibrous structures 

with respect to angle is dictated by 𝜍𝐿 and 𝜍𝑇 which define longitudinal and transverse 

standard deviations respectively (the limit 𝜍𝐿 = 𝜍𝑇 = ∞ results in isotropic symmetry 

with 𝜉(𝐧𝑖) = 𝜉 = 𝜉𝐿 + 𝜉𝑇).  

The following implementation was used for both the EFD and GMSFD models. 

For a continuous distribution of spherically oriented fibres the total contribution can be 

derived through integration across the sphere. For computational efficiency this 

integration is performed numerically (see also 64) for a discrete set of fibres. An 

approximate geodesic tessellation of the unit sphere was created by sub-triangulating the 

icosahedron 5 times (subdividing triangles into 4 sub-triangles and introducing 3 new 

vertices with each iteration) leading to 720 triangles and 362 vertices (see Figure 8.22A). 

A total of 𝑚 = 362 fibres are defined running from the centre of the sphere to each of 

the vertices of the triangulation (red vertices/edges in Figure 8.22A). Each fibre “acts” on 

the faces (hexagons and pentagons) of the triangulations dual polyhedron, a Buckminster 

Fuller dome (black vertices/edges in Figure 8.22A). The total fibre strain energy 

contribution Ψ𝑓 can be derived through numerical integration using64: 

 Ψ𝑓 ≈�Ψ𝑓𝑖�𝐧𝑖,𝐂
��Δ𝐴𝑖

𝑚

𝑖=1

 8-26 

where Δ𝐴𝑖 represents the surface area of the dual polyhedron area element at fibre 𝑖.  
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This implemented tessellation differs from the standard FEBio implementation (open 

source version 1.3.0.1540) for ellipsoidal fibre distribution models (Figure 8.22B). For 

such models (e.g. 64) implemented in FEBio the numerical integration occurs using fibres 

defined on the vertices of the Buckminster Fuller dome acting on the triangular faces 

(rather than the other way around as used here). Although this leads to more 

homogeneous surface area elements for the tessellation of the sphere (all triangles rather 

than pentagons and hexagons) it has a less homogeneous fibre distribution (i.e. the black 

vertices in Figure 8.22 are less evenly spaced than the red vertices). The standard 

implementation in FEBio is a Buckminster Fuller dome with 320 vertices (black points in 

Figure 8.22B) with fibres acting on the faces of its dual polyhedron, a 3rd order sub-

triangulation of the icosahedron containing 320 triangles and 162 vertices (a higher 

resolution triangulation is also an option in FEBio, however integration across its 1280 

triangles computationally intensive). Since for a polyhedron with 𝑚 faces and 𝑛 vertices 

its dual polyhedron has 𝑛 faces and 𝑚 vertices, a denser tessellation (720 triangles as 

opposed to 320) could be used while the number of fibres implemented (defined on 

triangle vertices rather than triangle centres) remained similar (362 compared to 320) 

thus resulting in comparable computational efficiency. In addition the icosahedron used 

for the sub-triangulation based construction of the geodesic triangulations was oriented 

such that the resulting fibre family always includes fibres aligned with the local 

orthonormal basis 𝒜. 
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8.7.3  Modelling of volumetric tension compression non-

linearity 

For a true incompressible material the Jacobian 𝐽 = det(𝐅) = 1. However in the current 

study the FEA implementations require uncoupled constitutive equations whereby the 

stresses are split into deviatoric (volume preserving deformation) and volumetric 

deformation (recall equation 8-13). In FEA incompressibility is enforced by an 

appropriate choice of the bulk modulus 𝜅. However in FEA implementations of 

uncoupled material laws incompressibility is never fully enforced leading to 𝐽 = det(𝐅) ≈

1 and 𝐽 > 1 for tension and 𝐽 < 1 for compression. Therefore 𝐽 in this case provides 

information on whether loading is predominantly in compression or tension and can be 

used as a switch for material behavior. For instance for a particular constitutive 

parameter 𝑃 one can switch it to have a quantity for tension, 𝑃𝑡𝑒𝑛𝑠𝑖𝑜𝑛 or compression 

𝑃𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 using 

 𝑃 = �
𝑃𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝐽 > 1

𝑃𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐽 ≤ 1 8-27 

This approach was implemented in FEBio to test the joint modelling of both the tensile 

and compressive behaviour.  

8.7.4  Inverse FEA based constitutive model evaluation 

The above constitutive formulations where implemented in the FEA software FEBio 

(open source version 1.3.0.1540, Musculoskeletal Research Laboratories, The University 

of Utah, USA). Based on the experimental work by Van Loocke et al. 2006 21 and Takaza et 

al. (unpublished)22 a compression (Figure 8.22A) and tension (Figure 8.22B) model were 

created respectively.  

For the compression model a 10x10x10 mm muscle volume was uniformly 

meshed using 6x6x6=216 solid 8-node tri-linear hexahedral elements. Unconfined 

compression loading was applied though prescribed displacement (-3.2mm, where 0.2mm 

is the initial surface offset to allow for contact establishment, corresponding to a 

compressive stretch of 0.7) of a rigid body compressor surface (24x24 mm, 15x15=225 

0.01 mm thick rigid quadrilateral shell elements). The top and bottom faces of the muscle 

cube were allowed to slide with respect to the “floor” and the compressor surface 

(modelled using frictionless sliding contact).  
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For the tension model a 10x10x30 mm muscle volume was meshed using 

5x5x25=625 solid 8-node tri-linear hexahedral elements. The element size was biased in 

the load direction such that element height was smallest at the model top and bottom. 

The bottom face was fully constrained while the top face was rigidly connected to a rigid 

body surface (12x12 mm, 12x12=144 0.01 mm thick rigid quadrilateral shell elements). 

Tensile load was applied by prescribing the displacement of the rigid body (9mm 

corresponding to a tensile stretch of 1.3).  

 

For the experimental work described by Van Loocke et al. 2006 21 and Takaza et al. 

(unpublished)22 the experimental measures include applied stretch and a measure of 

Cauchy stress. In the latter uni-axial loading is assumed and thus shearing effects (which 

occur for non-parallel or non-orthogonal loading with respect to the fibre direction) are 

not included. Hence rather than outputting the along load-direction Cauchy stress an 

equivalent simulated measure of the experimental Cauchy stress was derived. The applied 

uni-axial stretch was defined as the original sample height over the deformed sample 

height. In order to derive a measure of the experimental Cauchy stress the sum of the 

load-direction reaction forces on the rigid bodies were recorded and divided by the 

original surface area divided by the applied stretch. Dividing the original surface area by 

the stretch thus simulates the surface area used for Cauchy stress derivation under the 

assumption of pure uni-axial loading.  

Figure 8.23: Example inverse FEA results showing the deformed models for the compression (A) and tension (B) experiments. 
Element shading represents displacement along the loading direction (mm).  
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Figure 8.24 shows how under the boundary conditions implemented (sliding 

allowed) shearing behaviour observed by Van Loocke et al. 2006 is allowed to occur in the 

models.  

 
A MATLAB (7.8 R2009a The Mathworks Inc., Natick, MA) based control code was 

generated whereby FEBio input files were generated containing appropriate analysis and 

constitutive parameters. The MATLAB algorithm controls an iterative process whereby 

FEBio computations are initiated, results are uploaded following completion and 

simulated stretch-Cauchy stress curves are compared to experimental data allowing for 

optimisation based formulation of a novel set of constitutive parameters for the next 

iteration. Constitutive parameters were determined using Levenberg-Marquardt 

(MATLAB lsqnonlin function) based optimisation. Initial parameters were manually 

determined and optimisation was limited to 100 iterations. For all constitutive models 

the following summary statistics will be computed with respect to the experimental data: 

1) 𝑅2, 2) root mean square (RMS) of the differences, 3) sum of squared differences (SSQD) and 

4) the maximum difference (Max.Diff.).  

In addition to the individual constitutive model evaluations separately for tension 

and compression a joint modelling approach was tested through the implementation of 

the Jacobian based switching discussed in the previous section. A cubic model (Figure 

8.25) composed of 6x6x6=216 solid 8-node tri-linear hexahedral elements was subjected 

to tension followed by compression for each of the three axis directions.  
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8.8 Results 

8.8.1  Isotropic Ogden hyperelastic (ISO) 

Figure 8.26 shows the isotropic experimental and ISO constitutive model response. For 
both loading cases the first order Ogden model provided an appropriate fit. Table 8-3 
illustrates the material parameters used and Table 8-4 shows summary statistics for the 
fits. Although good agreement with the isotropic response was seen (both curves present 
with 𝑅2 = 1) the isotropic response deviates from the anisotropic response by a 
maximum of 0.327kPa and 31.231kPa for compression and tension respectively 

 

 

Figure 8.26 The isotropic stress-stretch response for compression (A) and tension (B). Green curves are the experimental 
isotropic response, black curves are offset for plus and minus the standard deviation, red dots are the model fit.  
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Material parameter Compression Tension 

𝜇 0.665 kPa 276.360 kPa 

𝛼 13.989 5.646 

Table 8-3: Material parameters for isotropic Ogden model 

 

Difference 

measure 

 

Compression Tension 

𝑅2 1.00 1.00 

RMS (kPa) 0.002 0.153 

SSQD (kPa) 9.2876e-005 0.491 

Max.diff. 

isotropic (kPa) 

0.0042015 0.386 

Max.diff. 

anisotropic 

(kPa) 

0.327 31.213 

Table 8-4: Difference parameters for isotropic Ogden model  

8.8.2  Fibre reinforced transversely isotropic Ogden 

hyperelastic (TISO) 

Figure 8.27 shows the results for the TISO model compared to the anisotropic 

experimental data. The material parameters are listed in Table 8-5 and Table 8-6 shows 

summary statistics. The isotropic ground matrix response for this model was initiated as 

the isotropic model discussed in the previous section and adjusted such that a best match 

for the longitudinal direction loading could be obtained (where fibres do not contribute 

due to buckling). Then the fibre material parameters were adjusted to obtain a best 

match with the transverse loading case.  

As predicted the model allows capturing of both the transverse and longitudinal 

behaviour (𝑅2 = 1 in both cases). For intermediate angles the response is also 

intermediate and therefore no softening is initiated. Hence here the model deviates from 

the experimental data to a maximum difference of 0.192 kPa for loading at 45°.  
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Material parameter Value 

𝜇 0.742 kPa 

𝛼 13.542 

𝑐1 0.215 kPa 

𝑐2 7.877 

𝜅 100 kPa 

Table 8-5: Material parameters for the TISO constitutive law for compression 

 

Difference 

measure 

Fibre angle with respect to load direction (degrees) 

0 30 45 60 90 

𝑅2 1.00 0.58 0.47 0.86 1.00 

RMS (kPa) 0.013 0.087 0.097 0.063 0.018 

SSQD (kPa) 0.002 0.106 0.133 0.055 0.005 

Max.diff.(kPa) 0.020 0.184 0.192 0.134 0.034 

Table 8-6 Summary statistics for the TISO constitutive law for compression 

 

Figure 8.27 The anisotropic non-linear elastic behaviour of skeletal muscle tissue in compression (surface and grey-scale 
curves) and the TISO numerical model fit (red dots). 
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8.8.3  Orthotropic fibre family reinforced Ogden (TCNL) 

model for compression  

Figure 8.28 shows the TCNL constitutive law and the anisotropic experimental data for 
compression. As was mentioned in section 8.7.2 this model does not reduce to transverse 
isotropy. However it was used here to illustrate that transverse fibre family addition 
allows modelling of intermediate angle softening observed by Van Loocke et al. 2006. As 
the curves in Figure 8.28 and the summary statistics in Table 8-8 show the constitutive 
law (using the parameters in Table 8-7) shows excellent agreement to the anisotropic 
response of muscle tissue in compression.  

 

Material parameter Value 

𝜇 0.32 kPa 

𝛼 13.571 

𝜉𝐿 4.3 kPa 

𝜉𝑇 1.2 kPa 

𝛽 2.5 

𝜅 100 kPa 

Table 8-7: Material parameters for the TCNL constitutive law for compression 
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Difference 

measure 

Fibre angle with respect to load direction (degrees) 

0 30 45 60 90 

𝑅2 0.98 1.00 1.00 0.96 1.00 

RMS (kPa) 0.024 0.008 0.006 0.030 0.012 

SSQD (kPa) 0.013 0.001 0.001 0.018 0.003 

Max.diff.(kPa) 0.037 0.012 0.020 0.018 0.023 

Table 8-8 Summary statistics for the for the TCNL constitutive law for compression 

8.8.4  Ellipsoidal fibre distribution (EFD) models for 

tension and compression 

Figure 8.29 shows the response for the EFD model in compression compared to the 
experimental data. The material parameters are listed in Table 8-9. Table 8-10 shows 
summary statistics for the fits. As expected the EFD model performs similar to a single 
fibre family reinforced transversely isotropic as it is able to capture the transverse and 
longitudinal behaviour (𝑅2 = 1.00 and 𝑅2 = 0.98 respectively). However it predicts an 
intermediate response for intermediate angles resulting in over estimation of up to 0.279 
kPa for the final stress at 45 degree loading.  

 

 

Figure 8.29 The anisotropic non-linear elastic behaviour of skeletal muscle tissue in compression (surface and grey-scale 
curves) and the EFD numerical model fit (red dots). 
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Material parameter Value 

𝜇 0.32 kPa 

𝛼 13.571 

𝜉𝐿 0.3 kPa 

𝜉𝑇 0.065 kPa 

𝛽𝑇 = 𝛽𝐿 = 𝛽 2.1 

𝜅 100 kPa 

Table 8-9: Material parameters for the EFD constitutive law for compression 

 

Difference 

measure 

Fibre angle with respect to load direction (degrees) 

0 30 45 60 90 

𝑅2 0.98 0.07 -0.46 0.42 1.00 

RMS (kPa) 0.021 0.115 0.142 0.114 0.016 

SSQD (kPa) 0.009 0.276 0.42 0.272 0.006 

Max.diff. (kPa) 0.039 0.236 0.279 0.230 0.06 

Table 8-10: Difference parameters for the EFD constitutive law for compression 

Figure 8.30 shows the response for the EFD model in tension compared to the 
experimental data. The material parameters are listed in Table 8-11. Table 8-12 shows 
summary statistics for the fits. For tension the EFD model provides an approximate fit 
for the response and the differences in the degree of non-linearity for the transverse and 
longitudinal direction (𝑅2 = 0.90 and 𝑅2 = 0.97 respectively). However the non-
linearity for intermediate orientations is again intermediate and in this case led to 
underestimation of the stress for a large portion of the intermediate curves. The largest 
deviation was 30.354 kPa for the 45 degree orientation.  
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Material parameter Value 

𝜇 1 kPa 

𝛼 13.571 

𝜉𝐿 15 kPa 

𝜉𝑇 120 kPa 

𝛽𝐿 2.1 

𝛽𝑇 3.5 

𝜅 100 kPa 

Table 8-11: Material parameters for the EFD constitutive law for tension 

 

Difference 

measure 

Fibre angle with respect to load direction (degrees) 

0 30 45 60 90 

𝑅2 0.97 0.52 0.31 0.79 0.90 

RMS (kPa) 4.656 16.430 16.720 18.446 8.576 

SSQD (kPa) 455.329 3779.407 2515.950 4763.730 588.37 

Max.diff. (kPa) 12.127 24.165 30.354 24.178 12.400 

Table 8-12: Difference parameters for the EFD constitutive law for tension 
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8.8.5  Gaussian Modulated Spherical Fibre Distribution 

Ogden hyperelastic (GMSFD) model for tension and 

compression 

Figure 8.31 shows the fitting results for the GMSFD model for compression. The material 
parameters are listed in Table 8-13 and the summary statistics in Table 8-14. For 
compression the GMSFD model is able to provide an appropriate fit for all orientations 
tested since 𝑅2 levels are all in the range 0.97-1.00. The maximum difference found was 
0.059 kPa for the transverse test direction.  

 

Material parameter Value 

𝜇 0.15 kPa 

𝛼 13.571 

𝜉𝐿 2.1 kPa 

𝜉𝑇 0.15 kPa 

𝛽 2.1 

𝜍𝐿 0.2 rad 

Figure 8.31 The anisotropic non-linear elastic behaviour of skeletal muscle tissue in compression (surface and grey-scale 
curves) and the GMSFD numerical model fit (red dots). 
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𝜍𝑇 0.2 rad 

𝜅 100 kPa 

Table 8-13: Material parameters for GMSFD constitutive law for compression 

 

Difference 

measure 

Fibre angle with respect to load direction (degrees) 

0 30 45 60 90 

𝑅2 0.99 0.99 0.97 1.00 0.98 

RMS (kPa) 0.016 0.010 0.017 0.005 0.032 

SSQD (kPa) 0.005 0.002 0.005 0 0.018 

Max.diff. (kPa) 0.023 0.017 0.029 0.009 0.059 

Table 8-14 Summary statistics for the GMSFD constitutive law for compression 

 

Figure 8.32 shows the fitting results for the GMSFD model for tension. Two views are 
shown for clarity. The material parameters are listed in Table 8-15 and the summary 
statistics in Table 8-16. For tension the GMSFD model provides a reasonable fit for all 
directions. The 𝑅2 levels are in the range 0.96-0.98 for 0-45 degree loading (Table 8-16). 
For 60 and 90 degree loading the 𝑅2 levels were lower, 0.91 and 0.93 respectively, due to 
overestimation of stress. The maximum difference found was 30.770 kPa for the 60 
degree orientation.  
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Material parameter Value 

𝜇 0.6 kPa 

𝛼 13.571 

𝜉𝐿 1 kPa 

𝜉𝑇 85 kPa 

𝛽 2.1 

𝜍𝐿 0.52 rad 

𝜍𝑇 0.3 rad 

𝜅 100 kPa 

Figure 8.32 The anisotropic non-linear elastic behaviour of skeletal muscle tissue in tension (surface and grey-scale curves) and 
the GMSFD numerical model fit (red dots). 
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Table 8-15: Material parameters for GMSFD constitutive law for tension 

 

Difference 

measure 

Fibre angle with respect to load direction (degrees) 

0 30 45 60 90 

𝑅2 0.96 0.97 0.98 0.91 0.93 

RMS (kPa) 5.921 3.844 3.152 12.373 6.966 

SSQD (kPa) 736.302 206.812 89.393 2143.1232 388.214 

Max.diff. (kPa) 9.485 6.355 7.274 30.770 14.777 

Table 8-16 Summary statistics for the GMSFD constitutive law for tension 

 

8.8.6  Modelling of volumetric tension compression non-

linearity 

The Jacobian based switching between tension and compression parameters was 

implemented for the ISO and EFD constitutive laws. However for both material models 

the computations in FEBio were unstable and simulations failed at the point of switching 

parameters. Hence this approach is not suitable for the combined modelling of the 

tension compression behaviour.  

 

8.9 Discussion 
Using inverse FEA this study evaluated the performance of a multitude of common 

constitutive models for skeletal muscle tissue. Since isotropic models provide only an 

average fit to the average tissue response they may deviate significantly from the 

response depending on load angle. First order isotropic hyperelastic Ogden models were 

presented and demonstrated maximum differences of 0.327 and 31.3kPa respective for 

tension and compression with respect to the anisotropic response. Expansion of such an 

isotropic model with single longitudinal fibre family reinforcement allowed accurate 

modelling for compression for the transverse and longitudinal directions respectively but 

not for intermediate orientations since these models can only predict an intermediate 

response and thus deviate from the more complex anisotropic behaviour (up to 0.192kPa 

for compression). Using an orthotropic fibre family model (which however does not 

reduce to transverse isotropy) it was shown that transverse contributions do allow for 
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modelling of more complex anisotropy seen for intermediate load orientations. 

Motivated by this an ellipsoidal fibre distribution model was evaluated for tension and 

compression. Although reasonable overall fits were obtained for this model the ellipsoidal 

constitutive behaviour mapping provided limited flexibility to model the intermediate 

responses accurately. In compression the model did not perform better than the single 

fibre family transversely isotropic model with maximum deviations of 0.279 kPa at 45 

degree loading. For tension the changing degree of non-linearity for intermediate load 

angles was not accounted for appropriately leading to large deviations and poor 𝑅2 values 

at these orientations (e.g. 0.31 kPa at 45°). Finally a novel constitutive model based on 

the ellipsoidal fibre distribution approach by Atheshian et al. 200964 was proposed. The 

model, termed the Gaussian modulated spherical fibre distribution Ogden hyperelastic 

proposes that depending on angle with the longitudinal direction all fibrous components 

contain a Gaussian weighted transverse and longitudinal contribution. This model 

accurately captured the anisotropic compression (lowest 𝑅2 =0.97, maximum deviation 

0.029 kPa) and tension (lowest 𝑅2 =0.91, maximum deviation 30.77 kPa) response 

including the 45 degree softening reported for compression by Van Loocke et al. 2006 21 

and the load orientation dependent non-linearity observed by Takaza et al. 

(unpublished)22 for tension.  

The tension and compression properties of muscle vary greatly and it is 

hypothesised that muscle tissue presents with a type of volumetric tension compression 

non-linearity which current modelling approaches do not account for. Attempts to 

implement Jacobian based tension-compression parameter switching proposed in the 

current study were unsuccessful due to the fact that the rapid changes in stiffness cause 

numerical instabilities for FEA.  

The constitutive modelling approach has several limitations. Due to the spherical 

fibre distribution it requires computationally intensive numerical integration making this 

model more time consuming than modelling approaches which do not require 

integration. In addition the fibrous structure contributions are weighted according to 

spherical area elements in this approach (and also for ellipsoidal fibre distribution 

models). For non-linear mappings like proposed here this distorts the physical 

interpretation of the material parameters. In addition the discrete geodesic shape may 

not accurately capture the non-linear mapping accurately for all of the spherical fibre 

directions. This may be compensated for through an appropriate choice of material 
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parameters however it further removes some of their physical meaning (i.e. they may 

have to be exaggerated if the discrete nature of the geodesic tessellation causes under 

sampling).  

Currently initial parameter sets were manually determined followed by iterative 

Levenberg-Marquardt driven inverse FEA based optimisation (limited to 100 iterations). 

The uniqueness of the parameters obtained has not been investigated at present but will 

be the subject of future work. 

 

8.10 Conclusions 
This study evaluated common constitutive formulations for their ability to model 

the passive, anisotropic and non-linear elastic behaviour of muscle tissue for not only 

longitudinal and transverse but also intermediate load orientations. To the authors 

knowledge this detailed evaluation has not been previously reported in the literature. 

Current modelling approaches do not appropriately account for the complex anisotropic 

behaviour observed in tension and compression for passive skeletal muscle tissue. The 

novel constitutive model proposed based on Gaussian modulated transverse and 

longitudinal contributions is promising. However the physical interpretation of the 

parameters is unclear and the model requires computationally intensive numerical 

integration. Future modelling approaches should further explore the role of the 

connective tissue structures which are oriented both longitudinal and transverse to the 

fibre direction and shed light on the tension-compression non-linearity.  
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9 STUDY VII 
 

MRI Based Derivation of Detailed 
Finite Element Models 

Incorporating Fibre Architecture 
  



  - 230 -

 

 

9.1 Introduction 
As mentioned in section 3.8 in the current thesis inverse FEA of the mechanical 

properties of muscle tissue is of interest based on indentation of volunteer soft tissue 

sites while MRI is used as a non-invasive modality to record soft tissue boundary 

conditions, such as 3D deformation (see chapters 7 and 8), tissue geometry derivable 

from anatomical MRI and muscle fibre architecture derivable from Diffusion Tensor MRI 

(see section 2.3.10.2  and Froeling et al. 201033).  

 This study presents custom methods for the accurate derivation of FEA 

geometries and indentation boundary conditions from anatomical MRI. In addition the 

incorporation of fibre architecture as an element wise material axis mapping is discussed. 

For the FEA model the distinction is made between skin, adipose (fat) and muscle tissue.  

9.2 Methods 
All data processing and visualisations presented here were performed using custom made 

algorithms in MATLAB (7.8 R2009a The Mathworks Inc., Natick, MA). Generation of 2D 

mother meshes was done using CUBIT (version 13.0, Sandia Corporation, USA). Models 

were implemented for FEA with the freely available software FEBio (open source version 

1.3.0.1540, Musculoskeletal Research Laboratories, The University of Utah, USA). 

9.2.1  MRI based indentation experiments 

This study focusses on the indentation experiments presented for a human volunteer in 

chapter 8. A healthy male volunteer (ethical approval obtained at the Academic Medical 

Centre Amsterdam, ethical committee) was subjected to transverse indentation using the 

indentor system described in chapter 4. During indentation deformation was recorded 

using SPAMM tagged MRI (chapter 8) and force was recorded using an optical Fibre 

Bragg Grating based Force sensor (chapter 4). Prior to indentation and after indentation 

static anatomical T1 weighted MRI was recorded (voxel size 0.5x0.5x4, field of view 

160x160x160mm) and also diffusion tensor MRI of the same field of view (voxel size 

2x2x4 mm, see Froeling et al. 201033 for method description). The latter yielded a vector 

for each voxel describing the main direction of diffusion and thus most likely the muscle 

fibre direction.  
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9.2.2  FE model construction  

9.2.2.1  Semi-automatic tissue boundary segmentation  

Figure 9.1A shows how standard iso-contour levels highlight a multitude of features for 

the upper arm due to the presence of anatomical features which present with similar 

signal intensities. In addition no single iso-contour level can separate all features of 

interest (skin, fat bone). This is also due to signal intensity variations depending on 

proximity to the imaging coils. Standard iso-contours also contain irregularities such the 

blood vessels and nerve structures which interrupt the boundaries and would result in 

sudden sharp feature transitions. Therefore semi-automatic segmentation software was 

developed. The algorithm is based on iso-contour levels such as in Figure 9.1A. However 

for each slice the user is able to scroll through difference iso-contour levels and select the 

best (Figure 9.1B). A single contour boundary may be decomposed by segments selected 

from multiple iso-contour levels. In addition irregularities can be cropped out and 

manually drawn in contour portions can also be added. Note how in the bottom left in 

Figure 9.1A a sharp feature exists due to an anatomical feature at the muscle (gray) and 

fat (white) boundary. This feature was manually removed and the gap manually drawn in 

in Figure 9.1B.  

 
Through this slice by slice semi-automatic segmentation the boundaries for the bone, 

muscle-fat and skin could be segmented (Figure 9.2). 
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Using the bone central axis a densely triangulated cylinder was warped to each tissue 

boundary (Figure 9.3). These were then mildly smoothened using HC-Laplacian 

smoothening which is a technique (see 274) which allows smoothening of triangulated 

structures while ensuring shape shrinkage is limited. The removal of sharp features and 

irregularities aids in meshing while the main anatomical detail is preserved.  

 

 

9.2.2.2  Meshing and FEA geometry warping 

Based on the 3D triangulated surface models an average 2D contour set was derived and 

imported into CUBIT for 2D quadrilateral meshing (Figure 9.4A). The mesh was refined 

close to the indentation site and near complex features. This mesh was then imported 

into MATLAB and extruded to form an offset 3D hexahedral mesh (Figure 9.4B). The 

mesh was biased along the Z-axis such that mesh density is highest near the indentation 

site. The regular 3D mesh was then warped (Figure 9.4B) (deformed using angular and 
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radial mapping with respect to central bone axis whereby elements maintain tissue type) 

according to the 3D triangulated surface boundary models (Figure 9.3). MATLAB was 

then used to write ABAQUS and FEBio input files. The former can be imported into 

CUBIT (and other FEA packages) for mesh quality checking and possible adjustment and 

or refinement. A quadrilateral shell element layer is later added on top of the fat layer in 

FEBio to model skin. Bone is modelled as a cavity in which the surface nodes will be 

rigidly supported.  

 
 

9.2.2.3  Derivation of indentation boundary conditions 

Figure 9.5A shows the segmented indented skin surface. This was used for segmentation 

of the indentation site based on its flat nature in contrast to the curved nature of the rest 

of the surface. Figure 9.5B-C show the surface region for the indentation and the 

segmented circular flat indentation imprint left by the indentor. This surface and its 

centre provided a means to reorient all models in a coordinate system whereby the 

indentor path is aligned with the Y-axis. The indentor path was defined as the distance 

the indentor needs to be offset along the Y-axis (starting with its indentor face aligned 

with the imprint surface) until it no longer touches the FEA model geometry. The 

indentor geometry was derived from its computer aided design model (see chapter 4) 

modelled as a rigid body and meshed using CUBIT with quadrilateral shell elements. After 

appropriate alignment of the indentor the meshed models (arm geometry and indentor) 

were exported as FEBio input files with their appropriate relative positions.  
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9.2.2.4  Incorporation of diffusion tensor MRI derived muscle fibre 

architecture 

Figure 9.6 shows a visualisation of the diffusion tensor MRI derived muscle fibre 

trajectory estimates. The technique (Froeling et al. 201033) provides per voxel fibre 

direction vectors. These can be incorporated in FEBio input files by simply appending 

text such as:  

   <element id="137"> 

    <fiber>0,1,0</fiber> 

   </element> 

to the FEBio input file ElementData section. The example illustrates the fibre direction 

aligned with the Y-direction for element 127. Since the MRI voxels and the FEA elements 

do not coincide the fibre direction mapping requires interpolation of the vector 

components at the element centres.  

 

Figure 9.6 Visualisation of the diffusion 
tensor MRI derived muscle fibre trajectories. 
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9.2.3  Iterative inverse FEA based optimisation 

Similar to section 8.7.4  MATLAB based control code was generated whereby FEBio input 

files were generated containing appropriate FEA geometry, and fibre architecture and 

analysis and constitutive parameters. The MATLAB algorithm controls an iterative 

process whereby FEBio computations are initiated and results are uploaded following 

completion of simulations. For the MRI based indentation experiments the 3D 

displacement field can be directly compared to the SPAMM tagged MRI displacement. In 

addition the indentor force can be compared to simulated indentor rigid body reaction 

force. Constitutive parameters can be determined through inverse optimisation. Two 

types of optimisation routines are implemented 1) a stochastic differential evolution 

based algorithm278, and 2) a gradient descent based Levenberg-Marquardt algorithm 

(MATLAB lsqnonlin function). 

 

9.3 Results 
The left side of Figure 9.7 shows an example model for the human volunteer as derived 

from the MRI data. The model contains skin, fat and muscle tissue while bone is 

represented by a rigidly supported central cavity. The indentor was modelled using rigid 

shell elements. The image on the right in Figure 9.7 shows example indentation results 

for a similarly obtained phantom geometry model.  
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9.4 Discussion 
This study presents a flexible and simple framework for the generation of detailed MRI 

data derived 3D FEA models incorporating skin, fat and muscle tissue as deformable 

elements. For muscle tissue diffusion tensor MRI derived muscle fibre directions are 

prescribed for each element thus allowing for the evaluation of anisotropic constitutive 

laws. Incorporating diffusion tensor MRI into 3D FE models has been implemented by 

Blemker et al. 200780. However most studies use a simplified geometrical mapping 

estimations of fibre directions (e.g. 23) rather than direct measurement presented here.  

In addition a Matlab controlled inverse analysis framework is presented.  

Future work will focus on further refinement of the mesh quality and on application 

of these models to inverse FEA based determination of the mechanical properties of 

skeletal muscle tissue.  

9.5 Conclusions 
Anatomical and diffusion tensor MRI data was recorded prior to and after indentation to 

the upper arm of a volunteer. The anatomical MRI data could be used to derive 

anatomically accurate FE model geometries where skin, fat and muscle are separately 

represented. In addition muscle fibre directions could be mapped for each muscle 

element. The incorporation of tissue anisotropy allows for the inverse FEA based 

evaluation of anisotropic constitutive laws which is the focus of future work.  
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10  Discussion, conclusions and 
future work 

This thesis focusses on the development of an experimental and computational 

framework for the non-invasive analysis of the passive (non-linear and viscoelastic) 

mechanical properties of skeletal muscle tissue. Figure 10.1 shows a diagram for the 

proposed approach framework. An appropriate constitutive model and initial parameters 

are formulated based on data from the literature and are implemented in FEA. Then an 

indentation experiment is performed on healthy volunteers during which experimental 

boundary conditions are measured such as: 1) the geometry and fibre architecture, and 2) 

the indentation force and tissue deformation. The former is used for the construction of 

the FE model and for mapping of the per element fibre directions. The indentation is 

then simulated using FEA yielding simulated measures of indentation force and soft 

tissue deformation. These are then compared to the true experimental force and 

deformation to derive difference measures for the optimisation based derivation of a new 

material parameter set. An iterative optimisation process composed of the following is 

then repeated until the difference measures are minimised: 1) FEA simulation, 2) 

comparison of FEA and experimental boundary conditions and 3) material parameter 

optimisation. This thesis related to setting up and validating all the experimental and 

computational methods required in the diagram of Figure 10.1. 
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In study I (chapter 4) a novel MRI compatible soft tissue indentor system and 

optical FBG based force sensor have been presented. The computer controlled indentor 

motion is highly repeatable since MRI acquisitions during repeated indentor motions did 

not induce significant additional variation on top of what is expected due to noise. In 

addition the indentor device and force sensor are fully MRI compatible as they are 

manufactured from non-ferromagnetic materials. The MRI compatibility was also evident 

following evaluation inside an MRI scanner and no negative effects such as SNR increase 

and or image artefacts were observed. The force sensor allowed sampling at 100Hz and 

measurement of viscoelastic force curves. The force sensor was calibrated for forces up to 

15 N and demonstrated a maximum force difference percentage of 3.1% (corresponding 

to a 0.031 N difference from 1 N) and a maximum force error magnitude of 0.043 N 

(corresponding to 0.7% difference with respect to 6 N).  

Due to the way that compressive forces are converted to tensile forces in the FBG 

sensor within the current design, measurement of forces in the range 0~0.94 N are not 

possible at present since the weight of the indentor head (0.94 N) assembly needs to be 

overcome (only the case for downward indentation). The force measurement range 

0.94~15 N is however sufficient for many purposes including large strain biomechanical 

soft tissue investigation. The FBG signal was stored at 100Hz. However this is currently a 

control software speed limitation. The optical interrogator system allows up to 1 kHz 

force measurement.  
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In study II (chapter 5) an alternative imaging modality DIC was evaluated as an 

alternative to MRI for the inverse FEA based analysis of bulk soft tissue properties. 

Results showed that DIC could be combined with inverse FEA to determine the bulk Neo-

Hookean material parameters of a silicone gel soft tissue phantom subjected to 

indentation. However DIC is limited to surfaces deformation measurements and hence it 

is not suitable for sub-dermal in-vivo anisotropic constitutive parameter identification.  

Study III (chapter 6) treated validation methods for MRI based deformation 

measurement. A novel marker tracking method was presented and validated using 

simulated image data. The marker tracking method is robust and the maximum 

geometric bias was 5.560x10-3 voxels while the error due to noise remains below 0.1127 

voxels for Rician noise distributions with signal to noise ratios of 5 up to 35. This appears 

to be the only marker tracking algorithm suitable for the validation of MRI based 

deformation measurement which itself has been validated against a ‘gold standard’.  

In study IV (chapter 7) a novel MRI sequence based on SPAMM for the 

measurement of 3D soft tissue deformation following just three deformation cycles was 

presented. The techniques were evaluated in a phantom and in-vivo for the upper arm of a 

volunteer. Following comparison to marker tracking in the phantom, the SPAMM tagged 

MRI derived displacement demonstrated sub-voxel accuracy and precision with a mean 

displacement difference of 72µm and a standard deviation of 289µm. Displacement 

magnitude precision was evaluated also for both data sets. The standard deviations of 

displacement magnitude with respect to the average displacement magnitude were 75µm 

and 169µm for the phantom and volunteer data respectively. The sub-voxel accuracy and 

precision demonstrated in the phantom in combination with the precision comparison 

between the phantom and volunteer data provide confidence in the methods presented 

for measurement of soft tissue deformation in-vivo. Since only three motion cycles are 

required the presented methodology is, to our knowledge, the fastest currently available 

for the non-invasive measurement of static 3D soft tissue deformation. However the 

methods presented are only suitable for static deformation measurements and post-

processing is semi-automatic.  

In study V (chapter 8) the static and semi-automatic SPAMM based deformation 

measurements were expanded to fully automatic dynamic deformation measurement. 

Novel SPAMM tagged MRI based methods are presented for high speed measurement of 

complex dynamic 3D soft tissue deformation following just 3 motion cycles. Deformation 
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is derived using a novel and fully automatic Gabor filtering based post-processing 

framework. The techniques were validated using marker tracking in a silicone gel soft 

tissue phantom for indentation induced dynamic deformation measurement. In addition 

in-vivo evaluation for the measurement of indentation induced deformation of the biceps 

region of the upper arm was performed. The techniques do not require a priori 

assumptions on the nature of the deformation or the mechanical properties and 

demonstrate dynamic measurement of complex 3D soft tissue deformation at sub-voxel 

accuracy and precision and were validated for 3.3-3.6Hz sampling of deformation speeds 

up to 12mm/s. For the phantom and volunteer tag point location precision was 44 µm 

and 92 µm respectively resulting in individual displacements precisions of 61 µm and 91 

µm respectively. For both the phantom and volunteer data cumulative displacement 

measurement accuracy could be evaluated and the difference between initial and final 

locations showed a mean and standard deviation of 0.44 mm and 0.59 mm for the 

phantom and 0.40 mm and 0.73 mm for the human data. Finally accuracy of (cumulative) 

displacement was evaluated using marker tracking in the silicone gel phantom. 

Differences between true and predicted marker locations showed a mean of 0.35 mm and 

a standard deviation of 0.63 mm. Since only 3 deformation cycles are required the 

techniques presented are to the authors’ knowledge the fastest currently available for the 

derivation of 3D dynamic deformation. This allows for the expansion of the SPAMM 

tagged MRI based measurement of dynamic deformation to cases where motion is less 

repeatable or where large numbers of repetitions are not clinically feasible. For the 

current thesis the limited number of repetitions required ensured volunteer comfort and 

reduced repeatability constraints.  

In Study VI (chapter 0) a multitude of constitutive models such as isotropic Ogden 

hyper elastic, single fibre family reinforced transversely isotropic Ogden and ellipsoidal 

fibre distribution models were evaluated for inverse FEA based fitting to compression21 

and tension22 data for excised tissue samples subjected to uni-axial loading for various 

fibre orientations. A novel constitutive model was proposed employing a spherical fibre 

distribution64. The model, termed the Gaussian modulated spherical fibre distribution 

Ogden hyperelastic proposes that depending on angle with the longitudinal direction all 

fibrous components contain a Gaussian weighted transverse and longitudinal 

contribution. This model accurately captured the anisotropic compression (lowest 

𝑅2 =0.97, maximum deviation 0.029 kPa) and tension (lowest 𝑅2 =0.91, maximum 
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deviation 30.77 kPa) response including the 45 degree softening reported for 

compression by Van Loocke et al. 2006 21 and the load orientation dependent non-

linearity observed by Takaza et al. (unpublished)22 for tension. This is the first 

constitutive model for passive skeletal muscle tissue that has been evaluated for both 

tension and compression and for multiple load angles.  

Due to the extreme difference in tension and compression response observed for 

muscle tissue currently two parameter sets were required for all models. An approach 

implemented whereby parameter switching was implemented in FEA based on the 

magnitude of the Jacobian were unsuccessful as sudden stiffness changes results in 

unstable computations.  

Due to the spherical fibre distribution it requires computationally intensive 

numerical integration making this model more time consuming than modelling 

approaches which do not require integration. In addition the fibrous structure 

contributions are weighted according to spherical area elements in this approach (and 

also for ellipsoidal fibre distribution models). For non-linear mappings like proposed here 

this distorts the physical interpretation of the material parameters.  

Currently initial parameter sets were manually determined followed by iterative 

Levenberg-Marquardt driven inverse FEA based optimisation (limited to 100 iterations). 

The uniqueness of the parameters obtained has not been investigated at present but will 

be the subject of future work. 

Future work will also focus on exploring the constitutive modelling approach 

recently proposed by Ehret et al. 2011190. This modelling may be promising for passive 

muscle tissue behaviour as it is also defined using the sum of a transverse and 

longitudinal contribution. In addition the modelling approach does not require numerical 

integration and hence is more computationally efficient that the model proposed here.  

Finally in study VII (chapter 9) a FE model construction framework was created. 

Anatomical and diffusion tensor MRI data were recorded prior to and after indentation 

to the upper arm of a volunteer. The anatomical MRI data could be used to derive 

anatomically accurate FE model geometries where skin, fat and muscle are separately 

represented. In addition muscle fibre directions could be mapped for each muscle 

element. The incorporation of tissue anisotropy allows for the inverse FEA based 

evaluation of anisotropic constitutive laws which is the focus of future work.  
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 This thesis describes a large array of methods required for the non-invasive 

analysis of the large strain, non-linear, anisotropic and viscoelastic mechanical properties 

of passive living muscle tissue. In addition a rich set experimental data bank was created 

consisting of: 1) anatomical MRI data for FE model construction, 2) Diffusion Tensor MRI 

data for fibre architecture mapping in FEA, 3) SPAMM tagged MRI derived 3D dynamic soft 

tissue displacement data and 4) viscoelastic force relaxation curves. This data will be made 

available for other researchers for biomechanical analysis.  

Future work will focus on the application of the framework of techniques presented to 

analyse the mechanical properties of muscle tissue including viscoelastic analysis.   
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