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Abstract – Most solar flares originate in sunspot groups, where magnetic field changes lead to energy
build-up and release. However, few flare-forecasting methods use information of sunspot-group evolution,
instead focusing on static point-in-time observations. Here, a new forecast method is presented based upon
the 24-h evolution in McIntosh classification of sunspot groups. Evolution-dependent ≥C1.0 and ≥M1.0
flaring rates are found from NOAA-numbered sunspot groups over December 1988–June 1996 (Solar Cycle
22; SC22) before converting to probabilities assuming Poisson statistics. These flaring probabilities are used
to generate operational forecasts for sunspot groups over July 1996–December 2008 (SC23), with
performance studied by verification metrics. Major findings are: (i) considering Brier skill score (BSS) for
≥C1.0 flares, the evolution-dependent McIntosh-Poisson method (BSSevolution = 0.09) performs better than
the static McIntosh-Poisson method (BSSstatic =� 0.09); (ii) low BSS values arise partly from both methods
over-forecasting SC23 flares from the SC22 rates, symptomatic of ≥C1.0 rates in SC23 being on average
≈80% of those in SC22 (with≥M1.0 being≈50%); (iii) applying a bias-correction factor to reduce the SC22
rates used in forecasting SC23 flares yields modest improvement in skill relative to climatology for both
methods (BSScorrstatic ¼ 0:09 and BSScorrevolution ¼ 0:20) and improved forecast reliability diagrams.
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1 Introduction

Solar flares are one of the most energetic space weather
phenomena that affects the near-Earth environment. They most
commonly originate within sunspot groups, where evolution of
complex magnetic field leads to magnetic reconnection and
subsequent large magnitudes of energy release. In the
reconnection process, stored magnetic energy is rapidly
converted to both thermal and kinetic energy in addition to
non-thermal acceleration of particles (Priest & Forbes, 2002).
Solar flares, or coronal mass ejections (CMEs) if material is
ejected, are understood to be caused by this magnetic
reconnection process. Due to the high-energy radiation release
and particle acceleration, these phenomena can have damaging
effects on both Earth and space-based technologies (e.g.,
satellites and radio communication). Unlike CMEs that
typically take 1–3 days to propagate to Earth after launch is
detected, flare-related space weather impacts begin within
minutes of flare onset (e.g., ionospheric disturbances; Mitra,
1974). Therefore, it is of high priority that methods are
ding author: mccloska@tcd.ie

en Access article distributed under the terms of the Creative CommonsA
unrestricted use, distribution, and reproduction in any m
developed to forecast when flares may occur, and the
magnitude of energy release, in order to mitigate their effects.

Over the past several decades, there have been many
published works focused on the classification of sunspot groups
in terms of their complexity and their relation to flare production.
The most well-known are the Mount Wilson (Hale et al., 1919)
and McIntosh (McIntosh, 1990) schemes, classifying sunspots
according to their magnetic and white-light structure, respective-
ly. The relationship between these sunspot group classifications
and flaring has been investigated in several studies and it was
shown that the more “complex” sunspot-group classifications are
associated with higher frequency and magnitude of flaring
(Waldmeier, 1947; Bornmann and Shaw, 1994).

In terms of solar flare prediction, one of the most
established methods that has been developed to forecast solar
flares is based upon sunspot-group classification, namely the
McIntosh classification scheme. Gallagher et al. (2002)
developed a Poisson-based method for calculating flare
probabilities from the historical flaring rates of McIntosh
classifications (publicly available at www.solarmonitor.org).
Later this method was expanded upon and the performance of
interpreting probabilities as dichotomous yes/no forecasts was
verified by Bloomfield et al. (2012), where it was shown that
Poisson probabilities performed comparably to some of the
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more complex flare prediction methods in use at that time.
There currently exists a vast quantity of prediction/forecasting
methods including the most recent development of applying
machine learning techniques to flare forecasting (see, e.g.,
Colak & Qahwaji, 2009; Ahmed et al., 2013; Bobra &
Couvidat, 2015). For more information on the multitude of
prediction/forecasting methods, see the recent comparison
paper by Barnes et al. (2016) and references therein.

Several space weather Regional Warning Centres (RWCs)
make use of the Poisson-based flare forecasting approach. The
US National Oceanographic and Atmospheric Administration
(NOAA) Space Weather Prediction Centre (SWPC) RWC uses
the McIntosh scheme as an input for their “expert” decision-rule
system that is used to assign flaring probabilities to active
regions (McIntosh, 1990) that are augmented by experienced
space weather forecasters prior to being issued. The UK Met
Office Space Weather Operations Centre (MOSWOC) RWC
also uses the historical flaring rates of McIntosh classes to
calculate an initial forecast, again later adjusted by human
forecasters. The performance of these operational forecasts have
been evaluated and shown to perform well compared to more
complex methods, with improvement in performance achieved
by including the human editing of probabilities (Crown, 2012;
Murray et al., 2017), also true for the Belgian Solar Influences
Data Center (SIDC) RWC (Devos et al., 2014).

Until now, few forecasting methods account for evolution
in sunspot-group properties, but there have been some
research-focused studies considering evolution in sunspot-
group classifications. Lee et al. (2012) investigated a subset of
McIntosh classes alongside their 24-h change in sunspot area,
finding that groups which increased in area had a higher flaring
rate compared to groups with steady or decreasing area.
Comparatively, McCloskey et al. (2016) calculated evolution-
dependent flaring rates for the three components of the
McIntosh classification scheme. It was shown that when
sunspot groups evolve upward in their McIntosh class higher
24-h flaring rates are observed, with lower flaring rates being
true for downward evolution. So far, however, no verified
forecasting methods have included the temporal evolution of
sunspot-group classifications.

In this paper, we investigate the evolution of McIntosh
sunspot-group classifications over 24-h time scales as a method
for forecasting solar flare magnitude and occurrence. The data
we use is based upon McCloskey et al. (2016), where historical
flaring rates were calculated for McIntosh evolutions from the
training period 1988 to 1996 (Solar Cycle 22; SC22), with more
recent data from 1996 to 2008 (SC23) included for testing and
forecast verification. In Section 2 we provide more details on the
data used in this study and the method used to produce flare
probabilities. Section 3 discusses the results of the forecasting
method along with verification metrics and an exploration of the
maximum performance possible when applying linear Cycle-to-
Cycle rate corrections. Finally, in Section 4 we present our
conclusions and outlook for future work.

2 Data analysis

2.1 Data sources

The data used in this study are that analysed byMcCloskey
et al. (2016), consisting of historical sunspot-group
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classifications and flare information collected by NOAA/
SWPC. SWPC provide a daily Solar Region Summary (SRS)
issued at 00:30UT, with sunspot-group properties including
NOAA active region number, heliographic coordinates,
McIntosh and Mount Wilson classifications, and longitudinal
extent. Additionally, solar flares associated with these regions
were obtained from the Geostationary Operational Environ-
ment Satellite (GOES) event lists collated by SWPC. It is noted
that the association of a flare to a specific NOAA active region
is carried out by SWPC for up to three days after the event
occurs. We chose to include all GOES 1–8Å soft X-ray flares
of C-class and above (i.e., ≥10�6Wm�2), with the reason for
excluding flares below these magnitudes being the high
background solar X-ray flux level at solar maximum that
obscures B-class and lower flares.

The data used here as a training set for our forecasting
method was taken from the SC22 period of 1 December 1988
to 31 July 1996, inclusive (Balch, 2011, private communica-
tion). It is noted that although SC22 is estimated to have
commenced in September 1986 (Hathaway et al., 1999), the
region-associated flare data from before December 1988 was
not available and therefore could not be included here. This
provided a data set of 24-h flaring rates calculated for
individual evolutions in McIntosh classification parameters,
i.e., modified Zurich, penumbral or compactness classes.
However, it is important to note that in this study we chose to
make use of the evolution in the full McIntosh classification of
each sunspot group rather than the evolution in the three
separate components studied in McCloskey et al. (2016).
Section 2.2 outlines this distinction in further detail.

The data used here as a test set was obtained from the
publicly available NOAA/SWPC website (ftp://ftp.swpc.noaa.
gov/pub/warehouse/) over the SC23 period of 31 July 1996 to
13 December 2008, inclusive, in order to ensure an
independent data set for forecast verification. Using the same
method as McCloskey et al. (2016), McIntosh classifications
were extracted for each unique NOAA sunspot group along
with the region-associated GOES X-ray flares. A total of
21 476 individual daily sunspot-group entries were extracted in
the test period, corresponding to 3017 unique NOAA active
regions. The total number of GOES soft X-ray flares associated
with these regions was 8647, consisting of 7434 C-class, 1106
M-class, and 107 X-class flares.

2.2 Full McIntosh classification evolution

The McIntosh classification scheme is a long-established
method for classifying the white-light structure of sunspot
groups. It was first developed by Cortie (1901) and later
expanded upon and modified to include additional parameters
(Waldmeier, 1947; McIntosh, 1990). The scheme is comprised
of 17 different parameters which combine to form 60 different
allowed classifications. These parameters are divided into
three component classes: modified Zurich, penumbral and
compactness (Zpc). In summary, “Z” describes the longitudinal
extent of the sunspot group, “p” describes the size and
symmetry of the penumbra of the leading spot and “c”
describes the distribution of sunspots in the interior of the
group. For a more detailed description of these components
and their allowed combinations, see McIntosh (1990),
Bornmann & Shaw (1994), and McCloskey et al. (2016).
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Previously, it has been shown that the McIntosh
classifications of sunspot groups and their flare productivity
are related. Importantly, there is evidence that the McIntosh
classification can capture differences in flaring rates for
sunspot groups, with more complex classifications producing
higher flaring rates overall (Bornmann & Shaw, 1994).
Building upon this, McCloskey et al. (2016) showed that
the 24-h evolution of McIntosh sunspot-group classifications
show comparable results in terms of the rate of flare production
� sunspot groups that evolved upward in a classification
component produced higher flaring rates, while downward
evolution produced lower flaring rates. In this paper we make
use of this statistical relationship to implement a method for
flare forecasting using the 24-h evolution of McIntosh
classifications.

As previously mentioned, instead of considering the
evolution in only a single McIntosh component (i.e., Z1!Z2
or p1!p2 or c1!c2), the full McIntosh class evolution of a
sunspot group is extracted over 24 h (i.e., {Zpc}1!{Zpc}2).
The main reasoning for this was to better capture the
information in the evolution of the complete white-light
structure of each sunspot group that was naturally excluded
by considering only evolution in a single McIntosh
component. Here, the average flaring rate associated with
one unique {Zpc}1!{Zpc}2 evolution is determined by
extracting all instances of active regions that underwent that
McIntosh class evolution. From this subset of active regions,
the total number of flares that were produced within 24 h of
that specific evolution are divided by the total number of
regions in that subset.

To verify that the previously observed relationship between
McIntosh-class evolution and flaring rate is also present when
considering the full McIntosh classification, Figure 1 depicts
flaring rates for a selection of full McIntosh-class evolutions.
This selection was chosen to represent evolution by evolving
sequentially in at least one parameter (e.g., a DSO evolving to a
BXO, followed by a DSO evolving to a CSO). Note that this
graphical representation is less continuous to that shown in
McCloskey et al. (2016), since bars that lie two steps apart may
depict evolution in two separate McIntosh components (rather
than two steps in one component in the previous work).
Figure 1a plots the occurrence-frequency distribution, with the
most frequent occurrence once again being no evolution in
McIntosh class over 24 h (black bar). When evolution does
occur, a DSO-type is most likely to evolve upward in
penumbral class (i.e., to DAO) or downward in modified
Zurich class (i.e., to CSO). This reflects the previous findings
of McCloskey et al. (2016) where sunspot groups are most
likely to remain the same classification and are not likely to
evolve significantly over a 24-h period (i.e., rarely more than
two evolution steps in any one McIntosh component).

Figure 1b displays the ≥C1.0 flaring rates associated with
these selected McIntosh evolutions. This plot indicates that
there are increasingly higher flaring rates associated with
greater evolution steps upward in at least one McIntosh
parameter, with the opposite true for greater evolution steps
downward (i.e., sequentially decreasing rates). Additionally,
for flaring rates l, associated Poisson errors are calculated as
Dl ¼ 1=

ffiffiffiffiffi
M

p
, where M is the total number of sunspot groups

that underwent that evolution in McIntosh class. These are
shown as error bars in both Figures 1b and c, where the
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maximum error in flaring rate is ±1. Similar behaviour is seen
for ≥M1.0 flaring rates in Figure 1c, with higher flaring rates
seen for evolution upward in McIntosh class, however due to
low occurrence numbers these rates are deemed not statisti-
cally significant (i.e., l ±Dl encompasses zero). This
relationship of McIntosh class evolution and flaring rates is
comparable to the findings of McCloskey et al. (2016).
2.3 Issuing Poisson probabilities

For the purpose of testing the forecast method in an
operational manner, forecasts for ≥C1.0 and ≥M1.0 flares are
issued for each 24-h time window from 00:00UT in the form of
probabilities of flare occurrence. It has been previously shown
that the waiting-time distributions of soft X-ray flares from
individual active regions is well represented by a time-
dependent Poisson process with typical piece-wise constant
flaring-rate timescales of >2–3 days (Wheatland, 2001). As
that work encompasses the full lifetime of individual active
regions, and hence their evolution across McIntosh classes, we
find the assumption of Poisson statistics suitable for our work.
Here, we convert our evolution-dependent 24-h flaring rates to
probabilities as follows,

PlðNf Þ ¼ lNf

Nf !
e�l; ð1Þ

where Nf is the number of flares expected to occur in a 24-h
period following an evolution and l is the average number
of flares observed within the 24 h immediately following
each unique evolution in McIntosh class. Note, these flaring
probabilities are calculated separately for each unique full
McIntosh evolution using the training set data of SC22.
Hence, the probability of one or more flares occurring in a
given time interval following an evolution is then
calculated by,

Pl N f ≥ 1ð Þ ¼ 1� Pl N f ¼ 0ð Þ ¼ 1� e�l : ð2Þ

By using a 24-h flaring rate, the issued flaring probabilities
are then valid for the following 24-h period (i.e., 00:00UT–
00:00UT). Although the SWPC SRS files used to determine
McIntosh-class evolution are issued at 00:30UT, here the
forecast interval begins at 00:00UT as this is the end-time at
which McIntosh classifications are constructed from the
previous 24 h. It is worth noting that there are certain
circumstances where our evolution-dependent forecasting
method will not be able to issue a forecast. This includes
the first day a sunspot group appears on disk and therefore no
evolution can have been observed, while there are a small
number of full McIntosh-class evolutions that were not
observed in the training data set and therefore no evolution-
dependent flaring rate can be assigned in the test data set.
Rather than disregard these sunspot groups from the analysis,
we have chosen instead to use the standard static point-in-time
flaring rates and hence probabilities for these cases based on
the currently observed full McIntosh class. This satisfies the
purpose of creating an operational forecasting method and
allows for a more fair comparison of our evolution-dependent
method with the original static method.
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Fig. 1. Histograms showing the 24-h evolution of sunspot groups starting as a DSO-type McIntosh classification (a), with bars representing the
percentage of evolutions observed starting as DSO and evolving to a sub-group of McIntosh classifications. The corresponding evolution-
dependent ≥C1.0 and ≥M1.0 flaring rates are shown in panels (b) and (c), respectively. Histogram bars are coloured by evolution: no evolution
(black); upward evolution (dark red); downward evolution (light blue).
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3 Results

3.1 Forecast verification

Various verification metrics can be investigated to quantify
the performance of a forecasting method. There are two main
types of forecasting methods that are widely used, namely
categorical and probabilistic. Dichotomous categorical fore-
casts have only two possible values when predicting if an event
will occur (i.e., yes/no), whereas probabilistic forecasts yield a
range of values (i.e., decimal percentage between 0 and 1).
Here, we evaluate the performance of both the original static
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McIntosh method (Gallagher et al., 2002) and our new
evolution-dependent McIntosh method focusing on verifica-
tion techniques suited for probabilistic forecasts. This allows
for direct comparison of the two methods using probabilistic
verification metrics that were not explored in the previous
benchmarking study of Bloomfield et al. (2012).

One of the main quantities that assesses the performance of
a probabilistic forecast is the Brier score (BS). In its simplest
form, BS is equivalent to the mean-squared error between the
issued forecast probability, f (i.e., 0–1), and the observed
binary outcome for that forecast, o (i.e., 0 or 1),
f 14



Table 1. Decomposed Brier score (BS) components and Brier skill score (BSS) for the McIntosh static and evolution-dependent forecast
methods.

Flaring magnitude Forecast method BS components BSS

Reliability Resolution Uncertainty

≥C1.0 Static 0.037 0.025 0.146 �0.09

≥C1.0 Evolution 0.033 0.046 0.146 0.09
≥M1.0 Static 0.017 0.003 0.038 �0.36
≥M1.0 Evolution 0.014 0.009 0.038 �0.15
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BS ¼ 1

N

XN

i¼1

ðf i � oiÞ2; ð3Þ

where N is the total number of forecasts issued and i identifies
specific forecast-observation pairs. If the issued forecasts can
be identified as groups of unique forecast probabilities, the BS
can be decomposed into three components (Murphy, 1973),

BS¼ 1

N

XK

k¼1

nkðf k � okÞ2 � 1

N

XK

k¼1

nkðok � oÞ2

þ oð1�oÞ;
¼ reliability� resolutionþ uncertainty; ð4Þ

where k identifies unique forecast-probability groups, nk is the
number of occurrences in each k group, ok is the corresponding
observed frequency of events in that k group (i.e., the
climatology for that unique forecast group) and o is the overall
climatology of events for all valid forecast days. Climatology
of events refers to the long-term average value of binary flare
occurrence (i.e., 0 or 1) over the period of testing (i.e., SC23).
Reliability is a measure of how close the issued probability of a
unique forecast group is to the frequency of observed outcomes
for that unique forecast group (i.e., the average binary outcome
of their observed events), where a reliability value of 0
corresponds to a perfectly reliable forecast. The resolution
term measures the difference between the climatology of the
unique forecast groups and the overall climatology, which can
be interpreted as the potential ability of the unique forecast
groups to perform better than unskilled climatology (i.e., the
higher the value of resolution the better). Finally, the
uncertainty term measures the variability in the observed
event frequency, which is independent of unique forecast
grouping and is largest when an event is difficult to predict
(i.e., occurring 50% of the time) and smallest when an event
occurs almost always or never. In the context of this work, the
issued forecast probabilities can be considered as binned into k
unique bins where each represents a unique McIntosh-class
evolution (e.g., AXX to BXO).

To interpret the performance of a forecast set, it is standard
practice to normalise a verification metric score, S, to that of a
reference forecast, Sref, by means of a skill score (SS),

SS ¼ S � Sref
Sperfect � Sref

; ð5Þ

where Sperfect is the score of a perfect forecast for the chosen
verification metric. In the case of BS, a perfect forecast has a
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value of 0 and the reference forecast is typically taken to be that
achieved by climatology, BSclim (equivalent to the uncertainty
term in equation (4), as reliability and resolution cancel each
other out). The Brier skill score (BSS) is then given as,

BSS ¼ BS� BSclim
0� BSclim

¼ 1� BS

BSclim
: ð6Þ

This can also be represented via the decomposed form of
equation (4) by the three components as,

BSS ¼ 1� reliability� resolutionþ uncertainty

uncertainty

¼ resolution� reliability

uncertainty
: ð7Þ

Table 1 presents the three decomposed BS components and
BSS for ≥C1.0 and ≥M1.0 flares for both the McIntosh static
and evolution-dependent forecasting methods. Focusing on
BSS values for ≥C1.0 flares, both methods achieve similar
reliability values of 0.037 and 0.033, respectively. Considering
now the resolution, as these values contribute to the overall
BSS positively, if the value of resolution is greater than
reliability the overall BSS will be positive. For the static
method, despite being reasonably reliable it does not achieve a
positive BSS (�0.09) as the value of resolution is too low
(0.025) � the climatology for many of the unique forecast
groups are indistinguishable from the overall climatology
(i.e., little forecast discrimination ability). Although the
evolution-dependent method has a similar reliability value,
its resolution (0.046) is higher, relative to both the static
method and its own reliability term, contributing to a positive
BSS (0.09). Achieving a positive value for BSS indicates that
the evolution-dependent method is performing better than the
climatology reference forecast, while the static method does
not.

In addition to skill scores, it is useful to visualise the
performance of the forecast method. The two most popular
visual diagnostics are reliability diagrams and relative
operating characteristic (ROC) curves like those provided in
Figure 2a and c, respectively. Reliability diagrams indicate
differences between forecast probabilities and the observed
frequencies of events (similar to the reliability term of the BSS
in Eq. (4)), with forecast probabilities plotted along the
horizontal axis, binned into sub-groups of forecasts, and the
frequency of observed events for each sub-group plotted on the
vertical axis. Here we chose to use 10% probability intervals,
p, with the associated Bayesian uncertainty for each bin shown
f 14



Fig. 2. Reliability diagrams (panel a), sharpness (i.e., probability occurrence) plots (panel b), and ROC curves (panel c) for ≥C1.0 flares. Data
for the McIntosh static forecast method are indicted by red filled squares (panels a and c) and solid histogram (panel b), while the evolution-
dependent method is depicted by blue open circles (panels a and c) and dashed histogram (panel b).
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as error bars, sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=ðT þ 3Þp

, where T is the total
number of forecast days in each probability bin (Wheatland,
2005), indicated in the sharpness plot of Figure 2b. The overall
climatology of events is plot as a horizontal and a vertical line,
with the shaded area indicating the region that data contribute
positively to BSS.

Forecasts for the McIntosh static (red filled squares) and
evolution-dependent (blue open circles) methods can be
directly compared here, as both are applied to the same testing
time period and so have the same climatology. For the static
case, the majority of points lie within the shaded area, which
can contribute positively to the BSS. However, while three
points lie on the line of perfect reliability (i.e., y= x) most are
found below this line, indicating the method is over-
forecasting (i.e., the values of forecast probabilities are too
high relative to the observed frequency of events for that
forecast bin). It is interesting to note that the evolution-
dependent case also appears to be over-forecasting, but in a
more consistent manner (i.e., linearly biased from perfect
reliability) than the static case. Notably, the static method
achieves a worse (and negative) BSS compared to the
evolution-dependent method, which is reflected in the
reliability diagrams by more significant deviation of data
points from the y= x line and their relatively larger occurrence
frequencies (e.g., for the static case, p= 0.6–0.7 is the greatest
outlier while being the third-most populated bin).

For alternative verification purposes it is also possible to
convert the probabilistic forecasts into dichotomous forecasts
by probability thresholding. This is implemented by choosing a
specific threshold and setting any forecast probability above
that value to 1 (i.e., a “yes” forecast) and any forecast below it
to 0 (i.e., a “no” forecast). The four possible arrangements of
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forecast-observation pairs can then be represented by a 2� 2
contingency table consisting of: true positive forecasts (TP;
hits), true negative forecasts (TN; correct rejections), false
positive forecasts (FP; false alarms) and false negative
forecasts (FN; missed flares). A ROC curve is then a
visualisation of the probability of detection (also known as
hit rate), POD=TP/(TPþ FN), against the probability of false
detection (also known as false alarm rate), POFD=FP/
(FPþTN), as a function of probability threshold. A skillful
forecast will have a higher success-ratio of events (POD) to
failure-ratio of non-events (POFD), therefore the closer the
curve is to the top left-hand corner the better. The ROC curve is
also a visualisation of the True Skill Statistic (TSS =POD�
POFD), where the vertical distance of the curve above the
diagonal line is the TSS value at that probability threshold (i.e.,
curves below the diagonal have negative TSS).

Figure 2c displays the ROC curves for both the static (red
filled squares) and evolution-dependent (blue open circles)
methods, with probability thresholds of p= 0.01 and 0.75 as
well as the threshold probability corresponding to the
maximum TSS value indicated for each method. Initially
the ROC curves of both methods behave similarly, with
marginally larger TSS for the static case. However, after the
threshold probabilities that yield maximum TSS, noticeable
divergence occurs with the evolution-dependent curve
remaining relatively smooth until converging once again at
higher probability thresholds. This is a direct result of the
evolution-dependent method containing more forecasts with
mid-to-high probabilities relative to the static method (e.g., the
sharpness plot of Fig. 2b). Furthermore, the area under the
curve (AUC) is a measure of the accuracy of the forecast set,
with areas of 1 corresponding to perfect forecasts and 0.5
f 14



Fig. 3. Comparison of ≥C1.0 24-h flaring rates between SC22 (1988–1996) and SC23 (1996–2008) for the McIntosh static (panel a) and
evolution-dependent (panel b) Poisson forecast methods. Dashed diagonal lines indicate the unity relation, while ODR best-fit linear relations are
overlaid as thick lines. Best-fit slopes and reduced chi-squared values are also included.
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corresponding to no-skill forecasts (indicated by the diagonal
dashed line in Fig. 2c). Both methods have AUC values of
0.78, indicating they have comparable dichotomous forecast
accuracy when considering performance across the entire
probability space. Equivalent figures for ≥M1.0 flares can be
found in Appendix A, showing qualitatively similar behaviour
between the methods in terms of over-forecasting relative to
the observed event frequency and similar values of AUC and
maximum TSS.

Considering the overall performance of the static and
evolution-dependent methods, both appear to perform similarly
when only considering their categorical forecast representation.
However, with probabilistic verification metrics it becomes
evident that the methods do not achieve the same level of
performance. For BSS, the evolution-dependent method was
shown to perform better in skill by a value of ≈0.2 when
considering either≥C1.0 or≥M1.0 flares. In the decomposition
ofBS,while bothmethods achieve similar reliability values they
differ in resolution, leading to better performance by the
evolution-dependent method. In terms of optimising a forecast-
ing method, it is possible to apply forecast-bias corrections to
achieve more reliable forecasts. However, for those methods
with unique forecast-probability groupings the resolution is
fundamentally invariant to such corrections (i.e., with the sets of
forecast-observation pairs remaining the same in each unique
group, ok and hence resolution in Eq. (4) does not change).
Considering that bothmethods are known to be over-forecasting
(see Fig. 2a), in Section 3.2we consider a basic bias correction to
explorewhat the best performance of themethods could be in an
ideal scenario.
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3.2 Forecast-bias correction

Based on the results of verification performance for the
static and evolution-dependent forecasting methods, we chose
to investigate techniques to compensate for the over-
forecasting of events in both cases. As both are Poisson-
based methods derived from historical average flaring rates,
the distributions of flaring rates were examined in the training
(SC22) and test (SC23) data sets to investigate if a Cycle-to-
Cycle variation existed. Figure 3 presents this comparison for
≥C1.0 flaring rates between SC22 (horizontal axes) and SC23
(vertical axes), for static (panel a) and evolution-dependent
cases (panel b). The size of each data point corresponds to the
total number of sunspot group occurrences, Mtot =MSC22þ
MSC23, that are associated with each McIntosh class (panel a)
or each evolution in full McIntosh class, such that larger data
points were more frequently observed in both Solar Cycles.

Considering the McIntosh static case in Figure 3a, 49
McIntosh classifications were observed in both the training and
test data sets, while 518 full McIntosh-class evolutions were
observed in both data sets (Fig. 3b). These rate-rate plots were
fit using the Orthogonal Distance Regression (ODR) method,
as it takes account of uncertainties in both variables
(i.e., DlSC22 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSC22

p
and DlSC23 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSC23

p
). Fit

intercepts were set to 0 to obtain slopes that can be later
compared to rate-correction factors (RCFs) used to examine
the possible influence of bias correction on forecast perfor-
mance (see Sect. 3.3). Dashed diagonal lines in each panel
indicate the unity slope (i.e., lSC23 = lSC22), while ODR best-
fit lines are displayed as thick lines. For the static method, the
f 14
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ODR best-fit is found (with a reduced chi-squared of 2.32) to
be lSC23 = (0.82 ± 0.02)lSC22. As the fit slope is below unity,
this indicates that the flaring rates for sunspot groups in the
training period (SC22; 1988–1996) are on average higher than
the those with the same McIntosh classifications in the test
period (SC23; 1996–2008). For the evolution-dependent case,
the same behaviour is found (i.e., lSC23 = (0.80 ± 0.02)lSC22
with a reduced chi-squared of 2.42). Given that the flaring rates
deduced for both methods produce the same relationship
within error, this indicates that the rate of flares produced by
sunspot groups is Cycle-dependent. These differences in
underlying flaring rates between training and testing periods
directly contributes to over-forecasting by both methods when
using the Poisson approach.

Equivalent figures for ≥M1.0 flares can be found in
Appendix A. Qualitatively similar results are presented, but
with even greater differences in flaring rates observed between
SC22 and SC23 (i.e., lSC23 = (0.52 ± 0.02)lSC22 and lSC23 =
(0.49 ± 0.02)lSC22 for the McIntosh static and evolution-
dependent cases, respectively).

3.3 Forecast performance exploration

As mentioned previously, it is possible to alter the
performance of a forecasting method using bias-correction
techniques. The results of the Cycle-to-Cycle flaring-rate
comparison indicate that there is on average a difference in
flaring rates for the same sunspot group type between the
training and test data sets. Instead of relying solely on the best-
fit slopes obtained from the rate-rate comparison, a range of
RCFs were examined to find the optimum RCF conditioned on
the BSS performance of the “corrected” forecasting methods.
This technique works by adjusting the flaring rates obtained
from the SC22 training period by multiplication with a RCF to
produce new “corrected” flaring rates, with the standard
Poisson approach once again applied to produce new
“corrected” forecast probabilities.

The results of this analysis are presented in Figure 4,
showing the variation with RCF value of BSS and its
components following the decomposition given in equation
(7). Figure 4a displays the variation of the resolution/
uncertainty and reliability/uncertainty terms observed for the
McIntosh static case, while the same for the evolution-
dependent case is provided in Figure 4b. The BSS-decomposed
uncertainty term is constant (with a value of 0.146) and equal in
both cases, as it only depends on the climatological frequency of
events that is common to both methods. It is important to note
that when using the decomposition of BSS correctly (i.e., when
the forecast method comprises of distinctly unique forecast-
probability groups), the resolution of the method is invariant
under the bias correction performed by applying the RCF;
evidenced by the normalised resolution term remaining constant
as a function of RCF in both cases (i.e., horizontal lines). As the
uncertainty-normalised reliability term is always positive and
contributes negatively to BSS (see Eqs. (4) and (7)), achieving
the smallest possible value is highly desirable.

For the McIntosh static method in Figure 4a, the
uncertainty-normalised reliability is optimized (i.e., mini-
mized) at a value of 0.08 for a RCF of 0.32. Similarly for our
evolution-dependent method, the minimum normalised reli-
ability value of 0.11 is achieved for a RCF of 0.48 (Fig. 4b).
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For both cases this leads to the opposite behaviour for BSS as a
function of RCF (Fig. 4c), with maximum BSS values of 0.09
and 0.20 achieved for the static and evolution-dependent
methods, respectively. The optimal BS decomposed values and
BSS are presented for ≥C1.0 and ≥M1.0 flares in Table 2. As
mentioned before, the main difference between the two
forecast methods is that our new evolution-based method
achieves a resolution nearly twice that of the original static
method, with uncertainty-normalised resolution values of 0.18
(static) and 0.31 (evolution-dependent). Optimising method
reliabilities using a simple (admittedly post facto) RCF
technique as presented here leads to an approximately two-fold
increase in BSS from the values in Table 1.

“Corrected” reliability diagrams and ROC curves are
presented in Figure 5 using the optimized RCF values
conditioned on maximising BSS to visualise the effect it has on
forecast performance. The reliability diagrams of Figure 5a
confirm the McIntosh static (red filled squares) and evolution-
dependent (blue open circles) forecast probabilities are both
shifted to smaller values due to the RCFs applied being less
than unity. Although this improves BSS for both methods, it
does not appear to achieve amore reliable visual representation
for the static method as several points appear to lie far from the
line of perfect reliability (Fig. 2a, red filled squares for
comparison). In contrast, the evolution-dependent method
appears to achieve a much more reliable visual representation
than its equivalent uncorrected version (Fig. 2a, blue open
circles) with more points lying close to, or on, the line of
perfect reliability. The “corrected” version of the ROC curves
are presented in Figure 5b, with no significant changes to the
overall shape, area under the curve or maximum departure
from the diagonal no-skill line. This is to be expected, as the
application of the RCF only acts to shift the probability
thresholds that the dichotomous categorical forecast statistics
are calculated from (i.e., the forecast observation outcomes are
unaltered). This could have implications for use in an
operational situation: if bias-corrections are applied to create
more reliable probabilistic forecasts, then the choice of
probability threshold for evaluating the performance of
subsequently-derived categorical metrics (or issuing of yes/
no flare forecasts) needs to be reconsidered.

Equivalent plots for the RCF analysis and “corrected”
reliability diagrams and ROC curves for ≥M1.0 flares can be
found in Appendix A, showing qualitatively similar results to
the ≥C1.0 case (i.e., improvement in reliability and BSS).
4 Discussion and conclusion

In this paper, we have examined the evolution of McIntosh
sunspot group classifications and its application as a method
for forecasting solar flares. Flaring rates calculated from
sunspot-group evolution in McIntosh classifications during
SC22 were used to produce probabilities for≥C1.0 and≥M1.0
flares within 24-h forecast windows under the assumption of
Poisson statistics. The reason for excluding flares below these
magnitudes is the high background solar X-ray flux level at
solar maximum that obscures B-class and lower flares.
Additionally, due to the small number of X-class flares we
chose to exclude the analysis of X-class and above as the large
statistical errors lead to difficult interpretation of results.
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Fig. 4. Brier skill score (BSS) decomposition for the McIntosh static (panel a) and evolution-dependent (panel b) forecast methods for ≥C1.0
flares. BS components of reliability (data points), resolution (solid horizontal lines), and uncertainty (printed values) are displayed in panels a
and b as a function of rate-correction factor (RCF) applied to the SC22 flaring rates. The resulting BSS is presented in panel c, also as a function
of RCF applied to the SS22 flaring rates, for the static (red filled squares) and evolution-dependent (blue open circle) methods, with maximum
values of BSS indicated by vertical dashed lines for both cases.
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Similar to the results of McCloskey et al. (2016), we find that
upward evolution in at least one McIntosh classification
component leads to higher flaring rates, with lower flaring rates
occurring for downward evolution (Fig. 1). Additionally, when
sunspot groups evolve across multiple McIntosh classification
components at the same time this behaviour is amplified� i.e.,
Page 9 o
increasingly higher (lower) flaring rates observed for greater
upward (downward) evolution.

These flaring rates were converted to Poisson probabilities
and applied to an independent test data set from SC23 to assess
forecast performance, both for the original static point-in-time
McIntosh forecasting method and our new evolution-dependent
f 14



Table 2. Optimized RCF-adjusted decomposed Brier score (BS) components and Brier skill score (BSS) for the McIntosh static and evolution-
dependent forecast methods.

Flaring Forecast Applied BS components BSS
magnitude method SC22 RCF

Reliability Resolution Uncertainty

≥C1.0 Static 0.32 0.012 0.025 0.146 0.09

≥C1.0 Evolution 0.48 0.017 0.046 0.146 0.20
≥M1.0 Static 0.20 0.001 0.003 0.038 0.06
≥M1.0 Evolution 0.30 0.005 0.009 0.038 0.09

Fig. 5. As Figure 2, but using the BSS-optimised RCFs of 0.32 and 0.48 applied to the SC22 ≥C1.0 flaring rates for the McIntosh static and
evolution-dependent forecast methods, respectively.
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method. BSS was calculated for both, with the evolution-
dependent method achieving a positive value for ≥C1.0 flares
(BSSevolution = 0.09), indicating that its performance surpasses
that of climatology. In contrast, the static method performed
worse than climatology (BSSstatic =� 0.09). Importantly, the
determining factor for the difference in performance is that
the evolution-dependent method achieves greater resolution
than its static counterpart, indicating that the observed event
occurrence averaged across the individual full-McIntosh class
evolutions (i.e., unique forecast probability groups in the
decomposed form of BS) is more separated from climatology
than the same quantity averaged across individual static
McIntosh classes. For ≥M1.0 flares the evolution-dependent
method again performs better than the static method, but as
both BSS values are negative (BSSevolution =� 0.15 and
BSSstatic =� 0.36) this indicates that they do not perform as
well as climatology. Reliability diagrams and ROC curves
were also investigated, with a bias of over-forecasting clear in
both methods (Fig. 2a and b).

This tendency to over-forecast was investigated by
comparing the flaring rates for the training data from SC22
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with those of the test data from SC23 using an ODR technique
to fit the rate-rate relations. Considering previous studies, it has
been shown that the level of activity in SC23 is lower
compared to earlier Cycles. For example, Joshi and Pant
(2005) report that the number of Ha flare events was lower in
SC23 compared to SC21 and SC22, while Joshi et al. (2015)
found that there was a significant decrease in the total soft X-
ray flare index (a measure of flare activity) in SC23 compared
to SC21 and SC22. These results agree well with our finding
SC23 rates being ≈80% and ≈50% of those in SC22 for ≥C1.0
and ≥M1.0 flares, respectively (Figs. 3 and A.2).

To explore the maximum-achievable performance by the
McIntosh-Poisson forecasting methods, a range of RCFs were
explored through application to the original SC22 flaring rates
to bias-correct the forecast probabilities. The optimal value of
RCF for ≥C1.0 flares (i.e., that achieving maximum BSS) was
found to be 0.32 for the static method, while the evolution-
dependent method has a weaker correction factor of 0.48
(Fig. 4). Interestingly, these RCFs differ from the Cycle-to-
Cycle ODR linear rate-rate slopes of ≈0.80, although the
ODR-determined value is admittedly obtained with no
of 14
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information feeding back from the application of the adjusted
flaring rates in forecasting. The resulting maximum values for
corrected BSS were found to be 0.09 and 0.20 for the static and
evolution-dependent methods, respectively. These correspond
to a two-fold increase in BSS that confirms the lowering of
forecast probabilities issued for SC23 yields better perfor-
mance for both methods, evidenced by improved reliability
diagrams (Fig. 5a). To put these values in context, Barnes et al.
(2016) compared several flare-forecasting methods using
standard verification metrics to assess performance. To ensure
direct comparison of the methods, a common data set was used
where all methods issued forecasts for each data entry,
analogous to daily operational flare forecasts and therefore the
most suitable for comparing to the operational methods
presented here. The maximum BSS achieved for ≥C1.0 flares
in 24-h forecast windows by any of the methods in Barnes et al.
(2016) was 0.32 (see their Tab. 4). After optimal bias-
correction was determined and applied, our McIntosh
evolution-dependent method achieved a BSS approaching
but still less than this (i.e., BSScorrevolution ¼ 0:20).

It is noted that the bias-correction method applied here
determines the systematic differences in flaring rates between
training and test periods from post facto analysis. To be truly
operational, the application of pre-forecast bias correction
requires prior knowledge of these differences in rates.
Therefore, predictions for the next Solar Cycle could provide
the bias-correcting RCF for the next forecast test period.
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Appendix A : forecast verification of flares
at/above M1.0

Here we present equivalent figures to those in Section 3, but
for ≥M1.0 flares. Reliability diagrams and ROC curves
Fig. A.1. Reliability diagrams (panel a), sharpness (i.e., probability occurr
for the McIntosh static forecast method are indicted by red filled squares
dependent method is depicted by blue open circles (panels a and c) and

Fig. A.2. Comparison of ≥M1.0 24-h flaring rates between SC22 (1988
evolution-dependent (panel b) Poisson forecast methods. Dashed diagonal
overlaid as thick lines. Best-fit slopes and reduced chi-squared values a
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(equivalent to Fig. 2) are plotted in Figure A.1. Following
from this, the flare rate comparison between SC22 and SC23
(equivalent to Fig. 3) is shown in Figure A.2. Finally, the BSS
decomposition as a function of RCF and the “corrected”
reliability diagrams and ROC curves are provided in Figures A.3
and A.4 , respectively (equivalent to Figs. 4 and 5).
ence) plots (panel b), and ROC curves (panel c) for≥M1.0 flares. Data
(panels a and c) and solid histogram (panel b), while the evolution-
dashed histogram (panel b).

–1996) and SC23 (1996–2008) for the McIntosh static (panel a) and
lines indicate the unity relation, while ODR best-fit linear relations are
re also included.
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Fig. A.3. Brier skill score (BSS) decomposition for the McIntosh static (panel a) and evolution-dependent (panel b) forecast methods for≥M1.0
flares. BS components of reliability (data points), resolution (solid horizontal lines), and uncertainty (printed values) are displayed in panels a
and b as a function of rate-correction factor (RCF) applied to the SC22 flaring rates. The resulting BSS is presented in panel c, also as a function
of RCF applied to the SS22 flaring rates, for the static (red filled squares) and evolution-dependent (blue open circle) methods, with maximum
values of BSS indicated by vertical dashed lines for both cases.
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Fig. A.4. As Figure A.1, but using the BSS-optimised RCFs of 0.20 and 0.30 applied to the SC22≥M1.0 flaring rates for theMcIntosh static and
evolution-dependent forecast methods, respectively.
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