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The rapid evolution of network services demands new paradigms for studying and designing networks. We
propose a framework to investigate the underlying mechanisms of wireless network functions. This frame-
work isolates and analyses a network function as a complex system. We propose functional topologies to
visualize and systematically study the relationships between system entities. We also define a complexity
metric Cr (functional complexity), which quantifies the variety of structural patterns and roles of nodes in
the topology. This complexity metric provides a wholly new approach to study the operation of telecommu-
nication networks. We study the relationship between Cr and graph structures by analysing graph theory
metrics in order to recognize complex organizations. Cr is equal to zero for both a full mesh topology and
a disconnected topology. We show that complexity is high for a structure with shorter average path length
and higher average clustering coefficient. We make a connection between functional complexity, robust-
ness and response to changes that may appear in the system configuration. We also make a connection
between the implementation and the outcome of a network function, which correlates the characteristics
of the outcome with the complex relationships that underpin the functional structure.

Keywords: complex system science; functional complexity framework; telecommunication networks;
structural complexity; frequency allocation.

1. Introduction

The transition of humanity into the information age has precipitated the need of new paradigms to
comprehend and overcome a new set of challenges. Specifically, the telecommunications networks that
underpin modern societies represent some of the largest scale construction and deployment efforts ever
attempted by humanity, with renovations occurring nearly continuously over the course of decades. The
result is networks that consist of numerous subsections, each of which following its own trajectory of
development, commingled into a complex cacophony. Considering the high degree of heterogeneity and
dense interplay of network elements in proposed 5G and internet of things (IoT) systems, achieving
holistic understanding of network operation is poised to become an even more challenging prospect in
the near future. The focus of our article is to provide the paradigms necessary for comprehension of the
multi-faceted, intermingled and vital foundation of new networks by introducing a metric that quantifies
the organizational structure of network functions.

Every telecommunication network is designed to provide different services. Network functions are the
building blocks of these services. Understanding the mechanisms that provide network functions implies
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2 M. DZAFERAGIC ET AL.

understanding the function and thus the network itself. In order to analyse functional aspects of a telecom-
munication network, we introduce a framework to map the network function into a functional topology.
The functional topology enables a complex systems approach to analyse functions of telecommunications
networks. We also introduce a metric which quantifies the complexity' of a particular implementation of
a network function. Specifically, the proposed metric analyses the underlying communication between
network entities, which provide the network function.

The main contributions of this article are:

e We introduce a framework, which enables the functional analysis of a telecommunication network;
*  We provide several examples that show how to map a network function into a functional topology;

e We provide a new complexity metric that quantifies the organizational structure of a telecommuni-
cation network function.

The rest of the article is organized as follows. Section 2 presents the literature related to our work. In
Section 3, we introduce our network function framework, and we map two network functions into func-
tional topologies. Section 4 introduces our complexity metric (i.e., functional complexity). In Section 5,
we examine the main properties of the functional complexity metric, and we investigate common graph
structures that describe complex and non-complex functional relations. Section 6 concludes our analysis,
and we additionally discuss current and future work related to this article.

2. Literature review

Using complex systems science, we can analyse network functions holistically. This interdisciplinary
field draws attention from researchers in physics, mathematics, engineering and many others. As we
plan future networks, the experience of these fields is useful to draw upon. Articles like [1-7] testify
about the interdisciplinary nature of the complex systems analysis. The authors of [8] discuss issues of
different research areas. This discussion leads to the conclusion that different scientific fields face similar
problems. An interdisciplinary approach, which implies borrowing solutions from other scientific fields,
would save time and effort that researchers put into solving problems.

Different sciences faced the problem of increasing complexity differently. In [9] the author presents a
categorization of different complexity metrics and emphasises the interdisciplinary applicability of these
metrics. The authors of [10-14] focus on community detection, which allows us to analyse the structural
organization of a complex system. In [10] the authors investigate the underlying interactions between
mobile phone users, which determine the affiliation to a community. Similarly, in [13, 14] the authors
focus on the modularity of the system. The authors of [11, 12] focus on links rather than nodes, which
enables the detection of overlapping communities. Additionally, their approach allows them to analyse
the hierarchical structure of a complex system. In contrast, we focus on the structural features of the
graph representation of a network function implementation, rather than on community detection.

The authors of [15—17] emphasize the importance of the evolution of tools, we use to analyse and
understand complex systems. The authors of [15] and [16] focus on social networks and user behaviour.
In [15], the authors propose a data-to-model process which allows them to analyse complex social
interactions. This approach enables the prediction of the developments of eventual disasters in the system,

! With the term ‘complexity” we refer to a specific set of complex systems science quantities, related to the interactions between
functional entities (rather than to the entities themselves).
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which makes it possible to prepare the disaster recovery scenarios. The authors of [16] propose an agent-
based framework for modelling competitive and cooperative behaviour under conflict [i.e., common-pool
resource (CPR) Dilemma]. The framework allows them to study how and why we reach some outcomes,
and to determine the conditions needed to achieve desirable outcomes in a complex system. In [17], the
authors analyse the human travel patterns based on the trajectory of 100,000 mobile phone users. The
understanding of the mobility patterns allows them to predict the movement and therefore the influence
on spreading viruses, urban planning, mobile network planning, etc. We propose a framework that treats
the implementation of a network function as a complex system, which allows us to focus on the network
function itself, rather than the impact of the unpredictability of human behaviour on the network.

Due to our interest in telecommunication networks, articles like [18] and [19] are of particular interest
to us because they emphasize the growing complexity of the next generation of communication networks,
which demands the development of new frameworks and tools to model and analyse these networks. The
authors of [18] propose an agent-based modelling framework to model and analyse the performance
of sensor networks. While the authors of [18] focus more on the theory behind complex systems and
agent-based modelling as a tool to model and analyse such systems, the authors of [19] apply agent-based
modelling to a real world IoT problem. In [19], the authors analyse the impact of MAC protocol selection
on communication performance in terms of spectrum utilization and accuracy of information.

Another approach to analyse and understand complex networks is graph theory. In [20-22], the authors
emphasize the importance of graph theoretical tools to get a better understanding of the increasing com-
plexity of systems. In [20], the author highlights the main difference between complex and non-complex
graphs and introduces graph theoretical metrics to categorize, analyse and understand certain properties
of these graphs. The author of [21] discusses how eigenvalues and structures of graphs are interrelated.
The authors of [22], discuss different tools to model and extract knowledge from complex graph struc-
tures. The main focus in [22] is graph mining, but the tools and metrics (e.g., graph generation, graph
patterns, community structure, clustering, path-length) used to model complex relationships between
entities are very important in complex systems science, and therefore, we compare our metric to some of
these metrics.

Authors of [23-27] analyse telecommunications networks as complex systems. The approach in
[23, 24] involves analysis of complex phenomena in telecommunication networks (spreading patterns
of mobile viruses and connection strengths between nodes in a social network), which are the result of
complex user behaviour. The authors of [26, 27] analyse the complexity of outcomes of a self-organizing
frequency allocation algorithm. In [27], they analysed a relationship between robustness and complexity
of the outcome. In contrast to the approach in [23-27] the work, we propose here targets the network
function itself, which means that we analyse the mechanisms that enable complex user behaviour and
system outcome. We use the same frequency allocation algorithm proposed in [27] to show an example
of how to map a network function (i.e., frequency allocation) into a functional topology.

3. Network function framework

The approach to planning, configuration, management and optimization of network functions is changing
and moving towards self-organization. The traditional approach to most network functions involves the
use of central control or optimization. However, the increasing heterogeneity of wireless technologies
contributes to the rapid evolution, change and growth of networks that makes the centralized approach
unsustainable. If controlled in a self-organizing way, network functions such as handover, transmit power
control, user allocation, data rate control and frequency allocation provide more flexibility and robustness
in response to changes that may appear in the network [28].
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In order to specify and analyse the complexity of a network function, we introduce the functional
framework. Our framework represents an abstraction of a telecommunication network modelling its
operation by capturing all elements, i.e., nodes and connections, necessary to perform a given function. Our
framework includes functional topologies, which are graphs created based on the functional connectivity
between system entities. In contrast to logical topologies, which refer to data flows between network
nodes, functional topologies depict the connectivity pattern of a network function, which implies a
broader meaning to nodes and links.

A node in our topology represents a functional entity of a network node or any information source
that is part of the given network function. The links indicate dependencies between nodes. The topology
as a whole depicts the specific implementation of the network function. The topology allows us to apply
our model to analyse the complexity of the implementation. The functional complexity quantifies the
organizational structure by analysing the variety of relationships between system entities and roles that
these entities have in the topology.

As an instructive example, we focus on self-organization from a frequency allocation perspective.
More precisely, we use the frequency allocation algorithm from [27] to describe the process of mapping
a network function into a topology and in the end to calculate the functional complexity.

The self-organizing frequency allocation algorithm considers a cellular network as a two-dimensional
cellular automaton. Each cell in the model represents a self-organizing wireless system. The algorithm
works based on the local information that nodes gather from their neighbours. Briefly, every cell senses
the given frequency channels, and allocates a channel with no interference. For more details about the
algorithm the reader is referred to [27].

We focus on two frequency allocation algorithms (self-organizing algorithm and random frequency
assignment) from [27]. Herein, we analyse the implementation rather than the outcome of the function.
Each autonomous network is modelled as a node in a lattice which means that the physical topology
is the same for both implementations. The physical topology according to the Moore neighbourhood is
shown in Fig. 1. Different implementations of the network function are mapped into different functional
topologies.

By analysing the physical topology shown in Fig. 1, we recognize a motif that represents the Moore
neighbourhood. The motif consists of nine neighbouring cells, as shown in Fig. 2a. The motif depicts
the local connections between neighbouring cells. The entire network is simply a repetition of that
motif. The functional topology of an implementation of a network function is built upon the motif
(Fig. 2).

We start with the random frequency allocation algorithm. It assumes that every cell assigns the
frequency completely randomly from the set of available frequency channels. In order to create the
functional topology let us imagine a virtual decision maker entity that is moving from one cell to another.
At every cell the decision maker entity has no information about the allocated frequencies of other cells,
which means that there are no functional connections between any two nodes. The result is a functional
topology represented with a non-connected graph (Fig. 2b).

To examine the functional topology of the self-organizing frequency allocation algorithm we use the
same approach presented in the previous example. We imagine a virtual decision maker entity, which is
responsible for the frequency allocation of every node. In order to determine the functional connections
of a node we analyse the interactions to other nodes in the process of decision making at our target
node. As the self-organizing algorithm assumes only the knowledge about allocated frequencies at the
neighbouring cells, the functional connections exist only between physical neighbours. This results in
a functional topology that is equivalent to the Moore neighbourhood motif of the physical topology
(Fig. 2a).
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FIiG. 2. (a) The functional topology that represents the distributed self-organizing frequency allocation algorithm; the Moore
neighbourhood motif. (b) The functional topology that represents the random frequency allocation approach. Independent network
functions have no interconnections.

In general network functions are not as simple as the above example. Therefore, to analyse the
organizational structure of a network function we apply a multi-scale approach. The functional topology
itself is built upon the local relationships between network cells according to the specified frequency
allocation algorithm. The local interactions represent the lowest scale size. Analysis of higher scales is
enabled by a multi-hop interaction examination. The reachability among nodes represents the interactions
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between them. By restricting the reachability to a certain number of hops along the topology we may
examine the scale size of interest.

In [2] the authors discussed the relation between the scale size and the complexity, and they emphasize
the importance of the scale size noting that the same system can show high complexity on one scale and
low complexity on the other. The functional connectivity of each node represents the lowest scale in the
functional framework and describes the interactions in the process of making a decision on this particular
node. From the functional point of view the lowest scale size models a decision that is made by one
node (in our case the frequency allocation of one cell). In order to apply a multi-scale approach we
include higher scales in our analysis as follows. As every node represents a functional part, a subtask
or an informational source, every group of nodes represents a group of subtasks that are part of the
same function. The two-hop scale size considers the node, its neighbouring cells and neighbours of its
neighbours. On this scale size the topology includes the interactions of nodes that are inside the radius of
two hops. In our examples this scale size represents the frequency allocation of a two hop neighbourhood
and the interactions between nodes in the process of making a decision among a group of nodes. Note that
the reachability of nodes increases with the scale size. In this case every node can reach any other node
that is two or less than two hops away. The highest scale size implies a full mesh topology, where every
node can reach any other node in the topology. This approach enables a multi-scale functional analysis,
which is presented in the results section.

4. Complexity model

The traditional reductionist approach attempts to explain an entire system in terms of its individual
components. In contrast, complex systems analysis is based on the relations between system parts which
result in a greater outcome than would be expected from a simple sum of the outcomes of the individual
parts. Therefore, complex systems move the focus from the node to the network.

As we represent network functions with topologies, the complex systems approach allows us to
analyse the relations between functional parts. Such analysis captures the joint effort of functionally
interconnected system parts and provides a measurement of the deviation of the complex behaviour
compared to a linear (non-complex) system. In order to capture this deviation, we analyse the joint
effort of system sub-parts, which are represented with subgraphs of the functional topology. Different
subgraphs with the same size capture the variety of organizational structures in the topology, whereas
different subgraph sizes allow us to understand the gain from increasing number of nodes and interactions.

In order to capture the non-linear joint effort of functional parts, we analyse the interactions of nodes
involved in the decision making process on different scales. The scale size r determines the maximum
number of allowed hops between two nodes in order to reach each other. In modelling a network function,
our focus from the complexity point of view is the degree of interconnectivity, which is represented by
the reachability of functional parts. R is the maximum scale size of the system, which is defined as the
longest shortest path in the entire topology (i.e., the graph diameter of the functional topology). If r = R
the reachability of every node in the topology is equal to 1.

In order to capture the relationships that underpin the operation of a given network function, we
consider the interactions enabled by the structure of the functional topology on various scales of operation.
Specifically, we consider that a node interacts if another node can reach this node on a particular scale.
As such, we employ the Bernoulli random variable x, to describe the potential for a node to interact on
a particular scale, under the assumption that interactions are uniformly initiated by all nodes within the
topology. Therefore, the probability distribution of x, is determined by the reachability of node » for a
given scale size r. Equation (4.1) provides the relative reachability of node n, where i/ is the number
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TABLE 1 The notation used in the equations

Symbols Meanings

n Node

N Total number of nodes in the functional topology

J Subgraph size—number of nodes in the subgraph

r Scale size

R Maximum scale size, which is defined as the longest shortest path in the whole
functional topology

A’,; One of the k subgraphs with j nodes that is induced from the functional topology
graph

i Number of nodes that can reach node n for a given subgraph

X, Bernoulli random variable. x, = 1 indicates that an interaction in the course

of function operation involves node n, whereas x, = 0 indicates that the
interaction does not involve node n, for a given scale

X Since x,, is a Bernoulli random variable X = {0, 1}

pr(x, = 1),p.(x, = 0) Probabilities that any given interaction in the course of function operation
involves or does not involve node n for a given scale r

H,(x,) Entropy of node n, which indicates the uncertainty of involvement of node n
in the operation of a network function for a given scale size r

of nodes that can reach node n for a given scale r and j represents the number of nodes for the given
subgraph. Table 1 summarizes the notation used in our equations.
i
pr(x, =1) = 7 4.1

Shannon entropy for each node of the given subgraph with size j, and scale size r is calculated with
equation (4.2).

H,(x,) = Y pi(x,) - log, 4.2)

xneX

DPr(Xn)

Since the probabilities in equations (4.1) and (4.2) indicate the relative reachability of a node, entropy
in our functional model represents the uncertainty of interaction of node n during the operation of a
network function for a given scale size r. The uncertainty of interaction of a node depends on the role of
this node in the graph that represents the function (e.g., hub, stub, disconnected node). A node with zero
entropy functionally represents a hub or a disconnected node. A hub in the functional topology is a node
connected to all other nodes, which means that the reachability of this node is p,(x, = 1) = 1. Conversely,
a disconnected node has the non-reachability p,(x, = 0) = 1. A hub is a functionality or informational
source that interacts with each subtask in the functional topology. In contrast, a disconnected node in the
functional framework represents a functionality not related to the modelled function, which means that
this node does not provide information of interest for any part of our model.
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8 M. DZAFERAGIC ET AL.

The total amount of information of the k* subgraph with j nodes for scale r is calculated with
equation (4.3). AJ,'( is one of the k subgraphs with j nodes. The total amount of information represents the
total uncertainty, which is related to the actual roles of nodes that appear within a subgraph and different
subgraph patterns.

LAY =) H(x,) (4.3)
nEAﬁ,

The average amount of information for a given subgraph size j is calculated with equation (4.4).
B; in the equation represents the number of connected subgraphs with size j.

B
. 1 :
(I(N) = — E L(A}) (4.4)
b=

Functional complexity is calculated with equation (4.5).

R-1 N

Gl Y

r=1 j=1+r

r+1—j N
—_Nlr(A ) 4.5

(L.(A7)) — P

Note that A" is the set of all nodes in the functional topology. Forj < 1+ r the amount of information
is equal to zero, because every subgraph with size j < 1 + r for the scale size r represents a full mesh
topology in terms of reachability, therefore, H,(x,) = 0 and I,(A’k) =0.

As shown in equation (4.5), in order to determine the complexity of an implementation of a net-
work function, we compare this particular implementation ({/,(A’))) to a non-complex model of itself
(:]1:,{, I,(A")). A non-complex model is expressed by describing the functional parts, which provides
full information about such a network function because the function is the sum of the functionalities of
its parts. Therefore, the non-complex model assumes that every functional part always contributes the
same amount of information, meaning that the increasing number of analysed nodes leads to a linear
increase in the total amount of information and in equation (4.5), it is represented by %I,(AN ). Con-
versely, a complex implementation implies that the network function relies on communication between
its parts which results in a higher utility outcome, i.e., greater than the sum of its parts. Our functional
complexity metric captures this difference between the amount of information for the complex and non-
complex implementation, which is modelled with the inner sum in equation (4.5). Since we express the
potential of a node to interact with other nodes as its reachability in the functional topology, Shannon
entropy calculated based on this reachability represents the uncertainty of interactions for a subgraph
of the functional topology. In equation (4.5), we capture the average uncertainty of interactions for all
subgraph sizes ({I,(A’))), and compare it to the uncertainty of interactions which is expected from the
non-complex model, which is the functional complexity and in equation (4.5) it is represented by the
inner sum. This means that the functional complexity captures how much more information exits in the
interactions between nodes than it would be expected from a naive linear representation of these interac-
tions. In engineering, non-linear problems are often approximated as linear problems for small changes
in the input of the system. This approximation often results in models that have limited applicability, and
the functional complexity quantifies how much information is lost by this linear approximation.

Shannon entropy reaches its maximum if the reachability of the nodes is p,(x, = 1) = 1/2, which
means that a sparse graph with almost uniform distribution of links among nodes results in high values
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of H,(x,). This again, leads to high values of I,.(A’,;), which result in high functional complexity. The
functional complexity is zero for a fully connected and for a disconnected graph. The reachability of each
node in a fully connected and disconnected graph are equal to 1 and 0, respectively, which results in zero
Shannon entropy and zero complexity.

The variety of roles emphasises the importance of interconnectivity of functional parts. Since nodes
represent functional parts, different roles refer to different interactions that underpin the operation of
a network function. If one node is highly connected to a group of nodes, this means that it influences
the entire group. At the same time the group has a high influence on the operation of this node. In our
frequency allocation example, the disconnected topology shows that every node is independent, which
results in one simple role (disconnected node) for every subgraph. Describing the relationship between
a single element and the rest of the functional topology provides all necessary information needed to
understand the relationships of the entire topology. Therefore, this structure is not considered as complex.
Conversely, the self-organizing algorithm provides different roles for nodes. This results in a complex
structure, where the outcome depends on the communication between the structural parts, which means
that the communication between system entities becomes more important to understand than the entities
themselves.

5. Analysis

In this section, we apply our complexity model to several functional topologies to examine the main
properties of the functional complexity metric. In addition to the two implementations of the frequency
allocation function, we also investigate common graph structures (e.g., ring, star, bus, full mesh) that
describe complex and non-complex functional relations. In the course of this analysis, we present the
relationship between the complexity of a function and graph theory metrics that describe the functional
topology representation of the network function.

A complex system, and hence a complex function, is determined by many parameters. We compare
our metric to the following graph theoretic notions to highlight the utility of our methodology:

¢ Number of nodes,
* Average path length,

*  Clustering coefficient.

Intuitively, if the number of nodes increases the system becomes more complex. The average path
length indicates the distance between elements, which implicitly refers to the relationship strengths
in the network. The clustering coefficient provides information about the overall strengths of functional
dependencies between nodes grouped around a central entity. All these metrics provide useful information
about certain organizational characteristics of the system. We start the analysis with common graph
structures like a bus, ring, star and full mesh topology to investigate the impact of different graph structures
on the amount of complexity. Figure 3 shows complexity values of theses topologies in the range of six
to ten nodes. Additionally, we present the correlation between the complexity metric and different graph
theory metrics.

5.1 Bus, ring, star and full mesh topologies

A full mesh topology results in zero complexity for any number of nodes. Therefore, even though a full
mesh topology provides a densely connected structure, the overall relationships between functional parts
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Complexity

8 9
Number of nodes

FiG. 3. Complexity of a bus, ring and star topology.

represented by a full mesh topology are non-complex. The structures of any subgraph in a full mesh
topology are also full mesh connectivity patterns. This means that a full mesh topology represents a
function in which every functional part interacts with all other entities in order to make a decision. The
functional structures and roles of nodes in a graph that represents such functions are always the same
(each individual node is a hub). This means that in order to describe the system (the function), it is enough
to describe an individual element and such functions are considered as non-complex.

All the nodes in a bus topology are fairly spread out (i.e., the average path length between nodes is
high). In other words, the bus topology represents a connectivity pattern with weak overall connections
among parts of the topology. The bus topology does not provide a great variety of organizational structures,
which results in low complexity. According to Fig. 3, functional complexity of the bus topology increases
with the increase in the number of nodes.

Figure 3 shows that the functional complexity of a ring topology is higher than the complexity of
a bus topology for the same number of nodes. The ring topology conforms to the same trend in which
complexity increases with the number of nodes. The ring topology compared to the bus is less spread out
(i.e., the average path length is shorter) and therefore provides tighter connections between the nodes. As
the nodes are closer to each other, due to the additional path, this functional topology represents tighter
functional relationships compared with the bus topology. Tighter functional relationships result in higher
complexity.

The star topology is a functional relationship in which one node interacts with all other nodes in
the decision making process. It also conforms to the same trend in which complexity increases with the
number of nodes in the topology. The star structure has tight connections between its parts. This means
that the star topology depicts stronger functional relationships compared with the bus and ring topology.
Therefore, the star topology has the highest complexity value compared with the other structures presented
in Fig. 3.

The analysis of simple graph structures (bus, ring, star and full mesh) gives a general overview of
the impact of different graph organizations on the amount of complexity. The functional complexity
metric captures the diversity of structures and roles of nodes, which provides a different perspective to
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analyse the complex relationships between system entities. According to Fig. 3, the star topology is the
most complex structure compared with the bus, ring and full mesh topologies. Considering the sparse
connectivity and short average path length between entities represented with a star topology, we believe
that this type of relationship contributes to the increase in complexity. Based on the analysis of different
sizes of ring and bus topologies, we believe that spreading (distributing) the functionality all over the
topology also affects the increasing complexity values. We expect that a combination of these two types
of relationships results in highly complex organizational structures. Such a structure consists of local
centres (star subgraphs/clusters) that are highly interconnected. As functional complexity captures the
variety of structural patterns, we expect that complexity is high if the number of local centres is high.

5.2 Comparison with graph theory metrics

In this subsection, we analyse the relationship between complexity and different graph theory metrics.
We also want to emphasize that the graph theory metrics do not include the quantity that is measured
by equation (4.5). In order to do so, we investigate the correlation between these metrics, and show that
the graph theory metrics focus on individual aspects (e.g., clustering, connectivity, degree distribution)
of the topology, whereas functional complexity quantifies the overall uncertainty of interactions between
functional entities which emerge from the local interactions between them.

To describe the relationship between the average path length and the functional complexity of an
implementation of a network function we analyse all possible graph organizations (distributions of links)
between six nodes (see Fig. 4). The Pearson product-moment correlation coefficient for these two metrics
is —0.43 (see Table 2). Notice in Fig. 4 that the highest functional complexity for six nodes is 2.9.
Compared with the bus, ring and star topology the highest functional topology is at least 1.5 times higher.
An important fact is that for the same average path length we have a range of different complexity values.
Therefore, despite the high correlation between the average path length and complexity, we can’t predict
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FIG. 4. The relationship between the average path length and functional complexity for every possible functional topology with six
labelled nodes (we consider connected graphs only). We consider all unique combinations of edges starting with the minimum of
five up to the maximum of fifteen. The Pearson product-moment correlation coefficient for these two variables (average path length
and functional complexity) is —0.43.
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TABLE 2 Correlation between graph theory metrics and the functional complexity
metric for all possible distributions of links between six nodes

Correlation variables Correlation
Average path length—complexity —0.43
Clustering coefficient—complexity 0.15
Avgerage path length—clustering coefficient—complexity 0.47
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FIG. 5. The relationship between the clustering coefficient and functional complexity for every possible functional topology with
six labelled nodes (we consider connected graphs only). We consider all unique combinations of edges starting with the minimum
of five up to the maximum of fifteen. The Pearson product-moment correlation coefficient for these two variables (clustering
coefficient and functional complexity) is 0.15.

the complexity of a structure based on the average path length. Additionally, the maximum value of
complexity occurs for an extremely low average path length, which is still higher than one. Figure 4
also shows that the envelope of the complexity values is a non-monotonic function. That is, there exist
complexity values for longer average path lengths that are larger than all complexity values for some
shorter average path lengths. Notice also that complexity is equal to zero for the average path length equal
to one. This value of the average path length represents a full mesh topology.

As shown in Table 2, the correlation between the clustering coefficient and complexity is low (0.15)
for six nodes. Figure 5 depicts the relationship between the average clustering coefficient and complexity
for six nodes. The average clustering coefficient is a graph theory metric that measures the average
number of neighbouring nodes that are neighbours to each other [29]. Therefore, the average clustering
coefficient quantifies the strength of functional connections between nodes grouped around local centres.
Again, the envelope of the complexity values in this relationship is also non-monotonic. Notice in Fig. 5
that complexity has its maximum for an average clustering coefficient close to one. This is expected
because this value of the clustering coefficient represents a network with tight functional connections
between nodes grouped around local centres. Notice also that complexity is zero for the average clustering
coefficient equal to one. According to the definition of the clustering coefficient, the value one indicates
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FIG. 6. The relationship between the clustering coefficient, average path length and the functional complexity for every possible
functional topology with six labelled nodes (we consider connected graphs only). We consider all unique combinations of edges
starting with the minimum of five up to the maximum of fifteen. The complexity value is represented by the colour and diameter
of circles.

that all neighbours of every node in the functional topology are neighbours to each other, which represents
a full mesh topology.

In order to analyse the joint relationship between complexity and both of the graph theory metrics
presented above (the average path length and the average clustering coefficient) we plot all these metrics
together on one graph (see Fig. 6). The x and y axis represent the average clustering coefficient and the
average path length, respectively and the complexity is represented by the radius of the circles. Addition-
ally, the circles are coloured differently to emphasize the different complexity values. The multivariate
correlation between these three variables is 0.47 (see Table 2). The overlapping circles with different
radii mean that for the same average path length and average clustering coefficient there exist multiple
topologies with different functional complexity values. The functional complexity is an information the-
ory metric, while the average path length and the average clustering coefficient are graph theory metrics,
meaning that they quantify different properties, and therefore this was expected. As shown in the analysis
above, graph theory metrics allow us to analyse individual aspects of the functional topology, whereas
complexity adds additional information about the diversity of relationships between functional parts and
provides a different approach to analyse complex network functions.

Figure 7 shows that the correlation between complexity and different graph theory metrics decreases
as the number of nodes in the graph increases. This is expected, because the number of graph combina-
tions increases exponentially with the number of nodes. The rapid increase of graph combinations allows
us to create a variety of complex structures for the same value of certain graph theory metrics. Hence, the
complexity range increases for an individual value of a graph theory metric, meaning that if we would
represent these structures with the same graph as shown in Fig. 6, we would get even more overlapping
circles with different complexity values for the same average path length and average clustering coeffi-
cient. The decrease of correlation between complexity and different graph theory metrics suggests that
graph theory metrics do not target the same properties of the system. This means that the complexity
metric adds new information, which leads to better understanding of the relationships between system
entities.
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5.3 Complexity of the frequency allocation algorithms

In order to analyse the functional complexity of the frequency allocation algorithms presented in the
framework section, we apply our complexity model to the functional topology representation of these
network functions. Our complexity metric, when applied over the functional topology, gives insight into
the functional relationships between system entities, which allows us to focus on the joint effect of
functional parts in order to execute the modelled network function.

The random frequency allocation algorithm is represented by a disconnected graph. Each element
represents a closed system which results in the absence of connections between them. From the system
perspective the functional parts of this implementation represent a set of independent elements. As the
elements do not interact with each other, in order to describe the set we can simply describe its elements.
More precisely, to describe the set we have to describe only one element, because each element of the
set is the same. Each element of the set simply assigns one of the available frequencies. Such a set that
is represented with independent elements has zero functional complexity.

Finally, the self-organizing distributed frequency allocation algorithm is represented by the functional
topology shown in Fig. 2a. In order to analyse the complexity of this implementation of the frequency
allocation function, we apply our complexity model to the functional topology representation. Figure 8a
depicts the deviation in the amount of information with increasing subgraph sizes from a linear increase
(i.e., the functional complexity). In equation (4.5) the linear increase is represented by (r':l';{, L.(AM)).
As shown in equation (4.5), it is calculated as the uncertainty which is expected from the calculation
performed on the whole system (I.(A")). The linear increase represents an equivalent simple system
implementation, meaning that all the subgraphs of a specific size feature the same uncertainty of inter-
action. Every functional part contributes with the same amount of information, which results in a linear
increase over increasing subgraph sizes.

The non-linear increase represents the heterogeneity of structures within the functional representation
of anetwork function, which indicates that the relationship between functional parts is complex. As shown
in equation (4.5), the non-linear increase is calculated as the average amount of information for a specific
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frequency assignment approach.

I,(AM)]), i.e., the functional complexity of the self-organizing

subgraph size ({I,(A’))), and it represents the uncertainty of interaction among nodes for this specific
subgraph size. According to equation (4.5), complexity is calculated as the sum of differences between
the average amount of information for a specific subgraph size and the amount of information which
is expected from the calculation performed on the whole system (the non-linear and linear functions in
Fig. 8a).

Considering that for the functional topology of the self-organizing algorithm R = 2, the multi-scale
approach applied on this functional topology implies only a single scale analysis, that is r = 1. The
subgraph sizes of interest are in the range of 2-9. Considering that r = 1, subgraphs with the size two
or smaller represent full mesh topologies. The maximum value of the subgraph size is nine because the
functional topology consists of nine nodes. The complexity of the self-organizing frequency allocation
algorithm is 1.69 and it is represented by the area between the linear and non-linear functions in Fig. 8a.
Figure 8b shows the distance between the uncertainty of interactions for all subset sizes and the uncertainty
which is expected from the calculation performed on the whole system, i.e., the functional complexity
of the self-organizing frequency allocation approach. More precisely, Fig. 8b depicts the single scale
complexity function, which is represented by the inner sum of equation (4.5). The functional complexity
is the sum of the function depicted in Fig. 8b.

Similarly, the authors of [27] analyse the two frequency allocation algorithms. The complexity metric
used in [27] is excess entropy. Even though we are not aware of any direct relation between our functional
complexity and excess entropy, the work proposed by the authors of [27] is the closest to ours in terms
of applying complex systems tools to analyse network functions. In contrast to our work, they analyse
the complexity of the outcome (i.e., the frequency allocation) of these implementations. The results that
are presented in their work show that the random approach produces an outcome with zero complexity,
whereas the self-organizing distributed frequency allocation algorithm produces a complex outcome.
Herein, our functional complexity metric analyses rather the complexity of the implementation itself
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than the output of the network function. As discussed above, the functional complexity of the random
frequency allocation algorithm is zero, and the functional complexity of the self-organizing distributed
frequency allocation algorithm is 1.69. This suggests that a complex implementation of a function results
in a complex outcome. In [27] the authors show that the response to a change of a system with highly
complex output happens in a more manageable fashion causing less disruption. The authors of [27] also
emphasize the higher robustness of a complex outcome compared to a non-complex outcome. Making a
connection between the implementation and the outcome of a function correlates the characteristics of
the outcome with the complex relationships that underpin the functional structure.

6. Conclusion

The growing size and heterogeneity of telecommunication networks leads to a need to change the way we
analyse and model them. Also the rapid evolution of network services demands a new approach to analyse
them. The aim of this article was to contribute to this new way of studying networks. We focus on network
functions as building blocks of services. We consider network functions as complex systems. In order to
provide a new approach to analyse and understand the impact of complex functional relationships between
system entities, we developed a new framework. The framework allows us to visualise an implementation
of a network function with graphs called functional topologies. We provide several examples that show
how to map a network function into a functional topology. The graph visualisation of the implementation
allows us to focus on the relationships between entities rather than the entities themselves.

The next step after mapping an implementation of a network function into a functional topology was
to provide a metric that quantifies the organizational structure of the topology. Our functional complexity
(CF) captures the variety of roles that each node in the topology has and the variety of structural patterns
present in the topology. Cr quantifies the deviation of the implementation of a network function from
the non-complex model of itself. The quantification of this deviation as presented in Section 4 provides
a new approach to understand increasingly complex telecommunication networks.

In order to study the impact of different structural patterns on the functional complexity in Section 5,
we start by analysing the complexity of simple graph structures (bus, ring, star and mesh). Additionally,
we provide a detailed study that investigates the impact of several graph theory metrics on the functional
complexity. We investigated the correlation between the combination of the graph theory metrics and
complexity, due to the absence of high correlation between any graph theory metrics and the functional
complexity. This analysis allowed us to make conclusions about the organizational structures that is
needed in order to achieve high complexity.

In this article, we also analysed the functional complexity of two different implementations of the
frequency allocation function (random and self-organizing). First, in Section 3 we explain how to map
these implementations into functional topologies, and in Section 5, we apply our complexity metric to
quantify the functional complexity of these implementations. We showed that the random frequency
allocation has zero complexity (and represents therefore a non-complex implementation), whereas the
self-organizing implementation shows higher complexity. This allows us to make a connection between
our results and the results from [27], where the authors calculated the complexity of the outcome of these
implementations and got the same kind of results. This implies that a complex implementation results in
a complex outcome of the function and as a part of our future work, due to the similar trends exhibited by
both complexity metrics, we are confident that we can make justified assumptions about the robustness
and response to change similar to [27].

In [30, 31], we showed how to apply our framework to wireless sensor networks in order to analyse
the tradeoff between energy efficiency and scalability of different clustering algorithms. Additionally, we
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use the functional topology framework as a part of our current work on distributed optimization in cellular
networks to model the relationships between eNodeBs. We are also working on sampling techniques for
functional topologies which will allow us to apply the framework to large networks. As a part of our
current research we are also applying the functional framework to model the self-organized time division
multiple access algorithm in the very high frequency (VHF) maritime mobile band for universal shipborne
automatic identification systems. Our end goal, after investigating the relationships between functional
complexity and different network key performance indicators (KPIs), is to use functional complexity to
tune the tradeoff between these network KPIs.

The main advantage of using a metric like functional complexity instead of KPIs to tune and optimize
the network is that functional complexity can be computed offline without relying on data collected in the
network, which speeds up the network optimization process. On the other hand, as shown in [32], the first
step in the process of calculating a KPI is to collect measurements. In order to collect the measurements
the network has to be operational, meaning that the process of optimizing certain aspects of the network is
possible only by monitoring the real network dynamics. As shown in the article, the functional topologies
capture the relations between functional parts of the network based on the rules that are defined by the
communication protocols themselves. In other words, the functional topology captures certain network
dynamics without relying on measurements. Therefore, the functional complexity can be calculated even
if the network is offline. By showing high correlation between the complexity metric and network KPIs
(e.g., [30, 31]), we show that a network operator would be able to optimize the network aspects related
to those KPIs before the network is operational.

Overall, our complexity metric quantifies telecommunication networks in terms of their functional
relationships and provides a wholly new approach to understanding the operation of networks. More
precisely, the complexity metric quantifies the relationships employed during operation of network func-
tions. This provides a new approach to study networks, which is especially relevant for next generation
networks.
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