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16 The Structure of Liquid Foams

Stefan Hutzler and Wiebke Drenckhan

16.1  INTRODUCTION

Understanding foam structure is a key to understanding many foam properties. The opacity of a 
foam, for example, is a consequence of light being scattered from the thin films separating the 
bubbles or from the Plateau borders where the films meet. The drying out of a foam under gravity is 
governed mainly by the flow of liquid through the Plateau border network. This network also governs 
how the electrical conductivity of a foam varies with its liquid volume fraction and how foam flows 
when sheared (foam rheology, Chapter 7). The existence of a yield stress and the property of shear 
thinning require an understanding of the structural changes due to bubble rearrangements.

This chapter, which is based on our recent review [1], introduces a number of key descriptors of 
foam structure, such as liquid volume fraction, bubble mono- or polydispersity or order and disorder. 
The aim is to introduce the reader to the large range of different types of foam structures that are 
found in nature or may be produced in the laboratory.

After a brief overview of foam structures (Section 16.2), we will in Section 16.3 justify several 
approximations that simplify their analysis. Section 16.4 is dedicated to the analysis of dry foams 
with liquid volume fraction ϕ < 0.05, consisting mainly of bubbles with almost polyhedral shapes. 
Section 16.5 describes experimental studies of wet foams and Section 16.6 concerns the nature of 
bubble interactions in such foams. Section 16.7 is a brief summary of experimental, analytical, and 
computational methods for understanding foam structure. A concluding Section 16.8 completes this 
chapter.

16.2  OVERVIEW OF DIFFERENT FOAM STRUCTURES

The left photograph in Figure 16.1 shows a typical polydisperse, disordered liquid foam under 
gravity, sitting on top of a liquid pool. The shape of the bubbles in a foam depends on the local liquid 
fraction ϕ (the ratio of the liquid volume to foam volume). At the bottom of the foam column, that 
is, at the foam-liquid interface, the bubbles are nearly spherical. The liquid fraction corresponding 
to this wet limit is around 36%, that is, ϕc = 0.36, for foams of low polydispersity. This is the value 
corresponding to the packing fraction 1 − ϕc = 0.64 of a random close packing of equal volume 
hard spheres (see also Section 16.6).
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296 Foam Film and Foams

Further up in the foam column, the bubbles are more and more deformed and take on near 
polyhedral shapes, with thin curved films between them. For liquid fractions ϕ < 0.05, we call the 
foams dry (c.f. Section 16.4). Their topology is described by Plateau’s rules (Section 16.4). Foams of 
liquid fraction exceeding about 0.15 are often called wet foams, but this value is chosen simply as 
lying about halfway between the wet and dry limits (see [2]).

Taking this definition of a wet foam, we can estimate its height on top of a liquid pool as l Rc
2 /2 , 

where R is the mean bubble radius and lc is the capillary length, given by l gc = γ ρ/∆  (γ is the 
surface tension, g is the gravitation constant, and Δρ is the gas/liquid density difference). The 
number of bubble layers in this wet foam is called the Princen number Pri [3], and it is given by

	
Pri=


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
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lc
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2

R
.
	

(16.1)

For a typical foaming solution (γ ≈ γwater/2 = 0.036 N/m), resulting in lc ≈ 1.6 mm, the average 
radius of the bubbles should thus be smaller than 0.25 mm in order to form more than about 10 
layers of wet foam.

The polydisperse foam of Figure 16.1 is typical for examples found in nature or many industrial 
applications. In fundamental research, there is often a preference for studying monodisperse foams, 
consisting of bubbles with a polydispersity of less than 5%. The right photograph in Figure 16.1 
shows an example of such a monodisperse foam, again sitting on top of the foaming solution. Such 
foams have a tendency to order when confined into tubes of width of only a few bubble diameters. 
They can also order spontaneously in bulk when produced from bubbles that are smaller than the 
capillary length, resulting in a crystalline wet foam. For more details, see Section 16.5 and [4–7].

In Figure 16.2, we present an overview of different foam structures, emphasizing the role of 
bubble polydispersity and liquid fraction. Here, polydispersity pσ is defined via a normalized standard 
deviation of the bubble radii Ri = ((3/4π)Vi)1/3 from that of spheres of equivalent volumes Vi,

	
p

R

R
σ =

< >
< >

−
2

2 1.
	

(16.2)

The polydispersity of foams is generally smaller than 50%, with bubble size distributions depending 
on the method of foam production [8] (see Chapter 10) or on the age of the foam, since interbubble 
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Monodisperse foam
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FIGURE 16.1  Photographs of a polydisperse (left) and a monodisperse (right) foam floating on top of the 
foaming solution. These foams were produced with ordinary dishwashing solution (“Fairy Liquid”).
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297The Structure of Liquid Foams

gas diffusion will lead to foam coarsening. Film coalescence may also alter the distribution. Foams 
are called monodisperse if their polydispersity is less than about 5%. It will be shown in Section 16.4 
that in some cases, the Sauter mean radius R32 = <R3>/<R2> is used rather than the average radius 
<R>, so that we can define the polydispersity parameter p32 as [9]

	
p

R

R

V

V
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2 3
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− =
< >
< >

−/

/

/ .
	

(16.3)

All of this chapter is dedicated to the structure of a foam in equilibrium, which is determined 
by the minimization of surface energy for fixed bubble volumes. In the presence of gravity, this 

Order

a

<N> ≈ 13.7 <N> ≈ 13.7 N =  14 (BCC)

b c

d e f

g h i

j k l

Polydisperse
disordered

Li
qu

id
 fr

ac
tio

n 
ϕ

Monodisperse
disordered

Monodisperse
ordered

Wet foam
ϕ > 0.15

ϕC < 0.36
<N> ≈ 6

ϕC ≈ 0.36
<N> ≈ 6

ϕC = 0.26
N = 12 (FCC)

Dry foam
ϕ < 0.05

Jamming
transition

Bubbly liquid

Polydispersity

FIGURE 16.2  The structure of a foam depends on liquid fraction ϕ, polydispersity, and order/disorder. Images: 
a, b, e, g, thanks to A. M. Kraynik, see also [Kraynik, A.M. et al. Phys Rev Lett 2004; 93: 208301–208304 [9]; 
Kraynik, A.M. Adv Engineering Materials 2006; 8: 900–906 [10]]; c and f by S. Cox, see also [Cox, S. et al. 
In: Scheffler, P.C.a.M. (Ed.) Cellular Ceramics: Structure, Manufacturing, Properties and Applications, Wiley, 
2005 [11]]; h (Meagher, A.J. et al. Slow crystallisation of a monodisperse foam stabilised against coarsening. Soft 
Matter 2015; 11: 4710–4716. Reproduced by permission of The Royal Society of Chemistry [12]), i (Reprinted 
with permission from Heitkam, S. et al. Packing spheres tightly: Influence of mechanical stability on close-
packed sphere structures. Phys Rev Lett 2012; 108: 148302. Copyright 2012 by the American Physical Society.)
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298 Foam Film and Foams

refers to a foam in which liquid drainage has led to the establishment of an equilibrium profile of 
liquid fraction (see Figure 16.1). Note that a foam is never in true equilibrium, since processes such 
as coarsening or coalescence will lead to a further reduction of its energy. It is, however, possible 
to set up experimental conditions (e.g., using a gas of low solubility, stable surfactants, sufficient 
environmental humidity, short observation times, etc.) for which a foam may be considered to be 
effectively in equilibrium.

16.3 � SIMPLIFYING ASSUMPTIONS FOR UNDERSTANDING 
FOAM STRUCTURE AND ENERGY

Before describing the structure of dry (Section 16.4) and wet foams (Section 16.5) in greater detail, 
we will lay out the key simplifications that we make for this analysis. These are

•	 the surface tension γ is assumed to be constant;
•	 the bubbles are assumed to be incompressible.

Treating surface tension as constant restricts our analysis to structures in equilibrium in the sense 
defined above. This means a restriction to times scales which are sufficiently long to exceed time 
scales in which dynamic effects, such as the Marangoni effect (which may play a role in structural 
relaxation after bubble rearrangements) can be neglected. The time scales must also be sufficiently 
short, so that foam aging effects (coalescence, coarsening) can be neglected. For the discussion of 
the physicochemistry of foams in relation to foam structure we refer to Chapter 4.

The assumption of incompressibility may be justified as follows. From the Laplace-Young equation 
we can estimate pressure differences between a bubble of radius R and its surrounding liquid as 2γ/R, 
where γ is the interfacial tension. For bubbles of radius 0.1 mm and a typical value for γ of 30 mN/m, 
the resulting pressure difference amounts to about 103 Pa. Compared to the atmospheric pressure of 
105 Pa, this is small enough to consider such bubbles in a foam as incompressible.

The energy of a foam is then simply its total surface energy E, that is, the product of the surface 
tension γ with the sum of all liquid interfaces S,

	 E S= .γ 	 (16.4)

For a foam consisting of bubbles with average radius of 0.1 mm, the surface energy is, therefore, 
of the order of 10−8 J per bubble, that is, 1013 times larger than the classical thermal energy of 
1 kT ∼ 10−21 J per bubble. In addition, the change in potential energy when vertically displacing a 
bubble by its radius is proportional to ΔρgR4. This is about 109 times larger than kT. Hence, we can 
conclude that the thermal energy is negligible for the process of packing bubbles.

When comparing (surface) energy of different foam structures, it is convenient to introduce the 
dimensionless energy Ê, defined as

	
ˆ ,/E

S

V
=
< >
< >2 3

	
(16.5)

where <S> and <V> are mean bubble surface area and volume, respectively. For a monodisperse 
foam consisting of spherical bubbles, this results in ˆ ( ) ./ /E= ≈3 4 4 8362 3 1 3π . A hypothetic cubic 
bubble would have Ê = 6.

For finite values of liquid fraction, it is often more convenient to introduce the relative surface 
excess ε(ϕ) as

	
ε ϕ ϕ
( )

( )
,=

< >−<
<

>
>

S S

S
0

0 	
(16.6)
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299The Structure of Liquid Foams

where <S(ϕ)> is the average total surface area of the foam at liquid fraction ϕ and <S0> is the 
average surface area of the foam, if all its bubbles are treated as spheres. Note that various other 
related nondimensional quantities are used in the literature.

The energy landscape of a foam is very complex and the bubbles are generally trapped in local energy 
minima. In the absence of thermal fluctuations, topological changes which would be required to exit 
such minima, do not occur spontaneously. However, structural changes leading to a decrease of total 
energy occur as a foam coarsens due to interbubble gas diffusion [2]. They may also be obtained via 
mechanical shearing of the foam [14] or following the injection of foaming solution into a foam (forced 
drainage). A general consequence of this is that the overall foam structure is strongly history dependent.

16.4  DRY FOAMS

The structure of dry foams, that is, foams of liquid fraction of less than ϕ ≈ 0.05 (Figure 16.2), is 
well described by Plateau’s laws [2,15,16]:

	 1.	Three foam films meet symmetrically under angles of 120° in channels, called Plateau 
borders.

	 2.	Four such Plateau borders meet symmetrically in a node under tetrahedral angles of 
arccos (−1/3) ≈ 109.47° (Maraldi angle).

Plateau’s laws are a consequence of the minimization of surface area. They dictate the local topology 
and geometry of a dry foam. The laws were stated by the Belgian scientist Joseph Antoine Ferdinand 
Plateau in the 19th century, based on observations of soap films formed in metal wire frames [15].

Most of the liquid in dry foams is contained in the Plateau borders and their nodes. Films of foams 
in equilibrium are only some tens of nanometers thick and in structural considerations are, therefore, 
often approximated as having infinitesimal thickness.

The Young-Laplace equation describes the shape of a liquid film between two bubbles having a 
pressure difference of ΔP as

	 ∆P= 4γκ,	 (16.7)

where κ is the mean curvature of the film surface, given by κ= +1 2 1 11 2/ / /(( ))) (r r  with r1 and r2 as 
the two principal radii of curvature. The neighboring bubbles in a foam adjust position and shape so 
as to reach an equilibrium configuration, consistent with Plateau’s rules and given bubble volumes.

Computer simulations showed that the pressure in a bubble is correlated with its number of neighbors, 
which, in turn is correlated with its volume [2,16]. This is important for understanding gas diffusion 
between neighboring bubbles, called coarsening, disproportionation or Oswald ripening [17].

Equipped with Plateau’s rules, in 1887, Lord Kelvin set out to find the equilibrium structure of a 
monodisperse space-filling foam [18]. His considerations of how space can be divided into equal-size 
cells with a minimum total interfacial area led him to the shape of a truncated octahedron as the 
optimal structure (see Figure 16.3 left), consisting of bubbles with N = 14 neighbors and arranged in 
a bcc (body-centered cubic) structure [19]. To fulfill Plateau’s rules, Kelvin had to introduce a slight 
curvature into the eight hexagonal faces; the six square faces are flat.

It took more than a century until Weaire and Phelan [20] were able to surpass Kelvin’s result by 
finding a foam structure with 0.3% less interfacial area (see Figure 16.3 right). This so called Weaire-
Phelan structure consists of eight equal-volume bubbles, of two different types, and an average 
number of neighbors of <N> = 13.5 [20].

The Weaire-Phelan structure ( ˆ .E = 5 288) has a lower energy than the Kelvin structure ( )ˆ .E = 5 306 . 
However, due to its complexity, it does not readily form in nature, although it was produced in the 
laboratory [21].
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300 Foam Film and Foams

Table 16.1 summarizes some of the properties of various dry foam structures. For comparison, 
the table also includes values for a cubic tiling (which disobeys Plateau’s rules) and a hypothetical 
bubble, with 13.4 faces, whose scaled energy of ˆ .E = 5 1 serves as a lower bound [22].

Statistical data about disordered dry foams is mainly based on extensive computer simulations 
[2,9,10,16,24] using the Surface Evolver software [26]. The left of Figure 16.4 shows the distribution 
of the number of neighbors of bubbles in foams with different polydispersities. The average number 
of neighbors of bubbles in a disordered, monodisperse foam is <N> ≈ 13.7. This is close to the 
value determined experimentally by Matzke [24] (full circles in the left of Figure 16.4) and to the 
values for both Kelvin and Weaire-Phelan structures. In polydisperse foams the average number of 
neighbors decreases with increasing polydispersity.

The right of Figure 16.4 shows that the average number of neighbors of a bubble <N> is correlated 
with its volume: the larger a bubble is, the more neighbors it tends to have. The simulations also show 
that with increasing polydispersity, Ê  decreases (Figure 16.5).

Furthermore, it was found that each individual bubble in a foam adjusts its shape to obtain a 
well defined dimensionless energy ˆ . .*E ≈ ±5 33 30 0  [9], independent of its size [9,27]. This value 
corresponds to a surface excess of ε ϕ*( ) . .= = ±0 0 100 0 008 and may be used to calculate how the 
scaled energy Ê  of the entire foam depends on its polydispersity [9] via the relation

	
ˆ

ˆ
.E

E

p
=
+
*

1 32 	
(16.8)

The line which corresponds to this equation is shown along with the simulation data in Figure 16.5, 
evidencing excellent agreement.

–0.3%

Kelvin structure Weaire-Phelan structure

FIGURE 16.3  Surface Evolver simulations of the Kelvin (left) and Weaire-Phelan foam structure, simulations 
performed by Simon Cox.

TABLE 16.1
Summary of Scaled Energy Ê (Equation 16.5), the Relative Surface Excess ε (Equation 16.6), 
and the Average Number of Neighbors <N> for a Dry Foam (ϕ = 0)

Type of Structure

Scaled 

Energy Ê
Relative Surface 
Excess ε (ϕ = 0)

Number of 
Neighbors N (or 〈N〉) Year + Ref

Cubic tiling 6 0.241 6

Ideal bubble (not space filling) 5.1 0.055 13.4 1992 [23]

Kelvin 5.306 0.097 14 1887 [19]

Weaire-Phelan 5.288 0.093 13.5 1994 [20]

Random monodisperse foam 5.330 ± 0.006 0.102 ± 0.001 13.7 1946/2003 [24,25]

Random polydisperse foam 
(for p32 < 0.5) (Equation 16.3)

3.6 5.33< <Ê 0.100 ± 0.008 11.4 < 〈N〉 < 13.7 2004 [9]
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301The Structure of Liquid Foams

16.5  EXPERIMENTAL STUDIES OF WET FOAMS

The structure of wet foams is no longer governed by Plateau’s laws (see Section 16.4) and 8-fold 
vertices are possible [28]. Microgravity experiments on soap films spanned by a cubic wire frame 
showed their stability for a corresponding liquid fraction as low as ϕ ≈ 0.02 [29]. In earth-bound 
experiments with ordered bulk foams, Höhler et al. [5] observed a coexistence of a bcc structure (with 
4-fold vertices) with an fcc (face-centred cubic) structure (with 8-fold vertices) at about ϕ = 0.07. 
Simulations with the Surface Evolver agree with this finding. With further increase of the liquid 
fraction, deviations from the predicted angles at Plateau borders and vertices are also observed, 
caused by the increasing effective line tension. For more details, see [30].

In order to analyze wet foams experimentally, it is necessary to overcome the drying out of a foam 
due to gravitationally driven drainage. Several techniques are available for this. The use of bubbles 
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FIGURE 16.4  Left: Probability distribution of neighbors N of bubbles in foams of different polydispersities 
p32, (•)—experimental data by Matzke [24]; (Reprinted with permission from Kraynik, et al. Structure of 
random foam. Phys Rev Lett 2004; 93: 208301–208304. Copyright 2004 by the American Physical Society [9].) 
Right: Relationship between the volume of a bubble and its number of neighbors; (Reprinted from Colloids 
Surf A, 263, Jurine, S. et al., Dry three-dimensional bubbles: Growth-rate, scaling state and correlations, 18–26, 
Copyright 2005, with permission from Elsevier [17].)
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FIGURE 16.5  Scaled energy density E�  as a function of polydispersity p32 for a bidispersive foam (open 
symbols) and a polydisperse foam (filled symbols); solid line (Equation 16.8) (Reprinted with permission from 
Kraynik, et al. Structure of random foam. Phys Rev Lett 2004; 93: 208301–208304. Copyright 2004 by the 
American Physical Society [9].)
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much smaller than the capillary length, resulting in many bubble layers in the wet regime (large Princen 
number, Equation 16.1), is one possibility. Alternatively, one may replenish the draining liquid via the 
addition of a constant flow of surfactant solution at the top of a foam column ( forced drainage [2]). A 
third option is provided by experimenting in a microgravity environment [31] (see also Chapter 26).

Surprisingly, monodisperse wet foams consisting of bubbles smaller than a few hundred microns 
crystallize spontaneously into ordered arrangements. While the ordering is initially confined to 
regions where the foam is in contact with a confining vessel, or the foam-liquid or foam-gas interface 
[7,32], as in Figure 16.6a, it has also been seen to occur in the bulk of a sample and to extend in time, 
as shown in Figure 16.6b [12].

In the ordered regions, it was found that the bubbles arrange in both fcc (face centered cubic) 
and hcp (hexagonal close packing), that is, the arrangements associated with the packing of (hard) 
spheres, with a slight preference for the fcc arrangement. This preference was also found in computer 
simulations, where the bubbles are treated as soft spheres which aggregate, driven by buoyancy [13]; 
it was interpreted as a consequence of mechanical stability.

There are yet many open questions regarding the spontaneous ordering in monodisperse wet 
foams. These include:

•	 Does coarsening or drainage play a role in restructuring the foam?
•	 Can mechanical perturbations lead to an annealing of the foam?
•	 Is the spontaneous ordering a consequence of the specific form of the interaction potential 

between contacting bubbles, which deviates from that of spheres which interact via Hooke 
or Hertz contact forces (see Section 16.4)?

16.6  UNDERSTANDING BUBBLE INTERACTION

Rheological measurements and simulations have shown that shear modulus, yield stress, and yield 
strain decrease with liquid fraction [16,33]. They vanish at the critical liquid fraction close to ϕc ≈ 0.36 
(“rigidity loss transition”). In granular materials, this value corresponds to the random packing of 

(a)

1 mm

(b)

7 
da

ys

FIGURE 16.6  (a) Photo of the surface of crystalline monodisperse foam, showing different grain orientations, 
boundaries, and stacking defaults; (van der Net, A. et al. The crystal structure of bubbles in the wet foam 
limit. Soft Matter 2006; 2: 129–134. Reproduced by permission of The Royal Society of Chemistry [4].) (b) 
X-ray tomography data showing the crystallization of bulk monodisperse foam over the course of seven days. 
(Meagher, A.J. et al. Slow crystallisation of a monodisperse foam stabilised against coarsening. Soft Matter 
2015; 11: 4710–4716. Reproduced by permission of The Royal Society of Chemistry [12].)
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spheres (“Bernal packing”) and is also referred to as “jamming fraction” [34,35]. The value of ϕc 
decreases with increasing polydispersity, but remains close to 0.36 for the modest polydispersities 
generated by most foaming techniques [8] (Chapter 8). At the jamming transition, the average contact 
number of bubbles is six, i.e. the value that is obtained from constraint arguments for the packing 
of frictionless hard spheres [34,35].

Wet foams are often modeled as packings of (overlapping) soft spheres with a pairwise harmonic 
potential between spheres in contact [34,36]. Computer simulations have shown that this results 
in an increase ΔZ of the average contact number per bubble of the form ΔZ ∼ (Δϕ)1/2, where 
Δϕ = ϕc − ϕ [34].

Although being both computationally and conceptually attractive, the soft sphere model with 
its fundamental assumption of pairwise-additive interaction energies is only an approximation of 
bubble interaction. Computer simulations using the Surface Evolver [37,38], as well as analytical 
studies [39], have shown that the fact that bubbles adjust their shapes upon contact introduces many 
body coupling between all contacts, together with a logarithmic softening of the interaction. Further 
studies are required to investigate if and how this affects the scaling of ΔZ with distance Δϕ from 
the jamming point. Recent computer simulations of two-dimensional foams in which bubble shapes 
are accurately represented have suggested a linear scaling [40,41].

The Z-cone model presents a novel analytical approach which captures both the logarithmic 
softening and the dependence of the interaction potential on the number of contacts of a bubble. 
In the model, a bubble with Z neighbors is decomposed into Z equivalent pieces, followed by 
their approximation as circular cones. Both liquid and gas are treated as incompressible and the 
minimal surface area of the cap of each cone is computed analytically under the constraint of 
volume conservation [42,43]. This allows for the computation of the excess energy for periodic foam 
structures with Z neighboring bubbles as a function of liquid fraction, as

	
ε ϕ

ϕ
ϕ ϕ
ϕ ϕ

( ) ~
( )

( )
( )

,−
−

−
−

Z

lnc

c

c18 1 2

2

	
(16.9)

in good agreement with simulations obtained with the Surface Evolver in the wet limit [37,42].
While ε(ϕ) cannot be directly measured experimentally, it can be inferred from measurements of 

the so called osmotic pressure (Π(φ)) in a foam, defined as

	

Π=−
∂
∂











=

γ S

Vf Vgas const.

,

	

(16.10)

where S is the total surface area of all bubbles in the foam of volume Vf, and Vgas is the constant gas 
volume [44–46]. In the case of experimental data for wet ordered foams, the deduced variation for 
ε(ϕ) appears to be consistent with the expression obtained from the cone model (Equation 16.9). For 
details, we refer to our recent review article [1].

16.7  EXPERIMENTAL CHARACTERIZATION OF FOAM STRUCTURE

As we have shown above, foam structure depends crucially on the (local) liquid fraction ϕ. A number 
of experimental methods exist for its determination. One of the most elegant methods for measuring 
the total amount of liquid uses a U-tube filled with foam on one side and the foaming solution on 
the other side. As the amount of liquid on both sides is equal, the average liquid fraction of the foam 
can be estimated.

Liquid fraction profiles can be obtained via measurements of local electrical conductivity σ, using 
an array of electrodes in contact with the foam. This technique is based on the well established 
semi-empirical relationship σ/σ0 = 2ϕ(1 + 12ϕ)/(6 + 29ϕ − 9ϕ2) [47], which expands on the simple 
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linear relationship σ/σ0 = ϕ/3 derived for dry foams by Lemlich [48] (σ0 is the conductivity of the 
bulk solution). Various commercial devices are available for such measurements.

Recently, a new technique has been proposed whereby bulk liquid fraction is estimated from optical 
measurements of the surface liquid fraction of bubbles in contact with a solid confinement [49]. This 
makes use of semi-empirical expressions of foam excess energy that were referred to in Section 16.6.

The bubble size distribution in a foam may be determined experimentally by placing foam 
samples between two parallel plates of known separation. The resulting quasi two-dimensional 
foam can then be analyzed using standard imaging techniques. A rough noninvasive estimation 
of the average bubble size can also be obtained from photographs of surface bubbles. As in the 
measurement of the surface liquid fraction, there is the possibility of a bias due to the possibility of 
size segregation between surface and bulk [50]. A further noninvasive technique is diffusive light 
scattering combined with a separate measurement of the average liquid fraction [51].

Detailed structural data is hard to obtain. Photography is appropriate only for a few outer layers 
of foam, but fails as a method for a quantitative analysis of foam structure. The same is true for 
confocal microscopy. Recently, tomographic techniques, such as X-ray tomography, have proven 
very successful in determining the Plateau border network and bubble volumes (see Figures 16.6b and 
16.7) [12,52,53]. The detection of foam films would benefit from higher energy synchrotron radiation.

16.8  CONCLUSIONS

We have shown that the structure of a foam depends crucially on the method for its generation and 
on the value of local liquid fraction. The foaming method also controls the degree of polydispersity 
and introduces the possibility of obtaining ordered, crystalline foams. Bubble shapes range from 
almost spherical for wet foams to polyhedral for dry foams.

The structure of dry foams is well understood (see Section 16.4) due to the large body of both 
experimental data and numerical simulations using the Surface Evolver software. This software, 
developed and maintained by Ken Brakke [26], is presently the most successful tool for simulating 
foam structure. Example simulations were already shown in Figures 16.2 and 16.3, while Figures 
16.4 and 16.5 display Surface Evolver data.

2 mm

FIGURE 16.7  Tomographic 3D reconstruction of a dry aqueous foam made from ordinary detergent solution 
and nitrogen bubbles with an average diameter of 1.5 mm; (Meagher, A.J. et al. Slow crystallisation of a 
monodisperse foam stabilised against coarsening. Soft Matter 2015; 11: 4710–4716. Reproduced by permission 
of The Royal Society of Chemistry [12].)
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Simulations of disordered wet foams, however, remain challenging, mainly due to the problems 
associated with detection and execution of topological changes. The Potts model [54,55] provides 
an alternative Monte Carlo type approach. The recently developed multiscale model of Sethian and 
Saye [56,57] could also be a candidate for exploring wet foams. Future progress in understanding 
wet foams will benefit from both advances in experimental imaging, together with new theoretical 
initiatives, see for example [38].
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