
ABSTRACT: Multibody dynamics is a popular tool in the analysis of dynamical systems such as robotic manipulators, spacecraft, 
and complex mechanical devices. It generally deals with a set of rigid members forming a holonomic or non-holonomic system. 
Although flexibility of the members is often neglected due to their relatively smaller dimension and high rigidity, literature is also 
available that include flexible members in the system. For systems like multi-MW wind turbines, the members are of larger 
dimensions and it becomes necessary to include the flexibility of the members under consideration. Classical energy methods, like 
Euler-Lagrangian method, is the most popular tool used to derive equations of motion of any dynamical system. This paper 
demonstrates the use Kane’s method to derive equations of motion for a wind turbine taking into account the flexibility of the 
members. Kane’s method, which emerged recently, reduces the labour needed to derive equations of motion that are simpler and 
readily solved by computer. This paper compares and contrasts Kane’s method with classical energy methods in deriving equations 
of motion of a system focusing on the advantages offered by Kane’s method. The wind turbine model derived using Kane’s method 
is compared with a lower fidelity model available in the literature to investigate the loss of dynamics arising from the model 
reduction. The results show that there is considerable loss of dynamics in the coupled degrees of freedom.  
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1 INTRODUCTION 
The rapid increase in wind energy from 59.1 GW [1] GW in 
2005 to 432.9 GW [2] in 2015 has been due to the installation 
of a large number of wind turbines all over the world. With 
increasing popularity of wind turbines, researchers over the 
world have worked actively to study the dynamic behaviour of 
these large rotating structures. It is necessary to develop 
dynamic models of wind turbines for applications such as 
structural control, health monitoring, fatigue analysis, etc. 

Computer-aided engineering tools like FAST [3] and 
HAWC2 [4] has been developed by researchers for dynamic 
analysis of wind turbines. While these tools were primarily 
used to analyse the dynamic behaviour of the wind turbine 
researchers have also used simplified models for structural 
control, smart rotor control, damage detection, power 
optimization etc. The degree of fidelity of the wind turbine 
model used depended mainly on the purpose it was used for. 
Vibration control of wind turbine blades by Fitzgerald et al., 
[5], Staino et al., [6] was investigated by a simplified reduced 
order model. Sarkar & Chakraborty [7] used a similar approach 
to mitigate along wind turbine tower vibrations. These studies 
were focused on on-shore wind turbines. Floating offshore 
wind turbines were analysed by Dinh et al., [8] for passive 
vibration control. Apart from structural vibration control, smart 
rotor control approaches were used to optimize power and 
reduce structural loads on wind turbines. Barlas and Van Kuik 
[9] presents a state of the art review on smart rotor control 
approaches.  

Fatigue analysis of wind turbines is another important field 
of research as these devices are subjected to constant vibration. 
Ragan and Manuel [10] compares rainflow counting technique 
with spectral methods such as Dirlik’s method to estimate wind 

turbine fatigue loads. The most recognized approaches to 
estimate the damage caused by fatigue are discussed and 
compared in Berglind and Wisniewski [11], with a special 
focus on their applicability for wind turbine control.  

Dynamics of wind turbines was investigated with various 
degrees of accuracy for various purposes. Different approaches 
have been used by researchers for dynamic modelling of a 
flexible multi-body wind turbine and its foundation ranging 
from simple lumped mass models to sophisticated finite 
element models. In this paper, the two most popular methods, 
i.e., Kane’s method and the Euler-Lagrangian formulation are 
reviewed and discussed. 

2 WIND TURBINE FLEXIBLE MULTI-BODY DYNAMICS 
The wind turbine has been modeled as a flexible multi-body 
dynamical system. The various components of importance are 
the tower, the nacelle, the generator, the gearbox, the low-speed 
shaft, the hub and the blades. The tower, the blades and the low-
speed shaft are the flexible components of the wind turbine. 
Modal analysis is often used to study the dynamics of flexible 
members. To model the tower the first two modes in fore-aft 
and side-to-side directions are used. First two modes in 
flapwise direction and the first mode in edgewise direction is 
used for the blades. It is assumed that since the members are 
highly flexible the first few modes will capture the dynamics 
with sufficient accuracy. The degrees of freedom that define the 
motion of a full-scale wind turbine is the tower vibrations, the 
nacelle yaw motion, the torsional motion of the low-speed 
shaft, the generator azimuth angle and the elastic deformations 
of the three blades. Therefore the degrees of freedom for a 3 
bladed wind turbine are 
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𝑞𝑞𝐵𝐵1𝐹𝐹1, 𝑞𝑞𝐵𝐵1𝐸𝐸1, 𝑞𝑞𝐵𝐵1𝐹𝐹2 , 𝑞𝑞𝐵𝐵2𝐹𝐹1, 𝑞𝑞𝐵𝐵2𝐸𝐸1, 𝑞𝑞𝐵𝐵2𝐹𝐹2,

𝑞𝑞𝐵𝐵3𝐹𝐹1, 𝑞𝑞𝐵𝐵3𝐸𝐸1, 𝑞𝑞𝐵𝐵3𝐹𝐹2]𝑇𝑇  
(1) 

Therefore 16 degrees of freedom will be used to derive the wind 
turbine model. The degrees of freedom are defined in the 
appendix. 

 Coordinate systems 
As required by a multi-body system, every separate sub-system 
is defined in its local coordinate system. With this in view, 
separate coordinate systems are assigned to every sub-system 
as shown in Fig. 1 through Fig. 5. To establish the 
transformation relationship between the coordinate systems 
Euler rotation matrix is used where the relationship can be 
described by a simple rotation. Otherwise, when there is 
simultaneous rotation about more than one axis small angle 
approximation is used which makes the Euler rotation matrix 
independent of the order of rotation. Since this reduced rotation 
matrix is not orthogonal, SVD (singular value decomposition) 
is used to derive the nearest orthonormal transformation matrix. 
The difference coordinate systems defined for the wind turbine 
are as follows: tower, tower element fixed, tower-top/base-
plate, nacelle, low-speed-shaft, azimuth, blade, coned, pitched, 
and blade element fixed coordinate systems. 

 
Figure 1. Tower coordinate system 

 
Figure 2. Tower-top and nacelle coordinate systems 

 
Figure 3. Low speed shaft and azimuth coordinate systems 

 
Figure 4. Cone coordinate systems 

 
Figure 5. Blade coordinate system 

 Kinematics 
The kinematics of the wind turbine can be described by 
defining important points that describe the motion of the overall 
system. The important points are the centre of masses of 
various components and are as follows: Z (tower-base), T 
(tower node), O (tower-top/base-plate/yaw bearing mass 
centre), U (nacelle centre of mass), Q (apex of conning angle), 
C (hub centre of mass), S1 (blade nodes for blade 1), S2 (blade 
nodes for blade 2) and S3 (blade nodes for blade 3). The various 
reference frames of importance are denoted as: E 
(earth/inertial), X (tower base), F (tower body element), B 
(tower-top/base-plate), N (nacelle), L (low speed shaft on rotor 
end), M1 (blade 1 element body), M2 (blade 2 element body), 
M3 (blade 3 element body) and G (high speed shaft/generator). 

To define the complete kinematics of the system the 
displacement, velocity and acceleration of every important 



point must be defined and the angular velocity and angular 
acceleration of every rigid body must be defined. Due to the 
limited scope of this paper, as an example, the position vector 
of just one point (tower top) and angular velocity of one rigid 
body sub-system (tower top/base plate) will be defined.  

The position vector from tower base to tower top is given as 

𝒓𝒓𝒁𝒁𝒁𝒁 = (𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇1 + 𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇2)𝒂𝒂�𝟏𝟏 + (𝐻𝐻𝐻𝐻 − 0.5(𝑆𝑆11𝑇𝑇𝑇𝑇𝑇𝑇𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇12     
+ 𝑆𝑆22𝑇𝑇𝑇𝑇𝑇𝑇𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇22 + 2𝑆𝑆12𝑇𝑇𝑇𝑇𝑇𝑇𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇1𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇2 + 𝑆𝑆11𝑇𝑇𝑇𝑇𝑇𝑇𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇12

+ 𝑆𝑆22𝑇𝑇𝑇𝑇𝑇𝑇𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇22 + 2𝑆𝑆12𝑇𝑇𝑇𝑇𝑇𝑇𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇1𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇2)𝒂𝒂�𝟐𝟐
+  (𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇1 + 𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇2)𝒂𝒂�𝟑𝟑 

(2) 

Where, 𝒂𝒂� is the tower coordinate system, 𝐻𝐻𝐻𝐻 is the height of the 
tower and 𝑆𝑆𝑖𝑖𝑖𝑖  are the axial deflection shape functions. The 
position vector of all other important points can be described in 
a similar way. Once the position vectors are defined the 
velocity can be found using the equation 

𝒗𝒗𝑨𝑨 𝑷𝑷 =  𝒗𝒗𝑨𝑨 𝑸𝑸 +  
𝑑𝑑𝐸𝐸 {𝒑𝒑𝒙𝒙}
𝑑𝑑𝑡𝑡

= 𝒗𝒗𝑨𝑨 𝑸𝑸 + 𝝎𝝎𝑨𝑨 𝑩𝑩 × 𝒑𝒑𝒙𝒙 + 𝒗𝒗𝑩𝑩 𝑷𝑷 (3) 

Where, velocity of a point 𝑃𝑃 on reference frame 𝐵𝐵 in reference 
frame 𝐴𝐴 can be obtained from the cross product of the position 
vector of point 𝑃𝑃 from 𝑄𝑄 given as 𝒑𝒑𝒙𝒙 with the angular velocity 
of 𝐵𝐵 in 𝐴𝐴 ( 𝝎𝝎𝑨𝑨 𝑩𝑩) and the velocity of the point 𝑃𝑃 in 𝐵𝐵 where 
𝒗𝒗𝑨𝑨 𝑸𝑸 is the velocity of 𝑄𝑄 in 𝐴𝐴. Further, the accelerations of the 

important points can be found from time derivatives of the 
velocity vectors using equation (3).  
   Again, as an example, the angular velocity of tower top/base 
is shown below. 

𝝎𝝎𝑨𝑨 𝑩𝑩 =  �
𝑑𝑑𝜑𝜑1𝑇𝑇𝑇𝑇𝑇𝑇

𝑑𝑑ℎ
�
ℎ=𝐻𝐻𝐻𝐻

𝑞̇𝑞𝑇𝑇𝑇𝑇𝑇𝑇1 +
𝑑𝑑𝜑𝜑2𝑇𝑇𝑇𝑇𝑇𝑇

𝑑𝑑ℎ
�
ℎ=𝐻𝐻𝐻𝐻

𝑞̇𝑞𝑇𝑇𝑇𝑇𝑇𝑇2� 𝒂𝒂�𝟏𝟏  

−  �
𝑑𝑑𝜑𝜑1𝑇𝑇𝑇𝑇𝑇𝑇

𝑑𝑑ℎ
�
ℎ=𝐻𝐻𝐻𝐻

𝑞̇𝑞𝑇𝑇𝑇𝑇𝑇𝑇1 +
𝑑𝑑𝜑𝜑2𝑇𝑇𝑇𝑇𝑇𝑇

𝑑𝑑ℎ
�
ℎ=𝐻𝐻𝐻𝐻

𝑞̇𝑞𝑇𝑇𝑇𝑇𝑇𝑇2� 𝒂𝒂�𝟑𝟑 
(4) 

Where, 𝜑𝜑𝑖𝑖 are the mode shapes of the respective degrees of 
freedom. The angular acceleration of all other rigid bodies can 
be constructed similarly from the time derivatives of the 
angular velocities. To find the angular accelerations for every 
rigid body equation (3) can be used.  
    Once the linear velocities and accelerations for every flexible 
point and angular velocity and acceleration for every rigid body 
in the wind turbine has been defined these terms are rewritten 
as functions of generalised speeds. According to Kane [12], 
writing the linear and angular velocities as functions of 
generalized speeds brings them into particular advantageous 
form while deriving the equations of motion. The choice of the 
generalized speed is arbitrary; in this paper, the time derivatives 
of the generalized coordinates are used as generalized speeds 
(i.e. 𝑢𝑢𝑘𝑘 = 𝑞̇𝑞𝑘𝑘). Hence, the angular velocities are rewritten as 

𝝎𝝎𝑬𝑬 𝑵𝑵𝒊𝒊(𝑞̇𝑞,𝑞𝑞, 𝑡𝑡) =  � 𝝎𝝎𝑬𝑬 𝒌𝒌
𝑵𝑵𝒊𝒊(𝑞𝑞, 𝑡𝑡)𝑢𝑢𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+ 𝝎𝝎𝑬𝑬 𝒕𝒕
𝑵𝑵𝒊𝒊(𝑞𝑞, 𝑡𝑡) (5) 

Where 𝝎𝝎𝑬𝑬 𝒌𝒌
𝑵𝑵𝒊𝒊 are called 𝑘𝑘𝑡𝑡ℎ partial angular velocities of 𝑁𝑁𝑖𝑖 rigid 

body and 𝝎𝝎𝑬𝑬 𝒕𝒕
𝑵𝑵𝒊𝒊(𝑞𝑞, 𝑡𝑡) contains all the terms that cannot be 

written in terms of generalized speeds (in this paper the choice 
of generalised speeds renders these terms as zeros). Similarly, 
the linear velocities can be written as 

𝒗𝒗𝑬𝑬 𝑿𝑿𝒊𝒊(𝑞̇𝑞,𝑞𝑞, 𝑡𝑡) =  � 𝒗𝒗𝑬𝑬 𝒌𝒌
𝑿𝑿𝒊𝒊(𝑞𝑞, 𝑡𝑡)𝑢𝑢𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+ 𝒗𝒗𝑬𝑬 𝒕𝒕
𝑿𝑿𝒊𝒊(𝑞𝑞, 𝑡𝑡) (6) 

Where 𝒗𝒗𝑬𝑬 𝒌𝒌
𝑿𝑿𝒊𝒊  are the  𝑘𝑘𝑡𝑡ℎ partial linear velocities and 𝒗𝒗𝑬𝑬 𝒕𝒕

𝑿𝑿𝒊𝒊(𝑞𝑞, 𝑡𝑡) 
contains all other terms that cannot be written in terms of the 
generalized speeds (in this paper the choice of generalised 
speeds renders these terms as zeros). Then, the angular 
acceleration of every 𝑁𝑁𝑖𝑖 body in the wind turbine system can 
be obtained as 

𝜶𝜶𝑬𝑬 𝑵𝑵𝒊𝒊(𝑞̇𝑞, 𝑞𝑞, 𝑡𝑡) =  � 𝝎𝝎𝑬𝑬 𝒌𝒌
𝑵𝑵𝒊𝒊(𝑞𝑞, 𝑡𝑡)𝑞̈𝑞𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+ �
𝑑𝑑𝐸𝐸 � 𝝎𝝎𝑬𝑬 𝒌𝒌

𝑵𝑵𝒊𝒊(𝑞𝑞, 𝑡𝑡)�
𝑑𝑑𝑑𝑑

𝑞̇𝑞𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+
𝑑𝑑𝐸𝐸 � 𝝎𝝎𝑬𝑬 𝒕𝒕

𝑵𝑵𝒊𝒊(𝑞𝑞, 𝑡𝑡)�
𝑑𝑑𝑑𝑑

 

(7) 

And lastly, the linear accelerations can be written as 

𝒂𝒂𝑬𝑬 𝑿𝑿𝒊𝒊(𝑞̇𝑞,𝑞𝑞, 𝑡𝑡) =  � 𝒗𝒗𝑬𝑬 𝒌𝒌
𝑿𝑿𝒊𝒊(𝑞𝑞, 𝑡𝑡)𝑞̈𝑞𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+ �
𝑑𝑑𝐸𝐸 � 𝒗𝒗𝑬𝑬 𝒌𝒌

𝑿𝑿𝒊𝒊(𝑞𝑞, 𝑡𝑡)�
𝑑𝑑𝑑𝑑

𝑞̇𝑞𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+
𝑑𝑑𝐸𝐸 � 𝒗𝒗𝑬𝑬 𝒕𝒕

𝑿𝑿𝒊𝒊(𝑞𝑞, 𝑡𝑡)�
𝑑𝑑𝑑𝑑

 
(8) 

Here, the time derivatives of the partial angular velocities and 
partial linear velocities are required to be estimated. 

 Kane’s equations 
By a direct result of Newton's law of motion, Kane's equations 
of motion for a simple holonomic system with 16-DOFs can be 
stated as [12] 

𝐹𝐹𝑘𝑘 + 𝐹𝐹𝑘𝑘∗ =  0      for 𝑘𝑘 =  1 to 16 (9) 

Where 𝐹𝐹𝑘𝑘 are the generalized active forces given as [12] 

𝐹𝐹𝑘𝑘 = �� 𝒗𝒗𝑬𝑬 𝒌𝒌
𝑿𝑿𝒊𝒊 ∙ 𝑭𝑭𝑿𝑿𝒊𝒊 +  𝝎𝝎𝑬𝑬 𝒌𝒌

𝑵𝑵𝒊𝒊 ∙ 𝑴𝑴𝑵𝑵𝒊𝒊�
𝑛𝑛

𝑖𝑖=1

 (10) 

Where, 𝑭𝑭𝑿𝑿𝒊𝒊  is the force acting on the centre of mass point 𝑋𝑋𝑖𝑖 
and 𝑴𝑴𝑵𝑵𝒊𝒊  is the moment acing on the 𝑁𝑁𝑖𝑖 rigid body. The 
generalized inertia forces are given as [12] 

𝐹𝐹𝑘𝑘∗ = �� 𝒗𝒗𝑬𝑬 𝒌𝒌
𝑿𝑿𝒊𝒊 ∙ �𝑚𝑚𝑁𝑁𝑖𝑖 𝜶𝜶𝑬𝑬 𝑵𝑵𝒊𝒊� +  𝝎𝝎𝑬𝑬 𝒌𝒌

𝑵𝑵𝒊𝒊 ∙ 𝑯̇𝑯𝑬𝑬 𝑵𝑵𝒊𝒊�
𝑛𝑛

𝑖𝑖=1

 (11) 

Where 𝑚𝑚𝑁𝑁𝑖𝑖  is the mass of the 𝑁𝑁𝑖𝑖 body, 𝑯̇𝑯𝑬𝑬 𝑵𝑵𝒊𝒊 is the time 
derivative of the angular momentum of rigid body 𝑁𝑁𝑖𝑖 about its 
center of mass point 𝑋𝑋𝑖𝑖. For the wind turbine model the mass 
of the tower, yaw bearing, nacelle, hub, blades, generator 



contribute to the total generalized inertia forces. Generalized 
active forces are the forces applied directly to the wind turbine 
system, forces that ensure constraint relationships between the 
various rigid bodies and internal forces within flexible 
members. Forces applied directly on the wind turbine system 
include aerodynamic forces acting on the blades and tower; 
gravitational forces acting on the tower, yaw bearing, nacelle, 
hub, blades; generator torque, high-speed shaft brake. Yaw 
springs and damper contribute to forces that enforce constraint 
relationship between rigid bodies. Internal forces within 
flexible members include elasticity and damping in the tower, 
blades, and drivetrain.  
    Once the contribution from all the components of the wind 
turbine for every degree of freedom is assembled together the 
final equations of motion of the complete system is obtained. It 
is important to note that the steps required to derive the 
equations of motion involve vector multiplications only. Unlike 
traditional methods, like Euler-Lagrangian formulation, that 
require the evaluation of partial derivatives with respect to 
generalized coordinates, the vector multiplications required in 
Kane’s method can be performed directly by a computer. 
Therefore, the equations of motion can be directly formed and 
evaluated simultaneously by a computer. This advantage of 
Kane’s method where partial derivatives are replaced by vector 
multiplications with partial velocities has been emphasized in 
this paper.  

3 BENCHMARKING WITH FAST 
In this section numerical results are presented to benchmark the 
derived model with FAST v8 [3] distributed by NREL using a 
5MW baseline wind turbine [13]. The wind turbine is simulated 
under steady wind at rated wind speed. The aerodynamic loads 
are calculated using Blade Element Momentum Theory 
(BEMT). In this study the improved method of solving the 
BEMT equations are proposed by [14] has been used. Time 
histories and Fourier spectrum of blade out-of-plane motion, in-
plane motion, tower fore-aft motion, tower side-to-side motion, 
nacelle yaw angle and low-speed-shaft speed are shown in Fig. 
6 through Fig. 11 respectively. The numerical results compare 
satisfactorily with FAST which numerically verifies the 
developed multi-body model using Kane’s method. 

 
Figure 6. Blade out-of-plane displacement 

 
Figure 7. Blade in-plane displacement 

 
Figure 8. Tower top out-of-plane displacement 

 
Figure 9. Tower top in-plane displacement 



 
Figure 10. Nacelle yaw rotation 

 
Figure 11. Low speed shaft tip speed 

4 MODEL REDUCTION AND LOSS OF DYNAMICS 
The wind turbine model derived in the previous chapter is a 
highly coupled non-linear system. The complexity of the model 
makes it impossible to express the analytical equations of 
motion in closed form. This is where the advantage of Kane’s 
method was also utilized. But, under certain circumstances, an 
analytical model of the system is desirable as it provides 
physical insight into the dynamics. Also, in problems like that 
of control theory, a simple model is beneficial. In this section, 
the wind turbine model is reduced to match those available in 
the literature [5], [6]. The reduction results from the following 
assumptions. 

 
Assumptions: 
• Only the first mode in fore-aft and side-to-side direction 

has been used for the tower. Similarly, for the blades, the 
first flapwise mode is considered to reduce the total 
numbers of degrees of freedom. 

• Nacelle yaw, driveshaft torsion degrees of freedom are 
neglected. 

• The Rotational speed of the generator is assumed to be 
constant and hence it is removed from the list of degrees 
of freedom. 

• Rotation of the tower and blades due to elastic deformation 
are neglected. 

• Axial deformation due to lateral deflection is neglected in 
all flexible components. 

• Only two sets of reference frames are used to define the 
wind turbine model. 

• Blades are assumed to be neither coned nor pitched. 
• Shaft tilt and skew are neglected. 
• It is assumed that the center of mass of the nacelle, hub, 

and blades all lie along the center line of the tower. 
• Aerodynamic loads are estimated and returned in the blade 

global coordinate system instead of blade local coordinate 
system. 

• Inertial effect of the generator is neglected. 
• Since the structural twist angle of the blades are very small, 

especially towards the tip, and the blades are not pitched, 
it is assumed that the shape of deflection in the out-of-
plane and in-plane directions of the blades can be 
described by the flapwise and edgewise mode shapes 
respectively with sufficient accuracy, which is reasonable 
when only the first mode is considered. 

Due to the limited scope of the paper, only the tower side-to-
side motion is shown in Fig. 12 where the model reduction 
results in significant loss of dynamics. The rest of the structural 
responses show little loss of dynamics as hence is not shown 
here. It can be observed from the figure that the mean of the 
response is completely different and the damping in the 
response is lost. The loss of dynamics in the side-to-side motion 
of the tower demonstrates that simplified models fail to capture 
the highly coupled dynamics of the wind turbine system. 
Hence, a detailed model is required for proper dynamical 
analysis of the system. For a detailed model obtaining the 
equations of motion using Euler-Lagrangian formulation is 
incredibly complicated and Kane’s method can immensely 
reduce labor. 

 
Figure 12. Tower top in-plane displacement 

5 CONCLUSIONS 
This paper demonstrates the use of Kane’s method of deriving 
equations of the motion for an onshore wind turbine the steps 



of which are applicable to any multi-body system. The derived 
model was further benchmarked against FAST [3]. Comparison 
with a reduced order model was performed to judge whether a 
reduced order model is capable of capturing the dynamics with 
sufficient accuracy. The conclusions drawn from the study are 
• The powerful vector approach brought about by Kane’s 

method vastly reduces the labor needed to derive equations 
of motion. This is due to the fact that the resulting 
equations of motion are obtained in the form of an ODE 
(rearrangement of terms not required) and the required 
vector multiplication can be performed directly on a 
computer. This leads directly to the equations of motion 
without human intervention which is desirable when 
working with a large number of variables. 

• Unlike energy methods, checks and updates are performed 
on the kinematic and kinetic equations of each subsystem 
at a time. These equations are usually a lot simpler and 
physically intuitive which in turn makes the process 
quicker and more reliable. 

• Comparison with a reduced order model showed that it is 
not always desirable to use a simplified model as important 
dynamics may get lost in the process. In those situations, 
Kane’s method has considerable advantages over energy 
methods when modelling a detailed multi-body system as 
has been demonstrated in this paper. 

• When the physical system under consideration is simple or 
has been simplified to study certain aspects of its 
dynamical behavior the computational effort of both the 
methods are similar and either can be used based on user 
preference. 
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APPENDIX 
Degrees of freedom used to model the wind turbine 
 

𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇1 Tower fore-aft first mode 
𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇2 Tower fore-aft second mode 
𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇1 Tower side-to-side first mode 
𝑞𝑞𝑇𝑇𝑇𝑇𝑇𝑇2 Tower side-to-side second mode 
𝑞𝑞𝑦𝑦𝑦𝑦𝑦𝑦 Nacelle yaw  
𝑞𝑞𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 Generator azimuth angle 
𝑞𝑞𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 Drive train torsion 
𝑞𝑞𝐵𝐵1𝐹𝐹1 Blade 1 first flapwise mode 
𝑞𝑞𝐵𝐵1𝐸𝐸1 Blade 1 first edgewise mode 
𝑞𝑞𝐵𝐵1𝐹𝐹2 Blade 1 second flapwise mode 
𝑞𝑞𝐵𝐵2𝐹𝐹1 Blade 2 first flapwise mode 
𝑞𝑞𝐵𝐵2𝐸𝐸1 Blade 2 first edgewise mode 
𝑞𝑞𝐵𝐵2𝐹𝐹2 Blade 2 second flapwise mode 
𝑞𝑞𝐵𝐵3𝐹𝐹1 Blade 3 first flapwise mode 
𝑞𝑞𝐵𝐵3𝐸𝐸1 Blade 3 first edgewise mode 
𝑞𝑞𝐵𝐵3𝐹𝐹2 Blade 3 second flapwise mode 
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