

AN	
 EXPERT-­‐SUPPORTED	
 APPROACH	
 TO	
 DATA	

EXPLORATION	

A thesis submitted to the

University of Dublin, Trinity College

for the degree of

Doctor of Philosophy

Cormac Hampson

Knowledge and Data Engineering Group (KDEG)

School of Computer Science

Trinity College, Dublin,

Cormac.Hampson@tcd.ie

Supervised by Dr. Owen Conlan

ii

Declaration

I, the undersigned, declare that this work has not been previously submitted as an exercise

for a degree at this or any other University, and that, unless otherwise stated, it is entirely

my own work.

Cormac Hampson

May 2011

iii

Permission to Lend or Copy

I, the undersigned, agree that the Trinity College Library may lend or copy this thesis upon

request.

Cormac Hampson

May 2011

iv

Acknowledgements

Many people have provided support to me during the course of my Ph.D. studies. Firstly, I

would like to thank my supervisor Dr. Owen Conlan for his guidance and many helpful

contributions to this research over the years. I would also like to express my gratitude to

my colleagues in KDEG who have been so generous with their time since I joined Trinity

College.

A special mention must go to Dr. Rachael Rafter and Dr. Alex O'Connor for their time and

feedback while I was compiling this thesis. Furthermore, I would like to thank Meltem

Gürel, Thomas Hengster, Virgile Brouard and Aonghus McGovern, whose work with

various incarnations of SARA and SABer helped to shape their implementation greatly.

Many thanks are also due to Peter Williams for helping to initiate this research path many

moons ago.

I would also like to acknowledge my sponsors who funded this research: The Embark

Initiative of the Irish Research Council for Science, Engineering and Technology, funded

by the National Development Plan; and Science Foundation Ireland via grant

08/IN.1/I2103 — Adaptive and adaptable media and services for dynamic personalisation

and contextualisation (AMAS).

Finally, I would like to take this opportunity to express my gratitude to my family and

friends for their encouragement throughout this entire process, and especially to Judy for

her boundless patience and good humour.

Knowledge is knowing that a tomato is a fruit; wisdom is knowing not to put it in a fruit salad.

v

Abstract
Almost all information domains have witnessed a large increase in the amount of

structured and semi-structured data available. However, there is still a lack of support for

casual computer users who wish to create queries spanning multiple information sources.

Until this occurs, the real benefits of having such a proliferation of metadata will not be

realised by the general public. This thesis proposes a novel expert-supported approach to

data exploration that will help casual users interact with large content repositories.

Specifically, this approach helps users leverage expert knowledge to discover relevant

information and to draw correlations across separate data sources. These heterogeneous

sources can be in various data formats, and are accessed by users in a consolidated fashion.

Both a framework and a set of models based on this approach have been designed and are

implemented in a technical infrastructure called SARA (Semantic Attribute Reconciliation

Architecture). An associated authoring tool called SABer (Semantic Attribute Builder),

which works in tandem with SARA has also been developed, and provides support for

domain experts with no computing programming or data modelling experience to encode

their expertise. Importantly, this means that SARA can be used in a broad range of

domains, once rich metadata is available. How this expertise can then be tailored to an

end-user’s interpretation or context, in order to provide him with more meaningful

semantics, is another key issue tackled in this research.

In summary, this thesis presents a novel and generic knowledge access platform that serves

as an intermediary between curators and consumers of data. It describes the expert-

supported approach to data exploration, its accompanying framework and models, as well

as the implementation of SARA and SABer. Furthermore, the validation of these systems

and their underlying approach is performed through five distinct evaluations. These

evaluations incorporate a variety of techniques, including user trials, performance tests,

questionnaires and interviews, and involve experiments with both SABer and SARA, and

the third party applications that use them.

vi

Contents
Declaration .. ii	

Permission to Lend or Copy ... iii	

Acknowledgements .. iv	

Abstract .. v	

Contents .. vi	

List of Figures .. x	

List of Tables .. xiii	

Abbreviations ... xv	

1	
 	
 	
 	
 Introduction ... 1	

1.1 Motivation .. 1
1.2 Research Question .. 5	

1.3 Research Objectives ... 5	

1.4 Contribution .. 6	

1.5 Technical Approach ... 7	

1.6 Thesis Overview ... 8	

2 State of the Art ... 10	

2.1 Introduction .. 10	

2.2 Complex Querying by Casual Users over Multiple Sources 10	

2.2.1 Search Computing Systems ... 11	

2.2.2 Parallax and Sparallax ... 13	

2.2.3 Explorator .. 16	

2.2.4 PowerAqua .. 18	

2.2.5 ORAKEL ... 20	

2.2.6 Semantic Web Portal ... 22	

2.2.7 MashArt ... 25	

2.2.8 Discussion ... 27	

2.2.9 Key Findings ... 30	

2.3 Domain Independent Tools to Support SME Encoding by Non-Technical Experts 31	

2.3.1	
 	
 Konduit VQB ... 32	

2.3.2 SPARQLViz .. 34	

2.3.3	
 	
 Potluck ... 36	

2.3.4 SpreadATOR ... 38	

2.3.5	
 	
 Web Ontology Building System for Novice Users: A Step-by-Step Approach 40	

2.3.6	
 	
 ROO ... 43	

2.3.7 Discussion ... 45	

vii

2.3.8	
 Key Findings .. 49	

2.4	
 Conclusion ... 49	

3 Design ... 50	

3.1	
 Introduction ... 50	

3.2	
 Influence from State of the Art .. 51	

3.3	
 Design Considerations ... 53	

3.4	
 Framework Requirements ... 53	

3.4.1	
 Scope of Framework .. 54	

3.5	
 Framework Description ... 56	

3.5.1	
 Design Time Framework .. 56	

3.5.2	
 Run Time Framework .. 58	

3.5.3	
 Summary of Framework Components and Models 60	

3.6	
 Data Models ... 61	

3.6.1	
 Semantic Attribute Model .. 62	

3.6.2	
 Source Model ... 66	

3.6.3	
 Domain Superclass Model ... 69	

3.6.4	
 Result Model .. 71	

3.7	
 Reconciliation Engine’s API ... 72	

3.8	
 SME Authoring Tool ... 73	

3.9	
 Expert-Supported Approach to Data Exploration ... 75	

3.9.1	
 Design Time Processes .. 76	

3.9.2	
 Run Time Processes ... 80	

3.10	
 Summary .. 82	

4 Implementation ... 83	

4.1	
 Introduction ... 83	

4.2	
 SARA (Semantic Attribute Reconciliation Architecture) 83	

4.2.1	
 Architecture and Technologies Employed ... 84	

4.2.2	
 Representation of Models .. 88	

4.2.3	
 Interface with the Dataspace Sources .. 95	

4.2.4	
 Storing Models ... 96	

4.2.5	
 Interface with Client Applications ... 97	

4.2.6	
 Parsing of Queries and Reconciliation of Results .. 101	

4.2.7	
 Summary and Analysis .. 104	

4.3	
 SABer (Semantic Attribute Builder) ... 105	

4.3.1	
 Semantic Attribute Authoring Process in SABer - Step One 106	

4.3.2	
 Semantic Attribute Authoring Process Step Two .. 108	

4.4	
 Music Domain Case Study .. 119	

viii

4.5	
 Extending SARA and SABer for new data formats ... 121	

4.6	
 Summary ... 122	

5 Evaluation .. 123	

5.1	
 Introduction and Evaluation Overview ... 123	

5.2	
 Evaluation Strategy: .. 125	

5.3	
 Experiment 1: Multi-Source Music Trial ... 129	

5.3.1	
 Experimental Goals ... 129	

5.3.2	
 Experimental Setup ... 129	

5.3.3	
 Experimental Results ... 132	

5.3.4	
 Summary ... 134	

5.4	
 Experiment 2: Multi-domain Evaluation of SABer and SARA 134	

5.4.1	
 Goals of Experiment .. 134	

5.4.2	
 Experimental Setup: .. 135	

5.4.3	
 Experimental Results ... 139	

5.4.4	
 Summary ... 144	

5.5	
 Experiment 3: End User Experiences with Client Applications 145	

5.5.1	
 Introduction ... 145	

5.5.2	
 Goals of X2Photo User Trial ... 146	

5.5.3	
 Goals for Film Domain Exploration Client User Trial 147	

5.5.4	
 Discussion on how User Trials Helped to Evaluate SARA 148	

5.5.5	
 Summary ... 150	

5.6	
 Experiment 4: SABer User Trial .. 150	

5.6.1	
 Experimental Goals ... 150	

5.6.2	
 Experimental Setup ... 151	

5.6.3	
 Experimental Results ... 154	

5.7	
 Experiment 5: SARA Performance Evaluation .. 160	

5.7.1	
 Experimental Goals ... 160	

5.7.2	
 Experimental Setup ... 160	

5.7.3	
 Experimental Results ... 164	

5.7.4	
 Summary ... 171	

5.8	
 Analysis of Evaluation Results ... 172	

5.8.1	
 Stakeholder Perspective .. 174	

5.8.2	
 State of the Art Comparison .. 175	

5.9	
 Summary ... 177	

6 Conclusion ... 179	

6.1	
 Objectives & Achievements ... 179	

6.2	
 Contributions to the State of the Art ... 181	

ix

6.3	
 Future Work ... 185	

6.3.1	
 Extending SARA and SABer ... 185	

6.3.2	
 Linked Data and Instance Level Reconciliation .. 186	

6.3.3	
 Multi-domain Queries .. 187	

Bibliography ... 188	

Appendices ... 194	

Appendix A - Background Technologies ... 194	

A.1 XML and XQuery ... 194	

A.2 RDF/Linked Data and SPARQL ... 195	

A.3 OWL .. 196	

Appendix B – XML Representation of Two Songs from a Transformed iTunes Music

 Library .. 197	

Appendix C – XML Representation of Two Songs from US Singles Charts (1950-2008)198	

Appendix D – Multi-Source Music Trial Questionnaire .. 199	

Appendix E – Interview for Multi-domain Evaluation of SABer and SARA 201	

Appendix F - SABer Evaluation Questionnaire ... 202	

Appendix G - System Usability Scale .. 204	

Appendix H – X2Photo User Experiment .. 205	

Experimental Setup .. 205	

 Experimental Results ... 206	

Appendix I – Film Domain Exploration Client User Experiment 211	

Experimental Setup .. 211	

Experimental Results ... 211	

Appendix J – X2Photo User Questionnaire ... 214	

Appendix K - Film Domain Exploration Client User Questionnaire 216	

x

List of Figures
Figure 2-1. Mock Up of a Search Computing Application Result Page 12	

Figure 2-2. Parallax Interface Listing US Presidents .. 14	

Figure 2-3. Explorator Interface Showing Different Sets ... 17	

Figure 2-4. PowerAqua User Interface .. 19	

Figure 2-5. FrameMapper Interface .. 21	

Figure 2-6. Screenshots of SWP Visualisation component ... 24	

Figure 2-7. Conference Trip Planner Developed in MashArt ... 26	

Figure 2-8. Konduit VQB Interface for Creating SELECT Statements in SPARQL 33	

Figure 2-9. SPARQLViz Interface for Creating SELECT Statements in SPARQL 35	

Figure 2-10. Screenshot of Potluck showing several columns and facets of merged fields. .. 37	

Figure 2-11. SpreadATOR User Interface .. 39	

Figure 2-12. Screenshot of a New Class Being Defined in the Ritsumeikan University

 Tool ... 42	

Figure 2-13. Screenshot of the ROO Application ... 43	

Figure 3-1. Issues Relating to the Design Time Framework ... 56	

Figure 3-2. Design Time Framework .. 57	

Figure 3-3. Issues Relating to the Run Time Framework ... 59	

Figure 3-4. Run Time Framework ... 59	

Figure 3-5. Semantic Attribute Query Data Stack .. 66	

Figure 3-6. Graphical Representation of Five Superclasses and their Transformation

 Options ... 71	

Figure 3-7. Interaction between the SME Authoring Tool and the Reconciliation Engine 74	

Figure 3-8. Design Time Processes of Expert Supported Approach to Data exploration 76	

Figure 3-9. Run Time Processes of Expert Supported Approach to Data exploration 80	

Figure 4-1. Design Time Architecture of Overall Framework .. 85	

Figure 4-2. Sequence Diagram for Design Time Architecture ... 85	

Figure 4-3. Run Time Architecture of Overall Framework .. 86	

Figure 4-4. Sequence Diagram for Run Time Architecture .. 87	

Figure 4-5. Sample XML Domain Superclass Model ... 89	

Figure 4-6. Sample XML Source Model for Sources with Native APIs 90	

Figure 4-7. Sample XML Source Model for RDF Sources ... 91	

Figure 4-8. XML Description of XML Source in Domain Registry 92	

xi

Figure 4-9. Sample Semantic Attribute Model ... 94	

Figure 4-10. Sample XML Result Model .. 95	

Figure 4-11. Sample Domain Superclass Model .. 103	

Figure 4-12. SABer Interface During Step One ... 107	

Figure 4-13. SABer Interface During Step Two .. 109	

Figure 4-14. Sample First Line of Expert Rule for XML Based Semantic Attribute

 in SABer .. 110	

Figure 4-15. Sample Two Lines of Expert Rule for XML Based Semantic Attribute 110	

Figure 4-16. Sample Three Lines of Expert Rule for XML Based Semantic Attribute 111	

Figure 4-17. Sample Five Lines of Expert Rule for XML Based Semantic Attribute 112	

Figure 4-18. Sample Three Lines of Template Rule for XML Based Semantic Attribute 112	

Figure 4-19. Sample First Line of Expert Rule for RDF Based Semantic Attribute 113	

Figure 4-20. Sample Two Lines of Expert Rule for RDF Based Semantic Attribute 114	

Figure 4-21. Sample Four Lines of Expert Rule for RDF Based Semantic Attribute 115	

Figure 4-22. Sample Four Lines of Template Rule for RDF Based Semantic Attribute 116	

Figure 4-23. Sample API Parameter in Expert Rule for API Based Semantic Attribute 116	

Figure 4-24. Sample SARA Parameter in Expert Rule for API Based Semantic Attribute .. 117	

Figure 4-25. Sample Template Rule for API Based Semantic Attribute 118	

Figure 4-26. Architecture of SABer’s Interaction with SARA .. 118	

Figure 5-1. Thesis Hierarchy from Research Question to Evaluation Features 125	

Figure 5-2. Relationship between Research Objective 3 and the Evaluation Experiments ... 129	

Figure 5-3. GUI of Client Application that Explored Academic Publication Domain 136	

Figure 5-4. The X2Photo Interface .. 137	

Figure 5-5. Screenshot of Film Domain Exploration Client .. 138	

Figure 5-6. Sample Semantic Attribute for SABer Evaluation .. 153	

Figure 5-7. Average Time Technical and Non-Technical Users Took to Create

 Each Semantic Attribute ... 155	

Figure 5-8. Number of Accurate Semantic Attributes Generated by Technical and Non-

 Technical Users ... 156	

Figure 5-9. SUS Scores Given by Technical and Non-Technical Users 157	

Figure 5-10. No. Participants Who Found it Considerably More Difficult to Create

 Semantic Attributes of Type expert, hybrid or template 158	

Figure 5-11. No. Participants Who Found it Considerably More Difficult to Make

 Rules for Data type A, B or C? ... 159	

xii

Figure 5-12. Time Spent Processing Semantic Attribute “Top 100 Singles in US

 Charts in 1990s” .. 166	

Figure 5-13. Time Spent Processing Semantic Attribute “No. Very Low

 Tempo Songs Charting in US” .. 167	

Figure 5-14. Time Spent Processing Semantic Attribute “No. Very High

 Tempo Songs Charting in US” ... 167	

Figure 5-15. Time Spent Processing Semantic Attribute “No. Average Tempo

 Songs Charting in US” ... 168	

Figure 5-16. Time Spent Processing Semantic Attribute Query “Rock Artists with Songs

 in the Top 50 Selling of a Year, in the 60s, 70s, 80s or 90s” 169	

Figure 5-17. Time Spent Processing Semantic Attribute Query “Rock Artists with Songs

 in the Top 200 Selling of a Year, in the 60s, 70s, 80s or 90s” 169	

Figure 5-18. Total Result Model Size Graphed Against the Average No. Results

 Added per ms. ... 171	

Figure 5-19. Hierarchy from Research Question down to Individual Evaluation

 Experiments .. 173

Figure I-1. Four initial photographs shown to users.. 206

Figure I-2. Examples of similar pictures found by users using X2Photo...........................209

xiii

List of Tables
Table 2-1. Summary of Systems that Support Complex Querying by Casual Users 28	

Table 2-2. Summary of Domain Independent Tools that Support Non-Technical Domain

 Experts in Encoding SME .. 45	

Table 3-1. Summary of Framework Components and Models .. 61	

Table 3-2. Type of Semantic Attributes ... 63	

Table 3-3. Items required in the Semantic Attribute Model .. 64	

Table 3-4. Items Required in the XML Source Model .. 67	

Table 3-5. Items Required in the RDF Source Model ... 68	

Table 3-6. Items Required in the API Source Model ... 69	

Table 3-7. Items required by the Domain Superclass Model ... 70	

Table 3-8. Items required by the Result Model .. 72	

Table 3-9. Design Time and Run time Processes of Expert Supported Approach to Data

 Exploration .. 76	

Table 3-10. Stakeholder Benefits of using Expert Supported Approach to Data

 Exploration .. 76	

Table 4-1. Parameters for a Semantic Attribute’s Representation in the QuerySARA API

 Method .. 98	

Table 4-2. Representation of an ArrayCollection Returned by GetSemanticAttributes API

 Method .. 100	

Table 4-3. Summary of how Data Types have Rules Generated for Different Semantic

 Attributes ... 109	

Table 5-1. Details of Thesis Experiments .. 128	

Table 5-2. Results of Multi-Source Music Trial Questionnaire ... 133	

Table 5-3. The Ten Semantic Attributes and their Parameters Created for X2Photo 141	

Table 5-4. Various Operation Processing Times Recorded for the Performance Evaluation

 of SARA .. 162	

Table 5-5. List of Queries , Source Types and No. Results used in Part One of the

 Performance Evaluation of SARA .. 163	

Table 5-7. Average Length of Time SARA takes to Generate Result Models of Different

 Sizes .. 170	

Table 5-8. Summary of Systems that Support Complex Querying by Casual Users 176	

xiv

Table 5-9. Summary of Domain Independent Tools to Support Non-Technical Domain

 Experts to Encode SME .. 177	

xv

Abbreviations
API Application Programming Interface

CNL Controlled Natural Language

GUI Graphical User Interface

HCIR Human Computer Information Retrieval

IR Information Retrieval

NLI Natural Language Interface

OWL Web Ontology Language

KDDM Knowledge Discovery & Data Mining

RDF Resource Description Framework

SABer Semantic Attribute Builder

SARA Semantic Attribute Reconciliation Architecture

SD Standard Deviation

SME Subject Matter Expertise

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SUS System Usability Scale

URI Uniform Resource Identifier

XML Extensible Markup Language

XQuery XML Query Language

XSL Extensible Stylesheet Language

Abbreviations for Implementation Features

F1 Support communication with different data sources of various formats in a given
domain.

F2 Store SME encoded by non-technical experts.

F3 Advertise this SME to third party applications, via an API that only requires

parameters, so that end users can leverage the SME in their data explorations.

F4 Support extensibility and reusability of SME and data source registration, as well as

domain independence.

F5 Enable end users to send complex, tailored queries based on semantic attributes, via

client applications that send the associated parameters to an API.

F6 Allow individual queries encapsulated within the Semantic Attribute Models to be

forwarded to the relevant data sources in the appropriate query language.

xvi

F7 Reconcile results from the separate data sources at an instance level.

F8 Return a consolidated set of results to the client application for rendering to the

user.

Abbreviations for Evaluation Criteria

E1 SARA provides client applications with access to data sources without prescribing a

specific user interaction paradigm for the GUI, or for their developers to know the

underlying query language associated with each source.

E2 SABer enables the SME leveraged by the client applications to be encoded by non-

technical experts.

E3 Casual users that appropriate (or tailor) this SME within a client application can

send complex queries to data sources via SARA.

E4 SARA and SABer are domain independent.

C1 Technical features of SARA showcased in music case study.

P1 Performance evaluation of SARA to see under what circumstances it is a usable

middleware.

1

1 Introduction

1.1 Motivation

In recent years, casual computer users have found themselves accessing diverse structured

and semi-structured data on an increasingly regular basis. A casual1 computer user may be

defined as one with Internet browsing ability, but without programming skills or data

modelling expertise (Huynh et al. 2008). With the proliferation of web services and mash-

ups, and the advent of the Linking Open Data community project2, this trend of casual

users interacting more and more with distributed data sources is likely to continue. Even

within single enterprises and organisations, it is not unusual for casual users to have access

to many separate databases that store related information in different formats and schemas.

However, while one may intuitively expect that any additional structure in the data would

be exploited to provide sophisticated query capabilities, this has largely not proven to be

the case (Bizer et al. 2009). Many applications that use structured data do provide access

to their underlying data store via query languages; however these are suitable primarily for

application developers with a knowledge of the language rather than casual end-users

wishing to ask very specific questions through a usable human interface (Bizer et al.

2009). The importance of such functionality has already been identified in human-centred

computing, with one of its main aims being to support users in making queries and seeing

responses in their own terminology (Kurgan & Musilek 2006).

KDDM (Knowledge Discovery and Data Mining) techniques have increasingly found a

niche in research and commercial environments (Mannila & Gunopulos 2009), enabling

users to find interesting relationships and trends within large data collections (both

structured and unstructured), despite these attributes not being explicitly encoded. Popular

KDDM approaches include those based on statistical, case-based, neural network and

probability techniques (Goebel & Gruenwald 1999). However, due to the complexity of

these formal methods of knowledge seeking, users are often unwilling to devote the time

and resources needed to learn them (Rouse 2003). Though KDDM techniques have proven

to be very useful to specialists in a given discipline, their complexity means that they are

1 In this thesis the term “casual” only refers to users’ degree of computer expertise and not to their level of
interest in interacting with and learning more about specific domains.
2 http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

2

not suitable for supporting users with limited computer skills in correlating useful

information from separate data sources.

Data exploration techniques on the other hand, which are related to data mining (since they

are concerned with exposing patterns and relationships in data), generally take a more

human-centred approach to pattern discovery (Scianta Intelligence 2005). In contrast to

KDDM which relies on automated algorithms (typically guided by human-specified

parameters), data exploration explicitly incorporates manual techniques to support a user in

locating important aspects of data sets. These manual techniques typically involve end

users browsing and querying data sets through a GUI, in order to retrieve and examine data

in an interactive and intuitive-based process of trial and error.

Imagine a casual computer user trying to locate “all nostalgia music artists currently

touring the USA”. The information necessary to answer this rather subjective query is

likely to be stored over multiple sources, e.g. one data source might contain information on

upcoming concerts that are scheduled, and another might contain music chart data

classified by artist and genre. In order to solve the user’s query, the information from both

sources must be consolidated, and therefore there is a clear need for techniques that

support the casual user in this manner. One such way to support casual users in exploring

data sets is to give them access to Subject Matter Expertise (SME). Such human domain

expertise is widely used in Expert Systems, which are developed to help users find reliable

information in narrow areas such as medicine or accounting (Vaughan-Nichols 2006). By

leveraging and tailoring domain expertise, a user with limited knowledge of the music

domain can be helped to search for “all music artists that have concerts scheduled in the

USA, despite their most recent top ten album in the USA being more than ten years ago”.

Importantly, by supporting the user in inputting specific values (top ten albums, more than

ten years ago etc.), this approach is likely to provide the user with results that agree with

his own interpretation of a “nostalgia music artist touring the USA”. Thus the user is

facilitated in combining and interacting with multiple concepts (some of which may be

quite fuzzy) that have been formalised by domain experts3, in order to locate and correlate

relevant information. Other examples of the types of query this approach supports include:

• finding all good value Asian restaurants that are near to my house.

3 In terms of this thesis, an “expert” is defined as anyone with an understanding of a specific domain and the
ability to express their knowledge. Approaches should enable SME from a specific expert, or group of
experts, to be leveraged by casual users.

3

• locating all European holiday destinations serviced by low cost carriers, that have

hot weather over Christmas, and an availability of rooms in luxury hotels.

• getting all patients that have a high risk of cardiac problems, which have not had a

recent check up.

• listing all American universities that are highly ranked internationally, run a

journalism M.Sc. course, and has cheap accommodation on campus.

What all these queries have in common, despite being in different domains, is that they

combine data from different sources to satisfy a specific information need. Supporting

casual users to explore multiple data collections using SME can also help them to expose

useful relationships not immediately clear from examining the data sources individually.

For example the increasing availability of government health, transport and education data

can open up the opportunity to discover bicycle accident black spots and correlations

between certain environmental factors and high levels of a disease (Hall 2010).

Unfortunately the complexity of encoding SME into many expert systems (the

comprehensive development of an ontology and its corresponding inference engine rules),

is such that a non-technical4 domain expert is likely to require the support of a knowledge

engineer. This in turn increases the time and costs involved in such an exercise.

Furthermore, the SME encoded often resides in a standalone system with little scope for

expertise to be reused in different applications. This is especially the case when the user

interface, domain expertise, and knowledge base are tightly coupled together. If all these

components are unnecessarily bound together in one system, it is less likely that useful

GUIs, rich information sources and carefully constructed SME will be reused elsewhere

resulting in an undesirable duplication of effort.

The use of First Order Logic in SME also imposes complex rules that need to be

understood by domain experts and the generation of inference rules may quickly become

intractable. These are major challenges for non-technical domain experts to overcome, and

these experts would require the support of a knowledge engineer to facilitate them.

Interestingly, it has also been argued that some knowledge representation techniques seem

to insist on solving harder problems than the user actually has (Rector 2006). Hence a

4 A non-technical domain expert is one who has no formal background in computer programming or data
modelling.

4

simpler more flexible approach to encoding SME may actually be just as useful as

traditional methods of knowledge representation, such as ontologies and inference rules.

In terms of facilitating interesting correlations and trends to be elicited by users,

consolidated access to multiple data sources (even within a single domain) is a crucial step

forward towards more effective data management. Hence, many of the benefits offered by

structured and semi-structured data will not be fully realised by users until such data

integration becomes more widespread. Unfortunately, by its very nature, the structured

data on the Internet is very heterogeneous and current data integration architectures cannot

cope with this web-scale heterogeneity (Madhavan et al. 2007). This situation has seen an

increase in pay as you go integration inspired by dataspaces (Halevy et al. 2006), where it

is not necessary to have all data sources in a dataspace tightly integrated from the very

beginning (e.g. free text search could be offered on a particular source before its schema is

mapped). Furthermore, with the rapid growth of Web Services and Linked Data there has

been an increasing interest in the lightweight integration of data sources (Bizer et al. 2009).

In terms of Web Services, this has led to the proliferation of mash-ups and aggregated

feeds. However, of even more potential is the use of dereferenceable URIs (Uniform

Resource Identifiers) in Linked Data (Mei et al. 2008) which push integration down to the

instance level. This means that each Linked Data object (person, place, product etc.) has

an unambiguous reference, like a database id, and can be correlated with other references

to it in multiple distributed data sources. This relatively recent approach facilitates more

agile data integration, and is potentially much more powerful than traditional methods such

as schema mapping.

As has been discussed, there is a clear need for techniques to support casual users in

browsing, querying and drawing correlations within multiple sources from a domain.

KDDM techniques appear too complex for casual users, with data exploration approaches

seen as a more suitable alternative. SME has been successfully employed to support users

in exploring specific domains. However, often the complexity of this SME requires the

help of knowledge engineers to be encoded, which can greatly increase time and costs.

Hence, the focus of this thesis is on supporting data exploration of multiple data sources by

casual users, through SME encoded by non-technical domain experts. As the prevalence

of and dependence on digital data escalates, and the increasing use of such repositories by

casual users occurs, the need for user-friendly systems capable of supporting meaningful

exploration will be greatly increased.

5

1.2 Research Question

This research asks how Subject Matter Expertise may be effectively encoded by non-

technical experts and then leveraged by casual users to assist exploration and querying of

multiple data sources from a domain.

This thesis describes an innovative approach, and its accompanying framework and

models, which supports casual users in engaging with data in a more meaningful manner.

This approach can support both systematic data exploration in a professional context, as

well as more ad hoc explorations by users wishing to find out more about a specific

domain. A major aspect of the framework described is its novel authoring tool, which

enables non-technical experts to translate abstract concepts and qualitative information

from their domain into concrete rules. These rules are then encapsulated within an SME

model, and made available for use and manipulation by casual end users engaged in data

exploration.

Non-technical experts and casual users both only have basic computing skills such as

Internet browsing, and have no formal background in computer programming or data

modelling. However, they differ through their degree of expertise in the domain. By

“effectively encoded” it means that the representation of SME can be accurately

transformed into a query language that accesses the raw data sources, and that the SME

authoring tool is usable by non-technical experts. In the context of this thesis, a usable tool

is one that follows the ISO definition of usability (Jokela et al. 2003), which uses

effectiveness, efficiency and satisfaction as metrics.

1.3 Research Objectives

1) Analyse the state of the art in data exploration to determine the extent to which casual

users are facilitated, and examine the state of the art in SME encoding for non-

technical experts to identify the main features of current approaches.

2) Define an approach that allows end users to leverage SME (tailoring as appropriate)

when exploring and consolidating information from separate data sources in a domain,

and describe the accompanying models and framework necessary to implement it.

3) Perform evaluation studies to assess:

a) the usability (effectiveness, efficiency and satisfaction) (Jokela et al. 2003), of the

implemented SME authoring component of the framework, and the ability of non-

technical users to encode SME.

6

b) whether the encoded SME can be usefully exploited by client applications to

adequately support end-user exploration.

c) the features of the framework implementation and whether the consolidation of

data from separate sources is supported.

1.4 Contribution

This thesis proposes an innovative solution that incorporates Subject Matter Expertise

(SME) into the exploration of heterogeneous data sources. The primary motivation of this

approach is to use SME, encoded by non-technical experts, to help casual users explore,

query and correlate the data they encounter on a daily basis. The major contribution of this

thesis is the expert-supported approach to data exploration and its accompanying models

that support it. Importantly, this approach specifies a novel and generic knowledge access

platform, which serves as a useful intermediary between curators and consumers of data.

Specifically it contributes to the state of art through its approach to supporting non-

technical experts in defining rules relating to notional or abstract concepts in their domain,

which can then be leveraged and manipulated by end users to explore information in which

they are interested in. The encoding of SME in this way also gives end users a common

frame of reference in which to view their domain of interest.

The expert rules are encoded in a novel reusable SME model that contributes to the state of

the art by natively supporting users who wish to tailor these expert rules to their own

interpretation or context, which is often necessary because SME sometimes encompasses

rather subjective notions such as “cheap” or “near”. Furthermore, by targeting domain

experts with limited computer and data modelling skills, the approach proposed in this

thesis is attractive to a wide audience of experts in a variety of domains, and its use of agile

data integration techniques allows reusable dataspaces to be formed. These dataspaces

help support the reconciliation of data from multiple sources in a domain. The approach

presented in this thesis, if widely deployed online, has the potential to help systemise the

appropriation of expert judgement by casual users, in order to assist meaningful

exploration of a domain.

The minor contribution of this thesis is the framework to support the expert-supported

approach to data exploration. The implementations of SARA (Semantic Attribute

Reconciliation Architecture) and SABer (Semantic Attribute Builder) are instruments of

this framework which were used to showcase its features. These systems have already

7

been used to support two M.Sc. theses (Hengster 2009; Gürel 2009), two internship

projects, and their details have appeared in several peer-reviewed publications (Hampson

2007; Hampson & Conlan 2009; Hampson & Conlan 2010; Hampson et al. 2011;

Hampson & Conlan 2011). SARA and SABer have also recently been deployed as central

technologies in the Science Foundation Ireland funded AMAS project5 where they are

being used by a multinational publishing house in order to support a consolidated

visualisation of their vast e-learning resources (Hampson et al. 2011). Moreover, SARA

has also been identified for deployment within the Science Foundation Ireland funded

FAME project6, where low level streaming data will be semantically enriched using

SARA, in order to provide key information and alerts to a network management dashboard

(Conlan et al. 2010). In summary, the successful deployment and evaluation of SARA and

SABer validates the framework they represent, and reinforces the value of the expert-

supported approach to data exploration and its models.

1.5 Technical Approach

An initial state of the art review was undertaken in the areas of Data Exploration and the

Encoding of SME. After analysing the results of this broader review, a more focussed

survey was conducted on Complex Querying by Casual Users over Multiple Sources and

Domain Independent Tools to Support SME Encoding by Non-Technical Experts. Complex

Querying by Casual Users over Multiple Sources specifically pertains to systems that

provide casual users with more sophisticated mechanisms with which to make queries over

structured and semi-structured data than would be possible with a more naïve key word

search. Likewise Domain Independent Tools to Support SME Encoding by Non-Technical

Experts examines generic systems that can be repurposed to different domains.

The literature review helped in providing an understanding of the major issues in these

fields and in identifying the strengths and weaknesses of current approaches. Based on the

state of the art analysis, a design for the expert-supported approach to data exploration

was developed, which consists of seven distinct processes. Furthermore, detailed

specifications of the various framework components, interfaces and models that are

necessary to facilitate this approach were also generated. The models created include the

5 http://kdeg.cs.tcd.ie/amas
6 http://www.fame.ie/

8

Semantic Attribute Model and the Source Model, both of which are central to encoding

SME in a flexible manner and enabling the reconciliation of data from multiple sources.

The base requirements for each of the major components of the framework were then listed

in order to guide the technical implementation of the framework. These requirements and

guidelines were closely adhered to in the development of SARA (Semantic Attribute

Reconciliation Architecture) and SABer (Semantic Attribute Builder), which were distinct

implementations of the two major components of the framework. A multi-source case

study of a SARA installation in the music domain was also undertaken to highlight many

of the features, stemming from the underlying approach, that SARA offers client

applications.

Five distinct user experiments were devised to evaluate SARA and SABer, and the

underlying expert-supported approach to data exploration. These experiments

incorporated a variety of techniques, including user trials, performance tests,

questionnaires and interviews, and involved third party applications as well as SARA and

SABer. Early experiments iteratively improved the underlying design and approach, as

well as the technical implementations themselves. Further experiments highlighted how

SARA successfully facilitates several client applications in leveraging domain expertise,

and how users benefit from these applications’ use of SARA. Finally, the performance of

non-technical users when using SABer was compared to that of users with computer

coding experience, and a technical evaluation of SARA detailed the performance levels

that prospective application developers can expect.

1.6 Thesis Overview

Chapter 2 provides an analysis and review of the state of the art, both in terms of Complex

Querying by Casual Users over Multiple Sources and in terms of Domain Independent

Tools to Support SME Encoding by Non-Technical Experts. Chapter 3 then describes a

design that fulfils the goals and objectives outlined in Chapter 1, and highlights how key

findings from the state of the art analysis helped to influence the expert-supported

approach to data exploration, as well as its accompanying framework and models. The

two main components of the framework (the Reconciliation Engine and the SME

Authoring Tool) are detailed, as well as their associated processes, interfaces and data

models.

9

How these framework components are technically realised through SARA (Semantic

Attribute Reconciliation Architecture) and SABer (Semantic Attribute Builder)

respectively is described in Chapter 4. This chapter has two main sections, the first of

which highlights how SARA satisfies the requirements of the Reconciliation Engine

component, and details its underlying technologies and interfaces. The second section

discusses the implementation of SABer and how it supports non-technical domain experts

to encode semantic attributes. This two-step process is described for all types of semantic

attributes and data types that SABer supports. Finally this chapter concludes with a case

study of a SARA installation in the music domain.

Chapter 5 details the various evaluations of SARA and SABer, and the underlying expert-

supported approach to data exploration. These evaluation studies incorporate a variety of

techniques, such as user trials, performance tests, questionnaires and interviews, and

include experiments with SABer, SARA and the third party applications that use them.

The goals, setup and results of each of the five distinct experiments are described, as well

as an overall summary detailing the significance of the results. Conclusions are drawn in

Chapter 6, and a discussion of the research contributions made is provided. Finally, this

chapter also looks to the future and comments on some potentially interesting directions

for this research.

10

2 State of the Art
This chapter describes a state of the art analysis of Complex Querying by Casual Users

over Multiple Sources and Domain Independent Tools to Support SME (Subject Matter

Expertise) Encoding by Non-Technical Experts. These state of the art reviews give special

attention to features of other systems that are of particular relevance to this thesis. The

main purpose of the reviews is to find out what systems are currently employed in these

research areas, as well as to investigate what deficiencies systems in these fields suffer

from. Key findings from the state of the art analysis are then listed, which are used to

inform the system design discussed in Chapter 3.

2.1 Introduction

As described in Section 1.1, casual computer users are often unwilling to devote the time

and resources to learn the formal methods of knowledge seeking used in KDDM (Rouse

2003). Furthermore, data exploration approaches were suggested as more suitable for

users with a non-computer programming or data modelling background, and it was

highlighted how SME has been successfully employed to support users in exploring

domains of information (Vaughan-Nichols 2006). However, often the encoding of this

SME requires the support of knowledge engineers, which can increase the associated time

and costs of generating the SME. Hence, the motivation of this thesis is on supporting data

exploration by casual users through SME encoded by non-technical domain experts. As a

result, two core areas related to this thesis are presented; Complex Querying by Casual

Users over Multiple Sources and Domain Independent Tools to Support SME Encoding by

Non-Technical Experts. Each of these topics has important implications for the design

choice described in Chapter 3.

2.2 Complex Querying by Casual Users over Multiple Sources

In this section a number of case studies of complex querying systems are examined. The

systems chosen typically have a high impact value within the literature and follow an

approach that is related in some way to that which is adopted by this research. The set of

systems included for review also aims to reflect the diversity in the literature in terms of

data format and user interaction paradigm (some systems that operate over single data

sources are also included due to their interesting features). In particular this section

concentrates on systems that are reusable across different domains, and that give casual

users a more sophisticated approach to forming queries (or browsing) over structured and

11

semi-structured data, than would be possible using simple keyword matching techniques

(e.g. this thesis considers that users who just input keywords into search engines as

performing simple querying). Complex querying approaches use mechanisms such as

faceted interfaces, Natural Language Interfaces and widgets, in order to support users in

finding specific answers and entities, in comparison to the ranked list of documents typical

returned by search engines. In the course of analysing complex querying systems for

Research Objective 1 (Section 1.3), the following criteria with which to evaluate these

systems were derived:

1. What data formats does it work with?

2. Does it work with multiple data formats?

3. Does it work over multiple data sources?

4. Does it support third party applications to be developed on top of it?

5. Does the system use SME?

6. How does the user input queries via the GUI?

2.2.1 Search Computing Systems

Description:

Search Computing (Brambilla & Ceri 2009) defines a class of applications, which enable

end users to perform exploratory search processes over multi-domain data sources on the

Web. This research directly evolved from the New Generation Search framework (Braga,

Ceri, et al. 2008; Braga, Calvanese, et al. 2008) that supported multi-domain queries over

web services. It now encompasses an entire lifecycle from the initial registration of data

sources to service marts, to the configuration of Liquid Query Templates, which are used

to specify how end-users perform their exploratory searches in the GUI. More specifically,

service marts are simple schemas which match “Web Objects” by hiding the underlying

data source structures and presenting a simple interface (Campi et al. 2010). Likewise,

Liquid Query Templates employ a set of input forms and controls to define user query

submission, which are coupled with a set of parameters to specify result presentation

(Bozzon, Brambilla, Ceri & Fraternali 2010).

Search Computing applications aim at filling the gap between general-purpose search

engines, which are unable to find information spanning multiple topics, and domain-

specific search systems, which cannot go beyond their domain limits. For instance a

Search Computing application would support users in asking multi-domain queries such as

12

“Where can I attend a scientific conference close to a beautiful beach reachable with

cheap flights?”(Brambilla & Ceri 2009). Search Computing proposes a software

architecture that supports such multi-domain queries that span multiple sources. The

distinguishing feature of Search Computing applications is the ability of combining, at

query time, knowledge extracted from various domain-expert Web sources. This means

that knowledge that is more accurate and complete than the knowledge available to

general-purpose search systems is incorporated (Brambilla & Ceri 2009). Such expertise

(about cultural events, medical specialisations, popular rock songs, and so on) is

contributed through either social processes (e.g. rating, tagging, and commenting) or a

careful knowledge construction process by experts.

Figure 2-1. Mock Up of a Search Computing Application Result Page

Currently multi-domain queries can be answered only by patient and expert users, who

interact with specialised engines one at a time. They then must feed the result of one

search input to another one, reconciling answers manually. Although Search Computing is

a promising field of research, it is important to note that this area is still “under

construction” (Bozzon, Brambilla, Ceri, Corcoglioniti, et al. 2010), and as such there is a

lack of evaluated applications that follow this paradigm.

13

Analysis:

Search Computing aims at supporting casual users who want to query and reconcile data

from multiple data sources in different formats, which addresses a compelling need. One

useful aspect of its GUI (specified in the Liquid Query Template) is that it offers the

potential for complex queries to be easily generated by ordinary users. For instance simple

widgets support the user in generating queries efficiently (e.g. sliding a bar representing

the distance to a restaurant). Figure 2-1 shows a mock up result page (developed as part

of the Search Computing Project) that details what a results page would look like in the

user interface. The authors also discuss the possibility of incorporating Linked Data into

the system which currently focuses only on web services. However, there are a number of

potential issues with the current state of Search Computing, primarily stemming from its

reliance on source providers to register (and configure) their services with service marts,

and for experts to create Liquid Query Templates that specify the application GUI as well

as how each widget interacts with the service marts. If both of these processes cannot be

quickly and easily fulfilled, the likelihood of a wider adoption of this paradigm will

decrease. Thus the simplification of these processes or the addition of tool support

(especially in the generation of Liquid Query Templates) would be of great benefit.

Furthermore, since each Liquid Query Template is designed for a specific application,

direct reuse of these expert templates in other applications is not possible. Finally, though

Search Computing shows significant potential in supporting complex multi-domain queries

by casual users, it has been acknowledged by the developers that there is still a lack of user

evaluation studies to validate the effectiveness and acceptance of the approach (Bozzon,

Brambilla, Ceri & Fraternali 2010).

2.2.2 Parallax and Sparallax

Description:

Parallax (Huynh & Karger 2009) is an open source web application built on top of the

Freebase7 service, which allows people to use a set-based browsing paradigm to navigate

through the structured data in Freebase (a diverse knowledge base composed mainly by its

community members). The rationale for Parallax’s set-based browsing paradigm is that

dealing with one unit of web information at a time is insufficient for some information

tasks. For instance, to get a basic understanding about the economy of Britain, one can

simply read the corresponding Wikipedia article; however, if one wants to quantitatively

7 http://www.freebase.com

14

compare the economies of various countries previously in the British colonial empire, then

one must read many articles, extract out the quantities for comparison (e.g., Gross

Domestic Product), tabulate them in a spreadsheet, and then construct a visualisation such

as a bar chart to show the comparison. The developers postulate that in order to gain a big

picture from bits and pieces extracted from several sources, current web browsers fall short

due to their “one web page at a time” browsing paradigm, leaving the user to flip between

several web pages and carry out tedious data tabulation manually (Huynh & Karger 2009).

Figure 2-2. Parallax Interface Listing US Presidents

A user starts in Parallax by performing a keyword search, with Parallax suggesting items

whose names match. When the user selects one of these suggestions, several related facets

are auto-generated and displayed so that the user can narrow the results rendered further.

Alongside the facets displayed in the interface, a list of connections is also presented. A

connection is a list of links from the current result set to other database entries, defined by

a particular relationship. For example, if there were entries on US Presidents displayed, a

user could select the suggested offspring collection which would then switch Parallax from

showing all the presidents in its database, to showing all the offspring of all the presidents

in the database. This feature of set-based browsing lets the user move from one set of

things to another related set of things. Hence by combining facets with collections it is

15

possible to use Parallax to locate items such as any offspring of all the Republican US

Presidents who were Presbyterian.

Analysis:

One of the major limitations of Parallax is that it is limited to connecting to the Freebase

knowledge base (though it is a repository of considerable size). To broaden the

applicability of this set based paradigm, Sparallax8 was developed using Parallax in order

to provide a faceted browsing interface for SPARQL endpoints. Currently it works with

DBpedia9 and LinkedMDB10 SPARQL endpoints, though it is possible to specify the

locations of other Linked Data repositories. Facets and collections are automatically

generated as the user browses a data repository, however users of Sparallax are limited to

searching one data source at a time, and it is not possible to reconcile information from

different sources. Moreover, both Parallax and Sparallax only work with data sources of a

single type (Freebase and RDF respectively). This issue may be mitigated by converting

data sources to the formats supported or providing wrappers to them. However, this is an

additional pre-processing step that would be unnecessary if multiple data sources were

supported natively, and the conversion process itself may introduce new errors to the data

sources. Finally there is no end user evaluation of either system published, so it is unclear

yet if casual users fully accept the paradigm and can see its benefits. Typical of systems

that work with distributed data sources, Sparallax can suffer from very high latencies

which impinge on the browsing experience. However advances on scalable and efficient

access to Linked Data will benefit the system in future, as this will reduce the number of

times a user’s interaction with the system is interrupted by lengthy delays.

8 http://sparallax.deri.ie/
9 http://dbpedia.org/sparql
10 http://data.linkedmdb.org/sparql

16

2.2.3 Explorator

Description:

Explorator (De Araújo & Schwabe 2009) is a domain independent tool for exploring the

Semantic Web, enabling users with minimal knowledge of RDF models to explore an RDF

database without a priori knowledge of the domain. It aims at supporting a semantic web

user in performing tasks such as finding all papers mentioning another paper; or all paper

authors’ phone numbers. In these tasks the user may encounter different data architectures,

and information that is stored in multiple RDF files or expressed in distinct vocabularies.

Hence Explorator aims at consolidating the data that is accessed in an integrated way and

having the capacity to merge information described in different vocabularies. The

developers of Explorator assert that current tools which allow the user to manipulate raw

RDF data do not provide a user friendly way to ask questions, and that the user only has a

limited way to rearrange, group or filter the data, and process it further.

In Explorator, every SPARQL endpoint is a repository that can be enabled or disabled, and

can be manipulated individually or integrated into a single global source of RDF data.

Users are also provided with a Query-by-example interface (Zloof 1975), as well as faceted

navigation features. Similar to Parallax, Explorator uses a set-based paradigm, where the

data resulting from an initial key word search (to match resources in RDF) can be further

manipulated to either remove uninteresting elements or to add additional elements of

interest. This manipulation includes the use of intersect, union and difference functions

over various result sets in order to generate new sets of interest. This allows queries such

as finding all the lakes exclusively contained in Russia to be resolved by getting the

difference between set A (all the lakes in Russia) and set B (all the lakes in countries that

have a border with Russia).

17

Figure 2-3. Explorator Interface Showing Different Sets

Analysis:

In terms of evaluating Explorator, initial small scale experiments have been conducted

with users who knew some basic concepts of the semantic web and RDF, such as the use of

subject/predicate/object triples (De Araújo et al. 2009). Despite the fact that these

participants were more experienced than casual web users, they still struggled to perform

tasks using Explorator. Specifically, they had problems exploring the domain because of

the difficulty associated with finding appropriate properties to form queries. Furthermore,

they had trouble interacting with the user interface in general, and found some visual

elements unintuitive. The developers concluded that users with a basic knowledge of RDF

were able to elaborate nontrivial queries with Explorator, however the user interface was a

hindrance. From these results a redesign of the interface took place, however further

evaluation studies will be necessary to validate this new design. In particular they are

planning additional larger-scale experiments to compare alternative user interfaces and

various interaction paradigms in order to better support both novice and expert users in

18

exploring the Semantic Web. This is important as Explorator is currently better suited to

advanced users who have solid knowledge of RDF.

There are clear advantages to system like Explorator, such as its domain independence and

its potential to provide users with a powerful functionality such as set manipulation. It also

uses dereferenceable URIs (Uniform Resource Identifiers) to identify resources (which

helps to disambiguate terms), and the associated time cost of adding new RDF sources to

the federated graph is low. One issue of note elicited through their experiments, is that

user experience is hindered by the performance of the system when accessing remote

sources. Similar to Sparallax, improvements in the speed of accessing remote repositories

will benefit such systems enormously as it will reduce the number of times a user’s

interaction with the system is interrupted by lengthy delays.

2.2.4 PowerAqua

Description:

PowerAqua (Lopez et al. 2009) is an open multi-ontology Question Answering (QA)

system for the Semantic Web developed from the earlier system AquaLog (Lopez et al.

2005). Users of PowerAqua input natural language queries and get answers from

heterogeneous data repositories. In particular, PowerAqua is able to integrate, on the fly,

statements drawn from different sources in order to generate integrated answers to

questions. This is in contrast to many similar systems which limit their scope to a set of a

priori selected medium size ontologies. Knowledge can be aggregated to complete

information partially presented in single sources, fusing similar answers and filtering

irrelevant ones. Furthermore, the most accurate answer(s), in terms of their relevance to the

query and the varying levels of quality, popularity and trust, are elicited from different

sources. PowerAqua has recently evolved to exploit the metadata offered by Linked Data,

in order to answer linguistically simple questions such as “Find me university cities in

Japan”, which can require knowledge fusion across different sources. Initial experimental

results regarding PowerAqua’s performance over a subset of Linked Data (including

DBpedia) are promising (Lopez et al. 2010), however the fact that relatively simple

linguistic queries (e.g. Give me airports in Canada, List me Asian countries) took an

average of 48.3 seconds to be processed, raises some efficiency concerns.

19

Figure 2-4. PowerAqua User Interface

Analysis:

Though PowerAqua only supports the RDF format, it does provide a consolidated access

point to multiple data sources and reconciles results from heterogeneous sources.

Furthermore, the setup costs are quite low as PowerAqua only requires access to indexed

semantic documents via an API, and its users can start posing questions straight away.

However, PowerAqua is currently a standalone website, and there is no facility for third

party application developers to leverage the functionality of PowerAqua in their own

systems.

PowerAqua’s recent focus on Linked Data is another indicator on the growing importance

of this format in this research area, and it is clear that any worthwhile query system should

support access to repositories of this type. The developers of PowerAqua admit that in

order for ordinary users to access Linked Data they have to be guided when building

queries. Indeed they state that creating innovative ways to interact with Linked Data is

crucial and even envisioned as a potential “killer app” (Lopez et al. 2010). Though the

kind of Natural Language Interfaces (NLI) that systems like PowerAqua offer do give

users a powerful freedom to express queries, this freedom often leads to the generation of

questions that these systems are unable to answer correctly. Indeed Thompson (Thompson

20

et al. 2005) suggests that we still cannot successfully use natural language to query and

command computers, and to understand the difficulty, we should try using such a system

as it won’t understand many of your questions and commands. To illustrate with a simple

example using PowerAqua, the query “What is the birthname of Bono?” yields the correct

answer (Paul Hewson), the query “What is the birth name of Bono?” returns his wife’s

name (Ali Hewson), and “What is Bono's birth name?” finds no answers at all11.

Moreover, it must be noted that these queries are quite simple and unambiguous, which

plays to the strengths of NLI systems. More ambiguous or complex queries are likely to

fare considerably worse. This is because words often have multiple meanings (lexical

ambiguity) and a complex expression can have multiple underlying structures (structural

ambiguity); queries with such ambiguous input often confuse NLI systems and lead to

irrelevant search results (Hildebrand et al. 2007).

Such problems have led practitioners to propose that queries which cannot be answered by

the search engine, due to inexistent ontological support, should not even be allowed, as the

user becomes unsure if he has entered the wrong keywords or if the search engine simply

does not have information to answer his search (Paiva & Ramos-Cabrer 2010). Until

PowerAqua can provide a higher guarantee as to the accuracy of the answers it provides,

such ambitious systems will struggle to gain wider acceptance. These general problems

associated with natural language interfaces are discussed further in the following section

on the ORAKEL system.

2.2.5 ORAKEL

Description:

Natural language is generally deemed to be the most intuitive form of querying from an

end users point of view, however it has also been shown to be the most difficult to realise

effectively. The main reasons for this difficulty are that:

1. natural language understanding is a very difficult task due to ambiguities arising at

all levels of analysis: morphological, lexical, syntactic, semantic, and pragmatic

2. a reasonably large grammar is required for the system to have an acceptable

coverage

3. the natural language interface needs to be accurate

11 These three indicative queries were inputted by the author on the live demo of PowerAqua located at
http://poweraqua.open.ac.uk:8080/poweraqualinked/jsp/index.jsp

21

4. the system should be adaptable to various domains without a significant effort

(Cimiano et al. 2008).

ORAKEL (Cimiano et al. 2008) aims to address these issues by supporting the

customisation of Natural Language Interfaces (NLI) for a given domain, in order to

provide more accurate results to user queries.

In ORAKEL there are two kinds of users, end users who send domain specific queries, and

the domain experts or knowledge engineers who create domain-specific lexicons for

adapting the system to a specific domain. A graphical tool called FrameMapper is provided

which helps the domain experts with this process. Any inputted question is parsed by

ORAKEL and a query in logical form is generated with respect to domain-specific

predicates. This logical form is essentially a First Order Logic (FOL) representation

enriched with query, count and arithmetic operators. The query in logical form is then

translated into the target knowledge representation language of the knowledge base, in

particular into its corresponding query language. The overall approach is thus independent

of the specific target knowledge language, and can accommodate any reasonably

expressive knowledge representation language with a corresponding query language.

ORAKEL has thus far been tested with the F-Logic and OWL knowledge representation

languages.

Figure 2-5. FrameMapper Interface

22

Analysis:

Two case studies have been carried out with ORAKEL, the first using a small knowledge

base containing geographic facts about Germany, and the second encompassing metadata

about research publications from British Telecom’s (BT’s) digital library. The studies

show that ORAKEL can be adapted by domain experts to different domains in a reasonable

amount of time, typically a few hours. Although this task did not specifically require any

computational linguistic knowledge, the users who performed it all had a computer science

background, so whether the findings can be extended to casual computer users remains to

be seen. PowerAqua does not require this manual step at all (relying on similarity metrics

to make matches), however the developers of ORAKEL feel their approach yields more

accurate results at a relatively low cost of domain customisation.

ORAKEL can work with knowledge representation forms of different kinds; however it

can only work with a single knowledge base at a time. This limitation restricts its

suitability for working with heterogeneous data sources from the Internet. Though

ORAKEL has shown some promising results in terms of speed and accuracy (relative to

similar NLI systems), the largest knowledge base evaluated only contained metadata for

less than 120,000 items, so it has not been conclusively shown that the system scales to

individual knowledge bases with billions of entities, which are becoming increasingly

common. The coverage of the knowledge base that ORAKEL provides is directly related

to the customisation step by the domain expert. Hence this stage is typically an iterative

process with new mappings added over time in order to increase the range of questions that

ORAKEL can accurately answer. With larger more heterogeneous knowledge bases this

task may become very arduous.

2.2.6 Semantic Web Portal

Description:

The Semantic Web Portal (SWP) (Y. Ding et al. 2010) is a light-weight platform that

unifies off-the-shelf Semantic Web tools to help domain users to organise, browse and

visualise relevant semantic data in a meaningful manner. SWP is domain independent, and

supports casual users in their exploration of multiple data sources through a single portal.

These data sources are typically in different formats, although they must be transformed

into RDF before inclusion to SWP. This process is a potentially time consuming task, and

it may be challenging to ensure the conversions are done correctly. The main architecture

23

of SWP itself is based upon the Longwell12 faceted browser and the Exhibit13 widget

(creates web pages with advanced text search, filtering and visualisation functionalities)

from MIT’s SIMILE project14.

Deploying SWP is domain specific, so a user needs to create one or more portal ontologies

using the Ontology Management Component. This is an online tool based on Vitro15 that

enables easy creation, editing, browsing, mapping and annotation of ontologies. Creating

an appropriate ontology is a critical part of SWP and should facilitate user queries, as well

as the meaningfully display and visualisation of RDF data. The SWP developers claim

that it allows non-Semantic Web users to create a new Semantic Web portal in a

reasonable period of time without professional training, however there is no documented

evaluation to support this claim. Indeed the generic requirements for creating portal

ontologies appear to be beyond the scope of a casual web user with no professional

training:

1. the ontology should reflect the database schema of its original datasets

2. the identified main concepts or relationships from commonly used user queries

should be included in ontologies

3. to enable interoperability, the portal ontologies should try to reuse existing popular

ontologies, such as using FOAF to represent people

4. Linked Open Data rules should be obeyed: using HTTP URIs for naming items,

making URIs dereferenceable and trying to use URIs from other Linked Open Data

as much as possible.

Once portal ontologies have been generated, users can then interact with the RDF data

which can be either displayed as tiles or else visualised in a timeline, Google map or table

formats. Users can also browse via facets or input keywords into its semantic search

component.

Analysis:

Currently SWP has been deployed to the following areas:

12 http://simile.mit.edu/wiki/Longwell_User_Guide
13 http:// simile-widgets.org/exhibit

14 http://simile.mit.edu/
15 http://vitro.mannlib.cornell.edu/

24

1. A research group (of 30 people) to semantically manage topics of people, paper,

grant, project, presentation and research

2. A specialty Linked Open Data chem2bio2rdf dataset to display the relationship and

association among gene, drug, medicine and pathway data.

3. An eGov dataset to facilitate faceted browsing of governmental data

4. A health centre to enable federated patient, disease, medication and family ties to

be grouped, associated and networked.

Figure 2-6. Screenshots of SWP Visualisation component

However despite the potential shown in supporting third party applications, SWP does

have some limitations. These include the necessity to convert all data sources to RDF, and

the complicated way end users must add, delete and update their instance data.

Furthermore, the generation of portal ontologies may be very time consuming, and there is

no evidence that these portal ontologies can be generated without the help of knowledge

engineers. Finally the developers make reference to SWP’s applicability to “middle-sized

domains” which suggests (without clarification as to what constitutes a “middle-sized

domain”) that the system may have issues with scalability.

25

2.2.7 MashArt

Description:

Mashups are web applications that are developed by integrating data, application logic, and

user interfaces sourced from the Web. Mashup development is still an ad-hoc and time-

consuming process, requiring advanced programming skills. The mashArt project (Daniel

et al. 2010) aims at enabling even non-professional programmers to perform complex UI,

application, and data integration tasks online in order to build sophisticated mashups.

Although existing mashup approaches have produced promising results, techniques that

cater for universal integration of web components at all the three layers of the application

stack are still missing (Daniel et al. 2010). The developers feel that such techniques are

necessary to transition Web 2.0 programming to an environment where users can leverage

simple abstractions to create composite web applications out of professionally developed

components.

Technically mashArt consists of a graphical editor, a hosted execution environment, an

online registry for components and compositions. Applications developed in mashArt

consist of integrated data services (RSS, Atom feeds, JSON, XML etc.), web services and

user interface elements. Hence, by integrating search results or services, mashups can

become a natural candidate for the kind of search computing applications described earlier

in Section 2.2.1, and indeed is a related project. For instance mashArt has been used to

generate an application that allows web users to “find all database conferences in the next

six months in locations where the average temperature is 28°C degrees and for which a

cheap travel solution including a luxury accommodation exists” (Daniel et al. 2010). The

mashArt graphical editor was used to compose such a Conference Trip Planner application.

It consists of four integrated UI components; Conferences Search, Expedia Hotels, RSS

Reader and BBC Weather, as well as two stateless service components; ConferencePipe

and Kayak. The application has four listeners:

1. If a user enters a conference search string and starts the search, the ConferencePipe

service is invoked by processing a Yahoo! pipe that queries two other services:

conference-service.com and allconferences.com. The pipe joins the results coming

from the two services and applies the filter condition provided by the user; the

result is passed back to Conferences Search UI component.

2. If a user selects a conference from the list of retrieved conferences, three listeners

reacting to the same event are activated.

26

a. The first listener propagates the selected conference location and dates to

the Expedia Hotel service that retrieves a list of available hotels from the

Expedia repository.

b. The second listener searches for matching flights and visualises them in the

RSS Reader. The flights are retrieved by invoking a kayak.com flight search

service and delivering its results as an RSS feed.

c. The third listener aligns the data shown in the BBC Weather component by

forwarding the name of the city the conference is located in through the

SearchWeather operation. This causes the component to visualise the

average weather conditions for the selected city. (Daniel et al. 2010)

Figure 2-7. Conference Trip Planner Developed in MashArt

27

Analysis:

MashArt has shown that it is possible to develop a component-based application that can

answer the example conference search problem, provided the necessary basic components

are readily available. This highlights the potential of systems that provide casual users

with consolidated access to multiple data sources. In terms of the output of the

composition, it is interesting to note that while in the traditional search scenario the output

is a set of result tuples, the output in mashArt is rather represented by the whole

application, i.e., the individual components and their interconnection.

The mashArt project shows a promising approach to integrating Web 2.0 elements into

mashups that support a casual user’s querying of a specific domain. It provides a

consolidated interface to multiple data sources of different types and provides guidance to

users by pre-selecting useful components from a domain. Although the benefit of such

applications from an end user’s perspective is clear, mashArts’ claims of supporting

ordinary web users to compose their own mashups have yet to be experimentally validated.

However its focus on minimising the costs involved in integrating separate components,

and its emphasis on simplifying the composition process is to be welcomed.

2.2.8 Discussion

This section has detailed some of the varied ways in which ordinary web users can be

supported in making complex queries over one or more knowledge bases. Table 2-1

summarises some of the features relating to these systems.

28

Table 2-1. Summary of Systems that Support Complex Querying by Casual Users

A number of important conclusions can be drawn from Table 2-1. The Main Query

Interface column shows that there are a variety of ways to support users in forming

complex queries and exploring datasets (faceted interfaces, natural language interfaces,

widgets etc.), each of having their own strengths and weaknesses. Furthermore, some

systems focus on question answering (e.g. PowerAqua and Orakel), whilst others support a

more explorative approach to the data access (e.g. Parallax, Explorator etc.). As can be

seen from the Supports Application Development column, some of the systems are

standalone and do not enable applications being built on top of them. Furthermore, of

those systems that did support application development, it is common for them to require a

specific interaction paradigm (NLI, Widgets, etc.) to be used. This tightly couples any user

interface with the underlying data sources. A more flexible approach would be to leave the

16 Widgets refer to individual user interface items that users can interact with e.g. sliders that can be pushed,
maps that can be zoomed into etc., Facets refer to faceted browsing interfaces, and Mashups refer to portals
that contain multiple interacting widgets or applications.

System Multiple
Sources

Multiple
Data
Types

Data
Formats

SME Main
Query
Interface16

Supports
Application
Development

Search
Computing

Yes Yes Web
Services and
Relational
DBs

Yes – no
authoring tool

Widgets Yes – Widget
fronted search
application

Parallax No No Freebase
Knowledge
Base

No – auto
generated facets

Facets No

Sparallax No No RDF No – auto
generated facets

Facets Yes, but only
by specifying
an endpoint
for their GUI

Explorator Yes No RDF No – auto
generated facets

Facets &
Query By
Example

Yes, but only
by specifying
an endpoint
for their GUI

PowerAqua Yes No RDF No NLI No
Orakel No Yes OWL, F-

Logic

Yes – has
authoring tool
(Framemapper)

NLI Yes – can be
integrated into
bespoke
application

MashArt Yes Yes Web
Services,
Atom feeds,
JSON, XML

Yes - has
authoring tool
(MashArt Editor)

Mashup
Widgets

Yes - Mashup

SWP Yes Yes RDF, Excel,
Relational
DB, Text
files

Yes – has
authoring tool
(Ontology
Management
Component)

Mashup
Widgets

Yes – Bespoke
Portals

29

choice of GUI to implement up to the application developers themselves. One way of

achieving this is to provide an API that supports developers in creating a variety of user

interface styles (basic query builders, browsers, sophisticated data visualisations etc.). The

API should only involve the passing of parameters rather than full queries in a specific

language (SPARQL, XQuery etc.), in order to minimise the learning curve for application

developers.

Of those systems surveyed in Table 2-1 that support users through some manually

generated Subject Matter Expertise (SME), all incorporated (or have plans to incorporate)

a supporting authoring tool to simplify this process. There is a trade off between the

benefits of offering manually generated expertise to users and the efficiency of providing

automatically generated supports (e.g. dynamically created facets). Hence, the

development of user friendly tools which are quick to use, but do not overly compromise in

terms of the features they deliver (e.g. expressiveness of queries supported) should be

greatly encouraged. As already described, Natural Language Interfaces like PowerAqua

and ORAKEL have a similar dilemma, with the former opting for full automation and the

latter providing a tool to support manual mappings by domain experts.

Of all the systems surveyed in Table 2-1, there are three which have manual SME

authoring tools (Framemapper, MashArt Editor and the Ontology Management

Component). Unfortunately whether any of the authoring tools can be successfully used

by non-technical domain experts has not yet been experimentally validated. Since this

research focuses on supporting users through manually generated SME, the development

of an easy-to-use tool suitable for non-technical experts is a priority. Moreover this

expertise should be encoded in a reusable model that can be plugged into different

installations. This level of flexibility, and the reusability of SME, would make such a

system more attractive to potential application developers. A state of the art survey of this

area is presented in Section 2.3.

In terms of supported knowledge bases, Table 2-1 shows that applications vary from single

repositories of a single data type (Parallax), to those that reconcile information over

multiple resources of different data types (Search Computing). This reconciliation of data

from multiple distributed sources is extremely powerful, and an attractive feature to

include in the system design described in Chapter 3. One definite trend in this research

area is the move to support RDF and especially Linked Data. Most systems have either

30

been designed specifically with this format in mind (Sparallax), have added this

functionality to the system (PowerAqua) or have plans to incorporate it in future releases

(Search Computing). Again this has clear implications for the research described in this

thesis and points towards the value of supporting queries over Linked Data. Furthermore,

the use of dereferenceable URIs in Linked Data can help with the reconciliation of data

from multiple sources, so this feature may also be useful to exploit.

With the proliferation of other data types beside RDF still widespread (XML, Web Service

APIs etc.) it would also be prudent for systems to support multiple data formats like the

Semantic Web Portal (SWP) does. While SWP approaches this by insisting that the

sources must first be converted into a common data type (RDF), Search Computing allows

different sources to coexist remotely in their own native format once registered to a service

mart. This approach is more desirable as only the source schema needs to be registered

beforehand, in contrast to the a priori transformation of an entire data set. Thus in this

thesis it is vital that any such source registration model necessary to support integration is

both lightweight and reusable in other installations, so that time constraints associated with

this task are not overly arduous or off-putting for developers.

2.2.9 Key Findings

This section described a state of the art analysis of Complex Querying by Casual Users

over Multiple Sources. A number of related systems have been used as case studies and

reviewed, with the important features of each summarised in a comparative table (Table 2-

1). A discussion of these systems was then conducted. From the analysis of this area, the

following points have been identified as critical influences on the design of the system

outlined in this thesis:

• There is a lack of support for third party applications who wish to incorporate

complex querying mechanisms into their design, whilst maintaining the freedom to

choose what interaction paradigm (facets, widgets, mashups and NLI etc.) their

users may follow. This often restricts applications to offering either browsing or

question answering as a way to access the data.

• In terms of supporting the reconciliation of data from multiple heterogeneous

sources, the best practice in terms of scalability and integration cost is to allow each

information source to co-exist in their own native format. Furthermore, Linked

Data is an increasingly popular methodology which should be supported.

31

• Though manually generated SME has been successfully deployed in bespoke expert

systems, in general purpose systems that support complex querying over multiple

sources it has not been widely utilised (with the exception of some NLI and mashup

systems). There is considerable potential in this area for such functionality to be

exploited, as users often welcome quality guidance in domains unfamiliar to them

or those they would like to learn more about.

2.3 Domain Independent Tools to Support SME Encoding by
Non-Technical Experts

It has been highlighted how SME can play a crucial role in mechanisms that support casual

users perform data exploration. The issue of the manual encoding of SME by non-

technical users is now considered in more detail by describing a state of the art analysis of

Domain Independent Tools to Support SME Encoding by Non-Technical Experts. It should

be reiterated that this thesis takes a broad view of how SME can be encoded, as it discusses

multiple ways to approach the encoding of domain expertise. For instance, SME can be

encoded as an ontology, as a rule in a query language, or as a mashup (someone using their

“expertise” to combine data sources that are beneficial to ordinary data users). All these

methods offer different features, and it is possible to encode the same SME in a number of

different formats. In particular this section concentrates on examining systems that can be

repurposed to different domains and that aim to support non-technical users17 in encoding

SME.

This section contains a number of case studies of such SME encoding systems. The

systems chosen typically have a high impact value within the literature or follow an

approach that is related in some way to that which is adopted by this thesis. The set of

systems included also aims to reflect the diversity in the literature in terms of approaches

to SME encoding. These systems include query building software, mashup composition

tools, as well as ontology construction tools. In the course of analysing SME encoding

systems for Research Objective 1 (Section 1.3), the following criteria with which to

evaluate these systems were derived:

1. How does it encode SME?

17 As mentioned previously, this thesis defines non-technical experts as people that have basic computing
skills such as Internet browsing, but no formal background in computer programming or data modelling.

32

2. Has the system been successfully evaluated with non-technical users?

3. Does the system work with multiple knowledge bases?

4. Does the system work with knowledge bases of different data types?

5. Can the SME be tailored by end users to their own interpretation?

6. Can the SME be reused as it is in other installations?

2.3.1 Konduit VQB

Description:

Konduit VQB (Möller et al.) is a visual query builder that aims at assisting users in

building queries to search over RDF data stored on the Nepomuk Social Semantic Desktop.

Given that the amount of semantic data on an individual’s desktop is constantly growing,

there is a need to support these users in accessing this data effectively. One way to tackle

this problem is to use Konduit VQB to support users in visually creating SPARQL queries

to search the RDF data. Interestingly, the tool is aimed at users with little or no knowledge

about SPARQL, as well as those users who are more familiar with Semantic Web

technologies. Furthermore the tool also supports queries over a repository of multiple

ontologies, as opposed to other tools which restrict querying to a single ontology. Though

Konduit VQB is not strictly an SME encoding tool, it could be used by non-technical

experts to encode SME in SPARQL, with this SME then leveraged by users wishing to

explore an RDF repository. Hence it is this aspect of the tool which is of most relevance

to this thesis that is analysed.

Employing SPARQL as an SME encoding format implies a reliance on the expert to

generate queries (rules) based on the metadata schema, in order to return specific instances.

Hence this section will restrict its discussion of Konduit VQB to its schema-based

approach to generating SELECT queries, as this is of most relevance to this thesis.

Interestingly, the developers of Konduit VQB feel that the schema-based SELECT query

builder in the tool incorporates their most user-friendly approach to building SPARQL

queries, and recommend it for those users having the least knowledge of semantic

technologies. This is because the approach requires less input from the user, and as such it

is particularly relevant to non-technical domain experts wishing to encode SME as a

SPARQL SELECT statement.

33

Figure 2-8. Konduit VQB Interface for Creating SELECT Statements in SPARQL

Analysis:

Konduit VQB assumes that users most often want to find certain information on entities

that have restricting characteristics e.g. one might want to search for a person (entity) with

a given name (restricting characteristic). The interface therefore provides a way to build

queries as trees, starting with the type of entity the user is looking for (e.g. person,

document) and progressing with restrictions (e.g. name, size) on the branches of the tree.

Hence a user initially selects the entity they want to find, and then adds any available

restrictions (selected from a dropdown box populated by properties from the schema) to

the tree underneath. If a property has a literal range, the user can enter a value and restrict

it on a relation, such as equals or contains. According to the developers, the advantage of

this approach is that it is simple, intuitive and satisfies the large number of occasions when

the user wants to search for something based on certain properties (Ambrus et al. 2010).

This particular approach however does not support the full range of expressivity that

SPARQL offers. The developers feel that the extra work involved in forming more

34

complex queries (e.g. using the CONSTRUCT query builder they offer) is likely to make

them inaccessible to users with no knowledge of RDF and SPARQL.

The developers have plans to perform usability evaluations to determine the most

appropriate methods to support query building by complete novices, as well as those with

deep knowledge of semantic technologies. Until these experiment results are presented, it

will not be conclusively demonstrated that casual users can use the tool effectively.

However it is clear that out of the four approaches that the tool offers, the schema-based

approach to generating SELECT statements is the most suited to non-technical users.

2.3.2 SPARQLViz

Description:

SPARQLViz (Borsje & Embregts 2006) contains a Graphical Query Composer that allows

users to generate syntactically correct SPARQL queries through a wizard interface. It is

particularly useful for novice users who have little or no experience with SPARQL, as the

user is able to compose a valid query simply by using familiar user interface widgets in a

wizard-like manner (Borsje & Embregts 2006). A drawback of solely creating SPARQL

queries using a wizard is that the user can lose some flexibility in terms of expressiveness,

as they are constrained to the specific template defined in the GUI. This is a common issue

with query building applications, where a balance needs to be struck between faithfulness

to the query language’s expressivity and the ease of use of its GUI metaphor. SPARQLViz

is very faithful to the SPARQL language as it supports all four types of its queries

(SELECT, CONSTRUCT, DESCRIBE and ASK), and implements major features like

PREFIX, DISTINCT, ORDER BY, LIMIT and OFFSET. However, due to varying levels

of complexity, not all these query types and features may be usable by novice users of the

tool.

35

Figure 2-9. SPARQLViz Interface for Creating SELECT Statements in SPARQL

The SPARQLViz GUI has a number of features aimed at making it as user-friendly as

possible. For instance an emphasis has been placed on standardisation, meaning that every

screen is constructed in the same way i.e. contains a title and a description block, with all

other functions logically grouped within their own block. Where needed, there is a

question mark icon which displays help information as a tooltip, and at the end of each

screen there are four buttons which provide the user with means to navigate through the

wizard. To further support the non-technical user, SPARQLViz employs many common

widgets which a user would likely be familiar with from other programs or Internet forms

(e.g. radio buttons, checkboxes, listboxes, lists, text fields and buttons). Another feature

geared towards simplifying the query generation process is the use of semantic

dependencies within the RDF to limit the choices that a user can make when creating

conditions. For instance, if the user chooses a specific subject, the number of related

predicates which can be validly selected is displayed. Likewise if the user selects a

36

specific predicate, only the objects to which that predicate is connected to are displayed as

viable choices.

Analysis:

According to the developers, the key features of the approach offered by SPARQLViz are

the fact that generated queries will always be valid which saves a lot of debugging time,

and also that an in-depth knowledge of the SPARQL query language is no longer necessary

to generate them. Unfortunately there have been no experiments conducted regarding the

second assertion, so it is not possible to determine what level of SPARQL expertise (if

any) SPARQLViz requires of its users in order to generate queries. The fact that users

have to manually add variables to the system in order to generate basic queries makes it

unlikely that a casual user would be able to use the system without some understanding of

SPARQL. One further limitations of the system is that it only allows queries to be formed

over a single RDF data source, however it overcomes this somewhat by generating native

SPARQL, so that the outputted queries can be reused in any application that contains the

same RDF. Overall SPARQLViz shows that its wizard approach to query formulation, if it

is simplified to the correct degree, has the potential to be used by non-technical users in

order to generate expert rules in SPARQL.

2.3.3 Potluck

Description:

Potluck is a web user interface that aims at allowing casual users (those without

programming skills and data modelling expertise) mash up data themselves (Huynh et al.

2008). Hence Potluck can allow non-technical domain experts to create applications that

encompass their SME, in order to support users who are interested in that domain in

finding useful information from multiple sources. One major limitation of Potluck is that it

only enables the mashing up of web pages that use the Exhibit18 framework. Though

Exhibit is useful software in its own right and allows website authors to create dynamic

exhibits of their collections without resorting to complex database and server-side

technologies, this is quite a severe restriction. The main features of Potluck are that it:

18 http:// simile-widgets.org/exhibit

37

• allows the user to merge fields from different Exhibit data sources, so that they are

treated identically for sorting, filtering, and visualisation. Fields are merged using

simple drag and drop of field names.

• provides an efficient means for the user to clean up data syntactically, homogenise

data formats, and extract fields syntactically embedded within existing fields, all

through the application of simultaneous editing.

• supports faceted browsing to let users explore and identify subsets of data of

interest or subsets of data that need alignment and cleaning up (Huynh et al. 2008).

By simply dropping a field tag onto an existing column or facet, a merged field is

generated that contains data from both sources e.g. dropping the “photo” field onto the

existing “imageURL” column creates a merged “photo/imageURL” column. The edit link

next to each field value opens up the simultaneous editing dialog box where the values of

that particular field can be edited en masse. This is useful for correcting inconsistencies

between data sets that occur many times, such as prefixing area codes to phone numbers or

wrapping existing area codes in parentheses. It is also useful for reformatting a field, such

as changing “first-name last-name” into “last-name, first-name”. Potluck also provides

two ways of visualizing data, a tabular view and a map view.

Figure 2-10. Screenshot of Potluck showing several columns and facets of merged fields.

38

Analysis:

A user study was conducted to ascertain whether people could learn how to use Potluck, as

well as to discover usability problems. There were eleven subjects (five librarians and six

general users) involved in the trial, and in general subjects successfully used the drag and

drop metaphor to merge fields and create facets. There was no noticeable difference

between the subjects from the general population and the librarians who work with

metadata on a daily basis, however the programmers (one from the general population and

one librarian) appreciated the functionality of Potluck more.

Potluck shows that it is possible for casual users to generate mashup applications, and the

developers feel that in the future when more reusable data becomes available, interfaces

like that of Potluck have the potential to level the playing field for non-programmers.

Expanding Potluck’s compatibility beyond the scope of Web pages embedded with Exhibit

would help this situation enormously, as this constraint considerably narrows the potential

data available to it. Furthermore, experiments preformed with Potluck were of a very

small size (data sets with hundreds of entities) so there may be issues with scalability.

However, overall Potluck does show potential as a mechanism for non-technical domain

experts to encode their SME as a mashup.

2.3.4 SpreadATOR

Description:

Current APIs are designed for developers with programming expertise, and thus are not

directly usable by a wider class of users who do not have a programming background, but

would nevertheless like to build their own mashups. To address this need, a spreadsheet-

based Web mashup development framework has been proposed (Kongdenfha et al. 2009),

which enables users to develop mashups in the popular spreadsheet environment. A system

based on this framework called SpreadATOR (Saint-Paul et al. 2008), makes it possible to

access a variety of Web data sources, represent them on a spreadsheet, and manipulate the

data (including imposing changes on the data source) from the “comfort” of the

spreadsheet.

An example application created in SpreadATOR was a sales opportunity identification

mashup, in which data was aggregated and combined from three different data sources:

Nasdaq RSS service, Google RSS News service, and a Customer Relationship

Management (CRM) system. This mashup monitors stock markets, looking for companies

39

with the largest gains in their stock prices. A strong rise of a company’s stock is often a

sign that a significant event just happened in the company, and any such event may be an

opportunity for selling software to the company. Thus a salesperson using this application

can see the five stocks with the biggest gains from Nasdaq.com and then get more

information about each stock’s company in the list (news related to each stock from

Google news service, and contact details and purchase histories of each stock’s company

from the CRM system).

Figure 2-11. SpreadATOR User Interface

SpreadATOR (Kongdenfha et al. 2009) aims at supporting users proficient in spreadsheets,

but not computer programming, to develop such a mashup through the following five

mechanisms:

• It provides a tool to hide the heterogeneity of the source data access methods (e.g.

HTTP or SQL queries) and the source data representations (e.g., XML or JSON).

Typically, adapters are required to map data formats, and to manipulate operations

between SpreadATOR and underlying data sources.

• It has a tool to cater for both simple query specification (e.g. to filter unwanted

data), and presentation (e.g. to display large sets of data on the spreadsheet) as the

data obtained from the CRM system may contain thousands of records.

• It supports the presentation of stock data and news data in different ways e.g. stocks

in tabular form and news stories as a list of hyperlinks.

40

• It allows manipulation of details on the spreadsheet that can push the changed data

back to the CRM system after manipulations.

• It provides users with ability to browse up-to-date information on the spreadsheet

as stock data and news are frequently updated.

Analysis:

SpreadATOR is another example of a system aiming to support the development of

bespoke mashups by users without a computer programming background (though

admittedly any user would need to have considerable experience with spreadsheet

applications). Such a tool, if embraced by end-users, would enable experts to encode their

SME as a complete mashup application. SpreadATOR’s support for the reuse and

customisation of components could potentially reduce the time necessary to create

mashups, making it more attractive to users. This is important, as any mashup should

ensure that the benefits of using it outweigh the effort involved in its generation. Finally

by allowing the integration of multiple data types into a single mashup (though wrappers

typically need to be generated), SpreadATOR enables a wide variety of data to be

exploited from the domain expertise of the mashup creator. Considering the heterogeneity

of data sources present on both the Web and within individual organisations, this is an

important feature.

Unfortunately SpreadATOR is still in prototype stage and has not yet been evaluated with

real end users. This means that the developers’ claims that their experiences “demonstrate

the superiority of their spreadsheet-based mashup tool compared to existing tools in terms

of both simplicity and development productivity” (Kongdenfha et al. 2009) cannot be

validated. Until experiments are conducted that show users accept the spreadsheet

paradigm for creating mashups and that the framework supports more efficient mashup

development, then the true potential of SpreadATOR will not be known.

2.3.5 Web Ontology Building System for Novice Users: A Step-by-Step
Approach

Description:

Web ontologies play a central role in Semantic Web applications, and are utilised for

various purposes. However, ontologies are not widely exploited in many applications, in

part because ontology construction is time consuming and requires expert knowledge

(Yasunaga et al. 2010). There are many approaches to building ontologies, such as

41

automated ontology construction using machine learning techniques (Maedche & Staab

2001), and ontology editing tools to facilitate ontology development by human users

(Kozaki & Mizoguchi 2005). However while an ontology editor is an indispensable tool

for building ontologies, the use of such an editor generally requires extensive knowledge of

ontologies to begin with, and is therefore not suitable for novices (Yasunaga et al. 2010).

Allowing novice users to create, and collaborate on, ontologies which encode their SME

would likely increase the adoption of ontology editors. Hence a Web ontology building

system especially targeted for novice users has been proposed by the team in Ritsumeikan

University (Yasunaga et al. 2010). It contains the following features:

• The process of building an ontology is broken into small and simple steps, and the

proposed system provides users with step-by-step instructions.

• The proposed system restricts each step in the building process to a simple task

such as entering the information into the form or choosing a word from a list of

vocabularies.

• The ontology file is converted into an RDF graph and presented visually to users.

• By implementing as a web application, users can use a web browser to build an

ontology. Thus, distributed and cooperative development can easily be achieved.

• The proposed system provides a checking function that infers data with built-in

OWL definitions.

To use the Ritsumeikan University tool, a user first makes a decision about the domain

covered by the ontology and names a corresponding project e.g.

“Disaster_Mitigation_Ontology”. If the user needs to reuse an existing ontology, he can

upload an ontology file. The next step is to define a new class by choosing a prefix “ex:”

and entering the URI for each class in text form e.g. “ex:River_Overflowing” or

“ex:Natural_Disaster”. In addition, users can enter labels or comments. Next a semantic

hierarchy of the classes is defined e.g. the “River_Overflowing” class is a subclass of the

“Natural_Disaster” class. Defining properties is similar to the process of defining the

classes themselves. When users finish defining the ontology, the system displays it to the

user graphically. Finally, the system provides the user with a tool to check what data can

be inferred from the ontology. In this stage, the user uploads an RDF file that he wants to

check, and new data is derived from this file by the ontology they have just created. Users

can then view this inferred data and confirm whether the correct results are being

inferenced by the ontology.

42

Figure 2-12. Screenshot of a New Class Being Defined in the Ritsumeikan University Tool

Analysis:

The step-by-step ontology building approach aimed at novice users is a potentially useful

way of popularising ontology creation for the Semantic Web. However, the tool has yet to

be evaluated with any users (experienced ontology creators or novices) so its efficacy has

yet to be validated. Encoding SME in this manner could contribute to the wider use of

Semantic Web technology systems. However it is still unclear whether this system is any

easier to use than traditional ontology editing tools, such as Protégé19, or whether it

supports novice users in encoding useful SME without specific training or help from

knowledge engineers. Furthermore, even after a useful ontology is encoded, there is likely

to be a further integration or mapping process necessary in order to deploy it over a

knowledge base populated with instances. This would likely require some input from

someone knowledgeable in semantic interoperability, which would be beyond the

capabilities of a novice ontology creator. Therefore, a well generated ontology from this

tool might not be able to be immediately deployed in an application, which slightly

narrows its appeal as a way of encoding SME.

19 http://protege.stanford.edu/

43

2.3.6 ROO

Description:

Recent work on ontology engineering has seen the adoption of Controlled Natural

Languages (CNL) in some systems to ease the process of ontology authoring. CNLs are

subsets of natural languages, which reduce ambiguity by restricting vocabulary and

grammar. However to be efficient, CNL-based tools still require good knowledge

engineering skills. As a consequence, an ontology authoring tool called ROO (Denaux et

al. 2010), has been developed to cater for the needs of domain experts with little or no

ontology engineering experience. ROO is based on the Protégé ontology editor and assists

domain experts to build conceptual ontologies using a CNL-based interface. The CNL that

ROO uses is called Rabbit (Dolbear et al. 2007).

Figure 2-13. Screenshot of the ROO Application

ROO automatically translates Rabbit sentences generated by the domain expert into OWL,

and the main features of ROO (Denaux et al. 2010) for novice users who wish to generate

ontologies are that it:

• avoids using technical terminology, preferring to use conceptual terminology which

is easier to understand for novice users.

• helps users to avoid introducing ambiguity in the resulting ontology. It avoids

making assumptions by requiring the declaration of concepts, relationships and

44

individuals. ROO is also aware of cases when parsed sentences could be ambiguous

and warns the user accordingly, preferably suggesting ways to avoid ambiguity.

• provides guidance about how to build ontologies that are easy to reuse. ROO

incorporates a model of Kanga (Kovacs et al. 2006), an Ontology Engineering

methodology, and can make suggestions to the user regarding tasks that need to be

performed to improve the reusability and general quality of the ontology.

Analysis:

An evaluation of ROO was conducted with 16 students (unfamiliar with ontology

encoding) from university departments of geography and earth & environment. During

this study participants were asked to perform ontology modelling tasks similar to those that

would be expected of domain experts by the Ordnance Survey. The study showed that the

students were able to perform ontology authoring tasks after only receiving a training of

about 10 minutes. Regarding usability, ROO was rated as intuitive to use and the students

did not find the error messages confusing. In fact they felt that the messages helped them

to write correct sentences.

Unfortunately an analysis of the quality of the resulting ontologies showed that they were

incomplete and not fit for purpose. Furthermore, modelling problems within the ontologies

also occurred, such as multiple tangled inheritances. The study did show that the use of a

CNL interface to build ontologies makes it possible for domain experts to start creating

ontologies, but was not enough to avoid the occurrence of modelling errors which result in

user frustration. It was also felt that the use of further intelligent tool support, which caters

specifically for novice users, is essential to improve the usability of tools like ROO.

Despite the benefits of CNLs, referring to CNL vocabulary/syntax rules can be time

consuming, annoying and in certain cases may prevent uptake of the tool (Davis et al.

2010). Furthermore, ROO does not support a full roundtrip process, where an ontology

can be parsed into Rabbit sentences, edited as required, with these sentences subsequently

generated back into an ontology.

ROO has shown potential in supporting domain experts with no ontology engineering

experience in creating useful ontologies, although it is still not sufficiently intuitive a tool

to support this process without the intervention of a knowledge engineer. Moreover, the

innate complexity and richness of OWL may be a serious challenge for users without prior

training in ontology construction to generate fully formed and useful ontologies. As stated

45

earlier, even when a useful ontology is encoded, there is likely to be a further integration or

mapping process necessary to deploy it over a knowledge base populated with instances.

This would be beyond the capabilities of a novice ontology designer, and would typically

involve a person familiar with the issues of semantic interoperability. Though not a

problem per se, it may limit the immediate applicability of the ontologies generated by the

tool.

2.3.7 Discussion

This section has detailed some of the varied ways in which non-technical domain experts

can encode SME in domain independent tools. Table 2-2 summarises some of the features

relating to these systems.
Table 2-2. Summary of Domain Independent Tools that Support Non-Technical Domain Experts in

Encoding SME

Software SME
Generated

Multiple Data
Types

Tailorable
SME by end
user

Evaluated
by Non-
Technical
Users

Reusable Multiple
Sources

Konduit VQB SPARQL
queries

No No No Yes Yes

SPARQLViz SPARQL
queries

No No No Yes No

Potluck Mashup up of
Exhibit based
sources

No No Yes No Yes

SpreadATOR Spreadsheet
based Mashup

Yes – XML,
JSON,
Relational DB

No No No Yes

Web
Ontology
Building
System for
Novice Users

RDFS / OWL Yes – OWL /
RDFS

No No Yes N/A

ROO OWL No No Yes Yes N/A

The SME Generated column of Table 2-2 highlights some of the varied ways in which

non-technical domain experts can encode SME such as SPARQL queries, mashups and

OWL. There are strengths and weaknesses to each system’s approach which have been

pointed out in the relevant case studies. In terms of using a visual query builder to encode

SME, a form or wizard based approach (Konduit VQB and SPARQLViz) appears to offer

the most potential for non-technical domain experts due to their relative simplicity.

Specifically, the more intuitive schema-based approach for generating statements was

mentioned as the most suited to non-technical users. An example of a commercial

46

application that uses such a rule building approach is iTunes20, which has a smart playlist21

builder. The smart playlist builder is aimed at ordinary end users and allows them to

generate XQuerys in a schema-based approach. These XQuerys generate specific music

playlists that allows users to better manage and sort their music collection.

At smartplaylists.com22, users can share the rules they have encoded in iTunes, so that

others can benefit from their expertise. This supports the notion that SME encoded in this

way can be a valuable way of supporting other users to explore and manage their day to

day data. The smart playlist feature in iTunes has even been used to organise PDFs about

radiology (Qian et al. 2008) which further supports the contention that a schema-based

approach to rule generation, coupled with a form/wizard interface is accessible to a non-

technical user of computers. There are other approaches to visually building queries such

as the use of graphs which are employed by NITELIGHT (Russell et al. 2008) and

iSPARQL23. However, in order to use these tools the user must have a full comprehension

of the underlying RDF schema and the query language syntax, which implies a high

cognitive load for newcomers and less experienced users (De Araújo & Schwabe 2009).

Indeed the developers of NITELIGHT admit that the close correspondence between the

graphical notations and query language constructs makes the tool largely unsuitable for

users who have no previous experience with SPARQL. Hence, the form/wizard interface

appears to be more suited to non-technical domain experts, however this remains to be

shown experimentally.

Using an ontology as a means of encoding SME is a common approach employed by

domain experts. However, the use of an ontology editor such as Protégé to develop usable

ontologies often requires specialist skills in ontology engineering (Davis et al. 2010).

Professionals (clinicians, business analysts, legal experts etc.) should not be expected to

upskill themselves to comprehend Semantic Web formalisms, and the process of

knowledge gathering involving both domain expert and knowledge engineer can be time-

consuming and costly (Davis et al. 2010). The step-by-step ontology building approach for

novice users has been proposed as a solution to this problem, because it caters for domain

experts with no experience of ontologies. However, as seen in Table 2-2 the tool has yet to

20 http://www.itunes.com
21 http://support.apple.com/kb/HT1801
22 http://www.smartplaylists.com/
23 http://demo.openlinksw.com/isparql/

47

be evaluated with any users so its efficacy has not been validated. ROO is an alternative

solution that uses a CNL interface to support novice ontology builders. Unfortunately,

despite some very useful features, the systems evaluation showed that completed

ontologies were not fit for purpose, with problems such as multiple tangled inheritances.

Furthermore, one of the main benefits of an OWL ontology is that it can be processed and

interpreted by algorithms. Unfortunately, this typically means that further intervention by

computer programmers is required before the benefits are felt by casual users who need

support in exploring a specific domain of information.

Experts can also use tools that support the generation of mashups to encode their SME.

End users could benefit massively from the guided support associated with a mashup when

exploring heterogeneous sources in a consolidated fashion. However generating these

mashups is non-trivial for people without computer programming experience, and

accordingly many tools are being developed for this purpose. SpreadATOR is one such

tool that uses the spreadsheet paradigm familiar to many computer users. The spreadsheet

approach may be promising; however its lack of any user evaluation means its potential

remains unclear. Potluck did have some degree of success with a small user trial

involving non computer programmers; however it has limitations regarding the scale and

scope of data sources it can accommodate. This is very problematic in terms of supporting

access to large scale heterogeneous sources.

In a wider context, wire or pipe based tools have been presented as mechanisms that

ordinary consumers can use to generate their own mashup applications. However as

described below, many are not convinced that these tools are intuitive enough for non-

technical domain experts to use without the investment of appropriate training. For

instance it is felt that the level of abstraction of Yahoo! Pipes’24 operations, and the

characteristic data flow logic is only barely understandable to non-programmers (Daniel et

al. 2010). Others suggest that it is too difficult for both casual users and power users to

create personalized mashup applications in an appropriate time (Fischer et al. 2009). This

is echoed by Wong and Hong who argue that most tools still require too much familiarity

with web technologies and programming, and focus mainly on lightweight user interfaces

(Wong & Hong 2007). The main limitations of these tools appear to be a lack of any

mechanism to select data sources efficiently, and the time consuming nature of the manual

24 http://pipes.yahoo.com/pipes/

48

composition of different components. (Fischer et al. 2009). The length of time to compose

mashups also increases with the number of components available, and rapidly makes

mashups more complex. Hence this thesis will focus on providing a mechanism for non-

technical domain experts to generate SME via a set of individual rules. These rules will

work over data sources rather than burdening the domain expert with the task of integrating

heterogeneous data sources and a GUI into a unified application. These processes are

better tackled by developers since no appropriate tools to support non-technical users are

currently available.

This section has examined three ways of encoding SME (visual query builders, ontology

builders and mashup constructors). It is argued in this thesis that the approach with the

most potential to be adopted by non-technical domain experts is that of visual query

building due to its relative simplicity. There may be restrictions on the potential richness

of the SME that can be ultimately encoded; however a well designed system with access to

rich metadata should provide sufficient scope for domain experts to create useful rules.

Moreover, by supporting the combination of multiple rules into compound queries,

relatively simple queries can play a part in more complex requests. This thesis also adopts

a schema-based approach in a wizard/form interface as a way of supporting novice users in

this paradigm, because it appears to be an intuitive approach widely used in query building

applications. An evaluation of such an approach with non-technical users will be

necessary to validate this decision.

While visual query builders typically allow queries to be sent to a data set, this thesis

proposes to encapsulate these queries as part of an SME model. This allows the SME

encoded to persist as part of a reusable model, rather than transiently exist as part of a

query. Furthermore, since query languages support the integration of variables within

queries, it should be possible for the SME to support tailoring of rules by end users who

submit parameters. This would allow the semantics of a rule (and the range of instances

returned by it) to be adjusted to the end user’s perspective, and would be particularly useful

for expert rules of a more subjective nature. As can be seen in Table 2-2 however, none of

the systems analysed offered this functionality. A common issue with visual query

builders is that they typically only support a single query language. This is very limiting

given the variety of data formats that exist in common usage. Hence any tool using queries

to encode SME should support the generation of multiple query formats (in as uniform a

manner as possible), as well as access to multiple data sources.

49

2.3.8 Key Findings

This section examined the state of the art analysis of Domain Independent Tools to Support

SME Encoding by Non-Technical Experts. A number of related systems have been used as

case studies and reviewed, with the important features of each summarised in a

comparative table (Table 2-2). A discussion of these systems was then conducted. From

the analysis of this area, a number of important conclusions have been identified that have

implications for the chosen system design described in Chapter 3:

• Overall there is a lack of domain independent tools that support non-technical

domain experts to encode useful SME.

• An SME encoding approach that offers significant potential of being adopted by

non-technical domain experts is visual query building. Specifically a schema-based

approach in a wizard/form interface appears to be the most intuitive way of

supporting novice users.

• The best practice is for SME to be reusable in different installations, so any queries

created by domain experts should be encapsulated as rules in a reusable SME

model.

• There is a general lack of support for users who wish to tweak or tailor the SME

encoded in these tools beyond inputting a keyword to focus a search.

• Many SME encoding tools only support a single data format and many only operate

over a single source.

• Many tools purporting to be designed for use by non-technical users have not yet

been evaluated with such users.

2.4 Conclusion

This chapter focused on a state of the art analysis of Complex Querying by Casual Users

over Multiple Sources and Domain Independent Tools to Support SME (Subject Matter

Expertise) Encoding by Non-Technical Experts. The main approaches were examined

critically, with advantages and disadvantages of each system identified. Key finding from

this analysis were summarised in Section 2.2.9 and Section 2.3.8, and are used to directly

inform the system design described in Chapter 3.

50

3 Design
This chapter describes the design of a framework and approach that fulfils the goals and

objectives outlined in Section 1.3. The framework’s design is also influenced by Chapter

2’s analysis of the state of the art, and consists of design time and run time components.

These components, and the various models and interfaces necessary to support this novel

framework, are also discussed in detail. The chapter concludes with a description of the

expert-supported approach to data exploration, which defines the end-to-end processes

that underpin the framework and models.

3.1 Introduction

From the analysis of the state of the art in Chapter 2, it is clear that there is still a

compelling need for frameworks that support casual users in exploring and querying

multiple data sources from a domain. Furthermore, there is a general lack of domain

independent tools to support the encoding of Subject Matter Expertise (SME) by non-

technical experts. This chapter first describes how the state of the art has influenced the

design of a framework which helps casual users perform data exploration. In the context

of this thesis "data exploration" is defined as supporting complex queries against structured

or semi-structured data, in order to locate important and relevant data for further analysis.

The central role of the human in data exploration is a key differentiating factor between it

and data mining, with data mining predominantly using algorithms to automatically search

for patterns and features in large data sets.

After discussing the design influences stemming from the state of the art, the chapter

continues with a discussion on some design considerations for the framework. This is

followed by an outline of the scope of this design and a listing of framework requirements,

with the various components necessary to fulfil these requirements described in turn. For

clarity, this section is divided into design time and run time parts, to mirror the distinct

operations of the framework. A description of the four models central to the framework’s

operation then follows. The models detailed are responsible for registering data sources,

specifying the key domain entities, encoding SME and representing results. Furthermore,

as client applications need to be able to communicate with the framework, details of the

framework API are also documented.

51

Supporting non-technical domain experts in encoding their expertise is a central function

of the framework; hence the design and requirements of the SME authoring tool to support

this feature are detailed next in the chapter. Finally, the expert-supported approach to data

exploration, which underpins the framework and models, is then described. This approach

is divided into design time and run time sections, and details the end-to-end processes

necessary to support casual users in using SME (encoded by non-technical domain experts)

to explore multiple data sources from a domain.

3.2 Influence from State of the Art

In Chapter 2, a state of the art analysis took place on two specific research areas. Section

2.2.9 outlined the key findings from analysing Complex Querying by Casual Users over

Multiple Sources, and Section 2.3.8 summarised the key findings from the review of

Domain Independent Tools to Support SME Encoding by Non-Technical Experts. These

findings have greatly influenced various aspects of the research described in this thesis. In

particular they have impacted on the design of a framework to support casual users in

exploring heterogeneous data sources from a domain, by leveraging SME encoded by non-

technical experts. This section summarises how these influences impact the system design

described in this chapter.

This thesis proposes a domain independent tool for non-technical experts to encode their

experience and knowledge of a domain without the help of a knowledge engineer. Such an

approach may not capture as much detail as a bespoke system supported by a knowledge

engineer, however its simplicity and domain independent nature would make its adoption

and widespread implementation more likely. As seen in Chapter 2, the most likely SME

encoding approach to be adopted by non-technical domain experts is visual query building.

Specifically a schema-based approach in a wizard/form interface appears to be the most

intuitive way of supporting novice users. Furthermore, best practice in expertise encoding

is for SME to be reusable in different installations, accordingly any queries created by

domain experts in this tool ought to be encapsulated as rules in a reusable SME model.

As noted in Section 2.2.9, there is a lack of support for third party applications to

incorporate complex querying mechanisms into their design, whilst maintaining the

freedom to choose what interaction paradigm (facets, widgets, mashups, NLI etc) their

users must follow. This often restricts applications to offering only a browsing or question

answering approach to the data. Hence, a way of encouraging the framework to be used by

52

a community of application developers is to have an API that offers their applications

useful functionality. This method has proven popular in the development of mashups as

well as applications that use Freebase25 and SWSE (Harth et al. 2007). Some API’s

require the application developers to know specific query languages such as XQuery,

SPARQL, or SQL, which may prove a barrier to wider use by application developers.

Hence, this thesis proposes an API that only requires the SME selected by users to be

passed to it, along with any associated parameters. This should make the API more

accessible to developers, as they do not need to know separate query languages for

different data sources.

As described in Section 2.3.8 of Chapter 2, there is a general lack of support for encoded

SME to have its meaning tweaked or tailored by the end user, beyond inputting a keyword

to focus a search. Though this kind of tailoring is not appropriate for some kinds of SME,

in other cases it can be beneficial. For instance some faceted interfaces support this kind

of explicit tailoring to a limited extent i.e. by changing the values associated with each

facet (e.g. price greater than €50 AND less than €100) it provides a simple but effective

way for users (or a client application referencing a user model) to make the term associated

with each facet more appropriate at that time. Because SME can sometimes encompass

quite subjective notions such as “cheap” or “near”, the design proposed in this thesis will

support users, where appropriate, to tailor values associated with semantic terms to their

own interpretation.

As shown in Chapter 2, in terms of supporting the reconciliation of data from multiple

heterogeneous sources, a useful approach in terms of scalability and integration costs is to

allow each information source to co-exist in their own native format. Hence the design

proposed in this thesis is for data sources to reside in their original location, with their

schemas co-existing rather than being mapped to each other or to a canonical model. This

pushes integration down to the instance level, as is done in Linked Data, and means that

dataspaces of information sources can be constructed efficiently. Moreover, the design

will support the addition of new sources to any dataspace, as well as the reusability of

sources in different dataspaces.

25 http://www.freebase.com

53

3.3 Design Considerations

How domain specific search can be very useful in supporting users in finding relevant

information from a particular domain has already been discussed. However, unless the

frameworks they are based upon are domain independent, and can be repurposed to

different areas, their widespread adoption will be limited due to the time-consuming nature

of developing bespoke systems. This thesis will directly address this need by describing

the design of a framework that can be repurposed for different domains.

Modular frameworks that allow key components to be plugged into separate installations

are useful in allowing different people to make separate contributions to a framework.

Such an approach is followed in this thesis, where different reusable models can be created

and plugged into separate frameworks. Furthermore, the framework design will support

the extensibility of models, so that SME and data sources (even of new data types) can be

added to an installation at any time. This facilitates the evolution of richer relationships

between data sources over time, and enables new perspectives to be accommodated in the

future. Ultimately, by supporting extensibility the framework is more dynamic and less

likely to be made redundant quickly.

3.4 Framework Requirements

This thesis addresses how subject matter expertise may be effectively encoded by non-

technical experts and then leveraged by casual users to assist exploration and querying of

multiple data sources from a domain. From the analysis of deficiencies within the state of

art, the following requirements were derived to support a framework that would help

address this question, and that would be innovative and novel within its field.

• Provide client applications, which support user exploration, with consolidated

access to multiple sources (in various data formats), without prescribing a specific

user interaction paradigm for the GUI, or for their developers to know separate

query languages for the various data sources.

• Enable the SME leveraged by the client applications to be encoded by non-

technical experts, and to be tailored to an end-user’s interpretation.

• Enable casual users that appropriate and tailor this SME within the client

applications, to send complex queries to multiple data sources via the framework.

54

These requirements will be complemented with the following best practice findings

derived from the state of the art.

• Allow data to reside in its original location, and provide instance level

reconciliation between the different data sources.

• Be a domain independent and modular framework that supports the reusability and

movement of sources and SME between different installations.

• Support extensibility by enabling the addition of extra SME and of new sources

(even of a different data type) to enrich the relationships within the domain.

This thesis proposes a framework that is divided into design time and run time

components, in order to support these requirements. This is a similar approach as used by

Expert Systems (Taylor & Lubkeman 1989), where the knowledge base and expert rules

are constructed at design time (after the framework itself has been fully implemented),

with end users interacting with the system at run time. This means that models and rules

generated by domain experts or knowledge engineers only need to be created once at

design time, with multiple users able to interact with them at run time. If new SME and

data sources are added at a later stage, this is seen as a further iteration of the design time

process. In essence, end users are the only stakeholders that are directly involved at run

time, whereas design time processes may involve one or more domain experts, knowledge

engineers or application developers.

The overall framework this thesis proposes is a middleware system that sits between client

applications and the distributed data sources. This puts fewer restrictions on the data

sources as they can remain in their original location. It also allows greater flexibility in the

design of client applications, as the only restriction is to conform to the system’s API.

Furthermore, it means that multiple applications can communicate with a single installation

of the framework.

3.4.1 Scope of Framework

This section details the scope of the framework design presented in this thesis. For

instance, the proposed framework is not an end-user facing tool, so a specification of

design features for client applications (apart from conforming to the framework’s API) are

beyond the scope of this research. This is because the design emphasis of the framework is

on giving developers freedom in how they implement their applications. Indeed, several

applications that use this framework are outlined in Chapter 5 of this thesis.

55

This thesis describes a framework that operates on top of existing information sources.

Hence, sources that have been carefully edited and curated by data modelling experts are

particularly useful due to their higher degree of accuracy and reliability26. The generation

of new data sources or the cleaning of existing sources, while relevant to this research, is

beyond the scope of this thesis. However, these important processes are complementary to

the approach described. Interfaces to many of these sources (in XML, RDF etc.) are well

defined, hence the focus of this thesis is on manipulating and exposing this data in a way

that is meaningful and accessible to casual computer users of the domain. This is achieved

by enabling consolidated access to multiple data sources and using domain expertise to

mediate between end users and the information they are interested in.

In terms of SME encoding within the framework, this thesis defines the chief role of the

non-technical expert’s as one of generating rules out of domain properties registered to the

framework. Non-technical experts are not expected to have mapped these domain

properties from the original data sources to the framework. However if mappings from a

particular source have already been generated, then this thesis proposes that non-technical

domain experts can indeed generate SME without the assistance of a knowledge engineer.

More specific details on the roles of different stakeholders can be found in Sections 3.5.1,

3.9.1.1 and 3.9.1.2.

With regards to data accessed by the framework, it is assumed that is accessible within a

reasonable latency. As seen in Chapter 2, high latencies can be problematic for systems,

especially when accessing remote sources. This can greatly affect user satisfaction.

Improving remote access speeds is beyond the scope of this thesis, however advances in

this ongoing research area will benefit all distributed systems in general. Details of a

performance evaluation of the framework with real world data sources are given in Section

5.7 of Chapter 5, with this experiment assessing whether the internal performance of the

implemented framework is adequate.

26 Examples of such publically available data sets include UK government statistics
(http://data.gov.uk/about), USA government statistics (http://www.data.gov/) and Fingal County Council
statistics (http://data.fingal.ie/about/).

56

3.5 Framework Description

The analysis of the state of the art led to a number of framework requirements as well as

some design considerations and assumptions. This section describes how these led to the

design of an overall framework, and gives an overview of its various components and

models. It is divided into design time and run time sections to mirror the operation of the

framework.

3.5.1 Design Time Framework

Figure 3-1 shows how the design requirements described in this chapter filtered down into

issues that needed to be addressed in the design time framework. Essentially, it was

necessary for the framework to support:

1. communication with different data sources from a domain.

2. storing of SME encoded by non-technical experts.

3. advertising of this SME to third party applications so that end users could leverage

the SME in their data explorations.

4. the extensibility and reusability of SME and data source registration, as well as

domain independence.

Figure 3-1. Issues Relating to the Design Time Framework

How these concerns were subsequently addressed in the design time framework is

highlighted in Figure 3-2. The Reconciliation Engine is the name given to the central

component which stores all relevant models and orchestrates the other components.

57

Figure 3-2. Design Time Framework

At position one in Figure 3-2 the knowledge engineer examines the schemas of data

sources and any metadata from a schema of interest gets transcribed into a Source Model.

In this thesis the registration of domain schemas is differentiated from the encoding of

domain rules by experts who select properties from these registered schemas. Registering

a source schema is a mechanical mapping process from the original schema into a Source

Model, which can be consumed by the Reconciliation Engine. Hence, in many instances

the need for domain expertise in this process is not necessary. These Source Models must

be reusable in different installations and are stored in the Reconciliation Engine’s Source

Registry along with the Domain Superclass Model. The Domain Superclass Model simply

contains the key entities from the domain in question chosen by the domain expert and

encoded by the knowledge engineer. In essence, any queries made by client applications to

the Reconciliation Engine are looking to return instances of one of these Domain

Superclasses. Domain Superclasses are also a key mechanism in integrating different data

sources, as they allow each source to declare which shared entities they store information

about. The Source Registry itself is a key component of the Reconciliation Engine and

stores all the Source Models and Domain Superclasses.

At position two in Figure 3-2 the domain expert must encode his SME and have it stored in

the Reconciliation Engine. A key requirement of the framework is to support non-

technical domain experts in encoding SME; hence an accompanying SME Authoring Tool

is necessary to support this. As mentioned previously, this thesis considers the process of

creating rules from data properties as SME encoding, which is a distinct process from the

58

registration of metadata schemas to the Reconciliation Engine. As SME generated is based

on the data sources connected to the Reconciliation Engine, the domain experts must know

what sources and metadata are available to them. Hence, the Source Registry which

contains each data source’s key details is inputted to the SME Authoring Tool and

presented to the domain expert. The expert then uses this tool to generate SME referred to

in this thesis as semantic attributes. Each semantic attribute generated by the domain

expert encapsulates rules in the form of queries that can traverse the related information

source. For example, if the data source is in XML format, the semantic attribute will

encapsulate an XQuery.

Another key requirement for the framework is to promote reusability and extensibility of

SME, so the Semantic Attribute Model that encodes the semantic attributes must support

both of these features. It is also important that the Semantic Attribute Model can support

the expertise to be tailored by end users to their own requirements. Finally, any Semantic

Attribute Models generated are stored in the Reconciliation Engine so that they are easily

accessible by client applications. Hence, a Semantic Attribute Library component is part

of the Reconciliation Engine. This stores the raw Semantic Attribute Models as well as

generating the corresponding executable code for each. The executable code contains the

queries encapsulated within the Semantic Attribute Model and ensures that client

applications can access the SME efficiently at run time.

At position three in Figure 3-2 an application developer needs to know what semantic

attributes are available so that he can create an appropriate user interface to support data

exploration by the applications users. Hence an API is necessary in the Reconciliation

Engine to allow requests for all the semantic attributes available. This API also supports

multiple client applications in accessing the Reconciliation Engine simultaneously.

3.5.2 Run Time Framework

Figure 3-3 shows the how some of the key requirements detailed for the overall system

filtered down into issues that needed to be addressed in the run time framework.

Essentially, it was necessary for the system to support:

1. end users who send complex queries, based on Semantic Attributes, via client

applications.

2. the forwarding of individual queries encapsulated within the Semantic Attribute

Models to the relevant data sources in the appropriate query language.

59

3. the reconciliation of results from the separate data sources at an instance level.

4. the return of a consolidated set of results to the client application for rendering to

the user.

Figure 3-3. Issues Relating to the Run Time Framework

How these concerns were subsequently addressed in the run time framework is highlighted

in Figure 3-4. The Semantic Attribute Library and the API are the only components within

the Reconciliation Engine that are actively used at both design time and run time.

Figure 3-4. Run Time Framework

At step one the users engage with the client application using its GUI to generate a query

in terms of the semantic attributes stored in the Reconciliation Engine. How users form

these queries is entirely up to the application developers, as long as the queries sent

conform to the Reconciliation Engine’s API. Because the Reconciliation Engine employs

60

a parameter based API, it makes it very easy for it to be used by application developers, as

they do not need to know any data source query languages such as XQuery, SPARQL or

SQL which some frameworks require. Instead they simply have to pass on the semantic

attributes selected by users along with any associated operators and parameters.

At step two the inputted query is received by the Query Decomposer whose job is to break

down the query into separate semantic attributes and then trigger the associated executable

code in the Semantic Attribute Library. If the semantic attribute has not been tailored by

the end user, then the query gets sent directly to its corresponding source. If semantic

attributes have been tailored, then the parameter values specified by the user are plugged

into the query before it is sent on to the relevant data source.

At step three each data source processes the query and sends back an individual result set

containing the ids of instances of the relevant superclass. At step four the result ids from

each individual semantic attribute set get consolidated together into a final result set which

gets sent to the client application. This occurs in the Result Reconciler component. The

default mode is to send only the result identifiers back to the client application, but it is

also possible to send back additional metadata specifics about each instance, such as the

values that triggered the semantic attribute rules.

The final result set is then converted into a Result Model which is passed back to the client

application via the API. This Result Model can then be presented textually, or else

visualised in some way to help the user interpret the information better. This is completely

the prerogative of the client application and the framework has no bearing on this. After

the results are displayed, the user can then tweak their queries iteratively and re-run them,

or alternatively explore another area of the domain completely.

3.5.3 Summary of Framework Components and Models

Table 3-1 summarise the various components and models that are used in the design time

and run time parts of the framework.

61

Table 3-1. Summary of Framework Components and Models

Name Function Design
Time

Run
Time

Reconciliation Engine The overall engine that co-ordinates all the
other components and models.

Yes Yes

Source Model Contains all the details for an individual
source wishing to communicate with the
reconciliation engine.

Yes

Domain Superclass
Model

Describes a key entity from the domain.
Any query to the reconciliation engine must
look to return instances of these
superclasses. The superclass is also used as
an integration mechanism between different
data sources. Where it is possible to
transform instances of specific superclasses
into instances of another superclass is also
described in this model.

Yes

Source Registry Stores all the Source Models and Domain
Superclasses.

Yes

SME Authoring Tool Visualises the Source Registry and supports
non-technical domain experts in generating
SME.

Yes

Semantic Attribute
Model

Encoding of SME from the authoring tool Yes

Semantic Attribute
Library

Stores all the Semantic Attribute Models
created by experts.

Yes Yes

Client Applications Any applications that want to use the
reconciliation engine to support their users
in data exploration.

Yes Yes

API Facilitates design time and run time
communication between client applications
and the Reconciliation Engine.

Yes Yes

Query Decomposer Decomposes an incoming query into its
constituent semantic attributes, inputs
tailored values if necessary and sends
individual queries to the requested sources.

 Yes

Result Reconciler Reconciles the individual result sets into a
final result model.

 Yes

Result Model Represents the results in a form that can be
parsed by client applications and presented
to the end user.

 Yes

3.6 Data Models

This section describes each of the four models used within the framework in turn. These

models are the:

• Semantic Attribute Model

62

• Source Model

• Domain Superclass Model

• Result Model

3.6.1 Semantic Attribute Model

As highlighted in Section 3.5.1, the Semantic Attribute Model is a key component of the

framework that describes the SME defined by experts which is leveraged by users in client

applications. Because data is stored in many different formats and because it is useful to

explore distributed sources in a consolidated fashion, it was necessary to construct a domain

independent, extensible and flexible model for encoding a semantic attribute. Thus the

main features for a Semantic Attribute Model are to:

• allow aggregation of metadata into parameterised rules that describes a domain
concept or characteristic.

• be compatible with multiple common data formats and query languages.

• be extensible for new data formats.

• support expert defined rules as well as the tailoring of template rules.

• support consolidation of data at an instance level

• be self contained and able to combine with other semantic attributes to form more
complex aggregated SME units

• be reusable in different installations to help mitigate against their manual nature of
their construction

Semantic attributes are defined as discrete units of domain expertise that can be combined

together and tailored to support user exploration of an information domain. They are

created at design time and stored within the Reconciliation Engine (specifically in the

Semantic Attribute Library) along with corresponding executable code. At run time, if a

particular semantic attribute is accessed in the Reconciliation Engine, then its executable

code, which contains the expert generated rule, queries its original data source. If this

semantic attribute has been tailored by the end user in the client application, then the

variables passed into the Reconciliation Engine are plugged into the query before being

sent.

Semantic attributes typically act as abstractions and simplifications of the raw data, and are

intended to make it more accessible for the ordinary, non-expert user. For instance,

semantic attributes can encompass subjective characteristics such as nearness, popularity

and expensiveness, as well their more objective values such as distance in miles, number of

records sold and price. A semantic attribute may contain just a single metadata element or

63

it may combine a number of metadata elements into a single semantic attribute, e.g.

combining the elements bitrate, sample rate and file type into a single semantic attribute

audio file quality. Only metadata from a single source can used to create a semantic

attribute rule. This was a design decision that results in a simpler and more elegant model

than one which encompasses metadata from multiple sources. The limitation of only

addressing an individual source is mitigated by the fact that once a semantic attribute is

generated, it can then be combined with semantic attributes relating to different sources (as

described in the next section), thus enabling data from multiple sources to interact in a

consolidated fashion.

Semantic attributes can be classified into one of three types; expert, template and hybrid.

Table 3-2 describes the characteristics of each type of semantic attribute.

Table 3-2. Type of Semantic Attributes

Type Characteristic Example

Expert A concept that the
expert prevents
the end user from
tailoring.

Can vary from the quite objective e.g. “Number 1 US
Singles” would only return US singles that reached
number one in the US charts, to more subjective
notions such as “Popularity” that the expert prefers not
to be tailored in any way.

Template A concept that
must be tailored
by end users and
contains no expert
defaults

The semantic attribute “Music Genre” would allow the
user to search for specific instances such as “Folk”,
“Rock” or “Jazz” and the semantic attribute “Contains
Chemical Element” would allow the user to search for
substances that contain specific elements such as
“Hydrogen” or “Oxygen”.

Hybrid It contains expert
default rules as
well as values that
can be tailored by
the end user.

A sound engineer, in the context of his studio work,
may use the expert defaults of a “High quality audio
file” which insists on files containing uncompressed
raw audio of 48,000Hz or higher. However, in the
context of his own home listening, the same semantic
attribute could be personalised by him to include any
compressed MP3 files above a minimum value bitrate.

All semantic attributes can also be sub-categorised into a number of separate ranges or

parameters e.g. the semantic attribute Price could be divided into {Expensive - Average –

Cheap}, and Weight into {Under Weight - Normal Weight - Over Weight – Obese}. This

categorisation allows non-experts to access information without detailed knowledge of the

domain.

64

In terms of the Reconciliation Engine, semantic attributes are encoded within the Semantic

Attribute Model. The exact items that the Semantic Attribute Model needs to define are

listed in Table 3-3.

Table 3-3. Items required in the Semantic Attribute Model

Item Function

Name Name of the semantic attribute

Type Type of the semantic attribute (expert, template or hybrid)

Location Address of underlying data source

Superclass The semantic attribute returns instances of this Domain
Superclass

Variable Name(s) If this is a template or hybrid Semantic Attribute, one or more
variables are required for its template rule(s). These must have
individual names.

Variable Type(s) Each variable must have a corresponding Data Type

Parameter Name(s) A semantic attribute can have multiple parameters. Each must
have a different name and contain expert and/or template rules
depending on the semantic attribute type.

Expert Rule This is a parameter’s expert rule which must be in a query
language compatible with the underlying data source.

Template Rule This is a parameter’s template rule which must be in a query
language compatible with the underlying data source and
contain variables (defined above) that can be tailored by the
end user.

New semantic attributes can be added to the framework at any time by different users. This

facilitates teams of experts in performing collaborative work, and enables different expertise

to be exposed across the same domain. This diversity of expert perspectives encoded as

semantic attributes empowers end users to pick and choose the semantic attributes that are

best suited to their needs. In some ways this is analogous to choosing a specific critic for

guidance in a domain you have interest in, but in which you are not an expert. Thus

subjective critiques on movies, sport, politics, finance etc. can be appropriated by the end-

user to help their exploration, but more importantly they can be tailored to better match

individual preferences.

3.6.1.1 Semantic Attribute Queries

Each semantic attribute is an atomic unit that can be joined together with standard logical

operators by the user, in order to form more complex queries tailored specifically to their

65

needs. These are called Semantic Attribute Queries, and they typically combine several

semantic attributes together e.g. Return all Songs that are very popular AND that are in a

high quality audio format AND that are either in the blues genre OR jazz genre. By

tailoring the component semantic attributes it enables users to specify, if they wish to, what

their interpretation is of a high quality audio format or a very popular song etc. In turn, this

helps to bridge the semantic gap between end users and low-level data, as it supports users

in exploring such data using semantics that are meaningful to them. Each semantic attribute

can also include default values defined by the domain expert that allow informed queries to

be run quickly without any tailoring. Figure 3-5 describes the information contained in the

Semantic Attribute Query data stack at each of its four levels.

There are a number of advantages to incorporating the Semantic Attribute Model into a

framework that enables expert-supported data exploration. Firstly this data model can

support experts in defining subjective and objective SME that end users can employ to help

their exploration of an information domain. The Semantic Attribute Model hides the

underlying complexity of the raw metadata from the user and allows SME to be tailored to

an end users own interpretation or current context. Importantly the Semantic Attribute

Model does not specify the data format that information sources must be encoded in, which

means that it does not limit the range of current (and future) data types that it is compatible

with. This flexibility makes it applicable to a huge range of data sources. Finally, because

each semantic attribute is modular, end users can combine individual semantic attributes

into powerful compound queries. If provided with a sufficient range of semantic attributes,

this feature gives users great freedom of expression while exploring a domain.

66

Figure 3-5. Semantic Attribute Query Data Stack

3.6.2 Source Model

Any sources that want to be accessible by client applications via this framework must

reside in the dataspace set up for the domain. Dataspaces are collections of data sources

that can be queried through a consolidated access point, despite full data integration not

being initiated beforehand (Hedeler et al. 2010). It is more of a data co-existence approach

and is achieved in this framework by registering a source model for each source with a

Reconciliation Engines source registry. The Source Model describes key metadata from

information sources, and its main function is to populate the SME authoring tool with

elements about which domain experts can generate rules.

Each data format requires a different type of Source Model. Currently there are Source

Models to accommodate data sources in three formats that are common for storing large

volumes of data on the Internet (XML, RDF, and data accessible through a Web API).

This section describes the Source Model for each of these three data formats.

• Contains	
 seman+c	
 a-ribute(s)	
 from	
 Level	
 3,	

a	
 Domain	
 Superclass	
 from	
 Level	
 2,	
 	
 op+onal	

tailored	
 values,	
 and	
 logical	
 set	
 operator(s)	

LEVEL	
 4:	
 	

Seman(c	
 A+ribute	

Query	

• Contains	
 rules	
 and	
 metadata	
 generated	

from	
 the	
 data	
 	
 that	
 is	
 stored	
 in	
 Level	
 2	

LEVEL	
 3:	
 	

Seman(c	
 A+ribute	

• Contains	
 all	
 the	
 Domain	
 Superclasses,	
 as	

well	
 as	
 selected	
 metadata	
 from	
 the	

schemas	
 of	
 sources	
 in	
 Level	
 1	

LEVEL	
 2:	
 	

Source	
 Model	
 &	
 Domain	

Superclass	
 Model	

• Contains	
 metadata	
 and	
 instances	
 relevant	

to	
 the	
 current	
 domain	

LEVEL	
 1:	
 	

Data	
 Sources	

67

3.6.2.1 XML Source Model

Table 3-4 shows the items that are necessary in the XML Source Model in order for an

XML data source to be registered with the Source Registry within the Reconciliation

Engine. The main function of this model is to populate the SME authoring tool with

elements that the domain expert can use to create rules.

Table 3-4. Items Required in the XML Source Model

Item Function

Source Name Name of the data source

Location Address of the XML database

Collection Name(s) Name of database collection(s). Each collection has one or
more elements. These are the building blocks used to
generate rules by the domain expert.

Element Name Name of the element. Each element must contain all the
facets in grey.

Alias In case the element’s name is unclear away from its original
context

Parent Name Name of the elements parent node

Units The units of the element if applicable (Km, Kg, etc.)
Superclass The Domain Superclass the element is associated with

Identifier The element that gives the unique identifier for this Domain
Superclass instance.

3.6.2.2 RDF Source Model

Registering an RDF source (specifically a SPARQL endpoint) is a slightly more complex

procedure than registering an XML source, but allows for more sophisticated queries to be

generated than would be possible with XQuery. This is because SPARQL allows joins to

be expressed implicitly simply by including two triple patterns that reference a common

variable. This feature allows single semantic attributes based on SPARQL to reference

multiple Domain Superclasses in a single expert rule. The main function of this model is to

populate the SME authoring tool with predicates that the domain expert can then use to

construct rules. Table 3-5 shows the items that are necessary in the RDF Source Model in

order for the RDF data source to be registered with the Source Registry within the

Reconciliation Engine.

68

Table 3-5. Items Required in the RDF Source Model

Item Function

Source Name Name of the data source

Location Address of the RDF database or SPARQL endpoint

Prefix(es) Namespace prefixes that the source predicates use

Superclass(es) Any Domain Superclasses from the domain that this source
contains, plus the SPARQL triple to return the identifier for
each superclass instance.

Superclass Transform SPARQL triple(s) to transform instances of one Domain
Superclass to another.

Predicate Name Similar to the elements in XML sources the predicates are
the most important elements in RDF Source Models as
these are what the domain expert generates his rules out of.
Each predicate registered must describe all facets in grey.

Alias Many predicates can be ambiguous so this makes the
meaning of the predicate more apparent for the domain
experts who must generate rules from them.

Units The units of the predicate if applicable (Km, Kg, etc.)
Subject Superclass Domain Superclass of the predicate’s subject

Object Superclass Domain Superclass of the predicate’s object

3.6.2.3 API Source Model
Sources that can be accessed directly via a query language such as SPARQL or XQuery

(whether hosted locally or remotely) do not require any more manual integration effort

than is needed to construct a Source Model. This is important in supporting the rapid

inclusion of information sources into a dataspace. Though information accessible through

a native web service API requires a wrapper to make its data assessable to the

Reconciliation Engine, this is not overly problematic. This is because any Web Services

with well defined APIs can have wrappers developed relatively quickly. Moreover,

creating a wrapper for a web service only needs be done once per source, and it can be

reused in any other dataspace that wants to connect to that source.

The main function of the API Source Model is to populate the SME authoring tool with

methods that the domain expert can construct into rules. Table 3-6 shows the items that are

necessary in the API Source Model in order for data sources accessible through a native

web service API to be registered with the Source Registry within the Reconciliation

Engine.

69

Table 3-6. Items Required in the API Source Model

Item Function

Source Name Name of Web Service

Location Wrapper Name within the Reconciliation Engine

Method Name(s) Multiple methods can listed for each web service, and it is
these which are used to generate rules by the domain expert.
Each method must contain all the facets in grey.

Description A description of the methods functionality

Superclass The Domain Superclass instances the method returns

API Parameter(s) Compulsory parameters and their associated data type
needed to access the particular API call.

Wrapper Parameter(s) Optional Wrapper parameters and their associated data
types that are used to give more specific responses from the
web service.

3.6.3 Domain Superclass Model

As described earlier, a Domain Superclass is a key entity from the domain in question

which is chosen by the domain expert. In essence, any queries made by client applications

to the Reconciliation Engine are looking to return instances of one of these superclasses.

Domain Superclasses are also a key mechanism for integrating different data sources, as

they allow each source to declare the shared entities about which they store information.

The main functions of the Domain Superclass Model are to declare the key entities of

interest in the domain, and to support the transforming of instances to other superclasses in

order to facilitate more sophisticated querying. This process is described next.

When Semantic Attribute Queries (see Section 3.6.1.1) are sent to the Reconciliation

Engine, the types of instances that are to be returned are specified by choosing one of the

Domain Superclasses from the Domain Superclass Model. If users are restricted to making

queries about a single superclass at a time, then no extra processing is needed. For instance

the following query is related to the single superclass Album in the music domain:

Return all Albums that are in the Jazz genre, that are shorter than 40 minutes and reached

number 1 in the USA between 1950 and 1970.

This type of query is perfectly sufficient for many applications. However, if a user is to

make a query that spans multiple superclasses such as Return Albums that contain UK

number 1 Songs by Music Artists that have played in Ireland in the last year, a mechanism

70

for Domain Superclass transformation is necessary. Because this query returns Albums, all

other superclasses in this query must have their results transformed into Albums also.

Hence this query is broken into a number of steps:

1. Find all Music Artists that have played in Ireland in the last year.

2. Take these artists and find all the Albums that they have recorded.

3. Find all number 1 Songs in the UK.

4. Take these songs and find all the Albums to which they belong.

5. Intersect the Albums found in step 2 and step 4 to get the results.

Queries with multiple superclasses may result in many separate queries and result sets that

expand and contract. However, it allows sophisticated queries to be formed easily by users,

and accurate results to be sent back to the user. In order to perform such transforms

automatically, superclass transformation data must be contained in the Domain Superclass

Model. All items needed in the Domain Superclass Model are outlined in Table 3-7.

Table 3-7. Items required by the Domain Superclass Model

Item Function

Name The Name of the Domain Superclass

Input Superclass Instances of this Domain Superclass can be
transformed to the Domain Superclass in the Name
field above. All facets in grey must be included for
each Input Superclass.

Transformation Location A location to perform the transform (Database,
Endpoint, Service etc.)

Transformation Description A description of the source that is performing the
transform

Transform A query or set of arguments to perform the
transform

Output Superclass Instances of this Domain Superclass will be
outputted. Should correlate with the Name field.

Priority If there are several locations to perform the same
transformation, then the location with the higher
priority gets preference.

In essences the transformation process involves the input of a set of instances of one

superclass which are converted to a set of instances of the new superclass. Figure 3-6 show

five superclasses with the arrows representing locations where superclasses can be

transformed from one to the other. As you can see from the diagram Music Artists can be

transformed to any of the other superclasses in just one step. However it is possible for

superclasses to undergo multiple transformations such as Songs being converted into

71

Venues via Music Artists. Theoretically there is no limit to the amount of transformations

that take place but the more transformations the longer the query processing will take.

Hence the more direct transformation options between domain superclasses the better.

It is possible to have multiple transformation locations for the same transform so that the

end user can specifically choose a transform location if they want more control over their

query. As with other models in the framework, the Domain Superclass Model is completely

reusable in any installation that has the same superclasses.

3.6.4 Result Model

The function of the Result Model is to contain all the results that are sent back to the client

applications via the API. This model must be in a format that is easily parsed by

applications for rendering to the end user. This model contains the name and number of

instances returned by each constituent semantic attribute as well as the total number of

instances returned by the full Semantic Attribute Queries. This feature informs the

application if some individual semantic attributes gives results even if the Semantic

Attribute Query itself does not, and thus enables the application to make more informed

suggestions to the end-user regarding what to query next. This model also contains a list of

identifiers for each instance in the result set, however it should be possible to augment these

results with extra metadata on each instance to give the client application complimentary

information to render. Table 3-8 shows the items required by the Result Model.

Figure 3-6. Graphical Representation of Five Superclasses and their Transformation Options 	

Song	

Music	

Artist	

Country	
 Album	

Venue	

72

Table 3-8. Items required by the Result Model

Item Function

Semantic Attribute Name Name of each constituent Semantic Attribute

No. Results for each
Semantic Attribute

Number of instances returned for each individual
Semantic Attribute

Total No. Results Number of instances returned for the Semantic Attribute
Query

Identifier An Identifier to distinguish each Semantic Attribute
Query result

Instance Metadata Optional metadata on each result instance to give client
applications supplementary data to show users.

3.7 Reconciliation Engine’s API

The Reconciliation Engine’s API is the component that facilitates communication to client

applications at design time and run time. At design time the API should allow client

applications to query the reconciliation engine for a list of available semantic attributes

according to their type (expert, template or hybrid) and data format (XML, RDF or data

accessible through a native API). This API method is important because the application’s

users will interact with the Reconciliation Engine by selecting semantic attributes. The

API method must make available the following information about each semantic attribute:

• The name of the semantic attribute.

• Type of semantic attribute

• The parameter names

• Any expert rules

• Any template rules

• Any variable names

• Any variable data types

By making this information available to the client applications a priori this API method

enables them to tailor their user interface accordingly.

At run time the API should facilitate the sending of semantic attribute queries to the

Reconciliation Engine and for a Result Model to be sent back. Because the client

application is sending Semantic Attribute Queries it needs to send the following to the

Reconciliation Engine’s API:

• The Domain Superclass that the query is returning.

73

• The name of each semantic attribute.

• The parameter chosen for each semantic attribute.

• Whether each semantic attribute has been tailored or not.

• Any tailored values the user has inputted for a semantic attribute.

• The query language to be used for each semantic attribute.

• Whether each semantic attribute result set should undergo an intersection, union or

difference operation with other semantic attribute result sets.

• Whether the results should be expanded to include supplementary metadata

triggered by the semantic attribute.

The main advantage of this style of API is that the application developer does not need to

know a specific query language in order to send complex queries to the Reconciliation

Engine.

3.8 SME Authoring Tool

Because semantic attributes are hand-crafted by experts and not just automatically extracted

from datasets, it is important to allow them to be created by non-technical experts in

minutes. There are many ways of automatically extracting semantic features from data sets,

however it can be argued that if domain experts can create semantic attributes quickly and

easily then these can be of more value than automatically extracted features. Hence an

SME authoring tool is necessary to directly support this, and is a key component of the

design time framework. Such a tool would give the benefit of accurate human-created

semantic attributes without the cost of a lot of manual effort.

The main design requirements for such an SME Authoring Tool were devised in reference

to findings from state of the art (requirements 1-6) and the data models and components

described in Section 3.6 (requirements 7-11). They are as follows:

1. Be accessible to users with no computer coding or information modelling

background after minimal training.

2. Support a schema-based approach to query building using a wizard/form interface.

3. Automate as much of the creation process as possible to support these users.

4. Support rule generation for semantic attributes in multiple query languages.

5. Be extensible for new data formats.

6. Be able to query multiple data sources for the results to rules being generated, so as

to provide instant feedback to domain experts as what the end user is to expect.

74

7. Allow all three semantic attribute types to be formed.

8. Work in tandem with the Reconciliation Engine.

9. Incorporate the Source Registry to display available metadata.

10. Group this metadata and make available for rule generation.

11. Generate the Semantic Attribute Model as output file.

Perhaps the key design decision in terms of the SME Authoring Tool’s GUI, is that it

should follow a schema-based approach to query building using a wizard system or forms.

From the state of the art analysis, this approach appeared to show the most potential for

supporting non-technical domain experts to encode SME as semantic attributes. Hence any

SME Authoring Tool developed should ensure that this feature is incorporated in its user

interface.

Figure 3-7 shows how the SME Authoring Tool interacts with the Reconciliation Engine.

The Source Registry is inputted to the authoring tool and its metadata is used by the domain

expert to generate rules encapsulated as semantic attributes. Each semantic attribute

created in the authoring tool then generates a Semantic Attribute Model which is imported

into the Reconciliation Engine and stored in the Semantic Attribute Library. While

generating rules for each semantic attribute, it is possible for test queries to be sent to the

data sources while the rules are being tweaked. The results sent back and displayed within

the authoring tool help the domain expert to decide if a rule should be amended. This

process is depicted as dashed lines in Figure 3-7.

Figure 3-7. Interaction between the SME Authoring Tool and the Reconciliation Engine

75

From the expert’s perspective it is important to stress that by using this authoring tool they

should not need any knowledge of the underlying query languages (XQuery, SPARQL etc.)

and should be able to construct rules in minutes. As described in Chapter 2, a balance needs

to be struck between faithfulness to an underlying query language’s expressivity and the

ease of use of its GUI metaphor. Thus the level of expressivity offered will vary depending

on the individual query language and how easy its constructs can be hidden from the casual

user. However at a minimum, the SME Authoring Tool should enable domain experts to

join multiple elements into a rule, and allow them to assign values using operators. The

range of operators available will depend on the individual query language, but should at a

minimum include equals to, not equals to, greater than and less than, which are intuitive to

casual users. Finally, the end user should never be presented with any of this raw code, but

merely uses the client application to select the semantic attribute he wants for his query. He

can then choose to use the default expert rules or tailor the template rules via the GUI.

3.9 Expert-Supported Approach to Data Exploration

The expert-supported approach to data exploration defines an underlying process model

that underpins the overall framework and models. This approach was developed in

response to the generic KDDM (Knowledge Discovery and Data Mining) process model

specified by Kurgan and Musilek. In their survey of the major process models in use by

the KDDM community, Kurgan and Musilek specify a six step generic model which

consolidates the information accumulated among the five major models (Kurgan &

Musilek 2006).

The benefit of such a standardised process model becoming popularised within the KDDM

community is that it would provide a common framework for researchers, thus providing

cost and time savings. Because other disciplines like data exploration encounter many of

the same issues as KDDM, it can also benefit from a structured process model. Thus this

thesis proposes a seven step process model, called the expert-supported approach to data

exploration, which is divided into separate design time and run time components to mirror

the framework design previously outlined. These steps are listed in Table 3-9.

76

Table 3-9. Design Time and Run time Processes of Expert Supported Approach to Data Exploration

Design Time Processes Run time Processes
1. Domain Understanding
2. Source Selection
3. SME Encoding &

Advertising

4. SME Presentation & Query Generation
5. Query Routing
6. Result Consolidation
7. Result Presentation

The following sections detail each of the steps in both the design time and run time

processes and highlights how this approach benefits the various stakeholders listed in Table

3-10.

Table 3-10. Stakeholder Benefits of using Expert Supported Approach to Data Exploration

Stakeholder Benefit
Non-technical and
technical domain
experts

With minimal training they can encode SME as rules operating
over metadata.

Application
developers

Can exploit the SME and consolidated view over an information
domain to develop powerful applications.

End users Are hidden from the underlying complexity and raw metadata of
the sources, and can use the client applications to leverage SME
while exploring information domains of interest.

Knowledge
engineers

Can create a dataspace of structured and semi-structured sources
by reusing existing models, or by registering new data sources.

3.9.1 Design Time Processes

The design time stages of this workflow process model consist of the three steps depicted in

Figure 3-8. Each of these three steps follow each other linearly, however there can be

feedback loops to any of the previous steps if there is a need for a process to be revisited.

For instance, a feedback loop may be triggered from step 3 (SME Encoding &

Advertising) to step 2 (Source Selection), if additional data sources are needed to encode

more useful SME. The next section will describe each step in detail.

Figure 3-8. Design Time Processes of Expert Supported Approach to Data exploration

3.9.1.1 Domain Understanding

This step relates to understanding the goals of the end-user and aligning them in terms of

Domain Superclasses. Though this initial process can be quite short, it greatly influences

Domain	

Understanding	

Source	

Selec(on	

SME	
 	
 Encoding	

&	
 	
 Adver(sing	

77

steps two (Source Selection) and three (SME Encoding & Advertising). The key person in

this endeavour is the domain expert who must find out what is likely to interest end users

and then select the Domain Superclasses accordingly. As described previously, these

superclasses can be seen as any key entities from a domain about which a user would

typically like to get information about. Choosing them is the first step in the expert-

supported approach to data exploration.

There is no limit to the number of superclasses that can be selected for a domain and no

need to define any relationships or properties for them, which can be an arduous task when

creating domain ontologies. Furthermore, new superclasses can be added at any time

without impacting on previous superclass choices, so domain experts are not limited to their

initial selection. This is in keeping with the extensible nature of the framework.

Some examples of possible superclasses that could be selected in the Astronomy domain are

Planet, Star, Astronaut, Satellite etc. Likewise in the music domain Music Artist, Song,

Album, Venue etc. could be chosen by the domain expert. If data source A referred to

Artists, data source B to Groups and data source C to Singers, the domain expert could

decide that all these three concepts refer to the same Domain Superclass Music Artist. This

simple association is vital in allowing multiple data sources to interact with each other, with

any metadata relating these concepts in the original sources (name, age, nationality, albums

etc.) needing no further integration.

Each superclass is independent of each other and the only task for the domain expert is to

identify these key entities. They then get added to the Domain Superclass Model so that

they can get assigned to data sources in the Source Selection step that follows. The final

part of this process is optional, and consists of the knowledge engineer adding superclass

transformation information to the Domain Superclass Model as outlined in Section 3.6.3.

This gives client applications the ability to offer more sophisticated queries which contain

multiple superclasses. Once a Domain Superclass Model is finished it is added to the

Source Registry and each model can be reused in any other installation. This means popular

Domain Superclasses and information on how to transform them to other superclasses do

not have to be generated repeatedly.

3.9.1.2 Source Selection

The first part of this process is for the domain expert to identify data sources that contain

useful information about the domain. In order for these sources to be accessible by client

78

applications and consolidated with other sources, they must reside in the dataspace set up

for the domain. This is achieved in the expert-supported approach to data exploration by

registering each data source’s Source Model with the Source Registry. Data sources

suitable for selection are those that have structured or semi-structured data, and that contain

instances of one or more Domain Superclasses. One of the key specifications in any Source

Model, as identified in Section 3.6.2, is the Domain Superclasses that this particular data

source returns instances of. These must be chosen from the selection of superclasses

encoded in the Domain Superclass Model.

It is beneficial if sources contain a shared identification scheme for superclass instances, as

this enables more sophisticated queries to be performed that reconcile data from different

sources. Ideally these identifiers are dereferenceable URIs (Mei et al. 2008), which are

increasingly being used, but such a comprehensive mechanism for identification is not a

prerequisite for a source’s inclusion. In addition to dereferenceable URIs, many useful

identification schemes already exist in different domains and organisations. For instance

below are some commonly used examples:

• Staff / Student / Social Security / Patient numbers

• Postcodes

• GPS coordinates

• Dates

• International Standard Book Numbers (ISBN)

• International Standard Serial Numbers (ISSN)

• EAN-13 Barcodes

• Life Science Identifiers

• Chemical Symbols

Though it is more useful if sources in a dataspace contain shared instance level identifiers

for the Domain Superclasses, it is not a prerequisite for joining the dataspace. This is

because it is still possible to find the union of result sets from individual data sources,

despite them having different identification schemes.

Once a data source has its Source Model registered with the Source Registry it is assumed

that the source is accessible within acceptable latencies and that the data is as accurate as is

reasonably possible. Hence any data processing that is necessary to provide additional

metadata about the source (perhaps calculating average figures etc.), or data cleaning to tidy

79

up the data, takes place within this step. However, in many cases data sources can be taken

“as is” and do not require any pre-processing in order to be useful.

Source Models can be added and removed to the Source Registry at any time, which is vital

in making the creation of bespoke dataspaces as flexible as possible. Moreover each

source’s Source Model can be reused in any other installation, which means that the

generation of a new dataspace out of a pre-configured Source Model is almost

instantaneous. Because a lot of domains contain certain sources that are widely referenced,

it is likely that many dataspaces will end up reusing these popular sources that have existing

Source Models. Some specific data sources can then be added to complement them.

The creation of Source Models is typically done by a knowledge engineer or someone with

a computer science background in consultation with the domain expert. However, if no

data processing or data cleaning is required, it is conceivable that with the correct tools a

non-technical domain expert could do this step themselves. Moreover, if the desired data

sources have existing Source Models previously generated elsewhere, then the task

becomes the trivial importation of these models.

3.9.1.3 SME Encoding and Advertising

Each source in the Source Registry will contain many references to instances of the

Domain Superclasses (e.g. The Beatles, The Rolling Stones etc. as instances of Music

Artists, and Wembley Stadium, Madison Square Garden etc. as instances of Venues). In

each data source’s schema they will have metadata relating to these instances and any

metadata that is of interest (e.g. song_duration and year_released in a music database

source) gets associated with one or more superclasses from the domain (e.g. song_duration

with Song and year_released with Album, Song and Artist) in each Source Model.

Through this process, different data sources with different schemas can co-exist in a

dataspace without having to go through the time consuming and problematic process of

being homogenised to a canonical model.

The metadata registered in each Source Model are the individual building blocks that the

domain expert uses to encode rules as SME. The metadata in each Source Model is loaded

into the SME Authoring Tool so that non-technical domain experts can generate these rules.

For example, if the following elements bitrate, sample rate and file type were added to a

Source Model, the domain expert could then generate a rule such as:

80

High Quality Audio File = bitrate > 319 KBs AND

sample rate > 44,099 KHz AND

file type = ‘mp3’

Only metadata from a single source can be joined to form such a rule in a semantic attribute,

however once a semantic attribute is generated it can then be combined with semantic

attributes from any other source so this is not a major limitation. Because the domain

expert can only create rules from the metadata contained in the Source Registry, it is vital

that he has a wide selection to choose from in order to express rich SME. However because

only minimal configuration of a Source Model is required to add new metadata elements

from a source, and there is the option of reusing Source Models from other installations in

the same domain, this should not become a major issue.

Any applications wishing to interact with the framework can do so through the formation of

Semantic Attribute Queries. As mentioned previously, these queries consist of individual

semantic attributes generated by the authoring tool and submitted to the Semantic Attribute

Library. By accessing an API method, it is possible for client applications to know a priori

what semantic attributes are present in the Semantic Attribute Library, and the functionality

that they offer. This enables, the available semantic attributes be made available to end

users in the GUI of the client application.

3.9.2 Run Time Processes

The run time processes of the workflow consist of the four steps depicted in Figure 3-9.

These four steps follow each other linearly, however step 4 (result presentation) typically

loops directly back to step 1 (query generation) when the user refines their exploration as a

direct consequence of the results received for their previous query. This section describes

each step in detail.

Figure 3-9. Run Time Processes of Expert Supported Approach to Data exploration

3.9.2.1 SME Presentation and Query Generation

An end user connects to the framework via a client application that uses the Reconciliation

Engine’s API. In this application the user chooses the semantic attributes in which they are

interested (tailoring if desired) and joins them together with operators into a Semantic

SME	
 Presenta(on	
 &	

Query	
 Genera(on	

Query	

Rou(ng	

Result	

Consolida(on	

Result	

Presenta(on	

81

Attribute Query, e.g. Return all Artists from my iTunes collection that have Concerts

Scheduled in the USA despite their most recent top 10 Album in the USA being more than

ten years ago. This is a combination of three semantic attributes (all artists in my iTunes,

all artists with concerts scheduled in the USA and all artists with top 10 albums in USA

before the year 2000) each potentially from a different source. Whether the client

application presents the user with a simple query building mechanism or supports a more

explorative approach using novel visualisations is irrelevant to the framework. It only

requires that Semantic Attribute Queries are formed and passed to the Reconciliation

Engine’s API. If there is a huge array of semantic attributes available for a particular

domain, the client application may use crowd sourcing (Brabham 2008) or user modelling

techniques (Shen et al. 2005) to recommend specific semantic attributes for display to users.

Such functionality is often applied in faceted browsing interfaces (Polowinski 2009), where

the list of facets displayed to the user is dynamically adjusted depending on a number of

factors.

3.9.2.2 Query Routing

When the framework receives the Semantic Attribute Query it decomposes it down into its

individual semantic attributes and locates them in the Semantic Attribute Library. In the

executable code associated with each Semantic Attribute Model the relevant query is

located. If the semantic attribute has not been tailored by the end user then the query gets

sent directly to its corresponding source (via a wrapper in the case of data sources behind a

native API), otherwise the user’s inputs get plugged into the query before it is sent onwards.

3.9.2.3 Result Consolidation

Once each source processes the query, it sends back an individual result set containing ids

of instances of the relevant Domain Superclass. At this stage it is necessary to reconcile the

individual result sets into one master set according to the operators sent in the Semantic

Attribute Query. Using set operators, the result ids from each individual semantic

attribute’s result set get consolidated together into a final result set which gets sent to the

client application. The default mode is to send only the result identifiers back to the client

application as this is the most efficient technique. It is possible to send back additional

metadata on each instance, such as the values that satisfied each semantic attribute’s rule.

However, this may result in slightly longer processing times due to the increased number of

queries necessary.

82

3.9.2.4 Result Presentation

The Result Model is then created from the result set and sent back to the client application

via the API. The Result Model can be parsed by the client application and results

presented textually or else visualised to help the user interpret the information better. The

degree of “exploration” that is offered to users directly depends on the user interface of the

third party application. For instance, visualisation techniques may be used to provide

novel ways to view result sets iteratively. However, how the results are presented to users

is completely determined by the client application, and the framework has no bearing on

this. After the results are displayed in the GUI, the user can then tweak their queries

iteratively and re-run them, or else use the interface to explore a completely different area

of the domain.

3.10 Summary

This chapter has described a novel approach to expert-supported data exploration and the

design of a technical framework to support it. The requirements for this approach are

based on the objectives outlined in Section 1.3 and the subsequent findings from the state

of the art analysis. This chapter detailed all the necessary components and models to fulfil

these objectives, as well as the seven processes that underpin the expert-supported

approach to data exploration. The design detailed in this chapter will be used as the basis

for a technical implementation of the Reconciliation Engine called SARA (Semantic

Attribute Reconciliation Architecture) and its associated authoring tool SABer (Semantic

Attribute Builder). The implementation of both these systems is described in the next

chapter.

83

4 Implementation
The previous chapter described a novel approach to expert-supported data exploration and

the design of a technical framework to support it. The requirements for this approach, and

the necessary components and models to support the framework were also detailed. This

chapter will discuss in detail how these design elements of the framework have been

implemented in order to fulfil these requirements, as well as the technologies used. For the

interested reader, Appendix A provides a brief overview of some of the common

technologies associated with the encoding and retrieval of data and knowledge, e.g. XML,

XQuery, RDF and SPARQL, which have been leveraged in the implementation described.

4.1 Introduction

The two major components of the framework outlined in Chapter 3, are the Reconciliation

Engine and the SME Authoring Tool with which it works in tandem. These components

have been implemented as the Semantic Attribute Reconciliation Architecture (SARA) and

the Semantic Attribute Builder (SABer) respectively. This chapter first describes SARA

and the models, interfaces and processes central to its operation. It then discusses the

implementation of SABer and how it works in tandem with SARA. By following the

design requirements outlined in the previous chapter, SARA and SABer make the expert-

supported approach to data exploration a technical reality, and their implementations

underpin client applications whose evaluations are described in Chapter 5. The chapter

concludes with a multi-source case study, which highlights some of the technical features

supported in the implementations of SARA and SABer.

4.2 SARA (Semantic Attribute Reconciliation Architecture)

The Reconciliation Engine is the central component of the entire framework, and based on

the requirements outlined in Sections 3.5.1 and 3.5.2 of Chapter 3, it requires the

following:

F1 Support communication with different data sources of various formats in a given

domain.

F2 Store SME encoded by non-technical experts.

F3 Advertise this SME to third party applications, via an API that only requires

parameters, so that end users can leverage the SME in their data explorations.

F4 Support extensibility and reusability of SME and data source registration, as

well as domain independence.

84

F5 Enable end users to send complex, tailored queries based on semantic attributes,

via client applications that send the associated parameters to an API.

F6 Allow individual queries encapsulated within the Semantic Attribute Models to

be forwarded to the relevant data sources in the appropriate query language.

F7 Reconcile results from the separate data sources at an instance level.

F8 Return a consolidated set of results to the client application for rendering to the

user.

The Semantic Attribute Reconciliation Architecture (SARA) was implemented in Java to

incorporate all these features, and will be described under the following headings:

• Architecture and Technologies Employed

• Representation of Models

• Interface with Dataspace Sources

• Interface with Client Applications

• Parsing of Queries and Reconciliation of Results

4.2.1 Architecture and Technologies Employed

SARA is middleware implemented as a Java library that a client application must

communicate with in order to interact with raw data sources. The data types that SARA

currently supports are RDF and XML, in addition to data accessible through native Web

APIs. These are commonplace data formats for storing large volumes of data on the

Internet. Regardless, SARA is capable of integrating further data formats (relational

databases, JSON etc.) at a later stage without impacting its current design (See Section 4.5)

Figure 4-1 shows the design time architecture of the overall framework and closely follows

the architectural design outlined in Section 3.5.1.

85

Figure 4-1. Design Time Architecture of Overall Framework

Figure 4-2 is a sequence diagram that displays a typical workflow in the design time

architecture. As can be seen, all Data Sources have corresponding XML Source Models

generated and sent for storage in the Source Registry. These models are stored alongside

an XML Domain Superclass Model, which lists all the superclasses that the data sources

contain instances of. The XML Source Models are also sent to SABer for rendering within

its GUI. The next step is for a domain expert to generate SME using the SABer tool,

which creates XML Semantic Attribute Models as an output. These models get stored in

the Semantic Attribute Library alongside previously generated semantic attributes. If a

client application wants to know what semantic attributes are available, it sends a request

to the Semantic Attribute Library via SARA’s API which returns an ArrayCollection of

data on the Semantic Attributes. These semantic attributes can then be referenced by end

users in the client application’s GUI.

Figure 4-2. Sequence Diagram for Design Time Architecture

86

Figure 4-3 shows the run time architecture of the framework which corresponds closely to

the architectural design outlined in Section 3.5.2.

Figure 4-3. Run Time Architecture of Overall Framework

Figure 4-4 is a sequence diagram that displays a typical workflow in the run time

architecture. It depicts a client application that is sending a Semantic Attribute Query to

the Query Decomposer, via SARA’s API. This particular Semantic Attribute Query

references three separate semantic attributes, so the Query Decomposes locates each in the

Semantic Attribute Library. Once a semantic attribute is found in the Semantic Attribute

Library, the query encapsulated in it gets sent to its corresponding data source. In this

scenario, it involves a SPARQL query going to a Linked Data Repository, an XQuery

going to an XML database, and an API call going to a Web Service via a wrapper stored in

SARA. Results from all these sources are sent to the Result Reconciler, which uses set

manipulation to create a final unified results set. This gets transformed into an XML

Result Model, which gets sent back to the Client Application for rendering via SARA’s

API.

87

Figure 4-4. Sequence Diagram for Run Time Architecture

As is shown Figures 4-1 and 4-3, any client applications that use BlazeDS27 can use SARA

to access heterogeneous data sources. BlazeDS is a popular server-based Java remoting

and web messaging technology that allows back-end distributed data to be sent in real-time

to applications in many formats including Adobe Flex, Adobe Flash, AJAX and Adobe

Integrated Runtime (AIR). BlazeDS is used by SARA to communicate with client

applications; however SARA’s API could also be offered using other technologies such as

Web Services, making SARA’s functionality available to an even wider variety of client

applications. The architectures depicted in Figures 4-1 and 4-3 contain all the components

and models outlined in the previous design chapter, with each element fulfilling a specific

function. Each of the XML models shown in these diagrams, the way in which SABer

interacts with SARA, and how the architecture supports the processes outlined in the

expert supported approach to data exploration are described now detailed in this chapter.

27 http://opensource.adobe.com/wiki/display/blazeds/BlazeDS

88

4.2.2 Representation of Models

As specified in the design chapter, SARA has four models that must be incorporated into

its implementation. These models are the:

• Domain Superclass Model

• Source Model

• Semantic Attribute Model

• Result Model

Each of these models has been implemented in XML as it is a simple and widely used

specification for encoding documents in machine readable form. This section will give an

example showing how each model was implemented.

4.2.2.1 XML Domain Superclass Model

Figure 4-5 shows an example of a Domain Superclass Model. It follows the schema

requirements laid out in Section 3.6.3 of the Design Chapter. If no superclass conversion

is necessary from one superclass to another, then the only elements required in the model

are the names of each superclass. Defining these superclasses is vital as they are the most

fundamental building block of a Semantic Attribute Query (they specify what kind of

instances the query is to return to the client application). Figure 4-5 describes how the

superclass Album can be transformed into the superclass Music_Artist via a SPARQL

endpoint (lines 4-28), and how the superclass Song can be transformed into the superclass

Music_Artist, via a web service API (lines 29-39). This functionality is necessary for

supporting some complex queries and is outlined in more detail in Section 4.2.6. Overall

the Domain Superclass Model is central to supporting the SARA design features F1, F4

and F7 outlined in Section 4.2.

89

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

<Superclasses>
<Superclass>

<Name>Music_Artist</Name>
<Conversion>

<ConversionInput>Album</ConversionInput>
<ConversionAddress>http://virtuoso.dbtune.org/sparql
</ConversionAddress>
<ConversionQuery>
PREFIX mysp:<http://purl.org/ontology/myspace>
PREFIX foaf:<http://xmlns.com/foaf/0.1/>
PREFIX mo:<http://purl.org/ontology/mo/>
SELECT DISTINCT ?id
FROM <http://dbtune.org/myspace/>
WHERE
 {
 ?result mysp:name ?id.
 ?album mysp:hasArtist ?result.
 ?album mysp:title ?1 .
 FILTER (?1 = " + Variable_1 + ").
 }

</ConversionQuery>
<ConversionFormat>RDF</ConversionFormat>
<ConversionRationale>MySpace has a comprehensive list of
official and unofficially released albums by artists in
musicbrainz format
</ConversionRationale>
<Priority>1</Priority>

</Conversion>
<Conversion>

<ConversionInput>Song</ConversionInput>
<ConversionAddress>LastFM</ConversionAddress>
<ConversionQuery>GetAllArtistsBySong</ConversionQuery>
<ConversionRationale>Last.fm has a comprehensive list of
official and unofficially released songs by artists in
musicbrainz format
</ConversionRationale>
<ConversionFormat>API</ConversionFormat>
<Priority>1</Priority>

</Conversion>
</Superclass>

</Superclasses>

Figure 4-5. Sample XML Domain Superclass Model

4.2.2.2 XML Source Models

This section describes the three XML Source Models that are used by SARA to register data

sources with both native APIs and RDF or XML data sources. Overall, these models help

support the SARA design features F1 and F4 outlined in Section 4.2, as well as responsible

for populating the SABer authoring tool with data (see Section 4.3.1) so that users can

generate semantic attributes.

90

4.2.2.2.1 XML Source Model for Sources with Native APIs
Figure 4-6 shows an example of a Source Model for a data source with a native API. It

follows the schema requirements laid out in Section 3.6.2.3. The name of the web service

that provides the API (line 1) and its corresponding wrapper name within SARA must be

detailed (line 2). Multiple methods available through the API can be listed, which are used

by the domain expert to generate rules. Each method contains its name, a description of its

function, the type of superclass instances it returns and the API parameters that the web

service requires (lines 5-16). In Figure 4-6, the method described (GetTopAlbumsByArtist)

requires a single String argument which contains a music artist’s name (line 11). Optional

wrapper arguments may also be used to attain more specific responses from the web service

API. Thus Figure 4-6 shows how it is possible to specify a range of albums to be returned

from the service rather than having every available album sent back (lines 14-15). These

arguments facilitate the domain expert to parameterise their rules into a number of ranges.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

<Name>LastFM API</Name>
<Wrapper>LastFM</Wrapper>
<Methods>

<Method>
<Name>GetTopAlbumsByArtist</Name>
<Description>Returns albums according to their popularity on
 Last.fm
</Description>
<Superclass>TrackTitle</Superclass>
<ApiParams>

<ArtistName type="String" units="N/A"/>
</ApiParams>
<WrapperParams>

<Highest_Popularity_Position type="int" units="N/A"/>
<Lowest_Popularity_Position type="int" units="N/A"/>

</WrapperParams>
</Method>

</Methods>
Figure 4-6. Sample XML Source Model for Sources with Native APIs

4.2.2.2.2 XML Source Model for RDF Sources
Figure 4-7 shows an example of a Source Model for an RDF data source. It follows the

schema requirements laid out in Section 3.6.2.2 of the design chapter. It contains the name

of the data source (line 1), the address of the RDF database or SPARQL endpoint (line 2),

any namespace prefixes that the predicates use (lines 5-6), and any superclasses from the

Domain Superclass Model that this source contains instances of (lines 8-17). The SPARQL

code corresponding to each superclass in the model returns instances of this superclass from

the data source. In its simplest form this code is just a single SPARQL triple in the form of

?result ?predicate_name ?id, with ?predicate_name being the only code changing from

one superclass to another. For example in Figure 4-7 ?result foaf:name ?id returns

91

instances of the Music_Artist superclass (line 11) and ?result mysp:country ?id returns

instances of the Country superclass (line 15).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

<Name>MySpace SPARQL Endpoint</Name>
<Location>http://virtuoso.dbtune.org/sparql</Location>
<Graph><http://dbtune.org/myspace/></Graph>
<Prefixes>

<Prefix>foaf:<http://xmlns.com/foaf/0.1/></Prefix>
<Prefix>mysp:<http://purl.org/ontology/myspace#></Prefix>

</Prefixes>
<Superclasses>

<Superclass>
<Name>Music_Artist</Name>
<Code>?result foaf:name ?id.</Code>

</Superclass>
<Superclass>

<Name>Country</Name>
<Code>?result mysp:country ?id.</Code>

</Superclass>
</Superclasses>
<Predicates>

<Predicate>
<Name>mysp:totalFriends</Name>
<Alias>Total friends on MySpace is</Alias>
<Subject>Music_Artist<Subject>

 <Object>Value</Object>
<Units>N/A</Units>

 </Predicate>
<Predicate>

<Name>mysp:country</Name>
<Alias>Country that MySpace artist is from</Alias>
<Subject>Music_Artist<Subject>

 <Object>Country</Object>
<Units>N/A</Units>

 </Predicate>
</Predicates>
<Transforms>

<Transform>
 <SuperclassSubject>Music_Artist</SuperclassSubject>
 <SuperclassObject>Country</SuperclassObject>
 <SuperclassJoin>
 ?Music_Artist mysp:country ?id.
 </SuperclassJoin>
</Transform>

</Transforms>
Figure 4-7. Sample XML Source Model for RDF Sources

As can be seen in Figure 4-7, the predicate mysp:country has the alias Country that

MySpace artist is from so that it is clearer to domain experts what this predicate actually

represents (line 28). This predicate has the subject Music_Artist (line 29) as this is the

domain superclass that has mysp:country as a property in this particular data source.

Likewise, the predicate mysp:country has a corresponding object of a Country superclass

(line 30), as these are the type of instances that this predicate returns from this data source.

In the case of the mysp:totalfriends predicate, its subject is also Music_Artist (line 22), with

92

its object being a specific value (the number of friends an artist has on the MySpace

website) rather than another domain superclass. Thus “Value” is inputted instead of a

superclass name (line 23).

The final part of the model shown in Figure 4-7 describes the transform information

necessary to convert instances of one superclass to another (lines 34-42). In this instance it

depicts the SPARQL triple necessary to transform Music_Artist instances into Countries

(line 39). Any variable in a SPARQL triple that is referencing a superclass must have the

same spelling, thus the superclass Music_Artist is referenced by the SPARQL variable

?Music_Artist.

4.2.2.2.3 XML Source Model for XML Sources
Figure 4-8 shows an example of a Source Model for an XML data source. It follows the

schema requirements laid out in Section 3.6.2.1 of the design chapter. It contains the name

of the source (line 1), its location (line 2), any collections contained in the associated XML

database (lines 3-17), and any elements of interest to the domain expert (lines 7-16). The

data source in Figure 4-8 has only one collection. The elements registered are the most

important as it is these that can be used to generate rules by the domain expert. Lines 8-15

of Figure 4-8 shows one of its elements (TrackDuration) but any amount can be listed in

the model. Each element describes its original name in the data source, an alias in case its

name is unclear away from its original context, its parent node, its unit type if applicable,

the type of superclass it returns, and the element that gives the unique identifier for

instances of the domain superclass.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

<Name>iTunes eXist DB</Name>
<Location>xmldb:exist://localhost/exist/xmlrpc/db/SARA_0.1</Location>
<Collection>

 <CollectionName>
 John’s iTunes Collection 01/01/10
 </CollectionName>
 <Elements>
 <Element>

 <Name>TrackDuration</Name>
<Alias>Duration_of_Song</Alias>

 <ParentNode>//AudioTrack</ParentNode>
 <Units>Seconds</Units>
 <Superclass>Song</Superclass>
 <ID>Song_Title</ID>
 </Element>
 </Elements>

</Collection>

Figure 4-8. XML Description of XML Source in Domain Registry

93

4.2.2.3 Semantic Attribute XML Model

Each semantic attribute created in SARA’s authoring tool SABer should generate a

Semantic Attribute Model that can then be imported into SARA. Figure 4-9 shows an

example of a Semantic Attribute Model for a simple semantic attribute named “Popular

Irish artists on MySpace”. It follows the schema requirements laid out in Section 3.6.1 of

Chapter 3 (e.g. the return superclass must be specified), and describes a hybrid semantic

attribute that queries a SPARQL endpoint to find any Irish music artists with a minimum

amount of MySpace fans. Because this is a hybrid semantic attribute, it provides both an

expert rule and a template rule. The default expert rule specifies that the artist must be

from Ireland, and have more than 50,000 MySpace fans (lines 14-25). When this rule is

selected, the SPARQL query that represents it is sent to the data source encoded in the

<SPARQLendpoint> element (line 4).

If the end user feels that this value in the expert rule is too high or too low, they can use the

template rule (lines 28-39) instead to input what they feel is a more appropriate number of

fans to be deemed “popular”. When this rule is selected, the values that the user inputs for

each of the variables (line 6-9) are plugged into the template rule (line 38), and then the

completed query is sent to the data source. Hence, these template rules are vital for

enabling end users to tailor semantic attributes to their own interpretation. This particular

semantic attribute only has a single parameter (lines 11-41); however it is possible to have

multiple parameters in each semantic attribute. By employing multiple parameters,

semantic attributes are allowed to have different rules that create a range of different values

(High, Medium, and Low etc.).

The Semantic Attribute Model is a critical part of SARA, and is the key link between the

domain experts and the end users who are exploring a specific domain. Furthermore, it is

likely that the number of Semantic Attribute Models in SARA will be many times larger

than any other of the models. Hence it is vital that this model can be generated easily and

does not need to be handcrafted in XML. This is one of the major motivations behind the

SABer authoring tool described in Section 4.3. Overall, the Semantic Attribute Model is

central to supporting the SARA design features F4, F5 and F6 outlined in Section 4.2. It is

also the outputted model generated by non-technical domain experts in SABer.

94

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

<SemanticAttribute>
<Name>Popular Irish music artists on MySpace</Name>
<TypeOfSemAtt>Hybrid</TypeOfSemAtt>
<SPARQLendpoint>http://virtuoso.dbtune.org/sparql</SPARQLendpoint>
<ReturnSuperclass>Artist</ReturnSuperclass>
 <TemplateVariables>
 <VarName>Variable_0</VarName>
 <VarType>double</VarType>
 </TemplateVariables>
<Parameters>
 <Parameter>
 <Name>Default</Name>
 <ExpertRule>

PREFIX mysp:<http://purl.org/ontology/myspace>
PREFIX foaf:<http://xmlns.com/foaf/0.1/>
PREFIX mo:<http://purl.org/ontology/mo/>
SELECT DISTINCT ?id
FROM <http://dbtune.org/myspace/>
WHERE
 {
 ?result foaf:name ?id.
 ?result mysp:country 'Ireland'.
 ?result mysp:totalFriends ?1.
 FILTER (?1 > 50000).
 }

 </ExpertRule>
 <TemplateRule>

PREFIX mysp:<http://purl.org/ontology/myspace>
PREFIX foaf:<http://xmlns.com/foaf/0.1/>
PREFIX mo:<http://purl.org/ontology/mo/>
SELECT DISTINCT ?id
FROM <http://dbtune.org/myspace/>
WHERE
 {
 ?result foaf:name ?id.
 ?result mysp:country 'Ireland'.
 ?result mysp:totalFriends ?1 .
 FILTER (?1 > " + Variable_1 + ").
 }

 </TemplateRule>
 </Parameter>
</Parameters>
</SemanticAttribute>

Figure 4-9. Sample Semantic Attribute Model

4.2.2.4 Result Model

Figure 4-10 shows an example of a Result Model sent by SARA to a client application

where only the identifiers of the superclasses are required. This is the most typical

situation, and it follows the schema requirements laid out in Section 3.6.4 of Chapter 3.

Figure 4-10 shows that the results come from a Semantic Attribute Query containing two

semantic attributes (FilmDirectedBy and HighlyProfitableFilm); one with 37 results (line

4) and the other with only 5 (line 8). However, there are only three instances of the Film

superclass that satisfy both of these semantic attributes (lines 11-13), thus theirs are the

95

only identifiers listed. By showing how many results each individual semantic attribute

returns, as well as the actual results, the client application is given potentially useful

information to display while the user is formulating their next query. Overall this model is

central to supporting the SARA design feature F8 as outlined in Section 4.2

1
2
3
4
5
6
7
8
9
10
11
12
13
14

<Results>
 <SemAtt>
 <Name>FilmDirectedBy</Name>
 <NumResults>37</NumResults>
 </SemAtt>
 <SemAtt>
 <Name>HighlyProfitableFilm</Name>
 <NumResults>5</NumResults>
 </SemAtt>
 <TotalResults>3</NumResults>
 <Result>The Godfather</Result>
 <Result>Jurassic Park</Result>
 <Result>Memento</Result>
<Results>

Figure 4-10. Sample XML Result Model

4.2.3 Interface with the Dataspace Sources

SARA itself does not store any of the data from the various information sources; instead

the data resides at the source location until it needs to be queried. Any queries sent to

these sources are generated by domain experts in SABer as part of the semantic attribute

creation process and are encapsulated within the Semantic Attribute Model (see Section

4.2.2.3). Once a Semantic Attribute Query is sent to SARA it is decomposed into separate

semantic attributes, then the related queries are extracted, and finally these queries are sent

to the relevant data sources. In order to access RDF sources, SPARQL queries are

generated and sent via Jena’s28 ARQ29 query engine. XML data is accessed by generating

XQueries which are sent to the sources via the XML:DB30 API.

As mentioned in the Section 3.6.2.3, data that resides behind a native API can be accessed

via SARA through a reusable bespoke wrapper. There is no restriction on how the wrapper

interfaces with the API, and additional processing on the returned results can occur if

desired. For instance, a web service might return the top songs of an artist if sent the name

of the artist as a parameter, but always insists on returning 50 songs in a list from 1-50. A

wrapper could do additional processing of the result list such as allowing users to specify

28 http://jena.sourceforge.net/
29 http://jena.sourceforge.net/ARQ/
30 http://xmldb-org.sourceforge.net/

96

which range of songs to return (1-10, 35-40 etc.). The only stipulations for wrappers are

that they are written in Java and adhere to the following guidelines:

• The Java class names for all wrappers in a SARA installation are unique.

• It is these wrapper names that are referenced by Source Models.

• Each wrapper must have a public method whose name concatenates “Call” with the

wrapper’s unique name e.g. the wrapper named “LastFM” must have a method

called “CallLastFM”

• This method must return a HashSet of superclass instance identifiers

• This method’s parameters must be:

o apiArgs (Arraylist of the parameters needed by the web service’s API

method)

o wrapperArgs (ArrayList of parameters that the wrapper uses for additional

processing)

o APIMethod (String identifier for the API method in the web service)

• The APIMethod parameter is used to identify which of the web service’s API

methods is to be called, with any arguments from apiArgs sent to it. The

APImethod parameter should always begin with “Get”.

All the interfaces mentioned in this section are central to supporting the SARA design

feature F6 as outlined in Section 4.2

4.2.4 Storing Models

SARA must store three types of models, Domain Superclass Models, Source Models and

Semantic Attribute Models. Domain Superclass Models are stored in the Source Registry

in case a conversion between superclasses is necessary at run time (see Section 4.2.6 for

more details). SARA also stores all Source Models in the Source Registry so that SABer

can parse this XML, and display all the metadata options to the domain experts. Thus the

Source Registry is central to supporting the SARA design feature F1 as outlined in Section

4.2. When a user finishes creating a semantic attribute in SABer, the XML Semantic

Attribute Model is generated and is sent back to SARA to be stored in the Semantic

Attribute Library. In order for this semantic attribute to be accessible by client

applications the following must happen:

97

• SARA uses JDOM to parse the Semantic Attribute Model (JDOM is an open

source Java-based document object model for XML) and extracts all the relevant

data such as its name, variables, rules, superclass etc.

• The data extracted from the semantic attribute using JDOM is then concatenated

with Java code to automatically construct a corresponding semantic attribute

method. This method then gets appended to the end of its related master Java file.

• SARA currently has three such master files, one each for XML, RDF and API

based semantic attributes.

• Each master file then has its class dynamically reloaded using a Java Proxy class31,

so that the new semantic attribute method is available and can be called by SARA

if a client application wishes to access it.

The Semantic Attribute Library is thus the key component that supports SARA design

feature F2 as outlined in Section 4.2.

4.2.5 Interface with Client Applications

As mentioned earlier, SARA currently supports communication between it and any client

applications that use the BlazeDS remoting technology. An API has been developed for

SARA that provides three methods for client applications. The first of these API methods

is QuerySARA which is used at run time by a client application to send its Semantic

Attribute Queries to SARA. This API method is central to supporting the SARA design

feature F5 as outlined in Section 4.2. A description of the QuerySARA method follows:

QuerySara

public String QuerySara(String ReturnSuperclass,
ArrayCollection ChosenSemAtts)

Parameters:
ReturnSuperclass – a string detailing the instances of
superclass that the user would like this Semantic Attribute
Query to return. The choice is limited to those
superclasses defined in the Domain Superclass Model.

31 http://download.oracle.com/javase/1.4.2/docs/api/java/lang/reflect/Proxy.html

98

ChosenSemAtts - is an ArrayCollection of semantic attributes
that the user has chosen in their semantic attribute query.
Each semantic attribute itself is represented as an
ArrayCollection and must be in the format described in Table
4-1.

Table 4-1. Parameters for a Semantic Attribute’s Representation in the QuerySARA API Method

Pos. Name DataType Description
0 sem_att_name String The unique name of the

semantic attribute.
1 param_name String The parameter name chosen

for the semantic
attribute. If it is a
template semantic
attribute the parameter
is named “default”

2 isTailored String Specifies whether the
semantic attribute has
been tailored or not. It
is "false" if the user
has just used the expert
defaults and "true" if
the user has tailored a
rule.

3 tailored_args Array
Collection

Contains the tailored
values the user has
inputted. If a semantic
attribute has not been
tailored an empty array
collection is sent.

4 query_type String Specifies the underlying
query language to be
used. Currently can be
“XQuery”, ”SPARQL” or
“API”

5 operator_group String Specifies which operator
group the semantic
attribute is in and hence
what set operation should
be performed on the
result set. The options
are:
1 "MustHaveAll" - results
must have all these
semantic attribute
properties

2 "MustHaveAtLeastOne" -
Results must have at
least one of these
semantic attribute
properties

99

3 "MustNotHaveAny" -
Results must not have
any of these semantic
attribute properties

4 "MustNotHaveAll" -
Results must not have
all of these semantic
attribute properties

6 results_expanded String Specifies whether the
Result Model is expanded
to also contain the
metadata triggering the
semantic attribute’s
rule. If set "true" it
will take longer to
process results than if
set “false” due to
additional queries that
need to be sent.

Returns:
An XML Result Model

In relation to the operator_group row in Table 4-1, these operators were derived from the

methods permitted within the java.util.set interface32. These operator groups supported

semantic attributes to be compounded into Semantic Attribute Queries, which was specific

functionality outlined in Section 3.6.1.1 that needed to be supported.

The second method that the SARA API offers is GetSemanticAttributes which is called at

design time by application developers wishing to know what semantic attributes are

available in the installation of SARA to which they are connected. This API method is

central to supporting the SARA design feature F3 as outlined in Section 4.2. A description

of the GetSemanticAttributes method follows:

GetSemanticAttributes

public ArrayCollection GetSemanticAttributes(int SemAttType,
int SourceType)

32 http://download.oracle.com/javase/1.4.2/docs/api/java/util/Set.html

100

Parameters:
SemAttType – Integer specifying the type of semantic
attribute wanted:
 0 = All
 1 = Expert
 2 = Template
 3 = Hybrid

SourceType – Integer specifying the underlying source type
wanted:
 0 = All
 1 = XML
 2 = RDF
 3 = Web Service

Returns:
An ArrayCollection in the format of Table 4-2. If a field is
not relevant in specific situations (e.g. template_rules,
var_name and var_types in an expert semantic attribute) then
an empty ArrayCollection is sent.

Table 4-2. Representation of an ArrayCollection Returned by GetSemanticAttributes API Method

Pos. Name DataType Description
0 sem_att_name String The name of the semantic

attribute.
1 sem_att_type String Type of semantic attribute

(Expert, template or
hybrid)

2 param_name Array
Collection

The parameter names

3 rules Array
Collection

Any expert rules
(corresponds to parameters)

4 template_rules Array
Collection

Any template rules
(corresponds to parameters)

5 var_names Array
Collection

Any variable names

6 var_types Array
Collection

Any variable data types
(corresponds to the
variable names)

The final API method is LoadSemanticAttributes and is called once by applications while

launching in order to initialise SARA for their use. This method ensures all semantic

attributes are loaded into memory.

101

LoadSemanticAttributes

public boolean LoadSemanticAttributes()

Parameters:
none

Returns:
true if semantic attributes are successfully loaded, false if
not.

4.2.6 Parsing of Queries and Reconciliation of Results

When a Semantic Attribute Query is received by SARA through its API’s QuerySARA

method, it is passed to the Query Decomposer component which supports the SARA

design feature F6 outlined in Section 4.2. This component groups the constituent semantic

attributes according to the operator_group parameter in Table 4-1. Regardless of the

operator_group to which the semantic attribute belongs, its query is initially sent to the

source location. If it is a template semantic attribute that requires tailoring by the end user,

or a hybrid semantic attribute that the user has decided to tailor, the content of the

tailored_args ArrayCollection populates the query variables before it is sent to the source.

Any result identifiers that match the query in the source are then returned to SARA and

placed into a HashSet in the Result Reconciler component of the framework. This

component is responsible for supporting the SARA design features F7 and F8 outlined in

Section 4.2, and its processes are now described.

If a semantic attribute query has more than one semantic attribute in the operator_group

"MustHaveAll" then the intersection of the result sets is first calculated, and if the

operator_group "MustNotHaveAll" has more than one semantic attribute then the

intersection of the result sets is also found first. Likewise, if operator_group

"MustHaveAtLeastOne" has more than one semantic attribute then the union of these result

sets is first calculated, and if operator_group "MustNotHaveAny" has more than one

semantic attribute then the union of these result sets is also found first. This format allows

great flexibility in the type of queries that the end user can form. For instance the

following is an example of a complex Semantic Attribute Query containing nine semantic

attributes (SA1 – SA9) in three operator_groups:

Return all Superclasses that are SA1, SA2 and SA3, that are either SA4 or SA5 or SA6 and

that are not SA7 or SA8 or SA9.

102

After SARA parses this, it routes queries to the individual data sources and receives the

results back for all nine separate semantic attributes:

• SA1-SA3 belong to operator_group "MustHaveAll"; the intersection of their results
form a new set A.

SA1∩ SA2∩ SA3 = A
• SA4-SA6 belong to operator_group "MustHaveAtLeastOne"; the union of their

results form a new set B.
SA4∪ SA5∪ SA6 = B

• SA7-SA9 belong to operator_group "MustNotHaveAny"; the union of their results
form a new set C.

 SA7∪ SA8∪ SA9 = C
• Sets A and B are then intersected, followed by an asymmetric set difference

between the newly intersected set and C.
(A∩ B) / C = Result Set

• This produces a final result set of identifiers which get constructed into an XML

Result Model and sent back to the client application for rendering.

This query presumes that SA1-SA9 are all associated with the same superclass. However as

described in Section 3.6.3, if a user is to make a query that spans multiple superclasses such

as “Return all Albums that contain UK number 1 Songs by MusicArtists that have played

Ireland in the last year”, a mechanism for superclass transformation is necessary before

result reconciliation can take place. Because this query returns Albums, all other

superclasses in this query must have their results transformed into Albums also. SARA

supports this automatically by using the superclass conversion data stored in the Domain

Superclass Model.

When the result sets are sent back to SARA from each constituent semantic attribute’s

source they are first checked to see if they are associated with the return superclass. If any

of the result sets are associated with a different superclass to that specified in the Semantic

Attribute Query, then a conversion of these result sets is needed and an XQuery over the

Domain Superclass Model is executed at run time. Figure 4-11 shows sample code from

the Domain Superclass Model which would be accessed by this XQuery.

103

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

<Superclass>
<Name>Music_Artist</Name>
<Conversion>

<ConversionInput>Album</ConversionInput>
<ConversionAddress>http://virtuoso.dbtune.org/sparql
</ConversionAddress>
<ConversionQuery>
PREFIX mysp:<http://purl.org/ontology/myspace>
PREFIX foaf:<http://xmlns.com/foaf/0.1/>
PREFIX mo:<http://purl.org/ontology/mo/>
SELECT DISTINCT ?id
FROM <http://dbtune.org/myspace/>
WHERE
 {
 ?result mysp:name ?id.
 ?album mysp:hasArtist ?result.
 ?album mysp:title ?1 .
 FILTER (?1 = " + Variable_1 + ").
 }

</ConversionQuery>
<ConversionFormat>RDF</ConversionFormat>
<ConversionRationale>MySpace has a comprehensive list of
official and unofficially released albums by artists in
musicbrainz format
</ConversionRationale>
<Priority>1</Priority>

</Conversion>
</Superclass>

Figure 4-11. Sample Domain Superclass Model

If a conversion from Albums to Music_Artists is required, then the first step of this XQuery

is to locate the superclass that the query will return (line 2) and identify the superclasses

that can convert to it directly (line 4). If the superclass that needs to be converted (Album)

is listed as one of the ConversionInputs then the corresponding query (lines 7-20) is

extracted and the set of Album identifiers that need converting are slotted into the variable

position in the query (line 18). These queries are then fired off to the transformation

source (line 5) with the result set of superclass instances (Music_Artists) loaded into a

HashSet in SARA. The type of superclass dictates whether there will be more or fewer

results than in the original result set before its conversion e.g. there are typically less

MusicArtists than Albums. The use of a HashSet at this stage also ensures that there are no

duplicates in the result sets.

If there is no direct conversion available in the Domain Superclass Model then the XQuery

recursively checks to see if a multi-step conversion can take place. For instance this would

occur if a query necessitated conversion from Songs to Venues but Venues only could

convert to Countries and MusicArtists. The XQuery automatically detects if Countries or

MusicArtists can be directly converted to Songs, and if so triggers a conversion of all the

Songs to MusicArtists and then all the returned MusicArtists into Venues. The XQuery will

104

recursively check the entire Domain Superclass Model to find the most direct route for

conversion, and if there are multiple conversion options for single steps, the higher priority

conversion (line 26) determines which gets chosen. If the superclass conversion has to be

done by a service behind a native API rather than a source directly accessible by a query

language, the related wrapper in SARA acts as a middleman. Just like the Domain

Superclass Model itself, this conversion functionality offered by the wrapper is reusable in

different SARA installations.

The superclass conversion functionality within SARA requires that a minimum of one

further query be sent for each result (i.e. sending a query to convert from an Album ID to

an Artist ID). Hence, if there is a large amount of results from the original query sent by

the client application, then this initial query may spawn many hundreds or thousands of

extra queries. The speed of these queries is very dependent on the particular data source

being accessed and the network conditions at that time. The current prototype of SARA

sends these extra queries one at a time, with the next query firing after the results from the

previous query have been returned. This was as a result of a decision to focus on

implementing the core functionality of SARA rather than ensuring that all its operations

would perform to a production level performance. Hence, the SARA prototype is only

suitable for handling superclass conversions if there are a small amount of results, and the

application does not view these queries as time critical.

4.2.7 Summary and Analysis

This section has described the implementation of SARA and how it satisfies each of the

requirements of the Reconciliation Engine component that were outlined in Chapter 3. The

models supported by SARA, the underlying technologies that enable it and the various

interfaces that facilitate its communication have been described in detail. In particular it

was shown how the implementation embraces a modular approach, with particular care

given to ensuring that SARA supports the reusability and extension of models, as well

remaining independent of any particular domain. Furthermore, the implementation of

SARA showed how multiple sources of different data formats can co-exist, and that results

can be reconciled for queries spanning more than one data source. The implementation of

SARA mirrors closely the design requirements set out for it in Chapter 3, hence the

evaluation of SARA described in the following chapter will also give a good indicator as to

the success of the implementation’s underlying design and approach. The next section will

describe how SABer supports non-technical domain experts to create semantic attributes,

105

and how it works in tandem with SARA to make these semantic attributes available to

client applications and their users.

4.3 SABer (Semantic Attribute Builder)

One of the primary goals of the research described in this thesis is to enable non-technical

domain experts to encode subject matter expertise (SME). As described in Chapter 3, this

approach requires SME to be encoded in the Semantic Attribute Model. Hence an

authoring tool is needed that works in tandem with SARA to help technical and non-

technical domain experts to generate semantic attributes. The requirements for such a tool

as outlined in Section 3.8 are as follows:

• Be accessible to users with no computer coding or information modelling

background, after minimal training

• Automate as much of the creation process as possible to support these users

• Support a schema-based approach to query building using a wizard/form interface

• Work in tandem with the Reconciliation Engine.

• Incorporate the Source Registry to display available metadata

• Group this metadata and make available for rule generation.

• Support rule generation for semantic attributes in multiple query languages.

• Be extensible for new data formats.

• Be able to query multiple data sources for the results to rules being generated, so as

to provide instant feedback to domain experts as what the end user is to expect.

• Allow all three semantic attribute types to be formed.

• Generate the Semantic Attribute Model as an output file.

The Semantic Attribute Builder (SABer) was developed in Adobe Flex to satisfy these

requirements and deployed as an Adobe Air desktop application. Its main aim is to allow

non-technical users to encode their expertise in SPARQL, XQuery or as native API calls,

and to encapsulate this SME in an XML Semantic Attribute Model. It achieves this by

automating as many processes as possible, ensuring that the rules generated are

syntactically correct and do not require the domain expert to understand XML or the

underlying query languages. Any Semantic Attribute Models exported by SABer get

imported into SARA’s Semantic Attribute Library so that client applications, and by

extension end users, can gain access to them.

106

Creating a semantic attribute using SABer is a two step process with each step having a

dedicated page in the application. The first step is to name and describe the semantic

attribute, and then to select its type and its component metadata. In the second step, domain

experts use the metadata they have selected from step one to generate one or more rules for

the semantic attribute. These rules are formed via a schema-based approach to query

building which was identified in chapter two as having most potential for non-technical

domain experts to encode SME. Each of the two steps and how they are implemented

within SABer are now described in detail, and are followed by a section on SABer’s

interaction with SARA.

4.3.1 Semantic Attribute Authoring Process in SABer - Step One

The first process in step one is to name the semantic attribute being created. Each name

given to a semantic attribute must be unique to that installation of SARA, and it is

important to choose a descriptive name that conveys its meaning clearly. It is this name

that end users will see in the client application; hence it is important they have a clear idea

of what they are selecting. A longer description with exact details of the source can be

included in SABer’s additional description field so that client applications will be able to

unambiguously describe what each semantic attribute is conveying. Both these fields are

free text, though SABer does limit the character set that can be inputted. Figure 4-12

shows how the SABer interface looks during step one.

107

Figure 4-12. SABer Interface During Step One

The next task to complete on this page is the selection of metadata from which the

semantic attribute rules will be created. Each semantic attribute requires a minimum of

one metadata element. Within SABer the metadata is visualised on the right side of the

screen after an XSL transform33 of the Source Models in SARA which are in XML format.

The resultant HTML version of these models are then rendered within the application and

grouped by source data type. The current version of SABer supports three data types,

XML, RDF and data accessible through a native API. It should be noted that the data

stored in each individual Source Model plays a central role in defining the scope of SME

that users can generate within SABer.

Each metadata element is rendered as a HTML link and can be selected to be part of a

semantic attribute just by clicking on it. Apart from the element’s name (typically

displaying its alias description from the Source Model rather than the element name in

order to reduce ambiguity), additional data from the Source Models such as its source data

type, units and superclass are also displayed in SABer. Chosen metadata elements selected

in error can be removed by pressing the “Clear Selected Elements” button and new ones

33 http://www.w3.org/TR/xslt20/

108

can be selected in their place. There are no limits to the amount of metadata elements a

person can choose for a semantic attribute, and there is no obligation to use every element

chosen to form rules in step two of the process. The only exception is that data stored

behind an API can only have one of its methods (represented as a single metadata element

within SABer) used per semantic attribute. However, as mentioned in the design chapter,

there is no limitation on two semantic attributes that employ different methods from a

single web service API being combined into a Semantic Attribute Query within the client

application.

There are other restrictions as to what metadata can be joined together into a single

semantic attribute, hence SABer performs checks on all the metadata selected and displays

warning messages if an incorrect selection has been made e.g. selecting metadata from two

different sources or from two separate collections within a single XML database. Once the

domain expert is satisfied with the metadata that he has chosen, he must select from a drop

down menu the type of semantic attribute they want to create. Domain experts have a

choice of three; expert, template or hybrid. As described in Section 3.6.1 an expert

semantic attribute only contains the expert’s default rule(s) which can’t be tailored, a

template semantic attribute contains no expert default rule(s) and must be tailored by the

end user, and a hybrid semantic attribute contains expert default rules as well as

corresponding template rules which can be tailored. When the user is satisfied with his

choices he can click to move onto the next stage. A user can return to step one and make

any adjustments before returning back to step two at any time. However, before

proceeding to the next step, SABer performs checks to ensure that the user has selected at

least one metadata element with which to create some rules.

4.3.2 Semantic Attribute Authoring Process Step Two

Depending on whether the domain expert has selected an expert, template or hybrid rule

the next page displayed will vary slightly. However, regardless of the type of semantic

attribute being created, it is at this stage that the domain expert creates the rule or rules for

their semantic attribute. Table 4-3 summarises how the various data types have rules

generated for the different semantic attribute types.

109

Table 4-3. Summary of how Data Types have Rules Generated for Different Semantic Attributes

 Expert Template Hybrid
XML Generate rules in

constrained XQuery
with specific values.

Generate rules in
constrained XQuery but
with no specific values

Identical to expert
semantic attribute rule
creation except
corresponding template
rules are auto-generated.

RDF Generate rules in
constrained SPARQL
with specific values.

Generate rules in
constrained SPARQL
though with no specific
values

Identical to expert
semantic attribute rule
creation except
corresponding template
rules are auto-generated.

API The API parameters
must be filled in text
fields. Depending on
web service wrapper,
extra rules may be
generated with specific
values.

The API parameters for
this type of semantic
attribute rule are
automatically filled in by
SABer. User can only
submit it.

Identical to expert
semantic attribute rule
creation except
corresponding template
rules are auto-generated.

Figure 4-13 shows what the SABer overall interface looks like during step two of the

creation of a hybrid XML based semantic attribute. The next sections will describe in

detail how expert, template and hybrid semantic attributes are generated in SARA for

XML sources, RDF sources and data sources behind a native API.

Figure 4-13. SABer Interface During Step Two

110

4.3.2.1 Creating rules for an XML based Semantic Attribute

The process for creating rules for XML based semantic attributes is the same whether

building an expert or hybrid semantic attribute. Each semantic attribute must have a

minimum of one parameter and a domain expert may add and remove further parameters

which have unique names. Once a parameter has been named, the domain expert can then

start to generate an XQuery rule for it. The first part of each parameter’s rule will have

already been generated by SABer and is printed onscreen as “Return all <Superclasses>

where” with the actual superclass of the metadata they have chosen in step one printed in

place of <Superclasses>. Thus in the music domain the expert may be presented with

“Return any Albums where”, or “Return any MusicTracks where” as the start of their

parameter’s rule. Figure 4-14 depicts a parameter named AVERAGE and the first line of its

rule which is automatically generated by SABer.

Figure 4-14. Sample First Line of Expert Rule for XML Based Semantic Attribute in SABer

Underneath this line the expert is presented with two dropdown menus, a text field and a

button aligned horizontally. The first dropdown menu contains all the elements (typically

their aliases to reduce ambiguity) that they chose in the first step, as described in the

previous section. Hence there could be just a single metadata element, or else there may be

several. Figure 4-15 depicts the first expert generated line of an XML based semantic

attribute. The user would select the metadata element in which they were interested and

then move on to the second dropdown menu adjacent to it.

Figure 4-15. Sample Two Lines of Expert Rule for XML Based Semantic Attribute

This dropdown menu contains the available list of operators from which the end user can

select from. Currently these are Greater than, Less than, Equals to, Not Equals to, Greater

than or Equals to, Less than or Equals to and Contains. The domain expert simply selects

which operator they want from the drop down menu. These operators enable experts to

quantise domain properties into ranges, and are sufficient for initial experimentation. This

is because it is not necessary for an individual semantic attribute to be overly complex

111

(containing multiple clauses and operators), as much of SARA’s power is derived from

Semantic Attribute Queries, which join these simple semantic attributes into complex

compound queries.

All the domain expert has to do to finish this line of the rule is to input a value into the

adjacent textbox. Thus in the Figure 4-15 the expert chose the metadata

“TrackSampleRate”, the operator “<” and inputted the value “44100”. If there are any

units associated with the metadata element in the Source Model (in this case KHz), they

are automatically displayed at the end of the line in order to help the domain expert input

appropriate values. If the domain expert wants to add more lines to this rule all they have

to do is click on the “+” button at the end of the line. This adds another identical line

underneath the first, except that it has an additional “and/or” dropdown menu at the start of

the line and an additional “-” button at the end. Figure 4-16 displays an example of the

first three expert generated lines.

Figure 4-16. Sample Three Lines of Expert Rule for XML Based Semantic Attribute

The “and/or” dropdown menu allows the user to specify if the MusicTracks should satisfy

all or either of the rules. In Figure 4-16 the expert has used “and” so only wants

MusicTracks that satisfy both rule lines e.g. MusicTracks that have a sample rate less than

44,100Khz AND greater than or equal to 22,050KHz. The additional “-” button at the end

of the line allows for a rule line to be deleted easily. Each parameter can contain as many

rule lines as the expert wants. Figure 4-17 shows the completed five line rule. This

essentially equates to the WHERE part of an XQuery statement with the rest of the

XQuery automatically generated from the information defined in the Source Model. At

any time in the process the domain expert can select the “Get Results” button to see what

instances are currently in the data source that satisfy the rule being generated.

112

Figure 4-17. Sample Five Lines of Expert Rule for XML Based Semantic Attribute

If a semantic attribute only has a single parameter the domain expert can simply submit it

once they are satisfied with the rule. However, if the semantic attribute requires multiple

parameters he just clicks the “add parameter” button and repeats the process described

above, submitting the semantic attribute when finished. As mentioned previously, the

process of creating expert and hybrid semantic attributes for XML sources is identical.

The only difference is that when a hybrid semantic attribute is submitted, SABer

automatically generates a template rule for each of the expert rules and appends it to the

Semantic Attribute Model.

The process for creating a template semantic attribute based on XML data is almost

identical to the process just described for creating expert and hybrid semantic attributes.

The only difference is highlighted in Figure 4-18.

Figure 4-18. Sample Three Lines of Template Rule for XML Based Semantic Attribute

Instead of having a blank text field in which domain experts can input a specific value,

they instead are presented with another dropdown menu with two wildcard options; “Some

Text” and “Some Number”. This allows domain experts to create rules such as Return any

MusicTracks where Artist Name = “Some Text” or Return any MusicTracks where chart

position < “Some Number”. Such rules enable end users to replace the wildcard options

with explicit values, in order to tailor the rule more specifically to what they want.

113

4.3.2.2 Creating rules for an RDF based Semantic Attribute

The process of creating rules for RDF based semantic attributes is the same whether

building an expert or hybrid semantic attribute. Each semantic attribute must have a

minimum of one parameter and a domain expert may add and remove further parameters

which have unique names. The SPARQL queries generated by SABer are more

sophisticated than the XQuery generated because SPARQL allows joins to be expressed

implicitly simply by including two triple patterns that reference a common variable. This

feature enables individual expert rules in SPARQL to reference multiple Domain

Superclasses.

The first thing a domain expert must do to generate their SPARQL query is to select the

domain superclass that they want to return. Unlike in XML based sources, one is not tied

to returning the same superclass as the metadata selected in step one. In fact, the domain

expert has the choice of returning any of the superclasses referenced in the Source Model

for that specific RDF source. To choose a superclass, the domain expert must simply

select it from a dropdown menu at the top of the screen. This superclass will apply to all

parameters for this particular semantic attribute.

Once the superclass to be returned has been selected and a parameter has been named, the

domain expert can then start to generate a SPARQL rule for it. The first part of each

parameter’s rule will already be generated by SABer and is printed onscreen as “Return

any <Superclasses> where” with the actual superclass chosen previously from the

dropdown menu in place of <Superclasses>. Thus in the music domain the expert may be

presented with “Return any Albums where”, or “Return any MusicArtists where” as the

start of their parameter’s rule. Figure 4-19 shows such a situation.

Figure 4-19. Sample First Line of Expert Rule for RDF Based Semantic Attribute

Underneath this line the expert is presented with three dropdown menus, a text field and a

button, in a row. The first dropdown menu contains all the superclasses with which the

RDF source has associated. Depending on what superclass the expert chooses, the

predicates (or more precisely the alias of the predicates) in the adjacent dropdown menu

will change accordingly. This second dropdown menu contains all the predicates selected

in step one (see Section 4.3.1), but restricted to those that are associated with the superclass

114

chosen in the first dropdown menu (these restrictions are specified in each Source Model).

Thus Figure 4-20 shows that when the domain expert chooses the superclass MusicArtist

from the first dropdown menu, he is presented in the second dropdown menu, with the

elements Country from is, Total Friends on MySpace is, and Total page views on

MySpace. Alternatively, if the domain expert had chosen Song as the superclass in the first

dropdown menu, then the second dropdown menu would have been populated with Track

Duration, Composer, and Genre etc. If there are any units associated with the metadata

element, they are displayed at the end of the line to make clear to the domain expert what

range of values is appropriate to input.

Figure 4-20. Sample Two Lines of Expert Rule for RDF Based Semantic Attribute

The domain expert can then select the predicate he is interested in and move on to the third

dropdown menu. Identical to how SABer deals with XML sources, this dropdown menu

contains the available list of operators that the end user can select from. Currently these are

Greater than, Less than, Equals to, Not Equals to, Greater than or Equals to and Less than

or Equals to. The domain expert simply selects which operator they want from the drop

down menu. The operators other than “Equals to” all result in a FILTER statement being

added to the SPARQL rule that is in the process of generation. These operators enable

experts to quantise domain properties into ranges, and are sufficient for initial

experimentation. This is because it is not necessary for an individual semantic attribute to

be overly complex (containing multiple clauses and operators), as much of SARA’s power

is derived from Semantic Attribute Queries, which join these simple semantic attributes

into complex compound queries.

All the domain expert has to do to finish this line of the rule is to input a value into the

adjacent textbox. Thus in the Figure 4-21 the expert chose the metadata “Total Friends on

My Space”, the operator “<” and inputted the value “50000”. This essentially equates to

the WHERE part of a SELECT SPARQL statement with the rest of the query

automatically generated from the information defined in the Source Model. Identical to

how SABer deals with XML sources, if the domain expert wants to add more lines to this

115

rule all they have to do is click on the “+” button at the end of the line. This adds another

identical line underneath the first, except that it has an additional “and/or” dropdown menu

at the start of the line and an additional “-” button at the end.

The “and/or” dropdown menu allows the user to specify if the MusicArtists should satisfy

both of the rule lines or either of them. If the user selects “or” from this dropdown menu,

it results in an OPTIONAL statement being added to the SPARQL rule that is being

generated. In Figure 4-21 the expert has used “and” so only wants Music Artists that

satisfy both rule lines e.g. Music Artists whose Number Friends on MySpace is less than

50,000 AND greater than 22,000. The additional “-” button at the end of the line allows

for a rule line to be deleted easily. Each parameter can contain as many rule lines as the

domain expert likes, with Figure 4-21 showing the completed four line rule for “Averagely

Popular Irish Artists on MySpace”. At any time in the process the domain experts can

select the “Get Results” button to see what instances are currently in the data source that

satisfies their rule.

Figure 4-21. Sample Four Lines of Expert Rule for RDF Based Semantic Attribute

If a semantic attribute only has a single parameter the domain expert can simply submit it,

once they are satisfied with the rule. However, if the semantic attribute requires multiple

parameters they just click the “add parameter” button and repeat the process described

above, submitting the semantic attribute when finished. As mentioned previously, the

process for a domain expert creating expert and hybrid semantic attributes for RDF sources

is identical. The only difference is that when a hybrid semantic attribute is submitted,

SABer automatically generates template rules for each of the expert rules and appends it to

the Semantic Attribute Model.

The process for creating a template semantic attribute based on RDF data is almost

identical to the process just described for creating expert and hybrid semantic attributes.

The only difference is highlighted in Figure 4-22. Instead of having a blank text field in

which domain experts can input a specific value, they instead are presented with another

dropdown menu with two options “Some Text” and “Some Number”. This allows domain

experts to create rules such as Return all Artists where Country From = “Some Text” or

116

Return all Songs where chart position < “Some Number”. By generating these kinds of

rules it enables end users to tailor a rule more specifically to what they want.

Figure 4-22. Sample Four Lines of Template Rule for RDF Based Semantic Attribute

4.3.2.3 Generating Rules for Native API based semantic attributes

Creating rules for native API based semantic attributes is more restrictive than for those

based on sources accessible by a query language. This is because APIs tend to require

strict parameters to be sent in order to function correctly. However, there is still scope for

experts to exploit these services to generate interesting rules, and the process for creating

these rules is the same whether building an expert or hybrid semantic attribute.

Like XML based semantic attributes, a domain expert does not specify what superclass

they want they return, as this has been predetermined by SABer from the relevant Source

Model. The first thing that the domain expert must do is to fill in any arguments that the

web service’s API method requires. The expert is presented with the name of the argument

and has a textbox to fill in what their answer. For instance Figure 4-23 shows that this

particular API method requires one parameter called ArtistName.

Figure 4-23. Sample API Parameter in Expert Rule for API Based Semantic Attribute

If a particular web service wrapper created for SARA only contains API arguments (see

Section 3.6.2.3) for a particular API method, then once these have been filled in by the

domain expert they can immediately submit the semantic attribute. However, if the web

service has optional wrapper arguments defined in the Source Model then the domain

expert must specify a minimum of one parameter with a unique name. SABer’s interface

makes clear to the expert whether this is necessary or not, so that they know what is

expected of them in order to generate the semantic attribute.

Once a parameter has been named by the domain expert, he can then start to generate a rule

for it. The first part of each parameter’s rule will already be generated by SABer and is

117

printed onscreen as “<API method name> where” with the name of the API method

printed in place of “<API method name>. Figure 4-24 shows how a parameter for the

GetTopSongsByArtist method appears in SABer. Underneath this line the expert is

presented with the name of each parameter and a textbox for the value he wishes to

specify. Unlike RDF and XML based semantic attributes they is no selection of operators

necessary. In this instance the user might call the parameter High and specify 1 for

Highest_Popularity_Position and 10 for Lowest_Popularity_Position.

Figure 4-24. Sample SARA Parameter in Expert Rule for API Based Semantic Attribute

At any time in the process the domain experts can select the “Get Results” button to see

what instances are currently in the data source that satisfies their rule.

If a semantic attribute only has a single parameter the domain expert can simply submit it

once they are satisfied with the rule. However, if the semantic attribute requires multiple

parameters he just clicks the “add parameter” button and repeats the process described

above, submitting the semantic attribute when finished. As mentioned previously, the

process for a domain expert creating expert and hybrid semantic attributes for API

accessible sources is identical. The only difference is that when a hybrid semantic attribute

is submitted, SABer automatically generates template rules for each of the expert rules and

appends it to the Semantic Attribute Model.

If a domain expert decides to generate a template semantic attribute from a web service

then they cannot make any adjustments. The arguments required by the API method are

automatically populated by SABer with variables, and the semantic attribute just needs to

be submitted by the user. Figure 4-25 shows a template rule automatically generated for an

API based semantic attribute.

118

Figure 4-25. Sample Template Rule for API Based Semantic Attribute

4.3.2.4 SABer Interactions with SARA

Once a semantic attribute has been submitted, the values and rules that have been inputted

into SABer get concatenated with a template to form an XML Semantic Attribute Model

(as described in Section 4.2.2.3). This model gets saved to a specific directory in the

Semantic Attribute Library depending on the data type of its source. It then gets parsed by

SARA and converted into its own Java method as described in Section 4.2.4. If the

domain user presses the “Get Results” button while creating a rule, a stub semantic

attribute XML model is generated in SABer and sent to SARA. There is a stub Semantic

Attribute Model for each data format supported (currently XML, RDF and web services)

and this model is parsed by JDOM to extract the query under test. In a similar process to

that described in Section 4.2.3 (SARA’s interface with client applications) the query gets

sent to the relevant source, with the XML Result Model sent back to SABer via BlazeDS

and rendered in a pop up window. This process is highlighted in the dashed lines of the

architecture depicted in Figure 4-26. Because there is only ever one source per individual

semantic attribute there is no need for any reconciliation of results to take place before

sending back to SABer.

Figure 4-26. Architecture of SABer’s Interaction with SARA

119

4.3.2.5 Summary and Analysis

This section discussed the implementation of SABer designed to support technical and

non-technical domain experts in encoding SME in the Semantic Attribute Model. This two

step process has been described for all types of semantic attributes (expert, template and

hybrid) and the three data types that SABer supports (XML, RDF and API based). The

way in which SABer works in tandem with SARA to show results while rules are being

generated, as well as how the submitted semantic attributes are available to client

applications through SARA has also been described. The implementation of SABer has

been shown to satisfy each of the requirements for the SME Authoring Tool outlined in

Chapter 3, and the features it employs to support non-technical domain experts in encoding

SME have been discussed in detail. The evaluation of SABer in Chapter 5 will highlight

the usefulness and usability of the system, and because its implementation closely mirrors

the design requirements, the evaluation of SABer will also be a good indicator as to the

usefulness of the underlying design. The next section will briefly describe a case study

showing the use of SARA and SABer in helping exploration of the music domain.

4.4 Music Domain Case Study

This section briefly describes a case study of a SARA installation that connects to a

dataspace of five separate music data sources in three different formats. The data sources

used in this case study are also employed in the user trials performed with SABer, which

are discussed in Section 5.6 of the evaluation chapter which follows. However, it should

be noted that SARA has been successfully implemented in a number of other domains,

including digital imaging and films, which are also detailed in the evaluation chapter

(Sections 5.5.2 and 5.5.5 respectively). The main aims of this particular case study are to

show how the SARA implementation can:

• give client applications consolidated access to multiple sources of various data
types.

• support values sent through its API to tailor the underlying rules inside the semantic
attributes.

• enable data to reside in its original location, and support instance level reconciliation
between the different data sources.

The following are the five sources used in this case study:

120

1. An iTunes library with over 30,000 songs stored in XML in an eXist database34

2. The entire US Singles charts from 1950-2008 stored as XML in an eXist database35

3. The freebase.com music SPARQL endpoint36

4. The MySpace.com SPARQL endpoint37

5. Last.fm web services38

Each of these five sources chosen had Source Models registered to the Source Registry

which in turn were visualised in SABer. The Domain Superclass Model contained entries

for Artist, Song, Album and Country. SABer was then used to create semantic attributes

which were stored in SARA’s Semantic Attribute Library. As will be shown in the Section

5.6, SABer can support non-technical domain experts to generate such semantic attributes.

For this case study, twenty-five semantic attributes for the domain were created including:

• Artists currently touring specific countries

• Top MySpace artists from specific countries

• Popular Jazz artists in the US Charts in the 1980s

• Similar artists to a specified artist

All Semantic Attribute Models stored by SARA were parsed so that a corresponding Java

method encapsulating the expert-generated rules was accessible at run time.

Once the semantic attributes are made available in SARA it was possible for Semantic

Attribute Queries to be sent to SARA from a client application via its API. For instance,

queries combining multiple semantic attributes that reference different sources could be sent

to SARA such as:

• Return all Music Artists from the iTunes collection (iTunes XML database), that

have Concerts Scheduled in the USA (Last.fm web service), despite their most

recent top 10 Album in the USA being more than ten years ago (US charts database).

• Return all Countries (MySpace SPARQL endpoint) that had popular Artists in the

USA during the 1990s (US charts database).

34 See Appendix B for sample XML
35 See Appendix C for sample XML
36 http://lod.openlinksw.com/sparql
37http://virtuoso.dbtune.org/sparql
38 http://www.last.fm/api

121

• Return all Songs by The Beatles (freebase SPARQL endpoint) that are in top 10

popular Beatles songs on Last.fm (Last.fm web service) despite not charting in the

top 10 in Americas (US charts database).

Many of these Semantic Attributes Queries allowed specific values to be tailored by the end

user, so that they could easily specify different music artists other than The Beatles, tailor

the definition of popular, or change the range of time.

As mentioned in Section 3.6.2.3, the eXist databases and remote SPARQL endpoints could

be directly accessed by queries encapsulated in the semantic attributes. However, in the

case of web services with a native API, such as the Last.fm service used in this case study, a

Java wrapper was needed to proxy queries and results. Once the results from the individual

data sources were sent back to SARA they were reconciled into a final result set. This set

was then used to populate the XML Result Model returned to the client for rendering.

This case study has shown how SARA supports semantic attributes created in SABer to be

utilised by a client application. This gives the user consolidated access to multiple sources

of different types, and enables instance level integration of results from several data sources

residing in their original location. Furthermore, the case study showed how SARA used

values sent through its API to tailor the underlying rules inside semantic attributes. Finally,

it should be noted that extra superclasses, data sources and semantic attributes could be

appended to the system seamlessly if required, and that the models generated for this case

study could be plugged into different installations of SARA concerning the music domain.

4.5 Extending SARA and SABer for new data formats

SARA and SABer initially worked purely with XML data sources, but were subsequently

extended to support RDF and data accessible through Web APIs. The process of extending

these systems for further data formats is as follows. First a new Source Model must be

developed for the specific data format, which describes how the data can be accessed from

sources of this type and queries sent to them. SARA must then be extended to be able to

parse this Source Model and to send runtime queries to data sources of this format. Finally,

SABer must add support for the encoding of rules in a query language used by the new data

format, and for these queries to be encapsulated as SME within the current Semantic

Attribute Model. It is vital for the new additions to the SABer user interface to be tested

with non-technical users to ensure that they can intuitively encode SME in this format.

Thus several revisions and simplifications may need to take place. However, the important

122

thing to stress is that this manual effort only takes place once for each data format, and once

implementation occurs, both SARA and SABer are capable of handling data from any

number sources using this data format.

4.6 Summary

This chapter has described how the main framework components to support the expert-

supported approach to data exploration (the Reconciliation Engine and SME Authoring

Tool), were implemented as SARA and SABer. Each of these components and the

interfaces and models necessary to support them were described in detail, as well as a case

study in the music domain that highlighted some of the features SARA and SABer offer.

The following chapter will detail the different ways that SARA and SABer were evaluated

throughout the course of this thesis.

123

5 Evaluation
This chapter describes the overall evaluation strategy employed in this thesis, as well as

detailing the various experiments involved. These evaluation studies incorporated a

variety of techniques, such as user trials, performance tests, questionnaires and interviews,

and included experiments with SABer, SARA and the third party applications that used

them. This chapter concludes with an analysis of the evaluation results, a brief comparison

with the state of the art, and an overall summary.

5.1 Introduction and Evaluation Overview

The research objectives for this thesis (specified in Section 1.3), which were derived from

the research question are as follows:

1) Analyse the state of the art in data exploration to determine the extent to which casual

users are facilitated, and examine the state of the art in SME encoding for non-

technical experts to identify the main features of current approaches.

2) Define an approach that allows end users to leverage SME (tailoring as appropriate)

when exploring and consolidating information from separate data sources in a domain,

and describe the accompanying models and framework necessary to implement it.

3) Perform evaluation studies to assess:

a) the usability (effectiveness, efficiency and satisfaction) (Jokela et al. 2003), of the

implemented SME authoring component of the framework, and the ability of non-

technical users to encode SME.

b) whether the encoded SME can be usefully exploited by client applications to

adequately support end-user exploration.

c) the features of the framework implementation and whether the consolidation of

data from separate sources is supported.

How Objective 1 was realised was discussed in Chapter 2, with a description on how

Objective 2 was attained detailed in Chapters 3 and 4. This chapter focuses specifically on

Objective 3, which consists of three distinct evaluation objectives. In order to increase the

granularity of these evaluation objectives (specifically 3c), it was necessary to refine them

into specific features that SARA or SABer should contain. The evaluation experiments

described in this chapter are thus used to provide evidence that the following features are

being supported:

124

E1 SARA provides client applications with access to data sources without

prescribing a specific user interaction paradigm for the GUI, or for their

developers to know the underlying query language associated with each source.

E2 SABer enables the SME leveraged by the client applications to be encoded by

non-technical experts.

E3 Casual users that appropriate (or tailor) this SME within a client application can

send complex queries to data sources via SARA.

E4 SARA and SABer are domain independent.

The description of SARA and SABer’s implementation in the previous chapter was

accompanied by a music case study (Section 4.4) that highlighted design strengths of

SARA were technically realised. This case study highlighted how SARA occupies a

distinct niche within its field because of the range of features that it offers. Specifically

this case study provided evidence that SARA:

• gives client applications consolidated access to multiple sources of various data

types.

• supports values sent through its API to tailor the underlying rules inside the

semantic attributes.

• enables data to reside in its original location, and supports instance level

reconciliation between the different data sources.

These features complement the evaluation features discussed in this chapter and can be

encapsulated as:

C1 Technical features of SARA showcased in music case study.

Finally, as middleware systems can cause an extra bottleneck that client applications must

pass data through, it is also prudent to test SARA’s performance in order to help quantify

to what degree it increases query latencies. This procedure can be summarised as:

P1 Performance evaluation of SARA to see under what circumstances it is a usable

middleware.

125

Figure 5-1. Thesis Hierarchy from Research Question to Evaluation Features

Figure 5-1 depicts the hierarchy that exists in this thesis in relation to evaluation (please

note that the size of the boxes in the diagram is not representative of their relative

importance). As is shown in the diagram, this hierarchy stretches from the research

question described in Chapter 1, down to the individual features and procedures just

summarised (E1-E4, C1 & P1). Verifying that the evaluation features (E1-E4) exist,

involves several experiments using SARA, SABer and the client applications that use

them. Furthermore, the performance evaluation of SARA (P1) also requires its own distinct

experiment. As mentioned previously, the case study in Section 4.4 describes how SARA

accommodates the features encapsulated in C1. Hence, this chapter does not reiterate these

findings.

The experiments described in this chapter, and the evaluation findings presented, validate

the research objectives of this thesis. Furthermore, because the implementation of SARA

and SABer closely follow the framework design associated with the expert-supported

approach to data exploration, their successful evaluation help provide validation of this

approach and its associated framework.

5.2 Evaluation Strategy:

One of the main aims of this thesis’ evaluation strategy was to get feedback from the key

stakeholders at different stages, so that this information could feed directly back into the

design process. Thus there was a need for initial user-centred feedback on the prototypes,

as well as further evaluations on the refined systems. The stakeholders involved in these

Research	
 Ques(on	

Research	
 Objec(ve	
 1	

Evalua(on	
 	

Features	

Research	
 Objec(ve	
 2	

Research	
 Objec(ve	
 3	
 (Evalu(on)	

Evalua(on	
 	

Objec(ve	
 3A	
 	

E2	

Evalua(on	

Objec(ve	
 3B	

E3	

Evalua(on	
 	
 Objec(ve	
 3C	
 	

C1	
 E1	
 E4	
 P1	

126

experiments included domain experts, application developers and end users of applications.

In total there were five main experiments undertaken in this research, which used a number

of different evaluation techniques such as structured interviews, questionnaires,

performance tests and user trials. Each experiment (apart from Experiment 3) is discussed

under three main headings; Experimental Goals, Experimental Setup and Experimental

Results.

An initial experiment (Experiment 1) was needed to serve two main purposes. Firstly, it

was necessary to examine if the approach implemented in the SARA prototype, where it

acted as a mediator between a client application and multiple music data sources, was

appropriate from a technical perspective. Secondly it was crucial to get some early

qualitative feedback from end users as to whether SARA facilitated useful functionality

that users of a client application could exploit. Hence, this experiment examined whether

features E1 and E3 described in Section 5.1 were being supported by SARA. Furthermore,

by gathering this information early in the development process it meant that user feedback

could be quickly implemented into future iterations of the design.

As Experiment 1 focussed purely on SARA, it was prudent to perform evaluation tests

with an early prototype of SABer also. Furthermore, as SARA relies on developers to

create client applications that interface with it, it was useful to gather qualitative feedback

on SARA from their perspective. In terms of SABer, Experiment 2 examined whether it

could generate useful semantic attributes that are made available to client applications, and

also aimed to get some early feedback from domain experts on its interface and the

functionality it offered. This experiment involved three separate client applications, each

in a different domain (evaluating feature E4 described in Section 5.1), which were

designed specifically for use with SARA. Each of these applications used SME that was

encoded in a prototype of SABer. The final part of Experiment 2 was to gather reactions

from the application developers as to their experiences of using SARA as a mediator

between their software and the raw data sources. The collection of this feedback about

SABer and SARA meant that further improvements to their design could be implemented

in time for the next experiments. Furthermore, it helped highlight how SARA provided

client applications with access to data sources without prescribing a specific user

interaction paradigm for the GUI, or for their developers to know a specific query language

(feature E1 from Section 5.1).

127

SARA is a middleware system and therefore it cannot be evaluated purely on its own.

Hence, a third experiment involving two of the client applications used in Experiment 2

was devised. Experiment 3 centred on whether the improved version of SARA facilitated

client applications to support users who are exploring information in domains of interest to

them. In each experiment participants use the client applications, with each having a

separate evaluation study afterwards. The feedback from users was used to determine

whether they had found them useful. Furthermore, the impact of these client application

experiments on the evaluation of SARA is also discussed, specifically in reference to

features E1, E3 and E4 described in Section 5.1. If many of the aspects of the applications

that users found useful were directly facilitated by SARA, it would provide further support

that different client applications can benefit from using SARA. Furthermore, the features

offered by SARA stem directly from the design requirements of the framework associated

with the expert-supported approach to data exploration. Hence by showing that these

features were useful and well received by end-users, it provided validation for the

underlying approach and framework as well.

A theme of this thesis is that non-technical domain experts should be able to generate

SME. Hence a fourth experiment was undertaken to examine if such experts could

successfully generate semantic attributes in SABer i.e. that feature E2 described in Section

5.1 was being supported by SARA. The version of SABer used in this experiment had

been updated and improved according to domain expert feedback in Experiment 2. This

user trial examined the usability of SABer, and thus involved measuring efficiency (speed

of creating semantic attributes), effectiveness (accuracy of semantic attributes created) and

satisfaction on the System Usability Scale (see Appendix G) (Brooke 1996). Furthermore,

this trial helped explore whether SABer (and by extension the Semantic Attribute Model)

was sufficiently abstract so that users were not concerned with the differences between the

various semantic attributes and their underlying data types. The functionality that SABer

offers domain experts is rooted in the design requirements of the framework associated

with the expert-supported approach to data exploration. By demonstrating that this

functionality was successfully implemented and appreciated by end-users it provided

further validation for the underlying approach and framework.

As SARA had iteratively improved as a result of the previous experiments, it was

necessary to take the most recent version and provide a guideline to potential application

developers as to the overhead they are likely to incur by using SARA. Hence Experiment 5

128

tests the performance of SARA (feature P1), in order to examine how quickly it processed

Semantic Attribute Queries of varying complexity. Table 5-1 summarises the details of all

the experiments presented in this thesis.

Table 5-1. Details of Thesis Experiments

 Name Evaluated
Features

Evaluation
Subjects

Technologies
Employed

Evaluation Method

Exp. 1 Multi-Source
Music Trial

E1 & E3 End Users &
Application
Developers

SARA v1 User Trial and
Questionnaire
(Qualitative &
Quantitative)

Exp. 2 Multi-
Domain
Evaluation of
SARA and
SABer

E1 & E4 Application
Developers &
Domain
Experts

SABer v1 &
SARA v1

Semi-Structured
Interview with
system users
(Qualitative)

Exp. 3 End User
Experiences
with Client
Applications

E1, E3 &
E4

End Users SARA v2 User Trial and
Questionnaire
(Qualitative)

Exp. 4 SABer User
Trial

E2 Domain
Experts

SABer v2 User Trial and
Questionnaire
(Quantitative) &
SUS Test

Exp. 5 SARA
Performance
Evaluation

P1 N/A SARA v2 Performance
Evaluation
(Quantitative)

Case
Study

Music
Domain Case
Study

C1 N/A SABer v2 &
SARA v2

Case Study
(Technical Analysis)

Furthermore, Figure 5-2 depicts the relationship between the third research objective

(evaluation) and the individual evaluation experiments that they are related to (please note

that the size of the individual boxes is not an indicator of their relative importance).

129

Figure 5-2. Relationship between Research Objective 3 and the Evaluation Experiments

5.3 Experiment 1: Multi-Source Music Trial

5.3.1 Experimental Goals

There were two main goals for this initial experiment. The first looked at whether the

approach implemented in the SARA prototype, where it acted as a mediator between a

client application and multiple data sources, was appropriate from a technical perspective.

The second aim was to get some early qualitative feedback as to whether SARA facilitated

useful functionality that users of a client application could exploit. Specifically this

functionality was enabling application users to create complex queries over multiple

separate data sources in order to explore the music domain. By showing this, it would help

support the hypothesis that SARA provided client applications access to data sources

without prescribing a specific user interaction paradigm for the GUI, or for their

developers to know a specific query language (E1). Furthermore is would support the

notion that SARA enabled casual users to appropriate (or tailor) SME within a client

application and send complex queries to data sources (E3).

5.3.2 Experimental Setup

This experiment involved the use of an early prototype of SARA that worked exclusively

with XML sources, as well as a purpose built client application that contained a query

building interface. The client application communicated to SARA by passing parameters

in accordance with SARA’s API, and there were no restrictions placed on the design of the

Research	
 	

Objec(ve	
 3	
 (Evalu(on)	

Evalua+on	

Features	

Experiment	

No.s	
 	

Evalua(on	
 	
 Objec(ve	

3A	
 	

E2	

Exp.4	

Evalua(on	

Objec(ve	
 3B	

E3	

Exp.1	
 	
 Exp.3	

Evalua(on	
 	
 Objec(ve	
 3C	
 	

C1	

Exp.1	

E1	

Exp.	
 2	

E4	

Exp.3	
 	

P1	

Exp.5	
 Case	

Study	

130

client’s GUI. The implemented GUI enabled users to create consolidated queries across

three music data sources in order to better explore the domain. However, the design of the

client application itself was not evaluated in this experiment, as its role was purely to make

SARA’s functionality available to participants. The data sources used in this particular

experiment were all stored in eXist XML databases and consisted of:

• Three separate iTunes databases totalling 7,000 songs.

• A UK singles and albums music chart archive from 1994-2008

• Data harvested from the web services offered by Last.fm

Before using the iTunes database some pre-processing was necessary in order to give each

element a unique name. For example the name and artist of a song are represented in

iTunes as key value pairs as follows:

<key>Name</key><string>One</string>	

<key>Artist</key><string>U2</string>	

An XSL transformation was thus used to change this structure to the following:

<SongTitle>One</SongTitle>	

<ArtistName>U2</ArtistName>	

The data harvested from Last.fm39 (a popular online radio website) was gathered by

collecting the 7,000 songs from the iTunes databases and for each one querying the

Last.fm REST API to get five related songs, five related artists, whether the artist had

concerts scheduled and where a song ranked in number of plays in comparison to the

artist’s other songs. This information gathered was then collated into a separate XML file.

After examining the metadata available from the different sources, a domain expert then

created eleven semantic attributes for the personal music domain and had them integrated

into SARA and the client application by a computer developer. The client application

listed the names of these semantic attributes, and by selecting checkboxes beside the

names, it enabled users to create queries from this SME. Furthermore, if a user wanted to

tailor a specific semantic attribute, they clicked on the “personalise” button beside the

relevant semantic attribute, and in a pop up window they inputted new values for the rule

39 http://www.last.fm/api

131

e.g. deciding that long duration was greater than 300 seconds or high popularity was chart

position less than 4. The semantic attributes created were as follows:

• Duration_by_specific_artist

• Duration_by_all_iTunes_artists

• Popularity_by_UK_Charts_1994-2008

• Popularity_by_Last.fm

• Related_songs

• Related_artist

• Touring_Artist

• Song_Recentness_by_artist

• Song_Recentness_by_all_iTunes_artists

• Genre

• Song_File_Quality

As SABer had not been fully developed at the time of this experiment, the domain expert

in question used their computer programming skills to create the semantic attributes in

XML. Hence the ease in which non-technical domain experts could create semantic

attributes was not being analysed in this experiment.

Twelve users (four casual computer users and eight people with strong IT skills)

participated in the experiment which involved the forming of ten complex queries in the

client application. Seven of these users were male, five were female, eight were in their

20’s, three were in their 30’s and one was in their 40’s. Once the experiment was

completed all users were given a post questionnaire to complete. The first part of the

questionnaire asked the participants whether SARA offered any benefits to end users

interested in a particular domain. The second section was only compulsory for those

participants with a computing background, and aimed at finding out ways of improving the

functionality offered by SARA. This is because in the early stages of development of

SARA, there was a focus on ensuring that the technologies employed and the API offered

were both appropriate, and suitable for potential application developers. The entire

process, from the explaining of the experiment through to the filling in of the

questionnaire, took approximately forty minutes.

132

In the experiment, six tasks were given to the participants including locating any songs in

the iTunes collection that reached number 1 in the UK charts since 1994 and identifying

five songs similar to these hits. This particular task highlighted how users could create one

consolidated query that previously would have involved the correlation of information

from three separate data sources. Other tasks included finding any artists in the collection

that had concerts currently scheduled despite not having had a hit since 1994 and locating

any long songs in the collection by artists similar in style to the Beach Boys. Users were

also encouraged to tailor these queries to take into account their definition of a long song,

or a user’s preferred time span (1980-1990 etc.) or perception of a hit (top ten, top forty

etc.). Users also devised their own queries which were executed by SARA.

5.3.3 Experimental Results

5.3.3.1 Satisfaction with SARA functionality

After all participants were finished interacting with the application they were given a

questionnaire containing statements about SARA (see Appendix D). They were then asked

to fill in, on a scale of 1-10, how much they agreed with each statement. The aim was to

elicit information such as whether participants believed they had they had sufficient control

tailoring the semantic attributes to their own interpretation, whether it was easy to compose

semantic attributes into consolidated queries and if they gained knowledge from the system

that would not have been easy to locate otherwise. Table 5-1 summarises the full findings

of the questionnaire. The average agreement to all these statements was 8.9 out of 10, thus

it could be concluded that participants were largely satisfied with the functionality offered

by SARA and liked how it supported them in exploring a domain. Users were also asked if

they could see the potential of such a system being used in a variety of domains. Many

domains were mentioned by the users, including correlating gambling information,

browsing media libraries, analyzing the performances of stocks over time and monitoring

network errors.

The user questionnaire also indicated what users thought was successful about the current

implementation of SARA. User comments consistently stated that SARA supported them

in creating complex queries in an easy fashion (e.g. “the process was simple”, “I liked that

it was easy too [sic] send queries”), and that correlations could be drawn between the

results that would not have been easy to arrive at otherwise. For instance, it was noted that

it was now viable to “group together all the artists in the collection that had not had chart

133

success recently”. Likewise it was said that “comparisons could be drawn between online

fans and the general charts, in how particular songs were rated”. Furthermore, users

described how they felt that they had sufficient control in tailoring the subjective semantics

in their searches so that the information returned was more aligned to their interpretation

(e.g. “I liked that I could change the durations to only return the really short songs”, “I

thought a hit should only be a number 1 song so changed those values”). This feature

facilitated them finding “a needle in a haystack”. Even with only a small number of

semantic attributes available in this experiment, users believed overwhelmingly that these

provided a good initial starting point to explore the domain. However, if more sources and

semantic attributes were made available to users, as well as a choice of domains, the

benefit of a system like SARA would increase significantly. This is because the addition

more sources and semantic attributes would allow a greater scope of queries to be formed,

and thus increase the potential of interesting correlations being drawn across different

information sources.

Table 5-2. Results of Multi-Source Music Trial Questionnaire
No. Statement Avg. Agreement

Score out of 10
Standard
Deviation

1. Using this framework is a more efficient way of
finding information than having to consult the
individual data sources separately?

9.0 0.76

2. Using this framework it is easy to combine data
from different sources?

8.9 0.62

3. Using this framework allows users to combine and
interchange attributes (popularity/duration/freshness
etc) easily?

8.6 0.77

4. Using this framework enables knowledge to be
gained that wouldn’t be possible by consulting just a
single source?

9.6 0.51

5. This framework sufficiently enables users to
personalise and tailor their queries (a very popular
song is top 10; a long song is more than 5mins, etc.)

8.8 0.61

6. The approach used by the framework is very
applicable to other domains beside music?

8.6 0.70

5.3.3.2 Technical Analysis

Given the experimental results, it could be determined that SARA had been a technical

success in terms of enabling participants to query (via a client application) multiple sources

from a domain in a consolidated fashion. However, from the analysis of the questionnaire

134

results, it was clear that SARA would have to support more features in order to become a

really useful and flexible architecture. For instance, if domain expertise is to be captured

and encoded as a semantic attribute, then it would be useful if this could be achieved via an

authoring tool without the help of a computer developer. This would open up the creation

of semantic attributes to non-technical domain experts and make the adoption of SARA

more attractive. Moreover, these semantic attributes need to be represented as a model that

is transferable between different installations.

Another limitation of the SARA prototype was its exclusive interaction with XML data

stored in databases. In order to open up its functionality to a much wider range of data, it

was stated that SARA should interact with data of different formats that are stored

remotely as well as locally. Furthermore, by allowing data to reside remotely it would also

mean that much time consuming pre-processing of data (e.g. the a priori querying of

Last.fm to generate additional data on songs) would be greatly reduced.

5.3.4 Summary

Through this early user trial it was concluded that the functionality offered by the SARA

prototype was useful to end users and allowed them to explore multiple sources from

domain. Specifically SARA enabled users to appropriate and tailor semantic attributes in

order to send complex queries to multiple data sources (feature E3). Furthermore, its

applicability to a variety of domains was highlighted, and the benefits of expanding the

system to include more semantic attributes and data sources were noted. In terms of the

technology itself, SARA enabled a client application to communicate with the raw data

sources successfully, and showed how the API did not prescribe a specific GUI for the

client application, nor a specific query language to be used (feature E1). However a

number of suggestions on how to improve SARA were noted (e.g. support multiple data

types, use remote sources and develop an SME authoring tool), and these suggestions were

incorporated into the ongoing development of the expert-supported approach to data

exploration, as well as the later implementations built on top of it

5.4 Experiment 2: Multi-domain Evaluation of SABer and SARA

5.4.1 Goals of Experiment

One of the design compromises of SARA is that end-users are limited, when browsing a

domain, to combining and tailoring the semantic attributes created by experts. Hence, it is

135

vital that the manual step of creating semantic attributes is easy to do and not overly time

consuming, so that a wide selection of high quality semantic attributes are made available

to end users. One of the key outcomes from the first experiment was the reaffirmation of

the need for an authoring tool to help these experts create semantic attributes and deploy

them within SARA. Hence, a prototype of such an authoring tool called SABer (Semantic

Attribute Builder) was built to provide this functionality.

The first of three goals in this experiment was to show that useful semantic attributes could

be generated by SABer and then be deployed within SARA installations of different

domains (highlighting feature E4, which states that SARA and SABer should be domain

independent). The second aim of this experiment was to get some early feedback on

SABer’s interface and the functionality it offered. The final goal was to get reactions from

application developers as to their experiences of using SARA as a mediator between their

software and the raw data sources. By collecting this feedback on both SABer and SARA,

further improvements to their designs could be implemented in time for the later

experiments. Furthermore, it would help highlight how SARA provided client applications

with access to data sources without prescribing a specific user interaction paradigm for the

GUI, or that their developers needed to know specific underlying query languages (feature

E1 described in Section 5.1).

5.4.2 Experimental Setup:

The first three participants to use a prototype of SABer all had computer coding

experience, as well as some expertise within their domain of interest. Their expertise was

in the digital images, film domains and academic publications respectively. In order to

place any semantic attributes they created in an authentic environment, these users all

developed a separate client application for each domain. These applications used

functionality offered by SARA to connect with the underlying information sources relevant

to their domain. The three applications developed are now described in turn.

In the academic publications domain, a highly visual prototype application was developed

in Adobe Flex that uses semantic attributes and the SARA infrastructure to support a more

explorative approach to finding relevant publications. It contains a test set of 300

publications from the Knowledge and Data Engineering Group’s website 40 and their

40 http://kdeg.cs.tcd.ie/publications

136

associated metadata. The semantic attributes created provide a number of search axes

under which users could search and which are complimented by the novel visualisation

interface developed for the client application. Figure 5-3 shows the GUI of this client

application.

Figure 5-3. GUI of Client Application that Explored Academic Publication Domain

X2Photo (Gürel 2009) is an application developed in Adobe Flex41 that helps users browse

image repositories with reference to the aesthetics of the photographs, as well as their

content. It uses a data source of over 12,000 photographs and has access to technical

metadata of each image (hue, saturation, lightness values etc.) as well as its metadata and

tags taken from the Flickr42 website. The expert rules, based on Colour Theory (Parramon

1989), were encoded using SABer, and end users were able to leverage this knowledge

while exploring the photograph repository for relevant images. X2Photo employs a novel

browsing interface consisting mainly of a wall of draggable photos. Figure 5-4 shows the

front-end of the system and depicts the three main areas of the interface. The main part of

the screen is called the Discovery Space and contains the result set of photographs

retrieved for a user query. The wall of photographs can be dragged by the user and

individual images can be selected their associated tags and semantic attributes.

41 http://www.adobe.com/products/flex/
42 http://www.flickr.com

137

The bottom of the screen is dominated by the AttBar which represents each of the nine

semantic attributes (from Table 5-3) as a vertical bar. The process involved in creating

these semantic attributes is described in Section 5.4.3.1, and the success of X2Photo is

largely dependent on how well these semantic attributes are designed. If the semantic

attributes are of poor quality, the SME features offered by SARA are unlikely to be of

great benefit to the users of X2Photo. Each vertical bar in the user interface contains the

different parameters relating to each semantic attribute, with Figure 5.4 showing the results

from a query containing the aesthetics; Lively, Luminous and Cool from the AttBar. The

user can select one parameter from each bar to run a query, and can decide if the AttBar is

visible or not by clicking on its icon button.

Figure 5-4. The X2Photo Interface

In order to help the user find an image that has specific content, the system shows any tags

associated with the result collection of photographs, as well as those from each individual

photograph. By integrating this with support for the aesthetic exploration of images, users

are given a more flexible way of finding relevant photographs. The number of crowd

sourced tags typically exceeds the number that can be clearly displayed with a simple tag

cloud, hence a TagBall is used instead to allow large numbers of tags to be displayed

without cluttering the UI. In the bottom left hand corner of Figure 5-4 is the TagBall

which displays all the Flickr tags related to the entire result set or individual photograph.

The user can simply use any selection of these to refine their searches.

138

The Film Domain Exploration Client (Hengster 2009) is an application developed in Adobe

Flex that lets users explore the film domain, via the different relationships that exist

between the films, and to build up collections of films. Semantic attributes, relating to

different ways of measuring the success of a film, were created in SABer from different

data sources (including the Internet Movie Database43, Rotten Tomatoes44 and Freebase45),

and used to help implicitly model the preferences of users and to provide recommendations

to similar films. The Film Domain Exploration Client employs a novel user interface,

where users select film posters to trigger queries. Furthermore, in this application the

semantic attributes are not displayed to users but rather used in the background as similarity

metrics for the films. Figure 5-5 shows the GUI of this client application.

Figure 5-5. Screenshot of Film Domain Exploration Client

The first step in the procedure of using the application involves selecting an initial film

poster by typing in a film name. This initial film is used by the application to calculate and

display 20-30 related films in a spiral around the focus movie at the centre of the stage.

This number of films means that the user is not overwhelmed by too many objects at once,

and by having a number higher than 8 or 10 gives the application enough diversity to grab

sufficient attention and to support the explorative spirit of the application (Moreno 2004).

In order to ensure that a user is able to recognise his preference movie, the posters are

43 http://www.imdb.com
44 http://www.rottentomatoes.com
45 http://www.freebase.com

139

placed onscreen one by one starting in the centre and continuing along a clockwise spiral

path. The user is encouraged to explore the films by zooming and panning as required and

rating the films presented.

The application developer felt that rating a film poster was central to the success of the

system, as it helps the reasoning within the personalisation and modelling components.

Hence, the rating metaphor had to be easy to comprehend and also be consistent. There

were three different degrees a rating could have: like, dislike and neutral. Every poster

starts in the neutral phase and when a user pushes the poster away it receives a red outline

and indicates they dislike the film. When they pull a poster closer it gets a green outline

and indicates that they like the film. Should a poster that has been rated previously within

the current session come up again, the rating is restored and the poster will be shown with

the according visual adjustments. This makes it easy to recognise any previous actions.

Moreover, three collections of posters (one for each of liked, neutral and disliked films) are

always accessible by zooming out, so it is possible for the user to keep track of what he has

collected during his exploration. Finally, to encourage continuous exploration, a user can

always refocus the interface on any of the films displayed on the stage. This centres that

movie poster and orbits related movies around it according to the various semantic

attributes created for the application. Thus films with similar grossing, IMDB rating, profit

or awards are rendered onscreen around the focus movie.

The semantic attributes generated in each of the three applications just introduced are

described in detail in the next section. Once the applications were finished a semi-

structured interview took place with the three participants to gather feedback on the

process of generating semantic attributes with SABer (see Appendix E). Furthermore,

their experiences of using the SARA API to mediate between their applications and the

data sources were also recorded. The interviews took approximately twenty minutes to

perform in each case.

5.4.3 Experimental Results

This section describes the semantic attributes generated by the three participants for their

respective applications, and then summarises the participants’ experiences of working with

SARA and SABer as documented in structured interviews.

140

5.4.3.1 Digital Imaging Domain

The expert vocabulary created in SABer for describing images in X2Photo consisted of ten

semantic attributes, with various numbers of parameters. Temperature was one such

semantic attribute, and this was quantised by four different parameters (Warm, Subtle,

Cool and Cold) according to Colour Theory (Parramon 1989). Colour Theory relates

colours to temperatures, for example it specifies that blue and green are cool colours, while

red and orange are warm. Furthermore, because the hue of a colour can be represented as

an angle of the colour circle, when the colour circle is divided into twelve equal intervals;

on each 30° angle you will find the following colours (key colours in bold):

1. red
2. red-yellow (orange)
3. yellow
4. yellow-green
5. green
6. green-cyan
7. cyan
8. cyan-blue
9. blue
10. blue-magenta
11. magenta
12. magenta-red

Red, yellow, green, cyan, blue, and magenta are regarded as the key colours, each having

intermediate colours between them. Each of the photographs available to X2Photo

contained metadata relating to the Hue, Saturation and Light values, which allowed expert

rules to be generated for them in SABer. For instance, when constructing the Temperature

semantic attribute, the expert could quantise it into four parameters as follows, where H, S

and L represent Hue, Saturation and Lightness respectively:

WARM = { (0 ≤ H < 75 AND 15 ≤ L ≤ 90) OR (H ≥ 300 AND 65 ≤ L ≤ 90) }AND (S ≥
25)

SUBTLE = (75 ≤ H < 120) AND (15 ≤ L ≤ 90) AND (S ≥ 25)
COOL = (120 ≤ H < 210) AND (15 ≤ L ≤ 90) AND (S ≥ 25)
COLD = (210 ≤ H < 300) AND (15 ≤ L ≤ 90) AND (S ≥ 25)

Using these rules, a photograph is assigned a temperature description (warm, cool etc.)

based on which equation its HSL colour space satisfies. Table 5-3 lists all ten semantic

attributes and their associated parameters created for X2Photo in SABer. There were nine

heavily subjective semantic attributes created, as well as one objective semantic attribute

named has tag called, which allowed users to specify tags from Flickr that the end images

should have associated with them.

141

Table 5-3. The Ten Semantic Attributes and their Parameters Created for X2Photo

1. Power 2. Passion 3. Energy 4. Joy 5. Ease

Vigorous
Powerful
Robust
Strong

Passionate
Desirous
Romantic
Sensitive

Explosive
Exciting
Energetic
Lively

Frantic
Ecstatic
Jolly
Cheerful

Easeful
Content
Mellow

6. Light 7. Blue 8. Temperature 9. Purity 10. has tag called

Luminous
Misty
Deep

Tranquil
Calm
Soothing

Warm
Subtle
Cool
Cold

Intricate
Bold
Innocent
Pure

Default

All the semantic attributes in Table 5-3 were created in SABer in a similar fashion to

Temperature (has tag called being the exception) and then integrated into X2Photo. This

meant that the semantic attributes could be joined together into a complex search by end

users e.g. Return all images that are Calm, Cool and Misty and that have a tag called

‘Boat’ or ‘Fisherman’.

X2Photo received positive feedback overall when it was evaluated (see Appendix H for

more details). Moreover users found that the more natural expressiveness of the semantic

attributes gave them much more freedom when searching for images, compared to when

they were limited to solely relying on search terms in traditional keyword searching. Thus

injecting expert knowledge, based on the aggregation of raw low-level data, into a

conventional system which only supported tag-based search, proved successful. It allowed

users to go beyond simply expressing the content of an image, and express the actual

aesthetics of the image more easily. This was largely facilitated through the use of SARA

and the experiment shows how SME, captured in SABer, can be leveraged by ordinary

users within a client application.

5.4.3.2 Film Domain

The semantic attributes created in SABer, by the domain expert, for the Film Domain

Exploration Client were all ways of measuring the success of a film and were as follows:

• IMDb_Film_Rating
• Worldwide_Box_Office_Grossing
• Award_Winner_in_Oscars_BAFTAs_Cannes_Berlin_or_MTV
• Grossing_to_Budget_Ratio

During the development phase a number of additional semantic attributes were also created

in SABer and integrated into the application. These semantic attributes allowed querying

for related films based on several extra axes such as by:

142

• cinematographer
• director
• producer
• actor
• film_genre
• year_released.

However, these semantic attributes were disabled in the evaluated version of the

application in order to concentrate on the film success semantic attributes listed above. In

contrast to X2Photo, none of the semantic attributes were actually displayed in any way to

users in the Film Domain Exploration Client. Instead the semantic attributes were used in

the background as similarity metrics with which to find related films. The user experience

with the application was positive overall (see Appendix I for details), and it showed how

domain expertise encoded in SABer could be used to support subtle domain exploration as

well as users who explicitly wished to create complex queries.

5.4.3.3 Academic Publications Domain

The semantic attributes created in SABer for the academic publications application

covered the following characteristics:

• Author
• Year
• Title
• Type of Publication
• Theme

Despite the limited range of metadata with which this application had to work with, these

basic semantic attributes facilitated interesting explorations of the domain nonetheless.

They helped complex queries to be formed by end users and certain relationships between

papers to become apparent e.g. how the themes of papers published in the group had

evolved in the previous ten years. This showed how visualisation applications can benefit

from using SARA to connect with the underlying data.

5.4.3.4 Feedback on SABer and SARA

As mentioned previously, the three domain experts all had computer coding experience

and worked with an early prototype of SABer (version 1) to generate their respective

semantic attributes. The fact that all three participants successfully used SABer to produce

semantic attributes for their client applications shows that SABer had successfully

supported them in encoding SME. The information gathered from their individual

143

interviews was later used to improve future releases of SABer that specifically aimed to

support non-technical experts as well those with computing skills.

In general feedback was very positive and SABer was found to be easy to use, though a

number of changes and new features were suggested. The most important suggestions

were prioritised and implemented in the next version of SABer:

• The GUI of SABer was refined in specific areas as per comments of the domain

experts, and the tool now provides more of a step-through feel for users when

creating semantic attributes.

• The need to define variables in SABer as part of the template rules was removed.

This will particularly be of benefit to non-technical users who would not be

immediately familiar with the concept of a variable.

• More operators and functions were added to the rule generation section in SABer to

give users more flexibility.

The following changes were noted for implementation in future releases of SABer:

• Allow free text rule input in SABer for those advanced users with significant

coding experience in the underlying query language.

• Support visualisation of semantic attributes already created in SABer so that they

can be organised and edited through the GUI.

• Improve how parentheses are visualised within the rule generation section of

SABer.

In terms of SARA’s API, the following suggestions by developers were implemented in

the next release of SARA:

• The API call to send queries to SARA was simplified as per request of application

developers who thought the original was slightly cumbersome.

• A set union operator for Semantic Attribute Queries was added, as applications

were previously limited to joining semantic attributes via set intersection or set

difference.

In the course of the interviews one of the client developers noted that it was “really nice to

have SARA as it meant I didn’t have to worry about the underlying data and its structures

that can be very messy to work with… I just had to access a single framework that made all

144

the relevant information available to me”. Another one thought that “creating the

semantic attributes and then using them to form compound queries was easy”.

Interestingly one of the domain experts noted that the “rule creation in the tool was quite

similar to the process involved in generating smart playlists within iTunes”. Since as

successful commercial application as iTunes had a superficial similarity for non-technical

users to generate rules, he believed “that it would be quite easy for a general audience to

work with the SARA authoring tool”. Finally, all three developers thought that the API in

its current form was easy to use, though some improvements could be made to make it

more streamlined. This showed that a parameter based API could successfully allow

applications to interact with SARA, and that the developers did not have to learn the

underlying query language associated with each data source (feature E1 described in

Section 5.1).

5.4.4 Summary

This section has described how SARA’s features supported three separate applications

working in different domains in accessing data sources for the benefit of their users.

Moreover, it highlighted how SABer can be used by domain experts to capture domain

expertise, which is then deployed in SARA for end users to leverage using client

applications. It was also shown how domain experts can use SABer to create useful

semantic attributes deployed within applications, thus supporting the contention that

SABer is a generic tool that helps expertise in metadata rich domains to be encoded.

Therefore feature E4 (SARA and SABer should be domain independent) was successfully

implemented.

As each of the three applications employed completely different styles of GUI (the

academic publications application combined a query builder with a 3D rendering of results;

the film domain application did not allow users to explicitly build queries, but rather

rendered similar films in a spiral according to their similarity with the target film; and the

digital imaging application combined TagBall, AttBar and Discovery Space Elements into

a novel interface), this experiment also demonstrated how SARA does not prescribe

applications with a specific interaction paradigm (feature E1). Furthermore, by gathering

feedback from the users of SABer and of those using SARA’s API, it meant that the most

important suggestions were implemented in the next releases of both systems. The

following section will now describe in detail the end user feedback from experiments

performed with X2Photo and the Film Domain Exploration Client. The aim of this is to

145

analyse whether the features offered by SARA enabled the client applications to provide

functionality to end users that was well received.

5.5 Experiment 3: End User Experiences with Client Applications

5.5.1 Introduction

The main motivation behind SARA was to support users in exploring domain information

in a more meaningful way. However, because SARA is a middleware system, it cannot be

evaluated purely on its own. Hence, X2Photo and the Film Domain Exploration Client,

described in the previous experiment, were selected for further user trials. The difficulties

in doing quantitative evaluation of exploratory search systems, in comparison to the

standard precision and recall metrics available in IR systems are well documented (White

et al. 2006; Qu & Furnas 2008). Hence, these user trials were focused more on getting

qualitative feedback about the applications, and (of most importance to this thesis)

analysing whether SARA facilitated any of the features that were well received by users.

The individual aims of each user trial will be described in their respective sections, but the

overall functionality under examination in terms of SARA was that:

• it provided client applications with access to data sources without prescribing a

specific user interaction paradigm for the GUI (E1)

• casual users could use semantic attributes within a client application to send useful

queries to data sources via SARA (E3)

• it was domain independent (E4)

This functionality offered by SARA stems directly from the design requirements of the

framework associated with the expert-supported approach to data exploration. Hence by

showing that these features were useful and well received by end-users, it provided

validation for the underlying approach as well. This section is divided into two parts; the

X2Photo user trial is described first, followed by a description of the Film Domain

Exploration Client user trial. A discussion on how these two user trials helped evaluate

SARA then follows.

146

5.5.2 Goals of X2Photo User Trial

The aim of this experiment was to compare users’ experiences of finding similar

photographs using the X2Photo application with their experience of using the Flickr46

website. X2Photo uses SARA and the semantic attributes created in SABer to help users

search for photographs by their aesthetics as well as by their content. Hence its

comparison with Flickr’s traditional keyword matching search box provided an interesting

contrast. The description of this user evaluation itself has been summarised from the

M.Sc. thesis (Gürel 2009) that it was a constituent part of, and the trial was conducted by

the M.Sc. candidate themselves. Details of how the experiment was conducted can be

found in Appendix H. In terms of SARA, this experiment was used to test if its features

provided client applications with useful functionality which was well received by end

users. This would help support the notion that SARA is a good middleware system.

Specifically this experiment looked at how SARA facilitates the development of novel user

interfaces (feature E1) and allows users to explore information domains by generating

queries using semantic attributes (feature E3).

5.5.2.1 Analysis

The experiment with X2Photo showed that the semantic attributes available in the system

gave users additional useful axes when searching for photographs. This indicates that

injecting expert knowledge, based on the manipulation of raw low-level data, into a

conventional system which only supports tag-based search, can help users to more freely

express both the photograph and the picture it is conveying. Even though a specific expert

vocabulary may not be suitable or correct for each individual, users can adapt to the

expert's view or choose to subscribe altogether to a different expert. A further option

would be to use SARA’s tailoring feature, so that end users could adapt the rules behind an

expert’s semantic attribute to better fit their own vocabulary or perceptions.

Users suggested that they should be able to subscribe to different experts and that there

should be a more comprehensive range of semantic attributes. This all indicates that the

users understood the aim of the tool and how it could be extended further. All users agreed

that they could see a real-life application of the tool if some further improvements were

46 http://www.flickr.com/

147

made and they could see themselves utilizing such a tool in their everyday lives. In order to

offer users an alternative way of finding a photograph, a system has to have a rich

vocabulary. Hence, increasing the range of low level features would enable experts to

create more refined semantic attributes, resulting in a more useful system for end users.

The successful feedback on X2Photo highlights how SARA and its semantic attributes can

support applications that help users to explore and find relevant information, even in quite

subjective areas such as photograph aesthetics. Specifically this shows that feature E3 had

been implemented well, because users could use semantic attributes within a client

application to send useful queries to data sources via SARA. Finally SARA did not

prescribe any specific interaction paradigm for X2Photo other than requiring the

parameters sent to it conformed to its API specification (feature E1 from Section 5.1).

Hence, on top of the semantic richness that SARA provided X2Photo with, the freedom of

design that SARA offered X2Photo facilitated a novel interface to be generated.

5.5.3 Goals for Film Domain Exploration Client User Trial

The main aim of this experiment was to see if semantic attributes could be used to

implicitly model user preferences, and to see if the Film Domain Exploration Client

provided users with an enjoyable and useful browsing experience of the film domain. The

main functionality of the application was to use SARA and the semantic attributes created

in SABer in order to present users with similar films to the film they had targeted. These

recommendations were based on a similarity metric derived from each of the films four

success axes. Each of these success axes were encoded as semantic attributes in SABer

and stored in SARA. The description of this user evaluation itself has been summarised

from the M.Sc. thesis (Hengster 2009) that it was a constituent part of, and the trial was

conducted by the M.Sc. candidate themselves. Details of how the experiment was

conducted can be found in Appendix I. In terms of SARA, this experiment was used to

test if its features gave client applications useful functionality that was well received by

end users. This would help support the notion that SARA is a good middleware system.

Specifically this experiment looked at how SARA facilitates novel user interfaces to be

developed (feature E1) and allows users to explore information domains by implicitly

generating queries with semantic attributes (feature E3)

148

5.5.3.1 Analysis

SARA did not prescribe any specific interaction paradigm for the Film Domain

Exploration Client apart from the parameters sent to it having to conform to its API

specification (feature E1 from Section 5.1). Hence, on top of the similarity metrics that

SARA provided the application with, the freedom of design that SARA offered Film

Domain Exploration Client facilitated a well received interface to be developed. The

group members also agreed that they were able to complete the task of finding films they

liked and felt a strong immersion while doing so. This shows that semantic attributes can

be deployed to help implicitly model user preferences, and used to support users in an

enjoyable exploration of a specific domain. Specifically this shows that feature E3 had

been implemented well, because users could use semantic attributes within a client

application to send useful queries to data sources via SARA.

5.5.4 Discussion on how User Trials Helped to Evaluate SARA

As already mentioned, the two user trials just described were not only an examination of

X2Photo and the Film Domain Exploration Client, but also of SARA, which was a key

technology employed by both systems. It was vital to see if SARA facilitated features in

the two applications that were well received by users. Specifically the functionality under

examination in terms of SARA was that:

• it provided client applications access to data sources without prescribing a specific

user interaction paradigm for the GUI (E1)

• casual users could use semantic attributes within a client application to send useful

queries to data sources via SARA (E3)

• it was domain independent (E4)

The first noteworthy conclusion from these experiments is that both applications worked in

completely separate domains with different metadata; photographs and films. Sections 5.3

and 5.4.2 already discussed SARA’s application in the music and academic publication

domains respectively, so it can be concluded that SARA is indeed a domain independent

framework suitable for domains with rich metadata. This is one of the key features under

examination (E4). Some of the user comments in the experiments mentioned that a wider

selection of semantic attributes (built from extra metadata or low level features) would

help improve the individual applications. One of the features of SARA’s design is that it is

149

extensible in terms of the semantic attributes and data sources it employs. Hence, it can

support the addition of new semantic attributes, and can make these available to client

applications for incorporation into their system. Moreover, because the models that SARA

employs are reusable, semantic attributes or data sources previously defined elsewhere can

be reused and quickly incorporated by application developers. This makes SARA an

attractive system for developers who wish to evolve their applications over time.

One thing that was immediately clear from both user trials was that users overwhelmingly

enjoyed the novel visualisation interfaces that they used to explore the respective domains.

The creation of individual styles for these engaging interfaces was helped by the fact that

SARA only required that the parameters sent to it from the client applications conformed

to its API. This was one of the key features under examination (E1) and meant that

developers got the benefit of supporting their users via semantic attributes, without major

restrictions hindering their GUI design. In contrast, other approaches to supporting casual

users to engage with multiple sources from a domain can provide severe restrictions on the

interface displayed to users e.g. requiring a faceted browsing interface or a mashup of

predefined widgets.

As well as finding the novel interfaces attractive, both user trials endorsed the notion that

users had largely found the domain exploration that was facilitated by the client

applications as useful. The explicit selection of semantic attributes in X2Photo to form a

query, as well as the indirect choosing of semantic attributes in the Film Domain

Exploration Client (by focusing on a specific film) were both successful mechanisms for

supporting users to engage with the domains in question. This highlighted a key feature

supported by SARA, namely that casual users can use semantic attributes within a client

application to send useful queries to data sources (E3). SARA also has functionality that

could quickly expand the features offered by both applications. For instance, SARA could

enable X2Photo to use its tailoring feature, so that end users are able to adapt the rules

behind an expert’s semantic attribute to better fit their own vocabulary or perceptions.

This would provide more options to experienced users of the domain. Furthermore, this

approach could be used in a variant of the Film Domain Exploration Client, where users

get to explicitly choose and tailor the film-based semantic attributes to form specific

queries. Overall, based on the findings of these two user trials, it could be concluded that

SARA was an effective and versatile middleware system. Furthermore, the functionality

offered by SARA stems directly from the design requirements of the framework associated

150

with the expert-supported approach to data exploration. This close coupling of design

and implementation meant that SARA’s successful evaluation also helped to validate the

underlying approach and framework.

5.5.5 Summary

This section described two applications in different domains that were connected to SARA,

as well as their evaluations by end users. These evaluations showed that participants

enjoyed using these applications to construct complex queries (explicitly and implicitly)

over different information sources and to explore the data in a useful fashion. Because

this functionality was largely facilitated by SARA, it supports the contention that SARA is

a useful framework for supporting the querying and exploration of metadata rich domains.

Though this section has highlighted how SME encoded in SABer can be deployed in

SARA to provide useful functionality for client applications, it was not yet clear if experts

without computer coding experience could use SABer effectively. This is of vital

importance if SARA is to be applicable to a wide range of information domains, because

the easy generation of useful semantic attributes means applications will have a wider

range of features with which their users can explore a domain. The following section

describes a discrete user trial with SABer that compares how non-technical and technical

users perform when working with it. The main aim of this is to see if non-technical users

can use SABer effectively.

5.6 Experiment 4: SABer User Trial

5.6.1 Experimental Goals

For SARA to be applicable to many domains it needs to be shown that non-technical

domain experts can successfully generate semantic attributes in SABer. As stated

previously, for the purposes of this thesis ‘non-technical’ people refers to computer literate

participants with basic skills such as operating Internet browsers, but with no computer

programming experience. Likewise, this experiment considered those participants with a

degree in computer science to be ‘technical’ users. Section 5.4 described how technical

domain experts can use SABer to create useful semantic attributes that are subsequently

deployed in applications. The goals of the experiment described in this section are to

measure the usability of SABer and its effectiveness in supporting non-technical domain

experts to generate semantic attributes (feature E2 from Section 5.1). Furthermore, this

151

experiment helps explore whether SABer (and by extension the Semantic Attribute Model)

is sufficiently abstract to distance the user from the differences in the various semantic

attributes and their underlying data types. The functionality that SABer offers domain

experts is rooted in the design requirements of the framework associated with the expert-

supported approach to data exploration. By demonstrating that this functionality is

successfully implemented and appreciated by end-users, it will also help validate the

underlying approach itself.

5.6.2 Experimental Setup

Two groups of twelve participants each were assembled (one group technical and the other

non-technical), with each person engaging in the experiment separately and in isolation

from other participants. In the technical groups, nine of the participants were male and

three were female, with five participants in their 20’s, six in their 30’s and one in their 40’s.

In the non-technical groups, six of the participants were male and six were female, with six

participants in their 20’s, three in their 30’s and three in their 40’s. An entire session

including the demonstration, performance of tasks and filling in of questionnaires typically

took around forty minutes to complete. The first step of the experiment consisted of a

demonstration of how to create 3 different semantic attributes in the music domain. This

demonstration was done by the evaluator who inputted the semantic attribute details from a

task sheet into SABer. These three tasks involved an identical process to that which the

participants would undertake in the experiment. As described in Section 3.4.1 SABer

supports semantic attributes of three different types (expert, template and hybrid) and of

three data types (XML, RDF and Web Services with a native API). Each of the three tasks

demonstrated to the participants involved a combination of a different semantic attribute

type with one of the different data types.

Once these three tasks were demonstrated, the participants were given the same set of nine

semantic attributes (each of varying complexity) to create in SABer. These semantic

attributes were presented to the participants in a random order. This is because users tend to

get quicker with later tasks when they are more familiar with the application interface. By

presenting the tasks in a random order it meant that the average time taken to create a

semantic attribute would not be lengthened due to it appearing near the start of the list, or

shortened due to being near the end of the list. The semantic attributes presented to the user

are listed as follows:

152

1. Quality_Of_Audio_Files_in_my_iTunes_Collection

2. Top_Singles_in_US_in_1990s

3. Artists_of_a_Genre_who_had_US_single_ that_Reached_a_Specific_Position

4. Countries_Paul_McCartney_has_Concerts_Scheduled_in

5. Artists_Scheduled_to_Play_Iceland

6. Popular_Beatles_Songs_According_to_Last.fm

7. Songs_On_A_Specific_Album_By_Specific_Artist

8. Countries_with_Very_Popular_Artists_on_MySpace

9. Irish_Artists_Popularity_on_MySpace

These semantic attributes spanned the following five sources:

1. An iTunes music library with over 30,000 songs stored in XML in an eXist

database

2. The US singles charts from 1950-2008 stored as XML in an eXist database

3. The freebase.com music SPARQL endpoint47

4. The MySpace.com SPARQL endpoint48

5. Last.fm web services49

Figure 5-8 shows an example of the Irish_Artists_Popularity_on_MySpace semantic

attribute that participants had to input from the task sheet into SABer during the experiment.

Element data types were labelled as Data Type A, B or C rather than XML, Web Service

API and RDF respectively, so that the technical participants wouldn’t have pre-conceived

perceptions about the relative difficulty of querying such sources.

47 http://lod.openlinksw.com/sparql
48 http://virtuoso.dbtune.org/sparql
49 http://www.last.fm/api

153

Name: Irish_Artists_Popularity_on_MySpace

Elements: (Data Type C)

• Total friends on MySpace is
• Country from is

Type: Hybrid

Rules:

 Return Type = MusicArtistName

• Parameter Name: Highly
Return all MusicArtistNames where
MusicArtistName Total friends on MySpace is > 50000
AND MusicArtistName Country from is = Ireland

• Parameter Name: Moderately
Return all MusicArtistNames where
MusicArtistName Total friends on MySpace is ≤ 50000
AND MusicArtistName Total friends on MySpace is ≥ 5000
AND MusicArtistName Country from is = Ireland

• Parameter Name: Lowly
Return all MusicArtistNames where
MusicArtistName Total friends on MySpace is < 5000
AND MusicArtistName Country from is = Ireland

Figure 5-6. Sample Semantic Attribute for SABer Evaluation

The participants were given the rules to encode into semantic attributes so there was no

need for them to be “experts” in the domain. This was justified as it was the ease in which

coherent rules could be constructed by non-technical users that was being evaluated rather

than the usefulness of the semantic attributes created. This chapter has already described

how useful semantic attributes can be deployed in various domains and applications, so it

was not necessary for this to be evaluated in this experiment.

During the course of the experiment the length of time it took each semantic attribute to be

created was recorded, the accuracy of the finished semantic attribute noted (whether it

exactly matched the semantic attribute given to the participants on paper) and any questions

or problems that arose. Users were also given the opportunity to create semantic attributes

of their own after creating the nine semantic attributes set for them. If users could

154

successfully generate their own semantic attributes, it would help to demonstrate how users

can independently use SABer to encode SME after a minimal training period.

Once the users were finished using SABer, each completed a short post questionnaire (see

Appendix F and an SUS test (System Usability Scale, see Appendix G) (Brooke 1996).

Previous studies have shown that summative usability studies using a SUS test should have

sample sizes of at least 12 participants (Lewis & Sauro 2009), hence it was possible to get

an overall SUS score for technical and non-technical groups as well as an aggregate value

for all 24 participants. The SUS test provided an indicator of the usability of SABer and the

post questionnaire gave space for participants to elaborate on any usability issues or

functionality they would like to see. Moreover, the post questionnaire asked participants to

specify if they found inputting rules for any of expert, hybrid or template semantic attributes

considerably more difficult, and likewise if they found inputting rules for any of query type

A, B or C significantly more challenging. These questions helped assess if part of the

SABer application needed to be adjusted to make inputting semantic attributes of certain

types more intuitive. Moreover they helped determine if the Semantic Attribute Model was

sufficiently generic and abstract to allow users to ignore the underlying idiosyncrasies of

querying different data types.

Once the experiment was completed the results from the twelve technical users were used to

provide a baseline performance in terms of speed and accuracy of creating the semantic

attributes. In previous evaluations it had been shown that technical users can use SABer to

generate useful and deployable semantic attributes, thus comparing the time it takes for non-

technical users to create accurate semantic attributes with that of technical users, it would

give a good indicator as to the usability of the tool. If the group of non-technical users

performed, on average, at a level of accuracy and efficiency close to that of their more

technical counterparts, it could be reasonably concluded that SABer was suitable for non-

technical domain experts to use. Moreover, by comparing the average SUS score for the

technical, non-technical and overall groups, a good indication of the tool’s usability would

be garnered.

5.6.3 Experimental Results

5.6.3.1 Effectiveness of SABER

As outlined previously the effectiveness of SABer in allowing non-technical users to

generate semantic attributes was measured by comparing their average speed and accuracy

155

with the averages of their technical counterparts. With regards to the speed in creating

semantic attributes, Figure 5-9 shows the average time in seconds it took for each of the

nine semantic attributes to be created (with error bars showing the Standard Error). On

average the non-technical users were only 8.4% slower than their technical counterparts.

Figure 5-7. Average Time Technical and Non-Technical Users Took to Create Each Semantic Attribute

The accuracy of the created semantic attributes was determined by comparing the Semantic

Attribute Model generated by SABer to the data specified to be inputted in each task sheet.

In terms of the accuracy of the semantic attributes created, the difference in performance

was even smaller between the groups than in the speed comparison. Technical users on

average got 8.5 out of 9 accurate (SD 0.67) with non-technical users getting 8.2 of 9

accurate (SD of 0.84). Figure 5-10 displays these details.

It must also be noted that all inaccuracies by participants in both groups can be classified

as “slips” where wrong numeric values or misspelt words were inputted by the users. Slips

are defined by attentional failures where the action was unintended (Reason 1990). These

kinds of errors can be easily corrected, and there were no cases of a user fundamentally not

being able to create a semantic attribute or giving up half way through. Furthermore, all

users were able to create their own semantic attributes after completing the nine semantic

attributes that were set for them. Many of these semantic attributes were of comparable

0	

50	

100	

150	

200	

250	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

Average	
 	

Seconds	

Seman+c	
 A-ribute	
 No.	

Technical	

Non-­‐technical	

156

complexity to those set for them during the experiment. This demonstrated that users could

independently create semantic attributes in SABer after a minimal amount of training.

Figure 5-8. Number of Accurate Semantic Attributes Generated by Technical and Non-Technical

Users

5.6.3.2 Usability of SABer

Figure 5-11 shows the SUS scores for the authoring tool which help determine the

system’s usability. On average the technical users (participants 1-12) gave SABer a SUS

score of 83.3% (SD 9.4), and the non-technical users (participants 13-24) 74.4% (SD 10.7)

The average SUS score for all 24 users was 78.85% (SD 10.05). Systems that score above

72.5% on the SUS scale can be classified as having good usability (Bangor et al. 2009), so

it can be concluded that SABer is considered a usable tool by both non-technical and

technical users.

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	

Accurate	

Seman+c	

A-ributes	

Par+cipant	
 Number	
 Technical	

Non-­‐Technical	

157

Figure 5-9. SUS Scores Given by Technical and Non-Technical Users

During the post questionnaire there was an opportunity for participants to make interface

suggestions and request functionality. The only major interface suggestion that was

mentioned frequently was to change how the metadata elements were presented in step

one. It was felt that it would be easier to choose the elements to be joined if they could be

sorted alphabetically as well as by superclass, source and collection (for XML type

sources). Some minor suggestions regarding spacing and font sizes were also mentioned

sporadically but overall users were largely satisfied with the interface, especially in how it

facilitated rules to be generated. In terms of the functionality that users would like to see

in SABer, the only significant ones mentioned were the ability to load and edit saved

semantic attributes, and to be able to join them into a compound semantic attribute if

appropriate. These compound semantic attributes could then be tested for results and

labelled for deployment in SARA if useful. Both these functionalities were not necessary

for this particular experiment, however it is planned for them to be included in future

releases of SABer.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	

SUS	
 	

SCORE	

Par+cipant	
 Number	
 Technical	
 User	

Non-­‐Technical	
 User	

158

5.6.3.3 Supporting Different Semantic Attribute and Query Types

The post questionnaire that participants filled in asked them to specify if they found

inputting rules for any of expert, hybrid or template semantic attributes a considerably

more difficult challenge. Figure 5-12 shows how 22 of the 24 users found no significant

extra difficulty in creating semantic attributes of different types (hybrid, template or

expert). None of the participants felt that creating template semantic attributes was more

difficult than any of the others. This meant that all participants were comfortable with

selecting “some text” or “some number” while creating rules instead of inputting specific

values. This was important to validate as non-technical users would typically not be as

familiar with the concept of a variable as technical users would, and this concept had to be

presented to them in an intuitive fashion.

Figure 5-10. No. Participants Who Found it Considerably More Difficult to Create Semantic

Attributes of Type expert, hybrid or template

The post questionnaire also asked if participants found inputting rules in one of query type

A, B or C significantly more challenging. Figure 5-13 shows that 22 out of the 24 users

found no significant difference in difficulty in creating semantic attributes using XQuery

(Query type A), SPARQL (Query type B) or API calls (Query type C). This was important

as it showed that users were largely indifferent to the underlying technologies they were

working with, and meant that the semantic attribute was sufficiently abstract to distance

these users from the underlying technical complexity of each query language.

0	

2	

4	

6	

8	

10	

12	

14	

16	

1	
 2	
 3	
 4	
 5	

Number	
 of	
 	

People	

1	
 =	
 Yes,	
 5	
 =	
 No	

Was	
 it	
 considerably	
 more	
 difficult	
 to	
 create	

seman+c	
 a-ributes	
 of	
 type	
 expert,	
 hybrid	
 or	

template?	
 	
 	

159

Figure 5-11. No. Participants Who Found it Considerably More Difficult to Make Rules for Data type

A, B or C?

5.6.3.4 Summary

Usability is defined by the International Organization for Standardization (ISO) as the

effectiveness, efficiency and satisfaction with which a specified set of users can achieve a

specified set of tasks in a particular environment (Jokela et al. 2003). Participants in both

the technical and non-technical groups were shown to perform the tasks effectively and

efficiently. Moreover, there was no significant difference in speed, accuracy or perceived

usability of SABer between the two groups. Users also found no significant difference in

creating semantic attributes of different types or with different query languages, thus

showing that SABer was sufficiently abstract to distance users away from the underlying

complexity of the data sources. It can thus be concluded from this section that SABer is a

tool with good usability and that domain experts without a computer science background

could use it to create semantic attributes with a minimal amount of training. This

highlights how feature E2 from Section 5.1 was fulfilled by SABer, and shows that it

should be possible for experts in any metadata rich domain to capture SME as semantic

attributes if given a sufficient choice of elements. The functionality that SABer offers

domain experts is rooted in the design requirements of the framework associated with the

expert-supported approach to data exploration. This close coupling of design and

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

1	
 2	
 3	
 4	
 5	

Number	
 of	

People	

1	
 =	
 Yes,	
 5	
 =	
 No	

Was	
 it	
 considerably	
 more	
 difficult	
 to	
 make	

rules	
 for	
 Data	
 type	
 A,	
 B	
 or	
 C?	

160

implementation meant that SABer’s successful evaluation also helped to validate the

underlying approach and framework.

5.7 Experiment 5: SARA Performance Evaluation

5.7.1 Experimental Goals

SARA was implemented as a prototype system that embodied the expert-supported

approach to data exploration that was outlined in chapter 3. As has already been

highlighted in this chapter, this prototype middleware has been successfully used with

different applications in various domains. However, as a middleware system it was

necessary to quantify how much overhead SARA added in terms of overall query latencies

between client applications and data sources. A middleware system should be as efficient

as is possible, thus by quantifying its overhead it helps show under what circumstances the

current prototype of SARA is a usable system. By detailing such overheads it also makes

clear whether these costs are outweighed by the benefits that SARA’s features offer client

applications. Thus this experiment aims to satisfy the procedure P1 outlined in Section

5.1. It must be stressed that the particular implementation of SARA evaluated is only a

prototype system, hence this performance evaluation focussed on its core feature

(processing Semantic Attribute Queries sent from a single client application). The three

main aims of this experiment were thus:

• Demonstrate that the speed in generating Result Models of the same size was

independent of the type, location and size of source being accessed.

• Show that processing time within SARA, apart from that taken to generate Result

Models, does not fluctuate hugely or take up a significant amount of time (in the

context of the typical overall latencies experienced by client applications who send

queries and process results – often measuring in seconds - for this experiment,

lengths of time less than 5ms were deemed insignificant).

• Examine how quickly SARA can generate Result Models of various sizes.

5.7.2 Experimental Setup

SARA is a middleware system and so does not store data directly, but rather proxies

queries to individual sources and reconciles the results. Hence the length of time for a

query to be returned to a client application is very dependent on the location and type of

data being accessed. For instance, issues such as the network quality between SARA and

the different data sources, the load on these repositories when the queries are being sent,

161

and the size and optimisation of these individual sources, will have a huge effect on query

latencies. As these factors vary hugely and are independent of SARA itself, this

experiment focuses on measuring the overhead of the query that can be attributed to

operations within SARA. The length of time that data sources spend processing queries is

unaffected whether they are queried directly by a client application without using SARA,

so it is the overhead added by SARA that is of most relevance to this thesis.

Three different data sources for this experiment were selected as representative instances

of the types of data sources that SARA can access and send queries to. The three sources

were selected because they contained data in XML, data in RDF and data accessible

through a Web API respectively, as well as having a similar (or larger size) than the

datasets previously accessed by client applications of SARA. They were as follows:

• A local XML database containing 21,755 songs that charted in the US Billboard

charts. This consisted of a 435,013 line XML file (17.7MB) stored in an eXist

1.2.4 database, running on an Apache Tomcat Servlet Engine (version 6.0.14e).

• Last.fm Web Services containing information on 280,000 artists and labels, and

over 7 million tracks50

• The http://lod.openlinksw.com/ SPARQL endpoint which contains over 7.59

Billion Triples51 from the Web of Data

This experiment was performed on a Dell Precision M2400 Laptop with an Intel Core 2

Duo Processor (2.6GHz) and 4GB of RAM. The Operating System installed was a 32 Bit

version of Windows 7, and the Semantic Attribute Queries were sent to SARA via an

application developed in Eclipse 3.5.2. An insignificant overhead is introduced as a result

of using Eclipse, and this time is accounted for as part of the Miscellaneous SARA Time

described in Table 5-4. All times for each operation were logged to a millisecond

precision within Eclipse. The times associated with SARA’s processing would of course

decrease considerably if a more powerful computer or sophisticated parallel processing

techniques were used. However, this experiment aimed to highlight the prototype’s speed

on a modest machine not optimised for performance. Table 5-4 describes the various

operation processing times recorded for this experiment.

50 http://blog.last.fm/2009/03/24/lastfm-radio-announcement
51 http://virtuoso.openlinksw.com/presentations/Linked_Data_Virtualization/Linked_Data_Virtualization.ppt

162

Table 5-4. Various Operation Processing Times Recorded for the Performance Evaluation of SARA

Overall
Execution Time

The total time from when a query is sent by the application, to when
the Result Model is presented onscreen.

Query
Execution Time

The time taken for the results to be returned from the data source for
all queries sent by SARA. Note that if a Semantic Attribute Query
contains more than one semantic attribute then these queries are
currently sent one after the other, with the next query not firing until
results from the previous query have been sent back.

Result Model
Generation
Time

The time it takes to generate the final XML Result Model.

Miscellaneous
SARA Time

Any other time taken within SARA such as decomposing Semantic
Attribute Queries into individual queries, or reconciling multiple result
sets. It also includes the minor additional time spent calculating the
various times in Eclipse which is not necessary for released versions of
SARA.

This experiment was divided into three parts. First, queries encapsulated within semantic

attributes were sent to the eXist database, to the Last.fm Web Service, and the SPARQL

endpoint, in order to demonstrate that the speed in generating Result Models of the same

size was independent of the type, location and size of source being accessed. Three

Semantic Attribute Queries were sent to each source, with each query returning

approximately 50, 150 and 250 results. Because these queries returned result sets of a

comparable size, it helped to determine if results sets from data sources of a particular

format took longer to process by SARA than others. Each of these queries was sent ten

times and an average length of time to generate the Result Model was stored for each one.

This allowed comparisons to be made regarding the time spent generating Result Models

of a similar size. Table 5-5 shows the specific queries sent from each semantic attribute,

the type of source they were accessing, and the number of results that the queries returned.

163

Table 5-5. List of Queries , Source Types and No. Results used in Part One of the Performance
Evaluation of SARA

 Source Type Queries No. Results

eXist DB Rock Artists with the top 86 US Singles of 1991 50

Web API 50 most similar artists to “Ben Folds” 50

SPARQL endpoint All songs by “My Bloody Valentine” 59

eXist DB Rock Artists with the top 140 US Singles of 1970 or
1972

150

Web API 150 most similar artists to “Van Morrison” 150

SPARQL endpoint All songs by “Therapy?” 154

eXist DB Rock Artists with the top 160 US Singles of 1981,
1981, 1983 or 1984

248

Web API 250 songs most similar to U2’s “One” 250

SPARQL endpoint All artists with a song called “Today” 257

The second part of the experiment involved Semantic Attributes Queries that were sent to

SARA (some with single and some with multiple semantic attributes), in order to

demonstrate that the processing time within SARA, apart from that taken to generate

Result Models, does not fluctuate hugely or take up a significant amount of time. As this

part of the experiment was focussed on measuring internal processing times of SARA,

regardless of what source the results were coming from (which was examined in the first

part of this experiment), the queries run were only required to return results sets of various

sizes, and each query was run ten times to get an average duration. All the times specified

in Table 5-4 were stored (Overall Execution Time, Query Execution Time, Result Model

Generation Time and Miscellaneous SARA Time), so that the significance of each process,

in terms of time, could be analysed. The various Semantic Attribute Queries that were sent

in this part of the experiment were:

• Top Singles in US Charts in 1990s

• Number Very Low Tempo Songs Charting in US

• Number Very High Tempo Songs Charting in US

• Rock Artists with songs in the top 50 selling of a year, in the 60s, 70s, 80s or 90s.

(four separate semantic attributes combined)

• Rock Artists with songs in the top 200 selling of the year, in the 60s, 70s, 80s or

90s. (four separate semantic attributes combined)

164

The final part of the experiment aimed at testing how quickly SARA could generate Result

Models of various sizes, thus it was necessary to send various queries that returned

increasing amounts of results. Hence, 15 Semantic Attribute Queries (each containing a

single semantic attribute relating to the tempo of songs in the eXist database) were sent to

SARA, with each returning a result set ranging in size from 53 to 18,177. Each of these

queries was sent ten times and an average latency for the Result Model generation was

calculated.

Specifically this experiment looked at measuring the length of time it takes to generate a

standard Result Model from various Semantic Attribute Queries that do not require

superclass conversion. The reason for focussing on Semantic Attribute Queries that do not

require superclass conversion, is that this conversion functionality requires a minimum of

one further query to be sent for each result (i.e. sending a query to convert from an Album

ID to an Artist ID). Hence, if there are a large amount of results from the original query

sent by the client application, it means that this initial query may spawn many hundreds or

thousands of extra queries. The speed of these queries is very dependent on the particular

data source being accessed and the network conditions at that time. As mentioned in

Chapter 4, the current prototype of SARA sends these extra queries one at a time, with the

next query firing after the results from the previous query have been returned. This was as

a result of a decision to focus on implementing the core functionality of SARA rather than

ensuring that all its operations would perform to a production level performance. Hence,

the SARA prototype is only suitable for handling superclass conversions if there are a

small amount of results, and the application does not view these queries as time critical.

5.7.3 Experimental Results

5.7.3.1 Comparison of Result Model Generation Speed for Different Data
Sources

This thesis hypothesises that the speed of generating a Result Model by SARA is

independent of the data source type. This is because the Result Model is generated from a

HashSet of identifiers reconciled from the separate data source results. Creating a Result

Model involves converting this HashSet into an XML file that can be parsed by the client

application. Hence, the number of results in the HashSet (and typically to a lesser extent

the number of characters in each result identifier) is the key factor in determining the

length of time it takes to generate the Result Model.

165

In terms of all the queries listed in Table 5-5, the average length of time taken for all

queries listed to generate a Result Model was less than 1ms. Though the length of time

taken to generate the larger Result Models in this table was likely to have been longer

(though still sub-millisecond), it was not possible to measure this difference as millisecond

granularity was the level of precision recorded for this experiment. However, the standard

deviation for every query run was zero (at millisecond granularity), which demonstrates

that SARA consistently generates Result Models of the same size at approximately the

same speed, regardless of whether results come from a data source located locally or

remotely, or if accessed via XQuery, SPARQL or through a native API. This supports the

hypothesis that the performance of SARA in generating a Result Model is independent of

the size, location or type of data sources that have been queried.

5.7.3.2 Comparison of Processing Speeds for Different Operations within
SARA

This thesis hypothesises that the processing time within SARA, apart from that taken to

generate Result Models, does not fluctuate hugely or take up a significant amount of time.

As mentioned earlier, for the purposes of this experiment, times less than 5ms were defined

as insignificant. The total height of each column in Figure 5-14 depicts the total length of

time for a semantic attribute (Top Singles in the US Charts in the 1990s) to be sent to the

eXist database and its 100 results to be processed by SARA. Each column (representing

this total time) is divided into three, representing (from bottom up) the Query Time, the

Result Model Time (which does not feature in this case because it never averaged over

1ms) and the Miscellaneous SARA Time. The query was sent ten times, and Figure 5-14

shows how the Miscellaneous SARA Time stays very consistent.

166

Figure 5-12. Time Spent Processing Semantic Attribute “Top 100 Singles in US Charts in 1990s”

Figures 5-15, 5-16 and 5-17, show three further semantic attributes that were each sent ten

times to the eXist database and processed by SARA. The results are plotted in the same

manner as just described in Figure 5-14. These semantic attributes returned larger result

sets (444, 984 and 11,448 respectively), with the increased processing time SARA needed

to generate the Result Model clearly visible in figures 5-16 and 5-17 (note that Y axis in

Figure 5-17 starts at 540 to make it easier to compare with previous figures). Despite the

increased number of results, the Miscellaneous SARA Time is negligible compared to the

length of the overall query (fluctuating between 1ms and 5ms).

0	

20	

40	

60	

80	

100	

120	

140	

160	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

ms	

Query	
 Itera+ons	
 with	
 100	
 results	

Query	
 Time	
 Result	
 Model	
 Time	
 Misc	
 SARA	
 Time	

167

Figure 5-13. Time Spent Processing Semantic Attribute “No. Very Low Tempo Songs Charting in US”

Figure 5-14. Time Spent Processing Semantic Attribute “No. Very High Tempo Songs Charting in US”

0	

20	

40	

60	

80	

100	

120	

140	

160	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

ms	

Query	
 Itera+ons	
 with	
 444	
 results	

Query	
 Time	
 Result	
 Model	
 Time	
 Misc	
 SARA	
 Time	

0	

20	

40	

60	

80	

100	

120	

140	

160	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

ms	

Query	
 Itera+ons	
 with	
 984	
 results	

Query	
 Time	
 Result	
 Model	
 Time	
 Misc	
 SARA	
 Time	

168

Figure 5-15. Time Spent Processing Semantic Attribute “No. Average Tempo Songs Charting in US”

The lack of time spent processing in SARA is further highlighted in Figures 5-18 and 5-19

where more complex Semantic Attribute Queries are sent. These queries consist of four

separate semantic attributes joined together that returned result sets of 794 and 1820

respectively. For Figure 5-18 the miscellaneous SARA time only averaged 1ms and for

Figure 5-19 it averaged 2ms. Please note that Figure 5-18 and Figure 5-19 start their Y-

axis at 540 and 840 respectively to make them easier to compare.

Another interesting feature of Figures 5-18 and 5-19 is the length of each query time. As

discussed earlier, SARA processes Semantic Attribute Queries that contain multiple

semantic attributes in sequence. This means that the query encapsulated in each of the four

semantic attribute was sent in turn, with the next one fired once results had been received

by SARA for the previous query. In future versions of SARA, when these queries are sent

in parallel using multi-threading, then the query time component should reduce

significantly, thus bringing down the overall query time experienced by the client

application.

540	

560	

580	

600	

620	

640	

660	

680	

700	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

ms	

Query	
 Itera+ons	
 with	
 11,448	
 results	

Query	
 Time	
 Result	
 Model	
 Time	
 Misc	
 SARA	
 Time	

169

Figure 5-16. Time Spent Processing Semantic Attribute Query “Rock Artists with Songs in the Top 50

Selling of a Year, in the 60s, 70s, 80s or 90s”

Figure 5-17. Time Spent Processing Semantic Attribute Query “Rock Artists with Songs in the Top

200 Selling of a Year, in the 60s, 70s, 80s or 90s”

540	

560	

580	

600	

620	

640	

660	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

ms	

Query	
 Itera+ons	
 with	
 4	
 Seman+c	
 A-ritbutes	
 and	
 	
 794	
 results	

Query	
 Time	
 Result	
 Model	
 Time	
 Misc	
 SARA	
 Time	

840	

860	

880	

900	

920	

940	

960	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

ms	

Query	
 Itera+ons	
 with	
 4	
 Seman+c	
 A-ributes	
 and	
 1820	
 results	

Query	
 Time	
 Result	
 Model	
 Time	
 Misc	
 SARA	
 Time	

170

These results have demonstrated that all processing time within SARA, apart from the time

taken to generate Result Models, does not fluctuate greatly or take up a significant amount

of time i.e. less than 5ms. This was the case even when Semantic Attribute Queries

contained multiple semantic attributes which required many results to be reconciled.

Surprisingly, it was also noted that the most processor intensive operation of SARA

(Result Model generation) was also not a hugely significant proportion of the overall query

length, which consisted mainly of time spent querying the data sources themselves. The

average time taken for Result Model generation is examined in more detail in the following

section.

5.7.3.3 Speed of Result Model Generation in SARA for Variously Sized
Result Sets

The final part of this experiment looked at how quickly SARA could generate Result

Models of various sizes. As shown in the previous results section, all other processing

time in SARA do not fluctuate hugely or take up a significant amount of time, relative to

the overall query latency. Table 5-7 shows the average speed (over ten iterations) for

generating Result Models of different sizes, ranging from 53 to 18,177 results.

Table 5-6. Average Length of Time SARA takes to Generate Result Models of Different Sizes

No. Results Avg Result Model
Generation Time in ms

Standard Deviation

53 0 0.00
546 0.1 0.32
666 4.2 0.42
984 4.9 1.52
1,697 1.1 0.32
2,359 1.2 0.42
3,380 2.0 0.00
3,953 2.0 0.00
4,952 3.0 0.00
5,601 3.1 0.32
5,903 8.2 0.42
6,234 8.0 0.00
11,727 10.6 0.70
16,363 14.6 1.71
18,177 15.2 0.42

171

Figure 5-20 visualises the data from Table 5-7 as a graph. The overall trend of the graph is

as expected, with the length of time generally increasing as the number of results to be

processed increase. As shown in the graph a large Result Model of over 18,000 results can

be processed in just over 15ms, so in the overall context of query latencies, this overhead is

unlikely to have a noticeably negative impact on a user’s interaction with a client

application.

Figure 5-18. Total Result Model Size Graphed Against the Average No. Results Added per ms.

5.7.4 Summary

The main aim of this experiment was to examine the speed at which SARA generates

Result Models of various sizes, in order to show under what circumstances the current

prototype of SARA is a usable system. This satisfied feature P1 outlined in Section 5.1.

Before tackling this task, the first two parts of the experiment involved demonstrating that

the speed of generating Result Models of the same size is comparable regardless of the

type, location and size of source being accessed, and that all processing time within SARA,

apart from Result Model generation, does not fluctuate hugely or take up a significant

amount of time relevant to the overall query. Demonstrating these features was important

as it showed that application developers can access repositories with complex queries, even

with billions of triples (see Section 5.7.2), without any significant penalties in terms of

overall query latencies.

0	

2	

4	

6	

8	

10	

12	

14	

16	

33	
 3,320	
 6,607	
 9,894	
 13,181	
 16,469	

Av
g	

Ti
m
e	

to
	
 c
re
at
e	

Re

su
lts
	
 M

od
el
	
 in
	

m
s	

No.	
 Results	

172

Overall, the performance of the SARA prototype on a modest computer is likely to be

acceptable to many potential applications (especially those wishing to access multiple

remote sources), as a typical query returning over 18,000 results can be processed in

approximately 15ms. To put this in context, the Film Domain Exploration Client only

required 50 results to be returned at a time, and a typical X2Photo query returned result sets

in the hundreds. Though time taken to generate Result Models does change as expected

depending on the number of results that need to be processed, in the context of queries that

return less than 5,000 results (these add less than 5ms to the overall query latency) the

fluctuation is minimal and unlikely to impact on user satisfaction with the client

application. Furthermore, it must be reiterated that this prototype version of SARA was

evaluated on a modest laptop not optimised for performance, and that the length of time

associated with SARA’s processing would decrease considerably by using a more

powerful computer or more sophisticated parallel processing techniques.

The main issue of concern for potential application developers, in terms of the current

SARA prototype, should be whether the corresponding overhead in SARA will affect their

user’s interaction with their application. The results of this experiment provides them with

a guideline of what performance they can expect, and allow them to better judge whether

the associated overhead of SARA is outweighed by its features. As mentioned previously,

SARA’s performance is likely to be acceptable to many types of applications. However, it

should be noted that even when the performance of SARA is extremely efficient, the slow

speed of processing within individual data repositories or bad congestion in a network,

may result in the overall performance not being sufficient for particular applications. This

issue is common with applications reliant on accessing remote sources, and advances in

this research area will benefit all distributed systems in general.

5.8 Analysis of Evaluation Results

The aims of this chapter were to show how feedback from preliminary evaluations helped

shape the design and implementations of both SARA and SABer, as well as to provide

further evidence that the following four features were being supported:

E1 SARA provided client applications access to data sources without prescribing a

specific user interaction paradigm for the GUI, or for their developers to know

the underlying query language associated with each source.

173

E2 SABer enabled the SME leveraged by the client applications to be encoded by

non-technical experts.

E3 Casual users that appropriate (or tailor) this SME within a client application

could send complex queries to data sources via SARA.

E4 SARA and SABer are domain independent.

Furthermore, as middleware systems can cause an extra bottleneck that client applications

must pass data through, it was also necessary to test SARA’s performance in order to help

quantify to what degree it increases query latencies. This procedure was summarised as:

P1 Performance evaluation of SARA to see under what circumstances it is a usable

middleware

Figure 5-21 depicts the hierarchy that exist from this thesis’ research question down to the

individual evaluation experiments (please note that the size of the individual boxes is not

an indicator of their relative importance). It shows how the evaluation features that were

looked for in the various experiments stemmed directly from research objectives, and

ultimately the research question. As mentioned previously, the case study in Section 4.4

describes how SARA accommodates the features encapsulated in C1 (technical features of

SARA showcased in music case study), so this chapter did not reiterate these findings.

Figure 5-19. Hierarchy from Research Question down to Individual Evaluation Experiments

The experiments described in this chapter showed how the various evaluation features

were present in SARA or SABer, and that the evaluation objectives that they were based

Research	
 Ques(on	

Research	

Objec(ve	
 1	

Research	

Objec(ve	
 2	

Evalua+on	
 	

Features	

Experiment	

No.s	
 	

Research	
 	

Objec(ve	
 3	
 (Evalu(on)	

Evalua(on	
 	

Objec(ve	
 3A	
 	

E2	

Exp	
 4	

Evalua(on	

Objec(ve	
 3B	

E3	

Exp.	

1	

Exp.	

2	

Evalua(on	
 	
 Objec(ve	
 3C	
 	

C1	

Exp.
1	

E1	

Exp.	

2	

E4	

Exp.
3	
 	

E5	

Exp.	

4	
 CS	

174

on were attained. An analysis of the evaluation experiments is now presented from the

perspective of three main stakeholders (the end user, domain expert, and the application

developer), and is followed by a comparison of SARA and SABer to the state of the art.

5.8.1 Stakeholder Perspective

The main aim of SARA is to support data exploration by casual users, hence it was

important that Experiment 1 and Experiment 3 explicitly showed that users found features,

which SARA directly facilitated, in the application as useful e.g. making queries over

multiple data sources in a consolidated fashion, using GUIs not restricted to a specific

interaction paradigm, and tailoring semantic attributes to their own interpretation. These

experiments showed that casual users can benefit from leveraging expertise while exploring

a domain of interest to them, which was vital in demonstrating the real potential for larger

systems built upon these technologies and their underlying approach.

From the domain expert’s perspective it was possible to see the evolution of SME

encoding throughout the various experiments. In Experiment 1 (Section 5.3) there was no

tool at all and the SME had to be encoded manually, but in Experiment 2 (Section 5.4)

three different domain experts successfully used the prototype version of SABer to

generate semantic attributes and provided feedback on refinements that could be made.

Experiment Three (Section 5.5) detailed how semantic attributes created in SABer were

deployed in different applications, and successfully utilised by end users both explicitly

and implicitly. Finally, Experiment 4 (Section 5.6) showed that the updated version of

SABer was a tool with good usability, and that domain experts without a computer science

background could use it to create semantic attributes with a minimal amount of training.

This was crucial in showing the novelty of the system and its relevance to metadata rich

domains. The flexibility of the Semantic Attribute Model, which can define SME in

multiple languages was also validated, and again provided further evidence of the

uniqueness and wide applicability of the system.

From a developers perspective it was shown how SARA evolved over the various

experiments with user feedback resulting in additional features being added over time e.g.

compatibility with new remote sources of different types, refinement of SARA’s API,

development of reusable models etc. Specifically, the use of a parameter based API and the

support for reusing semantic attributes and sources models make the approach

underpinning SARA an attractive one for developers wishing to create useful data

175

exploration applications efficiently. Furthermore, in the course of this chapter SARA and

SABer have been evaluated in four different domains (music, film, digital imaging and

academic publications), which strongly highlights the domain independence of these

systems. This is significant in making SARA, and the approach it is based on, as

applicable to as wide an audience as possible. Finally Experiment 5 (Section 5.7) showed

that the current performance of SARA is good, and that its overhead is unlikely to deter

developers from employing it with their applications.

5.8.2 State of the Art Comparison

SARA and SABer are the two main components implemented for this thesis, hence there is

a necessity to describe the set of features that they offer which distinguish them from other

systems from the state of the art. For instance, in terms of the tools that support Complex

Querying by Casual Users over Multiple Sources (outlined in Section 2.2.8), the main

features of SARA that make it distinct are that it:

• supports reconciliation of data from multiple sources in different data formats

• employs SME encoded by non-technical domain experts (in an evaluated tool) to

help end users explore information domains

• allows client applications access to data sources without prescribing a specific user

interaction paradigm for the GUI, or for their developers to know the underlying

query language associated with each source

Table 5-7 summarises the features offered by SARA in comparison to those systems

analysed in Chapter 2. It highlights how SARA offers consolidated access to multiple

data sources, in formats commonly used on the Web. SARA also supports users through

SME that has been encoded in authoring tool that is usable by non-technical domain

experts. Finally SARA allows bespoke applications to be built on top of it, which means

developers are free to use existing widgets to create a user interface, but if this is too

restrictive, they can instead develop their own user interface that is tailored specifically to

the users of their application.

176

Table 5-7. Summary of Systems that Support Complex Querying by Casual Users

In terms of the Domain Independent Tools to Support SME Encoding by Non-Technical

Experts (Section 2.3.7), SABer is novel as it:

• generates SME in different data formats and for use over multiple data sources

• supports tailoring of the rules encapsulated in this SME

• creates a model of SME that is reusable in different installations

• has been evaluated successfully with non-technical users

Table 5-8 summarises the features offered by SABer in comparison to those systems

referenced during the state of the art analysis.

System Multiple
Sources

Multiple
Data
Types

Data Formats SME Main
Query
Interface

Supports
Application
Development

Search
Computing

Yes Yes Web Services
and Relational
DBs

Yes – no
authoring tool

Widgets Yes – Widget
fronted search
application

Parallax No No Freebase
Knowledge
Base

No – auto
generated facets

Facets No

Sparallax No No RDF No – auto
generated facets

Facets Yes, but only
by specifying
an endpoint for
their GUI

Explorator Yes No RDF No – auto
generated facets

Facets &
Query By
Example

Yes, but only
by specifying
an endpoint for
their GUI

PowerAqua Yes No RDF No NLI No
Orakel No Yes OWL, F-Logic

Yes – has
authoring tool
(Framemapper)

NLI Yes – can be
integrated into
bespoke
application

MashArt Yes Yes Web Services,
Atom feeds,
JSON, XML

Yes - has
authoring tool
(MashArt
Editor)

Mashup
Widgets

Yes - Mashup

SWP Yes Yes RDF, Excel,
Relational DB,
Text files

Yes – has
authoring tool
(Ontology
Management
Component)

Mashup
Widgets

Yes – Bespoke
Portals

SARA Yes Yes XML, RDF,
Web APIs

Yes- has
authoring tool
(SABer)

Bespoke
GUIs

Yes – Bespoke
Applications

177

Table 5-8. Summary of Domain Independent Tools to Support Non-Technical Domain Experts to

Encode SME

Software SME
Generated

Multiple Data
Types

Tailorable
SME by end
user

Evaluated
by Non-
Technical
Users

Reusable Multiple
Sources

Konduit VQB SPARQL
queries

No No No Yes Yes

SPARQLViz SPARQL
queries

No No No Yes No

Potluck Mashup up of
Exhibit based
sources

No No Yes No Yes

SpreadATOR Spreadsheet
based Mashup

Yes – XML,
JSON,
Relational DB

No No No Yes

Web Ontology
Building
System for
Novice Users

RDFS / OWL Yes – OWL /
RDFS

No No Yes N/A

ROO OWL No No Yes Yes N/A
SABer XQueries,

SPARQL
queries and
Web API calls

Yes Yes Yes Yes Yes

SABer and SARA work in tandem with each other, and their combined feature sets

highlight how they advance the state of the art. As shown in Chapter 4, these features

stemmed directly from the design requirements of the framework associated with the

expert-supported approach to data exploration. This close coupling of design and

implementation means that the successful evaluation of SARA and SABer described in this

chapter also helps to validate the usefulness of the underlying approach and its framework

and models.

5.9 Summary

This chapter described the overall evaluation strategy employed in this thesis, as well as

detailing the various experiments involved. These evaluation studies incorporated a

variety of techniques, such as user trials, performance tests, questionnaires and interviews,

and included experiments with SABer, SARA and the third party applications that used

them. An analysis of the evaluation results highlighted how the implementation of SARA

and SABer were successful, that these systems fulfilled the research objectives outlined in

Section 1.3 and that they contained a set of features that advanced the state of the art.

Furthermore, their successful evaluation also helped to validate the expert-supported

approach to data exploration itself. The following chapter concludes this thesis by

178

outlining the specific contributions that have been made, and by highlighting some future

work that can extend this research.

179

6 Conclusion
This chapter presents the conclusions of the thesis. Initially it examines to what the degree

the objectives outlined in this thesis have been fulfilled and then discusses the

contributions that this research has made. The work undertaken in this thesis has potential

to be extended upon in a number of different areas, thus some possible routes for

investigation are also discussed in the Future Work section.

6.1 Objectives & Achievements

The central research question of this thesis examined how subject matter expertise may be

effectively encoded by non-technical experts and then leveraged by casual users to assist

exploration and querying of multiple data sources from a domain. The following

objectives stemmed from this research question:

1) Analyse the state of the art in data exploration to determine the extent to which casual

users are facilitated, and examine the state of the art in SME encoding for non-

technical experts to identify the main features of current approaches.

2) Define an approach that allows end users to leverage SME (tailoring as appropriate)

when exploring and consolidating information from separate data sources in a domain,

and describe the accompanying models and framework necessary to implement it.

3) Perform evaluation studies to assess:

a) the usability (effectiveness, efficiency and satisfaction) (Jokela et al. 2003), of the

implemented SME authoring component of the framework, and the ability of non-

technical users to encode SME.

b) whether the encoded SME can be usefully exploited by client applications to

adequately support end-user exploration.

c) the features of the framework implementation and whether the consolidation of

data from separate sources is supported.

The primary objective of this thesis (Objective 2) was to define an underlying approach

and its accompanying framework and models, which allows end users to leverage SME

(tailoring as appropriate) when exploring and consolidating information from separate data

sources in a domain. This was achieved through the creation of the expert-supported

approach to data exploration, which underpins a set of models and a novel framework

consisting of several components and interfaces. The close coupling of the design outlined

180

in Chapter 3 with its implementation (described in Chapter 4), meant that the successful

evaluations of SARA and SABer (detailed in Chapter 5) also validated the usefulness of

the approach and its accompanying framework and models.

The design specification outlined in Chapter 3 was influenced by Objective 1 of this thesis,

which was to examine the state of the art in how casual users are facilitated in performing

data exploration, as well as the state of the art in SME encoding for non-technical experts.

From the analysis of deficiencies within the state of art that took place in Chapter 2, the

following novel design requirements were derived for the framework which embodies the

expert-supported approach to data exploration:

• Provide client applications, which support user exploration, with consolidated

access to multiple sources of various data types, without prescribing a specific user

interaction paradigm for the GUI, or for their developers to know the underlying

query language.

• Enable the SME leveraged by the client applications to be encoded by non-

technical experts, and to be tailored to an end user’s interpretation.

• Enable casual users that appropriate and tailor this SME within the client

applications, to send complex queries to multiple data sources via the framework.

Moreover, these requirements were accompanied by these best practice features also

derived from the state of the art:

• Allow data to reside in its original location, and provide instance level

reconciliation between the different data sources.

• Be a domain independent and modular framework that supports the reusability and

movement of sources and SME between different installations.

• Support extensibility by enabling addition of extra SME and of new sources (even

of a different data type) to enrich the relationships within the domain.

All of these features were successfully implemented into the framework design described

in Chapter 3, and the seven steps that constitute the expert-supported approach to data

exploration were also detailed within that chapter.

The expert-supported approach to data exploration and its accompanying framework and

models were used to underpin the technical implementations of the Reconciliation Engine

(SARA) and the SME Authoring Tool (SABer). As described in this thesis, SARA was

181

successfully deployed in a number of different domains (Music, Film, Digital Images and

Academic Publications), supporting various client applications. Likewise SABer, which

supports non-technical domain experts to encode SME, was successfully utilised in a

number of domains.

Both SARA and SABer were successfully evaluated (as described in Chapter 5), which

fulfilled the final objectives set out for this thesis (3a-3c). Because SARA is essentially a

middleware system, its evaluation necessitated its use by a number of client applications.

These experiments showed that participants could use these applications to construct

complex queries (explicitly and implicitly) over different information sources and to

explore the data in a useful fashion (see Sections 5.3 and 5.5.8). Because this

functionality was largely facilitated by SARA, it supports the contention that SARA is a

useful framework for supporting the querying and exploration of metadata rich domains.

Furthermore, a performance evaluation (Section 5.7) of the SARA prototype specified

under what conditions the current prototype system is suitable to be deployed. SABer also

had evaluation experiments performed on it with end users (see Sections 5.4 and 5.6), and

afterwards it was concluded that SABer is a tool with good usability and that domain

experts without a computer science or information modelling background could use it to

create semantic attributes with a minimal amount of training.

6.2 Contributions to the State of the Art

The major contribution of this thesis is the expert-supported approach to data exploration

and its accompanying models. This approach contributes to the state of the art by defining

a novel and generic knowledge access platform, which serves as a useful intermediary

between curators and consumers of data. Specifically this approach supports non-technical

experts to define rules relating to notional concepts in their domain, which can then be

leveraged and tailored by end users in order to bridge the gap between them and the data

they are interested in. These features were highlighted in Chapter 5 where the generation

of semantic attributes by non-technical experts, and their successful deployment in various

client applications, were described.

By supporting the manipulation of SME by end users, it makes it possible for the

continuum between the expert and end user to blur over time. For instance, as the end user

becomes more comfortable with the client application and the domain, they can tailor the

semantic attributes, allowing the novice user to express their own views of the domain.

182

Their views may not be “expert” per se, but they may be more appropriate and useful to the

user at that specific time than wholly appropriating the encoded expertise of another

person. This is important, as it is more flexible than a “one size fits all” approach to

expertise in domains which may contain widely differing opinions on specific concepts.

The expert rules are encoded in a novel reusable SME model that contributes to the state of

the art by natively supporting users who wish to tailor these expert rules to their own

interpretation or context, which is often necessary because SME sometimes encompasses

rather subjective notions such as “cheap” or “near”. Chapter 4 detailed how the design for

the Semantic Attribute Model was successfully implemented in XML and could be

generated in the SME Authoring Tool called SABer. Furthermore, by appealing to domain

experts with limited computer and data modelling skills, the approach proposed in this

thesis is attractive to a wide audience of experts in variety of domains, and its use of agile

data integration techniques allows reusable dataspaces to be formed. These dataspaces

help support the reconciliation of data from multiple sources in a domain, and the use of

Domain Superclass Models and Source Models outlined in Chapter 3 facilitate this. The

music case study outlined in Section 4.4 also highlighted how these models could be

utilised to support a dataspace of five sources, which contains data in three different

formats. Overall, the approach presented in this thesis, if widely deployed online, has the

potential to help systemise the appropriation of expert judgement by casual users, in order

to assist meaningful exploration of a domain.

The minor contribution of this thesis is the framework to support the expert-supported

approach to data exploration. The implementations of SARA and SABer are instruments

of this framework which were used to showcase its features. Chapter 5 detailed several

experiments which highlighted how these systems, and the underlying framework, were

iteratively designed, and their features were ratified with different stakeholders.

Furthermore, both SARA and SABer have been successfully utilised in different domains

and with different applications. Specifically they were central technologies used in two

M.Sc. theses (Gürel, 2009; Hengster, 2009) and two internship projects within the School

of Computer Science and Statistics. SARA and SABer are also in the early stages of

being deployed in the Science Foundation Ireland funded AMAS project52, where they are

being used by a multinational publishing house in order to support exploration of their vast

52 http://kdeg.cs.tcd.ie/amas

183

e-learning resources (Hampson et al. 2011). One of the aims of this project is to help

educators to construct learning modules that are pedagogically consistent with a

curriculum, as well as being tailored to the individual needs and preferences of each

student. SARA is seen as a key enabling technology for this. Furthermore, SARA and

SABer have been identified for deployment into the Science Foundation Ireland funded

FAME53 project, where low level streaming data is to be semantically enriched using

SARA, in order to provide key information and alerts to a network management dashboard

(Conlan et al. 2010). By supporting the injection of expert knowledge into this system, it

will enable ordinary end users to get a better understanding of the data generated within the

network, and to have more control over its performance. In summary, the successful

deployment and evaluation of SARA and SABer validates the framework they represent,

and reinforces the value of the expert-supported approach to data exploration and its

models.

Evidence of the overall contribution to the state of the art comes in the form of seven peer

reviewed publications relating to this thesis:

1. C. Hampson, O. Conlan, Facilitating Casual Users in Exploring Linked Data

through Domain Expertise, 22nd International Conference on Database and Expert

Systems Applications, DEXA 2011, Toulouse, France, August 2011 [IN PRESS]

Details the SABer evaluation and the implementation of the Music Case Study

2. C. Hampson, M. Gürel, O. Conlan, Using Expert-Derived Aesthetic Attributes to

Help Users in Browsing Image Databases, 22nd International Conference on

Database and Expert Systems Applications, DEXA 2011, Toulouse, France, August

2011 [IN PRESS]

Describes the X2Photo Experiment and how the application interacts with SARA

3. C. Hampson, O. Conlan, V. Wade, Challenges in Locating Content and Services for

Adaptive eLearning Courses, Eleventh IEEE International Conference on

Advanced Learning Technologies, 2011. ICALT 2011, Athens, USA, 6-8 July 2011

[IN PRESS]

53 http://www.fame.ie

184

Discusses SARA and SABer’s application to the eLearning domain as proposed in

the AMAS project

4. C. Hampson, O. Conlan, Leveraging Domain Expertise to Support Complex,

Personalized and Semantically Meaningful Queries Across Separate Data Sources,

The IEEE Fourth International Conference on Semantic Computing, Pittsburgh,

PA, USA, September 22 - 24, IEEE, 2010, pp305 - 308

Details the extension of SARA to multiple data types, the evolution of its underlying

approach and its application to multiple domains

5. O. Conlan, J. Keeney, C. Hampson, F.P. Williams, Towards Non-expert Users

Monitoring Networks and Services through Semantically Enhanced Visualizations,

6th International Conference on Network and Service Management (CNSM 2010),

Niagara Falls, Canada, October, 2010, 2010

Discusses SARA and SABer’s application to the Network Management Domain as

proposed in the FAME project

6. C. Hampson, O. Conlan, Supporting Personalised Information Exploration through

Subjective Expert-created Semantic Attributes, Third IEEE International

Conference on Semantic Computing, Berkeley, CA, USA, September 14-16, 2009

Details the Multi-Source Music Trial and introduces the main features of SARA and

its underlying approach

7. C. Hampson, Semantically holistic and personalized views across heterogeneous

information sources, Proceedings of the 2nd International Workshop on Semantic

Media Adaptation and Personalization, 2nd International Workshop on Semantic

Media Adaptation and Personalization, London, 17-18 December, 2007, pp249 -

252

Describes an early version of the approach which underpins this thesis

These represent the publications so far, but it is intended that further work from this thesis

and other collaborative research will be published in appropriate venues in the near future.

185

6.3 Future Work

This thesis has demonstrated the significant potential that SARA and SABer have in

supporting casual users to explore information domains of interest. Hence, the likely

direction of this research is to extend the features and performance of both these systems,

and have them deployed in interesting domains with real world data. Indeed, as has

already been mentioned, SARA and SABer are currently in the early stages of use in the

AMAS project which is focused in the eLearning domain, and the FAME project which is

based in the network management domain. It is envisaged that further domains and

opportunities will be sought to showcase the benefits that SARA and SABer offer in the

near future. Eventually, it is planned to release SARA and SARA publicly for any domain

experts and application developers to experiment with and utilise. Of equal importance to

this software release, is to use these systems to further ratify and extend the expert-

supported approach to data exploration and its associated framework and models. By

ensuring that the approach itself is robust, it will enable a variety of complementing

technologies to be built on top of it.

6.3.1 Extending SARA and SABer

Though the current prototype of SARA has been shown to deliver sufficient features and

performance for many prospective applications, there are a number of additional

components and changes it could benefit from. First of all, support for more data sources

of different types, including relational databases and streaming data would significantly

add to the number of data sources that SARA could natively support. Whereas adding

support for relational databases and SQL to the current prototype of SARA should be

relatively straightforward, the addition of support for streaming data in the form of a rule

engine like JBoss Rules54 is likely to be more challenging, and may mean having to revisit

the underlying framework and approach. Any support for new types of data sources in

SARA will also have to be incorporated into SABer, and the minor user interface

suggestions that it received during its evaluation will also need to be fully implemented.

The addition of further operators and functions for each of the specific query languages

supported by SABer would also provide domain experts with more options while encoding

their expert rules. However it will have to be ensured that these additions do not make the

tool overly complex for the average user. Finally, SABer should be extended so that it

54 http://www.jboss.org/drools

186

supports finished semantic attributes to be combined together into Semantic Attribute

Queries that experts can experiment with and label as desired. In effect this will mean that

SABer will not only be responsible for generating semantic attributes, but it will also

double as a generic client application to test Semantic Attribute Queries against the domain

in question.

Another useful component that will be added to the overall framework is an authoring tool

for Source Model construction. Currently all source models are encoded in XML by hand,

which may result in syntactical or structural errors occurring. Hence, an authoring tool

with an easy to use GUI is planned that will automatically generate the XML file from

fields inputted by the user, and alert them to any potential errors. As this process is very

similar to the XML Semantic Attribute Model generation in SABer, this tool should not be

difficult to create. Eventually there may be cause to generate one overall tool that is

responsible for creating Source Models and semantic attributes, as well as acting as a

generic client application in which Semantic Attribute Queries can be executed against the

domain. Such a development would not require any changes to the underlying framework

or approach. Finally, individual semantic attributes within a Semantic Attribute Query are

currently fired in series within SARA. Likewise, superclass conversion queries are also

sent in series. In future, it will be necessary to incorporate multi-threading into the

implementation of SARA so that multiple queries can run in parallel, thus decreasing

overall query latencies.

6.3.2 Linked Data and Instance Level Reconciliation

One attractive area to explore further is the use of Linked Data with SARA, due to the

increasing size and richness of metadata in Linked Data format, and its use of

dereferenceable URIs to disambiguate and reconcile instances. Furthermore, Linked Data

is currently not being exploited widely by ordinary users due to the lack of user-friendly

applications which can access it. Hence, a domain independent system like SARA that

supports client applications of different types is a suitable candidate to help bridge the gap

between the producers of Linked Data and their many potential consumers. As SARA

currently operates by reconciling data at the instance level, this can sometimes limit the

reconciliation of data from information sources with different identification schemes.

Thus, another worthwhile approach may be to investigate the incorporation of data fusion

techniques into SARA to help correlate slightly different identifiers relating to the same

187

instance (e.g. recognizing the id “The Beatles” in one music source as equivalent to

“Beatles, The” in another). This would help widen the scope of data sources that can be

reconciled with other sources within SARA (support for these sources used on an

individual basis, or as part of a Union query with other sources is already implemented).

The underlying framework that SARA is based on already supports the use of Linked Data

and dereferenceable URIs; however the reconciliation aspect of the framework would need

to be extended slightly if data fusion techniques were to be introduced into this process.

6.3.3 Multi-domain Queries

Although this thesis has described applications and scenarios in the context of a single

domain, the design of the framework underpinned by the expert-supported approach to

data exploration (as well as the implementation of SARA) can in fact support multi-

domain queries. All that is required is for the superclasses and sources of the different

domains to be registered with the same installation of SARA. This will be an interesting

avenue to explore in future, as supporting users to correlate data across multiple domains is

potentially a very powerful feature. Furthermore, if the use of SARA in different domains

becomes more widespread, it may become necessary to create a shared vocabulary of

superclasses for each domain to help the reusability of Source Models. Unlike ontologies

which have an overall hierarchy and properties associated with each concept, all that would

be required is for each superclass to be given a consistent label and associated with a

specific domain. No relationships or properties need to be defined for each superclass;

hence there is much less scope for disagreement amongst domain experts.

188

Bibliography

Ambrus, O., Möller, K. & Handschuh, S., 2010. Konduit VQB: a Visual Query Builder for
SPARQL on the Social Semantic Desktop. In Workshop on Visual Interfaces to the
Social and Semantic Web (VISSW2010).

Bangor, A., Kortum, P. & Miller, J., 2009. Determining what individual SUS scores mean:
Adding an adjective rating scale. Journal of Usability Studies, 4(3), pp.114-123.

Berners-Lee, T., 2009. DesignIssues: LinkedData. Available at:
http://www.w3.org/DesignIssues/LinkedData.html [Accessed February 21, 2011].

Bizer, C., Heath, T. & Berners-Lee, T., 2009. Linked data-the story so far. International
Journal on Semantic, 5(3), p.1–22.

Borsje, J. & Embregts, H., 2006. Graphical Query Composition and Natural Language
Processing in an RDF Visualization Interface. B.Sc. Erasmus University, Rotterdam.

Bozzon, A. et al., 2010. Chapter 14: Building Search Computing Applications. In S. Ceri
& M. Brambilla, eds. Search Computing. Springer Berlin / Heidelberg, p. 268–290.

Bozzon, A. et al., 2010. Liquid query: multi-domain exploratory search on the web. In
Proceedings of the 19th International Conference on the World Wide Web. ACM, p.
161–170.

Brabham, D.C., 2008. Crowdsourcing as a model for problem solving. Convergence: The
International Journal of Research into New Media Technologies, 14(1), p.75.

Braga, D. et al., 2008. NGS: a framework for multi-domain query answering. In IEEE 24th
International Conference on Data Engineering Workshop, 2008. ICDEW 2008. pp.
254-261.

Braga, D. et al., 2008. Optimization of multi-domain queries on the web. Proceedings of
the VLDB Endowment, 1(1), pp.562-573.

Brambilla, M. & Ceri, S., 2009. Engineering search computing applications: vision and
challenges. In Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering. ACM, p. 365–372.

Brooke, J., 1996. SUS-A quick and dirty usability scale. In P. W. Jordan et al., eds.
Usability Evaluation In Industry. Taylor & Francis.

Campi, A. et al., 2010. Chapter 9: Service Marts. In S. Ceri & M. Brambilla, eds. Search
Computing. Springer Berlin / Heidelberg, p. 163–187.

Cimiano, P. et al., 2008. Orakel: A portable natural language interface to knowledge bases.
Data & Knowledge Engineering (DKE), 65(2), p.325–354.

189

Conlan, O. et al., 2010. Towards Non-expert Users Monitoring Networks and Services
through Semantically Enhanced Visualizations. In 6th International Conference on
Network and Service Management. Niagara Falls, Canada, pp. 406-409.

Daniel, F., Soi, S. & Casati, F., 2010. Chapter 5: From Mashup Technologies to Universal
Integration: Search Computing the Imperative Way. In S. Ceri & M. Brambilla, eds.
Search Computing. Springer Berlin / Heidelberg, p. 72–93.

Davis, B. et al., 2010. Roundtrip ontology authoring. In A. Sheth et al., eds. The Semantic
Web-ISWC 2008. Springer Berlin / Heidelberg, p. 50–65.

De Araújo, S.F.C. & Schwabe, D., 2009. Explorator: a tool for exploring RDF data through
direct manipulation. In Proceedings of the Linked Data on the Web Workshop
(LDOW2009). Madrid.

De Araújo, S.F.C., Schwabe, D. & Barbosa, S.D.J., 2009. Experimenting with Explorator:
a Direct Manipulation Generic RDF Browser and Querying Tool. In Proceedings of
Visual Interfaces to the Social and the Semantic Web. Sanibel Island, Florida.

Denaux, R. et al., 2010. Rabbit to OWL: Ontology Authoring with a CNL-based Tool. In
N. Fuchs, ed. Controlled Natural Language. Springer Berlin / Heidelberg, p. 246–
264.

Ding, Y. et al., 2010. Semantic Web Portal: A Platform for Better Browsing and
Visualizing Semantic Data. In A. An et al., eds. Active Media Technology. Springer
Berlin / Heidelberg, p. 448–460.

Dolbear, C. et al., 2007. The Rabbit Language: description, syntax and conversion to
OWL. Technical Report IRI-0004, Ordnance Survey Research Labs.

Fischer, T., Bakalov, F. & Nauerz, A., 2009. An Overview of Current Approaches to
Mashup Generation. In Proceedings of the 5th Conference on Professional
Knowledge Management. pp. 254-259.

Goebel, M. & Gruenwald, L., 1999. A survey of data mining and knowledge discovery
software tools. ACM SIGKDD Explorations Newsletter, 1(1), pp.20-33.

Gürel, M., 2009. Expert assisted exploration of photographs. Supporting Users in
Exploring Visual Media through Subjective Aesthethic Attribtues and Crowd-sourced
Tags. M.Sc.Trinity College Dublin.

Halevy, A., Rajaraman, A. & Ordille, J., 2006. Data integration: The teenage years. In
Proceedings of the 32nd international conference on Very large data bases. Seoul,
Korea: VLDB Endowment, p. 9–16.

Hall, W., 2010. What web science could mean for businesses. computerweekly.com.
Available at:
http://www.computerweekly.com/Articles/2010/04/12/240862/interview-wendy-hall-
on-what-web-science-could-mean-for.htm [Accessed February 21, 2011].

190

Hampson, C., 2007. Semantically Holistic and Personalized Views Across Heterogeneous
Information Sources. In Second International Workshop on Semantic Media
Adaptation and Personalization. London: IEEE, pp. 249-252.

Hampson, C. & Conlan, O., 2011. Facilitating Casual Users in Exploring Linked Data
through Domain Expertise. In 22nd International Conference on Database and Expert
Systems Applications. Toulouse, France.

Hampson, C. & Conlan, O., 2010. Leveraging Domain Expertise to Support Complex,
Personalized and Semantically Meaningful Queries Across Separate Data Sources. In
IEEE International Conference on Semantic Computing, 2010. Pittsburgh, USA:
IEEE, pp. 305-308.

Hampson, C. & Conlan, O., 2009. Supporting Personalized Information Exploration
through Subjective Expert-created Semantic Attributes. In IEEE International
Conference on Semantic Computing, 2009. Berkeley, USA: IEEE, pp. 384-389.

Hampson, C., Conlan, O. & Wade, V., 2011. (In Press). Challenges in Locating Content
and Services for Adaptive eLearning Courses. In 11th IEEE International Conference
on Advanced Learning Technologies. Athens, Georgia, USA: IEEE.

Harth, A. et al., 2007. SWSE: Answers before links. In Semantic Web Challenge, in
conjunction with ISWC / ASWC.

Hedeler, C. et al., 2010. Chapter 7: Dataspaces. In S. Ceri & M. Brambilla, eds. Search
Computing. Springer Berlin / Heidelberg, p. 114–134.

Hengster, T.J., 2009. Implicit and Explicit User Modelling Techniques for Interactive
Visual Knowledge Exploration. M.Sc. Trinity College Dublin.

Hildebrand, M., Ossenbruggen, J.R. & Hardman, L., 2007. An analysis of search-based
user interaction on the semantic web. In Technical Report INS-E0706. Amsterdam:
CWI.

Huynh, D.F. & Karger, D.R., 2009. Parallax and companion: Set-based browsing for the
data web. Available at: davidhuynh.net/media/papers/2009/www2009-parallax.pdf
[Accessed February 21, 2011].

Huynh, D.F., Miller, R.C. & Karger, D.R., 2008. Potluck: Data mash-up tool for casual
users. Web Semantics: Science, Services and Agents on the World Wide Web, 6(4),
pp.274-282.

Jokela, T. et al., 2003. The standard of user-centered design and the standard definition of
usability: analyzing ISO 13407 against ISO 9241-11. In Proceedings of the Latin
American conference on Human-computer interaction. pp. 53-60.

Kongdenfha, W. et al., 2009. Rapid development of spreadsheet-based web mashups. In
Proceedings of the 18th international conference on the World Wide Web. New York,
NY, USA: ACM Press, pp. 851-860.

191

Kovacs, K. et al., 2006. A Methodology for Building Conceptual Domain Ontologies.
Technical Report IRI-0002, Ordnance Survey Research Labs.

Kozaki, K. & Mizoguchi, R., 2005. A Present State of Ontology Development Tools.
Journal of Japanese Society for Artificial Intelligence, 20(6), pp.707-714.

Kurgan, L.A. & Musilek, P., 2006. A survey of Knowledge Discovery and Data Mining
process models. The Knowledge Engineering Review, 21(01), pp.1-24.

Lewis, J. & Sauro, J., 2009. The Factor Structure of the System Usability Scale. In M.
Kurosu, ed. Human Centered Design. Springer Berlin / Heidelberg, pp. 94-103.

Lopez, V. et al., 2010. Scaling Up Question-Answering to Linked Data. In P. Cimiano &
H. Pinto, eds. Knowledge Engineering and Management by the Masses. Springer
Berlin / Heidelberg, pp. 193-210.

Lopez, V., Pasin, M. & Motta, E., 2005. Aqualog: An ontology-portable question
answering system for the semantic web. In A. Gómez-Pérez & J. Euzenat, eds. The
Semantic Web: Research and Applications. Springer Berlin / Heidelberg, p. 546–562.

Lopez, V. et al., 2009. Cross ontology query answering on the semantic web: an initial
evaluation. In Proceedings of the fifth international conference on Knowledge
capture. ACM, p. 17–24.

Madhavan, J. et al., 2007. Web-scale data integration: You can only afford to pay as you
go. In Proceedings of the Third Biennial Conference on Innovative Data Systems
Research. p. 342–350.

Maedche, A. & Staab, S., 2001. Ontology Learning for the Semantic Web. IEEE Intelligent
Systems, 16(2), pp.72-79.

Mannila, H. & Gunopulos, D., 2009. ACM TKDD special issue ACM SIGKDD 2007 and
ACM SIGKDD 2008. ACM Transactions on Knowledge Discovery from Data
(TKDD), 3(4), pp.1-2.

Mei, J. et al., 2008. Making URIs published on Data Web RDF dereferencable. In 7th
International Semantic Web Conference. Karlsruhe, Germany.

Moreno, R., 2004. Decreasing cognitive load for novice students: Effects of explanatory
versus corrective feedback in discovery-based multimedia. Instructional Science,
32(1), pp.99-113.

Möller, K. et al., 2008. A Visual Interface for Building SPARQL Queries in Konduit. In
International Semantic Web Conference. Karlsruhe, Germany.

Paiva, S. & Ramos-Cabrer, M., 2010. A new approach to query construction in semantic
guided systems. In Proceedings of the IADIS International Conference on
Information Systems. Porto.

Parramon, J.M., 1989. Color Theory, New York: Watson-Guptill Publications.

192

Polowinski, J., 2009. Widgets for Faceted Browsing. In M. Smith & G. Salvendy, eds.
Human Interface and the Management of Information. Designing Information
Environments. Springer Berlin / Heidelberg, p. 601–610.

Qian, L.J., Zhou, M. & Xu, J.R., 2008. An easy and effective approach to manage
radiologic portable document format (PDF) files using iTunes. AJR. American journal
of roentgenology, 191(1), pp.290-1.

Qu, Y. & Furnas, G.W., 2008. Model-driven formative evaluation of exploratory search: A
study under a sensemaking framework. Information Processing & Management,
44(2), pp.534-555.

Reason, J., 1990. Human error, Cambridge University Press.

Rector, A.L., 2006. Users Are Always Right ... Even When They Are Wrong: Making
Knowledge Representation Useful and Usable. In Proceedings of the Tenth
International Conference on Principles of Knowledge Representation and Reasoning.
Lake District, United Kingdom: AAAI Press, p. 4.

Rouse, W.B., 2003. Need to know-information, knowledge, and decision making. Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
32(4), pp.282-292.

Russell, A. et al., 2008. NITELIGHT: A Graphical Tool for Semantic Query Construction.
In Semantic Web User Interaction Workshop (SWUI 2008). Florence, Italy.

Saint-Paul, R., Benatallah, B. & Vayssière, J., 2008. Data services in your spreadsheet! In
Proceedings of the 11th international conference on Extending database technology:
Advances in database technology. New York, NY, USA: ACM, pp. 690-694.

Scianta Intelligence, 2005. Data Exploration. Available at:
http://scianta.com/technology/data_exploration.htm [Accessed February 21, 2011].

Shen, X., Tan, B. & Zhai, C.X., 2005. Implicit user modeling for personalized search. In
Proceedings of the 14th ACM international conference on Information and knowledge
management. pp. 824-831.

Taylor, T. & Lubkeman, D., 1989. Applications of knowledge-based programming to
power engineering problems. IEEE Transactions on Power Systems, 4(1), pp.345-352.

Thompson, C.W., Pazandak, P. & Tennant, H.R., 2005. Talk to Your Semantic Web. IEEE
Internet Computing, 9(6), pp.75-78.

Vaughan-Nichols, S., 2006. Researchers Make Web Searches More Intelligent. Computer,
39(12), p.16–18.

White, R.W., Muresan, G. & Marchionini, G., 2006. Report on ACM SIGIR 2006
workshop on evaluating exploratory search systems. In ACM SIGIR Forum. pp. 52-
60.

193

Wong, J. & Hong, J.I., 2007. Making mashups with marmite: towards end-user
programming for the web. In Proceedings of the SIGCHI conference on Human
factors in computing systems. New York, NY, USA: ACM, pp. 1435-1444.

Yasunaga, S., Nakatsuka, M. & Kuwabara, K., 2010. Web Ontology Building System for
Novice Users: A Step-by-Step Approach. In Second international conference on
Intelligent Information and Database Systems. Hue, Vietnam: Springer-Verlag, p.
134–143.

Zloof, M.M., 1975. Query by example. In Proceedings of the national computer
conference and exposition. Anaheim, California: ACM, pp. 431-438.

194

Appendices

Appendix A - Background Technologies
This section briefly describes some of the main technologies associated with the encoding

and retrieval of data and knowledge. These technologies are widely used in state of the art

systems, and are relevant to the implementation undertaken in this thesis.

A.1 XML and XQuery

Extensible Markup Language (XML)55 is a set of rules for encoding documents in

machine-readable form. It is a flexible way to create common information formats that can

be shared on the Internet and elsewhere. XML is "extensible" because, unlike HTML, the

markup symbols are unlimited and self-defining. Another key feature of XML is that it

allows data to be arranged as nodes in a tree structure that is defined in a schema. This

structured hierarchy of marked up data can then be easily queried and manipulated by

applications. The usefulness of XML as a format is highlighted by the hundreds of XML-

based languages that have been developed in it, including RSS56, Atom57, SOAP58 and

XHTML59.

XQuery60 is a query and functional programming language that is used to query collections

of XML data. It was developed by the XML Query Working Group of the W3C and

provides the means to extract and manipulate data from XML documents or any data

source that can be viewed as XML (e.g. relational databases). It uses XPath61 expression

syntax to address specific parts of an XML document, and supplements this with an SQL-

like FLWOR62 expression for performing joins.

55 http://www.w3.org/TR/REC-xml/
56 http://www.rssboard.org/rss-specification
57 http://tools.ietf.org/html/rfc5023
58 http://www.w3.org/TR/soap12-part1/
59 http://www.w3.org/TR/xhtml11/
60 http://www.w3.org/TR/xquery/
61 http://www.w3.org/TR/xpath20/
62 http://www.w3.org/TR/xquery/#id-flwor-expressions

195

A.2 RDF/Linked Data and SPARQL

RDF (Resource Description Framework)63 is a W3C recommendation for creating meta-

data structures that define data on the Web. RDF differs from XML in that it is designed

to represent knowledge, not data, and thus is much more concerned with meaning. RDF is

also designed to work with distributed data and achieves this by linking documents

together by the common vocabularies they use, and allowing facts to be described by

information drawn from multiple sources. An RDF document is composed of triples: (1)

the subject (what the data is about), (2) the predicate (an attribute of the subject) and (3)

the object (the actual value). A collection of RDF statements thus represents a labelled,

directed multi-graph. As such, an RDF-based data model is more naturally suited to certain

kinds of knowledge representation than the relational model or other ontological models.

However in practice, RDF data is often persisted in relational database or in native

representations such as triplestores.

Linked Data (Bizer et al. 2009) is a term used to describe a recommended best practice for

exposing, sharing, and connecting pieces of data, information, and knowledge on the

Semantic Web using Uniform Resource Indicators (used to identify Internet resources) and

RDF. Tim Berners-Lee outlined four principles of Linked Data in his design issues

discussion on Linked Data (Berners-Lee 2009), which can be paraphrased along the

following lines:

1. use URI Indicators to identify things.

2. use HTTP URIs so that these things can be referred to and looked up

("dereferenced") by people and user agents.

3. provide useful information about the thing when its URI is dereferenced, using

standard formats such as RDF/XML.

4. include links to other, related URIs in the exposed data to improve discovery of

other related information on the Web.

The goal of the W3C Linking Open Data community project64 is to extend the Web with a

data commons by publishing various open datasets as RDF on the Web and by setting RDF

63 http://www.w3.org/RDF/
64 http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData

196

links between data items from different data sources. By September 2010 this had grown to

over 19.5 billion RDF triples65.

SPARQL (SPARQL Protocol and RDF Query Language)66 is a protocol and query

language for RDF that became an official W3C Recommendation in 2008. It can be used

to express queries across different data repositories, whether the data is stared as natively

as RDF or viewed as RDF via a conversion wrapper. SPARQL allows for queries to

consist of triple patterns, conjunctions, disjunctions, and optional patterns and is seen as a

key Semantic Web technology. SPARQL also facilitates users to write globally

unambiguous queries through the use of dereferenceable URIs, and federated queries that

can be distributed against multiple SPARQL endpoints. Results from SPARQL queries

can be expressed as result sets or RDF graphs.

A.3 OWL

OWL (Web Ontology Language)67 is designed for use by applications that need to actually

process the content of information instead of simply presenting the information to users.

OWL facilitates greater machine interpretability of Web content than that supported by

XML and RDF by providing additional vocabulary along with a formal set of semantics. It

has three increasingly-expressive sub-languages: OWL Lite, OWL DL, and OWL Full

which have a corresponding increase in language complexity. The SPARQL query

language can be used to access data stored in any of the OWL formats. OWL is typically

used to develop domain ontologies. These ontologies consist of a set of classes and a set of

property assertions, which relate these classes to each other. Such ontologies also have a

set of axioms which place constraints on sets of classes and the types of relationships

permitted between them. These axioms provide semantics by allowing systems to infer

additional information based on the data explicitly provided. This support for inference is

what makes OWL such a popular format to encode domain knowledge.

65 http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics
66 http://www.w3.org/TR/rdf-sparql-query/
67 http://www.w3.org/2004/OWL/

197

Appendix B – XML Representation of Two Songs from a
Transformed iTunes Music Library
<AudioTrack>
 <TrackTitle>Just</TrackTitle>
 <MusicArtistName>Radiohead</MusicArtistName>
 <AlbumArtist>Radiohead</AlbumArtist>
 <Composer>Colin Greenwood/Ed O'Brien/Jonny Greenwood/Phil
 Selway/Thom Yorke
 </Composer>
 <AlbumTitle>The Bends</AlbumTitle>
 <Genre>Rock</Genre>
 <AudioFileType>MPEG audio file</AudioFileType>
 <FileType>MPEG audio file</FileType>
 <AudioFileSize>3738939</AudioFileSize>
 <TrackDuration>233508</TrackDuration>
 <TrackNumber>7</TrackNumber>
 <YearOfTrack>1995</YearOfTrack>
 <TrackBitRate>128</TrackBitRate>
 <TrackSampleRate>44100</TrackSampleRate>
</AudioTrack>
<AudioTrack>
 <TrackTitle>Life Becoming a Landslide</TrackTitle>
 <MusicArtistName>Manic Street Preachers</MusicArtistName>
 <AlbumArtist>Manic Street Preachers</AlbumArtist>
 <Composer>James Dean Bradfield/Nicky Wire/Richey James/Sean
 Moore
 </Composer>
 <AlbumTitle>Gold Against the Soul</AlbumTitle>
 <Genre>Rock</Genre>
 <AudioFileType>MPEG audio file</AudioFileType>
 <FileType>MPEG audio file</FileType>
 <AudioFileSize>4082166</AudioFileSize>
 <TrackDuration>254955</TrackDuration>
 <TrackNumber>5</TrackNumber>
 <YearOfTrack>1993</YearOfTrack>
 <TrackBitRate>128</TrackBitRate>
 <TrackSampleRate>44100</TrackSampleRate>
</AudioTrack>

198

Appendix C – XML Representation of Two Songs from US
Singles Charts (1950-2008)
<ChartingSong>
 <Year_Released>1964</Year_Released>
 <Yearly_Rank>79</Yearly_Rank>
 <Num_Weeks_Charted>13</Num_Weeks_Charted>
 <Num_Weeks_Charted_Top40>10</Num_Weeks_Charted_Top40>
 <Num_Weeks_Charted_Top10>3</Num_Weeks_Charted_Top10>
 <Num_Weeks_At_Its_Peak_Place>1</Num_Weeks_At_Its_Peak_Place>
 <Highest_Charting_Position>7</Highest_Charting_Position>
 <Artist_Name>Johnny Tillotson</Artist_Name>
 <Track_Title>Talk Back Trembling Lips</Track_Title>
 <Label>MGM 13181</Label>
 <Genre>Rock</Genre>
 <BeatsPerMinute>137</BeatsPerMinute>
 <Written_By>John D. Loudermilk</Written_By>
 <Date_Entered_Charts>23265</Date_Entered_Charts>
 <Date_Peaked_Charts>23468</Date_Peaked_Charts>
</ChartingSong>
<ChartingSong>
 <Year_Released>1964</Year_Released>
 <Yearly_Rank>80</Yearly_Rank>
 <Num_Weeks_Charted>14</Num_Weeks_Charted>
 <Num_Weeks_Charted_Top40>11</Num_Weeks_Charted_Top40>
 <Num_Weeks_Charted_Top10>5</Num_Weeks_Charted_Top10>
 <Num_Weeks_At_Its_Peak_Place>2</Num_Weeks_At_Its_Peak_Place>
 <Highest_Charting_Position>8</Highest_Charting_Position>
 <Artist_Name>Jan and Dean</Artist_Name>
 <Track_Title>Dead Man's Curve</Track_Title>
 <Label>Liberty 55672</Label>
 <Genre>Rock</Genre>
 <BeatsPerMinute>137</BeatsPerMinute>
 <Written_By>Jan Berry, Roger Christian, Artie Kornfeld, Brian
 Wilson
 </Written_By>
 <Date_Entered_Charts>23561</Date_Entered_Charts>
 <Date_Peaked_Charts>23625</Date_Peaked_Charts>
</ChartingSong>

199

Appendix D – Multi-Source Music Trial Questionnaire

Section A

On a scale of 1-10 (with 1 equalling total disagreement and 10 equalling
absolute agreement) How much do you agree with the following statements?

1. Using this framework is a more efficient way of finding information than having to
consult the individual data sources separately?

2. Using this framework it is easy to combine data from different sources?

3. Using this framework allows users to combine and interchange attributes
(popularity/duration/freshness etc) easily?

4. Using this framework enables knowledge to be gained that wouldn’t be possible by
consulting just a single source?

5. This framework sufficiently enable users to personalise and tailor their queries (a
very popular song is top 10, a long song is more than 5mins, etc)

6. The approach used by the framework is very applicable to other domains beside
music?

o Do you have any suggestions for different domains?

200

SECTION B

1. If you were to develop an application that used an API into this framework, what
features would you like to see incorporated in it?

2. How beneficial would a composition tool be that helped developers combine data
sources and define semantic attributes for different domains? What features should
it have?

3. Do you have any other suggestions or comments (features you liked/disliked,
missing aspects you would like to see)?

201

Appendix E – Interview for Multi-domain Evaluation of
SABer and SARA

1. What features of SABer did you like?

2. What features of SABer did you dislike?

3. What features of SABer would you like to see?

4. What features of the API did you like?

5. What features of the API did you dislike?

6. What features of the API would you like to see?

7. What are the main benefits of using SARA to mediat between your application and

data sources?

8. Are there any disadvantages to using SARA as a mediator between your application

and data sources?

9. Do you have any other suggestions of comments you would like to make?

202

Appendix F - SABer Evaluation Questionnaire
1. How did you find the process of creating Semantic Attributes.

Very Difficult Very Easy

 1 2 3 4 5

Comment:

2. Was it considerably more difficult to make rules of Query type A, B or C.

Yes No

 1 2 3 4 5

If so please state which one(s)

3. Was it considerably more difficult to create semantic attributes of type Expert,
Hybrid or Template.

Yes No

 1 2 3 4 5

If so please state which one(s)
__

4. Do you think, with minimal training, that it is likely that an “expert” with no
computer coding experience could use this tool to create semantic attributes in their
domain.

Very Likely Very Unlikely

 1 2 3 4 5

Comment:
__

203

5. Do you have any suggestions regarding the usability of the authoring tool and its
interface?

6. Do you have any suggestions regarding functionality you would like to see?

204

Appendix G - System Usability Scale

© Digital Equipment Corporation, 1986.

 Strongly Strongly
 disagree agree

1. I think that I would like to
 use this system frequently

2. I found the system unnecessarily
 complex

3. I thought the system was easy
 to use

4. I think that I would need the
 support of a technical person to
 be able to use this system

5. I found the various functions in
 this system were well integrated

6. I thought there was too much
 inconsistency in this system

7. I would imagine that most people
 would learn to use this system
 very quickly

8. I found the system very
 cumbersome to use

9. I felt very confident using the
 system

10. I needed to learn a lot of
 things before I could get going
 with this system

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

205

Appendix H – X2Photo User Experiment

Experimental Setup

A user trial was devised to help elicit the experiences of people who used X2Photo. With

this aim in mind the following approach was pursued: four photographs (see Figure I-1)

not present in the 12,000 photograph collection connected to X2Photo were selected, and

then annotated by the domain expert with different semantic attributes from Table 5-3. The

nine participants in the user trial were each shown these four photographs initially and

asked to describe them in their own words. Then they were given an overview of X2Photo

and asked to do the following tasks:

• For photograph 1, find similar photographs via X2Photo

• For each photograph found, add it to the Favourites.

• Repeat this task for all four photographs.

• Once complete, go to Flickr and for photograph 1 try to find similar images either

with the words originally used to describe the photographs or with different ones.

• Repeat these tasks for all four photographs.

206

Figure I-1 Four initial photographs shown to users

Experimental Results

Once the given tasks were completed, a user survey was conducted (see Appendix J). The

questionnaire intended to evaluate each feature's functionality and the overall system

quality in various aspects. The general response to the usability and appeal of the

Discovery Space was very positive, agreeing that the continuous flow enabled them to

browse the photographs thoroughly, and that the interaction with the space was appealing.

Below is a summary of the other survey results:

• 8/9 users considered the overall UI to be “very good” when asked on a four point

Likert scale (Very Good, Good, Poor, Very Poor).

• 8/9 “strongly agreed” that the system was attractive when asked on a four point

Likert scale (Strongly Agree, Agree, Disagree, Strongly Disagree).

207

• 8/9 users found the zoom effect in the interface to be “very good” or “good” when

asked on a four point Likert scale (Very Good, Good, Poor, Very Poor).

• 9/9 users thought the AttBar was “very good” or “good” when asked on a four

point Likert scale (Very Good, Good, Poor, Very Poor). It was also mentioned that

the concept off the AttBar was comprehensible and that the classification of the

attributes was clear.

• 8/9 users found the ability to refine a search with a focus image to be very useful or

useful when asked on a four point Likert scale (Very Useful, Useful, Not Useful,

Completely Useless). Seeing what semantic attributes and tags were associated

with the focus image allowed them to use these as a springboard for their browsing.

Describing the Images

The majority of users who evaluated X2Photo were technically proficient with computers

and four considered themselves to be amateur photographers. The way in which users

described the four photographs had some noteworthy aspects, for example those users who

were interested in photography tended to use more technical phrases. These included terms

such as “over-exposed” when describing photograph a, mentioning the angle at which

photograph b might have been shot, and questioning whether photograph b was altered in

an image editing program to obtain its deep contrast. These users tended not to describe the

content of the photograph as much as the users with less photography experience. Some

users preferred to describe the photographs with more personal expressions such as

“lonely” and “tempting” when referring to photograph c. Photograph d, as expected, was

interpreted differently by almost all the users. While some tried to identify what the man in

the picture might be doing, some chose to describe his character/mood, resulting in many

different impressions such as “gritty”, “relaxed” or “run-down”.

Almost all the users first chose expressions like “warm”, “cold”, “airy”, “gloomy” and

“energetic”, some of which directly coincided with the actual attributes determined by the

domain expert. They then proceeded to describe the actual content. Two of the nine

participants were more objective in their descriptions and chose to name the elements they

saw in the photographs with words like “corridor”, “bench”, “rocks”, “back alley”, etc.

However, the vast majority of users combined their perceptions with the content: “...a cool

calm picture but alive… there's a woman sitting on a bench... feels breezy but soft... waves

look relaxing”.

208

Finding Images in X2Photo

In the same way that users’ manner of describing photographs differed, so to did their

approach to finding similar photographs in X2Photo. Four users never actually used the

TagBall which contained all the associated tags relating to the photos from Flickr.

Coincidentally their descriptions of the photographs were heavily reliant on expressions

like “moody”, “dark”, “calm”, etc. They directly chose similar words present within the

AttBar (the component of the GUI which listed the semantic attributes from Table 5-3) and

then carried out their searches. After receiving their initial results two of these users were

surprised to see how the tool interpreted their descriptions. They did not agree with the

expert and started experimenting with the AttBar rather than continuing with their

searches. After observing some consecutive result sets and bringing some photographs into

focus (which displayed the semantic attributes and tags associated with the image), they

stated that they grasped the association the expert was making and modified their searches

accordingly. The other two users who didn’t use the tag ball performed 2-3 consecutive

searches, which were refined each time, to find a similar photograph. On observation of the

similar photographs that users selected, it was interesting to see what the users based their

similarity criteria on. While some photographs had a similar feel to them regarding the

concept or the context, some were also similar in content. Figure I-2 shows examples of

similar pictures (of images b and c in Figure I-1) found by users using the TagBall and

AttBar in X2Photo

209

Similar to photograph (b) Similar to photograph (c)

Figure I-2 Examples of similar pictures found by users using X2Photo

Finding Images in Flickr

When the users tried to find similar photographs in Flickr, their approaches were again

different. For example, one user used “fiery clinical harsh” to search for similar

photographs to photograph a, which was the expression he had used when describing the

photograph originally. In contrast, another abandoned the expressive vocabulary he used

originally to describe photograph b (because he was very familiar with searching on Flickr)

and chose to use the search phrase “Scotland cliff coast”. Changes in vocabulary were

noticed with three user’s searches within Flickr. For instance, a user who had previously

described photograph c mainly based on its content: “beach, person sitting on the bench,

greyish” found a similar image within X2Photo that the expert thought to be “romantic",

“soothing” and “innocent”. Using Flickr, the user changed his first search to be “romantic

sea scenery”. Users familiar with Flickr also used the advanced search available and

refined their queries, but again tended to use content-based terms to carry out their

searches. In the end all the users were able to find at least one similar image for each of the

photos, which was not surprising considering the sheer volume of photographs in Flickr.

210

However what was noteworthy was the fact that users had to resort to content-based terms

which were identical in many cases. This implies that the users were more limited in their

expressivity when searching.

Analysis

The user test suggested that when describing photographs people like to communicate

subjective descriptors as well as the subject matter of the photo. This finding indicates a

need for a wider vocabulary to be available to users in order to retrieve accurate and

relevant photographs from any collection. Traditional tag-based systems tend to be

dominated by content-based terms, and ignore the artistic quality of a photo which can be a

key factor in evoking appreciative emotions. These systems often reduce photographs to a

list of mainly content-based words. Since most people have become accustomed to this

approach, they tend to ignore other ways in which they could approach a photograph, and

are therefore reduced to searching for tagged simplifications of photographs, rather than

the photographs themselves.

211

Appendix I – Film Domain Exploration Client User
Experiment

Experimental Setup

After a brief introduction, seven participants were asked to interact with the application.

Five of these were male, and two were female. All of them were of age 24 to 30 and all

were computer literate. The only task they were assigned was to “find 25 to 30 films you

like through exploring”. Afterwards a detailed questionnaire was filled in by all users. A

trial session took approximately 40 - 55 minutes. This included the introduction, using the

application, and filling out the questionnaire (see Appendix K). The interaction with the

tool took on average 20 minutes.

Experimental Results

Interestingly, none of the users kept direct track of how many films they had collected as

they went along, and all but one of the users had to be prompted to finish interacting with

the tool, as users were collecting many more films than were necessary for this evaluation.

This supports the notion that they were involved in a continuous exploration of the poster

images and were enjoying the experience. The following quotes from the user

questionnaire would support this:

• “I like the exploration!”

• “Could play with it for hours!”

• “System returned movies I haven’t seen in a long time.”

• “I like the variety of poster images shown.”

• “Easy to build catalogue of liked/disliked films. IMDb (Internet Movie Database)

does not do this.”

• “I’m still curious about the reasoning behind it!”

• “Nice application! Could use it!”

• “Cool idea!”

• “Put into IMDb now!”

Though the user enjoyed their use of the application there were a number of suggestions as

to how to improve the interface such as:

• Allowing certain films to be ignored.

212

• Having a search bar which allows a new focus film to be inputted.

• Adjusting the rating system to a more intuitive plus/minus metaphor rather than a

push/pull one.

• Allowing users to navigate using the keyboard arrows.

• Having a button to quickly browse the list of liked and disliked films.

However, all volunteers agreed that it was simple to rate films and agreed that the interface

was fun to use. One participant commented on the “spiral effect” which they really liked,

because it helped identifying the focus film and the relations on screen. All participants

strongly agreed to have found films they liked. Furthermore, nearly everyone agreed to

have found films they expected. The two users who were “surprised” by most of the films

presented to them expressed that this was “not a bad thing” as they liked to see films they

weren’t expecting. Thus in general, people were happy with the films that had been shown

to them. Moreover, the majority emphasised that they had been shown films they hadn’t

thought about for a long time and would have wanted to watch some of them if they had

the time.

At the end of the questionnaire, users were explicitly asked what they thought the

application was good for, or what it could be used for:

• “Film exploration and getting a map of everything you have seen”

• “Suggesting a movie and then finding a movie to watch”,

• “Finding recipes! The system is based on some logic which is bringing up

unexpected results. It’s like to be surprised continuously [sic]!”

• “Wish list!”

• “Finding new films to watch, especially ones you haven’t heard of and haven’t

seen!”

• “Ability to find resembling movies [sic] that either you haven’t seen or you

missed!”

• “Good to remember films that you didn’t think of at the moment. It can be used as a

favourites list!”

• “Link films to external sources like IMDb or rental stores would make it easy to

select films you may like”

• “Add additional information to films to assist with decision making”

• “Add comments to any movie” was mentioned a few times”

213

• “Browse movies by genre and other criteria” was high on the wish list

The results that were gathered exhibited two general characteristics; apart from user

interface and interaction issues which created some confusion, all volunteers were able to

gain sufficient immersion and enjoyed using the tool to explore films. There were some

suggestions for improvement, but it can be said that all participants liked the user interface

and navigation in general.

214

Appendix J – X2Photo User Questionnaire
1. Do you consider yourself a photography enthusiast?
2. Do you have an account in an online photo sharing site such as Flickr, Picasa, etc.?
3. If so do you tag your photos and with what type of associations?
4. Do you have a personal blog in which you display photographs?
5. If so what kind of methods do you use to annotate them? (Tag them, use captures,

titles, etc.)
6. When you need to find images, which image search engines or stock photography

sites, or any other, do you use?

Please rate the following:

Discovery Space

 Very Good Good Poor Very Poor
TagBall
AttBar
Zoom
Extra Details
Focus
Favorites Area
Overall UI

During exploration I found:

 Very Useful Useful Not Useful Completely Useless
Using Tags
Using Atts
Refining a Search based on
focus image

Overall Search
I found the system to be:

 Strongly Agree Agree Disagree Strongly Disagree
Attractive
Powerful
Empowering
Frustrating
Responsive
Slow
Extensive
Confusing
Straightforward

215

Comments:

216

Appendix K - Film Domain Exploration Client User
Questionnaire

Personal

1. Name

2. Age

3. Gender Male
Female

4. How comfortable are you with
computers?

Not at all ¨
A little ¨
Somewhat ¨
Moderately ¨
Quite a lot ¨
Very much ¨

Films in general

5. I am interested in films. I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

6. I know a lot about
films.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

7. I watch more films now
compared to 10 years
ago.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

8. I watch a lot of films. I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

9. I regularly get
information about films
from various sources.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

10. Where do you usually
hear about new films?

On the radio ¨
On TV ¨
In the cinema ¨
Online ¨
In magazines/ newspapers
Don’t Know
Other

 ¨
 ¨
……………………………

11. How often do you use
online services or
websites to get
information about
films?

Very often Often Rarely Very rarely Not at all
¨ ¨ ¨ ¨ ¨

217

12. Please select any of the
following film related
websites you have
heard of!

IMDb ¨
 Freebase ¨
 Rotten Tomatoes ¨
 MovieLens ¨
 What To Rent ¨
 Criticker ¨
 Clerkdogs ¨
 Jinni ¨
 Other ..

13. Please select any of the
following film related
websites you have used
at least once!

IMDb ¨
 Freebase ¨
 Rotten Tomatoes ¨
 MovieLens ¨
 What To Rent ¨
 Criticker ¨
 Clerkdogs ¨
 Jinni ¨
 Other ...

14. Please select any of the
following film related
websites you use
regularly!

IMDb ¨
 Freebase ¨
 Rotten Tomatoes ¨
 MovieLens ¨
 What To Rent ¨
 Criticker ¨
 Clerkdogs ¨
 Jinni ¨
 Other ...

15. When browsing for
films, what types of
information are you
interested in most?

General information
New films
Upcoming films ¨
Actors ¨
Popular films ¨
Films from specific genre ̈
Don’t know ¨
Other ..

16. I like “Blockbuster
films”.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

17. I like “Expensive
films”.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

18. I like “Award winning
films”.

I strongly agree I agree I disagree I strongly disagre
¨ ¨ ¨ ¨

19. I like “Successful
films”.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

20. I like...

Software client / UI
21. It is easy to select an initial

film with the tool I just used.
 I strongly agree I agree I disagree I strongly disagree
 ̈ ¨ ¨ ¨

218

22. It is clear that I can change
the initial film before I
continue.

 I strongly agree I agree I disagree I strongly disagree
 ̈ ¨ ¨ ¨

23. It is easy to rate films. I strongly
agree

 I
agree

 I
disagree

 I strongly
disagree

¨ ¨ ¨ ¨

24. Setting a new focus film is
simple to do.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

25.

It is intuitive to zoom. I strongly agree I agree I disagree I strongly disagree
 ̈ ¨ ¨ ¨

26. Panning (navigating the stage
vertically and horizontally) is
easy.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

27. It is easy to get lost. I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

28. Showing the film poster
image is useful.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

29. Showing the film title on the
poster helps indentifying the
films.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

30. It is simple to discover films I
previously liked/disliked.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

31. The user interface makes it
easy to explore films.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

32. The user interface is fun to
use.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

Further questions / general statements

33. It was difficult to come
up with an initial film in
the first step when using
the program.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

34. I found films I like. I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

35. I found films I expected
the software will show to
me.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

36. I think the system
worked well.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

37. The system was
predictable / it is clear
what is going on "under
the hood".

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

38. Do you remember how
often you refocused on a
new film?

Yes ¨ Number:

No ¨

219

39. Exploring films this way
is a waste of time.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

40. I am happy with the
films that have been
shown to me.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

41. I wasn't aware that I
know that many films.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

42.

I was shown films I
haven't been thinking
about for a long time.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

43. If I had time right now I
would like to watch one
of the films I found.

I strongly agree I agree I disagree I strongly disagree
¨ ¨ ¨ ¨

44. What do you think the
system is good for?
What can it be used for?

45. What would you
change?
(Navigation, Rating,
Visualisation...)

46. What do you think are
the most significant
remaining usability
issues?

47. What do you like
most/least about the film
exploring tool?

48. How could the system be
improved overall? Other
features?

49. Any other comments, ideas, questions?

