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Core-shell quantum dots CdSe/ZnS and lumogen yellow organic dye are characterized by their inclusion in luminescent
downshifting (LDS) layers. Layers were deposited on top of crystalline silicon cell (c-Si), dye synthesized solar cell (DSSC), and
cadmium telluride (CdTe) minimodules. External quantum efficiency measurements for the solar cell/LDS devices are discussed.

Experimental results were compared with an optical model developed by Rothemund, 2014.

1. Introduction

Luminescent downshifting (LDS) is an optical approach to
increase a solar cell’s spectral response by using luminescent
materials to convert high energy photons to lower energy
before the interaction with the solar cells occurs [1-7]. The
downshifted photons have wavelength which may better
match the photosensitivity spectral response of the solar cell
as illustrated in Figure 1. A typical LDS consists of lumines-
cent species such as organic dyes and quantum dots doped in
a transparent polymer sheet applied on top of PV cells [8-13].

2. Experimental

2.1. LDS Layers and Devices Fabrication. The luminescent
materials used in this investigation were core-shell quantum
dots CdSe/ZnS purchased from Cytodiagnostics, Canada,
and lumogen yellow dye developed and manufactured by
BASE Germany. A clear polymer poly(methyl methacrylate)
(PMMA) (Carl Roth GmbH + Co0.KG) was used for the
encapsulation of LDS layers.

The LDS layers were prepared as follows.

The QDs/dye were mixed in toluene and sonicated
in an ultrasonic bath for 10 minutes. The mixture was then
added to PMMA solution (50 wt%), magnetically stirred for
20 minutes, and then placed in an ultrasonic bath for another

15 minutes. Prepared solutions were drop cast on glass sub-
strates and cured for 72 hours at 25°C under a vacuum of
800 mbar. Uniform layers were obtained when removed from
the glass substrate. The average thickness of the layers was
measured by white light interferometer technique and found
to be 0.95 + 0.05 ym.

The luminescent quantum yield (LQY) measurements
of LDS films were measured using the integrating sphere
method [14, 15] found to be 0.58 + 0.08 for QD-LDS layer and
0.87 £ 0.08 for dye-LDS layer.

UV/Vis/NIR absorption spectroscopy was used to mea-
sure the absorption characteristics of the LDS layers investi-
gated in this study. The UV/Vis/NIR absorption spectrom-
eter used was a Perkin Elmer Lambda 900. The emission
spectra were measured by optically pumping samples using
a monochromated light source using a luminescence spec-
trometer (Perkin Elmer LS55B). QD and dye absorption and
emission spectra in a PMMA film (0.09 wt% and 0.9 wt%) are
shown in Figures 2 and 3, respectively.

Monocrystalline silicon cells (2 x 2cm, Sunrydz, Ger-
many), dye-sensitized solar cells (1 x 1cm, Solar Print, Ire-
land, the details fabrication of which are confidential),
and CdTe minimodules (15.24 x 15.24 cm, Advanced Solar
Power INC, China) were used for assessing the downshifting
effect of the LDS layers. Devices were fabricated by directly
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FIGURE 1: Solar spectrum and PV cells typical absorption ranges.

depositing the LDS layers on top of the solar cells surface,
using PMMA solution to glue the layers. The deposited layers
were left for three days to dry and stick to the cells.

2.2. External Quantum Efficiency Measurements. External
quantum efficiency (EQE) measurement is an indicator of
how well the solar cell converts incident photons (of a specific
wavelength) to electricity. The EQE is the ratio of the number
of charge carriers that are collected by the solar cell to the
number of photons of a given wavelength entered into the
solar cell [16].

The EQE system used was Bentham PVE300. The system
uses a monochromatic probe source from a TMc300, 300 mm
focal length monochromator, and a dual Xenon/quartz halo-
gen light source providing optimum illumination from 300
to 1100 nm. The monochromatic beam area is 1.85 mm* and
is directed at the centre of the cell, measuring the photocur-
rent generated by the cell at each wavelength. A calibrated
silicon detector (10 x 10 mm with calibration traceable to
national standards) was used to calibrate the system for the
measurements of spectral responsivity by determining the
power in the probe beam as a function of wavelength, with
uncertainties of 5% for 300-400 nm. The PVE300 is entirely
automated through a computer based interface using the
Benwin+ software program. The probe source is operated in
the AC mode to discriminate the photocurrent generated by
the probe from that generated by the DC bias of one sun
(1000 w/m?) during the measurements. To obtain the AC
signal, an optical chopper is used at frequency of 600 Hz with
a lock-in amplifier having a 474 transformer that passes only
the optically chopped signal to be amplified. However, in the
case of DSSC cells, which have a particularly slow electron
transport, it is necessary to either run the monochromatic
probe beam in DC mode or use slower chopping frequencies,
less than 10 Hz. The DSSC output is passed through a 497
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FIGURE 2: Absorbance and fluorescence emission spectra of
CdSe/ZnS QDs.
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FIGURE 3: Absorbance and fluorescence emission spectra of lumo-
gen yellow dye.

transimpedance amplifier prior to being passed to the lock-
in amplifier.

3. Analyzing EQE Spectra Using Rothemund
Optical Model

To evaluate the effect of the LDS layer on the EQE of the
solar cells investigated in this paper, the model developed
by Rothemund, 2014, was used [17]. The aim of this analysis
was to validate the experimental results obtained and to gain
an insight into LDS processes. This particular model was
chosen because it is simple to implement and it has shown an
excellent agreement with simulated EQE and measured EQE
spectra in a number of studies [5, 8, 18, 19]. In this model,
the incoming photon flux density was separated into two
fractions, the absorbed fraction (Abs f) and the transmitted
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fraction (Trans ;). Abs £ is the fraction of light that is absorbed
and reemitted by the luminescent particles while Trans , is the
fraction of light that reaches the solar cell as if no LDS layer
was attached.

The number of photons absorbed by the LDS layer com-
pared to the incoming photons flux can be calculated for each
wavelength using the Lambert-Beer law as follows:

PAbs

Abs; (1) = =l-exp(—Apg-AN).

(Pincoming (1)
The term A ,, is a scaling factor which describes the absorp-
tion A(A) and it is directly proportional to the concentration
of the luminescent species and the LDS layer thickness.
The number of photons transmitted can be calculated as
follows:

Trans AN =1- Absf A). 2)
The effect of the absorbed fraction of light Abs (A, A 4,)
that has been downshifted to longer wavelength is described
by introducing the LDS efficiency #;pg term. LDS #;pg is
the fraction of the photons that is downshifted and reaches
the solar cell to that absorbed by the LDS layer. All the
loss mechanisms (illustrated in Figure 4) due to the LDS
layer such as imperfect photoluminescent quantum yield,
escape cone loss, and self-absorption are considered by the
parameter #; yg. Therefore, #; pg can be estimated as follows:

fLps = HpL (1 - Lesc) (1 - LreAbs) (1 - Lother) . (3)

pr, is the photoluminescent quantum yield of the LDS
layer, L. is front-side escape loss due to isotropic emission,
which is calculated to be 12.5% [4], L,.aps accounts for
the self-absorption affect, and L, accounts for any other
loss such as reflectance and escape through the side of the
LDS layer. The reflectance due to the incorporation of the
LDS materials in the matrix was considered to be zero for
simplicity and any effect due to reflectance is considered in
the term L ., of (3).

For an efficient LDS layer, absorbed photons must be
reemitted at wavelengths where the EQE of the solar cell is

high so they can be readily converted into electricity. There-
fore, emission spectral matching (ESM), which is defined as
the fraction of the emission that overlaps with the EQE [5,17],
is used in the model to calculate LDS efficiency. ESM is given
as follows:

e (1) EQE, (1) dA’

4
PL(A")d)N @

ESM

EQE of the LDS layer is derived by considering the photons
absorbed by the LDS layer and those transmitted and is given
as follows:

EQE,pg = Absy (A) 71 ps - ESM + Trans; (1)

~EQE,r (A).

This model needs only the emission and the absorption of the
LDS layer plus the EQE of the solar cell as an input. EQE of
the LDS layer is fully described by the LDS layer efficiency,
Nips> and A 4, the absorbance scaling factor.

(5)

4. Results and Discussion

4.1. QD-LDS Layers on Top of c-Si Solar Cell. Figure 5 presents
the experimental EQE measured for c-Si solar cells with and
without QD-LDS layers together with the best fit for EQE;
using (5) and varying only the LDS layer efficiency, #; g, and
A b the absorbance scaling factor. An excellent agreement
is obtained of the simulated spectra for QD-LDS layer and its
experimental data. EQE of the bare c-Si solar cell has shown a
very poor optical response and hence low EQE at wavelengths
below 400 nm. At these wavelengths, EQE is enhanced for
the cell encapsulated with QD-LDS layer, reaching 23% at
300 nm and up to 28% at 365 nm. The improvement in EQE
occurs because photons are absorbed by the QDs molecules
and then reemitted at longer emission wavelengths. ESM
calculated for the Si solar cell was 0.90. Both absorbance
scaling factor, A ,y, and LDS efficiency, #; g, were varied and
the best fit was obtained at values of 0.5 and 0.46, respectively.
The LDS layer efficiency value is considered reasonable in
the light of LQY measured for QD-LDS layer in PMMA
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FIGURE 6: Experimental EQE spectra of DSSC solar cells with
QD-LDS layer and spectra derived using the optical model of
Rothemund, 2014 [17].

which is 0.58 + 0.08. Considering all the loss mechanisms in
(3), escape loss alone is reducing the layer efficiency to 0.51
(0.58 (1-Lesc (0.125) = 0.5075) and the other 5% is attributed
to reabsorption loss and any other possible loss due to the
presence of LDS layer. For QDs with high LQY such as
reported by De Mello Donegd et al., 2003, 85% [20], the
efficiency of LDS layer using (3) would be around 69%.

4.2. QD-LDS Layers on Top of DSSC Solar Cells. Figure 6
presents the experimental EQE measured for DSSC solar cells
with and without QD-LDS layer together with the best fit
for EQE; pg using (5). An excellent agreement was obtained
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FIGURE 7: Experimental EQE spectra of CdTe solar cells with QD-
LDS layer and spectra derived using the optical model of Rothe-
mund, 2014 [17].

between simulated spectra for QD-LDS layer and experimen-
tal data by varying only the LDS layer efficiency #; pg while
fixing the absorbance scaling factor A ,;,, to the same values
obtained in modelling LDS layer on top of c-Si solar cell
which was 0.5. Absorbance scaling factor is dependent on
the concentration and the thickness of the LDS layer which
has been assumed to be the same for the QD-LDS layer.
EQE for the DSSC solar cell has shown overall decrease of
about ~3% in EQE for QD-LDS layer. We were previously
shown [13] that this decrease arising due to optical losses
because of the specific DSSC geometry in which the 3 mm
thick cover glass significantly decreases the fraction of the
emitted photons transmitted to the photoactive layer in the
DSSC. ESM calculated for the DSSC solar cell was 0.39. The
LDS layer efficiency #;pg best fit was for a value of 0.42.
This is lower than what has been calculated for c-Si solar cell
which was 0.46. This could be due to effect of reflection at the
interface (DSSC top cover is glass and c-Si cell has an ARC
coating on the top cell) which might increase escape loss in
DSSC solar cell.

4.3. QD-LDS Layers on Top of CdTe Minimodules. Figure 7
presents the experimental EQE measured for CdTe mini
modules with and without QD-LDS layers together with the
best fit for EQE, s using (5) and varying only the LDS layer
efficiency, #;pg, while fixing A ,,, the absorbance scaling
factor to a value of 0.5. An excellent agreement was obtained
of simulated spectra for QD-LDS and its experimental data.
The EQE of the CdTe minimodules with QD-LDS layer
shows an improvement in EQE, reaching 10-16% within 300-
485nm. There is a slight reduction at 485-505nm due to
the overlap between the absorption and emission spectra
which causes self-absorption. This effect is due to the relative
difference in EQE between the QDs absorption and emission
wavelengths which is not great enough to overcome the loss
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TaBLE I: The absorbance scaling factor and the LDS layers efficiency
of QD-LDS layer with the EQE enhancements calculated for c-Si,
DSSC solar cells, and CdTe minimodules.

c-Si DSSC CdTe
A pps 0.5 0.5 0.5
flips: QD-LDS 0.46 0.42 0.44
EQE enhancement % 23-28 -3 10-16

(300-365 nm) (300485 nm)
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FIGURE 8: Experimental EQE spectra of CdTe solar cells with
lumogen yellow dye-LDS layer and spectra derived using the optical
model of Rothemund, 2014 [17].

associated with reabsorption in these regions [21]. ESM
calculated for the CdTe solar cell was 0.31. LDS layer efficiency
Nps best fit was for a value of 0.44.

The absorbance scaling factor, A 4, and the LDS layer
efficiency, #; ppg, for QD layer are presented in Table 1 together
with the EQE enhancement calculated for each cell.

4.4. Lumogen Yellow LDS Layers on Top of CdTe Minimodules.
Figure 8 presents the experimental EQE measured for CdTe
minimodules with and without LDS layers of lumogen yellow
dye together with the best fit for EQE, ;¢ using (5) and varying
only the LDS layer efficiency, #; g, and A 4, the absorbance
scaling factor. An excellent agreement was obtained of sim-
ulated spectra for lumogen yellow dye-LDS layer and its
experimental data. EQE has increased significantly reaching
10-30% within 300-485 nm, compared with QD-LDS layers
in Figure 5. ESM calculated for the CdTe minimodules was
0.4. Absorbance scaling factor, A ,,, and efficiency, #; pg, of
the LDS layer were varied and the best fit was obtained at
value of 0.7 for both. LQY obtained for lumogen yellow dye-
LDS layer was 87%. Considering all the loss mechanisms in
(3), escape loss alone is reducing the lumogen yellow LDS
efficiency to 76% (87% (1-Lesc (0.125) = 0.7613) and the other
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FIGURE 9: Experimental EQE spectra of c-Si solar cell with simula-
tion of lumogen yellow dye-LDS layer with #; pg of 0.7 using the opti-
cal model of Rothemund, 2014 [17].
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6% is attributed to reabsorption loss and any other possible
loss due to the presence of dye-LDS layer.

The input parameters used for modelling lumogen yellow
dye-LDS layers on the CdTe minimodules were used to
estimate the performance of the lumogen yellow LDS on top
of ¢c-Si and DSSC solar cells. The simulation results are shown
in Figures 9 and 10, respectively. EQE of the bare c-Si solar
cell with lumogen yellow dye-LDS layer has shown a better
optical response compared to QD-LDS layer in Figure 5
reaching (30 to 40%) at wavelengths less than 400 nm.
However, at wavelengths between 400 and 580 nm, EQE was
found to be decreased and most probably this decrease is due
to self-absorption of lumogen yellow dye.



TABLE 2: The absorbance scaling factor and the LDS layers efficiency
of dye-LDS layer with the EQE enhancements calculated for CdTe
minimodules.

c-Si DSSC CdTe
A e 0.7 0.7 0.7
flips: dye-LDS 0.70 0.70 0.70
EQE 30-40 12-32 10-30

enhancement % (300-365nm) (300-450nm) (300-485nm)

EQE of the bare DSSC solar cells with lumogen yellow
dye-LDS layer has shown a significant increase reaching
12-32% within 300-450 nm compared to the QD-LDS in
Figure 6 which has shown an overall decrease in EQE. Some
decrease in EQE within 460-600 nm was observed for lumo-
gen yellow dye-LDS layer due to self-absorption. Absorbance
scaling factor and LDS layer efficiency for lumogen yellow dye
layers on CdTe minimodules are summarised in Table 2. The
EQE enhancement calculated for solar cell is presented too.

The initial value used for LDS efficiency, #; s, as an input
in the model was estimated from the LQY value obtained
for the layer minus the optical loss expected (~15%) due to
the presence of LDS layer. The absorbance scaling factor,
A ape» and 7 pg were then both varied until the best fit was
obtained. The absorbance scaling factor was fixed, assuming
that the concentration of the layer and the thickness were
the same, since both were optimised. The variation observed
in #;pg for QD-LDS layer, for example, 0.46, 0.42, and 0.41
for c-Si, DSSC, and CdTe, respectively, could be attributed
to experimental errors while fabricating the layers or in the
deposition process of LDS layer on top of the solar cells.
Moreover, it could be due to optical losses due to different cell
technologies. The difference in A ,p for QD-LDS and dye-
LDS layers is clearly due to the difference in concentration in
each layer. LDS efficiency was higher for lumogen yellow LDS
layer because the LQY was higher (>87% compared to 58%).

5. Conclusion

This paper investigated the performance of c-Si, DSSC solar
cells, and CdTe minimodules encapsulated by PMMA solid
sheet doped with quantum dots CdSe/ZnS and lumogen
yellow dye. External quantum efficiency measurements have
shown that an increase in the short-wavelength response of
the c-Si and CdTe minimodules was achieved due to the
presence of QD-LDS and dye-LDS layers. DSSC solar cell
shows an overall decrease in EQE for QD-LDS layer; it is
believed to be due to optical losses because of the specific
DSSC geometry. The optical model of Rothemund, 2014 [17],
was found to be an excellent match with EQE measured for
the fabricated devices. LDS efficiency #; g extracted from the
model for QD-LDS layer was 44 + 2% while for lumogen
yellow LDS was 70%.
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