
A Scalable and Reconfigurable Shared Memory

Architecture for Large-Scale Graphics Applications

A Dissertation

Submitted to the office of Graduate Studies

of

The University of Dublin

Trinity College

in fulfillment of the requirements

for the Degree of

Doctor of Philosophy

by

Ross Brennan, B.A., B.A.I.

July 2009

Declaration

This thesis has not been submitted as an exercise for a degree at this or any other Uni-

versity. Furthermore this thesis is entirely my own work and I agree that the Library

may lend or copy the thesis upon request. This permission covers only single copies

made for study purposes, subject to normal conditions of acknowledgement.

Ross Brennan

22nd July 2009

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Ross Brennan

22nd July 2009

To Valerie

A Scalable and Reconfigurable Shared Memory

Architecture for Large-Scale Graphics Applications

Abstract

The computationally intensive nature of large-scale interactive graphics applications,

such as photo-realistic rendering and low-latency virtual reality environments, has ne-

cessitated the use of parallel architectures in order to provide sufficient processing

power to accommodate their demands. Scalable parallel architectures may be imple-

mented using concurrent processing elements with attached local memory. In order to

achieve interactive frame-rates, at high levels of detail, large quantities of information

needs to be efficiently communicated between these concurrently operating processing

elements as quickly as possible. This can be accomplished by utilising a distributed

shared-memory architecture, incorporating a high-performance interface that is capable

of attaining the required high-bandwidths and low-latencies.

The integration of reconfigurable processing resources, in the form of field pro-

grammable gate arrays, into such a system allows the processing elements to be imple-

mented directly in hardware, as close to the local memory as possible. This additionally

allows for the hiding of access latencies to remote memory, through the use of local

BlockRAM resources, in combination with a shared-memory abstraction. This fusion

of local memory and reconfigurable logic resources, into a single global address space,

allows for the implementation of efficient distributed algorithms in the logic of scalable

parallel architectures, that can be used to accelerate graphics applications.

ix

This thesis introduces a novel, low-cost, scalable, shared-memory architecture

that was designed with the intention of accelerating graphics applications for large-scale

interactive visualisations using a tightly coupled hybrid system of parallel commodity

graphics and reconfigurable hardware resources. The custom-built nodes interface a

single global address space that can be shared with a cluster of PCs. This shared

address space is implemented through a dedicated, high-speed, low-latency commo-

dity interconnect. Applications running across the cluster can benefit from increased

performance by taking advantage of the parallel resources provided by the nodes and

commodity PCs.

x

Acknowledgments

I would like to thank my supervisor, Michael Manzke, for giving me the opportunity

to pursue my postgraduate studies. He took my under his wing as an undergraduate

student and has guided me through postgraduate life since then. Without his help

and support, I wouldn’t have made it this far. Special thanks also have to go to Tom

Kearney, Paul Masterson and Peter O’Kane. Their expertise and patience was of great

help as I struggled to come to grips with the mechanics of building and debugging the

project hardware.

Owen Callanan, David Gregg, Muiris Woulfe and Eoin Creedon deserve particular

mention. They were always there to provide enlightened discussion, whether over a

coffee or a beer, to help me find solutions to the design and implement ion challenges

that I faced during the course of the project. I’d also like to thank John Clancy for all

the encouragement and for the bottomless cups of coffee.

My mom, brother and sister were always there to make sure that no matter how

stressed I was when I’d arrive home at the weekends, I always left with a calmer outlook.

They never stopped believing that I could make it, even when I didn’t think I could,

and I’m forever grateful for their support.

Above all else, I would like to thank Valerie Downey for her unwavering support

and for putting up with me over the last few years. Her endless patience, especially

towards the end of the project, helped me through the tough times.

Ross Brennan

The University of Dublin

Trinity College

July 2009

xi

Contents

Abstract ix

Acknowledgments xi

Table of Contents xiii

List of Tables xvii

List of Figures xix

List of Listings xxi

List of Acronyms xxvi

1 Introduction 1

1.1 Motivation . 3

1.2 Parallel Computing . 5

1.3 Parallel Processing Platforms . 8

1.4 The GCN: A High-Performance DSM Graphics Architecture 9

1.5 Contribution . 11

1.5.1 Research Statement . 12

1.5.2 Relevant Publications . 12

1.5.3 Related Publications . 12

1.6 Thesis Organisation . 13

2 Background 15

2.1 Parallel Computing Systems . 16

2.1.1 Shared-Memory Architectures 17

2.1.2 High-Performance Interconnects 22

2.2 Parallel Rasterisation Systems . 25

2.2.1 Software Architectures . 28

xiii

2.2.2 Hardware Architectures . 29

2.3 Parallel Ray-Tracing Systems . 30

2.3.1 Software Architectures . 32

2.3.2 Hardware Architectures . 33

2.4 Graphics Application Requirements . 33

2.5 Reconfigurable Computing Systems . 34

2.6 Summary . 37

3 System Design and Implementation 39

3.1 Hardware Design and Implementation 41

3.2 Hardware Design Objectives . 42

3.3 Hardware Architecture . 46

3.3.1 Application FPGA . 47

3.3.2 Bridge FPGA . 48

3.3.3 SCI Link Controllers . 48

3.3.4 Intel Northbridge . 49

3.4 Hardware Implementation and Testing 52

3.5 Reconfigurable Logic Implementation 55

3.6 Reconfigurable Logic Design Objectives 55

3.7 Reconfigurable Logic Architecture . 56

3.7.1 Hardware Initialisation and Monitoring 58

3.7.2 SCI Hardware Encapsulation Logic Layer 59

3.7.3 Shared-memory Network Abstraction Interface Layer 69

3.7.4 Message and Application Interface Layer 71

3.8 Reconfigurable Logic Implementation and Testing 73

3.9 Application Programming . 76

3.10 Summary . 78

4 System Evaluation 81

4.1 Hardware Performance Results . 81

4.2 Ray-Triangle Intersection Testing . 85

4.3 Application Design and Validation . 88

4.4 Application Integration . 91

4.5 Application Results . 92

4.6 Summary . 94

5 Design Evolution 97

5.1 Design Objectives . 98

xiv

5.2 Design Discussion . 102

5.3 Hardware Architecture . 103

5.3.1 System FPGA . 104

5.3.2 SCI Subsystem . 105

5.3.3 RAM Subsystem . 105

5.3.4 IO Subsystem . 105

5.4 Reconfigurable Logic Architecture . 106

5.5 Platform Implementation . 107

5.6 Summary . 109

6 Conclusions 111

6.1 GCN Design Limitations . 112

6.2 Future Work . 112

6.3 Contributions . 113

6.4 Conclusions . 114

A SCI Link Controller 115

A.1 LC3 Overview . 115

A.2 The B-Link Bus Protocol . 121

A.3 The B-Link Packet Format . 123

B AGP and FSB 129

B.1 The Accelerated Graphics Port . 129

B.1.1 Inner and Outer Transmit/Receive Loops 130

B.1.2 Hardware Enforced Cache Coherency 131

B.1.3 The Graphics Aperture . 131

B.1.4 The Graphics Aperture Remapping Table 132

B.1.5 AGP Initialisation . 133

B.1.6 AGP Operation . 134

B.2 The Front-Side Bus Protocol . 135

B.2.1 Configuration Signals . 136

B.2.2 Arbitration Signals . 136

B.2.3 Request Signals . 138

B.2.4 Snoop Signals . 139

B.2.5 Response Signals . 140

B.2.6 Data Response Signals . 141

B.2.7 Line Transfers . 142

xv

C Hardware Technologies 143

C.1 Reconfigurable Hardware . 143

C.1.1 CPLDs . 144

C.1.2 FPGAs . 145

C.1.3 Programming Reconfigurable Logic Devices 147

C.2 PCB Design . 148

Bibliography 153

xvi

List of Tables

1.1 Interconnect Scalability Comparison . 7

3.1 PSB synthesis results for VirtexII and Virtex4 FPGAs 63

3.2 Supported SCI commands . 64

3.3 SCI protocol engine synthesis results for a VirtexII FPGA 74

3.4 SCI protocol engine synthesis results for a Virtex4 FPGA 74

4.1 Synthesis results for the entire code-base excluding the application . . . 84

4.2 Synthesis results for the triangle ray intersection module 88

A.1 Panic Boot Default CSR Mappings . 117

A.2 Regular Boot Default CSR Settings . 119

A.3 Private CSR address space mappings 120

A.4 bHere and bBusy signal values for packet acknowledgement 123

B.1 AGP Modes . 130

B.2 Configuration Signals . 136

B.3 Arbitration Signals . 136

B.4 Request Signals . 138

B.5 Snoop Signals . 139

B.6 Response Signals . 140

B.7 Response Codes . 140

B.8 Data Response Signals . 141

B.9 Differential host data strobes . 141

B.10 Burst order used for P6 family processor bus line transfers 142

xvii

List of Figures

1.1 Example of a large model visualisation 1

1.2 Graphical representation of Amdahl’s Law 6

1.3 Overview of the GCN hybrid shared-memory graphics cluster 10

2.1 Uniform Memory Access (UMA) architecture layout 19

2.2 Non-Uniform Memory Access (NUMA) architecture layout 19

2.3 NO Remote Memory Access (NORMA) architecture layout 19

2.4 Overview of a modern GPU pipeline 25

2.5 Overview of the ray-tracing process . 30

2.6 Example of a high-quality image rendered using ray-tracing 31

3.1 Hybrid cluster consisting of commodity PCs and custom-built nodes . . 40

3.2 Ethernet vs Shared-Memory based FPGA cluster design 44

3.3 Ethernet vs Shared-Memory based FPGA cluster topology 46

3.4 Block diagram overview of the GCN architecture 47

3.5 Block diagram overview of a commodity PC architecture 50

3.6 Image of a completed GCN rev3 board 53

3.7 Image of a completed GCN rev4 board 54

3.8 Overview of the GCN software implementation 57

3.9 System initialisation sequence . 58

3.10 TLE daughter-board attached to a commodity PCI-SCI adapter card . 59

3.11 PCI-SCI bridge architecture from the Technical University of Munich . 60

3.12 PCI-SCI bridge architecture from the University of Chemnitz 61

3.13 Structural overview of Dolphin’s PSB ASIC 62

3.14 Customised SCI protocol and initialisation stack 66

3.15 The 32-bit address space memory map layout 70

3.16 Overview of the Message and Application Interface Layer 72

3.17 Block diagram overview of a commodity PC architecture 75

4.1 Two node test setup for bandwidth and latency measurements 82

xix

4.2 Comparison of bandwidth and latency measurements 83

4.3 Predicted bandwidth scalability comparison 83

4.4 Predicted latency scalability comparison 84

4.5 Ray/Triangle Intersection . 85

4.6 Hardware implementation of the Möller-Trumbore algorithm 87

4.7 A subset of the random triangles used to test the intersection unit. . . 89

4.8 Comparison of ray-triangle intersection throughput and latency 90

4.9 Intersection latency and bandwidth usage for multiple PEs 93

4.10 Speedup and intersection throughput results for multiple PEs 93

5.1 1D Torus (Ringlet) Topology . 98

5.2 2D Torus Topology . 99

5.3 3D Torus Topology . 99

5.4 Bisectional bandwidth for 1D, 2D and 3D torus configurations 100

5.5 Average latency for 1D, 2D and 3D torus configurations 100

5.6 Overview of the SPARTA interconnect. 101

5.7 Overview of the SPARTA architecture. 104

5.8 Rendering of a SPARTA node . 106

5.9 Overview of the proposed SPARTA software implementation 107

A.1 Overview of the main architectural features of the LC3 116

A.2 LC3 initialisation sequence . 118

A.3 B-Link bus operation . 123

A.4 Encapsulated SCI B-Link packet format 124

B.1 AGP Inner and Outer Loop Clock Domains 130

B.2 AGP Configuration Register Layout . 133

B.3 AGP/PCI Operational State Flow Diagram 134

C.1 Block diagram overview of the internal architecture of a CPLD 144

C.2 Block diagram overview of the internal architecture of an FPGA 146

C.3 Cross-section of a multilayer PCB stackup 148

C.4 Verification of BGA device registration using X-Rays 149

C.5 PCB layup for the GCN boards . 150

C.6 PCB artwork for the GCN revision 4 topside 151

C.7 PCB artwork for the GCN revision 4 bottom 152

xx

List of Listings

3.1 Application Interface Port Signalling 77

A.1 C code for encapsulated SCI packet structures 124

xxi

List of Acronyms

AGP Accelerated Graphics Port.
API Application Programming Interface.
ASI Application Specific Interface.
ASIC Application Specific Integrated Circuit.
ATC Address Translation Cache.
ATT Address Translation Table.

B-Link Backside Link.
BDU Bus Dependent Unit.
BEE Berkley Emulation Engine.
BGA Ball Grid Array.
BIOS Basic Input Output System.
BIU B-Link Interface Unit.
BOM Bill Of Materials.
BRAM Block-Select RAM.

CDB Central Database.
CLB Configurable Logic Block.
COTS Commercial-Off-The-Shelf.
CPLD Complex Programmable Logic Device.
CPU Central Processing Unit.
CRC Cyclic Redundancy Check.
CSA Communications Streaming Architecture.
CSR Control and Status Registers.
CUDA Compute Unified Device Architecture.

DCM Digital Clock Management.
DDR Double Data Rate.
DIMM Dual Inline Memory Module.
DMA Direct Memory Access.
DPE Dolphin Protocol Engine.
DPI Dots Per Inch.
DRAM Dynamic Random Access Memory.

xxiii

DSM Distributed Shared-Memory.
DSP Digital Signal Processing.
DSU Debugging Support Unit.
DVI Digital Video Interface.

EDR Eight x Data Rate.

FLASH FLexible Architecture for SHared memory.
FPGA Field Programmable Gate Array.
FPS Frames Per Second.
FPU Floating Point Unit.
FSB Front-Side Bus.

GART Graphics Aperture Remapping Table.
GbE Gigabit Ethernet.
GCN Graphics Cluster Node.
GIU Generic Interface Unit.
GMCH Graphics and Memory Controller Hub.
GPGPU General Purpose Graphics Processing Unit.
GPIO General Purpose Input/Output.
GPU Graphics Processing Unit.
GTLB Graphics Translation Look-aside Buffer.

HAMSTER Hybrid-dsm based Adaptive and Modular Sha-
red memory archiTEctuRe.

HASL Hot Air Solder Levelled.
HCA Host Channel Adapter.
HDL Hardware Description Language.
HDR Hexadecimal Data Rate.
HI Hub Interface.
HIM Hardware Initialisation and Monitoring.

IC Integrated Circuit.
ICH IO Controller Hub.
IEEE Institute of Electrical and Electronic Engi-

neers.
IO Input/Output.
IOB Input/Output Buffer.
IP Intellectual Property.

LAN Local Area Network.
LC Link-Controller.

xxiv

LC3 Link-Controller 3.
LED Light Emitting Diode.

MAGIC Memory And General Interconnection
Controller.

MAIL Message and Application Interface Layer.
MGT Multi-Gigabit Transceiver.
MPI Message Passing Interface.

NORMA NO Remote Memory Access.
NUMA Non-Uniform Memory Access.

PC Personal Computer.
PCB Printed Circuit Board.
PCI Peripheral Component Interconnect.
PCIe PCI-Express.
PE Processing Element.
PIO Programmed Input/Output.
PSB PCI-SCI Bridge.

QCD Quantum Chromo-Dynamics.
QDR Quad Data Rate.

RAM Random Access Memory.
RAMP Research Accelerator for Multiple Processors.
RDMA Remote Direct Memory Access.
RPU Reconfigurable Processing Unit.

SAGE Scalable Adaptive Graphics Environment.
SATA Serial Advanced Technology Attachment.
SCI Scalable Coherent Interface.
SDR Single Data Rate.
SDRAM Synchronous Dynamic Random Access Me-

mory.
SHELL SCI Hardware Encapsulation Logic Layer.
SHUB Super HUB.
SISCI Software Infrastructure for Scalable Coherent

Interface.
SLAAC Systems Level Applications of Adaptive Com-

puting.
SLI Scalable Link Interface.
SMiLE Shared-Memory in a LAN-like Environment.

xxv

SMP Symmetric Multi-Processor.
SNAIL Shared-memory Network Abstraction Inter-

face Layer.
SPARTA Scalable Programmable Architecture for Ray-

Tracing Applications.
SPARTAN SPARTA-Node.
SPROM Serial Programmable Read Only Memory.
SRAM Static Random Access Memory.

TLE Traffic Load Engine.

UMA Uniform Memory Access.
USB Universal Serial Bus.

VHDL VHSIC Hardware Description Language.
VHSIC Very High-Speed Integrated Circuit.
VLIW Very Long Instruction Word.

xxvi

Chapter 1

Introduction

Large-scale interactive graphics applications, such as photo-realistic real-time rende-

ring and low-latency virtual reality environments, are computationally intensive and

place high demands on rendering hardware. This has led to the introduction of parallel

architectures, which can divide the rendering workload between concurrently operating

Processing Elements (PEs) in order to decrease the overall execution time of the gra-

phics applications, improving their performance.

Figure 1.1: Example of a large model visualisation of a car, used for the purpose
of interactive design and prototyping without the time-consuming need to construct
multiple physical scale models, from InTrace GmbH.

1

Chapter 1. Introduction

In order to operate effectively, these parallel rendering architectures must be ca-

pable of providing sufficient memory and processing resources to accommodate the

demands of the graphics application being run, while being able to scale to meet the

application problem size. This means that the application PEs must be able to effi-

ciently access the scene-database of the model being rendered, which implies the need

for a high-bandwidth access path between the PEs and the local memory. The PEs

must also be able to communicate information between one another quickly in order

to meet the real-time constraints placed on them by the graphics application, which

implies the need for a low-latency communication mechanism between the PEs them-

selves. An optimal parallel rendering architecture solution would therefore allow for

the efficient implementation of concurrently operating PEs in hardware, which would

have scalable high-speed and low-latency access paths to large amounts of system me-

mory and to one another. This would enable the system to scale to meet the problem

size of the model that is being rendered and would allow the entire scene-database to

be stored in the memory of the system, providing the PEs with the fastest possible

access to whichever portions of the scene-database that they required while retaining

the ability to efficiently communicate with each other.

The applications that run in these parallel rendering architectures inevitably in-

troduce their own sets of challenges that need to be dealt with, such as how to handle

the large amounts of available system memory and how to efficiently scale to meet the

problem size and real-time constraints imposed by the interactive scenes being rende-

red. As a result, many different types of parallel architectures have evolved in order

to try and create optimised solutions for various problem sets. They can all generally

be classified into one of three major categories. The first employs standard clusters

of general purpose commodity Personal Computers (PCs), which are capable of im-

plementing a variety of rendering algorithms. The second employs dedicated clusters

of custom-built nodes that are specifically optimised to use one particular rendering

approach. The final category comprises a hybrid approach based on the first two, com-

bining commodity and custom-built hardware into one system in an attempt to retain

the benefits of both approaches while mitigating the drawbacks.

This thesis introduces a low-cost, scalable architecture that was designed with

the intention of accelerating graphics applications for large-scale interactive visualisa-

tions. The architecture comprises a tightly coupled system of parallel graphics and

reconfigurable hardware resources, which interface a single global address space that

can be shared with a cluster of commodity PCs. Distributed rendering algorithms are

implemented in the reconfigurable logic devices, enabling them to take advantage of

the parallel resources provided by both the custom-built nodes and commodity PCs.

2

Chapter 1. Introduction

1.1 Motivation

The two established classes of algorithms that can be used to generate computer gra-

phics images are rasterisation and ray-tracing, which are discussed further in Chapter 2.

Rasterisation algorithms produce fast rendering frame-rates, but have difficulties in

computing many rendering effects accurately. In contrast, ray-tracing algorithms pro-

duce the best image quality, due to their simulation based approach, but have poor

rendering frame-rates as a result of their computationally intensive nature. The choice

of rendering algorithm can have a direct impact on the performance of the underlying

parallel rendering architecture as both rasterisation and ray-tracing algorithms place

different demands on the hardware. As a result, general purpose commodity rendering

architectures usually do not provide the optimal solution.

There have been many different projects that have set out to implement scalable

systems for large-scale interactive graphics applications and Chapter 2 provides back-

ground information about them. Some have taken a rasterisation based approach to

the rendering problem, while others have focused on ray-tracing. Two projects in par-

ticular stand out as being representative of both approaches and are discussed here,

they are Chromium and OpenRT.

Chromium [HHN+02] implements an interactive parallel rendering architecture

for rasterisation algorithms using clusters of commodity PCs. It works by intercep-

ting OpenGL graphics commands from a standard application running on a single PC

and distributing them into streams of commands, which can be distributed to multiple

client nodes to be rendered on their local Graphics Processing Units (GPUs). The

results of these individual streams may then be output to a tiled display or recombi-

ned back into a single image for output to a single display. Chromium can implement

sort-first and sort-last parallel rendering architectures as defined by Molnar et al’s

taxonomy [MCEF94], which is described in Chapter 2, but a sort-last implementation

can only be achieved through expensive readbacks of colour and depth buffers since

this is the only form of access to data in the graphics pipeline of a commodity GPU

card. The sorting of data before it enters the different stages of the parallel graphics

pipelines allows load-balancing and therefore increases the utilisation of the overall sys-

tem. An efficient solution for load-balancing, a sort-first algorithm, is provided through

pre-transformation in order to determine the most suitable data distribution over the

GPUs [HEB+01]. These pre-transformations are part of the geometry processing stage

and calculate the screen space position of primitives in order to allocate them to screen

regions that are served by a particular GPU. This computation is one of the overheads

that must be carried by the parallel rendering system in order to efficiently exploit

parallelism.

3

Chapter 1. Introduction

OpenRT [DWBS03] implements a parallel rendering architecture for interactive

distributed ray-tracing algorithms using clusters of commodity PCs. In this case, a

master node is responsible for interfacing with the graphics application and centrally

manages the entire scene-database, distributing it to all of the client nodes without

replicating it. Load balancing of the scene is then performed to ensure that the client

nodes are all kept busy. Rays that require access to other parts of the scene-database,

not stored in local memory, are transferred to the correct client node via the cluster in-

terconnect. Once the entire scene has been rendered, the results are communicated back

to the master node for re-assembly into a single image. The RPU project [SWW+04]

improves on the performance of the OpenRT project by extending it to allow for off-

loading of ray-tracing PEs to Field Programmable Gate Arrays (FPGAs) add-in boards,

which are connected to the Input/Output (IO) interfaces of the commodity PCs. The

limiting factor of the OpenRT architecture is the interconnect used to cluster the com-

modity PCs as it must be able to provide high enough bandwidth to sustain the transfer

of scene-data and the low-latency migration of rays between the nodes without affecting

the interactivity of the system.

Even though these projects approach the rendering problem from different angles,

the end goal of enabling rendering of large-scale graphics applications at interactive

rates is a common thread binding them. By examining the implementation of these

projects and examining their benefits and drawbacks, a common set of desirable criteria

for a scalable system capable of rendering large-scale interactive graphics applications

was developed as follows:

• The system should provide a well defined API mechanism that can be used to

allow applications to take advantage of the resources provided by the system

• The system should incorporate a large amount of memory and remove the need

to replicate the scene-database of the model being rendered

• Memory scalability is desirable to prevent bandwidth starvation as the system

grows

• The system interconnect should be scalable and should be able to sustain the

traffic generated by the algorithm that is rendering the scene database

• The interconnect should minimise the communication latencies between the pa-

rallel rendering nodes

• The application running across the system should be implemented in hardware

in order to maximize the performance benefits

4

Chapter 1. Introduction

• The rendering application should be controlled by a commodity PC setup that

can interface with the system interconnect

• The distributed algorithm implemented in the reconfigurable logic should com-

municate data and synchronisation information with the host application using

either message passing or shared memory techniques

These criteria were used as a set of general guidelines that were followed during the de-

sign of the Graphics Cluster Node (GCN) architecture, which is outlined in Section 1.4,

and aims to overcome the drawbacks of both of these architectures. Before that, howe-

ver, it is necessary to consider the various parallel processing platform implementation

options that are available when designing such a system.

1.2 Parallel Computing

The dramatic increase in computational performance that can be gained through the ex-

ploitation of parallelism has led to the adoption of parallel computing systems in order

to speedup applications. Continuing advancements that have been made in technology

since the dawn of the computing age have led to vast improvements in the performance

that can be achieved by sequential computing systems and as a result, the speed up

achieved through the use of parallel computing can be mitigated over time as the per-

formance of the sequential systems increases. Even so, the computationally intensive

nature of large-scale interactive graphics applications, such as photo-realistic rendering

and low-latency virtual reality environments, still necessitates the use of parallel com-

puting systems in order to provide sufficient processing power to accommodate their

demands.

The fundamental concept of all parallel computing systems lies in the exploitation

of concurrency in order to increase the performance of applications. Parallel computing

systems use multiple PEs running concurrently to solve a problem, therefore reducing

the overall execution time of the application. This is usually accomplished by breaking

the problem up into independent segments so that each PE can execute its own part of

the algorithm simultaneously with the others. In general, the speed-up of an application

running in parallel can be characterised by Amdahl’s law [Amd67] as follows:

1

(1 − P) + P

N

(1.1)

where P is the proportion of the application that can be made to run in parallel and N

is the number of PEs used. Figure 1.2 shows how the achievable speedup is limited by

the sequential portion of the application, regardless of the number of PEs employed.

5

Chapter 1. Introduction

Figure 1.2: Amdahl’s Law shows that the speedup of an application employing multiple
processing elements in parallel is limited by the sequential fraction of the application.

Interactive visualisation and simulation systems require large amounts of proces-

sing power and memory. When implemented on a parallel architecture, the memory

needs to be frequently accessed by the concurrently operating PEs. In order to achieve

interactive frame-rates at high levels of detail, large quantities of information need

to be efficiently communicated between the PEs as quickly as possible. A good way

to achieve this is to use multiple PEs running in parallel on a single device, which

allows for the fastest communications path between the PEs. For rasterisation algo-

rithms, this is commonly achieved by running the PEs in a GPU with a highly-parallel

architecture and for ray-tracing algorithms, this usually means running the PEs in a

multi-threaded or multi-core Central Processing Unit (CPU). Both of these approaches

require high-bandwidth, low-latency links between the PEs in order to keep them busy

and meet the real-time constraints imposed by interactive graphics applications. The

major problem with this solution though is the inherent lack of scalability, resulting

from the fact that only a limited number of PEs can fit into a single device due to

physical space constraints. This problem can be overcome by utilising a parallel dis-

tributed system, in which multiple PEs run in multiple devices that are connected

together using a high-performance interface. This interface should be capable of attai-

ning the high-bandwidths and low-latencies required to sustain the large quantities of

information that must be communicated between the distributed PEs in order to meet

the demands of the application being run across the parallel system.

Distributed parallel systems consist of a collection of independent nodes that are

connected together via a high-speed network. The two most common methodologies

available for programming these types of systems are the message passing and sha-

6

Chapter 1. Introduction

red memory paradigms. Message passing systems rely on explicit messages, that can

contain data as well as control and synchronisation information, being sent between

tasks on different processors. Shared-memory systems enable a single application run-

ning across all nodes to share data implicitly through a common global address space,

while using additional mechanisms for explicit synchronisation. The advantages offered

by Distributed Shared-Memory (DSM) systems include the ease of programming and

portability achieved through the use of the shared-memory programming paradigm and

the scalability of the resulting system due to the absence of hardware bottlenecks.

The choice of interconnect and its topology can have a dramatic impact on the

performance of the overall system. A lack of scalability in the interconnect will lead to

eventual bandwidth starvation as the amount of nodes attached to the interconnect in-

creases. Similarly, high-latencies will result in lower rendering frame-rates, which may

lead to loss of interactivity in the system as it scales. Consequently, it is important

to ensure that the interconnect and topology implementation has a high bisectional

bandwidth and low average latency in order to avoid these scalability issues. A high

level of configurability in the interconnect fabric can allow for the customisation of the

topology to suit the requirements of the underlying applications, guaranteeing scala-

bility of the system. Depending on the interconnect choice, there are many different

topology configurations that may be implemented, ranging from simple point-to-point

links, rings and torii to complex multi-stage switching networks. Each has its own

benefits and drawbacks depending on the number of nodes in the system and the ren-

dering algorithm being used. Three common topologies, which are not switched based,

are ringlet (1D torus), 2D torus and 3D torus interconnects.

Wire Average Bisectional
Topology Type Cost Latency Bandwidth

Ringlet Direct N LN

2
2B

2D torus Direct 2N LN
1

2

2
2BN

1

2

3D torus Direct 3N 3LN
1

3

4
2BN

2

3

Table 1.1: Scalable interconnection network summary for systems with N nodes where
B is the bandwidth and L is the point-to-point latency.

Table 1.1 summarises the wire cost, average latency and bisectional bandwidth

characteristics of these three different configuration options. The 2D and 3D torus

configurations exhibit good bisectional bandwidths and low average latencies, making

them suitable as interconnect topologies for large systems, while the ringlet topology

is more suited to smaller systems as it does not scale so well.

7

Chapter 1. Introduction

1.3 Parallel Processing Platforms

Regardless of the type of rendering algorithm being implemented, it is important to

consider the platform in which the concurrent PEs are to be implemented. This gene-

rally involves the use of a GPU, CPU or a custom-built Application Specific Integrated

Circuit (ASIC); however, reconfigurable logic devices, in the form of FPGAs have

become an increasingly popular alternative. Each platform choice has it’s own advan-

tages and disadvantages, depending on the rendering algorithm and the environment

in which it is being run. ASICs can hold more logic than FPGAs and so can implement

more complicated algorithms. They also operate at higher clock frequencies and can

process data more quickly as a result. The major drawback of ASICs though is their

high cost, when produced in small quantities, and lack of implementation flexibility.

FPGAs provide versatility and flexibility to quickly prototype new algorithms and can

provide a much cheaper implementation solution than ASICs when dealing with small

quantities.

GPUs are devices that are used to implement rasterisation algorithms and were

initially implemented as specialist co-processors that were dedicated to providing high-

performance 2D and 3D graphics capabilities. Modern GPUs can implement many

parallel algorithms directly and can achieve performances several orders of magnitude

higher than CPUs in certain tasks [GPG08]. In order to capitalise on the processing

power available from modern GPUs, they are normally attached to dedicated high-

bandwidth IO buses such as the Accelerated Graphics Port (AGP) and PCI-Express

(PCIe), in order to minimise latency and maximise the bandwidth available to system

memory. Multi-GPU systems are commonly implemented using proprietary intercon-

nects, such as SLI and CrossFireX, from the GPU vendors. The main disadvantage of

this, however, is the limited scalability offered as only a maximum of four GPUs in one

system can be supported. Even though these systems use Commercial-Off-The-Shelf

(COTS) hardware, the fact that the interconnect technology is proprietary imposes

strict requirements on the ways in which the system can be set up and limits the

choice of GPU available. Projects, such as Chromium, attempt to work around these

obstacles by using entirely COTS hardware, in combination with a custom software

control mechanism, to create a scalable parallel rendering system without the disadvan-

tages of relying on proprietary technologies. This is generally achieved by connecting

multiple PCs using a commodity interconnect, such as Ethernet, and implementing a

software control mechanism which can subdivide the scene and distribute it to multiple

GPUs to be rendered in parallel.

The large amounts of computational power required by ray-tracing algorithms has

seen its use traditionally consigned to the off-line rendering of photorealistic stills and

8

Chapter 1. Introduction

movie images where realism is paramount. Recent advances in computer technology

and parallel processing techniques, however, have made ray-tracing at interactive rates

more feasible even for dynamic scenes. The goal of ray-tracing large, highly detailed

models at interactive frame-rates has not yet been achieved, however, there are nume-

rous commercial offerings and research projects that are being undertaken with this

ambition in mind. RayBox [ART08a], from ARTVPS, provides an ASIC based solution,

providing 14 × dual-core dedicated “AR500” ray-tracing processors and using a PCIe

interconnect to communicate directly with a host PC. The OpenRT project aims to

develop a high-performance software ray-tracing system that can run across a cluster of

commodity PCs using entirely COTS technology, while the SaarCOR project [SWS02]

uses reconfigurable logic devices, in combination with commodity PCs, to accelerate

portions of the ray-tracing algorithms in hardware.

Historically, the limited size of FPGAs has seen their use constrained to imple-

menting simple logic circuitry. However recent multi-million gate devices have made

it possible to implement complex high-performance designs, that can be customised to

the needs of a specific application, without having to design complex, expensive ASICs

to perform the same functionality. The latest generations of reconfigurable devices have

even seen the introduction of in-built Intellectual Property (IP) blocks such as CPU

and Ethernet cores, which may be used to augment and enhance the designs running in

the device. The inherent parallelism available in these devices can be exploited while ta-

king advantage of their reconfigurable nature to quickly and efficiently implement new

algorithms and circuit designs despite their relatively low clock frequencies. Callanan et

al. [Cal06] provide an example of a single FPGA co-processor solution that implements

a lattice Quantum Chromo-Dynamics (QCD) application on an FPGA using IEEE

double-precision arithmetic. Their results show that FPGAs and logarithmic arith-

metic are a viable compute-platform for high-performance computing. The increase

in computing power available from recent generations of reconfigurable hardware has

led to commercial FPGA-based products that can enable the offloading of CPU in-

tensive software subroutines to hardware. In addition to these commercial offerings,

several research projects, including the VizardII [MKW+98], SLAACv2 [SCC+99] and

BEE2 [CWB05], have developed custom architectures based around FPGAs.

1.4 The GCN: A High-Performance DSM Graphics Architecture

The GCN architecture that is presented as part of this thesis is designed to leverage

the power and flexibility of reconfigurable hardware using a combination of COTS

components and custom-built Printed Circuit Boards (PCBs) in accordance with the

9

Chapter 1. Introduction

guidelines set out in Section 1.1. The addition of a high-speed interconnect allows for

the clustering of multiple nodes to create an efficient scalable system.

SHARED MEMORY INTERCONNECT FABRIC

APPLICATION
INTERFACE

INTERFACE
BRIDGE

HOST
MEMORY
SHARED

INTERFACE

APPLICATION
INTERFACE

INTERFACE
BRIDGE

HOST
MEMORY
SHARED

INTERFACE

GPU

MEMORY

GPULOCAL

MEMORY

GPU

MEMORY

GPULOCAL

MEMORY

APPLICATION FPGAAPPLICATION FPGA

NORTHBRIDGE NORTHBRIDGE

............
Scheduler

Application

#1
Element

Processing
Element

#2

Processing

#N

Processing
Element

Scheduler
Application

#1
Element

Processing
Element

#2

Processing

#N

Processing
Element

BRIDGE

MEMORY

SHARED

BRIDGE
FPGA

BRIDGE

MEMORY

SHARED

BRIDGE
FPGA

#2
DSM

#1
DSM

#2
DSM

#1
DSM

NODE #1 NODE #X

Figure 1.3: The distributed graphics application runs across the cluster using a global
shared-memory address space. It can take advantage of resources provided by both
the PCs and custom nodes, that are connected to the cluster using the shared-memory
interconnect.

The high-performance interconnect implements a DSM in hardware and provides

a shared-memory abstraction, with the aid of some additional logic in the reconfigu-

rable devices. It provides a high-bandwidth, low-latency connection, that is scalable

to a large number of nodes, while providing bus-like services and flexible fabric confi-

guration. The configuration flexibility of the fabric guarantees the scalability of the

parallel rendering architecture, which is important when building interactive graphics

systems with the ability to handle large datasets.

The integration of reconfigurable processing resources, in the form of FPGAs,

into the architecture allows for the implementation of concurrent PEs as close to the

local memory as possible, while additionally allowing for the hiding of access latencies

to remote memory by using the local resources, provided by the reconfigurable logic, in

combination with a shared-memory abstraction. As a result, the bottleneck of the IO

bus can be completely removed and the PEs of the distributed algorithm running across

10

Chapter 1. Introduction

the cluster can take advantage of its global memory resources and directly benefit from

the low latencies and high bandwidths available in the system.

The FPGAs provide local Block-Select RAM (BRAM) resources, which are made

available to the distributed applications implemented using the reconfigurable logic

in the FPGAs. A shared-memory interface implemented in the reconfigurable hard-

ware maps these internal BRAMs, along with locally attached memory, into the global

shared-memory address space, that is provided by the high-performance interconnect.

Additionally, commodity PCs may be integrated into this hardware DSM of FPGAs,

BRAM and local memory. For interactive simulation and visualisation applications

that utilise rasterisation techniques, commodity GPUs may be attached to the system.

The hybrid solution offered by the GCN architecture, presented in this thesis,

provides a minimal custom-built hardware component together with an efficient shared

memory infrastructure that can allow for implementation of both distributed rasterisa-

tion and ray-tracing rendering algorithms in hardware. The hardware architecture and

reconfigurable logic implementation of the system is described in detail in Chapter 3.

1.5 Contribution

This thesis introduces a low-cost, scalable, shared-memory architecture that was desi-

gned with the intention of accelerating graphics applications for large-scale interactive

visualisations using a tightly coupled hybrid system of parallel commodity graphics

and reconfigurable hardware resources. The custom-built nodes interface a single glo-

bal address space that can be shared with a cluster of PCs. This shared address space

is implemented through a dedicated, high-speed, low-latency commodity interconnect.

Applications running across the cluster can benefit from increased performance by ta-

king advantage of the parallel resources provided by the nodes and commodity PCs.

The main contribution of this work lies in the development and evaluation of

a shared-memory architecture capable of accelerating graphics applications using a

hybrid approach that combines commodity technologies with reconfigurable hardware.

The innovative elements of this architecture are founded in the unique way in which the

reconfigurable logic and its internal memories are directly embedded into the cluster

rather than being attached indirectly, as is usually the case. The reconfigurable-logic

devices perform the dual roles of interacting with both the local and remote memory

spaces, while at the same time providing computational resources for the implementa-

tion of distributed algorithms. The reconfigurable nature of the custom-built hardware

additionally enables an unprecedented level of flexibility in the underlying architecture.

A prototype architecture for the next generation hardware system has additionally

11

Chapter 1. Introduction

been developed. This is a direct result of the work discussed as part of this thesis.

The new architecture, called the Scalable Programmable Architecture for Ray-Tracing

Applications (SPARTA) will be optimised for the implementation of distributed ray-

tracing algorithms. The SPARTA project proposal has been accepted by Enterprise

Ireland and has acquired development funding as part of their Commercialisation Fund

Technology Development programme.

1.5.1 Research Statement

The fusion of local RAM and internal FPGA BlockRAM resources into a single global

address space allows for the implementation of efficient parallel algorithms in the logic

of scalable multi-FPGA clusters. This hybrid approach can provide beneficial features

that can be used to accelerate graphics applications.

1.5.2 Relevant Publications

[BM08] Ross Brennan and Michael Manzke. SPARTA: A Scalable Architecture for

Ray-Tracing Applications. In Proceedings of the SIGGRAPH ASIA 2008 Confe-

rence on Sketches & Posters, Singapore, December 2008.

[BMO+07] Ross Brennan and Michael Manzke. A Scalable and Reconfigurable Shared-

Memory Graphics Cluster Architecture. In Proceedings of the Engineering of

Reconfigurable Systems and Algorithms, Las Vegas, June 2007.

[MBO+06] Michael Manzke, Ross Brennan, Keith O’Conor, John Dingliana and Ca-

rol O’Sullivan. A Scalable and Reconfigurable Shared-Memory Graphics Archi-

tecture. In Proceedings of the SIGGRAPH 2006 Conference on Sketches & Ap-

plications, Boston, August 2006.

[CBM06] Eoin Creedon, Ross Brennan and Michael Manzke. Towards a Scalable

Field Programmable Gate Array Cluster for Interactive Parallel Ray-Tracing. In

Proceedings of the Eurographics Irish Workshop on Computer Graphics, Dublin,

September 2006.

1.5.3 Related Publications

[MB04] Michael Manzke and Ross Brennan. Extending FPGA Based Teaching Boards

into the Area of Distributed Memory Multiprocessors. In Workshop on Computer

Architecture Education, pages 15-21, Munich, June 2004.

12

Chapter 1. Introduction

[BM03] Ross Brennan and Michael Manzke. On the Introduction of Reconfigurable

Hardware into Computer Architecture Education. In Workshop on Computer

Architecture Education, pages 96-102, San Diego, June 2003.

1.6 Thesis Organisation

This chapter has introduced some of the concepts that will be described in this thesis

and has discussed the motivation behind the design of the GCN system. It has also

provided a brief overview of this custom-built hardware architecture. The remainder

of this thesis is structured as follows.

Chapter 2 (Background) discusses some related work that inspired this project.

It starts with an overview of several different types of parallel systems and shared-

memory architectures. The various options for interconnect technologies that were

considered for use in the GCN architecture are also discussed. Parallel rasterisation

and ray-tracing systems are then introduced and described. Finally, a general overview

of reconfigurable computing systems is provided.

Chapter 3 (System Design and Implementation) discusses the design objectives

for the GCN hardware architecture as well as the reasoning behind the decisions that

were made during the design process. The final architecture is discussed in detail

and an overview of the final implementation and testing process for the hardware is

given. It also discusses the design objectives and implementation of the reconfigurable

logic that was created to drive the hardware system, implement the shared-memory

abstraction and provide a defined interface for application PEs that would run in the

reconfigurable logic of the nodes. A detailed description of this architecture is given

along with details of the implementation and testing of the various layers that make

up the reconfigurable logic for the system. Finally, it describes the API mechanism

used to interface applications with the resources provided by the system.

Chapter 4 (System Evaluation) discusses the implementation of potential applica-

tions that may run in the reconfigurable logic of the nodes and describes how they can

interface with the system. The ray-triangle intersection algorithm, that was developed

in order to test the architecture, is described and performance figures obtained from

both hardware and software are presented and discussed.

Chapter 5 (Design Evolution) introduces and describes the the next-generation

SPARTA hardware design and reconfigurable logic architecture, which form an evolu-

tion of the GCN hardware and reconfigurable logic architecture. This next-generation

architecture is derived from experiences gained with the GCN system and will focus

exclusively on the implementation of distributed ray-tracing algorithms.

13

Chapter 1. Introduction

Chapter 6 (Conclusions) discusses the design limitations of the GCN hardware

architecture and describes plans for future work that will be undertaken as part of

the SPARTA project. Finally, the contributions made by this work are reiterated and

conclusions about the entire project are drawn.

Appendix A (SCI Link Controller) provides more detailed information about

the functionality, operation and integration challenges of the Link-Controller (LC3)

devices as well as the Backside Link (B-Link) bus protocol and packet format used to

communicate with the LC3s.

Appendix B (AGP and FSB) provides more detailed information on Intels Front-

Side-Bus (FSB) protocol and the Accelerated Graphics Port (AGP) standards, which

are implemented in the northbridge chipset that was included in the GCN architecture.

Appendix C (Hardware Technologies) discusses some of the hardware technolo-

gies that were used as part of the design and implementation of the hardware and

reconfigurable logic for the GCN architecture. It begins with an overview of reconfi-

gurable hardware devices and goes on to describe some of the programming languages

used to configure them. This is followed by a brief overview of modern multi-layered

PCB technology and the design and fabrication process involved in creating the custom

GCN hardware.

14

Chapter 2

Background

Application domains, such as large-scale interactive scientific visualisation, computer

aided design, photo-realistic rendering and low-latency virtual reality environments,

demand high levels of detail and are very computationally intensive. For every increase

in levels of image detail and complexity, a corresponding increase in the capabilities

and computational power of the underlying rendering hardware is required in order to

be able to meet the demanding constraints imposed by the applications.

The dramatic increase in computational performance that can be gained through

the exploitation of parallelism has seen the adoption of parallel hardware architectures

in an effort to further accelerate these applications. These parallel architectures can

take the form of dedicated ASIC devices, such as GPUs and CPUs, or reconfigurable

logic devices, such as FPGAs. Both of these approaches work well on a small scale;

however, their inherent lack of on-chip scalability has necessitated the introduction of

distributed parallel architectures in order to circumvent this limitation. These distri-

buted parallel systems can be constructed using special purpose graphics acceleration

hardware or built as a cluster of commodity components that employ a software control

infrastructure.

The performance of these distributed systems is dependant on the rendering al-

gorithm used, which in turn affects the architecture of the system. The two classes

of algorithms that can be used to generate computer graphics images are rasterisation

and ray-tracing, as described in Sections 2.2 and 2.3. Rasterisation is known for its fast

rendering frame-rates but has difficulties computing many rendering effects accurately.

In contrast, ray-tracing is known for the best image quality due to its simulation-based

approach but has poor rendering frame-rates as a result of its computationally intensive

nature. Different architectures have different strengths and weaknesses depending on

the rendering algorithm used and this has led to a lot of research projects to determine

the optimum architectures for the various rendering algorithms.

15

Chapter 2. Background

This chapter provides background information on the concepts behind the GCN

architecture. It begins with a description of parallel rasterisation and ray-tracing sys-

tems before proceeding to introduce distributed computing systems, which describes

the various available shared-memory architectures and interconnect options. Finally,

reconfigurable computing systems are introduced.

2.1 Parallel Computing Systems

High-performance parallel computing systems can be constructed using either custom-

built special purpose hardware or using commodity components, which are controlled

by a software infrastructure. Special purpose hardware tends to provide the highest

performance but is expensive because it requires frequent redesign of the special pur-

pose hardware in order to leverage advances in technology. Commodity-based systems,

while more affordable and scalable, have intrinsic performance drawbacks due to the

computationally expensive communication overhead required by the software control

mechanism. A hybrid approach, combining both custom-built and commodity compo-

nents, can retain the benefits of both while attempting to mitigate the disadvantages.

In recent years, the use of clusters of commodity PCs has become a significant

source of computing power for high-performance computing systems. The challenge in

creating scalable high-performance PC clusters lies in improving the performance of

the interconnection systems that are used to connect the individual nodes. Systems

that use high latency interconnects have poorer per-node performance than systems

that use low latency interconnects. Standard PC clusters are commonly constructed

using either Gigabit Ethernet, which is low cost but has a high latency, or a more

specialised interconnect, such as Infiniband, that has much lower latency and higher

bandwidth, but can be significantly more expensive.

Commercial supercomputers can provide an alternative solution, to standard PC

clusters, for general purpose computing and are generally bought by large research

institutions for users from a wide variety of research areas; consequently they are

optimised to give good performance for a wide variety of applications. The major

drawback of these systems though is the high costs associated with them. SGI’s Altix

and Prism architectures provide examples of commodity systems. IBM’s BlueGene

architecture implements a custom-built solution, while the Roadrunner architecture,

also from IBM, implements a hybrid solution that combines both commodity and

custom-built components.

The SGI Altix [STJ+08] is a commercially available commodity system, based

on the Intel Itanium2 processor, which is a Very Long Instruction Word (VLIW) pro-

16

Chapter 2. Background

cessor. The system consists of a large number of compute nodes, each of which has

two processors connected to memory, communications and IO sub-systems through a

custom built Super HUB (SHUB) chip. The nodes are connected together using SGIs

NUMAlink system, which is based on a cache-coherent NUMA architecture and allows

shared memory domains of up to 512 CPUs to be constructed. This allows for systems

consisting of thousands of processors to be built.

The Prism architecture [SGI05], also from SGI, is a commercially available com-

modity system, based on a hardware DSM architecture, that is used for rendering

high-performance interactive graphics applications. Using a combination of Intel ba-

sed Itanium2 processors and ATI based GPUs, it can scale up to 16 graphics pipelines

and 256 processors with up to 3 TB of memory. The Prism also uses SGI’s proprietary

NUMAlink technology, which provides a Message Passing Interface (MPI) latency of

approximately 1 µs and a unidirectional link bandwidth of 3200 MB/s, to implement

a global shared-memory address space.

IBM’s BlueGene system [GBC+05] is a custom-built architecture that consists of a

large number of processing nodes connected in a 3-dimensional toroidal network. Each

node consists of an ASIC chip with two IBM PowerPC 440 processor cores, with two

floating point multiply-accumulate units attached to each one. The processors share

access to memory and to the communications network. The system can run either

in a “co-processor” mode, where one processor handles communication and the other

computation or in a “virtual-node” mode, where both cores are used for communication

and computation. The virtual-node mode has twice the peak performance of the co-

processor mode; however communication cannot be parallelised with computation as

effectively for this mode.

The Roadrunner architecture [BDH+08] uses a hybrid system of Opteron x64 pro-

cessors combined with Cell Broadband Engine [JB07, CHKW08] processing elements,

used as application accelerators. Compute nodes consist of a combination of QS22 Cell

blades [IBM08b] and LS21 Opteron blades [IBM08a] from IBM. The QS22 Cell blades

contain 2 Cell processors and 1–6 GB of local memory. The LS21 blades contain 4 Op-

teron cores and 8 GB of local memory. InfiniBand 4× DDR [Ass08], with a bandwidth

of 2 GB/s and a latency of 2 µs, is used as the interconnect fabric for the system.

2.1.1 Shared-Memory Architectures

Shared-memory systems consist of tightly-coupled processors, with global memory ac-

cessible to all of the processors. Communication is accomplished through shared va-

riables or messages deposited in shared-memory buffers and there is no requirement for

the programmer to manage the movement of data, unlike message-passing implemen-

17

Chapter 2. Background

tations, where the processors are loosely-coupled and communication is accomplished

by sending explicit messages between the individual processors. Each of these two

paradigms has its strengths and weaknesses, depending on the target application. In

general however, the shared-memory paradigm is seen as easier and more intuitive since

it is based on a single global address space, which eliminates the need to explicitly dis-

tribute data across nodes. Shared-memory systems can be categorised into one of three

architecture types depending on how they access memory. They are:

• Uniform Memory Access (UMA) – In this case a number of processors

are connected to a global memory through hardware and any memory location

can be reached from any processor with uniform access characteristics. As all

processors are connected to the global memory using hardware, they can directly

access any memory location, resulting in full hardware support for shared-memory.

Figure 2.1 shows an example where access is via a common system bus. The

major drawback of this architecture is limited scalability since all accesses to

the memory have to be performed across the single system bus, leading to a

major bottleneck as the number of processors in the system is increased. This

architecture is common for Symmetric Multi-Processor (SMP) systems.

• Non-Uniform Memory Access (NUMA) – In this case a number of proces-

sors are connected to a number of memory regions in hardware. Any memory

location can be reached from a processor, resulting in full hardware support for

shared-memory, but the different memory regions may have non-uniform access

characteristics. Figure 2.2 shows an example where the memory is distributed

between the processors. As a result, there is a distinction between memory lo-

cal to the processor and remote memory. Access to remote memory regions has

longer latencies than to local memory, leading to non-uniform memory access.

An example of this is the use of an interconnect such as SCI that enables direct

hardware-based shared-memory support.

• NO Remote Memory Access (NORMA) – In this case each processor is

connected to a local memory though hardware but it cannot access remote me-

mory regions and no direct hardware support is available to access remote memory.

Figure 2.3 shows an example where multiple nodes, consisting of processors and

local memory, are interconnected. The interconnect can be a general purpose

network such as Ethernet, or a high-performance interconnect such as Infiniband,

which is usually attached using the node’s IO bus. These types of systems are ge-

nerally programmed using the message-passing paradigm; however, it is possible

to implement a software-based DSM on top of these systems.

18

Chapter 2. Background

System Bus

MEMORY

CPU 0 CPU 1 CPU 2 CPU 3

Figure 2.1: Overview of a Uniform Memory Access (UMA) architecture showing four
CPUs connected to a single global memory using a common system bus.

MEMORY MEMORY MEMORY

Network

CPU 0 CPU 1 CPU 2 CPU 3

MEMORY

Figure 2.2: Overview of a Non-Uniform Memory Access (NUMA) architecture sho-
wing four CPUs connected to four individual memory regions using a common network.

Node 2 Node 3 Node 4

NIC NIC NIC NIC

mem mem memi/o i/o i/o i/o

CPU 0 CPU 1 CPU 2 CPU 3

mem

Node 1

Figure 2.3: Overview of a NO Remote Memory Access (NORMA) architecture sho-
wing four individual nodes, each with it’s own locally attached memory. The nodes are
loosely-coupled via an interconnect attached to their IO buses.

19

Chapter 2. Background

Both hardware and software-based DSM systems implement a shared-memory

abstraction on multi-processor architectures, combining the scalability of network-

based architectures with the convenience of shared-memory programming by providing

a virtual address space, that is shared among processes across the loosely-coupled pro-

cessors. [NL91] gives an overview of several different hardware and software-based DSM

systems while [SZ90] compares several algorithms for implementing software DSM sys-

tems, showing that the performance of the algorithms is sensitive to the memory access

behaviour of the applications running on top of the DSM.

Two projects that aim to implement custom-built, scalable DSM-based systems

in hardware include the FLexible Architecture for SHared memory (FLASH) multipro-

cessor and the Shared-Memory in a LAN-like Environment (SMiLE) project.

The FLASH multiprocessor system from Stanford [KOH+94] implements message

passing, in addition to the DSM paradigm, in a cache-coherent NUMA architecture.

The basic idea behind FLASH is to implement a memory coherence protocol in software,

but to take the burden of its execution from the main processor of the node by adding a

specific protocol processor incorporated in a custom node controller, called the Memory

And General Interconnection Controller (MAGIC).

FLASH consists of a large number of processing nodes connected by a low-latency,

high-bandwidth interconnection network. Every node is identical, containing a high-

performance off-the-shelf microprocessor with its caches, a portion of the machine’s

distributed main memory and the MAGIC node controller chip. The MAGIC chip

forms the heart of the node, integrating the memory controller, IO controller, network

interface, and a programmable protocol processor. This integration allows for low hard-

ware overhead while supporting both cache-coherence and message-passing protocols

in a scalable and cohesive fashion.

The FLASH system design shows potential for scalability, as the overall cache di-

rectory structure used occupies between 7% to 9% of the main memory, depending on

the system configuration. Preliminary performance measurements show that the sus-

tained rate at which MAGIC can supply data depends on the memory system and that

the flexible protocol processing is not the limiting factor of the MAGIC’s performance.

The SMiLE project [STTK02], from the Technical University of Munich, set out

to create an infrastructure for shared-memory Scalable Coherent Interface (SCI) based

clusters that is easy-to-use and supports multiple programming paradigms. The SCI

addressing scheme spans a global 64-bit address space, i.e. a physically addressed,

distributed shared-memory system. The distribution of the memory is transparent to

software and even to the processors. A memory access by a processor is mediated to

the target memory module by the SCI hardware. The major advantage of this feature

20

Chapter 2. Background

is that inter-node communication can be affected by load and store operations by the

processors, without invocation of a software protocol stack. The instructions accessing

remote memory can be issued at user-level, without the need for intervention by the

operating system. This results in very low latencies for SCI communications.

SMiLE includes support for a large range of message-passing libraries and shared-

memory programming models. The architecture was implemented in such a way as

to exploit the benefits of the underlying SCI network fabric and offer them to the

user without significant overheads. This is accomplished using the Hybrid-dsm based

Adaptive and Modular Shared memory archiTEctuRe (HAMSTER) [Sch01] framework,

which provides a comprehensive set of shared-memory services for the SMiLE system,

enabling the implementation of almost any shared-memory programming model on top

of a single core. It implements a hybrid software/hardware DSM system and closes the

gap between the global physical memory provided by the underlying hardware and the

global virtual memory required for shared-memory programming, enabling applications

to directly benefit from the hardware support.

The HAMSTER framework builds on top of the Software Infrastructure for Sca-

lable Coherent Interface (SISCI) [Sol01b] Application Programming Interface (API),

which covers different aspects of the SCI standard and how it can be accessed by the

user. It specifies the general functions, operations and data types made available as

part of the SCI standard. Low-level communication among nodes is accommodated

by SCI transactions and protocols that include support for reading and writing data,

cache coherency, synchronisation and message-passing primitives. Transactions are in-

dependent of the network topology and are sent as SCI packets between source and

destination nodes with protocols provided to handle flow-control, error recovery and

deadlock prevention.

In addition to these custom built solutions, commercially available shared-memory

based systems, such as the SGI Altix and Prism, discussed in Section 2.1, are also avai-

lable. They use SGI’s NUMAlink, which implements a hardware-based DSM system

with bandwidths of up to 3200 MB/s and latencies as low as 1 µs.

Software-based DSM systems such as Cashmere [KSH+05] have also been de-

veloped as an alternative to hardware-based DSM systems. Cashmere provides a

software-based DSM for clusters of server-class machines which are interconnected via

a high-performance system area network. The Cashmere protocol enables the ability to

perform remote memory writes, broadcasts, in-order message deliver and low-latency

messaging and can achieve a peak point-to-point bandwidth of 70 MB/s with an average

latency of 3.3 µs when implemented on a setup consisting of eight Compaq AlphaServer

4100 machines.

21

Chapter 2. Background

2.1.2 High-Performance Interconnects

Most commodity and hybrid cluster architectures in existence today use one of the

following high-speed interconnect technologies. The choice of interconnect is usually

determined by price and performance requirements. SCI is the only interconnect out of

these options that is capable of implementing a hardware-based DSM. For this reason,

as well as its good scalability properties, it was chosen as the system interconnect for

the GCN architecture, which is described in Chapter 3.

Ethernet

Ethernet is the ubiquitous technology for connecting computers together for the pur-

poses of creating Local Area Networks, as defined in the IEEE 802.3 standard [IEE05a].

The technology is based on ideas and decisions that were made in the 1970s. The use

of 10/100 Mb is based on technology that was designed and standardised in 1995.

Ethernet can be implemented as either a point-to-point or a broadcast network

technology. Point-to-point communication is enabled by switch technology, which al-

lows connected nodes to send data packets to each other. Collisions may occur in this

configuration though and as a result reduce the effective bandwidth between connected

nodes. This limits the scalability of Ethernet compared with other interconnect tech-

nologies such as Myrinet, Infiniband and SCI. Ethernet does not specify one standard

topology that it can be used as, though the normal configuration is for all machines to

be connected to each other through a switch in a star topology.

Despite the significant changes in Ethernet from a thick coaxial cable bus running

at 10 Mb to point-to-point links running at 1 Gb and beyond, all generations of Ethernet

share the same frame formats, and hence the same interface for the higher protocol

layers, and can be readily interconnected. The average latency of Gigabit Ethernet is

62 µs [Ser08] but this is dependant on the switch that is used.

The latest incarnation of the Ethernet standard is 10 Gb and it provides a si-

gnificant increase in bandwidth over the 1 Gb standard while maintaining backward

compatibility. The 10 Gb Ethernet standard can achieve a bandwidth as high as 7

Gb/s with an end-to-end latency as low as 12 µs [FHN+03]. Ethernet is continuing

its evolution with new 40 Gb and 100 Gb Ethernet standards, which are currently in

active development, promising even higher bandwidths and lower latencies.

Myrinet

Myrinet, ANSI/VITA 26-1998 [Org98], is a high-speed local area networking system

designed by Myricom to be used as an interconnect between multiple machines to form

22

Chapter 2. Background

computer clusters. Myrinet has much less protocol overhead than standards such as

Ethernet, and therefore provides better throughput, less interference, and less latency

while using the host CPU. Although it can be used as a traditional networking system,

Myrinet is often used directly by programs that “know” about it, thereby bypassing a

call into the operating system. On the latest 2.0 Gbit/s links, Myrinet often runs at

1.98 Gbit/s of sustained throughput with a point-to-point latency of 2.6 µs [Myr08a].

Myrinet physically consists of two fibre optic cables, upstream and downstream,

connected to the host computers with a single connector. Machines are connected

via low-overhead routers and switches, as opposed to connecting one machine directly

to another. Myrinet includes a number of fault-tolerance features, mostly backed by

the switches. These include flow control, error control, and “heartbeat” monitoring

on every link. The next Myrinet generation, called Myri-10G, supports a 10 Gbit/s

data rate and is inter-operable with 10 Gigabit Ethernet at the physical layer (cables,

connectors, distances, signalling) with a latency of 2.2 µs [Myr08b].

Infiniband

Infiniband [Ass08] uses a bidirectional serial bus for low cost and low-latency and

was originally envisioned as a comprehensive system area network that would connect

CPUs and provide all high speed IO for applications. In this role it would potentially

replace just about every datacenter IO standard including Peripheral Component In-

terconnect (PCI), Fibre Channel, and various networks like Ethernet. All of the CPUs

and peripherals would be connected into a single pan-datacenter switched InfiniBand

fabric. This vision offered a number of advantages in addition to greater speed, not the

least of which is that IO workload would be largely lifted from computer and storage.

In theory, this should make the construction of clusters much easier, and potentially

less expensive, because more devices could be shared and they could be easily moved

around as workloads shifted. Proponents of a less comprehensive vision saw InfiniBand

as a pervasive, low-latency, high-bandwidth, low overhead interconnect for commercial

datacenters, albeit one that might perhaps only connect servers and storage to each

other, while leaving more local connections to other protocols and standards such as

PCI.

The single data rate switch chips have a latency of 200 ns, and Double Data

Rate (DDR) switch chips have a latency of 140 ns. Various InfiniBand Host Channel

Adapters (HCAs) exist in the market today, each with different latency and bandwidth

characteristics. The point-to-point latency is approximately 8.04 µs but is dependant

on the HCA used. InfiniBand also provides Remote Direct Memory Access (RDMA)

capabilities for low CPU overhead. The latency for RDMA operations is < 1 ms.

23

Chapter 2. Background

The serial connection’s signalling rate is 312 MB/s in each direction per connec-

tion. InfiniBand supports DDR and Quad Data Rate (QDR) speeds, for 625 MB/s or

1250 MB/s respectively, at the same data-clock rate. Links can be aggregated in units

of 4 or 12, called 4× or 12×. A quad-rate 12× link therefore carries 15000 MB/s raw

data, or 12000 MB/s of useful data. Most systems today use either a 4× 312 MB/s

Single Data Rate (SDR) or 625 MB/s DDR connections. The Infiniband standard is

still in active development and the roadmap for the technology specifies Eight x Data

Rate (EDR) and Hexadecimal Data Rate (HDR) variants of the technology, which

translates to bandwidths nearing 1000 Gb/s in the next three years.

Scalable Coherent Interface

Defined in 1992, SCI [IEE92] is a well established technology and many high perfor-

mance cluster implementations employ this interconnect. Subsets of the SCI standard

have been implemented and are available as commodity components. In particular, a

company called Dolphin Interconnect Solutions has implemented PCI [PCI95] cards

that bridge PCI bus transactions to SCI transactions.

SCI is the modern equivalent of a processor-memory IO bus and a Local Area

Network (LAN), combined and made parallel to support distributed multiprocessing

with very high bandwidth, very low latency and a highly scalable architecture. The

basic features of SCI include a shared memory programming model, 64K addressable

nodes using 16-bit node identifiers, a split-phase transaction protocol and support for

switched and non-switched network topologies.

Compute nodes with PCI slots may be interconnected through PCI-SCI bridges

together with a suitable SCI fabric topology, bridging their PCI buses. Memory re-

ferences made by one of these nodes into its own PCI address space are translated

into an SCI transaction and transported to the correct remote node. The remote node

translates this transaction into a memory access, providing a hardware DSM implemen-

tation. Programmed Input/Output (PIO) and Direct Memory Access (DMA) may be

performed without the need for system calls. The PCI-SCI bridge translates between

PCI transactions and SCI transactions and forwards them onto the correct interface.

SCI is designed to scale well as the number of attached processors increases. The

transfer rate is 1 GB/s point-to-point. SCI allows for up to 64K nodes to be connected

to an interconnect and memory may be shared by all processors. The addressing scheme

uses a 64-bit fixed addressing model, with 16-bits for node addressing and 48-bits as

an offset address. SCI was originally conceived as a shared-memory interconnect and

was first implemented as such in 1994.

24

Chapter 2. Background

2.2 Parallel Rasterisation Systems

When the computational demands of interactive 2D or 3D graphics applications cannot

be met by a single commodity GPU, a parallel graphics rendering system employing

multiple graphics accelerators may be used to improve the performance of the appli-

cations. These parallel graphics systems can be broadly classified by where they sort

from object space to image space. The choice of where and how to perform this sort has

a large effect on the resulting parallel graphics architecture. Typically, these systems

allow the application programmer to use a standard API such as OpenGL [Con08] or

DirectX [Mic06] to interface their applications with the underlying graphics hardware

architecture.

DISPLAY

TEXTURE

RASTERIZATION

GEOMETRY

COMMAND

APPLICATION

MEMORY
TEXTURE

BUFFER
FRAME

commands

vertexes

primitives

untextured
fragments

textured
fragments

samples

SORT−LAST [FRAGMENT]

SORT−LAST [IMAGE COMPOSITION]

SORT−MIDDLE

SORT−FIRST

OBJECT SPACE

IMAGE SPACE

FRAGMENT

Figure 2.4: Overview of a modern GPU pipeline showing the different stages involved
in translating 3D computer models into on-screen images. For multi-GPU systems, the
location at which the sort takes place dictates the resulting cluster architecture.

25

Chapter 2. Background

The modern graphics pipeline, as depicted in Figure 2.4, consists of several stages,

which can be summarised as follows: application, command, geometry, rasterisation,

texture, fragment and display. The application stage initially generates a stream of

OpenGL or DirectX commands as part of a graphics application, which specify the

locations and characteristics of the objects to be displayed. These commands are

converted into vertexes, which are in turn forwarded on to the geometry stage. The

geometry stage transforms the vertices from their own local coordinate system to glo-

bal screen coordinates and assembles them into primitives that are then fed into the

rasterisation stage. The rasterisation stage takes the primitives and emits fragments

for every pixel location that a primitive overlaps. The fragments include pixel coordi-

nates, depth and colour. The texture stage receives these un-textured fragments and

applies the appropriate texture to them where required. The textured fragments are

then forwarded to the fragment processor, which combines them with the framebuffer.

After all of this, the display processor reads the framebuffer and outputs it to the dis-

play. In a multi-GPU pipeline environment, intermediate data has to be exchanged

between the individual graphics pipelines. The point at which this exchange of data

occurs is dependent on the parallel architecture implementation. The sort can generally

take place anywhere in the rendering pipeline: during geometry processing (sort-first),

between the geometry processing and rasterisation stages (sort-middle) or during ras-

terisation (sort-last) [MCEF94]. Sort-first means redistributing raw primitives, before

their screen-space parameters are known. Sort-middle means redistributing screen-

space primitives. Sort-last means redistributing pixels, samples or pixel fragments.

Each of these choices leads to a separate class of parallel rasterisation algorithms and

hardware architectures with distinct properties.

Some graphics clusters, such as Stanford’s Chromium [HHN+02], use COTS desk-

top PCs with commodity GPU cards to create a parallel rendering system. Such

systems can use sort-first and sort-last implementations; however, sort-last can only

be achieved by using expensive readbacks of colour and depth buffers since this is

the only form of access available to data in the graphics pipeline of commodity GPU

cards. Sort-first allows for load-balancing and therefore increases the overall efficiency

of the system. An efficient solution for load balancing can be provided through pre-

transformation in order to determine the most optimal data distribution over the GPUs.

These pre-transformations are part of the geometry processing stage and calculate the

screen space position of primitives in order to allocate them to screen regions that are

served by a particular GPU. This computation is one of the overheads that must be

carried out by a scalable parallel rendering system in order to most efficiently exploit

parallelism.

26

Chapter 2. Background

Recent advances in modern GPUs have led to commodity support for multi-GPU

systems. The Scalable Link Interface (SLI) from NVIDIA [NVI08b] and CrossFireX

interconnect from AMD [AMD08] are both designed to connect multiple GPUs together

within one commodity PC, to produce a single output. The technologies both work in

a similar way and divide the rendering workload between multiple PCIe based graphics

cards using a master-slave configuration. The workload can be divided amongst the

GPUs using either split or alternate frame rendering. In split-frame mode, the image

is divided and the workload is dynamically balanced between all of the GPUs and the

master GPU then composites the final image for display. Alternate-frame rendering

divides frames evenly between the multiple GPUs. Once the frames are rendered, they

are transferred to the master GPU, which sorts them into the correct order and outputs

the images to the external display. The scalability of these technologies is limited

since both SLI and CrossFireX currently only support a maximum of 4 GPUs. Both

technologies can scale triangle rate and pixel rate but do not scale texture memory,

which needs to be replicated when resident on the GPU. Both systems are highly

optimised for game applications but have found limitations in more general purpose

applications.

Moerschell et al. [MO06] have proposed an architecture for virtualising memory

across multi-GPU setups using a DSM system, hidden from the programmer. The goal

of the work is to explore a memory model for multi-GPU systems that permits genera-

lised communication between GPUs and is easy for programmers to use, with the aim

of making the migration from single-node to multi-node systems as easy as possible.

They implement a directory-based DSM system that handles the details of memory

management between the GPUs transparently. Their current implementation, howe-

ver, is limited to a dual-GPU setup within a single commodity PC. The Zippy [FQK08]

framework builds on this idea by combining MPI stream-processing with a DSM ar-

chitecture to create a NUMA cluster capable of running graphics applications across

multiple PCs.

The recently announced HYDRA engine [Luc08], from LucidLogix, attempts to

build a completely GPU-independent graphics scaling technology with nearly linear per-

formance scaling. HYDRA is a dedicated ASIC that intercepts DirectX and OpenGL

commands and transparently redistributes them across multiple commodity GPUs in

real-time. A novel task-based distribution system is used, as opposed to the split-

frame and alternate-frame distribution mechanisms currently employed by AMD and

NVIDIA. This enables the HYDRA engine to intelligently divide and load-balance

the rendering workload between the available GPUs with minimal overhead. HYDRA

supports 2 to 4 GPUs and does not rely on proprietary SLI or CrossFireX technologies.

27

Chapter 2. Background

There have been several successful research projects dealing with methods of

aiding the parallel execution of 3D graphics applications while attempting to overcome

the issues of scalability; however, they deal with the problem exclusively from either a

software or a hardware perspective. The GCN architecture is inspired by these projects

but uses a combined approach of hardware, soft-hardware and software infrastructure

to achieve performance enhancements and scalability while retaining a high level of

flexibility in the system as a result of the reconfigurable nature of the underlying

hardware.

2.2.1 Software Architectures

The WireGL system [HBEH00, HEB+01] implements a software architecture that exe-

cutes sequential graphics applications on a number of compute nodes, each with a

separate commodity GPU, and provides an OpenGL interface enabling the execution

of existing unmodified applications, allowing them to render to a tiled display. The

graphics servers form a cluster of PCs, each with its own graphics accelerator, which

can be projected to a common screen. It evolved out of the Interactive Mural pro-

ject [HH99], which used an overlapping array of projectors to form a large display area

with a resolution of over 60 Dots Per Inch (DPI).

The Chromium [HHN+02] project, which was described in Chapter 1, implements

a scalable system for interactive rendering on clusters of commodity graphics works-

tations and operates in a similar fashion to WireGL. It extends the WireGL API to

allow parallel applications to submit multiple streams of graphics commands to a single

conceptual display, while maintaining application control over the order in which those

streams will be executed. Chromium can implement various parallel rendering tech-

niques, such as sort-first and sort-last, and works by intercepting OpenGL graphics

commands and converting them into a stream of partially ordered graphics commands.

The Scalable Adaptive Graphics Environment (SAGE) [JRJ+06] project provides

similar functionality to that of Chromium. It enables data, high-definition video and

high-resolution graphics to be streamed in real-time from remotely distributed rende-

ring and storage clusters to scalable display walls over high-speed networks. The SAGE

framework also allows multiple visualisation applications to be streamed to large tiled

displays and viewed at the same time.

Müller et al [MFS+09] have developed an environment for distributed GPU com-

puting targeted for multi-GPU systems, as well as graphics clusters. Their system

utilises the Compute Unified Device Architecture (CUDA) [NVI07] parallel computing

architecture and logically extends its parallel programming model for graphics proces-

sors to higher levels of parallelism. To allow for high scalability, they also introduce an

28

Chapter 2. Background

automatic GPU-accelerated scheduling mechanism that is aware of data locality. This

reduces the overall amount of transmitted data, which leads to more efficient GPU

utilisation and faster execution speeds.

2.2.2 Hardware Architectures

Pomegranate [EIH00] is a parallel hardware architecture for polygon rendering that

provides a scalable input bandwidth, triangle rate, pixel rate, texture memory and

display bandwidth using a sort-everywhere architecture that distributes work across

the cluster in a balanced fashion in every stage of the pipeline. The Pomegranate

architecture is composed of graphics pipelines and a high-speed butterfly network which

connects them in a point-to-point fashion. It can perform sort-first, sort-middle-tiled,

sort-middle-interleaved or sort-last-fragmentation algorithms. Pomegranate uses the

network to load-balance triangle and fragment work independently to provide a shared

texture memory and a scalable display system.

The Lightning-2 module [SEP+01] is designed as a digital video crossbar which

is platform-independent and fully scalable. It receives inputs from the rendering nodes

via the Digital Video Interface (DVI) outputs of the commodity GPUs and can per-

form sort-first, sort-last and depth composition algorithms on the input in order to

either assemble tiled images from the multiple rendering nodes or output the images

to an immersive video wall. Even though Lightning-2 was designed to be platform

independent and fully scalable, it still relies on a cluster of rendering nodes to drive

its inputs. Each Lightning-2 module accepts 4 input streams and generates 8 output

streams using the DVI standard [DDW99].

The introduction of technologies such as SLI and CrossFireX, by the major GPU

vendors, has led to a decline in custom parallel graphics architectures in favour of

commercially available systems. One such example is Tesla [NVI09] from NVIDIA,

which leverages CUDA to parallelise applications across multiple GPUs. Each Tesla

machine can support up to four CUDA enabled GPUs, which are interconnected using

PCIe as the system interconnect.

Intel’s upcoming Larrabee [SCS+08] architecture takes a many-core approach to

graphics processing. Larrabee marks a departure from traditional GPU architectures

and uses multiple in-order x86 CPUs that are augmented by a wide vector processor

unit as well as some fixed-function logic blocks and will be suitable for General Purpose

Graphics Processing Unit (GPGPU) applications in addition to graphics rendering

applications. The first products based on Larrabee will target the personal computer

graphics market and are expected in late 2009 or early 2010.

29

Chapter 2. Background

2.3 Parallel Ray-Tracing Systems

Ray-tracing is a technique for generating an image by tracing the path of light through

pixels in an image plane. It is capable of producing a very high degree of photorealism;

usually higher than that of typical scanline rendering methods, but at a greater compu-

tational cost. Each ray must be tested for intersection with a subset of all the objects

in the scene. Once the nearest object has been identified, the algorithm will estimate

the incoming light at the point of intersection, examine the material properties of the

object and combine this information to calculate the final colour of the pixel. Certain

illumination algorithms and reflective or translucent materials may require more rays

to be re-cast into the scene. Effects such as reflections and shadows, which are difficult

to simulate using other algorithms, are a natural result of the ray-tracing algorithm.

Figure 2.5: Overview of the ray-tracing process. Rays are cast into the scene from
the viewpoint of the camera and tested for intersections with objects within the scene.
Hits may spawn secondary rays such as shadow and reflection rays, which may be used
to calculate the final colour of the image pixel.

As a result of the large amounts of computational power required by ray-tracing al-

gorithms, interactive rendering today is almost exclusively performed using rasterisation-

based algorithms implemented in GPUs. Even with the huge increases in performance

and capability of 3D graphics hardware in recent years, it is still far from sufficient for

30

Chapter 2. Background

many applications. In particular, computer games, interactive visualisation applica-

tions, and virtual design and prototyping applications have high demands on rendering

speed, image quality, realism and scene complexity. Many of these applications demand

a large degree of reliability in the rendering algorithm and the quality and correctness

of the resulting rendered images. Current rasterisation-based graphics hardware has

a number of difficulties in these areas because it is quite limited in both image qua-

lity and efficiency. The achievable quality of effects in images is usually quite limited,

especially when compared to what can be achieved with ray-tracing.

Figure 2.6: Example of a high-quality realistic image rendered using ray-tracing.
Shadows, reflections, transparencies and indirect lighting effects can all be easily cal-
culated using the ray-tracing algorithm. However, this makes the ray-tracing process
computationally expensive and as a result it has not yet seen widespread use.

For a long time, support for interactive ray-tracing has been held back by the

large amount of floating-point computations required, lack of support for flexible flow

control, including recursion and branching, and the difficulty of handling the memory

bandwidth and access patterns of very large scene-databases. This has meant that

until recently, ray-tracing algorithms have been confined to off-line rendering of pho-

torealistic still and movie images where to its ability to generate high-quality images

31

Chapter 2. Background

override its computational drawbacks. Ray-tracing is widely accepted as the primary

tool for realistic image synthesis. However, it has not yet seen widespread use due to

its compute-intensive nature.

The computational independence of each ray makes ray-tracing an “embarrassin-

gly parallel” problem. This means that it can easily be split into concurrent PEs with

little or no dependencies, making it ideally suitable for implementation in software on

multi-core systems or in dedicated parallel hardware systems. As a result, many dif-

ferent hardware and software-based systems have evolved with the intention of using

ray-tracing to achieve interactive rendering of models with large scene-databases.

2.3.1 Software Architectures

The goal of the OpenRT project [DWBS03], which was described in Chapter 1, was

to develop a high-performance software ray-tracing system. It showed that rendering

performance scales linearly with the number of processors when using a cluster of PCs

interconnected by a standard network. Interactive rendering of highly complex models

(1-3 Frames Per Second (FPS)), such as a Boeing 777 model with 350 million triangles

at a resolution of 640×480, can be achieved on a single 1.8 GHz PC with 6 GB of main

memory using ray-tracing and non-blocking virtual memory management [DWS04].

The performance limit in this case is due to the fact that the size of the model is

approximately 45 GB and needs to be loaded dynamically from hard-disk storage,

which has a limited bandwidth of 60-80 MB/s. It has also been shown that by using

a large shared-memory machine (16 CPU cores with 64 GB of memory), it is possible

to ray-trace highly complex outdoor scenes, such as a forest consisting of 1.5 billion

triangles [DCDS05].

The RT2 project [FC07] focuses on implementing a static real-time ray-tracer,

targeted at commodity multi-core systems, with the intention of investigating methods

of accelerating data structures in order to increase rendering performance. Initial

results show gains of up to 22% can be achieved on common ray-tracing benchmark

scenes when rendered at a resolution of 512×512.

The Cell Broadband Engine is a new multi-core processor with a novel architec-

ture that offers a raw compute power of up to 200 GFlops per chip, running at 3.2 GHz.

The Cell architecture provides great potential for compute-intensive applications like

ray-tracing, but its unique architecture also provides challenges which must be addres-

sed when porting applications and algorithms to it. Benthin et al. [BWSF06] presents

an optimised software cache mechanism and ray-tracing kernel designed to run on the

Cell. The performance of a dual-Cell system shows increases of 7-15 times over a 2.4

GHz AMD Opteron CPU at a resolution of 1024×1024.

32

Chapter 2. Background

2.3.2 Hardware Architectures

Projects, such as the SaarCOR architecture described in Section 2.5, have demons-

trated the potential of custom hardware and reconfigurable technology in accelerating

ray-tracing algorithms. Recent advances in computer technology and parallel proces-

sing techniques have seen significant research being undertaken to try and map ray-

tracing algorithms efficiently to parallel machines, including MIMD and SIMD architec-

tures [GP90, LS91] with the intention of optimally exploiting the parallelism of the ar-

chitecture in order to achieve high floating-point performance. Wald et al. have further

outlined several state-of-the-art ray-tracing techniques for animated scenes [WMG+07].

ARTVPS has two ray-tracing products on the market; RenderServer [ART08b]

and RayBox [ART08a]. RenderServer consists of a commodity PC with 2 AMD dual-

core processors. It runs a web-based frontend for rendering images as consecutive jobs

on the CPUs and uses Ethernet to connect to the host PC across a network. RayBox is

a more custom hardware solution, using 14 × dual-core “AR500” ray-tracing processors

in each box and PCIe to communicate directly with a host PC. Neither of these solutions

are suitable for use as an interactive ray-tracing platform for models with large scene

databases due to the lack of scalability inherent in their designs.

2.4 Graphics Application Requirements

The minimum hardware requirements of graphics applications capable of rendering

large-scale interactive scenes is generally dependant on the size and complexity of the

model being rendered as well as the desired resolution and frame-rate of the resulting

image. The Boeing 777 dataset, which contains 350 million triangles and is approxima-

tely 45 GB in size, is a commonly used example of a massive model that has been used

to demonstrate the capabilities of both rasterisation [GM05] and ray-tracing [SBB+06]

based rendering approaches. In both cases, memory capacity and bandwidth between

processing nodes became the limiting factor. The architecture of the GCN, which is

described in Chapter 3, was motivated by the hardware requirements of such massive

models.

For rasterisation based applications modern GPUs, such as the NVIDIA Quadro

FX5800 [NVI08a], leverage parallelism to achieve impressive geometry performances of

up to 300 million triangles per second with fill rates that exceed 52 billion texels per

second across 240 CUDA programmable cores. The Quadro FX has access to 4 GB of

local memory with a bandwidth of up to 102 GB/s and interfaces with the host PC via

PCIe x16. Even with these impressive specifications, the GPU is still limited by the

relatively small amount of locally available memory when rendering massive objects as

33

Chapter 2. Background

the entire scene-database cannot be encompassed within the local memory and must

be loaded from the main memory of the host PC. A system comprising 12 commodity

PCs using quad-SLI enabled GPUs would be able to handle the demands of the scene

at interactive frame-rates provided they were linked using an interconnect that would

be able to sustain the bandwidth requirements of the scene and ran software such as

Chromium or SAGE to manage the parallel rendering.

For ray-tracing based applications assuming the model is to be rendered at a 1

mega-pixel screen resolution (1024×1024), with 10 ray samples per pixel (for effects

such as anti-aliasing and lighting) and a frame-rate of 30 FPS, this leads to a requi-

rement to be able to process 300 million rays per second. Modern CPU can achieve

a triangle rate of approximately 10 million rays per second per core and this implies

that at least 10 cores would be required to operate in parallel to ray-trace the scene

described. In order to be able to access the scene efficiently, the entire database should

be stored in local memory, meaning that the rendering system should have access to

at least 50 GB of Random Access Memory (RAM). A system comprising 8 commodity

PCs using quad-core CPUs and 8 GB of RAM per PC would be capable of meeting the

basic requirements to render the scene at 30 FPS assuming the PCs were linked using

an interconnect that would be able to sustain the bandwidth required to communicate

scene and ray data between the PCs.

2.5 Reconfigurable Computing Systems

Reconfigurable hardware is a term used to describe a class of devices whose functionality

is customizable at run-time. Appendix C provides more information about the uses

and architectural features of reconfigurable hardware devices.

While general-purpose CPUs and GPUs have the advantage of being flexible and

easy to program, reconfigurable logic devices can provide a medium to accelerate cer-

tain types of computational tasks many times faster than what can be achieved using

a dedicated ASIC. Reconfigurable computing systems can provide an easy path to

quickly prototype and evaluate various architectural layouts and features without the

inefficiencies of a software implementation or the expense of a hardware implementa-

tion. The inherent parallelism and reconfigurable nature of FPGAs allows for fast and

efficient implementations of new algorithms and circuit designs despite their relatively

low clock frequencies and makes them ideal as a prototyping platform.

FPGAs have been investigated for many applications as an alternative to dedica-

ted ASICs and as reconfigurable co-processors that can be controlled and communicated

with through a host system’s IO or system bus. One advantage of the latter approach

34

Chapter 2. Background

is that the logic that implements the co-processor’s functionality may be changed at

run-time in order to adapt the FPGA’s logic to the application that is being executed

on the host system’s CPUs. This makes the FPGA-based co-processor beneficial for a

number of applications that can be executed on a given host system.

The Vizard II [MKW+98] architecture is a reconfigurable, hardware accelerated,

volume rendering system for high quality perspective ray casting. It is a custom-built

PCI based accelerator that uses on-board memory with a dedicated ray processing unit,

running at 50 MHz, implemented on the FPGA. The use of an FPGA means that the

board can easily be reprogrammed, allowing new features or algorithmic optimisations

to be implemented when required. Large datasets of up to 1 GB with 32-bits per

voxel can be stored. Per-sample Phong shading and post-classification is performed in

hardware, giving immediate feedback to changes in the visualisation dataset.

Recent research has shown that FPGAs can be utilised as a suitable platform

for interactive ray-tracing applications and that gains in performance may be made by

clustering the FPGAs. The SaarCOR project, from Saarland University, in particular

has demonstrated that a single chip can reach performance comparable to today’s

commodity graphics technologies [SWS02, Sch]. SaarCOR is designed as a real-time

ray-tracing hardware architecture for static scenes and consists of a traversal unit, a

ray/triangle intersection unit and a fixed function shader implemented on an FPGA.

Schmittler et al. [SWW+04] have extended the SaarCOR architecture and imple-

mented an interactive FPGA-based ray-tracer that is suitable for rendering dynamic

scenes. Their FPGA-based prototype runs at 90 MHz and delivers 20-60 FPS over a

number of 3D scenes while also including support for texturing, multiple light sources

and multiple levels of reflection or transparency at resolutions of up to 1024×768 at 60

Hz.

In addition to the flexibility that FPGAs afford, they also allow the efficient pa-

rallelisation of applications in hardware. This can be achieved by using the FPGAs

to enable the parallel execution of PEs fundamental to the application. Unfortunately,

even modern FPGAs can be limited by a lack of available internal logic. Once all of

the available logic in an FPGA has been consumed, the most obvious way to increase

the number of available PEs is to employ multiple FPGAs [Hau95] running in parallel,

which are physically connected together, using a bus-based or crossbar interface on a

single customised PCB. Each FPGA can run multiple PEs, which execute portions of

the application concurrently. The PEs in multiple FPGAs can then communicate with

one another, increasing the parallelism of the system as a whole. The Berkley Emu-

lation Engine (BEE)2 [CWB05] and the University of Southern California’s Systems

Level Applications of Adaptive Computing (SLAAC)v2 [SCC+99] are two examples of

35

Chapter 2. Background

projects which have already used this technique to great effect.

A PCB could hold a limited number of FPGAs that are interconnected on the

board but this solution exhibits a constant computational limit. A scalable solution,

such as an architecture that could adapt its computational resources to the demands

of the application, is preferable. This objective could be achieved using a network of

FPGA boards, the number of which would determine the computational resources that

are available to the application. The choice of interconnect not only determines the

available bandwidth and latencies but also the scalability of the system as well as its

programming paradigm. Patel et al. [PMS+06] discuss various scalable FPGA-based

multiprocessor architecture options.

The SLAAC architecture [SCC+99] comprises three user-programmable FPGAs

attached to the PCI bus via a single interface FPGA. Each user FPGA is directly

attached to local memory and can be configured and controlled by the interface FPGA.

The SLAACv2 is an evolution of the SLAAC architecture and is a 6U VME mezzanine

board that contains two original SLAAC accelerators. The changes in architecture

between the two generations are not directly visible to the application designer.

The BEE2 compute module [Dro05] consists of five FPGAs, each of which is

connected to four DDR2 DIMMs, with a maximum capacity of 4 GB of RAM per

FPGA. The five FPGAs are organised into four compute FPGAs and one control

FPGA. Intra-node communication is provided by an on-board mesh that connects the

four compute FPGAs together on a two-by-two grid, with each link between adjacent

FPGAs capable of 40 Gbps data throughput. The control FPGA links directly with

each of the four computer FPGAs, providing a throughput of 20 Gbps per link. The

direct FPGA-to-FPGA links form a high-bandwidth low-latency network, enabling all

of the FPGAs on a compute node to be aggregated into a single virtual FPGA. Inter-

node communication is provided by Multi-Gigabit Transceivers (MGTs), which can be

configured to run at 2.5 Gbps or 3.1 Gbps. As a result, the interconnect fabric of the

compute-nodes is highly flexible and can be configured into many different topologies,

providing scalability in the system.

The Research Accelerator for Multiple Processors (RAMP) project [WPO+07]

uses clusters of custom-built PCBs containing multiple FPGAs to emulate highly pa-

rallel CPU architectures at speeds of approximately 100-200 MHz. The underlying

hardware for the project is based on the BEE architecture but the intention of the

project is to allow researchers to explore new design architectures for multi-core and

many-core processors by providing a general purpose, reconfigurable research platform

that enables rapid turnaround for new designs. The hardware additionally enables the

investigation of the potential capabilities of these parallel microprocessor architectures.

36

Chapter 2. Background

The latest generations of more powerful FPGAs, with high-speed IO capabilities,

has allowed more closely coupled architectures to emerge. It is now becoming more

commonplace to see FPGAs being directly attached to the system buses of commodity

PCs as opposed to the more traditional indirect attachments via the system IO buses.

As a result, FPGAs can now gain access to the high-speed system memory of the PC.

While this has been achieved before [WH04], it is only recently that the commercial

potential of such systems has been realised.

DRC Computers offer a family of general purpose Reconfigurable Processing Units

(RPUs) each a complete hardware and software package that includes a Xilinx FPGA

and the functional elements that allow the module to plug in to an AMD Opteron

socket and interface with the HyperTransport bus, the DDR memory and other mo-

therboard resources [Cor07]. The DRC RPU provides a tightly-coupled co-processing

environment with direct access to local DDR memory and any adjacent Opteron pro-

cessors at full HyperTransport [Con03] bandwidth with low-latency. The RPU then

becomes a resource for the remaining Opteron processors, offloading CPU-intensive

software subroutines to hardware. XtremeData offers a similar solution for Intel-based

Front-Side Bus (FSB) system-buses using Altera FPGAs [Xtr08]. The FPGAs have

direct access to 16 MB of locally attached Static Random Access Memory (SRAM)

at 2.8 GB/s and can access main system RAM across the FSB via the northbridge

chipset. The XtremeData solution differs from the DRC solution due to the fact that

it contains three FPGAs instead of just one. Two of the FPGAs run the applications

while the third is dedicated to managing communication with the FSB. This setup has

the benefit of allowing the two application FPGAs to be reconfigured without requiring

a restart of the host system. The main problem with both of these solutions though

is their inherent lack of scalability. Even though the reconfigurable resources interface

with the system bus directly and gain high-speed access to local processing and RAM

resources, communication with remote nodes as part of a cluster environment is still

relatively slow as it must be performed through the shared system IO bus.

2.6 Summary

This chapter has presented background information on distributed and shared-memory

systems, along with describing the common commodity interconnect options available

for creating scalable clusters. Various software and hardware-based parallel architec-

tures for rasterisation and ray-tracing algorithms were then discussed and the basic

hardware demands of interactively rendering massive models was derived for both ras-

terisation and ray-tracing based approaches. Finally, an overview of the benefits of

37

Chapter 2. Background

using reconfigurable logic devices for the implementation of parallel algorithms was

provided. The following chapter introduces the GCN architecture, which was designed

primarily based on the lessons learned from examining the benefits and drawbacks of

the various architectures discussed in this chapter.

38

Chapter 3

System Design and Implementation

The GCN platform is a hybrid system consisting of commodity PCs and custom-built

compute nodes, that are clustered together using a scalable high-performance intercon-

nect. The design of the platform was developed based on the common set of desirable

criteria for scalable systems capable of rendering large-scale interactive graphics appli-

cations. These criteria were developed in Chapter 1 based on the results of previous

work carried out in the field of large-scale interactive rendering and are re-stated here

for convenience.

• The system should provide a well defined API mechanism that can be used to

allow applications to take advantage of the resources provided by the system

• The system should incorporate a large amount of memory and remove the need

to replicate the scene-database of the model being rendered

• Memory scalability is desirable to prevent bandwidth starvation as the system

grows

• The system interconnect should be scalable and should be able to sustain the

traffic generated by the algorithm that is rendering the scene-database

• The interconnect should minimise the communication latencies between the pa-

rallel rendering nodes

• The application running across the system should be implemented in hardware

in order to maximize the performance benefits

• The rendering application should be controlled by a commodity PC setup that

can interface with the system interconnect

39

Chapter 3. System Design and Implementation

• The distributed algorithm implemented in the reconfigurable logic should com-

municate data and synchronisation information with the host application using

either message passing or shared memory techniques

The design of the system is based on a combination of these guidelines and the general

requirements of graphics applications that were derived in Section 2.4. A basic API

has also been developed to enable the applications that run in the system to avail of

the resources provided by both the commodity PCs and custom-built compute nodes.

The scalable system interconnect implements a hardware-based DSM, with the

aid of some additional logic running in the reconfigurable logic of the custom-built

nodes, that allows the local memory resources of the PCs and GCNs to be mapped

into a single global address space. The internal BRAM resources provided by the

FPGAs can also be easily mapped into this global address space, allowing applications

that run in the shared-memory of the system to take advantage of these additional

resources.

Scalable Interconnect

GCN

PC

GCN GCN

PC PC

Figure 3.1: Hybrid cluster consisting of commodity PCs and custom-built nodes.

Rendering applications are mapped into the system by splitting them into concur-

rently operating PEs that can run in software on the commodity PCs and in the recon-

figurable logic devices of the custom-built compute nodes. The single global address

space allows for the sharing of resources in the system and the API allows the appli-

cation PEs to interface with the system and to access the shared resources as well as

communicate with one another. Section 3.7 discusses the implementation of the reconfi-

gurable logic architecture that provides the shared-memory abstraction for application

40

Chapter 3. System Design and Implementation

PEs, while Section 3.9 discusses the API that was developed to allow the application

PEs to interact with the system. Before that, however, the design and implementation

of the hardware architecture for the compute nodes is discussed.

3.1 Hardware Design and Implementation

Even with the dramatic increase in computational performance that can be gained

through the introduction of architectures that exploit parallelism, the demanding

constraints of large-scale high-performance interactive graphics applications cannot yet

be met without turning to supercomputing systems or purpose-built solutions. These

systems are generally expensive to construct and can quickly become outdated as newer

technologies become available.

Many different parallel rendering solutions, as described in Chapter 2, have been

introduced in an effort to overcome this problem. Their architectures can vary drama-

tically depending on whether they approach the rendering problem from a rasterisation

or a ray-tracing perspective and whether they use a software-based or hardware-based

approach.

The first set of rendering solutions relies entirely on software control systems

running on clusters of general purpose commodity PCs and GPUs. These allow for

the implementation of both rasterisation and ray-tracing solutions and provide an easy

upgrade path as newer technologies become available due to the use of commodity

hardware. The major drawback with these types of solutions, however, is the overhead

that the software control mechanism introduces to the system. Additionally, the fact

that commodity PCs are generally clustered via their IO buses adds extra latency to

the cluster, which may eventually lead to problems as the cluster is scaled to larger

sizes.

The second set of rendering solutions relies on constructing custom hardware

systems, using either dedicated ASICs or reconfigurable logic devices, to create an ar-

chitecture that is heavily optimised for the implementation of rasterising or ray-tracing

algorithms. These types of system generally perform well, however, their custom desi-

gns limit them to performing specific rendering tasks and can limit their ability to take

advantage of up-to-date technologies without having to redesign the entire system.

The final set of solutions takes a hybrid approach, combining aspects of the

previous two approaches. These types of system can benefit from the use of both

commodity technologies while retaining the performance advantages gained through

the use of custom-built architectures. The hardware architecture of the GCN system,

presented in this chapter, uses a hybrid approach and is designed to leverage the power

41

Chapter 3. System Design and Implementation

and flexibility of reconfigurable hardware using a combination of COTS components

and custom-built hardware. The addition of a high-speed interconnect allows for the

clustering of multiple nodes into a single scalable parallel rendering system.

3.2 Hardware Design Objectives

The primary goal of the GCN architecture is to provide a scalable, distributed plat-

form that is capable of implementing either rasterisation or ray-tracing algorithms

and can scale to meet the requirements of large-scale interactive graphics applications.

This solution consists of a hardware component, which can leverage both commodity

and custom-built hardware, and a reconfigurable logic-based component, which will

implement the rendering algorithm. The initial design objectives for the hardware

architecture were set out as follows:

• To provide a flexible platform for the implementation of rendering algorithms

• To provide support for both rasterisation and ray-tracing algorithms

• To provide locally attached memory resources for each node

• To provide a scalable interconnect for clustering the rendering nodes

The first objective was achieved through the use of reconfigurable logic devices,

which have recently become powerful enough to enable the implementation of complex

high-performance designs. FPGAs are customisable to the needs of specific applications

without the complexity and expense of designing an ASIC with the same functionality.

The inherent parallelism available in these devices can be exploited while taking advan-

tage of their reconfigurable nature to quickly and efficiently implement new algorithms

and circuit designs despite their relatively low clock frequencies. The reconfigurable

logic of the GCN architecture is comprised of two FPGAs, the Bridge FPGA and the

Application FPGA. There were two primary reasons for using two FPGAs as opposed

to one larger device. The first reason was the prohibitive cost of the larger FPGAs and

the second was the ability to reconfigure the logic in the application FPGA without

effecting the operation of the bridge FPGA and vice-versa. The footprint of the device

that was chosen as the application FPGA is pin compatible with that of the bridge

FPGA, enabling a larger device to be used without the need to re-design the under-

lying PCB. The configuration of the two Serial Programmable Read Only Memorys

(SPROMs) that are attached to the application FPGA through the Complex Program-

mable Logic Device (CPLD) can be easily reconfigured to accommodate either of the

smaller or larger FPGA devices.

42

Chapter 3. System Design and Implementation

The second objective can be achieved in one of two ways. The first method

would involve the implementation of rasterisation algorithms directly in the logic of

the reconfigurable hardware. While this would work, a better solution would be to

somehow take advantage of the power that commodity GPU devices can provide instead.

In standard PC systems available when the GCN architecture was being designed, these

were normally attached via a dedicated AGP interface. The FPGAs available at the

time, however, were not able to meet the electrical requirements of the AGPv3 standard.

The addition of a commodity northbridge chip provided an off-the-shelf solution to this

problem as it implemented an AGP interface and was electrically capable of interfacing

with an FPGA. At the same time it also provided a solution to the next objective.

The third objective was achieved through the addition of slots for commodity

RAM modules, which may be directly interfaced with the FPGA. The addition of

the northbridge to the system, provided a second option as it already implemented a

RAM controller internally, in addition to the AGP interface. The local RAM interface

could then be implemented using the northbridge device instead of requiring additional

controller logic that would occupy valuable logic resources in the FPGA.

The most common use of northbridge devices in commodity systems sees them

connected to southbridge devices, which provide access to peripheral and legacy IO

buses such as PCI, Universal Serial Bus (USB) and Serial Advanced Technology At-

tachment (SATA). The combination of both northbridge and southbridge devices in a

commodity PC is termed the chipset. The additional resources that would have been

provided by incorporating a southbridge are outside of the scope of the GCN design

objectives and would have created additional complexity in the design as well as in-

creasing the overall cost of the hardware without providing any beneficial resources.

As such, the use of a southbridge in the GCN hardware design was discounted.

The fourth, and final, objective could easily have been achieved through the ad-

dition of a commodity interconnect such as Ethernet. A more scalable solution though,

would be through the implementation of a high-speed low-latency interconnect such

as Infiniband or SCI, which were discussed in Section 2.1.2. The fact that SCI can

be used to implement a DSM system in hardware made it advantageous for use in the

GCN architecture and so it was chosen as the primary interconnect. Additional factors

for choosing SCI over Infiniband included the history of collaboration between Trinity

College and Dolphin Interconnect Solutions, who manufacture SCI adapter cards and

designed both the Link-Controller 3 (LC3) and PCI-SCI Bridge (PSB) devices. The

wealth of information within the College and the potential for collaboration with Dol-

phin made SCI the logical choice as the interconnect for the GCN architecture even

though Infiniband is more commonly used for high-performance applications.

43

Chapter 3. System Design and Implementation

Unlike SCI, Ethernet cannot implement a DSM system in hardware. Conse-

quently, an SCI implementation is more tightly-coupled than an Ethernet implementa-

tion as it provides a shared-memory environment, higher bandwidth and lower latencies

than Ethernet. Ethernet provides a method of creating a cost-effective commodity-

based implementation of a loosely coupled cluster with distributed memory. This

implementation would not be as scalable as a tightly coupled cluster implementation

with distributed shared memory, but has the advantage of being able to utilise readily

available commodity FPGA boards as nodes in the cluster. A hardware DSM cluster,

based on SCI, would require the use of a custom-built PCB and as a result would be

more expensive to implement.

Several common architectural features exist between the two cluster approaches,

as shown in Figure 3.2. Both approaches require the PEs, which implement the distri-

buted rendering algorithm, to run in parallel in reconfigurable hardware. The major

differences between the tightly and loosely coupled implementations are in how the

PEs access remote memory locations across the interconnect.

......

INTERFACE
APPLICATION

INTERFACE
MEMORY

LOCAL

INTERFACE
APPLICATION

INTERFACE

LOCAL
MEMORY

Application
Scheduler

Processing
Element

#1

Processing
Element

#2
Element

Processing

#N Scheduler
Application Processing

Element
#1

Processing
Element

#2
Element

Processing

#N

NODE #1 NODE #X

RAYTRACING APPLICATION

MEMORY

LOCAL

MEMORY

LOCAL

FPGA FPGA

ETH ETH

COMMS
INTERFACE

COMMS
INTERFACE

PHY PHY

ETHERNET INTERCONNECT FABRIC

COMMUNICATION

BRIDGE

APPLICATION

COMMUNICATION

APPLICATION

BRIDGE

......

INTERFACE
APPLICATION

SHARED
MEMORY

INTERFACE INTERFACE
MEMORY

LOCAL

BRIDGE

MEMORY

SHARED SHARED

MEMORY

BRIDGE

INTERFACE
APPLICATION

INTERFACE
MEMORY
SHARED

INTERFACE

LOCAL
MEMORY

LC3
#1 #2

LC3
#1

LC3 LC3
#2

Application
Scheduler

Processing
Element

#1

Processing
Element

#2
Element

Processing

#N Scheduler
Application Processing

Element
#1

Processing
Element

#2
Element

Processing

#N

NODE #1 NODE #X

SCI INTERCONNECT FABRIC

RAYTRACING APPLICATION

MEMORY

LOCAL

MEMORY

LOCAL

FPGA FPGA

DISTRIBUTED SHARED MEMORY

(a) (b)

Figure 3.2: Comparative system overview between an Ethernet based and a Shared-
Memory based approach for clustering reconfigurable logic devices together.

Figure 3.2(a) shows an example of how an Ethernet-based system could be im-

plemented. In this model, each node has its own local memory store and there is no

concept of a global memory address space. Data may be communicated between the

FPGAs by transferring data held in internal FPGA register implementations. An ap-

propriately initialised receive handler must be present on at least one node in order

to be able to send information between two nodes correctly. If an appropriate receive

44

Chapter 3. System Design and Implementation

handler exists, the data is copied from the local buffer of the sending FPGA to a local

buffer of the receiving FPGA before it can be accessed by the local requesting PE.

Latency and increased contention limit an Ethernet interconnected system’s scalability.

Also, the bandwidth restrictions of the Ethernet connection will not allow the propa-

gation of all the required data between the nodes. Consequently, each local node is

required to hold the entire scene model in its local external memory. As a result, the

size of the external local memory restricts the size of the scenes that can be handled.

Figure 3.2(b) shows how a custom hardware-based DSM system could be achieved

using an SCI interconnect. The SCI interconnect creates a shared memory environment

in which every node connected to the interconnect can make hardware references to

read and write memory locations transparently on every other node connected to the

interconnect. Each node in the system has its own local memory store which is made

available to the shared memory address space. When a node requires data that is not

available in its local memory, it makes a hardware memory address reference to global

shared memory space in order to fetch the required data. The SCI LC3 devices, which

make up part of the SCI interconnect, are then responsible for routing the request to

the correct node on the SCI interconnect. Once a request to the node with the required

data has been made, that node will respond to the original requester node with the

appropriate data. This low-level routing is hidden from the requesting application PE

so, as far as the PE is concerned, it only has to make requests to read and write data.

As this system implements a NUMA cluster, there will be larger latencies involved in

reading and writing data to remote nodes. By ensuring correct process synchronisation

and by employing standard latency hiding methods such as pre-fetching and block-

transfers, the delay in accessing remote nodes can be substantially reduced. This

high-bandwidth, low-latency interconnect can be used to create a hardware-based DSM

NUMA solution and the scene model that is being rendered can easily be divided across

multiple nodes. This implementation would be suitable to problems with larger scene

models as more nodes could be used to scale the cluster to the required problem size

because the efficiency of the interconnect does not degrade as more nodes are added.

Ethernet does not specify one standard topology, though the normal configuration

is for all machines to be connected to each other through a switch in a star topology. In

the loosely-coupled cluster implementation, a star topology could be used to allow every

node a direct connection to every-other node in the cluster as outlined in Figure 3.3(a).

SCI defines an interface standard that enables the use of many different interconnect

configurations, from simple rings and torii to complete multi-stage switched networks.

The GCN hardware design allows for the implementation of a 2D-torus topology, which

exhibits good scalability. Figure 3.3(b) outlines a setup where one ring of the torus is

45

Chapter 3. System Design and Implementation

Switches

FPGA to Interconnect

Dedicated Switch Inteconnect

PC to Interconnect

Memory

Mem Ctrl

Phy
Eth MAC

FPGA

FPGA Node 1

Memory

Mem Ctrl

Phy
Eth MAC

FPGA

FPGA Node 0

Memory

Mem Ctrl

Phy
Eth MAC

FPGA

FPGA Node nMemory

CPU Ethernet

Ethernet

Memory

CPU

Host PC 1

Host PC n

Ethernet

PCs to PCs
GPUs to GPUs

PCs to GPUs

CPU 1 CPU 2

Commodity
SMP PC

SCI
SCI Card
Commodity

Memory

SCI

Bridge
North

Bridge
PCI

CPU 1 CPU 2

Commodity
SMP PC

SCI
SCI Card
Commodity

Memory

SCI

Bridge
North

Bridge
PCI

FPGA

FPGASCI

SCI
Memory

Commodity GPU

North
Bridge

FPGA

FPGASCI

SCI
Memory

Commodity GPU

North
Bridge

FPGA

FPGASCI

SCI
Memory

Commodity GPU

North
Bridge

PC node 1

PC node n

Custom−build FPGA/GPU node 1

Custom−build FPGA/GPU node 2

Custom−build FPGA/GPU node n

Commodity PC Cluster SCI Fabric GPU/FPGA Cluster

(a) (b)

Figure 3.3: Comparative system overview between an Ethernet based and a Shared-
Memory based approach for interconnecting cluster nodes together.

used to connect host systems to the cluster, while the second ring is used to connect

the GCN nodes together.

3.3 Hardware Architecture

The scalable and reconfigurable shared-memory graphics cluster is predominantly desi-

gned with commodity, off-the-shelf, components and uses a limited amount of custom-

built hardware. Figure 3.4 shows the overall design of the architecture. One of the

main design objectives was to keep the custom-built hardware part of the system as

small and simple as possible while still enabling high performance computations using

the system’s reconfigurable logic resources.

The ability to change parts of the hardware design after the PCB for the nodes

has been manufactured and populated with Integrated Circuits (ICs) is very desirable

in order to conduct research into rendering algorithm implementation alternatives. The

FPGAs provide an ideal solution to meet all these design objectives, with the added

advantage of providing substantial additional compute resources for the application

stages of the parallel graphics pipelines. These additional resources can be used to

implement algorithms usually executed on the CPU or GPU of a desktop machine.

These algorithms may be defined at compile time by the application developer and

loaded into reconfigurable hardware just as a traditional graphics application is loaded

into the main memory.

46

Chapter 3. System Design and Implementation

DSU

SCI 1

SCI 2

OUT

ASI FPGA CONTROL LEDs

APPLICATION SPECIFIC FPGA

SRAM GPIO CF

i865G NORTHBRIDGE

AGPv3 VGA DDR−RAM DVI

BRIDGE
FPGA

CONTROL

FPGA

BRIDGE

SCI #1

SCI #2

IN
SCI 1

OUT

IN

SCI 2

Figure 3.4: Block diagram overview of the GCN hardware detailing the main archi-
tectural features of the design and the way in which they are connected together.

The main functional components in the GCN architecture are the application and

bridge FPGAs, the SCI link controllers and the northbridge device. The bridge FPGA

acts as the central hub through which the various subsystems connect and is responsible

for implementing control and protocol logic to communicate with the SCI subsystem

and the northbridge subsystem. In addition to this, it interfaces directly with a second

FPGA, called the application FPGA, which provides further reconfigurable logic space

as well as access to local resources.

3.3.1 Application FPGA

The application FPGA is a Xilinx XC2V1000-4FF896C Virtex2 device [Xil04]. It

is connected to the bridge FPGA and to several on-board peripheral devices, inclu-

ding local SRAM, a bank of LEDs, a General Purpose Input/Output (GPIO) bank,

push-buttons, configuration dip-switches and an RS232 serial debugging port. The

application FPGA’s main task is to provide an abstracted interface for applications

to communicate with local peripherals and global shared-memory, without having to

worry about the low-level implementation details associated with interfacing with the

different local resources. It also provides additional reconfigurable logic real-estate for

the implementation of PEs associated with rendering applications running in the node.

47

Chapter 3. System Design and Implementation

The distributed applications may be implemented directly in hardware using a

Hardware Description Language (HDL) or may be run in software by implementing

a soft-CPU core in the FPGA, such as the SPARCv8 compliant [SPA92] Leon pro-

cessor [Res08]. The GCN architecture is designed to allow two different configuration

images for the application FPGA to be stored to local non-volatile storage devices. The

application FPGA can then be configured with one of these images on system-startup,

or at any time during system operation without affecting the operational state of the

bridge FPGA or any of the on-board subsystems that are not directly connected to the

application FPGA.

3.3.2 Bridge FPGA

The bridge FPGA is a Xilinx XC2V2000-5FF896C Virtex2 device [Xil04]. It is connec-

ted to the application FPGA, the Link-Controller (LC)3 devices and the Intel i865G

northbridge. The bridge FPGA is connected to the northbridge via the FSB interface,

which is designed to operate at speeds of up to 3.2 GB/s. The northbridge then pro-

vides a 3.2 GB/s link to the DDR memory interface and a 2.1 GB/s link to the AGP×8

interface. The bridge FPGA’s main task is to connect its various interfaces together

and to translate global address space memory references into SCI transactions and vice-

versa, while providing a shared-memory abstraction for the rendering PEs running in

its reconfigurable logic. It is responsible for initialising the various subsystems on the

GCN hardware, such as the LC3s, northbridge and clock generators and it must also

implement the API and interface ports that allow the local application PEs to interact

with the entire system.

In addition to providing reconfigurable resources for the execution of rendering

PEs, the bridge FPGA is also required to implement portions of the FSB protocol and

the initialisation routine for the northbridge in order to be able to communicate with

the various components attached to it. Finally, some of the services provided by a

commodity SCI card must also be implemented in the bridge FPGA, in addition to the

B-Link bus interface, in order to interact with the on-board SCI hardware subsystem

and to allow commodity PCs containing SCI adapter cards to function with the cluster

nodes. Finally, this FPGA must additionally provide a shared-memory management

infrastructure in order to allow the local PEs to access the global address space.

3.3.3 SCI Link Controllers

Two SCI LC3 interface devices [Sol02] are connected to the bridge FPGA via a common

64-bit B-Link bus [Sol00] at 640 MB/s. These LCs can be purchased directly from

48

Chapter 3. System Design and Implementation

Dolphin Interconnect Solutions, the manufacturer of the SCI technology, as standard

ASICs and solve many of the SCI link-level implementation challenges. Every LC has an

input and output port, and the output port of one is connected via a cable to the input

port of another. These links are 16-bit parallel and unidirectional with a maximum

bandwidth of 667 MB/s and provide a point-to-point latency of approximately 1.5 µs

in commodity systems.

The SCI interconnect, in conjunction with the reconfigurable hardware, fullfills

a vital function in the design. The distributed FPGAs allow the applications to run

in hardware across the cluster, while the SCI interconnect implements the hardware

DSM in conjunction with some additional logic contained in the bridge FPGA. The SCI

standard defines a high-bandwidth and low-latency interconnect, that is scalable to a

large number of nodes while providing bus-like services and flexible fabric configuration,

which guarantees the scalability of the parallel rendering architecture. SCI is designed

to scale well as the number of attached processors increases and allows for up to 64K

nodes to be connected to a single interconnect at up to 1 GB/s point-to-point.

SCI implements a hardware-based DSM, with an addressing scheme that uses a

64-bit fixed addressing model. The upper 16-bits are used for node addressing, while

the lower 48-bits are used as an offset address within the selected node. Communication

among nodes is accommodated by a set of SCI transactions and protocols that include

support for the reading and writing of data, cache coherence, synchronisation primitives

and message passing. All transactions are sent as SCI packets between source and

destination nodes with protocols provided to handle flow-control, error recovery and

deadlock prevention.

The direct SCI connection of the nodes classifies them as tightly coupled, relative

to the less tightly coupled commodity SCI cards [Sol99]. Nevertheless, the commodity

SCI cards can achieve approximately 320 MB/s with 1.46 µs application-to-application

latency, depending on the motherboard’s chipset. Measurements on two-node and four-

node fabrics have demonstrated that FPGAs directly connected to the B-Link may

exchange data at up to 500 MB/s over the SCI fabric [NT01]. Appendix A provides

more detailed information about the LC3 devices and the B-Link protocol used to

communicate with them.

3.3.4 Intel Northbridge

The Intel i865G northbridge [Int04], also known as the Graphics and Memory Controller

Hub (GMCH), is usually found in commodity PCs. Its function as part of the GCN

architecture is to provide a single point of access to both an AGP interface and RAM,

49

Chapter 3. System Design and Implementation

removing the need for the bridge FPGA to implement both interfaces individually.

FSB

AGP

CSA

HUB

RAM #1

RAM #0

USB

GPIO

SATA BIOS

PCI

AC97

I2C

DDR

DDR

RAM

RAM

GbE

GMCH

GPU

CPU

ICH

Figure 3.5: Block diagram overview of the GMCH in its usual configuration in a
commodity PC. The main purpose of the GMCH is to bridge its various interfaces
together, allowing the different subsystems of the PC to communicate with each other.

The normal role of the GMCH in a system is to provide an integrated graphics

processor and to manage the flow of information between its six interfaces. They in-

clude the processor’s system bus (the FSB), the memory attached to the Synchronous

Dynamic Random Access Memory (SDRAM) controller, the AGP port, the Hub Inter-

face (HI), the Communications Streaming Architecture (CSA) interface and the display

interface. This requires arbitrating between the six interfaces when each initiates an

operation and, while doing so, the GMCH must additionally support data coherency

via snooping as well as performing address translation for accesses targeting the AGP

aperture memory.

The GMCH was chosen for use in the GCN architecture as the FPGAs available

when the design was conceived were not capable of interfacing with the AGPv3 interface

or with DDR-RAM at full speed. This was a requirement if the GCN architecture

was to take advantage of the latest generations of GPU technologies. The FPGAs

50

Chapter 3. System Design and Implementation

could not achieve the high clock frequencies required by either interface and could not

support the electrical signalling standard specified by the AGPv3 protocol. They were

capable, however, of integrating with the GMCH using the FSB protocol as shown

by [WH04]. The clock rates and electrical requirements specified by the FSB protocol

and northbridge device could be met and successful integration of the GMCH would

consequently provide indirect access to both the AGP and RAM interfaces. The bridge

FPGA is responsible for initialising the GMCH via the FSB and is required to emulate

portions of the functionality of the CPU and IO Controller Hub (ICH), that would

normally be present in a standard PC system, in order to allow the northbridge to

function correctly. The FPGA can gain access to the various subsystem interfaces

provided by the northbridge via the FSB interface, in the same way that the CPU

would in a commodity PC.

Front-Side Bus

The FSB protocol [Int05, Int98b] was developed by Intel as a means of connecting the

system CPU(s) to the rest of the components in a commodity PC via the northbridge

device. The protocol has evolved over the years from being a simple low-speed interface

capable of supporting only one CPU, to a complex high-speed interface capable of

supporting multiple devices (bus agents). There are different variations of the bus

protocol available, depending on the chipset in use and the type/number of CPUs that

will interface with the bus. The FSB standard implemented in the i865G GMCH, used

in the GCN architecture, was designed to support a single Pentium 4 processor at

frequencies of 100, 133 or 200 MHz, with a maximum bandwidth of up to 3.2 GB/s.

Appendix B provides more detailed information about the FSB protocol.

AGP Interface

The Accelerated Graphics Port [Int98a, Int02b, Int99] is a high performance, com-

ponent level interconnect targeted at 3D graphical display applications. AGP is based

on a set of performance extensions and enhancements to the PCI bus [PCI95]. The

AGP interface specification uses the 66 MHz PCI specification as a starting point

and provides performance enhancements through the use of “sideband” signals, while

maintaining compatibility with the original PCI specification. The AGP is physically,

logically and electrically independent of the PCI bus and is intended for exclusive use

by visual display devices. The GMCH provides support for a single AGP interface,

using the 0.8V and 1.5V AGPv3 electrical characteristics [Int02a], and supports up to

8× signalling and 8× fast writes (AGP×8) at speeds of up to 2.1 GB/s. Appendix B

provides more detailed information about the AGP standard.

51

Chapter 3. System Design and Implementation

Integrated Graphics Interface

The GMCH additionally provides an integrated graphics accelerator. It does not sup-

port a dedicated local graphics memory interface and may only be used in a UMA

configuration. The integrated graphics device provides an alternative option to the use

of an external GPU attached to the AGP and may not be used concurrently with an

external GPU. The integrated graphics device provides basic support for 2D and 3D

rasterisation-based graphics and is not as powerful as using an external GPU.

RAM, Hub and CSA Interfaces

The GMCH device integrates a system memory DDR-RAM controller with two, 64-

bit wide dual-banked channels. This can provide a maximum bandwidth of up to 3.2

GB/s, at 200 MHz, and support for up to 2 GB of memory per channel. The GCN

architecture implements a single dual-banked channel setup and consequently each

node can provide a maximum of 2 GB of local memory.

In a commodity PC setup, the Hub Interface (HI) signals are normally connected

to an Intel ICH5 southbridge device [Int03b]. As the GCN architecture does not include

a southbridge, the signals are routed back to the bridge FPGA. This provides an

additional communications path for the FPGA to communicate with the northbridge.

The Communication Streaming Architecture (CSA) port is normally directly

connected to an Intel Gigabit Ethernet (GbE) controller [Int03a]; however, this was not

implemented as part of the GCN architecture so the signals for the port are connected

to breakout header pins instead. The HI and CSA interfaces use the same signalling

standard and are capable of communicating with a bandwidth of 266 MB/s, at 66 MHz.

3.4 Hardware Implementation and Testing

Figure 3.6 shows an image of one of the completed revision 3 hardware prototype

boards, while Figure 3.7 shows an image of one of the completed revision 4 hardware

prototypes. Revisions 1 and 2 of the hardware design were internal drafts and were

never manufactured. The final set of prototypes both utilise a standard 1.6 mm thick,

10 layer, double-sided FR4 PCB manufacturing technology and contain 5908 pins and

vias. The Ball Grid Array (BGA) devices were mounted using a Hot Air Solder Levelled

(HASL) process. A total of 1277 components were then mounted by hand, to both the

top and bottom sides of each of the PCBs. Appendix C provides a more detailed

description of the design and manufacturing process for PCBs.

52

Chapter 3. System Design and Implementation

Figure 3.6: Image of a fully assembled GCN rev3 prototype.

Two separate manufacturing runs were required to accommodate the two different

revisions of the hardware that were built. Ten prototype PCBs were manufactured

during each run. Two boards were fully assembled in the first run and four were

fully assembled in the second run for test and debugging purposes. The average cost

per board was approximately EUR 2,000 but it is expected that this price would

significantly decrease if the boards were manufactured in larger quantities.

There were several design and manufacturing defects in the revision 3 hardware

that necessitated a redesign of the system. In particular, integration of the northbridge

device proved to be significantly more complicated than expected. In the end, the

northbridge was successfully integrated into the final revision of the hardware prototype.

However, it was not possible to correctly initialise or communicate with the device and

as a result, the northbridge and the features that it provided had to be disabled. This

was achieved by adding some additional logic to the bridge FPGA to ensure that

the northbridge permanently remained in a “powered-down” state so that it did not

interfere with the operation of the remainder of the systems on the GCN board, which

had been tested and verified to function correctly.

The revision 4 GCN boards that were fully assembled all suffer from various

53

Chapter 3. System Design and Implementation

Figure 3.7: Image of a fully assembled GCN rev4 prototype.

minor manufacturing defects. The most likely cause of these defects was as a result of

the re-tooling work that was undertaken on the boards during the debugging process

that was involved in physical integration of the northbridge device. Each of the three

boards have different defects and as a result it was possible to localise the problems

and work around them in the reconfigurable logic implementation. The main drawback

with this was the extra complexity and resources required to work around the physical

problems, which complicated the test and debugging process of the reconfigurable logic

itself. These manufacturing defects could easily be rectified by assembling more PCBs.

However, this wasn’t deemed to be a practical solution due to the costs involved and

the time required to source the required components and have more PCBs assembled.

Although the loss of the functionality provided by the northbridge device meant

that access to the high-speed AGP and DDR-RAM interfaces could not be implemented,

it did not prevent the high-speed SCI interconnect or any of the other subsystems on

the board from operating. The fact that the application FPGA provided access to

locally attached SRAM also meant that the concept of the scalable hardware-based

DSM could still be implemented successfully and the reconfigurable logic devices could

still implement PEs for rendering algorithms.

54

Chapter 3. System Design and Implementation

The loss of functionality of the northbridge removed the possibility of connecting

a commodity GPU adapter card to the nodes and limited the available memory to the

on-board 32-bit SRAMs. This, in turn, limited the performance of the rendering PEs

that could be implemented in the FPGAs. As a result of being unable to use the GPUs

to implement the rasterisation algorithms, the main focus of the project became the

implementation of ray-tracing algorithms in the logic of the FPGAs.

3.5 Reconfigurable Logic Implementation

The primary goal of the GCN hardware architecture is to provide a distributed plat-

form that is capable of implementing both rasterisation and ray-tracing algorithms

while being able to scale to meet the requirements of large-scale interactive graphics

applications. The design of the hardware architecture provides the substrate for the

rendering architecture, but the software that must be implemented in the reconfigurable

logic devices is equally important to the operation of the system. It must efficiently

implement the control and protocol code required to initialise the various hardware

subsystems and allow them to communicate with one another, while at the same time

providing a coherent method of enabling the rendering PEs that run in the reconfigu-

rable logic devices to gain access to the entire system and to communicate with one

another.

The following sections provide a detailed discussion of the implementation of the

reconfigurable logic architecture that runs in the FPGAs of the GCN nodes. This

comprises a detailed description of the functional code required to initialise the various

local hardware subsystems as well as the implementation details of the customised

SCI protocol stack, the shared-memory abstraction layer and the API interface that

allows distributed application PEs running in the FPGAs to interface with the local

and remote hardware resources.

3.6 Reconfigurable Logic Design Objectives

Certain functionality that the reconfigurable logic implementation had to provide, such

as the hardware initialisation and bus communication protocols, was dictated by the

hardware architecture. The remainder of the functionality then required by the software

layer was to provide an interface for application PEs to interface with the rest of the

system and to implement the hardware DSM in combination with the on-board LC3

devices. The design objectives for the logic architecture were set out as follows:

• To initialise the local hardware subsystems

55

Chapter 3. System Design and Implementation

• To provide access to local resources

• To provide a shared-memory abstraction

• To provide a method for integrating application PEs

The first objective was achieved through the implementation of a dedicated hard-

ware initialisation layer that is responsible for ensuring that the various subsystems

have all reached a running state before allowing the application PEs to begin execu-

tion. This layer is completely independent of the protocol and processing logic apart

from the signalling required to allow the higher layers to begin execution once initiali-

sation has finished.

The second objective was achieved through the creation of a hardware abstraction

layer, with a defined memory-map, that uses the application FPGA to implement

the control logic required to communicate with the locally available peripherals. The

internal resources provided by both FPGAs can also be mapped into this hardware

abstraction layer. Although it is implemented in local address space, the option to

map these local peripherals and memory resources into the global address space of the

cluster exists.

The third objective was achieved through the implementation of a subset of the

SCI protocol and SISCI API. This protocol layer implements an abstraction that allows

for the transparent integration of local peripherals and PEs into the global address

space. The shared-memory abstraction layer also adheres to guidelines set out by the

SCI standard in order to allow the system to operate correctly with commodity PCs

using commercially available SCI adapter cards.

The fourth, and final, objective was achieved by providing a well-defined inter-

face that can be used to connect a PE to the local shared-memory abstraction layer.

This well-defined interface provides a basic API that allows the application PEs to

transparently communicate with the local and remote resources and is consistent with

the SISCI API in order to simplify the integration process for the parallel application

running across the system.

3.7 Reconfigurable Logic Architecture

The GCN’s reconfigurable logic implementation is split between the two FPGAs, as

shown in Figure 3.8. The logic contained in the bridge FPGA is primarily responsible

for implementing the parallel applications and implementing the HW-DSM, while the

application FPGA is primarily responsible for interfacing with local peripherals on the

56

Chapter 3. System Design and Implementation

GCN boards. The application and bridge FPGAs communicate with one another via

a dedicated interface.

ARB

SCIsci_bridge

#N

BRAM

BRAM

BRAM

WRAPPER

WRAPPER

WRAPPER
#N

PORT
APP

PORT
APP

PORT
APP

Address
Translation

Layer

#2

#1

#2

#1

CSR
WRAPPER

64−bit32−bit

Bridge
Interface

SRAMRS232LEDs GPIO

BRIDGE FPGA

ASI FPGA

��
��
��
��

����

����

����

��
��
��
��

���� ��������

Figure 3.8: Overview of the GCN software implementation showing the main func-
tional blocks of the design.

The logic implementation in the bridge FPGA is split into three main functional

layers. The first is responsible for initialising the various hardware subsystems on the

boards, such as the clock generators and the LC3s. The second layer implements the

SCI protocol and performs the software initialisation of the SCI interconnect. The final

layer implements the shared-memory abstraction and application interface that allows

the distributed application PEs to communicate with one another, both locally and

remotely.

The application FPGA contains additional logic that is used for debugging the

design as well as providing access to local resources such as the SRAM, Light Emitting

Diodes (LEDs) and GPIOs, which can all be made available in the DSM. The appli-

cation FPGA interfaces directly with the shared-memory abstraction layer and, as a

result, can make its own internal BRAM resources available to the DSM in addition

to those available in the bridge FPGA. This makes it possible to implement additional

PEs in the application FPGA transparently to the system.

57

Chapter 3. System Design and Implementation

3.7.1 Hardware Initialisation and Monitoring

The Hardware Initialisation and Monitoring (HIM) module is responsible for initialising

all of the low-level hardware subsystems immediately after a warm or cold reset. The

initialisation layer is independent from the other layers except that the other layers

must wait for low-level initialisation to complete before proceeding with their own

initialisation routines. Figure 3.9 outlines the system initialisation sequence.

����

��
��
��
��

FPGA INIT

LC3 INIT

power−on

CLK INIT

SCI INIT

APP INIT

hwinit done

swinit done

RUNNING

wrst

crst

run

Figure 3.9: FSM for the initialisation sequence required by the system before appli-
cations may begin running.

Initialisation from power-on includes configuration of both of the on-board FP-

GAs followed by the hardware initialisation phase of the LC3 devices and other on-

board subsystems. The northbridge device is not initialised as it is kept in a powered-

down state and is not utilised. Once hardware initialisation has completed, the software

initialisation of the LC3 devices and the local PEs takes place. Finally, when all of the

stages have completed, the system enters the running state and normal operation may

begin.

58

Chapter 3. System Design and Implementation

3.7.2 SCI Hardware Encapsulation Logic Layer

The SCI Hardware Encapsulation Logic Layer (SHELL) implements the SCI protocol

and performs the software initialisation of the SCI fabric for the GCN architecture.

Several previous projects have used reconfigurable logic devices to assist the implemen-

tation of SCI. Some of the projects concentrated on using the FPGAs to implement

systems that can test the performance of various interconnect configurations, while

others used FPGAs to implement bridges from SCI to PCI.

The Traffic Load Engine (TLE) test module [Tje99, NT01] was designed to sa-

turate SCI networks with background traffic in order to be able to evaluate the per-

formance of the fabric under different configurations and load-levels. The TLE was

designed as an FPGA-based mezzanine add-on board for Dolphin D320 and D330 se-

ries PCI-SCI adapter cards. The TLE interfaces the SCI fabric directly via the B-Link

bus between the PSB and LC on the adapter card. SCI request/move packets are

loaded into a TLE producer’s internal BRAM via the SCI link. The TLE producer

then transmits these packets across the SCI fabric to a second TLE set to consume the

packets. Results from two and four node SCI ringlets, using the TLE have shown an

achievable bandwidth of 525 MB/s using DMOVE128 packets, which do not generate

response subactions, and 413 MB/s using NWRITE128 packets. The TLE devices are

not responsible in any way for the initialisation or set-up of the SCI fabric and they are

configured independently using custom control software that controls the TLE through

the Dolphin SISCI driver for the host SCI adapter card.

SCILC3PCI BRIDGE

PCI SCI

FPGA

TLE

Figure 3.10: TLE daughter-board attached to a commodity PCI-SCI adapter card.

The SMiLE PCI-SCI bridge [AHKL96], developed at the Technical University

of Munich, utilises two FPGAs in conjunction with a commodity PCI bridge and a

59

Chapter 3. System Design and Implementation

dual-port RAM. One FPGA acts as the B-Link access and transaction manager and

it interfaces with one port of the dual-port RAM and an LC1 device. The second

FPGA is responsible for controlling and co-ordinating the translation of read/write

accesses from the PCI interface into B-Link packets and vice-versa. It interfaces with

the second port of the dual-port RAM and with the other FPGA via a handshaking-bus

that enables the transfer of data between the two FPGAs, using the dual-port RAM.

The use of a commodity PCI bridge simplifies the overall design as there is no need

for the inclusion of complex logic to interface with the PCI bus directly; however, the

extra logic in the device adds latency to the bridge. They achieved a latency of 3.1 µs

for PCI-SCI writes even with the use of older LC1 devices.

PCI

BRIDGE

FPGA FPGA

#1 #2

ATC

BUFFER

LC1DPRAMPCI SCI

Figure 3.11: The PCI-SCI bridge architecture, from the Technical University of
Munich, uses two FPGAs and a commodity PCI bridge.

Trams et al. have also implemented a PCI-SCI adapter card at the University of

Chemnitz [TR01, TR03]. Their hardware design is similar to that of the SMiLE bridge,

using two FPGAs that communicate with one another, via a dual-port RAM, and use

a commodity PCI bridge to interface with the PCI bus. The first FPGA is responsible

for communicating with the PCI-PCI bridge, while the second FPGA is responsible

for communicating with the SCI link controller. Information is passed between the

two FPGAs using the dual-port RAM, with each FPGA controlling a single port. An

additional handshaking-bus is used to co-ordinate communications between the two

FPGAs. Their system uses more modern LC2 devices to interface with the SCI fabric

and they achieved a hardware latency of 2.67 µs with a throughput of 120 MB/s.

60

Chapter 3. System Design and Implementation

����

�
�
�
�

DPRAM

FPGA

#2

PCI

BRIDGEPCI LC2 SCI
FPGA

#1

ATC

Figure 3.12: The PCI-SCI bridge architecture, from the University of Chemnitz, uses
two FPGAs and a commodity PCI bridge.

The PSB66 [Sol01a], released by Dolphin Interconnect Solutions in 2001, is a

commercially available 64-bit/66 Mhz capable PCI-SCI bridge designed to connect a

PCI bus to a B-Link [Sol00] bus. In combination with an LC3 [Sol02] device, the PSB

can operate as an SCI-PCI bridge, which can be used to build PCI systems accessible

from SCI. The PSB has a hardware latency of 1.46 µs and a maximum throughput

of 326 MB/s. The PSB architecture consists of two main components, the Bus De-

pendent Unit (BDU) and the Dolphin Protocol Engine (DPE), which communicate via

an internal bus called the G-Bus. The BDU implements the interface to the PCI bus,

while the DPE implements the SCI protocol and is composed of two sub-modules: the

Generic Interface Unit (GIU) and the B-Link Interface Unit (BIU). Figure 3.13 shows

how these different modules relate to one another.

The PSB uses the concept of streams in order to handle several activities on

the PCI bus simultaneously and this allows the PSB to efficiently interface both the

PCI and SCI buses by being able to handle several requests in parallel. Both read

and write requests are handled independently and the PSB provides 16 read buffers

and 16 write buffers, each capable of storing 128-bytes of information. The streams

additionally contain information about the thread using the buffer, how to build the

SCI request packet and the status of the transaction. The PSB can also perform write-

combining, which can combine multiple requests into maximum sized SCI packets in

order to increase the efficiency of traffic across the SCI bus. Incoming requests from the

SCI interface and their corresponding responses are stored in two independent buffers,

each 2 × 128-bytes deep, which are separate from the outgoing stream buffers.

61

Chapter 3. System Design and Implementation

BIUREGS

BLINKCTRLMUX

SRAMOUT

SRAMIN PROT

INPROT

SLVREQBUF

SCONTROL
REMOTESLV

CSR

MSTRESBUF

SCONTROL

SLVRESBUFMSTREQBUF

CSRACCESS

REMOTEMST
CSR

MUX MUX

RQSENDMSSNDFIFO

MSRSBUF SLRQBUF RQSNDFIFO SLRSBUF

RSRECV RQRECV

MSRQBUFRSRCVFIFO

GIUINT

GIUEVREP

GIUTIMER
REMOTESLV

CSRMSCTRL

GIUARB

OTCGIUREGDEC

STREAMS STREAM
CTRL

STREAM
ADDR

RESETGEN WATCH RAMTEST MIUROMINT

MEMORY64GBUSCONV

MUX

DMA_REGS

DMA_REG

WINDOW
CSR

SCIMEM
NONPREF

MEMORY
SCI

DMA_CTRL

MST_CFG

CONFIGCMD_DEC

COUNTER
RETRY

COUNTER
DEADLOCK

REG REG TIMEOUT
RETRY

TIMER
REQUEST

MASTERMUX
TOP

SLAVE

PIUREGS

PCI

crst

wrst
I2C

ATT

INT

B−LINK

PSB

DPE

BIU

GIU

PIU

GIO

Figure 3.13: PSB structural overview showing the various functional blocks.

62

Chapter 3. System Design and Implementation

The PSB provides the following features:

• The PCI interface is compliant with revision 2.2 of the PCI specifications and

can operate as both master and slave on any PCI bus from 32-bit/33 MHz to

64-bit/66 MHz in both 5V and 3.3V systems.

• It implements a transparent bridge between PCI and B-Link, with full 64-bit SCI

mapping.

• It supports 32-bit and 64-bit addressing as slave and 32-bit as master. There are

4 address windows for accessing local Control and Status Registers (CSR) space

and remote memory in different addressing modes.

• It maps 32-bit PCI addresses to 64-bit SCI addresses using an Address Transla-

tion Cache (ATC)/Address Translation Table (ATT) mechanism, which is stored

in locally attached SRAM.

• It does not provide an IO space, but can generate PCI IO-type cycles by accessing

the upper-half of the CSR space from SCI and can generate PCI configuration-

type cycles, thereby enabling operation as a host bridge in remote PCI systems.

• It provides an event-reporting mechanism based on monitoring the interrupt sys-

tem error signals.

XC2V2000-5FF896 XC4VLX100-10FF1148
Number of slices 11523/10752 (107%) 11378/49152 (23%)
Number of slice flipflops 7305/21504 (33%) 7284/98304 (7%)
Number of 4-input LUTs 19494/21504 (90%) 19186/98304 (19%)
Number of bonded IOs 230/624 (36%) 230/768 (29%)
Number of BRAMs 23/56 (41%) 23/240 (9%)
Number of GCLKs 2/16 (18%) 3/32 (9%)
Maximum frequency 10 MHz 14 MHz

Table 3.1: Comparison of the PSB synthesis results targeting the XC2V2000-5FF896
and XC4VLX100-10FF1148 FPGAs

Table 3.1 shows the synthesis results obtained for the entire PSB code-base from

Dolphin, targeted at two different FPGA devices. The first is a VirtexII device, as

used on the GCN. The second is a more modern Virtex4 device. The PSB code was

originally designed to be implemented as an ASIC and is not suitable for use in an

FPGA. Even though it will fit into the Virtex4 device, the low frequency achieved

63

Chapter 3. System Design and Implementation

will not meet the minimum operational frequency of 64 MHz that is specified by the

B-Link.

The design of the SHELL protocol stack is based on concepts taken from these

four different architectures. The addition of logic to perform the software configuration

of the SCI fabric was also necessary as the GCN does not utilise an operating system, or

software drivers for configuring the SCI. Figure 3.14 provides a block-diagram overview

of the SHELL and Table 3.2 provides an overview of the SCI commands that are

supported by the SHELL.

SCI Command Size (B) Command Definition
locksb 4 segment lock/unlock
readsb 1 – 16 selected byte read

nread128 128 128 byte non-coherent read
writesb 1 – 16 selected byte write
nwrite16 16 16 byte non-coherent write
nwrite64 64 64 byte non-coherent write
nwrite128 128 128 byte non-coherent write
dmove16 16 16 byte directed move (responseless)
dmove64 64 64 byte directed move (responseless)
dmove128 128 128 byte directed move (responseless)

Table 3.2: Supported SCI commands.

Basic error detection and handling in the SHELL is supported, however it was not

practical to enable this in the design as a result of the hardware errors in the prototype

system that caused the SCI Cyclic Redundancy Check (CRC) and B-Link parity fields

to be invalid. Outgoing packets had B-Link parity calculated and embedded as usual

but the LC3 devices had to be configured to ignore the parity values because they kept

dropping the packets otherwise. Incoming packets had their parity checked and packets

with invalid parity values were flagged for error processing further up the protocol layer.

Support for dropped packets, that were not responseless, was implemented through

the use of a packet timeout counter that was implemented as part of the streambuf out

module. Once the packet was sent and stored to an outgoing streambuffer the timer

was started. If a response packet did not arrive within the timeout period, the packet

was retried and the counter reset. If a response did not arrive by the time the counter

had timed-out again, the module would notify the top-level of the protocol stack that

the packet had not sent correctly. The originating application PE would in-turn be

notified that the packet did not send correctly and could then take action to deal with

the error.

64

Chapter 3. System Design and Implementation

A detailed description of the purpose and functionality of the individual units

that make up the entire SHELL protocol stack follows.

biu ctrl - This module is responsible for interfacing with the physical B-Link bus.

It accepts incoming request and response packets and passes them to the biu slv

module for further processing. It receives outgoing request and response packets

for transmission from the biu mst module. It must arbitrate for control of the

B-Link bus before sending outgoing packets.

biu mst - This module takes outgoing SCI request and response packets from the

tx fifo buffer and encapsulates them inside B-Link packets. It notifies the biu ctrl

module when it has a new outgoing packet to send and waits for the biu ctrl

module to indicate that it has become master of the B-Link bus before handing

over the packet for transmission.

biu slv - This module receives incoming B-Link packets from the biu ctrl module,

checks that the B-Link parity is correct and strips the non-essential B-Link header

and footer data before storing the packet to the rx fifo buffer. It stores important

tag data alongside the packet in the buffer using the BRAM parity bits. If the B-

Link parity is correct it zeroes it, otherwise it leaves it intact for further processing

and data-recovery at a later stage.

rx fifo - This module is a FIFO encapsulating a dual-port BRAM memory. It is used

to store received SCI request and response packets and important tag data before

they are passed to the sci ctrl module.

tx fifo - This module is a FIFO encapsulating a dual-port BRAM memory. It is used

to store outgoing SCI request and response packets and important tag information

before they are passed on to the biu mst module for transmission on the B-Link.

sci mux - This module multiplexes the outgoing data control path between the

sci init and sci ctrl modules. The sci init module controls the outgoing data-

path during system initialisation, once the system enters a running state, control

is handed over to the sci ctrl module.

sci init - This module performs the software initialisation of the LC3 devices and

activates the SCI link. It emulates the actions and initialisation sequence of the

Dolphin IRM driver, used to set up commodity SCI adapter cards. This includes

programming the correct operational values, such as the device NODEID and

routing tables in the LC3s. Once this has occurred, the LC3s are configured to

enable access to the SCI fabric and the initialisation sequence completes.

65

Chapter 3. System Design and Implementation

sci_init sci_ctrl

tx_fiforx_fifo

biu_slv biu_mst

biu_ctrl

FPGA

ASI

����

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

mux

streambuf streambuf
inout in

ctrl
out

SCI

B−Link

ctrl

B−Link
Bus

sci_mst sci_slv

64−bit
bridge_slv bridge_mst

sci_bridge

32−bit

address
translation

con
asiarb

wrapper
csr

bram #1

app
#n

app
#1 #2

app

bram #2 bram #n

Figure 3.14: Software stack overview showing the SCI protocol and shared-memory
abstraction layers of the GCN system. The low-level hardware initialisation, clocking
and reset modules are omitted for clarity. The protocol stack can be divided into three
distinct blocks; the first handles B-Link data, the second handles SCI data and the third
handles internal communication.

66

Chapter 3. System Design and Implementation

sci ctrl - This module controls the SCI packet input and output data-paths. It exa-

mines incoming packets and splits them into request and response subactions

before forwarding them on to the correct module. Incoming requests are forwar-

ded to the sci slv module, while incoming responses are forwarded to the sci mst

module. This module also combines outgoing request and response subactions

from the sci mst and sci slv into one outgoing SCI packet stream. It uses a

round-robin arbitration mechanism to ensure the sci mst and sci slv modules

gain fair access to the outgoing packet data-path.

sci mst - This module handles outgoing SCI request and incoming SCI response

subactions. It supports a subset of SCI commands, as defined in Table 3.2. If the

outgoing stream ctrl module indicates that there is one or more entries waiting

to be sent in the outgoing request stream, it takes this data and combines it

with information from the outgoing stream ctrl module, such as the transaction

ID and destination address, and creates an SCI packet of the correct request

type before sending it. When this module receives an incoming SCI response,

it first determines if the response contains a payload. If so, it strips the SCI

packet information and stores the address and data payload to the appropriate

incoming response buffer. It only inserts response data into this buffer if the

incoming packet contains a payload. It then informs the outgoing stream ctrl

unit that a response has arrived and forwards the transaction ID and reply status

information.

sci slv - This module handles incoming SCI request and outgoing SCI response sub-

actions. It supports a subset of SCI commands, as defined in Table 3.2. When

receiving an incoming request, the address and optional data payload is stored

to the incoming request buffer. The incoming stream ctrl unit is then informed

about the new request and is provided with the transaction ID along with any

other relevant data. If the incoming stream ctrl module indicates that there are

one or more packets to be sent in the outgoing response stream, it takes this data

and combines it with information from the incoming stream ctrl module, such

as the transaction ID and destination address, and creates an SCI packet of the

correct response type and then sends it out.

stream ctrli - This module manages the incoming stream-buffer. It determines which

segments incoming packets should get stored to and informs the bridge mst mo-

dule about newly arrived requests. It keeps track of unused stream segments and

ensures that new incoming subactions are stored to the unused segments and do

not over-write outstanding subactions. When all of the segments in the buffer

67

Chapter 3. System Design and Implementation

are in use, it notifies the sci slv module to prevent new incoming requests from

being accepted until at least one segment is free. If the incoming request requires

a response subaction, the stream ctrli module can signal the sci slv module to

generate the response, once the appropriate data has been received from the

bridge mst and stored in the appropriate outgoing response stream segment.

streambuf in - This module contains the stream-buffer for the incoming requests

and corresponding outgoing responses. The stream-buffer is implemented as a

BRAM primitive that is segmented into areas where packet subactions may be

stored until the transaction has completed. The amount of subactions that may

be stored is dependent on the maximum size of the address and data payload

(128-byte data, 48-bit address + 16-bit tag) and the total space available in the

BRAM (512 × 32-bit), which equates to 16 stream segments. All stream handling

control logic for this module is implemented by the stream ctrli module.

stream ctrlo - This module handles the outgoing stream-buffer. It maintains a list

of all outstanding transactions and informs the sci mst of outgoing requests that

need to be sent. It also informs the sci bridge module of incoming responses.

The module keeps track of used and unused transaction IDs and supplies them

to the sci mst modules as it is packetising outgoing requests. The stream ctrlo

module knows when all of the stream segments are occupied and can generate

corresponding busy signals to the sci bridge to prevent new data being accepted

if there are no free segments. Finally, it maintains subaction timeouts for SCI

packets that have been sent but have not yet received a corresponding response.

It determines if an error needs to be flagged or if the data should be resent.

streambuf out - This module contains the stream-buffer for the outgoing requests

and corresponding incoming responses. The stream-buffer is implemented as a

BRAM primitive that is segmented into areas where packet subactions may be

stored until the transaction has completed. The amount of subactions that may

be stored is dependent on the maximum size of the address and data payload

(128-byte data, 48-bit address + 16-bit tag) and the total space available in the

BRAM (512 × 32-bit), which equates to 16 stream segments. All stream handling

control logic is implemented by the stream ctrli module.

bridge slv – This module accepts incoming master requests from the internal logic

and stores the appropriate data to the outgoing stream-buffer and stream ctrlo

modules. Incoming responses are handled by the bridge mst module and are

ignored by this module in order to prevent the internal logic from blocking while

waiting for incoming responses to data read and write requests.

68

Chapter 3. System Design and Implementation

bridge mst – This module takes requests from the incoming stream-buffer module

and forwards them to the internal logic. For read requests, it fetches the data

and stores it back to the stream-buffer. For incoming writes, it forwards the data

to the internal logic and notifies the streambuf ctrli module that the packet has

been accepted. Incoming response data is forwarded on to the internal logic with

a special flag, indicating that it is a response to an outstanding request.

sci bridge - This module is the interface between the SCI protocol stack and address

translation module. It serves as the top-level SCI protocol wrapper, encompassing

all of the lower level modules previously described. It combines master and

slave data-paths from the bridge mst and bridge slv modules into one data-path

connection that links to the address translation module.

3.7.3 Shared-memory Network Abstraction Interface Layer

The Shared-memory Network Abstraction Interface Layer (SNAIL) implements the

global shared-memory address space, which enables the local and remote application

PEs to communicate with one another transparently. The purpose of the SNAIL is

to tie the Message and Application Interface Layer (MAIL), SHELL and application

FPGA services together and to arbitrate between them all to allow fair access to system

services. Due to the fact that the application FPGA interfaces directly with this layer,

all resources provided by it, for example the LEDs, SRAM and internal BRAMs, are

automatically made available to the DSM.

The MAIL interfaces to the sci bridge via an address translation (atl) module,

which provides transparent address translation between local 32-bit and global 64-bit

address spaces. Transactions that map to remote nodes, addr[31:28] is not equal

to 0x0, are automatically forwarded to the atl module and enter the SCI protocol

stack. Incoming requests and responses from the SCI are automatically translated

into local addresses and forwarded to the appropriate device attached to the SNAIL.

Figure 3.15 outlines the connectivity of devices mapped into the local 32-bit address

space. This includes the mappings of the MAIL modules, which provide an interface

between the SNAIL and the local application PEs. Address translation is described

below, where loc addr signifies the local 32-bit address space and sci addr signifies the

shared-memory 64-bit global address space.

Outgoing read and write transactions are converted from 32-bit to 64-bit as follows:

• The loc addr[31:28] address portion maps to a 16-entry lookup table, containing

the 16-bit remote SCI node addresses. The first in the table always contains the

69

Chapter 3. System Design and Implementation

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�������������� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�

�
�
�
�
�
�

������������

������

������������

������������

0x00000000

0x0003FFFF

0x00040000

0x00080020

0x0007FFFF

0x00080000

0x0008001F

0x0008002F

0x00080030

0x0009FFFF

0x00FFFFFF

0x0EFFFFFF

0x01000000

0x0F000000

0x0FFFFFFF

0x10000000

0xFFFFFFFF

RAM

RSVD

RSVD

GPIO

LEDs

RSVD

CSR

SPACE
REMOTE

APPLICATION
SPACE

0x000A0000

B
R

ID
G

E
A

S
I

R
E

M
O

T
E

LO
C

A
L

310

Figure 3.15: The 32-bit address space memory map layout showing the main de-
vice regions. The first region (0x00000000 - 0x0009FFFF) maps to the local applica-
tion FPGA. The second region (0x000A0000 - 0x0FFFFFFF) maps to the local bridge
FPGA. The third region (0x10000000 - 0xFFFFFFFF) maps to remote nodes within
the shared-memory cluster.

70

Chapter 3. System Design and Implementation

local SCI NodeId and the table is configured by the system during the software

initialisation stage.

• The sci addr[47:28] address bits are padded with zeroes, unless the access is a

CSR type (indicated by loc addr[27:24] being equal to 0xF)

• The sci addr[27:24] and loc addr[27:24] should always be set to 0x0.

• The loc addr[23:0] and sci addr[23:0] are directly mapped to one another.

Incoming read and write transactions are converted from 64-bit to 32-bit as follows:

• The sci addr[63:48] is dropped as it is the local SCI NodeId and is unrequired.

• If sci addr[47:28] is equal to 0xFFFFE then loc addr[31:24] is set to 0x0F, to

indicate a CSR transaction, otherwise it is set to 0x00.

• The loc addr[23:0] and sci addr[23:0] are directly mapped to one another.

This address translation mechanism has the advantage of being fast to perform in either

direction, only requiring one clock cycle. The only drawback to this implementation is

the fact that the system is limited to supporting a maximum of 16 nodes. The main

motivation behind this design decision was to keep resource usage within the bridge

FPGA as low as possible in order to maximize the resources available for implementing

the distributed applications. A more scalable approach to the address translation

implementation would be to either use a full ATT implementation, as defined in the

PSB specification or use 64-bit application addressing within the FPGA to directly

map resources within the global address space.

3.7.4 Message and Application Interface Layer

This is the layer with which the application PEs interface. Each application PE requires

a dedicated MAIL module, which provides direct access to local BRAM resources and

the SNAIL. It also implements the shared-memory API primitives that allow the appli-

cation developer to access and control the DSM. Figure 3.16 shows the connectivity of

the individual modules that make up the MAIL. All local accesses (from the applica-

tion PE to the local registers or BRAM space) are performed directly by the mail ctrl

module. All remote accesses are forwarded to the mail slv module or a remote PE, via

the local mail mst module. PEs may interact in two ways. Firstly, they may share

data using the local BRAMs and secondly, they may notify each other of events using

the local registers provided by the status module. API mechanisms, similar to those

provided by the SISCI API are implemented via the mail ctrl module along with a

71

Chapter 3. System Design and Implementation

defined port for the PE to interface with the system. Section 3.9 provides more detail

about the application interface port and the API that allows the PEs to access the

system resources.

A
P

P
LI

C
A

T
IO

N
 P

O
R

T

IN
T

E
R

N
A

L
N

E
T

W
O

R
K

APPLICATION INTERFACE

BRAM

SLV

MST

STATUS

CTRL

Figure 3.16: Overview of the Message and Application Interface Layer

The functionality of the modules that make up the MAIL is summarised as follows:

mail ctrl - This module implements the interface to the application PEs. It is the

main controller that implements the API function calls that allow the application

to access the shared-memory. It also listens for incoming notifications from the

mail status module and forwards them on to the application for further proces-

sing.

mail bram – This module is a wrapper that joins two 512×32-bit BRAMs into one

longer 1024×32-bit BRAM, giving a total of 4 kB of directly connected, local

BRAM available per application port interface. The BRAM is logically partitio-

ned into 32 x 16-byte segments. Read and write transactions may be performed

at any granularity, however, copy, lock and free operations are performed at a

per-segment granularity.

mail status – This module snoops access requests to both ports of the local dual-port

BRAM. After reset, all segments in the BRAM are initialised to be free. Writes to

72

Chapter 3. System Design and Implementation

free BRAM segments automatically designate them as busy. Both the mail ctrl

and mail slv modules can directly update the status of local memory segments by

modifying the status of segments to be either free, busy or locked. The mail status

module additionally handles incoming message notifications from the mail slv

module and forwards them on to the mail ctrl module for further processing.

Finally, this module also keeps track of outstanding (remote) transactions and

notifies the mail ctrl unit of their completion.

mail mst – This module implements master transactions on the internal interconnect

on command from the mail ctrl module. It can initiate local and remote read and

write transactions as well as lock and interrupt requests. Local transactions are

acknowledged and complete immediately. Remote transactions are acknowledged

but do not complete immediately. In this case, the mail status module is notified

of the presence of the outstanding transaction so that it can notify the mail ctrl

module when it completes.

mail slv – This module handles incoming transactions addressed to this application

interface. It performs data reads and writes to the local BRAM according to what

is allowed by the mail status module. Incoming notifications and requests to lock

or free memory segments are routed directly to the mail status module and do

not have an effect on local memory. Incoming responses for outstanding requests

are serviced and the mail status module is notified that they have completed.

3.8 Reconfigurable Logic Implementation and Testing

The software layers were implemented entirely in VHSIC Hardware Description Lan-

guage (VHDL) and assembled using the Xilinx XST toolchain. All simulation testing

was performed using the QuestaSim simulator from Mentor Graphics. Reconfigurable

devices, along with their programming languages, are discussed in more detail in Ap-

pendix C. The synthesis results for the SHELL code are presented and compared with

results from the DPE code, which was provided by Dolphin Interconnect Solutions.

Both code-blocks perform similar functionality; however, the SHELL is optimised for

use in an FPGA and only implements a subset of the functionality of the DPE, which

was originally targeted for an ASIC implementation. Portions of the DPE code had to

be modified in order for it to successfully synthesise when re-targeting it for FPGAs.

However, these modifications do not alter the functionality of the code itself. Tables 3.3

and 3.4 show the synthesis results obtained from both the DPE and the custom SHELL

protocol stack. The first table targets the VirtexII device, used as the bridge FPGA

73

Chapter 3. System Design and Implementation

on the GCN boards while the second targets a more modern Virtex4 device.

DPE SHELL
Number of slices 8726/10752 (81%) 4075/10752 (37%)
Number of slice flipflops 5510/21504 (25%) 3708/21504 (17%)
Number of 4-input LUTs 15062/21504 (70%) 7175/21504 (33%)
Number of bonded IOs 780/624 (125%) 215/624 (34%)
Number of BRAMs 23/56 (41%) 16/56 (28%)
Number of GCLKs 3/16 (18%) 4/16 (25%)
Maximum frequency 27 MHz 76 MHz

Table 3.3: Comparison of the DPE and SHELL protocol engines targeting the
XC2V2000-5FF896 FPGA, as used on the GCN hardware.

DPE SHELL
Number of slices 8684/49152 (17%) 4183/49152 (8%)
Number of slice flipflops 5510/98304 (5%) 3708/98304 (3%)
Number of 4-input LUTs 14942/98304 (15%) 7262/98304 (7%)
Number of bonded IOs 780/768 (101%) 215/768 (27%)
Number of BRAMs 23/240 (9%) 16/240 (6%)
Number of GCLKs 3/32 (9%) 4/32 (12%)
Maximum frequency 37 MHz 80 MHz

Table 3.4: Comparison of the DPE and SHELL protocol engines targeting the more
modern XC4VLX100-10FF1148 FPGA.

The SHELL code-base outperforms the DPE on both area utilisation and achie-

vable frequency for both targets. The slowest speed that the B-Link is capable of

operating at is 64 MHz. This means that an FPGA implementation of the DPE is not

capable of meeting the clock frequency required to communicate with the LC3 devices,

even using modern FPGA technology. In order to achieve the minimum operating

frequency, the DPE code would need to be heavily optimised for the FPGA target.

Figure 3.17 outlines the latency of packets traversing from the B-Link to the

address translation layer and back again, through the SHELL protocol stack. The

total time taken is 42 clock cycles (525 ns at 80 MHz), assuming a 0-cycle turnaround

at the address translation module and no congestion on the B-Link bus. An additional

4-cycles for writes and 6-cycles for reads between the address translation layer and the

local BRAMs attached to the MAIL application modules.

Basic testing of the custom-built SCI protocol stack was performed in three in-

cremental stages. The first was to read and write values in the CSR of LC3 devices

local to the board. This proved that they had completed the initialisation sequence

74

Chapter 3. System Design and Implementation

and were in an operational state. The second test was to read and write values in the

CSR of remote LC3 devices. This proved that the software initialisation of the LC3s

was successful and that the SCI fabric was operational. The final test was then to read

and write values in the CSR of the remote FPGA. This proved that both FPGAs were

capable of sending and receiving packets across the SCI and that the custom-built SCI

protocol stack was fully functional.

stream−bufferfifob−link atl

5 * clk

6 * clk

10 * clk

5 * clk

7 * clk

9 * clk

in
co

m
in

g
re

qu
es

t/r
es

po
ns

e
ou

tg
oi

ng
 r

eq
ue

st
/r

es
po

ns
e

Figure 3.17: Packet latency of requests and responses traversing the SCI protocol
layer from the B-Link bus to the address translation module and back again.

Extended testing of the protocol stack could not be performed in hardware as a

result of the system instabilities caused by the hardware faults described in Section 3.4.

Extended testing of the protocol stack was instead run using simulations of two nodes

75

Chapter 3. System Design and Implementation

communicating back and forth with one another. The simulations helped to debug the

errors in the HDL code as well as work around the hardware faults in the nodes, but

the unstable nature of the hardware setup prevented the system from being able to run

communications testing across the SCI fabric for extended durations.

Request and response subactions for local LC3 register read operation across the local

B-Link bus.

0101_0006_0003_0004 1001_0004_047D_0001

0001_FFFF_F000_03B0 0001_0000_0000_0000

0000_0000_0000_F2B1 1066_606D_0000_0000

0000_0000_0000_0000

0000_0000_0000_9B8C

Request and response subactions for remote LC3 register read operation across the SCI

interconnect.

0F06_0040_0003_0000 2F06_0000_047D_0040

0006_FFFF_E000_0034 0006_0000_0000_0000

0000_0000_0000_EF77 0000_0000_0011_0000

0000_0000_0000_0000

C981_0003_0000_1D51

Request and response subactions for remote FPGA register read operation across the

SCI interconnect.

0F07_0008_0003_0004 2F07_0004_047D_0008

0007_FFFF_E000_0200 0007_0000_0000_0000

0000_0000_0000_ED0F 0123_4567_89AB_CDEF

FEDC_BA98_7654_3210

0999_0003_0000_9DB4

3.9 Application Programming

Each PE in the system requires its own dedicated application port that it uses to in-

terface with the rest of the resources provided by the bridge FPGA. The application

interface port is connected to one port of a dedicated dual-port BRAM wrapper in

the MAIL module, which allows the application to directly read and write values in

the BRAM. The second port of this BRAM is then interfaced with the DSM using

76

Chapter 3. System Design and Implementation

the SNAIL interconnect. Each PE requires its own MAIL module so the SNAIL in-

terconnect must be correctly configured to account for the number of MAIL modules

instantiated in the FPGA. The MAIL module itself is responsible for controlling access

to the distributed BRAMs and making them available as part of the global address

space in combination with the SNAIL architecture. The MAIL additionally implements

the API used to allow the PE to access local and remote memories as well local control

registers. Listing 3.1 describes the physical signals that the application uses to connect

to the MAIL module. The en and cmd signals specify that the PE has enabled the port

and gives the command type for the transaction. The daddr and saddr signals specify

the source and destination addresses, while the datai and datao signals transfer data

to and from the PE. Finally, the status signal informs the PE about the completion

status of the current transaction. All transactions are initiated by the PE so the flags

signal is provided to inform the PE about any actions that it needs to take.

� �

1 port (

2 en : in s t d l o g i c ;

3 cmd : in s t d l o g i c v e c t o r (7 downto 0) ;

4 daddr : in s t d l o g i c v e c t o r (31 downto 0) ;

5 saddr : in s t d l o g i c v e c t o r (31 downto 0) ;

6 data i : in s t d l o g i c v e c t o r (31 downto 0) ;

7 datao : out s t d l o g i c v e c t o r (31 downto 0) ;

8 s t a tu s : out s t d l o g i c v e c t o r (15 downto 0) ;

9 f l a g s : out s t d l o g i c v e c t o r (15 downto 0)

10) ;
� �

Listing 3.1: Application Interface Port Signalling

As all of the FPGA’s BRAMs are mapped into the global address space along with

the locally attached external memories and system control registers, the application PE

can read and write data transparently across the system. From the PE’s perspective, a

data-write to its directly attached BRAM is no different than a data-write to a remote

BRAM in the same FPGA or in a remote FPGA. The only difference is the latency in

completing the transaction. Therefore, only a read and write command, combined with

the information provided by the status and flags signals, is required to interact with the

entire system. A mechanism to lock and free memory segments is additionally provided

in order to protect certain areas of memory from being over-written by remote PEs.

Finally, a barrier command is provided, which ensures that all outstanding transactions

have completed before allowing the PE to continue to access the global address space.

The following basic API commands are supported by the MAIL module and are based

77

Chapter 3. System Design and Implementation

on a subset of the SISCI API.

• mem read – reads local and remote memory locations.

• mem write – writes local and remote memory locations.

• segment lock – locks local and remote memory segments.

• segment free – frees local and remote memory segments.

• mail barrier – blocks until all outstanding transactions have completed.

The application port interface, described in Listing 3.1, is designed to allow for the

implementation of additional API commands, if required, without the need to modify

the port signalling. The basic commands already provided, however, are enough to

allow for the implementation of parallel application PEs that can operate concurrently

in the same FPGA or distributed across multiple FPGAs.

In order to test the GCN platform implementation, an application had to be

developed that could interface with the application port provided by the MAIL module.

The application chosen was ray-triangle intersection testing as it is a well defined

problem that is integral to ray-tracing algorithms. The ray-triangle intersection testing

algorithm can be viewed as a PE fundamental to ray-tracing and is easily implemented

in parallel in the reconfigurable logic of the FPGAs.

3.10 Summary

This chapter has described the hardware architecture of the GCN, which was designed

with the intention of providing a scalable, distributed platform that was capable of

performing either rasterisation or ray-tracing algorithms by leveraging the power and

flexibility of modern commodity graphics hardware in combination with reconfigurable

logic devices. Scalability is achieved through the use of a hardware DSM interconnect,

which allows for the clustering of multiple nodes.

Unlike in standard, commercially available, reconfigurable hardware-based de-

velopment platforms, the GCN architecture directly integrates the reconfigurable re-

sources into the tightly-coupled cluster architecture. Usually, the FPGAs are intercon-

nected via the system IO buses using commodity interconnects such as Ethernet or via

custom proprietary interconnects.

The fusion of the local RAM and internal FPGA resources into a hardware based

DSM allows the GCN architecture to implement efficient distributed algorithms in the

logic of the cluster. The SCI standard is used as the interconnect fabric that implements

78

Chapter 3. System Design and Implementation

the DSM, with the aid of logic in the FPGAs. The hardware design is implemented

to allow the set-up of a 2D torus interconnect topology, which has good scalability

properties and excellent suitability for parallel rendering.

PEs fundamental to the rendering application running across the cluster are im-

plemented using the reconfigurable resources and can be coordinated by commodity

PCs, which can be attached to the cluster. The GCN architecture is designed to en-

able the transparent execution of these PEs across the entire cluster using the DSM,

allowing the application to leverage resources provided by both the custom nodes and

commodity PCs. This novel, hybrid approach provides beneficial features that can be

used to accelerate graphics applications.

The architectural implementation details of the reconfigurable logic required to

drive the GCN hardware were then discussed. The hardware architecture implements

a HW-DSM using the SCI interconnect, while the reconfigurable logic layers are res-

ponsible for initialising the system and aid the LC3 devices in implementing the SCI

protocol. The FPGA logic implements a shared-memory abstraction layer, which com-

bines the local SRAM and FPGA BRAM resources into one global address space. It

additionally provides resources for implementing distributed application PEs, which

may run across the cluster.

The customised SCI protocol implementation was compared against similar pro-

jects and against the commodity PSB ASIC that is used to bridge the PCI bus and SCI

interface in commodity systems. The custom SCI protocol used in the GCN system

has proven to have comparable bandwidths with much lower point-to-point latencies

and a much lower resource utilisation when implemented in an FPGA.

The next chapter evaluates the entire GCN architecture using a custom built

application that was implemented as PEs in the reconfigurable logic of the system.

The application performs ray-triangle intersection testing, which is an integral part

of any ray-tracing algorithm. The PEs of the application are distributed across the

FPGAs and use the MAIL interface to access the resources made available by the

shared-memory abstraction layer.

79

Chapter 4

System Evaluation

The combination of hardware design and reconfigurable logic implementation, as des-

cribed in Chapter 3, forms the basis of the GCN platform architecture. While the logic

implemented in the FPGAs provides a well-defined access port and API mechanism

for applications to interface with the system, it does not perform any direct proces-

sing itself. As such, in order to fully evaluate the system, an application had to be

implemented to prove the concept and operation of the hardware-based DSM. The

application chosen was ray-triangle intersection testing, as it is a well-defined problem

that is integral to ray-tracing algorithms. The ray-triangle intersection testing module

can be viewed as a PE fundamental to ray-tracing and easily implemented in parallel

in the reconfigurable logic of the FPGAs.

This chapter begins by evaluating the hardware performance of the GCN platform

and compares its bandwidth and latency results with commodity interconnect imple-

mentations. The ray-triangle intersection testing algorithm and its implementation in

hardware is then described. This is followed by a description of how the algorithm was

validated and integrated into the reconfigurable logic of the GCN architecture using

the API and application port interface, which were described in the previous chap-

ter. Finally, some results of the algorithm are provided and this is compared against

commodity implementations.

4.1 Hardware Performance Results

Performance results for the GCN platform were gathered using both physical and

simulated board-to-board communications in a two node SCI ringlet configuration.

Simulations of B-Link traffic show that a sustained throughput of 568 MB/s can be

achieved between the LC3 device and the bridge FPGA using NWRITE128 packets.

This translates to 85% utilisation of peak theoretical bandwidth of the bus.

81

Chapter 4. System Evaluation

The physical hardware test setup consisted of two custom-built nodes connected

together in a single ringlet configuration. The SCI interconnect was programmed to run

at 125 MHz and the B-Link frequency was set to run at 80 MHz. Both the application

and bridge FPGAs were running at the same frequency as the B-Link. One of the

boards was programmed with a simple application that interfaced with a single MAIL

module and was set to continuously copy data from the BRAM of the local FPGA to

the BRAM of the remote FPGA. The second board consumed the incoming packets and

saved the data to the local BRAM. Only corresponding outgoing response packets were

generated by the consumer board where required. The GPIO pins of both boards were

connected together in order that they could directly transmit status flag information

indicating the transmission or reception of packets across the SCI interconnect.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

gpio dsu

outinoutin

LC3a LC3b

BRIDGE

FPGA

ASI

FPGA

gpio dsu

outinoutin

LC3a LC3b

BRIDGE

FPGA

ASI

FPGA

PC

NODE #1 NODE #2

B−Link bus @ 80MHz

SCI ringlet @ 125MHz

RS232LVTTL GPIO signalling

B−Link bus @ 80MHz

Figure 4.1: Test setup showing the two nodes connected together via a single SCI
ringlet operating at 125 MHz. Node #1 is set as a packet consumer, while node #2
is set as a packet producer. Packet timing information is transmitted between the two
FPGAs using their GPIO ports and performance results are gathered via the debugging
port attached to the application FPGA of node #2.

Latency and bandwidth measurements for the test setup were gathered using a

combination of performance counters and ChipScope logic analyser cores contained in

the bridge FPGAs of both boards. Debugging code present in the application FPGA

allowed reading and writing of internal application registers and BRAMs, from a com-

82

Chapter 4. System Evaluation

modity PC, via the RS232 debugging port. Bandwidth measurements show that the

two boards were capable of communicating data at up to 390 MB/s. The average

BRAM-to-BRAM latency was calculated as being 0.98 µs.

(a) (b)

Figure 4.2: Comparison of peak bandwidth and average latency measurements between
a commercially available, single channel PCI-SCI adapter card (Dolphin D331) and the
GCN implementation of the SCI protocol.

The GCN implementation achieves higher bandwidths and lower latencies than

the commodity PCI-SCI adapter card as a result of the direct integration of the FPGAs

into the SCI fabric. The bisectional bandwidth and average latency, as both systems

are scaled, can then be predicted based on the formulas given in Table 1.1.

Figure 4.3: Predicted bandwidth results comparing scalability of the GCN SCI im-
plementation against the commercially available PCI-SCI adapter card (Dolphin D331)
for 1D ringlet and 2D torus configurations.

83

Chapter 4. System Evaluation

Figure 4.4: Predicted latency results comparing scalability of the GCN SCI imple-
mentation against the commercially available PCI-SCI adapter card (Dolphin D331)
for 1D ringlet and 2D torus configurations.

Though extended testing of the setup was not possible as a result of unreliability

in the hardware caused by the problems described in Section 3.4, the bandwidth and

latency results shown were calculated based on several thousand SCI packet transfers.

The logic for the bridge FPGA of the GCN was synthesised targeting both a VirtexII

and Virtex4 device to highlight the difference in resource utilisation between them

using the same codebase. The software in this case is setup to accommodate two PEs

per FPGA. However, the logic for the application PEs is not included in the synthesis

results and is instantiated as blackbox components within the design. Table 4.1 shows

that approximately 87% of the VirtexII device is used by the software infrastructure.

The same code only uses 19% of the Virtex4 device, leaving 81% for the PEs.

XC2V2000-5FF896C XC4VLX100-10FF1148C
Number of slices 9405/10752 (87%) 9392/49152 (19%)
Number of slice flipflops 6521/21504 (30%) 6521/98304 (6%)
Number of 4-input LUTs 17300/21504 (80%) 17292/98304 (17%)
Number of bonded IOs 215/624 (34%) 215/768 (27%)
Number of BRAMs 16/56 (28%) 16/240 (6%)
Number of GCLKs 4/16 (25%) 4/32 (12%)
Maximum frequency 64 MHz 77 MHz

Table 4.1: Synthesis results for the entire code-base excluding the application modules.
The software was setup for two MAIL application ports, increasing the complexity of
the design, which increased the device utilisation and reduced the clock speed.

84

Chapter 4. System Evaluation

The maximum achievable frequency of 64 MHz for the VirtexII device was as a

result of the logic in the Bridge FPGA being configured to support two application ports

per node. The performance results in Section 4.1 were gathered using a configuration

that supported only one application port per node and as a result the simpler logic

allowed the 80 MHz clock frequency to be achieved.

4.2 Ray-Triangle Intersection Testing

The core concept of any kind of ray-tracing algorithm is to efficiently find intersections

of a ray with a scene consisting of a set of geometric primitives. These intersections

may be computed in multiple ways, each of which has different properties such as

the number of floating point operations required, memory consumption, accuracy, etc.

Consequently, a large number of different algorithms, such as [Bad90] and [Woo90],

have been implemented for different kinds of primitives. The algorithm chosen to

perform the ray/triangle intersection testing is the Möller-Trumbore algorithm [MT97],

which is calculated as follows.

��

��

�
�
�
�

��

�
�
�
�

V0

V1

V2

T(u,v)

D

O

Figure 4.5: Ray/Triangle intersection testing, where O is the ray origin and D is
it’s direction vector. V0, V1 and V2 are the points that define the triangle. T (u, v) is
defined to be a hit if the barycentric coordinates (u, v) lie within the triangle.

Given a ray R(t) that has a direction D and origin O then

R(t) = O + tD (4.1)

85

Chapter 4. System Evaluation

and a triangle with vertices V0, V1 and V2 then a point is defined to lie within the

triangle if

T (u, v) = (1 − u − v)V0 + uV1 + vV2 (4.2)

where (u, v) are the barycentric coordinates which must meet the following constraints

u ≥ 0, v ≥ 0 and u + v ≤ 1 (4.3)

Equating 4.1 and 4.2 then writing them as a matrix results as follows:

[

−D E1 E2

]







t

u

v






= T where

E1 = V1 − V0

E2 = V2 − V0

T = O − V0

(4.4)

Using Cramers rule and factoring out common terms, the solution becomes:







t

u

v






=

1

P · E1







Q · E2

P · T

Q · D






where

P = D × E2

Q = T × E1

(4.5)

Equation 4.5 can further be optimised for implementing in hardware by re-writing

it as follows:

(t, u, v)T =
1

a
(b, c, d)T where

a = (D × E2) · E1, c = (D × E2) · T

b = (T × E1) · E2, d = (T × E1) · D
(4.6)

If the resulting value of (u, v) meets the constraints given in Equation 4.3 then

the ray intersects the triangle at the coordinates (u, v) at a distance t along the ray

from the origin. Otherwise, the ray does not intersect the triangle and the values t, u

and v can be ignored.

The hardware implementation of the Möller-Trumbore algorithm is fully pipelined

and is divided into three distinct units as shown in Figure 4.6. The first unit generates

the partial results A, B, C and D that are required by the second unit, which calculates

the final t, u and v values. Finally, the third unit tests the results for correctness and

determines whether or not a hit occurred. Delays are added where required, in order to

synchronise the different pipeline stages. The intersection pipeline has a total latency

of 80 clock cycles. However, once it is full it has a throughput of 1, meaning that

one intersection can be calculated per clock cycle. A total of 52 Floating Point Units

(FPUs) are required to implement the full intersection algorithm, which is fully IEEE-

754 [IEE85] compliant.

The synthesis results shown in Table 4.2 were generated for two different FPGA

targets. The first targets the FPGA that is used as the bridge device in the GCN

hardware, while the second targets a more modern mid-range Virtex4 device.

86

Chapter 4. System Evaluation

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

����

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��

T E1 E2 D_del8

CA B D

O V0 V0 V2V1 V0 D

DEL
24 24

DEL
24

DEL
24

DEL XPROD XPROD

8
DELFSUB3 FSUB3 FSUB3

DOTPROD DOTPROD DOTPROD DOTPROD

1.0

FDIV DEL DEL DEL
16 16 16

FMUL FMULFMUL

A D

T U V

B C

T U V

DEL DEL
8 8 8

FADDDEL

T U V HIT

HIT_TEST

Figure 4.6: The hardware implementation of the Möller-Trumbore algorithm is split
into three distinct units. The first generates the partial results A, B, C and D required
by the second unit, which then calculates the final t, u and v values. Finally, the third
unit tests the results for correctness and determines whether a hit occurred. The DEL
modules add delays to sections of the pipeline where appropriate in order to synchronise
the various stages.

87

Chapter 4. System Evaluation

XC2V2000-5FF896C XC4VLX100-10FF1148C
Number of slices 26172/10752 (243%) 26092/49152 (53%)
Number of slice flipflops 40482/21504 (188%) 40482/98304 (41%)
Number of 4-input LUTs 33174/21504 (154%) 33175/98304 (33%)
Number of bonded IOs 581/624 (93%) 581/768 (75%)
Number of BRAMs 0/56 (0%) 0/240 (0%)
Number of GCLKs 1/16 (6%) 1/32 (3%)
Maximum frequency 115 MHz 150 MHz

Table 4.2: Synthesis results for the triangle ray intersection module.

The synthesis results indicate that the intersection unit is far too large to be

able to fit into the VirtexII FPGA; however, it will easily fit inside the larger Virtex4

FPGAs. The large size of the intersection unit is a direct result of the large number

of FPUs required by the pipeline design. Its size could be reduced by reducing the

number of FPUs required. For example, if the first unit is modified so that FPU

resources are shared and it only produces two of the four partial results every clock

cycle, this would allow for the removal of one cross-product module and two dot-

product modules, removing 19 FPUs from the design. This resource sharing, would

have the side-effect of reducing the efficiency of the pipeline design as the throughput

would be reduced to producing one intersection result every 2 clock cycles instead of

every single cycle once the pipeline had been filled. A second option would be to

reduce the resolution of the FPU calculations from 32-bit fully IEEE-754 compliant

values to a less accurate representation. This would reduce the accuracy of the ray-

triangle intersection results but, if the resolution was chosen carefully, should not have

a perceptible impact on the final ray-traced scene rendering. Both of these hardware

optimisations were used to great effect in the design of the triangle-intersection unit for

the DRPU project [SWW+04], leading to the ability to fit four complete ray-triangle

intersection modules using 24-bit floating point number representations plus additional

control logic, into a single XC4VLX200 FPGA. This resulted in an increase in the

overall parallel efficiency of the system even though the per-pipeline efficiency was

slightly reduced.

4.3 Application Design and Validation

The fact that the hardware design of the ray-triangle intersection unit was too large to

fit into the FPGAs used in the GCN hardware meant that it had to be simulated in

order to test and validate the design. A simulation testbed, representing the functiona-

88

Chapter 4. System Evaluation

lity of the GCN hardware, was constructed in VHDL and this allowed cycle-accurate

simulation results to be obtained to evaluate the functionality and the performance of

the triangle-intersection units within the framework of the GCN architecture. The full

simulation testbed instantiated two GCN node models, which were interconnected via

a single SCI ringlet. This mirrored the physical setup used to measure the bandwidth

and latency results for the system as outlined in Figure 4.1. The simulation testbed

also provided a method of accessing the debugging port attached to the application

FPGA, emulating the method by which the PC in the physical test setup was able to

communicate with the node.

In order to test the design and functionality of the ray-triangle intersection algo-

rithm, a file containing random triangle and ray data was generated using a commodity

PC. These test vectors were then evaluated using a software-based version of the ray-

triangle intersection algorithm and the results were stored back to the test file. This

allowed the accuracy of the results of the hardware ray-triangle intersection to be com-

pared against the software implementation during initial testing. It also allowed the

performance of the hardware and software implementations to be compared.

Figure 4.7: A subset of the random triangles used to test the intersection unit.

Figure 4.7 depicts a rendering of a subset of the random triangles that were used

to gather the performance results from the hardware and software versions of the ray-

triangle intersection algorithm. Each set of randomly generated test vectors contained

89

Chapter 4. System Evaluation

the V0, V1 and V2 triangle vertices as well as the ray direction (D) and origin (O)

vectors. Finally, the corresponding hit, t, u and v values calculated by the software

algorithm were provided for verification purposes. The three triangle vertices, the ray

direction and ray origin vectors each contain an x, y and z co-ordinate, represented as

a 32-bit floating-point value. The hit result was represented as a 1-bit value and the

t, u and v results are each 32-bit floating-point values. A total of 50,000 test vector

combinations and their results were provided in the test file. The generated test vectors

and software implementation of the ray-triangle intersection algorithm were provided

by Colin Fowler.

Initial simulation testing and validation of the ray-triangle intersection code was

performed by supplying a new set of test vectors to the pipeline every clock cycle. This

enabled the calculation of the maximum possible intersection throughput of the appli-

cation, which was determined to be 41.2 MTri/s. The minimum achievable intersection

latency of the pipeline was calculated to be 0.02428 µs. These results depend on the

intersection pipeline remaining fully utilised, which requires a data bandwidth of 2471

MB/s in order to supply a new set of vectors to the pipeline every cycle.

By implementing the pipeline optimisations discussed in Section 4.2, the data

bandwidth requirements can be reduced to 855 MB/s. This would also have the effect

of reducing the maximum intersection throughput of the pipeline to approximately 22

MTris/s; however, the throughput would still be approximately double what can be

achieved using commodity PCs, as shown by Figure 4.8(b).

(a) (b)

Figure 4.8: Comparison of the maximum achievable ray-triangle intersection through-
put and latency for the FPGA implementation versus two software-based implementa-
tions of the same code running in commodity PCs.

The bandwidth requirements of the intersection pipeline highlight the fact that

the scene-database should be stored locally in memory that is directly attached to the

90

Chapter 4. System Evaluation

FPGA and that the internal datapath of the FPGA logic should also be very wide

to avoid creating bottlenecks within the design. A direct single-channel DDR-RAM

connection can provide up to 2.6 GB/s bandwidth and combined with an internal

datapath of 256-bit clocked at 80 MHz, would cover the requirements of the intersec-

tion pipeline. In situations where the size of the scene-database exceeds the available

local memory space, it must be segmented across multiple nodes and the required in-

formation transferred between them via the SCI interconnect, which has a maximum

bandwidth of 1 GB/s, so it is important to minimise the transfer of scene-data across

the SCI. This can be accomplished using several different techniques, such as utili-

sing caches, pre-fetching information and transferring rays between nodes instead of

transferring scene-data. Chapter 5 provides a more detailed discussion about the next-

generation ray-tracing architecture that was developed to address the lessons learned

from the GCN design.

4.4 Application Integration

Once the ray-triangle intersection algorithm had been tested and verified to function

correctly, it had to be integrated with the rest of the system. This was accomplished

using the application interface port provided by the MAIL modules. Each bridge FPGA

in the testbench simulation was configured to run two application PEs concurrently.

As a result, two intersection pipelines could operate in parallel in each FPGA, which

meant a total of four PEs could run in the test environment. Three of the control

registers that are provided by the MAIL module were used by the application PE. The

first indicated the starting address of the data to read and the second indicated the

amount of intersections to perform. The third provided the starting address location

where the calculated results should be written back. The flag register was used to

signal the PE to start and stop processing new vectors.

The simulation testbench setup reads the floating-point values from the test file

and converts them into 32-bit IEEE-754 compliant vectors which are then uploaded to

the memory of the node through the debugging port attached to the application FPGA.

Once the test vectors have been uploaded, the ray-triangle intersection application is

initialised with the starting point of the test vectors in memory and the amount of

intersections that should be computed. This setup allows single or multiple application

PEs to be initialised in different configurations.

After the various control registers had been configured and the appropriate flag

signal had been set, the application PE reads and latches the required information

from the control registers. At this point, it then begins to fetch the required data

91

Chapter 4. System Evaluation

from the memory. Once all of the data required to calculate an intersection has been

fetched it is inserted into the pipeline and the number of intersections left to perform is

decremented. If the number of intersections left to perform has reached zero then the

PE stops fetching new data but continues to store results back to memory until it has

completed all calculations, otherwise it continues fetching data and inserting it into the

intersection pipeline. All data sent and received by the application PE must go through

the MAIL module and as a result, the bandwidth available to the PE is reduced so

it is not possible to keep the pipeline fully utilised. This in turn has an impact on

the performance that the PE can attain. The primary limiting factor in this case is

the 32-bit data bus that the PE must use. The combined total of the input vectors

required by the intersection pipeline is 60 bytes, which implies that the application will

require 15 clock cycles to gather enough data for each intersection test and will prevent

the pipeline from operating at its peak efficiency. The absolute maximum number of

triangle intersections that can occur in this scenario is then 2.75 MTri/s per PE.

4.5 Application Results

Results were gathered using several combinations of concurrently operating PEs. Ini-

tially the test vectors were uploaded to the board’s SRAM and the following tests were

run. The first used a single PE on a single FPGA, this was followed by two PEs in one

FPGA, one PE in two FPGAs and finally two PEs running in two FPGAs. These tests

were then re-run except the test vectors were uploaded to the BRAMs of the MAIL

modules instead of the SRAM. This led to the following configuration of PEs that were

used to gather results using the local SRAM followed by the internal BRAM resources.

• 1×1 cores – 1 PE – one FPGA running one PE

• 1×2 cores – 2 PEs – one FPGA running two PEs

• 2×1 cores – 2 PEs – two FPGAs each running one PE

• 2×2 cores – 4 PEs – two FPGAs each running two PEs

Figures 4.9 and 4.10 display the results that were obtained from this setup and compare

the performance of the four different configuration options. The performance of a single

PE running in a single FPGA was measured to be 0.54 MTri/s when using the SRAM

and 0.62 MTris/s when using the BRAM, representing a 12.2% performance increase.

These figures are lower than the theoretical maximum achievable intersection rate.

However, the purpose of the test application was to prove the scalability of the system

and not to outperform pre-existing custom hardware ray-tracing solutions.

92

Chapter 4. System Evaluation

(a) (b)

Figure 4.9: Intersection latency and bandwidth usage comparing multiple PE configu-
rations using the SRAM and BRAM resources provided by the shared-memory hardware
implementation.

(a) (b)

Figure 4.10: Speedup and intersection throughput results comparing multiple PE
configurations using the SRAM and BRAM resources provided by the shared-memory
hardware implementation.

Though the overall performance of the application PEs is not optimal, they do

exhibit good scalability and increased performance when they take advantage of the

BRAM resources provided by the FPGA, as shown by Figure 4.10(b). This enhan-

ced speedup is caused by two factors. The first is that the BRAMs are tied as close

as possible to the application PEs, reducing the latency in reading and writing data.

The second is the fact that there is less contention for access to the BRAM resources

as they are distributed between the PEs instead of forming a single bottleneck that

must be accessed by multiple PEs. The divergence in performance between the BRAM

and SRAM implementations, as the number of PEs is increased, indicates that the

utilisation of the BRAM resources provides better performance scalability than is pos-

sible through the exclusive use of the SRAM resources. Simulations of up to 64 nodes

93

Chapter 4. System Evaluation

should be run in order to more fully expose the speedups that can be achieved using

the BRAMs of the FPGAs.

The scene-database of large models, such as the Boeing 777, can be in excess

of 45 GB [DWS04] so they need to be stored in the main memory (SRAM) of the

system as the internal BRAMs of the FPGAs are far too small to accommodate the

scene-databases of even small models. The BRAMs are instead used to store critical

information about the model, such as information about the rays being traced, acce-

leration data structures and intersection testing results. The fact that this critical

information is stored in the BRAMs and made available to the distributed shared-

memory means that it can be communicated between nodes with very low latencies

and high bandwidths. In the case of the GCN architecture, the 32-bit datapath bet-

ween the FPGAs and the SRAMs represent a bottleneck that contributed to the low

intersection rate that was achieved during testing.

While it would have been possible to use the Application Specific Interface (ASI)

FPGA to accommodate additional PEs, it was decided to use it instead to control

access to the Debugging Support Unit (DSU) port and SRAMs as its smaller size

meant that it would be only able to accommodate one PE at most. Instead, it was

used to provide debugging logic and performance counters to monitor the activity of

the bridge FPGA. Dedicated signalling between the two FPGAs allowed the bridge to

transparently access the local SRAMs while the debugging logic allowed the contents

of the RAM and performance counter registers to be downloaded to a host PC.

4.6 Summary

This chapter has presented the hardware performance results that were gathered from a

two-node setup, which show that the GCN architecture can provide a higher-bandwidth

and lower-latency interconnect than standard commodity SCI adapter cards as a result

of the removal of the IO bus bottleneck and the implementation of the SCI protocol

in hardware. The detailed design and implementation of an example application that

was used to test the GCN architecture was also described. The application used was

a ray-triangle intersection algorithm, which forms a fundamental PE of ray-tracing

applications and the method by which it can be integrated into the GCN architecture

using the application interface port was detailed. The fusion of the local RAM and

internal FPGA BRAM resources into a single global address space has enabled the

implementation of this parallel ray-tracing PE in the reconfigurable logic of the cluster,

which has exhibited good scalability results.

The performance results of the intersection pipeline show that the GCN archi-

94

Chapter 4. System Evaluation

tecture does exhibit good scalability as the number of PEs in the system is increased,

additionally it shows that the use of the BRAM resources has aided in the scalability

of the system. Larger scale simulations encompassing more nodes should be run in

order to further validate this. The application also highlights some of the limitations

of the system, such as the limited logic resources provided by the FPGAs used in the

design and the problems caused by the inability to fully integrate the northbridge de-

vices into the system. As a result, a new architecture has been developed with the

intention of overcoming these limitations. This architecture builds on the GCN design

ethos, while simplifying the design and focusing exclusively on the implementation of

ray-tracing algorithms. This new architecture is called SPARTA and is described in

the next chapter.

95

Chapter 5

Design Evolution

The initial design of the GCN architecture focused on providing a scalable, distri-

buted platform that was capable of implementing either rasterisation or ray-tracing

algorithms while being able to scale to meet the requirements of large-scale interactive

graphics applications. One of the main design features of the architecture was the in-

clusion of a northbridge chipset, which solved the physical and logical implementation

issues associated with the AGP interface while also providing access to local DDR-

RAM resources. The inclusion of the AGP interface would allow commodity GPU

adapter cards to be used in the system, providing resources for the implementation

of distributed rasterisation based algorithms, while the RAM interface allowed for up

to 2 GB of memory to be attached to each node without the need to implement the

controller logic in the FPGA.

Since the design was conceived, modern technology has moved on and AGP has

become a legacy standard. Modern GPU adapters now interface with host systems

using the new PCIe interconnect standard, which provides far higher bandwidths and

lower latencies than AGP. It has also become increasingly common to find multi-GPU

based commodity systems, which enable up to four GPUs to interface with a single

commodity PC using entirely COTS technologies. As a result of the GCN’s reliance on

AGP, it is only possible to interface one GPU adapter card per node. Additionally, the

problems encountered with the integration and initialisation of the northbridge device,

combined with the logic overhead that would be required to communicate with the

FSB interface, made it a redundant component in the design.

If the AGP interface and northbridge device were removed from the system, the

RAM could be directly connected to the FPGA. This would simplify the architecture,

while reducing the memory access latency to the local RAM as it would no longer

be indirectly connected to the system through the northbridge device. By removing

the AGP interface, the system could no longer provide support for the addition of

97

Chapter 5. Design Evolution

commodity GPU cards and by extension, support for rasterisation based algorithms in

the system would be degraded. The simplified design and reduced local memory access

latencies, however, would prove highly beneficial to the implementation of distributed

ray-tracing algorithms. This led to the inception of the SPARTA architecture.

The SPARTA architecture, that is described in this chapter, is designed to be a

special purpose scalable infrastructure for the high-performance interactive ray-tracing

of very large models. It will target large-scale visualisations for scientific and enginee-

ring applications. The system design is a direct result of the work carried out, and

the lessons learned, during the design and implementation of the GCN prototype ar-

chitecture and it will be optimised for the implementation of distributed ray-tracing

algorithms. The SPARTA design and project proposal has been accepted by Enter-

prise Ireland and has acquired development funding as part of their Commercialisation

Fund Technology Development programme. The project will implement the physical

SPARTA architecture, as described in this chapter, and will develop a distributed ray-

tracing algorithm that will build on top of the work undertaken during the development

of the GCN system.

5.1 Design Objectives

The design objectives for the SPARTA architecture remain similar to that of the GCN

architecture except with two major differences. The first was that the focus of the archi-

tecture should be dedicated to ray-tracing algorithms instead of providing a platform

that is equally amenable to the implementation of both rasterisation and ray-tracing

rendering algorithms. The second was the simplification of the overall architecture,

while retaining as many of the original GCN design concepts as possible in order to

reduce the likelihood of problems with the new hardware build that could be caused

by the introduction of new and untested features. The proposed architecture will allow

for an efficient object-space subdivision that can distribute a very large scene-database

across the custom SPARTA-Nodes (SPARTANs).

As with the GCN architecture, the SPARTA implementation will connect the

reconfigurable logic directly to a high-speed, low-latency SCI interconnect. The inter-

connect implementation will be enhanced to allow the SPARTA cluster to be configured

in various topologies, including ringlet 2D and 3D torus configurations, which can be

used to optimise the interconnect fabric for various network data-traffic access patterns.

Figure 5.1: 1D torus, or ringlet, topology. Each node has one input and one output.

98

Chapter 5. Design Evolution

Figure 5.2: 2D torus topology. Each node requires two inputs and two outputs.

Figure 5.3: 3D torus topology. Each node requires three inputs and three outputs.

Figures 5.1, 5.2 and 5.3 show the different topology configuration options that

will be available for interconnecting SPARTA nodes. Each option exhibits different

scalability characteristics, as defined by Table 1.1. The ringlet topology requires one

input and one output connection per node, the 2D torus topology requires two inputs

and two outputs per node and the 3D torus topology requires three inputs and three

outputs per node. This implies that the SPARTANs will need to have at least three

LC3 devices to satisfy the physical connection requirements for implementing 3D torus

topologies. Figure 5.4 shows the bisectional bandwidth scalability characteristics for

the different topologies, while Figure 5.5 shows how the average point-to-point latency

scales. The 3D torus topology provides both the highest overall bisectional bandwidth

and lowest average latency, which makes it most desirable for implementing scalable

interconnects.

The SPARTA platform will consist of a combination of commodity PCs and

custom built nodes, which will be interconnected via the flexible SCI interconnect fabric.

Figure 5.6 shows an example interconnect configuration consisting of two commodity

PCs and nine SPARTANs. The SPARTANs are interconnected using a dedicated 2D

torus, consisting of two counter-rotating ringlets, while the two PCs are interconnected

using a single dedicated ringlet. The PCs then interface with the SPARTANs using a

99

Chapter 5. Design Evolution

second dedicated ringlet. This scalable interconnect configuration layout will provide

adequate bandwidth for the distribution of large scene-databases across the cluster

and will allow for the fast migration of rays between the different nodes with minimum

latency.

Figure 5.4: Bisectional bandwidth for 1D, 2D and 3D torus configurations.

Figure 5.5: Average point-to-point latency for 1D, 2D and 3D torus configurations.

The FPGAs on the SPARTANs will execute the ray-tracing algorithms in parallel

and the logic that implements the algorithms on a particular compute-node will have

access to the specific part of the scene-database that resides in that node’s local me-

mory. Rays that require access to other parts of the scene-database will be transferred

100

Chapter 5. Design Evolution

to the correct compute-node via the high-speed interconnect. Most of the traffic being

communicated across the interconnect will relate to the propagation of rays traversing

the scene. Additionally, when the scene needs to be updated, the majority of com-

munications will be “nearest-neighbour” because of the inherent locality of dynamic

scenes.

B

A
#1
PC

A

B

#n
PC

A

#1
CD

Node

B

A

D
#4

C

B

Node

D

A

#7
C

B

Node

A

#8
C

B

D
Node

D

A

#n
C

B

Node

D

A

#5
C

B

Node

A

D
#6

C

B

Node

D

A

#2
C

B

Node
D

A

#3
C

B

Node

Figure 5.6: Example configuration of the SPARTA cluster showing the compute-nodes
and host PCs. The number of compute-nodes and host PCs may be adapted to the
computational demands of the target application.

The basic requirements to be able to interactively ray-trace massive models that

were set out in Section 2.4 were also taken account of during the design of the SPARTA

architecture. From Section 4.3, it was shown that a single triangle intersection pipeline

in an FPGA can achieve 22 MTri/s at a bandwidth of 855 MB/s. Assuming 2 intersec-

tion pipelines are available in each FPGA, a total of 8 SPARTANs would be required

to achieve the desired 300 MTri/s, however, with 4 GB of available local memory per

node, a total of 12 nodes would be required to encompass the entire scene-database of

the Boeing 777 model. The availability of 3 SCI channels per node would give it access

to 3 GB/s of inter-node bandwidth, which should be more than capable of handling

the migration of rays and object required between the nodes as well as rendering to

the display, which would require 90 MB/s at a resolution of 1024×1024 at 30 FPS.

101

Chapter 5. Design Evolution

5.2 Design Discussion

When creating a specialised hardware architecture such as SPARTA, the choice of

technologies that will be used have to be made early in the design process. In the case

of SPARTA this meant choosing the type and number of reconfigurable logic devices

that would be utilised, the amount and type of RAM that would be supported on each

node and the method by which the nodes would be interconnected. The hardware

design of the SPARTA system evolved as a direct result of the lessons learned during

the design and implementation of the GCN prototype and is targeted at supporting

the development of distributed ray-tracing algorithms for models with large scene-

databases. This inferred the following constraints on the system in order to minimise

the learning curve associated with implementing the hardware:

• SCI technology would be used as the interconnect technology as experience was

gained in integrating it onto the GCN design and the custom-built SCI protocol

can be reused in the new design.

• DDR-SDRAM should be used as the memory technology as experience was gained

in integrating it onto the GCN design even though it was never used.

• The reconfigurable logic that is used in the new design should be from the Xilinx

Virtex family as this will reduce the risk of integration and enable the reuse of

HDL code without having to port it to a different FPGA technology.

• A single FPGA should be used in order to minimise the complexity of the

hardware substrate design and the various memory and interconnect subsystems

should all be connected directly to it.

The first design choice that was made was which type of FPGA would be used

and it was decided that the Virtex4 family would provide the best trade-off between

price and performance. Virtex6 FPGAs had not been released at the time and Virtex5

proved too costly to use for a proof-of-concept prototype. The largest available FPGA

in the Virtex4 family is the XC4VLX200 with a maximum of 960 available user IOs,

which would affect the choices in the memory and interconnect subsystems that would

connect to the FPGA.

As discussed in Section 5.1, it was decided that the SPARTA design should be

capable of supporting 3D SCI torus configurations and this inferred the need to in-

corporate at least three LC3 devices into the system. In the end, four LC3s were

incorporated to allow for maximum interconnect flexibility. Two of the LC3s would

have direct B-Link connections to the FPGA while the remaining two would share a

102

Chapter 5. Design Evolution

single B-Link connection. This choice was made as a trade-off between maximising the

available SCI bandwidth and minimising the pin utilisation requirements of the SCI

subsystem.

The final design decision that was left to make was the configuration of the

memory. The available pincount of the FPGA meant that a maximum of two memory

channels could be supported. Each channel was set up in a dual-bank configuration

in order to maximise the amount of RAM available per channel. The maximum DDR-

Dual Inline Memory Module (DIMM) capacity available is 1 GB, which implies that

each SPARTAN has a maximum RAM capacity of 4 GB in the dual-bank, dual-channel

configuration chosen.

All of the design choices that were made in creating the SPARTA architecture fell

as a natural progression from the desire to minimise the learning curve and integration

risks associated with creating a new hardware prototype. Additionally, as the design

is a prototype, it was important to ensure that the manufacturing costs of the hard-

ware and component material were kept as low as possible. The goal of the SPARTA

system is to allow for the creation of low-cost clusters that can provide the benefits

of dedicated high-performance rendering clusters without the associated costs. Once

the performance of the initial prototypes have been evaluated, a new generation of

hardware architecture may be designed using more up-to-date technologies that build

on the lessons learned from the first generation system.

5.3 Hardware Architecture

Each compute-node in the SPARTA architecture will be able to provide up to 4 GB of

local DDR-RAM in addition to the internal BRAM resources provided by the FPGA.

The SPARTANs will communicate with each other and the host PCs using the SCI

standard interconnect, which is capable of meeting the low-latency and high-bandwidth

requirements of parallel interactive ray-tracing applications, while also enabling a HW-

DSM implementation. In this hardware DSM design, all of the compute-nodes and

the host PCs make their local RAM available to the global address space and conse-

quently form a NUMA machine in the same way that the GCN architecture does. The

SPARTA architecture dramatically simplifies the GCN architecture, while retaining

the power and flexibility inherent in the original design. It utilises the latest genera-

tion of FPGA [Xil07] technologies and doubles the memory bandwidth and amount

of locally attached RAM resources, while reducing the RAM access latency by tying

it directly to the FPGA. The scalability of the system over the GCN architecture is

further enhanced through the implementation of an interconnect system that allows for

103

Chapter 5. Design Evolution

the creation of 3D torus configurations, which exhibit good scalability characteristics.

D
D

R
C

H
A

N
N

E
L

#B

C
H

A
N

N
E

L
#B

B
A

N
K

 #
0

B
A

N
K

 #
1

B
A

N
K

 #
1

B
A

N
K

 #
0

C
H

A
N

N
E

L
#A

C
H

A
N

N
E

L
#A

D
D

R

D
D

R

D
D

R

OUT IN

CONFIG

OUT IN

LC3

BCTRL
CPLD

LC3

A

FPGA

XC4VLX100

[min 715 user i/o]

LC3

C

IN OUT

CONFIG

CPLD
CTRL

IN OUT

D

LC3

GPIO

RS232

ETH

640 MB/s @ 80 MHz

[~#75] [~#75]

640 MB/s @ 80 MHz

768 MB/s @ 96 MHz

[~#75]

[~
#2

5]

[~#32]

[~#10]

[~#30][~#184]

2.6 GB/s @ 166 MHz

[~#184]

2.6 GB/s @ 166 MHz

[~
#2

5]

Figure 5.7: The proposed architecture of the SPARTA node is an evolution of the
GCN architecture optimised for ray-tracing applications.

5.3.1 System FPGA

The SPARTA architecture will utilise a single FPGA instead of the two currently used

on the GCN. This has been made possible because of the advances in FPGA techno-

logy in recent years. A single device can now provide enough resources to implement

complicated algorithms, dispensing with the need to partition designs between multiple

devices. This will reduce the complexity of the PCB design and ease the programmabi-

lity of the system, as all of the protocol and processing logic can now be implemented in

a single device. The FPGA will act as the central hub that links all of the various sub-

systems, including the SCI interconnect, RAM interface and various peripheral devices.

It will be required to implement the SCI protocol as well as the RAM controller and

IO logic in addition to the ray-tracing PEs. The FPGA will be a Virtex4 device that

should provide a minimum of 715 user programmable IO pins, due to the restrictions

imposed by the various subsystems to be attached to it. This device was chosen as it

104

Chapter 5. Design Evolution

is affordable and is a newer generation of the VirtexII FPGAs currently in use as part

of the GCN architecture. By retaining the same family of FPGA devices, the risks

associated with integrating it into the new SPARTA architecture will be minimised.

5.3.2 SCI Subsystem

The capacity of the SCI interconnect will be increased in order to allow 3D torus

configurations. This requires a minimum of three separate SCI links per node. The

SPARTA implementation will provide four SCI links. Two will have a direct connection

to the system FPGA via a dedicated B-Link interface, while the remaining two will

share a common B-Link bus interface. The system FPGA will be required to implement

three distinct SCI protocol endpoints, one for each B-Link bus interface. The shared

SCI links will be used to communicate with the commodity PCs that will be attached

to the cluster, while the individual links will be dedicated to exchanging information

between the nodes. The control and initialisation code for the LC3 devices will be

offloaded into dedicated CPLDs in order to reduce the logic and wiring load on the

system FPGA. By distributing the control logic to external devices, the main system

initialisation sequence that must be performed by the system FPGA at startup will be

greatly simplified.

5.3.3 RAM Subsystem

The GCN architecture used a single-channel dual-banked DDR-RAM interface that was

indirectly connected to the bridge FPGA via the northbridge chipset. The SPARTA

design will tie the RAM directly to the system FPGA, reducing the access latency.

The RAM capacity and bandwidth will be doubled and will use a dual-channel dual-

banked setup, which will provide a bandwidth of up to 5.2 GB/s for up to 4 GB of

local memory.

5.3.4 IO Subsystem

The IO subsystem of the SPARTA architecture will consist of a gigabit Ethernet inter-

face, an RS232 serial debugging port and a GPIO bank. All three of these interfaces

have a relatively low implementation overhead and will not consume large portions of

the logic resources provided by the system FPGA. Experience gained from the imple-

mentation and debugging of the GCN hardware has shown that it is important to have

as many debugging viewports into the operation of the system as possible and these

three interfaces should greatly aid in the debugging process for the SPARTA system.

105

Chapter 5. Design Evolution

The Ethernet interface in particular will provide an additional method to control the

individual nodes in the cluster without interfering with communications across the SCI.

Figure 5.8: Rendering of the proposed layout of a SPARTA node. The arrangement
of the major components are shown, minor components are omitted for clarity.

5.4 Reconfigurable Logic Architecture

The reconfigurable logic architecture of the SPARTA system will be required to perform

similar tasks to that of the GCN system except with the added complexity of having to

deal with three separate SCI interfaces. The internal architecture will improve on the

GCN implementation by providing a 64-bit address space, for true interconnect scala-

bility, and a 256-bit internal datapath, which will provide greatly increased memory

bandwidth for the ray-tracing PEs contained within the system. This should allow for

ray-triangle intersection rates of up to 22 MTri/s per PE to be achieved. Figure 5.9

provides an overview of the logic architecture for the system FPGA. It is based on the

architecture of the GCN implementation but is modified to provide better support for

the multiple SCI links.

Synthesis results of the custom SCI protocol logic developed for the GCN ar-

chitecture, presented in Table 3.4, indicate that each SHELL module will consume

approximately 8% of the Virtex4 device, while synthesis results for a standard DDR-

RAM controller indicate it will consume approximately 3% of the same device. As

the SPARTA design will require three SHELL modules and two RAM controllers, the

106

Chapter 5. Design Evolution

expected utilisation for the basic memory system is approximately 30%. The main

memory controller module will be responsible for allowing the SCI subsystem to com-

municate with the local memory and will provide a single abstracted interface point for

all of the internal units to communicate with both local and remote memory. The main

memory controller module is estimated to take up a maximum of 10% of the FPGA,

bringing the total usage for the entire memory subsystem to approximately 40% of

the device. This leaves roughly 60% of the device free for implementation of the IO

subsystem, system control logic and application PEs. All synthesis results were gathe-

red based on a XC4VLX100, which is a mid-range Virtex4 device. Additional logic

resources within the FPGA could be made available by using a larger device instead as

the logic overhead associated with the memory and SCI subsystem remains constant,

leaving more of the device free to implement the application PEs.

����������

RAM SCI #1 SCI #2 SCI #3

ARBI/O

MEMCTRL

CTRL CTRLCTRL CTRL

BRAM BRAM BRAM

PEPEPE
#1 #2 #N

Figure 5.9: Overview of the proposed SPARTA software implementation showing the
major architectural features required by the design.

5.5 Platform Implementation

The parallel ray-tracing algorithm that will be implemented on the system is determi-

ned by the bandwidth and latencies of the cluster’s interconnect. This also influences

107

Chapter 5. Design Evolution

the maximum complexity of the scene that can be processed. An interactive paral-

lel ray-tracing algorithm may be implemented in two ways [Wal04]; firstly through

object-space subdivision and secondly through screen-space subdivision. Object space

subdivision allows for the distribution of the scene database over all the external memo-

ries on the SPARTANs. This approach requires the communication of rays if the next

spatial partition is pierced by a ray and requires very high bandwidth. A hardware-

based DSM cluster, such as the proposed design, is the most suitable target for this

algorithm, while a commodity PC cluster, interconnected using Ethernet, would be

more suited to using screen-space subdivision because it requires far less bandwidth

but with the downside that the entire scene-database must be stored on every node in

the cluster. This restricts the maximum size of the scene-database being rendered to

the size of the external memory of a single node.

The SPARTA platform will consist of a hybrid cluster of custom-built SPARTANs

and commodity PCs, which will distribute scene-data to the nodes and control the

overall operation of the cluster. The platform will be tailored to the needs of interactive

ray-tracing applications and will allow for an efficient object-space subdivision that

can distribute a very large scene-database across the custom processing nodes. The

SPARTA platform will provide several key advantages over commodity visualisation

clusters:

• Price - the most expensive component of the SPARTA cluster will be the FPGAs,

however due to economies of scale this price will be reduced when the FPGAs

are purchased in large quantities.

• Performance - each SPARTAN is expected to outperform a standard PC running

a ray-tracing application. Due to the scalable nature of the SCI interconnect

used to cluster the SPARTANs, performance may be easily increased by adding

nodes to the cluster.

• Power consumption - the FPGAs used in the nodes are very low power, in com-

parison to the requirements of a commodity CPU, and operate at much lower

clock rates. As a result, the SPARTA cluster will consume much less energy than

a commodity cluster of PCs would.

• Flexibility - due to the reconfigurable nature of the FPGAs, the end-user may

achieve performance enhancements simply by applying firmware updates to the

reconfigurable logic of the SPARTANs in order to take advantage of the latest

advances in ray-tracing algorithms and data-structures.

The SPARTA platform will enable the investigation of various different ray-tracing

108

Chapter 5. Design Evolution

algorithm and data-structure implementations through the use of the reconfigurable

logic in the cluster.

5.6 Summary

This chapter has described the hardware and software architecture of the SPARTA

design, which is based on experience gained during the implementation of the GCN

architecture. SPARTA extends and improves the concepts present in the GCN architec-

ture and focuses on creating a platform suitable for the implementation of ray-tracing

algorithms for interactive graphics applications with large scene-databases. Scalability

is achieved through the use of a high-performance hardware DSM interconnect, which

allows for the clustering of multiple nodes in various configurations to suit the specific

requirements of the applications being run.

Based on the hardware results gathered from the GCN architecture, the predicted

results of a SPARTA cluster setup with 9 nodes in a 3D torus interconnect configuration,

shows an average latency of 2.25 µs and a bisectional bandwidth of 5336 MB/s for the

system. Each node will have access to up to 4 GB of local memory in addition to the

logic and memory resources made available by the reconfigurable logic devices. The

SCI interconnect will allow each node to share its local memory as part of a global

address space, meaning that any node connected to the system will be able to access

both its own local memory and remote memory from any other node in the system

and allowing for the efficient distribution of the scene-databases of the models being

rendered across all of the nodes in the system.

109

Chapter 6

Conclusions

The work outlined in this thesis has described a low-cost, scalable architecture that

was designed with the intention of accelerating both rasterisation and ray-tracing ba-

sed graphics applications for large-scale interactive visualisations. The architecture

design comprises a tightly coupled system of reconfigurable hardware resources, which

interface a single global address space that can be shared with a cluster of commo-

dity PCs. Distributed rendering applications are implemented as parallel PEs in the

reconfigurable logic devices and run concurrently across the cluster, enabling them to

take advantage of the parallel resources provided by both the custom-built nodes and

commodity PCs.

In order to validate the architecture of the GCN, an application that could run

across the FPGAs was developed. The application chosen was ray-triangle intersection

testing as it forms a fundamental PE of ray-tracing applications. Results gathered from

both hardware testing and software simulations of the architecture showed that it was

capable of providing a scalable high-bandwidth, low-latency interconnect while enabling

the fusion of local memory and FPGA BRAM resources into a single global address

space. A customised version of the SCI protocol was implemented in the reconfigurable

logic of the FPGAs, along with the ray-triangle intersection algorithm PEs. This

enabled the implementation of a hardware-based DSM system that provided a scalable

environment for the execution of the application PEs. The resulting performance of

the system showed an almost linear speed-up as the number of PE cores was increased.

The results additionally showed that the inclusion of the FPGA’s BRAM resources in

the DSM were beneficial to the application PEs.

This chapter describes some of the design limitations that were encountered with

the GCN architecture and discusses how these limitations will be overcome with the

new SPARTA architecture, outlined in Chapter 5. Finally, the contributions provided

by this body of work are re-iterated and conclusions about the project are drawn.

111

Chapter 6. Conclusions

6.1 GCN Design Limitations

The biggest design limitation with the GCN hardware was the fact that the AGP and

DDR-RAM interfaces could not be accessed as a result of the inability to initialise and

communicate with the northbridge device. This removed the possibility of connecting

a commodity GPU adapter card to the nodes and limited the available memory to the

on-board 32-bit SRAMs. This, in turn, limited the performance of the rendering PEs

that were implemented in the FPGAs.

The power distribution circuitry that was implemented for the GCN was found

to be lacking in capacity when the system was under load and could lead to erratic

behaviour. This was rectified through the use of external ATX power supplies, which

were attached to each board and were used to boost the capacity of the built-in power

distribution system. The addition of passive heatsinks additionally helped to dissipate

the thermal load from the devices, which were at risk of overheating.

The VirtexII FPGAs that are used in the GCN design are now quite old and

relatively small in capacity when compared with a more modern FPGA. The main

problem with the older FPGAs was that the ray-triangle intersection application would

not fit in them. Even the logic that was implemented for the GCN architecture pushed

the capacity of the FPGAs, consuming approximately 87% of the devices resources

before any PE logic was included. The two options available to overcome this problem

are to either use a pin-compatible FPGA from the same device family that could

provide more logic resources (such as the XC2V6000) or to re-design the PCB hardware

to target a more modern FPGA device, such as the Virtex4 or Virtex5 family.

The final design limitation is the 32-bit architecture implemented in the recon-

figurable logic devices. The reason for this enforced limitation was as a result of the

32-bit local SRAMs, the limited signalling that was available between the bridge and

application FPGAs and the limited resources of the bridge FPGA itself. The effect

of the 32-bit architecture was a reduction in the memory bandwidth available to the

application PEs running in the FPGA. The only way to overcome this limitation is to

implement a new system with a larger FPGA and a higher memory bandwidth to local

RAM. This resulted in the development of the SPARTA architecture, the implementa-

tion of which is discussed in the next section.

6.2 Future Work

The SPARTA architecture that was described in Chapter 5 is a direct evolution of

the GCN architecture that was developed with the intention of resolving the GCN’s

112

Chapter 6. Conclusions

limitations. It simplifies the architectural design of the GCN and removes portions of

the design that did not work, while at the same time building on the portions that did.

Enhanced interconnection and scalability options are provided and the capacity and

bandwidth of local memory is greatly increased. As part of this new design, the API

that was implemented for the GCN system will be extended and improved to suit the

capabilities of the new architecture.

The FPGA used in the new design will be a more modern Virtex4, which re-

presents a good trade-off between enhanced performance and affordability. The larger

device size will enable the implementation of logic for the RAM and SCI controllers

within a single device, while providing adequate space to implement logic required by

the application PEs.

The reconfigurable logic architecture that was developed for the GCN hardware

will be re-written and re-targeted for the new architecture. The system initialisation

sequence will be simplified as a result of off-loading configuration logic for the LC3

devices to dedicated CPLDs, which will free up additional space in the system FPGA.

The reconfigurable logic architecture will also be enhanced to provide better support

for multiple SCI interfaces and will provide a unified abstraction layer for both the

local and remote memory regions. The internal datapath of the architecture will be

increased to 128-bit and the address space will be increased to 64-bit, providing true

scalability as the SCI standard envisaged.

The initial design work for the SPARTA architecture has been completed and the

next step is the detailed schematic design and PCB layout. The SPARTA project has

been accepted by Enterprise Ireland under their Commercialisation Fund Technology

Development programme. It is scheduled to last for two years and the first prototype

hardware is expected to be completed within six months from the kick-off of the project.

6.3 Contributions

This thesis has introduced a low-cost, scalable, shared-memory architecture that was

designed with the intention of accelerating graphics applications for large-scale interac-

tive visualisations using a tightly coupled system of reconfigurable hardware resources.

The custom-built nodes interface a single global address space that can be shared with

a cluster of PCs. This shared address space is implemented through a dedicated, high-

speed, low-latency commodity interconnect. Applications running across the cluster

can benefit from increased performance by taking advantage of the parallel resources

provided by the nodes and commodity PCs.

The main contribution of this work lies in the development and evaluation of a

113

Chapter 6. Conclusions

novel, shared-memory architecture capable of accelerating graphics applications using a

hybrid approach that combines commodity technologies with reconfigurable hardware.

The concepts used as part of this work, such as NUMA, DSM and SCI are not in

themselves novel as they are already well established techniques; however, the novel and

innovative elements of this architecture are founded in the unique way in which these

technologies are combined to allow the reconfigurable logic and its internal memories

to be directly embedded into the cluster rather than being attached indirectly, as is

usually the case. The reconfigurable-logic devices perform the dual roles of interacting

with both the local and remote memory spaces, while at the same time providing

computational resources for the implementation of distributed algorithms. This enables

ray-tracing algorithms to gain fast and transparent distributed access to critical data,

such as acceleration structures, which can be stored in the internal memories of the

FPGAs. The reconfigurable nature of the custom-built hardware additionally enables

an unprecedented level of flexibility in the underlying architecture, allowing for the

implementation of various different algorithmic approaches to distributed rendering.

A prototype architecture for the next generation hardware system has additionally

been developed. This is a direct result of the work discussed as part of this thesis.

The new architecture, called SPARTA will be optimised for the implementation of

distributed ray-tracing algorithms.

6.4 Conclusions

This thesis has detailed the inception, design and implementation of a hybrid architec-

ture that fuses local RAM and FPGA BRAM resources into a single global address

space and allows for the implementation of efficient parallel algorithms in the logic

of scalable multi-FPGA clusters. The performance of this architecture was evaluated

using a distributed application that was implemented using the reconfigurable logic

resources provided by the FPGAs and the results obtained show that architecture ex-

hibits good scalability properties. The results also showed that the inclusion of the

FPGAs BRAMs into the global address space allowed the parallel PEs to benefit from

enhanced performance. This indicates that the fusion of local RAM and internal FPGA

BRAM resources into a single global address space does provide beneficial features that

can be used to accelerate graphics applications that run across the cluster.

The design approach was further refined based on these performance results,

which led to the development of the SPARTA architecture. The SPARTA architecture

represents a direct evolution of the GCN architecture that will focus on the interactive

ray-tracing of models with large scene-databases.

114

Appendix A

SCI Link Controller

The SCI subsystem on the GCN hardware utilises two LC3 chips, which makes it

possible to connect the boards in either ringlet or 2D torus configurations for improved

performance. Each LC3 chip acts as a bridge between an individual SCI connection

and the common B-Link bus. This bus is also connected to the bridge FPGA and it

is by this method that the LC3 devices communicate with each other and with local

and shared memory spaces. This appendix provides a closer look at the functionality

of the LC3 devices and discusses some of the issues involved in integrating them into

a larger system, including their hardware and software initialisation requirements and

the B-Link bus interface.

A.1 LC3 Overview

The LC3 chip provides high-speed SCI links, sends and receives packets and manages

the data transfer on the SCI physical layer. On the node interface side, the LC3

supports the B-Link protocol for SCI nodes. Figure A.1 outlines the major architectural

features of the LC3.

All incoming data packets from the SCI link are examined by the stripper module,

which checks the targetId to see if the packet is destined for the node or if it meets

a set of switching criteria. If it is intended for the node, then the packet is stripped

from the SCI link and stored to the receive queue for later transmission on the B-Link.

If the receive queue is full, a message is sent to the sender of the packet to retry the

packet at a later stage. The receive and send queues can each store up to 8 packets.

Scheduling between request and response packets is done automatically, but one entry

is always reserved for the opposite packet type. If the incoming packet is not intended

for the node, it is sent through the bypass FIFO, which is required in order to store

incoming packets, that are not destined for the node, while the LC3 is in the middle of

115

Appendix A. SCI Link Controller

b−link bus interface

csr
queue
send

queue
receive

mux
fifo

bypassstrippersci in sci out

b−link

Figure A.1: Overview of the main architectural features of the LC3.

transmitting a packet from the send queue. The send queue can only transmit packets

if the bypass FIFO is empty and it can only send one packet at a time before re-checking

the bypass FIFO to make sure it is still empty. All incoming packets from the B-Link

interface are examined to check if they are destined for the node or if they meet a set

of switching criteria. If they are destined for the node, then the packet is stored to the

send queue for later transmission on the SCI link and bHere signal is asserted. If there

is no space available in the send queue, then the bBusy signal is asserted in addition to

the bHere signal to indicate that the packet must be retried at a later date. No action

is taken on the B-Link if the packet is not intended for the node.

Chip Initialisation

Before the LC3 chip can function correctly after reset, it must first be initialised. This

sequence consists of three phases, which are activated in the following order after reset

warm or cold reset.

• Phase 1 – Configuration from serial input

• Phase 2 – Hardware initialisation

• Phase 3 – Software initialisation

116

Appendix A. SCI Link Controller

The first two phases are automatically performed by the LC3 chip, but the third phase

is also required to set the proper routing and NodeIDs and must be performed by

a software driver. Figure A.2 outlines the full initialisation process required by the

LC3 devices. This involves upstream and downstream cable state detection, SCI link

synchronisation and loading of the required boot code from non-volatile storage (not

shown).

After the reset sequence completes, the LC3 will try to load configuration data

using a two wire I2C serial protocol [Sem00]. The LC3 operates in master mode during

this period and drives both the scl and sda signals. The period of scl is 2048 times

the bClock. The initial sequence consists of termination of a pending transaction (from

a previous reset), a start condition and a slave address selection. If the slave does

not respond with an acknowledge, i.e. not driving the sda pin low in the acknowledge

cycle, the LC3 will load the configuration registers with predefined values. This mode is

referred to as “panic boot”. Once either panic-boot or regular-boot has completed, the

configuration registers of the LC3 may be reprogrammed at any time using geographic

B-Link requests.

Panic Boot

Panic boot mode occurs where there is no device responding to an I2C slave address

acknowledge. In this case, the LC3 configuration registers are loaded with default

values as given in Table A.1, where the values A, B and C are determined by the state

of the LC3’s gpio pins.

CSR REGISTER DEFAULT VALUE

CONFIG1 0000 0000 0000 01A1
CONFIG2 0000 0000 0000 0001
CONFIG3 0000 0000 0000 0000
CONFIG4 1101 0010 0000 0000
RMASK 0000 0000 0000 0000
RCTRL 1100 0000 0000 0000
UID1 0000 0000 0000 0000
UID2 0000 0010 0000 0000

NODEID / SAVEID 00BC 0000 0000 0000

Table A.1: Panic Boot Default CSR Mappings

These default values are not suitable for normal operation of a SCI ringlet since

the unique identifiers UID1 and UID2 will not be unique, causing the hardware initia-

lisation to fail and preventing the SCI link from working correctly until it has been

re-initialised.

117

Appendix A. SCI Link Controller

resetn POWERUP

prst_nxt_k <= 1

bclockcnt_en <= 1prst_done

1

0

bclockcnt_rst <= 1

CABLEOK_WAIT

0

1

link_rst

0

1

cable_okbclockcnt_rst <= 1

bclockcnt_en <= 1
prst_nxt_k <= 1

PRST bclockcnt_ok <= 1

CABLEOK_SYNC

cableok_wait <= 1
bclockcnt_en <= 1

prst_done

1

0

cable_ok0

1

1

0wait_done &&
linkrst ||

cable_ok

1

0cable_ok

bclockcnt_rst <= 1

bclockcnt_rst <= 1

bclockcnt_rst <= 1
mclr_flag_clr <= 1

USERR_WAIT

bclockcnt_en <= 1
userr_wait <= 1

linkrst

0

1 bclockcnt_rst <= 1

0

1

cable_ok bclockcnt_rst <= 1

! mclr_flag
wait_done &&1

0

wait_done &&
mclr_flag

0

1

wait_done 1

0

1userr

0

bclockcnt_rst <= 1

0

1

mclr_flag

led_yel <= 0

RUNNING

running_next <= 1

link_rst 1

0

bclockcnt_rst <= 1

MCLR

bclockcnt_en <= 1
mclr_nxt <= 1

linkrst

1

0

bclockcnt_rst <= 1

0

1

cable_okbclockcnt_rst <= 1

userr 1

0

bclockcnt_rst <= 1

mclrflag_set <= 1
bclockcnt_rst <= 1

1

0 mclr_done

cable_ok 1

0

bclockcnt_rst <= 1

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

����������

Figure A.2: LC3 initialisation sequence.

118

Appendix A. SCI Link Controller

Regular Boot

In regular boot mode, the external I2C slave device will respond with a positive ack-

nowledge to the slave address selected by pulling the sda signal low. The LC3 will

then start a sequential read beginning at address 0. The least significant bit of the

CONFIG1 register is loaded first, followed by bit 1 and so on. Each byte is followed

by an acknowledge from the LC3. This will go on until all of the 144 CSR bits have

been shifted in. The LC3 will assert the gpo[0] pin when all the CSR registers have

been loaded to indicate that the sequence has completed. The serial sequence will be

terminated by a negative acknowledge followed by a stop symbol. The LC3 will no

longer drive the scl signal one clock period after the stop symbol. Once the serial

configuration is complete the LC3 will permanently enter slave mode, at which time

the CSR registers may be accessed via the I2C interface in addition to the B-Link

interface. Table A.2 shows the settings programmed into the LC3 during regular boot.

s is the unique 20-bit serial number and f is the 5-bit firmware revision level.

CSR REGISTER VALUE

CONFIG1 0001 0000 0000 0101
CONFIG2 1100 0000 0000 0001
CONFIG3 0000 0000 0000 0001
CONFIG4 1101 0010 0000 0000
RMASK 0000 0000 0000 0000
RCTRL 0011 0000 0000 0000
UID1 ssss ssss ssss ssss
UID2 0000 100f ffff ssss

NODEID / SAVEID 0001 0000 0000 0000

Table A.2: Regular Boot Default CSR Settings

Hardware Initialisation

The automatic hardware initialisation scheme is defined as part of the SCI standard.

It sets unique NodeIDs and designates a scrubber node in each ringlet without any

manual intervention. Once this stage completes, the SCI system is in a running state

but is not suitable for full operation as the nodes are programmed with default values

and the software initialisation of the ringlet still needs to be performed.

Software Initialisation

Networks composed of ringlets and meshes of ringlets can be configured via software by

utilizing the LC3’s capability to read and write its own CSR registers when requested.

119

Appendix A. SCI Link Controller

The software initialisation sequence begins once all the nodes on a ringlet have reached

the running state. At this time, the NodeID of each LC3 on the ringlet has already been

initialised to a default value by the hardware initialisation protocol and the routing

feature of the LC3s is set to an initial state loaded from the serial input. These initial

values, however, are not suitable for regular operation of the SCI interconnect and must

be reprogrammed to suitable values by software drivers.

CSR Architecture

All CSR accesses are made to either private or register space. Register space is defined

as the most significant 256 MB of 0xFFFFF0000000, while private space is defined

as the most significant 256 MB of 0xFFFFE0000000. CSR read or write to register

space from the SCI link side is performed by the CSR state-machines which snoop

the request queue and detect CSR addresses. If the targetID and the nodeID match

and the read/write selected-byte (READSB or WRITESB) packet is addressed to CSR

register space, the packet is taken from the request queue and the corresponding register

is accessed. A response packet is then assembled and stored in the output response

queue. Register space writes to the CSRs of the LC3 are atomic operations and are

guaranteed to complete. The CSR address space can be accessed using the SCI when

the LC3 is in a fully operational state and able to send and receive SCI packets. It

may be accessed using either the B-Link I2C interface at any time once the LC3 has

finished its initialisation sequence.

Linc Address B-Link Destination

0xFFFFE0000000 - 0xFFFFE00007FF B-Link ID 0
0xFFFFE0000800 - 0xFFFFE0000FFF B-Link ID 1
0xFFFFE0001000 - 0xFFFFE00017FF B-Link ID 2
0xFFFFE0001800 - 0xFFFFE0001FFF B-Link ID 3
0xFFFFE0002000 - 0xFFFFE00027FF B-Link ID 4
0xFFFFE0002800 - 0xFFFFE0002FFF B-Link ID 5
0xFFFFE0003000 - 0xFFFFE00037FF B-Link ID 6
0xFFFFE0003800 - 0xFFFFE0003FFF B-Link ID 7
0xFFFFE0004000 - 0xFFFFE00047FF B-Link ID 8
0xFFFFE0004800 - 0xFFFFE0004FFF B-Link ID 9
0xFFFFE0005000 - 0xFFFFE00057FF B-Link ID 10
0xFFFFE0005800 - 0xFFFFE0005FFF B-Link ID 11
0xFFFFE0006000 - 0xFFFFE00067FF B-Link ID 12
0xFFFFE0006800 - 0xFFFFE0006FFF B-Link ID 13
0xFFFFE0007000 - 0xFFFFE00077FF Unused
0xFFFFE0007800 - 0xFFFFE0007FFF Unused

Table A.3: Private CSR address space mappings

120

Appendix A. SCI Link Controller

Private Space Accesses

If the read/write request is a private CSR access, then the CSR state-machines de-

termine the target BLID address based on the interval of the request address. The

LC3 translates the private space address into the associated target BLID according to

Table A.3 and stores this value in the sinkID field of the outgoing packet. The LC3

receiving a private space CSR read/write looks at the sinkID field of the B-Link packet.

If the sinkID field matches the BLID of the device, then the packet is consumed by

the node. This addressing mode allows access to the CSRs of multiple LC3s within a

single node from across the SCI link.

A.2 The B-Link Bus Protocol

In a standard SCI adapter card, the B-Link bus connects the PSB with up to two LC3

devices. Systems with more than one LC can route packets between them over the

B-Link according to a routing table. This enables distributed routing of SCI packets

between individual SCI rings without an expensive central SCI switch. Routing is

configured during the software stage of the SCI fabric initialisation process.

The B-Link is intended to connect components within an SCI node but may also

be used as a general purpose interconnect. The GCN architecture makes use of the

B-Link bus to connect two LC3 devices to an FPGA, which implements a subset of

the PSB’s normal functionality and as such, the B-Link protocol must be implemented

in the FPGA so that it can communicate with the LC3 devices. The B-Link protocol

includes the following features:

• Synchronous timing – All B-Link signals are synchronous. Avoiding special si-

gnal timings simplifies implementations and ensures technological independence.

• Split response – The B-Link is a write-only bus, in the sense that a request

(which transfers the address, command and sometimes data) and a response

(which returns status and sometimes data) are distinct, independently schedu-

led, packet transfers.

• 64-bit data path – A 64-bit multiplexed address/command/data path is used.

• Multi-master – Peer-to-peer communications between symmetric B-Link mas-

ters is supported.

• Distributed arbitration – Distributed arbitration reduces latency. The number-

of-nodes restriction makes this possible, by constraining the total number of per-

chip arbitration signals.

121

Appendix A. SCI Link Controller

• Full SCI support – All SCI transactions are supported, including broadcast,

move and event.

• Fairness – Arbitration and queue-acceptance protocols fairly allocate some of

the available bandwidth for use by each B-Link component.

• Error checking – A 16-bit CRC can be used for end-to-end error checking, while

a 16-bit parity symbol is used for B-Link local error checking.

Split Transactions

B-Link is a write-only bus, in that the data flow is always from the master to the

slave(s). To support bi-directional transfers, most transactions are split into request

and response subactions. A request subaction transfers the address and command (and

sometimes data) from the requester to the responder. The response subaction returns

the status (and sometimes data) from the responder to the requester. Some forms of

the write transactions are specialised, in that no response is returned.

B-Link Masters

B-Link transmissions are grouped into arbitration intervals. In normal operation, each

chip becomes a master at most once during each arbitration interval. Fairness protocols

are distributed, which implies that after becoming a bus master, a chip has to wait for

the next arbitration interval before reactivating its arbitration circuitry.

To ensure fairness, requests and responses are processed independently. During

its tenure as bus master, a chip is responsible for sending one of each currently queued

request and response packets. The slave is expected to provide separate queues for

request and response packets.

B-Link also supports prioritized arbitration, which allows a master to send addi-

tional packets within each arbitration interval. Arbitration is pipelined so that arbitra-

tion for a new master typically starts near the end of the current masters last transfer.

Arbitration involves the use of requestIn[7:0] signals, one of which may be driven by

each chip. Arbitration cycles are separated by one or more idle cycles, where none

of the requestIn[7:0] signals are driven. Chips that were bus masters in the previous

arbitration interval use these idle cycles to reactivate their arbitration circuits.

Packet Framing

Packet boundaries are identified by transitions in the bFrame signal. The packet starts

during the first active frame-signal cycle. Two additional packet symbols are sent

122

Appendix A. SCI Link Controller

after the bFrame signal goes inactive. The minimum length of any B-Link packet is

three cycles, which corresponds to a 1-cycle with the bFrame signal active, as shown

in Figure A.3.

n+2n+1n n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 n+12 n+13 n+14 n+15 n+16 n+17 n+18 n+19 n+20

B0 B1 B2 B0 B1 B2 B3 B4

bCLOCK

bREQ[0]

bREQ[1]

bREQ[2]

bDATA

bFRAME

bHERE

bBUSY

Figure A.3: B-Link bus operation.

Acknowledge Signals

Slaves are responsible for asserting the shared bHere and bBusy status signals in res-

ponse to data observed in the first (address) beat of a previously transmitted packet.

The assertion of these status signals is delayed, to provide time for address decoding

and queue-status checking. An active bHere line is used to acknowledge a valid address.

The active-assertion of the bBusy line indicates that packet-queue space is currently

unavailable and the packet should be retransmitted. These status values are summari-

zed in Table A.4.

HERE BUSY NAME DESCRIPTION

1 1 NACK Negative acknowledge, no slave responded.
1 0 BACK Bad acknowledge, reserved.
0 1 DONE Accepted, valid address and queue space available.
0 0 BUSY Busied, valid address but no queue space available.

Table A.4: bHere and bBusy signal values for packet acknowledgement

A.3 The B-Link Packet Format

B-Link packets are structured in such a way as to encapsulate their SCI send packet

equivalents. The first beat contains a B-Link defined code field as well as the SCI

defined cmds field. The final beat contains the SCI defined CRC and additional B-Link

123

Appendix A. SCI Link Controller

error-checking fields. The remaining beats of the packet contain control and addressing

information as well as an optional data payload. The B-Link dependent fields and the

encapsulated SCI symbols (which are shaded) are illustrated in Figure A.4. Data-

payload sizes are defined by the SCI standard as being 0-bytes, 16-bytes, 64-bytes or

256-bytes long. The LC3 devices, however, only support a maximum data payload size

of 128-bytes.

code

control

CRC

targetID sourceIDcmdspriority

reservedpostpost cycle

addr cycle

16 16 8 8 16

parity

63 0

cmds dependent

Figure A.4: Encapsulated SCI B-Link packet format.

A custom software program was written as part of the work undertaken during

the GCN project. It enabled the fast encoding and decoding of SCI and B-Link packets

during the initial implementation and debugging of the VHDL simulations for the B-

Link protocol. It also aided in the hardware testing stages when the LC3 devices

were being first accessed across the B-Link, allowing the quick validation of packets

traversing the bus, that had been traced using a logic-analyser. Listing A.1 provides

the code for the header-file describing the structural format of the encapsulated SCI

request and response packets, that formed the basis of the packet encoder/decoder

program.

� �

1 #ifndef PACKET H

2 #define PACKET H

3

4 /∗

5 ∗ packe t . code [15 downto 0]

6 ∗ vd and re are constant

7 ∗/

8 struct codeFie ld {

9 union{

10 struct {

11 unsigned char transID : 6 ; // t ran sac t i on ID

12 unsigned char re : 1 ; // i n d i c a t e s r e t r i e d packe t

13 unsigned char vd : 1 ; // 0 i f encapsu la t ed SCI packe t

14 } ;

15 unsigned char byte2 ;

124

Appendix A. SCI Link Controller

16 } ;

17 union{

18 struct{

19 unsigned char sinkID : 4 ; // B−Link t a r g e t ID

20 unsigned char sendID : 4 ; // B−Link sender ID

21 } ;

22 unsigned char byte1 ;

23 } ;

24 } a t t r i b u t e ((p ack ed)) ;

25

26

27 /∗

28 ∗ packe t . command [15 downto 0]

29 ∗ cmd [1 : 0] determines the packe t s i z e .

30 ∗ 00 = 0−by t e data payload

31 ∗ 01 = 16−by t e data payload

32 ∗ 10 = 64−by t e data payload

33 ∗ 11 = 128− by t e data payload

34 ∗/

35 struct commandField {

36 union{

37 struct{

38 unsigned char cmd : 7 ; // s c i acce s s command (see d e f i n i t i o n s)

39 unsigned char eh : 1 ; // i n d i c a t e s ex tended header (0=unused)

40 } ;

41 unsigned char byte2 ;

42 } ;

43 union{

44 struct{

45 unsigned char echo : 1 ; //

46 unsigned char old : 1 ; //

47 unsigned char phase : 2 ; //

48 unsigned char spr : 2 ; //

49 unsigned char mpr : 2 ; //

50 } ;

51 unsigned char byte1 ;

52 } ;

53 } a t t r i b u t e ((p ack ed)) ;

54

55

125

Appendix A. SCI Link Controller

56 /∗

57 ∗ packe t . c on t ro l [15 downto 0]

58 ∗/

59 struct c on t r o lF i e l d {

60 union{

61 struct {

62 unsigned char transID : 6 ; // t ran sac t i on ID

63 unsigned char tpr : 2 ; //

64 } ;

65 unsigned char byte2 ;

66 } ;

67 union{

68 struct {

69 unsigned char todMant : 2 ; // time−of−death mantissa

70 unsigned char todExponent : 5 ; // time−of−death exponent

71 unsigned char t r a c e : 1 ; //

72 } ;

73 unsigned char byte1 ;

74 } ;

75 } a t t r i b u t e ((p ack ed)) ;

76

77

78 /∗

79 ∗ packe t . pos t [15 downto 0]

80 ∗/

81 struct pos tF i e ld {

82 union{

83 struct {

84 unsigned char c r cc : 2 ; // s p e c i f i e s when crc f i e l d i s v a l i d

85 unsigned char bad : 1 ; // i n d i c a t e s bad packe t crc

86 unsigned char l e s s : 1 ; // i n d i c a t e s e a r l y packe t t runca t i on

87 unsigned char rsvd : 4 ; // re se rved (0)

88 } ;

89 unsigned char byte2 ;

90 } ;

91 unsigned char byte1 ; // re se rved (0)

92 } a t t r i b u t e ((p ack ed)) ;

93

94

95 /∗

126

Appendix A. SCI Link Controller

96 ∗ packe t . s t a t u s [15 downto 0]

97 ∗/

98 struct s t a tu sF i e l d {

99 unsigned char c s t a t ; // coherence s t a t u s

100 union{

101 struct{

102 unsigned char vs tat : 3 ; // vendor dependant s t a t u s

103 unsigned char r e s : 1 ; // re se rved (0)

104 unsigned char s s t a t : 4 ; // standard s t a t u s

105 } ;

106 unsigned char byte1 ;

107 } ;

108 } a t t r i b u t e ((p ack ed)) ;

109

110

111

112 /∗

113 ∗ This i s the complete s t r u c t u r e o f a B−Link r e qu e s t / response

114 ∗ packe t . The f i r s t , second and f i n a l b e a t s are always pre sen t .

115 ∗

116 ∗ The 256− by t e SCI packe t s are not supported by the LC3/PSB

117 ∗ dev ices , they are implemented as 128− by t e t r an s f e r s i n s t e ad .

118 ∗ This means t ha t the max s i z e o f any B−Link packe t w i l l a lways

119 ∗ be 20 b ea t s and the min s i z e w i l l a lways be 3 b ea t s .

120 ∗

121 ∗ The data−payload i s always (0 <= 2∗n <= 8) b ea t s (0−16) v a l i d

122 ∗ data s i z e s are 0 ,2 ,8 or 16 b ea t s and the s i z e i s determined by

123 ∗ the l owe s t 2− b i t s o f the command f i e l d .

124 ∗/

125 struct b l inkPacket{

126 unsigned char par i ty [2] ; // B−Link par i t y

127 unsigned char rsvd [2] ; // re se rved (0)

128 pos tF i e ld post ; // See po s tF i e l d s t r u c t

129 unsigned char c r c [2] ; // SCI CRC

130 unsigned char data [6 4] [2] ; // data [0 :1024]/16

131 unsigned char ext [8] ; // Opt iona l ex tended header

132 struct {

133 unsigned char backID [2] ; // backward ID (coherence p ro t oco l)

134 unsigned char forwID [2] ; // forward ID (coherence p ro t oco l)

135 s t a tu sF i e l d s t a tu s ; // See s t a t u sF i e l d s t r u c t

127

Appendix A. SCI Link Controller

136 c on t r o lF i e l d con t r o l ; // See c on t r o lF i e l d s t r u c t

137 } r e s ;

138 struct {

139 unsigned char addr32 [2] ; // addr [3 2 : 4 7]

140 unsigned char addr16 [2] ; // addr [1 6 : 3 1]

141 unsigned char addr00 [2] ; // addr [0 : 1 5]

142 c on t r o lF i e l d con t r o l ; // See c on t r o lF i e l d s t r u c t

143 } req ;

144 unsigned char sourceID [2] ; // SCI source nodeID (2− b y t e s)

145 commandField command ; // See commandField s t r u c t

146 unsigned char targetID [2] ; // SCI t a r g e t nodeID (2− b y t e s)

147 codeFie ld code ; // See codeFie ld s t r u c t

148 } ;

149

150 #endif
� �

Listing A.1: C code for encapsulated SCI packet structures

128

Appendix B

AGP and FSB

This appendix provides more detailed information on Intel’s FSB protocol and the

AGP standard, which are implemented as part of the GMCH northbridge that was

used in the GCN hardware architecture. Both of these protocols are relatively old

and are being superseded by newer technologies. AGP is being replaced by PCIe and

the FSB is soon to be replaced by the QuickPath architecture. Both of these new

standards are based on serialised point-to-point links running in parallel, as opposed

to the traditional parallel bus architectures.

B.1 The Accelerated Graphics Port

The AGP is a high performance, component-level interconnect targeted at 3D gra-

phical display applications. AGP is based on a set of performance extensions and

enhancements to the PCI bus. The AGP interface specification uses the 66 MHz PCI

specification as an operational baseline and provides four significant performance ex-

tensions as follows:

• Deeply pipelined memory read and write operations, to hide memory access la-

tency.

• De-multiplexing of address and data on the bus, allowing almost 100% efficiency.

• AC timing in the 3.3V electrical specification that provides for up to 2 data trans-

fers per 66MHz clock cycle, allowing for data throughput in excess of 500MB/s

• A low-voltage electrical specification that allows eight data transfers per 66 MHz

clock cycle, providing data throughput of up to 2 GB/s.

These enhancements are realised through the use of “sideband” signals. The base-

line PCI specification is not modified in any way and the AGP specification avoids the

129

Appendix B. AGP and FSB

MODE SPEED SWING BANDWIDTH INNER-LOOP OUTER-LOOP

×1 66 MT/s 3.3V / 1.5V 264 MB/s 66 MHz 66 MHz
×2 133 MT/s 3.3V / 1.5V 532 MB/s 133 MHz 66 MHz
×4 266 MT/s 1.5V 1064 MB/s 266 MHz 66 MHz
×8 533 MT/s 0.8V 2128 MB/s 533 MHz 66 MHz

Table B.1: AGP Modes

use of any of the “reserved” fields, encodings, pins, etc. used in the PCI specification.

The AGP is physically, logically and electrically independent of the PCI bus and is

intended for exclusive use by visual display devices.

B.1.1 Inner and Outer Transmit/Receive Loops

The timing dependencies between the inner and outer loops of the AGP, shown in

Figure B.1, are defined by a precise relationship between the strobes and the common

clock. This relationship allows for a deterministic transfer of data between the inner

and outer loops, where these timing dependencies are specified in such a way as to

allow implementation flexibility at the receiver. The outer loop uses the common clock

as its fundamental timing source. These timings allow for bi-directional control of

information transfer between the transmitter and receiver.

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

ReceiverTransmitter

data

timing

data

timing

66MHz clock

control

data

timing

Inner Loop Outer Loop

Figure B.1: AGP Inner and Outer Loop Clock Domains.

Transfer of source-synchronous data between transmit and receive inner loop circuits

is accomplished using a strobe pair (AD STBF/AD STBS) that is sent from the trans-

mitter to the receiver. The rising edge of both of these signals are used to transfer

data, with the first data transfer corresponding to the first rising edge of AD STBF

and the second data transfer corresponding to the first rising edge of AD STBS.

130

Appendix B. AGP and FSB

B.1.2 Hardware Enforced Cache Coherency

The AGP master performs AGP or PCI transactions that are directed at system me-

mory, with a single address space being associated with all transactions. In this address

space, a contiguous region may be specified where an AGP address is re-mapped to a

different physical memory address using a platform defined structure called the Gra-

phics Aperture Remapping Table (GART). The re-mapping region is called the AGP

aperture.

The system memory has cacheable regions that can be kept coherent through

hardware and software means. Hardware enforced cache coherency, such as snooping, is

the responsibility of the core-logic and all caching agents. The performance of hardware-

enforced coherency schemes varies between platforms. The appropriate use of the

hardware-enforced feature is the responsibility of the graphics card’s device driver.

Hardware-enforced coherency for AGP master accesses to system memory address

space is as follows:

1. The core-logic must implement hardware-enforced coherency on all AGP master

transactions (AGP and PCI types) targeted outside the AGP aperture region.

2. For any AGP revision 3 master accesses inside the AGP aperture region, hardware

enforced coherency is optional.

B.1.3 The Graphics Aperture

In an AGP system, driver software and an AGP device can share large amounts of data

through buffers placed in system RAM. A large buffer requires many host processor vir-

tual pages; although host system software ensures that these pages appear contiguous

to host software. It is often difficult for system software to map these virtual pages

to contiguous physical pages in system memory. Thus, in the absence of any sort of

remapping mechanism, these pages appear non-contiguous to the rest of the system

and require scatter/gather hardware in each device that will access the buffers to deal

with the discontinuity.

AGP provides a solution to this problem in the form of an AGP Graphics Aper-

ture. The AGP aperture is a physically contiguous range of the physical address space

where AGP master accesses directed to it are re-mapped (translated) to potentially

physically non-contiguous pages. AGP Master translation is accomplished through the

AGP GART. For the purposes of translation, the AGP aperture range is split into a

series of aligned regions, each such region is termed an AGP aperture page. Each AGP

aperture page has a corresponding translation in the GART.

131

Appendix B. AGP and FSB

In general, system software places the AGP aperture above the top of the memory

(above the highest byte of actual physical RAM in the system) in a hole that does not

conflict with memory-mapped IO registers of system devices. AGP revision 3 supports

aperture sizes of 4 MB and larger. Translation through the GART is a physical-to-

physical translation performed by host processors in the system. An AGP target may

implement a number of Graphics Translation Look-aside Buffers (GTLBs) to speed up

translation of AGP aperture page addresses to system memory locations. The AGP

aperture may be set to one of the following sizes; 4 MB, 8 MB, 16 MB, 32 MB, 64 MB,

128 MB, 256 MB (default), 512 MB, 1024 MB, 2048 MB or 4096 MB.

The core-logic (AGP target) implementation is configured by system software to

support one common AGP aperture page size for all pages in the AGP aperture. The

core-logic includes a mechanism that allows system software to select that common

AGP aperture page size from a set of supported page sizes. At any given time, only

one aperture page size is used for all pages within the AGP aperture. System software

selects one page size from the set of supported sizes by programming the value into

the appropriate register. A core-logic implementation must always support an AGP

aperture page size of 4 KB.

System software is responsible for mapping each AGP aperture page with a same-

sized, naturally aligned region from physical memory. There does not need to be

any correspondence between the host processor page size and the AGP aperture page

size, the only requirement is that each populated AGP aperture page translates to

a fully allocated and resident physical memory region that is of equal size and is

naturally aligned. When given a choice, system software should select the largest

AGP aperture page size that is compatible with operating system memory allocation

algorithms. Larger AGP aperture page sizes reduce the size of the GART; allow more

freedom in which system pages can be mapped into the AGP aperture and can allow

an implementation to improve the efficiency of GART translations.

B.1.4 The Graphics Aperture Remapping Table

The GART is a re-mapping table of translations for accesses to the AGP aperture. The

GART resides in system RAM. Each aligned AGP aperture page has a corresponding

GART entry, which translates it. AGP allows the GART to be organised in a direct-

mapped format; an offset into the AGP aperture is scaled down and used as an index

to point directly to a GART entry.

A GART entry is marked as a valid translation when its corresponding valid bit is

set. System software ensures that all GART entries needed to translate AGP aperture

addresses are valid. If, when attempting to translate an AGP aperture address, core-

132

Appendix B. AGP and FSB

logic accesses an invalid GART entry, it performs a platform-specific exception action.

AGPCTRL/GTLBEN controls the caching of GART entries in an implementation-

defined GTLB.

byte3 byte2 byte1 byte0

apbaselo
apbasehi

CAPPTR

NCAPID
AGPSTAT
AGPCMD
NISTAT
AGPctrl

nepg apsize
gartlo
garthi

NICMD
reserved
reserved
reserved

AGP Capability Block

Register is in both target and master

Register is in target (core−logic) only

+ 00h
+ 04h
+ 08h
+ 0Ch
+ 10h
+ 14h
+ 18h
+ 1Ch
+ 20h
+ 24h
+ 28h
+ 2Ch

34h

10h
14h

Figure B.2: AGP Configuration Register Layout.

B.1.5 AGP Initialisation

The operating system initialises AGP features by performing the following operations:

1. Allocate memory for the AGP remapping table

2. Initialise the AGP target’s address remapping hardware

3. Set the AGP target and master data transfer parameters

4. Set host memory type for AGP memory

5. Activate policy limiting the amount of AGP memory

133

Appendix B. AGP and FSB

The operating system and Basic Input Output System (BIOS) use configuration

registers to initialise AGP features. Both AGP master and target devices must support

these features. The AGP master is composed of a PCI target interface and an AGP

master interface. This requires the device to respond to a PCI configuration transaction

when a configuration command is decoded. The initialisation of the device is then done

via the configuration mechanism defined by the PCI bus specification. The device can

be configured for either exclusive AGP operation or combined AGP and PCI operation.

The AGP configuration registers are located in AGP configuration space of the core-

logic (AGP target) and AGP device (master).

B.1.6 AGP Operation

AGP pipelined bus transactions share most of the PCI signal set and are interleaved

with PCI transactions on the bus. Only memory read and write bus operations targeted

at main memory can be pipelined and all other bus operations, including those targeted

at device-local memories (such as frame buffers) are executed as PCI transactions.

The “sideband” control signals are used in conjunction with the PCI signal set to

overlay the AGP defined protocols (such as pipelining) on the PCI bus during PCI-bus

idle cycles. Both pipelined access requests (read or write) and resultant data transfers

are handled in this manner.

DATA

Initiate Pipeline
PCI Operation

Pipelining Continues

PCI Intervenes

pipeline

transfer

request

AGP PCI

IDLE

Figure B.3: AGP/PCI Operational State Flow Diagram, showing how the AGP and
PCI transactions are interleaved.

134

Appendix B. AGP and FSB

When the bus is in an idle condition, the pipe can be started by inserting one or

more AGP access requests consecutively. Once the data reply to those requests starts,

that stream can be broken by the bus master to insert additional AGP requests or to

insert a PCI transaction. The “sideband” signals are used exclusively to transmit AGP

access requests whereas the address and data pins are used for both address and data

for PCI and AGP transactions.

B.2 The Front-Side Bus Protocol

The FSB protocol is a standard developed by Intel to allow the host processor(s) in

a computer system to communicate with the rest of the system via the northbridge

chipset. The signals in the FSB are grouped according to functionality. Host interface

signals that perform multiple transfers per clock cycle may be marked as either “4x”

(for signals that are quad-pumped) or “2x” (for signals that are double-pumped). The

processor address and data bus signals are logically inverted signals. In other words,

the actual values are inverted of what appears on the processor bus. This must be

taken into account and the addresses and data bus signals must be inverted inside the

GMCH host bridge. All processor control signals follow the normal convention. A ‘0’

indicates an active level (low voltage) if the signal is followed by the # symbol and a

‘1’ indicates an active level (high voltage) if the signal has no # suffix.

Host-initiated IO cycles are decoded to AGP/PCI B, Hub Interface or the GMCH

configuration space. Host-initiated memory cycles are decoded to AGP/PCI B, Hub

Interface or system DDR. All memory accesses from the host interface that hit the

graphics aperture are translated using an AGP address translation table. AGP/PCI B

device accesses to non-cacheable system memory are not snooped on the host bus. Me-

mory accesses initiated from AGP/PCI B using PCI semantics and from hub interface

to system Dynamic Random Access Memory (DRAM) will be snooped on the host bus.

The FSB signals are divided into the following functional groups:

• Configuration Signals

• Arbitration Signals

• Request Signals

• Snoop Signals

• Response Signals

• Data Response Signals

135

Appendix B. AGP and FSB

B.2.1 Configuration Signals

The configuration signal group is used to configure and initialise the bus.

SIGNAL TYPE DIRECTION NAME

BSEL[1:0]# AGTL+ I (1x) Core/FSB frequency select strap.
CPURST# AGTL+ O (1x) CPU reset.

PROCHOT# AGTL+ I/O (1x) Processor hot.

Table B.2: Configuration Signals

• BSEL[1:0]# – This strap is latched at the rising edge of PWROK. “00” = 100

MHz Core Freq, 400 MHz FSB freq. “01” = 133 MHz Core Freq, 533 MHz FSB

freq. “10” = Reserved. “11” = Reserved.

• CPURST# – The CPURST# pin is an output from the GMCH. The GMCH

asserts CPURST# while RSTIN# is asserted and for approximately 1 ms after

RSTIN# is deasserted. The CPURST# signal allows the processors to begin

execution in a known state.

• PROCHOT# – This signal informs the chipset when the processor is overhea-

ting.

B.2.2 Arbitration Signals

The arbitration signal group is used to gain ownership of the bus before initiating a

transaction.

SIGNAL TYPE DIRECTION NAME

BPRI# AGTL+ O (1x) Priority agent bus request.
BNR# AGTL+ I/O (1x) Block next request.

HLOCK# AGTL+ I (1x) Host lock.
BREQ0# AGTL+ O (1x) Bus request #0.

Table B.3: Arbitration Signals

• BPRI# – The GMCH is the only priority agent on the FSB. It asserts this signal

to obtain ownership of the address bus. This signal has priority over symmetric

bus requests and will cause the current symmetric owner to stop issuing new

transactions unless the HLOCK# signal was asserted.

136

Appendix B. AGP and FSB

• BNR# – This signal is used to block the current request bus owner from issuing

a new request. This signal is used to dynamically control the bus pipeline depth.

• HLOCK# – All FSB cycles sampled with the assertion of HLOCK# and ADS#,

until the negation of HLOCK#, must be atomic (ie: no HI or AGP/PCI snoo-

pable access to system memory is allowed when HLOCK# is asserted).

• BREQ0# – The GMCH pulls the processor bus BREQ0# signal low during

CPURST#. The signal is sampled by the processor on the active-to-inactive

transition of CPURST#. The minimum setup time for this signal is 4 HCLKs.

The minimum hold time is 2 clocks and the maximum hold time is 20 HCLKs.

BREQ0# should be terminated high (pulled up) after the hold time requirement

has been satisfied.

Some P6 family processors permit up to five agents to simultaneously arbitrate for

the system bus with one to four symmetric agents (on BREQ[3:0]#) and one priority

agent (on BPRI#). P6 family processors arbitrate as symmetric agents. The priority

agent normally arbitrates on behalf of the IO subsystem (IO agents) and memory

subsystem (memory agents). In systems based on P6 family processors that support

only two symmetric agents, the following descriptions are accurate with the exception of

the number of symmetric agents, the number of BR# pins and the number of BREQ#

signals.

The symmetric agents arbitrate for the bus based on a round-robin rotating prio-

rity scheme. The arbitration is fair and symmetric. After reset, agent 0 has the highest

priority followed by agent 1. All bus agents track the current bus owner. A symmetric

agent requests the bus by asserting its BREQn# signal. Based on the values sampled

on BREQ[3:0]# and the last symmetric bus owner, all agents simultaneously determine

the next symmetric bus owner.

The priority agent asks for the bus by asserting BPRI#. The assertion of BPRI#

temporarily overrides, but does not otherwise alter the symmetric arbitration scheme.

When BPRI# is sampled active, no symmetric agent issues another unlocked bus

transaction until BPRI# is sampled inactive. The priority agent is always the next

bus owner.

BNR# can be asserted by any bus agent to prevent further transactions from

being issued to the bus. It is typically asserted when system resources (such as address

and/or data buffers) are about to become temporarily busy or filled and cannot accom-

modate another transaction. After bus initialisation, BNR# can be asserted to delay

the first bus transaction until all bus agents are initialised.

137

Appendix B. AGP and FSB

The assertion of the HLOCK# signal indicates that the bus agent is executing

an atomic sequence of bus transactions that must not be interrupted. A locked ope-

ration cannot be interrupted by another transaction regardless of the assertion of

BREQ[3:0]# or BPRI#. HLOCK# can be used to implement memory-based sema-

phores. HLOCK# is asserted from the start of the first transaction through the end of

the last transaction. The HLOCK# signal is always deasserted between two sequences

of locked transactions on the system bus.

B.2.3 Request Signals

The request signals initiate a transaction once ownership of the bus has been granted.

SIGNAL TYPE DIRECTION NAME

ADS# AGTL+ I/O (1x) Address strobe.
HREQ[4:0]# AGTL+ I/O (2x) Host request command.
HA[31:3]# AGTL+ I/O (2x) Host address bus.

HADSTB[1:0]# AGTL+ I/O (2x) Host address strobe.

Table B.4: Request Signals

• ADS# – The FSB owner asserts ADS# to indicate the first of two cycles of a

request phase. The GMCH can assert this signal for snoop cycles and interrupt

messages.

• HREQ[4:0]# – These signals define the attributes of the request. HREQ[4:0]#

are transferred at 2x rate. They are asserted by the requesting agent during both

halves of the request phase. In the first half, the signals define the transaction

type to a level of detail that is sufficient to begin a snoop request. In the second

half, the signals carry additional information to define the complete transaction

type.

• HA[31:3]# – These signals connect to the system address bus. During processor

cycles, HA[31:3]# are inputs. The GMCH drives HA[31:3]# during snoop cycles

on behalf of HI and AGP/PCI initiators. HA[31:3]# are transferred at 2x rate,

with the address inverted on the FSB. The GMCH drives the HA7# signal,

which is then sampled by the processor and the GMCH on the active-to-inactive

transition of CPURST#. The minimum setup time for this signal is 4 HCLKs.

The minimum hold time is 2 clocks and the maximum hold time is 20 HCLKs.

138

Appendix B. AGP and FSB

• HADSTB[1:0]# – HADSTB[1:0]# are source synchronous strobes used to

transfer HA[31:3]# and HREQ[4:0]# at the 2x transfer rate. HADSTB0# go-

verns HA[16:3]# and HREQ[4:0]#, while HADSTB1# governs HA[31:17]#.

The assertion of ADS# defines the beginning of the transaction. The HREQ[4:0]#

and HA[31:3]# signals are valid in the clock that ADS# is asserted and the HA[31:3]#

signals provide a 30-bit, active-low address as part of the request. The maximum phy-

sical address space is 230 bytes. Address bits 2, 1 and 0 are mapped into byte enabled

signals for 1 to 8 byte transfers.

B.2.4 Snoop Signals

The snoop signal group provides snoop result information to the system bus agents.

SIGNAL TYPE DIRECTION NAME

HIT# AGTL+ I/O (1x) Hit.
HITM# AGTL+ I/O (1x) Hit modified.

DEFER# AGTL+ O (1x) Defer.

Table B.5: Snoop Signals

• HIT# – This signal indicates that a caching agent holds an unmodified version

of the requested line. HIT# is also driven in conjunction with HITM# by the

target to extend the snoop window.

• HITM# – This signal indicates that a caching agent holds a modified version

of the requested line and that this agent assumes responsibility for providing

the line. HITM# is also driven in conjunction with HIT# to extend the snoop

window.

• DEFER# – DEFER# indicates that the GMCH will terminate the transaction

currently being snooped with either a deferred response or with a retry response.

On observing a transaction, HIT# and HITM# are used to indicate that the

line is valid or invalid in the snooping agent, whether the line is in the modified (dirty)

state in the caching agent, or whether the transaction needs to be extended. The HIT#

and HITM# signals are used to maintain cache coherency at the system level. If the

memory agent observes HITM# active, it relinquishes responsibility for the data return

and becomes a target for the implicit cache line writeback. The memory agent must

merge the cache line being written back with any write data and update memory. The

139

Appendix B. AGP and FSB

memory agent must also provide the implicit writeback response for the transaction.

If HIT# and HITM# are sampled asserted together, it means that a caching agent

is not ready to indicate snoop status, and that it needs to extend the transaction.

DEFER# is deasserted to indicate that the transaction can be guaranteed in-order

completion. An agent asserting DEFER# ensures proper removal of the transaction

from the in-order queue by generating the appropriate response.

B.2.5 Response Signals

The response signal group provides response information to the requesting agent.

SIGNAL TYPE DIRECTION NAME

RS[2:0]# AGTL+ I/O (1x) Response signals.
HTRDY# AGTL+ O (1x) Host target ready.

Table B.6: Response Signals

• RS[2:0]# – These signals indicate the type of response according to Table B.7.

• HTRDY# – This signal indicates that the target of the processor transaction

is able to enter the data transfer phase.

ENCODING RESPONSE TYPE

000 Idle state
001 Retry response
010 Deferred response
011 Reserved (not driven by MCH)
100 Hard failure (not driven by MCH)
101 No data response
110 Implicit writeback
111 Normal data response

Table B.7: Response Codes

Requests initiated in the request phase enter the in-order queue, which is maintai-

ned by every agent. The response agent is responsible for completing the transaction

at the top of the in-order queue. The response agent is the agent addressed by the

transaction. For write transactions, HTRDY# is asserted by the response agent to

indicate that it is ready to accept write or writeback data. For write transactions with

an implicit writeback, HTRDY# is asserted twice, first for the write data transfer and

then again for the implicit writeback data transfer.

140

Appendix B. AGP and FSB

B.2.6 Data Response Signals

The data response signals control the transfer of data on the bus and provide the data

path.

SIGNAL TYPE DIRECTION NAME

DRDY# AGTL+ I/O (1x) Data ready.
DBSY# AGTL+ I/O (1x) Data bus busy.

DINV[3:0]# AGTL+ I/O (4x) Dynamic bus inversion.
HD[63:0]# AGTL+ I/O (4x) Host data.

HDSTBP[3:0]# AGTL+ I/O (4x) Differential host data strobes (+ve).
HDSTBN[3:0]# AGTL+ I/O (4x) Differential host data strobes (-ve).

Table B.8: Data Response Signals

• DRDY# – This signal is asserted for each cycle that data is transferred.

• DBSY# – This signal is used by the data bus owner to hold the data bus for

transfers requiring more than one cycle.

• DINV[3:0]# – These signals are driven along with the HD[63:0]# signals. They

indicate if the associated signals are inverted. DINV[3:0]# are asserted such

that the number of data bits driven electrically low (low voltage) within the

corresponding 16-bit group never exceeds 8.

• HD[63:0]# – These signals are connected to the system data bus. Data on

HD[63:0]# is transferred at a 4x rate. Note that the data signals may be inverted

on the system bus, depending on the DINV[3:0] signals.

• HDSTBP[3:0]# / HDSTBN[3:0]# – These signals are differential source syn-

chronous strobes used to transfer HD[63:0]# and DINV[3:0]# at the 4x transfer

rate.

STROBE# DATA BITS

HDSTBP[3]#, HDSTBN[3]# HD[63:48]#, DINV[3]#
HDSTBP[2]#, HDSTBN[2]# HD[47:32]#, DINV[2]#
HDSTBP[1]#, HDSTBN[1]# HD[31:16]#, DINV[1]#
HDSTBP[0]#, HDSTBN[0]# HD[15:0]#, DINV[0]#

Table B.9: Differential host data strobes

141

Appendix B. AGP and FSB

DRDY# indicates that valid data is on the bus and must be latched. The data

bus owner asserts DRDY# for each clock in which valid data is to be transferred.

DRDY# can be deasserted to insert wait states in the data transfer. DBSY# is used

to hold the bus before the first DRDY# and between DRDY# assertions for a multiple

clock data transfer. DBSY# need not be asserted for single clock data transfers if no

wait states are needed. The HD[63:0]# signals provide a 64-bit data path between bus

agents.

B.2.7 Line Transfers

A line transfer reads or writes a cache line, the unit of caching on the P6 family

processor system bus. For current Intel products, this is 32 bytes aligned on a 32-

byte boundary. While a line is always aligned on a 32-byte boundary, a line transfer

need not begin on that boundary. For a line transfer, HA[31:3]# carry the upper 29

bits of a 32-bit physical address. Address bits HA[4:3]# determine the transfer order,

called burst order. A line is transferred in four eight-byte chunks, each of which can

be identified by address bits [4:3]. The chunk size is 64-bits. Table B.10 specifies the

transfer order used for a 32-byte line, based on address bits HA[4:3]# specified in the

transactions request phase. The requested read data is always transferred first. Unlike

the Pentium processor, which always transfers writeback data address 0 first, the P6

family transfers writeback data requested address first.

A[4:3]# Req Addr 1st Addr 2nd Addr 3rd Addr 4th Addr

00 0 0 8 10 18
01 8 8 0 18 10
10 10 10 18 0 8
11 18 18 10 8 0

Table B.10: Burst order used for P6 family processor bus line transfers

A part-line aligned transfer moves a quantity of data smaller than a cache line

but an even multiple of the chunk size between a bus agent and memory using the

burst order. A 16-byte transfer on a 64-bit data bus with a 32-byte cache line size is

a part-line transfer, where a chunk is eight bytes aligned on an eight-byte boundary.

Address bits HA[4:3]# determines the transfer order for the included chunks, using

the burst order specified in Table B.10 for the line transfers.

142

Appendix C

Hardware Technologies

This appendix provides some additional background information on the various hard-

ware technologies that were used during the course of the project. It begins with an

overview of reconfigurable hardware devices, describing their purpose and architecture,

then goes on to describe some of the programming languages used to configure them.

This is followed by a brief overview of modern multi-layered PCB technology and a

description of the design and fabrication process involved in creating the custom hard-

ware for the GCN. Finally, some of the manufacturing data for the GCN revision 4

hardware is provided, outlining the board layup as well as the top and bottom PCB

artwork details.

C.1 Reconfigurable Hardware

Reconfigurable hardware is a term used to describe a class of devices whose functio-

nality is customizable at run-time. Reconfigurable hardware devices may be classified

into two broad categories, CPLDs and FPGAs, both of which are used in the GCN

architecture. FPGAs tend to be larger and more complicated than CPLDs, allowing

for the implementation of more sophisticated algorithms. CPLDs are commonly used

as “glue-logic” devices in order to cut down on the number of discrete components

required by modern PCBs.

While there are many different manufacturers of reconfigurable hardware devices,

the CPLDs and FPGAs used in the GCN design are manufactured by Xilinx. They are

the XC9500XL series CPLDs [Xil02] and the Virtex-II FPGAs [Xil04]. Sections C.1.1

and C.1.2 provide a brief overview of the main uses and architectural features of these

devices, while Section C.1.3 describes some of the programming languages that can be

used to create logic suitable for implementation in the reconfigurable hardware devices.

143

Appendix C. Hardware Technologies

C.1.1 CPLDs

CPLDs are a basic form of reconfigurable logic device and consist of a combination of

fully programmable AND/OR arrays (the logic blocks) and banks of macrocells. The

logic blocks are reprogrammable and can perform a multitude of functions. Macrocells

are functional blocks that perform combinatorial or sequential logic, and also have the

added flexibility for true or complement operations, along with varied feedback paths.

Traditionally, CPLDs are not that powerful in terms of the amount of logic that they

can hold but are quite inexpensive because of their simplicity and retain their contents

at system power-up due to their non-volatile nature. They are mostly used as glue-logic

devices to minimise the cost and component count of modern PCBs.

mcX

mc1
mc0

BLOCK

LOGIC

BLOCK

LOGIC

BLOCK

LOGIC

BLOCK

LOGIC

mcX

mc1
mc0

mcX

mc1
mc0

mcX

mc1
mc0

I/OI/O

I/O I/O

IN
T

E
R

C
O

N
N

E
C

T

Figure C.1: Block diagram overview of the internal architecture of a CPLD.

Figure C.1 shows a block diagram overview of the internal structure of a CPLD.

The functionality of the major architectural components that make up a CPLD can be

summarised as follows:

• Logic Blocks – Each logic block is comprised of 18 independent macrocells, each

capable of implementing a combinatorial or registered function. The logic blocks

also receive global clock, output enable, and set/reset signals. The logic blocks

generate outputs that drive the interconnect switch matrix. These outputs and

their corresponding output enable signals to also drive the IO buffers. Logic

within the blocks is implemented using a sum-of-products representation.

• Interconnect – The interconnect switch matrix connects signals to the logic

block inputs. All IO buffer outputs (corresponding to user pin inputs) and all

144

Appendix C. Hardware Technologies

logic block outputs drive the switch matrix. Any of these (up to a fan-in limit of

54) may be selected to drive each logic block with a uniform delay.

• Macrocells – Each macrocell may be individually configured for a combinato-

rial or registered function. Five direct product terms from the AND-array are

available for use as primary data inputs (to the OR and XOR gates) to imple-

ment combinatorial functions, or as control inputs including clock, clock enable,

set/reset, and output enable. The product term allocator associated with each

macrocell selects how the five direct terms are used. The macrocell register can

be configured as a D-type or T-type flip-flop, or it may be bypassed for com-

binatorial operation. Each register supports both asynchronous set and reset

operations.

• IOs – The IO blocks interfaces between the internal logic and the device user IO

pins. Each IOB includes an input buffer, output driver, output enable selection

multiplexer, and user-programmable ground control.

C.1.2 FPGAs

FPGAs are programmable semiconductor devices that are based around a matrix of

Configurable Logic Blocks (CLBs) connected via programmable interconnects. As op-

posed to ASICs, where the device is custom-built for the particular design, FPGAs

can be programmed with desired application or functionality requirements at run-time.

FPGAs allow system designers to get the benefits of customising their architecture to

the needs of their application, without the significant cost and risk of producing their

own custom ASIC chips. The non-recoverable engineering costs associated with desi-

gning and producing a new ASIC grow with each new generation of silicon technology

and is currently in the order of millions of Euro. For a chip using this technology to

be commercially successful, the manufacturer must sell a very significant number. So

for small volume production, custom ASIC chips are becoming less and less attractive.

Meanwhile, continuing improvements in process technologies are making FPGAs larger,

faster, cheaper and more capable than ever. Consequently FPGAs are becoming more

and more attractive for a wide variety of fields where a custom ASIC processor would

be technically beneficial but not be financially viable.

The fact that FPGA logic can be adapted to the changing demands of a particular

application introduces a flexibility that cannot be provided by ASICs. Even though

the ASIC is likely to outperform an equivalent FPGA implementation, FPGA-based

applications have the potential to achieve high-performance despite their relatively

low clock frequencies by exploiting parallelism. The FPGA may implement sections

145

Appendix C. Hardware Technologies

of an algorithm in concurrently operating digital logic blocks, while read and write

latencies to external memory may be hidden by overlapping memory communication

with computation.

BRAM

BRAM

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IOB

IOB

IOB

IOB

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

CLBCLB

CLB CLB

DCM

CLB

CLB

CLB

CLB

DCM

IOB

IOB

IOB

IOB

Figure C.2: Block diagram overview of the internal architecture of an FPGA.

Todays FPGAs have evolved far beyond the basic capabilities present in their

predecessors and incorporate hard (ASIC-type) blocks of commonly used functionality

such as RAM, clock management, and Digital Signal Processing (DSP). Figure C.2

shows a block diagram overview of the internal structure of a typical FPGA. The

functionality of the major architectural components that make up a FPGA can be

summarised as follows:

• CLBs – The CLB is the basic logic unit in an FPGA. Exact numbers and features

vary from device to device, but every CLB consists of a configurable switch matrix,

some selection circuitry and flip-flops. The switch matrix is highly flexible and

can be configured to handle combinatorial logic, shift registers, or RAM.

• Interconnect – While the CLB provides the logic capability, a flexible intercon-

nect routes the signals between CLBs and IOs. Routing comes in several types,

from that designed to interconnect between CLBs, to fast horizontal and vertical

lines spanning the device, to global low-skew lines for clocking and other global

signals.

• Input/Output Buffers (IOBs) – Todays FPGAs provide support for many

different IO standards. IO in FPGAs is grouped in banks with each bank inde-

pendently able to support different standards. Modern FPGAs can provide over

a dozen different IO banks, thus allowing flexibility in IO support.

146

Appendix C. Hardware Technologies

• Memory – Embedded dual-port BRAM memory is available in most FPGAs,

which allows for on-chip memory in designs.

• Digital Clock Management (DCM) – Digital clock management is provided

by most FPGAs, offering both digital clock management and phase-looped lo-

cking that provides precision clock synthesis combined with jitter reduction and

filtering.

C.1.3 Programming Reconfigurable Logic Devices

Hardware description languages are programming languages that can be used to pro-

gramme CPLDs and FPGAs. The two well-established major HDLs in use today are

Verilog [IEE01] and VHDL [IEE00].

In recent years, a number of higher level hardware description languages, such as

HandelC [Cel05], SystemC [IEE05c] and SystemVerilog [IEE05b], have been developed

as an alternative to the traditional languages of Verilog and VHDL. These higher

level languages are better suited to algorithmic hardware implementations whereas

conventional HDLs are better suited to lower level structural designs. These new

languages have the advantage of operating at a higher level of abstraction and provide

better support for rapid prototyping; however, they also have their disadvantages,

namely the relative immaturity of the tools and lack of support. This can lead to a

much steeper learning curve and make debugging the code more complex.

VHDL was chosen as the programming language for the reconfigurable hardware

of the GCN architecture as a result of its maturity and the level of support provided by

the vendor of the CPLDs and FPGAs through a dedicated development environment.

VHDL is a language for describing digital electronic systems. It was developed

as a way of describing the structure and function of ICs during the United States

Governments Very High-Speed Integrated Circuit (VHSIC) program, initiated in 1980,

and subsequently adopted as a standard by the Institute of Electrical and Electronic

Engineers (IEEE).

VHDL is designed to fill a number of needs in the design process. Firstly, it allows

description of the structure of a design, that is how it is decomposed into sub-designs,

and how those sub-designs are interconnected. Secondly, it allows the specification of

the function of designs using familiar programming language forms. Thirdly, as a result,

it allows a design to be simulated before being manufactured, so that designers can

quickly compare alternatives and test for correctness without the delay and expense of

hardware prototyping.

147

Appendix C. Hardware Technologies

C.2 PCB Design

A PCB is a component made of one or more layers of insulating material with electri-

cal conductors. The insulator is made of various materials that are normally based on

fibreglass, ceramics, or plastic. During manufacturing the portions of conductors that

are not needed are etched off, leaving printed circuits that connect electronic compo-

nents. PCBs can be single-sided, double-sided or multilayer. In many designs, such

as high speed digital, low level analogue and RF, the PCB layout may determine the

operation and electrical performance of the design. The GCN hardware is no exception.

It contains many high-speed signal paths and sensitive digital components and uses a

10-layer, 1.6 mm thick, FR4 copper-on-fibreglass PCB manufacturing technology with

a HASL BGA component mounting process. Due to the small quantities in which the

GCN boards were manufactured, all non-BGA components were mounted by hand.

Figure C.3: Cross-section of a multilayer stackup showing an example of the different
power and signalling layers that can be required to make-up a modern PCB.

There are industry standards for almost every aspect of PCB design, manufacture

and testing. These standards are controlled by the former Institute for Interconnec-

ting and Packaging Electronic Circuits, who are now known as the IPC. The major

document that covers PCB design is IPC-2221, “Generic Standard on Printed Board

Design” [IPC98]. The PCB design process itself involves two major steps. They are

schematic capture and PCB layout.

Schematic capture is the process of defining the various components that are

required by the design and describing how these components connect together. The

circuit diagrams are drawn out using the symbols from a component library and then

compiled into a Central Database (CDB). At this point, the design is verified and initial

simulations are run before proceeding to the PCB layout phase.

During the PCB layout phase, information about the component footprints and

the way in which all of the components are interconnected (the netlist) are extracted

148

Appendix C. Hardware Technologies

from the CDB. This information is then be used to layout the physical components

and traces needed to route the signalling between them. Once the signal traces have

been routed, the electrical characteristics of the design can be simulated and the design

rules are verified again to ensure the correctness of the design. After the design has

been laid out and verified, all of the information required to manufacture the physical

PCB is compiled from the CDB and sent to the chosen manufacturer for production

and assembly.

(a) (b)

Figure C.4: During the assembly process the BGAs are mounted and their registration
with the pads on the PCB is verified using X-Rays before the PCBs are sent through the
oven to cure the SMT components and then again after the curing process to ensure no
shorts have developed during reflow. Figure (a) shows the outline of one of the FPGAs,
while figure (b) shows the outline of one of the LC3 devices.

The basic manufacturing data required by a PCB fabricator consists of Gerber

files, NCDrill files, board layup, board artwork and assembly instructions. The Gerber

files contain a description of the physical layout of each layer of the PCB. They detail

the areas where copper will be removed from the board, leaving electrical traces that

will route the signalling and power between components. The NCDrill files tell the

fabricator where holes must be drilled through the boards and what diameters the

different holes must have. The board layup describes the cross-section of the PCB, in-

dicating the thickness of the various layers and insulating material between the layers.

It also indicates which layers are designated as “signal” layers and which are “power”.

The board artwork defines the silkscreen for the top and bottom of the PCB, which

contains component reference numbering, component outlines and rotational indica-

tors and any other text that should be visible on the surface of the board and aid

in the assembly process. Finally, the assembly instructions contain a list of details

149

Appendix C. Hardware Technologies

about how the various components are to be mounted to the PCB and how the board

should be tested once the components are in place. The components themselves are

generally specified by a Bill Of Materials (BOM), which is extracted from the CDB

once the PCB design has been finalised. Components can be sourced directly by the

hardware designer and submitted to the manufacturers along with the PCB manufactu-

ring data. Alternatively, the PCB manufacturer can source the components on behalf

of the designer, based on the BOM inventory.

2

1

3

4

5

6

10

9

8

7

CORE

BOTTOM

PREPREG

TOP

PREPREG

PREPREG

PREPREG

PREPREG

PREPREG

PREPREG

PREPREG

1.6mm

POWER

SIGNAL

POWER

VCC

GND

SIGNAL

SIGNAL

SIGNAL

SIGNAL

SIGNAL

Figure C.5: PCB layup for the GCN showing the individual layers of the boards.

Typical production times for PCBs can range from days to weeks depending on

the complexity of the boards and the amount of money the designer is willing to spend

during the manufacturing process. For large production runs, components are generally

mounted to the PCB automatically; however, for smaller prototype runs, assembly is

usually carried out by hand. This can lead to manufacturing defects, such as solder

bridges and badly placed components, which may need to be debugged during board

bring-up. It can also increase the costs of manufacturing PCBs in small quantities.

150

A
p
p
e
n
d
ix

C
.

H
a
rd

w
a
re

T
e
ch

n
o
lo

g
ie

s

��������	�
���
�	���
	�	�
������	�	����	�������������	�
���
�	���
	�	�
������	�	����	�������������	�
���
�	���
	�	�
������	�	����	�������������	�
���
�	���
	�	�
������	�	����	�����

��
�	������
�	������
�	������
�	����

�
����
���

�
����
���

�
����
���

�
����
���

���	��	������	��	������	��	������	��	���

���				�� !"#	�"#$�%���				�� !"#	�"#$�%���				�� !"#	�"#$�%���				�� !"#	�"#$�%

���				�� !"#	�"%"&!������				�� !"#	�"%"&!������				�� !"#	�"%"&!������				�� !"#	�"%"&!���

���				�'()*�#+	�&�)���				�'()*�#+	�&�)���				�'()*�#+	�&�)���				�'()*�#+	�&�)

��,���
���,���
���,���
���,���
�

�����
	-��������
	-��������
	-��������
	-���

���-��	���
����-��	���
����-��	���
����-��	���
�

�.�/�0						���
�.�/�0						���
�.�/�0						���
�.�/�0						���

���				�%�1"	�"#$�%���				�%�1"	�"#$�%���				�%�1"	�"#$�%���				�%�1"	�"#$�%

���				�%�1"	�"%"&!������				�%�1"	�"%"&!������				�%�1"	�"%"&!������				�%�1"	�"%"&!���

�����
	������
�����
	������
�����
	������
�����
	������

�,��,����,��,����,��,����,��,���

�����	����������	����������	����������	�����

��,
���,
���,
���,
�

�����2�����2�����2�����2

������������������������

���	��	������	��	������	��	������	��	���

���-.30���-.30���-.30���-.30

���-.40���-.40���-.40���-.40

���-.50���-.50���-.50���-.50

���-.�0���-.�0���-.�0���-.�0

������,��������,��������,��������,��

������������������������

�����.�0�����.�0�����.�0�����.�0

�����.�0�����.�0�����.�0�����.�0

����
���

����
���

����
���

����
���

���-.�0���-.�0���-.�0���-.�0

���-.�0���-.�0���-.�0���-.�0

���-.�0���-.�0���-.�0���-.�0

���-.�0���-.�0���-.�0���-.�0

������,�������,�������,�������,�

�����,��,������,��,������,��,������,��,�

�����.�0�����.�0�����.�0�����.�0

������
�6������
�6������
�6������
�6

����������������������������

���	��	�����	��	�����	��	�����	��	��

�
6���
6���
6���
6��

�����
�����
�����
�����

�����
�����
�����
�����

���	�����	�����	�����	��

�
6���
6���
6���
6��

���	-������	-������	-������	-���

�����	�

�������	�

�������	�

�������	�

��

��������������������

�����
�����
�����
�����

����������������

���6	����6	����6	����6	� ���6	����6	����6	����6	�

��7�--��7�--��7�--��7�--

���4����4����4����4�

������������

�
6���
6���
6���
6��

������������

���
���
���
���
������������

�
6���
6���
6���
6��

�
�
��
�
��
�
��
�
�

-���-���-���-���

������������

��6��6��6��6

������������

�
64��
64��
64��
64�

���	�������	�������	�������	����

������������

������������

������������

�
64��
64��
64��
64�

��
�	������
�	������
�	������
�	����

������������

����������������

����������������

�.�0�.�0�.�0�.�0

���8���8���8���8

��,�����,�����,�����,���

�.�0�.�0�.�0�.�0

�.�0�.�0�.�0�.�0

������������

�����
	���������
	���������
	���������
	����

������������

������������

���	�����	�����	�����	��
�����
�����
�����
�����

������������

��6��6��6��6

������������

���	��	�����	��	�����	��	�����	��	��

����9

���4�

���	�������	�������	�������	����

���	14���	14���	14���	14

������������������������
�8��
��8��
��8��
��8��
�

��������

4�4�4�4�

�������� ��������

4�4�4�4� 4�4�4�4�

���

��:����:����:����:��

4:4�4:4�4:4�4:4�

5:��5:��5:��5:��

�:5��:5��:5��:5�

��������

4�4�4�4�

��������������������
��
�
��
�
��
�
��
�

��,���,���,���,�

-�

-�

-�

-�

������������

��6��6��6��6

������������

������������

������������

������������

�

��������

��������������������

�
6

��������

������������

��6��6��6��6

������������

�

������������

������������

������������

�
6

��.90��.90��.90��.90

������������������������

��.50��.50��.50��.50

��.30��.30��.30��.30

��.40��.40��.40��.40

��.�0��.�0��.�0��.�0

��.��0��.��0��.��0��.��0

�����-�����-�����-�����-

��.�0��.�0��.�0��.�0

��.;0��.;0��.;0��.;0

��.�0��.�0��.�0��.�0

��.�0��.�0��.�0��.�0

�:5��:5��:5��:5�

��.�0��.�0��.�0��.�0

�
�
�
	
�
�
�
�
�
�

�
�
�
	
�
�
�
�
�
�

�
�
�
	
�
�
�
�
�
�

�
�
�
	
�
�
�
�
�
�

�:�5��:�5��:�5��:�5�

�:5��:5��:5��:5�

�:3��:3��:3��:3�

������������

������������

��������

4
�

�

��������

����

����

��������

4
�

�

4:4�4:4�4:4�4:4�

������������

�

D

-����

����3

����� ����3

���

��5

��3

��9

�4�

�49

���

��5

�5�

�5�

�����

���3

���9

�����

�����

�����

���

�,�4

�����

��4

����

��9

���4

����

�����

���4

����

���

����

����4

�59

�9�

�35

���

�9�

�9����

���5

����
����

��4�

��

��4

�5�

��3

�����

����5

����

����

�3

���

���5

���9

���

��9

�54

�5�

��
��

�53

�����

����

�,�

�
�
�
�
�

�4

�,5

�
�
4
�

�,4

�,;

�,��

��

�,��

�
�
�

�
�
�
;

�
�
4
�

�
�

<�

�
�
�
�

�
�
�
5

�
�
�
�

����

����

���

�3�

�,��

�
�
�
4

�
�
�
�

����

���3

-����

�,3

����

���4

�
3
�

�5�

�
�
�
9

����5

�
�
�

��;

��

�
;
�

�
3
�

����

���

�
4
5

�
4
3

<;

�9;

���

��3

��;

�94

�
4
�

<�

��9

�;9

�
�
�
5

�
�
�
3

�
�
�
�

����

����

�
�
4
5

�
3

�
�
�
4

�
�
�
�

�
�

����9

�
�
4
�

�
�
4
4

<�

�
�
9

�
�
;

�,9

����

���

�
�
�
9

�
�
�
3

�
�
�

�
�
�

�5�

���5

���3

�
�
�
5

�
�
�
4

�
�
3

��9

�
�
�

�4�

�
�
�

���

�5

�44

�
�
�
�

�
3
9

�
�
�

�99

�
�
�

�
�
;

<3

�93

����

��5

���
���

�9�
�;;

���

�
�
�

�5�

��5

���

�9

�9�

�3�

���

�95

���

2�

��4

��5

���5

�35

�;�

�;�

����

��45

2�

��4 ���

���

<�5

��

�33

��4;

��;

���

��;

���

���

��
��

�3�

��44

�3�

�39

���5

�43

��4�

�45

�4;

��;

��3

��43

�3�

<�4

�59

����;

�
�
�
9

<��

�
�
�
�

�
�
�
;

�
�
�
3

����

��;

�
�
�

���4

����

��;��3

���

�,�

�,�

�,�

�
�
4
4

�
�
4
�

�
�
4
�

�
�
�
9

�
�
�
3

�
�
�
4

�
�
�
�

�9

�
�
�
�
�

�4

�
�
�
�

�
�
9

�;

�;�

��

�
�
�
�

��4�

��49

�3�

�
�
�
�

���

���
�;5

�
3
4

�
;
�

�
�
�
;

�
�
4

�
�
�

�
�
�

��3

�
�
9

�
4
9

�
4
;

�
�
�

<�

�5�

��

�
4
�

��

�
4
�

�
4
�

�
4
4

�
5
5

��3

�
�
�
�

�
�
9

�
4
�

�
�
;

�5�

�3�
�;4

<��

����

�
�
�
9

�
�
�
;

�
;
�

�
�
�
�

�
�
�
4

�
�
�
3

�
�
�
�

�
�
�
�

�
�
�
5

�
�
�
4

�
�
�
�

�
�
�
;

���

�
�
�
�

�
�
�
�

�
�
5
�

�
�
�
�
4

�
�
�
4

�
�
4
;

�
�
4
9

�
�
�
�

�
�
5
�

�
�
�
9

�
�
�
�

�
�
4
�

�
�
4
3

�
�
�
�

�
�
�
3

�
�
�
;

�
�
4
�

�
�
�
�

�
�
�
5

�
�
�
�

�
�
4
�

�
�
�
�

�
�
�
4

�
�
�
�

�
�
4
�

��

�
�
�
�

�
�
�
;

��

�
�
3

�
�
�
�

�
�
�
�

�5

�
�
�
�

��

�
�
5

�
�
4
;

�
�
4
9

�
�
�
�

�
�
�
�
;

��5

�
�
4

�
�
4
�

�
�
4
3

���

��4
�;�

�
�
�
�

�
�
�

�
;
�

�
�
�

�
�
4
5

�
�
5

�
�
�

�
�
3

���

�
5
5

�
�
�
�

�
�
�

�
�
4

�
�
�

<4

�54

��

�
�
9

��

�
�
3

�
�
5

�
�
�

�
5
�

<5

�
�
4

�
�
�

�
�
�

��4
�3;

<9

����

�
3
3

�
�
�
�

���

���9

��4

�4

�5;�53

��

�;

����

����

��;

��

�
�
4
�

�
3
4

��

�3

�;3

��9

�
�
4
�

��4

���

���

�3;

�4�

�
3
�

��5

�4�

<��

�4

�
�

�
9

�4�

�
�
�
�

�
�
�
;

��5

�
�
�
4

�
�
�

�
�
�
9

�
�
�
;

�
�
�
3

�
5

�
;

�
�
�

�
�
�
�

�5;

�
�
�
�

<��

�
�
�
;

FH2:S

FH4:SFH4:S

FH1:SFH2:SFH1:S 1:L

1:L

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

1:S 2:S1:S 2:S

3:S 4:S

5:S 6:S

3:S 4:S

5:S 6:S

7:S 8:S

9:S 10:S

7:S 8:S

9:S 10:S

11:S 12:S

13:S 14:S

11:S 12:S

13:S 14:S

15:S 16:S

17:S 18:S

15:S 16:S

17:S 18:S

19:S 20:S

21:S 22:S

19:S 20:S

21:S 22:S

23:S 24:S

25:S 26:S

23:S 24:S

25:S 26:S

27:S 28:S

29:S 30:S

27:S 28:S

29:S 30:S

31:S 32:S

33:S 34:S

31:S 32:S

33:S 34:S

35:S 36:S

37:S 38:S

35:S 36:S

37:S 38:S

39:S 40:S39:S 40:S

1:L

3:S 2:S

3:L

2:L 1:S

2:L 1:S

2:L 1:S

2:L 1:S

2:L 1:S

2:L 1:S

3:S

4:S

13:L 12:S 9:L

8:L5:S4:S

8:S 7:S

40:S

49:S

1:S

2:L

1:S 16:S

2:S 15:S

14:S3:S

13:S

12:S5:S

4:S

11:S

10:S7:S

6:S

9:S8:S

2:S

1:S 16:S

15:S

4:S

3:S 14:S

13:S

6:S

5:S 12:S

11:S

8:S

7:S 10:S

9:S

1:S 4:S

2:S 3:S

16:L

1:S

FH1:S

1:S

27:S

2:L

1:S

2:S

4:S

3:S

6:S

5:L

7:S

FH2:S46:S

2:S

43:S

2:S

2:S

1:S

1:S

181:L 183:L

89:L 91:S

FH3:L

181:L 183:L

FH3:L

89:L 91:S

FH1:S 30:S

FH3:S

165:S 167:L 173:L 175:S

73:S 75:L 81:L 83:S

165:S 167:L 173:L 175:S

73:S 75:L 81:L 83:S

FH2:S

2:S

4:S

2:S

6:S

FH4:S

49:S

1:S

2:L

4:S

3:S

6:L

5:S

7:L

1:L

1:L

3:S

5:L

7:L

157:L 159:L149:L 151:S

57:S 59:L 65:L 67:S

149:L 151:S 157:L 159:L

57:S 59:L 65:L 67:S

40:S

16:S

12:S

14:S

10:S

27:S

15:S

13:S

11:S

9:S

137:L 139:L

45:S 47:S

FH1:L

137:L 139:L

45:S 47:S

FH1:L

2:S 1:S

FH4:S

2:S1:S

121:S 123:S 129:L 131:S

29:L 31:S 37:L 39:S

121:S 123:S 129:L 131:S

29:S 31:S 37:S 39:S

46:S30:S

2:S

2:S 1:S

43:S

2:S

2:S

105:S 107:L 113:L 115:L

21:L 23:S13:S 15:L

113:L 115:L105:S 107:L

13:S 15:S 21:S 23:S

FH3:S

97:L 99:S

5:S 7:L

97:L 99:S

5:S 7:S

2:S

20:S21:S

4:S5:S

12:S13:S

1:S

1:S 2:L

3:S 4:S

5:S 6:S

7:S 8:S

9:S 10:S

11:S 12:S

13:S 14:L

15:L 16:L

3:S

4:S

2:S

FH3:L

B8:S

A3:S

A13:L

A23:L

FH1:L

A59:S

FH2:L

2:S1:S

B2:L

A1:L

B4:S

B6:S

A7:S

A5:L

A11:S

A9:L

A17:S

A15:S

A21:S

A19:L

A27:S

A25:L

A33:S

A31:L

A29:S

A37:L

A35:S

A41:S

A39:S

A47:S

A53:S

A51:S

A49:L

A57:S

A55:L

A63:S

A61:L

A65:S

1:S

2:S

1:L

2:S

2:S

12:S

7:S

8:L

5:L

6:S

2:S1:L

2:L1:S

2:S1:S

15:S

13:L

14:L

11:S

1:L

2:L3:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

2:L

1:S

1:S

1:S

1:S

2:L

11:L 10:L

7:L6:S

6:S

1:S

2:L 4:S

1:S 3:S

5:S 4:S

1:S 3:S

1:S 3:S

2:L 4:S

2:L 4:S

15:L 14:S

3:S2:S

9:L

48:S46:S42:S

47:S43:S41:L

1
6
:L

2
2
:S

3:S

4:S

2
:L

36:S34:S30:S28:S

1
:L

2:L

35:S29:S

3
:S

1:S

1:S

3
:L

2
:L

26:L

16:S

6:L

1
:L

2:L

FH3:S

A7:LA6:L

D7:LD6:L

C7:LC6:L

B7:LB6:L

V7:SV6:S

U7:SU6:L

Y7:SY6:S

W7:SW6:S

36:L

35:S

34:L

33:L

32:S

31:S

30:S

29:S

28:S

27:L

25:L

24:L

23:L

22:L

21:L

20:L

19:L

18:L

17:L

15:S

14:S

13:S

12:L

11:L

10:S

9:S

8:S

7:S

5:L

4:L

3:L

2:L

1:L

1:S

1:S

1:S

1
3

7
:S

1
:S

2:S

1:S

B3:LB2:L

A3:LA2:L

D3:LD2:L

C3:LC2:L

F3:LF2:L

E3:LE2:L

H3:LH2:L

G3:LG2:L

M3:LM2:L

L3:LL2:S

K3:SK2:S

J3:LJ2:S

N3:LN2:L

T3:ST2:S

R3:SR2:S

P3:SP2:S

W3:LW2:S

V3:SV2:S

U3:SU2:S

Y3:SY2:L

2:S

2:L 3:S

4
4

:L

48:S

1:S

93:S

83:S

1
1

6
:S

103:S

49:S47:S

2
2
:S

1:S

2:S

1:S

2:S

1:S

1:S

2:L

6
5

:L

77:S

76:S

75:S

74:S

73:L

82:S

81:S

80:S

79:S

78:S

92:S

91:S

90:L

89:L

88:S

87:S

86:S

85:S

84:L

102:S

101:S

100:S

99:L

98:S

97:S

96:S

95:S

94:S

108:L

107:S

106:S

105:S

104:S

2:S

1:S

184:L

92:S

184:L

92:S

42:S40:S36:S34:S

1:S

41:L35:S

1
6
:L

1:S1:S

2:S2:S

2:S

1:S

1:S

2:S

2:S

1:S

1:S

1:S

1:S

176:L

177:L 179:S

180:L

87:S

88:S84:S

85:L

176:L

177:L 179:S

180:L

84:S

85:L 87:S

88:S

28:S

1:S

14:S

2
8

:L

17:L

29:S27:S

3
:L

1:S

2:S

3:S

2:S

1:S

2:S

1:S

2
8

:L

22:L

21:S

20:L

19:S

18:L

17:L

16:L

15:L

13:L

12:L

6
:L

22:L

21:L

20:L

19:L

18:L

15:S

14:S

13:S

12:L

16:S

6
:L

168:L

169:L 171:S

172:L

76:L

77:L 79:S

80:S

168:L

169:L 171:S

172:L

76:L

77:L 79:S

80:S

1:S1:S

42:S

39:L

35:L

34:L

41:L

40:S

39:L

38:L

37:L

36:L

44:L

43:L

38:S

37:L

36:L

35:S

34:L

44:L

43:L

42:L

41:L

40:L

160:L

161:S 163:L

164:L

68:S

69:S 71:L

72:S

160:L

161:S 163:L

164:L

68:S

69:S 71:L

72:S

1:S1:S

1:S

152:L

153:S 155:S

156:L

60:S

61:S 63:L

64:S

152:L

153:S 155:S

156:L

60:S

61:S 63:L

64:S

1:S1:S

48:S46:S42:S

1:S

47:S43:S41:L

1
6
:L

2
2
:S

2:S

145:L 147:S

148:L

53:S 55:S

56:S

145:L 147:S

148:L

53:S 55:S

56:S

1:S 1:S

36:S34:S30:S28:S

2:S

35:S29:S

3
:S

1:L

140:L

141:L 143:L

144:S

48:L

49:S 51:S

52:L

140:L

141:L 143:L

144:S

48:L

49:S 51:S

52:L

1:S1:S

3
:L

1:S

5:S

3:S

7:S

FH3:S

C7:LC6:L

B7:LB6:L

A7:LA6:L

D7:LD6:L

W7:SW6:S

V7:SV6:S

U7:SU6:L

Y7:SY6:S

2:S

4:S

6:S

8:S

132:L

133:S 135:S

136:L

40:S

41:L 43:L

44:S

132:L

133:S 135:S

136:L

43:L

44:S40:S

41:L

1:S 1:S

2
:S

2:S

1:S

D3:LD2:L

C3:LC2:L

B3:LB2:L

A3:LA2:L

H3:LH2:L

G3:LG2:L

F3:LF2:L

E3:LE2:L

K3:SK2:S

J3:LJ2:S

M3:LM2:L

L3:LL2:S

R3:SR2:S

P3:SP2:S

N3:LN2:L

T3:ST2:S

W3:LW2:S

V3:SV2:S

U3:SU2:S

Y3:SY2:L

1:L

2:S

3:L

5:L

4:S

7:L

6:S

124:L

125:L 127:S

128:L

32:L

33:S 35:S

36:S

124:L

125:L 127:S

128:L

32:S

33:S 35:S

36:S

1:S1:S

48:S

2:S

49:S47:S

2
2
:S

1:S

2:S

1:S

2:S

1:S

1:S

2:S

116:L

117:S 119:L

120:L

24:S

25:S 27:L

28:S

116:L

117:S 119:L

120:L

24:S

25:S 27:S

28:S

1:S

42:S40:S36:S34:S

1:S

17:L

41:L35:S

1
6
:L

1:S1:S

2:S2:S

2:S

1:S

1:S

2:S

1:S

2:S

1:S

1:S

1:S

22:L

21:S

20:L

19:S

18:L

16:S

15:S

14:S

13:L

12:L

108:L

109:S 111:L

112:L

16:L

17:L 19:S

20:S

108:L

109:S 111:L

112:L

16:S

17:S 19:S

20:S

28:S

3
3

:L

29:S27:S

3
:S

1:S

2:S

2:S

1:S

3:S

2:S

1:S

1
:L

100:L

101:L 103:L

104:L

8:S

9:L 11:L

12:S

100:L

101:L 103:L

104:L

8:S

9:L 11:S

12:S

2:S

2:S

2
3

:L

1:S

2:S

2:S

1
1

:L

93:L 95:S

96:L

1:L 3:L

4:S

93:L 95:S

96:L

1:S 3:S

4:S

1
:S

2
:S

1:S

39:L

1:S

17:S18:S19:L

1:S3:L

9:S10:S11:L

1:S

38:L

37:L

36:L

35:L

34:L

44:L

43:L

42:S

41:L

40:S

2:S

22:L24:S

6:S8:L

14:L16:S

1:L

2:L 7:L

8:S

3:S

4:L 5:S

6:S

4:L 5:S

6:S

7:L

8:S1:L

2:L

3:L

2:S 2:S 1:S

2:S1:S

1:S

19:S

2
:S

2:S

1:S

1:S

2:S

28:L

27:S

24:S

23:S

22:S

21:S

20:S

26:S

25:S

18:S

17:S

16:S

15:S

2:S2:S

A8:L

A18:S

A64:L

2
:S

1:L 8:S

2
:L

1
:S

A2:S

A6:S

A4:S

A12:S

A10:L

A16:L

A14:S

A22:L

A20:S

A28:L

A26:S

A24:L

A32:S

A30:S

A38:S

A36:S

A34:L

A40:L

A48:S

A46:S

A52:L

A50:S

A58:L

A56:S

A54:S

A62:S

A60:S

A66:L

2:L

3:S

4:S 5:S

6:S

7:S

2:S

1:S

1:S

2
:S

1:S

2
:S

1
:S

1
:S

B3:L

B13:L

B23:L

B59:S

2:L

2
:S

1
:S

B1:S

1:S

3:S

B5:L

B7:L

3:S

B9:L

B11:L

2:S

B15:S

B17:S

B19:L

B21:S

B25:L

B27:S

B29:S

B31:L

B33:S

B35:S

B37:L

B39:S

B41:S

1:S

B47:L

2:S

B53:S

B51:S

B49:L

B57:S

B55:L

B63:S

B61:L

2:S

1:S
B65:S

10:L

5:L

8:L

9:L

3:S

4:S

6:L

1:L

7:S

1:S

1:S

1:S

1:S

2
:S

1:S

1:S

1:S

2:L

1:S

2:S

1:S

2:S

1:S

1:S

2:S

3:S

4:S

1:S

2:S

1:S

37:S

44:L

38:S

39:L

40:L

41:L

42:L

43:L

31:S

32:S

33:L

34:L

35:S

36:L

25:L

26:L

27:L

28:L

29:S

30:S

23:L

24:L

8:S

1:L

2:L

3:L

4:L

5:L

6:L

7:S

9:S

10:S

11:L

12:L

13:S

14:S

15:S

16:S

17:L

18:L

19:L

20:L

21:L

22:L

37:S

2:S

44:L

38:S

39:L

40:L

41:L

42:L

43:L

31:S

32:S

33:L

34:L

35:S

36:L

25:L

26:L

27:L

28:L

29:S

30:S

23:L

24:L

8:S

1:L

2:L

3:L

4:L

5:L

6:L

7:S

12:L

13:S

14:S

9:S

10:S

11:L

15:S

16:S

17:L

18:L

19:L

20:L

21:L

22:L

F
H

4
:S

50:S

2
3
:S

2
4
:S

2
5
:S

44:S

45:S

1
7
:S

1
8
:S

1
9
:S

2
0
:S

2
1
:S

38:S

4:S

39:S37:S

1
0
:S

1
1
:S

1
2
:S

1
3
:S

1
4
:L

1
5
:S

3:S

32:S

33:S31:S

4
:S

5
:S

6
:S

7
:S

8
:S

9
:S

26:S

4:S

1
:S

2
:L

2:S

1:S

2:S

1:S1
:L

1:S

3:S

F
H

3
:S

2:S

1:S

2
:S

A9:LA8:L

D9:LD8:L

C9:LC8:L

B9:LB8:L

M9:L

L9:L

K9:L

J9:L

V9:LV8:S

U9:LU8:L

Y9:LY8:L

W9:LW8:L

1:S

2:S

1
4

4
:L

1
4

3
:S

1
4

2
:S

1
4

1
:L

1
4

0
:S

1
3

9
:S

1
3

8
:S

2
:S

2
:S

1
:S

2
:S

1
:S

A5:LA4:L

D5:LD4:L

C5:LC4:L

B5:LB4:L

F4:L

E4:L

H4:L

G4:L

M4:L

L4:S

K4:L

J4:L

N4:L

T4:S

R4:L

P4:S

V5:SV4:S

U5:SU4:L

Y5:SY4:S

W5:SW4:S

4
3

:L

4
2

:L

4
1

:L

4
0

:L

3
9

:L

3
8

:S

3
7

:S

1:S

3
:S

2
:S

1
3

6
:S

1
3

5
:S

1
3

4
:S

1
3

3
:S

1
3

2
:S

1
3

1
:S

1
3

0
:S

1
2

9
:S

1
2

8
:S

1
2

7
:L

2
:S

B1:L

A1:L

D1:L

C1:L

F1:L

E1:L

H1:L

G1:L

M1:L

L1:S

K1:S

J1:S

N1:L

T1:S

R1:S

P1:L

W1:S

V1:S

U1:S

Y1:S

5
4

:S

5
3

:S

5
2

:S

5
1

:S

5
0

:S

4
9

:S

4
8

:S

4
7

:L

4
6

:S

4
5

:S

4
:S

F
H

4
:S

1
:S

1
2

6
:S

1
2

5
:S

1
2

4
:S

1
2

3
:L

1
2

2
:S

1
2

1
:S

1
2

0
:S

1
1

9
:S

1
1

8
:S

1
1

7
:S

1
:L

2
:S

1
:S

2
:S

1
:S

6
4

:S

6
3

:L

6
2

:L

6
1

:S

6
0

:S

5
9

:S

5
8

:S

5
7

:S

5
6

:S

5
5

:L

50:S

2
:S

1
:S

2
:S

1
:S

1
1

5
:S

1
1

4
:L

1
1

3
:S

1
1

2
:S

1
1

1
:S

1
1

0
:S

1
0

9
:L

2
3
:S

2
4
:S

2
5
:S

1:S 1:S1:S

2:S 2:S2:S

2
:S

1
:S

2:S

2:S

1:S

2
:S

1
:S

2:S

2:S

1:S

7
2

:L

7
1

:S

7
0

:S

6
9

:S

6
8

:S

6
7

:L

6
6

:S

44:S

1:L

2
:S

45:S

1
7
:S

1
8
:S

1
9
:S

2
0
:S

2
1
:S

1:S 1:S1:S

2:S 2:S2:S

3:L

8:S

5:S

6:S

7:S

182:L

90:L

182:L

90:L

2
:S

38:S

1
:S

2
:S

1
:S

1
:S

39:S37:S

1
0
:S

1
1
:S

1
2
:S

1
3
:S

1
4
:L

1
5
:S

1:S

2:S

2:L

1:L

2
:S

1
:S

1:S

2:S

3:S

4:S

2:S

2:S

178:S

86:S

178:S

86:S

32:S

2
:S

1
:L

2
:S

1
:S

2
:S

1
:S

33:S31:S

4
:S

5
:S

6
:S

7
:S

8
:S

9
:S

1:S 1:S 1:S

2:S 2:S 2:S

4:S

3:S

2
:S

1
:S

3
:L

2
:S

1
:S

2
:S

1
:S

1
:S

2
:S

174:S

82:L

174:S

82:L

2
:S

26:S

2
:S

1
:S

2:L

1
:S

2
7

:L

2
6

:L

2
5

:L

2
4

:L

2
3

:L
1

1
:L

1
0

:S
1
:L

2
:L

1:S1:S 1:S

2:S2:S 2:S

2:S

1:S

2
:S

1
:S

1:S

2
7

:S

2
6

:L

2
5

:S

2
4

:L

2
3

:L
1

1
:L

1
0

:S

9
:S

8
:L

7
:L

9
:S

8
:S

7
:S

170:S

78:S

170:S

78:S

1:S

F
H

3
:S

2
:S

1
:S

3
3

:L

3
2

:L

3
1

:S

3
0

:L

2
9

:S

1:S

2:S

3
3

:L

3
2

:L

3
1

:S

3
0

:L

2
9

:S
5

:L

4
:L

3
:L

2
:L

1
:L

5
:L

4
:L

3
:L

2
:L

1
:L

166:S

74:L

166:S

74:L

1:S

162:S

70:L

162:S

70:L

1:S

158:L

66:L

158:L

66:L

1:S

F
H

4
:S

154:L

62:L

154:L

62:L

1:S

50:S

1:S

2
3
:S

2
4
:S

2
5
:S

2:S

150:S

58:L

150:S

58:L

1:S

44:S

1:S

2
:S

45:S

1
7
:S

1
8
:S

1
9
:S

2
0
:S

2
1
:S

2:S

2
:S

146:S

54:L

146:S

54:L

1:S

38:S

1
:S

39:S37:S

1
0
:S

1
1
:S

1
2
:S

1
3
:S

1
4
:L

1
5
:S

1
:S

1:S

32:S

33:S31:S

4
:S

5
:S

6
:S

7
:S

8
:S

9
:S

142:S

50:L

142:S

50:L

1:S

26:S

1
:S

2
:S

2:S

1:S1
:L

2:S

1:S

138:L

46:L

138:L

46:L

1:S

F
H

3
:S

2:S

1:S

2
:S

C9:LC8:L

B9:LB8:L

A9:LA8:L

D9:LD8:L

K9:L

J9:L

M9:L

L9:L

W9:LW8:L

V9:LV8:S

U9:LU8:L

Y9:LY8:L

134:S

42:L

134:S

42:L

1:S

2
:S

1
:S

2
:S

1
:S

C5:LC4:L

B5:LB4:L

A5:LA4:L

D5:LD4:L

H4:L

G4:L

F4:L

E4:L

K4:L

J4:L

M4:L

L4:S

R4:L

P4:S

N4:L

T4:S

W5:SW4:S

V5:SV4:S

U5:SU4:L

Y5:SY4:S

130:L

38:L

130:L

38:S

1:S

D1:L

C1:L

B1:L

A1:L

H1:L

G1:L

F1:L

E1:L

K1:S

J1:S

M1:L

L1:S

R1:S

P1:L

N1:L

T1:S

W1:S

V1:S

U1:S

Y1:S

126:S

34:L

126:S

34:S

1:S

F
H

4
:S

1
:S

122:L

30:L

122:L

30:S

1:S

50:S

2
:S

1
:S

2
:S

1
:S

2
3
:S

2
4
:S

2
5
:S

1:S 1:S 1:S

2:S 2:S 2:S

2
:S

1
:S

2:S

2:S

1:S

2:S

2:S

1:S

2
:S

1
:S

2:S

1:S

118:L

26:L

118:L

26:S

1:S

44:S

1:L

2
:S

1:S

45:S

1
7
:S

1
8
:S

1
9
:S

2
0
:S

2
1
:S

1:S 1:S1:S

2:S 2:S2:S

3:L

8:S

5:S

6:S

7:S

1:S

114:S

22:L

114:S

22:S

38:S

1
:S

39:S37:S

1
1
:S

1
2
:S

1
3
:S

1
4
:L

1
5
:L

1
0
:S

1:S

2:S

2:L

1:L

2
:S

1
:S

1:L

2:S

3:L

4:L

2:S

2:S

110:S

18:L

110:S

18:S

32:S

2
:S

1
:L

2
:S

1
:S

2
:S

1
:S

2
6

:L

2
5

:S

2
4

:L

2
3

:L

33:S31:S

4
:S

5
:S

6
:S

7
:S

8
:S

9
:S

1:S 1:S1:S

2:S 2:S2:S

4:S

3:S

2
:S

1
:S

3
:L

2
:S

1
:S

2
:S

1
:S

1
:S

2
:S

1
1

:L

1
0

:L

9
:L

8
:L

106:S

14:S

106:S

14:S

26:S

2
:S

1
:S

2:S

3
2

:L

3
1

:S

3
0

:L

2
9

:S

2
8

:L

2
7

:S

1
:S

2
:S

1:S 1:S 1:S

2:S 2:S 2:S

2:S

1:S

2
:S

1
:S

1:S

7
:S

6
:L

5
:L

4
:L

3
:L

2
:L

102:L

10:L

102:L

10:S

F
H

3
:S

39:L

2
:S

2
:S

1:S

2:S

38:L

37:L

36:L

35:L

34:L

44:L

43:L

42:S

41:L

40:S

2
:S

2
:S

98:S

6:S

98:S

6:S

2
:S

1
:S

2
:S

1
:S

1:S

17:L

1
:S

1
:S

1:S

2
:S

1
:S

2
:S

1
:S

1:S

22:L

21:L

20:L

19:S

18:L

14:S

13:L

12:L

16:L

15:L

1
:S

1
:S

94:S

2:S

94:S

2:S

2
9

:S

2
8

:L

2
7

:S

2
6

:L

2
5

:S

2
4

:L

2
:S

1
:S

16:L

15:L

14:S

13:L

12:L

11:L

10:S

9:S

1
:S

1
0

:S

9
:S

8
:L

7
:L

6
:L

5
:L

3
3

:L

3
2

:L

3
1

:S

3
0

:L

2
:S

1
:S

2
:S

1
:S

2:L

2
:S

1
:S

4:L

3:L

2:L

1:L

8:L

7:L

6:L

5:L

2
:S

4
:L

3
:L

2
:L

1
:L

FH2:L

FH2:L

2
:S

1
:S

2
:S

1
:S

2:S

2
:S

2:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

1:S

1:S

1
:S

2
:S

2
:S

8:S

2
:L

1
:S

1
:S

23:S

7:S

15:L

1:S

5:S

6:S

7:S

3
:S

1
:S

2
:S

2
:S

1
:S

1:L

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2:S

1:S

1
:S

1:S

2:L

2:S

1:S

2
:S

2
:S

1
:S

1:S

2:S

2
:S

1
:S

2
:S

1
:S

2
:S

2:S

2:S

1:S

1:S

2
:S

2
:S

1
:S

10:S

2
:S

1
:S

1
:S2

:S

1:S

2
:S

1:S

2
:S

2
:S

1:S

2:S

3:S

4:S

5:S

6:S

7:S

8:S

9:S

14:S

13:S

12:S

11:S

2
:S

1:S

1
:S

1
:S

1
:S

1
:S

2
:S

1
:S

1
:S

1
:S

1
:S

1:S

2:S

3
:S

1
:S

B18:S

B64:L

1
:S

B10:L

B12:S

B14:S

B16:L

B20:S

B22:L

B24:L

B26:S

B28:L

B30:S

B32:S

B34:L

B36:S

B38:S

B40:L

B48:S

B46:S

B52:L

B50:L

B58:L

B56:S

B54:S

B62:S

B60:S

B66:L

2
:S

1
:S

2:S

2
:S

1
:S

2:S

2:S

2:S

2
:S

1:L

2:L

2:L

1:L

1:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

1:S

2:S

2:S

1:S

1:S

2
:S

2
:S

1
:S

1
:S

1
:S

1
:S

2
:S

2
:S

1
:S

3:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1:S

F
ig

u
re

C
.6

:
P
C

B
a
rtw

o
rk

fo
r

th
e

G
C

N
revisio

n
4

to
p
sid

e.

151

A
p
p
e
n
d
ix

C
.

H
a
rd

w
a
re

T
e
ch

n
o
lo

g
ie

s

�
�
�
�
�
�
�
�
	

�
�
�

�
�
�
�
	
�

�
�

�
�
�
�
�
�
�

�
�
�
�
�
	
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
	

�
�
�

�
�
�
�
	
�

�
�

�
�
�
�
�
�
�

�
�
�
�
�
	
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
	

�
�
�

�
�
�
�
	
�

�
�

�
�
�
�
�
�
�

�
�
�
�
�
	
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
	

�
�
�

�
�
�
�
	
�

�
�

�
�
�
�
�
�
�

�
�
�
�
�
	
�

�
�
�
�
�
�
�

�
�
�
�

D

�����

�����

����

�����

����!

�""!

�" #
�"�!

�"�#����

�" "

�"��

�"#�
�"#�

��"#

�"��

���!

�" �

���

����

����
�"#�

���

�� #

��$$

��#�

��!�

��#�

��"!

����

��#�

�� �
����

����

�"��

���!

����
����

��!!

��#!

���

����

����

��!�

��#"

���

���"

���$

�""$
�" �

�"��

���"

���#

����

����

���!

��""

�"!"

���$

�"�"

���"

��!�

�"��

�"##
�"#$

����

�"�!

����

����

���#

��!�

���#

����

��

����

��$"

���# ��#"

��#�

��#

���$����

�� #

����

����

���"

���

��!!

���$

��"�

����

�� �

����

���!

�"

����

����

�� �

�� $

��!�

�
�
�
�

�

�
$

�

�
!

�
�
�
"

�
�
�
�

�
�
�
�

�
�
�
"

��$#

�"�#

����

��!�

��!!

��!$

��$#

��$

��##

��#�

����

����

����

��"�

��"�

���#

��"#

����

����

��#"

�
�
"
�

�
"
!
�

�
"
�

�"��

�
"
�

�
�
�
�

�
�
�
"

�" �

�""#

�
"
�
!

�"!�

�
"

$

�"#�

�"��

�
"
!
�

�
"
!
�

��!�

�� �

����

����

�
�
$
�

�
�
$
�

�"��

�"��

�"#"
����

�"��

����
���

��!"

�� $

��$�
��$�
��#�

��"#
��""
����

����

����

���
�� �

����

�
"
!
$

�
�
�
$

�
"
!

�
�
$
�

����

��!�

��#�

�"�$

�
�
�
�

�" !

�
$
�

�"$"

�
"
$
�

�
"
$
�

�
�
#
�

�
�
#

�
�
#
�

����
�
�
#
#

�"#

�"$�

�" $

�
#
�

�
#
�

�
"
$
#

��!�

�� "

����

����

�

�
�

�

�
"

�
�
�
"

�
�
�
�

�" #

����

����
���!

��!�

�� #

��$�
��$
��#�

����

���"
��"�

���"

���

���!
�� �

����

�
#
�

�
"
#
�

�
"
#
�

�
�
!

�
�
�
�

�
�
�
$

�
�
�
#

�

�
�

�
�
�
�

�
"
#
�

�
"
#
�

�
"
#
!

�
�
!
�

�
�
�
$

�
�
�
�

�

�

�

�
�

�
�
"
�

�
�
"
�

�
�
�
" �
�
�
"

�
�
�
�

��!$

���$

�
�
�
�

�
�
�
�

�

�
�

�

�
!

�
�
�
�

�
�
"
�

��$!
��$�

��"�

�� !
���#

���#

����

�
�
�
�

�
�
�
�

�

�
$

�
�
�
�

�" �

�"�"

���!

�
�
"
!

����
�"�

�
�
"
"

�
�
"
�

�
�
"
�

�
�
"
�

�
�
"

�
�
"
�

�

"
�

�

"
�

�
�
�
�

�
�
�
!

�" �

�"�"

�
�
�
�

�"��

���$

�
"
�
$

�"$�

�
"
�
�

�"#�

�"��

�
�
"
$

��$�
��!#

�� �

���!

��#$

���$

�� �

�
�
�
�

�
�
�
�

�"!�

�"��

���!
�"#!

�"��

�
�
�
"

�"��

���$

���
����

���"

��$$
��$#

���!
��"�

����

�� $
��!"

�� "

��!�

�
�

#

�
"
$
�

�
�
�
"

�
�
�
"

�
�
�
!

�
�
�
!

�
�
�
!

�

"
�

�
�
�
�

�
�
�
!

�"!�

�
�
�

��##

���$

�
"
�
�

�"$#

��#�

����

���#

����

��!�

�

"

�

"
�

�
�
�
�

�
�
�
�

���"
�"$$

���

���!

��"

����

�� �

����

����

�
�
�
�

�
"
�
#

�
"
�
!

��#!

�

"
!

�
�
�
�

��#�

�
"
"
�

�� �

�
�
"
$

�

"
$

�
�

�

��

��$#

��"�

����

���

�� "

�� �

�
�
!
!

����

�

"
#

�
�

�"�#

�" "

���"

��$�

��"�

����

���!

�
"
�
�

�
"
�
�

���#

�
�
�
�

����

���!

��!

��$�

��#$

��"�

��"!

����

�� !

��!#

��#

�
�
�
�

��#

��"�

�
�
�

�

�
"

�

�
�

�%&��

�
�
#
!

�
�
�
!

���"

��#�

�
�
"
$

�
�
�
�

�
�

�

�
�

�

�
�
�
#

�

�
�

�

�

�

�
�

�
�
�

�
�
!
�

�
�

!

��""
��"�

�
"
�
�

�
�
�
�

�
"

�

�
�
#
�

�
�
#
!

�
�
�
�

��#�

���"

�
�

�

�
�
�
�

�
"
�
�

�
"
�
!

�
"
�
�

�
�
!
�

�
�
"
$

�
�
�
�

�
�
�
�

�
"
�
$

�
�
�
�

�
�
$
�

�"��

�
"
�
$

�
"
�
#

�
�
�
�

�
�
#
�

�
�
#
$

�"!

�
"

!

�
"
!
"

�
"
!
�

�
�
$
"

�
�
$
�

����

�" �

�� �

�
�
�
#

�
"
�
�

�
"
!
�

�
�
$

�
�
$
�

�
�
$
!

�
"
�
�

�
"
!
!

�
�
"
�

�
"
�
�

�
"
�
#

�
"
!
!

�
"
!
$

�
"
!
�

�
�
$
$

�
�
$
!

�
�
$
#

�
�
$
�

�"!#

�
"
!
#

�
"
$
"

�
"
$
�

�
�
#
�

�
�
#
�

�
�
#
"

�
�
$
"

�
�
�

�
�
!
"

�
$

�
$
�

�
$
�

�
"
$
�

�
�
#
�

�
�
$

�
�
$
$

�
$
$

�
$
!

�
$
#

�
"
$
�

�
"
$
!

�
"
$

�
�
#
$

�
�
#
!

�
�
#
#

�
�
#
$

�
�
�
�

�

�
#

�" �

�� "

�
�
#
#

�
#
"

�
"
$
$

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

�

�
�

�
�
�
�

�
�
$
�

�
"
#
�

�
"
#
"

�
#
�

�
#

�
#
�

�
�
�
!

�
�
�
�

�
�
�
!

�

�
�

�
�
�
!

�
�
�
�

�
�
�

�

�
"

�

�
�

�
�
�
$

�
#
!

�
#
$

�
#
#

�
�
�
"

�
�
�
�

�
�
�
#

�
�
�
$

�
�
�
$

�
�
�
!

�

�
�

�
�
�
#

��#

����

�
�

�
�
$
!

��#�

�
�
�
�

�
�
�
"

�

�
�

�
�
�
#

�
�
�
�

���

�
�

�

�
"
#

�
�
�
�

�
�
�
�

�
�
�
"

�
�
�
�

�
�
�
�

�
�
"
"

�
�
�
�

�
"
#
$

�
�
�
�

�
�
�
!

�
�
�
�

�
�
�

�
�
"
�

�
�
"

�
�
"
�

�
�
�
�

�
"
#
#

�
�
�
"

�
�
�
�

�
�

�

�
�
�
#

�
�
�
$

�
�
"
#

�
�
"
!

�
�
"
$

�" �

�� �

�
�
�
�

�
�
�

�
�

"

�
�

�

�
�

�

�
�
�
"

�
�
�
�

�

�

��"�
��"�

�
�
�

�
�
�
!

�
�
�
�

�
�
�
!

�
�
�
#

�
�
�
$

�
�

�

�
�

�

�
#

�
�
�

�
�
�
�

�

�
�

�
�
�
�

�
�
�
$

�
�
"
�

�
�
�
#

�
�
"
�

�
�
"
"

�
�
"
�

�
�
�
�

�
"
�
"

�
"
$
�

�
"
�
�

�
�
"
�

�
�
"
�

�

"
"

�
�

�

�

"
�

�

�
!

�

�
$

�

�
#

�
"
�
�

�"�

�
�
"
�

�
�
"

�
�
"
!

�
�
"
$

�"$�

�
�
�
�

�
�
�

�
�
�
!

�"

�� �

�
�
"
#

�
"
�
�

�
�
"
!

�
�
�
�

�
�

!

�
�

$

�
�

#

�
�
�
$

�
�
�
#

�

�
�

���#

�
�
�
�

�
�
�
#

�
�
�
$

�
�
"
#

�
�
�
�

�
�
�
�

�
"
$

�
"
�
!

�
�
$
"

�
�
�
#

�
�
!
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
"

�
�
�
�

�
�
�
"

�
�
�
�

�
"
�
"

�
�
"

�
�
�
$

�
"
�

�
"
!
�

�
�
!
�

�
�
�

�
�
�
�

�
�
�
�

�

�
"

�
�
�

�
�
�
�

�
�
�
#

�"$!

�
�
�
�

�
�
!

�
�
�
$

�
�
�
$

�
�
!
�

�
�
�
#

�
�
�
#

�
�
�
$

�
�
�
#

�
"
�
�

�
"
�
�

�
"
�
"

�
�
!
�

�
�
!
�

�
�
!
"

�
�
�
�

�

�
�

�
�
�
"

�
"
�
�

�
"
�
�

�
"
�

���

��!�

��$�

�
�
!
�

�
�
!

�
�
!
�

�
�
�

�
�
�
�

�

�
�

����

��!"

��

���"

��#�

�
"
�
$

�
�
!
#

�
�
!
!

�
�
!
$

�

�
�

�
�
�
!

�
�
�
$

�
"
"
�

�
"
"
�

�
"
"
"

���#

�� �

�
�
$
�

�
�
$
�

�
�
$
"

�
�

�

�
�

"

�
�
�
#

�"�$

�" �

���!

����

��!$

��!

��$�

�
"
"
�

�
"
"
�

�
"
"

�
�
!
�

�
�
�
#

�
�

�

�
�
$
�

�
�
$

�
�
$
�

�
�
$
�

�
�

�

�
�

�

�

�

�
�
$
!

�

�
�

�
�
$
�

�

�
�

�

�
!

�
�

�

��#�

�
"
�
�

�� !

���$

����

��!�

��!#

��$�

�
"
�

�
"
�
�

�
"
�
!

�
"
�
$

��$�

����

��#�

�
�
!
$

�
"
�
#

����

�
�
�
�

�
�
#
"

�
�
�
$

�
�
!
#

�
�

$

�
�
�
$

�$

�#

�

��

�!

��#�

��"

�
�
�
�

�

�
�

�
�
�
$

��$$

��#�

2:S

2:S

2:S

2:S

2:S

3:S

1:S

2:S

3:S

1:S

2:S

3:S

1:S

2:S

3:S

1:S

2:S

3:S

1:L

2:S

1:S

2:S

2:S

2:S

1:S

2:S

2:S

2:S

1:S

2:S

2:S

2:S

1:S

2:S

2:S

2:S

1:S

2:S

2:S

1:S

1:S

2:S

1:S

1:S

1:S

1:S

1:S

2
:S

1:S

2:S

2:S

1:S

1
:S

2
:S

2:S

1:S

1:S

1:S

1:S

1:S

1:S

2
:S

1:S

2:S

1:S

2:S

1:S

1:S

1:S

1
:S

2
:S

1:S

1:S

2:S 1:S

1:S

1:S

2:S 1:S

1:S

1:S

1:S

1:S

1:S

1
:S

2
:S

2:S

1:S

2:S

1:S

1
:S

1:S2:S

1
:S

1
:S

1
:S

1
:S

2
:S

1:S2:S

1:S

2:S 1:S

2:S

1:S2:S

1:S

2:S1:S

1:S1:S 1:S

2
:S

2:S

2
:S

2
:S

2
:S

2
:S

2:S

2:S

1:S

1
:S

1
:S

2:S

1:S

1:S

2:S

1:S

1:S 2:S

2:S2:S

1:S2:S

1:S

1:S

2
:S

2
:S

1:S

1:S2:S

2:S1:S

1
:S

1
:S

1
:S

1
:S

1
:S

2
:S

1:S

2
:S

2
:S

2
:S

2
:S

1:S

2:S

1:S

1
:S

1
:S

1:S

1
:S

1:S

1:S

1:S

1:S

1:S

1
:S

2
:S

2
:S

1:S

1:S

2:S2
:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

2:S

2
:S

1:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

2
:S

1:S1:S

2:S2:S

1
:S

2
:S

1:S

1:S

1
:S

2
:S

2:S2:S

1:S1:S

1:S2:S

1:S2:S

1:S2:S

1:S2:S

2:S

1:S

2:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

2:S

1:S1
:S

2
:S

1:S

1:S

1:S

1:S

2:S 1:S

1:S

1:S

1:S

2:S 1:S

1:S

1:S

1:S

1:S

1
:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

1
:S

1
:S

1
:S

2:S

2
:S

2
:S

2
:S

2
:S

2:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2
:S

1
:S

1
:S

1:S

2
:S

2
:S

1:S

2:S

1:S

2:S

1:S

2
:S

2:S

1:S

1
:S

1
:S

1
:S

1
:S

1:S

2:S

2:S

1:S

2
:S

2
:S

2
:S

2
:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1:S2:S

1:S

1:S

1
:S

1:S

1:S

1:S

1:S

1:S

1
:S

1:S

2:S

1:S2:S

1:S

2:S

1:S2:S

1:S

2:S1:S

1:S 1:S1:S

2
:S

2:S

1:S

1:S

2:S2
:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

1:S

2:S

2
:S

1:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1:S 2:S

1:S

1:S

2:S

1:S2:S

2:S 2:S

1:S

1:S

2:S

1
:S

2
:S

1:S

1:S

1
:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

1
:S

2
:S

2
:S

2:S

1:S

2:S

1:S

1
:S

2
:S

2
:S

2
:S

2
:S

2
:S

2:S

2:S

2
:S

2
:S

2:S

1:S

2
:S

2
:S

2
:S

2
:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1:S

1:S

2:S

1:S

1
:S

2:S

1:S2:S

1:S

2:S

1:S

2
:S

1:S

2:S

1:S2:S

1:S

2:S2:S

1:S1:S

2:S

1:S

2:S

24:L

16:L

20:L

8:L

12:S

4:S

1
:S

49:S

50:L

25:L

47:S

48:S

21:S

22:S

23:S

45:L

46:L

17:L

18:L

19:L

41:L

42:L

43:L

44:L

13:L

14:L

15:S

37:S

38:L

39:L

40:L

9:L

10:L

11:S

33:L

34:L

35:L

36:L

5:L

6:L

7:L

29:S

30:S

31:S

32:L

1:L

2:L

3:L

26:L

27:S

28:S

2
:S

3:L

3:L

3:L

3:L

3:L

1
:S

2
:S

1
:S

2
:S

2:S

2:S

1:S

2:S

F
H

1
:L

F
H

1
:L

F
H

1
:L

F
H

1
:L

F
H

1
:L

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

1:S

1
:S

2
:S

1
:S

2
:S

1:S

2:S

1
:S

2
:S

1
:S

2
:S

1:S

2:S

1:S

2:S

2:S

1:S

1
:S

2
:S

1
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1:S

2:S

2
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

1
:S

1
:S

1
:S

2:S

2:S

1:S

2
:S

2
:S

2
:S

2
:S

1
:S

1
:S

1
:S

1:S

2
:S

1:S

2
:S

2
:S

2:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2:S

1:S

2:S

1
:S

1:S

1
:S

1:S

1:S

2
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2:S

2:S

2:S

2:S

2:S

2:S

1
:S

2
:S

2
:S

1:S

1:S2:S

2
:S

1
:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

1
:S

1:S2:S

1
:S

1
:S

1
:S

1
:S

1
:S

1:S2:S

1
:S

2
:S

2
:S

1
:S

1
:S

2
:S

1
:S

1
:S

2
:S

2:S

2:S

2
:S

1
:S

1:S

2
:S

2
:S

2
:S

2
:S

2
:S

2
:S

1:S

2
:S

1
:S

1
:S

1
:S

1
:S

1
:S

2:S

1:S2:S

1:S

2:S

2:S

1:S2:S

1:S

1:S

2:S

1:S

1
:S

2:S

1
:S

2
:S

2
:S

2
:S

2
:S

2
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1:S

2:S

1:S2:S

1:S

1:S

2:S

2:S

1:S

2:S

2:S

1:S

2
:S

2
:S

2
:S

2
:S

2
:S

2
:S

2:S

1:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

2
:S

2
:S

2
:S

2
:S

2
:S

2
:S

2:S

1:S

1
:S

1
:S

1
:S

1
:S

1
:S

2
:S

2
:S

2
:S

2
:S

2
:S

2
:S

2
:S

2
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1:S2:S

1
:S

1
:S

1
:S

1
:S

1
:S

1:S2:S

1
:S

2
:S

2
:S

2
:S

2:S

2
:S

2
:S

2
:S

2
:S

2
:S

2
:S

2:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

1
:S

2:S

2:S

2:S

2:S

2:S

2:S

2
:S

1
:S

2
:S

2
:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2
:S

1
:S

2
:S

1
:S

1
:S

1
:S

1
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

1
:S

2
:S

1
:S

2
:S

2
:S

2
:S

2
:S

2:S

2:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

1
:S

1
:S

2
:S

2
:S

2
:S

2
:S

2:S

1:S

2
:S

2
:S

2:S

2
:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S
1

:S
1

:S
1

:S
1

:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2
:S

2
:S

1
:S

1
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

1
:S

2
:S

1
:S

2
:S

1:S

1:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1:S2:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1:S2:S

1:S

2
:S

2
:S

2
:S

2
:S

2
:S

2
:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

1
:S

2
:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

2
:S

2
:S

2
:S

2
:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

2:S

2:S

1:S

2
:S

2
:S

2
:S

2
:S

2
:S

2
:S

1
:S

1:S

2
:S

1:S

2:S

2
:S

2
:S

1
:S

1
:S

2:S

1:S

2:S

1
:S

1:S

1
:S

1
:S

2
:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

1:S 1:S1:S

2:S 1:S

1
:S

1
:S

1
:S

1:S2:S

1
:S

1
:S

1
:S

2
:S

2
:S

2
:S

2
:S

1:S 2
:S

2
:S

1
:S

1:S2:S

2
:S

1
:S

2:S

2:S 2:S2:S

2:S

2
:S

2
:S

2
:S

2
:S

2
:S

2
:S

2:S

2
:S

2
:S

2
:S

2
:S

1
:S

1:S1:S 1:S

2:S

2:S

2:S

2:S

2:S

2:S

1
:S

1
:S

1
:S

1
:S

2
:S

1
:S

1
:S

2
:S

1
:S

1
:S

2
:S

2
:S

2:S

2:S

2
:S

1
:S

2:S2:S 2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

2:S

1
:S

1
:S

1
:S

1
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2
:S

1
:S

2
:S

1
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

1
:S

2
:S

1
:S

2
:S

1:S2:S

1:S

2:S

2:S

1:S2:S

2:S

1:S

1:S

2:S

1:S

1
:S

2:S

1
:S

2
:S

2:S

2:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

1
:S

1:S

2:S

1:S2:S

1:S

2:S

1:S

2:S

2:S

1:S

2:S

1:S

2
:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

2
:S

1
:S

1
:S

2
:S

1
:S

2
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

1
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

2
:S

2
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

1
:S

1
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

2
:S

2
:S

2
:S

1
:S

2
:S

2
:S

1
:S

1:S2:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

2
:S

2
:S

1
:S

2
:S

1
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

1
:S

1
:S

2
:S

2
:S

2
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

2
:S

2
:S

2
:S

1:S

1:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

2
:S

1
:S

2
:S

2
:S

2
:S

1
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

2
:S

1
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2
:S

1
:S

1
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2:S

1:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2:S

2:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2:S

1:S 1:S

2:S 2:S

1:S

2
:S

1
:S

2:S

1:S2:S

1:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

2
:S

2
:S

2
:S

1
:S

1
:S

2
:S

2
:S

1
:S

2
:S

2:S

2
:S

1
:S

2
:S

2
:S

2
:S

1
:S

2
:S

1
:S

2
:S

2
:S

1
:S

2
:S

1
:S

2
:S

2
:S

1
:S

2
:S

2
:S

2
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

1
:S

2
:S

2
:S

1
:S

2
:S

1
:S

2:S

2:S

2
:S

1
:S

1:L

2:S

1:L
2:S

1:S

2:S

1:L
2:S

1:S

1:S2:S

1:L

2:S

2
:S

1
:S

1:L

1
:S

2
:S

1
:S

2
:S

1
:S

2
:S

1:S

2
:S

1
:S

1:S

F
ig

u
re

C
.7

:
P
C

B
a
rtw

o
rk

fo
r

th
e

G
C

N
revisio

n
4

bo
tto

m
.

152

Bibliography

[AHKL96] Georg Acher, Hermann Hellwagner, Wolfgang Karl, and Markus Leberecht.

A PCI-SCI Bridge for Building a PC Cluster with Distributed Shared

Memory. In In Proceedings of the Sixth International Workshop on SCI-

based High-Performance Low-Cost Computing, pages 1–8, 1996.

[Amd67] Gene Amdahl. Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities. In In Proceedings of AFIPS volume

30, pages 483–485, 1967.

[AMD08] AMD. AMD CrossFireX. Technical report, AMD, 2008.

http://game.amd.com/us-en/crossfirex_about.aspx.

[ART08a] ARTVPS. RayBox: Dedicated Ray-Tracing Hardware. Technical report,

ARTVPS, 2008. http://www.pixelution.co.uk/.

[ART08b] ARTVPS. Renderserver. Technical report, ARTVPS, 2008.

http://www.pixelution.co.uk/.

[Ass08] Infiniband Trade Association. Infiniband Technology Over-

view. Technical report, Infiniband Trade Association, 2008.

http://www.infinibandta.org/.

[Bad90] Didier Badouel. An Efficient Ray Polygon Intersection. In Graphics Gems,

pages 390–393. 1990.

[BDH+08] Kevin Barker, Kei Davis, Adolfy Hoisie, Darren Kerbyson, Mike Lang,

Scott Parkin, and Jose Sancho. Entering the Petaflop Era: The Architec-

ture and Performance of Roadrunner. In SC ’08: Proceedings of the 2008

ACM/IEEE Conference on Supercomputing, pages 1–11, 2008.

[BM03] Ross Brennan and Michael Manzke. On the Introduction of Reconfigurable

Hardware into Computer Architecture Education. In In Proceedings of the

2003 Workshop on Computer Architecture Education, page 15. ACM, 2003.

153

http://game.amd.com/us-en/crossfirex_about.aspx
http://www.pixelution.co.uk/
http://www.pixelution.co.uk/
http://www.infinibandta.org/

Bibliography

[BM08] Ross Brennan and Michael Manzke. SPARTA: A Scalable Architecture

for Ray-Tracing Applications. In In Proceedings of the SIGGRAPH Asia

Conference on Sketches and Posters, 2008.

[BMO+07] Ross Brennan, Michael Manzke, Keith O’Conor, John Dingliana, and Ca-

rol O’Sullivan. A Scalable and Reconfigurable Shared-Memory Graphics

Cluster Architecture. In Proceedings of the 2007 International Conference

on Engineering of Reconfigurable Systems and Algorithms, ERSA 2007,

pages 284–290. CSREA Press, 2007.

[BWSF06] Carsten Benthin, Ingo Wald, Michael Scherbaum, and Heiko Friedric. Ray

Tracing on the CELL Processor. In In Proceedings of the IEEE Sumposium

on Interactive Ray Tracing, pages 15–23, 2006.

[Cal06] Owen Callanan. High Performance Scientific Computing using FPGAs for

Lattice QCD. Phd dissertation, Trinity College Dublin, 2006.

[CBM06] Eoin Creedon, Ross Brennan, and Michael Manzke. Towards a Sca-

lable Field Programmable Gate Array Cluster for Interactive Parallel Ray-

Tracing. In In Proceedings of the Eurographics Ireland Workshop on Com-

puter Graphics, 2006.

[Cel05] Celoxica. Handel-C Language Reference Manua. Technical report, Ce-

loxica, 2005. http://www.celoxica.com/.

[CHKW08] Catherine Crawford, Paul Henning, Michael Kistler, and Cornell Wright.

Accelerating Computing with the Cell Broadband Engine Processor. In

CF ’08: Proceedings of the 5th Conference on Computing Frontiers, pages

3–12, 2008.

[Con03] Hypertransport Technology Consortium. HyperTransport I/O Link Speci-

fication. Technical report, Hypertransport Technology Consortium, 2003.

http://www.hypertransport.org/.

[Con08] OpenGL Consortium. The OpenGL Graphics System 3.0. Technical report,

OpenGL Consortium, 2008. http://www.opengl.org/.

[Cor07] DRC Computer Corporation. DRC Reconfigurable Processing Unit

RPU110 Family. Technical report, DRC Computer Corporation, 2007.

http://www.drccomputer.com/.

154

http://www.celoxica.com/
http://www.hypertransport.org/
http://www.opengl.org/
http://www.drccomputer.com/

Bibliography

[CWB05] Chen Chang, John Wawrzynek, and Robert Brodersen. BEE2: A High-

End Reconfigurable Computing System. IEEE Design and Test of Com-

puters, pages 114–125, 2005.

[DCDS05] Andreas Dietrich, Carsten Colditz, Oliver Deussen, and Philipp Slusallek.

Realistic and Interactive Visualization of High-Density Plant Ecosystems.

In Eurographics Workshop on Natural Phenomena, pages 73–81, 2005.

[DDW99] DDWG. Digital Visual Interface v1 Specification. Technical report,

DDWG, 1999. http://www.ddwg.org/.

[Dro05] Pierre-Yves Droz. Physical Design and Implementation of BEE2: A High

End Reconfigurable Computer. Msc dissertation, University of California

at Berkley, 2005.

[DWBS03] Andreas Dietrich, Ingo Wald, Carsten Benthin, and Philipp Slusallek. The

OpenRT Application Programming Interface - Towards a Common API for

Interactive Ray Tracing. In In Proceedings of the 2003 OpenSG Symposium,

pages 23–31. Eurographics Association, 2003.

[DWS04] Andreas Dietrich, Ingo Wald, and Philipp Slusallek. Interactive Visualiza-

tion of Exceptionally Complex Industrial CAD Datasets. In International

Conference on Computer Graphics and Interactive Techniques ACM SIG-

GRAPH 2004 Sketches, page 27, 2004.

[EIH00] Matthew Eldridge, Homan Igehy, and Pat Hanrahan. Pomegranate: A

Fully Scalable Graphics Architecture. In In Proceedings of the 27th Annual

conference on Computer Graphics and Interactive Techniques, pages 443–

454, 2000.

[FC07] Colin Fowler and Steven Collins. Implementing the RT2 - Real Time Ray

Tracing System. In In Proceedings of Eurographics Ireland, pages 1–8,

2007.

[FHN+03] Wu-Chun Feng, Justin Hurwitz, Harvey Newman, Sylvain Ravot, Les Cot-

trell, Olivier Martin, Fabrizo Coccetti, Cheng Jin, Xiaoliang Wei, and Ste-

ven Low. Optimizing 10-Gigabit Ethernet for Networks of Workstations,

Clusters and Grids: A Case Study. In In Proceedings of the ACM/IEEE

Conference on Supercomputing 2003, pages 50–62, 2003.

155

http://www.ddwg.org/

Bibliography

[FQK08] Zhe Fan, Feng Qiu, and Arie Kaufman. Zippy: A Framwork for Compu-

tation and Visualization on a GPU Cluster. Computer Graphics Forum,

27(2):341–350, 2008.

[GBC+05] A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Ha-

ring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht,

B. Steinmacher-Burrow, T. Takken, and P. Vranas. Overview of the Blue

Gene/L System Architecture. IBM Journal of Research and Development,

49:195–212, 2005.

[GM05] Enrico Gobbetti and Fabio Marton. Far Voxels: A Multiresolution Frame-

work for Interactive Rendering of Huge Complex 3D Models on Commodity

Graphics Platforms. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers,

pages 878–885, 2005.

[GP90] Stuart Green and Derek Paddon. A Highly Flexible Multiprocessor Solu-

tion for Ray Tracing. In The Visual Computer, pages 62–73. 1990.

[GPG08] GPGPU. General Purpose Computation on Graphics Hardware.

http://www.gpgpu.org/, 2008.

[Hau95] Scott Hauck. Multi-FPGA Systems. Phd dissertation, University of Wa-

shington, 1995.

[HBEH00] Greg Humphreys, Ian Buck, Matthew Eldridge, and Pat Hanrahan. Dis-

tributed Rendering for Scalable Displays. In Supercomputing ’00: Pro-

ceedings of the 2000 ACM/IEEE conference on Supercomputing, page 30.

IEEE Computer Society, 2000.

[HEB+01] Greg Humphreys, Matthew Eldridge, Ian Buck, Gordon Stoll, Matthew

Everett, and Pat Hanrahan. WireGL: A Scalable Graphics System for

Clusters. In SIGGRAPH ’01: Proceedings of the 28th annual conference

on Computer graphics and interactive techniques, pages 129–140. ACM,

2001.

[HH99] Greg Humphreys and Pat Hanrahan. A Distributed System for Large Tiled

Displays. In VIS ’99: Proceedings of the conference on Visualization ’99,

pages 215–223. IEEE Computer Society Press, 1999.

[HHN+02] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern,

Peter Kirchner, and James Klosowski. Chromium: A Stream-Processing

156

http://www.gpgpu.org/

Bibliography

Framework for Interactive Rendering on Clusters. ACM Transactions on

Graphics, 21(3):693–702, 2002.

[IBM08a] IBM. IBM BladeCenter LS21. Technical report, IBM, 2008.

http://www.ibm.com/.

[IBM08b] IBM. IBM BladeCenter QS22. Technical report, IBM, 2008.

http://www.ibm.com/.

[IEE85] IEEE. IEEE Standard for Floating-Point Arithmetic. Technical report,

IEEE, 1985. http://www.ieee.org/.

[IEE92] IEEE. IEEE Standard for Scalable Coherent Interface (SCI). Technical

report, IEEE, 1992. http://www.ieee.org/.

[IEE00] IEEE. IEEE Standard VHDL Language Reference Manual. Technical

report, IEEE, 2000. http://www.ieee.org/.

[IEE01] IEEE. IEEE Standard Verilog Hardware Description Language. Technical

report, IEEE, 2001. http://www.ieee.org/.

[IEE05a] IEEE. IEEE 802.3-2005 Standard for Information Technology, Telecommu-

nications and Information Exchange Between Systems. Technical report,

IEEE, 2005. http://www.ieee.org/.

[IEE05b] IEEE. IEEE Standard for SystemVerilog - Unified Hardware Design,

Specification and Verification Language. Technical report, IEEE, 2005.

http://www.ieee.org/.

[IEE05c] IEEE. IEEE Standard SystemC Language Reference Manual. Technical

report, IEEE, 2005. http://www.ieee.org/.

[Int98a] Intel. AGP v2 Interface Specification. Technical report, Intel, 1998.

http://developer.intel.com/.

[Int98b] Intel. Intel P6 Family of Processors Hardware Developers Manual. Tech-

nical report, Intel, 1998. http://developer.intel.com/.

[Int99] Intel. AGP Pro Specification. Technical report, Intel, 1999.

http://developer.intel.com/.

[Int02a] Intel. AGP Design Guide. Technical report, Intel, 2002.

http://developer.intel.com/.

157

http://www.ibm.com/
http://www.ibm.com/
http://www.ieee.org/
http://www.ieee.org/
http://www.ieee.org/
http://www.ieee.org/
http://www.ieee.org/
http://www.ieee.org/
http://www.ieee.org/
http://developer.intel.com/
http://developer.intel.com/
http://developer.intel.com/
http://developer.intel.com/

Bibliography

[Int02b] Intel. AGP v3 Interface Specificatoin. Technical report, Intel, 2002.

http://developer.intel.com/.

[Int03a] Intel. 82547GI/82547EI Gigabit Ethernet Controller Datasheet. Technical

report, Intel, 2003. http://developer.intel.com/.

[Int03b] Intel. Intel 82801EB (ICH5), 82801ER (ICH5R) and 82801DB

(ICH4) Enhanced Controller Interface. Technical report, Intel, 2003.

http://developer.intel.com/.

[Int04] Intel. Intel 865G/865GV Chipset Datasheet. Technical report, Intel, 2004.

http://developer.intel.com/.

[Int05] Intel. Intel Pentium 4 Processor on 90nm Process Datasheet. Technical

report, Intel, 2005. http://developer.intel.com/.

[IPC98] IPC. Generic Standard on Printed Board Design. Technical report, IPC,

1998. http://www.ipc.org/.

[JB07] Charles Johns and Daniel Brokenshire. Introduction to the Cell Broad-

band Engine Architecture. IBM Journal of Research and Development,

51(5):503–519, 2007.

[JRJ+06] Byungil Jeong, Luc Renambot, Ratko Jagodic, Rajvikram Singh, Julieta

Aguilera, Andrew Johnson, and Jason Leigh. High-Performance Dynamic

Graphics Streaming for Scalable Adaptive Graphics Environments. In SC

’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,

pages 108–116, 2006.

[KOH+94] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Si-

moni, Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter,

Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and John Hennessy.

The Stanford FLASH Multiprocessor. In International Symposium on

Computer Architecture, pages 302–313, 1994.

[KSH+05] Leonidad Kontothanassis, Robert Stets, Galen Hunt, Umit Rencuzogullari,

Gautam Altekar, Sandhya Dwarkadas, and Michael Scott. Shared Memory

Computing on Clusters with Symmetric Multiprocessors and System Area

Networks. ACM Transactions on Computer Systems, 23(3):301–335, 2005.

[LS91] Tony Lin and Mel Slater. Stochastic Ray Tracing Using SIMD Processor

Arrays. The Visual Computer: International Journal of Computer Gra-

phics, 7(4):187–199, 1991.

158

http://developer.intel.com/
http://developer.intel.com/
http://developer.intel.com/
http://developer.intel.com/
http://developer.intel.com/
http://www.ipc.org/

Bibliography

[Luc08] LucidLogix. HYDRA100 Product Brief. Technical report, LucidLogix,

2008. http://www.lucidlogix.com/.

[MB04] Michael Manzke and Ross Brennan. Extending FPGA based Teaching

Boards into the area of Distributed Memory Multiprocessors. In Workshop

on Computer Architecture Education, pages 15–21, 2004.

[MBO+06] Michael Manzke, Ross Brennan, Keith O’Conor, John Dingliana, and Ca-

rol O’Sullivan. A Scalable and Reconfigurable Shared-Memory Graphics

Architecture. In SIGGRAPH ’06: Material presented at the ACM SIG-

GRAPH 2006 conference, page 182. ACM Press, 2006.

[MCEF94] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A Sorting

Classification of Parallel Rendering. Technical report, 1994.

[MFS+09] Christoph Müller, Steffen Frey, Magnus Strengert, Carsten Dachsbacher,

and Thomas Ertl. A Compute Unified System Architecture for Graphics

Clusters Incorporating Data Locality. IEEE Transactions on Visualization

and Computer Graphics, 15(4):605–617, 2009.

[Mic06] Microsoft. The Direct3D 10 System. Technical report, Microsoft, 2006.

http://www.microsoft.com/.

[MKW+98] M. Meißner, U. Kanus, G. Wetekam, J. Hirche, A. Ehlert, W. Straß-

ner, M. Doggett, P. Forthmann, and R. Proska. Vizard II: A Reconfigu-

rable Interactive Volume Rendering System. In HWWS ’98: Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hard-

ware, pages 61–67. ACM, 1998.

[MO06] Adam Moerschell and John Owens. Distributed Texture Memory in a

Multi-GPU Environment. In GH ’06: Proceedings of the 21st ACM SIG-

GRAPH/EUROGRAPHICS Symposium on Graphics Hardware, pages 31–

38. ACM, 2006.

[MT97] Tomas Möller and Ben Trumbore. Fast, Minimum Storage Ray/Triangle

Intersection. Journal of Graphics Tools, 2(1):21–28, 1997.

[Myr08a] Myricom. Myrinet-2000 Performance Measurements. Technical report,

2008.

[Myr08b] Myricom. Myrinet MX-10G Performance Measurements. Technical report,

2008.

159

http://www.lucidlogix.com/
http://www.microsoft.com/

Bibliography

[NL91] Bill Nitzberg and Virginia Lo. Distributed Shared Memory: A Survey of

Issues and Algorithms. IEEE Computer, 24(8):52–60, 1991.

[NT01] Jorgen Norendal and Kurt Tjemsland. TLE Version 2 Description and

Test Report. Technical report, SINTEF, 2001.

[NVI07] NVIDIA. CUDA Programming Guide. Technical report, NVIDIA, 2007.

http://developer.nvidia.com/object/cuda.html.

[NVI08a] NVIDIA. NVIDIA Quadro FX Family Over-

view. Technical report, NVIDIA, 2008.

http://www.nvidia.com/page/quadrofx_family.html.

[NVI08b] NVIDIA. NVIDIA SLI. Technical report, NVIDIA, 2008.

http://www.slizone.com/.

[NVI09] NVIDIA. Tesla Computing Solutions. Technical report, NVIDIA, 2009.

http://www.nvidia.com/.

[Org98] VITA Standards Organisation. Myrinet-on-VME Protocol Speci-

fication. Technical report, VITA Standards Organisation, 1998.

http://www.vita.com/.

[PCI95] PCISIG. PCI Local Bus Specification. Technical report, PCISIG, 1995.

http://www.pcisig.org/.

[PMS+06] Arun Patel, Christopher Madill, Manuel Saldana, Christopher Comis, Re-

gis Pomis, and Paul Chow. A Scalable FPGA-based Multiprocessor. pages

111–120, 2006.

[Res08] Gaisler Research. GRLIB IP Library User’s Manual. Technical report,

Gaisler Research, 2008. http://www.gaisler.com/.

[SBB+06] Abraham Stephens, Solomon Boulos, James Bigler, Ingo Wald, and Ste-

ven Parker. An Application of Scalable Massive Model Interaction Using

Shared-Memory Systems. In Proceedings of the 2006 Eurographics Sympo-

sium on Parallel Graphics and Visualisation, pages 19–26, 2006.

[SCC+99] Brian Schott, Steve Crago, Chen Chen, Joe Czarnaski, Matt French,

Ivan Hom, Tam Tho, and Terri Valenti. Reconfigurable Architectures for

System-Level Applications of Adaptive Computing. VLSI Design Special

Issue on Reconfigurable Computing, 1999.

160

http://developer.nvidia.com/object/cuda.html
http://www.nvidia.com/page/quadrofx_family.html
http://www.slizone.com/
http://www.nvidia.com/
http://www.vita.com/
http://www.pcisig.org/
http://www.gaisler.com/

Bibliography

[Sch] Jorg Schmittler. SaarCOR - A Hardware Architecture for Realtime Ray-

Tracing. Phd dissertation, Saarland University.

[Sch01] Martin Schulz. Shared Memory Programming on NUMA-based Clusters

using a General and Open Hybrid Hardware/Software Approach. Phd dis-

sertation, Technical University of Munich, 2001.

[SCS+08] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,

Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert

Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. Lar-

rabee: A Many-Core x86 Architecture for Visual Computing. In SIG-

GRAPH ’08: ACM SIGGRAPH 2008 Papers, pages 1–15, 2008.

[Sem00] Philips Semiconductors. The I2C Bus Specification. Technical report,

Philips Semiconductors, 2000. http://www.philips.com/.

[SEP+01] Gordon Stoll, Mathew Eldridge, Dan Patterson, Art Webb, Steven Ber-

man, Richard Levy, Chris Caywood, Milton Taveira, Stephen Hunt, and

Pat Hanrahan. Lightning-2: A High-Performance Display Subsystem for

PC Clusters. In SIGGRAPH ’01: Proceedings of the 28th annual confe-

rence on Computer Graphics and Interactive Techniques, pages 141–148.

ACM, 2001.

[Ser08] Ashford Computer Computing Service. Gigabit Ethernet to the Desktop

- TCP Latency. Technical report, Ashford Computer Computing Service,

2008. http://www.accs.com/p_and_p/GigaBit/.

[SGI05] SGI. Silicon Graphics Prism Family of Visualization Systems. Technical

report, SGI, 2005. http://www.sgi.com/.

[Sol99] Dolphin Interconnect Solutions. PCS-SCI Adapter Card D320/D321 Func-

tional Overview. Technical report, Dolphin Interconnect Solutions, 1999.

http://www.dolphinics.com/.

[Sol00] Dolphin Interconnect Solutions. A Backside Link (B-Link) for Scalable Co-

herent Interface (SCI). Technical report, Dolphin Interconnect Solutions,

2000. http://www.dolphinics.com/.

[Sol01a] Dolphin Interconnect Solutions. PSB66 Specification.

Technical report, Dolphin Interconnect Solutions, 2001.

http://www.dolphinics.com/.

161

http://www.philips.com/
http://www.accs.com/p_and_p/GigaBit/
http://www.sgi.com/
http://www.dolphinics.com/
http://www.dolphinics.com/
http://www.dolphinics.com/

Bibliography

[Sol01b] Dolphin Interconnect Solutions. SISCI API User Guide.

Technical report, Dolphin Interconnect Solutions, 2001.

http://www.dolphinics.com/.

[Sol02] Dolphin Interconnect Solutions. Link Controller 3 (LC3) Speci-

fication. Technical report, Dolphin Interconnect Solutions, 2002.

http://www.dolphinics.com/.

[SPA92] SPARC. The SPARC Version 8 Architecture Manual. Technical report,

SPARC, 1992. http://www.sparc.org/.

[STJ+08] Subhash Saini, Dale Talcott, Dennis Jespersen, Jahed Jhomehri, Haogiang

Jin, and Rupak Biswas. Scientific Application-Based Performance Com-

parison of SGI Altix 4700, IBM POWER5+, and SGI ICE 8200 Super-

computers. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on

Supercomputing, pages 1–12, 2008.

[STTK02] Martin Schulz, Jie Tao, Carsten Trinitis, and Wolfgang Karl. SMiLE: An

Integrated, Multi-Paradigm Software Infrastructure for SCI-based Clus-

ters. In CCGRID ’02: Proceedings of the 2nd IEEE/ACM International

Symposium on Cluster Computing and the Grid, page 247. IEEE Computer

Society, 2002.

[SWS02] Joerg Schmittler, Ingo Wald, and Philipp Slusallek. SaarCOR - A Hard-

ware Architecture for Ray Tracing. In HWWS ’02: Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,

pages 27–36. Eurographics Association, 2002.

[SWW+04] Jörg Schmittler, Sven Woop, Daniel Wagner, Wolfgang Paul, and Philipp

Slusallek. Realtime Ray Tracing of Dynamic Scenes on an FPGA Chip.

In HWWS ’04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware, pages 95–106. ACM, 2004.

[SZ90] Michael Stumm and Songnian Zhou. Algorithms Implementing Distributed

Shared Memory. IEEE Computer, 23(5):54–64, 1990.

[Tje99] Kurt Tjemsland. A Traffic Generator and Consumer for SCI Systems.

Technical report, SINTEF, 1999.

[TR01] Mario Trams and Wolfgang Rehm. SCI Transaction Management in out

FPGA-based PCI-SCI Bridge, 2001.

162

http://www.dolphinics.com/
http://www.dolphinics.com/
http://www.sparc.org/

Bibliography

[TR03] Mario Trams and Wolfgang Rehm. A New Generic and Reconfigurable

PCI-SCI Bridge, 2003.

[Wal04] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. Phd

dissertation, Saarland University, 2004.

[WH04] Roland Wunderlich and James Hoe. In-System FPGA Prototyping of an

Itanium Microarchitecture. In ICCD ’04: Proceedings of the IEEE Inter-

national Conference on Computer Design, pages 288–294. IEEE Computer

Society, 2004.

[WMG+07] Ingo Wald, William Mark, Johannes Gunther, Solomon Boulos, Thiago

Ize, Warren Hunt, Stephen Parker, and Peter Shirley. State of the Art

in Ray Tracing Animated Scenes. In Eurographics Workshop on Graphics

Hardware, 2007.

[Woo90] Andrew Woo. Fast Ray-Polygon Intersection. In Graphics Gems, page 394.

1990.

[WPO+07] John Wawrzynek, David Patterson, Mark Oskin, Shih-Lien Lu, Christo-

foros Kozyrakis, James Hoe, Derek Chiou, and Krste Asanovic. Ramp:

Research accelerator for multiple processors. IEEE Micro, 27(2):46–57,

2007.

[Xil02] Xilinx. XC9500XL High-Performance CPLD Family. Technical report,

Xilinx, 2002. http://www.xilinx.com/.

[Xil04] Xilinx. Virtex-II Platform FPGAs: Complete Data Sheet. Technical re-

port, Xilinx, 2004. http://www.xilinx.com/.

[Xil07] Xilinx. Virtex-4 Family Overview. Technical report, Xilinx, 2007.

http://www.xilinx.com/.

[Xtr08] XtremeData. XD2000i FPGA In-Socket Accelerator for Intel FSB. Techni-

cal report, XtremeData, 2008. http://www.xtremedatainc.com/.

163

http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xtremedatainc.com/

c©

Ross Brennan

2009

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	List of Acronyms
	Introduction
	Motivation
	Parallel Computing
	Parallel Processing Platforms
	The GCN: A High-Performance DSM Graphics Architecture
	Contribution
	Research Statement
	Relevant Publications
	Related Publications

	Thesis Organisation

	Background
	Parallel Computing Systems
	Shared-Memory Architectures
	High-Performance Interconnects

	Parallel Rasterisation Systems
	Software Architectures
	Hardware Architectures

	Parallel Ray-Tracing Systems
	Software Architectures
	Hardware Architectures

	Graphics Application Requirements
	Reconfigurable Computing Systems
	Summary

	System Design and Implementation
	Hardware Design and Implementation
	Hardware Design Objectives
	Hardware Architecture
	Application FPGA
	Bridge FPGA
	SCI Link Controllers
	Intel Northbridge

	Hardware Implementation and Testing
	Reconfigurable Logic Implementation
	Reconfigurable Logic Design Objectives
	Reconfigurable Logic Architecture
	Hardware Initialisation and Monitoring
	SCI Hardware Encapsulation Logic Layer
	Shared-memory Network Abstraction Interface Layer
	Message and Application Interface Layer

	Reconfigurable Logic Implementation and Testing
	Application Programming
	Summary

	System Evaluation
	Hardware Performance Results
	Ray-Triangle Intersection Testing
	Application Design and Validation
	Application Integration
	Application Results
	Summary

	Design Evolution
	Design Objectives
	Design Discussion
	Hardware Architecture
	System FPGA
	SCI Subsystem
	RAM Subsystem
	IO Subsystem

	Reconfigurable Logic Architecture
	Platform Implementation
	Summary

	Conclusions
	GCN Design Limitations
	Future Work
	Contributions
	Conclusions

	SCI Link Controller
	LC3 Overview
	The B-Link Bus Protocol
	The B-Link Packet Format

	AGP and FSB
	The Accelerated Graphics Port
	Inner and Outer Transmit/Receive Loops
	Hardware Enforced Cache Coherency
	The Graphics Aperture
	The Graphics Aperture Remapping Table
	AGP Initialisation
	AGP Operation

	The Front-Side Bus Protocol
	Configuration Signals
	Arbitration Signals
	Request Signals
	Snoop Signals
	Response Signals
	Data Response Signals
	Line Transfers

	Hardware Technologies
	Reconfigurable Hardware
	CPLDs
	FPGAs
	Programming Reconfigurable Logic Devices

	PCB Design

	Bibliography

