
Reactive Execution-Time Forecasting of

Dynamically-Adaptable Software

Shane Brennan

A Dissertation submitted to the University of Dublin, Trinity College

in fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

May 2011



Declaration

I, the undersigned, declare that this work has not previously been submitted to this or any other

University, and that unless otherwise stated, it is entirely my own work.

Shane Brennan

Dated: May 29, 2011



Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this Dissertation upon

request.

Shane Brennan

Dated: May 29, 2011



Acknowledgements

This thesis, I hope, will stand as some meagre monument to the unwavering support of my

parents, who place their hope and trust in education as a means of improving the lives of their

children. It is dedicated to the late Mrs. Catherine Grace, who quite literally, helped me on

my first steps along the road to school. Lastly, it is dedicated to my grandparents, who were

committed to the belief that a better life could be won by dedication and learning.

First, and foremost, I would like to thank my supervisor Dr. Siobhán Clarke for her tireless

work, counsel and guidance, and without whom the completion of this work would have been

impossible. I would also like to thank Dr. Vinny Cahill, Dr. Bill Harrison, Dr. René Meier,

Dr. Myra O’Regan and all the staff in the Distributed Systems Group for their help during a

thoroughly enjoyable, but definitely taxing, few years in Trinity College Dublin. Finally, I would

like to thank all the players, members and supporters of Bohemian Football Club for constantly

reminding me that football is not a simple matter of life and death, but something much, much

more important.

Shane Brennan

University of Dublin, Trinity College

May 2011

iv



Abstract

Software operating in domains such as process management systems, wireless sensor networks

and spacecraft control systems are expected to continue uninterrupted operation over extended

periods, without any manual supervision, maintenance or external intervention. However, un-

expected events or changes in the operating environment over time, require the software to

occasionally update itself to ensure correct operation over a prolonged interval. These updates

to software behaviour may be achieved by a process known as dynamic software adaptation.

Adapting software dynamically allows it to respond to unexpected operational challenges,

to update unwanted or unnecessary functionality, and to optimize its behaviour to fit the pre-

vailing operating conditions. However, adaptations can also unintentionally alter the execution

time of the software. In this way, timing delays, missed deadlines and functional errors may

be unwittingly introduced into an otherwise dependable codebase. Estimating the likely exe-

cution time of dynamically-adaptable software is critical to avoid functional interference caused

by timing uncertainty. Unfortunately, predicting the execution time of dynamically-adaptable

software cannot be accomplished using traditional timing analysis methods, without halting the

system or restricting the set of adaptable software behaviours. Static timing analysis methods

cannot re-evaluate timing estimates at runtime, since they require a lengthy off-line analysis

period. Conversely, measurement-based dynamic timing analysis methods cannot provide any

timing estimates immediately following an adaptation, until a large number of observations have

been recorded and evaluated.

Reliably and precisely estimating the execution time provides assurances about the suitabil-

ity of the dynamically-adaptable software within its current operating environment, as well as

indicating the likely improvement in timing behaviour due to recent functional adaptations. The

research question addressed by this thesis is whether adaptive statistical methods, applied at

v



0

runtime, can accurately predict the timing behaviour of dynamically-adaptable software.

To address this question, this thesis describes the application of statistical methods at run-

time to predict the timing behaviour of dynamically-adaptable software. Using a dynamically-

generated predictive model, forecasts are made about the likely execution time of the current

configuration of the software, as well as allowing estimates to be generated describing the prob-

abilistic timing impact of functional adaptations.

The contributions of this thesis are three-fold. Firstly, the timing behaviour of a dynamically-

adaptable software system can be accurately and precisely predicted at runtime using statistical

methods. Next, these predictions can be generated with limited prior warning and without

halting the system to perform the analysis, restricting the scope of adaptations or relying on

extensive off-line generated measurements. Lastly, timing predictions for dynamically adaptable

software can be used as feedback into the adaptation process itself, to select the most appropriate

configuration of the software for the prevailing operating conditions. A dynamically-adaptable

software system, executing on a resource-constrained embedded device, is used to evaluate this

predictive model. The timing estimates produced at run-time show that the accuracy and preci-

sion are only slightly below what would be achieved using a well-established static timing analysis

method executed offline under ideal circumstances.

vi



Contents

Acknowledgements iv

Abstract iv

List of Tables xi

List of Figures xii

Chapter 1 Introduction 1

1.1 Dynamically-Adaptable Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Component-Based Software . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Software Timeliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Execution-Time Requirements . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Predicting Software Execution Times . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Issues Not Covered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 2 Related Work 21

2.1 Software Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Static Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



0

2.1.2 Compile-time Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.3 Load/Link-time Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.4 Dynamic Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.5 Summary of Adaptation Frameworks . . . . . . . . . . . . . . . . . . . . . 38

2.2 Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Static Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1.1 Static Analysis Frameworks . . . . . . . . . . . . . . . . . . . . . 43

2.2.1.2 Formal Methods Analysis . . . . . . . . . . . . . . . . . . . . . . 45

2.2.1.3 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.1.4 Tool-Based Timing Analysis . . . . . . . . . . . . . . . . . . . . 50

2.2.2 Dynamic Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.2.1 Measurement-driven Analysis . . . . . . . . . . . . . . . . . . . . 53

2.2.2.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 3 TimePredict: A Reactive Run-time Timing Analysis 60

3.1 Software Timeliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1 Operational restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 The TimePredict Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Timing Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1.1 Clock Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.1.2 Clock Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.2 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Average-Case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.1 Exponential Smoothing Model . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.1.1 Critique of the ES Model . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Worst-Case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.1 Initial Worst-Case Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.2 Generalized Extreme Value Model . . . . . . . . . . . . . . . . . . . . . . 87

3.4.2.1 Gumbel Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.2.2 Fréchet Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.2.3 Weibull Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



0

3.4.2.4 Generalised Pareto Distribution . . . . . . . . . . . . . . . . . . 91

3.4.3 Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4.3.1 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.3.2 Generating Estimates . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5 Validation and Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 4 TimePredict Implementation 100

4.1 Operational Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1.1 Target Operating Environment . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.2 Hardware Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.2.1 Wireless Communication . . . . . . . . . . . . . . . . . . . . . . 106

4.1.2.2 Sun SPOT sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1.3 Timing Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.1.4 Resource Usage Considerations . . . . . . . . . . . . . . . . . . . . . . . . 111

4.1.4.1 Memory Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.1.4.2 Processing Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.1.5 Accuracy and Clock Resolution . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.6 Estimate Update Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1.7 Impact on the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2.1 Timing Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.1.1 Adding Timing Measurements . . . . . . . . . . . . . . . . . . . 119

4.2.2 Algorithm Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2.3 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3 Dynamically-Adaptable Application Scenario . . . . . . . . . . . . . . . . . . . . 130

4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.2 Experimental Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3.3 Application Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.3.1 Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

ix



0

Chapter 5 Evaluation 141

5.1 Off-line execution using benchmark measurements. . . . . . . . . . . . . . . . . . 144

5.2 Analysis Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.1 Statistical Analysis Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2.1.1 Independent Two-Sample T-Test . . . . . . . . . . . . . . . . . . 149

5.2.1.2 Non-Parametric Tests . . . . . . . . . . . . . . . . . . . . . . . . 149

5.2.1.3 Correlation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3 TimePredict Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3.1 Software Timeliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.3.2 TimePredict Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3.3 System Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3.3.1 Timing Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3.3.2 Memory Consumption . . . . . . . . . . . . . . . . . . . . . . . . 163

5.3.3.3 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4 Off-line Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.4.1 Comparative Off-line Statistical Analysis . . . . . . . . . . . . . . . . . . 168

5.4.2 Effect of Model Parameters on Predictive Performance . . . . . . . . . . . 171

5.4.3 Timing Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Chapter 6 Conclusion 174

6.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Appendix A Software Execution Times 179

Bibliography 186

x



List of Tables

2.1 Summary of adaptation approaches. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Summary of timing analysis approaches. . . . . . . . . . . . . . . . . . . . . . . . 58

3.1 Effect of measurement availability on timing estimates. . . . . . . . . . . . . . . . 65

3.2 Confidence intervals and critical values for the Kolmogorov-Smirnov two-sample

test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Available clock speeds and maximum durations on the Java Sun SPOT mote. . . 115

4.2 Execution times of the software benchmark suite, over 20 configurations. . . . . . 128

4.3 Configurations of the sensor software. . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1 Summary of the expected contribution matched to particular evaluations. . . . . 143

5.2 Off-line analysis performed by TimePredict on benchmark measurements. . . . . 144

5.3 Evaluation of the execution time of the sensor analysis function. . . . . . . . . . 151

5.4 Correlations of configuration setup with execution time analysis. . . . . . . . . . 152

5.5 TimePredict forecasting accuracy and precision. . . . . . . . . . . . . . . . . . . . 155

5.6 Correlation between accuracy/precision and the overall range and IQR. . . . . . 158

5.7 Sensor analysis timeliness with and without TimePredict. . . . . . . . . . . . . . 162

5.8 Statistical tests for any timing interference due to TimePredict. . . . . . . . . . . 163

5.9 Memory usage with and without TimePredict. . . . . . . . . . . . . . . . . . . . 163

5.10 95% confidence intervals for memory overhead of TimePredict. . . . . . . . . . . 165

5.11 Accuracy and precision of an equivalent off-line timing analysis. . . . . . . . . . . 169

xi



List of Figures

1.1 Dynamic software adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Architecture of an idealized dynamically-adaptable component-based system. . . 6

3.1 Timing bounds used to define the execution-time performance of software. . . . . 62

3.2 Architecture of a dynamically-adaptable system featuring TimePredict. . . . . . 69

3.3 Bounded timing estimates using the exponential smoothing model. . . . . . . . . 81

3.4 WCET Heuristic Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Gumbel probability distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Fréchet probability distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.7 Weibull probability distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8 Pareto probability distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.9 Analysis of the difference between Data and Distribution CDFs. . . . . . . . . . 94

3.10 WCET model fitting process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1 TimePredict class diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Java Sun SPOT mote. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Sending a Datagram-based discovery request. . . . . . . . . . . . . . . . . . . . . 107

4.4 Receiving a Datagram, using a blocking receive function. . . . . . . . . . . . . . . 108

4.5 Initializing and using a stream-based connection. . . . . . . . . . . . . . . . . . . 109

4.6 Taking sensor readings using the Squawk Java API. . . . . . . . . . . . . . . . . 110

4.7 Comparison of the System.arraycopy performance. . . . . . . . . . . . . . . . . . 113

4.8 TimingListener interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.9 Using the AT91 timing functionality. . . . . . . . . . . . . . . . . . . . . . . . . . 120

xii



0

4.10 Execution times for the combined software benchmark functions, over 20,000 mea-

surements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.11 Boxplot showing the measurements taken of the software benchmark functions,

across each of the 20 recorded configurations. . . . . . . . . . . . . . . . . . . . . 129

4.12 Experimental setup with Sun SPOT mote and Adaptation Server. . . . . . . . . 132

4.13 Execution order during normal operation. . . . . . . . . . . . . . . . . . . . . . . 138

4.14 Adaptation request and software deployment. . . . . . . . . . . . . . . . . . . . . 139

5.1 Box-plot showing the maximum and inter-quartile range of execution times. . . . 154

5.2 Histogram of the estimation accuracy of TimePredict. . . . . . . . . . . . . . . . 156

5.3 Histogram of the estimation precision of TimePredict. . . . . . . . . . . . . . . . 157

5.4 Execution time of the TimePredict functionality on the Sun SPOT mote. . . . . 160

5.5 Boxplot showing the execution time performance of TimePredict. . . . . . . . . . 161

5.6 Boxplot showing the memory consumption of TimePredict. . . . . . . . . . . . . 164

5.7 Battery discharge while running software. . . . . . . . . . . . . . . . . . . . . . . 167

A.1 Detail of the ACET Timing Estimates for Configuration 16, with the red line

representing execution time behaviour and the green lines representing the ES

estimate bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.2 The same timing behaviour for Configuration 16, overlaid with worst-case estimate

bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.3 Execution Times of Configurations 1 to 4 . . . . . . . . . . . . . . . . . . . . . . 181

A.4 Execution Times of Configurations 5 to 8 . . . . . . . . . . . . . . . . . . . . . . 182

A.5 Execution Times of Configurations 9 to 12 . . . . . . . . . . . . . . . . . . . . . . 183

A.6 Execution Times of Configurations 13 to 16 . . . . . . . . . . . . . . . . . . . . . 184

A.7 The timing performance resulting from the execution of the benchmark functions.

This dataset is used to evaluate TimePredict off-line. . . . . . . . . . . . . . . . . 185

xiii



Chapter 1

Introduction

Ab actu ad posse valet illatio.

From the past one can infer the future.

Latin Maxim

This thesis presents a run-time reactive prediction model to forecast the execution time of

dynamically-adaptable software. The approach taken in this work demonstrates how highly-

variable software execution times can be estimated using using a combination of extreme-value

statistical modelling techniques in parallel with a self-updating Exponential Smoothing model.

Although this thesis deals with run-time software adaptation within embedded devices, the con-

tribution of this work lies not any novel adaptation selection mechanism, but in the estimation

process that can be applied within this unique operating environment. Despite having limited

system resources available, little prior warning of adaptations within the software, and a minimal

period in which to perform the analysis, the composite predictive model described in this thesis

provides a reliable, accurate and precise timing estimate of the changeable execution time of

dynamically-adaptable software.

This chapter introduces the motivation behind this work, and defines the principal ideas

underpinning dynamically-adaptable software. The volatile execution time of this software is

outlined, and the challenges involved in predicting its likely future behaviour are presented.

Lastly, this chapter describes the goals and the contribution of this work as a whole.

1



1.1 Dynamically-Adaptable Software

Software is routinely expected to operate in a correct, reliable and autonomous manner over

prolonged periods without supervision or intervention. This expectation also extends to software

running on resource-constrained devices executing within highly-variable operating environments.

Where there exists a general reluctance to incur any downtime, i.e., where extended periods

of uninterrupted operation are necessary, suspending execution to facilitate software updates

or perform maintenance on the system is not ideal [Oreizy et al., 2008]. This prohibition on

suspending execution mainly serves to restrict the software, once deployed and executing, to a

fixed set of immutable functional behaviours. Unanticipated changes in the environment, or any

unexpected operating conditions, must be handled using this pre-defined functionality. However,

if the functionality remains fixed, and the demands being placed on the software by its operating

environment begin to differ sufficiently from its capabilities, the performance of the system as a

whole can degrade to the point where it becomes unfit for purpose.

To avoid the system becoming periodically unresponsive within such volatile operating envi-

ronments, discrete modifications may be made during execution to optimize the available func-

tionality to the prevailing conditions. Continuously adding hardware to compensate for poor

software performance provides an unrealistic long-term solution, due to high costs, and the po-

tential difficulties in gaining physical access to the system (e.g., as with satellites or embedded

devices). Modifying the software at runtime provides the most practicable means of bridging the

gap between any unanticipated operational challenges, and the apparent limitations of the sys-

tem. By allowing software to adapt itself at run-time, its facility to handle extreme or unexpected

operating conditions is increased, without negatively impacting on its availability.

The Oxford English dictionary defines adaptation as the “the process of modifying a thing

so as to suit new conditions” [OED, 1989]. Within the context of software, it is then possible

to characterize adaptation as the process of adding, removing or replacing functional elements

within a system to provide a set of behaviours more suited to the current operating environment.

Software adaptations are necessarily reactive processes, in that changes in the operating envi-

ronment occur unexpectedly at run-time and require immediate corrective action in the form of

functional modifications. Changes in the operating environment can take the form of unantic-

ipated events such as device failures or software exceptions, as well as more gradual processes

such as increases in system load, changing levels of software throughput and general software

2



obsolescence. Software that implements functional adaptations at run-time, i.e., without halting

execution or requiring external intervention, may be described as being dynamically-adaptable.

Buisson et al. define such dynamically-adaptable software as “software that modifies or augments

its functionality during execution in response to some observations about its operating environ-

ment” [Buisson et al., 2005]. Both the scheduling and the functional scope of adaptations within

dynamically-adaptable software are resolved only at run-time, with the principal limitation to

the adaptation process being the availability of suitable alternate functional behaviours.

Fig. 1.1: Dynamic software adaptation.

Figure 1.1 is based upon an illustration of a control loop for self-adaptive systems, originally

described in a survey paper of autonomic software systems [Dobson et al., 2006], and re-produced

here in a slightly modified form. Autonomic, self-adaptive or self-* software are largely analogous

to dynamically-adaptable software in intent, with the slight difference, if it exists at all, being the

added emphasis on unrestricted adaptation within dynamically-adaptable software. Unrestricted

adaptation permits run-time modification of the software in a manner that may not have been

foreseen at design-time. In contrast, autonomic, self-adaptive and self-* software may reasonably

restrict the scope of adaptations to a pre-defined set of alternate functional behaviours, in order

to maintain a desired functional or non-functional property of the system [Keeney, 2004].

There are four broadly defined stages, as illustrated in Figure 1.1, that enable dynamically-

adaptable software systems to respond to changes in the operating environment, namely Measure,

3



Analyse, Plan and Adapt. The first stage of an adaptation cycle involves measuring various pa-

rameters associated with the performance of the system. This provides information about the

effects of the operating environment on the current configuration of the software, and highlights

any performance deficits should they exist. Continuous measurement of parameters such as the

system load, software interrupts and the overall software execution time allow changes in the

operating environment to be inferred from changes in the measured parameters. The measure-

ment stage facilitates an ongoing assessment of the suitability of the current configuration of

the software. Next, the analysis stage evaluates the various system measurements, and deter-

mines whether firstly, an adaptation is necessary, and secondly, what are the most appropriate

modifications to make to the software. Once this is complete, the planning stage takes the

analysis and constructs an adaptation plan for the system. This plan is based on a determi-

nation of the available alternate software behaviours, their likely functional and non-functional

performance, and the expected difference between these and the performance of the current con-

figuration of the software. Lastly, the adaptation stage takes the completed adaptation plan,

and implements the desired modifications on the executing software, either pausing execution

to effect the adaptation or hot-swapping functional elements at runtime. The timing analysis

approach presented in this thesis, fulfills the analysis role described in Figure 1.1, as well as

enabling the measurement of software timing behaviour. Although the actual implementation

of the adaptation process is largely outside the scope of this work, it is envisaged that the un-

derlying dynamically-adaptable system uses the timing analysis to optimize its execution-time

performance by dynamically adding, replacing or removing functional elements at run-time.

Some software adaptation techniques, e.g., parameter-based adaptation [Sharma et al., 2004],

do not permit any new functional behaviours to be added to the software once the system is de-

ployed. A limited form of adaptation is achieved by altering some existing parameters that govern

the behaviour of the currently deployed software. In contrast, dynamically-adaptable software

takes a less restrictive approach towards the adaptation process, allowing new functionality to be

added much later to the system, at a time dictated by the prevailing operating conditions [Fritsch

and Clarke, 2008]. A number of existing software adaptation techniques support an unrestricted

approach towards run-time functional adaptation, ranging from middleware-based adaptation

schemes [Sharma et al., 2004], to dynamic aspect-weaving frameworks [Assaf and Noyé, 2008],

self-organising architectures [Georgiadis et al., 2002] and component-based adaptation frame-

4



works [Zhang et al., 2005].

1.1.1 Component-Based Software

Component-based systems provide the underlying platform for the dynamic software adaptation

considered in this thesis. Software components provide a convenient means of encapsulating

functionality within discrete, composable functional units. Menascé defines a software component

as having a well-defined interface, allowing it to be employed in various applications for which

it may or may not have been explicitly designed [Menascé et al., 2004]. Szyperski describes a

software component as “a unit of composition with contractually specified interfaces and explicit

context dependencies only. A software component can be deployed independently and is subject

to third-party composition” [Szyperski and Pfister, 1997]. Software components provide readily

accessible units of adaptation, where adapting the software functionality is a matter of simply

changing the components that comprise the system. In this manner, dynamically-adaptable

software can be achieved through adding, replacing or removing software components from the

system at runtime.

Figure 1.2 presents an idealized dynamically-adaptable component-based system, designed

as a composite of a number of existing run-time adaptation frameworks. These frameworks,

described in more detail in Chapter 2, share the common characteristic of allowing software

to be modified during execution, by adding, removing or replacing discrete functional elements

within the system. The primary focus of this thesis is on predicting the execution time of this

type of dynamically-adaptable system, i.e., a system can add previously unenvisaged functional

behaviours at any stage during its execution. Since the characteristics of the underlying software

will influence the approach used to predict its execution-time behaviour, dynamically-adaptable

systems considered within this thesis are assumed to have the following properties (labelled P1

to P6);

P1: Adaptations are reactive, infrequently occurring events, that modify the functional be-

haviour of software in response to changes in the operating environment.

P2: Adaptations occur unexpectedly during run-time, and are realized within a dynamically-

adaptable system during its normal execution. In order to implement the adaptation, the

system may pause execution briefly to enact the software modification, or alternatively

may hot-swap functional behaviours without interrupting execution.

5



Fig. 1.2: Architecture of an idealized dynamically-adaptable component-based system.

P3: The functional scope and scheduling of an adaptation cannot be determined at design-time,

and is only resolved at run-time, triggered by changes in its operating environment and

the availability of alternate functionality.

P4: The adaptation process is controlled by a dedicated Adaptation Manager function within

the system. The Adaptation Manager monitors, evaluates, plans and implements adap-

tations automatically at run-time. The goal of the Adaptation Manager is to optimize a

particular property of the dynamically-adaptable system through functional adaptations,

e.g., its execution time.

P5: Adaptations are achieved by adding, replacing or removing one or more software compo-

nents that comprise the system. Software components are discrete units of composition,

that are discoverable and composable at run-time through well-documented interfaces.

P6: Alternate software components are stored in an external component repository, and are

6



discoverable by the Adaptation Manager during run-time. New software components may

be added to this repository at any stage during the execution of the system, and include

software behaviour not originally envisaged at design-time.

A system that exhibits all of these properties may be characterized as being dynamically-

adaptable. For the purposes of this thesis, the primary research question is not about the

nature of dynamically-adaptable systems, nor the adaptation process in itself, but whether a

statistical-based approach, implemented at run-time, can accurately and precisely estimate the

timeliness of a dynamically-adaptable system. In order to illustrate an architecture for an ide-

alized dynamically-adaptable system, and show where within such an architecture the timing

analysis functionality could reside, Figure 1.2 illustrates an adaptable component-based system

formed from three functional components (COM1, COM2 and COM3), as well as one control

component - the adaptation manager. Both service and control interfaces are provided within

each component, in the former case to interface with other components in the assembly, and

in the latter to provide a mechanism for run-time supervision and intervention by the adapta-

tion manager. The execution time of the entire component assembly is measured and recorded

within the adaptation manager, where an analysis of the timeliness of the software forms an

input into the adaptation selection process. An external component repository is provided with

a set of alternate functional behaviours for existing components in the assembly (COM1-A and

COM1-B). In the example, a ‘replace’ adaptation action removes the component COM1 and

inserts COM1-A into the system at run-time under the direction of the adaptation manager.

Software components provide a convenient level of granularity for adaptable systems, since they

can leverage the often highly modularized and localized functionality within a typical codebase

to decompose functional behaviours into discrete units of adaptation. Commonly, high-level

functional behaviours are composed of lower-level functional entities, such as classes, objects or

functions. These functional entities can be encapsulated within an individual software compo-

nent, allowing each component to perform a sub-task within the overall system. Adapting the

software at run-time, i.e., changing the constituent software components within the system, can

be achieved using one of a number of run-time adaptation techniques such as a wrapper pattern,

dynamic linking or middleware re-direction [Salehie and Tahvildari, 2009], however, within the

architecture described in Figure 1.2, software components are hot-swapped into the component

assembly to effect the desired adaptation.

7



The reactive nature of dynamically-adaptable software requires a dedicated adaptation man-

ager to initiate, select and implement the required functional adaptations, as well as oversee

the general performance of the system. A dedicated internalized adaptation manager can be

encapsulated as a software component, and can execute in parallel with the software, fulfill-

ing the various tasks illustrated in Figure 1.1. For simplicity, and to reduce the complexity of

maintaining a shared system view with an external entity, it is more convenient to co-locate

the adaptation manager component within the component assembly being managed. As well

as managing the functional adaptations to the system, the adaptation manager includes func-

tionality to measure and analyse the execution-time performance of the system. This software

timing analysis is introduced in Section 1.2, and provides an opportune means of accessing the

ongoing fitness of dynamically-adaptable systems, as well as verifying the effects on performance

of run-time software adaptations.

1.2 Software Timeliness

The principal contribution of the work described in this thesis is estimating the timeliness of

dynamically-adaptable software. While many other timing analysis methods currently exist

[Li et al., 2007] [Marref and Bernat, 2008] [Wilhelm et al., 2008], none have been applied to

evaluate the execution time of dynamically-adaptable software running within an embedded

operating environment. The execution time of software may be defined as the period required to

process a given task to completion, under normal operating conditions, on a specified hardware

platform [Edgar, 2002]. All software, including statically-defined software operating under ideal

conditions, tends to experience some minor variations in its execution time due the interaction

of a large number of internal and external factors. I/O latencies, hardware interrupts, software

events, available memory, networking issues, device failures, caching policies, execution history

and even the ambient temperature of the processor all contribute to cause fluctuations in the

timing behaviour of the system [Henia et al., 2005]. Accurately predicting the execution time

allows a more efficient use to be made of the available computational resources, informs the

scheduling of software tasks, and provides an on-going qualitative assessment of the performance

of the software [Becker et al., 2006]. Where the software is capable of modifying its functional

behaviour at run-time, its execution time can form both an input into the adaptation process,

as well as a convenient means of appraising the performance of the latest configuration of the

8



system.

Dynamically-adaptable software responds to changes in its operating environment by chang-

ing parts of its functional make-up. However, knowing whether the operating environment has

changed requires the continuous measurement of various system parameters in order to build up

a ‘true’ picture of the current operating conditions. In effect, the status of the operating environ-

ment must be inferred from a limited set of periodic measurements. One of the more revealing

properties of a software system is its ongoing execution-time performance, i.e., its timeliness. If

sufficiently large or prolonged deviations from the established execution time are observed, it can

be inferred that the cause for these changes is some underlying factor within the system itself

or within the operating environment. For example, periods of high load on the system, such as

those caused by large numbers of concurrent user requests, can overwhelm the capabilities of

the system and manifest themselves as execution time delays. In this manner the timeliness of a

dynamically-adaptable system can provide an indication of the capability of the software to per-

form its role. Since dynamically-adaptable software also permits the functionality to be modified

as a reaction to changes in the operating environment (e.g., excessive delays), the timeliness of

the software affords a qualitative point of comparison between candidate adaptations, and the

currently deployed software configuration.

1.2.1 Execution-Time Requirements

Any predictive method that provides a reliable, accurate and precise estimate of the timeliness

of dynamically-adaptable software, also provides re-assurance about the software adhering to its

timing requirements. Software can be divided into three broad categories with respect to its

required timing behaviour, i.e.,

• software with no explicit timing requirements

• software with soft timing requirements, and

• software with hard execution-time requirements.

The first category of timing requirements encompasses software that has been developed without

any expectation of how long it will take to execute. Many software applications written today

fall into this category, with the software developer eschewing execution-time considerations,

focusing wholly on functional correctness [Kumar et al., 2008] . The timeliness of this type of

9



software forms an unconsidered, and largely ignored, by-product of its execution. In contrast,

the opposite extreme is software with hard execution-time requirements, where strict inviolable

deadlines are placed on the timeliness of the software. These deadlines must be adhered to

over the life-time of the software, regardless of any difficulties imposed by unusual or extreme

operating conditions. Typically employed within critical real-time and embedded systems, e.g.,

flight control systems [Mindell, 2008], hard execution-time requirements force the software to

complete each task within a preset time period. To miss a timing deadline would mean the

catastrophic failure of the system, since the various tasks making up the system have rigid

pre-determined execution schedules. Hard real-time software is not generally amenable to run-

time adaptation, or even repeated off-line modification, due to the lengthy and detailed analysis

required to verify its timeliness after even minor functional modifications [Wilhelm et al., 2008].

Since the first category of software has no use for execution-time analysis, and hard real-time

software effectively prohibits adaptation, the focus of this thesis is on estimating the timeliness

of software with soft execution-time requirements.

Systems with soft execution-time requirements offer a balance between providing deadlines on

the execution-time of the software and tolerating occasional violations of these deadlines under

extreme or unusual operating conditions. Typically, the software timing deadlines are outlined by

the developer in advance, or determined by the system at runtime, and aimed at ensuring software

tasks execute according to pre-defined but moderately flexible timing constraints. Violations of

soft timing deadlines can and do occur under extreme conditions, but only result in a reduction

in the quality of service, rather than a complete failure of the system. For example, within an

IP telephony application, delays in receiving packets result in a reduction in call/voice quality.

Similarly, delays in rendering a frame within gaming applications result only in momentary

periods of frame jitter. Unanticipated or excessive violations of soft execution-time deadlines can

provide the impetus for adapting the underlying software to better suit the prevailing operating

conditions. Timing deadlines offer a threshold against which the system can be measured, and if

found lacking, can provide a performance target for any subsequent adaptations to the software.

Consequently, changes in the software execution time can prompt functional adaptations

within dynamically-adaptable systems. However, adapting the functional behaviour of even a

small part of the software can result in unintentional changes to the execution time of the software

as a whole. Any functional adaptations that aim to correct or optimize performance must ensure

10



that these modifications do not negatively impact on software timeliness. For dynamically-

adaptable software to provide any assurance of correct operation, i.e., to avoid any time-induced

functional errors, it must be possible both to recognize when to adapt and to quickly predict the

execution time of a newly-adapted software system.

Unfortunately, the combination of software adaptations, as well as general timing pertur-

bations originating in the operating environment, both may contribute to unintentional alter-

ations in the overall execution time of the software. Within closely-coupled systems with soft

execution-time constraints, poorly understood timing behaviour hampers the ability of the soft-

ware to function as expected. Usually, the outputs of one functional element form the inputs of

the next, meaning that small localized delays can quickly propagate through the system lead-

ing to reduced throughput, missed timing deadlines, or can even precipitate functional errors in

otherwise dependable code. The correct operation of a dynamically-adaptable system relies as

much on reducing uncertainties about its timing behaviour as removing functional errors from

the code.

1.2.2 Predicting Software Execution Times

Timing analysis is the process of evaluating software to produce an estimate of its likely execution-

time within a specific operating environment. Traditionally, timing analysis has been applied to

hard real-time systems, where the timeliness of the software is critical to the correct performance

of the system. Specifically, the timing analysis methods applied to these critical systems are

concerned solely with deriving a worst-case execution time (WCET) estimate for the software,

in order to provide safety guarantees within hard real-time environments, i.e., an assurance

that the software will never exceed any hard timing deadlines [Wilhelm et al., 2008]. These

traditional timing analysis approaches evaluate the software timeliness using one or more static

analysis methods, applied at design-time to a fixed code-base. The software persists in the same

unchanged form after deployment, ensuring the timing estimate remains valid during execution.

The difference between hard real-time systems and dynamically-adaptable software is borne

out in the expectations surrounding their timing behaviour. The former is expected to remain

fixed once deployed and executing, while the latter is liable to change unexpectedly during exe-

cution, and continue execution with a conspicuously altered execution-time behaviour. The as-

sumptions governing current timing analysis methods are violated when applied to dynamically-

11



adaptable software. The functional scope of the code is not fixed, and since execution continues

immediately following an adaptation, there is no opportunity to submit the software for extended

periods of off-line testing supervised by a domain expert, i.e., the programmer/developer/tester.

The execution time of dynamically-adaptable software will vary considerably, and change with-

out prior warning. As a result, software adaptations can quickly lead to a divergence between

any static pre-compiled execution-time estimate and the observed execution-time behaviour.

Static timing analysis methods, i.e., those that form an off-line estimate of software timeli-

ness, are insufficient for dynamically-adaptable software since its timing behaviour changes with

every adaptation. Statically analyzing each potential configuration of a dynamically-adaptable

system, similar to the approach described in the PECT framework [Hissam et al., 2003], becomes

impractical when the number of potential configurations of the system grows very large. To pro-

vide an unrestricted framework for dynamic software adaptation, but yet support the prediction

of its execution-time behaviour, software timing analysis must be performed concurrently with

the normal operation of the system and continuously update as the timing behaviour of the

system changes.

Dynamic timing analysis methods currently exist, such as those measurement-based tech-

niques described by Petters [Petters et al., 2007] and Hansen [Hansen et al., 2009], however

they require a large number of timing measurements before an estimate of the timing behaviour

of the software can be created. Since adaptations change the functionality of the system, any

timing measurements recorded prior to an adaptation are invalidated once the software changes.

This requires a new set of timing measurements to be created before a timing estimate can be

produced, potentially leading to a period immediately following an adaptation, where no timing

estimates can be provided. In any dynamically adaptable system the most pressing need for an

estimate of the execution time will be immediately after the system adapts, in order to establish

the performance of the new configuration of the software.

Using statistical models, an accurate estimate of the timeliness of dynamically-adaptable

software can be created. However, statistical models require a set of measurements to fit a selected

statistical distribution to the underlying data, and then produce a valid estimate. Unfortunately,

this minimum number of measurements can range from several dozen to thousands, depending

on the inherent variability in the process being measured, i.e., the software timeliness. The

approach outlined in this thesis, and described in more detail in Chapter 3, uses a number of

12



different statistical analysis techniques to provide an immediate, progressively improving estimate

of the timeliness of dynamically-adaptable software.

Two aspects of the timing behaviour of the dynamically-adaptable software are analyzed, the

average-case timing, and the worst-case execution time. The average-case timing estimate pro-

vides a bounded interval within which a stated percentage of the software timing measurements

are expected to fall. The worst-case estimate provides a single threshold value below which

another stated percentage of the timing measurements of the system are expected to occur.

These two estimates provide an indication of the central tendency of the software execution-time

performance and its potential for extreme behaviour, i.e., timing delays.

A linear regression analysis is applied in the first case, to supply a bounded average-case

timing estimate. For the worst-case performance, a modified Holt-Winters exponential smoothing

model [Chatfield, 2003] is applied initially when a small number of timing measurements are

available, e.g., immediately succeeding an adaptation. The Holt-Winters model is applied to time

series data, in this instance the series of software timing measurements recorded at run-time, and

used to forecast the likely worst-case execution time of the dynamically adaptable software. When

a sufficient number of timing measurements have been recorded, the worst-case timing estimate

is generated using a statistical distribution that is fitted to the timing data at run-time. The class

of statistical distribution used is known as an extreme-value distribution [Kotz and Nadarajah,

2000], and is more usually found in predicting the movement of financial markets [Poon et al.,

2004] or in estimating extreme events [Alvarado et al., 1998].

These statistical modelling techniques, the collection and assimilation of timing measurements

as well as the application of run-time adaptive statistical models to dynamically-adaptable soft-

ware systems, are described in more detail in Chapter 3.

1.2.3 Challenges

In contrast to statically-defined software, dynamically-adaptable systems provide a flexible frame-

work in which developers can create malleable code capable of contending with, and exploiting,

highly variable operating environments. However, run-time adaptations change the timing be-

haviour of the software, and introduce uncertainties about its timeliness that cannot be easily

analysed or predicted in the short period available during or immediately following an adapta-

tion. To maintain a valid estimate of the execution time of dynamically-adaptable software, the

13



analysis process must either account for every potential configuration of the software statically

(an unrealistic prospect), or perform the analysis at run-time and automatically update the tim-

ing estimate when a functional adaptation occurs. The research question central to this thesis is

how statistically-based timing analysis methods can be applied to dynamically-adaptable soft-

ware at run-time, without halting the system or restricting the number of potential adaptations

to the software.

As the scope and scheduling of adaptations are resolved only at run-time, any estimates

of software timeliness must be capable of rapidly reacting to adaptations within the system.

However, since it is unlikely that any prior timing analysis will have been performed on a new

configuration of the system, the timing analysis process must refresh its estimates using what-

ever timing information is available immediately following an adaptation. This raises a secondary

research question for this work, concerning how an accurate, precise timing estimate may be pro-

duced, when the predictive model is based upon a limited set of timing measurements, recorded

immediately following a software adaptation. From the sparse timing information available an

estimate must then be created without interfering with the normal execution of the software, or

negatively impacting on the functional behaviour of the system. Lastly, since the timing esti-

mate is provided as feedback into the adaptation process, the predictive model used to generate

the estimates must be capable of uncovering subtle changes in software timing behaviour over

extended periods.

1.3 Contribution

This thesis describes the design and evaluation of an execution-time forecasting method for

dynamically-adaptable software. Specifically, the approach presented in this work predicts the

timeliness of software executing on a resource-constrained embedded device with soft real-time

constraints. Timing predictions are generated using reactive run-time statistical methods, and

are continually updated with fresh timing measurements during run-time. The contribution

of this work is therefore in applying novel statistical techniques to estimate the timeliness of

dynamically-adaptable software. Not only that, but to perform this analysis at run-time, within

the same embedded system that is being monitored. This task is made difficult by the unique

nature of the software, as well as the restrictions imposed by the operating environment.

Adaptations to the software can occur at run-time with little prior indication, and alter the

14



timeliness of the software in unexpected ways. The core of this thesis is a predictive model that

accurately and precisely estimates software timeliness, without halting the system to perform

the analysis, relying on any prior off-line testing or restricting the scope of functional adapta-

tions. Currently, various measurement-based [Colmenares et al., 2008] [Wenzel et al., 2005], and

statistical-based [Hansen et al., 2009] [Edgar, 2002] timing analysis techniques exist, however they

both perform the timing analysis from an off-line context, and preclude any modifications to the

underlying software at run-time. The few autonomic approaches that monitor the performance of

software in real-time and adjust any QoS or performance estimates appropriately [Epifani et al.,

2009] [Calinescu and Kwiatkowska, 2009], likewise do not support any timing analysis where the

underlying software is dynamically adaptable. There is a gap in the current knowledge about

how best to estimate the execution time of software that can both change unexpectedly during

run-time, as well as modify its functionality into a configuration that may be unenvisaged at

design-time.

Timing estimates are produced automatically at run-time using this predictive model, with an

accuracy only slightly below what would be achieved using an industry-standard timing analysis

process performed off-line in ideal circumstances and under manual supervision. In addition to

providing timing estimates of the software, the outputs of this predictive model provide feedback

into the adaptation process as a means of selecting the most appropriate configuration of the

software for the prevailing operating conditions. Lastly, the predictive model, while interleaved

with the normal execution of the software, does not negatively impact the performance of the

system.

1.4 Assumptions

This thesis is grounded in a number of underlying assumptions concerning the overall approach,

the performance of the execution-time forecasting process and its evaluation. In addition, there

are also several fundamental assumptions about the implementation of dynamically-adaptable

software, the nature of the operating environment and the limitations of the adaptation process.

Hardware: The operating environment includes both the hardware running the dynamically-

adaptable software system, as well as any external factors that influence software behaviour,

e.g., user requests. The hardware is presumed to be a single stand-alone device, with its own

15



processor(s), memory and storage, all located on the same physical unit. For the purposes of

this thesis, resource-constrained embedded devices provide the target hardware environment,

typically having MHz-scale processors with solid-state memory/storage not in excess of several

hundred megabytes. The use of resource-constrained embedded devices is desirable since it

provides a convenient motivation for application domains where both computing resources and

execution time performance are critical. However, the implication of using resource-constrained

devices is that the forecasting process must minimize both its memory footprint and processing

overhead on the device. In addition, the limited memory cannot store a very large set of timing

measurements, so the forecasting process must selectively store or discard timing data according

to its freshness and/or its descriptive value, i.e., excessive execution times are more useful in

calculating the likely worst-case execution time of the system, than more average measurements.

Rarely Occurring Events: The system is composed of dynamically-adaptable component-based

software, and includes an internal adaptation manager with timing analysis functionality. Adap-

tations are assumed to be rarely occurring events, implemented at run-time by changing the

composition of the component-based system, using a set of alternate software components pro-

vided within a component repository. An adaptation process that is called too frequently will

impact on the normal execution of the software, since resources and time will be required to se-

lect and implement changes to the software. For a dynamically-adaptable system to optimize its

functional response, minor variations within its operating environment must be overlooked, and

adaptations triggered only when absolutely required. An overly reactive adaptation process may

potentially create a repeating oscillation between two extreme behaviours, to the detriment of its

functional goals. For a timing analysis process, estimating the execution time of a dynamically-

adaptable system will require some distinct periods of time between adaptation events, where

the timeliness of the system can be appraised, and estimated within a single configuration of the

system. Also, since the measure of a timing analysis process will be its accuracy and precision, a

reasonably stable configuration of the system is required to assess the estimate against observed

behaviour.

Stateless Components: Components are assumed to be stateless, in that there is no prerequisite

on managing or maintaining the state of the system during an adaptation. The dynamically-

16



adaptable software, and to a lesser extent the adaptation process itself, are secondary to the

task of estimating the volatile execution-time behaviour of dynamically-adaptable systems. The

restriction on allowing only stateless components within the adaptation framework is more on

simplifying the adaptation process, since the fact that the software changes at run-time (along

with its execution time), is more critical than the nature of any state management during adap-

tations. If an adaptation framework is introduced to manage state transition between software

components at run-time, there should be no impact on the timing analysis of that dynamically-

adaptable system. The limitation on using only stateless components within a dynamically-

adaptable system is solely a means of expediting the adaptation process, and in turn demon-

strating the run-time timing analysis approach that forms the subject of this thesis.

Statistical Estimates: The overall approach towards predicting software timeliness uses a statistical-

based predictive model, that is generated and updated at run-time, using timing measurements

of the underlying system. The output of this predictive model in turn feeds back into a basic

adaptation selection process, providing an example of one type of input into what could be a

more expansive adaptation selection mechanism. Adaptations, and the adaptation management

process, are limited to functional changes within a single software system. This thesis does not

cover the timing analysis of any adaptations across a distributed environment, nor is there any

provision for forecasting the timeliness of multiple virtual instances of a dynamically-adaptable

software system operating on a single server.

Clock Resolution: The standard system clocks used in this thesis to measure the software exe-

cution times are assumed to have a clock resolution on the order of 1 millisecond, meaning that

the error associated with any measurement is assumed to be no more than ± 1 millisecond. The

predictive model in turn, takes these measurements as the basis for its timing estimation process,

assuming that the inherent error in the measurements is negligible compared to the size of the

timing intervals being measured. For applications with a sub-millisecond timing requirement,

the approach outlined in the thesis would still be applicable, but the hardware used to generate

the timing measurements would need to be more fine grained.

Timing Measurement: Lastly, the timing analysis approach described in this thesis assumes the

17



execution time of the software will vary between adaptations, as well as over extended periods

of operation within a single configuration of the system, i.e., due to trends in the operating

environment. The predictive model used to generate the timing estimates is assumed to execute

concurrently with the software, be updated regularly, and notified by the adaptation manager

whenever a functional adaptation occurs. The time interval being estimated by this predictive

model is assumed to be the execution of the main control loop of the software, i.e., there is an

underlying assumption that the execution path of the software is cyclical, and comparisons can

be made between individual cycles. Fixing the scope of the analysis to the entire system, rather

than just a sub-component, provides a more relevant assessment of overall performance, and

more readily usable input into the adaptation process.

1.5 Issues Not Covered

The research question at the center of this work is how to accurately estimate the timeliness

of software liable to undergo functional changes at unpredictable intervals. The dynamically-

adaptable software serves only as a framework to demonstrate the predictive model outlined in

this thesis. Specifically, any adaptation selection mechanism, or any other method of evaluating

the optimal configuration of a dynamically-adaptable system at any given time is outside the

scope of this work. Likewise, the scheduling of adaptations or any feature checking associated

with the adaptation process is not considered within this thesis. Adaptations are assumed to

occur rarely, and no provision is made in this work to restrict adaptation cycles from developing,

nor perform any functional analysis on the adaptations themselves.

Similarly, there is no provision in this work for managing any translation of state information

between software components being swapped into the system at adaptation-time. The implemen-

tation of any complex adaptation selection process is outside the scope of this thesis, excepting

the assumptions described in Section 1.4. Finally, the determination of the optimal configuration

of the system is not considered in itself, but only as a means of demonstrating timing feedback

into the adaptation process.

18



1.6 Evaluation

The run-time statistical forecasting approach described in this thesis is required to provide a

precise, accurate estimate of the timeliness of dynamically-adaptable software, without halting

the execution of the system, relying on any detailed off-line analysis, or restricting the scope of

potential adaptations. The accuracy and precision of the timing estimates produced must be

sufficiently reliable and practical to enable an ongoing appraisal of the performance of the system

when compared to its timing requirements. In addition to providing a qualitative assessment of

the performance of the dynamically-adaptable software, the outputs of the timing analysis should

inform the adaptation process, allowing pre-emptive adaptations when the software execution

time is predicted to exceed a set threshold.

An evaluation of the approach outlined in this work must show how accurate execution-time

estimates can be generated, at run-time, in parallel with the normal operation of a dynamically-

adaptable system. The performance of the hybrid statistical forecasting approach is evaluated

using a number of simulated timing behaviours, and then experimentally validated on a resource-

constrained embedded device executing a time-optimizing dynamically-adaptable system. These

latter timing estimates are in turn compared against the outputs of an industry-standard timing

analysis tool, evaluating individual configurations of the software under ideal off-line analysis

conditions.

1.7 Road Map

The remainder of this thesis is structured as follows,

Chapter 2 presents the state of the art in software timing analysis, introduces several time-

predictable software design methods, and describes a number of current approaches towards

enabling dynamically-adaptable software.

Chapter 3 presents the statistical approach used to forecast the execution-time performance of

dynamically-adaptable software. The changeable execution-time performance of this software is

described, and the methods used to generate a run-time predictive model are presented.

Chapter 4 presents the implementation of the predictive model.

Chapter 5 evaluates the performance of the statistical timing analysis approach. This evaluation

19



includes both a number of simulated execution-time traces, and experimental validation using

dynamically-adaptable software executing on a resource-constrained device.

Chapter 6 concludes the thesis and discusses potential future work.

1.8 Summary

This chapter has introduced the fundamental concepts behind dynamically-adaptable software

systems, the motivation behind their usage, and the volatile nature of their execution time. The

way in which the execution time of the software both influences the adaptation process, as well

as validates the performance of newly adapted software has been presented.

Since the execution time of the software forms an integral part of both performance assess-

ment and adaptation selection, this chapter described how a predictive process is needed to form

accurate, precise timing estimates without halting the system or restricting the scope of adap-

tations. Lastly, this chapter finishes by describing the contribution of the work, the challenges

to be overcome and the various assumptions underlying this task.

20



Chapter 2

Related Work

In the practical world of computing, it is rather uncommon that a program,

once it performs correctly and satisfactorily, remains unchanged forever.

Niklaus Wirth

On the 5th February 1971, astronauts Alan Shepard and Ed Mitchell were preparing to begin

their descent towards the surface of the Moon, when an unanticipated software problem prompted

what was possibly one of the first instances of run-time adaptation. Controlling their spacecraft

through its descent and landing was the on-board Apollo Guidance Computer, a weighty device

containing just 2Kb RAM with a 2MHz processing cycle. This early computer system included

various navigational software functions that were manually triggered by the astronauts at appro-

priate moments during the flight. However, the software responsible for guiding them to a safe

landing was exhibiting some worryingly anomalous behaviour and had been noticed both by the

astronauts themselves and the ground controllers monitoring the spacecraft telemetry.

Unknown to the astronauts, a tiny piece of solder, used to attach internal wiring to a switch

on the spacecraft console, had become loose and was periodically setting and resetting an abort

indicator bit within a memory register. If this spurious abort signal was to occur at a critical

point during the descent, the software would automatically override the pilot, and move the

craft into a safe orbit, effectively ending any possibility of a landing. A software fix was required

that would both command the system to ignore any spurious abort signals as well as integrate

with the existing code without causing any further problems. The analysis of the problem,

21



and the planning of a suitable adaptation to the software, had to be carried out remotely by

ground controllers, and then forwarded to the astronauts to be manually keyed into the system

to implement the desired change. To further complicate matters, the window of opportunity for

the landing meant the software fix needed to be in place within two hours of the first detection

of the error.

The process that was followed, and the eventual bit-level software adaptation that was imple-

mented, is described in greater detail by Mindell [Mindell, 2008], and provides a microcosm of the

software adaptation process introduced in Chapter 1. Timely analysis, albeit by a large number

of experts already familiar with the system, coupled with remote testing on duplicate hardware

and a robust design of the software, enabled a safe resolution of the error and a successful land-

ing. Unfortunately, with the increasing complexity and responsibility of adaptable systems, the

ability of a human-in-the-loop to both analyze and plan software adaptations has become more

difficult, especially when the deadline on performing an adaptation is often now measured in

milliseconds rather than hours [Smits et al., 2009]. Due to this time-pressure, adaptable soft-

ware frameworks must often implement functional changes without waiting for the approval of

software developer, or without any apriori testing on duplicate systems. Where there are a very

large number of potential adaptations to system, an exhaustive static analysis of each software

configuration may prove impractical. Conversely, run-time analysis is hampered by the software

changing unexpectedly and with limited prior warning, as well as having only a short period in

which to conduct any testing.

The principal contribution of this thesis is a method to automatically estimate the execution

time of dynamically-adaptable software, without restricting the functional scope of any adapta-

tions or halting and restarting the system to perform the analysis. Consequently, the main body

of related work described in this chapter concerns the current state of the art in software tim-

ing analysis, with an emphasis on timing analysis methods applicable to dynamically-adaptable

software systems. An overview of the various software adaptation frameworks is presented first,

describing the ways in which adaptations may be applied to software at various stages during its

design, implementation and execution. This chapter then concludes with a summary of current

adaptation techniques as well as timing analysis methods, and discusses the approaches that

most closely match the goals outlined for this thesis.

22



2.1 Software Adaptation

Software adaptation can be defined as the modification of software to suit new operating con-

ditions. A number of adaptation frameworks currently exist, that support diverse approaches

towards the design, scheduling, implementation and modification of adaptable software systems.

For the purposes of this thesis, the goal of the run-time adaptation process is to optimize the

execution-time performance of the software under a range of operating conditions. For exam-

ple, if the system starts to exhibit a significant delay in processing tasks during periods of high

load, processor-intensive software components are automatically replaced by lightweight alterna-

tives. Within the idealized dynamically-adaptable system, introduced in the previous chapter,

the adaptation process would either briefly pause execution, or hot-swap components at run-

time to effect the desired functional changes. However, different adaptation frameworks each

impose a slightly different set of limitations on the adaptation process, such as restrictions on

when adaptations can occur and what constraints must be applied to the design of the under-

lying software. In order to characterize these different approaches towards software adaptation,

this section evaluates current adaptation frameworks according to six basic questions concern-

ing their motivation, focus, scope, scheduling, autonomy and implementation. These questions,

initially outlined by Salehie and Tahvildari [Salehie and Tahvildari, 2009], are expanded below,

and summarized as follows;

- Why are software adaptations required?

The primary motivation behind software adaptations are unexpected changes in the oper-

ating environment. However, the impetus for other adaptation frameworks may include a

number of functional, non-functional or system-specific issues, depending on the require-

ments of the system or the nature of the operating environment. Functional concerns

include scheduled upgrades, run-time patches and event-driven functional updates [Or-

eizy et al., 2008]. Non-functional concerns encompass perceived deficiencies in the per-

formance of the system not directly related to its functionality, e.g., the processor load,

memory footprint or execution time, that necessitate corrective action in the form of a

software adaptation [Sharma et al., 2004]. Lastly, system-specific issues prioritize a par-

ticular facet of the software for adaptation in order to preserve a dominant property of

the system, e.g., adapting the software to resolve security concerns [Perkins et al., 2009],

ensuring system stability after adaptations [Heo and Abdelzaher, 2009] or dealing with

23



reliability issues within highly-available systems [Zhang et al., 2005]. In contrast to the

type of unconstrained dynamic software adaptation that forms the primary focus of this

thesis, system-specific adaptation frameworks restrict adaptations to achieve more limited

aims, e.g., improving system security against network-based attacks [Chess et al., 2003].

Unconstrained dynamically-adaptable systems may change the objective function driving

the adaptation process during execution, e.g., initially adapting the software to improve

timeliness, followed by subsequent adaptations to improve its memory usage.

- Where does the adaptation take effect?

Software adaptations can target different logical layers within the system, depending on the

adaptation framework being used. Adaptations may be applied to software at a per pro-

cess, per component, per class, per function or per function-call level. Typically however,

adaptation frameworks limit the scope of an adaptation action to a single layer within the

system, enacting functional modifications on that layer alone. For example, component-

based adaptation frameworks assume that any functional changes are restricted to the level

of components [Ayed and Berbers, 2007], i.e., adaptation actions are implemented through

the addition, replacement or removal of individual software components within the system.

Other interpretations on where adaptations can take effect include dynamically creating

processes within adaptive grid-based systems [Buisson et al., 2007], restricting adaptations

to an adaptive middleware layer [Sharma et al., 2004], or intercepting and re-directing

method calls [Assaf and Noyé, 2008]. In this chapter, the question of where adaptations

occur within the system is used to categorize the various approaches and frameworks that

facilitate software adaptation.

- What is the result of an adaptation?

Adaptation frameworks may be grouped according to the extent of the functional change

each adaptation can have on the underlying software. Functional modifications may dis-

cretely alter existing software behaviour or may, alternatively, replace entire parts of the

system with new, updated or alternate functionality. Static composition is the most re-

strictive form of adaptation, since execution must be halted to implement what effectively

amounts to a re-design of the system carried out off-line [Hissam et al., 2003]. Parameter-

based adaptation permits limited modifications to the software at run-time [Ensink et al.,

2003], but prevents any new functionality being added. Logical adaptations, and architec-

24



tural adaptations allow changes to be made within logical elements [Sadjadi et al., 2004],

and between elements respectively [Dowling and Cahill, 2001]. Finally, dynamic adapta-

tion permits the full range of functional additions, replacements and deletions on discrete

functional elements within the system at run-time [Zhang et al., 2005].

- When does the adaptation occur?

The scheduling of adaptation actions, i.e., the period when they are initially triggered, is

an important consideration within adaptable software systems [Cheng et al., 2008]. While

re-configuring software from an off-line context allows the software developer sufficient time

to implement and test functional modifications [Wall et al., 2002], the ability to quickly

react to changes in the operating environment is lost. Conversely, dynamically-adaptable

software systems by their nature, react to changing conditions at run-time [Ayed and

Berbers, 2007], but must perform an analysis without halting execution [Perkins et al.,

2009]. Between the two extremes of off-line and run-time adaptation, it is possible to

implement adaptations at other periods during the design, deployment and execution of

the software, such as at compile-time [Vanderperren et al., 2005] or link-time [Popovici

et al., 2003]. The question of when adaptations can occur is used to differentiate the

various adaptation frameworks, according to their support of either off-line, compile-time,

load/link-time or run-time adaptation.

- Who manages the adaptation?

The responsibility for selecting, planning and implementing a software adaptation may

be fulfilled by an external supervisor, or controlled automatically within the adaptation

framework itself. A dedicated external supervisor, e.g., a software developer, provides a

human-in-the-loop to oversee the adaptation process, typically re-configuring and testing

the software from an off-line context [Biyani and Kulkarni, 2005]. However, an internal

adaptation management function may be better placed to automatically respond at run-

time to changes in the operating environment [Smits et al., 2009]. This internal adaptation

manager may take the form of a policy-based rules engine [Keeney and Cahill, 2003], an

algorithmic approach [Smits et al., 2009] or an internal performance model with adaptation

feedback [Epifani et al., 2009]. The two categories of adaptation management considered in

this taxonomy are supervised adaptation frameworks, i.e, those with a human-in-the-loop,

and automatic software-controlled adaptations.

25



- How is the adaptation implemented?

The final property used to classify adaptation frameworks is the particular manner in

which functional changes are enacted on the underlying software. In contrast to the scope

of a particular adaptation action, or the layer within the system at which it is applied,

this property describes the method or technique used to modify the software. Adapta-

tions may be implemented through re-compilation [Hissam et al., 2003], re-configuring

the software (e.g., modifying parameters) [Sharma et al., 2004], re-arranging the existing

functional architecture [Dowling and Cahill, 2001], replicating executing processes [Buis-

son et al., 2007], re-direction of the execution flow [Assaf and Noyé, 2008] or dynamically

adding/replacing/removing software elements at run-time [Ayed and Berbers, 2007].

Taken together, these fundamental questions allow the various adaptation techniques currently

in use today, as presented by a number of recent survey papers [McKinley et al., 2004] [Dobson

et al., 2006] [Cheng et al., 2008] [Kell, 2008] [Salehie and Tahvildari, 2009], to be categorized

according to their overall approach, functional flexibility and inherent limitations. Certain ap-

proaches, such as off-line composition [Wall et al., 2002] or re-compilation [Hissam et al., 2003],

are arguably not software adaptation techniques in themselves, however they are included here

for completeness. The adaptation frameworks that most closely match the definition of dynamic

software adaptation given in Chapter 1, are distinguished by their support for the addition of

new functionality, at run-time, without halting and restarting the system, or requiring external

supervision. The various adaptation frameworks are described in this section according to their

overall type, and are further analyzed according to their motivation, focus, scope, scheduling,

autonomy and implementation. A comparison and summary of the various properties of each

adaptation framework is presented at the end of this section, in Table 2.1.

2.1.1 Static Composition

Static composition loosely fulfills some of the characteristics of software adaptation, whereby

the software is modified, albeit from an off-line context by an external agent, to better suit

its operating environment. Typically, static composition is performed under the direction of

the software developer, who modifies the system in response to revised software requirements,

scheduled software updates, or initial performance testing. Static composition using verified

software components was first proposed by McIlroy in the late 1960’s [McIlroy, 1968]. He asserted

26



that rather than developing the functionality of each new software program ex nihilo, software

should be created from a series of standardized re-usable software components, with clearly

defined interfaces, and well-documented functional behaviours. These components could be

then assembled by the software developer to produce high-quality dependable systems. The

perceived maturity of more established engineering disciplines such as electronic engineering,

showed the benefits of using standardized off-the-shelf components as the fundamental building

blocks for developing more sophisticated devices. However, the added difficulty of composing

complex software programs from basic functional components can overlook the subtle interplay

between functional and non-functional behaviours within any software system. As a result,

the composition of reliable systems from re-usable off-the-shelf software components is still the

subject of ongoing work some forty years later [Koziolek, 2010] [Fredriksson et al., 2007] [Eskenazi

et al., 2004].

The creation of complex, but predictable, software systems through static composition is de-

scribed by Hissam et al. [Hissam et al., 2003]. This framework, called Predictable Assembly from

Certified Components (PACC) [Ivers and Moreno, 2008], uses Prediction-Enabled Component

Technology (PECT) [Wall et al., 2002] as the basis for constructing complex dependable software

systems from certified software components. The overall approach combines design processes,

software development tools and analytic models, to construct predictable systems from a set of

certified software components. However, the focus on producing certified software components

entails restricting software developers from using functionality that would make analysis of the

software less predictable, e.g., by using recursive functions, run-time resolved loop conditions, or

dynamic data structures. Their approach advocates predictability over software expressiveness,

and commits the creation, analysis and deployment of component assemblies to be performed

from a static context, i.e., off-line, under the supervision of the developer.

Similarly, Software Product-Line (SPL) development utilises a shared set of basic functional

elements to statically compose a family of similar software applications. By promoting software

re-use, the goal of SPL is to reduce development costs, and increase the dependability of the

final software system. Typically, SPL development methods are a requirement of the application

domain where a large number of different variants of the ‘same’ software are needed. For example,

within the automotive industry, software product-line development methods aim to create vehicle

control software for different vehicles, using as many of the same basic software elements as much

27



as possible [Thiel and Hein, 2002]. Some SPL tools provide a visualisation environment to support

meta-modelling of software components [Nestor et al., 2008], allowing the software designer to

browse through the hierarchy of potentially re-usable software elements, selecting components

that best suit a particular task. The SPL domain readily lends itself to the use of component-

based software [Pretschner et al., 2007], as well as offering the potential for dynamically-adaptable

software systems to fulfill the goal of multiple software variants for different hardware instances.

However, hard real-time requirements within many applications domains, and the necessity to

compose and verify different configurations of the software statically [Engblom et al., 2001]

[Bhylin et al., 2005], currently override any considerations about introducing run-time software

adaptation within product-line software approaches.

Cadena is an add-on for Eclipse that provides an integrated modelling environment for the

static composition of component-based software systems [Ranganath et al., 2003]. The meta-

modelling support within Cadena allows various component frameworks such as the CORBA

component model and Enterprise Java Beans, to be selected as the underlying component

framework for a particular system. CALM, the Cadena Architecture Language with Meta-

Modelling [Childs et al., 2006], builds upon Cadena, and supports a three-tiered meta-modelling

approach to apply architectural constraints during the development of large-scale component-

based software systems. CALM allows software developers to create their own bespoke modeling

languages to build specific types of components, interfaces, connectors and applications. This fa-

cilitates an efficient translation between platform independent models and platform specific mod-

els, using the in-built CALM modelling tools, over a number of incremental steps. This model

refinement, and the use of object-oriented concepts such as inheritance hierarchies facilitate SPL

development, as application variants, resource considerations and functional limitations can be

specified at various degrees of abstraction during the design process. Although CALM/Cadena

supports the development of related component-based software systems, its support for subse-

quent software adaptation after the design process has completed is unclear. It is likely that

although promoting component re-use through meta-modelling, the actual implementation of

any component-based system remains fixed once deployed and executing.

The Palladio component model [Becker et al., 2009], is a meta-model for creating component-

based systems with a focus on reliability and performance. The design and development of

component-based applications separates the software developers who initially create the com-

28



ponents (component developers), from the software developers that compose the final system

(component assemblers). Palladio has component developers specify and implement software

components, which are stored in a component repository along with a description of the relation-

ship between the provided and required services within each component. Applications are then

formed by component assemblers taking the component information (i.e., component interface

descriptions, usage models and service dependencies) and matching individual components to re-

source models for the target environment. The Palladio component model includes a toolkit that

integrates with the Eclipse platform, as well as in-built performance analysis for the specified

QoS properties of the application. It is unclear whether the component-based applications pro-

duced using Palladio permit any subsequent functional adaptation. However, since the operating

environment is modelled in advance, and components are pre-assigned to resources within the

system, adaptations may be prevented in order to maintain the QoS attributes of the application.

Analysis - Within statically-composed systems, the software is created to meet a set of func-

tional and/or non-functional requirements. These requirements may precede the implementation

of the software, or may evolve during software development [Kumar et al., 2008]. However, once

the software has been statically-composed and deployed, further modifications to the system

require execution to be halted, and the software to be re-composed off-line. Any performance

information gleaned during run-time, or any functional bugs reported within the software, may

be corrected only with a re-design of the software from an off-line context. Another potential

disadvantage with static software composition, especially within component-based systems, is

that compositional frameworks can neglect the emergent non-functional performance character-

istics of software that is statically composed from many discrete software elements [Diaconescu

and Murphy, 2005]. Due to inter-dependencies within many individual software elements, and

differences between their usage models and what is required by the overall application, a set of

reliable components does not necessarily create a reliable system [Hissam et al., 2003]. Simi-

larly, the off-line static composition process may prove wholly unsuitable when insufficient (or

incorrect) information is provided about the operating environment [Zave and Jackson, 1997].

However, for all the potential problems arising from static software composition, it does offer a

number of unique benefits.

One of the principal advantages of off-line software composition is that it affords the software

29



developer/tester an extended period in which to evaluate the performance of the system without

interfering with its execution. For example, static timing analysis techniques (see Section 2.2.1)

require extended periods of off-line evaluation and testing to determine the likely execution-time

of software [Sehlberg et al., 2006]. This can be achieved only if the software remains fixed during

the analysis process, and the developer is afforded an opportunity to proceed with extended

off-line assessment [Souyris et al., 2005]. The outputs from off-line performance analysis can

be used to re-design the software to alter its functional, logical or architectural composition in

order to meet its requirements. While this may produce a software system optimized towards an

expected range of operating conditions, any unanticipated variation, or unexpected errors during

execution cannot be addressed without further interruption and off-line intervention.

Statically-composed software is off-line when an ‘adaptation’ occurs, so the effects of any

software modification can occur at a per component, per class or per function level. This may

provide sufficient time to perform any software re-design and analysis, but it also requires someone

to supervise both the ‘adaptation’ and the subsequent performance analysis. However, if the

hardware is too complex to accurately model using static analysis techniques, or the scale of

the composed system defeats any exhaustive analysis [Kirner and Puschner, 2008], a run-time

approach towards timing analysis, as described in this thesis, may be more effective than current

static analysis methods.

2.1.2 Compile-time Adaptation

Compile-time adaptation differs from static composition, in that the underlying software is never

directly modified by the developer. Instead, adaptations to the system are designed separately,

and automatically integrated into the code at compile-time, allowing new functionality to be in-

troduced through the normal software build process. One of these automated build processes, the

CiCUTS framework presented by Hill et al. [Hill et al., 2008], provides a continuous integration

environment where source-code repositories are constantly monitored, with any changes trigger-

ing the software build cycle, and re-running the various unit test cases against the newly compiled

code. CiCUTS uses profiling techniques to monitor the performance of the latest compilation

of the software, and present a graphical analysis to the software developer. The developer can

then use this ongoing performance analysis to evaluate potential modifications to the software

architecture or constituent components in order to improve specified QoS metrics.

30



The KOALA framework [Asikainen et al., 2003], consists of a component model and special-

ized architecture description language (ADL) to support product line software development for

consumer electronic devices. Some limited compile-time adaptation is supported through the

use of source code switches within software components, that allows re-usable software to be

easily reconfigured for different applications within different devices. Dhurjati et al. [Dhurjati

et al., 2006] describe the SAFECode framework, a compiler-based approach towards resolving

any latent memory management issues within C programs. SAFECode uses a series of additional

compile-time checks to ensure that no memory allocation errors occur during execution. Tradi-

tionally, compilers apply simple lexical and semantic analysis to C source code to transform it into

an executable, and leave run-time considerations, such as memory management issues, largely

up to the system. In contrast, SAFECode extends the compiler to look for dangling pointers,

unresolved array bounds or any calls to uninitiated pointers that could cause the run-time failure

of the program. Similarly, Cooper et al. [Cooper et al., 2002], describe a framework that allows

compilers to adapt their behaviour towards the type of application being developed and the tar-

get hardware environment. They describe how their framework enables adaptive compilers by

providing tools to automatically configure the compilation process. The target code produced by

the resulting compiler can be created to suit a particular system, as well as minimize an explicit

external objective function, e.g., memory utilisation. Other techniques, such as Aspect-Oriented

Programming (AOP) also extend the compiler to include additional functionality, but leave the

compilation process otherwise untouched.

AOP provides a convenient method of implementing discrete functional changes across an

entire codebase at compile-time. Advice code is inserted at compile-time at locations in the

codebase designated by a set of join-points (pointcut). The advice code and base code are then

woven together to create software with a new set of functional or non-functional behaviours.

AspectJ supports compile-time adaptation, albeit through the weaving of aspect advice into the

underlying base-code under the direction of a software developer [Hilsdale and Hugunin, 2004].

The AOKell component model uses the AspectJ compiler as a means of integrating updated

control logic into software components at compile-time or load-time [Seinturier et al., 2006].

AOKell uses aspect-weaving to make the normally opaque and off-limits control layer accessible

to software developers. Specialized control components within the AOKell framework bind to

application-layer components, and provide them with naming, binding and life-cycle management

31



services. By modifying the control components, AOKell allows applications to be tailored for

specific operating environment, e.g., self-testing or self-healing applications. While both AspectJ

and AOKell restrict the modification of the base-code to changes applied at compile-time, the

paradigm of AOP has been extended to dynamically weave new code into a running application

by other aspect-based frameworks (see Section 2.1.4).

Analysis - Compile-time adaptation provides a more dynamic approach over static composition,

in that there is a clearer separation between the original software, and the modified functionality.

Adaptations are typically prompted at compile-time by revisions to the system requirements, or

functional errors caught during initial testing. Since changes are more difficult to enact through

re-compilation than re-composition, the scope of any change may be reduced, but the effects of

compile-time adaptations are similarly limited to components, classes or functions. The results

of a re-compilation are usually small-scale modifications to existing functional behaviours, i.e.,

logical rather than architectural changes. Although there can be a certain amount of automation

to the build process, e.g., the CiCUTS approach described by Hill et al. [Hill et al., 2008], a

software developer is still required to oversee the process. The adaptations or re-compilations

can be implemented by directly altering the code, e.g., as with SAFECode [Dhurjati et al., 2006],

or through aspect-oriented approaches, e.g., Aspect/J [Hilsdale and Hugunin, 2004].

Compile-time adaptation frameworks complement static timing analysis techniques, since

both are performed on the completed source code, at the same time in the software development

process. Static timing analysis tools, such as SWEET [Ermedahl et al., 2007], can be performed

in parallel with the software build process, and re-run if any subsequent modifications are made

to the software. Run-time timing analysis methods, in contrast, rely on the executing software,

rather than the source code, to construct an estimate of software timeliness. As such, run-time

timing analysis methods are unfeasible for compile-time adaptation frameworks.

2.1.3 Load/Link-time Adaptation

Load or link-time adaptation occurs when software modifications are compiled separately from

the base-code, and only integrated immediately prior to execution. The JMangler framework

[Kniesel et al., 2001], supports functional adaptations within Java programs at load-time, by

replacing the standard Java class-loader with the Java HotSwap API. Both the base software

32



and the adaptation functionality are compiled as Java bytecode, and integrated at load-time

using JMangler. The result is a merger of both the new and underlying functionality, effectively

implementing a load-time functional adaptation.

Both PROSE [Nicoara and Alonso, 2005] and AspectJ [Hilsdale and Hugunin, 2004] enable

load-time software adaptation. The software is modified by weaving additional aspect advice as

the classes are loaded. Similarly, Popovici et al. [Popovici et al., 2003], describe the Just-In-Time

(JIT) aspect compiler, that supports either compile-time or load-time aspect weaving within Java

programs. In the latter case, the compiler can either weave minimal hooks into the base-code

for later integration with the aspect code, or can use the JIT compiler to weave the advice

code directly into the native code. The authors describe that while the hook-based approach

offers a better separation between aspect advice and the base-code, as well as preserving the

usual Java security model, it has a higher execution overhead. Each time a join-point is reached

during execution, the hook method is called. Conversely, directly weaving advice using the JIT

compiler may provide faster code, but violates the Java security model, and does not maintain

a clear separation between the base-code and adaptations to the base-code.

The Component-Integrated Ace ORB (CIAO), provides a CORBA-compliant framework for

building real-time component-based systems [Wang et al., 2004]. The Ace ORB extends the

CORBA event service, to support real-time communications between components in a distributed

component-based system. The middleware controlling this component assembly allows ORBs to

be modified at start-up (load-time), using configuration files describing the required communi-

cations strategies for the application. Unlike aspect-based or compiler-based approaches, CIAO

allows some further run-time adaptation at the process level, i.e., changing processes during ex-

ecution through the middleware layer.

Analysis - Load and link-time adaptation is motivated by the same factors that prompt compile-

time adaptation - unanticipated changes to software requirements during the design process, or

updates due to errors or performance issues flagged during initial testing. The costs associated

with a complete software re-design to these issues are much larger than a simple functional or

non-functional update, implemented at load/link-time. Adaptations that occur at load/link-time

may not have fine-grained access to implement changes within particular classes, e.g., JMangler

[Kniesel et al., 2001], since the adaptation is enacted on pre-compiled black-box software. Instead,

33



re-direction may be used at load/link-time to alter functionality at a per class level. The results

of an adaptation is typically the replacement of an existing logical element within the system with

an alternate element, or the addition of new functionality at a specified point in the software.

Adaptations occur at load/link-time, under the direction of the software developer. Finally,

load/link-time adaptations are enacted on the system principally through either re-direction, or

aspect-weaving.

Load/link-time software adaptation approaches lend themselves more towards static rather

than dynamic timing analysis techniques. Dynamic timing analysis approaches are unsuitable

when the adaptation process occurs outside of normal software execution. Static timing analysis

techniques are more relevant when the analysis can be carried out from an off-line context, where

there is sufficient time available for the software developer to perform a detailed evaluation of

the source code. Even in the case where the source code for adaptations is unavailable, such

as with black-box components, static timing analysis techniques such as MOQA [Schellenkens,

2010] can still provide an estimate of software timeliness.

2.1.4 Dynamic Adaptation

Software can be characterized as being dynamically adaptable when it allows new functionality to

be added, or existing functionality to be replaced or deleted, without having to halt and restart

the system to implement the adaptation. During the adaptation period, normal execution may

either pause briefly while changes are made on the underlying software [Fritsch and Clarke, 2008],

or instantaneously transition (hot-swapping) between different configurations of the system, as

viewed by the user [Rasche and Polze, 2005]. Run-time adaptable systems typically include some

adaptation management functionality, to initiate and control the adaptation process without de-

ferring to external supervision [Smits et al., 2009]. For example, Hummel and Atkinson [Hummel

and Atkinson, 2010] describe a test-driven approach towards automatically selecting the appro-

priate functionality within component-based systems. Within other frameworks however, the

selection and scheduling of an adaptation action can be performed exclusively by an external

supervisor, and require an explicit command to initiate a functional modification to the system,

e.g., the IRIS framework [Sutton et al., 2006]. For run-time adaptable systems, the principal fac-

tor prompting an adaptation is variation within its operating environment, specifically, changes

in the operating environment that expose a performance deficit within the current configuration

34



of the software.

The Chisel framework [Keeney and Cahill, 2003], provides a context-aware approach to dy-

namic software adaptation. Adaptations within Chisel are triggered by changes in the operating

context of the system, which is defined through a combination of system resources, application

and user inputs. A policy-based approach then drives the adaptation mechanism, monitors the

context information coming into the system, and implements the appropriate functional adapta-

tion at run-time using Iguana/J [Redmond and Cahill, 2002]. Keeney [Keeney, 2004], describes

using the Chisel framework to support unanticipated run-time software adaptation. Unantici-

pated functional adaptation does not constrain the scope of any adaptation to a set of pre-defined

functional behaviours, rather, it allows new functionality to be added to a running system well

after its initial deployment. Adaptations are selected automatically as a reaction to changes in

the operating environment, as well as the addition of new functional behaviours. In contrast, the

IRIS framework [Sutton et al., 2006], provides a different approach towards adaptation selection,

by leaving the process entirely under the control of an external manager, i.e., the software de-

veloper. Implementing Radio in Software (IRIS) moves much of the functionality found within

wireless networking protocols from a static implementation within hardware to a purely software

implementation within a reconfigurable software system. When the radio environment changes,

the software developer can update an XML-based architectural model of the system, which in

turn prompts a reconfiguration of the system to support a different radio networking protocol.

The analysis of a run-time adaptable system can prove problematic due to the unscheduled

nature of adaptations, as well as the potentially large number of possible configurations of the

software. The latter problem, a potential state explosion within even modest-sized adaptable

systems, can make any exhaustive off-line testing impractical [Smits et al., 2009]. However, Biyani

and Kulkarni [Biyani and Kulkarni, 2005] describe a method of simplifying the verification of an

adaptable system with multiple potential configurations, by restricting adaptations to like-for-like

replacement actions within a pre-defined component family. Similarly, Adler et al. [Adler et al.,

2007], outline an approach towards constrained adaptation, where the complete specification of

the adaptation behaviour are available at development time. Since these are available in advance,

validation and verification can be performed off-line to calculate the probability an adaptive

system assumes a specific configuration. Their framework, Methodologies and Architectures

for Runtime-adaptive embedded Systems (MARS), allows them to analyse a closed adaptive

35



system, and construct a component fault tree (CFT) as well as an associated probability for

each configuration of the system. The authors suggest this is a pre-requisite for development of

adaptable software in the safety-critical and embedded systems domains.

Usually, aspect-oriented techniques apply changes to software at either compile-time [Sein-

turier et al., 2006] or load-time [Nicoara and Alonso, 2005], however, there are approaches that

use dynamic aspect weaving to introduce functional changes to software at run-time. Both

Nu [Dyer and Rajan, 2008] and Dynamic AspectJ [Assaf and Noyé, 2008] inject the aspect code

into the underlying base-code without having to halt execution, or re-compile the system. The

scope of an adaptation is defined at the level of the method-call, essentially re-directing the flow

of execution at appropriate points within the program. Adaptations using dynamic aspect weav-

ing typically add a small processing overhead [Assaf and Noyé, 2008], but facilitate the addition

or replacement of functionality at run-time.

Since adaptation is more easily achieved where there are well-defined logical divisions within

the software, many component-based frameworks have been developed to support run-time soft-

ware adaptation. OpenCCM [Ayed and Berbers, 2007], Plastik [Batista et al., 2005], Frac-

tal [Bruneton et al., 2006] and the K-Component model [Dowling and Cahill, 2001] all support

run-time adaptation through the modification of the software components used to constitute

an application. An example of a component-based adaptation framework is the TimeAdapt

approach [Fritsch and Clarke, 2008], that targets software adaptation within component-based

real-time systems. A specifically created reconfiguration language is used to describe the extent

of an adaptation, as well as indicating any timing constraints imposed on the adaptation process

itself. Since execution is suspended while the software reconfiguration occurs, the TimeAdapt

framework analyses the extent of the proposed adaptation, and provides an estimate of this

adaptation-period exceeding a stated time bound. The goal of a time-bounded adaptation pro-

cess is to minimize interruption to normal execution by enforcing adaptations within preset time

limits. An analogous approach is described by Rasche and Polze [Rasche and Polze, 2005], for a

framework that supports run-time reconfigurations within real-time systems.

The Dynaco framework, presented by Buisson et al. [Buisson et al., 2005], describes an

approach towards supporting dynamic adaptation within large-scale distributed computing grids.

Dynamic adaptation within these grid environments focuses on maximising the performance

of the distributed system by spawning new processes when resources become available. The

36



framework is based on Fractal [Bruneton et al., 2006], and can select the process that provides

the best use of currently available resources, extend this process as resources become available,

as well as automatically managing the release of resources to be reclaimed by the platform. A

control loop, similar to that illustrated in Chapter 1, is used by the framework to observe, decide,

plan and execute adaptations. Whereas the processes running on the grid platform can expand

and contract according to resource availability, the support for functional adaptations to running

processes is unknown, but presumed not to be supported.

Lastly, a number of middleware approaches currently support run-time software adaptation.

The Runes middleware [Costa et al., 2007], supports dynamic component reconfiguration within

network-enabled embedded systems for disaster scenarios, as well as for optimization within more

resource-enabled platforms. Devices supporting the Runes middleware are capable of adapting

their functional behaviours and communications strategies, based on inputs from their operat-

ing environment. While this approach supports dynamic reconfiguration of both components,

and inter-component connections, as well as the deployment of new functionality, it is unclear

whether the middleware provides any timeliness guarantees on the reconfiguration process itself.

Sharma et al. [Sharma et al., 2004], present the QuO middleware that enables the adaptation

of component-based systems by modifying the execution flow through middleware. Based on

changing QoS requirements, the Quo framework adjusts the behaviour of the software by altering

parameters within the system that re-direct inter-component communications. This approach,

typical of adaptive middleware frameworks, is limited in that it does not support unanticipated

adaptation, nor can new functionality be added to the system once it is deployed and executing.

Analysis - The main contribution of this thesis is an approach towards predicting the timeliness

of dynamically-adaptable software. Although timing analysis is the principal concern of this work,

the nature of the software being analysed must be taken into consideration, i.e., the six questions

introduced at the beginning of Section 2.1. Whereas the previously described software adaptation

methods (compile-time, link-time, etc.), provide an insight into potential implementations and

limitations within the software adaptation, only run-time software adaptation provides sufficient

functional flexibility to support dynamically-adaptable software systems. Run-time software

adaptation forms the principal underlying adaptation mechanism for this thesis.

Software adaptations that occur at run-time are driven by changes in the operating environ-

37



ment, and can be initiated automatically [Dowling and Cahill, 2001], or prompted by an external

user [Sutton et al., 2006]. Since there is limited time in which to implement the modifications

on the software, adaptations take effect typically on a single layer within the system, such as

the component-layer [Ayed and Berbers, 2007], or the middleware-layer [Sharma et al., 2004].

Adaptations can add, replace or delete functionality during normal software execution [Fritsch

and Clarke, 2008]. Adaptations are implemented at run-time, but can either briefly suspend ex-

ecution to implement the adaptation [Fritsch and Clarke, 2008], or immediately switch between

configurations of the software [Rasche and Polze, 2005]. Usually the adaptation is managed

automatically by functionality within the adaptable system, however there are some frameworks

that support user-prompted run-time adaptation [Sutton et al., 2006]. The adaptation can be

implemented in a variety of ways, such as replacing software components [Batista et al., 2005],

adapting the middleware [Sharma et al., 2004], or run-time aspect weaving [Assaf and Noyé,

2008].

2.1.5 Summary of Adaptation Frameworks

From the perspective of this thesis, the software underlying the dynamic timing analysis approach

must support both unanticipated run-time adaptation, as well as permit previously unenvisaged

functionality to be added to the system during execution.

Statically composed software systems, such as PECT/PACC [Ivers and Moreno, 2008], are

assembled from a closed set of functional elements. While this allows the software to be analysed,

or constructed in such a manner as to be inherently predictable, it also limits the flexibility and

adaptability of the system at run-time. Similarly with parameter-based adaptation [Sharma

et al., 2004], the functional scope of the software is fixed once deployed to the target hardware,

and may be reconfigured dynamically, but cannot be extended. As pointed out by McKinley et

al. [McKinley et al., 2004], parameter-adaptation may allow systems to be tuned, but cannot allow

an application to implement behaviours conceived following the initial construction of the system.

Static, load/link-time and parameter-based adaptation frameworks all constrain the functional

extent of the software to a potentially large, but statically analysable, set of configurations of the

system. Although a large ‘search space’ may exist for these functionally-restricted systems, once

any exhaustive timing analysis has been performed on the system, newer functionality cannot

be subsequently added that would invalidate the analysis.

38



W
h
y
?

W
h

e
r
e
?

W
h

a
t
?

W
h

e
n

?
W

h
o
?

H
o
w

?

A
p

p
r
o
a
c
h

Functional Adaptation

Non-Functional Adaptation

System-Specific Adaptation

Process

Component/Object

Class

Function

Function-call/Aspect

Static Composition

Parameter Modification

Logical Adaptation

Architectural Adaptation

Dynamic Adaptation

Off-line/Design-time

Compile-time

Load/Link-time

Run-time

Supervised

Automatic

Replication

Re-Compile

Re-configure

Re-arrange

Re-direction

Add/Replace/Remove

S
t
a
t
ic

C
o
m

p
o
s
it

io
n

C
A

L
M

/
C

a
d

e
n

a
3

3
3

3
3

3
3

P
A

C
C

/
P

E
C

T
3

3
3

3
3

3

P
a
ll

a
d

io
3

3
3

3
3

3

C
o
m

p
il

e
-t

im
e

A
d

a
p

t
a
t
io

n

A
O

K
e
ll

3
3

3
3

3
3

A
s
p

e
c
t
/
J

3
3

3
3

3
3

C
iC

U
T

S
3

3
3

3
3

3
3

3
3

3

C
o
o
p

e
r

e
t

a
l.

3
3

3
3

3
3

3

K
O

A
L

A
3

3
3

3
3

3
3

S
A

F
E

C
o
d

e
3

3
3

3
3

3
3

L
o
a
d

/
L

in
k
-t

im
e

A
d

a
p

t
a
t
io

n

C
I
A

O
/
T

A
O

3
3

3
3

3
3

3
3

J
M

a
n

g
le

r
3

3
3

3
3

3
3

J
I
T

a
s
p

e
c
t
s

3
3

3
3

3
3

P
R

O
S

E
3

3
3

3
3

3

D
y
n

a
m

ic
A

d
a
p

t
a
t
io

n

C
h

is
e
l

3
3

3
3

3
3

3
3

D
y
n

a
c
o

3
3

3
3

3
3

D
y
n

a
m

ic
A

s
p

e
c
t
/
J

3
3

3
3

3
3

F
r
a
c
t
a
l

3
3

3
3

3
3

3

I
R

I
S

3
3

3
3

3
3

3
3

3

K
-C

o
m

p
o
n

e
n
t

3
3

3
3

3
3

M
A

R
S

3
3

3
3

3
3

N
u

3
3

3
3

3
3

O
p

e
n

C
C

M
3

3
3

3
3

3
3

3

P
la

s
t
ik

3
3

3
3

3
3

3
3

Q
u

O
3

3
3

3
3

3

R
u

n
e
s

3
3

3
3

3
3

T
im

e
A

d
a
p

t
3

3
3

3
3

3
3

T
a
b

le
2
.1

:
S

u
m

m
a
ry

o
f

a
d

a
p

ta
ti

o
n

a
p

p
ro

a
ch

es
.

39



Run-time adaptable systems may be distinguished from the other adaptation approaches, in

that new functionality may be added to the system at any time during its execution [Batista

et al., 2005]. Unconstrained run-time adaptation allows the greatest level of functional ex-

pressiveness, however the constantly changing functionality makes static (exhaustive) analysis

unfeasible [Smits et al., 2009]. Both Dynamic aspect weaving [Dyer and Rajan, 2008], as well

as component-based techniques [Ayed and Berbers, 2007] provide convenient methods of adding

new functionality to an executing system, however there are some research challenges that still

exist in selecting the appropriate adaptation [Hummel and Atkinson, 2010], and avoiding feature

interaction problems with the software [Huang et al., 2008].

2.2 Timing Analysis

Timing analysis is the process of evaluating software in order to generate an estimate of its likely

execution time, once deployed and running on a target hardware platform. Traditionally, timing

analysis has focused on determining the worst-case execution time (WCET) performance for

software, typically within real-time and embedded systems. The WCET bound that is derived

provides a guarantee about the safe performance of the software, i.e., that a given software task

will complete execution within a set deadline. The deadlines for the various software tasks are

used to create a static processing schedule for the real-time system, allocating a set period to the

completion of this task [Holsti et al., 2008]. If a task were to exceed its deadline, the execution

schedule would be invalidated, and potentially lead to an irrecoverable system failure.

The determination of a safe non-pessimistic WCET bound provides a guarantee about the

correct performance of the software once deployed and executing. The majority of timing anal-

ysis methods currently available are concerned with establishing the worst-case performance of

software [Wilhelm et al., 2008], mostly within the context of real-time and embedded systems.

However, WCET bounds are intended to encapsulate a rarely occurring event, and provide no

insights into the average execution time performance of the software. Where simple QoS con-

siderations take precedence over worst-case performance, such as in soft real-time systems, the

average-case execution time (ACET) provides a more useful metric in describing the expected

performance of the software [Schellenkens, 2010].

Predicting the execution time of software (both average and worst-case) is currently achieved

through either static [Malik et al., 1997] or dynamic timing analysis techniques [Bernat et al.,

40



2003]. Static timing analysis techniques directly evaluate the software, or a representative model

of the software, from an off-line context, and are further described in Section 2.2.1. However,

static timing analysis techniques require the software to remain fixed while testing completes,

and as a consequence, are unsuitable for dynamically-adaptable software systems liable to unan-

ticipated functional modification. In contrast to more static methods, dynamic timing analysis

techniques gather representative software timing measurements from an executing system, and

evaluate this data to infer the likely average-case [Schellenkens, 2010] or worst-case [Hansen et al.,

2009] timing behaviour. Measurement-based timing analysis methods can be performed fully at

run-time, or both off-line and at run-time, depending on when the evaluation of the timing trace

data is performed.

Both static and dynamic timing analysis methods can be further categorized according to

their inherent limitations, implementation and overall goals. By modifying the six fundamental

questions outlined earlier in Section 2.1 (e.g., why, where, what, when, who and how), the various

approaches towards software timing analysis can be sorted into more fine-grained categories.

These classifying questions can be outlined as follows;

- Why is software timing analysis required?

Timing analysis is used to produce estimates about the likely execution time of software,

running on a specified hardware platform. This need for a timing estimate may be prompted

by requirements within the particular application domain, e.g., safety requirements within

real-time and embedded systems, or merely questions about the likely performance of the

software. The reason why timing analysis is performed in the first instance may be classi-

fied as either assuaging safety concerns for real-time systems, testing the software during

the design process, or validating the performance once deployed to the target hardware

environment.

- Where is the timing analysis applied?

Timing analysis can be applied directly to the software during the design process [Eskenazi

et al., 2004], to abstract models of the software or hardware [Li et al., 2007], or timing

trace information recorded during execution [Wenzel et al., 2005]. Various timing analysis

techniques can be applied depending on the information currently available about the

system, the state of the software (completed/in development), as well as the time available

in which to carry out the analysis. For this taxonomy, the timing analysis is said to be

41



applied either directly to the software, to abstract models of the software, or timing trace

data of the executing software.

- What is the result of the timing analysis?

The output of a timing analysis process may focus on either the limits of the likely execution

time, e.g., the best-case/worst-case behaviour [Wilhelm et al., 2008], or may alternatively

provide an estimate of its average-case behaviour [Schellenkens, 2010]. Typically, the var-

ious analytic tools and methods applied to determine software execution times usually

mean one or the other of the extreme or average-case timing behaviours is the principal

focus of the approach. Both approaches are not mutually exclusive, but simply selected as

required for the particular operating environment. For example, the approach described

in this thesis, and outlined in the next chapter, provides both average-case and worst-case

timing estimates. Within this section, timing analysis approaches are classified according

to whether they are setup to provide extreme-case (best/worst) or average-case timing

estimates.

- When does the analysis occur?

The majority of timing analysis methods are currently applied off-line prior to deployment,

during normal software acceptance testing [Wilhelm et al., 2008]. This is due to the require-

ment for the software to be in a final state, so that any timing estimates produced from

the source code are representative of the performance of the deployed system. However, if

the software is adaptable, it does not have a single final state that can be tested before de-

ployment. In this case, automatic timing analysis is required, where updates to the timing

estimate for the system are made at run-time, under the supervision of functionality within

the system [Epifani et al., 2009]. The classification of timing analysis approaches presented

here considers two broad types of timing analysis technique - off-line and run-time.

- Who supervises the analysis?

The timing analysis method applied to a particular system can be considered to be either

supervised, or automatic, depending on whether someone is required to manage the analysis

process [Ermedahl et al., 2007], or whether the system itself can perform a self-analysis

during run-time [Epifani et al., 2009].

- How is the timing analysis achieved?

42



There are a number of different techniques used to estimate software timeliness, such as

formal modelling [Beltrame et al., 2001], timing trace analysis [Burguiére and Rochange,

2006], flow analysis [Li et al., 2007], code analysis/simulation [Sehlberg et al., 2006] and

statistical methods [Hansen et al., 2009]. These broad categories are not mutually exclusive

within individual approaches, e.g., Wenzel et al. [Wenzel et al., 2005] outline a hybrid

timing analysis approach that utilises both code analysis and measurement-based analysis

to derive a worst-case execution time bound.

2.2.1 Static Timing Analysis

Static timing analysis techniques predict the likely execution-time of software from an off-line

context, using “information collected at or before compile-time” [Malik et al., 1997]. This type

of timing analysis may reason over abstract models of the system, or alternatively may directly

evaluate the source code. Static analysis techniques, as they are performed from an off-line

context, have a common requirement on being supervised by a domain expert, e.g., software

developer or tester. Typically, the timing analysis is performed rigorously on a fixed code base

over a prolonged period, until there is a high confidence that the estimate produced corresponds

to the actual behaviour of the software once it is deployed and executing. Souyris et al. [Souyris

et al., 2005], provide the example of a software task within an avionics system that required

upwards of 12 hours of analysis to produce a (worst-case) timing estimate.

2.2.1.1 Static Analysis Frameworks

The MESCAL framework, introduced by Chen et al. [Chen et al., 2001], provides a combined

software development environment and static analysis framework for the creation of embedded

systems software. The analysis is performed using an Integer Linear Programming (ILP) ap-

proach, with the control flow analysis, branch prediction and predication analysis performed

automatically by the framework at compile-time. The analysis can target a number of different

hardware environments, by modeling the architecture separately, and sharing this information

using an XML-based MESCAL architecture description. However, as typical with static analysis

approaches, the MESCAL framework constrains the software in order to perform the analy-

sis, e.g., no dynamic functions are supported, nor are the effects of interrupts or preemption

considered on the performance of the software.

43



The CiCUTS framework [Hill et al., 2008], introduced previously in Section 2.1.2, performs

some run-time QoS validation on the timing behaviour software developed within a continuous

integration environment. When a change is detected in the software repository, the build cycle

is executed, followed by a set of unit tests to validate the timeliness (if required) of the newly

compiled software. The timing analysis is performed automatically, but the precise manner in

which the analysis is performed is unclear. However, it is assumed any appropriate automatic

static timing analysis tool could be used.

The MOQA framework [Schellenkens, 2010], provides a domain-specific programming lan-

guage called MOQA-Java [Townley et al., 2009] that can automatically evaluate the average-case

execution time (ACET) of software. The ACET bounds are determined by tracking and com-

bining the distributions of the basic components within a MOQA program. Distributions are

simple statistical models representing the expected timing behaviour of a component, however it

is unclear from the paper whether the authors use the standard Normal (Gaussian) distribution,

or can fit more exotic distributions to the components, e.g., the Poisson, Weibull, Cauchy or Log-

Normal models. Since programs are ordered compositions of these basic components, MOQA

attempts to track and control these distributions, adjusting them based on their usage, and on

the notion of random bag preservation. The average-case time for the entire program can then

be computed from the times of its constituent parts.

Analysis - Static analysis frameworks, while providing software developers with a convenient

process to repeatedly test software timing behaviour during development, are insufficient to

analyze the execution time of dynamically-adaptable software. The number of potential configu-

rations of the system is typically too great to perform any detailed exhaustive analysis, to expose

the likely execution time effects of every possible adaptation [Smits et al., 2009].

Static analysis frameworks mostly target the timing performance of the software from a

view of ensuring an acceptable QoS, rather than providing any real-time guarantees. Since the

frameworks are used during design-time, source code provides the basis for any timing analysis.

Average-case rather than worst-case bounds are produced off-line, typically through some auto-

mated timing analysis process. The code itself is usually analysed to produce the final estimate

of software timeliness.

44



2.2.1.2 Formal Methods Analysis

Formal methods analysis decomposes software into abstract statements or properties that can

be reformulated and reasoned about algebraically. The use of formal analysis within software

engineering is not new, and has been previously applied to compiler-design, software require-

ments analysis and describing the interactions within concurrent systems [Hoare, 1978]. Formal

methods analysis applied to software timeliness is not an empirical analysis approach, rather

a means of verifying established existing timing properties, under a set of basic assumptions.

Without detailed knowledge concerning the timing behaviour of the software, or any safe de-

pendable means of combining functions in a time-assured manner, formal methods techniques

will encounter difficulties evaluating average-case or worst-case timing bounds.

Zhang et al. describe a modular model-checking approach to verify the behaviour of dynam-

ically adaptable systems [Zhang et al., 2009]. They separate the functional part of the software

from the adaptive logic, and model the dynamically adaptive software as a collection of non-

adaptive programs with transitions between each program representing an adaptation. Using

three levels of system abstraction, i.e., high-level requirements, models of adaptable compo-

nents, and descriptions of the low-level implementation, the authors apply a specialized process-

algebra to ensure that particular global invariants are maintained, and desired functional and

non-functional properties of the system remain unaffected by adaptations. However, it is unclear

how the authors establish the desired execution time bounds initially, nor is it described how

unrealistic timing requirements are handled using this approach.

AMEOBA-RT is a run-time monitoring and verification technique for dynamically-adaptable

software systems [Goldsby et al., 2008]. The software is modeled as a series of steady-state

programs, roughly corresponding to individual configurations of the system, with adaptation ac-

tions modeled as transitions between these steady-state programs. These models are expressed

using Linear Temporal Logic (LTL), as well as an adaptation-specific extension to LTL called

Adapt-operator extended Linear Temporal Logic (A-LTL). AMEOBA-RT in effect acts as a run-

time model-checker for software expressed using A-LTL and LTL semantics. Since adaptations

are triggered by changes in the run-time state of the system, this state is monitored by instru-

menting the software using AspectJ. While the analysis of the A-LTL/LTL semantics is carried

out automatically, the developer must manually specify methods (pointcuts) to instrument and

monitor the code using aspects. AMEOBA-RT examines only one execution-path at a time, ef-

45



fectively avoiding the problem of state explosion within the model-checker, i.e., an exponentially

large number of potential software configurations requiring analysis. The authors illustrate the

performance of AMEOBA-RT by analysing an adaptive Java pipeline program, that changes

between synchronous and asynchronous behaviour depending on the prevailing CPU load. The

A-LTL/LTL semantics describing the pipeline is forwarded to a dedicated model-checking server

for analysis, and either the current configuration of the program is validated, or an exception is

recorded in an error log for that is processed off-line.

Marref and Bernat [Marref and Bernat, 2008] describe the use of Constraint-Logic Program-

ming (CLP) to express the constraints governing the execution flow and times of basic functional

blocks within a program. Each block has an associated execution count describing the number of

times it is called during execution, as well as an execution time. A WCET-bound can be found by

solving an Implicit Path Enumeration Technique (IPET) model of the program, in effect, finding

the aggregate of the worst-case times for each block. Both the execution count, and execution

time constraints for the blocks can be found using timing trace analysis of the program, whereas

the times can be further refined by performing a dependency analysis between the blocks. IPET

does not consider the flow of execution between these basic blocks but instead a set of blocks with

their respective execution counts. However, the CLP approach does not consider the feasibility

of a particular execution path, meaning that the WCET bounds produced using this method

may be overly pessimistic.

Analysis - The level of abstraction required to model a dynamically-adaptable system using

formal methods makes any accurate assessment of its likely execution time unlikely, unless there

is a detailed formal model of the underlying hardware, or a run-time dynamic analysis process.

Several tool-based approaches have detailed processor models, however these are not specified

according to any CSP-like [Hoare, 1978] or LTL-like [Goldsby et al., 2008] modelling language.

Formal methods analysis provides a level of abstraction that may be useful in describing the

composition or constraints within a dynamically adaptable system. However, the intricacies of

evaluating the execution time of adaptable software executing on a complex processor architec-

ture, within a highly variable operating environment, may require formal methods techniques

to model the software behaviour at a very fine-grain, potentially introducing further complexity

into the analysis process.

46



Formal methods analysis is traditionally used to provide a guarantee about the timeliness of

software, however, its difficulty in forming WCET bounds without a detailed understanding of the

hardware means the timing guarantees produced are concerned only with overall performance.

Abstract models of the software, rather than source code or timing trace data are generally used,

and applied to the estimation of either ACET or WCET bounds. Formal methods techniques are

performed off-line under the supervision of a domain expert, and typically operate using process

algebras to represent the desired properties of the system.

2.2.1.3 System Models

System models represent a class of approaches where abstract models associated with the perfor-

mance of the software are created, and occasionally updated at run-time, to provide an indication

of software timeliness. Unlike tool-based analysis methods, there is usually no model of the un-

derlying hardware, simply an inter-connected series of parameters and properties describing the

performance of the system. Also, in contrast to formal methods analysis, system modelling tech-

niques are generally at a lower level of abstraction, and provide a different reasoning process,

relying less on process algebras or model checkers.

Epifani et al. [Epifani et al., 2009], describe the Keep Alive Models with Implementations

(KAMI) framework, that provides an updated model of the non-functional properties of run-

time configurable software systems. Relying on apriori estimates of various parameters used

to predict performance, e.g., request rate, processor load, mean response time, can be prone to

errors. For example, the initial parameters used to generate a predictive model of the performance

of the system may be different from the values actually experienced at run-time. In addition,

the initially accurate performance model can become less representative of the system as the

inputs into the predictive model diverge from the actual values over time. To provide a self-

updating predictive model, the authors introduce a Bayesian analysis of the parameters and

probabilities used to form the models. Using Discrete Time Markov Chains(DTMC) as well

as Queueing Networks(QN), a model of the performance of the system can be produced, and

evaluated at run-time. Continually updating the parameters allows the models to evolve as the

software executes. Bayesian estimation theory is used to refine the parameters that provide

inputs in the DTMC and QN models of reliability and performance respectively. Since software

engineers are required to create and deploy models of the system to the KAMI framework, it

47



is unclear how a dynamically-adaptable software system could be effectively modelled, i.e., the

state transitions specified in the DTMC and QN models could be quite large, depending on the

number of potential configurations of the system. The DTMC and QN models are evaluated by

third party model checkers incorporated into the KAMI framework, the PRISM model checker

and the JMT workload analyser respectively. The authors describe the operation of the KAMI

framework using the running example of a web-service composition, i.e., a decentralized web-

service co-ordinated using BEPL. The goal of the web-service composition is to meet its global

QoS requirements, by adjusting the models corresponding to the current configuration of the

service, allowing system modellers to perform software reconfigurations as violations or exceptions

are raised by the framework. The overhead of running the KAMI framework is not described

in the paper, however the PRISM and JMT model checkers are not lightweight components

specifically designed for embedded or resource-constrained devices. In addition to the overhead

on the system, the expected time required to process the performance models is not set out

within the paper. It is unclear whether an unrestricted dynamically-adaptable system, capable of

altering its performance unexpectedly at run-time, lends itself to the detailed modelling approach

set out in this work.

Calinescu and Kwiatkowska [Calinescu and Kwiatkowska, 2009] present an approach towards

managing adaptations within autonomic systems through the run-time analysis of probabilistic

models of the systems performance. Specifically, the authors describe the use of Markov chains as

a means of modelling software behaviour, and use the PRISM model checker [Hinton et al., 2006]

to evaluate these models at run-time. The autonomic/adaptation manager is used both to analyze

the current state of the system, as well as plan parameter-based adaptations to the functional

elements within the system. It appears that adaptations are limited to configuring the existing

software, rather than dynamically adding new software elements at run-time. Various policies

(action/goal/utility) are described, and used as the basis for both quantitative analysis and

software optimization. Two case studies are presented, a dynamic power management system for

a simulated disk drive, and an adaptive load balancer that dynamically assigns servers to a cluster

within a data center. In the former case, the evaluations were performed at 10-second intervals,

taking “a sub-second” time to complete on a dual-core 3GHz system. The later case, being a

more complex model, took the PRISM engine “up to 30 seconds” to complete the evaluation

of the clustered servers. These lengthy processing times would appear to make the approach

48



unsuitable for the complex changeable domain of dynamically adaptable systems. Also, it is

unclear whether the same evaluation process could be realistically applied within more resource-

constrained hardware.

Hissam et al. [Hissam et al., 2008], outline a measurement-based timing analysis approach, for

a highly-configurable real-time system. The authors describe a predictive model used to estimate

both the worst-case and average-case execution time of threads running on top of a real-time

VxWorks operating system. The goal of their approach was to generate timing deadlines based

upon settings in the configuration table for the software, timing measurements of the software

components that comprise the system, and a representation of the dependencies between these

components. Their approach is based on timing measurements, but still derives abstract models

of the operating system, the application software and any other (middleware) software depen-

dencies to generate the final timing estimate. Whereas their average-case predictions were within

0.8% and 1.3% to the two real-time tasks they evaluated, their worst-case prediction was more

than double the observed worst-case performance for both tasks. It is unclear whether the pes-

simism inherent their worst-case model was deliberate, or whether their acceptable probability

for exceedance was set very high, e.g., 10−12.

Analysis - System models abstract the system into a series of parameters or configuration

options, that can derive the performance of the software, or alternately allow various settings to

be altered to enforce a particular set of timing requirements. The KAMI framework described

by Epifani et al. [Epifani et al., 2009] provides a good example of this latter approach. The

principal advantage of system modelling approaches towards timing analysis, is that the range

of each possible parameter within the system is known in advance. This allows an exhaustive

analysis to potentially expose the timing behaviour of every likely configuration of the system, or

if this is too involved, a more expected range of operating conditions can be evaluated instead.

However, system modelling techniques do not allow any functionality to be added to system at

run-time, except with difficulty. The length of the evaluation periods required for many system

modelling approaches [Calinescu and Kwiatkowska, 2009], preclude their use within systems with

immediate timing requirements, such as dynamically-adaptable systems.

System modelling techniques are used primarily to maintain a specified QoS with respect to

timing, however Hissam et al. [Hissam et al., 2008], consider worst-case timing bounds for real-

49



time systems. Abstract models of the system, usually composed of a collection of configuration

options, provide the basis for the timing analysis, which can be carried out either off-line or

at run-time. The analysis itself is typically an evaluation of the current state of the system,

using Markov chains or an evaluation of queueing models representing the call flow graph of the

system.

2.2.1.4 Tool-Based Timing Analysis

Tool-Based timing analysis applies dedicated timing analysis toolkits to the evaluation of software

timeliness. Typically, timing analysis tools examine the source code to extract execution flow

information, loop bounds, and code segments that are analysed against models of the target

hardware environment.

The aiT tool [Sehlberg et al., 2006], is a commercial WCET analysis tool, widely used within

real-time software engineering projects [Wilhelm et al., 2008]. aiT analyzes the binary executable,

extracting the call flow from the object code, and performs a low-level analysis of the program

executing on a detailed model of a processor architecture. Typically, the architectures supported

by aiT, as well as other simulation-based analysis tools, are restricted simplistic processors with

well-known behaviours, with none of the hardware optimizations usually found in more advanced

CPUs. aiT analyses both the cache and pipeline effects on the basic blocks identified by the call

flow analysis, and combines the analysis of these basic segments in to a WCET bound for the

program.

Chronos [Li et al., 2007], is an open-source worst-case analysis tool for C programs. As with

aiT, the WCET bound produced by Chronos is determined through a combination of source

code analysis, and fine-grained modelling of the underlying processor architecture. A dedicated

tester is required to provide input during the analysis, since although Chronos performs an

initial flow analysis on the software, any unresolved loop bounds must be provided manually.

However, unlike other tool-based analysers such as Heptane [Colin and Puaut, 2001], Chronos

supports out-of-order pipelines and global branch prediction within the target processor. The C

program is broken into individual program segments that are analysed separately. This analysis

is performed using an in-built ILP solver. In essence, the WCET for each program segment is

generated by finding the execution count of each segment, and multiplying this by the worst-case

performance of the segment. The summation of these individual WCET values for all the basic

50



blocks combined then forms the final WCET value for the program.

Bernat et al. [Bernat et al., 2003], present the pWCET toolkit for the evaluation of worst-case

bounds within the domain of real-time systems. pWCET combines static and measurement-based

analysis techniques to provide a probabilistic worst-case bound. The program is broken up into

basic blocks, using a syntax tree representation of the program. Timing trace data is then used

to determine the probability distributions for the execution time of each block. These timing

traces allow the pWCET tool to be platform independent, i.e., they can be derived either from

cycle-accurate CPU simulators, or observations of the software running on the real system. The

probabilities are then combined to provide a WCET value within an upper and a lower bound.

The RapiTime commercial timing analysis tool is a direct result of the work done on the pWCET

tool [Wilhelm et al., 2008]. RapiTime improves on the path analysis within pWCET, as well as

allowing the user to add more extensive annotations within the code to capture loop and branch

information during the measurement phase of the analysis [Mezzetti et al., 2008].

The SWEdish Execution Time tool (SWEET) [Ermedahl et al., 2005], is a modular WCET

tool that performs source code analysis using models of a number of low-level processor archi-

tectures, e.g., the ARM9 processor. Since SWEET requires a model of the underlying hardware,

as well as access to the source code, its application is typically limited to providing worst-case

bounds for real-time and embedded systems. Similar to other static timing analysis tools, such

as aiT [Sehlberg et al., 2006], SWEET calculates the worst-case bound by performing an initial

flow analysis on the program, then an evaluation of the identified basic code segments against a

detailed model of the process, followed by a calculation of the worst-case from this simulation.

Unlike RapiTime or pWCET, SWEET can cope with recursive functions within C programs,

however since it uses an Implicit Path Enumeration Technique (IPET) within its initial flow

analysis, the program must be well structured to facilitate analysis.

Analysis - Tool-based timing analysis is the most widely applied method in determining WCET

bounds for real-time and embedded software [Wilhelm et al., 2008]. Detailed models of the un-

derlying processor architecture are typically used to simulate the performance of code segments,

however this approach, while providing a detailed, cycle accurate estimate, is limited to very ba-

sic systems. Complex processors are difficult to model in great detail, and as a consequence, are

generally unavailable within WCET analysis tools. Similarly the software being analysed may be

51



required to have its source code available, and restrict the use of recursive functions, or dynam-

ically assigned loop and branch conditions. Usually the tester/software developer is expected

to provide annotations, when static analysis fails to determine the loop or branch conditionals.

However, aside from the workload placed on the tester, and the lengthy period required for

testing, tool-based analysis remains the most dependable means of evaluating worst-case bounds

within safety-critical systems such as avionics [Souyris et al., 2005] or automotive [Sehlberg et al.,

2006] systems.

Tool-based timing analysis techniques are concerned with the evaluation of WCET bounds to

providing timing guarantees for real-time and embedded systems. Mostly source-code analysis

is used, however several tools [Bernat et al., 2003] [Mezzetti et al., 2008] include timing mea-

surements within their analytic process. The lengthy periods required to perform the analysis,

typically in the order of several hours [Staschulat et al., 2006], and the requirement to occasion-

ally annotate the code require tool-based analysis to be performed off-line and supervised by a

tester/software developer.

2.2.2 Dynamic Timing Analysis

Static timing analysis techniques must typically model the underlying hardware in order to pro-

duce a valid timing estimate of the executing software. However, as CPU architectures have

become increasingly complex, the hardware optimizations built into the processor, e.g., cache

behaviour, instruction pipelines and branch prediction, have rendered the task of static timing

analysis more difficult. Edwards and Lee [Edwards and Lee, 2007] state that due to this complex-

ity, the timeliness of software executing on modern processors is ‘virtually unknowable’. Also,

since run-time functional adaptations can unintentionally alter the execution time of software,

and invalidate any timing estimates formed from an off-line context, applying static timing anal-

ysis methods to dynamically adaptable software is only suitable where every potential configura-

tion of the software can be analysed in advance. However, static approaches are impractical since

even modest-sized adaptable systems can have a very large set of potential configurations [Smits

et al., 2009]. Within a dynamically-adaptable system, the order of scheduling adaptations cannot

be anticipated, since they are reactive events prompted by changes in the operating environment.

Where there is the potential for unconstrained adaptation, either in its scheduling or functional

scope, the application of static timing analysis techniques is unworkable. Rather than basing

52



any analysis on simulating the software on detailed models of the underlying hardware, dynamic

analysis techniques may use the run-time observations of the software to predict its likely future

behaviour. Where the software itself introduces added complexity through run-time adaptation,

dynamic measurement-based approaches offer a favourable means of evaluating the software’s

volatile timeliness.

Due to the limitations of exhaustive static timing analysis applied to dynamically adaptable

software, a more appropriate timing analysis method would focus on evaluating only the current

configuration of the software, i.e., the configuration resulting from a proposed adaptation during

run-time. Since the system continues execution immediately after an adaptation completes,

this timing analysis must be performed at adaptation-time or immediately when the software

resumes execution. However, current dynamic timing analysis methods rely on a large number of

timing measurements, coupled with an extended period of subsequent off-line analysis, to predict

the likely execution time of the software [Hansen et al., 2009]. While these measurement-based

approaches rely on empirical analysis techniques, and can cope with changeable timing behaviour

in the underlying software, they still require an extended period to both collect and evaluate the

timing measurements, from a run-time and off-line context respectively [Petters et al., 2007].

2.2.2.1 Measurement-driven Analysis

Measurement-driven analysis approaches are a hybrid of static and measurement-based tech-

niques. Typically, a static analysis decomposes the program source code into basic program

segments using a call-flow analysis. These program segments are small sets of instructions, usu-

ally the code encapsulated within a loop structure, branch or function. A purely static analysis

technique would assign timing properties to these program segments and submit the resulting

model to an ILP solver to derive a timing bound. However, the timing values may not be repre-

sentative of the actual behaviour of the software executing on the target hardware environment,

either due to incomplete processor models, or overlooked dependencies and execution flows within

the software itself. Measurement-driven timing analysis can counteract any deficiencies in static

analysis, by generating test-data (timing test cases) that execute on the target hardware, and

iterates through each execution path, thereby exposing the timing behaviour of the previously

identified program segments. Since measurements are used to provide timing information, hybrid

static/measurement-based techniques are easily retargeted to most hardware environments, since

53



no model of the processor is maintained within the analysis method.

Colmenares et al. [Colmenares et al., 2008], present a measurement-driven timing analysis

approach called APS Analyzer, that utilizes both run-time measurements and static analysis

techniques to derive WCET bounds on C++ programs. The authors focus on applying this

method to determine the execution safety of real-time distributed computing systems, by gener-

ating a safe, non-pessimistic WCET bound. Their approach breaks the software into acyclic-path

segments (APSs), discrete functional blocks within the program containing no loops, and mea-

sures the worst-case performance of each APS individually. A graph representing the control

flow between APS’s is derived off-line, and the timing measurements for each APS is assigned

to their respective node in the graph. An ILP solver is then applied to the graph and a suitable

WCET bound generated for the software. This timing bound will fall between the maximum

observed execution time, and an overly pessimistic static estimate. However, since the execu-

tion time measurements are generated using large randomly-generated data sets, it is unknown

whether the timing trace data generated contains the actual worst-case behaviour, i.e., there

may be unobserved worst-case behaviour using this approach.

The Model-based Development of Distributed Embedded Control Systems (MoDECS) frame-

work [Wenzel et al., 2005], is a hybrid timing analysis framework, that combines dynamic and

static analysis techniques to establish a worst-case bound for C programs. The motivation for

MoDECS is timing analysis within safety-critical systems, and the authors describe how a sig-

nificant proportion of automotive breakdowns are ultimately caused by problems in embedded

systems stemming from timing issues. In systems with fine-grained or precisely-ordered task

deadlines, any timing delay at best hampers the ability of the software to function as expected,

and at worst leads to the complete failure of the system. MoDECS performs an initial static

analysis on the software, breaking it up into basic code segments. Test data is automatically

generated for the overall program using an ‘evolutionary algorithm’ that highlights all the ex-

ecutions through the program, and exercises all the program segments found using the static

analysis. Each path is executed and the timing measurements for each code segment is recorded.

The final WCET bound is produced by combining the execution time measurements for each

segment and determining the worst-case path.

Analysis - Measurement-driven analysis attempts to solve some of the problems within static

54



timing analysis frameworks and toolkits, i.e., the difficulty in exposing the actual run-time be-

haviour of the software, and the limitations when analysis is restricted to a small number of

detailed processor architectures. Hybrid, or measurement-driven, analysis techniques allow de-

tailed execution time bounds to be derived regardless of the complexity of underlying processor

architecture. However, measurement-driven analysis typically requires an initially derived call-

flow graph, and a set of test data that can exercise each potential path within this graph. Where

the number of execution paths is very large, a lengthy period will be required to observe and

record the execution time of each path. While exhaustively testing the various execution paths

may take some time, it does not necessarily expose any state information within program seg-

ments that could result in a worst-case execution time [Wilhelm et al., 2008]. Consequently,

measurement-driven analysis techniques may not have the same safety guarantees as static anal-

ysis tools or frameworks.

Measurement-driven analysis methods aim to produce WCET bounds for real-time systems,

operating within either embedded or more familiar desktop hardware environments. Both source-

code analysis as well as timing trace data contribute to the timing analysis, which is performed off-

line under the supervision of a dedicated tester (although the timing measurements are recorded

at run-time). A combination of flow analysis and timing trace analysis is used to produce the

final timing estimate, however some approaches can include additional code analysis [Deverge

and Puaut, 2005].

2.2.2.2 Statistical Analysis

Statistically modelling complex software timeliness shifts the focus away from the cause-and-

effect investigations used to derive timing predictions with traditional methods, to a more

measurement-based process applied to the software in situ. The complexity of current pro-

cessors, and the subtle interplay of execution-time effects, e.g., caching, pipelining, pre-fetching

etc. all produce timing effects that are difficult to determine statically, even when the software

itself remains unchanged after deployment. As the complexity of the underlying systems in-

creases, establishing the timeliness of the software becomes more difficult, and it has been cited

as beginning to overwhelm the capability of many formal methods-based approaches [Schmidt,

2007].

A statistical-based approach to timing analysis has been described by Edgar [Edgar, 2002].

55



Using statistical modelling techniques, he infers the WCET bounds of software tasks, and pro-

vides these timing bounds as inputs into an off-line scheduling analysis for real-time software. The

measurement-based approach he describes relies on creating an initial call-flow graph identifying

the worst-case execution path for the software, and then repeatedly measuring the execution

time of this path. Once a sufficient number of measurements have been generated, typically

100,000 observations, two separate statistical distributions are fitted to the resulting data set -

a Gumbel distribution, and a bespoke distribution function known as the θ-function used to fit

the observed maximum execution time. The Gumbel distribution provides an optimistic time-

bound, whereas the θ-function offers a more pessimistic estimate. The combination of these two

worst-case timing bounds are then used to provide an optimal execution time bound to schedule

the real-time software tasks. Evaluating this approach, using a matrix multiplication applica-

tion, and two sorting algorithms, the probability of exceedance for the timing bounds produced

ranged between 10−4 to 10−6.

Similarly, Hansen et al. [Hansen et al., 2009] present a statistical-based approach towards

WCET estimation, by inferring the worst-case performance of an embedded software system

using an estimation algorithm based on Extreme-Value Theory (EVT). The authors describe

how they record over 200 million execution time measurements to form the basis for their later

(off-line) statistical analysis. Rather than fitting a Gumbel statistical model to the entirety of

the timing trace data, the authors explain how they group the timing measurements into variable

sized blocks, selecting the maximum value from each block as the basis for later analysis. The

measurements are further separated into estimation and validation sub-sets, to respectively fit

and test the accuracy of the statistical model. The WCET bound produced using this method

gives a probability of exceedance of 10−6, or approximately one in a million, with any more

accurate guarantees requiring a substantially larger set of timing measurements. However, the

approach is applied only to statically-defined non-adaptable code, and evaluated off-line where

there is no requirement to complete the statistical analysis quickly. The requirement for an excep-

tionally large set of timing measurements to generate an acceptable statistically-derived WCET

bound precludes its usage within dynamically adaptable software systems. The limitations inher-

ent in inferring worst-case behaviour from even an admittedly large set of representative timing

measurements are apparent in the guarantees associated with the WCET bound. Any higher

probability of exceedance would require an unfeasibly large set of timing trace data.

56



Analysis - Statistical techniques offer the greatest potential for predicting the likely execution

time of dynamically-adaptable software. The various obstacles that make performing any ex-

haustive static analysis on dynamically-adaptable software impractical can be overcome using

an empirical approach that infers future behavior from previous observations. However, since

the performance of an adaptable system may vary, both between configurations, and within

configurations, any statistical models of the execution time must be matched with a particular

configuration of the system. As adaptations change the execution time behaviour of the system,

the statistical models must be refreshed immediately after each adaptation, i.e., re-fitted using

new timing data. The key problem with statistical modeling techniques, and the key challenge

within this work, is how to make statistical inferences about the timeliness of the software,

based on whatever limited knowledge might be available at adaptation-time. Both Hansen et

al. [Hansen et al., 2009] and Edgar [Edgar, 2002], require a large number of timing measurements

before a safe WCET bound can be produced. Collecting this data at run-time, in the context

of a dynamically-adaptable system, would necessitate lengthy periods where no WCET bounds

would be available.

The statistical methods outlined in this section are used to provide worst-case bounds for real-

time systems, using the timing trace data gathered from trial runs as the basis for the statistical

models. The WCET bound is produced off-line, however the timing data is gathered at run-time.

The final statistical model fitting and WCET prediction is performed by a dedicated analyst,

typically using a statistical package to evaluate the timing data.

2.3 Chapter Summary

This chapter has presented the state of the art in the timing analysis of static and dynamically

adaptable software systems. A brief overview of the various adaptation frameworks was pre-

sented, ranging from off-line composition to dynamically-adaptable component-based systems.

Adaptable systems, by their nature, alter their functional behaviour in unexpected ways at

unanticipated periods during their execution, in order to better suit their operating environ-

ment. However, within closely-coupled software systems, modifying the functional behaviour

of one part of the system can have repercussions on unadapted functionality elsewhere in the

system. Functional adaptations may inadvertently alter the non-functional behaviour of the

57



W
h
y
?

W
h
e
r
e
?

W
h
a
t
?

W
h
e
n
?

W
h
o
?

H
o
w

?

A
p
p
r
o
a
c
h

Real-Time Guarantees

Performance Analysis

QoS Maintenance

Source-code

Abstract Models

Timing Trace Data

ACET

WCET

Off-line

Run-time

Automatic

Supervised

Formal methods

System/State analysis

Timing Trace analysis

Flow analysis

Code Analysis/Simulation

Statistical Methods

A
n
a
ly

s
is

F
r
a
m

e
w

o
r
k
s

C
a
li
n
e
s
c
u

e
t

a
l.

3
3

3
3

3
3

3

C
iC

U
T

S
3

3
3

3
3

3
3

H
is

s
a
m

e
t

a
l.

3
3

3
3

3
3

3

K
A

M
I

3
3

3
3

3
3

3

M
E

S
C

A
L

3
3

3
3

3
3

3

M
O

Q
A

3
3

3
3

3
3

3

F
o
r
m

a
l

M
e
t
h
o
d
s

A
n
a
ly

s
is

A
M

E
O

B
A

-
R

T
3

3
3

3
3

3

C
L

P
3

3
3

3
3

3

Z
h
a
n
g

e
t

a
l.

3
3

3
3

3
3

M
e
a
s
u
r
e
m

e
n
t
-
d
r
iv

e
n

A
n
a
ly

s
is

A
P

S
A

n
a
ly

z
e
r

3
3

3
3

3
3

3
3

M
o
D

E
C

S
3

3
3

3
3

3
3

3

T
o
o
l-

b
a
s
e
d

A
n
a
ly

s
is

a
iT

3
3

3
3

3
3

3

C
h
r
o
n
o
s

3
3

3
3

3
3

3
3

H
e
p
t
a
n
e

3
3

3
3

3
3

p
W

C
E

T
3

3
3

3
3

3
3

3

R
a
p
iT

im
e

3
3

3
3

3
3

3
3

S
W

E
E

T
3

3
3

3
3

3
3

S
t
a
t
is

t
ic

a
l

A
n
a
ly

s
is

E
d
g
a
r

3
3

3
3

3
3

H
a
n
s
e
n

3
3

3
3

3
3

T
a
b

le
2
.2

:
S

u
m

m
a
ry

o
f

ti
m

in
g

a
n

a
ly

si
s

a
p

p
ro

a
ch

es
.

58



system, such as its execution time. Poorly understood timing behaviour hampers the ability of

the software to function as expected, and can lead to missed deadlines, out-of-order execution

or buffer overflows. The dependability of an adaptable system is degraded where uncertainties

exist about its functional behaviour as well as its overall timing behaviour.

The principal focus of this chapter was an evaluation of the various timing analysis techniques

currently in use, and their potential application towards dynamically-adaptable systems. The

timing analysis methods were classified into static approaches, i.e., those applied off-line evaluat-

ing the software using a combination of code analysis and simulation, and dynamic approaches,

i.e. those that rely on timing measurements to generate estimates of the likely future behaviour

of the system. Current static timing analysis approaches are generally unsuitable for integra-

tion within dynamically-adaptable software, since they require lengthy off-line analysis periods,

constrain the software, or demand extensive input from software developers and domain experts

during analysis. Similarly, while the most sophisticated dynamic timing analysis methods can

empirically evaluate software performance based on a series of timing measurements, they are

not sufficiently reactive to estimate the changeable behaviour of dynamically-adaptable systems

at run-time. Also, since the analytic process is typically supervised rather than automated, and

is traditionally separated from the run-time environment, current timing analysis approaches are

unsuited for unsupervised operation on resource-constrained embedded systems.

The next chapter describes a run-time reactive timing analysis approach, that can be in-

tegrated with dynamically-adaptable software running on a resource-constrained device. This

approach provides a timing estimate immediately following an adaptation to the software, with-

out having to halt the system to perform any analysis, or constrain the software to a set of

pre-analysed configurations.

59



Chapter 3

TimePredict: A Reactive

Run-time Timing Analysis

With four parameters I can fit an elephant,

and with five I can make him wiggle his trunk.

John Von Neumann

Chapter 1 introduced some of the basic concepts and motivations behind dynamically-adaptable

software systems, and highlighted the challenges in predicting their execution time in the face of

unanticipated functional modification. The previous chapter presented a review of current soft-

ware adaptation frameworks, and the state of the art within software timing analysis methods.

This chapter describes the design of TimePredict, a statistical-based timing analysis approach for

dynamically-adaptable software systems. The primary goals of TimePredict are to accurately es-

timate both the worst-case and average-case execution time of run-time adaptable software, with-

out halting the system or excessively impacting upon normal execution. TimePredict employs

timing measurements to forecast software timeliness, and although several of the timing analysis

approaches described in the previous chapter propose similar measurement-based analysis pro-

cesses [Colmenares et al., 2008] [Wenzel et al., 2005], they each require extensive pre-generated

timing information and perform the timing analysis exclusively from an off-line context. Simply

applying these existing measurement-based timing analysis techniques to dynamically-adaptable

60



software would adversely affect normal execution, and restrict the scope and scheduling of adap-

tations to some previously observed configuration of the system. An approach is required that

can predict the execution time of dynamically-adaptable software using run-time generated tim-

ing measurements, without restricting the scope of any functional adaptations or creating an

excessive processing overhead on the system.

TimePredict forecasts the execution time of dynamically-adaptable software, by modelling

software timeliness using statistical methods at run-time. The likely average-case and worst-

case performance of the system can be inferred using these statistical models, and continuously

updated with observations of the current timing behaviour of the software. Since the scope of the

timing measurements available within a dynamically-adaptable system may be initially limited,

i.e., immediately after an adaptation, TimePredict optimizes the predictive process depending on

the timing information available, and the inherent execution-time volatility within the system.

This approach enables accurate timing estimates to be generated for dynamically-adaptable

systems, without halting the system to conduct the analysis or restricting the source, scope or

scheduling of run-time functional adaptations.

The remainder of this chapter introduces the complexities implicit within software tim-

ing behaviour, and describes how the TimePredict approach forecasts the execution time of

dynamically-adaptable software. The statistical models used within TimePredict are presented,

and an outline of the model selection mechanism is provided, that determines the most ap-

propriate predictive model given the current availability of timing measurements within the

system. The process of continually updating these models, both during normal execution and

at adaptation-time is also described. Lastly, this chapter outlines how TimePredict can offer

statistically-derived timing estimates as feedback into the overall adaptation process.

3.1 Software Timeliness

Software timeliness can be defined as the period required to process a given task to completion,

under typical operating conditions, on a specified hardware platform [Edgar, 2002]. A task that

is repeatedly and regularly executed provides a convenient point of comparison to illustrate the

potentially volatile timing behaviour of software executing within a live environment. Typically,

the primary software control-loop provides the most representative measure of software time-

liness, since it is executed continuously to achieve the principal goals of the system. However,

61



even relatively uncomplicated software may still exhibit highly variable timing behaviour between

consecutive iterations of the same task, under similar operating conditions. Changing control

flows, conditional branches, sub-loops, function calls or dynamic data structures may each cre-

ate complex execution paths, and entail correspondingly complex software timing behaviour.

In addition, fluctuations within the operating environment (e.g., due to user inputs or network

connectivity issues) as well as changes within the system itself (e.g., processor load, execution

history, memory usage or disc latency) may further alter software execution times in unexpected

ways.

Figure 3.1 illustrates the type of highly variable timing behaviour that may be exposed

through repeated measurement of a software task, based upon a similar example provided by

Wilhelm et al. [Wilhelm et al., 2008]. The timing measurements can be summarized using a

frequency distribution (histogram), in order to reveal the scale and variability inherent within

the timing data. Timing bounds can be overlaid on this frequency distribution to describe the

average-case and worst-case timing behaviour, as illustrated below.

Num. of 
Observations

Execution
Time

  Observed Execution Times  

  Possible Range of Execution Times  

  Average-Case Execution Time Bounds  

Predicted 
WCET
Bound

Inferred
 Worst-Case 
Performance

Observed 
WCET

Actual 
WCET

Fig. 3.1: Timing bounds used to define the execution-time performance of software.

Using a single term to characterize the overall timeliness of the software is insufficient, espe-

cially with complex execution time behaviour as shown in Figure 3.1. Software timing behaviour

is more readily described in terms of whether it represents an average-case or best/worst-case

execution time. The former provides an indication of the central tendency of the software perfor-

62



mance, whereas the latter is used to describe the extreme range of potential timing measurements

capable of being produced by the software. Traditionally, timing analysis techniques have been

concerned with deriving worst-case bounds to ensure the safe scheduling of tasks within hard

real-time and embedded systems [Colin and Puaut, 2001] [Ermedahl et al., 2005]. However, the

worst-case execution time is a rarely (if ever) occurring event that fails to represent the more

usual execution-time performance of the software. A bounded average-case execution time, cap-

turing a specified percentage of the execution time measurements of the software, provides a more

directly accessible metric in describing the typical software timeliness [Schellenkens, 2010]. The

various characteristics of software timeliness illustrated in Figure 3.1 can be defined as follows;

• Average-Case Execution Time (ACET) Bounds,

The ACET uses an upper and lower bound to encompass a specified percentage of execution-

time measurements of the software. The percentage selected is typically between 50% and

100%, and is analogous to the inter-quartile or inter-decile range used to measure the

statistical dispersion of the timing measurements (see Glossary).

• Observed Worst-Case Execution Time (WCET),

The observed WCET is the largest value within the set of existing software execution time

measurements. Typically, the more timing measurements that are made of the system, the

closer the observed WCET comes to the actual WCET [Hansen et al., 2009].

• Actual WCET,

The actual WCET is the maximum theoretic worst-case value that may occur during the

execution of the software. This single extreme execution time may not be exposed during

run-time testing or execution, but must generally be inferred from the existing data using

a pessimistic timing analysis [Wenzel et al., 2005].

• Predicted WCET,

The predicted WCET bound is a pessimistic timing bound, created through the analysis of

existing timing measurements. The WCET bound is pessimistic in that it over-estimates

the worst-case performance of the software, in order to safely encapsulate its extreme timing

behaviour, i.e., the actual WCET value.

Estimating the average-case and worst-case execution times of a dynamically-adaptable soft-

ware system is the subject of the TimePredict approach introduced in this chapter. Since

63



the functionality as well as the timing behaviour of the software can change during run-time,

TimePredict continuously forecasts the likely execution time of the current configuration of the

software. Any run-time functional adaptations to the software are detected by TimePredict,

and result in corresponding adjustments to the timing estimates for the new configuration of the

system. Within Figure 3.1, the observed and actual WCET values are presented separately, since

a measurement-based approach such as TimePredict may not expose the extreme timing perfor-

mance of the software directly through empirical testing. For example, the WCET may not be

directly observed even after repeated measurements of the software executing under a variety of

operating conditions, inputs and load levels [Colmenares et al., 2008]. Consequently, predicting

the likely WCET value may over-estimate the actual (unobserved) WCET performance of the

software, in order to provide a greater confidence that the absolute worst-case timing behaviour

has been encapsulated within the WCET bound.

In contrast, the ACET can be defined, using an upper and a lower bound, as a range of timing

values within which a specified percentage of the software timing measurements are expected to

be found. This percentage, typically describing a majority of the existing timing measurements

(i.e., ≥ 50%), allows for a more qualitative comparison of the execution time performance of the

software. Using a single metric, such as the mean timing value, is impractical since it provides a

poor estimate of central tendency. While the WCET should not greatly change during run-time,

the ACET may vary considerably, depending on the current operating conditions and changing

load on the system. An accurate estimate of the likely ACET of the system provides a valuable

insight into the effectiveness of the software at accomplishing its principal goal. Since changes

within the operating environment may be exposed more readily through estimating the average-

case performance of the software, predicting the ongoing ACET can provide an early indication

of when adaptations may be required.

Both ACET and WCET estimates have associated levels of accuracy and precision, the former

indicating how often in percentage terms the provided timing bounds actually encapsulate the

next timing measurement, and the latter providing the average time difference in milliseconds

between the timing bounds and the next timing measurement. An idealized predictive process

would have an accuracy of 100%, and a precision of 0 milliseconds, however in practice this level

of performance is difficult to achieve. Typically, there exists an inverse relationship between

accuracy and precision, where improving one degrades the other, e.g., a WCET bound set at an

64



extremely large value may have close to 100% accuracy, but poor overall precision.

A
ve

ra
g
e-

ca
se

ac
cu

ra
cy

W
o
rs

t-
ca

se
a
cc

u
ra

cy

A
ve

ra
g
e-

ca
se

p
re

ci
si

o
n

W
o
rs

t-
ca

se
p

re
ci

si
o
n

Off-Line Timing Measurements

Off-line timing data taken using different hardware N/a N/a N/a N/a

Off-line timing data taken from comparable hardware L L L L

Off-line timing data taken from the same hardware/system M M M M

Run-Time Timing Measurements

No run-time or off-line timing data available initially N/a N/a N/a N/a

Few run-time measurements available (n < 30) L L L L

Some run-time measurements available (30 < n < 100) M L M L

Many run-time measurements available (100 < n < 5000) H M H M

Expansive run-time measurements available (n > 5000) H H H H

Table 3.1: Effect of measurement availability on timing estimates.

Table 3.1 describes the expected accuracy and precision of TimePredict’s predictive process

under a number of different assumptions. Both the accuracy and precision of timing estimates

can be expected to be low (L), medium (M) or high (H), or potentially unavailable (N/a) as

the circumstances changes. In practice, the number of available timing measurements, as well

as how closely these measurements represent the actual timing behaviour of the system, will

determine the accuracy and precision of the predictive process. The number of measurements

required for a low, medium or high degrees of accuracy and precision are illustrated in Table

3.1 using somewhat arbitrary values ranging from less than 30 to over 5, 000. These figures are

only illustrative, since highly variable software timing behaviour may require significantly more

measurements than more stable software configurations, to generate timing estimates to the same

level of accuracy and precision.

Within systems that can be evaluated off-line, a large number of timing measurements can be

65



generated for later analysis, since the testing period does not coincide with normal execution on

a live system. However, if these off-line timing measurements have been generated on a different

hardware environment, or under different operating conditions, the measurements may not be

truly representative of the timeliness of the system once it is deployed within a live operating

environment. While run-time generated timing measurements provide the best indication of the

actual behaviour of the system, they must be generated concurrently with the execution of the

software. Unfortunately, this may lead to periods, e.g., immediately following an adaptation,

where only limited timing information is available to TimePredict, but timing estimates must

still be produced.

The TimePredict approach, described in Section 3.2, provides a reactive timing analysis

process capable of contending with different operational scenarios, so that a timing estimate can

be produced even when limited timing information is available. Within dynamically-adaptable

systems, composed of shifting functional elements, the timing behaviour of the software is never

fixed, but may change at any period with little prior notification. TimePredict must allow timing

estimates to be refreshed at run-time, to match functional changes to the underlying software.

Using a measurement-based approach, TimePredict ensures that timing estimates correspond to

the actual performance of the software, rather than any theoretic analysis of the system under

idealized conditions. Section 3.2 describes the run-time timing analysis process and introduces the

statistical models used to derive the ACET and WCET timing estimates. However, before this

predictive process is presented, we must first describe the constraints imposed on TimePredict

by the nature of its operating environment.

3.1.1 Operational restrictions

TimePredict is designed to forecast the execution time of software running within a resource-

constrained operating environment, e.g., within an embedded system containing no more than

several megabytes of memory, and a single MHz-scale processor. The predictive process must be

carefully regulated to avoid placing excessive demands on the limited resources of the underlying

system, or disrupting the normal behaviour and performance of the software. Similarly, the

estimates themselves need to be generated quickly at run-time, while the processor is busy

performing other tasks. Consequently, the forecasting method employed by TimePredict is both

a product of its operating environment, and the requirements for accuracy and precision within

66



its timing estimates.

There are three primary challenges to overcome in designing a run-time predictive process

suitable for use within embedded devices, namely, to minimize use of the meager system resources,

to maximize the accuracy of the predictive process with the data available at run-time, and to

generate estimates at run-time without negatively impacting on performance. Failing to overcome

any one of these challenges can fatally compromise the predictive approach as a whole. For

example, a highly-accurate, but resource-intensive, forecasting method can consume processor or

memory resources to the detriment of other system tasks. Likewise, an efficient, but inaccurate

predictive process may produce estimates that provide no actionable information about the

current status of the system.

Although the TimePredict approach is designed specifically to estimate the timeliness of

resource-constrained embedded devices, the predictive models used could be applied to any

number of other processes or system behaviours. Other non-functional behaviours within the

system, such as the network bandwidth, task throughput or power consumption, may exhibit

similar non-deterministic behaviour, and could be similarly measured and predicted at run-

time. Alternatively, other processes outside of the area of embedded systems could likewise be

used as the basis for run-time estimates, e.g., weather forecasting [Cadenas and Rivera, 2010],

predicting the volatility of financial options [Chou, 2005], estimating financial risk [Rosenberg and

Schuermann, 2006] or as a means of predicting the rate of inflation [Engle, 1982]. Both software

timing analysis and other complex systems share similar properties, including markedly distinct

periods of volatility, increased uncertainty in the presence of few reliable measurements, and a

complex cause-and-effect relationship between the process being measured and its environment.

The TimePredict approach, while being a product of its target operating environment, can

potentially be applied within other situations to predict the performance of other processes. In-

deed, since the predictive models employed by TimePredict are measurement-based, data from

any other run-time process or time-series could be substituted for the software timing measure-

ments, without any further alterations being required. While the application of TimePredict to

other problems is outside the scope of this thesis, it does form a potential area of future work.

67



3.2 The TimePredict Approach

The TimePredict approach provides a reactive run-time statistical-based timing analysis method,

to forecast the worst-case and average-case execution times of dynamically-adaptable software.

The principal focus of this thesis, and the aim of TimePredict, is on predicting the timeliness

of dynamically-adaptable software, and does not consider in detail any issues related to adapta-

tion selection, run-time software optimization, or functional analysis within adaptable systems.

However, for the purposes of demonstrating the TimePredict approach, an implementation of

a dynamically-adaptable system is required containing some of these features. Figure 3.2 illus-

trates how TimePredict integrates within the architecture of a dynamically-adaptable system,

measuring the ongoing execution time of the current configuration of the software, and generating

ACET/WCET estimates that can provide feedback into the adaptation selection process.

The scope of this thesis is delineated solely by the TimePredict approach, so that the imple-

mentation of the Adaptation Manager, Adaptation Engine, Component Repository and Compo-

nent Model are used to demonstrate the approach, but are not individual contributions of this

thesis in themselves. A more detailed description of these components, including the selection

and scheduling of adaptations within a dynamically-adaptable system, is provided by Fritsch and

Clarke [Fritsch and Clarke, 2008]. The various actions performed by the system, as illustrated

within Figure 3.2 and labelled 1 to 5, can be described as follows;

1. The execution time of the primary control loop within the component assembly is measured,

and the timing observation recorded by TimePredict.

2. TimePredict analyses the timing data, and updates its existing set of timing measurements

if necessary (see Section 3.2.2). This updated timing information is then used to refresh

the ACET/WCET timing estimates. These estimates are forwarded to the Adaptation

Manager for additional analysis.

3. Within the Adaptation Manager, the rules engine evaluates the current ACET/WCET esti-

mates and determines whether an adaptation is required. Should an adaptation be deemed

necessary, the decision engine selects the most appropriate change to make to the software.

This adaptation plan is then forwarded to an Adaptation Engine for implementation.

4. The Adaptation Engine determines the scope and scheduling of an adaptation, based on the

68



 Component Model 

 Adaptation 
 Engine

 TimePredict 

 Adaptation Manager  

Component Component Component

Component
Repository

Component

QoS
Metrics

Adaptation
Rules

Reconfiguration
Manager

Adaptation
Scheduling

Adaptation
Validation

Decision
Engine

Rules
Engine

WCET
Analysis

ACET
Analysis

Data Selection

WCET Data ACET Data

Timing Estimate

4

3 2

1
5

Fig. 3.2: Architecture of a dynamically-adaptable system featuring TimePredict.

adaptation plan created by the Adaptation Manager, as well as the availability of alternate

software components within the Component Repository.

5. The reconfiguration manager within the Adaptation Engine adds, replaces or removes tar-

get components from the Component Model to implement the adaptation. This process is

performed at run-time, resulting in a new configuration of software components with opti-

mized timing behaviour, based on the original timing feedback generated by TimePredict.

Dynamically-adaptable systems that support unrestricted functional adaptation can modify

their behaviour, at run-time, in a manner that may not have been foreseen by the original

software developer. Since the scope of an adaptation cannot be restricted to a set of pre-defined

69



configurations of the software, the performance of the system cannot be exhaustively tested

from an off-line context. Similarly, since the selection and scheduling of adaptation actions are

performed at run-time, very little opportunity exists to perform pre-emptive run-time analysis

on the next potential configuration of the system, i.e., the time it takes to initiate and implement

an adaptation largely precludes a thorough adaptation-time software timing analysis. In order to

establish the timeliness of an unrestricted dynamically-adaptable system, a concurrent run-time

timing analysis process is required.

A run-time timing analysis process must both generate measurements of the underlying sys-

tem, as well as predict its likely future timing behaviour. The timing measurements themselves

are generated within the Component Model, by measuring the primary control loop of the current

configuration of the software (see 1 in Figure 3.2). Measurements are forwarded to TimePre-

dict and selected for either worst-case or average-case analysis (or both), since the former is

more concerned with extreme timing values, while the latter is solely intent on recent timing

behaviour. The data is stored within TimePredict and an analysis performed, resulting in a

combined ACET/WCET timing estimate. Since TimePredict is a measurement-based approach,

the predictive process used is directly related to the number of measurements available within

the system. When a large number of timing measurements have been recorded, TimePredict

provides a high-confidence timing estimate to the Adaptation Manager, i.e., an ACET/WCET

estimate where the probability of encapsulating the next timing measurement is likely to be be-

tween 95% and 99.99999%. Although the definition of what probability forms a high-confidence

estimate is somewhat arbitrary, depending on the nature of the software and its operating en-

vironment, the latter probability is stated by Hansen et al. [Hansen et al., 2009] as defining

a high-confidence estimate within embedded software systems. Within hard real-time systems

however, this value may rise to probabilities of exceedance on the order of 10−12 [Bernat et al.,

2003]. For the purposes of unrestricted dynamically-adaptable systems, the level of confidence in

the estimate will grow, from an initial speculative forecast when timing information is limited,

to a high-confidence estimate above 95% when many timing measurements are available.

The expected functional and non-functional behaviour for the system as a whole (or a config-

uration thereof) is recorded as a series of Quality of Service (QoS) requirements, and processed

using the Rules Engine (2). In effect, the timing estimate provided by TimePredict allows the

QoS obligations to be evaluated, and if a performance deficiency is discovered, an adaptation can

70



be quickly initiated. However, adaptations must be constrained by the availability of alternate

software behaviours, the nature of the performance deficit and scheduling issues surrounding any

proposed adaptation action(s). To enact a desired adaptation, the Decision Engine (3) consults

with the Component Repository (4) to schedule and implement the desired change (5). The

newly adapted software configuration then re-starts execution, and provides a fresh set of timing

measurements to re-fit the timing models within TimePredict (1). This feedback cycle of mea-

surement, timing estimation and functional adaptation facilitates the on-going optimization of

the system, in response to changes in the operating environment.

The following sections describe in more detail the design challenges faced within the TimePre-

dict approach, with respect to the measurement of software execution times, the selection of

appropriate timing data, and the analysis of this data to form an estimate of the expected future

performance of the system.

3.2.1 Timing Measurement

TimePredict uses representative timing measurements, taken from the current configuration

of a dynamically-adaptable system, to generate accurate worst-case and average-case timing

estimates. Since the functional composition of dynamically-adaptable software is liable to change

unexpectedly at run-time, a common feature within each configuration of the software is required

to provide a comparative timing measurement both within and between configurations. Although

the TimePredict approach is functionally agnostic, i.e., the execution time of any part of the

system can provide the basis for the predictive process, a regularly executed software function

offers the most meaningful point of comparison and analysis - both within and between the

various configurations of a dynamically-adaptable system.

A common software task or function, or even different functions undertaking similar logical

roles within the system, can be repeatedly measured to provide an on-going snapshot of the

overall performance of the system. In the case of a closed-loop system, its primary control loop

should provide a convenient point of comparison and measurement. Typically, closed-loop control

systems rely on context information about their operating environment (e.g., sensor data), to

provide on-going feedback into a continuously executing control function. This function then

evaluates the current context information and determines whether any changes to the system

are required to ensure optimal performance, e.g., through adjustments to any attached motors,

71



actuators or operating parameters [Cervin et al., 2003]. Since the control function is executed

time after time, repeatedly measuring its performance can provide a representative measure

of the execution time of the system as a whole. Dynamically-adaptable systems using this type

closed-loop control, can initiate adaptations when the operating environment changes sufficiently

so that the range of functional behaviours expressed in the control function are no longer optimal

for the prevailing operating conditions. Even though the functionality within the control loop can

be altered through run-time software adaptation, its role within the system, and its usefulness

as a point of timing measurement, remains the same.

In the case of event-driven systems, where no single main control loop exists, software tasks

can be executed to perform the same evaluation and ongoing adjustment to the system. However,

unlike closed-loop systems, the software tasks within event-driven systems may either be sched-

uled for repeated execution at regular intervals, or executed only intermittently, at indeterminate

periods in response to either internal or external events. A regularly executed software task pro-

vides an excellent point of measurement for the system, assuming it is important enough to be

included within each configuration of a dynamically-adaptable system. A purely event-driven

software task, may perform a valuable service as a point of measurement, if the events triggering

its execution are somewhat regular, its usage is common across all configurations of the system,

and its operation is sufficiently complex to serve as a representative measure of the overall sys-

tem performance. The timing behaviour of event-driven systems may be further complicated if

software tasks can be preempted (paused and restarted) during execution. Choosing a software

task to form the basis for the timing analysis process must first ensure that task preemption is

avoided wherever possible, however estimating the timing behaviour of tasks within preemptive

systems can be successfully achieved [Ghosal et al., 2004]. If a software task must be selected

for timing analysis, its operation must be relatively important to the operation of the system,

its execution reasonably regular, and its priority/scheduling sufficient so that disruptions due to

run-time preemption are minimized. Within dynamically-adaptable event-driven systems, some

tasks should be common across each configuration of the software, and executed with enough

frequency to provide the basis for a timing analysis.

All measurement-based timing analysis approaches rely on accurate observations of the soft-

ware timeliness, using a process that avoids any unwanted interference with the normal execution

of the system. Within both C/C++ and Java, millisecond-accurate timing measurements are

72



readily available [Corsaro and Schmidt, 2002], and allow the elapsed time to be calculated by

finding the difference between two consecutive timestamps. More fine-grained timestamps are

possible using more advanced techniques, e.g., such as counting the number of processor cycles

(see Section 3.2.1.1), however millisecond-accurate timing measurements are more common, and

accurate enough for the type of soft real-time applications considered within this thesis. However,

the TimePredict approach can be equally applied to any clock resolution without any alterations

to the predictive models, since the analysis process is based purely on the numeric values of the

software timing measurements.

The timing estimates produced by TimePredict typically focus on predicting the period of

time required for the flow of execution to enter/exit a representative software function, such as

the primary control loop [Westermann and Happe, 2010], or some other characteristic software

task within the system [Pop et al., 2008]. The function or task that is selected as the basis for the

timing analysis, is chosen due to its performance being fundamental to the functional behaviour

of the system as a whole, and therefore a good indicator of the overall system timeliness. A

primary control loop provides the most representative measure of software timeliness, since it is

executed continuously, required within each configuration of the system and allows inferences to

be made by comparing different timing measurements of the same functional cycle. The code

is instrumented with timestamps to the measure the start and end of the function, and the

observed execution time then forwarded to TimePredict . In practice, this type of measurement

process adds very little additional processing overhead to the software, and any requirement

to store the timing measurements for analysis is offset by the limited subset of data required

by TimePredict to generate timing estimates (see Section 3.2.2). However, every measurement

process is susceptible to error, and millisecond-accurate software timestamps are no different.

Since the clock resolution of the system will remain fixed during execution, this error should

constitute at most a very small percentage value within each timing measurement, as described

in the next section.

3.2.1.1 Clock Resolution

The system clock (also occasionally referred to as a software clock) provides embedded and desk-

top processor architectures with a readily accessible means of measuring elapsed time, including

the execution time of software. The use of expensive timing hardware is impractical in cheap

73



embedded computing devices, both from the stand-point of cost as well as power consumption.

Typically, quartz crystals are employed as an oscillator, since they can be manufactured cheaply

and easily to provide an alternating voltage at a known frequency. This alternating voltage

provides the basis for the system clock, allowing specific periods of time to be measured out

using dedicated counters within the hardware [Pásztor and Veitch, 2002]. When the counter

reaches a certain value, an interrupt is generated to provide the operating system with a stan-

dard repeating time signal. This time signal, rather than the more fine-grained oscillations of

the crystal, is available via the operating system to measure the timeliness of software. Each

operating system defines a minimum measurable time period, known as the clock resolution,

that varies from system to system. Typically most Linux-based operating systems provide a 1

millisecond (ms) clock resolution, although specialized hardware or O/S modifications can offer

a more fine grained clock-resolution if required [Corsaro and Schmidt, 2002].

A default clock resolution of 1ms implies that time periods on the order of several milliseconds

are susceptible to significant measurement error. For example, if the ‘true’ execution time of a

software task ranged from 2.5ms to 5.5ms, the rounding error associated with the default 1ms

clock resolution would greatly affect the accuracy of any timing measurements. For the purposes

of this thesis, it is assumed the typical software execution times are on the order of several tens

or hundreds of milliseconds, so that the measurement error is reduced to a negligible percentage

within each timing measurement.

3.2.1.2 Clock Drift

While the measurement error must be minimized within individual timing measurements, the

inherent error within the system clock as compared to another time source is less significant. If

timing measurements are carried out exclusively using the on-board system clock, its inherent

error will be imparted to all timing measurements equally. However, the magnitude of this

error may change over time when manufacturing errors, temperature changes, or even particle

radiation causes the quartz crystal to oscillate at slightly longer or shorter intervals [Schmid

et al., 2008]. This causes the clock to fall out of sync with another (previously synchronized)

clock source, resulting in a condition known as clock drift.

Timing errors due to clock drift may be corrected in software, by periodically accessing a

network-time server [Mills, 1990], to re-synchronized the system clock. This type of distributed

74



clock synchronization approach can bring two clock sources back into agreement, to an accu-

racy of approximately of 1ms [Corsaro and Schmidt, 2002]. However, the TimePredict approach

assumes that all timing measurements are generated exclusively within a single hardware envi-

ronment, using a single on-board clock source. Clock drift is unlikely to become apparent unless

the timing measurements being generated by the system are on the order of hours or days in

duration [Corsaro and Schmidt, 2002], rather than several hundred milliseconds. This enables

safe comparisons between individual timing measurements, even though the clock source may

be in error compared to the ‘true’ time. If required, maintaining a synchronized system clock,

e.g., for correct time/date information, can be achieved by periodically synchronizing the system

clock at adaptation-time, to correct any accrued errors caused by clock drift.

3.2.2 Data Selection

Storing every timing measurement generated within the system is not only potentially costly in

terms of the system resources consumed, such as memory and persistent storage, but is wholly

unnecessary once a sufficient number of representative timing measurements have been recorded.

The obvious limitations of resource-constrained embedded devices encourage an optimal use to

be made of the minimal resources available within the system. The average-case timing analysis

process employed by TimePredict (described in Section 3.3), places a greater predictive value

on more recent timing measurements. To limit the amount of extraneous timing data, only a

specified number of timing measurements are stored at any given time. The size of this data

set should be sufficient to perform a detailed timing analysis, but not needlessly overburden the

system. Since timing measurements are constantly generated within the system, the data set

is regularly refreshed with more recent measurements, and older measurements discarded. A

First-In First-Out (FIFO) array, of a specified size, is used for this purpose. The array is filled

with timing measurements in order of their occurrence, and once filled, the oldest value in the

array is over-written with the latest timing measurement.

In contrast, worst-case timing analysis highlights the magnitude of timing measurements

over the order of their occurrence. TimePredict uses a minimum-value ranked array to record

extreme timing measurements for worst-case analysis. Timing measurements are added to the

array in ascending order, using an in-place sort, until the array is filled. Subsequent timing

measurements are only added to the array if they exceed a minimum value. The array itself is

75



used to construct a frequency distribution (histogram) of the timing measurements, effectively

counting the number of occurrences of a particular value. Any timing measurements that surpass

the current observed maximum (worst-case) timing measurement, result in the array being re-

ordered, essentially replacing smaller ranked values with the new maximum timing measurement.

Initially, when few timing measurements are available, the worst-case array will be periodically

re-sorted, to include more extreme timing measurements, however, after the likely worst-case

behaviour has been established, changes to the array will typically take the form of adding a new

measurement to the existing frequency distribution. Since the worst-case analysis is focused on

extreme, rather than average timing measurements, any values smaller than the current minimum

value within the array are ignored, as they offer no further insight into the worst-case timing

behaviour of the system. All the array values maintained by TimePredict contribute to the

analysis of the timing behaviour of the system, thereby conserving system resources from being

needlessly squandered maintaining irrelevant data.

Both the average-case and worst-case FIFO arrays can be set to an arbitrary length, and store

an arbitrary number of timing measurements for analysis, however, the probability of exceedance

for either the ACET or WCET bounds will not be more than 10−5. Depending on the inherent

variability within the timing behaviour of the software, a sample size of 5, 000 measurements

would be the upper range required to satisfy this level of confidence in the estimate. In practice,

50 or 100 measurements should be sufficient to maintain a representative sample size at any

one time, and entail only very modest demands on either the processor or system memory.

The next chapter introduces in greater detail the demands imposed on the system memory by

these data structures, typically, within 32-bit systems using integer arrays, each array element

consumes 4 bytes of memory space [Arnold et al., 2005]. At the extreme case for TimePredict, two

5, 000 element arrays containing the ACET and WCET-specific data would therefore consume

approximately 40kB within memory.

The on-going analysis process within TimePredict continuously updates these arrays with the

latest timing measurements. This ensures that any unexpected timing perturbations, caused by

changes in the operating environment, are immediately registered and the appropriate adjust-

ments made to the timing estimates. However, functional adaptations alter the timing behaviour

of the software, and invalidate any previously recorded timing data. To make sure that no invalid

timing measurements are maintained, any functional adaptations to the system are preceded by

76



a signal (from the Adaptation Manager) to TimePredict, indicating that all the ACET and

WCET array elements can be removed, to be replaced by a more representative set of timing

measurements.

3.3 Average-Case Analysis

While the worst-case timing estimates provide an insight into extreme, rarely-observed timing

behaviour, the average-case execution time (ACET) can provide a more informative metric to

describe the typical performance of the software. Correctly estimating the ACET provides a

short-term estimate (to a high level of confidence) of software performance under the current

operating conditions. Rather than comprising a single value, the ACET is described in terms

of a bounded timing estimate, with an upper and lower bound that encapsulates the expected

timing behaviour of the software (as outlined previously in Figure 3.1).

TimePredict estimates the ACET of the software using a run-time measurement-based ap-

proach. The principal drawback of using timing measurements within unrestricted dynamically-

adaptable systems is that newly adapted configurations of the software may not have been previ-

ously encountered, nor any timing measurements collected in advance of execution. Immediately

following an adaptation, there may exist a limited amount of timing data, making any subse-

quent measurement-based timing analysis process difficult. Many of the statistical-based timing

analysis methods commonly applied to predict software ACET or WCET usually require a large

number of timing measurements, occasionally in excess of a million values [Hansen et al., 2009],

to generate a safe, accurate timing estimate with a probability of exceedance far greater than

10−5. Unfortunately, within dynamically-adaptable systems, the set of timing measurements

that form the basis for the ACET estimate must be generated at run-time, thereby denying any

opportunity to perform any detailed statistical analysis involving large datasets.

Since the TimePredict approach may have to forecast the execution time of software using a

restricted set of timing measurements, two separate predictive processes are used in the analysis

of worst-case execution times, one to accommodate a reduced set of timing measurements, and

a second when sufficient data has been collected at run-time. This is due to the worst-case

behaviour of the system not becoming immediately apparent over the course of a few timing

measurements (i.e., there may be a significant difference between the observed worst-case and

actual worst-case timing behaviour). The average performance of the system however can be

77



assessed using relatively fewer timing measurements, since the typically timing behaviour can be

inferred using every measurement generated within the system. TimePredict uses an Exponential

Smoothing (ES) model to predict average-case timing behaviour, since it can provide accurate

timing estimates with a limited set of timing measurements. The ES model parameters are

adjusted at run-time as more measurement data becomes available, but there is no switch-over

between different models as is the case with the WCET analysis. The next section describes the

Exponential Smoothing model, and its application at run-time to generate the ACET estimates

for dynamically-adaptable software.

3.3.1 Exponential Smoothing Model

TimePredict uses an Exponential Smoothing (ES) model, to predict the average-case performance

of the software using a limited number of timing measurements available within the system. The

ES model evaluates recent timing measurements, as well as the previous ES estimate, in order to

forecast the likely execution-time behaviour of the system. Since only a limited number of terms

are required to generate a timing estimate, the ES model provides a convenient predictive process

immediately following an adaptation, when few timing measurements have been collected. As

more measurements are gathered, the ES model may become less reactive to sudden changes in

timing behaviour, and provide a stronger emphasis on longer-term trends within the data.

The ES model produces estimates using a relatively small set of measurements, and conse-

quently has a smaller computational cost and memory overhead compared to other statistical

modelling techniques (including the GEV model used for worst-case timing analysis). This allows

the ES model to be continuously updated during run-time without excessively impacting on the

underlying system. By including the previous estimate, as well as the most recent measurement

as distinct terms, the ES model can balance the effects of short-term variation and longer-term

trends within the timing behaviour of dynamically-adaptable software. This balance, achieved

through adjusting the smoothing parameters associated with each term, can be used to ’reset’

the model after an adaptation occurs. For example, sudden changes in the measured timing

behaviour of software can be quickly incorporated within the ES estimate, with the effects of

this changes fading uniformly as variation decreases.

The ES model starts by setting the initial estimate to the first timing measurement (t0), i.e.,

78



Sn+1 =

t0 if n = 0,

αtn + (1− α)Sn if n > 0.

(3.1)

The basic ES model described in Equation 3.1 provides a point estimate of ACET behaviour, i.e.,

it forecasts the next measurement in the time series describing the execution-time performance

of the software. A time series is used to describe software timeliness, since the occurrence of each

timing measurement is significant. It is worth noting that the term time series, has no relation to

software execution time, but refers to a sequence of measurements recorded in the order of this

occurrence at successive time intervals. Examples of time-series data include rainfall patterns and

temperatures, solar sunspot activity, commodity prices and airline passenger numbers [Chatfield,

2003]. Within each of these data sets, subtle correlations can be seen within forming patterns

the data, e.g., typically daily temperature measurements are higher in summer than in winter.

Similarly, with execution time performance within embedded systems, if the workload is light

and the system resources are available, the execution time may be shorter than an over-burden

system with too few processing resources available.

Exponential smoothing models are so called since they include a smoothing factor, in this

case α, to provide a bias either towards more recent timing measurements or emphasize previ-

ously generated ES estimates (longer-term trends within the observed timing behaviour). The

smoothing factor is typically set to some value in the range 0.0 to 1.0 [Gardner, 1985], however,

the value itself must be estimated during run-time to provide at appropriate fit to the data. Al-

though the exponential smoothing model described in Equation 3.1 estimates the ACET, it does

not incorporate any apparent trends in the data into its estimate, nor does it provide any bounds

on the estimate itself. By expanding the basic ES model to include an error parameter, we can

provide a bounded ACET estimate rather than a single point estimate. A bounded estimate may

be more instructive in the case of average timing behaviour, since it allows the typical range of

values to be specified. This updated smoothing model, presented in Equation 3.2 begins in a

similar fashion to the basic ES model (Equation 3.1), by setting the first timing measurement

(t0) as the initial timing estimate. Once three or more timing measurements have been collected,

a bounded estimate can then be produced, derived from both the point estimate (Sn) and error

term (εn), i.e.,

79



Xn+1 =


t0 if n = 1,

αtn + (1− α)Xn if n < 2,

Sn ± εn if n ≥ 2.

(3.2)

Xn+1 provides the bounded ACET estimate, Sn defines the previous timing estimate and εn

describes the error term used to construct the estimate bounds. The parameter n defines the

number of measurements that have been recorded within the system, while the smoothing pa-

rameter α is the same as that described in Equation 3.1. The two equations used to estimate

the timing and error values can be defined as,

Sn = αtn−1 + (1− α)Xn−1 (3.3)

εn = β(Xn−1 − tn−1) + (1− β)εn−1 (3.4)

Two smoothing factors are included in the above equations, α associated with the timing data

and β associated with the errors in the estimates, and are both similarly defined within the range

of 0.0 to 1.0. Gardner describes a method of estimating these smoothing parameters using an

iterative approach based on the data [Gardner, 1985]. In essence, the smoothing parameters can

be derived by converging on values that minimize the mean squared error of the estimate, i.e.,

the sum of the squared differences between the previous estimates and the subsequent timing

measurement. Starting with an initial range for α and β, and iterating through this range in fixed

increments, a good fit for both smoothing parameters can be quickly found. The algorithm used

to estimate the smoothing factors for both the timing and error terms is described in Equation

3.5.

(α, β) = min

(
n∑
i=0

(ti −Xi)
2

)
∀α ∈ [0, 1],∀β ∈ [0, 1] (3.5)

The mean square error (MSE) finds the difference between the previous measurements (ti), and

their respective estimates (Xi) for changing values of α and β. The minimum MSE indicates

the best fit for the two smoothing factors when applied to the existing data. The computational

80



costs of this parameter-fitting method can be increased or decreased by changing the size of

increment used to iterate through the allowed ranges for α and β. By default, the algorithm to

find the best fitting estimates for α and β is called recursively, using ever smaller increments,

until an increment size of a particular threshold is reached. By default, TimePredict has set this

threshold so that it finds approximations for α and β accurate to ± 0.001. This limit was chosen

since if provided the best accuracy without placing excessive demands on the available memory

and processor resources. More accurate approximations are possible, given greater time and

more resources invested in their calculation, however, the likely increasing in predictive accuracy

will be small as the threshold decreases further.

Execution 
Time

Num. Measurements

Timing Measurements

Timing Estimate Bounds

Fig. 3.3: Bounded timing estimates using the exponential smoothing model.

Unlike the timing estimate outlined in Equation 3.3 the error term (εn) is calculated separately

to provide an upper and lower timing bound. The error term governing the upper and lower case

bounds (3.4) will grow in the case where either the previous timing estimate bounds are exceeded,

or when the variation within the timing measurements increases. Otherwise, the error term will

decrease at a rate determined by the smoothing factor β, again set to some value between 0.0

and 1.0. Similarly, the determination of β is made at run-time, by iterating over the previous

errors for the current value of α. Similarly the previous error (εn−1) is used provide an added

bound if there is a trend apparent within the error terms, and allows the ES model bounds

to roughly follow linear trends within the data. The impact of the error term on the overall

timing estimate bounds can be illustrated in Figure 3.3. This figure shows the type of bounded

81



timing estimates produced using the exponential smoothing model. The error associated with

each timing estimate reduces as the timing measurements stabilize at a particular value, i.e., the

error term tends towards zero as the timing behaviour becomes more stable. This is illustrated in

Figure 3.3 as both the upper and lower estimate bounds converge on the timing measurement if

it remains unchanged over a given period. When the timing measurement changes unexpectedly,

the bounded timing estimates increase to capture the new (and unanticipated) timing behaviour.

These new estimate bounds are re-fixed at a higher or lower value, and begin again to converge

if the timing measurement values remain relatively static.

While this ES model provides a convenient method of forecasting the execution time of

software, the model does not perform any historic analysis of previously collected data. The ES

model operates at run-time on a per-measurement basis, and therefore is limited in its predictive

abilities compared to a statistical approach using a sufficiently large set of timing measurements.

However, the advantages of the ES model lie in its ability to both provide timing estimates based

on very limited information, and by being able to quickly react to small variations in the software

timing behaviour.

3.3.1.1 Critique of the ES Model

The ES model, as included within TimePredict, provides a number of clear benefits when esti-

mating software timeliness within restricted operating environments. This includes reducing any

negative impact on the performance of the underlying system, as well as the predictive advan-

tages offered by the use of the ES approach itself. The benefits associated with the ES model

include;

1. Reduced memory usage.

2. Low processor overhead.

3. Fast execution.

4. Good accuracy and precision.

5. Ability to generate estimates based on a small sample size.

6. Reactive to sudden changes in the underlying process (i.e., changes in software timeliness).

82



Although there are potentially more accurate ACET estimation methods [Schellenkens, 2010]

[Guo et al., 2008], none can derived estimates at run-time, let alone execute within a resource-

constrained operating environment. The use of the ES model within TimePredict was carefully

considered to maximize predictive performance while simultaneously minimizing resource usage

and avoiding any negative impact on the underlying system. In addition, since the execution

time behaviour of the software can change quite suddenly (due to adaptations), any ACET

analysis method used within TimePredict must quickly reflect these timing changes within its

estimates. Consequently, the ES model can function in situations where very few representative

timing measurements are available, unlike other ACET analysis approaches which require a large

number of measurements, and a lengthy off-line analysis period to derive their final estimates.

However, the sacrifices made to ensure the ES model can perform within a limited operating

environment incur costs in terms of its overall predictive performance. The use of a smaller set

of measurements to derive ACET estimates may mean that seasonal or cyclical trends with the

data are ignored, or repeating periods of increased volatility in the measurements are missed.

Similarly, one-off trends within the data cannot be processed effectively within the ES model,

for example, the timeliness of some software processes can increase linearly and then level off

as arrays are filled, and other data structures are created in memory. An ideal ACET analysis

method would automatically determine the stable operating pattern of a particular process, and

use that as the basis for more representative average-case estimates. Unfortunately, the ES

model cannot make this assessment using the limited set of measurements it has at its disposal.

The restricted sample size also prevents the ES model from assessing the significance of any

deviations within timing behaviour, i.e., whether a large increase or decrease in timeliness is

statistically significant or indicative of a change within the underlying system. Lastly, while

the ES model provides an average-case estimate of the next immediate timing measurement, a

more longer term forecast would enable more pre-emptive adaptations to correct perceived future

performance issues.

3.4 Worst-Case Analysis

Worst-case timing analysis seeks to determine the likely maximum execution time performance of

software. In common with the average-case timing analysis processes described earlier, TimePre-

dict uses a measurement-based approach to derive a worst-case execution time (WCET) bound

83



for the current configuration of the software. However, unlike the average-case timing analysis,

the WCET value for the software may not become immediately apparent using a measurement-

based approach [Colmenares et al., 2008]. This extreme worst-case timing behaviour will rarely

(if ever) be exposed through repeated timing measurements, therefore a pessimistic statistical

model must be applied to the existing timing data in order to encapsulate potentially unobserved

timing behaviour. Statistical modelling techniques can be applied where the complexity of the

underlying system precludes a formal analysis, or where estimates must be made based on in-

complete data. With dynamically-adaptable software systems, the current configuration of the

software cannot be anticipated from a static context, so any worst-case timing analysis must be

performed at run-time, and refreshed after each adaptation to the system.

TimePredict uses statistical modelling techniques more commonly found in materials sci-

ence [Castilloa et al., 2006], environmental engineering [Alvarado et al., 1998] and the analy-

sis of financial markets [Rosenberg and Schuermann, 2006], to predict the worst-case perfor-

mance of dynamically-adaptable systems. The worst-case statistical models, collectively known

as extreme-value distributions, are a specialized type of statistical distribution that are com-

monly employed to estimate rarely occurring events [Coles, 2001]. Extreme-value distributions

are heavy-tailed, since greater emphasis is placed on the tail behaviour of the distribution com-

pared to the Normal (Gaussian) distribution. This allows extreme-value distributions to be

applied to the prediction of rare events, such as worst-case execution times, based on the more

typical timing behaviour of the system [Edgar, 2002]. However, a set of measurements are first

required to fit these statistical distributions to the underlying process. Until a sufficient number

of measurements are available that expose the likely range of software execution times, another

non-distribution timing analysis process must be initially applied to estimate the WCET.

3.4.1 Initial Worst-Case Heuristic

When the software begins execution, or restarts execution in the wake of a functional adapta-

tion to the system, the previously collected timing measurements may not represent the new

configuration of the system. A fresh set of timing measurements is typically required to update

the ACET and WCET estimates of the software, however these may only be generated at run-

time as the software executes. A period may occur, immediately following an adaptation, where

an insufficient number of timing measurements are available to perform a detailed worst-case

84



statistical analysis of the software timing behaviour.

Similar to the ES model used by TimePredict for ACET estimates, a worst-case heuristic

provides an intuitive timing estimate where there is insufficient timing data to perform a more

detailed analysis. The intuitive worst-case estimate produced uses the observed worst-case value

from the set of previous timing measurements, to forecast a WCET bound. In cases where

the timing behaviour of the software is well-defined, the heuristic provides a slightly pessimistic

timing estimate that will closely match the expected worst-case behaviour. In all other cases,

i.e., where the software timeliness is highly volatile, or follows no discernible pattern initially,

the estimate produced by the heuristic will tend towards the maximum observed execution time,

recorded thus far. A multiplier is used to increase the WCET bound, using the number of times

previous estimates had been exceeded over the previous n measurements. This multiplier, pre-

sented in Equation 3.6, provides a readily accessible WCET estimate when there are insufficient

measurements available to make a more detailed statistical analysis. The multiplier was designed

to rapidly increase in cases where there are few measurements and many violations of the WCET

bound, and then decrease over time, tending towards the observed WCET measurement if no

further violations of the bound occur.

Unfortunately, this heuristic method lacks any associated level of confidence in the correctness

of its estimate. For example, there is no know way of estimating the likelihood of the next

timing measurement exceeding the heuristic WCET bound, aside from perhaps an evaluation of

its historic accuracy. This limits its application to periods when there are too few measurements

available to provide a better prediction, such as immediately after an adaptation, or when the

software begins execution initially. However, the WCET heuristic may prove to be instructive

within the context of feedback into the software adaptation process, until a better estimate can

be produced. The predicted WCET bound (Ŵn+1) takes the initial timing measurement (t0) as

its first estimate. When more measurements are made available, the heuristic is applied, i.e.,

Ŵn+1 =

t0, When n = 0,

((n+m)/n)wn Otherwise

(3.6)

The observed worst-case timing value is described by wn, and can change as more timing

measurements are added, i.e., when larger timing measurements are reported. The observed

worst-case timing value can be defined as the maximum value in the current set of timing mea-

85



surements. The cardinality of the set of timing measurements is defined as n. The parameter m

defines the number of times the observed worst-case timing value (wn) has been exceeded by a

new timing measurement, i.e., tn+1 > wn. The value of m will always be less than n, so that the

value described by (n+m)/n will be greater than 1. This value provides a multiplier to generate

a more pessimistic timing bound using the current observed worst-case timing measurement.

Figure 3.4 shows the performance of the WCET heuristic, and the increase in the WCET

multiplier. The WCET heuristic estimates were produced using sample time-series data taken

from measuring the execution time of a matrix multiplication benchmark [Arndt et al., 2009],

running on an embedded Sun SPOT device.

 20

 40

 60

 80

 100

 120

 0  50  100  150  200

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Matrix Execution Time
Heuristic WCET Estimate

(a) WCET Heuristic Performance

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0  50  100  150  200

M
ul

tip
lie

r 
V

al
ue

Num. Measurements

WCET Multipler

(b) WCET Heuristic Multiplier

Fig. 3.4: WCET Heuristic Performance.

Figure 3.4(a) illustrates the WCET estimate growing quickly over the initial measurements,

where the WCET bound is exceeded several times initially. Once this WCET bound is sufficiently

larger than the measurements it begins to recede until is approximates the largest observed

WCET measurement. Figure 3.4(b) shows the multiplier value used to generate the WCET.

The advantages of this heuristic are its ability to generate pseudo-WCET bounds using a

limited number of timing measurements, i.e., timing estimates without any associated statistical

confidence. The accuracy and precision of the WCET bounds produced will be dependent on

the volatility and complexity of the underlying timing behaviour of the software, however the

heuristic is presented as an initial WCET timing analysis method, to be used only until sufficient

timing measurements permit the creation of statistically-backed WCET bounds. In practice, this

worst-case heuristic is useful in cases where the software must be quickly configured, or tasks

86



scheduled, without an appropriate high-confidence estimate being available. This is especially

relevant within dynamically-adaptable systems, where a new configuration of the software may

have been deployed with the expectation of a particular worst-case execution time, only to find

this initial expectation badly at odds with its observed behaviour. Rather that wait until a large

number of timing measurements have been made, and a statistically-assured worst-case estimate

produced, the heuristic estimate allows the adaptation manager to quickly re-adapt (or roll-back)

any poorly performing adaptations to the system [Fritsch and Clarke, 2008].

3.4.2 Generalized Extreme Value Model

The generalized extreme value model (GEV) is a family of continuous probability distributions,

noticeable for being ‘heavy-tailed’. A heavy-tailed probability distribution contains slightly more

volume in the extremities (tails) of the distribution, and is defined as having a slower than

exponential rate of decay of its complementary cumulative distribution [Kotz and Nadarajah,

2000]. In essence, extreme value distributions are less clustered towards an average value when

compared to the more frequently used Normal (Gaussian) distribution.

The TimePredict approach uses the GEV model to provide WCET bounds, when sufficient

timing measurements are available to successfully fit a statistical distribution, and model the

likely (unobserved) worst-case timing behaviour. The GEV model is comprised of the Fréchet,

Gumbel and Weibull distributions, each distribution having a slightly different shape, allowing

TimePredict to select the most appropriate distribution to represent (fit) the underlying timing

measurement data.

3.4.2.1 Gumbel Distribution

The Gumble distribution, often referred to as a Type I extreme value distribution, differs from

both the Type II (Fréchet) and Type III (Weibull) distributions in that it has no associated shape

parameter, i.e., the curve described by the probability density function (pdf) does not change its

essential shape, but may change its location or scale. The pdf is a function that describes the

probability of a randomly selected value occurring at a particular point within the range of the

distribution [Evans et al., 2000]. The probability of a random variable falling within a specified

range of the distribution being given by the integral of its density between those points, i.e., the

area under the curve illustrated in Figure 3.5. To simplify the description of the GEV model,

87



the equations describing the behaviour its various distributions omit their scale and location

parameters, instead presenting a ‘standard’ distribution of each statistical model. The pdf for

the Gumbel distribution can be defined as,

f(x) = e−xe−e
−x

(3.7)

Where f(x) represents the pdf for a particular value (x) along the horizontal axis (see Figure

3.5). The cumulative distribution function (CDF) describes the probability that a random value

taken from a Gumbel distribution will occur before a specific value (x). The CDF is the integral

of the pdf, and effectively adds the probability densities over the entire range of the distribution.

The CDF is used extensively within TimePredict to find the value at which 99% of the fitted

timing measurements are likely to have occurred, i.e., the probability of a value exceeding this

bound would be 1% if the data fits a Gumbel distribution. The CDF for the Gumbel distribution

can be defined as,

f(x) = e−e
−x

(3.8)

The pdf and CDF for the Gumbel distribution are illustrated in Figure 3.5. The location

parameter and scale parameter for the distribution is set to 0 and 1 respectively, to provide a

‘standard’ distribution that can then be fitted to the timing data to produce a WCET estimate.

Even though the x-axis within Figure 3.5 includes negative values, these would be translated and

scaled along the axis to positive values, once the model has been fitted to the data.

Statistical models must be fitted to the underlying data to provide a valid estimate. This

process is described in more detail in Section 3.4.3, but in essence the underlying data is ranked

from smallest to largest, and the distribution CDF is scaled and transformed until the closest

match is found. If the correspondence between the data and the fitted distribution is deemed to

be close enough, values may then be read from the CDF of the distribution to determine a value

with a particular probability of exceedance.

3.4.2.2 Fréchet Distribution

The Fréchet distribution, or Type II extreme value distribution, differs from the Gumbel distri-

bution in that it has an associated shape parameter that makes the distribution more or less

biased towards increasing values of x. The pdf for the Fréchet distribution can be defined as,

88



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-2 -1  0  1  2  3  4  5  6

f(
x)

 -
 P

ro
ba

bi
lit

y 
D

en
si

ty

x

Gumbel PDF

Scale = 1.0

(a) Gumbel pdf

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-2 -1  0  1  2  3  4  5  6

f(
x)

 -
 C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y

x

Gumbel CDF

scale = 1.0

(b) Gumbel CDF

Fig. 3.5: Gumbel probability distribution.

f(x) = (αx−α−1)/(ex
−α

) (3.9)

Where α provides the shape parameter for the distribution. The Fréchet distribution pdf and

CDF are both defined for all values greater than zero, with a progressively increasing bias towards

larger values of x as α increases. In addition, the curve of the pdf/CDF grows steeper within

greater values of x, essentially restricting more of the volume of the curve to a smaller area. The

CDF of the Fréchet distribution is given by the equation,

f(x) = e−x
−α

(3.10)

The effects of increasing the shape parameter can be clearly observed in Figure 3.6, showing

how increasing values of α increase the height of the curve and its bias towards the right-hand

side of the graph.

Fitting statistical distributions containing a shape parameter are more complex, since more

than simple scaling and transformation needs to the take place to match the pdf/CDF to the

underlying data. Typically, a range of values for the shape parameter are initially applied, and

progressively refined until an appropriate value found. When the statistical model has been

appropriately fitted, the value of x matching the required probability is taken from the CDF,

e.g., finding the x value corresponding to 99% by solving the equation 0.99 = e−x
−α

, where the

value for α is known.

89



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5

f(
x)

 −
 P

ro
ba

bi
lit

y 
D

en
si

ty

x

Fréchet PDF

α = 1.0
α = 1.5
α = 1.8
α = 2.0
α = 2.2

(a) Fréchet pdf

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5

f(
x)

 −
 C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y

x

Fréchet CDF

α = 1.0
α = 1.5
α = 1.8
α = 2.0
α = 2.2

(b) Fréchet CDF

Fig. 3.6: Fréchet probability distribution.

3.4.2.3 Weibull Distribution

The final distribution within the GEV model is the Weibull distribution, also sometimes termed

the Type III extreme value distribution. Whereas the Fréchet distribution is undefined at zero,

the standard Weibull distribution, i.e., with no scaling or location parameters, is defined from

0 to ∞ (infinity). In common with the Fréchet distribution, the Weibull distribution is defined

using a shape parameter (α). The pdf for the Weibull distribution is defined as,

f(x) = αxα−1e−(xα) (3.11)

However, unlike either the Fréchet or the Gumbel distributions, the Weibull distribution pdf may

take on one of two distinct shapes - an exponentially decreasing curve when α = 1, and a skewed

bell-shaped curve for all α > 1. These two distinct distribution shapes are illustrated in Figure

3.7.

The exponentially decreasing curve (α = 1.0) and the bell-shaped curve (α > 1.0) can both

provide a good statistical model for the tail behaviour within a process. However, selecting one

particular shape will depend largely on the range and number of the underlying measurements.

The Weibull distribution may be fitted to the data, starting with an initial estimate for the

shape parameter, and progressively altering this value until the most appropriate fit is found.

The Weibull CDF provides the means of both fitting the distribution to the data, and selecting

the appropriate point on the curve for an estimate with the specified level of confidence. The

90



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5

f(
x)

 -
 P

ro
ba

bi
lit

y 
D

en
si

ty

x

Weibull PDF

α = 1.0
α = 1.5
α = 1.8
α = 2.0
α = 2.2

(a) Weibull pdf

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5

f(
x)

 -
 C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y

x

Weibull CDF

α = 1.0
α = 1.5
α = 1.8
α = 2.0
α = 2.2

(b) Weibull CDF

Fig. 3.7: Weibull probability distribution.

CDF may be defined as,

f(x) = 1− e−(xα) (3.12)

The point of convergence within the CDF, i.e., when x = 1.0, provides a useful anchor point

when fitting the distribution. At this point, regardless of the shape parameter, the probability

of exceedance is 63.2% (since 1− e−(1.0) = 0.632). This allows the distribution to be scaled and

translated along the horizontal axis, until the CDF of the distribution matches the frequency

distribution of the underlying data. This initial fitting can then be refined through modification

of the shape parameter, as well as more subtle increments to the scale and location.

3.4.2.4 Generalised Pareto Distribution

The Generalised Pareto Distribution (GPD) is a power law probability distribution and although

not part of the GEV model, it may be used to provide a good statistical model for exceedances.

An exceedance is, in essence, the sum of the number of measurements within a data set that

are greater than a specified value. By incrementally increasing this specified value, a frequency

distribution can be generated that shows the exceedances over a range of values. For example,

within a group of 100 people, all may be taller than 1.5m, 50 people may be taller than 1.75m

and only 10 people taller than 1.9m. Reducing the measurement interval to 0.1m ranges would

probably reveal a curve similar to the Pareto pdf in Figure 3.8. For processes such as software

91



execution times, the probability of a randomly selected measurement exceeding a particular time

limit tends to exhibit a similar exponentially decreasing series of values. The pdf for the Pareto

distribution can be defined as,

f(x) = (α)/(xα+1) (3.13)

Similarly to the distributions presented within the GEV model, the Pareto distribution provided

in (3.13) does not contain scale or location parameters. Instead, the pdf/CDF defines a standard

distribution, with a scale of 1 and a location of 0 (i.e., no scaling and no translation along the

horizontal axis). The CDF can be found using the equation,

f(x) = 1− (1/x)α (3.14)

The Pareto distribution describes a single shape, that of an exponentially decreasing curve. The

best-case fit for a Pareto distribution is when the underlying data contains many small value

measurements clustered around a limited range, and fewer large measurements that decrease

in their frequency with size. The shape of the Pareto pdf and CDF is illustrated in Figure

3.8. Fitting the Pareto distribution is done in much the same way as any of the previous GEV

distributions. A range of values for α are initially specified, and refined until the most appropriate

fit is found. The estimate is then taken from the CDF, which can be described using the equation,

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.5  2  2.5  3  3.5

f(
x)

 -
 P

ro
ba

bi
lit

y 
D

en
si

ty

x

Pareto PDF

α = 1.0
α = 1.5
α = 1.8
α = 2.0
α = 2.2

(a) Pareto pdf

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.5  2  2.5  3  3.5

f(
x)

 -
 C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y

x

Pareto CDF

α = 1.0
α = 1.5
α = 1.8
α = 2.0
α = 2.2

(b) Pareto CDF

Fig. 3.8: Pareto probability distribution.

92



3.4.3 Model Fitting

Both the GPD and GEV statistical models may only generate predictions once they have been ap-

propriately scaled and transformed to match the underlying data. This process, known as model

fitting, is achieved through discrete adjustments of the parameters that define each distribution.

The steps required to fit a statistical model can be summarized as,

1. Create a frequency distribution from the underlying data.

2. Add each value from the frequency distribution, to produce a cumulative distribution.

3. Select one of the GEV distributions, and adjust its shape, scale and location parameters

until it closely matches the cumulative distribution of the data.

4. Generate the goodness-of-fit test statistic (see Section 3.4.3.1)

5. If the test statistic is less than the critical value, select this distribution as the predictive

model.

6. Otherwise, iterate through the remaining GEV statistical distributions fitting and testing

each in turn.

7. If no appropriate fitted distribution can be found, use the WCET heuristic estimate.

8. Assuming there is a suitable fitted distribution, select the required level of confidence in the

estimate, i.e., the likely reliability of the estimate at encapsulating measurements within

the fitted distribution. Typically this is set to some value greater than 99%.

9. Find the value on the CDF of the fitted distribution that corresponds to this desired level

of confidence, e.g., the x value corresponding to f(x) = 0.99 for the CDF.

10. Return this x value as the worst-case estimate.

The first step requires the dataset of timing measurements to re-ordered as a frequency

distribution. Since the measurement data is already ordered from smallest to largest within the

WCET array, all that is required is to specify an interval, and count the number of measurements

within each interval over the entire range of the dataset. The resulting frequency distribution

(as per the example in Figure 3.1), is used as the template on which the statistical models are

93



then fitted. Each statistical distribution is fitted in turn, by iteratively adjusting the shape,

scale and location parameters that define its CDF, so that it closely matches the frequency

distribution of the data. Once each distribution has been fitted, a goodness-of-fit test determines

which distribution provides the closest match for the data. This is then used to generate an

appropriate timing estimate (see Section 3.4.3.2).

3.4.3.1 Goodness of Fit

Whereas fitting a particular distribution to the data is simply a matter of changing the param-

eters that govern its pdf/CDF, a separate process is required to evaluate how closely the fitted

distribution matches the underlying data. A goodness-of-fit test evaluates whether a particular

distribution fits the underlying data sufficiently well to be considered as a good representative

model. The notion of ‘sufficiently well’ within the context of statistical testing, implies that

there is no strong evidence to suggest that the data comes from anything but the fitted distri-

bution [Kotz and Nadarajah, 2000]. This initial assumption, known as the null hypothesis, must

be rejected in order to reject the fitted distribution. The test itself is performed by comparing a

calculated goodness-of-fit metric (the test statistic) with an established statistical limit. A suit-

able level of confidence in the goodness-of-fit test can be selected, to determine the appropriate

statistical limit, and accept only fitted distributions of a sufficiently close match to the data.

x

cdf(x)  

     Max Difference

     Fn(x)    (Distribution CDF)

     F(x)      (Data CDF)

Fig. 3.9: Analysis of the difference between Data and Distribution CDFs.

TimePredict uses the Kolmogorov-Smirnov goodness-of-fit test [Massey, 1951], to determine

94



which of the fitted distributions best represents the dataset comprised of extreme timing mea-

surements. The Kolmogorov-Smirnov test, also known as the KS test, is a minimum distance

test (illustrated in Figure 3.9) that determines the goodness of fit for a particular distribution

based on the sum of the absolute distance of its CDF from the frequency distribution of the

dataset [Young, 1977]. TimePredict implements the KS test to select the fitted distribution clos-

est to the frequency distribution of the observed execution time behaviour, since this could be

deemed to provide the best mathematical model to predict the WCET bounds for the software.

The critical value for the KS test is calculated by finding the supernum of the absolute dif-

ference between the fitted distribution (Fn(x)) and the CDF of the data (F (x)). The supernum

can be described as the maximum vertical displacement between the data and the fitted distri-

bution. Figure 3.9, illustrates an example of this maximum vertical displacement between two

example CDFs. This test statistic (Dn) is found by iterating though both CDFs, and reporting

the maximum difference found. This test statistic can be calculated using the equation,

Dn = sup
x
|Fn(x)− F (x)| (3.15)

where supx is the supernum of the difference. Once Dn has been determined, it must be compared

to a specific critical value for a two-sample KS test (i.e., where two CDFs are compared). These

critical values are presented, for differing degrees of stated confidence, in Table 3.2.

αc Dcrit

0.1 1.22

0.05 1.36

0.01 1.63

0.005 1.73

0.001 1.95

Table 3.2: Confidence intervals and critical values for the Kolmogorov-Smirnov two-sample test.

If the test statistic is less than the critical value in the table, the fitted distribution cannot

be found to be sufficiently different from the underlying data, and hence the fitted distribution

is accepted. The values in Table 3.2 are taken from a similar table in [Young, 1977], as well

as [Lindley and Scott, 1995], and offer critical values for the KS test, defined by confidence level

95



and sample size. The degree of confidence is provided by 1 − αc in the table, i.e., where an αc

value of 0.01 corresponds to a level of confidence of 99% in the KS test.

3.4.3.2 Generating Estimates

When the KS test has indicated the most appropriate statistical distribution for the existing

timing data, the chosen distribution can then be used to generate a WCET bound for the

software. The CDF for the selected distribution is used to provide a WCET bound, based on

a pre-defined level of confidence. This level of confidence is a measure of the probability of a

particular timing measurement occurring, assuming that the distribution closely corresponds to

the set of previously observed timing measurements, and the underlying process, i.e., the software

behaviour, does not change. To generate a WCET bound, the CDF is solved for x, e.g., as in

the case of the Weibull distribution CDF,

f(x) = 1− e−(xα)

where both f(x) and α are known, and solving for x provides the WCET bound. The probabil-

ity of a timing measurement being encapsulated by this WCET bound is provided by f(x). By

default TimePredict sets this probability to 0.99, i.e., a 99% probability that the next timing

measurement will be less than the WCET bound. In practice, the estimate probability achieved

by TimePredict will be much higher than 99%, since it actively replaces smaller timing measure-

ments with larger ones within the array of WCET data, resulting in a slightly more pessimistic

WCET bound.

3.5 Validation and Feedback

TimePredict can produce a continuously updated ACET/WCET timing estimate, as more timing

measurements become available. The accuracy and precision of these estimates is recorded, and

used as a means of selecting the most appropriate average-case and worst-case predictive model

based on recent performance. Two low resolution predictive methods, namely the ES model and

the WCET heuristic, are more appropriate when there are few timing measurements available,

such as immediately following an adaptation to the system.

When sufficient timing measurements have been recorded, the more detailed statistical models

96



Fit Weibull Distribution Apply Goodness-of-Fit-Test

Fit Fréchet Distribution Apply Goodness-of-Fit-Test

Fit Gumbel Distribution Apply Goodness-of-Fit-Test

Apply Goodness-of-Fit-TestFit Pareto Distribution

Use WCET Heuristic

Accepted

  Rejected

Accepted

  Rejected

Accepted

  Rejected

Accepted

  Rejected

Model Fitting Model Testing

Fig. 3.10: WCET model fitting process.

(GEV/GPD respectively) can be used to create timing estimates with a greater level of confi-

dence, by evaluating a larger cross-section of the timing measurements. However, since these

statistical models are grounded in a number of assumptions, e.g., a constant variance/mean

within the measurements, the models may become imprecise or inaccurate if these assump-

tions are violated. The usage of both model-based and more heuristic-based estimates within

TimePredict ensures that an estimate is provided, in all circumstances where at least one valid

timing measurement has been recorded. Figure 3.10 illustrates the WCET model fitting process,

showing how the GEV/GPD models are each fitted and tested in turn, and if none provide a

sufficiently close fit to the data, the estimate is produced using the WCET heuristic. In all

circumstances where there is at least one representative timing measurement, TimePredict can

generate both ACET and WCET estimates.

TimePredict can be configured to select the most appropriate WCET model using one of two

strategies, a periodic comparison and ranking of the goodness of fit across all the GEV/GPD

distributions, or a frequency ordered ranking according to a minimum goodness of fit threshold.

In the first case, TimePredict performs a goodness of fit for each distribution at set intervals, and

ranks the distributions in order of those that best fit the available data. This strategy has the

97



advantage of ranking the GEV/GPD distributions in terms of their likely predictive performance,

however, it requires additional processing at every update interval to refresh this ordering. The

second strategy adopts a type of limited analysis approach, in that a critical value is specified in

advance for the KS test, and the first distribution to achieve this fit is selected. The frequency

of these selections over time are then used to rank the various distributions. The advantage of

this approach is that it reduces the processing overhead on the system, however, because it does

not exhaustively test each distribution, a slightly better fit for the data may not be found unless

the current top-ranked distribution fails to meet the critical value for the KS test.

The percentile used by TimePredict to determine the WCET estimate from a fitted model,

is set by default to be the 99th. While this is arbitrarily selected as being indicative of a

bound unlikely to be surpassed during normal operation, maybe being exceeded on average 1%

of the time if the distribution matches the data. Although this 1% probability of exceedance

has the potential to occur, the dataset underlying the WCET models is bias towards large

measurements, i.e., the limited storage space for measurements means that smaller values are

progressively replaced by larger ones. This in turn impacts on the probability of exceedance, in

that TimePredict effectively creates a worst-case subset from the overall measurement data, in

effect decreasing the probability of exceedance for the resulting WCET estimate. Although the

required maximum allowable probability of any measurement exceeding this estimate may be

set as high as 10−12 within some operating environments [Bernat et al., 2003], for the purposes

of dynamically-adaptable software with changeable operating characteristics, the 99th percentile

should be sufficient to be termed as a high-confidence estimate. Any non-pessimistic estimate

with a more extreme probability of exceedance would require more measurements (which may

not be available at all times), greater overhead in terms of data storage and processing, and

possible implementation restrictions to limit the effects of adaptation on the underlying system.

As such, TimePredict favours the default 99th percentile as the basis for worst-case estimates,

in that it encourages functional expressiveness and adaptability, over limiting the software to

ensure greater predictability.

However, the timing estimates generated by TimePredict in themselves will do little to op-

timize the performance of the software, unless they are used as an input into the adaptation

selection process. The design of the TimePredict approach envisages timing estimates being

used within an Adaptation Manager function (as in Figure 3.2), that evaluates, selects and

98



implements functional adaptations at run-time, based on the execution time behaviour of the

current configuration of the system. Comparing the current/recent performance of the system

against a set of QoS requirements, would enable the system to react to subtle changes in its

operating environment, and adjust its functional scope for the prevailing conditions. A time-

optimizing dynamically-adaptable system would be capable of changing its functional makeup,

to maximise the system response time across a large number of potential operating scenarios.

The next chapter presents a number of these scenarios, and shows how informed run-time func-

tional modifications, based on estimates provided by TimePredict, can dynamically optimize the

performance of the system.

99



Chapter 4

TimePredict Implementation

Nos numerus sumus et fruges consumere nati.

We are but numbers, born to consume resources.

Horace (Quintus Horatius Flaccus)

The design of the TimePredict approach, presented in the previous chapter, must be implemented

in software and tested within a live operating environment before any assessment can be made

of its predictive performance. In addition to the realization of the various statistical models that

comprise the TimePredict approach, the timing analysis must be shown to operate effectively

within a highly-variable environment, on a resource-constrained embedded device. Since this

run-time timing analysis process must both generate highly accurate timing estimates, as well

as minimize its impact on the normal execution of the system, its correct implementation is

critical to the overall goals of this thesis - namely, to provide a precise, accurate run-time timing

analysis process suitable for dynamically-adaptable software running on resource-constrained and

embedded devices.

The principal aims of this chapter are to describe the target operating environment, present

the implementation of the timing measurement process, and outline the various statistical meth-

ods that form the core of the TimePredict approach. In order to initially adjudge the effectiveness

of these predictive models, a test framework is introduced that enables the simulation of a number

of potential timing behaviours, as well as imitating the effects of sudden functional adaptations

on software timeliness. When TimePredict was verified within this virtual operating environ-

100



ment, it was then deployed within a live implementation of a dynamically-adaptable system,

running on a resource-constrained embedded device. The implementation of the various features

of TimePredict are presented in this chapter, including the role of run-time timing analysis in the

initiation and selection of functional adaptations to the system. Lastly, the underlying theoreti-

cal assumptions and limitations of the various predictive models are validated against a realistic

application scenario executing within a live environment.

4.1 Operational Implementation

TimePredict is divided into two appreciably distinct logical parts, one concerned with forecasting

the average-case software timeliness, and the other with deriving a worst-case performance esti-

mate. This logical division is necessary since the average-case and worst-case analysis methods

evaluate fundamentally different properties of the underlying software timing behaviour. Con-

sequently, both analyses have their own unique set of requirements on the storage of timing

measurement data. For example, the average-case ES model requires a small set of recent timing

measurements ranked in order of their occurrence, whereas the GEV worst-case model depends

upon a slightly larger set of measurements, ranked in order of their size and frequency. To facil-

itate both the average-case and worst-case analyses, TimePredict maintains two separate data

structures, updating each at run-time with the latest software timing measurements. The pre-

dictive models, described in the previous chapter, are then applied to their respective data-sets

to generate either an ACET or WCET timing bound.

Figure 4.1 illustrates the various classes that comprise the TimePredict approach. The

average-case and worst-case analysis components are separated, with each predictive model re-

porting their timing estimates to a main TimePredict class. The TargetSoftware class repre-

sents the class or function used as the basis for the timing measurements within TimePredict.

Timing measurements are taken using the TimingListener interface, which instruments the code

with a timerStart() and a timerStop() function to record the interval between two consecutive

time-stamps. The time-stamping functionality itself is encapsulated within the TimingEvent

class, and provides further functionality to calculate the interval in milliseconds between two

specified time-stamps.

The TimingUpdate class refreshes the timing information stored in the respective arrays

within the ACETData and WCETData classes. These data structures are used to provide the worst-

101



TimePredict

ACETData WCETData

Adaptation
Manager

ESModel HeuristicWCETGEVModel

TimingUpdate

TargetSoftware <<TimingEventListener>>

TimingEvent

Software
Adaptation

TimePredict 

Software
Adaptation

Timing Measurement

Fig. 4.1: TimePredict class diagram.

case and average-case predictive models with timing measurements, and can be dynamically

re-sized during execution. The implementation of these arrays, and the algorithms used to

update their stored timing measurement data are described in more detail in Section 4.2.1.1.

In addition to updating these classes with new timing measurement data, TimingUpdate also

performs a simple evaluation of the accuracy and precision of the previously generated timing

estimates for each predictive model, by comparing the old ACET and WCET bounds with the

latest timing measurement data. Where a particular predictive model is found to have become

increasingly inaccurate, the TimingUpdate class informs the TimePredict class to select an

alternate predictive method.

102



The ESModel class implements the Exponential-Smoothing model for average-case timing es-

timation. Similarly, the GEVModel and HeuristicWCET classes implement the model-based and

heuristic-based worst-case timing analysis. The estimates from both average and worst-case

models are forwarded to the TimePredict class, which selects the most appropriate estimate

(based upon the evaluation performed by TimingUpdate) and makes a revised timing forecast

available to the Adaptation Manager. Based on changes in the timing estimates produced by

TimePredict, this Adaptation Manager can then decide to modify the TargetSoftware in order

to optimize its timing behaviour. If an adaptation is scheduled, the TimePredict class is in-

formed, so that previously recorded timing data can be removed, and updated timing estimates

produced for the newly-adapted system.

While the ESModel and HeuristicWCET classes iterate over a small number of timing mea-

surements, the GEVModel implementation relies of a relatively larger set of representative mea-

surement date to fit and validate the model parameters. The TimePredict approach is unique in

that is assumes there will be an insufficient, or otherwise very limited set of timing measurements

available to the GEV model initially. Consequently, the WCET heuristic model is provided to

offer a basic worst-case estimate until enough measurements have been recorded to fit a GEV

model, and begin generating estimates. Since the memory resources of the target operating

systems will be limited, it may not be feasible to record every timing measurement. Since only

relatively larger timing measurements are of direct interest to the WCET analysis, TimePredict

records the number of occurrences of timing values between a specified range of values. Where

the clock resolution is 1 millisecond, TimePredict records the number of measurements in steps of

1 ms between the largest previously observed measurement, and some lesser value. The range of

measurements included in this timing frequency distribution is referred to as the lag length, and

can be adjusted by the user to facilitate greater accuracy when a larger lag length is selected, or

less memory overhead when a smaller lag length is used. By measuring the occurrence of timing

measurements over a greater range of values, a more accurate model may be fitted to the data,

however, by focusing on the worst-case ‘tail’ measurements only, a WCET bound may still be

produced, albeit with a possibly greater than necessary distance between the observed WCET

and the estimate (i.e., a pessimistic estimate). The lag length is therefore used to focus the

priorities of the GEVModel class, greater precision in generating estimates, or a reduced impact

on the underlying system in terms of memory and processing resources used.

103



4.1.1 Target Operating Environment

The target operating environment is envisaged as being predominantly defined by the limited

processing and memory resources of the underlying hardware platform, as well as the unan-

ticipated nature of software adaptations to the system. The primary challenge estimating the

timeliness of dynamically-adaptable systems, is the potentially large number of possible software

configurations, each with their own performance characteristics. In addition, each software con-

figuration can be enabled seemingly at random, based on unanticipated changes in the operating

environment.

Measurement-based timing analysis produces its own set of challenges, especially when the

supporting hardware is limited in terms of its processing power or memory, or during periods

immediately following an adaptation when few timing measurements are available to analyse. A

measurement-based timing analysis process must provide accurate estimates, even within highly-

variable operating environments, while minimizing any impact on the ‘normal’ operation of the

system. In addition, any unanticipated changes to the timing behaviour of the software must

be met by corresponding changes to its timing estimates, without restricting or delaying any

necessary functional adaptations. The impact the TimePredict approach may have on the target

operating environment, and the resulting optimizations in its implementation that preempt any

negative functional or non-functional interference, are discussed in more detail in Section 4.1.7.

4.1.2 Hardware Considerations

For the purposes of this thesis, it is assumed that TimePredict executes on a stand-alone resource-

constrained device, provided with its own processor(s), memory and persistent storage. The

definition of what constitutes a resource-constrained device may be subjective, however PDAs,

mobile phones and wireless sensor motes have traditionally been considered as examples of these

types of systems [Gal et al., 2006]. Laptops, tablet PCs and high-end smart-phones, while being

highly mobile and wirelessly-connected devices, are more comparable to older desktop PCs, both

in terms of processing power and operational limitations, than to any typical wireless sensor

mote [Li et al., 2010]. The key characteristics of the target hardware environment are envisaged

as incorporating a MHz-scale processor architecture, containing solid-state memory/storage not

in excess of ten megabytes. The device itself should be powered from an internal rechargeable

battery, and provide a wireless interface to support both data and operations & maintenance

104



(O&M) communication with an external server.

Fig. 4.2: Java Sun SPOT mote.

The hardware platform that provided the closest match to this set of high-level requirements,

and the one ultimately selected as the basis for this work, was the Java Sun SPOT mote [Smith,

2007], as shown in Figure 4.2. Java Sun SPOTs (Sun Small Programmable Object Technology)

are wireless-enabled motes, containing a single ARM processor, three-axis accelerometer, on-

board light and temperature sensors, and running the Squawk Java VM (JVM) directly on the

processor without a supporting OS [Smith et al., 2005]. The form factor for the mote illustrated

in Figure 4.2, is approximately 41 x 23 x 70 mm, with each device weighing 54 grams.

The processor architecture used in the Sun SPOT mote, a 180MHz 32-bit ARM920T CPU, is

a low-powered processor commonly found within mobile and embedded computing devices [Silven

and Jyrkkä, 2007]. Each Sun SPOT is equipped with 512Kb RAM, and a 4Mb flash memory,

providing a restricted, yet usable platform to run basic Java applications on top of the Squawk

JVM. The lack of an operating system between this JVM and the underlying hardware does not

negatively impact the performance of any Java applications executing on the device, and has

instead been shown to out-perform an interpreted KVM running under Linux on a similar ARM

105



processor-based system [Simon et al., 2006]. In addition to the stand-alone motes, the Java Sun

SPOT platform includes a base-station, to allow standard PCs to communicate wirelessly with

any Sun SPOT mote within range.

A standard USB A-to-mini B cable can be used to update the Squawk JVM as well as

upload software to the mote. In addition, this wired USB link provides a convenient means of

monitoring the status of the Sun SPOT, by providing console output to a connected PC. Since

dynamic software adaptation is achieved though the wireless deployment of Java class files to the

mote (described in Section 4.2), monitoring the mote through a wired link avoids interleaving

monitoring information with data traffic, that could potentially disrupt ‘normal’ execution on the

device. In addition to the console output via the USB connection, the Sun SPOT mote provides

eight user-programmable LEDs, a further eight electrically-driven I/O pins, and a number of

on-board sensors. The various sensors available within the system can provide a measure of the

acceleration, tilt, light and temperature within the device and are used to form the basis for the

application scenario, described later in Section 4.3.

4.1.2.1 Wireless Communication

Java Sun SPOT motes and base-stations are identified by a unique 8-digit hexadecimal number,

that serves as the permanent address of the device during communication. The IEEE 802.15.4

standard (ZigBee), provides the basic communications framework to enable motes, as well as

any server-attached wireless base-stations, to initiate either stream-based and datagram-based

communications within the 2.4GHz ISM radio band [Caicedo, 2006]. The wireless communica-

tions functionality is accessible through a number of Java APIs, and allows each mote a theoretic

maximum bandwidth of 250 kilobits (kb). However, in practice the available bandwidth is often

reduced due to bandwidth-sharing with other nearby motes, as well as signal attenuation caused

by environmental factors. Again, under ideal conditions the wireless range of a Sun SPOT mote

may be as much as 50m or 100m, but typically, the range is often limited to approximately 10m.

For longer-distance communication, multi-hop communication is possible using the mote as a

communications relay, where messages can be forwarded via other Sun SPOT devices to a target

mote outside the immediate transmission range of the original sender. This multi-hop routing is

supported by default within the Sun SPOT software stack.

106



//Setup a datagram connection for broadcast on port 110

DatagramConnection dgConnection = (DatagramConnection) Connector.

open("radiogram://broadcast:110");

//Initialize a datagram

Datagram dg = dgConnection.newDatagram(dgConnection.getMaximumLength());

//Keep looping until discovered

while (!discovered)

{

// Send the message as UTF-encoded string

dg.reset();

dg.writeUTF("DISCOVERY-REQUEST");

dgConnection.send(dg);

Utils.sleep(500);

}

Fig. 4.3: Sending a Datagram-based discovery request.

Typically, a discovery protocol must be implemented to identify the various Sun SPOT motes

and base-stations within range. Luckily, the Squawk APIs support a datagram broadcast mode,

that can send a repeating discovery request on a particular port defined within the range 0 to

255. This allows different communications channels to be associated with its own port number,

and quickly identified by both sender and receiver. In the example code described in Figure 4.3,

the discovery request is broadcast over port 110, with the request itself being a UTF-encoded

string. The message is re-broadcast every 500ms, until a response is received (see Figure 4.4)

and the Boolean flag discovered is set, thereby terminating the while loop.

Figure 4.4 outlines the code used to receive a datagram over a specific port number, such as

a discovery request broadcast over port 110. Although the Squawk JVM supports both blocking

or non-blocking datagram communications, the example above blocks further communication

until a datagram is received over the specified port. Within a single threaded application, this

blocking communication may be problematic, so to facilitate discovery, it is often more conve-

nient to separate the transmitting and receiving functions into two separate threads, and have

each run concurrently on the same mote, using Boolean flags for co-ordination. Once a discovery

107



//Setup a datagram connection for broadcast on port 110

DatagramConnection dgConnection = (DatagramConnection) Connector.

open("radiogram://:110");

//Initialize a datagram

Datagram dg = dgConnection.newDatagram(dgConnection.getMaximumLength());

//Reset the datagram and wait to receive a message

dg.reset();

dgConnection.receive(dg);

//Get the address of the sender

String address = dg.getAddress();

//Print out the message and

String message = dg.readUTF();

System.out.println("Discovery Request: " + message + " from " + address);

//Send acknowledge message

dg.reset();

dg.writeUTF("DISCOVERY-ACK");

dgConnection.send(dg);

//Set the discovered flag

discovered = true;

Fig. 4.4: Receiving a Datagram, using a blocking receive function.

request has been received, an acknowledgement (DISCOVERY-ACK) needs to be sent, to confirm

the reception of the original message.

While datagram-based communication is useful in discovering nearby Sun SPOT motes and

base-stations, there is no guarantee packets will be correctly delivered, or received in the correct

order. However, a RadioStreamConnection, illustrated in Figure 4.5, is provided within the

Squawk API, that offers a more reliable alternative, allowing buffered stream-based communi-

cations between two named devices. The communication endpoints, i.e., the unique addresses

of each device, must be known before a RadioStreamConnection can be initialized. Once the

108



RadiostreamConnection conn = (RadiostreamConnection)

Connector.open("radiostream://" + baseStationAddr + ":112");

DataInputStream dis = conn.openDataInputStream();

DataOutputStream dos = conn.openDataOutputStream();

dos.writeUTF("MESSAGE");

dos.flush();

String response = dis.readUTF();

Fig. 4.5: Initializing and using a stream-based connection.

connection is opened, data input and output streams can be added to further assist data com-

munication.

4.1.2.2 Sun SPOT sensors

The Sun SPOT motes provide a number of on-board sensors, that offer real-time information

concerning the temperature, acceleration, tilt and ambient light observable by each mote. While

largely unnecessary for the operation (or the concern) of TimePredict, the available sensor pack-

ages provide a convenient basis to motivate dynamic software adaptation within the Sun SPOT

mote. Standard Java APIs allow access to the various sensors, and provide a up-to-date picture

of the operating environment surrounding the mote. An application scenario, described in more

detail in Section 4.3, outlines how a sensor application residing on the Sun SPOT, and reporting

the various light, inclination, acceleration or temperature conditions, can provide an impetus for

both dynamic software adaptation, as well as run-time timing analysis.

The function calls used to initialize and read the various on-board sensors are presented in

Figure 4.6. The temperature and light readings are returned as double values, representing the

current temperature in Celsius, and the light level in a range from 0 to 750, where 0 is complete

darkness. The light level returns an average value taken over the previous 17ms, to account for

non-constant light sources such as fluorescent lights. The tilt sensor gives the angle of inclination

in radians, in all three dimensions. In Figure 4.6, only the inclination in the X-axis is read,

however the other axes are accessible through the getTiltY() and getTiltZ() function calls.

Lastly, the acceleration value provided by the on-board accelerometer gives the vector sum of

the acceleration in all three axes. At rest, the base-line acceleration should equal 1.0 (gravity

109



//Initialize the sensors

IAccelerometer3D accSensor = EDemoBoard.getInstance().getAccelerometer();

ILightSensor lightSensor = EDemoBoard.getInstance().getLightSensor();

ITemperatureInput tempSensor = EDemoBoard.getInstance().getADCTemperature();

//Get the various sensor readings

double temp = tempSensor.getCelsius();

double light = lightSensor.getAverageValue();

double tilt = accSensor.getTiltX();

double accel = accSensor.getAccel();

Fig. 4.6: Taking sensor readings using the Squawk Java API.

only), however as the mote is moved or rotated, this acceleration value will register a change.

Since the tilt value is read from the same accelerometer, changes in the inclination of the mote

may result in corresponding changes in the acceleration reading from one or more axes.

4.1.3 Timing Considerations

Estimates of the timing behaviour of the software may be used as a means of selecting the most

appropriate configuration of the system. Although outside the scope of this thesis, the timeliness

of the software may provide an actionable QoS metric, as well as a threshold level that can prompt

functional adaptations to the code. For example, in the case of a wireless sensor application, the

maximum frequency of sensor updates will be largely determined by the execution time of the

sensor software. Where there is some dependency between the sensor information provided by the

application, and a remote actuator or server, the timeliness of updates may be crucial to ensuring

correct operations over an extended period. In this case, a poorly performing sensor application

may be determined by its failure to maintain a set update threshold, and can prompt functional

changes to the underlying system to ensure this threshold is met. Likewise, the execution time of

the application can lead to prioritization within the sensor functionality itself, such as changing

the number or sensors reported, or the amount of local processing performed.

110



4.1.4 Resource Usage Considerations

The choice of a resource-constrained embedded device such as the Java Sun SPOT is desirable,

since it provides an operating environment where both the availability of computing resources,

and the execution-time performance of the software are critical for the correct operation of the

system. In addition, a resource-limited operating environment offers a unique set of challenges

in minimizing the memory footprint and processing overhead caused by any run-time timing

analysis method. The execution-time measurement process, the size of the set of measurements

stored on the device as well as the algorithms applied to generate the timing forecasts, must each

be configured to forestall any unnecessary disruption to normal operations.

TimePredict avoids storing unnecessary or superfluous timing measurement data, by restrict-

ing the number of elements maintained within the data structures provided in the ACETData and

WCETData classes (outlined in Figure 4.1). The maximum number of timing measurements stored

at any one time is determined by the total memory available on the system and the required

level of predictive accuracy for the statistical models. Since TimePredict is a measurement-

based timing analysis approach, as more measurements are evaluated, the level of confidence

in the resulting estimate tends to increase, and the precision of the ACET or WCET bounds

improve [Hansen et al., 2009]. However, a greater number of timing measurements imposes ad-

ditional costs on the system, in terms of the memory to store the measurements, and the added

computational workload incurred by iterating over a larger dataset. By default, the arrays used

within the ACETData and WCETData classes, restrict the maximum array size to 50 and 100 ele-

ments respectively. These values are selected to provide a reasonable balance between a required

level of statistical confidence in the eventual timing estimate (up to 10−3) against the need to

have a small memory footprint and modest processing demands. The size of the various arrays

used to store timing data can be configured by the user, and set to a greater or lesser value

depending on the need for greater predictive accuracy or lower computation overhead (described

in more detail in Section 4.1.4.2).

4.1.4.1 Memory Overhead

The ACETData measurement data is maintained within an ordered FIFO array, and is setup ini-

tially to store up to a maximum of 50 timing measurements. Once the array is filled, newer timing

measurements progressively replace older data, so that only the 50 most recent measurements

111



are stored in the order of their occurrence. Even though the clock resolution of the standard

Java platform restricts timing measurements to a millisecond-level accuracy, sub-millisecond ac-

curacy is possible using dedicated timing hardware on the Sun SPOT device (see Section 4.1.5).

As a result the ACET array is composed of a series of double values to record fractions of a

millisecond. The memory overhead on the ACET array is 12 bytes for the array header and 8

bytes per element [Arnold et al., 2005], totalling 412 bytes in all.

In contrast, the WCETData class records a frequency distribution and cumulative distribution of

the timing measurements, rather than the measurements themselves. A frequency distribution

counts the number of occurrences of particular measurements, within a set interval, over an

expected range of values. Since only the worst-case timing behaviour is required, the statistical

models in the GEVModel class focus on the tail behaviour of this frequency distribution. A

cumulative distribution, used to fit the models to the data, is also produced, by adding the sum

of the terms of the frequency distribution into another array of the same size. Unlike the array

of floating point numbers (doubles) stored in the ACETData class, the WCETData maintains two

integer arrays, both limited to a maximum size of 100 elements. An integer rather than a double

array is used, since the frequency distribution and cumulative distribution arrays use natural

numbers to count the frequency spread of the measurement data. The memory overhead for an

integer element is 4 bytes, with a 12 byte array header, meaning the two arrays each can consume

an upper limit of 824 bytes within memory.

Initially both the average-case and worst-case arrays are undefined, but are initialized once the

first timing measurement is generated by the system. To economize on the number of elements

used to store timing data, TimePredict dynamically re-sizes each array when required, up to its

pre-defined maximum size. This reduces the number of redundant elements maintained within

each array, and ensures that only appropriate timing information is stored and analysed. Since

the last element within the worst-case array is used to count the number of occurrences of the

observed worst-case execution time, any new timing measurement that exceeds the observed

worst-case value requires the smaller array elements to be removed/replaced to accommodate

the new value.

The Sun SPOT SDK requires that all Java applications deployed to the device are first

compiled into byte-code, and the resulting Java class files assembled into deployment files known

as suites. These suites, using the compression of a JAR (Java ARchive) file, reduce the size of

112



the class files deployed to the mote by approximately 35% [Smith et al., 2005]. In addition to

the reduced memory footprint of the deployed application, the Squawk JVM libraries executing

on the mote consume only 80Kb of RAM, and 270Kb of flash memory, from a capacity of 512Kb

and 4Mb respectively [Smith et al., 2005].

4.1.4.2 Processing Overhead

One of the principal tasks performed within TimePredict is the manipulation of arrays, albeit

arrays of only 50 or 100 measurements. However, this initial setting is at the discretion of the

system administrator, and can be increased where more accurate or precise timing estimates are

required.

 5

 10

 15

 20

 25

 30

 35

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

C
op

y 
T

im
e 

(m
s)

Array Size

ArrayCopy function

Loop Copy

Fig. 4.7: Comparison of the System.arraycopy performance.

The various actions performed on these data structures, such as the swapping and replacing

of array elements, can be a time-consuming task if each element has to be handled individually,

e.g., copying elements using a for or while loop. However, the Java API provides a conve-

nient System.arraycopy function, that may be used with appropriate pivot points within the

array to extend, replace and re-order subsets of timing measurements within the array. The

execution-time performance of this System.arraycopy function, running on a Sun SPOT mote,

is illustrated in Figure 4.7. This figure shows double arrays of up to 10, 000 randomly initialized

113



elements being copied using both the System.arraycopy function as well as a more traditional

for loop iterating over each array element.

For very small arrays, the performance cost in copying an array is negligible, given that the

execution time of the main software task is expected to be on the order of several hundreds

of milliseconds. In addition, the System.arraycopy functionality will only be applied during

the first few timing measurements. After the underlying timing behaviour has been sufficiently

exposed through a larger number of measurements, no further significant alterations to the

TimePredict arrays are then required unless the observed worst-case execution time is exceeded,

or the system administrator decides to extend the ACETData array.

4.1.5 Accuracy and Clock Resolution

The accuracy of the timing estimates produced by TimePredict will be directly related to the

accuracy of the timing measurement process (described in more detail in Section 4.2.1). The

accuracy of each timing measurement will be constrained by the granularity of the system clock,

which is set to 1ms for most standard Java-based applications. Any software task or function

that executes, on average, in less than 20ms, introduces at unacceptably high clock error into the

measurement process (i.e., 1 in 20, or 5%). Unless the clock resolution of the underlying system

provides more accurate timing measurements, a more lengthy software function should be used

as the basis for the timing measurements within TimePredict.

Luckily, the Sun SPOT mote provides two dedicated AT91 timer chips, that are available

as part of the ARM processor architecture. The counters maintained within these timer chips

are accessible though the Java Squawk APIs and allow time periods on the order of 1µsec

to be measured [Chen et al., 2008]. However, although these timers offer a very high accuracy

compared to the standard timestamp available in the java.util.Date library, the 16-bit counters

used within the timer chip reset after a specified value has been reached (i.e., 0xFFFF or 65, 535

iterations). Table 4.1, is taken from the Sun SPOT application notes [Goldman, 2007], and

shows the minimum measurement interval, as well as the maximum duration of the various

counters available via the AT91 timer/counter chips. For example, the MCK (Master ClocK)

can be divided for the purposes of measuring set time periods, giving a possible clock resolution

ranging from 0.0334µsec to 2.1368µsec. In contrast, the SLCK (SLow ClocK) provides a longer

measurement interval of 30µsec, and greater maximum duration of up to 2 seconds. This 2

114



second upper limit is the largest timing interval that can be measured by the AT91 timer chips

within the mote.

Clock Clock Speed (KHz) Time for One Tick (µsec) Maximum Duration (ms)

MCK/2 29,952 0.0334 2.188

MCK/8 7,488 0.1335 8.752

MCK/32 1,872 0.5342 35.009

MCK/128 468 2.1368 140.034

SLCK 32.768 30.5176 2,000.0

Table 4.1: Available clock speeds and maximum durations on the Java Sun SPOT mote.

The actual class that performs the timing measurements within TimePredict is the TimingEvent

class (see Figure 4.1). This class contains specific functions that are called at the beginning and

again at the end of the target software function to measure its execution time. Since the execution

time of a dynamically-adaptable system will be unknown initially, TimePredict uses the standard

java.util.Date library to take millisecond-accurate timing measurements at first, since they

have no set maximum duration. After an initial set of timing measurements have been generated,

and the worst-case execution time shown to be much less than 2 seconds, timing measurements

can revert to using the more accurate SLCK counter within the Sun SPOT. This allows time

intervals to be measured to an accuracy of 30 microseconds (i.e., 30× 10−6 seconds).

Occasional timing spikes can occur during execution, caused by a complex set of interactions

between the software, hardware and operating environment. To reduce the possibility of any

of these unusually large timing measurements exceeding the 2 second maximum duration for

the SLCK, this high-accuracy measurement process is applied only to software with an average

execution time of less than 500ms. Where the average execution time exceeds this threshold,

the risk of exceeding the SLCK upper limit becomes too great. To mitigate this risk, the timing

measurement process can revert to using the less accurate java.util.Date library. Although

the inherent measurement error using this method is approximately 1 millisecond, the overall

effect of this error on timing measurements in excess of 500ms is negligible.

115



4.1.6 Estimate Update Frequency

TimePredict, by default, is configured to automatically update both its average-case and worst-

case timing estimates whenever new measurements become available. However, this initial update

frequency may not be required at all times within all systems, e.g., within resource-constrained

systems during periods of high load, or embedded devices in low-power mode (hibernation).

Consequently, the implementation of TimePredict includes a number of possible update frequen-

cies, that can be specified in advance by the system administrator, or automatically selected by

TimePredict at run-time when the appropriate conditions arise. These update frequencies are,

• Automatic Update, the default update frequency, where each timing measurements is

recorded and the timing estimates updated on every new measurement received.

• Triggered Update, although each timing measurement is recorded, the estimates are up-

dated only when a measurement falls outside either the previous ACET or WCET bounds.

• Active Sleep, each timing measurement is recorded, but no updates to the timing esti-

mates performed unless requested (e.g., by the Adaptation Manager within the system).

The limitations of the underlying hardware will be the main consideration when selecting an

estimate update frequency. Even where there is sufficient processing and memory resources to

generate regular timing updates, other considerations may dictate the estimate frequency, such

as with battery-operated devices wishing to reduce power consumption. The principal hardware

limitations, and their potential impact on the TimePredict approach must be assessed for each

operating environment, to ensure that the functional and non-functional behaviour of the system

is not degraded by an overzealous predictive process.

4.1.7 Impact on the System

The various calculations used within the timing analysis methods to fit and scale statistical dis-

tributions, to copy and sort arrays, and to keep track of the ongoing accuracy and precision

of the various methods all consume processor cycles. Within the Java Sun SPOT, this leads

to ‘normal’ functions being interleaved with timing analysis functions on the processor, result-

ing in a slight delay in the execution of the software compared to the same software deployed

without TimePredict. One of the chief design requirements for the TimePredict approach is

116



to minimize any impact the on-going timing analysis would have on the normal execution of

the dynamically-adaptable system. However, given that there is only one processor within the

system, some analysis work will need to be performed at run-time, potentially at the expense of

other processing.

As a means of minimizing the impact this analysis processing has on normal operations, the

frequency of estimate update (previously discussed in Section 4.1.6), can be altered during periods

of low load or timing volatility. In addition, the size of the worst-case and average-case arrays

can be reduced when needed, to curtail the processing overhead required to iterate through each

element. Any unnecessary consumption of system memory, caused by unused variables or recently

dereferenced objects, is reduced by actively calling the garbage collection function, System.gc(),

immediately following each refresh of the timing estimate. This is performed regularly since the

availability of free memory within resource-constrained systems is often limited, and waiting for

the JVM to initiate garbage collection may affect the timeliness of the software at a critical

point. A comparison of the relative impact of this active garbage collection versus a JVM-

initiated garbage collection is provided in the next chapter.

Lastly, the implementation of both the timing measurement process, as well as the predictive

algorithms, are heavily optimized, to minimize the calculations required to produce a timing

estimate. These software optimizations are described in more detail in the next section.

4.2 Software Implementation

Since the target hardware environment limits the choice of software to that supported by the

Java Sun SPOT platform, TimePredict is implemented in a slightly restricted subset of the Java

programming language, known as the Connected Limited Device Configuration v1.1 (CLDC)

for Java Micro Edition (ME) [Smith, 2007]. This framework specifies a basic set of functions

supporting a reduced set of APIs compared to the Java Standard Edition (SE). Specifically,

common libraries such as those dealing with user interfaces and graphics are omitted, along

with more specialized functionality such as reflection and user-defined class loaders. The latter

two libraries are especially missed, since they play a key role in several Java-based dynamically-

adaptable frameworks [Fritsch and Clarke, 2008] [Keeney and Cahill, 2003]. However, despite

the lack of user-definable class loaders, the Sun SPOT motes and the Java ME APIs provide

some very useful functions common to mobile phones and embedded PCs [Arseneau et al., 2006]

117



- over-the-air (OTA) software deployment, suites to encapsulate and compress standard Java

class files as well as a remote O&M interface.

The functionality available within the Sun SPOT APIs permits a form of software adaptation,

based on pushing new functionality to the mote from a server using an associated base-station.

Due to the lack of reflection or bespoke class loaders within the Squawk JVM, modifications to the

software must be composed remotely, compiled and then deployed to the mote with the assistance

of an external Adaptation Server, using the available OTA deployment functionality. Although

this restricts software adaptation to a form of on-request push deployment, the software running

on the mote may still be considered as being dynamically-adaptable, since the determination

of when and what changes to make to the system are performed locally and relayed to the

Adaptation Server for implementation.

This push adaptation requires the Adaptation Server to automatically compose, compile

and deploy Java class files, as well as maintain a set of alternate functional components to be

deployed when requested by the mote. For the purposes of this work, a set of inter-changeable

configurations of the software are used to modify the functionality (and timing behaviour) of

the Java Sun SPOT mote during run-time. Although the Squawk JVM supports a type of

re-deployable Java thread known as an Isolate, the various configurations of the Sun SPOT

software composed by the Adaptation Server are compiled as MIDlets, formed from a suite of

compressed Java class files.

4.2.1 Timing Measurement

The actual timing measurement process underlying the entire approach is provided through ded-

icated timing hardware on the Sun SPOT motes, using sub-millisecond accurate time-stamping.

Where the expected timing behaviour of the software is very large (i.e., several seconds in dura-

tion), this time-stamping is performed using the java.util.Date library. Although the target

software being measured can be as fine-grained as a single line of code, it is more typical (and in-

formative) to evaluate a more detailed software function, that can provide a better representation

of the timeliness of the software as a whole.

The TimingListener interface, described in Figure 4.8, outlines two functions to measure

the execution time of an identified code-segment, function or class within the target software.

The timerStart() and timerStop() functions are used as time-stamps, with the TimingEvent

118



class providing functionality to measure the intervening period between the initial and final time-

stamp.

public interface TimingListener

{

public void timerStart(TimingEvent event);

public void timerStop(TimingEvent event);

}

Fig. 4.8: TimingListener interface.

The standard Java timing measurement functionality uses the java.util.Date library, which

can return the number of milliseconds elapsed since mid-night on the 1st January 1970. A Date

object can be created as a time-stamp either side of a target software function, and the elapsed

time calculated by finding the difference between each time-stamp. Calls to the getTime() func-

tion within the Date object return a long value giving the elapsed time. More accurate timing

measurements can be created using the dedicated timing hardware on the Sun SPOT mote. The

function calls used to initialize and use AT91 timer are illustrated in Figure 4.9. A counter

is used to measure the number of ticks recorded by the timer, and the elapsed time can then

be calculated by multiplying this value by the time of each tick. The function being measured

is encapsulated by two instructions to start and to stop the timer. When the elapsed time is

calculated, the value must be divided by 1, 000 to provide the time in milliseconds rather than

microseconds (µSecs).

4.2.1.1 Adding Timing Measurements

The average-case data structure is a simple one-dimensional array, and is used to store each

new timing measurement produced within the system. However, the array has a pre-determined

capacity, to limit the memory overhead and computational workload placed on the system. Once

the ACET array has been filled, each new timing measurement added to the array progressively

replaces the oldest remaining measurement. The capacity of this array is determined by the

number of measurements required to fit the smoothing parameters for the ES model. These

119



int counter;

IAT91_TC timer = Spot.getInstance().getAT91_TC(0);

//Set the slow clock

timer.configure(TimerCounterBits.TC_CAPT | TimerCounterBits.TC_CLKS_SLCK);

timer.enableAndReset(); //Start the timer

//Execute the target software function

myFunction();

counter = timer.counter(); //Find the elapsed time

timer.disable(); //Stop the timer

//Calculate the time in milliseconds

double timeInterval = ((counter * 30.5176)/1000.0);

Fig. 4.9: Using the AT91 timing functionality.

smoothing parameters are fitted by generating estimates for the previous n measurements, and

measuring the divergence of this estimate from the subsequent timing performance of the soft-

ware, i.e., the estimation error. A good fit for the ES model parameters would be values that

minimize this error, and offer the best possibility of providing an accurate estimate of likely

future timing behaviour. Conversely, the more measurements that are included in this analy-

sis, the greater the processing and memory usage on the underlying system. Relatively shorter

lag lengths introduce fewer terms into the resulting timing analysis and require less processing,

but can result in less accurate timing estimates. The default setting for the lag length within

TimePredict is 50, so the ACET array maintains an array of the same size. Timing data is added

to the array in order of occurrence, since the ES average-case model accords more relevance to

more recent timing data when producing a bounded ACET estimate. Each timing measurement

is recorded as a double value, representing the timing in milliseconds, regardless of the clock

resolution of the underlying system. Algorithm 1 describes the addition of new timing measure-

ments (t) to the ACET array, with the index of the oldest element within the array (i) used to

determine the element to be replaced with the next timing measurement. Initially, the size and

index of the array are set to zero, and the capacity to the default lag length of 50.

The worst-case data structure is slightly different, in that there is an emphasis on more

120



Algorithm 1 Adding timing measurements to ACET array
Require: t ≥ 0, and initially that size = 0, capacity > 0, i = 0

Ensure: Array retains order-of-occurrence, from oldest (i) to newest (i− 1)

if (size < capacity) then

array[i] := t

if ((i+ 1) = capacity) then

i := 0, size := capacity

else

i := i+ 1, size := size+ 1

else

array[i] := t

if ((i+ 1) = capacity) then

i := 0

else

i := i+ 1

extreme timing measurements over more recent observations of the system. Algorithm 2 describes

the addition of worst-case timing measurements to this data structure within the WCETData class.

An integer array is used to create a probability density function (in effect a frequency distribution)

of the timing measurements recorded thus far, over a restricted range of values. Whereas the

size of the array represents the range of timing measurements recorded within the system, each

integer element within the array represents the number of times a particular measurement, or

range of measurements, have been observed. Since only the most extreme timing measurements

are useful within any worst-case analysis, and since the observed worst-case timing values may

change during execution, the WCET array can dynamically shift elements when more extreme

timing values are encountered. The default array size is 100, with an initial interval of 1ms, so

that each element within the array represents a single millisecond leading up to the observed

maximum execution time. In effect, the bounds on the array size are set by the range of potential

timing measurements encountered during execution, with the initial assumption being that the

worst-case timing behaviour will be clustered within a 100ms interval. If this is insufficient, the

interval for each element within the array can be increased, to encompass a greater range of

timing measurements.

121



Algorithm 2 Adding timing measurements to WCET array
Require: t ≥ 0, and initially that size = 0 and capacity > 0

Ensure: Array records the frequency of values from tmax−size to tmax

if (t ≥ min and t ≤ max) then

i := getIndex(t)

array[i] := array[i] + 1

else

if (t > max) then

max := t

min := (t−max) +min

if (|max−min| < capacity) then

resizeArray(max−min)

else

shiftArrayRight(t−max)

array[imax] := 1

4.2.2 Algorithm Optimizations

The predictive algorithms used within TimePredict can prove computationally intensive for

resource-constrained devices if not implemented in an optimal manner. These algorithms, espe-

cially within the GEVModel and ESModel classes, use recursive functions to efficiently fit and test

the various statistical distributions (and smoothing parameters) to model the underlying data.

For the GEV models that contain a number of unknown parameters, recursive functions provide

a divide-and-conquer approach towards the estimating the distribution parameters that provide

the best fit for the underlying timing data.

The initial step for fitting the worst-case models within the GEVModel class, is to scale the

GEV/GDP distribution until it matches the cumulative frequency distribution of the data. For

all distributions except the Gumbel distribution, a further step is required, to adjust an addi-

tional parameter (α) to find the best fitting shape for the distribution. A recursive function,

called fitAlpha, is used to progressively narrow the likely range of the shape parameter, and is

illustrated in Algorithm 3. The getFit function described in Algorithm 3 is the fitness function

for the distribution, and returns a numeric value that converges to 0 the closer the distribution

fits the data. The estimated value for alpha (α̂) is the result of fitting the distribution using the

initial range described from αmin to αmax. This initial range is progressively halved until it is

less than a pre-defined initial value specified by αinc. The closer this αinc value is to 0 the more

122



Algorithm 3 Recursive parameter estimation for worst-case statistical models.
Require: 0 ≤ α̂ ≤ αmax, and αinc > 0.0

Ensure: α̂ provides the best fit for the available data.

if (|αmax − αmin| ≤ αinc) then

α̂ := (αmax − αmin)/2

return (α̂)

else

αlow := (αmin + α̂)/2

αhigh := (α̂+ αmax)/2

//Assumes the getFit function returns a numeric value

if getFit(αlow) < getFit(αhigh) then

//Recursively call the function again with lower bounds

return fitAlpha(αmin, α̂)

else

//Recursively call the function again with higher bounds

return fitAlpha(α̂, αmax)

iterations of the recursive fitAlpha function are required to find the best fit for the α̂ parameter.

Similarly, the smoothing parameters associated with the ES model must be continuously re-

fitted at run-time to ensure the resulting average-case estimate closely matches the actual timing

behaviour of the software. Similar to the algorithm used in the GEVModel class, a recursive

algorithm is used within the ESModel class to find a close approximation of the optimal smoothing

parameters α and β for the predictive model (see Equation 3.5 in the previous chapter).

Algorithm 4 Recursive estimation function for the ES model smoothing parameters.
Require: 0 ≤ αmin ≤ αmax, and αinc > 0.0

Ensure: (αmax + αmin)/2 provides the best approximation for the smoothing parameter α.

while (αmax − αmin > αinc) do

pivot = (αmax + αmin)/2

α1 = (pivot+αmin)/2

α2 = (pivot+αmax)/2

if (getSumSquares(α1) < getSumSquares(α2) ) then

αmax = pivot

fitAlpha(αmax, αmin)

else

αmin = pivot

fitAlpha(αmax, αmin)

123



Algorithm 4 describes the operation of the recursive fitAlpha function within the ESModel

class. This function starts with a maximum and minimum range for the parameter being es-

timated, in this case α, and recursively reduces this range until it is less than or equal to a

threshold value specified by αinc. A similar function is also included in the ESModel class, with

both calculating the sum of the squared difference between previous measurements, and iterative

estimates taken from various ES models defined by α1 and α2.

4.2.3 Model Validation

A large number of subtle factors can affect the timing behaviour of software, including system

load levels, resource contention issues, user interrupts, hardware or software errors, CPU caching

policies, CPU branch prediction, memory availability as well as the software execution history.

The complex interaction between these factors can result in seemingly random perturbations in

the timing behaviour of software, and can occasionally induce timing delays in even very basic

software functions. Assessing the predictive accuracy and precision of the various forecasting

methods used within TimePredict requires on-going testing, both to avoid introducing unwanted

errors into the codebase, as well as validating the functionality of the existing software. To

support the implementation of the various predictive models, a test framework is required that

can generate representative time series data (e.g., the execution times of different types of software

functions), that can in turn be used to test the performance of the predictive models used in

TimePredict.

Typically, measurement-based timing analysis approaches validate their predictive models

against basic software functions executed under ideal circumstances [Edgar, 2002] [Hansen et al.,

2009]. However, the changeability inherent within dynamically adaptable software systems would

be difficult to re-create, unless the software contained an inherent variability that approximated

the type of changes in timing behaviour likely to occur within dynamically-adaptable systems. A

series of representative measurements, using time series data similar to what would be expected

within the execution times of dynamically-adaptable systems, would provide an appropriate

test framework for the models. Although the worst-case and average-case models used within

TimePredict have been designed for run-time operation, a series of previously recorded timing

measurements could provide a simulated run-time environment, if applied in the same order as

they were recorded. In this way, a test framework based on previously recorded time series data

124



offers a limitless number of ’run-time’ timing measurements, and allows testing against software

timing behaviours that would be difficult to re-create through the measurement of a live system.

By iterating through the measurements off-line, the performance of each of the various predictive

models can be examined in greater detail than what would be possible executing on a live system.

Also, since the test timing measurements are generated in advance, and tested afterwards without

the real-time restrictions of a live system, the implementation of the TimePredict approach can

be assessed independently of the underlying hardware, with a user-defined interval between

consecutive timing measurements that permits debugging and code analysis.

The software timing measurements used to guide the implementation of TimePredict are taken

from the recorded execution times of a software benchmark suite, running on a Java Sun SPOT

mote. The benchmarks used include some standard functions, such as matrix multiplication

[Arndt et al., 2009] and prime number evaluation, as well as some non-standard benchmarks

used to assess the performance of the I/O functions, memory allocation and garbage collection

within an embedded system.

• A matrix multiplication benchmark.

• Prime number benchmark.

• I/O benchmark function.

• Memory assignment benchmark.

The matrix multiplication benchmark multiplies two square matrices of a specified size, with

matrices of size n requiring n2 individual multiplication operations. The prime number bench-

mark counts all the prime numbers that occur between 1 and user-defined upper limit, with

progressively larger upper limits resulting in a linear increase in its execution time. The I/O

benchmark function iterates through each of the I/O pins and on-board sensor boards present

on the Sun SPOT, recording the changes that occur within each. This benchmark evaluates

the speed of the communications bus within the Sun SPOT mote, as well as performance of the

various I/O interrupts used by the system to poll the on-board sensors. By changing the number

of pins/boards polled, the execution time of the benchmark (and the impact on the underlying

system) can be likewise altered. The final benchmark function used is a memory assignment

benchmark, that declares an array of double values within memory, populates this array with

125



random values, and then re-sizes this array to remove all the elements. This benchmark tests

the speed and capacity of the memory resources within the Sun SPOT mote, as well as the

garbage collection function within the JVM that cleans up the deallocated array data after each

iteration. The memory assignment function requires approximately n operations (random value

assignments), where n is the size of the array.

By varying the inputs into these benchmark functions, their resulting execution times within

the Sun SPOT mote can be made to mimic the likely timing behaviour of dynamically-adaptable

software. Typically this timing behaviour consists of extended periods of little variation around

a specific average value, interspersed with sudden changes that increase timing variation and/or

alter the average execution time of the software.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  5000  10000  15000  20000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Benchmark Execution Times

Execution Time

Fig. 4.10: Execution times for the combined software benchmark functions, over 20,000 mea-

surements.

For testing purposes, the benchmark functions execute within a particular configuration for

1,000 iterations, after which their input parameters are randomly altered to values within a

126



pre-defined range. This in turn will change the timing behaviour of the benchmark suite every

1,000 measurements to some previously unseen timing behaviours, mirroring the likely changes

that may occur at run-time within dynamically-adaptable systems. In total, the benchmark

functions were executed over 20 individual configurations, with each configuration comprising

1,000 timing measurements, giving a total validation dataset of 20,000 timing measurements.

This timing behaviour is illustrated in Figure 4.10, and provides a comparable dataset of time

series values that could be expected within a live operating environment.

The 20 configurations used during the execution of the benchmark suite are apparent within

Figure 4.10, where the recorded execution times show changes at regular intervals of 1,000 tim-

ing measurements. Using this time series data as the basis for the implementation testing of

TimePredict, will follow the same kind of performance associated with unanticipated functional

adaptations occurring within the system at run-time. The evaluation of the accuracy and preci-

sion of TimePredict’s estimates, when applied to this dataset, is presented in the next chapter,

however, the analysis of the timing measurements themselves is presented in Table 4.2. This table

shows the break-down of the benchmark time series data both individually, and collectively over

the course of 20,000 measurements. What is immediately apparent is the compact distribution of

the measurements, as indicated by their low inter quartile range (IQR). The inter-quartile range

is a measure of statistical dispersion, calculated as the middle 50% of the data found between the

first and third quartiles, i.e., between the bounds the encompass 25% and 75% of the dataset.

Having a low IQR indicates the variation within the timing measurements is relatively small,

and clustered around a mean value. However, the larger absolute ranges (i.e., the difference

between the recorded maximum and minimum) suggests that the measurements within a single

configuration includes occasional values that are significantly different from the mean. Within

the Sun SPOT motes, occasional calls to the garbage collection function made automatically by

the JVM may be responsible for timing spikes. The garbage collection function is a function

that de-allocates memory structures, and variable no longer in use by the system, and can be

called by the user (e.g., System.gc()), or more typically is invoked by the JVM. Similarly, other

high-priority system tasks related to hardware interrupts may occasionally interfere with more

normal processing on the CPU, and bring about similar jumps in timing behaviour. Other,

more systematic ‘steps’ or ‘jumps’ in the data occur when the benchmark suite is reconfigured

after 1,000 iterations. These can be identified as they occur at more regular intervals and are

127



illustrated in the range of the box plots within Figure 4.11.

Config. Min (ms) Mean (ms) Max (ms) Range (ms) Q1 Q3 IQR

1 283 283.727 300 17 283 284 1

2 284 285.192 336 52 285 285 0

3 335 335.213 345 10 335 335 0

4 283 330.172 346 63 337 337 0

5 283 284.028 294 11 284 284 0

6 285 291.778 343 58 285 285 0

7 335 335.372 345 10 335 335 0

8 337 389.492 741 404 337 337 0

9 728 730.749 743 15 730 731 1

10 731 733.498 746 15 733 734 1

11 730 731.812 743 13 731 732 1

12 388 687.318 745 357 732 733 1

13 387 388.348 398 11 388 388 0

14 389 396.512 448 59 389 390 1

15 439 440.309 452 13 440 440 0

16 441 494.453 847 406 442 442 0

17 834 836.534 848 14 836 837 1

18 835 837.921 852 17 837 838 1

19 833 842.314 898 65 834 836 2

20 887 888.786 900 13 888 889 1

Overall 502.35 527.1764 583.5 81.15 523.05 523.6 0.55

Table 4.2: Execution times of the software benchmark suite, over 20 configurations.

The box plots in Figure 4.11 describe the same summary data presented in Table 4.2. The

black lines within the data represent the means, with the larger thin lines describing the range

(minimum and maximum values) for each configuration within the dataset. Although non-

existent or too small to be included in this figure are the IQR values, which are generally within

one millisecond either side of the mean value. By comparing the box plots to Figure 4.10

128



 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  5  10  15  20

E
xe

cu
tio

n 
T

im
e 

(m
s)

Benchmark Configuration

Inter−Quartile Range
Mean Timing

Fig. 4.11: Boxplot showing the measurements taken of the software benchmark functions, across

each of the 20 recorded configurations.

illustrated previously, we can see that the large range of Configurations 8, 12 and 16 can be

ascribed to the dramatic change in timing behaviour from the previous benchmark configuration.

In summary, the off-line time series data recorded from the execution time of four benchmark

functions provides a useful analog for the type of timing behaviour likely to be experienced at

run-time within a dynamically-adaptable embedded system. In the next chapter, the evaluation

of this dataset is carried out in order to demonstrate the applicability of TimePredict’s statisti-

cal methods as forecasting tools, albeit within a virtual operating environment where resource

availability issues, user interrupts or fluctuating system loads cannot occur. Consequently, an

additional assessment is required to fully evaluate TimePredict, so that its performance can be

examined within a live operating environment subject to system resource constraints and other

run-time considerations. The application scenario used to provide the basis for this run-time

analysis is described in the next section, whereas the evaluation of TimePredict using both the

benchmark data, and the run-time data, is presented in the next chapter.

129



4.3 Dynamically-Adaptable Application Scenario

Wireless Sensor Networks (WSNs) are typically composed of a large number of low-cost wirelessly-

enabled sensor devices, that collaborate in order to measure a specific set of physical or envi-

ronmental conditions. The sensor motes can be deployed to a particular environment in an

unplanned manner (i.e., scattered over an area), relying instead on the self-organizing capabili-

ties of each device to establish a radio network, and begin taking and then transmitting sensor

data. However, sensor devices are prone to failure, usually due to the limitations on their power

supply. To cope with unexpected device failures, as well as any resultant changes to the net-

work topology, each device commonly employs broadcast communication to propagate its sensor

data throughout the network. However, rather than flooding the network with raw sensor read-

ings, each device may first perform some local computation on the collected sensor data before

transmitting a fully or partially processed version of the required information [Akyildiz et al.,

2002].

The volatile operating environments typically encountered by WSNs require each sensor mote

to be highly autonomous, capable of executing without supervision for extended periods, and be

able to automatically optimize its behaviour to suit the prevailing operating conditions. When

deployed within harsh or dangerous environments, the ability to reconfigure the mote software

at run-time, as well as remotely deploy new functionality when needed, avoids the difficult task

of gaining physical access to the device in order to implement the desired software changes

[Barrenetxea et al., 2008]. However, adaptations to the functionality on the sensor mote must be

configured to optimize its performance for the current local operating conditions, without overly

taxing the limited resources on the device, or degrading its quality of service in reporting specific

environmental conditions. As more potential software configurations are made available, and the

suitability of each configuration becomes limited to a very specific set of operating conditions,

the optimal configuration for the system may only be selected at run-time in response to changes

detected in the operating environment. To maintain a previously agreed QoS, each sensor mote

must continuously evaluate its performance, including its timing behaviour, to identify the point

at which functional adaptations may be required to optimize the system.

In order to illustrate the performance of TimePredict, as well as emphasize its suitability

for use within resource-constrained devices, the next section describes the analysis-driven re-

configuration of a dynamically-adaptable wireless sensor mote. Using the run-time estimates

130



provided by TimePredict, the dynamically-adaptable sensor device can select a software config-

uration so as to maintain a specified QoS, despite unanticipated variation within its operating

environment. Since the deployment of a large-scale WSN is impractical as well as unnecessary

in order to illustrate the performance of TimePredict, the application scenario described in the

next section presents a small-scale WSN sufficient to evaluate the accuracy, precision and system

impact of TimePredict on a single device. Although this scenario only considers the timeliness

of dynamically-adaptable software running on a single sensor node, it is envisaged that in a real-

world environment, many dynamically-adaptable motes are available as part of a larger WSN,

each adapting its functionality to exploit changes in the local operating conditions.

4.3.1 Experimental Setup

The small-scale WSN used to evaluate the performance of TimePredict consists of two nodes,

a Java Sun SPOT device that fulfills the role of a dynamically-adaptable sensor mote, and a

network-connected Adaptation Server that provides reconfiguration support and logging func-

tionality. As illustrated in Figure 4.12, TimePredict is deployed on the sensor mote, and used to

furnish timing estimates as inputs into an on-going software evaluation and adaptation process.

This adaptation process is controlled by a dedicated Adaptation Manager function executing on

the sensor mote. When the execution time of the software is deemed to have exceeded a specified

threshold, the Adaptation Manager initiates an adaptation action to replace the current con-

figuration of the system with a more suitable alternative. However, since neither the standard

Java reflection APIs nor any user-definable class loaders are supported by the JVM on the mote,

software adaptations must be pushed to the device using the Over-The-Air (OTA) deployment

functionality available in the Sun SPOT SDK. An Adaptation Server is used to deploy new

software to the Sun SPOT, in addition to providing a server-side configuration repository, and

remote logging functionality. While the actual OTA deployment is performed by the Adaptation

Server, the initiation and selection of adaptations is controlled by the Adaptation Manager on

the mote. To avoid unnecessary memory usage logging performance data within the mote, the

timing estimates generated by TimePredict are recorded on the Adaptation Server, and stored

for later off-line evaluation of TimePredict’s performance. Wireless communication between the

Sun SPOT sensor and the Adaptation Server is supported through ZigBee (as described earlier

in Section 4.1.2.1). Both sensor data and logging information are broadcast using a buffered

131



data-stream connection to ensure the correct in-order delivery of messages to the server.

SensorConfig1

Comms

TimePredict

Thread

Thread

Sun SPOT Mote

Adaptation Server

Comms

Thread

AdaptationManager

SensorConfig2

OTADeploy

Thread

SensorConfigN

ZigBee
(802.15.4 radio)

Thread

Logging

Fig. 4.12: Experimental setup with Sun SPOT mote and Adaptation Server.

The Sun SPOT mote employed as the wireless sensor device uses the latest version of the

Sun SPOT SDK (v5.0 RED). The application development environment for the Sun SPOT

motes (and the Adaptation Server) is provided by Java NetBeans version 6.5.1, running on a

Linux-based PC, and enabled with the Java Sun SPOT extensions. The Adaptation Server is

installed on a Dell Inspiron 1750 laptop, running Ubuntu Linux 10.04 (Kernel version 2.6.32-24),

communicating with the Sun SPOT mote via a USB-connected Sun SPOT base-station. The

application running on the Adaptation Server is based on Java Standard Edition version 1.6.0.

To facilitate the run-time deployment of new software configurations to the mote, a system call

132



is made from inside the OTADeploy class running on the Adaptation Server to an Ant build

environment, co-located on the Adaptation Server. Apache Ant is a Java-based build tool, that

is provided by the Sun SPOT SDK to enable OTA software deployment. The version of Ant

running on the Adaptation Server is v1.7.1.

The light, temperature, tilt and acceleration sensors available within the Sun SPOT mote

provide sensor information that can be processed at run-time, and a summary of the collected

data then transmitted to the Adaptation Server. The amount of pre-processing performed, as

well as the size of the collected sensor data, largely determines the timeliness of the application

running on the mote. Where there is little variation within the sensor readings, the mote may

conserve power by transmitting only highly summarized sensor data, accumulated over a longer

period, and analyzed entirely on the mote itself. However, within highly variable operating

environments, a more efficient strategy may be to rapidly broadcast sensor information, while

scaling back the amount of pre-processing performed locally. The time it takes to execute this

sensor analysis function can provide an indication of the suitability of the current configuration

of the software for the prevailing operating conditions. A lengthy analysis process executing

within a highly-variable environment may be too slow to react to important changes within the

sensor data. Conversely, a relatively faster analysis process, executed repeatedly within a stable

operating environment, can needlessly consume power and system resources reporting unchanged

sensor information.

4.3.2 Experimental Goals

The experimental evaluation of TimePredict uses this dynamically-adaptable sensor application

to estimate the timeliness of software running on a resource-constrained device that is subject to

modification at unanticipated periods during run-time. The principal goals of this experiment

are;

1. To illustrate the accuracy and precision of TimePredict in forecasting the execution time

of dynamically-adaptable software.

2. To perform this analysis at run-time on a resource-constrained device.

3. To show that the timing analysis process can be executed without adversely affecting the

underlying system.

133



Although the requirement for dynamic software adaptation is grounded in the specialized

nature of the TimePredict approach, the motivation driving dynamic software adaptation, as

presented in this application scenario, is secondary to the evaluation of the performance of

TimePredict. The impetus behind using a dynamically-adaptable sensor application is to provide

a challenging operating environment to highlight the performance and operational characteristics

of the timing analysis process, rather than offer an ideal use-case for dynamic software adaptation.

The execution time of the sensor processing function on the Sun SPOT mote provides the

timing measurements used by TimePredict. By recording these timing measurements, as well

as the estimates produced from these measurements, the run-time accuracy and precision of

TimePredict can be assessed. To determine the impact of TimePredict on the normal operation

of the software, as well as the added workload it places on the underlying system, a compari-

son is performed between a configuration of the software deployed with TimePredict, and the

same configuration deployed without timing analysis functionality. The system impact due to

TimePredict can be evaluated by measuring the difference in software timeliness, memory usage

and power consumption between these two configurations of the sensor software.

In order to evaluate the practicality of using timing estimates as the basis for an adaptation

process, a number of different configurations of the mote software are described in the next sec-

tion. Each configuration performs a slightly different sensor analysis, so that each configuration

will have a different expected execution time. By comparing the timeliness of the current soft-

ware configuration, to an estimate of its worst-case and average-case behavior, a determination

can be made to adapt the system for a more computationally intensive configuration, or a faster

configuration with less processing overhead.

4.3.3 Application Configurations

Table 4.3 presents sixteen distinct configurations of a dynamically-adaptable sensor mote, with

each configuration of the mote software analysing different sensors, applying different analy-

sis methods, and evaluating a different number of sensor measurements. The configurations

are ranked approximately in the order of their computational complexity, with Configuration 1

offering the most straight-forward sensor analysis, and Configuration 16 the most potentially de-

manding. The table describes the four separate sensors available on the Sun SPOT mote, namely

the light level, temperature (temp.), tilt and acceleration (accel.) sensors. Configurations 1 to 8

134



use only the light and tilt sensors, whereas the remaining configurations include all four sensors

in the analysis process.

Config. No. Sensors Deployed Sensor Analysis Performed Sample Size

L
ig

h
t

T
em

p
.

T
ilt

A
ccel.

1 3 3 Mean 100

2 3 3 Mean & Median 100

3 3 3 Mean, Median & Std. Dev. 100

4 3 3 Mean, Median, Std. Dev. & Correlation 100

5 3 3 Mean 1000

6 3 3 Mean & Median 1000

7 3 3 Mean, Median & Std. Dev. 1000

8 3 3 Mean, Median, Std. Dev. & Correlation 1000

9 3 3 3 3 Mean 100

10 3 3 3 3 Mean & Median 100

11 3 3 3 3 Mean, Median & Std. Dev. 100

12 3 3 3 3 Mean, Median, Std. Dev. & Correlation 100

13 3 3 3 3 Mean 1000

14 3 3 3 3 Mean & Median 1000

15 3 3 3 3 Mean, Median & Std. Dev. 1000

16 3 3 3 3 Mean, Median, Std. Dev. & Correlation 1000

Table 4.3: Configurations of the sensor software.

The various readings taken from the sensors are stored in the Sun SPOT memory, with the

sample size (illustrated in Table 4.3) denoting the number of measurements recorded and used

in the sensor analysis. The larger the sample size, the more sensor measurements that must be

evaluated, and the longer the likely execution time of the analysis function. For the purposes of

this application, two sample sizes are arbitrarily selected, 100 and 1000, to illustrate the effects

of an increased processing overhead on the expected execution time. In addition to varying the

sensors used, as well as the number of measurements collected, different analysis methods are

135



applied to the data to further differentiate the processing overhead (and execution time) of the

various configurations.

The basic configuration of the sensor analysis function consists of a calculation of the mean

value for the collected sensor measurements. The various other software configurations augment

this by evaluating additional statistical properties of the sensor data, including the median sensor

value, the standard deviation of the collected measurements, and correlation of the various sensor

readings. The first three statistical properties are relatively straight-forward, with the fourth,

the correlation function, used to evaluate how the variation within the value of one sensor mirrors

variation in others. For four sensors (i.e., Configurations 9 to 16) a total of six correlation values

are derived, i.e.,

• Light vs. Temperature

• Acceleration vs. Tilt

• Temperature vs. Acceleration

• Light vs. Tilt

• Acceleration vs. Light

• Tilt vs. Temperature

The correlation between the tilt and the acceleration of the mote is omitted, since the two

sensor readings are not independent, i.e., a change in tilt will register as a similar change in the

acceleration of the mote.

4.3.3.1 Normal Operation

Each software configuration will need to be executed multiple times both to provide a set of

timing measurements for TimePredict, as well as to evaluation the impact of the timing analysis

on the underlying system. The expected timeliness of the software is principal driver for the

adaptation process. However, the subtle factors that influence software timeliness are not easily

anticipated, e.g., memory usage, concurrency issues and garbage collection, with a result that

the interval between consecutive adaptations cannot be determined with any great accuracy. For

the purposes of this experiment, and to ensure that adaptations take place, the timing threshold

used by the Adaptation Manager can be set to an artificial level after a specified number of

iterations, to ensure an adaptation is triggered, and a new configuration of the system deployed.

For each configuration of the sensor analysis software, the Adaptation Manager maintains

a high and low timing threshold. The high timing threshold is used to indicate when the next

136



(more computationally intensive) configuration of the software may be safely deployed. The low

timing threshold denotes the minimum required execution time for the currently deployed soft-

ware, signalling to the Adaptation Manager when a less processor intensive configuration should

be introduced. The timing estimates provided by TimePredict are input into the Adaptation

Manager, and compared against these threshold values to initiate a particular adaptation action.

The adaptation plan for the dynamically-adaptable sensor mote starts with the mote deployed

and executing Configuration 1 of the software. After a set number of iterations of each config-

uration, the Adaptation Manager progressively adapts the software through each configuration

in turn, until Configuration 16 is reached. This adaptation plan represents the behaviour of a

dynamically-adaptable sensor mote operating in a progressively more stable operating environ-

ment, i.e., continually updating its functionality to provide further analysis of the available sensor

information. As the adaptations introduce more computationally demanding configurations, the

timing behaviour of consecutive configurations of the software should be markedly different, and

suited towards the reactive run-time predictive models found within the TimePredict approach.

The execution of this adaptation plan can be summarized as,

1. The mote is initially deployed with Configuration 1 of the software, including the TimePre-

dict functionality.

2. A discovery protocol is first executed to find the Adaptation Server and open a connection

to transmit sensor analysis and logging data.

3. The mote begins collecting sensor measurements, performing an analysis on these readings

and broadcasting the results to the Adaptation Manager.

4. After each call to the sensor analysis function, its execution time is measured and TimePre-

dict updated. The timing estimates for the software are refreshed, and forwarded to the

Adaptation Manager as well as broadcast to the server for logging.

5. After a specified number of iterations, the Adaptation Manager adjusts its timing threshold

so that the TimePredict estimates trigger an adaptation action. Alternatively, the Adapta-

tion Manager can continue execution until the execution time of the software exceeds this

threshold by itself, however the interval between adaptation actions being called would be

unknown.

137



6. An adaptation request is transmitted to the Adaptation Server, which deploys the required

configuration of the software, and restarts the mote. The discovery protocol re-establishes

communication, and the execution continues with an updated sensor analysis function.

The processing and timing analysis periods for the various configurations of the software

running on the mote are illustrated in Figure 4.13. Once the sensor data has been processed, a

response is sent to the Adaptation Server, and a fresh timing measurement is added to TimePre-

dict. The WCET and ACET bounds are then re-calculated, and forwarded to the Adaptation

Manager within the Sun SPOT, and transmitted as log data to be stored on the Adaptation

Server.

Adaptation
Server

Sun SPOT
mote

Discovery Ack

Discovery Request

  Sensor
  Processing 
  Time

    TimePredict Analysis
    and Adaptation Selection

Sensor Data Response

Time  

Timing Log Data

Fig. 4.13: Execution order during normal operation.

Assuming the updated timing estimates are within a pre-defined threshold, e.g., the WCET

bound is less that the threshold value maintained within the Adaptation Manager, the config-

uration of the software remains the same. However, if the Adaptation Manager determines the

functionality currently deployed on the mote is non-optimal, an adaptation request is then made

to the Adaptation Server. Figure 4.14 illustrates the initiation of an adaptation request from the

mote, and the deployment of a new configuration of the software from the Adaptation Server.

138



Adaptation
Server

Sun SPOT
mote

  Sensor
  Processing 
  Time

    TimePredict Analysis
    and Adaptation Selection

Sensor Data Response

Time  

OTA Deployment

Adaptation Request

Target Configuration  
Generation & Compilation  

Waiting Period   
(if required)   

More Sensor Data
Responses

Restart as New Configuration

Fig. 4.14: Adaptation request and software deployment.

The Adaptation Server must compose and compile the various Java files locally, and then

deploy the resulting bytecode MIDlet to the mote, using the OTA deployment functionality within

the Sun SPOT SDK. Up to eight separate MIDlets can be deployed to the mote, however only one

is executing at any one time. The Adaptation Server deploys the new software configuration in

parallel with the existing (and still executing) configuration, restarting the mote when conditions

permit. The reset command is sent from the Adaptation Server, and causes the Sun SPOT mote

to reboot and begin executing the newly deployed configuration of the software. Since the

data connection with the Adaptation Server will have been lost, the communications discovery

protocol must execute again to re-establish the connection, and begin transmitting sensor data.

Although this limited period of down-time is not ideal, it only typically lasts from approximately

2 to 3 seconds. Within a large scale wireless sensor network with many concurrently executing

motes, a small period of downtime to update the functionality of a mote may be much more

preferable to continuing execution with a poorly performing sensor application.

139



4.4 Summary

This chapter has described the implementation of the TimePredict approach, using the scenario of

a dynamically-adaptable sensor application executing on a resource-constrained Java Sun SPOT

mote. The primary aim of this scenario is not to demonstrate any method of dynamically-

adapting software, but facilitate the analysis of a run-time timing analysis process executing on

a resource-constrained device. Since the Sun SPOT sensor application described in this scenario

can change its functionality at run-time, and since the current configuration of this software is

determined through forecasts of its timing behaviour, the TimePredict approach can provide the

optimization function within each mote to guide adaptation selection.

The implementation of the various predictive models used within TimePredict was outlined

in this chapter, and an initial evaluation of their performance using a test framework was de-

scribed. Lastly, the role of the timing estimates as feedback into the adaptation process was

described, and an experimental scenario presented to determine the accuracy and overhead of

TimePredict as a measurement-based timing analysis method for dynamically-adaptable software

systems. The next chapter describes this evaluation process, and analyzes the various operational

characteristics of the TimePredict approach.

140



Chapter 5

Evaluation

Exitus acta probat.

The result justifies the deed.

Ovid (Publius Ovidius Naso)

The use of TimePredict within a dynamically-adaptable wireless sensor mote, provides a means of

evaluating the accuracy and precision of timing estimates generated within a highly restricted,

yet functionally variable operating environment. As well as assessing predictive performance,

this scenario offers an appraisal of the general suitability of reactive measurement-based timing

analysis as a forecasting method within resource-constrained and embedded systems. Both the

functional and non-functional behaviour of TimePredict must be closely examined, since a very

precise or highly accurate predictive process is insufficient if it is also excessively demanding of

the underlying system resources, or it fails to cope with the intrinsic variability implicit within

dynamically-adaptable software. The evaluation of the TimePredict approach, presented in this

chapter, analyzes its capabilities as a predictive method, its impact on the target operating

environment, and its possible application as a feedback mechanism into a run-time adaptation

selection process. This evaluation includes,

1. A determination of the overall predictive performance of TimePredict, executing on a

dynamically-adaptable sensor mote.

2. An assessment of the impact of TimePredict on the operation of the underlying system,

141



and its use of the limited system resources.

3. An examination of the potential of timing estimates to be used as feedback into the adap-

tation selection process.

4. An evaluation of the effects of TimePredict model parameters on forecasting accuracy and

precision, using simulated timing measurements.

The performance of TimePredict can be described as a function of the accuracy and precision

of its estimates, its efficiency in the use of the available system resources and its impact on the

normal execution-time performance of the software. Ideally, a timing analysis process would

correctly forecast the worst-case and average-case timing behaviour of the software, with a high-

level of precision, and without impacting normal operations or consuming any system resources.

However, in practice, a very high-level of predictive accuracy is not possible without poor overall

precision, since the timeliness of software can vary somewhat randomly, under the influence of

many subtle factors including I/O interrupts, hardware failures, networking issues and contention

for shared system resources. In common with other software tasks executing on a single processor

system, TimePredict must make some demands of the limited processing and memory storage

capabilities provided by the target hardware platform, in this case a Java Sun SPOT mote. The

interleaving of analysis instructions on the processor, or the use of discrete blocks of memory

within the system, can disturb (however slightly) the usual timing behaviour of the software

being measured.

The remainder of this chapter presents an evaluation of the predictive performance of TimePre-

dict, and its impact on a dynamically-adaptable sensor analysis function executing on a live Java

Sun SPOT mote. The timing estimates generated for each of the 16 potential configurations

of the sensor function are analyzed, and their overall accuracy and precision described. These

timing estimates are then correlated against the range and variation of execution times within

each configuration of the system. The overhead of TimePredict, both in terms of memory usage

and perturbations on normal software operation is examined and a number of statistical analysis

techniques applied in order to reveal the extent of the impact on the underlying system. These

statistical analysis techniques are described in the next section, and are also summarized in the

Glossary. The execution time of the TimePredict analysis function itself is assessed, and the

effects of its ongoing execution are evaluated with respect to the power consumption and mem-

ory utilisation on the Sun SPOT mote. Additional analysis of the operation and performance

142



of TimePredict is described, with an evaluation of the effects of different TimePredict settings

(e.g., lag length and array size) on the accuracy and precision of timing estimates, using the four

simulated software timing distributions previously introduced in the Chapter 4.

Claimed Contribution Supporting Evaluation

Operate within a resource-constrained embed-

ded device.

Evaluation of memory consumption, power

consumption and processing overhead.

Limit the impact on the system due to the

timing analysis.

Assessment of the memory and processing

overhead both with and without TimePredict

deployed to the mote.

Accurate and precise estimates of software

timeliness.

Evaluation of lag length/array sizes on accu-

racy and precision, and their impact on per-

formance.

Accuracy and precision only slightly lower

than what could be achieved using a detailed

off-line analysis.

Comparison of off-line generated timing esti-

mates against run-time generated equivalents

within TimePredict.

Timing feedback provides actionable informa-

tion to assist the software adaptation process.

Analysis of timing behaviour within the over-

all scenario.

Table 5.1: Summary of the expected contribution matched to particular evaluations.

The claimed contributions of TimePredict as part of a dynamically-adaptable system are outlined

on the left of Table 5.1, and matched with evaluations presented later in this chapter, in order to

determine whether the goals of the TimePredict approach have been demonstrably achieved. The

first four contributions can be evaluated numerically to determine the veracity of the claims. The

remaining contribution, on timing feedback, can be evaluated in terms of the overall performance

of TimePredict within a dynamically-adaptable resource-constrained system.

143



5.1 Off-line execution using benchmark measurements.

A set of time series data, described in Section 4.2.3, was recorded to provide the basis for an

off-line evaluation of TimePredict.

ES Model ES Parameters WCET Heuristic GEV Model

Config. Acc. (%) Prec. (ms) α β Acc. (%) Prec. (ms) Acc. (%) Prec. (ms)

1 0.97 3.82 0.128 0.005 1.00 19.34 1.00 18.43

2 0.99 8.58 0.055 0.022 1.00 15.90 1.00 17.61

3 0.86 1.63 0.113 0.006 1.00 11.98 1.00 10.86

4 0.82 16.83 0.097 0.003 1.00 16.18 1.00 17.08

5 0.83 7.54 0.110 0.006 1.00 12.18 1.00 10.16

6 0.91 18.13 0.095 0.021 1.00 11.95 1.00 12.21

7 0.91 2.12 0.108 0.030 1.00 5.04 1.00 3.73

8 0.98 123.48 0.082 0.003 1.00 31.27 1.00 23.20

9 0.92 4.32 0.057 0.007 1.00 22.59 1.00 12.52

10 0.95 9.87 0.061 0.003 1.00 16.26 1.00 13.46

11 0.90 3.43 0.074 0.006 1.00 20.62 1.00 12.19

12 0.84 41.61 0.099 0.003 1.00 60.93 1.00 59.31

13 0.97 4.54 0.051 0.006 1.00 14.14 1.00 10.09

14 0.90 13.79 0.111 0.003 1.00 12.41 1.00 11.60

15 0.96 16.34 0.165 0.101 1.00 10.49 1.00 9.68

16 0.90 36.08 0.103 0.003 1.00 36.61 1.00 26.63

17 0.95 7.25 0.063 0.009 1.00 24.91 1.00 12.58

18 0.96 9.76 0.056 0.003 1.00 17.43 1.00 13.46

19 0.87 8.59 0.105 0.008 1.00 25.78 1.00 15.18

20 0.85 131.59 0.061 0.003 1.00 31.15 1.00 17.07

Table 5.2: Off-line analysis performed by TimePredict on benchmark measurements.

Table 5.2 describes the off-line analysis performed on a series of 20 configurations of a software

benchmark suite. Over the 20 benchmark configurations, the ES model displayed an average

accuracy of 91.3%, with an overall precision of 23.4 milliseconds. The smoothing parameters α

144



and β were 0.089 and 0.012 over the 20 configurations, obviously changing as required to match

the various timing behaviours apparent within the 20 benchmark configurations. The worst-

case heuristic bound encapsulated 99.899% of timing measurements over the course of 20,000

estimates, with GEV model showing a slightly superior predictive performance, encapsulating

99.964% of measurements. Similarly, the precision of the GEV model was better than that of

the WCET heuristic, with an average precision of 16.35 milliseconds compared to 20.87 for the

heuristic estimates.

The off-line analysis is useful in that it displays the forecasting performance of the TimePre-

dict approach on its own, by de-coupling the analysis process from the usual operations of the

system. Estimates having an average accuracy of over 90%, given the changeable nature of the

underlying timing behaviour (see Figure 4.10), are sufficient for the type of applications con-

sidered within the scope of this thesis. However, the off-line analysis does not expose one of

the principal threats to validity of the overall TimePredict approach, namely, the effect of any

timing analysis on a resource-constrained operating environment. Embedded software typically

provides a timely, reactive, and predictable response to user inputs as they occur at run-time [Lee,

2002]. The functionality is designed around the restrictions of the operating environment so that

processing unanticipated tasks does not adversely affect normal operations. However, since em-

bedded systems typically contain a single processor, with a small cache size and reduced memory

storage, any timing analysis performed must be interleaved with other operations. Where this

interleaving negatively effects the timeliness of the software, or other non-functional functional

properties of the system (e.g., its memory usage, throughput or reliability), the benefits of ac-

curate estimates may be nullified by the excessive impact the estimation process has on the

software.

Similarly, TimePredict assumes the execution times of each configuration within a dynamically-

adaptable system have a constant variance. In other words, a set of timing measurements taken

immediately after a configuration begins executing are assumed to have the same statistical

properties as another set of measurements from the same configuration recorded much later.

Although TimePredict is evaluated against various configurations with non-uniform timing be-

haviours (e.g., see Configurations 6, 7 and 8 in Appendix A), an extremely variable timing process

may defeat a run-time average-case or worst-case analysis approach. Although TimePredict’s

forecasting methods are predicated upon the assumption of past timing behaviour being indica-

145



tive of future trends, the effects of non-constant variance within timing measurements will affect

the precision more so than the accuracy of any timing estimates. For instance, the GEV/GPD

worst-case estimates, as well as the ES model, can quickly react to large variations in timing

behaviour with similar increases in the WCET or ACET bounds. However, evaluations of various

non-constant timing behaviours, as described later in Sections 5.3.1 and 5.3.2 show TimePredict

is capable of forecasting even these difficult execution time behaviours in an accurate, precise

manner.

5.2 Analysis Setup

For the experiment, a dynamically-adaptable sensor analysis function iterates over a set of sensor

readings, and performs a series of complex calculations on the accumulated sensor data, before

transmitting a summary of the data back to the Adaptation Manager. The execution time of

this sensor analysis function will be determined largely by the amount of sensor information it

records, the type of analysis performed on the data, and the overall sample size of the collected

sensor readings. In addition to altering the timeliness of the software, more system’s resources

will be consumed processing larger datasets, i.e., the arrays used to store sensor information will

be larger and take longer to iterate over. Both the execution time and system usage information

is recorded concurrently with the execution of the sensor analysis function, and transmitted to

the Adaptation Server to be stored in a log file for later analysis.

Since a single iteration of the sensor analysis function does not provide a good measure of

the central tendency of its overall execution time, 2,000 iterations of each configuration of the

software were performed, and their execution times recorded. Ideally, the timing behaviour for

each software configuration should be assessed by evaluating an infinite number of timing mea-

surements. However, for practical purposes, a more limited number of measurements must suffice

instead. The greater the number of measurements recorded, the better will be its representation

of the actual process being evaluated (i.e., software timeliness). For example, 3 or 4 timing

measurements are insufficient to calculate the mean of a particular process with any degree of

confidence. Conversely, recording millions of measurements may be unnecessary if the variation

within each measurement is very small. A sample size of 2,000 measurements allows summary

statistics such as the maximum, minimum and mean values to be approximated to a reasonably

high level of confidence, i.e., the difference between the mean of the recorded timing measure-

146



ments and the actual mean timing behaviour of a particular software configuration is likely to

be be small. Typically, as the sample size increases, the mean of the sample converges to the

mean of a conjectured dataset containing an infinite number of measurements.

The analysis of the combined 32,000 timing measurements is presented in the Section 5.3.1,

using one 2,000 measurement dataset for each of the 16 configurations of the system. As well

as exposing the timeliness of the software, these timing measurements are used as inputs during

run-time into the TimePredict estimation process. In turn, the timing estimates generated by

TimePredict are likewise logged by the Adaptation Server, and are compared against the next

timing measurement to assess their predictive accuracy, as well as their overall precision. The

impact of TimePredict on the underlying system is evaluated off-line in Section 5.3.3, by com-

paring the differences in execution times and resource usage, between two similar configurations

of the software, one deployed with the TimePredict functionality and one deployed without. The

results of this statistical analysis of the TimePredict overhead are presented in Section 5.3.3, and

the various statistical tests used to make this determination are presented in the next section.

5.2.1 Statistical Analysis Tools

The output of the TimePredict testing process consists of a series of numeric measurements,

grouped into several different sets, and analyzed to determine if statistically significant differ-

ences exist between distinct groups of measurements. For example, it can be observed that the

execution time of each configuration of the sensor analysis function is different, however a statis-

tical evaluation must be performed in order to determine the extent of any differences that may

exist between the accuracy and precision of the various predictive models, as well as highlight

the overall impact of TimePredict on the underlying system.

A number of metrics are recorded by the dynamically-adaptable sensor application during

execution and transmitted to the Adaptation Server for logging (due to memory restrictions on

the mote itself). The metrics are recorded in a separate log file for each configuration of the

software, i.e., whenever an adaptation occurs a new log file is created for the next configuration of

the sensor analysis function. The metrics saved in these log files include the execution time of the

sensor analysis function, the bounded worst-case and average-case timing estimates for each of

the predictive models in TimePredict, the remaining charge in the mote battery in milliampere-

hours, and the ratio of free memory to total memory available on the mote. The data within

147



these log files forms the basis for the statistical evaluations described in this chapter, with the

exception of the simulated timing measurements within Section 5.4.2.

The experimental scenario forces an adaptation of the system after 2,000 iterations of the

sensor analysis function, by setting a timing threshold value within the Adaptation Manager

on the mote and thereby initiating the deployment of a new configuration of the software. This

artificial adaptation trigger was required to guarantee a sufficient number of timing measurements

could be gathered, and at the same time ensure that an adaptation would eventually take place.

The somewhat random variation within the execution time of the software makes it difficult

to predict the interval between adaptations using a purely time-based adaptation mechanism.

However, once the software has completed 2,000 iterations and the log data has been collected,

a series of statistical tests can then be applied. The aim of this off-line statistical analysis and

evaluation process, and indeed the aim of this chapter, is to establish the obvious systematic

differences that may exist between the various predictive models used within TimePredict, as

well as the overall impact of the timing analysis process on the system. The comparisons used

to explore the performance of TimePredict, as well as the characteristics of the dynamically-

adaptable sensor application, include;

• An analysis of the differences in the range of execution times and their central tendency

for each configuration of the software.

• An evaluation of the performance of the various predictive models within TimePredict

across each configuration of the software.

• A determination of the relative performance of each predictive model against the number

of timing measurements available within the system.

• A determination of the impact of TimePredict on the operation of the software, and the

performance of the underlying system.

A number of software packages were used to the perform the basic statistical analysis, as well

as the more complex hypothesis testing. A spreadsheet was used to calculate basic descriptive

statistics, e.g., the mean, standard deviation, and quartile values, with more complex statistical

tests carried out using two dedicated statistical software packages, namely, MiniTab 16 [Minitab,

2010] and the R statistics package [Chambers, 2008]. These statistical packages were mostly

148



confined to finding correlations between datasets as well as producing a series of hypothesis

tests, to determine whether a statistically significant difference exists between two groups of

values. The confidence level for the various statistical tests was set to 95%, and the p-value of

each test provided where appropriate. The p-value is the probability of getting the same, or

a more extreme result, assuming that the null hypothesis is true. For the purposes of timing

analysis, the null hypothesis is that no difference exists between two sets of timing measurements.

When there is insufficient evidence to reject the null hypothesis, we must instead accept it, and

conclude there is no discernable data to show a statistically significant difference in the two sets

of measurements [Upton and Cook, 2004].

5.2.1.1 Independent Two-Sample T-Test

The two-sample independent t-test is a statistical test to find whether the means of two sets of

normally-distributed values are statistically different. In addition to assuming normality within

both sets of measurements, each value is presupposed to have the same variance and to be

independent, i.e., the result of a measurement in one set does not depend on any value in the

second set. The power of the t-test is its evaluation of systematic variation between two groups

of measurements, while trying to reduce the effects of random noise due to variation within each

group. However, the result of the t-test will be valid only if its assumptions about the analyzed

data hold true.

5.2.1.2 Non-Parametric Tests

The Mann-Whitney test is a two-sample non-parametric statistical test to determine whether

a statistically-significant difference exists between two sets of measurements [Upton and Cook,

2004]. Non-parametric tests, such as the Mann-Whitney or Mann-Whitney U test, are useful in

that they make no assumptions about the underlying data such as normality, or having similar

means or variances. The null hypothesis for the Mann-Whitney test is that both samples come

from the same population to a 95% level of confidence, i.e., the processes that generated both

datasets were identical. By rejecting the null hypothesis, the test effectively states that there is

a noticeable and significant difference between the measurements within the two datasets.

The Mann-Whitney test is provided in addition to the two distribution-based t-tests, as an

additional assurance in the correctness of the t-test results. Where both the Mann-Whitney non-

149



parametric test, and the model-based t-tests provide a similar evaluation of the underlying data,

the fundamental confidence in this evaluation is enhanced. Within the analysis of the performance

of TimePredict, the Mann-Whitney test is used as an adjunct to the t-tests, especially within

the determination of the extent of the impact of the TimePredict approach on the underlying

system.

5.2.1.3 Correlation Tests

Correlation is a measure of the linear association that may exist between quantitative variables,

such that a change in one variable is matched by a reciprocal change in the other. Correlations

can be positive or negative, i.e., an upward change in one variable being matched by either

an upwards or downwards change in the other. This can be used to indicate the departure

from independence of specific facets of a particular process. Correlation testing is performed by

calculating the Pearson correlation co-efficient for two sets of values [Upton and Cook, 2004],

using either a spreadsheet or a statistical software package. The Pearson correlation coefficient

can range between -1.0 and 1.0, with values typically within the range -0.3 to 0.3 indicating little

or no relationship between the variables.

5.3 TimePredict Evaluation

The evaluation of the performance of TimePredict begins with an evaluation of the intrinsic

timeliness of the software executing on the sensor mote. Timing measurements taken of the

dynamically-adaptable sensor analysis function form the basis of the timing estimates produced

by TimePredict. The various configurations of the sensor software are used to examine the pre-

dictive performance under different timing behaviours, e.g., highly variable timing behaviours

with a large range may be more difficult to accurately predict. The next section (Section 5.3.1)

evaluates the observed timing behaviour of the 16 configurations of the sensor software func-

tion, each deployed with TimePredict, and executing within a live operating environment on a

resource-constrained device.

Once the expected timing behaviour of the software has been established, Section 5.3.2 an-

alyzes the performance of TimePredict, and describes the overall accuracy and precision of its

timing forecasts for each of the configurations of the sensor software. Lastly, Section 5.3.3 eval-

uates the impact of TimePredict on the underlying system, and describes the various statistical

150



analyses performed to assess the overhead in terms of operational interference, memory overhead

and power consumption.

5.3.1 Software Timeliness

Table 5.3 presents a summary of the execution times of each of the 16 configurations of the sensor

analysis application, the configurations having been described previously in Table 4.3.

Config. No. Mean (ms) Min (ms) Max (ms) Range (ms) Q1 Q3 IQR

1 49.72 47 51 4 50 50 0

2 58.58 49 65 16 59 59 0

3 72.92 51 85 34 74 74 0

4 74.57 51 85 34 75 76 1

5 58.72 47 68 21 61 62 1

6 138.37 49 182 133 167 170 3

7 139.14 49 181 132 167 171 4

8 257.06 50 371 321 323 326 3

9 67.93 65 72 7 68 68 0

10 85.58 67 96 29 86 86 0

11 112.78 69 124 55 114 114 0

12 120.37 71 151 80 121 121 0

13 77.82 58 94 36 84 84 0

14 238.25 60 317 257 297 303 6

15 461.14 62 626 564 592 598 6

16 513.31 70 695 625 659 664 5

Table 5.3: Evaluation of the execution time of the sensor analysis function.

This table, in contrast to the previous summary table (Table 4.2) showing the benchmark data,

instead describes the average, minimum, maximum and inter-quartile range of the sensor applica-

tion timing performance, as recorded at run-time. These execution times themselves are further

illustrated within Appendix A. The graphs in this Appendix show the variation within the timing

data of the 16 software configurations summarized in Table 5.3. Although the software continues

151



execution immediately following an adaptation, for the purposes of this evaluation each config-

uration of the software is considered separately. The mean execution time shows the software

timeliness generally increasing as the sensor analysis function becomes more computationally

demanding, i.e., from Configuration 1 to Configuration 16.

The minimum and maximum execution time measurements illustrate the range of potential

timing behaviours. The first and third quartile values are listed as Q1 and Q3 respectively, and

represent the timing measurements that bound 25% and 75% of the measurements respectively.

The inter-quartile range (IQR) is the difference between these quartile values, and is used to

illustrate the level of clustering (or not) within the middle 50% of the recorded timing measure-

ments, with a value of 0.0 representing a highly clustered distribution. Since each configuration

of the software begins execution with no previous sensor measurements available to it, and hence

without any populated data-structures to iterate through, the minimum execution time of each

configuration is roughly similar. However, the minimum execution times presented within Table

5.3 are very highly correlated with the number of sensors used by the analysis function, suggest-

ing that extra sensor functionality adds an immediate additional overhead on the execution time

of a particular configuration of the software. Similarly, the sample size of each software config-

uration shows a strong positive correlation with the mean, maximum, range and inter-quartile

range of the observed timing behaviour for each configuration, i.e., the greater the sample size,

the higher these values tend to be within Table 5.3.

Mean (ms) Min (ms) Max (ms) Range Q1 Q3 IQR

Sensors Used 0.322 0.923 0.303 0.265 0.375 0.302 0.233

Analysis Complexity 0.499 0.259 0.498 0.492 0.526 0.484 0.440

Table 5.4: Correlations of configuration setup with execution time analysis.

Table 5.4 describes the correlation between the parameters used to differentiate the vari-

ous software configurations, and the observed impact these parameters appear to have on the

subsequent timing behaviour, i.e., the correlation coefficients presented in the table hint at the

apparent causes of timing variation between the different configurations of the software. The

correlation coefficients must lie within the range 1.0 to -1.0, with a strong correlation defined as

any value in excess of 0.7 or less than -0.7 and a weak correlation indicated by values between

-0.3 and +0.3. While the values in Table 5.4 have no direct impact on the TimePredict estimates,

152



they may be used to link increases or decreases in predictive performance with an underlying

functional cause, e.g., where more sensors are used within a particular configuration we can ex-

pect its minimum execution time value to be greater. Identifying the expected timeliness of the

each configuration of the software is not important in itself, in so far as it demonstrates that each

configuration of the software has a unique timing behaviour, with a different range of potential

timing values and contrasting levels of clustering within these values. For example, the sample

size used in the sensor analysis, although restricted to a tuple value (100/1000) and therefore

inappropriate to use as a correlation coefficient, can be compared to show its effect on the mean

timing for the various configurations. For example, Configurations 12 and 16 differ only in the

number of sensor measurements they calculate (see Table 4.3 from the previous chapter), yet

the difference in their mean timing values is 392.94ms. In contrast, a similar comparison be-

tween Configurations 4 and 8 yields a difference of 182.49ms. These subtle differences in timing

behaviour are used to test the predictive accuracy and precision of TimePredict, using only run-

time measurements as the basis for the analysis process, i.e., not having any prior knowledge of

the expected timeliness of the software.

The timing differences between the various configurations are somewhat opaque when pre-

sented numerically, but are more readily accessible when illustrated as a box-plot, as shown in

Figure 5.1. This box-plot describes the data in Table 5.3, with the minimum/maximum values

shown as bounded lines, and the inter-quartile range represented as boxes. The mean value is

shown as a black horizontal line, with the median value (not shown) being the mid-point of each

box. The most apparent characteristic within Figure 5.1, is the extended execution time range of

configurations with a large sample size, i.e., configurations 6 to 8, and 14 to 16. The amount of

variation within these configurations also appears to be greater, as is illustrated with the larger

maximum/minimum range of the timing measurements, as well as a higher inter-quartile range.

The differences in both range and clustering are likewise apparent, with configurations 1 to 5,

and 9 to 13 having a very compact range of execution times more clustered about the mean. This

type of stable timing behaviour should prove relatively straight-forward to forecast at run-time,

since the variation inherent within the timing measurements is somewhat more constrained. The

next section describes the performance of TimePredict in estimating the execution times of these

software configurations.

153



 0

 100

 200

 300

 400

 500

 600

 700

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17

E
xe

cu
tio

n 
T

im
e 

(m
s)

Software Config. Num.

Inter−Quartile Range
Mean Timing

Fig. 5.1: Box-plot showing the maximum and inter-quartile range of execution times.

5.3.2 TimePredict Performance

The percentage accuracy of TimePredict can be assessed by determining whether the bounded

ACET and WCET timing estimates encapsulate the execution time of the software. Similarly,

the precision of the estimates can be determined by calculating the difference in milliseconds

between the estimate range and the actual timing measurement. The timing bounds for both

the ACET and WCET estimates move whenever there is variation within the underlying timing

measurement data. As illustrated within Appendix A, the predictive models become more pes-

simistic whenever a previously established ACET/WCET timing bound is violated, leading to

periodic increases or decreases in accuracy and precision during run-time. For the purposes of

this evaluation, the overall accuracy and precision of TimePredict is examined, with the perfor-

mance of each predictive model assessed over the course of 2,000 measurements of 16 separate

software configurations.

Table 5.5 shows the predictive accuracy (Acc.) of TimePredict in percentage terms, across

154



ES Model ES Parameters WCET Heuristic GEV Model

Config. Acc. (%) Prec. (ms) α β Acc. (%) Prec. (ms) Acc. (%) Prec. (ms)

1 93.83 4.29 0.925 0.003 99.73 2.91 100.00 11.58

2 93.38 4.28 0.811 0.001 99.81 11.06 99.91 8.17

3 94.08 5.28 0.939 0.003 98.54 13.45 99.90 10.33

4 93.09 5.25 0.861 0.002 99.01 15.18 99.94 11.42

5 93.69 4.58 0.928 0.002 99.65 10.15 99.85 7.71

6 92.84 5.84 0.805 0.002 96.42 15.26 99.92 14.28

7 92.94 6.08 0.917 0.002 99.48 26.07 99.94 20.13

8 92.46 29.79 0.804 0.002 98.88 86.23 99.83 55.79

9 99.63 2.60 0.910 0.001 99.86 14.98 100.00 11.65

10 99.49 3.03 0.822 0.003 97.73 16.77 99.86 12.04

11 99.66 3.03 0.968 0.001 99.36 14.35 99.80 9.77

12 96.00 12.96 0.943 0.003 99.37 56.20 99.80 32.37

13 99.01 3.66 0.971 0.001 99.63 17.12 99.88 10.47

14 94.61 9.06 0.947 0.003 97.41 27.83 99.65 13.91

15 93.03 14.76 0.883 0.001 99.07 55.61 99.46 18.76

16 91.71 16.80 0.713 0.003 98.55 54.98 98.85 22.38

Table 5.5: TimePredict forecasting accuracy and precision.

the 16 configurations of the software, as well as its precision (Prec.) in milliseconds. Although

the accuracy of the various predictive models is calculated within TimePredict during run-time to

enable ACET/WCET estimate selection, for the purposes of this evaluation an off-line evaluation

is performed on each predictive model using log files (flat text files) containing the execution time

and timing estimate data as tab-delimited columns. The bounded timing estimates provided by

TimePredict are evaluated against the next timing measurement to assess accuracy, with the

WCET estimates providing a single upper bound, and the ACET estimates both an upper and

lower bound. The precision of the WCET estimates is calculated as the absolute millisecond

difference between the measurement and the WCET bound, whereas the ACET precision is

the difference between the upper and the lower bound of the estimate. Although TimePredict

155



maintains an updated run-time record of its predictive performance, the evaluation of both the

accuracy and precision of its estimates was performed off-line, to enable a more detailed statistical

analysis.

 90

 92

 94

 96

 98

 100

 102

 104

Config. 1

Config. 2

Config. 3

Config. 4

Config. 5

Config. 6

Config. 7

Config. 8

Config. 9

Config. 10

Config. 11

Config. 12

Config. 13

Config. 14

Config. 15

Config. 16

E
st

im
at

io
n 

A
cc

ur
ac

y 
(%

)

Software Config. Num.

Accuracy of TimePredict estimates

ES Model
WCET Heuristic

GEV Model

Fig. 5.2: Histogram of the estimation accuracy of TimePredict.

Figure 5.2 illustrates the accuracy of the four predictive models used by TimePredict, applied

within each of the 16 configurations of the sensor software. The worst-case models tend to have

a slightly higher accuracy than their average-case counterparts, due to an increased inherent

pessimism, as well as their reliance on a relatively larger set of timing measurement data to

produce each WCET estimate, i.e., whereas the average-case models only access the previous 50

timing measurements, the GEV model records the frequency distribution for each measurement

generated within the system. The average-case predictive method, namely the ES model, has

an expected accuracy of 95%, with the worst-case models expected to encapsulate 99% of the

software timing measurements. The ES model performs poorly, with only 5 of the 16 configu-

rations meeting this expected accuracy. However, the overall performance is never worse than

91.7% over the course of 2,000 measurements. The strength of the ES model however lies in its

156



ability to provide a timing estimate with only a very limited amount of available timing data,

i.e., immediately following an adaptation to the system. Similar to the average-case estimates,

the model-based worst-case timing estimates prove more accurate than their heuristic-derived

counterparts, but require more timing measurements to generate a worst-case timing estimate.

The GEV method out-performs the WCET heuristic, but only by an average of 0.9% over 32,000

estimates. While the GEV model meets its 99% target accuracy in 15 of the 16 configurations,

it fails to meet this expected accuracy in configuration 16 by a mere 0.15%, or approximately

1 estimate in every 667, a discrepancy within the range that could be expected from random

variation. As with the ACET models, the lower accuracy WCET heuristic is only intended to

provide an interim WCET estimate, until sufficient measurements have been collected to facilitate

GEV-based estimates. However, on its own the WCET heuristic provides an average accuracy of

98.9% over the 16 configurations of the software, while the more accurate GEV model provides

an average accuracy of 99.8%.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Config. 1

Config. 2

Config. 3

Config. 4

Config. 5

Config. 6

Config. 7

Config. 8

Config. 9

Config. 10

Config. 11

Config. 12

Config. 13

Config. 14

Config. 15

Config. 16

E
st

im
at

io
n 

P
re

ci
si

on
 (

m
s)

Software Config. Num.

Precision of TimePredict estimates

ES Model
WCET Heuristic

GEV Model

Fig. 5.3: Histogram of the estimation precision of TimePredict.

Figure 5.3 presents the precision of each of the four predictive models for all 16 configurations

157



of the dynamically-adaptable sensor function. Timing estimates produced for configurations 8,

12, 15 and 16 exhibit the poorest overall precision, with the worst-case forecasting methods typi-

cally providing a more pessimistic (and less precise) overall estimate. Again, the WCET heuristic

method compares unfavourably to the model-based GEV forecasting method within the same

configuration of the software, due primarily to its use of the observed maximum execution time

when calculating the WCET bounds. Although the vertical axis of Figure 5.3 shows the average

precision in milliseconds, the correlation between this precision and the expected timing range

of each configuration must also be considered.

ES Model WCET Heuristic GEV Model

Correlation Acc. Prec. Acc. Prec. Acc. Prec.

Range -0.486 0.702 -0.240 0.724 -0.868 0.442

IQR -0.446 0.531 -0.240 0.560 -0.901 0.229

Table 5.6: Correlation between accuracy/precision and the overall range and IQR.

Table 5.6 presents the correlations between both the accuracy and precision of the forecasting

methods, and the range and inter-quartile range of the various software configurations. This table

summarizes the effects of timing variation on the overall predictive performance of TimePredict,

by relating the columns in Table 5.5 with the Range and IQR values in Table 5.3. This correlation

is important, since it can be used establish how timing variation affects the accuracy and precision

of timing estimates. For example, the range of potential timing measurements appears to be an

important determinant of worst-case accuracy and precision within the GEV model. As the

range of potential timing measurements increases, the probability of the worst-case execution

time begin exposed through repeated measurements decreases, leading to uncertainty about the

extent of the worst-case timing behaviour for the software. Since the GEV model relies on a

relatively large number of timing measurements to generate an estimate, a relatively larger range

effectively dilutes the information that can be obtained from a given number of measurements.

The GEV model shows a strong negative correlation between these ranges and its predictive

accuracy. In effect, as the range of potential execution times increase, the accuracy of the model

decreases. This may be explained by the worst-case timing behaviour being encountered with

less regularity over the course of several thousand timing measurements, if the potential range of

158



timing measurements is very large and the variability between measurements is also high. Since

the GEV model relies on timing measurements to generate estimates, a relatively larger range

within these measurements will require more observations to generate estimates to the same level

of predictive accuracy.

5.3.3 System Impact

The impact of TimePredict on the underlying system can be established through measuring the

performance of two complementary configurations of the software, under similar conditions, and

on the same hardware platform. The two software configurations differ only in being deployed

with or without the TimePredict functionality as part of the overall software package executing

on the mote. By statistically evaluating the difference in the timeliness and memory usage of

both configurations, the effects of the run-time timing analysis on the underlying system may

be discerned, within a stated level of confidence. This statistical estimate for the difference in

execution times as well as memory overheads provides a measure of the overall suitability of

TimePredict for operation within resource-constrained and embedded devices. The next section

introduces the execution time overhead of the TimePredict function itself, with Sections 5.3.3.2

and 5.3.3.3 describing its estimated memory usage and power consumption respectively.

5.3.3.1 Timing Overhead

TimePredict must consume system resources in order to generate estimates, since the actions

of recording timing data, fitting statistical distributions, and performing goodness-of-fit tests

all take up processor cycles and memory. On a single-processor system, this means either the

static scheduling or dynamic weaving of timing analysis instructions with ‘normal’ processing

on the CPU. For the experimental evaluation of TimePredict, the timing analysis was executed

immediately after the execution of the sensor analysis function, in order to minimize the context

switching between the two tasks within the system. However, other factors such as resource

allocation and de-allocation, garbage collection and changes in the execution history, may induce

sympathetic delays within the timing analysis functionality.

Figure 5.4 shows the execution time of the TimePredict function itself, over a period of

2, 000 iterations. Each iteration represents a single call to the TimePredict function to generate

forecasts using all four predictive models available within the system. After each timing estimate

159



is produced, updated measurement data is added to TimePredict, and the function called again.

The execution time of the TimePredict function rises sharply as more data is added to the

ACET and WCET arrays and then largely evens off once these arrays reach their full capacity,

with occasional periods of increased execution times, as well as seemingly periodic timing spikes.

The origin of these timing spikes is unknown, but may be an artifact of the Sun SPOT JVM

performing garbage collection while the timing analysis is taking place, or could be the result of

interference from a system-level periodic task on the mote. An analysis of the correlation between

the execution time and the available memory provided a Pearson correlation coefficient of 0.210,

indicating no relationship exists between the spikes in the execution time of TimePredict and

the memory usage on the mote itself.

 330

 340

 350

 360

 370

 380

 390

 400

 410

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Executions of TimePredict

TimePredict Execution Time

Fig. 5.4: Execution time of the TimePredict functionality on the Sun SPOT mote.

The average execution time for TimePredict, running on a Sun SPOT mote, with all predic-

tive models enabled, is 381ms. The maximum recorded execution time was 406ms over 2,000

iterations of the software, with the minimum value recorded being 335ms. Although multi-

threading is supported on the Sun SPOT motes, the experiment performed the sensor analysis

and timing analysis sequentially within a single thread. Where both the timing analysis and

the ‘normal’ software tasks are separated into different threads, TimePredict can produce an

160



updated timing estimate in approximately 400ms. Although the experiment had TimePredict

produce a constantly updated timing estimate, the more usual trigger for the timing analysis

would be to update the ACET/WCET estimates only when a software timing measurement ex-

ceeds a set threshold. This threshold-triggered analysis is supported within TimePredict in order

to minimize the impact of the timing analysis process, by updating the estimates only when the

timing behaviour of the software has been deemed to have changed significantly.

 330

 340

 350

 360

 370

 380

 390

 400

 410

E
xe

cu
tio

n 
T

im
e 

(m
s)

TimePredict Execution Time

Inter−Quartile Range
Mean Timing

Fig. 5.5: Boxplot showing the execution time performance of TimePredict.

Figure 5.5 describes the range, and inter-quartile range of the execution times of the TimePre-

dict framework. The minimum and maximum values (335ms and 406ms respectively) are indi-

cated in Figure 5.5 by the thin vertical lines, whereas the inter-quartile range (from 380ms to

381ms) describes the bounds within which the middle 50% of the execution times occur. The

small inter-quartile range indicates that the variation within the execution time of the TimePre-

dict function is small, and averages at approximately 381ms. Although the sensor analysis

function and the TimePredict timing analysis are scheduled to execute in such a way as to re-

duce any disturbance to the normal timeliness of the sensor analysis function, the deployment

of TimePredict consumes system memory and processor cycles, and may result in unintentional

perturbations to the normal execution time of the sensor analysis function. Table 5.7 presents

161



some basic descriptive statistics showing the execution time of the sensor analysis function, both

with and without TimePredict deployed.

Sensor Function Exec. Time N Mean (ms) SE Mean StDev

With TimePredict 2000 513.463 4.373 195.662

Without TimePredict 2000 513.376 4.360 195.069

Table 5.7: Sensor analysis timeliness with and without TimePredict.

Table 5.7 shows that the mean, standard error of the mean, and the standard deviation of both

configurations are very similar. Since the difference may be too small to detect using summary

statistics, a number of statistical hypothesis tests can be carried out to establish whether there

exists a statistically significant difference in the means of the two sets of execution time mea-

surements. As introduced in Section 5.2.1, these tests consist of an independent t-test, as well as

a non-parametric Mann-Whitney test. Both of these statistical difference tests starts with the

assumption (null hypothesis) that no difference exists between the two datasets, and then sets

out to prove or disprove this assumption, and thereby accept or reject the null hypothesis.

Table 5.8 presents results of the two statistical tests performed on the timing measurements

of both software configurations, showing the likely difference in the mean execution time of the

sensor analysis function due to TimePredict. These tests calculate a 95% confidence interval for

the difference between the two sets of measurements, as well as the test-statistic (t-value) and the

significance of the test (p-value). A confidence interval describes a bounded range of values that

encapsulates the mean difference between the two sets of measurements, with a 95% probability.

The t-value is the test statistic used to determine whether to accept or reject the null hypothesis,

where the test statistic must exceed a specified critical value to indicate a difference in the two

sets of measurements. For a t-test at a 95% level of confidence this critical value is 1.96 [Lindley

and Scott, 1995]. Since the test statistic of both t-tests is less than this critical value, we have

insufficient evidence to reject the null hypothesis, and can find no statistically significant differ-

ence exists in the timeliness of the two configurations of the software at this level of confidence.

The p-value indicates the probability (0.0 to 1.0) of obtaining a similar test statistic if the null

hypothesis is true. Both p-values are very high, stating that the probability of a similar test

statistic occurring randomly would be approximately 99% and 50% respectively. Typically the

162



null hypothesis is only rejected if the p-value is less than the significance level of the test, i.e.,

0.05. In this test, the p-values of 0.98 and 0.47 are far in excess of this value, thereby reinforcing

the determination that null hypothesis must be accepted - that there is no difference in software

timeliness due to the deployment of TimePredict to the system.

Statistical Test N 95% Conf. Interval T-value p-value

Mann-Whitney 2000 (0.00,1.00) N/a N/a

Independent T-test 2000 (-12.019365, 12.193191) 0.010 0.989

Table 5.8: Statistical tests for any timing interference due to TimePredict.

In addition to the t-value and p-value for the t-test indicating no difference, the 95% con-

fidence interval for the test incorporates the zero value, giving a further indication that no

detectable difference exists. In summary, there is insufficient statistical evidence to suggest a

difference in the execution times of the sensor analysis function when TimePredict is deployed

to the system.

5.3.3.2 Memory Consumption

In addition to measuring the execution time, the unfolding ratio of free memory to total mem-

ory was recorded for both configurations of the sensor analysis software. Similarly, these two

sets of measurements provide memory usage information that can be analyzed statistically to

determine whether any significant differences can be detected when TimePredict is deployed to

the system. As with the execution time analysis in the previous section, the evaluation of the

possible memory overhead incurred by TimePredict is performed by first analysing the basic

descriptive statistics, and then applying hypothesis tests to the underlying data.

Available Memory N Mean (ms) SE Mean StDev

With TimePredict 2000 0.62511 0.00162 0.07239

Without TimePredict 2000 0.64446 0.00102 0.04579

Table 5.9: Memory usage with and without TimePredict.

163



Table 5.9 presents a summary of the ratio of free memory to total memory within both

configurations of the system over the course of 2,000 measurements. Again, one configuration

of the software was deployed with TimePredict and actively calculated timing estimates during

execution, whereas the other configuration contained just the sensor analysis functionality. The

memory usage ranges between 0.0 and 1.0, with 0.0 indicating a system with no available free

memory. The mean values for both configurations in Table 5.9 are somewhat similar, giving an

overall memory consumption of about 35% to 40%. Similarly, the standard errors for the means

(SE Mean) are largely the same, however a slight difference may be perceived in the standard

deviations of the two sets of measurements. This may suggest that there is increased volatility

in memory usage with TimePredict deployed to the Sun SPOT mote.

 55

 60

 65

 70

 75

 80

M
em

or
y 

A
va

ila
bi

lit
y 

(%
)

TimePredict Memory Consumption

Inter−Quartile Range
Mean Timing

Fig. 5.6: Boxplot showing the memory consumption of TimePredict.

Figure 5.6 illustrates the boxplot for the memory consumption of the TimePredict frame-

work. The range and inter-quartile range (IQR) are shown, and present more variation in the

use of system memory than the previous analysis of TimePredict execution times (e.g., Figure

5.5). The greater inter-quartile range indicates that the extent of TimePredict’s use of the avail-

able system memory can vary considerably over time, with the IQR bounds set between 57%

and 69%. However, this memory usage cannot be attributed to TimePredict alone, but include

164



the memory usage for the underlying sensor analysis function also. The difference in memory

consumption ascribed solely to TimePredict is assessed in Table 5.10. In order to determine the

extent of memory usage that can be ascribed to TimePredict, statistical tests were performed to

estimate the probable difference between the means of the two sets of measurements. Again, a

95% confidence interval for the difference in both datasets was generated using the same statis-

tical hypothesis tests. The results of these tests, and their associated 95% confidence intervals,

and are presented in Table 5.10.

Statistical Test N 95% Conf. Interval T-value p-value

Mann-Whitney 2000 (0.05000, 0.04000) N/a N/a

2-Sample T-test 2000 (0.023103, 0.015598) 10.11 0.000

Table 5.10: 95% confidence intervals for memory overhead of TimePredict.

On initial examination, it appears a discernible difference does exist, since the range of

each confidence interval is wholly positive, i.e., the range of the confidence interval does not

encompass negative values or zero. In addition, the independent t-test provide a test statistic

far beyond the critical value required to reject the null hypothesis, the null hypothesis being the

assumption that no difference exists. Similarly, the low p-values provides a further indication

that the probability of these test statistics being arrived at through random chance is very

small. However, a normality test on the two sets of measurements suggests neither dataset is

normally distributed, thus one of the assumptions underlying the t-test may be invalid. This

accords slightly more significance to the result of the Mann-Whitney test, which makes no such

assumptions but also suggests a statistically significant difference exists between the memory

usage of software deployed with TimePredict, and configurations deployed without. Using the

confidence intervals, it can be surmised that the measurements show a difference of between

1.5% to 5% in the usage of the available system memory (4593 kB), or an additional memory

overhead for TimePredict somewhere within the range 69 kB to 230 kB. Within a resource-

limited system, with approximately 65% of its available memory unclaimed during execution,

an additional overhead of 1.5% to 5% to support the operation of TimePredict appears to be

sustainable.

165



5.3.3.3 Power Consumption

The battery within the Sun SPOT mote nominally provides 720 milliampere-hours (mAhr) when

fully charged, meaning that the mote power source can theoretically supply a current of 720

milliamps for a period of one hour before becoming fully discharged. In practice, the power

requirements for typical Sun SPOT operations are much less than this, with the application

developer trying to limit the power consumed by the radio and LEDs, in order to prolong the

operational lifetime of the device on a single charge. The Sun SPOT has a stated current draw

of approximately 104 milliamps, when actively calculating with the radio and sensors enabled,

and a minimum current draw of 24 milliamps in shallow sleep, and 33 microamps in deep sleep

mode, according to the Sun SPOT hardware release notes [Sun, 2009]. This provides an assumed

operational lifetime, under a single battery charge, of between 3 hours and 900 days, depending

on the level of activity within the device.

During the course of the experiment using the dynamically-adaptable sensor application, one

of the parameters logged within the Adaptation Server and broadcast by the Sun SPOT mote

was the remaining batter power in milliampere-hours (mAhr). Unlike the theoretical maximum

charge of 720 mAhr, the repeated charging and discharging of the tested Sun SPOT mote had

degraded the performance of the battery, so that it yielded a maximum battery charge of 713

mAhr. Although the LEDs on the mote were switched off to conserve power, the drain on

the battery was considerable during testing, due to the constant radio communication, and

the complex calculations carried out on the mote. Figure 5.7 illustrates the power consumed

executing a single configuration of the software, over a period of 400 minutes (approximately 7

hours). The power consumed both with and without TimePredict deployed on the mote was the

same, as the software continuously occupies the processor with calculations, and the radio with

transmissions in either case. The level of battery power used by each of the 16 configurations

of the software was also the same, with a Pearson correlation co-efficient of 0.9999 between the

power consumption of each configuration of the system (a coefficient of 1.0 would signifying

completely identical datasets).

As shown in Figure 5.7, the average rate of power consumption while executing a configuration

of the software is 1.74 mAmps per minute, or 104.12 mAmps per hour (matching the current

draw stated by the manufacturer). The power usage was calculated using two configurations of

the software (with/without TimePredict), running on the same Sun SPOT mote as used for the

166



 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  1  2  3  4  5  6  7

B
at

te
ry

 R
em

ai
ni

ng
 (

m
A

hr
)

Run−Time (Hours)

Remaining Battery Power

Fig. 5.7: Battery discharge while running software.

other tests, and operating under ideal conditions, i.e., initially fully-charged, and placed next to

the base-station to minimize radio signal attenuation. An evaluation of the difference between

the two configurations demonstrated no statistically significant difference in power consumption,

since the processor and radio were both in constant use, within each configuration.

Overall, the rate of battery discharge yielded a figure of 6.91 hours as being the expected oper-

ational lifetime of a Sun SPOT mote that is continually measuring, analysing and then reporting

the various on-board sensors (as well as simultaneously performing some timing analysis on the

same process). Although this operational lifetime is very small compared to the operational

expectations within typical WSNs [Akyildiz et al., 2002], a real-world deployment of Sun SPOT

motes would be unlikely to have active sensor analysis on-going at all times, i.e., low-powered

sleep periods would be used to prolong the operational lifetime of the mote, possibly triggered

by periods of reduced variation within sensor readings.

This inherent limitation on the power supply of the mote may provide a motivating reason

for both limited local sensor processing, as well as time-triggered dynamic software adaptation.

In order to conserve batter power, the sensor function may periodically sample the environment,

and then enter a low-powered sleep mode for a pre-determined period. Once enough sensor

167



readings have been collected, the data is analyzed locally, and a summary report transmitted.

If the execution time of the sensor analysis is insufficient within a rapidly changing operating

environment, an exceedance of the established WCET or ACET timing estimates can be used

to trigger an adaptation of the software in order to provide a faster response.

5.4 Off-line Analysis

The experimental scenario provided a number of useful evaluations of the expected accuracy and

operational overhead of TimePredict, testing its performance on a resource-constrained device

within a live operating environment. To further analyze the capabilities of the TimePredict

approach, two additional off-line assessments were considered;

• A comparative analysis of the accuracy and precision of TimePredict against a statically-

derived worst-case and average-case timing estimate, based on the same set of timing

measurement data.

• An analysis of the effects of different lag lengths and array sizes on the predictive perfor-

mance, using a series of simulated timing measurements.

The former analysis evaluates the predictive performance of the TimePredict approach against

an ‘ideal’ timing analysis, performed off-line, with access to pre-existing timing measurement

data, and not subject to the periodic functional adaptations that are typically encountered

within dynamically-adaptable systems. The latter analysis adjusts the internal parameters within

TimePredict, to evaluate the effects of using relatively more or less timing measurement data

to generate timing estimates. The aim of these two evaluations is to establish the efficacy of

TimePredict as an execution-time forecasting method in its own right, as well as determine of

its optimum configuration.

5.4.1 Comparative Off-line Statistical Analysis

In order to compare the predictive performance of TimePredict against an equivalent off-line

timing analysis, the measurements captured during the initial run-time testing process were re-

used as the basis for a static average-case and worst-case timing analysis. The aim of this static

timing analysis was to demonstrate the predictive performance that can be achieved under ideal

168



circumstances, i.e., having a pre-existing set of timing measurements, unlimited time to under-

take the analysis and manual supervision of the overall process. By contrasting the performance

of the TimePredict estimates against off-line generated timing forecasts, the relative accuracy

and precision of the run-time predictive models may be revealed.

Average-Case Worst-Case

Off-line TimePredict Off-line TimePredict

Config. No. Acc. Prec. Acc. Prec. Acc. Prec. Acc. Prec..

(%) (ms) (%) (ms) (%) (ms) (%) (ms)

1 100.00 2.0 99.36 4.15 100.00 0.3 100.00 11.58

2 99.50 3.0 98.91 4.18 100.00 4.2 99.91 8.17

3 100.00 3.0 99.22 5.50 100.00 0.7 99.90 10.33

4 98.00 3.0 99.15 5.67 100.00 7.9 99.96 11.42

5 98.50 3.0 98.87 4.44 100.00 5.1 99.85 7.71

6 97.50 4.0 99.29 7.51 100.00 9.9 99.92 14.28

7 99.50 5.0 98.51 6.54 100.00 10.2 99.98 20.13

8 97.00 38.9 95.10 27.76 99.50 43.4 99.83 55.79

9 100.00 0.0 99.50 2.46 100.00 0.0 100.00 11.65

10 100.00 1.0 99.49 3.14 100.00 1.0 99.86 12.04

11 100.00 1.0 99.85 3.96 100.00 1.3 99.80 9.77

12 98.00 5.9 97.12 11.06 100.00 20.7 99.80 32.37

13 99.00 0.0 99.01 3.34 100.00 3.0 99.88 10.47

14 97.00 6.9 98.10 12.78 99.50 13.6 99.65 13.91

15 94.50 18.8 98.08 24.26 99.00 25.8 99.46 18.76

16 94.50 12.0 97.85 27.55 100.00 21.8 98.85 22.38

All (Ave.) 98.31 6.72 98.59 10.06 99.88 10.56 99.79 16.92

Table 5.11: Accuracy and precision of an equivalent off-line timing analysis.

The more accurate of the worst-case models used within TimePredict was the GEV model, and

consequently it was used for this analysis since it displayed a better overall accuracy and precision

169



than its heuristic-based counterpart. The value used for the GEV model was taken from Table

5.5, whereas the accuracy and precision of the off-line timing analysis was calculated using the

MiniTab statistical package. The timing measurements of the sensor analysis function, recorded

at run-time and logged by the Adaptation Server, were used as the basis for the off-line generated

timing estimates. Separate analysis and validation datasets were created by partitioning the

logged timing measurements into two equal-sized sets of 1,000 measurements each. Since the

off-line analysis tools usually applied to the generation of WCET or ACET measurements did

not support any bytecode simulation on the Squawk JVM, an equivalent statistical analysis

was applied to extrapolate a worst-case and average-case timing estimate from the available

data. A statistical model of the software timeliness was generated using the first (analysis)

dataset, creating a worst-case bound using the maximum observed timing measurement, the

mean, and the standard error of the mean. Similarly, the off-line average-case estimates were

created by generating timing bounds to encapsulate the middle 95% of the same dataset, i.e.,

the percentile values that encapsulate 2.5% and 97.5% of the collected timing data. The second

(validation) dataset was then used to test the average-case and worst-case estimates, and provide

the performance metrics used for a comparative analysis with TimePredict. If the validation

dataset was a mirror of the analysis dataset, the expected accuracy would be 95% and 100%

for the static average-case and worst-case estimates respectively. Since these static estimates

cannot automatically re-adjust their timing bounds based on adaptations occurring within the

software, the timing measurements for each configuration of software were manually separated,

and individually analyzed, with the predictive performance of this static analysis presented in

Figure 5.11.

The predictive accuracy and precision of both TimePredict and a comparative static timing

analysis is presented in Table 5.11. On initial inspection, it seems the accuracy of the TimePre-

dict forecasting models can be compared favourably to the results of the off-line analysis. The

accuracy of the average-case estimates generated by TimePredict surpass the static timing es-

timates in 7 out of the 16 configurations of the software, and have a mean accuracy of 98.59%

compared to the statically-derived 98.31%. The slightly better performance of the average-case

model compared to the off-line estimates may be ascribed to the reactive nature of the model,

i.e., subtle trends or variations within the measurement data are used to modify the smoothing

parameters that in turn affect the timing bounds. Within the off-line estimate, no possible alter-

170



ation of the bounds is possible during run-time, so that increases in variation tend to decrease

the overall accuracy of the estimate. In comparison, the worst-case estimates are only marginally

less accurate than their off-line generated equivalents overall (99.79% compared to 99.88%), but

are more accurate within 3 of the 16 configurations of the system.

The improvement in the overall average-case accuracy due to TimePredict was 0.28% com-

pared to the off-line analysis, with the worst-case estimates being only 0.09% less accurate, i.e.,

a difference of 1 in every 1,110 estimates. However, the off-line generated timing estimates show

a higher overall precision across the 16 configurations of the system, with an overall difference

in precision of 3.34ms and 6.36ms compared to TimePredict’s average-case and worst-case fore-

casts respectively. This indicates that the estimates produced by TimePredict at run-time are

only slightly below what can be achieved using a static timing analysis method executed off-line

under ideal circumstances. The extent of these differences are minimal given the operational

constraints involved in the TimePredict forecasting process, i.e., limited timing data available,

periodic adaptations to the software functionality, a resource-restricted operating environment

and a timing analysis process that executes concurrently with the software being analyzed. How-

ever, although the accuracy and precision of the TimePredict estimates are marginally less than

their off-line equivalents, they still achieve their minimum expected accuracy requirements of

95% for average-case estimates and 99% for worst-case estimates. In summary, it can be asserted

that the forecasting capabilities of the TimePredict approach are comparable to the results that

could be achieved under ideal conditions, even though the estimates themselves are produced on

a resource-constrained embedded device and generated at run-time.

5.4.2 Effect of Model Parameters on Predictive Performance

Both the ACET and WCET datasets are restricted to a finite number of timing measurements,

and due to the constraints of the operating environment, are typically dataset on the order

of several hundred measurements or less. However, by selectively adding only large timing

measurements (in the case of WCET) or replacing older values with more recent measurements

(in the case of ACET), more representative measurement data can be stored for subsequent run-

time analysis. The number of timing measurements stored within the system effectively limits

the analysis to a pre-determined sample size. However, since the models used within TimePredict

may be sensitive to changes in this sample size, an analysis of the effects of storing relatively

171



more or fewer measurements may prove salutary. Similarly, the more measurements retained

by TimePredict for analysis purposes, the greater the impact of this analysis on the underlying

system resources (e.g., CPU and memory). By evaluating the effects of sample size on predictive

performance, the TimePredict approach may be more easily configured to provide a suitable

balance between predictive performance and the usage of limited system resources.

5.4.3 Timing Feedback

The execution time of a dynamically-adaptable system provides useful context information about

its processing capabilities within the current operating environment. By predicting the timeli-

ness of the software, a dynamically-adaptable system can determine whether functional adapta-

tions are required to preempt any significant deterioration in its overall timing behaviour. Al-

though this thesis is not directly concerned with the adaptation selection process for dynamically-

adaptable systems, accurate timing estimates may assist in selecting, scheduling and initiating

the most appropriate functional adaptation at any given time, in order to exploit changes in the

prevailing operating conditions.

The initial constraints for the evaluation of TimePredict precluded a purely time-driven

adaptation scenario, since a set number of measurements were required to perform a statistical

analysis on its predictive accuracy and precision within each configuration of the system. How-

ever, within a live operating environment it is envisaged that adaptations will be rarely occurring

events, being triggered in the main by unforeseen or excessive differences between the expected

and observed functional and non-functional behaviours of the system.

The average-case timing estimates provided by TimePredict allow an ongoing assessment

of the small-scale systematic timing variation within the system, whereas the worst-case esti-

mates can be used to signal when a more fundamental change has occurred. The evaluation of

TimePredict (Section 5.3.2) set a worst-case timing threshold to an artificially low value after a

specified number of iterations, to prompt an adaptation to the next configuration of the system.

Although this provided a very limited adaptation initiation mechanism, the subsequent accuracy

and precision of the TimePredict approach showed that a well-chosen average-case or worst-case

timing threshold could provide the basis for a time-optimizing dynamically-adaptable system.

Indeed, TimePredict could be used to both select an appropriate adaptation threshold during

run-time, as well as signify the likelihood of this threshold being exceeded based on the current

172



timing behaviour of the system.

Whereas the evaluation of TimePredict presented in this chapter has shown that highly-

accurate timing measurements can be created at run-time, with minimal cost to the underlying

system, its application as a feedback mechanism within dynamically-adaptable systems must be

considered further. The potential future application of run-time timing estimates as feedback

into the adaptation process is discussed in the next chapter.

5.5 Summary

This chapter has evaluated the performance of the TimePredict approach, both in terms of its

predictive capabilities running on a resource-constrained embedded sensor device, as well its im-

pact on the normal operations of the system. It has been shown that an accurate reactive timing

analysis process, that uses measurements of the executing software, can be deployed successfully

within a resource-constrained operating environment susceptible to periodic functional adapta-

tions. Although this timing analysis process incurs an operational overhead on the underlying

system, specifically in terms of additional memory usage, the overall effect on the system is typ-

ically no more than several hundred kilobytes of additional memory consumed. Given that the

experimental scenario was configured to use all four predictive models in parallel in a continuous

measurement and analysis cycle, the memory overhead may be reduced when deployed to a live

environment with a less aggressive analysis interval.

The predictive accuracy and precision of the run-time timing analysis process was evaluated

against a statistically-based off-line analysis, and shown to be comparable, or in some cases

better. The off-line analysis must be supervised manually, and tested separately against each

configuration of the dynamically adaptable system. In contrast, TimePredict generates estimates

automatically at run-time, based on timing measurements taken from the executing system,

updating these estimates automatically immediately following an adaptation to the software

173



Chapter 6

Conclusion

“θάλαττα! θάλαττα!”

“The Sea! The Sea!”

Xenophon

This thesis described TimePredict, a reactive timing analysis approach, suitable for dynamically-

adaptable systems executing on resource-constrained hardware platforms. This chapter reviews

the most significant achievements of the TimePredict approach, and assesses its contribution

to the state of the art in the domain of software execution-time analysis. Lastly, this chapter

concludes with a discussion of the remaining open research issues that may lend themselves to

future work.

6.1 Contribution

Current software timing analysis techniques are limited in many ways. For example, most tool-

based timing analysis approaches restrict the underlying hardware to a very basic processor

architecture, since more modern (desktop) processors prove very difficult to model as a cycle-

accurate representation of the hardware within software [Wilhelm et al., 2008]. Tool-based

timing analysis approaches are performed exclusively off-line, under manual supervision, and

using rigorous instruction-accurate simulations of the software running on a model of the target

hardware platform [Sehlberg et al., 2006]. This type of systematic analysis is required, since

174



the effect of an incorrect timing estimate may be quite disproportional to the error, e.g., system

failure, loss of life, etc. Although very precise, and sufficiently accurate for hard real-time systems,

subsequent functional alterations to the software are proscribed, in order to avoid invalidating

the statically-derived timing estimate. Consequently, the static timing analysis techniques used

within hard real-time systems do not readily lend themselves to the evaluation of dynamically-

adaptable software, even if the number and functional scope of potential configurations of the

system could be known in advance (which is often not the case).

Similarly, traditional measurement-based timing analysis techniques either require a pre-

generated series of test-cases to expose the various latent timing behaviours within the soft-

ware [Colmenares et al., 2008], or rely on a prohibitively large number of measurements to create

sufficiently accurate timing estimates [Edgar, 2002]. Within a dynamically-adaptable system,

the current configuration of the software can change unexpectedly, requiring updated timing

estimates immediately following every adaptation. However, a lengthy timing analysis process

may lead to periods where no valid timing estimates are available for the newly adapted soft-

ware, which can in turn negate any benefits that might be accrued through run-time functional

adaptations. For example, within closely-coupled systems, the outputs of one part of the system

may form the inputs of another, such that small changes in the timeliness of the software can

propagate through the system, leading to missed timing deadlines, reduced throughput or even

functional errors within otherwise dependable code. Conversely, a prompt accurate assessment

of the likely execution time of dynamically-adaptable software can reduce uncertainties about its

timing behaviour and minimize the possibility of time-induced functional errors.

The TimePredict approach was designed for dynamically-adaptable systems operating with

soft real-time constraints, i.e., systems where occasionally exceeding the estimated timing be-

haviour results in a drop in the overall quality of service rather than a complete system failure.

Since these systems can modify their functionality as well as their timing behaviour during run-

time, TimePredict must both generate estimates using very little available information, and react

to sudden changes in software timeliness caused by functional adaptations. Specialized statis-

tical models are used to forecast the execution time of the software, using the limited timing

data available immediately following an adaptation. TimePredict uses both heuristic-based and

model-based forecasting methods, the former to provide usable estimates in cases where there

is limited timing measurement data, and the latter for when more information has been col-

175



lected about the system. The accuracy and precision of the various forecasting methods used

within TimePredict were assessed using the scenario of a dynamically-adaptable sensor analysis

function executing on a resource-constrained Java Sun SPOT mote. While being tested within

this challenging operating environment, TimePredict generated approximately 32,000 timing es-

timates, and was found to meet its expected accuracy of 95% and 99% for the average-case and

worst-case execution times respectively. In addition, an off-line timing analysis was performed

on the same data under ideal circumstances, and the results were found to compare favourably

in both accuracy and precision to those of TimePredict, even though the latter estimates were

produced automatically at run-time within a dynamically-adaptable system.

The limitations of TimePredict can be summarized within the context and constraints of its

operating environment. Although each predictive model used by TimePredict was selected to

fulfill a specific role, within a particular operational scenario, the additional overhead caused

by maintaining four separate predictive models could be reduced. For example, within systems

with very stable timing behaviours, executing multiple predictive models in parallel unnecessarily

consumes systems resources. This additional overhead may be eased by using only one of the

two types of predictive models (ACET/WCET), depending on the requirements of the system

at a given time. For example, where correct task scheduling takes precedence, the worst-case

estimates can be generated exclusively, whereas average-case estimates may be more appropriate

within environments that place a greater emphasis on QoS considerations.

Although the estimates produced by TimePredict are sufficiently accurate within the loose

timing constraints present within soft real-time systems such as WSNs, this level of accuracy is

insufficient within more hard real-time environments. TimePredict assumes no off-line analysis

is possible on the underlying dynamically-adaptable system, i.e., its functional makeup is com-

pletely fluid and indeterminate from within an off-line context. However, there may be scope

to improve the overall accuracy of the system by incorporating some limited off-line analysis

on parts of the system, or re-using previous timing data taken from comparable configurations

within the same system. In addition, TimePredict could be extended to extrapolate between

different configurations of the same system within similar operating conditions, to select the

predictive models that may provide the highest accuracy for the current operating environment.

However, predictive accuracy was not the only consideration when evaluating TimePredict

- it must also limit the impact of the timing analysis process on the underlying system. Since

176



resource-constrained devices such as wireless sensor motes can be easily over-loaded if used incor-

rectly, TimePredict was designed to minimize the use of system resources such as memory and

processor cycles required to generate timing estimates. An evaluation of the impact of TimePre-

dict showed that it caused no disruption to the normal timeliness of the software when executed

at preset intervals, while only consuming somewhere between 69kB and 230kB of memory. If the

timing analysis methods employed by TimePredict can achieve their stated levels of accuracy

and precision within a dynamically-adaptable system, executing on a wireless sensor mote with

a 180MHz processor and only 512kB of RAM, it can rightfully claimed that the TimePredict

approach has fulfilled its goals.

6.2 Future Work

As is the case within all research, particularly within studies that have few direct antecedents,

the limited time available entails that some topics remain open to further investigation, both in

the short term and over a longer period [Howlin, 1994].

Although TimePredict was evaluated using a single dynamically-adaptable sensor mote, its

deployment within a large-scale WSN could provide a number of interesting real-time applica-

tions. The use of timing estimates as feedback into an adaptation selection process, could be

further tested with respect to the overall optimization of mote software throughout the network.

This timing feedback could be augmented with timing measurements taken from other network-

connected motes, such that each mote looks to its similarly-configured neighbours for additional

timing measurement data, or adaptation advice. Although TimePredict is solely focused on

forecasting the execution time behaviour within a single mote, the predictive models could be

distributed throughout a WSN, and applied to forecasting network-wide phenomena, such as the

end-to-end transmission time of messages or the effects of adaptation-related down-time on the

operation of the remaining unadapted motes.

The type of dynamically-adaptable WSNs considered within this thesis had each mote main-

taining complete control over the selection and initiation of adaptations. However, instead of

motes autonomously adapting their behaviour to suit local conditions, another type of dynamically-

adaptable WSN may delegate the responsibility for adaptations to a single node within the

network. In this scenario, the controlling node would select a particular software adaptation,

coercing other nodes within the network to enact same functional changes based on previously

177



reported information. In this network-wide adaptation, the propagation of the adaptations them-

selves will be of importance within the WSN, especially if node restarts are required to bring

the mote back up with the new configuration of the software. In this case, the timeliness of

the adaptation process, rather than the software itself, may need to be predicted, in order to

guarantee the correct roll-out of a network-wide functional change.

Lastly, the performance of the TimePredict approach can be further investigated, especially

its distribution selection and model-fitting process. A heuristic-driven rather than heuristic-based

analysis method might be better used to quickly determine the optimal settings for TimePredict

itself, such as selecting the appropriate lag length, the most likely worst-case model, and the

optimal analysis interval. Currently, the TimePredict approach does not perform any pattern

analysis between the timing behaviours of different configurations of a dynamically-adaptable

system. However, the integration of a number of different AI-based pattern matching techniques

might be able to expose some facets of the timing behaviour common across all the configurations

of a particular system, perhaps by examining the levels of co-variance between software timeliness,

and system-level properties such as context-switches, memory usage, I/O latencies, or the number

of concurrent processes.

6.3 Conclusion

This chapter reviewed the motivations for TimePredict, and its achievements in predicting the

timeliness of dynamically-adaptable software within highly restrictive operating environments.

In particular the approach taken by TimePredict demonstrates that accurate forecasts of soft-

ware timing behaviour are possible using a reactive measurement-based timing analysis process,

without excessively impacting on the underlying system. Finally, this chapter concluded with

a description of the possible areas for future research within the domain of measurement-based

timing analysis for resource-constrained systems.

178



Appendix A

Software Execution Times

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 600  800  1000  1200  1400

T
im

in
g 

(m
s)

Num. Estimates/Measurements

Execution Time
ES Model Estimates

Fig. A.1: Detail of the ACET Timing Estimates for Configuration 16, with the red line repre-

senting execution time behaviour and the green lines representing the ES estimate bounds.

179



 300

 400

 500

 600

 700

 800

 600  800  1000  1200  1400  1600

T
im

in
g 

(m
s)

Num. Estimates/Measurements

Execution Time
GEV Estimates

WCET Heuristic Estimates

Fig. A.2: The same timing behaviour for Configuration 16, overlaid with worst-case estimate

bounds.

180



 40

 50

 60

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 1

Execution Time

(a) Configuration 1

 40

 50

 60

 70

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 2

Execution Time

(b) Configuration 2

 50

 60

 70

 80

 90

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 3

Execution Time

(c) Configuration 3

 50

 60

 70

 80

 90

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 4

Execution Time

(d) Configuration 4

Fig. A.3: Execution Times of Configurations 1 to 4

181



 25

 50

 75

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 5

Execution Time

(a) Configuration 5

 25

 50

 75

 100

 125

 150

 175

 200

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 6

Execution Time

(b) Configuration 6

 40

 80

 120

 160

 200

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 7

Execution Time

(c) Configuration 7

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 8

Execution Time

(d) Configuration 8

Fig. A.4: Execution Times of Configurations 5 to 8

182



 60

 70

 80

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 9

Execution Time

(a) Configuration 9

 60

 70

 80

 90

 100

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 10

Execution Time

(b) Configuration 10

 60

 70

 80

 90

 100

 110

 120

 130

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 11

Execution Time

(c) Configuration 11

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 12

Execution Time

(d) Configuration 12

Fig. A.5: Execution Times of Configurations 9 to 12

183



 60

 70

 80

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 9

Execution Time

(a) Configuration 13

 60

 70

 80

 90

 100

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 10

Execution Time

(b) Configuration 14

 60

 70

 80

 90

 100

 110

 120

 130

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 11

Execution Time

(c) Configuration 15

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0  500  1000  1500  2000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Config. 12

Execution Time

(d) Configuration 16

Fig. A.6: Execution Times of Configurations 13 to 16

184



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  5000  10000  15000  20000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Num. Measurements

Benchmark Execution Times

Execution Time

Fig. A.7: The timing performance resulting from the execution of the benchmark functions.

This dataset is used to evaluate TimePredict off-line.

185



Bibliography

[Adler et al., 2007] Adler, R.; Schneider, D.; and Trapp, M. (2007). “Development of Safe and

Reliable Embedded Systems using Dynamic Adaptation”. In Workshop on Model-Driven

Software Adaptation (M-ADAPT’07) in conjunction with ECOOP’07, pages 9–14.

[Akyildiz et al., 2002] Akyildiz, I. F.; Su, W.; Sankarasubramaniam, Y.; and Cayirci, E. (2002).

“Wireless sensor networks: a survey”. Computer Networks, 38(4), pp. 393–422.

[Alvarado et al., 1998] Alvarado, E.; Sandberg, D. V.; and Pickford, S. G. (1998). “Modeling

large forest fires as extreme events”. Northwest Science, 72, pp. 66–75.

[Arndt et al., 2009] Arndt, H.; Bundschus, M.; and Naegele, A. (2009). “Towards a Next-

Generation Matrix Library for Java”. In Proceedings of the 33rd Annual IEEE International

Computer Software and Applications Conference, volume 1, pages 460–467.

[Arnold et al., 2005] Arnold, K.; Gosling, J.; and Holmes, D. (2005). The Java Programming

Language. Addison-Wesley, 4th edition.

[Arseneau et al., 2006] Arseneau, E.; Goldman, R.; Poursohi, A.; Smith, R. B.; and Daniels, J.

(2006). “Simplifying the Development of Sensor Applications”. In OOPSLA Workshop on

Building Software for Sensor Networks (BSSN’06).

[Asikainen et al., 2003] Asikainen, T.; Soininen, T.; and Männistö, T. (2003). “A Koala-Based

Approach for Modelling and Deploying Configurable Software Product Families”. In Proceed-

ings of the 13th International Software Product Line Conference, pages 225–249.

[Assaf and Noyé, 2008] Assaf, A. and Noyé, J. (2008). “Dynamic AspectJ”. In In Proceedings

of the 2008 symposium on Dynamic Languages (DLS’08), pages 1–12.

186



[Ayed and Berbers, 2007] Ayed, D. and Berbers, Y. (2007). “Dynamic adaptation of CORBA

component-based applications”. In Proceedings of the 2007 ACM symposium on Applied com-

puting, pages 580–585.

[Barrenetxea et al., 2008] Barrenetxea, G.; Ingelrest, F.; Schaefer, G.; and Vetterli, M. (2008).

“The Hitchhiker’s Guide to Successful Wireless Sensor Network Deployments”. In Proceedings

of the 6th ACM Conference on Embedded Network Sensor Systems (SENSYS’08), pages 43–56.

[Batista et al., 2005] Batista, T.; Joolia, A.; and Coulson, G. (2005). “Managing Dynamic Re-

configuration in Component-Based Systems”. In Proceedings of the European Workshop on

Software Architectures, pages 1–18.

[Becker et al., 2006] Becker, S.; Grunske, L.; Mirandola, R.; and Overhage, S. (2006). “Perfor-

mance Prediction of Component-Based Systems - A Survey from an Engineering Perspective”.

Architecting Systems With Trustworthy Components, 3938, pp. 169–192.

[Becker et al., 2009] Becker, S.; Koziolek, H.; and Reussner, R. (2009). “The Palladio Com-

ponent Model for Model-driven Performance Prediction”. Journal of Systems and Software,

82(1), pp. 3–22.

[Beltrame et al., 2001] Beltrame, G.; Brandolese, C.; Fornaciari, W.; Salice, F.; Sciuto, D.; and

Trianni, V. (2001). “Dynamic Modeling of Inter-Instruction Effects for Execution Time Esti-

mation”. In Proceedings of the 14th International Symposium on Systems Synthesis (ISSS’01),

pages 136–141.

[Bernat et al., 2003] Bernat, G.; Colin, A.; and Petters, S. (2003). “pWCET: a Tool for Proba-

bilistic WCET Analysis of Real-Time Systems”. Technical Report YCS-2003-353, Department

of Computer Science, University of York, UK.

[Bhylin et al., 2005] Bhylin, S.; Ermedahl, A.; Gustafsson, J.; and Bjorn, L. (2005). “Applying

Static WCET Analysis to Automotive Communication Software”. In Proceedings of the 17th

Euromicro Conference on Real-Time Systems (ECRTS’05), pages 249–258.

[Biyani and Kulkarni, 2005] Biyani, K. N. and Kulkarni, S. S. (2005). “Building component

families to support adaptation”. In Proceedings of the 2005 ICSE workshop on Design and

Evolution of Autonomic Application Software (DEAS’05), pages 1–7, New York, NY, USA.

ACM.

187



[Bruneton et al., 2006] Bruneton, E.; Coupaye, T.; Leclercq, M.; Quéma, V.; and Stefani, J.-B.

(2006). “The FRACTAL component model and its support in Java: Experiences with Auto-

adaptive and Reconfigurable Systems”. Software - Practice and Experience, 36(11-12), pp.

1257–1284.

[Buisson et al., 2005] Buisson, J.; André, F.; and Pazat, J.-L. (2005). “A Framework for Dy-

namic Adaptation of Parallel Components”. In Proceedings of the International Conference

on Parallel Computing (ParCo 2005), pages 65–72, Malaga, Spain.

[Buisson et al., 2007] Buisson, J.; Andre, F.; and Pazat, J.-L. (2007). “Supporting adaptable

applications in grid resource management systems”. In Proceedings of the 8th IEEE/ACM

International Conference on Grid Computing (GRID’07), pages 58–65.

[Burguiére and Rochange, 2006] Burguiére, C. and Rochange, C. (2006). “History-based

Schemes and Implicit Path Enumeration”. In 6th International Workshop on Worst-Case

Execution Time (WCET) Analysis.

[Cadenas and Rivera, 2010] Cadenas, E. and Rivera, W. (2010). “Wind speed forecasting in

three different regions of Mexico, using a hybrid ARIMA-ANN model”. Renewable Energy,

35(12), pp. 2732–2738.

[Caicedo, 2006] Caicedo, A. (2006). “The Sun Small Programmable Object Technology (Sun

Spot)”. Sun Tech Days 2006-2007. Enter text here.

[Calinescu and Kwiatkowska, 2009] Calinescu, R. and Kwiatkowska, M. (2009). “Using quanti-

tative analysis to implement autonomic IT systems”. In Proceedings of the 31st IEEE Inter-

national Conference on Software Engineering (ICSE’09), pages 100–110, Vancouver, Canada.

[Castilloa et al., 2006] Castilloa, E.; Lopez-Aenlle, M.; Ramos, A.; Fernandez-Canteli, A.;

Kieselbach, R.; and Esslinger, V. (2006). “Specimen length effect on parameter estimation in

modelling fatigue strength by Weibull distribution”. International Journal of Fatigue, 28(9),

pp. 1047–1058.

[Cervin et al., 2003] Cervin, A.; Henriksson, D.; Lincoln, B.; Eker, J.; and Arzen, K.-E. (2003).

“How Does Control Timing Affect Performance?”. IEEE Control Systems Magazine, 23(3),

pp. 16–30.

188



[Chambers, 2008] Chambers, J. M. (2008). Software for Data Analysis: Programming with R.

Springer, 2nd edition.

[Chatfield, 2003] Chatfield, C. (2003). The Analysis of Time Series: An Introduction. Chapman

and Hall/CRC, 6th edition.

[Chen et al., 2001] Chen, K.; Malik, S.; and August, D. I. (2001). “Retargetable static timing

analysis for embedded software”. In Proceedings of the 14th International Symposium on

Systems Synthesis (ISSS’01), pages 39–44.

[Chen et al., 2008] Chen, L.; McKerrow, P.; and Lu, Q. (2008). “Developing Real-time Appli-

cations with Java Based Sun SPOT”. In Proceedings of the 2008 Australasian Conference on

Robotics and Automation.

[Cheng et al., 2008] Cheng, B. H.; Giese, H.; Inverardi, P.; Magee, J.; and et al. (2008). “Software

Engineering for Self-Adaptive Systems: A Research Road Map”. In Software Engineering for

Self-Adaptive Systems, number 08031 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[Chess et al., 2003] Chess, D. M.; Palmer, C. C.; and White, S. R. (2003). “Security in an

autonomic computing environment”. IBM Systems Journal, 42(1), pp. 107–118.

[Childs et al., 2006] Childs, A.; Greenwald, J.; Jung, G.; Hoosier, M.; and Hatcliff, J. (2006).

“Calm and Cadena: Metamodeling for component-based product-line development”. Com-

puter, 39, pp. 42–50.

[Chou, 2005] Chou, R. Y.-T. (2005). “Forecasting Financial Volatilities with Extreme Values:

The Conditional Autoregressive Range (CARR) Model”. Journal of Money, Credit, and Bank-

ing, 37(3), pp. 561–582.

[Coles, 2001] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values.

Springer, 1st edition.

[Colin and Puaut, 2001] Colin, A. and Puaut, I. (2001). “Worst-Case Execution Time Analysis of

the RTEMS Real-Time Operating System”. In Proceedings of the 13th Euromicro Conference

on Real-Time Systems (ECRTS’01), pages 191–198.

189



[Colmenares et al., 2008] Colmenares, J. A.; Chansik, I.; Kim, K.; Klefstad, R.; and Chae-Deok,

L. (2008). “Measurement Techniques in a Hybrid Approach for Deriving Tight Execution-

time Bounds of Program Segments in Fully-featured Processors”. In IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS’08), pages 68–79.

[Cooper et al., 2002] Cooper, K. D.; Subramanian, D.; and Torczon, L. (2002). “Adaptive Op-

timizing Compilers for the 21st Century”. The Journal of Supercomputing, 23(1), pp. 7–22.

[Corsaro and Schmidt, 2002] Corsaro, A. and Schmidt, D. C. (2002). “Evaluating Real-Time

Java Features and Performance for Real-Time Embedded Systems”. In Proceedings of the

Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02),

pages 90–100.

[Costa et al., 2007] Costa, P.; Coulson, G.; Gold, R.; Lad, M.; Mascolo, C.; Mottola, L.; Picco,

G. P.; Sivaharan, T.; Weerasinghe, N.; and Zachariadis, S. (2007). “The RUNES middleware

for networked embedded systems and its application in a disaster management scenario”. In

Proceedings of the 5th IEEE International Conference on Pervasive Computing and Commu-

nications (Percom’07), pages 69–78.

[Deverge and Puaut, 2005] Deverge, J.-F. and Puaut, I. (2005). “Safe measurement-based

WCET estimation”. In Proceedings of 5th International Workshop on Worst-Case Execution

Time Analysis (WCET’08).

[Dhurjati et al., 2006] Dhurjati, D.; Kowshik, S.; and Adve, V. (2006). “SAFECode: enforcing

alias analysis for weakly typed languages”. ACM SIGPLAN Notices, 41(6), pp. 144–157.

[Diaconescu and Murphy, 2005] Diaconescu, A. and Murphy, J. (2005). “Automating the Per-

formance Management of Component-Based Enterprise Systems through the use of Redun-

dancy”. In 20th IEEE/ACM International Conference on Automated Software Engineering

(ASE 2005), pages 44–53, Long Beach, CA, USA.

[Dobson et al., 2006] Dobson, S.; Denazis, S.; Fernández, A.; Gäıti, D.; Gelenbe, E.; Massacci,

F.; Nixon, P.; Saffre, F.; Schmidt, N.; and Zambonelli, F. (2006). “A survey of autonomic

communications”. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 1(2),

pp. 223–259.

190



[Dowling and Cahill, 2001] Dowling, J. and Cahill, V. (2001). “Dynamic Software Evolution and

the K-Component Model”. In Workshop on Software Evolution, at OOPSLA 2001.

[Dyer and Rajan, 2008] Dyer, R. and Rajan, H. (2008). “Nu: a dynamic aspect-oriented inter-

mediate language model and virtual machine for flexible runtime adaptation”. In Proceedings

of the 7th International Conference on Aspect-Oriented Software Development (AOSD’08),

pages 191–202.

[Edgar, 2002] Edgar, S. (2002). Estimation of worst-case execution time using statistical analysis,

PhD thesis. PhD thesis, Department of Computer Science, University of York.

[Edwards and Lee, 2007] Edwards, S. A. and Lee, E. A. (2007). “The Case for the Precision

Timed (PRET) Machine”. In Proceedings of the 44th Annual Conference on Design Automa-

tion, pages 264–265.

[Engblom et al., 2001] Engblom, J.; Ermedahl, A.; Sjodin, M.; Gustafsson, J.; and Hansson, H.

(2001). “Applying Static WCET Analysis to Automotive Communication Software”. Inter-

national Journal of Software Tools for Technology Transfer, 4, pp. 437–455.

[Engle, 1982] Engle, R. F. (1982). “Autoregressive Conditional Heteroskedasticity with Esti-

mates of the Variance of U.K. Inflation”. Econometrica, 50, pp. 987–1008.

[Ensink et al., 2003] Ensink, B.; Stanley, J.; and Adve, V. (2003). “Program Control Language:

a programming language for adaptive distributed applications”. Journal of Parallel and Dis-

tributed Computing, 63(11), pp. 1082–1104.

[Epifani et al., 2009] Epifani, I.; Ghezzi, C.; Mirandola, R.; and Tamburrelli, G. (2009). “Model

evolution by run-time parameter adaptation”. In ICSE ’09: Proceedings of the 2009 IEEE

31st International Conference on Software Engineering, pages 111–121, Washington, DC, USA.

IEEE Computer Society.

[Ermedahl et al., 2005] Ermedahl, A.; Gustafsson, J.; and Lisper, B. (2005). “Experiences from

Industrial WCET Analysis Case Studies”. In Proceedings of the 5th International Workshop

on Worst-Case Execution Time Analysis (WCET’05), pages 25–28.

[Ermedahl et al., 2007] Ermedahl, A.; Sandberg, C.; Gustafsson, J.; Bygde, S.; and Lisper, B.

(2007). “Loop Bound Analysis based on a Combination of Program Slicing, Abstract In-

191



terpretation, and Invariant Analysis”. In Proceedings of the 7th International Workshop on

Worst-Case Execution Time Analysis, (WCET’2007).

[Eskenazi et al., 2004] Eskenazi, E.; Fioukov, A.; and Hammer, D. (2004). “Performance Pre-

diction for Component Compositions”. In 7th International Symposium on Component-based

Software Engineering (CBSE’04), pages 280–293.

[Evans et al., 2000] Evans, M.; Hastings, N.; and Peacock, B. (2000). Statistical Distributions.

Wiley-Interscience, 3rd edition.

[Fredriksson et al., 2007] Fredriksson, J.; Nolte, T.; Ermedahl, A.; and Nolin, M. (2007). “Clus-

tering Worst-Case Execution Times for Software Components”. In Proceedings of the 7th

international workshop on worst case execution time analysis (WCET’07).

[Fritsch and Clarke, 2008] Fritsch, S. and Clarke, S. (2008). “TimeAdapt: timely execution of

dynamic software reconfigurations”. In Proceedings of the 5th Middleware doctoral symposium

(MDS’08), pages 13–18.

[Gal et al., 2006] Gal, A.; Probst, C. W.; and Franz, M. (2006). “HotpathVM: an effective JIT

compiler for resource-constrained devices”. In Proceedings of the 2nd international conference

on Virtual execution environments (VEE ’06), pages 144–153.

[Gardner, 1985] Gardner, E. S. (1985). “Exponential Smoothing: The State of the Art”. Journal

of Forecasting, 4(1), pp. 1–28.

[Georgiadis et al., 2002] Georgiadis, I.; Magee, J.; and Kramer, J. (2002). “Self-organising soft-

ware architectures for distributed systems”. In Proceedings of the first workshop on Self-healing

systems, pages 33–38.

[Ghosal et al., 2004] Ghosal, A.; Henzinger, T. A.; Kirsch, C. M.; and Sanvido, M. A. A. (2004).

“Event-Driven Programming with Logical Execution Times”. In Proceedings of the 7th In-

ternational Workshop on Hybrid Systems: Computation and Control (HCCC 2004), pages

357–371.

[Goldman, 2007] Goldman, R. (2007). “A Sun SPOT Application Note: Using the AT91

Timer/Counter”. Technical report, Sun Microsystems Inc., Santa Clara, CA, USA.

192



[Goldsby et al., 2008] Goldsby, H. J.; Cheng, B. H.; and Zhang, J. (2008). “AMOEBA-RT:

Run-Time Verification of Adaptive Software”. In Proceedings of the 10th International Con-

ference on Model Driven Engineering Languages and Systems (MoDELS 2007), pages 212–224.

Springer Verlag.

[Guo et al., 2008] Guo, X.; Boubekeur, M.; Mc Enery, J.; and Hickey, D. (2008). “A new ap-

proach for ACET based scheduling of soft real-time systems”. In Proceedings of the 12th

WSEAS international conference on Computers, pages 886–892.

[Hansen et al., 2009] Hansen, J.; Hissam, S.; and Moreno, G. (2009). “Statistical-Based WCET

Estimation and Validation”. In Proceedings of the 9th International Workshop on Worst-Case

Execution Time Analysis (WCET’09), pages 123–133, Dublin, Ireland.

[Henia et al., 2005] Henia, R.; Hamann, A.; Jersak, M.; Racu, R.; Richter, K.; and Ernst, W.

(2005). “System Level Performance Analysis - the SymTA/S Approach”. IEE Computers and

Digital Techniques, 152(2), pp. 148–166.

[Heo and Abdelzaher, 2009] Heo, J. and Abdelzaher, T. (2009). “AdaptGuard: guarding adap-

tive systems from instability”. In Proceedings of the 6th International Conference on Auto-

nomic Computing (ICAC’09), pages 77–86.

[Hill et al., 2008] Hill, J. H.; Schmidt, D. C.; Porter, A. A.; and Slaby, J. M. (2008). “CiCUTS:

Combining System Execution Modeling Tools with Continuous Integration Environments”. In

Proceedings of the 15th Annual IEEE International Conference and Workshop on the Engi-

neering of Computer Based Systems (ECBS’08), pages 66–75, Belfast, Northern Ireland.

[Hilsdale and Hugunin, 2004] Hilsdale, E. and Hugunin, J. (2004). “Advice weaving in AspectJ”.

In Proceedings of the 3rd international conference on Aspect-oriented software development

(AOSD’04), pages 26–35.

[Hinton et al., 2006] Hinton, A.; Kwiatkowska, M.; Norman, G.; and Parker, D. (2006). “PRISM:

A tool for automatic verification of probabilistic systems”. In Proceedings of the 12th Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS06), pages 441–444, Vienna, Austria.

193



[Hissam et al., 2003] Hissam, S.; Moreno, G.; Stafford, J.; and Wallnau, K. (2003). “Enabling

predictable assembly”. Journal of Systems and Software: Special Issue on Component-Based

Software Engineering, 65(3), pp. 185–198.

[Hissam et al., 2008] Hissam, S. A.; Moreno, G. A.; Plakosh, D.; Savo, I.; and Stelmarczyk, M.

(2008). “Predicting the Behavior of a Highly Configurable Component Based Real-Time Sys-

tem”. In Proceedings of the 2008 Euromicro Conference on Real-Time Systems (ECRTS’08),

pages 57–68.

[Hoare, 1978] Hoare, C. A. R. (1978). “Communicating Sequential Processes”. Communications

of the ACM, 21(8), pp. 666–677.

[Holsti et al., 2008] Holsti, N.; Gustafsson, J.; Bernat, G.; et al. (2008). “WCET Tool Challenge

2008”. In Proceedings of 8th International Workshop on Worst-Case Execution Time Analysis

(WCET’08).

[Howlin, 1994] Howlin, P. (1994). Bohemian times: An outline history of Bohemian Football

Club and Dalymount Park, 1890-1993.

[Huang et al., 2008] Huang, G.; Liu, X.; and Mei, H. (2008). “Online approach to feature in-

teraction problems in middleware based system”. Science in China Series F: Information

Sciences, 51(3), pp. 225–239.

[Hummel and Atkinson, 2010] Hummel, O. and Atkinson, C. (2010). “Automated Creation and

Assessment of Component Adapters with Test Cases”. In Proceedings of the 13th International

Symposium on Component Based Software Engineering (CBSE’10), pages 166–181.

[Ivers and Moreno, 2008] Ivers, J. and Moreno, G. A. (2008). “PACC starter kit: developing

software with predictable behavior”. In ICSE Companion ’08: Companion of the 30th inter-

national conference on Software engineering, pages 949–950.

[Keeney, 2004] Keeney, J. (2004). Completely Unanticipated Dynamic Adaptation of Software.

PhD thesis, Department of Computer Science, Trinity College Dublin.

[Keeney and Cahill, 2003] Keeney, J. and Cahill, V. (2003). “Chisel: A Policy-Driven, Context-

Aware, Dynamic Adaptation Framework”. In Proceedings of the 4th IEEE International Work-

194



shop on Policies for Distributed Systems and Networks (POLICY’03), pages 3–14, Washington,

DC, USA.

[Kell, 2008] Kell, S. (2008). “A Survey of Practical Software Adaptation Techniques”. J.UCS -

Journal of Universal Computer Science, 14(13), pp. 2110–2157.

[Kirner and Puschner, 2008] Kirner, R. and Puschner, P. (2008). “Obstacles in Worst-Case Ex-

ecution Time Analysis”. In Proceedings of the 11th IEEE Symposium on Object Oriented

Real-Time Distributed Computing (ISORC’08), pages 333–339.

[Kniesel et al., 2001] Kniesel, G.; Costanza, P.; and Austermann, M. (2001). “JMangler - A

Framework for Load-Time Transformation of Java Class Files”. In Proceedings of IEEE Work-

shop on Source Code Analysis and Manipulation (SCAM’01), pages 100–110.

[Kotz and Nadarajah, 2000] Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions :

Theory and Applications. Imperial College Press.

[Koziolek, 2010] Koziolek, H. (2010). “Performance evaluation of component-based software

systems: A survey”. Performance Evaluation, 67(8), pp. 634–658.

[Kumar et al., 2008] Kumar, T.; Cledat, R.; Sreeram, J.; and Pande, S. (2008). “Statistically

Analyzing Execution Variance for Soft Real-Time Applications”. In Proceedings 21st Inter-

national Workshop on Languages and Compilers for Parallel Computing (LCPC’08), pages

124–140.

[Lee, 2002] Lee, E. A. (2002). “Embedded Software”. Advances in Computers, 56, pp. 55–95.

[Li et al., 2007] Li, X.; Liang, Y.; Mitra, T.; and Roychoudhury, A. (2007). “Chronos: A timing

analyzer for embedded software”. Science of Computer Programming, 69(1-3), pp. 56–67.

[Li et al., 2010] Li, X.; Ortiz, P. J.; Browne, J.; Franklin, D.; Oliver, J. Y.; Geyer, R.; Zhou, Y.;

and Chong, F. T. (2010). “Smartphone Evolution and Reuse: Establishing a more Sustainable

Model”. In In Proceedings of the 2nd International Workshop on Green Computing (to appear).

[Lindley and Scott, 1995] Lindley, D. V. and Scott, W. F. (1995). New Cambridge Statistical

Tables. Cambridge University Press, Cambridge, UK, 2th edition.

195



[Malik et al., 1997] Malik, S.; Martonosi, M.; and Li, Y.-T. S. (1997). “Static timing analysis

of embedded software”. In Proceedings of the 34th annual Design Automation Conference

(DAC’97), pages 147–152.

[Marref and Bernat, 2008] Marref, A. and Bernat, G. (2008). “Towards Predicated WCET Anal-

ysis”. In Proceedings of the 8th International Workshop on Worst-Case Execution Time Anal-

ysis (WCET’08), pages 138–147.

[Massey, 1951] Massey, F. J. (1951). “The Kolmogorov-Smirnov Test for Goodness of Fit.”.

Journal of the American Statistical Association, 46, pp. 68–78.

[McIlroy, 1968] McIlroy, D. M. (1968). “Mass Produced Software Components”. In Software

Engineering; Report on a conference by the NATO Science Committee (Garmish, Germany),

pages 138–150.

[McKinley et al., 2004] McKinley, P. K.; Sadjadi, S. M.; Kasten, E. P.; and Cheng, B. H. C.

(2004). “A Taxonomy of Compositional Adaptation”. Technical Report MSU-CSE-04-17,

Department of Computer Science, Michigan State University, East Lansing, MI, USA.

[Menascé et al., 2004] Menascé, D. A.; Ruan, H.; and Gomaa, H. (2004). “A framework for QoS-

aware software components”. In Proceedings of the 4th International Workshop on Software

and Performance, pages 186–196.

[Mezzetti et al., 2008] Mezzetti, E.; Holsti, N.; Colin, A.; Bernat, G.; and Vardanega, T. (2008).

“Attacking the Sources of Unpredictability in the Instruction Cache Behavior”. In Proceedings

of the 16th International Conference on Real-Time and Network Systems (RTNS’08), pages

151–160.

[Mills, 1990] Mills, D. L. (1990). “Network Time Protocol (Version 3) Specification, Implemen-

tation and Analysis”. Technical Report 90-6-1, University of Delaware, Newark, DE, USA.

[Mindell, 2008] Mindell, D. A. (2008). Digital Apollo: Human and Machine in Spaceflight. MIT

Press, Cambridge, MA, USA.

[Minitab, 2010] Minitab (2010). “Minitab Inc. home-page”.

196



[Nestor et al., 2008] Nestor, D.; Thiel, S.; Botterweck, G.; Cawley, C.; and Healy, P. (2008).

“Applying visualisation techniques in software product lines”. In Proceedings of the 4th ACM

symposium on Software visualization (SoftVis’08), pages 175–184.

[Nicoara and Alonso, 2005] Nicoara, A. and Alonso, G. (2005). “Dynamic AOP with PROSE”.

In Proceedings of the 1st International Workshop on Adaptive and Self-Managing Enterprise

Applications (ASMEA’05), pages 125–138.

[OED, 1989] OED (1989). “Oxford English Dictionary, Online Edition, 1989”.

[Oreizy et al., 2008] Oreizy, P.; Medvidovic, N.; and Taylor, R. N. (2008). “Runtime software

adaptation: framework, approaches, and styles”. In ICSE Companion ’08: Companion of the

30th international conference on Software engineering, pages 899–910.

[Pásztor and Veitch, 2002] Pásztor, A. and Veitch, D. (2002). “PC based precision timing with-

out GPS”. ACM SIGMETRICS Performance Evaluation Review, 30(1), pp. 1–10.

[Perkins et al., 2009] Perkins, J. H.; Kim, S.; Larsen, S.; Amarasinghe, S.; Bachrach, J.; Carbin,

M.; Pacheco, C.; Sherwood, F.; Sidiroglou, S.; Sullivan, G.; Wong, W.-F.; Zibin, Y.; Ernst,

M. D.; and Rinard, M. (2009). “Automatically Patching Errors in Deployed Software”. In

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles (SOSP’09),

pages 87–102.

[Petters et al., 2007] Petters, S. M.; Zadarnowski, P.; and Heiser, G. (2007). “Measurements

or Static Analysis or Both?”. In 7th International Workshop of Worst-Case Execution Time

Analysis, pages 5–11, Pisa, Italy.

[Poon et al., 2004] Poon, S.-H.; Rockinger, M.; and Tawn, J. (2004). “Extreme Value Depen-

dence in Financial Markets: Diagnostics, Models and Financial Implications”. The Review of

Financial Studies, 17(2), pp. 581–610.

[Pop et al., 2008] Pop, T.; Pop, P.; Eles, P.; Peng, Z.; and Andrei, A. (2008). “Timing analysis

of the FlexRay communication protocol”. Real-Time Systems, 39(1-3), pp. 205–235.

[Popovici et al., 2003] Popovici, A.; Alonso, G.; and Gross, T. R. (2003). “Just-In-Time Aspects:

Efficient Dynamic Weaving for Java”. In Proceedings of the 2nd International Conference on

Aspect-Oriented Software Development (AOSD’03), pages 100–109.

197



[Pretschner et al., 2007] Pretschner, A.; Broy, M.; Kruger, I. H.; and Stauner, T. (2007). “Soft-

ware Engineering for Automotive Systems: A Roadmap”. In Workshop on the Future of

Software Engineering (FOSE ’07), pages 55–71.

[Ranganath et al., 2003] Ranganath, V. P.; Childs, A.; Greenwald, J.; Dwyer, M. B.; Hatcliff,

J.; and Singh, G. (2003). “Cadena: enabling CCM-based application development in Eclipse”.

In Proceedings of the 2003 OOPSLA workshop on eclipse technology eXchange, pages 20–24.

[Rasche and Polze, 2005] Rasche, A. and Polze, A. (2005). “Dynamic Reconfiguration of

Component-based Real-time Software”. In Proceedings of the 10th IEEE International Work-

shop on Object-Oriented Real-Time Dependable Systems (WORDS’05), pages 347–354.

[Redmond and Cahill, 2002] Redmond, B. and Cahill, V. (2002). “Supporting Unanticipated

Dynamic Adaptation of Application Behaviour”. In 16th European Conference on Object

Oriented Programming (ECOOP’02), pages 205–230.

[Rosenberg and Schuermann, 2006] Rosenberg, J. V. and Schuermann, T. (2006). “A general

approach to integrated risk management with skewed, fat-tailed risks”. Journal of Financial

Economics, 79(3), pp. 569–614.

[Sadjadi et al., 2004] Sadjadi, S. M.; McKinley, P. K.; Cheng, B. H.; and Stirewalt, R. K. (2004).

“TRAP/J: Transparent Generation of Adaptable Java Programs”. In Proceedings of the Inter-

national Symposium on Distributed Objects and Applications (DOA’04), volume 3291, pages

1243–1261.

[Salehie and Tahvildari, 2009] Salehie, M. and Tahvildari, L. (2009). “Self-adaptive software:

Landscape and research challenges”. ACM Transactions on Autonomous and Adaptive Systems

(TAAS), 4(2), pp. 1–42.

[Schellenkens, 2010] Schellenkens, M. P. (2010). “MOQA: unlocking the potential of compo-

sitional static average-case analysis”. Journal of Logic and Algebraic Programming, 79, pp.

61–83.

[Schmid et al., 2008] Schmid, T.; Charbiwala, Z.; Friedman, J.; Cho, Y. H.; and Srivastava,

M. B. (2008). “Exploiting manufacturing variations for compensating environment-induced

198



clock drift in time synchronization”. In Proceedings of the 2008 ACM SIGMETRICS inter-

national conference on Measurement and modeling of computer systems (SIGMETRICS ’08),

pages 97–108.

[Schmidt, 2007] Schmidt, H. W. (2007). “Architecture-Based Reasoning About Performability

in Component-Based Systems”. In Proceedings of the 33rd Conference on Current Trends in

Theory and Practice of Computer Science (SOFSEM’07), pages 130–137.

[Sehlberg et al., 2006] Sehlberg, D.; Ermedahl, A.; Gustafsson, J.; Lisper, B.; and Wiegratz,

S. (2006). “Static WCET Analysis of Real-Time Task-Oriented Code in Vehicle Control

Systems”. In Proceedings of the Second International Symposium on Leveraging Applications

of Formal Methods, Verification and Validation (ISOLA’06), pages 212–219.

[Seinturier et al., 2006] Seinturier, L.; Pessemier, N.; Duchien, L.; and Coupaye, T. (2006). “A

Component Model Engineered with Components and Aspects”. In Proceedings of the 9th

International Symposium on Component-based Software Engineering (CBSE’06), pages 139–

153.

[Sharma et al., 2004] Sharma, P. K.; Loyall, J. P.; Heineman, G. T.; Schantz, R. E.; Shapiro,

R.; and Duzan, G. (2004). “Component-Based Dynamic QoS Adaptations in Distributed

Real-Time and Embedded Systems”. In International Symposium on Distributed Objects and

Applications (DOA’04).

[Silven and Jyrkkä, 2007] Silven, O. and Jyrkkä, K. (2007). “Observations on power-efficiency

trends in mobile communication devices”. EURASIP Journal on Embedded Systems, 2007(1),

pp. 17–27.

[Simon et al., 2006] Simon, D.; Cifuentes, C.; Cleal, D.; Daniels, J.; and White, D. (2006).

“Java(TM) on the Bare Metal of Wireless Sensor Devices”. In Proceedings of the 2nd Inter-

national Conference on Virtual Execution Environments (VEE’06), pages 78–88.

[Smith, 2007] Smith, R. B. (2007). “SPOTWorld and the Sun SPOT”. In 6th International

Symposium on Information Processing in Sensor Networks, pages 565–566.

[Smith et al., 2005] Smith, R. B.; Cifuentes, C.; and Simon, D. (2005). “Enabling JavaTM for

small wireless devices with Squawk and SpotWorld”. In OOPSLA Workshop on Bringing

Software to Pervasive Computing.

199



[Smits et al., 2009] Smits, T.; Vanrompay, Y.; and Berbers, Y. (2009). “Efficient decision making

algorithms for adaptive applications”. In Proceedings of the 3rd International Workshop on

Adaptive and Dependable Mobile Ubiquitous Systems (ADAMUS’09), pages 13–18.

[Souyris et al., 2005] Souyris, J.; Pavec, E. L.; Himbert, G.; Jégu, V.; and Borios, G. (2005).

“Computing the worst case execution time of an avionics program by abstract interpretation”.

In In proceedings of the 5th intl workshop on worst-case execution time analysis (WCET’05),

pages 21–24.

[Staschulat et al., 2006] Staschulat, J.; Braam, J. C.; Ernst, R.; Rambow, T.; and Busch, R.

S. R. (2006). “Cost-Efficient Worst-Case Execution Time Analysis in Industrial Practice”.

In Proceedings of the Second International Symposium on Leveraging Applications of Formal

Methods, Verification and Validation (ISOLA’06), pages 212–219.

[Sun, 2009] Sun (2009). “Sun SPOT Owner’s Manual: Red Release 5.0”.

[Sutton et al., 2006] Sutton, P.; Doyle, L. E.; and Nolan, K. E. (2006). “A Reconfigurable Plat-

form for Cognitive Networks”. In 1st International Conference on Cognitive Radio Oriented

Wireless Networks and Communications, pages 1–5, Mykonos, Greece.

[Szyperski and Pfister, 1997] Szyperski, C. A. and Pfister, C. (1997). “Summary of the Work-

shop on Component Oriented Programming (WCOP’96)”. Special Issues in Object-Oriented

Programming, pages 127–130.

[Thiel and Hein, 2002] Thiel, S. and Hein, A. (2002). “Modeling and Using Product Line Vari-

ability in Automotive Systems”. IEEE Software, 19, pp. 66–72.

[Townley et al., 2009] Townley, J.; Manning, J.; and Schellekens, M. (2009). “Sorting Algorithms

in MOQA”. Electronic Notes in Theoretical Computer Science (ENTCS), 225, pp. 391–404.

[Upton and Cook, 2004] Upton, G. and Cook, I. (2004). Oxford Dictionary of Statistics. Oxford

University Press, 2nd edition.

[Vanderperren et al., 2005] Vanderperren, W.; Suvée, D.; Verheecke, B.; Cibrán, M. A.; and Jon-

ckers, V. (2005). “Adaptive programming in JaSco”. In In Proceedings of the 4th International

Conference on Aspect-Oriented Software Development (AOSD’05), pages 75–86.

200



[Wall et al., 2002] Wall, A.; Larsson, M.; Norström, C.; and Crnkovic, I. (2002). “Using Predic-

tion Enabled Technologies for Embedded Product Line Architectures”. In ICSE workshop on

5th ICSE Workshop on Component-Based Software Engineering, Orlando, FL, USA.

[Wang et al., 2004] Wang, N.; Gill, C.; Subramonian, V.; and Schmidt, D. C. (2004). “Con-

figuring Real-time Aspects in Component Middleware”. In Proceedings of the International

Symposium on Distributed Objects and Applications (DOA’04), pages 1520–1537.

[Wenzel et al., 2005] Wenzel, I.; Kirner, R.; Rieder, B.; and Puschner, P. (2005). “Measurement-

based worst-case execution time analysis”. In Proceedings of 3rd IEEE Workshop on Software

Technologies for Future Embedded and Ubiquitous Systems (SEUS’05), pages 7–10.

[Westermann and Happe, 2010] Westermann, D. and Happe, J. (2010). “Towards Performance

Prediction of Large Enterprise Applications Based on Systematic Measurements”. In Pro-

ceedings of the 15th International Workshop on Component-Oriented Programming (WCOP)

2010, pages 71–78, Karlsruhe, Germany.

[Wilhelm et al., 2008] Wilhelm, R.; Engblom, J.; Ermedahl, A.; Holsti, N.; Thesing, S.; Whalley,

D.; Bernat, G.; Ferdinand, C.; Heckmann, R.; Mueller, F.; Puaut, I.; Puschner, P.; Staschulat,

J.; and Stenström, P. (2008). “The Determination of Worst-Case Execution Times - Overview

of the Methods and Survey of Tools”. ACM Transactions on Embedded Computing Systems

(TECS), 7(3), pp. 1–53.

[Young, 1977] Young, I. T. (1977). “FProof without Prejudice: Use of the Kolmogorov-Smirnov

Test for the Analysis of Histograms from Flow Systems and Other Sources”. The Journal of

Histochemistry and Cytochemistry, 25(7), pp. 935–941.

[Zave and Jackson, 1997] Zave, P. and Jackson, M. (1997). “Four dark corners of requirements

engineering”. ACM Transactions on Software Engineering and Methodology (TOSEM), 6(1),

pp. 1–30.

[Zhang et al., 2005] Zhang, J.; Cheng, B. H. C.; Yang, Z.; and McKinley, P. K. (2005). “Enabling

Safe Dynamic Component-Based Software Adaptation”. In in Architecting Dependable Systems

III, Springer Lecture Notes for Computer Science, pages 194–211. Springer-Verlag.

[Zhang et al., 2009] Zhang, J.; Goldsby, H. J.; and Cheng, B. H. (2009). “Modular Verification of

Dynamicaly Adaptive Systems”. In Proceedings of the 8th ACM International Conference on

201



Aspect-Oriented Software Development (AOSD’09), pages 161–172. Charlottesville, Virginia,

USA.

202



Glossary

ARMA Auto-Regressive Moving Average, a time series analysis that eval-

uates the behaviour of data over a particular number of values.

See ARIMA model.

ARIMA Auto-Regressive Integrated Moving Average, similar to the

ARMA model, except trend information is included (integrated)

within the resulting forecasts. Both the ARMA and ARIMA mod-

els are traditionally applied to estimate the behaviour of highly-

variable time series, such as stock prices and currency markets.

BCET Best-Case Execution Time, the fastest theoretical execution time

for the software running within a specified operating environment.

CDF Cumulative Distribution Function, a graph of the probability of a

particular statistical distribution being encapsulated by a specified

value. The CDF is used within TimePredict to assess how close

the fitted distribution matches the underlying measurement data.

203



Central Tendency The typical, or commonly observed behaviour of a particular pro-

cess. In the case of timing measurements, the central tendency

refers to the clustering of the observed timing measurements about

a particular value.

Correlation The correlation between two variables is a measure of the relation-

ship that exists between them, such that a change in one variable

is matched by a reciprocal change in the other. See Pearson cor-

relation coefficient.

CPU Central Processor Unit, the engine at the core of a computing

system responsible for the execution of individual instructions.

Critical Value The value, for a pre-defined level of confidence, at a particular

level of significance, at which a statistical test result may be safely

accepted or rejected. Typically the critical value is defined with

tables, and compared against the test statistic to determine the

outcome of the test.

Dalymount cat One or more specimens of the genus felis catus, likely to make their

appearance at crucial periods. Thought to portend a favourable

result.

Decile A division of a data set of frequency distribution into tenths, sim-

ilar to the median dividing a similar set of data into two halves.

ES model The Exponential Smoothing model, a heuristic-based forecasting

method that only requires the most recent value from a time series

in order to generate an estimate. The ES model forms part of the

TimePredict approach, and is applied in situations where limited

timing measurements are available, e.g., immediately following

adaptations.

204



Fréchet

Distribution

A type of statistical distribution used within the Generalized Ex-

treme Value model. The Fréchet distribution is sometimes known

as a Type II Extreme Value distribution, and has an associated

shape parameter that can be used to alter the peakedness (kurto-

sis) of the distribution to better fit a given dataset.

GARCH Model Generalized Auto-Regressive Conditional Heteroskedasticity

model. An auto-regressive time-series forecasting model used tra-

ditionally to estimate trends within highly variable environments,

such as within currency trading or stock exchange markets.

GEV Model Generalized Extreme Value, a family of similar statistical models,

each having more of the distribution in the tails than the typical

Gaussian (Normal) distribution. The GEV model is used within

TimePredict to generate an estimate of the worst-case timing be-

haviour of the software, by fitting one of the available GEV dis-

tributions to a frequency distribution of the timing measurement

data.

Gumbel

Distribution

A type of statistical distribution used within the Generalized Ex-

treme Value model, also referred to as a Type I Extreme Value

distribution. Unlike the other Extreme Value distributions, the

Gumbel distribution has no associated shape parameter, but in-

stead presents the same skewed bell-shaped curve at all times.

ILP Integer Linear Programming, an approach towards multi-variable

problems that attempts to find the optimum (or worst-case) out-

come across all the potential combinations of each variable, often

an NP-hard problem.

205



JAR A Java ARchive file, used to store a collection of Java class files.

JAR files can be deployed and executed as a single unit.

Kurtosis A measure of the peakedness of a particular statistical distribu-

tion, i.e., how many measurements within a particular dataset

cluster around a specific value.

Interdecile Range A measure of the statistical dispersion of a dataset, specifically,

the difference between the first and ninth deciles.

Inter-Quartile

Range

A measure of the statistical dispersion of a dataset, specifically, the

difference between the first and third quartiles. The values within

the dataset within these quartile bounds for the middle 50% of the

available data, i.e., the more common values encountered within

the dataset. The mid-point of the inter-quartile range provides

the median value of same data.

IQR See Inter-Quartile Range.

Kolmogorov-

Smirnov test

The Kolmogorov-Smirnov test is a minimum distance test, used to

assess the goodness of fit for a particular statistical distribution,

based on the sum of the distance of its CDF from the frequency

distribution of the dataset.

KS test See Kolmogorov-Smirnov test.

Mann-Whitney

Test

A non-parametric statistical test used to detect the likely differ-

ence between two datasets. Unlike model-based hypothesis tests,

the Mann-Whitney test makes no assumptions about the distri-

bution of the underlying data, allowing it to be applied with equal

vigor to both normal and various non-Gaussian datasets.

206



OTA Over-The-Air, a type of wireless software deployment mechanism.

P-value The p-value provides the probability of the same, or a more ex-

treme, test statistic value being generated randomly, when per-

forming a statistical hypothesis test. The p-value is used as an

indication of the level of significance of the test result.

Pareto

Distribution

A type of statistical distribution used within the Generalized Ex-

treme Value model. While not formally part of the General-

ized Extreme Value (GEV) family of statistical distributions, it

nonetheless provides a useful statistical model in predicting ex-

ceedances, or other exponentially-decreasing data series.

Pearson

Correlation

Coefficient

The Pearson product-moment correlation coefficient provides an

estimate of the correlation between two variables, within the range

-1.0 to +1.0. A correlation coefficient in excess of 0.7 (either posi-

tive or negative) provides a good indicator for a strong relationship

between the two variables under test. Any coefficient typically

within the range -0.3 to +0.3 is considered to show no correlation.

PDF Probability Density Function, a measure of the probability of gen-

erating a particular value from a given statistical distribution.

Integrals under the range of the PDF are used to define the prob-

ability of a randomly selected value falling between two specified

bounds. Within the Gaussian distribution, the PDF assumes a

bell-shaped curve, whereas other statistical distributions, e.g., the

GEV models, may exhibit more skewed or asymmetric shapes.

207



Quartile Dividing an ordered data set into quarters, so that each subset

contains precisely one quarter of the total elements of the set.

The quartile is the element that forms the boundary value between

these quarters, similar to the median dividing the data set into

two equal halves. Quartiles are typically labeled Q1 to Q3, with

Q0 being the minimum and Q4 the maximum.

T-value The test statistic produced by either the independent or paired

T-test, two statistical hypothesis tests that use Student’s T-

distribution to evaluate the likely difference in means between

two datasets. See T-test.

T-test The T-test is a statistical hypothesis test to evaluate whether a

statistically significant difference exists between the means of two

datasets. The T-test can be either independent, where no rela-

tionship exists between the two tested datasets, or paired, where

the same process is tested twice, e.g., before-and-after tests. The

strengths of the T-test are its use of a statistical model to assess

the likely differences in the means, however a number of under-

lying assumptions must be met concerning similar sample sizes,

variances and normality within the tested data.

Test Statistic The value produced by a statistical test when evaluating one or

more datasets. The test statistic must be compared to the critical

value to assess the outcome of the test. Within statistical hypoth-

esis tests, any test statistic greater than the critical value typically

results in rejecting the null hypothesis. See critical value.

208



Weibull

Distribution

A type of statistical distribution used within the Generalized Ex-

treme Value model. The Weibull distribution is often referred to

as a Type III Extreme Values distribution. The Weibull distribu-

tion can take on both an exponentially decreasing curved shape,

or a skewed bell-curve shape, depending on the value of its shape

parameter α.

WCET Worst-Case Execution Time, the slowest theoretical execution

time for the software running within a specified operating envi-

ronment.

209


