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Summary

In this thesis, we perform Markov Chain Monte Carlo simulations involving complex
networks. The work is separated into three main themes; the ferromagnetic Ising
model on complex networks, the antiferromagnetic Potts model on complex networks
and rewiring of spanning trees of complete graphs. This work was performed as part
of a collaboration between the School of Mathematics and CONNECT (the Science
Foundation Ireland Research Centre for Future Networks and Communications) in
Trinity College, Dublin.

In the first main part of this work, a combination of the Wolff cluster and Metropo-
lis algorithms are used to sample from the Boltzmann distribution of the ferromagnetic
Ising model on complex networks. The complex networks in question represent the
interference between basestations in a mobile phone network in Dublin, Ireland. The
system exhibits a crossover between an ordered phase at low temperature to a disor-
dered phase at high temperature as signalled by the loss of magnetisation. We find
that the critical behaviour of this model resembles that of the Watts-Strogatz model.
The higher the level of interconnectedness between nodes in the complex network, the
less sharp the transition from ordered to disordered phases and the higher the critical
temperature. The critical point is determined using the peaks of the specific heat and
susceptibility.

The antiferromagnetic q-state Potts model on complex networks is studied using
the Wang-Landau multicanonical Monte Carlo method in the second part of this thesis.
The Potts model energy is used to represent interference in a wireless network with
q orthogonal broadcasting channels. The density of states is estimated for q = 2,
3, 4, 5 & 6 and the interference value which bounds 90% of spin configurations is
calculated. This critical interference value falls as q increases and can be thought
of as the interference value below which the system lies 90% of the time if the spin
values are uniformly distributed. Additionally, the estimate of the density of states
allows the direct calculation of thermodynamic observables of the Potts model. A
crossover between a high temperature and low temperature phase is found to occur.
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The temperature at which this happens decreases as q increases. However the error
in the density of states estimate is too high to extract precision calculations of this
critical temperature.

In the third part of this thesis, we introduce a new graph rewiring algorithm which
samples from the space of spanning trees withN nodes andN−1 edges. The probability
distribution of graphs of this kind is shown to depend on the symmetries of these graphs.
We demonstrate that the algorithm is ergodic and proceed to estimate the probability
distribution for small graph ensembles with exactly known probabilities, as a test of our
algorithm. The autocorrelation time of the graph diameter observable demonstrates
that the algorithm generates independent configurations efficiently as the system size
increases. Finally, the mean graph diameter is estimated for spanning trees of sizes
ranging over three orders of magnitude. The mean graph diameter results agree very
closely with the analytical values.
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Chapter 1

Introduction

In this thesis we use Markov Chain Monte Carlo methods to study problems on complex
networks. Complex networks are a general method used to represent the connections
between a set of objects with the aim of gaining some insight which would otherwise
be obscured in the complexity. Classical examples of complex networks include the
Internet, cellular networks, power grids, social networks and chemical reactions in the
cell [1].

This work is the result of a collaboration between the School of Mathematics, Trinity
College Dublin and CONNECT (The Science Foundation Ireland Research Centre for
Future Networks and Communications), formed to study complex networks which arise
in mobile telecommunication networks using a statistical physics approach. This thesis
contains three main parts, each contained within a chapter. Of the following three
chapters, the first two treat complex networks as a substrate for a dynamical process.
The third involves the behaviour of the networks themselves. Chapters 2 and 3 are
part of the work that stems directly from the program at CONNECT to study the
properties of mobile networks as complex systems. The goal of that program is to
contribute to the design of networks which perform consistently and optimally with
a minimal amount of planning, coordination, and human intervention. Chapter 4 is
motivated by the need to describe networks that can change over time.

In Chapter 2, the topic of the ferromagnetic Ising model on complex networks is
studied. This flavour of the Ising model favours ordered states at low temperatures
and disordered states at higher temperatures. The crossover between these phases
and the temperature at which it occurs is shown to depend on the nature of the
complex network. A greater amount of interconnections in the network cause the
critical behaviour to becomes less sharp and the ordered phase to persist to much higher
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2 Chapter 1. Introduction

temperatures. This behaviour is compared with some exact and numerical results on
other well-known complex networks. To study this system, a combination of local and
global spin flip algorithms is used. The Metropolis single spin flip algorithm on its own
is found to break down on these complex networks. We show that this failure is due
to the heterogeneous environment of each spin. The failure stems from exploring only
a small region of the state space of system configurations which is visually represented
in Fig. 2.3. When used in combination, we demonstrate that the Metropolis and Wolff
algorithm can efficiently sample the set of spin configurations. The critical temperature
which separates the ordered and disordered phase is estimated for the three complex
networks by calculating thermodynamic observables which have a peak at the critical
temperature.

In Chapter 3, the antiferromagnetic Potts model on complex networks is the subject
of investigation. In our early work on this topic, we found that both local and cluster
spin-flip algorithms fail to effectively sample the space of spin configurations of this
model, especially at low temperature. This drew our attention to the Wang-Landau al-
gorithm [2]; a multicanonical Monte Carlo method. By estimating the density of states
independently of the temperature, we avoid the problems associated with geometric
frustration and random edges. The antiferromagnetic q-state Potts model is then used
to model interference in wireless networks using q orthogonal frequency channels. In a
dynamic, distributed spectrum allocation model the density of states allows us to cal-
culate interference values below which the system lies 90% of the time. Furthermore,
with access to the partition function, all thermodynamic potentials of the system can
be estimated. In particular, the peaks in the specific heat can be used to indicate the
temperature at which the system crosses over from a disordered phase to a quenched
state. This critical temperature is shown to decrease as q increases.

In Chapter 4, we present a new Monte Carlo algorithm which samples the space
of graphs with a given number of nodes and edges. To the best of our knowledge,
this is the first algorithm of its kind and we anticipate that it will be very useful to
study graph ensembles in complex networks. We show that the probability of a given
graph is proportional to its symmetry and even go as far as exactly calculating the
graph probability distribution for small ensembles. In order to demonstrate that our
algorithm can perform this kind of sampling, we first show that it is ergodic. Next,
we numerically demonstrate that it samples independent graphs efficiently, even for
ensembles of large graphs. Finally, the mean diameter of these graph ensembles is
estimated and compared with an analytical model. Our algorithm produces results
which compare well with the exact values. Finally, we close this thesis in Chapter 5
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with some concluding remarks.



Chapter 2

Ferromagnetic Ising Model

This chapter focuses on the behaviour of the Ising model on complex networks which
have been generated during a study of interference in wireless mobile phone networks
in Dublin, Ireland [3]. The Ising model is a simple mathematical model with many
degrees of freedom which can exhibit an order-disorder phase transition. The nature
of this phase transition depends both on the type of lattice and the number of spatial
dimensions of this lattice. It should be of no surprise then that embedding the Ising
and Potts models on complex networks gives rise to some unique and unexpected
behaviours. Using Monte Carlo methods, we study this critical behaviour and the
effect of the network substrate on the Ising model. An excellent review of the Potts
and Ising models on regular lattices can be found in Ref. [4] and we will often refer to
this review when comparing lattice and complex network differences and similarities.

Over the last two decades, complex networks have been extensively studied using
exact methods, mean-field approximations and Monte Carlo simulations [5]. Both net-
work features themselves and their effect on dynamic models are extremely interesting.
Some canonical examples of complex networks which have been extensively studied
include small-world networks, scale-free networks and random graphs. Due to the em-
pirical nature of our interference graphs, we draw comparisons between their structure
and critical behaviour and that of more well-known complex networks. Of particular
interest is the observation of ordered and disordered states of the system driven by
temperature. The temperature dependence of this transition, the efficiency of Monte
Carlo simulations near this temperature and the failure of some of these Monte Carlo
methods will be studied in detail here.

This chapter contains four main sections. In Sec. 2.1, we provide some background
on the Potts and Ising models and complex networks. Sec. 2.2 lays out the technology
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2.1. Background 5

that we use to perform Monte Carlo simulations and to perform a statistical analysis
of the results. Sec. 2.3 discusses the results of these Monte Carlo simulations and this
chapter ends with our conclusions and suggestions for future work in Sec. 2.4.

2.1 Background

The Ising model on complex interference networks is the topic of this chapter and the
Potts model is studied in the next. The following section introduces the more general
Potts model and discusses the case where the Ising model is equivalent to the Potts
model. Complex networks are described using graph theory. The notation introduced
in this section will be used throughout this thesis. Furthermore, a discussion of the
structure and behaviour of canonical network models is discussed. Our interference
networks are then introduced and compared to these canonical networks.

2.1.1 Potts and Ising Model

The Potts model is typically defined as a system of interacting spins which are placed
at the vertices of a lattice. A spin configuration, σ, is the result of each spin in the
system taking a value σi ∈ [1, q]. The energy of a configuration in the standard Potts
model is

E(σ) = −J
∑
〈i,j〉

δσiσj + h
∑
i

δσiq, (2.1)

where 〈i, j〉 denotes a sum over the nearest neighbours (or neighbourhood) of each site
i and the external field strength h attempts to align spins in the q direction. For the
rest of this work, we consider the zero-field Potts model and the second term in Eq. 2.1
vanishes. The coupling constant J , which determines the strength of the interaction
between neighbouring spins, distinguishes two flavours of the model:

(Ferromagnetic) J > 0 and (2.2)

(Antiferromagnetic) J < 0. (2.3)

The spin configurations are Boltzmann distributed with probabilities,

P (σ, β) = Z−1 exp [−βE(σ)], (2.4)
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where β = 1/kBT which is known as the inverse temperature. For convenience, we
choose a system of units such that the Boltzmann constant kB is equal to one. The
partition function,

Z(β) =
∑
{σ}

exp [−βE(σ)], (2.5)

is of utmost importance. With perfect knowledge of the partition function the model
can be solved exactly. The Ising model is equivalent to the q = 2 Potts model, in
which each spin can take one of two possible values, σi ∈ [−1,+1]. These models have
identical critical behaviour once the interaction strength is related by,

2JIsing = JPotts. (2.6)

On a lattice, the Potts model exhibits a phase transition driven by temperature
from an ordered, low temperature phase to a disordered, higher temperature phase.
A phenomenon known as spontaneous symmetry breaking occurs below the critical
Curie temperature (Tc) and is associated with a decrease in the entropy of the system.
Depending on the spatial dimension and q, a phase transition in the Potts model can
either be discontinuous (first order) or continuous (second order).

All thermodynamic potentials can be expressed as derivatives of the Helmholtz free
energy,

F = −kBT logZ. (2.7)

The internal energy of the system is given by,

〈E〉β =
∂(βF )

∂β
= Z−1

∑
{σ}

E(σ) exp [−βE(σ)] (2.8)

and the average magnetisation is defined as,

〈M〉β = −∂F
∂h

∣∣∣
h=0

= Z−1
∑
{σ}

M(σ) exp [−βE(σ)], (2.9)

where the magnetisation is the sum over the volume of spins,

M(σ) =
V∑
i=1

σi. (2.10)
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In the thermodynamic limit, the magnetisation of the ferromagnetic Potts model is an
indicator of an ordered or disordered system. At low temperature, the spins align in an
ordered fashion and the magnetisation tends to infinity. Above the Curie temperature,
the magnetisation vanishes as the system becomes disordered, with spins pointing in
each direction with uniform probability.

A discontinuous phase transition emits or absorbs a large amount of latent heat
which results in a discontinuity in the internal energy of the system in infinite volume.
The absolute value of the magnetisation is also discontinuous and falls from one to zero
around the critical point. These first derivatives of F are discontinuous in first order
phase transitions.

In a continuous phase transition, the second derivatives of F are discontinuous. In
the Potts model, these derivatives are known as the magnetic susceptibility

χ = −∂
2F

∂h2

∣∣∣
h=0

=
∂M

∂h
=

1

T

(
〈M2〉 − 〈M〉2

)
, (2.11)

and the specific heat,

Cv =
∂〈E〉
∂T

=
1

T 2

(
〈E2〉 − 〈E〉2

)
. (2.12)

In finite volume these discontinuities can be smeared out and appear continuous.
The susceptibilities do not diverge, however a maximum is observed around the critical
point in both first and second order phase transitions. In both Monte Carlo simulations
and exact solutions, the critical point can be identified where these susceptibilities
diverge. However, the temperature at which the susceptibilities peak can be shifted
from their infinite volume values and the peaks themselves appear more rounded in
finite volume.

Intuitively this smoothing out of the divergent functions in finite volume can be
understood as follows. The partition function is a sum of exponentials depending on
exp[−βE]. The exponential function is analytic everywhere as a function of β. The
sum of analytic functions is an analytic function. Analytic real functions are infinitely
differentiable, thus the derivatives (susceptibilities) are also analytic (not divergent).
In the thermodynamic limit, the infinite sum over analytic functions can diverge which
leads to a phase transition.
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2.1.2 Graph Notation

This section introduces the graph theory notation necessary to define the Potts model
in a more general way. Instead of placing spins at lattice sites, we use the sites of
a graph, G, which allows us to study the model on a complex network. Since graph
theory notation tends to differ between sources, we use the conventions from Ref. [6].

A graph is an object consisting of a vertex set, V , and an edge set, E. The elements
of each set are called vertices (or nodes) and edges (or links) respectively. The number
of elements in each set is given as |V | and |E|. If an edge {u, v} exists, then vertices u
and v are adjacent. The edge {u, v} is also incident to both vertices u and v. For the
purpose of this thesis, the ordering of the vertices in the edge {u, v} does not hold any
special meaning since the edges in our graphs are undirected and each edge holds the
same weight.

A

B

C D E F

G

H

I J

K

L

Figure 2.1: An example of a graph diagram representing a spanning tree. The edge
{A,C} connects vertices A and C. The edges of this graph are unweighted and undi-
rected. This graph is connected since there is a walk between all vertices. Graphs of
this type will be studied further in Chapter 4.

A walk or path is a sequence of vertices, a1 a2 a3 . . . an, with an edge joining
adjacent elements of the sequence. A connected graph has a walk which joins all
pairs of vertices. All graphs investigated in this work are undirected, unweighted and
connected. A tree is an undirected graph which contains a unique path between any
two vertices. The diameter of a graph, d(G), is the maximum pairwise distance between
any two vertices. In a tree, the diameter is the longest walk of unique vertices. The
average path length, 〈l〉 is the average number of steps along the shortest path for all
possible pairs of nodes.

Any two graphs are considered equal if they have equal edge sets and vertex sets.
However a stronger idea of equality, isomorphism, exists between two graphs with
the same structure regardless of vertex labelling. Two graphs are isomorphic if there
exists a one-to-one correspondence having the property that whenever two vertices
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are adjacent in either graph, the corresponding two vertices are adjacent in the other
graph. In practice an isomorphism preserves the adjacency and non-adjacency in the
graphs. This is discussed further in Chapter 4.

A graph H is a subgraph of a graph G if the vertex and edge set of H are subsets of
the vertex and edge sets of G. The neighbourhood, N(u) of a vertex u is the subgraph
induced by all vertices adjacent to u. The degree k(u) of a vertex u is the number of
edges incident to u and depends on the size of its neighbourhood. Consequently, the
degree distribution is the probability of a vertex having a given degree.

The local clustering coefficient, Ci, is defined as the fraction of neighbours of a
given node which themselves are interconnected over the number of all possible edges
between these neighbours. The overall clustering coefficient, C, is the mean over all
local coefficients;

C =
1

|V |

|V |∑
i=1

Ci (2.13)

A clustering coefficient, C = 1, describes a graph in which every node is connected
to every other node. On the other hand, C = 0 describes a graph such as the square
lattice.

2.1.3 Complex Networks

While no formal definition currently exists, a working definition for a complex network
is as follows: a complex network is a graph that describes the set of connections in
systems with many constituents which may interact with each other. Both real-world
systems and appropriate graph models can display complex network behaviour. Real-
world complex networks include chemical reactions in a cell, the internet of computers,
the World Wide Web of hyper-linked websites and friends in social networks. From
the empirical study of these large real-world networks, some common features unique
to complex networks have been identified; small-world behaviour, clustering of nodes
and power-law degree distributions [1].

Two canonical complex network models are the Watts-Strogatz (WS) [7] and Barab-
ási-Albert (BA) [1] models. The WS model generates complex networks from regular
lattices with a fraction p of the total number of edges randomly rewired. To generate
these networks;

• start with a set of |V | nodes in a ring, each with K neighbours.
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• Each node is connected to the K/2 nodes immediately to its right and left on the
ring.

• Iterate over each node, rewiring each of their edges with probability p to a random
neighbour chosen with uniform probability (ensuring to avoid self-connections and
duplicate edges.).

Fully ordered ring lattices remain after this process using p = 0 and completely random
graphs result using p = 1. Some very interesting behaviour occurs for intermediate
values of p. For low p, the average path length scales linearly with the number of nodes
as you would expect in a lattice, 〈l〉 ∼ |V |. At higher p, the average path length starts
to grow like 〈l〉 ∼ ln |V |. The average path length does not increase significantly with
system size. In a WS network, the mean degree of a network generated from a lattice
with coordination number K is 〈k〉 = K which is independent of p. With p = 0, the
degree distribution is a delta function and for p = 1 the degree is Poisson distributed.

The clustering coefficient depends strongly on the rewiring probability p as

C(p) ∼ C(0)(1− p)3. (2.14)

The WS model exhibits the small-world property where most nodes are not neighbours
of each other but any node is only ever a few hops away from any other node. This
is a fundamental feature of complex networks. A small average path length 〈l〉 and a
large clustering coefficient are necessary to achieve the small-world property.

Although displaying the small-world phenomenon, the degree distribution of the WS
model does not match that of many real-world complex networks. Empirically many
large complex networks are scale-free. That is to say that their degree distribution
follows a power-law,

P (k) ∼ k−γ. (2.15)

The BA model produces complex networks with power-law degree distribution as a
result of assembling a network using the principles of growth and preferential attach-
ment. This means that nodes are added one-by-one to the graph during construction
rather than being present from the start. Also, the probability of attaching new nodes
to the existing graph depends on the degree of each node. Nodes with a larger degree
have a higher probability of being connected to than low degree nodes. To generate a
BA model graph:

• start with a small core of (m0) nodes connected to each other.
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• At each growth step, add a new node to the graph with m ≤ m0 edges to older
nodes.

• The probability of attaching each new edge to an existing node, i, of degree ki at
each growth step is,

Πi(ki) =
ki∑|V |−1

j=1 kj
. (2.16)

The sum in Eq. 2.16 is over the degree of all nodes in the graph excluding the new
node being added in this round of growth. This method of growth and preferential
attachment results in a network which is scale-free, with exponent γ = 3. These
scale-free networks also exhibit the small-world property, with the average path length
〈l〉 ∼ ln |V |. The clustering coefficient is lower than the WS model at C ∼ |V |−0.75,
however this decay is slower than that of a random graph C = 〈k〉|V |−1.

The behaviour of spin models on complex networks has been intensely studied over
the last two decades. An excellent review of critical phenomena of complex networks is
available in Ref. [5]. Here we summarise some results relating to the BA andWS models
to later compare with our Monte Carlo results on complex interference networks.

The increased heterogeneity of the nodes and edges in complex networks changes the
critical behaviour when compared with a lattice. The ferromagnetic phase transition
becomes less sharp and the critical temperature is increased. At high temperature,
far from criticality, the thermodynamic quantities of WS networks are close to those
of the starting lattice. Near the critical temperature, the mean-field approximation
holds. This should not come as a surprise since complex networks are high dimensional
structures with dimension that far exceeds the critical dimension above which the
mean-field approximation is obeyed. An exact solution of the Ising model in small-
world networks is presented in Ref. [8] using a 1-dimensional ring Ising model with
random long range bonds, similar to the WS model. The critical temperature is found
to scale with rewiring probability p,

Tc(p) ∼ J/| ln p|. (2.17)

Their solution confirms the mean-field character of the transition. Furthermore, they
found that the specific heat has a peak at criticality but remains finite. In the disordered
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phase, near criticality, the specific heat scales like,

Cv ∝
(
T − Tc
Tc

)−α
, (2.18)

where, T , is the temperature of the system and, α, the critical exponent of specific heat.
The non-divergent specific heat is a result of the mean-field Ising model predicting that
in four spatial dimensions or greater, α = 0.

A further important contribution on small-world network models is Ref. [9]. With
p < 1, a transition occurs between the high temperature region dominated by the
one dimensional structure and the low temperature mean-field region. This work also
confirms the existence of a finite temperature ferromagnetic phase transition. Their
methods involved both analytical approximation using the replica trick and a Monte
Carlo simulation using the Swendsen and Wang [10] cluster algorithm.

The exact critical behaviour of the ferromagnetic Ising model in scale-free graphs
with arbitrary degree distribution was found in Refs. [11] and [12]. In networks with
γ = 3, the critical temperature is infinite and the system is ferromagnetic at all temper-
atures. A Monte Carlo study of the ferromagnetic phase transition of these scale-free
networks was performed in Ref. [13]. Using the heat-bath Metropolis algorithm, they
found that on a scale-free network with γ = 3, the critical temperature Tc ∼ ln |V |.
This confirms the findings of the exact studies which claim that no phase transition
occurs in the thermodynamic limit and the system remains in the ordered phase. Fur-
thermore, using a mean-field approximation in Ref. [14], the critical temperature is
again found to scale like Tc ∼ ln |V |.

2.1.4 Interference Networks

Having discussed the structural features of both the WS and BA model networks, here
we describe the interference graphs which we perform our Monte Carlo simulation on.
An interference graph is a common representation of interference in wireless networks,
typically used to describe interference in channel allocation schemes. Usually, each
transmitter/receiver corresponds to a vertex in the interference graph, and an edge
connects two vertices if and only if the two cannot use the same channel simultaneously
without degrading the signal quality below a given threshold.
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(a) This sub-figure shows the number of ver-
tices in the θ = 1% interference-graph with k
nearest neighbours (degree k). The θ = 1%
graph contains |V | = 532 vertices and |E| =
10009 edges.
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(b) This sub-figure shows the number of ver-
tices in the θ = 3% interference-graph with k
nearest neighbours (degree k). The θ = 3%
graph contains |V | = 532 vertices and |E| =
4675 edges.
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(c) This sub-figure shows the number of ver-
tices in the θ = 5% interference-graph with k
nearest neighbours (degree k). The θ = 5%
graph contains |V | = 529 vertices and |E| =
2607 edges.

Figure 2.2: This figure shows the distribution of the number of vertices with k near-
est neighbours (degree k) in the three interference-networks that we will use both in
this and the next chapter. In the interference-networks, the vertices represent mobile
phone basestations in Dublin city centre and the edges connect vertices which can po-
tentially cause interference to neighbouring basestations. In these networks, a pair of
basestations are connected if a fraction, θ, of the users of either basestation experiences
interference from the other basestation. This results in nodes with higher degree in
the θ = 1% network than the θ = 5% network, since causing interference for 5% of the
users means that 1% of the users must also experience interference, but the inverse is
not in general true.

The networks studied in this work were constructed in Ref. [3] by considering the
radiation pattern from mobile phone base-stations in the city centre of Dublin, Ireland.
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A threshold percentage, θ, of users which may experience high levels of interference
before considering two base-stations to interfere with each other is chosen. This value
of θ is constant for each interference graph.

The degree distributions of the θ-networks are shown in Fig. 2.2. The number of
edges decrease as the threshold (θ) increases. The mean and variance of the degree
distributions also decrease as θ increases. All three graphs are connected components,
therefore there exists a finite walk between all vertices. To make sure that these graphs
are connected, the θ = 5% graph has three less vertices than the others. These missing
vertices are located at the edge of the physical area of interest. They do not meet
the condition that 5% of their users experience a high level of interference from other
base-stations. Very few edges connect these three vertices to the rest of the graph in
the θ = 1% and 3% graphs. Therefore, omitting these vertices from the θ = 5% graph
does not greatly affect our results.

The average path length and clustering coefficient of each of these graphs is shown
in Tab. 2.1. The global clustering coefficient is roughly constant over each of the graphs
with an average 60% of the neighbours of each node being interconnected. The average
path length however decreases as θ decreases. This behaviour is anticipated, since a
low value of θ allows a greater number of connections between adjacent vertices.

θ 1% 3% 5%

C 0.596 0.609 0.624
〈l〉 3.8 6.2 9.7

Table 2.1: Clustering coefficient (C) and average path length 〈l〉 of the θ interference
networks. The clustering coefficient of each graph is quite high and the average path
length is small compared to the number of nodes.

Due to the high level of clustering and small average path length, the θ interference
graphs seem to possess small-world behaviour and we expect the critical behaviour of
the Ising model on these graphs to be qualitatively similar to that of the WS model.

2.2 Monte Carlo Methods and Statistical Analysis

In this section, we introduce the methods necessary to perform a high quality Monte
Carlo investigation into the ferromagnetic Ising model on complex networks. The aim
of this section is to present to the reader a high-level discussion of the procedure we
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found to be necessary to produce reliable results.

2.2.1 Markov Chain Monte Carlo

The integrals in Sec. 2.1.1 depend on ‘many degrees of freedom, far from the pertur-
bative regime’ [15]. Problems of this kind are natural candidates for treatment using
Markov Chain Monte Carlo, since the errors in numerical integration techniques scale
poorly in large dimensions. Also, exact solutions of empirical complex networks are
often unworkable.

Markov Chain Monte Carlo involves a configuration space S and a probability mea-
sure of these states, π. A Markov process is used which generates configurations from
S with π as its unique, universal stationary distribution. Consecutive configurations
form a Markov chain with a transition probability,

pxy = P (Xt = x|Xt+1 = y), (2.19)

between two states (Xt, Xt+1 ∈ S). Ideally, each successive state depends only on its
predecessor. A probability measure, π = {πx}x∈S is called a stationary or equilibrium
distribution in the case ∑

x

πxpxy = πy. (2.20)

For an irreducible Markov chain, if a stationary distribution π exists then it is unique.
If the Markov chain is also aperiodic with a finite state space it is ergodic. An ergodic
(irreducible, aperiodic and positive-recurrent) Markov chain has a limiting distribution

lim
n→∞

p(n)
xy = πy. (2.21)

If we consider some function f = {f(Xt)} on the state space S, which is square-
integrable with respect to π, then it has a mean,

µf ≡ 〈f〉 =
∑
x

πxf(x). (2.22)

In practice in Markov Chain Monte Carlo simulations, we start with an initial
configuration of our system. This is often a high temperature configuration of random
spins with uniform probability. We perform a thermalisation phase, in which many
configurations Xi are generated using our Markov process. Any functions of these
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thermalisation configurations are either thrown away or kept to later estimate the
number of steps necessary to equilibrate the system.

After thermalisation, we use the Markov chain configurations to estimate ensemble
averages, such as the estimate for mean energy Ẽ in the measurement phase,

〈E〉 ≈ Ẽ =
N∑
i=1

E(Xi), (2.23)

where N is the number of configuration samples. For efficiency, the configurations
themselves are not stored for the Potts and Ising models, but the functions calculated
from these configurations are.

2.2.2 Autocorrelation

Successive configurations Xi generated by a Monte Carlo algorithm are correlated,
which effectively increases the variance of our estimated averages. An estimator of a
mean, f̄ is defined as

f̄ =
1

N

N∑
i=1

fi. (2.24)

The naive unbiased estimate for the variance of uncorrelated samples on this mean,
σ2

naive, is related to the variance of the correlated samples by the integrated autocorre-
lation,

τint ≈
σ2(f̄)

σ2
naive(f̄)

. (2.25)

Having performed a Monte Carlo simulation, it is possible to statistically estimate
the amount of correlation between successive samples in order to more precisely esti-
mate the error in our means. The autocovariance between samples with a separation
of t Monte Carlo steps is

Cff (t) = 〈(fs − f̄)(fs+t − f̄)〉 (2.26)

The normalised autocorrelation function is given by

ρ(t) =
Cff (t)

Cff (0)
. (2.27)
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The integrated autocorrelation time can be estimated by

τint ≈
1

2
+
∞∑
t=1

ρ(t). (2.28)

In practice, the summation in Eq. 2.28 can be performed over a finite t-window, since
ρ(t) tends towards zero for t > τint and therefore summing any further predominantly
adds noise. We must choose t∗ as the size of the window of summation carefully. If we
choose t∗ > τint, we introduce little bias by truncating the sum in Eq. 2.28. The value
of t∗ should also be small enough so as not to unnecessarily amplify the variance of τint

in Eq. 2.29. Under this constraint, the truncated sum in Eq. 2.28 tends to a plateau.
The value of τint at this plateau is taken to estimate the value in Eq. 2.25. and its error
is calculated using the covariance of Eq. 2.26, which after some algebraic manipulation
is given by,

var(τint) ≈
2(2t∗ + 1)

N
τ 2

int. (2.29)

Standard errors in means estimated using Monte Carlo will usually be of the order of
(τ/N)

1
2 , therefore we aim to run simulations for at least 10000τ to ensure an accuracy in

the error bars of around 1%. The definition of integrated autocorrelation times and how
to treat the relaxation of our system to equilibrium during the Monte Carlo simulation
is taken from Ref. [15]. This is an excellent guide for anyone looking to perform
Monte Carlo simulations. We estimate τint using a modification of the MATLAB script
provided in Ref. [16]. Another excellent resource for the statistical analysis of Monte
Carlo data is Ref. [17], which takes a more data oriented approach to controlling the
errors caused by autocorrelation.

2.2.3 Metropolis Algorithm

We use a combination of the Metropolis and Wolff cluster algorithms to perform our
Monte Carlo simulations. These algorithms have very different motivations but both
generate Markov chains of Ising states with a limiting distribution that approaches the
unique, universal stationary distribution of this ensemble. Both the Metropolis and
Wolff cluster algorithms are very well known in the field of statistical physics. However,
in Chapter 4.3.1 we propose a new Monte Carlo algorithm of our own and in light of
this the formulation of the Metropolis and Wolff algorithms are both interesting and
of relevance.
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The Metropolis algorithm is a local update algorithm in that small changes are
made to each configuration in a proposal step that must then be accepted or rejected
in a further step. The algorithm itself is motivated by the detailed balance condition,
which is stronger than that in Eq. 2.20 and is sufficient to satisfy ergodicity. The
detailed balance condition is shown in Eq. 2.30, where the stationary distribution (π)
of a given configuration (x) and the transition probability to a new state pxy is balanced
by the reverse,

πxpxy = πypyx. (2.30)

The ratio of transition probabilities is proportional to the ratio of stationary distribu-
tion,

pxy
pyx

=
πy
πx
, (2.31)

and the transition probabilities can be factorised into a proposal (g) and acceptance
step (A),

pxy = gxyAxy. (2.32)

The ratio of the stationary distribution of states is the most important factor here.
Accept states with the correct relative probability,

Axy
Ayx

=
πy
πx

gyx
gxy

. (2.33)

To satisfy Eq. 2.33, we can choose the probability of accepting a new Ising state y given
some change to state x to be,

Axy = min

(
1,
πy
πx

gyx
gxy

)
. (2.34)

In the case of the Ising model, the proposal probability from state, x to y and back is
symmetric as they differ by only a single spin flip which leads to,

gyx = gxy. (2.35)
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The acceptance probability is then reduced to the simpler form,

Axy = min

(
1,
πy
πx

)
(2.36)

For the Ising model in particular, the Metropolis algorithm is useful when we can
calculate the energy of a given configuration, σ. We can numerically calculate the
numerator of the Ising probability distribution, but the partition function denominator
still eludes us,

π(σ, β) = Z−1 exp[−βE(σ)], (2.37)

with

Z =
∑
{σ}

exp[−βE(σ)]. (2.38)

However, the Metropolis algorithm is only concerned with the ratio of the stationary
distribution,

Axy =
πy
πx

= exp[−β (∆E)], (2.39)

where,

∆E = E(y)− E(x). (2.40)

Due to the local spin flip nature of the algorithm, the change in energy (∆E) depends
only on the interaction of the spin being flipped and its nearest neighbours. All other
contributions to the energy cancel out,

∆E = −J

 ∑
j∈N(i)

δyiσj −
∑
j∈N(i)

δxiσj

 (2.41)

The simplicity of the Metropolis algorithm is its main strength. Unfortunately it
suffers from a phenomenon known as critical slowing down near a second order phase
transition. In this situation, the correlation length between individual spins diverges,
leading to an extremely high autocorrelation between samples and very large errors.

In addition to this, we have found that the Metropolis algorithm suffers from more
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problems on complex networks. Due to the heterogeneous nature of the degree of
each node in a complex network, the difference in energies between successive states in
Eq. 2.41 separated by spin flips can be very large. This leads to some spins being flipped
very infrequently and a loss in ergodicity in the system that is no longer irreducible
since not all states can be accessed. Therefore, we have found that our Monte Carlo
simulations benefit from a combination of Wolff cluster and Metropolis updates.

2.2.4 Wolff Algorithm

The Wolff cluster algorithm [18] has been shown to improve the effects of critical
slowing down, with autocorrelation times as low as one or two steps per spin for the
two dimensional O(n) models, including the Ising model.

The Wolff cluster algorithm is an adaptation of the earlier Swendsen and Wang
cluster algorithm [10] which iterates over each spin in the lattice, clustering sites with
equal spin values into existing clusters or new clusters. The Wolff adaptation creates
only one cluster in the graph. The edge, {x, y} is activated to add node y into the
cluster with probability,

P ({x, y}) = 1− exp[−2β]. (2.42)

The Wolff algorithm was chosen over the Swendsen and Wang implementation since
the autocorrelation times are lower and the update involves only a subset of the entire
graph. The necessary steps for one Wolff cluster sweep of the Ising model are given
below.

• Choose an initial site x on the graph G as the first element of the cluster c.

• Visit all edges connecting x ∈ c to its nearest neighbours y.

• If the spin at site y equals that at site x, σx = σy, activate edge {x, y} with
probability P ({x, y}), to include y in cluster c.

• Iterate over all untested edges incident to the cluster until all edges have been
tested and fail, leaving the cluster no more growth opportunity.

• Flip the spins at all sites x ∈ c, giving σx → rσx = −σx.

Ergodicity can be proven using a simple and intuitive argument. It is possible to
choose any site initially and there is a non-zero possibility of the cluster containing
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only one spin. There is also a non-zero possibility of choosing the same initial site
twice, negating the spin flip. Therefore, at most there are |V | spin flips between any
two spin configurations and the algorithm is irreducible. Aperiodicity results from the
ability of the algorithm to flip clusters of different sizes. A number of adjacent spins
may be flipped individually in consecutive sweeps and flipped back in a single sweep.
Positive recurrence results from an irreducible, aperiodic Markov chain in a finite state
space.

2.2.5 Bootstrap Resampling

Following our Monte Carlo simulations, we estimate the mean of the magnetisation
and energy of our ensemble. As we have already seen, the standard error of these
means depends on the number of samples taken. Resampling methods have become
the standard technique for estimating the error in ensemble means calculated using
Monte Carlo. The most popular resampling methods are jackknife and bootstrap
resampling [19, 20]. The jackknife has been shown to be a linear approximation to
the bootstrap resampling method, but has the advantage of being computationally less
intensive. The jackknife estimate of the error also does not change when repeated on
the same data set.

Our Monte Carlo algorithm produces a sequence of random variables,

y = {x1, x2, x3, . . . , xN}. (2.43)

To calculate the bootstrap estimate of standard error σ̂B, draw N samples from y with
replacement to give,

y∗ = {x∗1, x∗2, x∗3, . . . , x∗N}. (2.44)

Repeat this sampling to draw a large number of bootstrap samples,

y∗(1), y∗(2), . . . , y∗(B). (2.45)

For each bootstrap sample y∗(b), evaluate the statistic of interest (sample mean),

F̂ ∗(b) = F̂ (y∗(b)). (2.46)
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Calculate the standard deviation of F̂ ∗(B),

σ̂B =

√∑B
b=1{F̂ ∗(b)− 〈F̂ ∗〉}2

B − 1
(2.47)

where

〈F̂ ∗〉 = B−1

B∑
b=1

F̂ ∗(b). (2.48)

When dealing with correlated data, such as that produced during a Monte Carlo
run, it can be useful to use a blocked bootstrap method. In this variation of the
algorithm, the data is divided into M blocks of length m = N/M � τint, which are
resampled instead of individual samples [21, 22]. Following this treatment of the Monte
Carlo data, we end up with a sample mean and the standard error of the mean. The
standard error will be reported in this thesis in parentheses adjacent to estimates of
the mean.

2.2.6 Reweighting

Monte Carlo simulations of the canonical ensemble are usually run over a range of T
values centred on Tc. Shifts in Tc due to finite size effects can make it difficult to predict
the location of the finite volume critical temperature, Tc(V ). This discretisation error
can be rather large compared to the standard error and in turn leads to inaccuracies
in determining the critical temperature using the peak in susceptibilities, overlap in
Binder cumulants or finite size scaling.

Reweighting has become the standard tool for locating Tc in systems displaying a
second order phase transition [23]. It uses the Monte Carlo observable histories at a
given inverse temperature β0 and reweights them across different inverse temperatures
close to β [24]. In this way, the maxima of susceptibilities and the crossing of cumulants
of different volumes can be found at a finer T resolution.

The standard estimate of the expectation value at inverse temperature β0 is

〈O〉β0 = Z−1
β0

∑
{σ}

O(σ) exp[−β0E(σ)] ≈ N−1

N∑
i=1

Oi (2.49)

where the set ofN Monte Carlo measurements of observable O, labelled Oi, are sampled
from the Boltzmann distribution. Similarly to Eq. 2.49, the expectation value for a
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general inverse temperature β can be given as,

〈O〉β = Z−1
β

∑
{σ}

O(σ) exp[−βE(σ)], (2.50)

= Z−1
β

∑
{σ}

O(σ) exp[−(β − β0)E(σ)] exp[−β0E(σ)]. (2.51)

Given that the probability of a spin configuration, σ, at temperature β0 is,

P (σ, β0) = Z−1
β0

exp[−β0E(σ)], (2.52)

Eq. 2.51 can be expressed in terms of an expectation value calculated using the Boltz-
mann distribution with β0,

〈O〉β =
Zβ0
Zβ

∑
{σ}

O(σ) exp[−(β − β0)E(σ)]P (σ, β0), (2.53)

=
Zβ0
Zβ
〈O(σ) exp[−(β − β0)E(σ)]〉β0 . (2.54)

The sum over the probability distribution must add to one, therefore, for a general
inverse temperature β,

P (σ, β) = Z−1
β exp[−βE(σ)], (2.55)

= Z−1
β exp[−(β − β0)E(σ)] exp[−β0E(σ)], (2.56)

=
Zβ0
Zβ

exp[−(β − β0)E(σ)]P (σ, β0), (2.57)

and,

∑
{σ}

P (σ, β) =
∑
{σ}

Zβ0
Zβ

exp[−(β − β0)E(σ)]P (σ, β0), (2.58)

=
Zβ0
Zβ
〈exp[−(β − β0)E(σ)]〉β0 = 1. (2.59)

Therefore, the prefactor in Eq. 2.54 can be expressed solely in terms of the energy
observables E(σ) and the inverse temperatures β and β0,

〈exp[−(β − β0)E(σ)]〉β0 =
Zβ
Zβ0

. (2.60)

Using the N Monte Carlo measurements, Oi and Ei which come from the same
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configuration σi,

〈O〉β =
〈O(σ) exp[−(β − β0)E(σ)]〉β0
〈exp[−(β − β0)E(σ)]〉β0

(2.61)

≈
∑N

i=1Oi exp[−(β − β0)Ei]∑N
i=1 exp[−(β − β0)Ei]

. (2.62)

Using this treatment, we can reweight any ensemble mean or higher moment, such
as the susceptibility

χ = βV 〈(|m| − 〈|m|〉)2〉 = βV (〈m2〉 − 〈|m|〉2), (2.63)

where

m = M/V, (2.64)

with M defined in Eq. 2.10 and specific heat

Cv =
β2

V
〈(E − 〈E〉)2〉 =

β2

V
(〈E2〉 − 〈E〉2). (2.65)

In practice, estimating 〈E〉β and 〈m〉β using reweighting are both straightforward
numerically, for example;

〈E〉β =

∑N
i=1Ei exp[−(β − β0)Ei]∑N
i=1 exp[−(β − β0)Ei]

. (2.66)

The appropriate susceptibilities depend on the resampled average energy which can be
reused from above,

Cv(β) =
β2

V

∑N
i=1(Ei − 〈E〉β)2 exp[−(β − β0)Ei]∑N

i=1 exp[−(β − β0)Ei]
. (2.67)

Note that the average energy in the numerator is not simply the estimator of the sample
mean at β0, but is the reweighted mean 〈E〉β from above.

This reweighting treatment is used to both estimate the susceptibilities of our ob-
servables and the critical temperature at which they peak. The errors of both of these
are estimated using blocked bootstrap resampling. The N samples of observable data
Oi are blocked into M blocks of length m� τint. M blocks are randomly chosen with
replacement, according to the bootstrap methods and the bootstrap sample means are
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calculated,

〈O〉∗β =

∑N
i=1 Oi exp[−(β − β0)Ei]∑N
i=1 exp[−(β − β0)Ei]

(2.68)

The standard form of the bootstrap estimate of the standard error is then used.

Estimating the error in the critical temperature is somewhat more involved. We
must divide the data intoM blocks of lengthm� τint. Each block of data is reweighted
over a small range of β around the βc where the susceptibility peaks. The temperatures
β∗max, at which the susceptibility peaks for each block are recorded. The jackknife
estimate of the standard error for βmax is then calculated as

δβ∗max =

√
M − 1

M

∑
m

(β∗max − 〈β∗max〉)2 (2.69)

where

β∗max = M−1

M∑
i=1

β∗i,max. (2.70)

Some care should be taken not to reweight too far from the original sampled tem-
perature β0 since the reweighting introduces a large error for states which are not
abundant at this temperature. For the energy reweighting, the distance between the
reweighted mean and the original sample mean should not exceed the fluctuation of
the samples themselves,

|δ〈E〉| ≤ 〈(E − 〈E〉β0)2〉1/2. (2.71)

For our purposes, we choose data at a temperature β0 as close to Tc as possible to
estimate the reweighted critical temperature βc using susceptibility peaks.

2.3 Results and Discussion

In this section, we present the results of our Monte Carlo simulations of the Ising model
on complex interference networks. The results have been arranged in three subsections
for convenience. Sec. 2.3.1 explores the loss of ergodicity which may occur in these
simulations. In Sec. 2.3.2 the efficiency of the Monte Carlo sampling in producing
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independent configurations is presented and finally, in Sec. 2.3.3, the Monte Carlo
estimates of thermodynamic observables are shown.

2.3.1 Metropolis Algorithm: Loss of Ergodicity

Our experience with these Monte Carlo simulations on complex networks has shown
that we must be very careful with inspecting the observables prior to performing any
statistical analysis.

Figure 2.3: Plot of Ising model Energy observable thermalisation histories produced by
the Metropolis algorithm. The Ising model is embedded on the θ = 1% graph. From low
to high T , a colour change indicates moving from the history of one independent run to
the next, with consecutive runs performed at higher temperature. 104 iterations at each
T run are shown, from Tmin = 0.5 to Tmax = 10.4. The grouped nature of the energy
histories, which do not display a clear mean which increases with temperature is due to
the loss of ergodicity. For reference, the lowest energy state occurs at E/N = −18.81
and is the fully ordered state.

As we previously mentioned in Sec. 2.2.3, the increased heterogeneity in degree can
cause unusually large ∆E values to occur during Metropolis algorithm sweeps through
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the complex network. These large values can suppress the transition probabilities to
higher energy states. Following each sweep of the Metropolis algorithm, the energy
of that configuration is calculated and stored. These energy histories are then used
to estimate the average energy and specific heat as shown in Sec. 2.1.1. Ideally, these
energies fluctuate around a well defined mean with no large jumps; a sign of short
autocorrelation times.

An example of a set of energy histories from an exclusively Metropolis algorithm
simulation which loses ergodicity is shown in Fig. 2.3. The system was started in a
hot/random state to begin with and the initial transient to lower energy states can be
seen in many cases as a column of points of the same colour. These columns are the
energies due to the thermalisation phase of the runs.

The stratification of energy histories clearly shows that the system gets stuck in
local energy minima which take a long time to leave. For this reason, we deem the
Metropolis algorithm alone to be unsuitable for our Monte Carlo simulations. For the
rest of the chapter we use both Wolff and consecutive Metropolis and Wolff cluster
sweeps to generate new configurations. Both of these approaches were able to access
the same range of energies but with different autocorrelation times.

2.3.2 Integrated Autocorrelation

The Monte Carlo energy histories resulting from both exclusive Wolff updates and
combined Metropolis and Wolff algorithm simulations were found to be well-behaved on
these networks. Both displayed a well defined mean and the energy histories fluctuated
around this mean.

The integrated autocorrelation times for both are shown in Fig. 2.4. The peak that
occurs in the Wolff and Metropolis & Wolff autocorrelation times can be used as an
early indication of the presence of critical behaviour in the region of this peak.
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Figure 2.4: Plot of the plateau values of the integrated autocorrelation time, τint esti-
mated for the Energy observable. These simulations were performed on our θ complex
networks. The Wolff algorithm and Metropolis & Wolff algorithm results are displayed.
Due to loss of ergodicity, the Metropolis algorithm results are not considered here.

The autocorrelation is under control at both high and low temperatures using the
combined Wolff and Metropolis simulations. This low autocorrelation results in a very
small contribution to the naive standard error of the observables shown in the next
section.

2.3.3 Critical Behaviour

In this section, we present the thermodynamic observables estimated using the com-
bined Wolff and Metropolis Monte Carlo simulations. Fig. 2.5 shows that the average
magnetisation falls as the temperature increases. This drop in magnetisation indicates
that the system is transitioning from a fully ordered phase to a more disordered one.
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Figure 2.5: Mean magnetisation per site on the θ complex network, with bootstrap re-
sampled errors. The spontaneous magnetisation shown by our Monte Carlo simulations
indicates the presence of a crossover between ordered and disordered spin phases. Each
data point is the mean over energy samples from 106 consecutive combined Metropolis
& Wolff Cluster Monte Carlo sweeps after thermalising for 105 sweeps. Standard error
of the mean estimates are calculated using 103 bootstrap resamples. Unless otherwise
stated, all other results in this chapter were calculated with the same level of statistics.

The magnetisation curve itself becomes more rounded and drawn out for the graphs
with lower θ values. The θ = 1% graph has the smallest average path length 〈l〉 of the
three graphs shown here and they all possess a similar clustering coefficient, C ∼ 0.6.
The θ = 1% graph also has the most heterogeneous degree distribution. The tendency
for the magnetisation to fall over this larger temperature range is comparable to that
of the behaviour in the WS model small-world network.

The mean energy per site in Fig. 2.6 shows the accompanying increase in the internal
energy in the system as temperature increases. The ground state energies per site are
listed in the caption. It is clear then that the Monte Carlo method has no problem
sampling both high and low energy states of our system. The significantly lower ground
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state energy for the θ = 1% graph is due to the far larger number of edges than the
others.
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Figure 2.6: The mean energy per site on our complex network, with bootstrap resam-
pled errors. In the temperature region where the magnetisation changes rapidly, there
is a corresponding rise in the internal energy of the system. The ground state energies
per site for the θ = 1%, 3% and 5% graphs are −37.62 J/kB, −17.58 J/kB and −9.86
J/kB respectively.

A peak occurs in the specific heat curves in Fig. 2.7 around the temperature range
where the average magnetisation occurs. Again, the θ = 1% peak is significantly less
sharp and occurs over a much larger temperature range than the other graphs. None
of these curves appear to be symmetric about the maximum and the θ = 3% peak is
almost bimodal.

We use the maxima in the specific heat curves to estimate the critical temperatures
on the networks. However, it is not often clear where the true peak of these curves
actually lies since we perform our simulations at a range of temperatures chosen prior
to simulation.
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Figure 2.7: The specific heat per site on the complex networks, with bootstrap resam-
pled errors. A peak appears in the specific heat in the temperature range where the
spontaneous magnetisation occurs. The peak is much more narrow and symmetric for
the θ = 5% graph, which has the least edges. As θ increases, the peaks are shifted
toward higher temperatures and become broader and less symmetric.

In Fig. 2.8, this problem becomes quite clear. For example, in Subfigs. 2.8a and 2.8c
two adjacent values of the susceptibility per node occur close to the peak. Especially
in the Subfig. 2.8a, the temperature difference between these points is quite substantial
and the true peak presumably lies between these points.

The bimodal character of the Subfig. 2.8b for the θ = 3% graph is quite striking.
For this reason, the Monte Carlo data from both Metropolis & Wolff simulations and
Wolff-only simulations were closely inspected to determine if this two-peak structure is
robust. The magnetisation histories, integrated autocorrelation times and susceptibil-
ity calculations themselves were repeatedly inspected and tested for either human or
simulation error. Following this close scrutiny, we found the magnetisation histories to
be well behaved. As expected, at low temperature the histogram of the magnetisation
histories shows two symmetric peaks of equal height close to the magnetisation values
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of +1 and −1. No visible signs of autocorrelation in the magnetisation histograms were
present, such as unequal height in the two peaks or more than two peaks. This verifies
that the Monte Carlo algorithm was successful in tunnelling between the spin-up (+1)
and spin-down (−1) aligned states. This is a strong indication that the Markov Chain
is ergodic. For simulations at higher temperatures, the two peaks in the magnetisation
histogram are shifted towards mean magnetisation values of 0 and eventually join to
form a single peak, indicating a crossover to a disordered phase. As shown already
in Fig. 2.2.2, the autocorrelation times are quite small and as a result of our testing
and verification, we are confident that we have not made an error in calculating the
susceptibility curves.
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Figure 2.8: The susceptibility per site on our complex networks, with bootstrap resam-
pled errors.



2.3. Results and Discussion 33

In Fig. 2.9, the susceptibility curves for the Ising model on the θ = 3% networks
are compared. In Subfigs. 2.9a and 2.9b, the susceptibility curves are produced from
Metropolis & Wolff and Wolff-only simulation data respectively. The twin-peak struc-
ture seen in Fig. 2.8 is also visible in the independently obtained Wolff data.
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Figure 2.9: This plot compares the susceptibility per spin for the θ = 3% networks
using (Subfig. 2.9a) Metropolis and Wolff and (Subfig. 2.9b) Wolff-only Monte Carlo
data. The curves in Subfigs. 2.9a and 2.9b were produced using 106 samples per tem-
perature value with bootstrap resampled standard errors. Subfigs. 2.9c and 2.9d show
the susceptibilities per node calculated using subsets of the Monte Carlo data. For both
of these Subfigs., the 106 sample histories were split into 10 subsets of 105 consecutive
magnetisation values. The twin-peak structure, separated by a trough, is present in all
curves in this figure, with a difference between peak and trough susceptibility values
of at least two standard errors and up to more than ten.
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The curves in both sub-figures are produced using 106 samples per temperature
value and the standard errors are calculated using bootstrap resampling. In both sub-
figures, a peak is visible near temperature, T = 13.2, with a minimum near T = 13.9

and a second peak near T = 15.2. The susceptibility values of the peaks are over ten
standard errors larger than those at the troughs between them.
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Figure 2.10: Reweighted specific heat curves with bootstrap errorbars. The reweighted
data was obtained from Monte Carlo simulation performed at the temperature where
the specific heat peaks, T = {35.806 J/kB, 14.839 J/kB, 6.177 J/kB} for each of the
θ = 1%, 3% and 5% graphs respectively.

Additionally, due to the low autocorrelation times and large number of samples, the
long magnetisation histories at each temperature point can be divided into ten separate
and essentially independent histories. Using these ten histories for both the W and
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M&W data, the curves in Subfigs. 2.9c and 2.9d were produced. In each of the ten
curves, for both M and M&W, the peaks and separating trough are present. Further,
the height of the peaks are at least two standard errors greater than the troughs in all
ten curves, with differences of up to 10 standard errors. This data strongly supports
our conclusion that the twin-peak structure is a true feature of this system. A more
thorough study of this behaviour is warranted to find the underlying cause, however
this was beyond the original scope of this work.
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Figure 2.11: Reweighted susceptibility curves with bootstrap errorbars. The rewe-
ighted data was obtained from Monte Carlo simulation performed at the temperature
where the susceptibility peaks.

In Fig. 2.10, we improve on the finite T separations by reweighting the energy
history using the method set out in Sec. 2.2.6. The reweighting was performed on



36 Chapter 2. Ferromagnetic Ising Model

the Monte Carlo energy history which corresponded to the maximum of the peak in
Fig. 2.7. The much finer resolution in T allows us to judge more precisely the peak in
specific heat and consequently the critical temperature. This procedure was repeated
for the susceptibility shown in Fig. 2.11.

The estimated critical temperatures themselves are shown in Tab. 2.2. In general,
the critical temperature increases as θ decreases, meaning that as the nodes become
more interconnected the critical temperature increases. This behaviour agrees quali-
tatively with the critical temperature of the WS model increasing as the fraction of
interconnected nodes increase.

However, the critical temperatures due to the specific heat and susceptibility peaks
in Tab. 2.2 do not closely agree. While these temperatures are qualitatively similar,
there are many σ in the difference between them in all cases. It is not clear from the
work performed here whether these differences are due to a finite size effect or if there
is a difference in critical behaviour for different observables.

Some difficulties arise in performing larger volume simulations to suppress boundary
and finite volume effects, since these networks are generated using real-world data. This
is definitely an area that we believe would benefit from future work.

θ Tc(Cv max) Tc(χmax)

1% 35.8(3) 37.1(2)
3% 15.06(2) 14.61(4)
5% 6.37(5) 5.88(1)

Table 2.2: Estimated critical temperature of the complex networks based on the tem-
perature at which the peak in the specific heat and susceptibility occur. The errors are
estimated using bootstrap resampling.

2.4 Conclusion and Future Work

In this chapter, we have performed Monte Carlo simulations of the ferromagnetic Ising
model on complex networks. The critical behaviour of this model is known to differ from
the usual lattice behaviour on complex networks and we show that the network itself is
responsible for this change. The complex networks which we perform our simulations
on are derived from the potential interference between basestations in real-world mobile
phone networks.

The Monte Carlo energy histories resulting from our simulations indicate a loss of
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ergodicity when using the Metropolis algorithm only. The loss of ergodicity is due to
nodes in the network which have many more connections than average. The probability
of flipping these highly connected nodes can become very low due to the number of
connections.

Performing the simulations using consecutive sweeps of the Wolff cluster and Metro-
polis algorithm is sufficient to maintain ergodicity of the Markov chain. The correlation
between successive configurations of the system using these algorithms is shown to
be extremely low, as measured by the integrated autocorrelation time for the energy
observable.

The average magnetisation observable is used to show that at low temperature
an ordered phase occurs in which all spins are aligned in the same direction. At
high temperature, a disordered phase is observed. The temperature at which this
order/disorder crossover occurs is shown to rise as the number of interconnections
increases in our network (i.e. low θ values). The critical behaviour also becomes less
sharp and occurs over a larger temperature range for the more interconnected network.
This behaviour is very similar to that expected in the Watts-Strogatz family of complex
networks, where the critical temperature rises with increased interconnectedness and
becomes less sharp.

The critical temperature itself is estimated to be the point at which the magnetic
susceptibility and specific heat curves peak. To overcome the large error in temperature
which results from simulating over an interpolated temperature range, the data is
reweighted at a finer temperature resolution to determine the critical point.

Of the work performed for this chapter, we believe that two areas in particular
would benefit from further study. The first is the bimodal susceptibility observed in
the θ = 3% graph. Despite in-depth statistical analysis of the Monte Carlo data, this
bimodal peak is yet to be explained. We hypothesise that this is a real behaviour due
to some high degree hubs becoming easier to flip at higher temperature and effecting
the overall phase transition as a result.

In addition to this, the difference in the critical temperatures using the specific
heat and susceptibility maxima should be further investigated. One possible avenue
of investigation would be to repeat this work on interference networks of larger cities
where finite size and boundary effects would be less influential.
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Antiferromagnetic Potts model

In this chapter, we study the antiferromagnetic q-state Potts model on the θ complex
networks. Originally, these complex networks were created to model the potential
interference between mobile phone basestations broadcasting on the same channel. We
use these networks to investigate the situation where basestations have q channels to
choose from. Limits on signalling capacity force these modern mobile networks to
make local decisions based on their surrounding environment. This suggests that the
nearest neighbour interactions in the Potts model can be used as a simple description
of distributed channel allocation on these networks.

The critical behaviour of the antiferromagnetic Potts model involves an ordered low
temperature phase of alternating values of adjacent spins. At higher temperature, a
disordered phase with almost uniformly distributed spin values occurs. To minimise
interference in a mobile phone network, an operator would be wise to ensure the system
stays in the low temperature ordered phase so that adjacent base stations use different
channels. On complex networks however, due to the random nature of adjacent nodes,
it becomes difficult to achieve this ordered state and spin-glass characteristics may be
exhibited. This spin-glass behaviour causes a non-zero ground state with a high degen-
eracy in the Potts model. Therefore, the nature of the degeneracy of low interference
states then becomes very important for mobile network operators.

Performing conventional Monte Carlo simulations in models containing a spin-glass
phase becomes almost impossible and for this reason we use the multicanonical Wang-
Landau (WL) algorithm from Ref. [2]. The WL algorithm estimates the density of
states (DOS) which is independent of temperature and therefore avoids spin-glass sim-
ulation problems. We consider the Potts energy [25] to be equivalent to the level of
interference in the network. The degeneracy of these interference levels is numerically

38
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estimated to find the density of states. With an estimate of the DOS, we can exam-
ine both the distribution of interference levels and the behaviour of thermodynamic
observables of the Potts model.

This chapter contains a further four sections. Sec. 3.1 provides a brief overview of
the antiferromagnetic Potts model, its previous use in network engineering and some
known behaviour of this model on complex networks. Sec. 3.2 discusses the basis of
the Wang-Landau Monte Carlo algorithm, how its errors scale and the derivation of
canonical ensemble thermodynamic observables. Sec. 3.3 presents our numerical results
and some discussion on the difficulty of performing Monte Carlo on complex networks.
Finally, we conclude this chapter with Sec. 3.4 and a discussion of future work. The
majority of the work performed in this chapter is found in Ref. [3].

3.1 Background

Treating mobile phone networks as complex systems has become quite popular, such
as in Refs. [26, 27, 28, 29, 30] where the authors focus on human dynamics and social
interaction via mobile phones. Critical phenomena in wired communication networks
are studied in Refs. [31, 32, 33]. Transmission rate calculations and interference reduc-
tion in wireless networks was performed in Refs. [34, 35] using the replica method to
evaluate an analogue of the free energy of the system. A great deal of attention has
especially been given to the Ising and Potts models in wireless networks. Some appli-
cations of these spin models have been; calculating the transmission probability and
throughput [36, 37], recreating network topology based on mutual information shared
between nodes [38], distributed configuration management [39] and adaptive schedul-
ing for wireless networks of sensors for energy efficiency [40]. The use of interference
graphs to study interference in wireless networks is discussed in Ref. [41]. Alternative
methods for statistical interference analysis among the wireless network community
also include stochastic geometry of node placement [42] and a novel circular interfer-
ence model as in Ref. [43]. Our treatment of interference networks using the q-state
Potts model begins in the next section, where antiferromagnetism is further explained.
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3.1.1 Potts Model

The Potts model representing interference in our complex networks is described here.
Each vertex in our graphs (basestation sector1) i ∈ V possesses a transmitter using a
frequency channel (spin) which may take one of the discrete values σi ∈ [1, q] represent-
ing the division of the spectrum into q orthogonal channels. Each spin interacts with its
nearest neighbours only, interfering with all neighbours using the same channel. The
local interference per basestation is summed to define the overall interference, which is
equivalent to the Potts model energy. Several q values are considered in this chapter
on three different graphs, derived from a real-world wireless network. The choice of
these q-values is informed by the frequency reuse schemes described in Ref. [44].

The Potts model energy was discussed already in Chapter 2. The antiferromagnetic
Potts model is relevant for interference and we henceforth set J = −1. For illustration,
consider the interaction between a single basestation sector and its nearest neighbours
in this set-up. Setting the frequency of sector i (denoted σi) and that of all its nearest
neighbours to the same value adds ni to the total interference, where ni is the num-
ber of nearest neighbours of sector i. Our definition of interference assigns the largest
interference to configurations in which each sector uses the same frequency channel.
The negative interaction constant effectively punishes neighbouring aligned spins, rep-
resenting neighbouring basestations using the same frequency channel, by assigning a
larger interference.

Clearly, lower interference will result from configurations in which neighbouring
basestations use different frequency channels. However, the topology of the network
plays a crucial role in determining the lowest possible interference level. Consider the
q = 2 Potts model (the Ising Model) on a triangular lattice [45]. Due to the presence
of triangles in the network, it is not possible for three basestations situated on the
vertices of a triangle to be completely non-interfering as they are all mutual nearest
neighbours and there are only two frequency channels available. This phenomenon is
known as ‘geometric frustration’ and increases both the lowest possible interference
level as well as its degeneracy. For the same q = 2 Potts model on a square lattice,
geometric frustration does not occur and zero-interference configurations are possible
by alternating frequencies on the ‘even’ and ‘odd’ sites of the lattice. In this manner
a particular sector is always using a different frequency than its neighbours and no
interference occurs. We now consider the degeneracy of this zero-interference level.

1In cellular networks, a basestation covers a given area which is divided into sectors, each served
by a separate transmitter.
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There are exactly two configurations which give zero interference: the one in which the
even sectors are assigned frequency one and the odd sectors frequency two, and the
alternative configuration where this assignment is reversed. The resulting degeneracy
of this zero interference state is two, regardless of the size of the square lattice. The
triangular lattice possesses a substantially higher degeneracy for the lowest interference
level. In fact, it has been shown [45] that the degeneracy of the minimum energy state
for the q = 2 Potts model on a triangular lattice grows exponentially with the size of
the lattice. This results in a non-zero specific ground state entropy (proportional to
the natural logarithm of the degeneracy) in the thermodynamic limit.

The appearance of geometric frustration can be understood using the graph theory
concept of cliques. A clique is a subset of vertices that are all connected to each other,
i.e. a set of nodes that are all mutual nearest neighbours. For example, a triangle is
a 3-vertex clique. As discussed above, the q = 2 Potts model experiences geometric
frustration on the triangular lattice, which is composed of 3-cliques. Generally, an
arbitrary q-state Potts model will experience frustration on networks which contain
(q + 1)-cliques. It should be noted that the phenomenon of geometric frustration and
its connection to the topology of the network and q are well-known in graph colouring.

The presence of geometric frustration and the randomness in the edges of a complex
network has been found to cause spin-glass behaviour at low temperatures. Spin-glasses
are not well understood on complex networks. In fact, only recently has the study of
spin-glasses on scale-free and Watts-Strogatz networks started to draw attention. In
regular lattices, spin-glasses are known to occur in the Ising model with long-range
random couplings Jij of ferromagnetic and antiferromagnetic interactions between spins
[46]. In a spin-glass, the system is stuck in a metastable state above the ground state.
It has a non-ergodic equilibrium state, a vanishing magnetisation and a non-vanishing
correlation between spins at the same lattice points on different replica lattices.

Spin-glass behaviour of the antiferromagnetic Ising model has been found on a scale
free network studied using Monte Carlo methods in Ref. [47]. The authors observed
a transition between a paramagnetic and spin-glass phase and estimate the critical
temperature Tc ∼ 4.0(1). The replica exchange method was used to avoid difficulties
in simulation due to the spin-glass phase. The Binder forth order cumulant was used
to find the critical temperature. Very interestingly, hubs with a high degree were found
to freeze for many updates and this is considered a standard behaviour for spin-glasses.
The high degree hubs are difficult to flip using standard Monte Carlo methods since the
energy difference, ∆Ei = −2σi

∑ki
j=1 σj, can be extremely high. At lower temperatures,

the system can get trapped in local minima of free energy and the time necessary to
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move to another allowed region of the state space diverges as system size grows. In this
paper, Cv peaks at T ∼ 2.0 but the critical temperature is estimated to be Tc ∼ 4.0

using a scaling hypothesis on the Binder parameter. In a similar study in Ref. [48], the
authors used the Metropolis algorithm with a simulated annealing approach to tunnel
through the complex energy landscape of their system. They found a similar critical
temperature, Tc ∼ 4.8(2), which is close but still four standard deviations away from
the last study. The cause of this discrepancy is unclear.

The critical behaviour of Erdős-Rényi random networks seems to be highly depen-
dent on the proportion of rewired edges, p. No phase transition at any temperature
exists in the antiferromagnetic Potts model if p < 2(q−1) ln (q − 1) = p1(q) [49, 50]. If
p ≥ p1(q), a phase transition occurs between the spin-glass phase and the paramagnetic
phase above the temperature bound,

Tc(q) ≥


−1/ ln

(
1− q

1+
√
p

)
, if q = 2

−1/ ln

(
1− q

1+
√

p(q−1)
2 ln (q−1)

)
, otherwise.

(3.1)

As discussed above, the stochastic nature of the edges in these graphs, combined
with the presence of geometric frustration is likely to result in a spin-glass phase at
low temperature as in Refs. [48] and [47]. To avoid loss of ergodicity of a classic Monte
Carlo algorithm, we estimate the Potts model degeneracy using the multicanonical
Wang-Landau algorithm. The temperature independent sampling avoids simulation
difficulties arising at low temperatures such as loss of ergodicity due to a rough energy
landscape. We observe interesting features in the distribution of interference levels
(density of states) due to configurations of channel assignments. The degeneracy of
a particular interference level E, denoted g(E), is the number of frequency allocation
configurations which result in this interference level:

g(E) =
∑
σ

δE(σ)E, (3.2)

where the sum is taken over all possible frequency allocation configurations. We will
use the Wang-Landau algorithm described in the next section to estimate g(E) for a
number of different interference networks and q values over the entire range of E.
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3.2 The Wang-Landau Algorithm

We estimate the degeneracy of each interference level using the Wang-Landau algo-
rithm. The state space of the q-state Potts model grows exponentially with system
volume according to qN , where N is the number of sectors in the system (nodes).
While this behaviour makes naive DOS histogramming extremely inefficient, the Wang-
Landau algorithm uses a different approach. It converges to a non-biased random walk
in energy space to determine how often each energy state is visited. Since we use the
Potts model energy to represent interference, this method lends itself naturally to our
cause. The probability of transitioning from one energy state to the next is given by the
ratio of the estimated degeneracy of the current energy state (g̃(Ei)) to the estimated
degeneracy of the proposed new energy state (g̃(Ej)), i.e.

P (Ei → Ej) = min

{
1,
g̃(Ei)

g̃(Ej)

}
. (3.3)

When the estimated DOS, g̃(E), approaches the true DOS, g(E), each energy level
will have been observed approximately equally. Although Ref. [2] provides a good
description of the algorithm, greater detail is provided here on the necessary steps in
our simulations. For this work, new energy states are proposed via a Metropolis-style
spin-flip mechanism. We iterate through the network, proposing a new spin value
at each node with equal probability. If the estimated degeneracy of the current spin
configuration g̃(Ei) is greater than that of the proposed spin configuration g̃(Ej) then
the spin flip is automatically accepted. Otherwise, the spin flip is accepted with the
probability of the ratio of the current and proposed energy state degeneracies as in
Eq. (3.3). Having performed a complete iteration through the entire network, one
sweep has been completed.

On observing energy state E, the estimated DOS is updated according to g̃(E)→
g̃(E)×f . The modification factor f is initialised to f = e1 at the start of the run. Since
the state space grows so quickly, for efficiency it is more practical to store the natural log
of the DOS and perform updates according to ln g̃(E)→ ln g̃(E) + ln f . Additionally,
the observed energy states histogram must be incremented by h(E) → h(E) + 1. As
the simulation proceeds, h(E) is tested for flatness. We consider h(E) to be flat when
(1.0− ε)h̄(E) ≤ h(Ei) ≤ (1.0 + ε)h̄(E) ∀ i, where h̄(E) is the mean over all histogram
bins. Typically, the Ising model on a square lattice can be run with 0.05 ≤ ε ≤ 0.2.
On our real-world networks, for computational efficiency the wider tolerance of ε = 0.2

is used. Once h(E) is deemed flat, convergence has been achieved for the current value
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of f . While the modification factor f is greater than the chosen cut-off, f > fcut,
the simulation continues and the modification factor is updated by fi+1 =

√
fi. The

histogram h(E) is reset to zero but g̃(E) is kept. The modification factor, f , must
monotonically decrease towards 1 to ensure convergence of the DOS. We denote the
final modification factor used in our simulation as ffinal. A typical fcut value for the Ising
model on a square lattice is fcut = exp[10−8]. In this work, we use fcut = exp[10−4] on
graphs which converge slowly and fcut = exp[10−8] otherwise, if possible. A summary
of the fcut values used in our simulations and a comparison of the number of sweeps
performed to achieve convergence is shown in Tab. 3.2.

In systems such as these, with a non-trivial energy spectrum, the energy levels are
not known initially. In this case, the algorithm must be run for many sweeps before
any measurement phase of the simulation, in order to mark accessible energies. Our
choice in Hamiltonian makes this burn-in phase somewhat easier, by restricting the
possible accessible states to the interval of energy levels, [0,−J |L|], where |L| is the
number of edges in the graph. Care should be taken that the observed energy levels
include all possible energy levels. It may however be extremely difficult to access
the lowest energy levels in antiferromagnetic systems which exhibit frustration. The
Wang-Landau algorithm is convergent on the condition that each energy state has been
visited approximately evenly. As a result, the run times vary as shown in Tab. 3.3.

Since the Wang-Landau algorithm is a Monte Carlo method, the DOS is estimated
up to a constant; the unnormalised g′(E) is proportional to g(E). Since we estimate
the natural log of the DOS for numerical reasons, ln g′(E) = ln g(E) + ln c. The
normalisation constant c can be calculated by demanding that the total number of
states equals qN , therefore

ln c = ln

(∑
i

exp[ln g′(Ei)]

)
−N ln q. (3.4)

Even with the use of extended precision numerical libraries, it is undesirable to calculate
the exponential sum inside the parentheses in Eq. 3.4. For this reason, we restrict the
terms in the sum to the interval [0, 1) by recognising that∑

i

exp[ln g′(Ei)] = exp[ln g′max] ·
∑
i

exp[ln g′(Ei)− ln g′max], (3.5)
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where

ln g′max := max
i
{ln g′(Ei)}. (3.6)

On the RHS of Eq. 3.5, only the pre-factor is difficult to compute. It is now straight-
forward to extract the normalised DOS using

ln c = ln

(∑
i

exp[ln g′(Ei)− ln g′max]

)
+ ln g′max −N ln q. (3.7)

As a first look at degeneracy in wireless networks, it is of practical use to find the
energy level E0 that bounds 90% of interference configurations resulting from uniformly
distributed spins on the network. The cumulative distribution function of interference
states is

P (Eobs ≤ E) =
∑

Eobs≤E

g(Eobs) · q−N , (3.8)

where Eobs is the energy of a configuration randomly chosen with uniformly distributed
spins. In terms of our numerical data,

P (Eobs ≤ E) =
∑

Eobs≤E

exp[ln g(Eobs)−N ln q], (3.9)

where the terms in the sum are again restricted to the interval [0, 1). The critical values
E0, defined as the largest values of E such that

P (Eobs ≤ E) ≤ 0.9, (3.10)

are calculated using Eq. 3.9 for different graphs and q-state Potts models. The results
are presented in Sec. 3.3.1.

It should be noted that there is some subtlety in controlling the errors of the Wang-
Landau algorithm. According to Ref. [51], the statistical error in g̃(E) scales like
√

ln ffinal when ffinal is close to one. It is also not necessary for the histogram, h(E),
to be perfectly flat to ensure convergence to the true DOS. The systematic errors due
to autocorrelation between successive histogram updates can be reduced by using an
ffinal → 1 and performing a number of updates between histogram measurements. We
demand that our final modification factor is no larger than fcut = exp[10−4], that our
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histogram h(E) is approximately flat to achieve convergence and that we perform at
least |V | measurements between successive histogram and DOS updates in order to
reduce the systematic errors.

To quantify the errors in our implementation of the Wang-Landau algorithm, we
can compare results from toy models with some exact values from the literature. In the
case of the square lattice, the density of states and ground state entropy of the q = 2

Potts model is exactly known. On the triangular lattice, the exact infinite volume
ground state entropy is known. After performing simulations on the |V | = 602 square
lattice using fcut = exp[10−8] and by comparing with the exactly known values, we
found an average relative error of 0.02% in the DOS, averaged over the entire energy
range. The exact DOS for this system is given by a Mathematica script from Ref. [52].
Estimates for the Wang-Landau errors were also found on the triangular lattice. The
lowest energy state on the triangular lattice is composed of a large number of different
frustrated spin microstates [45]. Due to the frustration, this system has a non-zero
ground state entropy in the thermodynamic limit, resembling that of the interference
networks. For the q = 2 Potts model on the |V | = 602 triangular lattice, the ground
state specific entropy, N−1 ln g̃(Emin), was found to differ relatively by 0.072% compared
with the exact value reported in Ref. [53], on an infinite volume lattice. In this case,
we used fcut = exp[10−8].

fcut ln g̃(Emin) σ(ln g̃(Emin)) N−1 ln g̃(Emin) Relative Error (%)

exp[10−8] 170.69 0.01 0.3227 0.13
exp[10−7] 170.68 0.02 0.3227 0.13
exp[10−6] 170.29 0.09 0.3219 0.36
exp[10−5] 169.6 0.3 0.321 0.78
exp[10−4] 168.4 0.4 0.318 1.5

Table 3.1: This table shows the estimated ground state entropy of the q = 2 Potts model
on a triangular lattice with |V | = 529 nodes. The ground state entropy, ln g̃(Emin),
is averaged over four independent simulations and the standard error of the mean,
σ(ln g̃(Emin)), is estimated using 100 bootstrap resamples. The exact specific ground
state entropy, ln g(Emin) = 0.323066, is known from Ref. [53] so the relative error in
our estimates in shown in percent.

For simulations performed on a triangular lattice with |V | = 529, similar to that of
the interference networks, the estimated DOS and relative percentage error in ground
state entropy as compared to the exact value is shown in Tab. 3.1. The table shows
results from averaging over four independent DOS simulations with the standard error
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of the mean, σ(ln g̃(Emin)), found using 100 bootstrap resamples. The variance in the
ground state entropy is shown to be quite low for all values of fcut. The relative error
in the ground state entropy does increase for larger fcut values, however, this relative
error does not grow beyond 1.5%. While these errors can not be directly compared
to those of the ground state entropy of the Potts model on our interference networks,
since those exact values are unknown, we do expect similar behaviour. For this reason,
errors are not quoted on our DOS estimates.

3.2.1 Thermodynamic Observables

The real strength of the Wang-Landau algorithm is that the multicanonical approach
avoids some serious difficulties which arise in classic Monte Carlo sampling such as
critical slowing down and loss of ergodicity due to high degree hubs. Fortunately, there
are few disadvantages to using this robust method and almost all thermodynamic
observables are accessible using the density of states. In addition, an estimate of the
partition function can be directly calculated,

Z̃ =
∑
E

g̃(E). (3.11)

This provides us with access to the Gibbs free energy [54], which was discussed in
Chapter 2,

F (T ) = −kBT ln

(∑
E

g̃(E) exp[−βE]

)
. (3.12)

Using the free energy, all thermodynamic potentials can be derived as in Sec. 2.2.
The internal energy, 〈E〉 and specific heat, Cv, can be calculated as follows;

〈E〉(T ) = Z̃−1
∑
E

Eg̃(E) exp[−βE] (3.13)

and

Cv(T ) =
1

T 2

(
〈E2〉 − 〈E〉2

)
. (3.14)

In this chapter, we use the peak in the specific heat to indicate a crossover from
a spin-glass type phase to the paramagnetic phase. From Eq. 3.14, we see that the
specific heat can be estimated to arbitrary precision in temperature and only the error
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in estimating the density of states needs to be controlled.

3.3 Results and Discussion

This sections presents the results of our Monte Carlo simulations of the q-state Potts
model on the θ complex networks. The simulations were performed using the Wang-
Landau algorithm for values q = 2, 3, 4, 5 and 6 on these graphs.

3.3.1 Wang-Landau Results

This section examines the Wang-Landau simulations run-time and the resulting DOS
estimates for the q-state Potts model embedded on the graphs described in Sec. 2.1.4.
Independent simulations were performed using progressively lower fcut values to reduce
systematic errors. The absolute value of exponents of the lowest fcut to converge are
noted in parentheses in Tab. 3.2 as a function of system parameters θ and q. A larger
exponent indicates a higher precision simulation. There is no clear trend in Tab. 3.2
to the number of sweeps taken to converge, but there are a few points of interest.

Potts Model q-value
2 3 4 5 6

θ
1% 1.5 (5) 92.0 (5) 13.0 (5) 8.2 (5) 23.0 (5)
3% 3.7 (8) 17.0 (8) 2.9 (4) 7.8 (4) 110.0 (8)
5% 8.2 (8) 6.8 (5) 11.0 (5) 140.0 (5) 650.0 (4)

Table 3.2: Number of sweeps (×107) performed to reach convergence (magnitude of
fcut exponent in brackets).

The θ = 1% graph simulations were slow to converge in general and fcut = exp[10−5]

in the highest precision successful simulations. Convergence with a higher precision was
possible for the θ = 3% graph, with runtime generally increasing as q increases as shown
in Tab. 3.3. However, convergence was very difficult for the q = 4 and 5 simulations.
The runtime of many repeated simulations exceeded a week without converging for
fcut = exp[10−4]. Finally, for θ = 5%, the runtime increases as q increases. Due to this
effect, a lower precision fcut is used as q increases. The θ = 5% and q = 6 simulations
demonstrated poor convergence and very large runtime. Interestingly, the variance in
runtime increases as θ increases and the largest overall runtime was recorded in the
graph with least edges.
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Potts Model q-value
2 3 4 5 6

θ
1% 2.0 110.4 15.6 9.8 27.6
3% 3.0 13.9 2.4 6.4 90.2
5% 5.3 4.4 7.2 91.0 422.5

Table 3.3: Wang-Landau algorithm convergence time (×103 seconds).

The DOS of interference levels have been estimated for interference graphs con-
structed with θ thresholds of 1%, 3% and 5%. On each graph, the DOS of the q =
2, 3, 4, 5, and 6 Potts models are presented. The θ-dependence of the DOS of inter-
ference levels, (E/N), is shown in Fig. 3.1 for two values of available channels (q = 3

and 5). The corresponding CDF of interference, as defined in Eq. 3.9, is also shown.
Additionally, Fig. 3.2 shows the q-dependence of the DOS and corresponding CDFs on
the interference graphs with θ = 1% and 5%.

We first examine how the estimated DOS is affected by varying θ, for fixed q. Mod-
ifying θ does not affect the total number of configurations of the system, since both q
and N are constant for a given graph. As shown in Figs. 3.1a and 3.1b, increasing θ
contracts and shifts the degeneracy curve towards lower interference (E/N). Increasing
θ also results in a less connected interference graph, which in turn decreases the inter-
ference (E/N) for any configuration. This is seen in the figures and in Tab. 3.4; the
minimum interference decreases when θ increases for a given number of available chan-
nels (q). It should be noted that the true interference minima may be lower than these
levels, due to the difficulty in finding the lowest energy state in frustrated systems.

We also observe an increase in the degeneracy of the minimum interference levels
as θ increases, for a given number of available channels, as shown in Figs. 3.1a and
3.1b. Therefore, defining our networks to be more interference-tolerant by increasing
the threshold θ, increases the number of configurations that contribute to the minimum
interference level.
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Figure 3.1: Degeneracy (ln g̃(E)) vs. interference (E/N) using q = 3 (a) and q = 5
(b). Degeneracy CDF using q = 3 (c) and q = 5 (d).

Potts Model q-value
2 3 4 5 6

θ
1% 7.594 4.222 2.692 1.893 1.393
3% 3.242 1.641 1.013 0.677 0.469
5% 1.694 0.832 0.482 0.291 0.164

Table 3.4: Lowest energy values found during the Wang Landau simulations (E/N).
Note that these may not be the true ground states of the system, due to the spin-glass
nature of the frustrated ground state.

Next, we discuss the effect on the DOS of varying q, for fixed θ. Figs. 3.2a and 3.2b
show the DOS for a range of q, when θ = 1% and θ = 5% respectively. The degeneracy
curves are shifted up and left as q increases. The maximum interference does not change
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with the number of channels, since these microstates result from all nodes possessing
the same spin which is not affected by q. The degeneracy does change, but only due
to there being q degenerate maximum interference microstates. The total number of
microstates also increases with q according to qN and accounts for the greater volume
under the DOS curves for greater q.
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Figure 3.2: Degeneracy (ln g̃(E)) vs. interference (E/N) on θ = 1% (a) and θ = 5%
graphs (b). Degeneracy CDF on θ = 1% (c) and θ = 5% graphs (d).

As seen in Fig. 3.2, the minimum interference decreases when the number of avail-
able channels increases, for a given θ. The degeneracy of the minimum interference
levels also increase. Therefore, the larger the number of available channels (q) the
larger the number of configurations that exhibit minimum interference.



52 Chapter 3. Antiferromagnetic Potts model

Potts Model q-value
2 3 4 5 6

θ
1% 9.528 6.385 4.808 3.859 3.226
3% 4.476 3.006 2.267 1.820 1.524
5% 2.530 1.699 1.284 1.034 0.868

Table 3.5: Critical interference value (E0) such that P (Eobs ≤ E0) = 0.9.

It is important to note that the peak of the degeneracy curves shifts towards lower
interference both when the number of available channels increases and θ increases. The
interference level corresponding to the largest number of configurations decreases both
when we consider more interference-tolerant (larger θ) networks and when we include
more channels. In Tab. 3.5, the interference level which bounds 90% of spectrum al-
location configurations decreases as both θ and q increase. Moreover, all of the CDF
plots are very steep; the majority of the states occur over a very short interference
range. The interference which bounds 90% of the configurations is very close to that
which bounds 10%, because certain interference levels have many orders of magnitude
more configurations than others. Hence, by accepting marginally higher interference
levels than the critical E0 values in Tab. 3.5, we dramatically increase the probability
of finding one of these configurations randomly by choosing spins with uniform dis-
tribution. By identifying the critical interference levels which bound the majority of
configurations, we can identify an acceptable interference range. With this informa-
tion, the task of distributed, dynamic spectrum allocation in wireless networks becomes
significantly easier.

3.3.2 Critical Phenomena on the Interference Graphs

The antiferromagnetic Potts model has been shown to undergo a crossover from a spin
glass type phase to a paramagnetic phase on complex networks driven by temperature.
Having performed a classical Monte Carlo study of this system using the combined
approach of the Metropolis and Wolff cluster algorithms from Chapter 2, our experience
with these networks is that even this local/global spin update approach loses ergodicity
due to the extremely long tunnelling times in this spin-glass type phase.
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Figure 3.3: Plot of the θ = 1% graph thermodynamic observables found using the
Wang-Landau estimate for the density of states. The specific entropy (N−1 ln ḡ(E)),
free energy (F ), internal energy (〈E〉) and specific heat (Cv) are shown using 500
interpolated temperature values per curve.

The Wang-Landau algorithm provides a work around to this problem without hav-
ing to perform replica exchange Monte Carlo. Having estimated the density of states
for the three interference networks, we can finally discuss the critical behaviour of the
Potts model. In Sec. 3.2.1, we have seen that an estimate for the density of states gives
access to the free energy (F (T )), the average energy (〈E〉(T )) and the specific heat
(Cv(T )).

In Fig. 3.3, an increase in the temperature coincides with an increase in the internal
energy. In the absence of a definable magnetisation, this rapid increase of the internal
energy over a short temperature range is indicative of some critical behaviour. The
rapid increase in internal energy is visible in both the θ = 3% and 5% networks as well.
For each graph, the internal energy decreases for a given temperature as q increases.
This is presumably due to less frustration in the network.
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Figure 3.4: Plot of the θ = 3% graph thermodynamic observables found using the
Wang-Landau algorithm estimate for the density of states.

Since we expect to find some crossover between a spin-glass and paramagnetic phase,
the position of the peak in the specific heat is quite important. In general, the peak
in specific heat occurs at lower temperature as q increases and for less interconnected
graphs with a larger θ value. Unfortunately, it becomes obvious that the Wang-Landau
simulations which converge slowly and therefore have only been run up to a small fcut

exponent do not estimate the density of states precisely enough for a useful specific
heat curve. In Fig. 3.3, all of these results use an fcut = exp[10−5]. Even at this level,
some artefacts (wiggles) can be seen in the specific heat curves.

In Fig. 3.4, the fcut = exp[10−4] specific heat curves stand out very obviously
from the higher precision curves. These lower precision curves are not very useful for
determining the critical temperatures. We can only comment on the general trend
of the mass of the curve tending to lower temperatures as q increases. The higher
precision curves are however very well behaved.
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Figure 3.5: Plot of the θ = 5% graph thermodynamic observables found using the
Wang-Landau algorithm estimate for the density of states.

In Fig. 3.5, only the high precision q = 2 curve can be calculated without significant
artefacts due to error in the density of states. The q = 3, 4 and 5 curves are not as
clear as we would like and the lowest precision q = 6 curve gives very little information
about the precise location of the critical behaviour.

While fcut = exp[10−4] is very useful to estimate the density of states to a relatively
high precision, it seems to be insufficient for calculating thermodynamic observables.

3.4 Conclusion and Future Work

In this chapter, we demonstrate a new method for modelling interference in wireless
networks. For this purpose, the antiferromagnetic Potts model is embedded on inter-
ference graphs. To the best of our knowledge, this is the first numerical estimate of
the density of states on wireless networks. The Wang-Landau algorithm is used to per-
form these calculations. It is shown that different interference graphs and Potts models
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clearly affect the degeneracy of the interference levels. In particular, there are changes
to the value of the lowest interference levels, ground state entropy and the cumulative
distribution function of the density of states.

The value of the lowest interference levels decrease in models with more available
frequency channels and/or less dense interference graphs. The degeneracy of the lowest
interference levels also increase under either/both of these conditions. Furthermore, the
area under the density of states curves increase and are shifted towards lower interfer-
ence values. We define a critical interference level marked by a rapid increase in the
cumulative distribution function of the density of states. Having more frequency chan-
nels available and/or less dense interference graphs result in lower critical interference
values. Therefore, under these conditions, the majority of spectrum allocation config-
urations result in lower interference values. Due to this behaviour, there is a higher
probability that randomly sampled spectrum configurations result in low interference
levels. This work provides some insight towards developing distributed spectrum allo-
cation in wireless networks.

The antiferromagnetic Potts model on complex networks exhibits a crossover be-
tween a frustrated phase resembling a spin-glass and a paramagnetic phase. This
spin-glass phase makes traditional Monte Carlo simulations exceptionally difficult to
perform correctly. Using the Wang-Landau estimate for the density of states, we were
able to calculate the free energy, internal energy and specific heat of the model. The
critical temperature found using the peak in the specific heat decreases as q increases.
In general, the lower the value of θ, the higher the critical temperature. This is similar
to the behaviour from Chapter 2 that a more interconnected graph results in a higher
critical temperature with a less sharp crossover. For networks which converge slowly,
the resulting lower precision in the density of states had a notable effect on the spe-
cific heat curves. Unfortunately, these low precision simulations are not suitable for
identifying the critical temperature.

In the future, it would be extremely beneficial to pursue a modification to the Wang-
Landau to speed up convergence and reduce simulation times. A new technology such
as this would allow for a more precise estimate of the density of states which is suitable
to calculate the specific heat curves. An additional bonus to lower simulation times is
that we could then perform a statistical error analysis of the Monte Carlo data, which
at present is not feasible.
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Graph Rewiring

During the course of this work, the concept of dynamical networks has been discussed
many times. Physical processes which can be described using graph theory often in-
volve networks which evolve over time. For example, in a wireless interference graph,
the edges can change due to load or failure. In biological systems, the network of
interactions between genes, proteins and other biologically relevant molecules change
due to the current needs of the cell [55].

Studying the properties of evolving networks usually involves taking a ‘snapshot’
of the physical network that is thought to be ‘characteristic’ of its general behaviour.
Some properties of the network are then studied and in some cases this is repeated
for a number of snapshots. However, this approach forbids us from asking questions
about ‘equilibrium’ properties of a network ensemble, given some constraints such as
the number of nodes (|V |) or edges (|E|) in a graph.

The next section briefly discusses the history of graph rewiring algorithms. Fol-
lowing this, we describe our approach to studying dynamic networks through rewiring
using Markov Chain Monte Carlo. We propose a new algorithm to explore the config-
uration space of a network ensemble. Our rewiring algorithm performs ‘local’ rewiring
updates and conserves the number of nodes and edges in the network. In Sec. 4.2, we
provide the motivation behind our algorithm. In Sec. 4.3, we present our algorithm,
prove that it is ergodic, describe the exact probability distribution of small graphs and
an observable called the graph diameter. In Sec. 4.4, we describe our Monte Carlo
simulations and present our estimated graph probability distributions and observable
means for given graph ensembles. Finally, we discuss the scaling behaviour of the
autocorrelation time of our algorithm and compare the estimated observables against
literature values. We close this chapter in Sec. 4.5 with our plan for future work based

57
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on rewiring.

4.1 Background

One of the earliest and most well-known network rewiring models is the Watts-Strogatz
model introduced in Ref. [7] and discussed in previous chapters. This random graph
construction model performs a rewiring of the edges incident to each node with a given
probability p. The resulting graph has properties in between a regular lattice and a fully
random graph. The target node of each rewired edge is chosen with uniform probability
from the other nodes. This random graph model was introduced as the simplest possi-
ble method to build graphs which exhibit clustering and the small-world phenomenon.
This is a significant result, since clustering and the small-world phenomenon are char-
acteristic of very well-studied real-world networks. These two phenomena are present
in the power-grid network, the neural network of C. elegans and the network of movie
actors who have worked together [1]. However, the Watts-Strogatz model produces a
single static graph and does not explore the entire graph configuration space.

To the best of our knowledge, the first Monte Carlo algorithm for the purpose
of rewiring graph adjacency matrices appears in Ref. [56]. The algorithm randomly
selects four matrix elements, (i1j1, i1j2, i2j2, i2j1), which form a rectangular cycle in
the adjacency matrix. The adjacent cycle entries must take alternating values, for
example (1, 0, 1, 0), with 1 corresponding to the presence of an edge {i, j}. The values
of the adjacent cycle entries are then exchanged, proposing a new Monte Carlo state.
Since the entries form a rectangle in the matrix, the sum over the rows and columns is
invariant under this transformation and the degree distribution is preserved.

The number of rewires necessary for degree distribution preserving algorithms to
produce independent graphs is not currently known, but a number of estimates have
been given. A similar rewiring algorithm to Ref. [56] is proposed in Ref. [57] which
accepts all proposed transitions. The procedure is known as the degree distribution
(DD) preserving algorithm and is described below.

• Pick an endpoint u1 with uniform probability and a uniform random neighbour
u2. This is the first edge.

• Pick a second endpoint, v1 and uniformly choose an incident neighbour called v2.

• Swap the edges (u1, u2) and (v1, v2) to create (u1, v2) and (v1, u2).
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The authors in Ref. [57] show that the minimum relaxation time of the algorithm is at
least O(|E|6). However, the bound is very wide and depends on an arbitrarily chosen
precision ε: the distance between the true and observed stationary distributions.

In Ref. [58], a joint degree distribution (JDD) preserving algorithm is presented:

• Pick an endpoint u1 with uniform probability and a uniform random neighbour
u2. This is the first edge.

• Pick a second endpoint, v1, such that the degrees k(u1) = k(v1) and uniformly
choose an incident neighbour called v2.

• Swap the edges (u1, u2) and (v1, v2) to create (u1, v2) and (v1, u2).

This JDD preserving algorithm is used to sample graphs with a joint probability matrix,
K(i, j), of the number of edges between vertices of degree i and j. The authors do not
propose a theoretical bound on convergence.

Since a tight theoretical bound on the number of rewires necessary to produce inde-
pendent graphs does not currently exist for either of these algorithms, a recent paper
has proposed an effective rule of thumb which can be used instead [59]. The number of
necessary rewires is estimated using the stationary property of the graph probability
distribution and a chosen precision level ε, between the true and observed distribu-
tions. The authors prove that a graph with approximately independent edges and a
specified degree distribution can be generated after Nind = 1

2
|E| ln ε−1 rewires. The

same approximation for the JDD preserving algorithm requires Nind = |E| ln ε−1. In a
graph containing roughly 103 nodes, 7.5|E| and 15|E| rewires are considered sufficient
for the DD and JDD preserving algorithms respectively. For practical Monte Carlo
simulations, this is an acceptable number of rewires for graphs of this size. The ma-
jority of edges become independent after this number of rewires, but a small number
of edges are particularly persistent and need an order of magnitude more rewires to
become independent.

The algorithms mentioned so far have used rewiring for graph formation or as a
Monte Carlo method to sample the space of graphs with a given degree distribution or
joint degree distribution. To the best of our knowledge, there have been no published
examples of a Monte Carlo algorithm which samples from the space of graphs with
a constant number of nodes and edges. Graphs of this kind can occur in sensor net-
works, where a number of sensors communicate to form a network which can change
over time [60]. Furthermore, it may be necessary to estimate ensemble averages of ob-
servables which depend on both the graph structure and some other dynamical element
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embedded on the graph, for example a Potts spin. With this in mind, we present a
method to sample from the ensemble of graphs with a given |E| and |V |. Our work
to date has focused on the most basic graph ensemble; spanning trees of the complete
graph Kn, which defines |E| = n − 1 and |V | = n. These graphs are connected and
contain no loops, repeated edges or self-loops. Spanning trees are an important class of
graphs, since they contain the minimum number of edges to keep the graph connected
and there exists only one path between any pair of nodes.

4.2 Motivating the Algorithm

Our proposed Monte Carlo algorithm, which we outline in Sec. 4.3, samples from the
configuration space of graphs with a fixed number of nodes and edges. This sampling
depends on the graph probability distribution. The set of graphs of interest in this
section are spanning trees of a complete graph. The complete graph with five nodes,
K5, is shown in Fig. 4.1. A spanning tree of K5 is a subgraph that contains five nodes
and four of the edges in K5. Later, we will show that the graph probability distribution
depends on the symmetries of the subgraphs. The graph probability distribution can

1

2

34

5

Figure 4.1: K5 graph.

be used to estimate the expected value of observables which depend on graph structure;

〈O〉 =
∑
G

O(g)πg. (4.1)

We use the notation throughout this chapter that G is the ensemble of graphs and g
is a particular graph configuration. The graph observable of particular interest in this
chapter is the diameter (d). In tree graphs, the diameter is the longest path. The
diameter is very interesting because it depends on the entire structure of the graph, is
bounded by the number of edges and is easily calculated. Since it depends on the overall
graph structure, the diameter is a slowly changing observable compared to other graph
observables. The integrated autocorrelation time (τint) of the diameter can therefore be
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used to judge the efficiency of our Monte Carlo algorithm. This allows us to measure
the number of rewires necessary to sample independent graphs. It should be noted
however, that performing τint rewiring sweeps does not guarantee that all edges have
been rewired.

4.2.1 Graph Ensemble

In order to describe a graph unambiguously, it is necessary to consider each node with
an identifying label. Cayley’s formula states that the number of spanning trees of a
complete graph containing n nodes, with a label at each vertex, is nn−2. Many of these
graphs will have the same structure of adjacency and non-adjacency of nodes. Graphs
with this property are isomorphic. Graph isomorphism defines an equivalence class of
graphs, which may differ by their labelling structure.

Two simple graphs G and H are isomorphic if there is a bijection,

Θ : V (G)→ V (H), (4.2)

which preserves adjacency and non adjacency of vertices. Therefore each edge must
obey,

{u, v} ∈ E(G) ⇐⇒ {Θ(u),Θ(v)} ∈ E(H), (4.3)

where {u, v} is an edge in the graph G and {Θ(u),Θ(v)} is the edge mapped to the
graph H. Both graphs are isomorphic, G ∼= H, if Eq. 4.3 is satisfied for all edges in
the edge sets E(G) and E(H).

An automorphism is a permutation of the vertex set which preserves adjacency and
non-adjacency between the graph and its image. It maps G to itself. Therefore, an
automorphism, α, of a graph is an isomorphism between G and itself,

α : V (G)→ V (G), (4.4)

such that

{α(u), α(v)} ∈ E(G) ⇐⇒ {u, v} ∈ E(G). (4.5)

The set of automorphisms of a graph obey the following conditions:

• If α and β are automorphisms of a graph, then their composition α ◦ β is also an
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automorphism.

• Composition of automorphisms is always associative.

• The identity map is always an automorphism of a graph.

• Since automorphisms are bijections, if α is an automorphism of a graph, then the
inverse, α−1 exists and is also an automorphism.

Since the set of automorphisms obey closure, associativity, identity and inverse, they
form a group under composition of morphisms. The automorphism group of a graph
is denoted Aut(g).

For small complete graphs, it is possible to identify and count all of the isomorphic
spanning trees. Many of the isomorphic graphs share the same labelling, but differ by
a symmetry operation. Such graphs are automorphic to each other.

(a) Linear graph.

(b) Fork graph. (c) Star graph.

Figure 4.2: The three graph isomorphism classes of spanning trees of K5. We have
named the classes in order to refer to them with relative ease. In most cases, these are
not commonly accepted graph names and are chosen to be descriptive.

The probability distribution of spanning trees depends on the number of graph
labellings of each isomorphism class. The number of labellings of a class is

l(gi) =
n!

|Aut(gi)|
, (4.6)

where |Aut(gi)| describes the size of the automorphism group of the class gi. Summing
over the number of labellings of each isomorphic graph class of spanning trees gives
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the size of the ensemble: ∑
G

l(gi) = nn−2. (4.7)

In practice, the equivalence classes gi may be distinguished for small graphs by some
convenient graph invariant eg. max degree. This can be seen in Figs. 4.2a, 4.2b and
4.2c. For larger graphs, this becomes a far more involved task.

1 2 3

4

5

(a)

1 2 3

5

4

(b)

Figure 4.3: The two automorphisms of the Fork graphs in Fig. 4.2b. Fig. 4.3a is the
result of the identity and Fig. 4.3b is the result of a rotation.

Conceptually, the automorphism group is the group of symmetries of a graph. A
very symmetric graph has a large automorphism group. Complete graphs are the most
symmetric by definition. The size of the automorphism group of a complete graph is
n!, the proof of which is quite simple. Any permutation of the vertices will preserve
the adjacency and non-adjacency of the graph, which means that the group has the
same size as the set of permutations of n elements. Therefore, there are n! unique
permutations of Kn which are all automorphisms:

|Aut(K5)| = 5! = 120. (4.8)

The stationary distribution of graphs πg is governed by the rules of probability:

πg ∈ [0, 1] ∀ g ∈ G (4.9)

πg =
(
nn−2

)−1 (4.10)∑
G

πg = 1 (4.11)

The probability distribution of the equivalence class gi is therefore given by

πgi =
∑
g∈gi

πg. (4.12)
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As discussed above, the number of labelled graphs in each equivalence class is given by
the labelling of the class, so the class probability is

πgi =
l(gi)

nn−2
, (4.13)

where

l(gi) =
n!

|Aut(gi)|
. (4.14)

Before describing the graph rewiring algorithm, we will show how to calculate the
exact probability distribution for spanning trees of K5. The three equivalence classes
of spanning trees of K5, distinguished by their maximum degree are the Linear, Fork
and Star graphs. The size of their respective automorphism group are

|Aut(gLine)| = 2, (4.15)

|Aut(gFork)| = 2, (4.16)

|Aut(gStar)| = (n− 1)! = 24. (4.17)

The size of the automorphism groups of the Line and Fork graph can be easily deter-
mined by inspecting the morphisms which induce graph symmetries and including the
identity morphism. The automorphism group of the star is not as trivial to determine.
One way of determining this is to use the relation that the automorphism group of a
graph is the same as its graph complement. The complement of a graph is obtained
by removing all edges and placing edges where none existed. The complement of the
Star graph is the union of K4 and C1; all radial nodes are adjacent to each other and
the central node is a disconnected component of size one. The automorphism group of
this graph is isomorphic to that of K4, namely 4!. Therefore K5 has an automorphism
group of size 4!. The number of labellings of each graph equivalence class of K5 can
now be given as

l(gLine) = n!/2 = 60, (4.18)

l(gFork) = n!/2 = 60, (4.19)

l(gStar) = n!/24 = 5. (4.20)

This demonstrates that the sum of labellings of the three equivalence classes of spanning
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trees of K5 account for all of the labelled spanning trees;

l(gLine) + l(gFork) + l(gStar) = nn−2. (4.21)

4.3 Rewiring

In this section, we outline our Monte Carlo rewiring procedure and prove that the
resulting Markov chain is ergodic. Therefore, we must establish that the Markov chain
produced by the algorithm is irreducible, aperiodic, and positive recurrent. Following
this, we discuss the large-graph limit of the graph diameter

4.3.1 Rewiring Steps

The steps necessary to perform an update sweep of the graph involve;

• Pick an edge, eX randomly from the set of all edges with uniform probability.
The nodes incident to this edge are the head (H) and tail (T ) nodes.

• Form a set of the nodes in the neighbourhood of both H and T : S = {(N(H) ∪
N(T )} \ {H,T}, where N(H) is the set of vertices adjacent to H.

• Pick one node, M , with uniform probability from S as the node to be moved.

• Determine the head (H) and tail (T ) from the endpoints of eX so thatM ∈ N(H).

• Remove the edge between H and M , (H �M).

• Create an edge between T and M , (T ∼M).

The initial configuration of the Markov chain is usually chosen to be the Linear graph
such as in Fig. 4.2a for convenience. This initial configuration has no detrimental effect
to our sampling because our Markov chain is universal and we carefully monitor the
necessary thermalisation time before taking any measurements.

The number of edges in the graph remains constant as one edge is created and
destroyed per rewire. Since we are sampling the ensemble of spanning trees with n

nodes and n− 1 edges, no cycles can be produced solely from a rewiring operation in
this ensemble. The spanning trees of Kn are all connected, since there exists a path
between every pair of nodes. Our algorithm preserves this connectivity by splitting
the graph into two disconnected subgraphs when H �M and reconnecting them with
T ∼M .
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. . . v1 v2 . . . . . .
e

(a) Step 1: Choose eX with uniform probability pe = |E|−1, from all
edges in the graph.

u1 v1 v2 u2 . . .
e

(b) Step 2 & 3: Determine the neighbours of endpoints v1 and v2. In
this case, they are labelled u1, u2, v1, v2. The set S is the union of
these, excluding v1 and v2 themselves: S = {N(v1)∪N(v2)}\{v1, v2}.
Pick the node to be moved, M , from S with uniform probability pM =
|S|−1, where |S| is the number of element in S.

M H T . . . . . .
e

(c) Step 4, 5 & 6: Determine the head node H to be the endpoint of
the edge eX which is incident to the node M , or H ∼M . Destroy the
edge between H and M , H � M . Create a new edge between T and
M , T ∼M .

H

M

T . . . . . .

(d) This is the rewired graph after one iteration of our algorithm. Hav-
ing performed one rewire, a graph-dependent observable is calculated
and stored as the Markov chain history and for analysis at a later
stage.

Figure 4.4: The graph rewiring procedure.

When rewiring the node M , that entire subgraph attached to it is rewired to T .
Choosing a node with degree k = 1 forM results in only a single node being translated
along the graph. All rewires are essentially a translation of the subgraph containingM
but not H. If the chosen edge eX has a degree k = 1 node as an endpoint, this node
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will be incorporated into the graph. The degree of the head node always decreases and
the degree of the tail node always increases upon successful completion of a rewire. In
order to lower the degree of a node, it must be the head of a rewire step. The H vertex
must have more than one neighbour (one neighbour other than T ), otherwise the set S
contains only neighbours of T . Fig 4.4 illustrates how the degree of the T node always
increases while that of H always decreases.

Having defined the steps involved in the rewiring algorithm, it is necessary to prove
that the resulting Markov chain converges to the desired probability distribution. The
necessary properties to ensure convergence are discussed in the next section. It is also
shown that the algorithm possesses these properties.

4.3.2 Ergodicity

Our rewiring algorithm produces a series of random graphs in which each successive
graph is dependent on the previous graph. The probability of realising a graph y at
time t+ 1, given graph x at time t is the transition probability:

P (Xt+1 = y|Xt = x) = pxy. (4.22)

By construction, our algorithm satisfies this Markov property and the resulting graph
sequence is a Markov chain.

A Markov chain is ergodic if it is irreducible, aperiodic and positive recurrent [15].
The fundamental limit theorem for irreducible Markov chains states that for any ergodic
Markov chain, there exists a unique stationary distribution:

πy = lim
n→∞

p(n)
xy , (4.23)

where p(n)
xy is the n-step transition probability

p(n)
xy = P (Xt+n = y|Xt = x). (4.24)

In order to estimate π-averaged observables by time-averaging over the successive
graph configurations produced by our algorithm, we must prove that it is ergodic. We
start by considering the accessibility of every pair of Markov chain states.
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Irreducibility

A Markov chain is irreducible if for each pair of states, (x, y), there exists an n ≥ 0 for
which p(n)

xy > 0. We must demonstrate that it is possible to transition from each graph
state to every other graph state for our algorithm to produce an irreducible Markov
chain. It is sufficient to show that every state can access the Linear graph and return,
even if this transition occurs through many intermediate states.

Each vertex in a Linear graph has degree k(vi) = 2, except the endpoints which
have degree k(vend) = 1. All other states in the space G of spanning trees of the
complete graph Kn for n > 3 must have at least one vertex with a degree larger than
two. Spanning trees with n ≤ 3, results in a single graph equivalence class and do
not need rewiring. Given an arbitrary spanning tree with n > 3, the transition to the
Linear graph requires a degree lowering operation.

This transition is considered here on a Star graph. An edge incident to a node with
k(vi) > 2 is chosen with probability pe = 1/(n − 1). The central node has degree,
k(vi) = (n − 1) and all other nodes have degree, k(vi) = 1. Using our algorithm, the
centre and one of the radial vertices are labelled as H and T respectively. A second
vertex adjacent to H is chosen as the M vertex, with probability p = 1/(k(H) − 1).
By performing the rewiring in Fig. 4.5, the degree of H is lowered. The radial nodes
can be repeatedly chosen as the T node. This lowers the degree of the central node
until the max degree in the graph is two.

HM

T

. . .. . .

. . .

e

(a)

M T H

. . .

. . .

. . .

e

(b)

Figure 4.5: This transition lowers the degree of H. Nodes adjacent to the hub marked
H are rewired and become part of the Linear subgraph containing T . Repeated appli-
cation of this transition to all nodes with k > 2 transforms the graph into the Linear
graph.

More generally, we can choose to rewire edges where k(T ) > 1 also. The rewiring
of the hub node will attach M to T , even though T is not a terminal vertex and this
subgraph is not Linear. The rewiring is repeated and M can either be translated down
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the T subgraph as in Fig. 4.6 or the T subgraph can be can be rewired onto M . This
transforms this segment of the subgraph into the Linear graph. This is repeated for all
H nodes with degree greater than two.

. . . T H . . .

M

e

(a) A node M is rewired away from
a hub H. This shifts M towards the
end of the Linear subgraph attached
to T .

. . . T H . . .

M

e

(b) M is shifted along the subgraph
by a distance of one edge. Repeat-
ing this operation decreases the de-
gree of any hubs and places the M -
type nodes at the end of the Linear
graph.

Figure 4.6: Translating a node M to the end of a Linear subtree.

Therefore, given any tree we can decrease the degree of any node with k(vi) > 2

using two different methods. This can be repeated for all nodes with degree k(vi) > 2,
until we get the Linear graph.

. . . T H M
e

(a) Rewiring at the end-node of a graph.

. . . T H M . . .
e

(b) Rewiring at a mid-point node of a graph.

Figure 4.7: Increasing the degree of a specific node to create a hub. The operation in
Fig. 4.7b can be repeated to increase the degree of the node marked T here.

In order to transition from the Linear graph back to any other graph in the ensemble,
we must be able to increase the degree of any node in any position. To demonstrate this,
we create a Star graph from the Linear graph. It is now necessary to have a degree



70 Chapter 4. Graph Rewiring

increasing operation in addition to the translation operation. A degree increasing
operation can be performed at any position in a subgraph. Fig. 4.7 illustrates a degree
increasing rewire at the endpoint and at a position towards the middle of a subgraph.
By performing a degree increasing operation at the endpoint of a graph and translating
the resulting branch down the graph, we can create any spanning tree including the
star graph.

So far we have demonstrated rewiring operations which can;

• lower the degree of a node,

• increase the degree of a node near the endpoint of graph,

• increase the degree of a node in middle of graph and

• translate a node of any degree to any position in tree.

Since these operations can be used to transition from any graph to the Linear graph and
back, the Markov chain is irreducible. It should be noted that all of these transitions
are performed using the same rewiring technique and the result of a rewire differs only
depending on the neighbour structure of the edge chosen to rewire around.

Aperiodicity

The period of the state x, (ox), is the greatest common divisor of the number of
transitions n, such that p(n)

xx > 0 ∀ n. All states of an irreducible Markov chain have
the same periodicity and any state x is aperiodic if ox = 1. To prove that our Markov
chain is aperiodic, we will demonstrate that a transition between the Linear and Star
graphs exists in which ox = 1.

Starting with the Linear graph, we will show that there exists two consecutive
numbers, t and s, that satisfy the n-step transition back to state x such that p(n)

xx > 0.
Since two consecutive natural numbers have a greatest common divisors of one, the
existence of t and s is sufficient to prove that our Markov chain is aperiodic.

A Star graph containing n nodes has a central hub node with degree of n− 1. It is
possible to transition from a Star graph to a Linear graph in q = n− 3 operations by
rewiring an edge incident to the central node n− 3 times. This is shown in Fig. 4.8.



4.3. Rewiring 71

H

M

T e

(a)

M H

T

e

(b)

M H

T

e

(c)

(d)

Figure 4.8: Transitioning from a Star to a Linear graph in n− 3 operations.

The inverse transformation from the Linear graph back to the Star using q = n− 3

operations also exists and is shown in Fig. 4.9.

This transformation can be considered using the n-step transition probabilities:
pqStar→Linear > 0 and pqLinear→Star > 0. Define t so that

ptStarStar = (pqStar→Linear · p
q
Linear→Star) > 0. (4.25)

The number of rewiring operations necessary to perform this transformation is t =

2q = 2(n− 3) is even for all graph sizes.
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e
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Figure 4.9: Transitioning from a Linear to a Star graph in n− 3 operations.

It is possible to perform the round-trip from Star to Star in many other ways. We
define the value of s by taking one of these other paths in state space. Perform the
q operations from the Star to Linear graph just like above. However, we perform a
different return sequence of transitions. Either perform the trivial rewire in Fig. 4.10, or
a subgraph translation operation as in Fig. 4.6 in addition to the q necessary operations
to transition from the Linear to the Star graphs. Overall, r = q + 1 operations are
used to transition from the Linear graph back to the Star in this manner. Therefore,
psxx > 0 for s = r+q = 2q+1, which must be odd. The period of the Star graph is then
given by the greatest common denominator of t and s. The period is one, since t and
s are consecutive integers and must have greatest common divisor of one. Therefore
our Markov chain is aperiodic.
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M H T
e

(a)

Figure 4.10: Graph rewiring which maps the Linear graph back to itself.

Positive Recurrence

Finally, since any irreducible finite state Markov chain is positive recurrent, it follows
that our algorithm satisfies the conditions necessary for ergodicity. Therefore, there
exists a unique stationary distribution π and is given by

πj = lim
n→∞

p
(n)
ij . (4.26)

The stationary distribution is also universal, since it does not depend on the initial
state of the system.

4.3.3 Graph Diameter

Having proven the ergodicity of our algorithm, we can use it to estimate the ensemble
average of graph observables. The graph diameter d, of a spanning tree is defined as the
longest path between any pair of vertices in. This observable depends on the overall
graph structure and provides a measure of the maximum distance that information
needs to travel in a wireless tree network.

Undirected spanning trees have two special properties: there exists only one path
between any pair of nodes and any node can be chosen as a root of the graph. In
order to calculate the graph diameter, we perform a breadth-first search to find the
furthest node from a randomly chosen root node, r. The BFS algorithm searches over
the immediate neighbours of r first. The neighbours are put in a queue to have their
distance inspected in turn. Each of these nodes incident to r will have a distance of
one. Each subsequent level of neighbours will have a distance of the current node plus
one. Eventually, all nodes will have been visited and the furthest node v1 from r is
recorded.
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(a)

Figure 4.11: Marked in blue are the endpoints and edges in the longest path. The
diameter is the length of this longest path. The diameter depends on the structure
of all nodes and edges in the graph. To calculate the diameter, the distance of all
respective pairs of nodes must be tested. The diameter of a tree is calculated by
performing a Breadth-First Search from any node, to identify one of the endpoints,
v1. By performing a second Breadth-First Search with v1 as the root node, the second
endpoint v2 of the longest path is found to be the node furthest from v1. The distance
between v1 and v2 is the graph diameter. In this case, the longest path is not unique,
but this does not change the diameter.

Since there exists only one path between any pair of nodes, the furthest node v1

from the root r must be one of the endpoints of the longest path. There may be many
nodes which are equidistant from r, in which case any one of these is a valid choice for
v1. To calculate the diameter, a second BFS is rooted at the node v1, since the furthest
node from an endpoint of the longest path is the other endpoint. The second endpoint
v2 is identified and the distance between them is returned by the BFS. In a spanning
tree, the largest graph distance is the diameter.

Using our rewiring algorithm, we can estimate the expected value of the graph
diameter over the graph ensemble,

d̄ ≈ 〈d〉 =
∑
G

d(gi)πgi . (4.27)

Analytically, a very similar problem has already been addressed in Ref. [61]. In that
paper, the authors focus on the height of a spanning tree, g, with ordered vertices,
P1, P2, . . . , Pn. The height of a tree, hP1(g), is defined as the length of the longest
path in g from an arbitrarily chosen root node P1. An expression for the asymptotic
distribution of the number of spanning trees with n vertices having exactly height, k,
is found using a recursion relation. In the limit where n and k are large, the authors
go on to calculate an expectation value of the height of trees starting from P1 over the
set of the nn−2 spanning trees with n nodes. It should be noted, the height of a tree
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from a node P1 is bounded by the diameter of that tree, since P1 is not guaranteed to
be an endpoint of the longest path,

1

2
d(g) ≤ min

i
hPi

(g) ≤ hPi
(g) ≤ max

i
hPi

(g) ≤ d(g). (4.28)

The expectation value of the height of trees with root node P1 as a function of the
number of nodes |V | given in Ref. [61] is

〈hP1〉 ≈
√

2π|V | = 2.50663
√
|V |. (4.29)

In the next section, we will show our numerical estimate of the mean diameter using
our algorithm over three orders of magnitude of graph size. The line of best fit of graph
diameter versus graph size |V | is calculated using the non-linear least squares method
and compared with the analytical expectation value of tree height. Errors quoted for
the parameters are estimated by the square root of the diagonals of the parameter
covariance matrix.

4.4 Results and Discussion

Finally, in this section we present the results of our Monte Carlo simulations. We
demonstrate that our algorithm samples from the graph distribution with a high level
of precision in Sec. 4.4.1. For small spanning trees, we compare our Monte Carlo
estimates of the graph distribution, (π̄), with the exact distribution. In Sec. 4.4.2,
we also compare the estimated mean of the graph diameter for small graphs with the
expectation value. These estimates of the mean graph diameter and their statistical
errors are compared for the K4, K5, K6 and K7 ensembles. In Sec. 4.4.2, we show
that the integrated autocorrelation times of the graph diameter are under control as
we increase the graph size and finally, the asymptotic behaviour of the graph diameter
is discussed as the graph size increases in Sec. 4.4.2.

4.4.1 Graph Distribution

In this section, the Monte Carlo estimated probability distribution, π̄, is presented
and compared with the exactly known probability distributions of the K7 ensemble.
When working with spanning trees containing few nodes, the graph isomorphism classes
can be identified by hand, as in Fig. 4.12. For graph ensembles larger than K7, the
high amount of possible branching makes it very difficult to identify all of the graph
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isomorphism classes. The spanning tree isomorphism classes for this ensemble are
shown in 4.12. The corresponding estimated probability distribution π̄gi is shown in
Tab 4.1. Not shown in this section, but included in App. A are the graph isomorphism
classes for the K4, K5 and K6. Also in App. A are the graph probability distributions,
errors and exact results in Tabs. A.1, A.2 and A.3.

The sampled probability distributions are found by histogramming the graph con-
figurations over s samples, generated after performing a rewiring sweep. We perform
m independent Monte Carlo replica to estimate the distributions πrgi . The mean over
these replica is taken and we use the bootstrap method to estimate the statistical er-
ror on this mean using B bootstrap resamples. The z-score shown in Tab. 4.1 clearly
presents how far π̄gi is from the exact distribution πgi in units of the standard error.

Tree (nn−2 = 16807) |Aut(gi)| lgi πgi π̃gi |z|

Line 2 2520 0.1499375 0.1499594(157) 1.39
Fork 2 2520 0.1499375 0.1499275(131) 0.77
Trident 6 840 0.0499792 0.0499930(083) 1.69
Pitchfork 24 210 0.0124948 0.0124985(044) 0.84
Star 720 7 0.0004165 0.0004170(007) 0.84
Handle 1 5040 0.2998751 0.2998690(170) 0.36
HandleFork 2 2520 0.1499375 0.1499251(148) 0.84
Pentane 8 630 0.0374843 0.0374749(070) 1.35
TriFork 12 420 0.0249896 0.0249928(056) 0.57
Tri 6 840 0.0499792 0.0499719(115) 0.63
Assym. Cross 4 1260 0.0749688 0.0749710(123) 0.18

Table 4.1: Sampled (π̄i) and exact (π) isomorphism class probability distribution of
the K7 ensemble. Over 70% of the z statistics are within one standard error and all
are within two. χ2 = 9.94 for ten degrees of freedom. The probability of finding a χ2

as large as this is P = 0.55. This value of χ2, P and the distribution of the z statistics
by the empirical normal distribution rule strongly indicate that π̄ is sampled from π
and that the errors are well under control.

To estimate π̄gi , the rewiring algorithm was run for s = 107 sweeps. This was
repeated for m = 100 simulations. The statistical standard error of the mean, which
are shown in parentheses in Tab. 4.1, are estimated using B = 106 bootstrap resamples
of the m independent probability distribution estimates.
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(a) Line (b) Fork

(c) Trident (d) Pitchfork

(e) Star (f) Handle

(g) Handle-Fork (h) Pentane (i) Trident-fork

(j) Tri (k) Assym. Cross

Figure 4.12: Non-isomorphic spanning trees of K7. All spanning tree of K7 are auto-
morphic to one of these graphs.

The goodness of fit of π̄gi to the exact distribution πgi can be found using the χ2
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test. The χ2 statistic in our case is,

χ2 =
1

N

gN∑
i=g1

(
πi − π̄i
σπ̄i

)2

. (4.30)

Our null hypothesis is that the observed π̄gi is consistent with πgi and that any deviation
between the two is purely by chance. This assumption is tested using P -values. The P -
value is the probability of observing a χ2 statistic as large as what we have calculated.
For significance, we assume that if P < 0.05, then π̄g and its standard error are very
unlikely to be sampling from πg.

As we can see in the caption of Tab. 4.1, the χ2 = 9.94 for ten degrees of freedom and
70% of z-scores are within one standard error. The estimated probability distribution
is in very good agreement with the exact values and we can be confident that our
rewiring algorithm is sampling from the distribution of K7 correctly.

In this section, we have provided the first evidence that our algorithm can accu-
rately estimate the graph probability distribution once the ensemble is small enough
to identify every graph isomorphism class. The errors in the graph probability distri-
bution can also be estimated with good precision. These results give us confidence in
our algorithm and naturally lead to estimating the mean of graph observables.

4.4.2 Graph Diameter

Having demonstrated that we can accurately and precisely reproduce the graph dis-
tribution for small graph ensembles, the next step is to use our algorithm to estimate
ensemble averages. The graph diameter was chosen as an interesting graph observable
for a number of reasons; the diameter can be easily calculated on large graphs, it de-
pends on the entire graph structure and therefore changes slowly due to local updates
and an analytical value related to the graph diameter expectation value in the limit as
graph size tends towards infinity exists [61].

In order to estimate the mean graph diameter with a small standard error, we
first show that the integrated autocorrelation time (τint) is under control. Then we
demonstrate that we can accurately estimate the graph diameter which agrees with
the expected value of the graph diameter for small graph ensembles. Finally, we show
our estimate of the fit of the mean graph diameter from our Monte Carlo experiments
agrees with the bound on the height of trees given in Eq. 4.28.
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Integrated Autocorrelation Time

The maximum graph diameter grows linearly with the graph size and changes slowly
during graph rewires due to the local updating. It also gives a good description of the
graph configuration that it is calculated for. Estimating τint of the diameter allows
us to describe the efficiency of our algorithm in selecting structurally different graph
configurations. To estimate τint, we used the method laid out in Sec. 2.2.2. The rewiring
Monte Carlo algorithm was run for each graph ensemble and a total of 106 graph
diameter values were calculated. To control for thermalisation errors, 105 rewiring
sweeps were performed before starting the measurement phase.
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Figure 4.13: Log-log plot of the integrated autocorrelation time (τint) of the graph
diameter versus number of nodes |V |, fitted to a monomial of the form τint(|V |) =
0.08233(76)|V |0.8116(21) over three orders of magnitude. The fit uses all data points
except the outlier at |V | = 10. The reduced χ2 for 24 degrees of freedom is 0.93.

Fig. 4.13 shows the τint values and their error bars in blue, over three orders of
magnitude of graph size. The line of best fit,

f(x, a, b) = axb, (4.31)
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was calculated using the Maximum Likelihood Estimation method and minimising,

χ2 =
∑
i

(
f(xi, a, b)− yi

σi

)2

, (4.32)

using the least squares method.

The model function was not chosen based on some theoretical result, but rather
from a by-eye initial fit and should only be used as a guideline. The reduced χ2

indicates that our data gives an excellent fit to our model. The resulting monomial
depends on the size of the graph and the exponent is below one. Therefore, as the
system size increases through three orders of magnitude, τint is still very manageable.
While it is not reasonable to directly make a comparison of our τint ≈ |V |0.81 with
the relaxation time calculated in Ref. [57] of O(|E|6), it does compare well with the
7.5|E| and 15|E| rewires necessary to produce independent graph configurations from
Ref. [59] for graphs of 103 nodes.

Small graph diameter means vs exact.

Having shown that τint of the graph diameter is under control, we can now estimate
the error for the graph diameter precisely. Each graph diameter mean in this section
and the next was estimated using 106 samples measured after a rewiring sweep. The
Markov chain was thermalised using 105 sweeps. When the Markov chain graph di-
ameter history is inspected, the initial transient from low probability graph diameter
configurations towards the mean takes many times less sweeps than this thermalisation
time. The statistical analysis of the diameter mean and variance were performed using
the binning method described in Ref. [17], using a bin size of 1000, which is much
larger than τint. This results in uncorrelated means of each of the bins. The standard
error of the sampling distribution of the sample mean was estimated using these 1000
binned means. These means were resampled using the 106 Bootstrap resamples and
the standard deviation of these resamples was calculated.

Tab. 4.2 shows that our estimate of the graph diameter mean and standard error
agree well with the exact diameter expectation value. The z-score for the K4 and K5

ensemble suggest that the statistical errors may be slightly underestimated, which is
reflected in the reduced chi-square which is just larger than we would like. However,
the results of the K6 and K7 mean diameters are in excellent agreement, suggesting
that the larger z-scores should not be of too much concern.
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Graph Ensemble d̄ 〈d〉 |z|

K4 2.74944(44) 2.75 1.29
K5 3.43920(53) 3.44 1.51
K6 4.10671(68) 4.1064̇81̇ 0.33
K7 4.71172(79) 4.711370 0.45

Table 4.2: Monte Carlo ensemble average estimates of graph diameter with standard
error on the mean vs. exact graph diameter mean values. The reduced chi-square,
χ2

red = 1.4 for three degrees of freedom.

Scaling

As discussed in Sec 4.3.3, the analytical expression for the mean height of trees is given
as

〈hP1〉(|V |) ≈
√

2π|V |, (4.33)

and this value relates to the graph diameter, d(g) since,

1

2
d(g) ≤ min

i
hPi

(g) ≤ hPi
(g) ≤ max

i
hPi

(g) ≤ d(g). (4.34)

We therefore expect the form of the scaling behaviour of the graph diameter in trees
to be very similar.

This behaviour is derived in the limit as the number of vertices approaches infinity.
Fig. 4.14 shows our estimate of the graph diameter depending on |V | in blue and a
model function based on the expected graph diameter fitted in orange.

The close agreement between our numerical results and the model break down
for small graph ensembles. With this in mind, we performed our fit using the data
points for |V | ≥ 700, however the fit line was calculated down to |V | = 10 using the
fit parameters. Even at small graph sizes, where the fit breaks down, there is good
agreement between the data and model function. The model function that we used is

f(x, a, b, c) = axb + c, (4.35)

and

χ2 =
∑
i

(
f(xi, a, b, c)− yi

σSE

)2

, (4.36)
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where the errors for each data point were estimated using the binning method and
bootstrap resampling. This model was chosen since it reflects the form of the expecta-
tion value of the height of trees which differs from the mean diameter by a linear term
between one and a half as shown in Eq. 4.28. The additive constant in our fit function
collects sub-leading terms of order O(|V |−1) or smaller in the height of trees expecta-
tion value which result from the use of Stirling’s formula. The sub-leading terms tend
to zero as the size of the graphs increase.
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Figure 4.14: Log-log plot of the mean graph diameter d̄ versus number of nodes |V |,
fitted to a function of the form d̄(|V |) = 3.2(1)|V |0.504(3) − 4.0(9). The fit is performed
on the data points where |V | ≥ 700. The reduced χ2 for 10 degrees of freedom is 1.02.

The value of the fit parameter b = 0.504(3) is found to be very close to the exponent
of the expected value of 0.5. Our model results in a reduced chi-square of 1.02, with
the residuals between our data and the model randomly scattered inside two standard
deviations from the mean. To the best of our knowledge, our numerical results provide
the most precise estimate of the mean of the graph diameter in spanning trees with
|V | nodes.
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4.5 Conclusion and Future Work

In this chapter, we have outlined our rewiring algorithm which can be used to sample
over the configuration space of spanning trees with |V | nodes. The resulting Markov
chain is shown to be ergodic, which makes it useful to calculate ensemble statistics.
The graph probability distribution is estimated for small graphs and shown to agree
very well with the exact distribution.

The graph diameter, which describes the structure of graph configurations is then
investigated. The integrated autocorrelation time of the graph diameter is shown to
scale like τint ≈ |V |0.81, which means that the estimates of the diameter mean and
variance can be calculated even for large graphs. It is then shown that the form of the
analytical expectation value of the height of trees and our numerical results agree and
the graph diameter scales like d̄ ≈ |V |0.5. The goodness of fit, given by the reduced
chi-square suggests that our choice of model is appropriate and validates the form of
the height of trees expectation value. There is some discrepancy between our data and
model for small graph size, but this is most likely due to finite volume effects which
are avoided by using data from trees with 700 nodes or more to perform the fit.

In terms of future work stemming from this chapter, we see this as early work and
endeavour to study graph ensembles for arbitrary graph types, not only spanning trees.
An important contribution to this area would be the ability to rewire graphs with a
flexible number of nodes and edges. Furthermore, we are quietly confident that we
can use the methods outlined in this chapter to study dynamic models embedded on
dynamic networks. In many situations, it may be of interest to calculate ensemble
averages over the joint probability distribution of graph and spin configurations.



Chapter 5

Concluding Remarks

In Chapters 2 and 3, the behaviour of the ferromagnetic Ising model and antiferro-
magnetic Potts model on complex interference networks has been shown to deviate
from that expected on a lattice. This deviation is strongest on the most interconnected
θ = 1% graph, which differs the most from a lattice among the networks that we have
studied. In Chapter 4, we presented a new Monte Carlo algorithm which samples from
the probability distribution of trees with a fixed number of nodes and edges. The al-
gorithm was shown to choose independent graph configurations efficiently even as the
size of these graphs increase.

By performing Monte Carlo simulations on these empirical complex networks, which
have no analytical description, a very rich collection of phenomena has been observed.
The ferromagnetic Ising model is seen to exhibit a crossover from an ordered to a
disordered phase driven by temperature. The antiferromagnetic Potts model appears
to display spin glass behaviour at low temperature, which up to recently has only
been observed in models containing mixed ferromagnetic and antiferromagnetic bonds
between nodes. Again, driven by temperature, a crossover to a disordered paramagnetic
phase is indicated by estimating the thermodynamic observables of the system. The
density of states is also shown to be useful to describe the interference configurations
which can occur in a dynamic, distributed frequency allocation model on a wireless
communication network. In Chapter 4, by using simple, local updates to the graph,
our rewiring algorithm effectively samples a complex state space of graphs.

As these examples show, the behaviour of complex networks provides an extremely
rich research area. The interdisciplinary nature of network science exposes a very
wide audience, with vastly different skills and research questions to the same types of
problems. In my opinion, this will cause the rise in popularity of network science to
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continue for the foreseeable future as different fields apply the insights of others to their
own work. Overall, complex networks are a very fertile ground for new Monte Carlo
methods, with the opportunity to study complex physics in systems with simple rules
of interaction that could have a profound effect in unforeseen applications.



Appendix A

Graph probability distributions

In this appendix, the Monte Carlo results of our rewiring algorithm are presented which
did not fit in Sec. 4.4.1.

A.1 K4 Ensemble

(a) Line (b) Star

Figure A.1: These graphs are the non-isomorphic spanning trees of K4. All spanning
trees of K4 are automorphic to one of these graphs.

Tree (nn−2 = 16) |Aut(gi)| lgi πgi π̃gi |z|

Line (Fig. A.1a) 2 12 0.75 .7500009(102) 0.09
Star (Fig. A.1b) 6 4 0.25 .2499991(102) 0.09

Table A.1: The sampled (π̄gi) and exact (πgi) isomorphism class probability distribution
of the K4 ensemble. The z-statistic shows that the sampled probability distributions
is very close to the expected value with far less than one σ in the difference. The
χ2 = 0.02 for one degree of freedom, as described in Eq. 4.30. The probability of
finding a χ2 as large as this is P = 0.11.
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A.2 K5 Ensemble

(a) Line (b) Fork (c) Star

Figure A.2: Non-isomorphic spanning trees of K5.

Tree (nn−2 = 125) |Aut(gi)| lgi πgi π̃gi |z|

Line (Fig. A.2a) 2 60 0.48 .4800174(177) 0.98
Fork (Fig. A.2b) 2 60 0.48 .4799775(151) 1.62
Star (Fig. A.2c) 24 5 0.04 .0400051(061) 0.82

Table A.2: Sampled (π̄i) and exact (π) isomorphism class probability distribution
of the K5 ensemble. Two thirds of the z statistics are within one standard deviation,
indicating that the π̄ means are normally distributed and that the errors are reasonable.
χ2 = 3.87 for two degrees of freedom. The probability of finding a χ2 as large as this
is P = 0.86. The χ2 is a bit large, but there is still a good likelihood that π̄ is sampled
from π.
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A.3 K6 Ensemble

(a) Line (b) Fork

(c) Trident (d) Star

(e) Butane (f) Handle

Figure A.3: Non-isomorphic spanning trees of K6.

Tree (nn−2 = 1296) |Aut(gi)| lgi πgi π̃gi |z|

Line (Fig. A.3a) 2 360 0.27̇ .2777699(204) 0.39
Fork (Fig. A.3b) 2 360 0.27̇ .2777847(137) 0.5
Trident (Fig. A.3c) 6 120 0.0925926 .0925895(111) 0.27
Star (Fig. A.3d) 120 6 0.0046296 .0046303(023) 0.29
Butane (Fig. A.3e) 8 90 0.0694̇ .0694618(080) 2.17
Handle (Fig. A.3f) 2 360 0.27̇ .2777638(200) 0.7

Table A.3: Sampled (π̄i) and exact (π) isomorphism class probability distribution of
the K6 ensemble. The majority of the z statistics are within one standard deviation,
however π̄ of the Butane class is larger than we would expect to see randomly among
six categories. χ2 = 5.77 for five degrees of freedom. The probability of finding a χ2 as
large as this is P = 0.66. The χ2 is slightly big, but still reasonable. Considering that
the χ2 statistic is extremely sensitive to outliers, this shows a good likelihood that π̄
is sampled from π.
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