Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or any other university and it is entirely my own work. Due acknowledgements and references are given to the work of others.

I agree to deposit this thesis in the University's open access institutional repository or allow the library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library conditions of use and acknowledgement.

Romain Claveau
R. Claveau, B. Twamley and S. J. Connon, Chem. Commun., 2018, 54, 3231.

Table of contents

1. Introduction 1
1.1 A general introduction: from chirality to asymmetric synthesis 1
1.2 Different approaches towards the synthesis of enantiopure compounds 4
1.2.1 \quad The resolution of racemates 4
1.2.2 Chiral pool-based methods 5
1.2.3 Asymmetric catalysis 6
1.2.3.1 Enzyme mediated catalysis 7
1.2.3.2 Metal based catalysis 7
1.2.3.3 Organocatalysis. 8
1.3 The emergence of organocatalysis: principal modes of action 10
1.3.1 Amino catalysis: a covalent-based activation mode 10
1.3.2 Hydrogen-bonding: a non-covalent based activation mode 12
1.4 Development of a new class of organocatalyst containing a (thio)urea scaffold 14
1.4.1 The first examples of diaryl urea catalysts promoting general acid- catalysed reaction 14
1.4.2 Development of bifunctional (thio)ureas in asymmetric synthesis 14
1.5 The advent of cinchona alkaloids as bifunctional organocatalysts 16
1.5.1 General introduction 16
1.5.2 Introduction of the (thio)urea moiety. 18
1.5.3 Introduction of the squaramide moiety 20
1.6 Formal cycloadditions involving anhydrides 23
1.6.1 Historical overview 23
1.6.2 Cycloaddition reactions of homophthalic anhydride with aldehydes 25
1.6.2.1 History and the achiral version of this transformation 25
1.6.2.2 The relevance of the dihydroisocoumarin unit in natural products 27
1.6.2.3 The first catalytic enantioselective cycloaddition involving enolisable anhydrides 27
1.6.3 Cycloaddition reactions of phenyl succinic anhydride with aldehydes 30
1.6.4 Cycloaddition reactions involving enolisable anhydrides with other types of electrophiles 34
1.7 Towards the development of Kinetic and Dynamic Kinetic Resolution (D)KR of new classes of enolisable anhydrides 40
1.7.1 Kinetic Resolution: introduction 40
1.7.2 Theoretical considerations related to KR processes. 42
1.7.3 An historical overview: the first examples of KR 45
1.7.4 Kinetic Resolution (KR) 47
1.7.5 Parallel Kinetic Resolution (PKR) 53
1.7.6 Dynamic Kinetic Resolution (DKR) 56
$1.8 \quad$ Objectives of this thesis 63
2. The Dynamic Kinetic Resolution of di-aryl substituted anhydrides mediated via an enantioselective cycloaddition to aldehydes 65
2.1 Preliminary experiments: proof of concept 68
2.2 Catalyst screening for the DKR of diphenyl succinic anhydride via cycloaddition to 4-nitrobenzaldehyde 72
2.3 Organocatalyst design: modification of the trityl moiety characteristics 78
2.4 Optimisation studies for the formal cycloaddition DKR of di-phenyl succinic anhydride with 4-nitrobenzaldehyde 85
2.5 Evaluation of the substrate scope: the aldehyde component 89
2.6 Evaluation of the substrate scope: the anhydride component 94
2.7 Stereochemical outcome: rationale elements 98
2.8 Synthetic utility and potential application of this work 100
2.9 Conclusion for Chapter 2 104
3. The Kinetic Resolution of racemic α-alkylated aryl succinic anhydrides mediated via an enantioselective cycloaddition to 4-nitrobenzaldehyde 105
3.1 Preliminary experiments: proof of concept 110
3.2
Catalyst screening for the KR attempt of α-methyl phenyl succinic anhydride 112
3.3 Catalyst design: towards the development of the first class of cinchona based sulfamides bifunctional organocatalysts 118
3.4 Development of cinchona-based sulfamides as a novel class of bifunctional organocatalysts for the KR of α-alkylated succinic anhydrides 122
3.5 Optimisation studies for the formal cycloaddition KR of racemic α - methyl phenyl succinic anhydride with 4-nitrobenzaldehyde 132
3.6 Evaluation of the substrate scope: the racemic nucleophilic component 137
3.7 Conclusion for Chapter 3 146
4. Experimental procedures and data 148
4.1 General 148
4.2 Gradient tables for HPLC conditions 149
4.3 Experimental procedures for Chapter 2 150
4.3.1 Synthesis of anhydrides: procedures 150
4.3.2 Synthesis of catalysts: procedures 167
4.3.3 Synthesis of racemic lactones 182
4.3.4 Catalyst evaluation (general procedures) 183
4.3.5 Experimental procedures and data for lactones 246d, 296-306, 324-329, 340. 185
4.4 Experimental procedures for Chapter 3 206
4.4.1 Synthesis of anhydrides: procedures 206
4.4.2 Synthesis of catalysts: procedures 227
4.4.3 Synthesis of racemic lactones 248
4.4.4 Catalyst evaluation (general procedures) 249
4.4.5 Experimental procedures and data for succinates and lactones 250
4.5 X-ray crystallography data 268
4.5.1 X-ray crystallography data for 300 268
4.5.2 X-ray crystallography data for 305 277
4.5.3 X-ray crystallography data for 368a 287
4.5.4 X-ray crystallography data for 252 297
5. References 307

Acknowledgements

After 4 years and 7 months of intensive work I still can't believe that the PhD journey has finally come to an end. It has been 5 years filled with many periods of hard time but also full of plenty enriching experiences along the way. I would like to take this chance to thank all the people that did participate one way or another in this journey and made this period an overall great experience.

First of all, I would like to thank all my family for the support and encouragements throughout this chapter of my life. I have to admit that it has been hard for me to see my 3 years younger brother getting his PhD before me but, at least, I'm pleased with the idea that from now on I'll be able to remind my dad that we both got a PhD (and that he didn’t!).

I'm grateful to my supervisor Prof. Stephen Connon, who I would like to thank for the great opportunity he gave me to work within his research group during my PhD . I also would like to thank him for his constant advice throughout these five years of researches and, in particular, for the precious help he gave me during the process of publications and thesis writing.

I would like to thank all the former and current members of the Connon, and other groups, that contributed to making this PhD journey a unique experience. Thank you Emiliano, Francesco, Umar, Vikas, Francianne, Michelle, Eogahn, Claire-Louise, Ryan, Mili, Chiara, Maria-Luisa, Bruce, Aaron, Cris, Sarah, Amy, Ciara, Simon, Marie.

My gratitude is also further extended to the many people who have taken part in helping me with the proof reading/corrections/suggestions during the writing of this thesis. Thank you again Ryan, Mili, Sarah, Amy, Ciara, Bruce, Simon. A special thank you to Michelle. I am very gratefull for the time you spent on helping me with the proof reading of a big part (pretty much all of it!) of my thesis.

Finally, I would like to thank all the staff in the Chemistry department for their precious help over the past 5 years: Dr. Manuel Ruether, Dr. Brendan Twamley, Dr. Gary Hessman, Dr. Martin Feeney, Prof. Mike Southern, Prof. Eoin Scanlan, Prof. Isabel Rozas. A special thank you to Dr. John O' Brien for its time and help over the years during the elucidation of complex molecular structures by NMR analysis.

Abstract

In this thesis we explore the possibilities offered by the bifunctional properties of a series of organocatalysts derived from cinchona alkaloids for the promotion of novel asymmetric transformations. In particular, we focused our attention on the extention of the scope of enantioselective cycloaddition reactions of pronucleophilic anhydrides capable of reacting with electrophiles such as aldehydes and of yielding chiral lactones in a regio-, diastero- and enantioselective fashion.

We have shown for the first time that a series of trans-disubstituted aryl succinic anhydrides can participate in a unique one-pot formal cycloaddition process with aldehydes via dynamic kinetic resolution (DKR). The highly functionalised γ butyrolactones products are important members of a class of compounds possessing a wide array of valuable biological properties (paraconic acid derivatives). An ad hoc designed squaramide organocatalyst was able to promote the reaction, at $5 \mathrm{~mol} \%$ loading, furnishing the lactones with good to excellent stereocontrol over three chiral centres, one of which being all-carbon quaternary in nature (up to $92 \%, 34: 1 \mathrm{dr}, 98 \%$ $e e$). The synthetic utility of these compounds as potential building blocks for organic syntheses was demonstrated through ready manipulation of one of the products to form a stereochemically dense and complex fused lactone-lactam system in $86 \% e e$.

We later extended the methodology to the more challenging kinetic resolution (KR) variant of the process and reacted α-alkylated aryl sucinnic anhydrides in a regio-, diastereo- and enantioselective cycloaddition with aldehydes. The first examples of the KR of these starting materials provided access to a range of chiral succinate derivatives with selectivity factors up to $\mathrm{S}^{*}=10.5$. Densely functionalised five-membered lactones (paraconic acid derivatives, γ-butyrolactones) could be formed, in one pot, with control over three contiguous stereocentres and selectivities ranging from modest to excellent (up to 7:1 dr, $94 \% \mathrm{ee}$). This project also reports the first examples of a promising ad hoc designed novel class of bifunctional hydrogen-bond donor sulfamide organocatalyst capable of engaging in multiple hydrogen-bonds with the substrates.

Key-words: (dynamic) kinetic resolution, cycloaddition reaction, enolisable anhydrides, γ-butyrolactone, paraconic acid, diastereoselectivity, enantioselectivity.

	Abbreviations
A	Ångström
Ac	Acetyl
AcOH	Acetic acid
APCI	Atmospheric Pressure Chemical Ionization
Alk	Alkyl
Ar	Aryl
B	Base
BINAP	2,2'-bis(diphénylphosphino)-1,1'-binaphtyle
Boc	tert-Butoxycarbonyl
$(\mathrm{Boc})_{2} \mathrm{O}$	Di-tert-butyl dicarbonate
cat.	Catalyst
$c a$.	circa (approximately)
CI	Chemical Ionisation
COD	1,5-Cyclooctadiene
conc.	Concentrated
cond.	Conditions
C or conv.	Conversion
CSP	Chiral Stationary Phase
Cy	Cyclohexyl
DIAD	Diisopropyl azodicarboxylate
DIPT	Diisopropyl tartrate
DIPEA	N, N-Diisopropylethylamine
DMAP	4-(Dimethylamino)pyridine
DMF	Dimethylformamide
DMSO	Dimethyl sulfoxide
DPPA	Diphenylphosphoryl azide
DFT	Density functional theory
dr	Diastereomeric ratio
DKR	Dynamic kinetic resolution
E	Electrophile
EDG	Electron donating group
$e e$	Enantiomeric excess
e.g.	For example
EI	Electron ionisation
equiv.	Equivalent
ESI	Electrospray ionization
EWG	Electron withdrawing group
FDA	Food and Drug Administration
HSQC	Heteronuclear Single Quantum Coherence Spectroscopy
HMBC	Heteronuclear Multiple Bond Correlation

IPA	iso-Propyl Alcohol
IBX	o-iodoxybenzoic acid
I_{2}	Iodine
IUPAC	International Union of Pure and Applied Chemistry
J	Coupling constant
KR	Kinetic resolution
LA	Lewis Acid
L-DOPA	L-3,4-Dihydroxyphenylalanine
MTBE	Methyl-tert-butyl ether
MW	Microwave
NHC	N-Heterocyclic Carbene
NSAID	Nonsteroidal anti-inflammatory drug
NOE	Nuclear Overhauser Effect
Nu	Nucleophile
n.d.	Not determined
Pd/C	Palladium on activated charcoal
PKR	Parallel kinetic resolution
(q)	Quaternary
(rac)	Racemic
RA	Resolving agent
ROESY	Rotating-frame Overhauser SpectroscoPY
R_{f}	Retardation factor
RT	Room Temperature
SM	Starting material
SOMO	The singly occupied molecular orbital
S	Selectivity factor
T	Temperature
TOF	Time of flight
TOCSY	Total correlated spectroscopy
t	Time
TFA	Trifluoroacetic acid
TFAA	Trifluoroacetic anhydride
TMS	Trimethylsilyl
TMSN_{3}	Trimethylsilyl azide
TMSCHN_{2}	Trimethylsilyl diazomethane

Introduction

1. Introduction

1.1 A general introduction: from chirality to asymmetric synthesis

In 1848, the French biologist and chemist, Louis Pasteur, discovered chiral chemistry when he manually separated a mixture of the two isomers of sodium ammonium tartrate salt as crystals. ${ }^{1}$

Originally, the word chiral comes from the Greek cheir, which means 'handedness'. Chirality is now defined by the IUPAC as follows: 'The geometric property of a rigid object (or spatial arrangement of points or atoms) of being non-superposable on its mirror image; such an object has no symmetry elements of the second kind (a mirror plane, a centre of inversion, a rotation-reflection axis). If the object is superposable on its mirror image the object is described as being achiral. ${ }^{2}$

These two non-superposable mirror image forms of chiral compounds - called enantiomers - are most commonly formed when four different substituents are present on a carbon atom. However, sometimes, sulfur, phosphorus or nitrogen atoms can also lead to the formation of chiral molecules (e.g. the drug omeprazole which contains a chiral sulfur atom). ${ }^{3}$ Any molecule bearing two or more chiral centres can exist as a mixture of isomers which are commonly called diastereomers. Equimolar mixtures (50:50) of enantiomers, are referred to as a racemic mixture (or as a racemate) with signs (\pm)-, (rac)- or (D,L)- and do not exhibit any optical activity.

Depending on whether they can rotate a plane-polarised light towards the left $(-)$, or the right (+), these two enantiomers are respectively classified as levorotary or dextrorotary. With the exception of their different optical activity, enantiomers have the same physical properties in a non-chiral environment. However, the interaction of different enantiomers of the same molecule with an enantiomerically pure compound or a biological receptor may lead to completely different results. ${ }^{4}$

For example, in the human body, interactions with biological targets (e.g. receptors, enzymes, etc) are very often stereoselective. ${ }^{4}$ This explains why - although they have the same chemical structure - in a chiral medium, enantiomers of the same molecule (e.g. racemic drugs) can exhibit different biological activities such as pharmacology,
metabolism, toxicology, etc. Thus, one isomer may exhibit therapeutic activity, while the other may be completely inactive or produce undesired side effects. ${ }^{5}$

Figure 1.1 The two enantiomers of the racemic drug ibuprofen (rac)-1.
Ibuprofen (1) is a nonsteroidal anti-inflammatory drug (NSAID). Both enantiomers (i.e. "mirror images") of this drug have an analgesic and anti-inflammatory effect as inhibitors of cyclooxygenase I, however, $(S) \mathbf{- 1}$ is about 100 times more potent than (R) 1. Furthermore, in the body, only the (R)-enantiomer, can undergo chiral inversion into the active (S)-enantiomer by hepatic enzymes (Figure 1.1). ${ }^{6}$

The synthesis of the racemic version of a drug is often much simpler and less expensive than its enantiopure form, therefore, racemic drugs were often commercialised until the 80s. It was assumed that the inactive enantiomer wouldn't necessarily be toxic to the human body. The principal ingredient of Contergan, a former racemic sedative, thalidomide (2), was a prodrug used against morning sickness for pregnant women, which now represents a unfortunately famous example of the dramatic bankruptcy of this hypothesis. The $(R)-\mathbf{2}$ enantiomer was supposed to be inactive but turned out to cause foetal malformations (teratogenic activity). Nevertheless, both forms can be converted into one another in vivo and the teratogenic effect would not have been avoided by administering only one form (Figure 1.2). ${ }^{5 b, 5 c, 5 e, 7}$

(R)- 2
(R)-thalidomide (sleep-inducing)

(S) $\mathbf{2}$
(S)-thalidomide (teratogenic)

3
(S,S)-ethambutol (tuberculostatic)

4
L-Dopa
(sleep-inducing)

Figure 1.2 Example of chiral drugs.
In 1992, as a result of this scandal, the drug was withdrawn from the market and other medical cases highlighting the potential danger of racemic drugs (e.g. tuberculostatic ethambutol (3), L-Dopa (4), etc) ${ }^{8}$ led the Food and Drug Administration (FDA) to make it mandatory for pharmaceutical companies to test and evaluate separately all
stereoisomers that can be generated by the original drug before approval is given (Figure 1.2). ${ }^{9}$

As a direct consequence, chirality has now become subject of major importance for pharmaceutical development as well as for academic researchers. In 2006, most of the drugs approved by the FDA contained chiral centres and 75% of them were commercialised in their enantiopure form. ${ }^{10}$ To meet the growing need to isolate enantiomerically pure compounds, over the past few decades chemists around the world started to focus their attention on the development of a new major field in organic chemistry which is now known as asymmetric synthesis.

Asymmetric synthesis is also called chiral synthesis or enantioselective synthesis and is today considered as one of the major hot topics in organic chemistry. It is defined by the IUPAC as: 'The preferential formation in a chemical reaction of one stereoisomer over another. When the stereoisomers are enantiomers, the phenomenon is called enantioselectivity and is quantitatively expressed by the enantiomer excess; when they are diastereoisomers, it is called diastereoselectivity and is quantitatively expressed by the diastereoisomer excess'. ${ }^{2}$

In simpler terms, asymmetric synthesis can be described as a method for preparation of chemical compounds that favour the formation of one stereoisomer (usually enantiomers) over another.

Scheme 1.1 The Monsanto synthesis of L-Dopa using catalytic asymmetric hydrogenation. ${ }^{11}$

A breakthrough in asymmetric synthesis came in the early sixties. At this time, it wasn't known if asymmetric hydrogenation was feasible or not. William Knowles and coworkers at the Monsanto Company discovered that highly enantioselective
hydrogenation reactions could be promoted by a cationic rhodium-based catalyst. Knowles decided to replace the original achiral triphenylphosphine ligands found in Wilkinson's catalyst with chiral phosphine-based ligands (e.g. 7, Scheme 1.1). ${ }^{12} \mathrm{He}$ applied this enantioselective metal ion catalysis to the hydrogenation of the prochiral substrate 5, generating the amino acid 6 (in quantitative yield and in $95 \% e e$) which, after acid-catalysed hydrolysis, led to the formation of L-Dopa (4, Scheme 1.1). The importance of this type of research was recognised in 2001 when William S. Knowles, Ryōji Noyori and K. Barry Sharpless, pioneers in the field of metal-catalysed enantioselective synthesis, were co-awarded the Nobel Prize in Chemistry. ${ }^{13}$

1.2 Different approaches towards the synthesis of enantiopure compounds

The ability to select one enantiomer/diastereomer over another has become essential for academic researchers and in the pharmaceutical industry during the last few decades.

Nowadays, three main routes have been developed and are commonly used to isolate enantiopure compounds. The techniques employed are based on very different strategies and are described in Figure 1.3. ${ }^{14}$

Figure 1.3 Main routes toward the synthesis of enantiomerically pure compounds.

1.2.1 The resolution of racemates

In this strategy, a single enantiomer can be isolated from a racemic mixture. This method relies on the employment of a chiral resolving agent (which must be enantiomerically pure). The enantiomers are derivatised into two diastereomers possessing physically distinct properties and thus separable (e.g. by crystallisation, distillation, column chromatography, etc). ${ }^{15}$ The diastereomer is then transformed back into the desired enantiomer. This method is efficient if this transformation is
quantitative and if the resolving agent can be recycled afterwards (optically pure materials are potentially expensive at large scale synthesis). One of the main drawback of this methodology is that half of the material is often wasted when only one enantiomer is desired and the maximum theoretical yield of the process is only $50 \% .{ }^{15}$ This method represents the oldest method of resolution processes, nowadays other methods (e.g. KR and DKR) are also employed and will be described in Section 1.7.

Scheme 1.2 Resolution of (\pm)-naproxen developed by the Syntex company. ${ }^{16}$
The synthesis of the racemic naproxen (13) that was carried out by the Syntex company until the early 1990s is described on Scheme 1.2 is followed by its resolution process. This was achieved by the separation of the salts formed after reaction of (rac)-13 with the enantiopure amine $\mathbf{1 4}$ that allowed the formation of (S) - $\mathbf{1 3}$ in over $\mathbf{9 5 \%}$ ee. ${ }^{16}$

1.2.2 Chiral pool-based methods

The second method is based on the bioavailability of enantiopure chiral starting materials provided in nature. This is often referred to as the "chiral pool" and relies on syntheses using enantiopure compounds as starting materials or the employment of chiral auxiliaries to induce chirality into the products.

The direct synthesis employing chiral starting materials available from nature (as single enantiomers, such as sugars, amino acids, alkaloids, etc) is probably the most straightforward method of obtaining enantiopure molecules. ${ }^{17}$ This strategy relies on the conservation of the chiral information (with no racemisation) throughout the subsequent transformations. If the targeted compound has a similar structure to the chiral starting material employed this method is particularly efficient. The major drawback of this
strategy is that the cost of the starting material used can be relatively expensive in largescale processes. ${ }^{18}$

In 1975, the concept of chiral auxiliaries was introduced for the first time by E. J. Corey when he used chiral 8-phenylmenthol to perform a series of asymmetric Diels-Alder reactions. ${ }^{19}$ A typical auxiliary-guided transformation involves at least these three steps: the substrate and the chiral auxiliary are covalently coupled (e.g. $\mathbf{1 5} \rightarrow \mathbf{1 6}$), then the resulting molecule undergoes a diastereoselective transformation followed in a third step by the removal of the auxiliary - under mild conditions causing no racemisation of the desired product. ${ }^{19,20}$

Chiral thiazolidinethiones (such as 15) are structural variants of Evans's oxazolidinones ${ }^{21}$ and have proven to be a highly selective and efficient chiral auxiliary for asymmetric C-C bond formation in aldol reactions. ${ }^{22}$ Titanium tetrachloride (17) used in combination with the base sparteine (18) allows for the formation of a titanium enolate of the N-acylated auxiliary $\mathbf{1 6}$ which then reacts with aldehydes with excellent diastereocontrol (e.g. 16 $\rightarrow \mathbf{1 9}, 99: 1 \mathrm{dr}$, Scheme 1.3).

Scheme 1.3 An asymmetric aldol reaction mediated by a chiral auxiliary. ${ }^{22}$
As the products obtained are diastereomers, their separation is usually easier and they can be isolated using simple methods such as column chromatography or crystallisation. However, the cost of chiral auxiliaries (that need to be used in stochiometric amount and easily introduced/removed) makes this approach rather unattractive for large scale synthesis.

1.2.3 Asymmetric catalysis

In an achiral environment, the energy required to surmount the barrier leading to each enantiomer are the same. However, in a chiral environment, asymmetric synthesis can be achieved if the energies of the respective transition states leading to the two enantiomers can be modified in such a way that one becomes higher than the other, an enantioenriched mixture is obtained as one enantiomer is preferentially formed over the
other. The most common way to obtain asymmetric induction starting from prochiral material relies on the use of enzymes, metal ion- or organic compound-based catalysts.

In all these methods, a catalyst is involved in a number of cycles where it transfers the chiral information to the substrate. In well-designed processes only $0.1-20 \mathrm{~mol} \%$ of catalyst is required to prepare optically pure molecules and high yield of the desired compounds can be obtained.

1.2.3.1 Enzyme mediated catalysis

In living organisms, almost all of the metabolic reactions occurring are catalysed by enzymes. Enzyme-mediated reactions involve macromolecules that are among the most efficient catalysts available and often exhibit outstanding selectivities in some chemical transformations. ${ }^{23}$

These types of processes are highly appreciated in industry due to their high selectivity as well as their ability to produce very little by-products making them environmentally friendly. ${ }^{24}$ However, some major associated drawbacks (e.g. price, availability, etc) are responsible for the fact that they are still not widely employed. Even though the reactions are often carried out under very mild conditions, their field and scope of application is still very limited. ${ }^{25}$

1.2.3.2 Metal based catalysis

One of the most powerful and thoroughly explored complementary method to enzymatic transformations relies on metal(ion)-based catalysed reactions. In 2010, the importance of this field of catalysis was highlighted when Akira Suzuki, Richard F. Heck and Ei-ichi Negishi were co-awarded the Nobel Prize in Chemistry for their work on the development of new cross-coupling reactions catalysed by palladium catalysts.

Organometallic catalysts or synthetically derived catalysts have allowed the extension of the range of catalysed reactions. ${ }^{26}$ Most of the asymmetric organometallic catalysed versions usually rely on the employment of a transition-metal (e.g. Ir, Rh, Pd, Ru, etc) working in tandem with tuneable enantiomerically pure ligands (e.g. 22, Scheme 1.4).

The nature of either the ligands, the metal-ion or the counterion are virtually infinitely tuneable and allow the catalysis of a wide range of reactions. ${ }^{26}$

Scheme 1.4 Arylation of racemic α-bromoamides via asymmetric Suzuki CrossCoupling of activated secondary alkyl electrophiles. ${ }^{27,28}$

In 2008, pioneering work carried out in G. Fu's laboratories allowed for the first example of an asymmetric stereoconvergent Suzuki type cross-coupling reaction that used a chiral nickel catalyst, racemic α-bromoamide starting materials (such as (rac)20) and a series of phenyl boronic acid derivatives (e.g. 21). ${ }^{27}$ Following a single electron transfer pathway, a radical was generated on the electrophile 20, enabling the catalyst to selectively react with only one face of the achiral intermediate leading to the formation of coupling products, such as 23, in high yields and excellent enantioselectivities, without racemisation of the products (Scheme 1.4).

Very low catalyst loadings are frequently employed (typically $0.1-5 \mathrm{~mol} \%$). Unfortunately, their efficiency is also directly linked to the reaction conditions and often requires a complete oxygen-free inert atmosphere as well as anhydrous solvents. Furthermore, high prices and potential toxicity due to metal contamination are common drawbacks leading to several limitations in their use for the synthesis of regulated products in the pharmaceutical industry. ${ }^{29}$

1.2.3.3 Organocatalysis

Transition metal catalysts have been employed in asymmetric transformations for decades, ${ }^{30}$ but as mentioned above, one of the major drawbacks of this class of catalysts is the high toxicity of some heavy metals (e.g. osmium) ${ }^{31}$ which may leave toxic traces in the final pharmaceutical products. ${ }^{30 c, 32}$ Therefore, organocatalysis, also named metalfree organic catalysis, has emerged as an appealing type of transformation for
enantioselective synthesis and is the newest subdomain in the enormous field of enantioselective (asymmetric) catalytic synthesis. ${ }^{33}$

Organocatalysts can enhance the rate of a reaction by the addition, in a substoichiometric ratio, of an organic compound. ${ }^{33 a, 34}$ These catalysts are generally synthesised by manipulation of readily available and inexpensive compounds present in nature as a single enantiomer (e.g. quinine, proline). ${ }^{35}$ In contrast to metal-based catalysis, small organic molecules are not only often less toxic and environmentally friendly but also offer many practical advantages. For example, these compounds are usually readily available, ${ }^{35}$ easy to design and synthesise and can often be used under convenient conditions without the need of an inert atmosphere or the use of extra anhydrous solvents.

Scheme 1.5 Proline-catalysed intramolecular asymmetric aldol reaction. ${ }^{36}$
In the early 1970s, the first significant work in organocatalysis was reported by Hajos and Parrish at Hoffmann La Roche when they described the discovery of asymmetric enamine catalysis. ${ }^{36}$

They discovered that the triketone 24 could undergo an intramolecular aldol reaction catalysed by (S)-proline, leading to the formation of an intermediate enamine reactive species and subsequent generation of the aldol product $\mathbf{2 5}$, in excellent yield and with excellent enantioselectivity ($c a .100 \%, 93 \% e e$). The aldol condensation product 26, obtained after an acid-catalysed dehydration, represents a very important intermediate in the total synthesis of several steroid compounds (e.g. 27-29, Scheme 1.5). ${ }^{36}$

1.3 The emergence of organocatalysis: principal modes of action

Prior to the last two decades, the catalytic enantioselective synthesis of organic molecules was almost exclusively carried out using transition metal complexes or enzymes. A third approach has more recently emerged: asymmetric organocatalysis. Between the 1990s and 2000s, many researchers (e.g. Jacobsen, List, Denmark, MacMillan, among others) brought about the development of small organic molecules capable of selectively catalysing organic reactions. ${ }^{37}$ Representatives of the main families of organocatalysts which are currently widely used are presented in Figure 1.4.

Figure 1.4 The main families of organocatatysts found in the literature.
The range of catalysed reactions involved with these families of catalyst is still growing (e.g. Michael additions, ${ }^{38}$ Mannich-type reactions, ${ }^{39}$ aza-Henry, ${ }^{40}$ Baylis-Hillman, ${ }^{41}$ Pictet-Spengler, ${ }^{42} \mathrm{etc}$). These transformations often rely on different modes of activation of the starting materials (e.g. iminium- or enamine- catalysis, ${ }^{43}$ phase transfer, ${ }^{44}$ Brønsted base and nucleophilic catalysis, ${ }^{44}$ hydrogen-bonding, ${ }^{45}$ etc).

In the next two subsections, we aim to briefly introduce and describe two of the main activation modes: the amino catalysis and the hydrogen-bonding which respectively rely on covalent or non-covalent interactions with the substrates.

1.3.1 Amino catalysis: a covalent-based activation mode

Amino catalysis mainly relies on the reversible interaction between a carbonyl group and a chiral amine. Two different fundamental activation modes result from the nature
of the carbonyl employed. Isolated π systems (such as $\mathbf{3 0}$) and conjugated π systems (such as 34) can react in different fashions (Figure 1.5).

In both cases, the initial mechanism involves the formation of a covalent bond between the substrates and the chiral amine leading to the formation of an iminium ion intermediate such as $\mathbf{3 2}$ (or 35).
(A) Enamine catalysis (Isolated π system)

(B) Iminium catalysis (Conjugated π system)

Figure 1.5 Aminocatalysis activation modes in organocatalysis.
In the particular case of isolated π systems, the acidity of the α-hydrogen is increased and its rapid deprotonation results in the subsequent formation of an enamine intermediate (e.g. 33). The energy level of the HOMO is increased and the enamine intermediate, which can be considered as an enolate equivalent, is capable of reacting with electrophiles (Figure 1.5, A).

However, for iminium ions such as $\mathbf{3 5}$, the energy level of the LUMO is lowered, which results in the activation of the system towards nucleophilic attack (Figure 1.5, B).

Proline catalysed reactions were reinvestigated for the first time nearly 30 years after the Hajos-Parrish-Eder-Sauer-Wiechert reaction was first published.

Scheme 1.6 Enantioselective intermolecular aldol reaction catalysed by proline. ${ }^{46}$
In 2000, B. List and co-workers reported the first example of an enantioselective intermolecular aldol reaction between acetone (36) and a series of aromatic and aliphatic aldehydes (e.g. 37, Scheme 1.6). ${ }^{46}$

The same year, in parallel with List's work on asymmetric aldol reactions, MacMillan reported the first highly enantioselective Diels-Alder reactions between dienes (e.g. 40) with α, β-unsaturated aldehydes (e.g. 41) catalysed by amines such as the imidazolidinone hydrochloride salt 42 (Figure 1.6, A). ${ }^{47}$

Their initial strategy relied on the possibility of emulating the dynamic equilibrium found in Lewis acid catalysed systems (Figure 1.6, B, a) by the formation of an activated iminium ion (Figure 1.6, B, b) capable of engaging subsequently with a diene reaction partner.

A Asymmetric organocatalysed Diels-Alder reaction

C Rationale beyond the observed enantioselectivity
(E)-conformation favoured

Figure 1.6 The first enantioselective organocatalytic Diels-Alder reaction.

They explained and confirmed computationally the sense of the stereoinduction observed. First, the activated iminium ion intermediate selectively adopts the (E)configuration 44a in order to avoid interactions between the geminal methyl substituents, and the substrate olefin found in the conformation 44b. Additionally, the catalyst design, with the bulky benzyl group, shields the re face of the dienophile leaving the si face exposed to the cycloaddition reaction (Figure 1.6, C). ${ }^{47}$

1.3.2 Hydrogen-bonding: a non-covalent based activation mode

The two studies reported in the previous section represent two of the most important and common activation modes employed in organocatalysis. These two techniques (i.e. enamine- and iminium-catalysis) both rely on strong interactions with the substrates as covalent bounds are formed with the catalyst during the reaction. In contrast to this, hydrogen bonding is based on weaker non-covalent interactions with the substrate.

Electrophilic activation of a substrate via hydrogen-bonding is now a time-honoured strategy for catalysis of an organic transformation. ${ }^{45}$ In most cases, the improvement in terms of reaction rate can be attributed to a lowering of the lowest unoccupied molecular orbital's energy upon coordination with the catalyst, or stabilisation of developing negative charge at a heteroatom in the transition state of addition reactions. ${ }^{48}$

Scheme 1.7 First example of epoxide ring-opening catalysed by hydrogen-bonding reported by Hine. ${ }^{49}$

The first examples of rationally-designed catalysis, mediated through hydrogen-bonding appeared in the 1980s. Hine and co-workers have shown that the biphenylenediol 48 could improve the reaction rate of epoxide aminolysis (i.e. $\mathbf{4 5} \rightarrow \mathbf{4 9}$). They explained the enhancement observed by a double hydrogen-bond donation to $\mathbf{4 5}$, lowering its LUMO and activating it toward nucleophilic attack from 46 (Scheme 1.7). ${ }^{49}$

Scheme 1.8 First example of a Diels-Alder reaction catalysed by hydrogen-bonding reported by Kelly. ${ }^{50}$

Later in the 1990s, Kelly and co-workers ${ }^{50}$ reported the promotion of Diels-Alder reactions between a series of dienes (e.g. 49) and α, β-unsaturated aldehydes or ketones (e.g. 50). They confirmed that a double hydrogen-bond donation to the dienophile $\mathbf{5 0}$ enhances the reaction rate and facilitates the catalysis. Although this organic catalyst (51) exhibited poor activity and solubility, it became one of the key milestone catalysts in hydrogen-bond donor organocatalysis (Scheme 1.8).

1.4 Development of a new class of organocatalyst containing a (thio)urea scaffold

1.4.1 The first examples of diaryl urea catalysts promoting general acid-catalysed reaction

The first examples of the utilisation of achiral (thio)ureas as organocatalysts capable of promoting general acid-catalysed reactions appeared around the 1990s. Their use in important named organic reactions represented an unprecedented advancement in the field of organocatalysis. Curran ${ }^{51}$ found that sub-stoichiometric amounts of the diarylurea $\mathbf{5 4}$ could successfully be employed to accelerate the reaction rate of Claisen rearrangement reactions (i.e. $\mathbf{5 3} \rightarrow \mathbf{5 6}$, Scheme 1.9).

Scheme 1.9 Claisen rearrangement mediated by N, N^{\prime}-diaryl-urea catalyst. ${ }^{51}$
The original m-nitro groups found in the structure reported by Etter ${ }^{52}$ were replaced by trifluoromethyl and octyl ester groups at both phenyl rings. These modifications resulted in better solubility in most organic solvents and increased reaction efficiency. The catalytic effect observed was rationalised by a bis-hydrogen bonded transition state model. This model proved to be relevant as the replacement of the two hydrogen bond donors with two methyl groups (i.e. 55) failed in catalysing the reaction. ${ }^{51}$

1.4.2 Development of bifunctional (thio)ureas in asymmetric synthesis

Most of the organocatalysts currently employed rely on a dual activation mode that was initially inspired by the observation of enzymatic reactions and were meant to mimic their remarkable abilities to catalyse and control the outcome of some organic reactions.

The general concept of activating both reaction partners simultaneously is presented in Figure 1.7. Such catalysts can activate and subsequently hold both electrophile and nucleophile in a controlled chiral environment and eventually enhance the overall reactivity and stereoselectivity of a given reaction.

The exact definition of this specific type of catalysis is given by the IUPAC as follows: catalysis by a bifunctional chemical species involving a mechanism in which both functional groups are implicated in the rate-controlling step, so that the corresponding catalytic coefficient is larger than that expected for catalysis by chemical species containing only one of these functional groups. The term should not be used to describe the concerted action of two different catalysts (e.g. Figure 1.7). ${ }^{2}$

Figure 1.7 Bifunctionality: simultaneous electrophile/nucleophile activation.
To date, most of the bifunctional (thio)urea organocatalysts that have been designed rely on the combination of a tuneable N-aryl moiety at one of the nitrogen atoms in partnership with a Lewis base (often a tertiary chiral amine) bound via a tether to the other. These N-aryl groups often possess bulky or electron-withdrawing elements (e.g. CF_{3} groups at the meta-positions) and are capable of influencing the hydrogen-bonding ability as well as improving the catalyst's rigidity (e.g. 61, Scheme 1.10).

Scheme 1.10 Addition of diethylmalonate to nitroalkenes. ${ }^{53}$
In 2003, Takemoto and co-workers were the first to report the use of a tertiary amine bifunctional thiourea $\mathbf{6 1}$ to catalyse asymmetric Michael additions. They showed that $\mathbf{6 1}$ was capable of promoting additions of diethylmalonate esters such as 57 to β nitrostyrenes (e.g. 56) to provide Michael-adducts (58) with excellent yield and enantiocontrol (up to $93 \% \mathrm{ee}$, Scheme 1.10). ${ }^{53}$

The authors found that the synergistic effect of the thiourea moiety and the tertiary basic amine was required for the reaction to occur. Indeed, when the analogues of the catalyst 61, containing a single active motif (i.e. $\mathbf{5 9}$ or 60), were employed separately with or without the use of an external base as additive, the reactions didn't proceed smoothly and only poor yields and modest enantioselectivity were observed (Scheme 1.10).

Figure 1.8 Takemoto's bifunctional mode of action of catalyst 61. ${ }^{53,54}$
The general-catalysis-like mechanism was originally proposed by Takemoto (Figure $1.8, \mathrm{~A}) .{ }^{53}$ In this model, the tertiary amine acts as a Lewis base and deprotonates, in the transition state, the pronucleophile malonate ester enol (i.e. 57) while the thiourea moiety would simultaneously activate the nitro-olefin 56 by hydrogen-bonding (Figure $1.8, \mathrm{~A})$. A specific-catalysis-like model, was later proposed by Soòs and co-workers as an alternative mechanism, lower in energy. ${ }^{54}$ In this model, the key intermediate is an ionic complex formed between 61 and the deprotonated malonate ester 57 interacting by multiple hydrogen bonds. The activation of the β-nitrostyrene 56 occurs via its hydrogen-bonding interaction with the protonated tertiary amine of $\mathbf{6 1}$ (Figure 1.8, B).

1.5 The advent of cinchona alkaloids as bifunctional organocatalysts

1.5.1 General introduction

In the $17^{\text {th }}$ century, the cinchona alkaloids were discovered in South America and identified as some of the major constituents of the bark of a tree from the genus cinchona. These natural molecules were popularised and mainly remained famous for their antimalarial properties. ${ }^{55}$ However, for the organic chemistry community, this class of alkaloids have become exponentially famous and exploited over the last few decades for their applications in stereoselective synthesis (Figure 1.9). ${ }^{56}$

Over 30 different classes of alkaloids could be extracted from the bark of these cinchona trees. The most abundant members (that could be isolated in synthetically useful quantities) are presented in Figure 1.9. The two pairs of pseudoenantiomers, quinine (61) + quinidine (62) and cinchonidine (63) + cinchonine (64), are the main constituents of most of the derived cinchona alkaloid based organocatalysts. ${ }^{57}$

quinidine (62)

Quinuclidine tertiary nitrogen atom

- deprotonates the pronucleophile
- stabilises the developing positive charge at the nucleophile in the TS of addition reactions
- capable of activating a nucleophile

Hydroxyl group

- hydrogen-bond donor functionality - stabilises the developing negative charge in the TS of addition reactions - capable of activating an electrophile

cinchonidine (63)

cinchonine (64)

Figure 1.9 The most prominent cinchona alkaloids found in nature and their bifunctional properties. ${ }^{55,56}$

Their structures are now widely considered as some of the most privileged scaffolds for the design of many chiral bifunctional organocatalysts. Indeed, as described in Figure 1.9 , any of these alkaloids (i.e. 61-64) possess the two key design elements required to simultaneously activate both reactions partners of a pronucleophile-electrophile reaction. The hydrogen-bond donor functionality of the hydroxyl groups alongside the basicity of the tertiary amine quinuclidine can act synergistically to enhance the electrophilic character of the electrophile and activate a pronucleophile (by means of general base catalysis) during the transition state of addition reactions. Furthermore, these alkaloids contain a reasonably rigid chiral structure with 5 chiral centres and many positions that can easily be tuned if the process of interest requires more specific substrate-catalyst interactions (Figure 1.9). ${ }^{57}$

Last but not least, the commercial availability and the globally low cost of both pseudoenantiomeric forms of these alkaloids made them extremely attractive for asymmetric synthesis purposes and partially explains their success in the specific field of asymmetric organocatalysis.

In 1981, Wynberg et al. ${ }^{58}$ reported the use of natural (i.e. 61-64), and modified alkaloids (i.e. 65-66), in the 1,4-Michael addition reaction of aromatic thiols (such as 67) to cyclic ketones (such as 68), producing thioether derivatives 69, in quantitative yields at only 1 $\mathrm{mol} \%$ loadings and with up to $67 \% \mathrm{ee}$ (Scheme 1.11).

Scheme 1.11 First examples of Michael addition catalysed by cinchona alkaloids. ${ }^{58}$
From this study, the authors highlighted two fundamental outcomes:

First, they observed that the Michael adducts 69 could be formed with opposite absolute configurations when opposite absolute stereochemistry of the alkaloids (at the $C-8 / C-9$ position) were used. Unfortunately, this observation cannot always be generalised to other processes. Indeed, as these alkaloids are not strictly enantiomers of each other, in some reactions the employment of both pseudoenantiomers may not always allow one to selectively choose the absolute configuration of the main enantiomer of the reaction product (Scheme 1.11, A). ${ }^{58}$

In addition, they also observed that the employment of the modified alkaloids 65-66, where the hydrogen bonding unit had been removed, failed to promote the reaction with appreciable level of enantioselectivity (up to 7\% ee only). Therefore, the magnitude of the stereoinduction encountered with the natural alkaloids (i.e. 61-64) was attributed to their bifunctional mode of action (Scheme 1.11, B). ${ }^{58}$

1.5.2 Introduction of the (thio)urea moiety

The next step in the development of these catalysts was inspired by the studies of Takemoto and co-workers. ${ }^{59}$ The $C-9$ position of the cinchona alkaloids is the most
frequently modified position. For example, synthetic routes make both epimers of these alkaloids accessible by transforming the alcohol into a primary amine via Mitsunobu reactions. It was envisaged to exploit the privileged structure of the cinchona alkaloids for their chiral basic moiety and to introduce a double hydrogen-bond via a (thio)urea motif leading to the structure presented in Figure 1.10.

Figure 1.10 Modified cinchona (thio)urea derivatives. ${ }^{59}$
This simple transformation increased both solubility and N-H acidity and, therefore, led to the design of a new class of catalyst possessing improved hydrogen-bond donating abilities. The key design elements of (thio)urea-modified cinchona alkaloids catalysts are presented in Figure 1.10. ${ }^{59}$

In 2005, Soòs et al., ${ }^{60}$ reported the asymmetric Michael addition of nitromethane (71) to a series of (E)-chalcones (e.g. 70) catalysed by different analogues of thioureasubstituted quinine/quinidine-derived cinchona alkaloid catalysts (73-75, Scheme 1.12).

The quinine scaffold (i.e. 61), allowed for the generation of both catalysts 73 and 74 with inversion and retention of the configuration at the $C-9$ position respectively. The use of quinidine (62) as starting material allowed the generation of the catalyst 75. The unexpected results they obtained are listed in the table of Scheme 1.12.

Use of catalyst 73 afforded the adduct 72 with good yield and excellent enantioselectivity ($c a .95 \% e e$). Surprisingly, the thiourea 74 derived from the natural stereochemistry of quinine (i.e. the $C-9$ epimer of 73) exhibited no catalytic activity. This result highlighted that the catalytic mode of action of this new class of catalysts most certainly operates via a bifunctional mode of action. Indeed, these experiments demonstrated that the catalyst efficiency strongly relies on the relative stereochemistry at $C-8$ and $C-9$ and that the relationship between the orientation of the hydrogen bonds and the tertiary quinuclidine base is fundamental (Scheme 1.12, A). ${ }^{60}$

Interestingly, the pseudoenantiomer of $\mathbf{7 3}$ (i.e. 75) could also promote the formation of 72, with inversion of its absolute configuration $($ i.e. $(R) \rightarrow(S)$), also with a high level of enantiocontrol ($86 \% \mathrm{ee}$, Scheme 1.12, B). ${ }^{60}$

Scheme 1.12 Thiourea organocatalysts 73-75 as promoters of enantioselective Michael addition reaction of nitromethane (71) to chalcone 70. ${ }^{60}$

1.5.3 Introduction of the squaramide moiety

Since the pioneering work of Rawal, in 2008, the squaramides derived from cinchona alkaloids have emerged as a new powerful hydrogen-bonding class of organocatalyst and have quickly been established as effective alternatives to the complementary successful duo urea/thiourea. ${ }^{61}$ Before describing an example of a reaction catalysed by a squaramide based catalyst, it is interesting to highlight some of their properties and structural differences to their analogous (thio)ureas. Indeed, their tremendous success undoubtedly relies on their rather unusual structure and particular physical properties, making them very efficient hydrogen-bond donating moieties (Figure 1.11).

Regardless of their structural properties, an additional advantage of this class of catalyst is their generally facile and straightforward mode of synthesis, making them easy to design and tune. The synthesis starts from the commercially available squaric acid (76) to form the reactive intermediate dimethyl squarate (77) in excellent yield. Subsequently, a double substitution pathway with two primary amines provides the bifunctional squaramide catalysts in only two steps (i.e. $\mathbf{7 6} \rightarrow \mathbf{7 8}$). In most cases the catalyst precipitates out of the solution affording the pure product without any further purification required (Figure 1.11, A). ${ }^{61}$

The squaramides are capable of forming up to four hydrogen-bonds with substrates (Figure 1.11, B). In the same fashion, as is the case with the (thio)ureas, the presence of the two $\mathrm{N}-\mathrm{H}$ groups provides two hydrogen-bond donors, however the presence of two carbonyls on the four-membered ring system affords two extra sources of hydrogenbond acceptors. Squaramides and (thio)ureas also differ by the angle and distance between the two N-H groups. The distance between them is approximately one third larger in a squaramide $(2.71 \AA)$ compared with a (thio)urea $(2.13 \AA) .{ }^{62}$ Furthermore, the structural scaffold of the cyclobutanedione ring tends to induce a more convergent orientation of the hydrogen bonds which influences the hydrogen-bonding abilities in a different way when compared with their (thio)urea analogues (Figure 1.11, B). ${ }^{62}$

(C) Structural properties of the thioureas

> D Jtructural aitrerences detween the iniourea ana the squaramiae units

Figure 1.11 Physical properties of squaramides. Structural differences between the thiourea and the squaramide hydrogen-bond units. ${ }^{61,62}$

The lone pair on the nitrogen atoms is delocalised in both (thio)ureas and squaramides, thereby the rotation around the $\mathrm{C}-\mathrm{N}$ bonds is restricted and conformational changes are more limited. However, for squaramides, the possibility to further delocalise the electron density, through the cyclobutenedione system, leads to two formally charged nitrogen atoms capable of forming significantly stronger hydrogen bonds. Moreover, the double bond character of the carbon-nitrogen bonds enhances the global structure rigidity and further limits the conformational changes of the catalysts (Figure 1.11, C and D). ${ }^{61}$

For the reasons mentioned above, Rawal and co-workers ${ }^{61}$ decided to substitute the (thio)urea moiety of the previously successful modified alkaloids with a squaramide motif (e.g. catalyst 80, Scheme 1.13).

The Michael addition of dicarbonyl compounds (such as 79) to nitroolefins (such as 57) was used as the model reaction to evaluate the catalytic abilities of the catalyst 80. This structural modification proved to be extremely fruitful, as the Michael adducts (e.g. 81) were obtained in excellent yields and with an outstanding level of enantiocontrol (up to $>99 \% e e$, Scheme 1.13). ${ }^{61}$

Scheme 1.13 Organocatalytic Michael additions revisited with the squaramide catalyst 80 as promoters of the reaction. ${ }^{61}$

Following this breakthrough in the design of new motifs for hydrogen bond donation, the insertion of squaramide units into the core of cinchona alkaloids (or other tertiary chiral amines) became more systematic and organocatalysts containing squaramide and (thio)urea analogues are now often co-evaluated during the catalyst screening of a new process development. Further examples illustrating the success encountered by this class of catalysts will be described and discussed in Section 1.6.

1.6 Formal cycloadditions involving anhydrides

1.6.1 Historical overview

The reactivity of anhydrides is generally dominated by their electrophilic nature. ${ }^{63}$ The electrophilicity of the anhydrides units can be positioned between the less reactive ester electrophiles and the more reactive acid chlorides (Figure 1.12).

Figure 1.12 Increasing electrophilicity of carbonyl groups.
Although their reactivity is mostly dominated by their electrophilic properties, a subclass of anhydrides - enolisable anhydrides - are capable of reacting as C nucleophiles in addition reactions, with a range of electrophiles such as: alkynes, alkenes, ketones/aldehydes and imines. ${ }^{64}$

An early example of this unusual behaviour is found in the Perkin reaction. ${ }^{65}$ In 1868, Perkin reported the first reaction between enolisable aliphatic anhydrides and aromatic aldehydes. In the presence of a weak base (e.g. NaOAc), anhydride $\mathbf{8 3}$ was able to add to aldehyde 82, leading to intermediate $\mathbf{8 4}$ which was able to condense upon heating at $150^{\circ} \mathrm{C}$, to form α, β-unsaturated acid products such as $\mathbf{8 5}$ (Scheme 1.14).

Scheme 1.14 Perkin reaction between aromatic aldehydes and enolisable aliphatic anhydrides.

Years later, Fittig and co-workers, upon repetition of Perkin's experiments, further rationalised and clarified the mechanism of this unusual process. ${ }^{66}$ When the reaction was conducted at a lower temperature (i.e. $100^{\circ} \mathrm{C}$), the major products isolated were γ butyrolactones such as 87 . The overall reactivity was explained by the formation of an alkoxide intermediate, capable of attacking the second carbonyl motif of 86, in an aldollike addition process, leading to a global intramolecular lactonisation (Scheme 1.15).

The Perkin-like product $\mathbf{8 8}$ could also be generated upon decarboxylation of $\mathbf{8 7}$, when the molecule was heated at temperatures above $150{ }^{\circ} \mathrm{C}$ (Scheme 1.15).

Scheme 1.15 Fittig's experiments using succinic anhydride (86). ${ }^{66}$
In 1969, Castagnoli observed for the first time that N-alkyl or N-aryl imines (i.e. 89) could also react, under thermal conditions, with succinic anhydride (86) to produce a diastereomeric mixture of γ-lactams such as $\mathbf{9 0}$. These γ-lactams were produced with good diastereoselectivity in favour of the trans-diastereomer (Scheme 1.16). ${ }^{67}$

Scheme 1.16 The first example of imines reacting with succinic anhydride (86) reported by Castagnoli. ${ }^{67}$

Castagnoli and co-workers, further expanded the scope of these cycloaddition reactions with glutaric anhydride, reacting it with a series of different imines. ${ }^{68}$ In 1977, the substrate scope of the anhydride component was again further broadened when Cushman et al. ${ }^{69}$ and Haimova ${ }^{70}$ reported, in two separate communications, the use of a new enolisable anhydride: homophthalic anhydride (91), which was capable, at room temperature, of reacting with imines $\mathbf{8 9}$, producing structural analogues to adducts $\mathbf{9 0}$ as a diastereomeric mixture of racemic lactams ($\mathbf{9 2}$, Scheme 1.17).

Scheme 1.17 Reaction of imines with homophthalic anhydride (91) reported by Cushman and Haimova. ${ }^{69,70}$

Since Castagnoli's first discovery in 1969, the cycloaddition reaction involving enolisable cyclic anhydrides and imines has been widely studied.

In the next section, the aim is to discuss in detail the formal cycloaddition involving a series of enolisable cyclic anhydrides reacting with aldehydes as the electrophilic component. Indeed, the research work later presented in this thesis is related to in this particular type of transformation. However, for context, other examples focusing on the stereoselective variant of this reaction and processes and involving other types of electrophiles such as Michael acceptors, ${ }^{71}$ nitroalkenes, ${ }^{72}$ imines ${ }^{73}$ or ketones ${ }^{74}$ will also be briefly described.

1.6.2 Cycloaddition reactions of homophthalic anhydride with aldehydes

The formal cycloaddition involving cyclic anhydrides as C-nucleophiles, with aldehydes as electrophiles, producing lactone products, has received considerably less attention compared to the lactam-forming variant using imines as electrophiles. However, the general mechanism of the reaction mediated by general acid/base catalysis (or alternatively by a series of organocatalysts derived from the cinchona alkaloids) as well as the stereochemical outcome of the reaction has recently become clearer. ${ }^{63,71,74,75,76,83,84,88}$

In this section, a selection of the key discoveries, related to these cycloaddition reactions involving anhydrides and aldehydes, from their discovery back in the late $19^{\text {th }}$ century, up to the latest examples published in the literature will be summarised.

1.6.2.1 History and the achiral version of this transformation

In 1999, Gesquiere et al. ${ }^{64,75}$ demonstrated that homophthalic anhydride (91) could react in the presence of a Lewis acid with aromatic aldehydes or ketones, furnishing cycloadduct products such as 95 (Scheme 1.18, A).

The first step of the proposed mechanism involves enolisation of homophthalic anhydride producing its enol form (i.e. $\mathbf{9 1} \boldsymbol{\rightarrow 9 1 a}$, Scheme $1.18, \mathrm{~A}$). It is thought that the Lewis acid employed is responsible for the activation of the aldehyde component through coordination, increasing its electrophilicity. The nucleophilic enol 91a is now free to attack the activated aldehyde 82a, leading to the tetrahedral alkoxide intermediate 93a, which upon intramolecular lactonisation forms the new lactone product 95 (Scheme 1.18, A).

In 2004, Palamareva et al., ${ }^{76}$ demonstrated that stoichiometric amounts of a base (such as DMAP) could also, in a similar fashion, promote the reaction and allow for the formation of dihydroisocoumarin derivatives (95). The base-mediated mechanism is similar to the acid-mediated mechanism, in most respects, with the following two exceptions. Firstly, the base serves to deprotonate 91, resulting in the formation of its enolate form instead (i.e. $\mathbf{9 1} \boldsymbol{\rightarrow 9 1 b}$, Scheme 1.18, B). Then, under base catalysis, a drawback is reported by the authors. In some examples, the major product of the reaction is a Perkin-like side product (i.e. structural isomers to $\mathbf{8 5}$, Scheme 1.14), which was previously undetected under acidic conditions but the formation of which could be supressed upon cooling the reactions to lower temperatures (Scheme 1.18, B).

Scheme 1.18 Proposed mechanism of the cycloaddition reaction involving homophthalic anhydride (91) with aromatic aldehydes catalysed by stoichiometric amounts of Lewis acid or base. ${ }^{75,76}$

Despite the potential applications and importance of the lactones synthesised in formal cycloadditions of aldehydes with anhydrides, the methodology has received considerably less attention than the variant involving the formation of lactams products. Perhaps, an element of explanation can be found in the substrate scope of the methodology. Indeed, only aromatic aldehydes and succinic or homophthalic anhydrides were employed in the vast majority of the early examples that could be found through the literature, making the scope considerably restricted, and limiting the potential applications.

1.6.2.2 The relevance of the dihydroisocoumarin unit in natural products

The dihydroisocoumarin structural unit (i.e. 96) is a key element contained in a broad range of natural products (and biologically active compounds) possessing remarkable properties such as: antimicrobial, ${ }^{77}$ antifungal, ${ }^{78}$ antimalarial ${ }^{79}$ and anti-inflammatory. ${ }^{80}$

Some examples highlighting the importance of representative members of this class of compounds are depicted in Figure 1.13.

-antimalarial,
antituberc

Hydrangeno

Aiudazols (2002)

Figure 1.13 A selection of natural products or biologically active compounds containing the dihydroisocoumarin core unit. ${ }^{77,78,79,80}$

A common substitution patterns involves, a hydroxy substitution at $C-8$ and an alkyl/aryl moiety at C-3. This specific pattern almost always results in the presence of at least one (or more) stereogenic carbon centres on the scaffold of these compounds.

1.6.2.3 The first catalytic enantioselective cycloaddition involving enolisable anhydrides

As described in Section 1.6.2.1, the formation of racemic dihydroisocoumarin derivatives, promoted by either a Lewis acid or a base, has been known for over a decade (Figure 1.14, A and B). However, until 2012, no catalytic or asymmetric variant of this reaction had been reported in the literature. This is despite both the synthetic potential utility of these functionalised molecules and their intrinsic broad variety of biological properties (Figure 1.13).

In 2008, our group (among others), reported two highly enantioselective processes: the ring opening alcoholysis ${ }^{81} /$ thiolysis 82 of meso-anhydrides (such as 97 or 100) promoted by the bifunctional thiourea catalyst 73. In the presence of thiourea 73, nucleophiles 98 or $\mathbf{1 0 1}$ were enantioselectivitely added to a variety of anhydrides, producing optically active mono-thioesters (99) or mono-esters (102), in high yield and excellent selectivities (up to $96 \% ~ e e, ~ S c h e m e ~ 1.19, ~ A ~ a n d ~ B) . ~$

These two processes both relied on the bifunctional mode of action of the catalyst; which is capable of activating both reaction partners in the transition state. A plausible transition state involves deprotonation of the alcohol/thiol nucleophiles with simultaneous activation of the anhydride through hydrogen-bond donation (Scheme $1.19, \mathrm{C})$.

C Plausible transition state

- E = anhydride
(activated by HB)
- Nu-H = thiol/alcohol
(activated by deprotonation)
\Rightarrow double activation mode

Scheme 1.19 Enantioselective alcoholysis and thiolysis of meso-substituted cyclic anhydrides promoted by a bifunctional thiourea catalyst. ${ }^{81,82}$

In a similar fashion, it was postulated that in the absence of a nucleophile in the system (such as 98 or 101), a bifunctional organocatalyst could also be capable of simultaneously activating both an aldehyde (through hydrogen bond donation) and an anhydride pronucleophile by means of general base catalysis (e.g. by deprotonation of the reactive enol of the anhydride in the transition state). Both partners would also react in a controlled chiral environment thereby influencing the stereochemical outcome of the transformation (see Figure 1.14, C).

Based on a similar idea, our group rationalised a model (Figure 1.14, C) for the development of a catalytic asymmetric variant of the two racemic processes depicted in Figure 1.14 A-B.
(A) 1999: Gesquiere et al.'s study

(B) 2004: Palamareva et al.'s study

- dihydroisocoumarin
- racemate
(C) 2012: Rationale for the developement of an organocatalytic variant: bifunctional organocatalysis capable of mediating the reaction?

Figure 1.14 Rationale for the design of an organocatalytic cycloaddition involving homophthalic anhydride with aldehydes as electrophiles.

In 2012 our group reported the first catalytic asymmetric cycloaddition reaction between homophthalic anhydride (91), unusually behaving as a nucleophile, with a series of aldehydes $\mathbf{1 0 3}$ as electrophiles (Scheme 1.20). ${ }^{83}$

In the presence of a small amount of the novel cinchona-based squaramide organocatalyst 104, under mild conditions, the enolisable anhydride 91 was added to a range of aromatic and aliphatic aldehydes to furnish dihydroisocoumarin (105a-h) derivatives in excellent yields (up to 98%, Scheme 1.20).

This methodology proved to be extremely efficient. Homophthalic anhydride (91) was reacted in a 1:1 ratio with various types of aldehydes bearing: electron neutral (i.e. 105a), electron deficient or rich (i.e. 105b-c), hindered (i.e. 105d), heterocyclic aromatic (i.e. $\mathbf{1 0 5 e - f}$) or aliphatic (i.e. $\mathbf{1 0 5} \mathbf{g}-\mathrm{h}$) groups, at low catalyst loadings, always furnishing the products with excellent to outstanding levels of diastereo- and enantioselectivities (up to 96:4 dr, 97% ee, Scheme 1.20).

A few years later, in 2017, the group embarked on a DFT mechanistic study in order to clarify the mode of action and the plausible binding mode of the squaramide catalyst 104. ${ }^{84}$

ces,

Scheme 1.20 The first catalytic enantioselective cycloaddition reaction involving homophthalic anhydride (pronucleophile) with aldehyde electrophiles. ${ }^{83}$

1.6.3 Cycloaddition reactions of phenyl succinic anhydride with aldehydes

The scope of the reaction described in the previous section proved to be quite broad with respect to the aldehyde. However, the substrate scope with respect to the anhydride component was restricted to substituted homophthalic anhydride derivatives, which considerably restrict the further potential applications of this transformation. Therefore, our research group became interested in the identification of different classes of anhydrides, presenting new structures that are capable of behaving as pronucleophiles (i.e. new enolisable anhydrides).

Since the $19^{\text {th }}$ century, succinic anhydride (86) has been known to undergo formal cycloaddition reactions with aromatic aldehydes. The reaction conditions are often harsh: high temperatures or stoichiometric amounts of strong bases are usually required for the enolisation and initiation of the reaction. ${ }^{85}$

As this reaction, employing 86, was reported in the literature only under achiral reaction conditions, $\mathbf{8 6}$ was chosen as a starting material for the cycloaddition process mediated by modified cinchona based organocatalysts. This choice was also influenced by the structure of the targeted products, as the reaction could potentially give access, in one-
pot, to γ-butyrolactone derivatives, a structural unit present in the core of many natural products. ${ }^{86}$

In particular, this reaction would generate a carboxylic acid group on the lactone core which corresponds to the general structure of a group of compounds referred to as paraconic acids (i.e. 106, a subclass of γ-lactones). Many of the members of this class also possess interesting biological properties such as antibiotic, anti-tumour and antifungal activity. ${ }^{87}$ Some examples highlighting the importance of certain members (i.e. $\mathbf{1 0 7 - 1 1 0}$) of this class of compounds are depicted in Figure 1.15.

Figure 1.15 A selection of biologically active paraconic acid derivatives. ${ }^{87}$
Under the optimised conditions previously reported for the catalytic formal cycloaddition involving homophthalic anhydride (91) with aldehydes, ${ }^{88}$ the preliminary experiment with succinic anhydride (86) and benzaldehyde (82) was a failure. In the presence of $5 \mathrm{~mol} \%$ of $\mathbf{1 0 4}, \mathbf{8 6}$ proved to be completely unreactive towards nucleophilic addition to 82 and the targeted cycloaddition product 111 could not be detected. Elevation of the temperature also failed to afford the product. Therefore, it was speculated that the concentration, in solution, of the enol form of the anhydride 86e, which is capable of participating in the catalytic process, was too low (Scheme 1.21).

Scheme 1.21 First attempt at the one-pot synthesis of the paraconic acid derivative $111 .{ }^{88}$

Therefore, it was rationalised that the installation of an electron withdrawing group in the scaffold of the succinic anhydride (such as an aromatic substituent) would facilitate the process by decreasing the $p \mathrm{~K}_{\mathrm{a}}$ of the acidic α-hydrogen atom while stabilising the newly formed enolate after deprotonation by the catalyst, through conjugation with the aromatic ring, therefore leading to a more substantial concentration of the reactive enol(ate) form (i.e. 112a $\rightarrow \mathbf{1 1 2 b}$, Figure 1.16).

Figure 1.16 Rationale for the installation of an EWG in the anhydride scaffold.
To test this hypothesis, it was decided to evaluate the commercially available phenyl succinic anhydride (113). Under identical reaction conditions, at ambient temperature, lactone $\mathbf{1 1 4}$ could be formed in 44% yield, with good diastereocontrol and moderate enantioselectivity ($90: 10 \mathrm{dr}$, $68 \% \mathrm{ee}$). Upon cooling (i.e. to -15 or $-30^{\circ} \mathrm{C}$), $\mathbf{1 1 4}$ could now be formed with improved diastereo- and enantioselectivity (up to >99:1 dr, 83% $e e$). Unfortunately, the yield was not synthetically useful (ca. 17-34\%) under these conditions (Scheme 1.22).

Scheme 1.22 Evaluation of the phenylsuccinic anhydride (113). ${ }^{88}$
The replacement of the phenyl moiety with a 4- NO_{2}-phenyl unit resulted in an expected faster and also, gratifyingly, more efficient reaction to form the corresponding lactone 116a (obtained in 92% yield, $97: 3 \mathrm{dr}, 86 \% e e$, Scheme 1.23). Therefore, the $4-\mathrm{NO}_{2}{ }^{-}$ phenyl succinic anhydride (115) was chosen as the optimal pronucleophile to evaluate the scope of the reaction with respect to the aldehyde component.

In 2012, the scope of these cycloaddition reactions was successfully expanded and we reported the first dynamic kinetic resolution of racemic aryl succinic anhydrides (such as (rac)-115)..88 The methodology proved to be rather efficient, (rac)-115 was reacted in a $1: 1$ ratio with different types of aldehydes bearing: electron neutral (i.e. 116a),
electron deficient or rich (i.e. 116b-c), hindered (i.e. 116d), heterocyclic aromatic (i.e. 116e-f) or aliphatic (i.e. $\mathbf{1 1 6 g}-\mathbf{h}$) groups, and underwent efficient DKR, at low catalyst loadings, furnishing the products with good to excellent level of enantiomeric excess (Scheme 1.23).

Scheme 1.23 The first catalytic enantioselective dynamic kinetic resolution of racemic aryl succinic anhydrides through their cycloaddition reaction with aldehydes. ${ }^{88}$

In summary, this new organocatalytic process provided access to paraconic acid derivatives (γ-butyrolactones) in one-pot, with excellent diastereo- and enantiocontrol (up to 99:1 dr, $99 \% e e$, Scheme 1.23).

1.6.4 Cycloaddition reactions involving enolisable anhydrides with other types of electrophiles

In 1981, Tamura et al. ${ }^{89}$ reported that activated alkenes (such as 117) or alkynes (such as 119) could react, at elevated temperatures $\left(150{ }^{\circ} \mathrm{C}\right)$, with homophthalic anhydride (91), furnishing products such as $\mathbf{1 1 8}$ or $\mathbf{1 2 0}$ (Scheme 1.24).

Scheme 1.24 The Tamura cycloaddition reaction. ${ }^{89}$
The mechanism of the product formation (i.e. $\mathbf{9 1} \rightarrow \mathbf{1 1 8}$ or $\mathbf{9 1} \rightarrow \mathbf{1 2 0}$) of this $C-C$ bondforming process still remains unclear. One possibility suggested by Tamura involves the formation of the enol 91a, which engages next in a Diels-Alder type reaction with the dienophile $\mathbf{1 1 9}$ and subsequently releases the product $\mathbf{1 2 0}$ upon loss of a molecule of CO_{2} (Scheme $1.25, \mathrm{~A}$). ${ }^{71} \mathrm{~A}$ second mechanistically conceivable pathway involves the formation of an alternative enol (i.e. 91b, Scheme 1.18), which is then capable of engaging in a Michael-type addition reaction, followed by a ring closure step. This sequence would also formally lead to the same product 120. ${ }^{71}$

Scheme 1.25 Tamura reaction via a Diels-Alder mechanism. ${ }^{90}$
These two processes are early examples of Tamura-type cycloadditions. The processes involve a final aromatisation step (e.g. 121 $\rightarrow \mathbf{1 2 0}$) which is, unfortunately, responsible for the ablation of the newly formed stereocentres making the overall process incompatible with the development of any asymmetric catalytic variant.

However, a report involving a doubly activated Michael acceptor, such as the enedione 122 (Scheme 1.25, B), described that in the presence of a strong base (such as NaH), 91
can react and furnish a racemic chiral cycloaddition product instead, without a loss of chirality caused by a subsequent aromatisation step. ${ }^{91}$

Intrigued by this scenario, it was postulated in our research group that the previously successful squaramide based organocatalyst 104 could be a suitable candidate for the organisation of the encounter between homophthalic anhydride (91) with a series of conjugated electrophiles in an enantioselective fashion.

Scheme 1.26 The first catalytic asymmetric Tamura cycloaddition involving enolisable anhydrides with alkylidene oxindoles. ${ }^{71}$

In 2014, after extensive optimisation, Connon et al. ${ }^{71}$ reported the first catalytic enantioselective Tamura cycloaddition reaction between two enolisable anhydrides (homophthalic and glutaconic) with alkylidene oxindoles of general structure 124, in a process that generates spirooxindole products bearing three contiguous stereocentres (such as 125). In the presence of a small amount of the novel tert-butyl-substituted squaramide-based organocatalyst 126, glutaconic anhydride derivatives (123) could be added to $\mathbf{1 2 4}$, in one-pot, furnishing products such as $\mathbf{1 2 7 a}$-d with outstanding levels of enantiocontrol (up to 95%, >98\% ee, Scheme 1.26).

In a more general context, over the past 5 years, our research group has been actively involved in the investigation and expansion scope of the substrates of both the anhydride components capable of acting as C-nucleophiles as well as their electrophilic reaction partners. Today, the substrate scope of the enolisable anhydrides, reacting under mild reaction conditions mediated by cinchona alkaloid-based organocatalysts, remains a challenge for organic chemists, as the methodology is still mainly restricted to
homophthalic (91), aryl succinic (e.g. 113 or 115) or glutaconic anhydride derivatives (i.e. 123). However, the substrate scope with respect to the electrophilic component is relatively broad. Over the past few years, many organocatalysed processes have been developed that are capable of promoting the reaction of electrophiles with 91. This nonexhaustive overview is depicted in Figure 1.17.

To begin, rare examples of cycloaddition reactions involving enolisable anhydrides with ketones can be found in the literature. ${ }^{92}$ These reactions were usually limited to racemic processes and the product yields were extremely poor, making the processes rather unattractive as a candidate for a catalytic asymmetric variant. It was assumed that the poor yield obtained in this type of reactions was most likely due to the relatively low electrophilicity of the ketones compared to aldehyde analogues. Therefore, it was postulated that an activated ketone (e.g. 128, 130 and 132) could react under similar conditions similar to those that we had previously developed (Figure 1.17, A, B and C). ${ }^{74}$ In 2016, the scope of the methodology was successfully extended to activated ketones. In the presence of a novel urea-based cinchona alkaloid, diverse activated ketones such as trifluoromethyl acetophenone derivatives (e.g. 128), α-ketoesters (e.g. 130) or N-benzyl isatin (i.e. 132) could be employed in the process (Figure 1.17, A, B and C). Their reaction with 91 led to highly functionalised compounds (129, $\mathbf{1 3 1}$ and 133) containing two new stereocentres, with excellent yields and high level of selectivities (up to $94 \%, 97: 3 \mathrm{dr}$, 95% ee). ${ }^{74}$

Moving forward and building on these past successes, mono-activated olefin systems such as nitrostyrene derivatives (134) were next targeted. Later in 2016, our research group reported the first asymmetric catalytic Tamura cycloaddition involving nitroalkenes as the new electrophilic component of the reaction (Figure 1.17, D). In the presence of the previously developed tert-butyl-based squaramide organocatalyst 126, homophthalic anhydride (91) was added to a range of methylnitroalkenes $\mathbf{1 3 4}$ furnishing products of general structure $\mathbf{1 3 5}$ as a mixture of diastereomers with moderate to good stereoselectivities (up to $90 \%, 94: 6 \mathrm{dr}, 91 \% e e$). ${ }^{72}$

Well-established:

- broad scope of the electrophilic component

Future challenges:

- lactam forming processes with imine electrophiles
- expand the substrate scope of the anhydride component (usually restricted to homophthalic, phenyl succinic and glutaconic anhydrides)

Figure 1.17 An overview of the scope of the electrophilic component in the formal cycloaddition reaction involving homophthalic anhydride (91). ${ }^{72,73 b, 74}$

Last but not least, we now aim to briefly introduce one of the most important branches of this powerful type of cycloaddition reaction, involving imines as the electrophilic component and producing lactam products instead of lactones (e.g. Figure 1.17, E).

As previously mentioned, historically this variant of the process has received considerably more attention compared to the lactone-forming variant involving aldehydes. One of the main reason for the interest in this methodology lies in its fantastic range of potential applications. Indeed, many natural products or drug molecules possessing a bewildering range of bioactivities present a chiral lactam subunit (e.g. the ACE inhibitor 138).

For instance, some alkaloids, such as $\mathbf{1 3 8} \mathbf{- 1 4 1}$ presented in Figure 1.18 below, can directly be prepared, as racemates, from syntheses derived from this process. ${ }^{64,93}$

(rac)-corynoline (138)

(+)-SJ733 (139)

Figure 1.18 Some examples of alkaloids accessible using the process involving imines reacting with enolisable anhydrides. ${ }^{93}$

One of the major drawbacks of the aforementioned methodology is the lack of an asymmetric variant despite the many investigations that have been carried out to attempt to render this reaction enantioselective. ${ }^{94}$

In 2016, our group investigated different classes of cinchona alkaloid-based catalysts capable of promoting the reaction between N -alkyl or N -aryl imines with anhydride 91 in an enantioselective fashion. After optimisations, this new organocatalytic process provided rapid access to lactam derivatives such as $\mathbf{1 3 7}$, in one-pot, with moderate enantioselectivity (up to $47 \%, 1.2: 1 \mathrm{dr}, 74 \% e e$, Figure 1.17, E). ${ }^{73 \mathrm{~b}}$

Although the actual reason for this clearly inferior stereocontrol over the process is still not entirely established, two suggestions can be made for purpose of clarification.

Firstly, a major difference between the properties of imines and aldehydes needs to be considered. An aldehyde is usually regarded as a non-nucleophilic species. However, an imine bears a lone pair of electrons capable of acting as a base/nucleophile and of activating the anhydride starting material without catalyst assistance. This difference leads, in most instances, to a considerable rate of background reaction, also referred to as uncatalysed reaction, competing with the catalysed process. In the absence of a catalyst, at low temperature $\left(-78^{\circ} \mathrm{C}\right), \mathbf{9 1}$ and $\mathbf{1 4 2}$ can react on their own producing 143 in near quantitative yield after only $15 \mathrm{~h}(\mathrm{R}=n$ - Bu , Scheme 1.27).

Scheme 1.27 Examination of the effect of the N-substituent on substrate activity in the uncatalysed reaction. ${ }^{73 b}$

The installation of electron-withdrawing groups (i.e. $\mathrm{C}_{6} \mathrm{H}_{5}$ or $4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$) respectively allows for the deactivation of the nucleophilicity of the imines and can either decrease or entirely suppress the background reaction (Table of Scheme 1.27). ${ }^{73 \mathrm{~b}}$

In 2017, Seidel et al. ${ }^{73 \mathrm{a}}$ published a similar work and further clarified the mechanism of the reaction. Our group initially reported, ${ }^{73 \mathrm{~b}}$ that the amine nucleophilicity/basicity needed to be reduced through the installation of an EWG on the N-substituent of the
imine in order to suppress the background reaction occurring simultaneously in order for the catalyst to operate (Scheme 1.28).

Scheme 1.28 Background reaction proposed by Seidel. ${ }^{73 a}$
In their approach, Seidel et al. decided to take advantage of this background reaction using an ad hoc designed monofunctional organocatalyst. After initial activation of 91, promoted by the imine $\mathbf{8 9}$ itself, their optimum catalyst $\mathbf{1 4 8}$ was capable of binding to the newly formed achiral ion pair 144 leading to a chiral ion pair complex (i.e. 147) stabilised by multiple hydrogen-bonds to the catalyst (Scheme 1.29).

Scheme 1.29 Seidel's approach for rendering the reaction enantioselective via chiral ion pairing. ${ }^{73 a}$

After optimisation of the reaction conditions, they reported the first efficient reaction involving imines as electrophiles in a highly enantioselective cycloaddition with $\mathbf{9 1}$. The process was catalysed by a new catalyst capable of forming a strong chiral ion pair with both reactants, creating a chiral environment for the reaction to occur. ${ }^{73 \mathrm{a}}$

In the presence of $20 \mathrm{~mol} \%$ of catalyst $\mathbf{1 4 8}$, at low temperature $\left(-40^{\circ} \mathrm{C}\right)$, a wide range of substituted imines were tolerated by the process and the corresponding lactams (e.g. 146a-d) were formed with high level of diastereo- and enantiocontrol (up to $71 \%,>19: 1$ dr, $95 \% e e$, Scheme 1.30). ${ }^{73 \mathrm{a}}$

Scheme 1.30 Selected examples of lactams formed through the formal catalytic enantioselective cycloaddition of imines (89) with homophthalic anhydride (91). ${ }^{73 \mathrm{a}}$

1.7 Towards the development of Kinetic and Dynamic Kinetic Resolution (D)KR of new classes of enolisable anhydrides

1.7.1 Kinetic Resolution: introduction

Resolution strategies are one of the three main approaches commonly employed to access stereochemically-enriched materials (see the other two approaches in Section 1.2). These resolution strategies also break down into three subclasses: 1) The classical resolutions involving the use of stoichiometric amount of an enantiopure resolving agent. 2) Separation by chiral stationary phase column chromatography. 3) Kinetic Resolution of racemic starting materials employing chiral catalysts or reagents. ${ }^{95}$

The definition of a KR process is given by the IUPAC as follow: The achievement of partial or complete resolution by virtue of unequal rates of reaction of the enantiomers in a racemate with a chiral agent (reagent, catalyst, solvent, etc). ${ }^{2}$

In simpler words, KR is a method to separate one enantiomer of a racemic mixture from the other, through its selective/faster reaction with a resolving agent, promoted by a chiral catalyst. In a perfect scenario, the process allows one to access an enantiomerically pure reaction product as well as giving the possibility of recovering the enantioenriched starting material with a maximum theoretical yield of 50% for both.

If catalytic resolutions are very appealing from an academic point of view, because of the requirement of only small amounts of chiral resolving agents, the limitation to a maximum of 50% yield most certainly constitutes a major drawback for the development of high scale processes and further commercial applications. ${ }^{95}$

Therefore, a straightforward question which is very often encountered throughout the literature and leads to debate is: can we consider a kinetic resolution process as a practical methodology? Our answer to that question is obviously yes. In order to highlight the importance of this powerful methodology, we propose to bring elements of the response throughout this thesis, answering it in two phases. First, we will provide some representative (non-exhaustive) examples describing the scope of applications of the major processes that have been developed to date. Then, in the next chapters, we will describe in detail two distinct resolution processes that we have developed during the course of this PhD .

One of the best pieces of evidence to show that catalytic KR can actually be considered as very attractive lies in the fact that it has remained a widely used methodology with new processes appearing and being reported each year. ${ }^{96}$

However, for them to be considered attractive, some essential conditions must be met: 1) The racemic starting materials need to be cheap (or easy to access) and, no classical resolution of the product must already exist. 2) The catalyst employed has to be inexpensive, easy to recycle and highly selective towards one enantiomer, at low loading. 3) The starting materials, reaction products and catalysts must be easy to separate and recover. 4) In ideal KR, both resolved starting material and newly formed product are recovered in highly enantiomerically pure form and are valuable substrates. 5) In more specific cases, the reaction conditions offer the possibility for catalyst induced racemisation of the substrate and can lead to the theoretical transformation of 100% of the starting material to a desired enantiopure reaction product via dynamic kinetic resolution (DKR). ${ }^{95}$ Such processes will be introduced in more detail in Section 1.7.6. Unlike the classical KR, this particular subclass is considered as highly efficient as it allows the circumvention of the drawbacks in terms of yield limitation. ${ }^{95}$

1.7.2 Theoretical considerations related to $K R$ processes

To introduce more easily the concept and the challenges related to KR , let us consider, as an example, the resolution of a starting material (referred to as SM), presenting only one chiral centre and its two enantiomers to be resolved referred to as $\mathrm{SM}_{(S)}$ and $\mathrm{SM}_{(R)}$. RA stands for resolving agent while cat* represents a general type of chiral catalyst.

Figure 1.19 Schematic representation of the theory and the challenges behind kinetic resolution processes. ${ }^{95}$

In an achiral environment, the two enantiomers of a racemate are chemically equivalent as they possess the same potential energies. Therefore, their respective reaction rate with any given reaction partners are the same and they cannot be physically separated from one another (Figure 1.19, A). ${ }^{95}$

However, in a chiral environment, the introduction of a chiral substance such as a chiral catalyst, can force the racemate enantiomers, upon coordination to the catalyst, to formally behave, as pseudodiastereomers. As a result, the activation energies required for the initiation of the transformations can become different for both enantiomers. The ability and efficiency of the catalyst to discriminate between the two enantiomers depends on the size of this difference (i.e. $\Delta \Delta \mathrm{G}^{\neq}$) between the relative energies of the two diastereomeric transition states and is directly linked to the overall process efficiency (Figure 1.19, A). ${ }^{95}$

It is noteworthy that it is particularly difficult to develop an efficient method for kinetic resolution, as a major problem encountered comes from the phenomenon itself. Initially the concentration in solution of the two enantiomers is identical, however, as the reaction proceeds, the concentration of the more reactive enantiomer decreases (i.e. the
one associated with the lower TS energy: $\mathrm{SM}_{(S)}$), resulting in an increasingly competitive reaction with the less reactive-resolved enantiomer, i.e. the one associated with the higher TS energy: $\mathrm{SM}_{(R)}$ (Figure 1.19, A and B). ${ }^{95}$

Classical enantioselective transformations usually yield products with constant enantiomeric excess (unless inhibition or coordination of the catalyst occurs due to the newly formed products). Therefore, the catalyst efficiency can directly be reflected by the magnitude of the $\Delta \Delta \mathrm{G}^{\neq}$created between the two enantiomers by a simple determination of the enantiomeric excesses of the products. ${ }^{95}$ However, in the particular case of KR, because the enantiomeric excesses of both SM and products change throughout the reaction as a function of the conversion, the measurement of the enantioselectivities is usually considered as a poor indicator of the catalyst/process efficiency and a new parameter needed to be introduced. ${ }^{95}$

In KR, the selectivity factor (S) is usually preferred to determine the catalyst efficiency in the process. S is defined as the ratio between the rate constants for reaction of the fast reacting enantiomer divided by that of the slow reacting enantiomer and is directly linked to the gap in energy between the two diastereomeric transition states (Figure 1.20 , eq.1). As an example, an S factor of 3 indicates that the faster reacting enantiomer undergoes a 3 -fold acceleration in reaction rate compared to the slower reacting one, at equal concentration - regardless of the conversion. In practice, S factors can be conveniently calculated with the formulae indicated in Figure 1.20.

$$
\begin{aligned}
& \mathrm{S}=k_{\text {rel }}=k_{\text {fast }} / k_{\text {slow }}=\mathrm{e}^{\Delta \Delta \mathrm{G} / R T} \\
& \text { (eq.1) } \\
& S=\frac{\ln [(1-C)(1-e e)]}{\ln [(1-C)(1+e e)]} \quad \text { (eq.2) } \\
& S=\frac{\ln \left[1-\mathrm{C}\left(1+e e^{\prime}\right)\right]}{\ln \left[1-\mathrm{C}\left(1-e e^{\prime}\right)\right]} \quad \text { (eq.3) } \\
& \text { - } \mathrm{C}=\text { conversion }(0<\mathrm{C}<1) \\
& \text { - ee }=\text { enantiomeric excess of } \\
& \text { recovered SM } \\
& \text { - ee' = enantiomeric excess of product } \\
& \text { - (} 0<e e \text { and } e e^{\prime}<1 \text {) }
\end{aligned}
$$

Figure 1.20 Mathematical definition (eq.1) and convenient formulae (eq. 2 and eq.3) to practically determine the selectivity factor $\mathrm{S} .{ }^{95}$

With regard to developing highly efficient processes, selectivity factors higher than 10 are usually required. A selectivity factor of 10 indicates that the starting material can be recovered with 90% ee at $>62 \%$ conversion as indicated in the table of Figure 1.21. Nevertheless, under those conditions the maximum theoretical yield of the recovered SM is only 38% (Figure 1.21). ${ }^{95}$

S factors as high as 50 are usually necessary to consider the KR as perfectly operational as it allows the recovery of 50% of the starting material with over 90% ee at only 50% conversion (Figure 1.21). ${ }^{95}$

	$\Delta \Delta \mathbf{G}^{\prime}$	Conversion[\%] required to attain:		
\mathbf{S}	(kcal/mol)	$\mathbf{9 0 \%}$ ee	$\mathbf{9 8 \%}$ ee	$\mathbf{> 9 9 \%}$ ee
1.5	0.24	99.9	99.99	99.999
2.0	0.41	97.2	99.5	99.7
5.0	0.95	74.8	84.0	86.6
$\mathbf{1 0}$	1.35	$\mathbf{6 2 . 1}$	$\mathbf{6 9 . 7}$	$\mathbf{7 2 . 1}$
$\mathbf{5 0}$	2.31	$\mathbf{5 0 . 4}$	54.0	54.9
100	2.72	48.9	51.8	52.4
500	3.66	47.7	50.0	50.3

Figure 1.21 Evolution of the enantiomeric excess of the recovered starting material as a function of the conversion for different values of S factors. ${ }^{95}$

In practice, selectivity factors over 50 are extremely challenging to attain and values as high as >200 are very often only achieved in enzyme-mediated processes (e.g. $\mathrm{S}=50$ already corresponds to a $\Delta \Delta \mathrm{G}=2.31 \mathrm{kcal} / \mathrm{mol}$ difference in energy between the diastereomeric TS of the two enantiomers). ${ }^{95}$

However, perhaps one of the most attractive aspects of the KR over other classical enantioselective transformations is the fact that the SM can always be recovered in excellent enantiomeric excess ($e . g$. $>99 \% e e$), at the expense of a synthetically good yield, simply by pushing the conversion further than 50%. For example, a SM can be recovered with over 99% ee even if the S factor is as low as 10 . As indicated in the table of Figure 1.21, the SM can be recovered with 90% ee (at $\mathrm{C}=62 \%$), 98% ee (at $\mathrm{C}=$ 70%) or even $>99 \%$ ee (at $\mathrm{C}=72 \%$) by stopping the reaction at different conversions. In practice, it means that if the enantiopurity of a recovered substrate is the primary goal, a system affording a selectivity factor $S \approx 20$ does not even require any further optimisation. Instead, the conversion should be adjusted to reach the necessary level of conversion as exemplified by the table presented in Figure 1.21.95

Throughout the rest of this thesis we will employ both selectivity factor and enantioselectivity to describe the efficiency of a process. When different catalyst efficiencies, based on the same reaction, will be compared we will prefer the comparison of their S factors. However, if two distinct processes have to be compared, yields of recovered starting material/products and enantioselectivities will also be used.

Indeed, in 2010, in a general review covering the vast subject of kinetic resolution reactions, E. N. Jacobsen reported: ${ }^{95}$
"While it is certainly a simple matter to calculate S values from conversion and ee data using eq. 2 and 3 (Figure 1.20), it is by no means a straightforward matter to determine S values accurately. Indeed, it is likely that most values that are reported in the literature are in fact inaccurate. The curves plotted in Figure 1.21 assume a first-order kinetic dependence on substrate in the reaction, but different $e e$ vs. conversion curves are obtained in kinetic resolutions displaying other kinetic dependencies on substrate. In fact, the rate laws for synthetically useful kinetic resolutions are almost never determined. [...] In reality, it is not at all unlikely that the kinetic dependence on substrate can change during the course of the resolution, rendering very difficult any accurate estimation of S. [...] Because of the issues noted above, we will avoid description of reactions in terms of S values and present them instead in terms of recovered substrate or product yields and ee."

1.7.3 An historical overview: the first examples of KR

The first example of a KR mediated by synthetic means was reported in 1899. Marckwald and McKenzie discovered that the esterification reaction of mandelic acid (i.e. (rac)-148) with the enantiopure (-)-menthol (149) led to the formation of the corresponding ester (150) derived exclusively from the $(S) \mathbf{- 1 4 8}$ enantiomer. ${ }^{97}$ The composition of the unreacted carboxylic acid 148 was determined to present only a slight enantiomeric excess, however, the recovered mandelic acid $\mathbf{1 4 8}$ obtained upon saponification of the ester product resulted in the exclusive formation of (S) - $\mathbf{1 4 8}$ (Scheme 1.31).

This discovery represented the first example of a KR in organic chemistry and was later followed by other similar types of KR of others chiral acids. ${ }^{98}$

Scheme 1.31 The first synthetic $K R$ of a racemic carboxylic acid (148) by esterification with an enantiopure chiral alcohol (149). ${ }^{97}$

While the basics and general principles of $K R$ had been established and were rather well understood since 1899, no significant report covering this topic appeared in the literature until almost a hundred years later.

In 1981, Barry Sharpless et al. ${ }^{99}$ reported for the first time, the use of a titanium-based catalyst (at $10 \mathrm{~mol} \%$ loading), working in tandem with an enantiomerically pure diisopropyl tartrate ligand (DIPT), in an efficient asymmetric epoxidation reaction forming optically active epoxide products such as $\mathbf{1 5 3}$, with excellent enantioselectivity (up to $>98 \% \mathrm{ee}$). These transformations were accompanied by the concomitant KR of a series of secondary allylic alcohols, of general structure (rac)-151, with excellent selectivity factors (up to $S=39$). Some representative examples of resolved alcohols (151a-d) are depicted in Scheme 1.32. ${ }^{99}$

Scheme 1.32 Catalytic asymmetric epoxidation and Kinetic Resolution of secondary allylic alcohols. ${ }^{99}$

While we have just described a protocol allowing access to a series of chiral epoxides via enantioselective synthesis, a few years later, in 1997, E. N. Jacobsen proposed an alternative solution relying on a new kinetic resolution process (Scheme 1.33). ${ }^{100}$

Scheme 1.33 The first highly enantioselective hydrolytic Kinetic Resolution of terminal epoxides catalysed by chiral cobalt ${ }^{\mathrm{II}}$ complexes. ${ }^{100}$

In the presence of a very low loading ($0.2-2 \mathrm{~mol} \%$) of a chiral cobalt ${ }^{\mathrm{III}}$ complex (156), the catalytic system mediated the asymmetric ring opening hydrolysis of racemic terminal epoxides of general structures (rac)-154. The reactions provided access to different chiral diols (such as $\mathbf{1 5 5}$) which are synthetically useful building blocks, in high enantioselectivity (up to $>99 \% \mathrm{ee}$), along with the possibility of recovering the
unreacted starting materials (e.g. 154a-d) in an enantioenriched form, with excellent to outstanding selectivity factors (up to $S \gg 200$, Scheme 1.33). ${ }^{100}$

1.7.4 Kinetic Resolution (KR)

In 1997, Fu's research group developed a series of iron-complex based nucleophilic chiral-planar catalysts (such as 160) containing a ferrocene and a 4dimethylaminopyridine (DMAP) motif. ${ }^{101}$ At only $2 \mathrm{~mol} \%$ loading, the optimum catalyst 160 could attack the resolving agent 158, forming, in situ, an activated ammonium acetate ion (i.e. the actual chiral acylating agent), responsible for the transfer of chiral information (Scheme 1.34).

The process proved to be (R)-selective towards (rac)-157 and allowed for the formation of the (R)-enantiomer of the acylated products $\mathbf{1 5 9}$. As a result, the (S)-enantiomers of the alcohols 157a-e were recovered, with excellent selectivity (up to $S=52$). Later, this methodology was further expanded to the resolution of other classes of racemic materials such as allylic and propargylic alcohols. ${ }^{102}$ Unfortunately, one drawback associated with the process involves the relatively high price of the chiral catalyst, which needs to be recovered after completion of the reactions (Scheme 1.34).

Scheme 1.34 The first kinetic resolution of racemic secondary alcohols of general structure (rac)-157 catalysed by a ferrocene derived catalyst (160). ${ }^{101}$

In 2001, moving forward and building on these successes G. Fu's research team turned their attention to the KR attempt of secondary amines of general structure (rac)-161 (Scheme 1.35). ${ }^{103}$ This type of amine can provide extremely valuable building blocks in organic synthesis if isolated in their enantiopure form. Therefore, a similar type of acylative process, as developed for alcohols, was envisaged as a viable option for the development of their catalytic KR.

Scheme 1.35 Kinetic resolution of amines via a non-enzymatic acylation catalyst. ${ }^{103}$
Under the same conditions reported in their KR publication on secondary alcohols, the first experiments did not provide access to any enantioenrichement of the starting material 161. Indeed, if alcohols are relatively unreactive substrates towards electrophiles such as acetic anhydride (158), on the other hand, secondary amines such as 161 exhibited considerably superior activity and successfully competed with the catalyst 164 towards nucleophilic attack on 158. In practice, the background reaction was faster than the actual catalysed process (i.e. $\mathrm{S}=1$, Scheme 1.35, A). ${ }^{103}$

Different sorts of common acylating agents (e.g. 165-167) were evaluated in the catalytic process, always leading to the same unfortunate outcome (i.e. $S=1$). In their report, Fu described the choice of the O-acylated azlactone $\mathbf{1 6 2}$ as their optimal acylating agent and as an unexpected consequence derived from previous research. ${ }^{104}$ At $0^{\circ} \mathrm{C}$, the KR attempted of $\mathbf{1 6 1}$, catalysed by $\mathbf{1 6 4}$, in the presence of $\mathbf{1 6 2}$, led to a low but appreciable selectivity factor of $\mathrm{S}=3$. Upon cooling (ca. $-50^{\circ} \mathrm{C}$), good levels of enantioselectivity were obtained. Therefore, they were able to report the efficient KR of a range of secondary substituted aromatic amines 161a-d with good selectivity (up to S=27, Scheme 1.35, B). ${ }^{103}$

In 2009, D. Seidel et al., ${ }^{105}$ proposed an alternative to the KR of amines first introduced by Fu. They developed a strategy relying on an elegant chiral ion pairing catalysis. Interestingly, ion pair intermediates such as ion pair \mathbf{A} (which are known to be able of promoting efficient KR and desymmetrisation processes) ${ }^{106}$ are better electrophiles than the acylating agents commonly employed to generate them (Figure 1.22, A). Practically, it means that a nucleophile should react faster with ion pair \mathbf{A} rather than with the
acylating agent itself (e.g. such as an anhydride) and, therefore, avoid the presence of the background reaction issues previously encountered and reported by Fu.

A Classical approach to nucleophilic catalysis
(B) Seidel's approach: in situ generation of chiral pyridinium salts

Figure 1.22 Seidel's ion pair formation strategy: nucleophilic catalysis and hydrogen bonding catalysis. ${ }^{105}$

Seildel's actual strategy was inspired by the model of chiral ion pairing \mathbf{A} and is schematically described in Figure 1.22 (B). They explored the possibility of rendering an achiral acyl pyridinium ion pair salt (such as the ion pair B) chiral, by means of coordination of the carboxylate of the benzoate anion, by hydrogen bond donation from a chiral anion receptor such as the newly developed catalyst 171 (depicted in Scheme 1.36, B). Therefore, in their methodology the chiral information is not transferred to the product via a classical chiral acylating agent (such as the ion pair A) but, alternatively, from the chiral information contained in the chiral counter ion part of the generated ion pair complex \mathbf{C} (Figure 1.22, B). ${ }^{105}$

Their strategy proved to be very successful and, after a series of optimisations on the catalyst structure and reaction conditions, they were able to report the successful KR of (rac)-168 mediated by the optimum chiral ion receptor 171 (Scheme 1.36). ${ }^{105}$

Scheme 1.36 Catalytic KR of amines via an anion binding approach. ${ }^{105}$

The substrate scope was somewhat similar to the one reported by Fu. However, in this study, the chiral catalyst is cheap and easier to synthesise (i.e. compared to 164). In addition, in most instances, the selectivity factors were overall marginally higher (up to $\mathrm{S}=24$). Also, interestingly, $\mathbf{1 7 1}$ promoted the formation of the opposite enantiomer of 168, selecting the (R)-enantiomer instead and thus, allowing for enantioenrichement in (S)-168 (Scheme 1.36). ${ }^{103,105}$

The following year, in 2010, Seidel et al. ${ }^{107}$ managed to expand the scope of their ion pairing resolution methodology to propargylic amines of general structure (rac)-172. For the KR to be efficient they had to modify the scaffold of their previous catalyst and, as a result, designed the new thiourea-amide system 174. At $5 \mathrm{~mol} \%$ loading, 174 could promote selective acylation of a series of amines, producing enantiopure adducts products, of general structure 175, with concomitant KR of the starting materials 172ag, with excellent overall selectivities (S up to 56, Scheme 1.37).

Scheme 1.37 A anion binding approach to the KR of propargylic amines (rac)-172. ${ }^{107}$
The next example was developed in our laboratory and is related to an important class of organosulfur precursor compounds. Thiols can be, in their enantiopure form, extremely valuable substrates in both the field of organic chemistry or biology. ${ }^{108}$ Encouraged by previous successful reports on the KR of some of the most important families of organic compounds (e.g. epoxides, alcohols, amines, etc.), our research group became interested in the possibility of developing a similar process involving secondary racemic thiols presenting the general structure (rac)-176 (Scheme 1.38).

In 2010, Connon et al. ${ }^{109}$ reported, the first catalytic enantioselective KR of racemic thiols. The process was mediated by a novel bulky sulfonamide-based cinchona alkaloid catalyst (178) and, allowed the formation, in one-pot, of valuable enantiopure thioesters (179) as products of the desymmetrisation reactions between the resolving agent 3-methyl-glutaric anhydride (177), in a thiolysis involving a single enantiomer of (rac)176. Simultaneously, the starting materials 176a-f were synergistically resolved and could be recovered in their enantioenriched form with excellent to outstanding selectivity factors (S up to 265, Scheme 1.38, A).

Scheme 1.38 The KR of secondary thiols (rac)-176 mediated by the organocatalysed desymmetrisation ring opening thiolysis of $\mathbf{1 7 7} .{ }^{109}$

In the same study, it was also proved that the process could be used for interesting applications with both a resolved starting material and a product thioester, through their use as building blocks in the subsequent formation of drug precursors. ${ }^{109}$

For example, the resolution of ($\mathbf{r a c} \mathbf{)} \mathbf{- 1 7 6} \mathbf{g}$ was achieved affording a recovered starting material with a synthetically useful enantiomeric excess of 93% ee (at $\mathrm{C}=65 \%$). This starting material is one of the precursors to the leukotriene receptor antagonist (R) Montelukast (180) and contains the key stereocentre (Scheme 1.38, B). ${ }^{109}$

The last example was recently developed in our laboratory and represents our latest contribution to the field of organocatalysed Kinetic Resolutions. As described through Section 1.6, different processes involving the reaction of enolisable anhydrides with a
diverse array of electrophiles and to yield optically active cycloadduct products have been developed over the past 10 years. Among all the reported examples, none of the reactants employed presented chiral centre in their scaffolds (with the exception of (rac)-113 which was involved in a DKR process, Section 1.6.3).

Scheme 1.39 The first efficient KR of α-branched aldehydes (rac)-181 operating via a cycloaddition reaction involving homophthalic anhydride (91).

In order to explore the full potential of those transformations it was decided to introduce some elements of chirality into both starting materials (i.e. the nucleophilic and electrophilic component). The challenge at hand was to determine if the process was compatible with any new kind of new resolution methodology. The purpose of this PhD thesis was the attempt at the resolution of diverse chiral anhydrides (i.e. the nucleophilic component, see Chapters 2 and 3), the following example, on the other hand, focused on the resolution of chiral α-branched aldehydes (i.e. (rac)-181, Scheme 1.39).

The decision to target the resolution of α-branched aldehydes with the structure (rac)181 was initially influenced by the further potential applications that such a process could provide. Indeed, a simple oxidation of the resolved aldehydes would potentially give access to a family of compounds known as aryl propionic acids. Among these compounds, many belong to a subclass of non-steroidal anti-inflammatory drugs
presenting interesting bioactive activities (e.g. flurbiprofen (184) and naproxen (185), Scheme 1.39, A). ${ }^{110}$

In 2017, after extensive optimisation, a squaramide-based catalyst $\mathbf{1 8 2}$ was designed and could operate, as an efficient promoter of the cycloaddition reaction assisting the resolution of a wide range of aldehydes. The selectivity factor obtained for the KR of 181a-f ranged from good to excellent and all the aldehydes were recovered with synthetically useful enantiomeric excesses (Scheme 1.39, B).

The potential utility of the methodology described above was demonstrated through the resolution of aldehyde $\mathbf{1 8 1 g}$, which upon oxidation gives direct access, in one step, to the well-known anti-inflammatory drug ibuprofen (183, Scheme 1.39, C).

1.7.5 Parallel Kinetic Resolution (PKR)

Again, to introduce the concept and the challenges related to a subclass of KR known as PKR, consider, as an example, the PKR resolution strategy of a starting material (referred to as SM), presenting only one chiral centre; with its two enantiomers to be resolved referred to as $\operatorname{SM}_{(S)}$ and $\operatorname{SM}_{(R)}$. RA and cat* still respectively stands for Resolving Agent and a general chiral catalyst (Figure 1.23, A).

In a classical KR, one enantiomer would react much faster with the chiral catalyst (e.g. $k_{R} \ll k s$), while the other enantiomer would be left behind, slowly reacting to form the enantiomeric side product, resulting in the global enantioenrichment of both product and starting material at the same time (Figure 1.19, A-C). ${ }^{95}$

In PKR, however, both enantiomers (i.e. $\mathrm{SM}_{(S)}$ and $\mathrm{SM}_{(R)}$) have similar reaction rates and their relative concentration remains almost identical throughout the entire reaction (i.e. $k_{R} \approx k_{S}$ and $\left[\mathrm{SM}_{(S)}\right](\mathrm{t}) \approx\left[\mathrm{SM}_{(R)}\right](\mathrm{t})$). The resolution phenomenon occurs via the transformation of each enantiomer of the SM to different and non-enantiomeric products (i.e. $\mathrm{SM}_{(S)} \rightarrow \mathrm{PDT}_{\mathbf{A}(S)}$ and $\mathrm{SM}_{(R)} \rightarrow \mathrm{PDT}_{\mathbf{B}(R)}$, Figure 1.23, A and B$) .{ }^{95}$

The main challenge associated with developing an efficient PKR strategy lies in the ability of the catalyst to discriminate between the two undesired plausible side reactions depicted in Figure 1.23 (B), resulting from the competitive reactions of each enantiomer producing the undesired enantiomeric products (i.e. $\operatorname{SM}_{(R)} \rightarrow \mathrm{PDT}_{\mathbf{A}(R)}$ and $\left.\mathrm{SM}_{(S)} \rightarrow \mathrm{PDT}_{\mathbf{B}(S)}\right) .{ }^{95}$

Figure 1.23 Schematic representation of the theory and the challenges behind Parallel Kinetic Resolution processes. ${ }^{95}$

A PKR process considered under control usually needs to meet the following conditions: 1) The reaction rate of both enantiomers of the starting material have to be similar (i.e. $k_{R} \approx k_{S}$). 2) Both reactions towards $\mathrm{PDT}_{\mathbf{A}(S)}$ and $\mathrm{PDT}_{\mathbf{B}(R)}$ must occur without interfering with each other. 3) The process has to afford non-enantiomeric products (i.e. $\Delta \Delta \mathrm{G} \neq 0$). 4) The process also must have complementary (and opposite) enantioselectivity with respect of the SM and products. 5) It must afford products that can easily be separated from each other. ${ }^{95}$ The schematic representation and the energetics associated with the overall process are depicted in Figure 1.23 (A and B).

Three types of situations are possible depending on the nature of the products. $\operatorname{PDT}_{\mathbf{A}(S)}$ and $\operatorname{PDT}_{\mathbf{B}(R)}$ can be: 1) Diastereomers (stereodivergent PKR). 2) Constitutional isomers (regiodivergent PKR). 3) Different compounds (chemodivergent PKR). ${ }^{111}$

Scheme 1.40 Fu's KR of 4-alkynals promoted by a Rhodium based catalyst. ${ }^{111}$
In 2002, Fu et al., ${ }^{111}$ reported the catalytic asymmetric kinetic resolution of 4-alkynals (such as 186) promoted by a Rhodium (I) based catalyst (Scheme 1.40). Throughout their research they evaluated a poorly effective catalytic system based on the combination $\mathrm{Rh}(\mathrm{I}) /(\mathrm{Tol}-\mathrm{BINAP})$. This metal-ligand system yielded a complex mixture of products and, as a result, very little attention was initially paid to it. However, a
closer examination later revealed the presence of an unanticipated but valuable side product.

Upon repetition of this experiment, analysis showed the formation of a cyclobutanone product (i.e. 189). Interestingly, 189 was formed in good yield along with excellent enantioselectivity (Scheme 1.41). ${ }^{112}$

In 2003, further investigation and optimisation allowed G. Fu's research team to report an efficient chemodivergent PKR process involving racemic 4-alkynals (i.e. (rac)-188) promoted by the aforementioned $\mathrm{Rh}(\mathrm{I}) /\left(\right.$ Tol-BINAP) catalytic system. ${ }^{112}$

In the presence of $5 \mathrm{~mol} \%$ of the catalyst, a series of substituted alkynals were employed in the syntheses of two structurally different compounds 189 and 190. In most instances, both compounds could be isolated in good yields and near optical purity (ca. 84-99\% ee, Scheme 1.41).

Scheme 1.41 Fu's PKR of 4-alkynals promoted by a Rh(I) based catalyst. ${ }^{112}$
The last example that we aim to introduce belongs to the class of the regiodivergent PKR. In 2001, Deng et al. ${ }^{113}$ oriented their research towards a tentative attempt at the KR of racemic monosubstituted succinic anhydrides such as (rac)-191.

Some recently developed bifunctional bis-cinchona alkaloid derivatives, such as 192, have been shown to be capable of promoting efficient desymmetrisation reactions of prochiral substances such as meso anhydrides during formal ring opening methanolysis reactions. ${ }^{114}$ In a similar fashion, they predicted that the ring opening alcoholysis of (rac)-191, promoted by 192, could potentially enable the development of a new KR process affording optically active hemiester.

$(S)-191$	$(R)-191$	
$\mathbf{R O H}$	$\mathbf{1 9 3 : 1 9 4}$	ee[\%] 193:194
MeOH	$39: 61$	$74: 67$
EtOH	$49: 51$	$82: 67$
$n-\mathrm{PrOH}$	$45: 55$	$81: 72$
$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$49: 51$	$85: 72$
$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}^{*}$	$44: 56$	$91: 80$
* ${ }^{\text {Reaction performed at }-25^{\circ} \mathrm{C}}$		

Scheme 1.42 Parallel Kinetic Resolution of monosubstituted succinic anhydride. ${ }^{113}$
Their first experiment, involving methanol and (rac)-191, afforded the regioisomeric products 193 and 194 in a 31:69 ratio with encouraging enantiomeric excesses ($c a .74$ and 67% ee respectively). This was rationalised as PKR occurring via the simultaneous enantioselective and regioselective alcoholysis of the two enantiomers of 191, leading to the formation of regioisomeric optically active hemiesters 193-194. A series of alcohols were compatible with the process (up to $91 \% e e$, Scheme 1.42).

1.7.6 Dynamic Kinetic Resolution (DKR)

One of the main purposes of any asymmetric transformation is to obtain enantioenriched compounds in the most efficient way possible. As presented in the previous sections, KR is a time-honoured tool for the preparation of a wide array of enantiomerically enriched materials. The main advantage of this approach lies in the fact that the starting materials can always be recovered with high enantiomeric excess, regardless of the catalyst efficiency, simply by pushing the conversions above 50%. However, synthetically useful enantiomeric excesses are often obtained at the expense of good product yields which is, in any case, limited to a theoretical maximum of 50%.

An elegant way to overcome this yield limitation can be achieved by developing dynamic variants of these processes. Dynamic kinetic resolution variations have recently emerged as powerful and attractive tools for obtaining enantioenriched compounds with the circumvention of the major drawback usually associated with the lack of atom economy related to classical resolution processes. Theoretically, it allows for the full conversion of both enantiomers of the starting materials and, a yield of 100% of a single isomer product with high optical purity.

From a theoretical point of view KR and DKR are similar. The resolution phenomenon occurs via the same formation of two diastereomeric transition states upon binding with a chiral catalyst and follows the same overall energetic pathway (Figure 1.24, A). The major difference encountered in DKR processes comes from the racemisation of the starting material occurring simultaneously and competitively with the resolution. In most instances, it is induced by the catalyst itself. However, in some cases a co-catalyst, referred to as racemisation catalyst, or additives, employed in catalytic or stoichiometric amounts, can be used to accelerate substrate racemisation. ${ }^{95,115}$
(A) Dynamic Kinetic Resolution: energetics

(B) Schematic representation of DKR

Figure 1.24 Principle of DKR and key differences with classical KR processes. ${ }^{115}$
The process efficiency is directly linked to both the magnitude of the $\Delta \Delta \mathrm{G}$ induced between the two diastereomeric TSs and the rate of racemisation. For the resolution to occur smoothly, the rate of the racemisation must be significantly higher than the rate of the reactions occurring with any of the two enantiomers (i.e. $k_{r a c} \gg k_{s}>k_{R}$). If these two conditions are met, the concentrations of the slower and faster reacting enantiomers are almost identical throughout the reaction and the enantiomeric excess of the product
must remain close to constant as it is no longer a function of the conversion (Figure 1.24, B).95,115

To meet the requirement for developing an efficient DKR, the catalyst responsible for racemisation must also be compatible with the newly formed product. Indeed, if the starting material and product are structurally close, frequently, the product may also undergo racemisation or epimerisation. In order to avoid the aforementioned issue, mild racemisation conditions, which are often substrate dependent, need to be developed. ${ }^{115}$

Classical methods employed usually derive from one among: 1) thermal conditions, 2) acid- or base-mediated catalysis, 3) formation of a Schiff base, 4) employment of enzymes, 5) redox reactions. ${ }^{115,116}$

Three non-exhaustive examples, highlighting classical racemisation strategies of racemic materials such as α-branched ketones (i.e. 195, A), ${ }^{88}$ secondary amines (i.e. 196, B) ${ }^{117}$ or secondary alcohols (i.e. 197, C) ${ }^{118}$ are depicted in the Figure 1.25.

Figure 1.25 Some examples of classical racemisation strategies. ${ }^{88,115,116,117,118}$
The first example that we propose to describe in order to introduce these new resolution processes (i.e. DKR) involves a class of starting materials known as azlactones (of general structure 198). ${ }^{119}$ Noteworthy, is their relatively high acidity ($p K_{a} \approx 9$) makes them suitable candidates for racemisation catalysed by bases such as the catalyst $\mathbf{2 0 0}$. The racemisation occurs via the formation of a $C=C$ double bond after deprotonation promoted by 200, during the enolate step formation (Scheme 1.43, A). ${ }^{119}$

In their study, Berkessel et al. ${ }^{119}$ rationalised the sense of the stereoinduction via the activation of the electrophilic carbonyl component, of $(R)-198$, via hydrogen-bonding. As a consequence, the bulkier group (i.e. R) is directed downwards to avoid the steric interactions with the catalyst scaffold. Simultaneously, catalyst 200 mediates the deprotonation of the incoming nucleophile 199 and guides its approach to a single face of 198, affording the protected amino acids 201 (Scheme 1.43, A).

(A) Racemisation and postulated TS

Influence of the sterics of the R substituent

201a $77 \%, 78 \%$ ee

201c 59%, 92% ee

Scheme 1.43 Organocatalytic DKR of Azlactones via ring opening alcoholysis. ${ }^{119}$
In the presence of $5 \mathrm{~mol} \%$ of $\mathbf{2 0 0}$, at ambient temperature, a series of substituted azlactones (198) underwent efficient DKR during a ring-opening alcoholysis involving a slight excess of allyl alcohol (199). The process furnished, with good selectivity, the valuable masked amino acids, as their acylated esters 201a-d, with excellent level of selectivities (up to $95 \% e e$, Scheme 1.43, B). ${ }^{119}$

Their study also revealed a strong correlation between the steric effects of the α substituent (i.e. R) and the process efficiency. Increasingly bulkier substituents led to systematically enhanced enantiomeric excesses, albeit with considerably lower reaction rates ($c a$. from 78% to $95 \% e e$ and 94 to 28% conversion after 48 h, Scheme 1.43, B). ${ }^{119}$

In 2012, Fu et al. ${ }^{120}$ expanded their original work on the KR of secondary alcohols (202) to the more challenging DKR analogue. Originally, their first tentative attempt finds roots in a report describing the discovery of a library of ruthenium-chloride complex ($\mathrm{Ru}^{\mathrm{Cl}}$) based catalysts capable of promoting, within half an hour, fast racemisation of enantiomerically pure alcohols, (e.g. ent-202a $\rightarrow(\pm)$-202a, Scheme 1.44,
A). ${ }^{121}$ Their initial strategy involved the intuitive combination of the resolution catalyst 204 working in tandem with the co-catalyst 205.

Unfortunately, under their previously developed conditions, the acylated products (206) were recovered in high yields but only with low enantiomeric excesses ($c a .38 \% e e$). They discovered that the acetic anhydride (158), under the former conditions, can form a stable complex with the ruthenium co-catalyst which, unfortunately, proved to be completely inactive towards the racemisation of $\mathbf{2 0 2}$, thus preventing any DKR development perspectives. ${ }^{120}$

A screening of acylating agents allowed them to identify $\mathbf{2 0 3}$ as a viable source of acyl donor moiety compatible with the process and preventing catalyst inhibition. The selectivities obtained while evaluating the substrate scope proved to be rather similar to those previously reported in their KR process, however, the isolated yields of the representative examples 202a-d were greatly enhanced (up to 94% yield, Scheme 1.44, B). ${ }^{120}$

Scheme 1.44 Catalytic DKR of alcohols via enantioselective acylation by G. Fu. ${ }^{120}$
In 2006, B. List et al., ${ }^{122}$ reported the highly efficient DKR of racemic α-branched aldehydes presenting the general structure (rac)-207. The resolution was mediated by an enantioselective reductive amination reaction, carried out in the presence of $5 \mathrm{~mol} \%$ of the chiral phosphoric acid catalyst 209 (Scheme 1.45).

The DKR of a series of enolisable aldehydes (i.e. 207) was achieved, employing the aromatic amine 208 as reaction coupling partner, affording chiral β-branched amines, of general structure 210, with excellent levels of enantioselectivity (up to 96% and $96 \% \mathrm{ee}$, Scheme 1.45, A). ${ }^{122}$

Scheme 1.45 Dynamic Kinetic Resolution of α-branched aldehydes catalysed by chiral phosphoric acids by List. ${ }^{122}$

The author rationalised the racemisation of $\mathbf{2 0 7}$ via the formation of the achiral enamine intermediate 211, generated after reaction with aniline 208 (Scheme 1.45, B). In the presence of the catalyst 209, the fast reacting enantiomer 211a (resulting from the imine/enamine tautomer equilibrium), undergoes rapid protonation by the catalyst and forms a tight chiral ion pair (212). Finally, a stoichiometric loading of the Hantzsch bisesters 213, used as a hydride source, allows the recovery of catalyst 209 and simultaneously releases optically active amines (such as 210, Scheme 1.45, B). ${ }^{122}$

Two DKR examples of racemic alcohols and aldehydes, catalysed by a chiral iron or phosphorus based catalysts, have been introduced. ${ }^{120,122}$ Recently, the DKR of α branched carboxylic esters has also been shown to be possible for the first time (Scheme 1.46).

In 2016, Y. R. Chi and co-workers, ${ }^{123}$ reported the first efficient DKR of esters, such as (rac)-214, via a new carbene-catalysed transesterification process involving alcohol 215. After addition of the NHC catalyst (i.e. 216) to 214, the newly formed azolium ester intermediate undergoes rapid deprotonation of its acidic α-hydrogen. The base employed $\left(\mathrm{Cs}_{2} \mathrm{CO}_{3}\right)$ helps to ease the enolate formation and promotes the fast racemisation of the substrate. DFT calculations determined that the transition state associated with the addition of alcohol 215 to the (R)-enantiomer is about $5 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the one associated with the (S)-enantiomer.

Experimental data matched with the calculated selectivities and a series of racemic esters (214) were successfully resolved in the form of their transesterified products 217a-f (up to $96 \% e e$, Scheme 1.46, A). ${ }^{123}$

The methodology proved to be robust as, in the same study, the resolution of more densely functionalised esters provided access, in one-pot, to a series of valuable drug precursors 217g-j in excellent yields and enantioselectivities (up to 99% yield and 92% $e e$, Scheme 1.46, B). ${ }^{123}$

Scheme 1.46 DKR of α-branched carboxylic esters via carbene catalysis. ${ }^{123}$
Through Section 1.7 we tried to introduce the general concepts associated with three of the main subclasses of resolution processes. These descriptions aimed to be relevant, as background, for the work that has been developed in this thesis and, which will be described in the next chapters. For each particular process (i.e. KR, PKR or DKR), some theoretical considerations and practical examples were discussed and highlighted.

As the scope of resolution processes is quite broad and constantly growing, only a few selected, non-exhaustive, relevant examples were discussed. More examples related to KR processes can be found in several specialised reviews. ${ }^{95,115,124,125,126,127,128}$

1.8 Objectives of this thesis

- Expansion of scope and identification of novel anhydrides capable of acting as C-nucleophiles in formal cycloaddition reactions with aldehydes as electrophiles.
- Development of the first DKR of racemic disubstituted succinic anhydrides, using bifunctional organocatalysis and of a formal cycloaddition process with aldehydes. Formation of stereochemically complex γ-butyrolactone derivatives with control over three contiguous stereocentres including one all carbon quaternary.
- Development of the first KR of racemic α-alkylated aryl succinic anhydrides using a regio-, diastereo- and enantioselective cycloaddition with aldehydes. Formation of densely functionalised five-membered paraconic acid derivatives with control over the three stereocentres (including one all carbon quaternary). Simultaneous recovery of the enantioenriched anhydride starting materials as their derivatised opened form - chiral succinates.
- Development of novel chiral cinchona based organocatalysts capable of promoting the aforementioned resolution processes in diastereo- and enantioselective fashion. In particular, development of the first examples of a novel class of sulfamide based hydrogen bond donor organocatalysts derived from cinchona alkaloids.

Results and discussion

2. The Dynamic Kinetic Resolution of di-aryl substituted anhydrides mediated via an enantioselective cycloaddition to aldehydes

As described in Section 1.6, several organocatalytic processes involving enolisable cyclic anhydrides, reacting in an enantioselective fashion with a diverse array of electrophiles, have been successfully developed in recent years. The substrate scope of these transformations with respect to the electrophilic component is now rather wellestablished. ${ }^{71,72,73,74,83,84,88}$ However, the substrate scope with respect to the anhydride pronucleophile component is significantly narrower and remains restricted mainly to homophthalic (i.e. 281), glutaconic (i.e. 282) or aryl succinic (i.e. 283) anhydride derivatives (Figure 2.1). This limited scope obviously represents a major drawback and significantly restrains further potential synthetic applications of the methodology.

Therefore, we became interested in the identification of new enol-stabilising candidates for broadening the scope of the anhydrides capable of engaging in reactions with aldehydes and targeted the di-aryl succinic anhydrides (221) depicted in Figure 2.1.

218

219

220

221

Figure 2.1 Reported pronucleophile anhydrides (218-220) and new substrate challenge: expansion of the substrate scope (221).

This structural modification might appear at first as trivial and of little consequence to the process. However, after closer attention, the insertion of an extra stereogenic centre into the substrate scaffold significantly increases the magnitude of the complexity of the proposed process. Previously reported pronucleophiles 218-219 are achiral reagents (e.g. 220 reacts via its achiral in situ formed enolate). However, on the other hand, for the next targeted challenge, after deprotonation of one of the acidic α-hydrogen atoms on 221, the hypothetical newly formed enolate 222 still exists as a mixture of two enantiomeric forms due to the remaining chiral centre (Figure 2.1).

In other words, a suitable organocatalyst would have to, for the process to be under control, be capable of promoting both a stereoselective addition to the aldehyde and concomitant resolution of the two enantiomers of the starting material enolate 222.

Such a process would theoretically afford access to highly substituted γ butyrolactone/paraconic acid derivatives (of general structure 223), bearing three stereocentres (two newly formed - one of which is all carbon quaternary, Figure 2.2).

Figure 2.2 Paraconic acids and the recent utilisation of DKR in asymmetric γ butyrolactone synthesis. ${ }^{133}$

Stereochemically dense γ-butyrolactones form the core of a considerable proportion (which has been estimated at $c a .10 \%$) of natural products which possess remarkably diverse biological activities ${ }^{129}$ - of which the paraconic acids ${ }^{130}$ would be typical (Figure 2.2). The development of one-pot catalytic methods for the rapid, enantioselective construction of these privileged structural units continues to challenge synthetic chemists and the topic has very recently been reviewed. ${ }^{131}$ A recently developed, attractive and simplifying approach involves the face-selective coupling of achiral partners with readily prepared racemic chiral materials with concomitant Dynamic Kinetic Resolution, ${ }^{132}$ such the recent construction of lactones 226 from the racemic α ketoesters $\mathbf{2 2 4}$ and enals $\mathbf{2 2 5}$ using homoenolate chemistry (Figure 2.2). ${ }^{133}$

Anhydrides have been used as acylating agents for over 100 years ${ }^{134}$ and are often used as the electrophilic component of a Kinetic Resolution (KR) reaction ${ }^{135}$ involving a racemic nucleophile. However, despite their enormous synthetic utility, their use as the subject of resolution processes (i.e. the resolution of chiral anhydrides) is entirely undeveloped.

In 2001, Deng et al. ${ }^{113}$ reported the first catalytic Parallel Kinetic Resolution (PKR) of monosubstituted succinic anhydrides (rac)-227 promoted by a chiral amine catalyst. The process involved the simultaneous enantioselective and regioselective alcoholysis of the two enantiomers of the starting material leading to the formation of optically active mono esters 228 and 229. Recently, we have shown that aryl succinic anhydrides of general type (rac)-230 undergo efficient DKR during a formal cycloaddition reaction with aldehydes $\mathbf{1 0 3}$ to form substituted butyrolactones $\mathbf{2 3 1}$ only if the aryl units were equipped with electron withdrawing substituents (Figure 2.3, A). ${ }^{88}$

To the best of our knowledge this represents the sum total of what is known concerning the catalytic resolution of monosubstituted anhydrides (Figure 2.3, A).

(B) Catalytic processes involving disubstituted anhydrides

Meso anhydride desymmetrisation (well established)

(D)KR (unknown) - this work

- 3 stereocentres
(1 carbon quaternary)
- highly functionalised

Figure 2.3 The dearth of anhydride resolution processes. ${ }^{88,113,136,137}$
More stereochemically complex substituted anhydrides are less studied still: the desymmetrisation of meso-disubstituted anhydrides (i.e. the conversion of (meso)-232 to 233) is a well-established process, ${ }^{113,136,137}$ however, (D)KR processes involving racemic trans-anhydrides such as (rac)-221 are completely unknown, despite the potential efficiencies with regard to controlling the configuration at multiple stereocentres during a single coupling operation (Figure 2.3, B).

Figure 2.4 Original rationale for the development of an organocatalytic (D)KR of di-aryl succinic anhydride catalysed by bifunctional catalysis.

In this thesis we would like to report the results of our research towards the development of the first (D)KR of di-aryl succinic anhydrides 221. The rationale at the outset of this study for the strategy of both resolution and subsequent asymmetric
induction between 221 and an aldehyde 103, catalysed by a bifunctional catalyst is depicted in Figure 2.4.

2.1 Preliminary experiments: proof of concept

Initially, we oriented our efforts towards a tentative attempt at the KR of the simplest di-aryl succinic anhydride: 2,3-diphenyl succinic anhydride (239). To test our hypothesis, we synthesised (trans)-239 according to a slightly modified known literature procedure (Scheme 2.1). ${ }^{138}$

Scheme 2.1 Synthetic route towards 2,3-diphenylsuccinic anhydride (239).
The first step involved the protection of the commercially available phenylacetic acid (235) as its ethyl ester 236. Bis-ester 237 was synthesised via an iodination and in situ enolate alkylation sequence. Potassium tert-butoxide was employed to deprotonate at the acidic α-position of 236, generating a reactive nucleophile. Subsequent addition of precisely half an equivalent of iodine allowed for the in situ preparation of an halogenated electrophilic intermediate, allowing for the $C-C$ bond formation leading to 237. The diastereomers of the bis-ester 237 (i.e. cis-237 and trans-237) were isolated by column chromatography and separately subjected to saponification reaction with aim of forming both cis-238 and trans-238. Under the reaction conditions outlined above, the product of the reaction was in both cases the trans diastereomer of 238, highlighting the equilibration occurring during the reaction via epimerisation. This is a phenomenon that we had anticipated and this result led us to believe that our KR attempt of $\mathbf{2 3 9}$ could, under base-mediated conditions, lead to a dynamic kinetic resolution process instead.

Anhydride 239 was synthesised by the straightforward ring closure of trans-238 mediated by reflux in acetyl chloride as solvent (Scheme 2.1).

In order to determine the enantiomeric excess of the remaining starting material 239 after catalysis (at $\approx 50 \%$ conversion), we had to develop a method allowing for the formation of a stable derivative, suitable for CSP-HPLC analysis. Indeed, anhydrides are not stable enough and could easily be subject to ring opening reactions in the presence of a vast array of nucleophiles or react with the stationary phase of the chromatography columns.

Table 2.1 Optimisation of the ring opening methanolysis protocol.

${ }^{a}$ Conversion of starting material 239 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p iodoanisole as an internal standard. ${ }^{b}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid product to the methyl esters by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{c}$ Not determined.

We decided to fully ring open 239 with the aid of MeOH and to convert in situ the resulting hemister 240 to a stable bis-methylester (i.e. 241). To do so we needed to ensure that the methanolysis was fast enough to avoid any catalyst-mediated ring-
opening, which may have led to inaccurate results, as stereoselective ring openings of anhydrides by alcoholysis have been widely reported in the literature. ${ }^{113,136,137}$

In the presence of $5 \mathrm{~mol} \%$ of $\mathbf{2 4 2}$ and 150 equivalents of MeOH , we monitored the conversion of the ring opening by ${ }^{1} \mathrm{H}$ NMR spectroscopy. After 30 min only 7% of the anhydride remained (entry 1, Table 2.1).

Therefore, we increased to 200 equivalents of MeOH and extended the reaction time to 2 h , after which time the reaction was found to have gone to completion. Esterification of 240 with trimethylsilyldiazomethane afforded 241, which was subjected to CSPHPLC analysis, revealing the almost total absence of asymmetric alcoholysis under the optimal conditions ($<2 \% e e$, entry 2). For reproducibility purposes, we repeated the process using the squaramide $\mathbf{2 4 3}$ instead, and also did not detect any enantioenrichment of the starting material ($<2 \% e e$, entry 3, Table 2.1).

The results of our preliminary experiments into the cycloaddition of diphenyl succinic anhydride (239) to benzaldehyde (82) and 4-nitrobenzaldehyde (244) in MTBE catalysed by two cinchona alkaloid-based organocatalysts are presented in Table 2.2.

In the absence of either catalyst or base, no reaction occurs (entry 1). The use of Hünig's base as a catalyst to facilitate enolate formation led to the formation of the diastereomeric products 245a-d (obtained after esterification with trimethylsilyldiazomethane in order to facilitate CSP-HPLC analysis) with a preference for diastereomer 245a (entry 2). We were pleased to confirm that the insertion of an extra stereogenic centre into the core of the phenyl succinic scaffold (relative to monosubstituted aryl succinic anhydrides) did not destroy the reactivity due to the relatively higher steric hindrance of the starting material. The reaction occurred smoothly and no formation of side products was detected (Table 2.2).

The use of either urea catalyst $\mathbf{2 4 2}$ or its squaramide analogue $\mathbf{2 4 3}$ (provided by former members of the group: Dr. F. Manoni and Dr. C. Cornaggia) allowed for the formation of lactones $\mathbf{2 4 5}$ and $\mathbf{2 4 6}$ with moderate diastereocontrol (up to 4:1 dr, entries 3-4, Table 2.2). The major diastereomers produced in the reaction (i.e. 245a and 246a) were formed with encouraging levels of enantiocontrol (ca. 31 and 46% ee respectively) along with the minor diastereomers formed with good enantiomeric excesses (ca. 81 and 82% ee respectively, entries $3-4$, Table 2.2).

Given the level of enantioselectivity obtained for the products, we expected to observe some enantioenrichment of the starting material $\mathbf{2 3 9}$ at conversions close to 50%. However, CSP-HPLC analysis revealed that $\mathbf{2 3 9}$ was recovered in both cases (as its opened form 241) as an almost racemic material (entries 3-4, Table 2.2).

Table 2.2 Proof of concept and preliminary experiments involving the cycloaddition reaction between trans-239 and two aromatic aldehydes.

entry	cat.	aldehyde	product	time (h)	conv. $(\%)^{a}$	$\begin{gathered} d r^{b} \\ \text { a:b:c:d } \end{gathered}$	$\begin{gathered} 241 e e \\ (\%)^{c} \end{gathered}$	$\begin{aligned} & \text { a } e e \\ & (\%)^{d} \end{aligned}$	$\begin{aligned} & \mathrm{d} e e \\ & (\%)^{d} \end{aligned}$
1	-	82	245	24	0	-	-	-	-
2	$i-\mathbf{P r}_{2} \mathbf{N E t}{ }^{e}$	82^{f}	245	24	87	81:14:4:1	-	-	-
3	242	82	245	111	45	78:<2:<2:22	3	31	81
4	243	82	245	111	46	82:<2:<2:18	4	46	82
5	243	244	246	24	50	75:<2:<2:25	2	39	79

${ }^{a}$ Conversion of starting material $\mathbf{8 2}$ (or 244) was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1}$ H NMR spectroscopic analysis. ${ }^{\text {c }}$ Determined by CSP-HPLC after derivatisation of the unreacted starting material 303 by ring opening alcoholysis with MeOH followed by in situ esterification with TMSCHN ${ }_{2}$. ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{e} 20 \mathrm{~mol} \%$ was used. ${ }^{f} 1.0$ equiv. of 82 was used.

These results reinforced our belief that under base-mediated catalysis, a twostereocentre DKR via a rapid epimerisation/racemisation of the anhydride starting material relative to cycloaddition to the aldehyde component would be easier to develop
than the initially targeted KR process. Again, for reproducibility purposes, a KR of $\mathbf{2 3 9}$ was attempted using the more electron deficient 4 -nitrobenzaldehyde (244) in the presence of catalyst 243. While the reaction was considerably faster, the enantio- and diastereocontrol associated with both starting material 241 and the main product diastereomer 246a were in line with those expected from our preliminary experiments (i.e. confirmation of DKR occurring over KR, entry 5, Table 2.2).

2.2 Catalyst screening for the DKR of diphenyl succinic anhydride via cycloaddition to 4-nitrobenzaldehyde.

Our first objective was to determine if one class of organocatalyst would emerge as significantly superior to the others for the promotion of the DKR of (trans)-239. Therefore, our attention first turned to the screening of a series of catalysts possessing a variety of electronic and steric properties belonging to three among the main families of bifunctional organocatalysts based on a cinchona alkaloid scaffold: i.e. ureas, thioureas and squaramides. The results of our preliminary experiments regarding the cycloaddition DKR of (trans)-239 to 4-nitrobenzaldehyde (244) in MTBE are presented in Table 2.3.

The use of either urea-based catalyst $\mathbf{2 4 2}$ or its C-2 arylated analogue $\mathbf{2 4 8}$ allowed for the formation of the lactones 246a-d with moderate diastereo- and enantiocontrol (entries 1-2, Table 2.3). The exchange of the urea functionality for the more acidic thiourea (i.e. 247 and 249) led to comparable results (entries 3-4, Table 2.3).

Improvements were observed upon evaluation of squaramide analogues (i.e. 243 and 250). These catalysts promoted reactions with excellent diastereoselectivity as the major lactone 246a was formed as almost the sole product (up to 97:3 dr, entries 5-6). While these encouraging results indicated that two-stereocentre DKR of enolisable diaryl succinic anhydrides were possible - the enantioselectivity of the process remained far from synthetically useful (up to $42 \% e e$, Table 2.3).

Table 2.3 Initial catalyst screening.

$\overline{{ }^{a} \text { Conversion of starting material } 244 \text { was determined by }{ }^{1} \mathrm{H} \text { NMR spectroscopic analysis using 4- }}$ iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{\text {c }}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}.

Given the disappointing level of enantiocontrol obtained with these three classes of catalyst, we next oriented our efforts towards the evaluation of a series of different types of hydrogen bond donor functionalities including sulfonamides (i.e. 178 and 251) and sulfamides (i.e. 252-254, Table 2.4).

Table 2.4 Screening of sulfonamide and sulfamide catalysts.

${ }^{a}$ Conversion of starting material 244 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}.

Beginning with the reaction involving catalyst 178 (catalyst synthesised by former group member Dr. Aldo Peschiulli), under the reaction conditions outlined above, we obtained a good level of diastereocontrol along with marginally improved enantioselectivity (entry 1, Table 2.4). As the introduction of a C - 2 phenyl substituent at the quinoline moiety of the catalyst had previously led to systematically improved
levels of enantioselectivity ($c a .10-30 \%$ ee improvement), we evaluated the $C-2$ phenyl arylated analogue of $\mathbf{1 7 8}$ (i.e. 251, catalyst highlighted in blue and initially designed and synthesised for the purpose of developing the process described in Chapter 3. Unfortunately, this modification proved to be rather unproductive as the global stereocontrol over the reaction was similar to that obtained with $\mathbf{1 7 8}$ (entry 2, Table 2.4).

The next three catalysts employed, also highlighted in blue (i.e. 252-254), were also synthesised with the aim of developing a completely different process which will be described in the next chapter. However, those catalysts were co-evaluated at that time in the DKR of (rac)-239. They all promoted reactions with excellent diastereoselectivity albeit with the enantioselectivity still considered to be far from synthetically useful (entries 3-5, Table 2.4).

Given the disappointing levels of enantiocontrol obtained so far, it seemed clear that a more consequential change in the catalyst structure was necessary. Therefore, we embarked in the screening and evaluation of sterically more hindered squaramide catalysts (all available in the group) with hope of obtaining better catalyst-mediated enantiodiscrimination. The results obtained are presented in Table 2.5.

The recently developed tert-butyl-substituted squaramide catalysts 126 and 255 (previously successful in a catalytic Tamura cycloaddition reaction involving enolisable glutaconic anhydride with alkyldiene oxindoles ${ }^{71}$) proved to be rather inefficient. Interestingly, as was the case with most of the previously evaluated catalysts, the introduction of a $C-2$ phenyl substituent on the quinoline moiety of the catalyst led to improved performance (entries 1-2, Table 2.5).

The newly-developed catalysts $\mathbf{2 5 6}$ and $\mathbf{2 5 7}$ (previously successful in a KR process of α-branched aldehydes (see Section 1.7.4) and provided by former group member Dr. U. Farid) also proved to be an unproductive structural modification in terms of catalyst performances (entries 3-4, Table 2.5).

Augmentation of the N-alkyl steric requirement of the substituent from a tert-butyl to a adamantyl and a trityl moiety (i.e. catalysts 258 and 259 respectively) resulted in an unexpected outcome. When 259 was employed as the promoter of the reaction, the observed diastereoselectivity was marginally diminished but reversed in favour of the
formation of the usually minor diastereomer 246d, along with a dramatic improvement in enantioselectivity (entries 5-6, Table 2.5).

Table 2.5 Screening of different squaramide-based catalysts.

$\overline{{ }^{a}}$ Conversion of starting material 244 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{d}$ Not determined.

The relative stereochemistry of lactone 246a was assigned by a combination of ${ }^{1} \mathrm{H}$ NMR Nuclear Overhauser Effect (NOE) irradiations. NMR experiments proved that the diastereomer 246a possesses a 1,2-cis and 2,3-trans relationship (trans between the two newly formed stereogenic centres).

Figure 2.5 Relative stereochemistry assignment of $\mathbf{2 4 6 d}$ by NOE irradiation.
Interestingly, and perhaps surprisingly, in the particular case of lactone 246d, saturation at $H-1, H-2$ and $H-3$ demonstrated that both protons at $C-1$ and $C-3$ are on the same side of the molecule while no contact with the protons $H-2$ was detected. These results allowed for the assignment of an unexpected 1,2-cis and 2,3-cis relative relationship between the three aromatic substituents of diastereomer 246d (Figure 2.5).

As part of this thesis, no computational studies were carried out to rationalise the sense of this unusual diastereoselectivity (see X-ray structures in Section 4.5 for relative stereochemistry). We hypothesised that the combination of the steric hindrance and the plausible occurrence of π stacking interactions between all the aromatic rings involved could be at the origin of the phenomenon (see Figure 2.10). While we were delighted with the enantiocontrol achieved over the process, we now faced a diastereoselectivity problem, as 246d was formed in a low 2:1 dr (entry 6, Table 2.5).

To address this remaining challenge, we designed four new organocatalysts, all derived from the core of the successful trityl catalyst 259. Catalysts 260 and 261 aimed to investigate the effects of the steric at the trityl and $C-2$ positions. Catalysts 262 and 263 were designed in order to investigate the influence of the electronic properties (i.e. modulate the acidity of $\mathrm{N}-\mathrm{H}$-bonds, Figure 2.6).

Figure 2.6 Catalyst elements of design - trityl scaffold key modifications.

2.3 Organocatalyst design: modification of the trityl moiety characteristics

The synthesis of the direct analogue to catalyst $\mathbf{2 5 9}$ (i.e. its C-2 phenyl arylated version 260) begins with the short sequence depicted below in Scheme 2.2.

Scheme 2.2 Synthesis of catalyst precursor 266.
Heating squaric acid $\mathbf{7 6}$ under reflux in anhydrous MeOH for 48 h , in the presence of trimethyl orthoformate (264) and a catalytic amount of trifluoroacetic acid (TFA), allows for the formation of the reactive dimethyl squarate 77. The next step (i.e. $\mathbf{7 7} \rightarrow \mathbf{2 6 6}$) which appears at first to be a straightforward transformation proved to be extremely concentration dependent. Dr. U. Farid developed an efficient and reproducible protocol to react 77 with trityl amine (265) in highly concentrated methanolic solution (see conditions in Chapter 4), furnishing 266 in 46% yield after isolation of the precipitate formed by vacuum filtration (Scheme 2.2).

The second half of the route towards $\mathbf{2 6 0}$ begins with the arylation of the C-2 position of the commercially available quinine (61). This was accomplished by following a known literature procedure, ${ }^{83}$ the reaction involved the use of an excess of phenyl
lithium, at low temperature and furnished 337 in 45% isolated yield after column chromatography (Scheme 2.3).

The amine hydrochloride salt (i.e. $\mathbf{2 6 8} \cdot \mathrm{HCl}$) was obtained following the one-pot multi step synthesis as follows: a Mitsunobu reaction on alcohol 267 (accompanied with inversion of the configuration at the $C-9$ position) provided an azido intermediate which was in situ reduced via a Staudinger reaction. ${ }^{83} \mathrm{~A}$ final acidic extraction work-up allows the isolation of $\mathbf{2 6 8} \cdot \mathrm{HCl}$ after concentration of the aqueous layer (Scheme 2.3).

1. PPh_{3} (1.2 equiv.)

DPPA (1.2 equiv.)

$\mathrm{H}_{2} \mathrm{O}, \mathrm{RT}, 4 \mathrm{~h}$
3. $\mathrm{HCl}(2 \mathrm{~N})$

268 84\%

Scheme 2.3 Synthetic route towards catalyst 260.

Treatment of the free amine of 268 and subsequent reaction with the previously synthesised coupling partner 266, in dry methanol, afforded the catalyst $\mathbf{2 6 0}$ which was isolated as a pure material by filtration of the crude reaction mixture precipitate upon completion of the reaction (Scheme 2.3).

The targeted synthetic pathway leading to catalyst $\mathbf{2 6 1}$ is depicted in Scheme 2.4. A lithium halogen exchange on the commercially available 2-bromonaphthalene (269) was mediated by addition of a stoichiometric amount of n-butyl lithium, furnishing a lithiated nucleophilic reactive intermediate that was subsequently engaged in a double addition process with the commercially available 2 -naphthoyl chloride (270). The reaction furnished the sterically hindered alcohol 271, which was isolated in 83% yield after purification by column chromatography (Scheme 2.4).

A relatively stable tertiary carbocation was generated from alcohol 271 by using an excess of trifluoroacetic acid and was immediately reacted with sodium azide (272), in a $\mathrm{S}_{\mathrm{N}} 1$ reaction, furnishing the azido compound 273 in near quantitative yield (Scheme 2.4). Screening of various reaction conditions for the subsequent reduction of azide 273 to the corresponding amine 275 identified the combination of zinc and ammonium formate (274) as an efficient system for accessing 275, which was isolated in a modest 54\% yield (Scheme 2.4).

Scheme 2.4 Synthetic route towards catalyst 261.
The next step proved to be more challenging. A series of reaction conditions were evaluated (i.e. A-D) and successively failed in affording the targeted substituted squaric
amide derivative 276. Higher temperatures or base-mediated conditions did not lead to the product formation either (Scheme 2.4).

Therefore, we attempted to change the electrophilic component of the reaction to the more electrophilic dichlorosquarate (277) and successfully managed to isolate the squarate analogue $\mathbf{2 7 8}$ in 62% yield after column chromatography (Scheme 2.4). Unfortunately, under the conditions depicted in Scheme 2.4, the final product 261 was not formed. Instead, the reaction yielded a complex mixture of compounds containing the open squarate derivative $\mathbf{2 8 0}$ as the major side product. This compound was isolated and the structure confirmed by both mass spectrometry and a series of NMR spectroscopic analyses (Figure 2.7).

Figure 2.7 Main product isolated from the targeted key reaction coupling $\mathbf{2 7 8} \rightarrow \mathbf{2 6 1}$.
Following a similar pathway to that used to prepare catalyst 261, 4-methoxytrityl alcohol (283) was obtained in 90% yield after double addition of the in situ formed lithiated derivative, prepared from 281, to the acyl chloride electrophile 282 (Scheme 2.5).

The subsequent azide formation was performed using the same conditions shown in Scheme 2.4, furnishing 284 in quantitative yield. The stability of the intermediate carbocation was greatly enhanced with this specific substitution pattern on the trityl moiety (due to the three stabilising EDG introduced) and allowed for excellent S_{N} 1 reaction with sodium azide (272). However, this increased electron density proved to be rather problematic in the next step (Scheme 2.5).

Azide 284 was extremelly stable and proved completely inert towards its reduction to amine 285. Examination of a series of reaction conditions ranging from mild to harsh were all unproductive (i.e. A-E). Only starting material could be recovered from the reactions, thereby, precluding access to the targeted catalyst 262 (Scheme 2.5).

Scheme 2.5 Targeted synthetic route towards catalyst 262.
Again, following a similar route, 4-trifluoromethyltrityl alcohol (289) was obtained in $\mathbf{9 0 \%}$ yield after attack from the in situ prepared lithiated derivative, prepared from 287, to methyl ester 288 (Scheme 2.6).

It is noteworthy that the carbocations generated during the syntheses of 273 and 284 were stable and generated using the relatively mild trifluoroacetic acid (see Scheme 2.4 and Scheme 2.5). However, 289 was completely unreactive in an $\mathrm{S}_{\mathrm{N}} 1$ reaction with sodium azide (272) in the presence of TFA. Significantly harsher conditions involving a combination of a slight excess of trimethyl silyl azide (290) and triflic acid (291) allowed the circumvention of the problem and led to full conversion to 292 (Scheme 2.6).

The reduction to trityl amine (293) was performed in the presence of a large excess of zinc and ammonium formate (274) which was later found totally unnecessary as the reaction went smoothly to completion, within half an hour, as monitored by TLC
analysis or by direct observation of the N_{2} released out of the reaction medium (Scheme 2.6).

We were initially concerned that the combination of the steric hindrance and relatively weaker nucleophilicity of amine 293 compared with trityl amine 265 would most likely prevent the coupling between 77 and 293 from occuring. Gratifyingly, high concentrations in $\mathrm{MeOH}(2.2 \mathrm{M})$ and a long reaction time (12 days), at $40^{\circ} \mathrm{C}$, allowed the formation of $\mathbf{2 9 4}$, isolated in 43% yield. A well-established literature procedure involving the reaction of the free-amine of quinine $\mathbf{2 7 9}$ with 294 allowed the formation of 263, isolated in 63% yield after flash column chromatography (Scheme 2.6).

Scheme 2.6 Synthetic route towards catalyst 263.
Despite two failed syntheses of promising catalyst structures (i.e. 261 and 263) we were able to design and evaluate a total of four new catalysts based on the trityl core. These four catalysts were judged to be suitable candidates for mimicking all of the steric and electronic properties we were initially interested in. The results of their evaluation in our model reaction are summarised in Table 2.6.

Table 2.6 Influence of sterically and electronically diverse trityl-based squaramides on the DKR process.

entry	cat.	time (h)	conv. $(\%)^{a}$	$\mathbf{2 4 6} \boldsymbol{d} r^{b}$ a:b:c:d	$\mathbf{2 4 6 d} e \boldsymbol{e}$ $(\%)^{\boldsymbol{c}}$
1	$\mathbf{2 5 9}$	144	81	$35:<2:<2: 65$	95
2	$\mathbf{2 6 0}$	120	68	$37:<2:<2: 63$	85
3	$\mathbf{2 9 5}$	96	98	$37:<2:<2: 63$	83
4	$\mathbf{2 6 3}$	48	98	$50:<2:<2: 50$	90

$\overline{{ }^{a}}$ Conversion of starting material 244 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p iodoanisole as an internal standard. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}.

The first entry has been reproduced from Table 2.5 for clarity and consistency purposes. Evaluation of the $C-2$ phenyl arylated catalyst analogue of $\mathbf{2 5 9}$ (i.e. 260) unfortunately resulted in slower reaction rate, lower diastereoselectivity and a reduced level of enantioseletivity (entry 2, Table 2.6).

The last two attempts to influence the stereocontrol of the process through modification of the steric and electronic characteristics of the trityl group through the evaluation of
the recently synthesised catalysts 295 (catalyst provided by Dr. U. Farid) and 263 were both unproductive (entries 3-4, Table 2.6).

2.4 Optimisation studies for the formal cycloaddition DKR of di-phenyl succinic anhydride with 4-nitrobenzaldehyde

In summary, at this point of the study, we had evaluated a library of a total of 24 different organocatalysts in our model reaction (only a selection of relevant but nonexhaustive examples have been reported in Sections 2.2 and 2.3). These catalysts were all derived from the chiral quinine scaffold and presented five different types of hydrogen-bond units capable of interacting with the starting material in a specific manner (i.e. ureas/thioureas, sulfonamides, sulfamides and squaramides).

In light of the results obtained during the catalyst screening/design we decided to move forward and oriented our efforts towards the optimisation of the reaction parameters (i.e. solvent, temperature, solvent concentration, etc). We decided to focus our efforts on further improving the stereocontrol of the reaction mainly with regard to the diastereocontrol of the lactones, using as an optimal catalyst the structurally simplest, easiest to synthesise and considerably most selective squaramide organocatalyst $\mathbf{2 5 9}$.

In the following series of optimisation experiments, the carboxylic acid lactones produced by the reaction were always esterified in situ with trimethylsilyldiazomethane in order to facilitate CSP-HPLC analysis and isolation of the major diastereomer via column chromatography. This process is now a well-established derivatisation procedure which allows for near quantitative conversion to the corresponding methyl ester, under mild reaction conditions and preventing product epimerisation. ${ }^{139}$

An initial screening of solvents carried out in previously reported work indicated ethereal solvents as optimal choices for the reaction. ${ }^{71,83,88}$ At that time, this phenomenon was rationalised by the improved compatibility of sub-stoichiometric loadings of amines (i.e. such as the tertiary nitrogen of the quinuclidine moiety of the catalyst) with products bearing carboxylic acid functionalities due to their relatively higher $p K_{a}$ in ethereal solvents and, therefore, preventing catalyst inhibition upon protonation of the quinuclidine. The influence of the solvent on the diastereoselectivity of the process cataysed by $\mathbf{2 5 9}$ is reported in Table 2.7.

Table 2.7 Influence of the choice of solvent.

entry	time (d)	solvent	conv. $(\%)^{a}$	$\begin{gathered} d r^{b} \\ \text { 246d: } 0 \text { others } \end{gathered}$	246d ee $(\%)^{c}$
1	6	THF	89	1:1	89
2	6	$\mathrm{Et}_{2} \mathrm{O}$	92	1.4:1	96
3^{d}	20	$(i-\mathrm{Pr})_{2} \mathrm{O}$	62	1.4:1	89
4	4	2-Me-THF	86	1:1	70
5	6	MTBE:2-Me-THF ($1: 1, v: v$)	94	1:1	93
6	4	MTBE:2-Me-THF (9:1, $v: v$)	81	1.4:1	91
7	6	MTBE	81	1.9:1	95

${ }^{a}$ Conversion of starting material 244 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using 4iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. Here $\mathrm{dr}=$ (major diastereomer): $\left(\Sigma\right.$ other diastereomers). ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN 2 . ${ }^{d}$ Catalyst insoluble.

As we had suspected, based on previously reported work, the evaluation of a series of ethereal solvents clearly indicated MTBE as the optimal solvent choice for the reaction (Table 2.7). Indeed, most of the solvents evaluated allowed for the formation of the major diastereomer with good to excellent levels of enantioselectivity, albeit with rather poor levels of diastereoselectivity (entries 1-6). On the other hand, the choice of MTBE allows for the reaction to proceed with a slightly improved level of preference for 246d along with an excellent and superior level of enantiocontrol (up to $1.9: 1 \mathrm{dr}, 95 \% \mathrm{ee}$, entry 7, Table 2.7).

Table 2.8 Influence of the temperature.

${ }^{a}$ Conversion of starting material 244 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. Here $\mathrm{dr}=$ (major diastereomer): $\left(\Sigma\right.$ other diastereomers). ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN $2 .{ }^{d} 20 \mathrm{~mol} \%$ of the catalyst was used. ${ }^{e}$ Not determined. ${ }^{f}$ Not determined. Formation of 4 diastereomers. The concentration couldn't be maintained constant throughout the entire reaction.

The effect of the temperature was also studied: using catalyst 259 at $-30,-15$ or $0^{\circ} \mathrm{C}$ respectively almost shut down the reactivity. Indeed, the conversion determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy ranged from $55-80 \%$ only after 7 to 17 days of reaction (entries 1-3, Table 2.8). Furthermore, decreasing the temperature reversed the diastereoselectivity back in favour of the formation of the undesired diastereomer 246a. This observation led us to consider the opposite approach and we evaluated the impact of the use of higher temperatures (entries 4-6, Table 2.8). At $30{ }^{\circ} \mathrm{C}$, both diastereo- and enantiocontrol were slightly improved (up to $2.1: 1 \mathrm{dr}, 96 \% e e$, entry 5 , Table 2.8).

Evaluation of the performance of $\mathbf{2 5 9}$ at $40{ }^{\circ} \mathrm{C}$ resulted in a tremendously improved reaction time albeit with a diminished level of enantioselectivity (92% ee, entry 6 , Table 2.8). These new reaction conditions initially appeared as improvements over the process control and we decided to move forward to the evaluation of the substrate scope with respect to the aldehyde component using the conditions as described in entry 5 of Table 2.8). However, while working with aldehydes less electrophilic than 244 we found it extremely challenging to maintain the solvent concentration constant for extensive periods of time. Additionally, we noticed on several occasions the formation of all four diastereomers while working at $30^{\circ} \mathrm{C}$ (up to 15% of the two minors).

Table 2.9 Influence of concentration and catalyst loading.

entry	time (\mathbf{h})	conc. (\mathbf{M})	cat. loading $(\mathbf{x ~ m o l \%})$	conv. $(\%)^{a}$	$\boldsymbol{d r}{ }^{\boldsymbol{b}}$ $\mathbf{2 4 6 d}:$ Dothers	$\mathbf{2 4 6 d}$ ee $(\%)^{\boldsymbol{c}}$
1^{d}	144	0.1	5	81	$1.8: 1$	95
2	96	0.2	5	95	$2.1: 1$	90
3	96	0.1	10	91	$2.3: 1$	90
4	96	0.1	20	95	$1.4: 1$	90
5^{e}	20	0.1	5	90	$1.6: 1$	90

${ }^{a}$ Conversion of 244 was determined by ${ }^{1} \mathrm{H}$ NMR analysis using p-iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR analysis. Here $\mathrm{dr}=$ (major diastereomer): $(\Sigma$ other diastereomers). ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters with TMSCHN $2 .{ }^{d}$ Data reproduced from Table 2.6. ${ }^{e}$ Solvent: MTBE:THF (9:1, v:v, 0.1M).

To circumvent the drawbacks associated with the use of high temperatures we decided to refine the parameters of the reaction and attempted complementary experiments aiming to increase the reaction rate. The results obtained are reported in Table 2.9.

Higher molarity (0.2 M , entry 2) or catalyst loadings (e.g. 10-20 mol\%, entries 3-4) resulted in expected higher conversions after comparable reaction times. However, the levels of enantioselectivity were diminished (reduced by $\approx 5 \% e e$). If MTBE proved to be the solvent of choice for several organocatalytic processes, it should be noted that a range of squaramide based organocatalysts exhibit poor solubilities in this solvent. Increasing the catalyst loading, from 10 to $20 \mathrm{~mol} \%$, (entries 3-4) resulted in fairly similar outcomes (i.e. similar conversion and reaction rate). Indeed, at room temperature, catalyst $\mathbf{2 5 9}$ forms a visible suspension in MTBE which becomes denser at higher loadings. To circumvent this remaining issue, we simply decided to use 10% of THF as co-solvent to increase the catalyst solubility in the reaction medium. Gratifyingly, this trivial modification resulted in a slightly diminished level of selectivity albeit with the tremendously improved reaction rate (90% conv after 20 h , entry 5, Table 2.9). Therefore, we decided to move forward and evaluate the substrate scope with respect to the aldehyde component with the conveniently optimised reaction conditions as follows: MTBE:THF (9:1, v:v, 0.1 M) at ambient temperature, with the catalyst $\mathbf{3 2 6}$ employed at $5 \mathrm{~mol} \%$ loading.

2.5 Evaluation of the substrate scope: the aldehyde component

With an optimal catalyst and a synthetically useful protocol in hand, our attention now turned to the important question of the substrate scope with respect to the electrophilic component. The results of this screening are reported in Table 2.10. The methodology proved to be rather robust: anhydride (rac)-239 was reacted in a 1:1 ratio with various aldehydes, leading to the corresponding lactones, bearing electron-deficient (i.e. 246d, 296-299, 301), electron neutral (i.e. 300), rich (i.e. 302), hindered (i.e. 303), heterocyclic aromatic (i.e. 304), and aliphatics moieties (i.e. 305-306), in the presence of squaramide catalyst $\mathbf{2 5 9}$ ($5 \mathrm{~mol} \%$), at ambient temperature. Substrates reacted smoothly, with the exception of 4-methoxybenzaldehyde and thiophene-2-carbaldehyde. The isolated yields of the main diastereomers produced by the reactions were in line with those expected from the conversions and the diastereoselectivities determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Table 2.10).

Table 2.10 Substrate scope: the electrophilic component.

1

2

$80 \quad 53 \quad 1.5: 1 \quad 90$
$83 \quad 53 \quad 2.3: 1 \quad 85$

3

$\begin{array}{llll}81 & 34 & 1: 1 & 97\end{array}$

297

$\begin{array}{llll}91 & 51 & 2.3: 1 & 95\end{array}$

94
70
3.5:1

97

94	70	$3.5: 1$	97

299

[^0]Table 2.10 Substrate scope: the electrophilic component.

$89 \quad 61 \quad 3.5: 1 \quad 99$

7

$89 \quad 46 \quad 1.3: 1 \quad 94$
8^{e}

$52 \quad 29 \quad 2.1: 1 \quad 93$

> | ${ }^{a}$ Conversion of starting material 239 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p - |
| :--- |
| iodoanisole as an internal standard. ${ }^{b}$ Isolated yield of the main diastereomer. ${ }^{c}$ Diastereomeric ratio |
| determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. Here dr = (major diastereomer):(Σ other diastereomers). |
| ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in |
| situ esterification with TMSCHN $2 .{ }^{e} 10 \mathrm{~mol} \%$ of the catalyst was used. |

While diastereocontrol was variable, enantioselectiviy was generally high to excellent ranging from 85 to $>99 \%$ ee (entries 1-12). Aliphatic aldehydes were also compatible: hydrocinnamaldehyde was demonstrated to serve as an excellent substrate, providing the corresponding lactone 305 in high yield, excellent dr and $>99 \%$ ee (entry 11). The lactone derived from the bulkier cyclohexane carbaldehyde (i.e. 306) was also formed in near optical purity and good yield albeit with diminished diastereoselectivity (entry 12, Table 2.10).

Table 2.10 Substrate scope: the electrophilic component.

9

$\begin{array}{llll}77 & 56 & 2.8: 1 & 96\end{array}$

10

$\begin{array}{llll}50 & 37 & 10: 1 & 87\end{array}$
$96 \quad 78 \quad 13: 1>99$
305

11

12

83
44
$1.2: 1$
99
${ }^{a}$ Conversion of starting material 239 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p iodoanisole as an internal standard. ${ }^{b}$ Isolated yield of the main diastereomer. ${ }^{c}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. Here $\mathrm{dr}=$ (major diastereomer):(Σ other diastereomers). ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{e} 10 \mathrm{~mol} \%$ of the catalyst was used.

The relative stereochemistry of the lactones 246d, 296-306 was assigned at an early stage of this study by using a combination of ${ }^{1} \mathrm{H}$ NMR Nuclear Overhauser Effect (NOE) experiments (Figure 2.5).

The absolute stereochemistry was later assigned by X-ray crystallographic analysis of a recrystallised sample of the major diastereomer formed in the reaction between 239 and benzaldehyde (i.e. 300, 99\% ee, Figure 2.8).

Figure 2.8 Absolute configuration assignment of lactone $\mathbf{3 0 0}$.
For further confirmation and unequivocal assignment of the stereochemistry a recrystallised sample of the major diastereomer produced in the reaction between 239 and the aliphatic hydrocinnamaldehyde (i.e. 305, >99\% ee) was also subjected to X-ray crystallographic analysis (Figure 2.9).

Figure 2.9 Absolute configuration assignment of lactone $\mathbf{3 0 5}$.
Analysis of the crystals obtained by single crystal X-ray diffraction pattern analysis further confirmed the relative stereochemistry determined by NOE irradiation experiments as 1,2-cis and 2,3-cis and allowed for the assignment of the absolute stereochemistry of $\mathbf{3 0 0}$, and of $\mathbf{3 0 5}$, as $(1 S, 2 S, 3 R)$ as depicted in Figure 2.8 and Figure 2.9 respectively. The absolute stereochemistry of all the other diastereomers produced by the reactions reported in Table 2.10 were subsequently assigned by analogy.

2.6 Evaluation of the substrate scope: the anhydride component

We had previously shown that the ease of enolate formation is key to the success of this class of process. ${ }^{88}$ Bearing in mind that for efficient DKR to occur, enolisation at both α-carbon atoms of the anhydride must be significantly faster than the rate of reaction of the enolate derived from the slow reacting anhydride enantiomer, we supposed that the installation of electron withdrawing groups on the aryl substituents of the anhydrides could impact both activity and selectivity by i) increasing both the rate of enolate formation and the rate of racemisation relative to cycloaddition and ii) stabilising the enolate; thereby affording greater scope for catalyst-mediated enantiodiscrimination.

To test this hypothesis, we decided to prepare the modified anhydrides 315-316, 322 equipped with bromo-, trifluromethyl- and nitro functionality respectively and to evaluate them in the cycloaddition process with various aldehydes. The effects of the installation of these electron-withdrawing groups at the para-positions could already be observed during the synthesis of the starting materials as different synthetic pathways were found to be required to achieve their syntheses (Scheme 2.7 and Scheme 2.8).

Scheme 2.7 Synthetic route towards anhydrides 315-316.
The syntheses of anhydrides $\mathbf{3 1 5 - 3 1 6}$ proved to be rather straightforward as we followed an identical pathway as for the synthesis of anhydride 239 (Scheme 2.7).

Anhydrides 315-316 were synthesised with modest overall yields (ca. 32\%), without any optimisation. The starting materials 307-308 are commercially available, inexpensive, and every step of the synthesis can easily be scaled-up (Scheme 2.7).

The synthesis of the highly reactive anhydride (rac)-322 proved to be more challenging and required the design of an alternative route. The synthesis went smoothly up to the formation of the corresponding bis-ethyl ester derivative analogue to 311-312. Initial attempts to produce the corresponding bis-carboxylic acid $\mathbf{3 2 1}$ under basic mediated conditions (i.e. KOH , reflux) resulted in complete decomposition of the bis-ester intermediate.

Scheme 2.8 Alternative synthetic route towards anhydride $\mathbf{3 2 2}$.
The final synthetic route developed for accessing anhydride $\mathbf{3 2 2}$ is depicted in Scheme 2.8. A series of classic organic transformations allowed for the formation of an alternative bis-tert-butyl ester derivative $\mathbf{3 2 0}$ that underwent clean, quantitative deprotection in presence of trifluoroacetic acid. Finally, anhydride $\mathbf{3 2 2}$ was obtained by ring closure of its precursor 321, after reflux in acetyl chloride (Scheme 2.8).

The results of the DKR of anhydrides $\mathbf{3 1 5 - 3 1 6}, \mathbf{3 2 2}$ obtained are reported in Table 2.11.

Table 2.11 Substrate scope: the anhydride component.

324-326

entry	product	time	conv.	yield.	$d r^{c}$	$e e^{\prime}$
	(d)	$(\%)^{a}$	$(\%)^{b}$	$(\%)^{d}$		

1

2

325

326

$\begin{array}{lllll}8 & 98 & 92 & 34: 1 & 98\end{array}$
$5 \quad>99 \quad 82 \quad 11: 1 \quad 98$
$3>99 \quad 79 \quad 5: 1>99$
${ }^{a}$ Conversion of starting material 323 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p iodoanisole as an internal standard. ${ }^{b}$ Isolated yield of the main diastereomer. ${ }^{c}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. Here $\mathrm{dr}=$ (major diastereomer):(Σ other diastereomers). ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}.

Initially, the performance of each newly synthesised anhydrides 315-316, 323 was evaluated in their cycloaddition with the optimal hydrocinnamaldehyde (323), in the presence of $5 \mathrm{~mol} \%$ of catalyst $\mathbf{2 5 9}$, at ambient temperature. Under conditions identical to those outlined in Table 2.10, we observed some background reaction with each of the new anhydride substrates, indicating significantly faster reaction rates. Upon cooling
(i.e. to $-15{ }^{\circ} \mathrm{C}$), good to excellent product yields of adducts $\mathbf{3 2 4 - 3 2 6}$ could be obtained with dramatically enhanced diastereocontrol (entries 1-3, Table 2.11).

Table 2.11 Substrate scope: the electrophilic component.

entry
${ }^{a}$ Conversion of starting material 315 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p iodoanisole as an internal standard. ${ }^{b}$ Isolated yield of the main diastereomer. ${ }^{c}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. Here $\mathrm{dr}=$ (major diastereomer): $(\Sigma$ other diastereomers). ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}.

While yield and selectivities of the crude acids were now considerably improved, some drawbacks were evident. Lactones $\mathbf{3 2 5}$ and $\mathbf{3 2 6}$ needed to be handled carefully in order to prevent ring opening or epimerisation during column chromatography or the occurrence of epimerisation. This epimerisation phenomenon was first detected upon
heating a sample of $\mathbf{3 2 4}$ in various mixtures of solvent while attempting to crystallise it in order to obtain its X-ray structure. If $\mathbf{3 2 5}$ or $\mathbf{3 2 6}$ proved to be more recalcitrant substrates to handle, $\mathbf{3 2 4}$ is stable when stored at room temperature in its solid state.

In order to overcome the issue associated with the instability due to the presence of the remaining acidic α-hydrogen, we decided to react the dibromo anhydride (rac)-315 with representative electron neutral, electron-rich and electron-deficient aromatic aldehydes (entries 4-6, Table 2.11). Again, significant improvements in efficiency and diastereoselectivity over the process were observed (up to $10: 1 \mathrm{dr}, 99 \%$ ee). Since the hydro-debromination of aryl units is trivial, ${ }^{140}$ the use of (rac)- $\mathbf{3 1 5}$ allows the circumvention of the drawbacks in terms of reaction rate and diastereocontrol associated with (rac)-239 as its employment potentially leads back to all the substrates described in Table 2.10, with improved levels of selectivity. Additionally, the use of these aromatic aldehydes led to much more sterically congested systems, rigidifying the overall structures and preventing substrate epimerisation at the carbon containing the remaining acidic α-hydrogen.

2.7 Stereochemical outcome: rationale elements

The stereochemical outcome of the reaction was rationalised. We tried to explain the most likely mode of action of the catalyst, in particular, the way it organises the encounter between the anhydride pronucleophile and the aldehyde during the pretransition state. Unfortunately, no computational calculations in order to obtain a complete energy profile of the two possible binding modes has been carried out to support the following discussion. Therefore, any of the following discussion should be considered as purely speculative. Under the optimised reaction conditions, we have shown that the trityl squaramide-catalyst $\mathbf{2 5 9}$ can promote the cycloaddition reaction of a range of anhydride pronucleophiles to a series of aldehydes, producing as major diastereomer of the reaction the 1,2-cis and 2,3-cis isomer along with excellentoutstanding level of enantioselectivity for the ($1 S, 2 S, 3 R$) enantiomer ($c a .>95 \%$ ee in most examples). Two types of catalyst-substrate interactions are plausible and both can formally lead to the observed enantiomer of the product.

One possibility involves the catalyst engaging two hydrogen bonds of the squaramide moiety with the aldehyde. The anhydride enol tautomer form is activated by hydrogen
bond donation to the lone pair of the tertiary nitrogen atom of the quinuclidine ring and is being deprotonated during the transition state via means of general acid/base catalysis while simultaneously attacking a single face of the aldehyde. However, in a recent communication, Connon et al., ${ }^{84}$ determined for a similar organocatalytic system, this transition state as significantly higher in energy relative to the transition state associated for the specific catalysis-like mechanism $\left(\Delta \Delta \mathrm{E} \mathrm{TS}{ }_{C-C}=41.0 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$.

In light of these results and the higher barrier to C - C bond formation involved in this scenario we focused our attention to the examination of the lowest energy binding scenario specific catalysis-like mechanism. In this model, the catalyst engages two hydrogen bonds with the enolate moiety of the anhydride and simultaneously activates the aldehyde by hydrogen bond donation with the newly formed ammonium cation via specific acid/base catalysis. After the $C-C$ bond formation the anhydride needs to orientate its bulky groups towards the quinuclidine in order to avoid steric interactions with the bulky trityl moiety of the catalyst, as depicted in Figure 2.10. Dr. C. Trujillo, has carried out an optimisation of the minima associated with the model for the C - C bond-forming leading to the major enantiomer by means of DFT calculations. The calculated energy minimum highlights two oxygen atoms of the anhydride interacting with the trityl-group of the catalyst as depicted in Figure 2.10. To determine the mechanism of the reaction, a full mecanistic theoretical study, involving the determination of all energy barriers would be necessary to validate the proposed model.
Specific acid/base catalysis via the enolate and ammonium ion

Figure 2.10 Rationale overview for the stereochemical outcome.

2.8 Synthetic utility and potential application of this work

Highly substituted piperidines and their precursor piperidones are very common motifs in both natural products/drug molecules and methods to access them via asymmetric synthesis have been intensively investigated. ${ }^{141}$ To demonstrate the potential utility and malleability of the methodology outlined through this chapter, we embarked on the manipulation of two lactone products with aim of forming bicyclic systems containing both δ-lactam and γ-lactone subunits.

Scheme 2.9 Lactone synthesis using an aliphatic masked amine as electrophile.
To develop an efficient protocol for lactamisation, we first employed the commercially available phenyl succinic anhydride (113) which was reacted in the presence of $1 \mathrm{~mol} \%$ of catalyst $\mathbf{2 5 9}$ with 2-nitrobenzaldehyde (330), at ambient temperature, affording a diastereomeric mixture of lactones $\mathbf{3 3 1}$ with a preference for the trans diastereomer and with good enantioselectivity associated with the formation of cis-331 (Scheme 2.9). The diastereomers were separated by flash column chromatography and separately subjected to hydrogenation conditions, as described in Scheme 2.10.

Scheme 2.10 Establishment of the regioselectivity of the lactamisation reaction.

Different reaction conditions ranging from mild to harsh were applied to the aniline derivative trans-332, all resulting with the same unsuccessful outcome, as none of the desired corresponding lactam was detected (i.e. A-D, Scheme 2.10).

The second attempt involving cis- $\mathbf{3 7 3}$ resulted in a more acceptable outcome. Reflux in dry dichloromethane, for 48 h , in the presence of triethylamine, allowed for the quantitative intramolecular amidation to lactam 333, as depicted in Scheme 2.10.

The enantiomeric excess of lactame $\mathbf{3 3 3}$ was not determined, therefore we can not guarantee that the elaboration of cis-332 was not accompanied by some level of enantioerosion. However, this 2 -step lactamisation allowed us to establish with certainty the importance of the relative stereochemistry between the substituents on the ring. Close spatial proximity between the nucleophilic and electrophilic sites afforded by the cis configuration was crucial for obtaining the product 333 (Scheme 2.10).

Scheme 2.11 Synthesis of aliphatic aldehyde $\mathbf{3 3 8}$ containing a protected amino group.

With a protocol for lactamisation already established, we moved on to the evaluation of a similar methodology, applied to one of the products obtained after catalysis between bis-aryl succinic anhydrides with 338. We designed and chose to employ aldehyde 338 rather than $\mathbf{3 3 0}$ in order to provide examples with both aromatic and aliphatic aldehydes. An oxidation of the Boc-protected amino alcohol 377 was promoted by IBX as an oxidant (i.e. 335), affording aldehyde 338 in quantitative yield (Scheme 2.11).

The first attempt at the DKR of (rac)-239, promoted by $\mathbf{2 5 9}$, at $5 \mathrm{~mol} \%$ loading, with the recently synthesised aldehyde $\mathbf{3 3 8}$ resulted in the formation of lactone $\mathbf{3 3 9}$ with excellent diastereoselectivity (>20:1 dr) albeit with low conversion (ca. 43\%) and a disappointing level of enantioselectivity ($75 \% e e$, entry 1 , Table 2.12). Lowering the temperature to $-15{ }^{\circ} \mathrm{C}$ resulted in only 20% conversion of $\mathbf{2 3 9}$ after 10 days (entry 2, Table 2.12).

In light of these discouraging results, we decided to employ the considerably more readily enolised anhydride (rac)-315 and, upon lowering the temperature to $-15^{\circ} \mathrm{C}$, we were able to form the targeted lactone $\mathbf{3 4 0}$ with excellent diastereoselectivity and a slightly improved level of enantioselectivity (up to $>20: 1 \mathrm{dr}, 81 \%$ ee, entry 3). Cooling the reaction to -30 and $-78{ }^{\circ} \mathrm{C}$ allowed us to further improve the stereocontrol, as the major diastereomer 340 was finally isolated with a satisfying 58% yield and 90% ee when the reaction was conducted at $-30^{\circ} \mathrm{C}$ (entry 4 , Table 2.12).

Table 2.12 Substrate scope: the electrophilic component.
(

[^1]Finally, the lactone $\mathbf{3 4 0}$ (19:1 dr, $90 \% e e$) was deprotected with TFA to afford amine 341 in near quantitative yield. The previously developed base-mediated conditions led to extensive decomposition and were conveniently replaced by a Lewis acid to assist the ring closure reaction. In the presence of trimethylaluminium (342), at room temperature, amine 341 underwent an intramolecular amidation to yield the piperidonyl γ-lactone 343b in 81% yield and 86% ee. Notably, the product resulting from the attack at the methyl ester was dominant, as none of the regioisomeric product 343a resulting from cyclisation at the lactone was detected (Scheme 2.12).

Scheme 2.12 Sequential deprotection-lactamisation of a cycloaddition product.

2.9 Conclusion for Chapter 2

In summary, we have demonstrated for the first time that trans-disubstituted aryl succinic anhydrides can undergo efficient dynamic kinetic resolution (DKR) using an ad hoc designed organocatalyst and a diastereo- and enantioselective cycloaddition process with aldehydes. We demonstrated, through the modification of the anhydride scaffold, that increasing its enolisability (by incorporating EWG at the para positions), leads to faster, more efficient and more selective lactone formation.

The process was found to be compatible with a range of electron-rich/electrondeficient/heterocyclic aromatic and aliphatic aldehydes. The products of this one-pot formal cycloaddition are all highly functionalised γ-butyrolactones (paraconic acid derivatives) and are obtained with good to excellent control over three product stereocentres, one of which is all-carbon quaternary in nature (up to $92 \%, 34: 1 \mathrm{dr}, 98 \%$ $e e)$.

The stereochemical configuration of the lactones was assigned using a combination of ${ }^{1}$ H NMR Nuclear Overhauser Effect (NOE) experiments and crystal X-ray diffraction pattern analysis.

The synthetic utility of these compounds as potential building blocks for organic syntheses was demonstrated through the ready manipulation of one of the products to form a stereochemically dense and complex fused lactone-lactam system in $86 \% \mathrm{ee}$.

We have successfully identified 4 novel enolisable anhydrides and reacted them with various aldehydes, forming 19 novel γ-butyrolactones, in near optical purity. To do so we evaluated a library of a total of 25 organocatalysts among which 7 of them were specifically designed for the purpose of developing this work.

3. The Kinetic Resolution of racemic α-alkylated aryl succinic anhydrides mediated via an enantioselective cycloaddition to 4nitrobenzaldehyde

As described through the first two chapters of this thesis, the scope of the anhydride pronucleophiles capable of engaging in cycloaddition type reactions with aldehydes still remains a challenge for organic chemists. Building on our experience acquired during the development of the DKR of diaryl succinic anhydrides we tried to identify another class of anhydride (bearing an enol stabilising group) susceptible of reacting in a similar fashion and, furnishing enantiomerically pure forms of valuable cycloadduct products after a catalytic transformation.

Our next substrate choice was chosen based on our previous work in which we showed that the ease of enolate formation was part of the key to the success for these reactions. For efficient DKR, enolisation had to occur at both α-carbon atoms and also had to be significantly faster than the rate of the reaction issued from the slowest reacting enolate enantiomer. Installation of increasingly more EWG at the para positions of the aryl groups of the anhydrides led to faster, more efficient DKR and more selective lactone formation, thus supporting our hypothesis (344, Figure 3.1, A).

Figure 3.1 New substrate challenge (rac)-345: expansion of the substrate scope.
Our idea for the next substrate choice takes roots in desymmetrising the former diaryl substituted succinic anhydrides (rac)-344 by incorporating an EDG at one side of the molecule and an EWG at the other side (i.e. (rac)-345, Figure 3.1, B). In other words, the initial idea was to ease enol(ate) formation at only one α-carbon atom (i.e. try to induce substrate epimerisation rather than substrate racemisation). We hoped to be able to generate a regioselective transformation by favouring nucleophilic attacks issued from (rac)-345a. To do so, we planned to influence the keto-enol equilibrium towards
(rac)-345a (i.e. avoid substantial amount of (rac)-345b in solution) by incorporating an enol destabilising group in the anhydride scaffold such as an alkyl chain (Figure 3.1, B).

The reaction of a single enantiomer of (rac)-345, by efficient KR , with precisely half an equivalent of an aldehyde (employed as resolving agent) would in theory provide access to a series of valuable functionalised chiral succinate building blocks after derivatisation of the resolved anhydrides 345. This choice of the substrate, as novel enolisable anhydride, was further motivated by both the intrinsic interest of developing a completely new KR methodology and the nature of the products that could be generated after catalysis with aldehydes. Under optimised conditions, such a process would theoretically provide access to the enantiomerically enriched form of a highly valuable subclass of butyrolactones: the α-alkylated γ-butyrolactones (Figure 3.2).

Indeed, optically active γ-butyrolactones constitute a highly important motif in organic chemistry which can be found in the scaffold of many natural products of biological importance. This occurrence has been estimated at $\sim 10 \%$ in all-natural products (e.g. the natural products from the Stemona alkaloids 346-348, Figure 3.2, A). ${ }^{86,129}$

The γ-butyrolactone derivatives bearing a β-carboxylic acid moiety are known as paraconic acids ($\mathbf{3 4 9}$, Figure 3.2, B). ${ }^{87,130}$ It represents an important subclass of the family, with many members presenting remarkably diverse biological properties of interest including antiinflammatory, ${ }^{142}$ antiallergic, ${ }^{143}$ antimicrobial activities. ${ }^{144}$
(A) α-methylated γ-butyrolactones:

(B) Paraconic acids:

(C) Natural products from Lichen:

(+)-nephrosteranic acid

352
(+)-dihydroprotolichesterinic acid

(+)-nephromopsinic acid

353
(+)-methylenolactocin

Figure 3.2 Selected bioactive molecules bearing a α-methylated paraconic acid or a α-methylated γ-butyrolactone. ${ }^{86,87,129,130}$

Taking the biological importance of the γ-butyrolactones into account as well as their potential as chiral building blocks in organic syntheses, asymmetric strategies have emerged as the subject of various process developments. Despite many successes in this field, ${ }^{145,146,147}$ catalytic asymmetric methods for the regio-, diastereo- and enantioselective formation of more specific substitution patterns, such as α-methylated-γ-butyrolactones, are still lacking. Interestingly, this α-methyl substitution on butyrolactones is a frequently encountered substitution pattern. However, to the best of our knowledge, the rapid, one-pot, enantioselective construction of these privileged structures, by organocatalytic means, has never been reported despite the potential synthetic utility afforded by a such process (Figure 3.2, A and C).

Scheme 3.1 Example of utilisation of α-phenylselenide intermediate followed by regioselective β-elimination reported by Shishido and coworkers. ${ }^{152}$

These α-methylated- γ-butyrolactones (e.g. 354) can conveniently be converted to α phenylselenide intermediates (e.g. 355), which upon a sequence of oxidation followed by a β-elimination, ${ }^{148,149,150,151,152}$ can form α-methylene- γ-butyrolactones such as 356, another important subclass of butyrolactones (Scheme 3.1). In 2009, the presence of this important structural unit (i.e. α-methylene- γ-butyrolactone) has been estimated in the core of over 14000 compounds exhibiting a vast array of important biological activities (e.g. 353, Figure 3.2). ${ }^{153,154}$

Processes involving alkylated-succinic anhydrides are not widely studied, still: the efficient PKR of α-methyl succinic anhydride (191) by regioselective/enantioselective alcoholysis has been reported (Figure 3.3, A). ${ }^{113}$ In 2013, List et al., ${ }^{155}$ reported the enantioselective methanolytic desymmetrisation of a series of meso compounds including the dimethyl succinic anhydride (357). The process was catalysed by a novel textile-supported chiral organocatalyst and provided access to a range of optically active hemiesters (e.g. 358, Figure 3.3, A).

To the best of our knowledge, only two other examples of KR processes involving racemic cyclic anhydrides have been reported to date. In 1997, Seebach et al., ${ }^{156}$ described the use of Ti-TADDOLate as the promoter for the KR of (rac)-359 allowing for the recovery of the enantiomerically enriched product $\mathbf{3 6 0}$ in 94% ee (Figure 3.3, B). Later in 2001, Bolm and co-workers, ${ }^{157}$ identified quinidine as the mediating agent for the KR of the bicyclic anhydride (rac)-361, furnishing access to enantioenriched N protected β-aminoesters, such as 362, with up to 99% ee (Figure 3.3, B). Although, these two processes afforded excellent levels of enantiomeric excesses (up to 99% ee), the resolving agents employed were used in stoichiometric amounts and the products of the KR processes were either obtained as $1: 1$ mixture ratio of inseparable materials or this required a subsequent four-step reaction derivatisation to allow for the isolation of the targeted structures (Figure 3.3, B). ${ }^{156,157}$
(A) Catalytic processes involving α-methylated succinic anhydrides

(B) Resolution processes involving cyclic anhydrides

KR: reduction (Seebach 1997)

$\xrightarrow[\text { titanium cat }]{ }$

Figure 3.3 Processes involving α-methylated anhydrides and the dearth of anhydride KR processes. ${ }^{113,155,156,157}$

In this thesis, we report our results towards the first KR of α-alkylated succinic anhydrides of general type (rac)-363 (Figure 3.4). As the starting material possesses two chiral centres it exists as a mixture of two separable diastereomers cis- $\mathbf{3 6 3}$ and trans-363 (i.e. two pairs of enantiomers for each diastereomer, Figure 3.4, A). As such there were many challenges to overcome in order to tackle this complex substrate. First, the catalyst had to be capable of promoting a regioselective enolisation of 363, affording the reactive in situ formed racemic enolate (rac)-364e (Figure 3.4, B). Upon binding to the catalyst, we hoped to be able to differentiate between the two enantiomeric faces of (rac)-364e (Figure 3.4, C). This differentiation would be the
result of the creation of two pseudo diastereomeric transition states presenting different relative energies (i.e. $\Delta \Delta \mathrm{G} \neq 0$, Figure 3.4, D). This sequence would be followed by a nucleophilic addition of the most reactive enolate enantiomer only (i.e. the lowest in energy: (S)-364e), to a resolving agent chosen as an aldehyde. In total, two regioisomers of the corresponding lactones can exhist as depicted in Figure 3.4 (E).

Our final objective was to isolate, in an enantiomerically pure form, a single diastereomer between 365a-h, with concomitant KR of 363 via an organocatalysed cycloaddition to an aldehyde (Figure 3.4).

(B)

reactive chiral
in situ
formed enolate
(rac)-364e
racemic
same energies
(D)

- G ?

- 5 stereocentres involved overall
(1 carbon quaternary formed)
-KR of the SM?
- regioselective process?
(E) - 2 regioisomers
$-2 \times 4=8$ diastereomers
- 8 pairs of enantiomers
- 16 possible stereoisomers
(S)-364e $\overline{P D T}_{(\text {maj })}$

- diastereoselective process?
enantioselective process?
- chiral γ-butyrolactone products formed

Figure 3.4 Overview of the complexity of the challenge at hand.

3.1 Preliminary experiments: proof of concept

In most of the KR examples previously introduced through Chapter 1, the resolved starting materials only bore a single chiral centre as did the products of the resolution processes. As a result, the measurement of the enantiomeric excesses of either the starting materials or the products, at a given conversion, was a good indicator of the overall process efficiency. On the other hand, in this process, the scenario is considerably more sophisticated. Indeed, the resolution of (rac)-366 is accompanied by the formation of $\mathbf{3 6 8}$, which involves the creation of two extra stereocentres. As a result, the measurement of the enantiomeric excess of the major diastereomer 368a, is a better indicator of the catalyst efficiency to promote an enantioselective cycloaddition rather that its capacity to resolve the starting material enantiomers. Likewise, a poor diastereoselectivity associated with the formation of $\mathbf{3 6 8}$ can be attributed either to the poor ability of the catalyst to discriminate between the two enantiomeric forms of the starting material enolate or to the way it organises the assembly of the lactone's aryl substituents during the $C-C$ bond forming operation. As a result, unless the lactone formation has been optimised to a completely stereoselective transformation, the measure of the enantiomeric excess of both starting material and products is required to judge of the catalyst's efficiency. The results of our preliminary experiments for the cycloaddition KR of (rac)-366 to 4-nitrobenzaldehyde (244), in MTBE, at ambient temperature, are presented in Table 3.1.

In the absence of catalyst or base no reaction occurred (entry 1). The use of Hünig's base to facilitate enolate formation led to the formation of all the products 368a-d (obtained after in situ esterification of the corresponding carboxylic acids with aid of TMSCHN_{2} in order to facilitate CSP-HPLC) with a preference for 368a (entry 2). Interestingly, as we had hypothesised, we observed full regioselectivity in favour of the formation of the lactone resulting from nucleophilic attack issued from the stabilised aromatic enolate only. The use of either urea catalyst $\mathbf{2 4 2}$ or its $C-2$ arylated analogue 248 allowed for the formation of lactones 368a-d with poor levels of diastereo- and enantiocontrol (entries 3-4). At this early stage of the study the enantiomeric excess of the unreacted starting material $\mathbf{3 6 7}$ wasn't determined as the products obtained were nearly racemic. The exchange of the urea functionality for the more acidic thiourea (i.e. $\mathbf{2 4 7}, \mathbf{2 4 9}$) led to comparable results (entries 5-6, Table 3.1).

As a proof of concept, we determined the enantiomeric excess of the unreacted starting material 366 after derivatisation to 367. At 33% conversion, the level of enantioenrichement was poor (ca. $10 \% e e$) and so was the level of diastero- and enantioselectivity associated with the formation of $\mathbf{3 6 8}$ ($59: 41 \mathrm{dr}, 14 \% e e$, entry 5). However, this result still allowed us to establish that some level of control could be amenable via the designed organocatalytic process (Table 3.1).

Table 3.1 Catalyst evaluation for the reaction between 366 and 244.

entry	cat.	time (h)	conv. $(\%)^{a}$	$367 e e$ $(\%)^{d}$	$\mathbf{S}^{* e}$	$368 d r^{b}$ a:(b:c:d)	368a $e e$ $(\%)^{c}$

1	-	24	-	-	-	-	-
2	DIPEA f	120	87^{g}	-	-	$77:(3: 1.5: 18.5)$	-
3	$\mathbf{2 4 2}$	72	74^{g}	n.d. h	n.d. h	$72: 28$	3
4	$\mathbf{2 4 8}$	96	37	n.d. h	n.d. h	$58: 42$	15
5	$\mathbf{2 4 7}$	120	33	10	1.7	$59: 41$	14
6	$\mathbf{2 4 9}$	96	32	n.d. h	n.d. h	$63: 37$	17

$\overline{{ }^{a}}$ Conversion of starting material 244 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using 4iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. $\mathrm{dr}=$ (major diastereomer):(\sum other diastereomers). ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}. Refers to the major diastereomer. ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the unreacted starting material 366 by ring opening alcoholysis with MeOH followed by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{e} \mathrm{~S}^{*}=$ selectivity factor calculated based on the starting material 366 after derivatisation to the product 367 by using the conversion (C) determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis and using the formula: $\mathrm{S}^{*}=\ln [(1-\mathrm{C})(1-$ $\left.\left.e e_{367}\right)\right]: \ln \left[(1-\mathrm{C})\left(1+e e_{367}\right)\right] .{ }^{f} 20 \mathrm{~mol} \% .^{g}\left(1.0\right.$ equiv.) of 244 was used. ${ }^{h}$ Not determined.

3.2 Catalyst screening for the KR attempt of α-methyl phenyl succinic anhydride

With a proof of concept established we decided to screen a library of organocatalysts available among the research group and possessing different hydrogen-bond units as well as different steric and/or electronic properties. Given the disappointing levels of stereocontrol obtained with the four non-bulky (thio)urea catalysts 242, 247-249 evaluated in Table 3.1, we tried the significantly more sterically hindered urea-based catalysts 369-374 in the model reaction. The results obtained are reported in Table 3.2.

Beginning with the evaluation of the two bulky catalysts $\mathbf{3 6 9}$ and $\mathbf{3 7 0}$, we observed the formation of 368a-d with a really poor level of diastereoselectivity and with almost total absence of stereoinduction (entries 1-2). As we suspected based on the data obtained for lactone 368, the derivatised unreacted starting material 367 was recovered as a close to racemic material $\left(S^{*}=1.3\right.$, entry 1 , Table 3.2).

We also evaluated the performance of urea organocatalysts containing both enantiomeric forms of a chiral amino acid substituent (i.e. catalysts 371-372), a bulky aliphatic cyclohexyl moiety (i.e. 373) and a different tertiary base containing a chiral binaphthyl scaffold (i.e. 374, entries 2-6). A slight improvement in S factor was observed with catalyst $\mathbf{3 7 2}$ proving that a two-sterocentre KR of (rac)-366 via a diastereo- and enantioselective addition to $\mathbf{2 4 4}$ could indeed be achieved ($\mathrm{S}^{*}=2.5$, entry 4, Table 3.2).

Given the poor levels of selectivity obtained with the cinchona-based urea catalysts, we decided to evaluate representative members from the squaramide family. The results of their evaluation in the model reaction, are reported in Table 3.3.

Upon evaluation of the direct analogues to catalysts 242, 247-249 (i.e. 243 and 250) we observed a significant improvement with regard to the diastereocontrol of the formation of lactones 368a-d (entries 1-2, Table 3.3). Indeed, catalyst $\mathbf{2 5 0}$ promoted the formation of 368a with excellent diastereoselectivity and clearly improved level of enantioselectivity (up to $94: 6 \mathrm{dr}, 41 \% e e$, entry 2, Table 3.3). Interestingly, the unreacted recovered starting material 367 exhibited a rather low albeit improved level of enantiomeric excess corresponding to a selectivity factor $S^{*}=3.3$ (entry 2, Table 3.3).

Table 3.2 Evaluation of the performance of different urea based organocatalysts for the reaction between 366 and 244.

entry	cat.	time (\mathbf{d})	conv. $(\%)^{\boldsymbol{a}}$	$\mathbf{3 6 7} \boldsymbol{e e}$ $(\%)^{d}$	$\mathbf{S}^{* e}$	$\mathbf{3 6 8} \boldsymbol{d r}^{b}$ $\mathbf{a :} \mathbf{(b : c : d})$	$\mathbf{3 6 8 a} e e$ $(\%)^{\boldsymbol{c}}$
1	$\mathbf{3 6 9}$	7	46	9	1.3	$61: 39$	10
2	$\mathbf{3 7 0}$	2	43	n.d. f	n.d. f	$57: 43$	13
3	$\mathbf{3 7 1}$	10	35	n.d. f	n.d. f	$67: 33$	33
4	$\mathbf{3 7 2}$	4	46	27	2.5	$69: 31$	29
5	$\mathbf{3 7 3}$	13	41	n.d. f	n.d. f	$73: 27$	23
6	$\mathbf{3 7 4}$	2	0	-	-	-	-

${ }^{a}$ Conversion of 244 was determined by ${ }^{1} \mathrm{H}$ NMR using 4-iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR. dr = (major diastereomer):(\sum other diastereomers). ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}. Refers to the major diastereomer. ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the unreacted starting material $\mathbf{3 6 6}$ by ring opening alcoholysis with MeOH followed by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{e} \mathrm{~S}^{*}=$ selectivity factor calculated based on the starting material 366 after derivatisation to the product 367 by using the conversion (C) determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis and using the formula: $\mathrm{S}^{*}=\ln \left[(1-\mathrm{C})\left(1-e e_{367}\right)\right]: \ln \left[(1-\mathrm{C})\left(1+e e_{367}\right)\right] .{ }^{\circ}$ Not determined.

Table 3.3 Evaluation of squaramide based organocatalysts.

entry	cat.	time (\mathbf{h})	conv. $(\%)^{a}$	$\mathbf{3 6 7} e e$ $(\%)^{d}$	$\mathbf{S}^{* e}$	$\mathbf{3 6 8} \boldsymbol{d} r^{b}$ a:(b:c:d)	$\mathbf{3 6 8 a} e e$ $(\%)^{\boldsymbol{c}}$
1	$\mathbf{2 4 3}$	96	37	6	1.3	$80: 20$	12
2	$\mathbf{2 5 0}$	96	30	20	3.3	$94: 6$	41
3	$\mathbf{1 2 6}$	168	44	35	3.6	$79: 21$	30
4	$\mathbf{2 5 5}$	216	52^{g}	26	2.0	$90: 10$	36
5	$\mathbf{2 5 9}$	168	44	40	4.5	$64: 36$	6
6	$\mathbf{2 6 0}$	168	42	43	5.9	$65: 35$	10

${ }^{a}$ Conversion of 244 was determined by ${ }^{1} \mathrm{H}$ NMR using 4-iodoanisole as an internal standard. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}. Refers to the major diastereomer. ${ }^{d}$ Determined by CSPHPLC after derivatisation to 367 . ${ }^{e} S^{*}=$ selectivity factor calculated based on the starting material 366 after derivatisation to the product $\mathbf{3 6 7}$ by using the conversion (C) determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis and using the formula: $\mathrm{S}^{*}=\ln \left[(1-\mathrm{C})\left(1-e e_{367}\right)\right]: \ln \left[(1-\mathrm{C})\left(1+e e_{367}\right)\right] .{ }^{\wedge}$ Not determined.

The recently developed tert-butyl substituted squaramides catalysts $\mathbf{1 2 6}$ and $\mathbf{2 5 5}$ proved to be rather inefficient (up to $S^{*}=3.6$, entries $3-4$, Table 3.3). Some improvements were obtained upon evaluation of catalysts 259-260 which had previously been developed for the purpose of the DKR of diaryl succinic anhydrides (up to $S^{*}=5.9$, entries 5-6, Table 3.3). A quick series of optimisations with catalysts 259-260, varying both the temperature and the solvent employed in the reaction failed to yield increased selectivity. While the minor diastereomer (i.e. 368d) was always produced with excellent enantioselectivity ($>90 \%$ ee in most instances), the enantioselectivity associated with the formation of 368a remained far from useful (entries 5-6, Table 3.3). Following on from these results, we tried to identify other substitution patterns on the squaramide moiety that would allow the catalyst to promote increase selectivity for both the recovered starting material 367 and the major lactone diastereomer 368a. The results obtained are reported in Table 3.4.

Beginning with the evaluation of the bulky aliphatic adamantyl- and triethylmethylsubstituted squaramides (i.e. catalysts 258 and 375) no further improvements were observed (up to $S^{*}=4.0$, entries $1-2$, Table 3.4). As was previously the case with the urea catalysts, the introduction of chiral information through the successive substitution of the squaric acid moiety with the two enantiomeric forms of a chiral amino acid functionality (i.e. 256-257) proved to be rather inefficient (up to $S^{*}=2.6$, entries 3-4, Table 3.4). Evaluation of the symmetrical squaramide $\mathbf{3 7 6}$ or its $C-2$ arylated analogue 377 also resulted in comparable and unsatisfactory outcomes (up to $S^{*}=3.6$, entries 5 6, Table 3.4).

As a result of the disappointing levels of stereocontrol attained from the evaluation of a small library of squaramide catalysts, possessing different steric and electronic properties, we continued towards the evaluation of another class of hydrogen-bond donors, based on a cinchona scaffold - the sulfonamides. The results of the evaluation of five of their representatives (i.e. 178, 378-381) are reported in Table 3.5.

The first two examples involving electron withdrawing aryl substituents (i.e. 378 and 379) were unpromising. These two-catalysts exhibited an almost total lack of selectivity towards the two enantiomers of (rac)-366 and a poor level of diastereo- and enantiocontrol for the formation of lactones 368 (up to $S^{*}=1.4$, entries 1-2, Table 3.5).

Table 3.4 Evaluation of other squaramide based organocatalysts.

${ }^{a}$ Conversion of starting material 244 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using 4iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. $\mathrm{dr}=$ (major diastereomer):(\sum other diastereomers). ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN 2 . Refers to the major diastereomer. ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the unreacted starting material 366 by ring opening alcoholysis with MeOH followed by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{e} \mathrm{~S}^{*}=$ selectivity factor calculated based on the starting material 366 after derivatisation to the product 367 by using the conversion (C) determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis and using the formula: $\mathrm{S}^{*}=\ln [(1-\mathrm{C})(1-$ $\left.\left.e e_{367}\right)\right]: \ln \left[(1-\mathrm{C})\left(1+e e_{367}\right)\right] .{ }^{\cdot}$ Not determined.

Table 3.5 Evaluation of sulfonamide based organocatalysts.

366

244
0.5 equiv.)
 $0^{\circ} \mathrm{C}$ to RT, 15 min

367

368a
cat.

380

entry	cat.	time (\mathbf{d})	conv. $(\%)^{a}$	$\mathbf{3 6 7} \boldsymbol{e e}$ $(\%)^{d}$	$\mathbf{S}^{* e}$	$\mathbf{3 6 8} \boldsymbol{d r}^{b}$ $\mathbf{a :}(\mathbf{b}: \mathbf{c}: \mathbf{d})$	$\mathbf{3 6 8 a} \boldsymbol{e} \boldsymbol{e}$ $(\%)^{\boldsymbol{c}}$
1	$\mathbf{3 7 8}$	10	35	n.d. f	n.d. f	$76: 24$	10
2	$\mathbf{3 7 9}$	10	31	6	1.4	$75: 25$	35
3	$\mathbf{3 8 0}$	6	38	n.d. f	n.d. f	$77: 23$	30
4	$\mathbf{3 8 1}$	6	43	n.d. f	n.d. f	$81: 19$	57
5	$\mathbf{1 7 8}$	7	45	50	6.7	$95: 5$	59

${ }^{a}$ Conversion of starting material 244 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using 4iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. $\mathrm{dr}=($ major diastereomer $):\left(\sum\right.$ other diastereomers). ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}. Refers to the major diastereomer. ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the unreacted starting material 366 by ring opening alcoholysis with MeOH followed by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{e} \mathrm{~S}^{*}=$ selectivity factor calculated based on the starting material 366 after derivatisation to the product 367 by using the conversion (C) determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis and using the formula: $\mathrm{S}^{*}=\ln [(1-\mathrm{C})(1-$ $\left.\left.e e_{367}\right)\right]: \ln \left[(1-\mathrm{C})\left(1+e e_{367}\right)\right] .{ }^{f}$ Not determined.

Modification of the sulfonamide substituent's steric requirement from a methyl to a bulky 1,3,5-triisopropyl-phenyl group (i.e. catalysts 380-381, 178) resulted in an exciting outcome. When $\mathbf{1 7 8}$ was employed as promoter of the reaction (catalyst
previously successful in the KR of a series of racemic thiols) ${ }^{109} \mathbf{3 6 6}$ could be recovered, at 45% conversion, with 50% ee (i.e. $S^{*}=6.5$). It is noteworthy that the diastereoselectivity and enantioselectivity associated with the formation of 368 were also tremendously improved as the major lactone 368a was formed as almost the sole product diastereomer (up to $95: 5 \mathrm{dr}, 59 \% e e$, entries 3-5, Table 3.5).

3.3 Towards the development of the first class of cinchona based sulfamides bifunctional organocatalysts

Among the library of the 27 organocatalysts evaluated at this point of the study, the performance of $\mathbf{1 7 8}$ clearly outclassed any of the others. Moving forward, we decided to work on the scaffold of $\mathbf{1 7 8}$ and came up with the idea of designing three new organocatalysts. Catalysts $\mathbf{3 8 2}$ and $\mathbf{3 8 3}$ were designed to mimic the bulkiness of 178, by varying the steric hindrance (i.e. with aim of modifying the catalyst-substrate interactions). Catalyst 251 was designed based on the knowledge that the introduction of a C - 2 phenyl moiety tends to lend greater activity. The structures of the three targeted organocatalysts are depicted in Figure 3.5.

Figure 3.5 Catalyst design and targeted organocatalyst structures 382-383, 251.
The main intermediates for the synthesis of sulfonamide-based organocatalyst are known as sulfonyl chlorides (general formula: $\mathrm{RSO}_{2} \mathrm{Cl}$, e.g. 385). To access catalyst 382, we first attempted to generate an in situ lithiated derivative from triphenylmethane (384) and subsequently quench it, at low temperature, with an excess of sulfuryl chloride. Employment of the conditions \mathbf{A} or \mathbf{B} as described in Scheme 3.2 (i.e. with n BuLi or $t-\mathrm{BuLi}$ as lithiating agents) failed to afford the targeted intermediate 385. As the one-pot sequence oxidation-chlorination of aromatic thiols ${ }^{158}$ is well-documented in the literature and as examples involving aliphatic thiols are also reported, ${ }^{159}$ we tried a series of known literature procedures to attempt the one-pot transformation of the
commercially available trityl thiol (386) to its sulfonyl chloride derivative 385. Most of the conditions employed (i.e. A-C) led to fast and uncontrollable reactions, yielding complex mixtures of side products and/or extensive amount of decomposed material. Gratifyingly, while the conditions \mathbf{D} were employed and the temperature carefully kept below $0{ }^{\circ} \mathrm{C}$, the desired sulfonyl chloride $\mathbf{3 8 5}$ was obtained in 70% crude yield. A biphasic solvent medium and the use of 1 equivalent of sodium hydroxide allowed for the successful coupling between the free amine of quinine 279 with $\mathbf{3 8 5}$, affording the sulfonamide $\mathbf{3 8 2}$ in 58% yield, after purification by flash column chromatography (Scheme 3.2).

Conditions:
A: $\mathrm{H}_{2} \mathrm{O}_{2}$ (3.0 equiv.), SOCl_{2} (1.0 equiv.)
$\mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}$ to RT , 2 h , many side products
B: TMSCl (2.2 equiv.), KNO_{3} (2.2 equiv.) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50^{\circ} \mathrm{C}, 4 \mathrm{~h}, 0 \%$
C: $t-\mathrm{Bu}-\mathrm{NH}_{2} \cdot \mathrm{HCl}$ (4.0 equiv.), $\mathrm{H}_{2} \mathrm{O}$ (2.5 equiv.) NCS (3.0 equiv.), $\mathrm{CH}_{3} \mathrm{CN}, 0^{\circ} \mathrm{C}$ to RT, $2 \mathrm{~h}, 0 \%$
D: $\mathrm{HCl}: \mathrm{CH}_{3} \mathrm{CN}(1: 5 \mathrm{v}: v, 1: 3 \mathrm{v}: \mathrm{w}$ to NCS$)$
NCS (4.0 equiv.), $0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 70 \%$

Scheme 3.2 Synthetic route towards catalyst 382.

The synthesis of the sulfonyl chloride $\mathbf{3 8 9}$ begins with a double $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ on the commercially available 1,3-dichlorobenzene (387) carried out with an excess of phenyl lithium reagent. Addition of an excess of iodine to quench the reaction mixture allowed access to the iodinated intermediate 388, isolated in 45% yield. Lithium-halogen exchange on $\mathbf{3 8 8}$ mediated by a stoichiometric amount of n-BuLi afforded, the in situ formed, a reactive lithiated nucleophilic species. This could be quenched at low temperature $\left(-78{ }^{\circ} \mathrm{C}\right)$ with two equivalents of sulfuryl chloride, affording the sulfonyl
chloride 389 in 61% yield. Following a similar reaction procedure used to prepare catalyst $\mathbf{3 8 2}$ (i.e. employing the reaction conditions B), the coupling between amine 279 and sulfonyl chloride $\mathbf{3 8 9}$ allowed access to sulfonamide $\mathbf{3 8 3}$ in $\mathbf{9 5 \%}$ yield after purification by flash column chromatography (Scheme 3.3).

Scheme 3.3 Synthetic route towards catalyst 383.
The last sulfonamide of interest (i.e. 251) was prepared via the straightforward transformation depicted in Scheme 3.4. The reaction between the $C-2$ phenyl arylated quinine derivative 268 with the commercially available 2,4,6triisopropylbenzenesulfonyl chloride (390) afforded the desired organocatalyst 251, isolated in 60% yield after purification by flash column chromatography (Scheme 3.4).

Scheme 3.4 Synthetic route towards catalyst 251.
The results of the evaluation of these three newly designed organocatalysts 382-383 and 251, in the reaction model, are reported in Table 3.6.

Beginning with the two reactions involving the bulky trityl and 2,6-diphenylbenzenesubstituted sulfonamides catalysts (i.e. 382-383) we observed an almost total absence of stereocontrol. Both recovered starting materials $\mathbf{3 6 7}$ or major product diastereomers 368a were isolated as almost racemic materials ($S^{*}=1.1$, entries 1-2, Table 3.6). Unfortunately, the evaluation of the $C-2$ phenyl arylated sulfonamide $\mathbf{2 5 1}$ also resulted in a disappointing outcome. Indeed, 367 was recovered with $39 \% e e$, at 46% conversion, corresponding to a low selectivity factor $\mathrm{S}^{*}=3.9$, along with diminished levels of diastereo- and enantiocontrol associated with the formation of lactones 368a-d, compared to the data obtained with the optimum sulfonamide 178 (94:6 dr, $56 \% \mathrm{ee}$, entry 3 , Table 3.6).

Table 3.6 Evaluation of newly designed sulfonamide based organocatalysts.

[^2]
3.4 Development of cinchona-based sulfamides as a novel class of bifunctional organocatalysts for the KR of α-alkylated succinic anhydrides

In general, a requirement for efficient asymmetric induction is the capacity of the catalyst to organise the interaction between the reagents in a well-organised manner by means of hydrogen-bonding. Such interactions are often proportional to the acidity of the $\mathrm{N}-\mathrm{H}$ bonds present in the catalyst. This general tendency can be highlighted by the number of efficient organocatalysts presenting EWG groups such as the 3,5ditrifluoromethylphenyl unit, which is capable of enhancing the $\mathrm{N}-\mathrm{H}$ acidity.

Figure 3.6 Examples of reported chiral sulfamide bifunctional catalysts. ${ }^{160,161}$
Recently, several research groups have orientated their efforts towards the identification of novel hydrogen-bonding motifs such as cyclohexyl-sulfamides ${ }^{160}$ 391-393 and pyrrolidinyl-sulfamide derivatives (e.g. 394), ${ }^{161}$ for the design of new chiral bifunctional organocatalysts capable of promoting asymmetric Michael addition reactions. ${ }^{160,161}$ Initially, the origin of these structural modifications takes root in the electronic properties of the sulfonyl group, which is considered a better EWG group compared with the corresponding (thio)ureas. ${ }^{160,161}$ Therefore, it was targeted as a good candidate for catalyst design and elaboration due to its assumed improved ability to form stronger hydrogen-bonds with the reaction substrates (Figure 3.6).

A common feature to most of the bifunctional organocatalysts derived from the cinchona alkaloids that have been introduced throughout this thesis (e.g. ureas, thioureas, squaramides) is their ability to engage two or more hydrogen-bonds with the reactants. However, in the particular case of the sulfonamides, the corresponding organocatalysts can only engage in a single hydrogen bond. We reasoned that the success encountered by the best catalyst $\mathbf{1 7 8}$, thus far, was most likely due to the steric hindrance associated with it's bulky substituent rather than its hydrogen-bonding ability.

Inspired by the successful advances reported in sulfamide design mentioned above, we became interested in attempting to introduce an extra hydrogen-bond donating unit in
the scaffold of the sulfonamide with aim of developing the first examples of a class of cinchona-based sulfamide bifunctional organocatalysts (see rationale in Figure 3.7, A).
(A) Strategy for the catalyst design

C $R=$ Aryl (aromatic sulfamoyl chloride synthesis)

Figure 3.7 Strategy for the catalyst design and preparation of the reactive sulfamoyl chloride intermediates. ${ }^{162,163,164,165}$

The main intermediates commonly employed in accessing sulfonamide catalysts are known as sulfonyl chlorides ($\mathrm{R}-\mathrm{SO}_{2} \mathrm{Cl}$). The synthetic equivalents to access to the corresponding sulfamides are known as sulfamoyl chlorides (R-NH-SO 2 Cl, e.g. 395 and 397).

The scientific literature to access either aliphatic or aromatic sulfamoyl chlorides is well-documented. ${ }^{162,163,164,165}$ Probably the simplest strategy for accessing non-densely functionalised aliphatic sulfamoyl chlorides $\mathbf{3 9 5}$ consists in the direct coupling between the corresponding alkyl amine with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ (Figure 3.7, B). ${ }^{163,166}$ The synthesis of aromatic sulfamoyl chloride is less straightforward. Indeed, sulfuryl chloride is reported as an efficient chlorinating agent that can furnish, under mild conditions, mono- or dichlorinated ring by-products with excellent yields. ${ }^{167}$ For this reason, the synthetic pathway usually employed relies on a different strategy (Figure 3.7, C). Addition of $1+2$ (i.e. 3.0 equiv.) of the relevant aromatic amine relative to chlorosufonic acid $\left(\mathrm{ClSO}_{3} \mathrm{H}\right)$, yields the complex mixture of Salts 2. These salts can be hydrolysed in presence of sodium hydroxide, releasing the excess of amine employed (i.e. 2 equiv.) in the organic phase while the desired sodium sulfamic acid salt 396 can be extracted and isolated after evaporation of the aqueous layer. The targeted aromatic sulfamoyl chloride 397 can be obtained by chlorination of its sodium sulfamic acid precursor $\mathbf{3 9 6}$ promoted by
reflux of a stoichiometric amount of phosphorus pentachloride in anhydrous toluene (Figure 3.7, C).

To the best of our knowledge, this sulfamide motif has never been introduced into the core of a cinchona alkaloid prior this study. Therefore, we initially orientated our efforts towards the identification of three simple structures that could help us to establish the feasibility of developing this new class of organocatalyst. Our initial idea was the tentative attempt at the synthesis of the simplest aliphatic 253 and aromatic 252 representatives. In parallel, $\mathbf{3 9 8}$ was also synthesised with aim of investigating if the presence of two hydrogen bond units was indeed beneficial (Figure 3.8).

Figure 3.8 Proof of concept: structures of targeted catalysts 252-253, 398.
Beginning with the description of the synthesis of catalyst 253, we began with the N sulfonylation of the commercially available tert-butylamine (254) following the reported literature procedure. ${ }^{163}$ In the next step we attempted the use of similar reaction conditions to those employed for the coupling between amines with sulfonyl chlorides. The coupling between the free amine of quinine 279 with the sulfamoyl chloride $\mathbf{4 0 0}$ occurred smoothly, furnishing sulfamide 253, in 64% yield (Scheme 3.5).

Scheme 3.5 Synthetic route towards catalyst 253.
To the best of our knowledge, this represents the first example of a successful incorporation of a sulfamide group in a chiral cinchona-alkaloid scaffold. As is the case with most of the sulfonamide-based catalysts, after chromatography $\mathbf{2 5 3}$ was isolated as a mixture of rotamers in an 80:20 ratio (Scheme 3.5).

Gratifyingly, our next attempt towards the synthesis of the aromatic representative 252 was also successful. Starting from the commercially available 3,5bis(trifluoromethyl)aniline (401), a two-step sequence involving the quantitative formation of the sodium sulfamic acid salt $\mathbf{4 0 2}$, followed by its chlorination with PCl_{5}, afforded the sulfamoyl chloride intermediate $\mathbf{4 0 3}$ in $\mathbf{4 7 \%}$ yield (Scheme 3.6).

Following the well-established coupling protocol involving quinine-derived amine 279 with sulfamoyl chloride $\mathbf{4 0 3}$, in the presence of an excess of triethylamine, catalyst $\mathbf{2 5 2}$ was isolated after subsequent purification by flash column chromatography, in 35\% yield. This catalyst also exhibited rotameric properties and was obtained as a mixture of rotamers in the ratio 69:31 (Scheme 3.6).

Scheme 3.6 Synthetic route towards catalyst 252.
At this point of the study, we were concerned by the large proportion of the minor rotamer ($c a .31 \%$). Indeed, we hypothesised that due to the high acidity of the hydrogen (highlighted in red) caused by the 3,5-bis(trifluoromethyl)benzene substituent and the highly EWG sulfonyl group, an intramolecular Zwitterion pair could be formed instead, after its deprotonation by the basic quinuclidine tertiary nitrogen atom (Scheme 3.6).

To confirm the presence of a rotameric species or identify a non-negligible percentage of protonated quinuclidine, we ran a series of NMR spectroscopic experiments with the aim of adressing our concerns. First, two-dimensional NOESY experiment was conducted on a Bruker Avance II 600 MHz spectrometer. This experiment revealed the presence of characteristic signals of rotameric exchanges (i.e. the cross-peaks on the diagonal of the spectrum, Figure 3.9).

Figure 3.9 Two dimensional NOESY exchanges determined by NMR experiment on a Bruker Avance II 600 MHz spectrometer.

Figure 3.10 Evolution of the rotameric ratio determined by ${ }^{1} \mathrm{H}$ NMR and ${ }^{19} \mathrm{~F}$ NMR experiments recorded at $25^{\circ} \mathrm{C}$ (blue) and $60^{\circ} \mathrm{C}$ (red) in DMSO-d 6 .

We also ran a combination of one dimensional ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopic experiments. A pattern of split-signals can be observed that clearly corresponds to either a rotameric effect or a Zwitterion. Increasing the temperature of the NMR acquisition from $25{ }^{\circ} \mathrm{C}$ to $60{ }^{\circ} \mathrm{C}$ (i.e. blue and red spectra respectively, Figure 3.10) shows the complete disappearance of the minor resonances. This phenomenon is more easily observed on the ${ }^{19} \mathrm{~F}$ NMR spectra. This result confirms the presence of a rotameric species. In contrast, if a Zwitterion was present, we would expect temperature elevation to favour the formation of the minor signals, as the amount of protonated quinuclidine should increase (Figure 3.10).

As an unequivocal piece of evidence, we crystallised from ethanol, a sample of $\mathbf{2 5 2}$. Analysis of the single crystal obtained by X-ray diffraction pattern analysis confirmed our conclusions based on NMR spectroscopic experiments (Figure 3.11).

Figure 3.11 X-ray structure of sulfamide 252.
Interestingly, during the crystallisation process a water molecule co-crystallised with 252, as depicted in the structure presented in Figure 3.11. This crystallographic structure highlights the method by which a catalyst can activate and deliver, in an enantioselective fashion, a small nucleophile by means of bifunctional catalysis. This fortunate but totally unpredicted result, of co-crystallisation, would have been very satisfying should the X-ray structure have revealed the presence of hydrogen bonds between $\mathrm{N}(24)-\mathrm{H} \rightarrow \mathrm{O}(1)$ and $\mathrm{N}(28)-\mathrm{H} \rightarrow \mathrm{O}(1)$. Indeed, our primary goal was to introduce a second hydrogen-bond unit in the catalyst, to increase the strength of the catalyst-substrate interactions. Nevertheless, in solution, the catalyst most likely adopts different conformations, as confirmed by its rotameric activity, and we cannot discount the fact that it may engage in further hydrogen bonds with the substrates. Also, if this extra $\mathrm{N}(28)$-H hydrogen bond unit does not participate in the activation of the
pronucleophile (unproven) we still envisaged that it could help in activating the electrophilic counterpart of the reaction (i.e. activate the aldehyde component).

Finally, catalyst 398 was prepared by the straightforward coupling between amine 279 with the commercially available piperidine-1-sulfonyl chloride (404), in the presence of triethylamine, and was isolated in 30% yield (Scheme 3.7). The results of our first experiments aiming to investigate the potential of these new sulfamide catalysts proved to be rather promising and are reported in Table 3.7.

Scheme 3.7 Synthetic route towards catalyst 398.
The selectivity factors obtained with the catalysts containing two hydrogen bond units (i.e. catalysts $\mathbf{2 5 2}$ and 253) proved to be considerably superior over the mono hydrogen bond donor catalyst 398 (up to $S^{*}=5.8$ with 253 against $S^{*}=1.9$ with 398, entries 1-3, Table 3.7). Aditionally, in both examples, lactones 368a-d were formed with excellent diastereoselectivity in favour of 368a; with the two catalysts containing the extra hydrogen bond unit (up to 97:3 dr, entry 2, Table 3.7).

It is worth mentioning that these two sulfamide catalysts (i.e. 252-253) were initially designed as the simplest representatives of the class of catalyst. In particular, their synthesis was mainly aimed at establishing the feasibility of incorporating the sulfamide motif by means of simple and classical organic transformations. Interestingly, our first investigations confirmed and proved that both aliphatic- and aromatic-groups can be incorporated in the cinchona scaffold. Gratifying, one of these catalysts almost immediately matched the performance of the most selective catalyst $\mathbf{1 7 8}$ evaluated so far in this project.

Table 3.7 Evaluation of the newly designed sulfamide-based catalysts 252-253, 398.

${ }^{a}$ Conversion of 244 was determined by ${ }^{1} \mathrm{H}$ NMR using 4-iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}. Refers to the major diastereomer. ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the unreacted starting material $366 .{ }^{e} S^{*}=$ selectivity factor calculated based on the starting material 366 after derivatisation to the product 367 by using the conversion (C) determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis and using the formula: estimated $S^{*}=\ln \left[(1-C)\left(1-e e_{367}\right)\right]: \ln \left[(1-C)\left(1+e e_{367}\right)\right]$. ${ }^{f 0} .7$ equiv. of 244 was used.

Following these two promising results, we thought it would be interesting to investigate the scope and possibilities offered by these new types of catalysts and decided to orientate our efforts towards the synthesis and evaluation of considerably more sterically hindered analogues, such as the catalysts depicted in Figure 3.12.

Figure 3.12 Next targets for broadening the scope of the sulfamide catalysts.

We decided to evaluate the influence of the bulkiness of the N-sulfonyl substituent through the incorporation of an aliphatic adamantyl (i.e. 254) or aromatic 2,3,5trimethylanilino substituent (i.e. 406). We also synthesised phenyl derivative 405 in order to investigate the influence of the substitution at the $C-2$ position of the catalysts (Figure 3.12).

Scheme 3.8 Synthetic route towards catalyst 254 and 405.
The synthesis of catalysts $\mathbf{2 5 4}$ and $\mathbf{4 0 5}$ begins with the formation of the intermediate sulfamoyl chloride 408. After an overnight reflux in dry acetonitrile, in the presence of an excess of sulfuryl chloride, the commercially available 1-adamantylamine (407) was converted to adamantyl-1-sulfamoyl chloride (408), in 62% yield. Following a straightforward work-up procedure, intermediate 408 was utilised in the next step, without further purification due to its assumed instability. In the presence of an excess of triethylamine, reacting 408 with amines 268 and 279, afforded catalysts 254 and 405, which were isolated after column chromatography, in 41% and 57% yield respectively. Again, ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis revealed the presence of two rotameric species with the respective ratios of 77:23 and 76:24 (Scheme 3.8).

Scheme 3.9 Synthetic route towards catalyst 406.

The synthetic route towards catalyst 406 was the same as that employed to make catalyst 252. Commercially available $2,3,5$-trimethylaniline (409) was converted to the sodium sulfamic acid salt 410. Subsequent chlorination of $\mathbf{4 1 0}$ mediated by PCl_{5}, in toluene, yielded the corresponding sulfamoyl chloride 411, in a 35% yield. Coupling between 279 with 411, furnished catalyst 406 in 35% yield following column chromatography. Once again, ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis revealed the presence of two rotameric species in a $98: 2$ ratio (Scheme 3.9).

These three newly synthesised bulky sulfamide organocatalysts (i.e. 254, 405-406), were subsequently evaluated in the standard reaction. The results of their performances are presented in Table 3.8 below.

Table 3.8 Evaluation of newly designed sulfamide-based organocatalysts.

${ }^{a}$ Conversion of starting material 244 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using 4iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. $\mathrm{dr}=$ (major diastereomer):(\sum other diastereomers). ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}. Refers to the major diastereomer. ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the unreacted starting material 366 by ring opening alcoholysis with MeOH followed by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{e} \mathrm{~S}^{*}=$ selectivity factor calculated based on the starting material 366 after derivatisation to the product 367 by using the conversion (C) determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis and using the formula: $\mathrm{S}^{*}=\ln [(1-\mathrm{C})(1-$ $\left.\left.e e_{367}\right)\right]: \ln \left[(1-\mathrm{C})\left(1+e e_{367}\right)\right] .{ }^{\circ}$ Not determined.

Comparing the results obtained with the aliphatic and aromatic substituted catalysts $\mathbf{2 5 4}$ and 406, at 48% and 46% conversion respectively, we observed with both catalysts, the formation of 368 with excellent diastereocontrol (i.e. >20:1 dr, entries 1-2, Table 3.8). The main diastereomer 368a was formed with higher level of enantioselectivity when aliphatic sulfamide $\mathbf{2 5 4}$ was used as promoter of the KR process (up to $63 \% e e$). As a direct consequence, the derivatised recovered starting material 367 was also recovered with a greater level of enantioenrichement when $\mathbf{2 5 4}$ catalysed the reaction (up to 64\% $e e)$. At these levels of conversion, 367 was recovered with selectivity factors of $\mathrm{S}^{*}=$ 10.5 and $\mathrm{S}^{*}=5.4$ respectively. This clearyl indicated $\mathbf{2 5 4}$ as considerably more selective towards one particular enantiomer of $\mathbf{3 6 6}$ rather than the other (entries 1-2, Table 3.8).

Further attempts to improve the stereocontrol through the evaluation of the $C-2$ phenyl arylated analogue of 254 (i.e. 405) proved futile (entry 3). Although the selectivity factor obtained was encouraging ($\mathrm{S}^{*}=5.9$), this remained far below the selectivity obtained with 254 (entries 1 and 3, Table 3.8). As a result, we decided to focus our attention exclusively on the non arylated version of the aliphatic sulfamide catalyst $\mathbf{2 5 4}$.

3.5 Optimisation studies for the formal cycloaddition KR of racemic α-methyl phenyl succinic anhydride with 4-nitrobenzaldehyde

After the catalyst screening carried out for the DKR of racemic trans anhydrides presented in Chapter 2, a trityl based squaramide catalyst emerged as significantly more selective than the others. As a result, this catalyst was chosen as the optimal choice for evaluating the substrate scope of this novel catalytic process.

On the other hand, in this new KR challenge, after evaluating a total of thirty-two organocatalysts (including nine ad hoc designed for the purpose of this project), none exhibited a significant superiority in terms of reaction selectivity over the others. As a result, we selected the three catalysts promoting the most selective reactions at our disposal and decided to investigate the influence of reaction temperature. We carried out the reaction at both lower and higher temperatures than ambient $\left(0^{\circ} \mathrm{C}\right.$ and $\left.30^{\circ} \mathrm{C}\right)$ with the aim of determining if one catalyst would emerge as a significantly better candidate to continue the study. The results of those experiments in which catalysts 178, 253 and $\mathbf{2 5 4}$ were employed are reported in Table 3.9.

Table 3.9 Temperature screening for the reaction between 366 and 244.

$\overline{{ }^{a} \text { Conversion of } \mathbf{2 4 4} \text { was determined by }{ }^{1} \mathrm{H} \text { NMR using 4-iodoanisole as an internal standard. }{ }^{b} \text { Determined }}$ by ${ }^{1} \mathrm{H}$ NMR. $\mathrm{dr}=$ (major diastereomer):(\sum other diastereomers). ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters with TMSCHN_{2}. Refers to the major diastereomer. ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the unreacted 366 by alcoholysis with MeOH followed by esterification with $\mathrm{TMSCHN}_{2}{ }^{e} \mathrm{~S}^{*}=$ selectivity factor calculated based on the starting material 366 after derivatisation to the product 367 by using the conversion (C) determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis and using the formula: $\mathrm{S}^{*}=\ln [(1-\mathrm{C})(1-e e 367)]: \ln \left[(1-\mathrm{C})\left(1+e e_{367}\right)\right] .{ }^{f}$ Data reproduced from Table 3.5. ${ }^{g}$ Data reproduced from Table 3.7. ${ }^{h}$ Data reproduced from Table 3.8. ${ }^{i}$ Not determined.

The data obtained for the reactions initially carried out at ambient temperature, with catalysts 178, 253-254, have been reproduced to allow for comparison with the data obtained at lower and higher temperature (i.e. entries 1-3, Table 3.9).

A general trend was observed between the three reactions, performed at $0{ }^{\circ} \mathrm{C}$, and employing catalysts 178, 253 and 254 (entries 4-6). In all cases, comparable levels of conversion were achieved, however, the enantiomeric excesses associated with the major diastereomer 368a, or with the recovered starting material 367, was lowered by \approx 20% ee compared with the data obtained with the same catalysts at room temperature (i.e. entries 1-3 against entries 4-6). In comparison, at $0{ }^{\circ} \mathrm{C}$, the catalyst $\mathbf{2 5 4}$ could promote the KR of $\mathbf{3 6 6}$ with a considerably reduced level of selectivity of only $S^{*}=2.9$ (entries 3 and 6, Table 3.9).

We next tried the opposite approach; evaluating the same catalysts 178, 253-254, at a higher temperature (i.e. at $30^{\circ} \mathrm{C}$, entries 7-9) and again, we observed a general trend. Although the reaction time to reach levels of conversion close from 50% was greatly enhanced, the selectivity factors S^{*} remained marginally diminished compared to the selectivity factors determined at room temperature (up to $S^{*}=6.4$, entry 7, Table 3.9).

These rather unusual trends were later rationalised by the fact that compounds possessing rotameric forms such as $\mathbf{1 7 8}, 253$ or $\mathbf{2 5 4}$, may exist under multiple conformations depending on the reaction temperature (as exemplified in Figure 3.10) and thus, may exhibit efficiencies directly linked to the temperature and their actual distribution of conformations in solution. Considering the data reported in Table 3.9, we choose to eliminate the considerably less selective sulfamide 253. We next carried out a solvent screen with catalysts $\mathbf{1 7 8}$ and $\mathbf{2 5 4}$; aiming to select the optimal catalyst for the development of the process at hand. The results of the solvent screening optimisation carried out with $\mathbf{1 7 8}$ and $\mathbf{2 5 4}$ are reported in Table 3.10.

First, the performances of sulfonamide $\mathbf{1 7 8}$ were evaluated, at room temperature, in four different ethereal solvents (entries 1-4, Table 3.10). The results were consistant with previous observations, indicating methyl tert-butyl ether as the optimal solvent choice for the reaction. At 45% conversion, $\mathbf{3 6 7}$ was recovered with $50 \% e e$, coresponding to a selectivity factor $S^{*}=6.7$ (entry 1, Table 3.10). As a result, we already knew at this stage that the newly designed sulfamide $\mathbf{2 5 4}$ could promote the reaction with better
selectivity (up to $S^{*}=10.5$ in MTBE at RT), and suspected it would be chosen as our optimised promoter of the KR process, in order to evaluate the substrate scope of the reaction with respect to the anhydride component.

Table 3.10 Solvent evaluation for the reaction between 366 and 244.

${ }^{a}$ Conversion of starting material 244 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using 4iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. $\mathrm{dr}=\left(\right.$ major diastereomer): (\sum other diastereomers). ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}. Refers to the major diastereomer. ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the unreacted starting material 366 by ring opening alcoholysis with MeOH followed by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{e} \mathrm{~S}^{*}=$ selectivity factor calculated based on the starting material 366 after derivatisation to the product 367 by using the conversion (C) determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis and using the formula: $\mathrm{S}^{*}=\ln [(1-\mathrm{C})(1-$ $\left.\left.e e_{367}\right)\right]: \ln \left[(1-\mathrm{C})\left(1+e e_{367}\right)\right] .{ }^{5}$ Data reproduced from Table 1.6. ${ }^{8}$ Data reproduced from Table 1.7. ${ }^{h}$ Not determined.

Evaluation of the same ethereal solvents, with catalyst $\mathbf{2 5 4}$ as promoter of the reaction, under identical conditions as outlined above, resulted in similar outcomes (entries 5-8, Table 3.10). Even though the levels of stereoselectivity remained marginally higher compare to those obtained with catalyst 178, the optimal solvent choice for the reaction remained methyl tert-butyl ether $\left(S^{*}=10.5\right.$, entry 5 , Table 3.10).

We had previously shown, that the level of stereocontrol in related cycloaddition processes is often influenced by the aldehyde electrophile employed. ${ }^{83,88}$ 4Nitrobenzaldehyde (244) was initially chosen as an activated aldehyde that reacts faster than benzaldehyde and facilitates NMR spectroscopic analysis. However, at this stage of the study, no efforts towards the choice of the electrophile had been carried out.

Table 3.11 Evaluation of aliphatic and aromatic resolving agents.

(0.5-1.0 equiv.)

367
368a

entry	aldehyde	electrophile (equiv.)	time (\mathbf{d})	conv. $(\%)^{a}$	$\mathbf{3 6 7} e \boldsymbol{e}$ $(\%)^{b}$	$\mathbf{S}^{* c}$
1	$\mathbf{2 4 4}$	0.5	7	48	64	10.5
2	$\mathbf{8 2}$	5	10	33	n.d. d	n.d. d
3	$\mathbf{3 2 3}$	10	10	27	n.d. d	n.d. d

${ }^{a}$ Conversion of starting material 366 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using 4iodoanisole as an internal standard. ${ }^{b}$ Determined by CSP-HPLC after derivatisation of the unreacted starting material 366 by ring opening alcoholysis with MeOH followed by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{c}$ S $^{*}=$ estimated selectivity factor calculated based on the starting material $\mathbf{3 6 6}$ after derivatisation to the product 367 by using the conversion (C) determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis and using the formula: $\mathrm{S}^{*}=\ln \left[(1-\mathrm{C})\left(1-e e_{367}\right)\right]: \ln \left[(1-\mathrm{C})\left(1+e e_{367}\right)\right] .{ }^{d}$ Not determined.

Using the insights gained during the DKR study reported in Chapter 2, we hypothesised that either benzaldehyde (82) or hydrocinnamaldehyde (323) could be excellent coupling partners that would help catalyst 254 in promoting a diastereoselective transformation and thus, improve its catalytic abilities to kinetically resolve (rac)-366 (Table 3.11).

After 7 days of reaction in MTBE, at 48% conversion, in the presence of the resolving agent 244, the starting material 367 was recovered in $64 \% e e$, corresponding to a selectivity factor $S^{*}=10.5($ entry 1 , Table 3.11).

Unfortunately, when aldehydes $\mathbf{8 2}$ or $\mathbf{3 2 3}$ are used as the resolving agent, in both cases, the reaction rate is significantly lowered. Indeed, even though a large excess of aldehyde was employed (0.7-1.0 equivalent, entries 2-3, Table 3.11), the conversion barely reached the unsatisfactory level of 33%, after 10 days reaction, at room temperature. The impractical reaction rate led us to temporarily reconsider the idea of optimising the structure of the resolving agent. Our choice was further motivated by the thought that the introduction of sterically more hindered alkyl chains (compared to a methyl group) would most likely result in slower reactions. Furthermore, the presence of a nitro- functionality on the lactone product resulted in, on several occasions, butyrolactone products that tends to be crystalline and can be subsequently enantioenriched by successive recrystallisation.

3.6 Evaluation of the substrate scope: the racemic nucleophilic component

With an optimised catalyst structure and a synthetically useful protocol in hand, our attention next turned to the important question of the substrate scope with respect to the anhydride pronucleophiles capable of undergoing KR.

Figure 3.13 Investigation of the electronic effects at the aryl moiety of the pronucleophile component: anhydride targets 412-414.

Firstly, we planned to investigate the influence of the electronic effects at the aryl moiety, by evaluating the ability of catalyst $\mathbf{2 5 4}$ to kinetically resolve the racemic
anhydrides 412-414. Our primary objective was to identify the optimal EWG to introduce at the para-position of the aryl moiety in order to subsequently evaluate the scope with respect to the alkyl chain present on the anhydride scaffold (Figure 3.13).

In the second part of this study, after investigating the influence of the electronic effects on the process, we aimed to attempt the KR of anhydrides bearing larger, longer and also bulkier alkyl moieties such as $n-\mathrm{Et}, n-\mathrm{Pr}$ or $i-\mathrm{Pr}$.

As the targeted anhydrides 412-414 are not commercially available, our investigations towards their KR began with their synthesis. The facile preparation of 412-414 is depicted in Scheme 3.10 and Scheme 3.11.

Fischer esterification of the carboxylic acids 307-308 afforded the corresponding ethyl esters 309-310 quantitatively. Then a 2 -step reaction sequence beginning with the synthesis, via a $\mathrm{S}_{\mathrm{N}} 2$ reaction, of the two bis-esters 415-416 (both isolated as a mixture of crude materials with good yields) was followed by their saponification. After workup and upon acidification of the aqueous layer (with conc. HCl), the trans isomers of the bis-acids $\mathbf{4 1 7 - 4 1 8}$ precipitated and were collected by suction filtration as pure materials.

The cyclisations of bis-acids 417-418 leading to 412-413 were mediated by overnight reflux in acetyl chloride as solvent (Scheme 3.10).

Scheme 3.10 Synthesis of anhydrides 412 and 413.

In order to synthesise anhydride 414, we choose to follow an alternative route. During the previous DKR study, when we attempted the saponification reaction of the ethylester derivative of a structural analogue to carboxylic acid 421, we obtained an extensive amount of decomposition and could not isolate the targeted product via the synthetic pathway depicted in Scheme 3.10. Therefore, we inferred that strongly basic conditions were incompatible with manipulation of highly enolisable materials such as the 4-nitro analogue of 419.

Scheme 3.11 Synthesis of anhydride 414.
As a result, we considered safer to avoid using strong basic conditions in our synthesis. Our alternative route relied on the direct nitration of bis-acid $\mathbf{4 2 0}$ affording the anhydride precursor 421, in 26% yield, after a recrystallisation from deionised water. Ring-closure of $\mathbf{4 2 1}$ led to a crude material that was purified by crystallisation, from dry diethyl ether, to afford the analytically pure product 414, in 37\% yield (Scheme 3.11).

Our attention next turned to the evaluation of the ability of the novel sulfamide catalyst 254 to kinetically resolve the anhydrides 412-414 via their cycloaddition, at ambient temperature, to 4-nitrobenzaldehyde (244). The results are reported in Table 3.12.

Table 3.12 Substrate scope: the anhydride pronucleophile component.

| entry | succinate | lactones | t conv. $S^{* b}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | $(367,422-424)$ | $(368 a, 425-427)$ | $(d) \quad(\%)^{a}$ |

$\mathbf{3 6 7} 37 \%$, 64% ee

2

422 31\%, 75\% ee

3

423 35\%, 49\% ee

42434%, 29% ee

368a $40 \%, 19: 1 \mathrm{dr}, 63 \%$ ee (99)

366
4.7

425 39\%, 7:1 dr, 94% ee

260
3.1
$42643 \%, 5: 1 \mathrm{dr}, 55 \%$ ee

$\begin{array}{lll}1 & 60 & 1.9\end{array}$
$\mathbf{4 2 7} 38 \%$, 3:1 dr, 55\% ee
${ }^{a}$ Conversion of 244 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy relative to 4-iodoanisole as an internal standard. ${ }^{b}$ Calculated employing the same formula as in Table 3.2. ${ }^{c}$ Reproduced from Table 3.8.

The data obtained for the reactions carried out with anhydride $\mathbf{3 6 6}$ has been reproduced from Table 3.8 to allow for comparison with the data obtained with the other three anhydrides 412-414 (i.e. entry 1, Table 3.12).

The introduction of a p - Br substituent in the anhydride scaffold (i.e. 412) resulted in dramatically improved reaction rates. After 3 days, the reaction was quenched at 66% conversion and the starting material was recovered as its derivatised opened form 422 in $75 \% e e$, corresponding to a selectivity factor $S^{*}=4.7$. As the reaction was quenched above 50% conversion, the diastereomeric ratio of the corresponding lactones $\mathbf{4 2 5}$ was necessarily diminished, however the main diastereomer was isolated with an excellent enantiomeric excess (7:1 dr, 94% ee, entry 2 , Table 3.12).

The evaluation of other EWGs such as $p-\mathrm{CF}_{3}$ or $p-\mathrm{NO}_{2}$ (i.e. 413-414) led to significantly reduced level of selectivitiy. At 60% conversion, 423-424 were respectively recovered with $49 \% e e$ and $29 \% e e$, corresponding to respective selectivity factors of $S^{*}=3.9$ and $S^{*}=1.9$. We rationalised that the introduction of increasingly stronger EWGs at the para position resulted in faster background reactions, competing with the catalysed processes (entries 3-4, Table 3.12). We attempted two complementary experiments aiming to regain some control over the reaction by lowering the temperature to $-15{ }^{\circ} \mathrm{C}$. Unfortunately, these experiments proved unproductive and resulted in unremarkable levels of control; as nearly identical selectivity factors were obtained ($c a . S^{*}=3.3$ and 1.9 respectively).

The relative stereochemistry of the succinate 367 and the lactone 368a was assigned at an early stage of this study using a combination of ${ }^{1} \mathrm{H}$ NMR Nuclear Overhauser Effect (NOE) experiments. As expected, the succinate 367 exhibited a trans relationship between the methyl and the 2-phenyl substituent. Analysis of the data revealed for lactone 368a a 1,2-cis and 2,3-trans relationship as depicted in Figure 3.14.

$367(1 R, 2 S)$

$\bar{\equiv}$

368a (1S,2S,3S)

Figure 3.14 Absolute configuration assignment of succinate 367 and lactone 368a.

The absolute stereochemistry of 368a was later unambiguously assigned as $(1 S, 2 S, 3 S)$ by X-ray crystallographic analysis of a sample obtained in $>99 \%$ ee (Figure 3.14). The stereochemical configuration of the lactones 425-427 were subsequently assigned as (S, S, S) by analogy to 368a.

The absolute stereochemistry of the recovered starting materials, enantioenriched as their succinate derivatives $\mathbf{3 6 7}$, 422-424 was subsequently assigned as $(1 R, 2 S)$ by comparison to the stereochemistry of $\mathbf{3 6 8 a}$ and with help of a combination of ${ }^{1} \mathrm{H}$ NMR spectroscopic experiments showing a trans stereochemistry (Figure 3.14).

Figure 3.15 Investigation of the steric effects at the alkyl and aryl position of the pronucleophile component: anhydride targets 428-431.

We next investigated the influence of steric hindrance at the alkyl moiety. In light of the results obtained in Table 3.12, we choose to synthesise anhydrides 428-431 without an EWG at the para position of the aryl moiety. Finally, anhydride $\mathbf{4 3 1}$ was designed in order to investigate the influence of different steric bulk using an aryl substituent (Figure 3.15).

Scheme 3.12 Synthesis of anhydrides 428 to $\mathbf{4 3 0}$.

The synthetic pathways adopted in order to achieve the synthesis of the next 4 anhydrides of interest (i.e. 428-431) are identical to those we previously reported for the synthesis of anhydrides 412-413 (Scheme 3.10). These straightforward transformations do not requiere further discussion here. The reaction conditions and yields of each individual step are provided in Scheme 3.12 and Scheme 3.13.

Scheme 3.13 Synthesis of anhydride 431.
With reaction conditions optimised with the sulfamide catalyst 254, and after identifying the optimal EWG at the para position of the anhydride scaffold, our attention reverted to the important question of the substrate scope with respect to the anhydrides capable to be resolved by such catalytic process. The results of the KR attempt at anhydrides 428-431 are reported in Table 3.13.

Beginning with the reaction performed with the anhydrides bearing longer alkyl chains (i.e. 428 and 429, alkyl = ethyl and n-propyl respectively, entries 1-2) we observed similar outcomes. After 5 days, at room temperature, the reactions were quenched at 52% and 54% conversion respectively, and the starting materials were recovered as their derivatised enantioenriched form 432-433 with 65% ee and 69% ee respectively (i.e. $S^{*}=7.6$ and $S^{*}=7.7$). The similarity between the results obtained highlighted the fact that introducing longer alkyl chains on the anhydride does not seam to significantly affect the way the catalyst discriminates between the two faces of the anhydride pronucleophile component. Gratifyingly, these two processes were also accompagnied with the formation of highly functionalised lactone products $\mathbf{4 3 6}$ and 437 with good
stereocontrol. The major product diastereomers of the reactions were isolated with good diastereoselectivity and good levels of enantioselectivity (entries 1-2, Table 3.13).

The last two reactions reported aimed at investigating the influence of steric effects, by either augmenting the steric demand of the anhydrides aryl- or alkyl-substituents. Unfortunately, these two-structural modifications proved rather inefficient. Firstly, in both cases, the reactions proceeded with considerably slower reaction rates. After 6 days, the starting materials 430-431 were recovered as their derivatised enantioenriched form 434-435 with low ee (i.e. $\mathrm{S}^{*}=5.3$ and $\mathrm{S}^{*}=3.3$ respectively). Unsurprisingly, the lactones 438-439 associated to the KR processes were formed with significantly lower level of diastereo- and enantioselectivity (up to 6:1 dr, $51 \% e e$, entries 3-4, Table 3.13).

Table 3.13 Substrate scope: the anhydride pronucleophile component.
entry

1

43234%, 65% ee

2

433 41\%, 69\% ee

434 46\%, 45\% ee

43526%, 32% ee

$5 \quad 52$
7.6

436 43\%, 10:1 dr, 69\% ee

$43742 \%, 9: 1 \mathrm{dr}, 66 \%$ ee

$43834 \%, 6: 1 \mathrm{dr}, 51 \%$ ee

$\begin{array}{lll}6 & 43 & 3.3\end{array}$
$43932 \%, 9: 1 \mathrm{dr}, 47 \%$ ee
$\overline{{ }^{a} \text { Conversion of } 244 \text { was determined by }{ }^{1} \mathrm{H} \text { NMR spectroscopy relative to 4-iodoanisole as an internal }}$ standard. ${ }^{b}$ Calculated employing the same formula as in Table 3.2.

3.7 Conclusion for Chapter 3

In summary, we have demonstrated for the first time in this work that α-alkylated aryl succinic anhydrides can undergo some kinetic resolution (KR) in an organocatalytic fashion in a regio-, diastereo- and enantioselective manner with 4-nitrobenzaldehyde.

We have demonstrated that the process is sensitive to both the steric and electronic properties of the substituents present on the anhydrides. Future work will involve the development and evaluation of novel organocatalysts/resolving agents to achieve full kinetic resolution of the racemic starting materials. At this early stage of the study we have identified two general trends. Firstly, the introduction of EWG at the para positions, increases the enolisability of the anhydride pronucleophiles and leads to faster reactions which were found to be more challenging to control. Secondly, longer alkyl chains do not seem to affect the KR processes while sterically more hindered substituents, dramatically affected the way the catalyst enantiodiscriminates the two faces of the starting material enolates. Under our optimised conditions, the resolved starting materials evaluated in this thesis could be recovered as their opened form - as chiral succinate derivatives - with levels of selectivity up to $S^{*}=10.5$. These processes were accompanied by the concomitant formation of densely functionalised fivemembered α-alkylated lactones (paraconic acid derivatives; γ-butyrolactones) with levels of selectivity over three contiguous stereocentres ranging from moderate to excellent (up to 7:1 dr, $94 \% \mathrm{ee}$).

The stereochemical configuration of the lactones were unambiguously assigned using a combination of ${ }^{1} \mathrm{H}$ NMR Nuclear Overhauser Effect (NOE) experiments and crystal Xray diffraction pattern analysis.

Overall, throughout this project we have identified 8 novel enolisable anhydrides and reacted them with aldehydes, forming 8 novel γ-butyrolactones and allowing for the simultaneous recovery of 8 enantioenriched chiral succinates. To do so we evaluated a library of a total of 36 organocatalysts including 9 specifically designed for the purpose of developing this work. Among these 9 novel catalysts 6 of them constituted the first examples of an ad hoc designed newl class of promising bifunctional hydrogen-bond donor sulfamide organocatalysts capable of engaging multiple hydrogen-bonds with the substrates.

Experimental

4. Experimental procedures and data

4.1 General

Proton Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker DPX 400 MHz and Bruker Avance II 600 MHz spectrometers, using as solvent CDCl_{3}, DMSO- d_{6} or $\mathrm{D}_{2} \mathrm{O}$ and referenced relative to residual $\mathrm{CHCl}_{3}(\delta=7.26 \mathrm{ppm})$ DMSO $(\delta=2.50 \mathrm{ppm})$ or $\mathrm{H}_{2} \mathrm{O}(\delta=4.79 \mathrm{ppm})$. Chemical shifts are reported in ppm and coupling constants (J) in Hertz. Carbon NMR spectra were recorded on the same instruments (100.6 MHz and 150.9 MHz respectively) with total proton decoupling. Fluorine NMR spectra were recorded on the Bruker DPX400 machine (376.5 MHz). HSQC, HMBC, TOCSY NOE and ROESY NMR experiments were used to aid assignment of NMR peaks when required. All melting points are uncorrected. Infrared spectra were obtained on a Perkin Elmer Spectrum 100 FT-IR spectrometer equipped with a universal ATR sampling accessory. ESI mass spectra were acquired using a Waters Micromass LCT- time of flight mass spectrometer (TOF), interfaced to a Waters 2690 HPLC. The instrument was operated in positive or negative mode as required. EI mass spectra were acquired using a GCT Premier Micromass time of flight mass spectrometer (TOF). The instrument was operated in positive mode. Chemical Ionization (CI) mass spectra were determined using a GCT Premier Micromass mass spectrometer in CI mode utilising methane as the ionisation gas. APCI experiments were carried out on a Bruker microTOF-Q III spectrometer interfaced to a Dionex UltiMate 3000 LC or direct insertion probe. The instrument was operated in positive or negative mode as required. Agilent tuning mix APCI-TOF was used to calibrate the system. Flash chromatography was carried out using silica gel, particle size $0.04-0.063 \mathrm{~mm}$. TLC analysis was performed on precoated $60 \mathrm{~F}_{254}$ slides, and visualized by UV irradiation and KMnO_{4} staining. Optical rotation measurements are quoted in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Toluene was distilled over calcium hydride and stored under argon. Anhydrous acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, tetrahydrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were obtained by using Pure Solv MD-4EN Solvent Purification System. Methanol (MeOH) and isopropyl alcohol ($i-\mathrm{PrOH}$) were dried over activated $3 \AA$ molecular sieves. Commercially available anhydrous t-butyl methyl ether (MTBE) was used. Analytical CSP-HPLC was performed on Daicel Chiralpak, AD, AD-H, IA, or Chiralcel OD, OD-

H, OJ-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) columns or ACQUITY UPC2 on chiral Trefoil AMY1, CEL1, CEL2 ($2,5 \mu \mathrm{~m}, 3.0 \times 150 \mathrm{~mm}$) columns.

4.2 Gradient tables for HPLC conditions

Table 4.1

Time (min)	FR (mL/min)	\% A	\% B	Curve
Initial	1.200	97.0	3.0	Initial
4.50	1.200	40.0	60.0	6
6.00	1.200	40.0	60.0	6
6.10	1.200	97.0	3.0	6

Table 4.2

Time (min)	FR (mL/min)	\% A	\% B	Curve
Initial	1.200	97.0	3.0	Initial
8.50	1.200	40.0	60.0	6
10.00	1.200	40.0	60.0	6
10.10	1.200	97.0	3.0	6

Table 4.3

Time (min)	FR (mL/min)	\% A	\% B	Curve
Initial	1.200	99.0	1.0	Initial
8.50	1.200	92.0	8.0	6
10.00	1.200	40.0	60.0	6
10.10	1.200	97.0	3.0	6

Table 4.4

Time (min)	FR (mL/min)	\% A	\% B	Curve
Initial	1.200	99.0	1.0	Initial
4.50	1.200	40.0	60.0	6
8.10	1.200	40.0	60.0	6
8.20	1.200	97.0	3.0	6

4.3 Experimental procedures for Chapter 2

4.3.1 Synthesis of anhydrides: procedures

Scheme 4.1 Synthetic route towards anhydrides 239 and 315-316.

Ethyl 2-phenylacetate (236)

A 250 mL round-bottomed flask containing a stirring bar was charged with phenylacetic acid (235) ($10.00 \mathrm{~g}, 73.45 \mathrm{mmol})$. $\mathrm{EtOH}(100 \mathrm{~mL})$ followed by conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.8 \mathrm{~mL})$ were added, the flask was fitted with a condenser and the resulting mixture was stirred under reflux for 2 h . The solution was cooled to room temperature and concentrated under reduced pressure. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and washed with a saturated NaHCO_{3} solution until basic pH was reached. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, the combined organic fractions were washed with deionised water, dried over MgSO_{4} and the solvent was removed in vacuo to afford 236 pure as a colourless liquid ($10.80 \mathrm{~g}, 65.77 \mathrm{mmol}, 89 \%$). TLC (hexanes:EtOAc, $4: 1 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=$ 0.90 .

Spectral data for this compound were consistent with those in the literature. ${ }^{168}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.36-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3), 4.16(2 \mathrm{H}, \mathrm{q}, J 7.1$, H-5), 3.63 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 1.27 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{H}-6$).

HRMS (m / z - APCI): \quad Found: $165.0900(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}$ Requires: 165.0910.

Diethyl-2,3-diphenylsuccinate (trans-237and cis-237)

trans-237

cis-237

A 250 mL oven dried round-bottomed flask containing a stirring bar was charged with potassium tert-butoxide (tert-BuOK, $5.47 \mathrm{~g}, 48.77 \mathrm{mmol}$). The flask was flushed with argon, then fitted with a septum and placed under an argon atmosphere. Dry THF (80 mL) was added via syringe and the resulting suspension was cooled to $-15^{\circ} \mathrm{C}$. To the resulting suspension, a solution of ethyl 2-phenylacetate (236, $7.62 \mathrm{~g}, 46.45 \mathrm{mmol}$) in dry THF (20 mL) was slowly added and the resulting mixture stirred for 30 min . Immediately after the addition, a cooled solution of iodine ($5.89 \mathrm{~g}, 23.22 \mathrm{mmol}$) in dry THF (50 mL) was slowly added via syringe over a 10 min period (exothermic reaction). After the addition, the flask was allowed to warm up to room temperature and the reaction mixture was stirred for an additional 1 h . The mixture was treated with a saturated solution of sodium thiosulfate until the characteristic iodine colour has completely disappeared. THF was removed under reduced pressure and the remaining aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x} 50 \mathrm{~mL})$. The combined organic extracts were washed with deionised water and dried over MgSO_{4} and the solvent was removed in vacuo to allow the formation of a crude slightly yellow liquid. The crude product was purified by flash chromatography (eluting in gradient from $2 \% \mathrm{EtOAc}$ in hexanes to 5\% EtOAc in hexanes) to afford $237(4.99 \mathrm{~g}, 15.29 \mathrm{mmol}, 66 \%$, combined yield for both diastereoisomers). TLC (hexanes:EtOAc, 90:10 v/v): $\mathrm{R}_{\mathrm{f}}=0.4$ (cis-237) and $\mathrm{R}_{\mathrm{f}}=0.34$ (trans-237).
trans-237:

```
\(\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.14-7.01(10 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2\) and \(\mathrm{H}-3), 4.22(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)\), 4.16 (4 H, q, J 7.1, H-5), 1.20 (6 H, t, J 7.1, H-6).
```

cis-237:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.51-7.27(10 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3), 4.36(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)$, 3.85 (4 H, q, J 7.1, H-5), 0.92 ($6 \mathrm{H}, \mathrm{t}, ~ J 7.1, \mathrm{H}-6$).

HRMS $(\mathrm{m} / \mathrm{z}-\mathrm{ESI}): \quad$ Found: $327.1592(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{4}$ Requires: 327.1591.

2,3-Diphenylsuccinic acid (trans-238)

In a 500 mL round-bottomed flask containing a stirring bar, diester $237(4.00 \mathrm{~g}, 12.26$ $\mathrm{mmol})$ was dissolved in a solution of $\mathrm{KOH}(6.88 \mathrm{~g}, 122.55 \mathrm{mmol})$ in $\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}(200$ $\mathrm{mL}, 50: 50 \mathrm{v} / \mathrm{v})$. The flask was fitted with a condenser and the solution was stirred under reflux for 16 h . The solution was allowed to cool to room temperature. EtOH was removed under reduced pressure and the remaining aqueous solution was washed several times with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was discarded and the aqueous layer was cooled to $0^{\circ} \mathrm{C}$. Acidification with conc. HCl (added dropwise to the aqueous layer until $\mathrm{pH} 1)$ resulted in the precipitation of trans-238. The solid was filtered off and washed with a little warm water, then transferred to a 250 mL round-bottomed flask followed by an addition of $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ to remove residual water. The solvent was removed in vacuo to afford trans-238 ($2.9 \mathrm{~g}, 10.73 \mathrm{mmol}, 87 \%$). M.p. 210-212 ${ }^{\circ} \mathrm{C}$ (Lit., ${ }^{169} 212-214$ ${ }^{\circ} \mathrm{C}$).

Spectral data for this compound were consistent with those in the literature. ${ }^{169}$
trans-238:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad$ 7.16-7.10 $(10 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3), 4.27(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)$.
$v_{\max }$ (neat) $/ \mathrm{cm}^{-1}: \quad 3031(\mathrm{O}-\mathrm{H}), 1692(\mathrm{C}=\mathrm{O}), 1536,1420,1290,1251,1178$, 945, 731, 695.

HRMS (m / z - ESI): \quad Found: $269.0814(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{4}$ Requires: 269.0814.

2,3-Diphenyl-succinic anhydride (trans-239)

A 50 mL oven dried two-neck round-bottomed flask containing a stirring bar was charged with trans-238 ($0.81 \mathrm{~g}, 6.80 \mathrm{mmol}$). The flask was then fitted with a condenser and a septum and flushed with argon. Freshly distilled acetyl chloride (10 mL) was added to the flask via syringe, the flask was flushed for an additional 2 min and then kept under an argon atmosphere. The reaction mixture was heated under reflux for 16 h , and then concentrated in vacuo to give an oil that solidified upon standing at room temperature. The crude product was purified by flash chromatography on a short plug of silica gel (eluting with 50% EtOAc in hexanes) to afford trans-239 ($0.70 \mathrm{~g}, 2.78 \mathrm{mmol}$, 93%) as a pale-yellow solid. M.p. 114-116 ${ }^{\circ} \mathrm{C}$ (Lit., ${ }^{170}$ 115-117 ${ }^{\circ} \mathrm{C}$); TLC (hexanes:EtOAc, 80:20 v / v): $\mathrm{R}_{\mathrm{f}}=0.46$.

Spectral data for this compound were consistent with those in the literature. ${ }^{170}$ trans-239:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad$ 7.3-7.07 $(10 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3), 4.26(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)$.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad$ 2906, 1862, $1772(\mathrm{C}=\mathrm{O}), 1498,1455,1241,1218,1050$, 937, 912, 777, 763, 741, 695, 641, 624, 610.

HRMS (m / z - ESI): \quad Found: $251.0707(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{O}_{3}$ Requires: 251.0708.

Ethyl 2-(4-bromophenyl)acetate (309)

A 250 mL round-bottomed flask containing a stirring bar was charged with 4Bromophenylacetic acid (307, $12.5 \mathrm{~g}, 58.13 \mathrm{mmol})$. EtOH (50 mL) followed by conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.11 \mathrm{~mL})$ were added, the flask was fitted with a condenser and the resulting mixture was stirred under refluxed overnight. The solution was cooled to room temperature and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$, washed with a saturated NaHCO_{3} solution until basic pH was reached. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the combined organic fractions were washed with deionised water, dried over MgSO_{4} and the solvent was removed in vacuo to afford $\mathbf{3 0 9}$ pure as a white solid ($13.41 \mathrm{~g}, 55.16 \mathrm{mmol}, 95 \%$). M.p. $32-34{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 9:1 v / v): $\mathrm{R}_{\mathrm{f}}=0.44$.

Spectral data for this compound were consistent with those in the literature. ${ }^{171}$

$$
\begin{aligned}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 7.43(2 \mathrm{H}, \mathrm{~d}, J 8.4, \mathrm{H}-1), 7.15(2 \mathrm{H}, \mathrm{~d}, \mathrm{~J} 8.4, \mathrm{H}-2), 4.14(2 \\
& \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{H}-4), 3.55(2 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 1.24(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{H}- \\
& \text { 5). }
\end{aligned}
$$

HRMS $(m / z-A P C I): \quad$ Found: $240.9867(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrO}_{2}$ Requires: 240.9869.

2,3-bis(4-Bromophenyl)succinic acid (311)

trans-311

cis-311

A 250 mL oven dried round-bottomed flask containing a stirring bar was charged with potassium tert-butoxide (t-BuOK, $2.91 \mathrm{~g}, 25.92 \mathrm{mmol}$). The flask was flushed with argon, then fitted with a septum and placed under an argon atmosphere. Dry THF (70
mL) was added via syringe and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$. To the resulting suspension, a solution of ethyl 2-(4-bromophenyl)acetate (309, $6.0 \mathrm{~g}, 24.68$ mmol) in dry THF (30 mL) was slowly added and the resulting mixture stirred for 30 min . After 30 min , iodine ($3.13 \mathrm{~g}, 12.34 \mathrm{mmol}$) was added portion wise directly as a solid. The flask was allowed to warm up to room temperature and the reaction mixture was stirred overnight. The mixture was treated with a saturated solution of sodium thiosulfate until the characteristic iodine colour has completely disappeared. THF was concentrated under reduced pressure and the remaining aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with deionised water, dried over MgSO_{4} and the solvent was removed in vacuo to allow the formation of a crude solid that was purified by recrystallisation from boiling ethanol. The recrystallised product was filtered from the mother liquor to afford $311(3.4 \mathrm{~g}, 57 \%$, combined yield for both diastereomers) in a 19:81 (cis:trans) ratio. M.p. $114-116{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 90:10 $v / v)$: $\mathrm{R}_{\mathrm{f}}=0.54($ cis-311 $)$ and $\mathrm{R}_{\mathrm{f}}=0.32($ trans-311).
trans-311:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.29(4 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-1), 6.90(4 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-2), 4.23-4.05$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 4.14 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 1.20 ($6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{H}-5$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 172.3(\mathrm{C}=\mathrm{O}), 134.55(\mathrm{q}), 131.7,129.9,121.6(\mathrm{q}), 61.4,54.1$, 13.96.
cis-311:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.47(4 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-1), 7.35(4 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-2), 4.26(2$ H, s, H-3), 3.94-3.81 (4 H, m, H-4), 0.97 ($6 \mathrm{H}, \mathrm{t}, J 7.2$, H5).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 170.8(\mathrm{C}=\mathrm{O}), 135.1(\mathrm{q}), 131.8,130.1,122.1(\mathrm{q}), 61.1,54.4$, 13.77.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: * \quad 2988,1709,1488,1170,1069,1025,1011,835,757$.
HRMS (m / z - APCI):* Found: $482.9797(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{O}_{4}$ Requires: 482.9801.

* Refers to mixture of trans-311:cis-311 in the ratio 81:19.

2,3-bis(4-Bromophenyl)succinic acid (313)

trans-313

cis-313

In a 250 mL round-bottomed flask containing a stirring bar, $311(3.4 \mathrm{~g}, 7.02 \mathrm{mmol}$, 19:81 (cis:trans) ratio) was dissolved in a solution of $\mathrm{KOH}(6.8 \mathrm{~g}, 121.20 \mathrm{mmol})$ in EtOH: $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL}, 75: 75 \mathrm{v} / \mathrm{v})$. The flask was fitted with a condenser and the solution was stirred under reflux for 16 h . The solution was allowed to cool to room temperature. EtOH was concentrated under reduced pressure and the remaining aqueous solution was washed several times with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was discarded and the aqueous layer was cooled down to $0{ }^{\circ} \mathrm{C}$. Acidification with conc. HCl (until pH 1) resulted in the precipitation of 313. The solid was filtered and washed with a little warm water. The solvent was removed in vacuo to afford $\mathbf{3 1 3}$ ($2.9 \mathrm{~g}, 97 \%$, combined yield for both diastereomers) in a 13:87 (cis:trans) ratio. M.p. $264-266^{\circ} \mathrm{C}$.
trans-313:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right.$): $12.62(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4), 7.36(4 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2, \mathrm{H}-1), 7.13(4 \mathrm{H}, \mathrm{d}$, J 8.2, H-2), 4.20 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 173.9(\mathrm{C}=\mathrm{O}), 136.3(\mathrm{q}), 131.7,131.1,120.8(\mathrm{q}), 53.2$.
cis-313:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 12.62(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4), 7.57(4 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{H}-1), 7.41(4 \mathrm{H}, \mathrm{d}$, J 8.2, H-2), 4.20 (2 H, s, H-3).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right): 172.4(\mathrm{C}=\mathrm{O}), 137.0(\mathrm{q}), 131.9,130.97,121.4(\mathrm{q}), 54.1$.
$v_{\max }$ (neat) $/ \mathrm{cm}^{-1}:^{*} \quad 2898,2571,1701,1488,1404,1281,1074,1011,921,806$.
HRMS (m / z - ESI):* Found: $424.9026(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{O}_{4}$ Requires: 424.9029.

[^3]
3,4-bis(4-Bromophenyl)succinic anhydride (315)

trans-315

cis-315

A 50 mL oven dried two-neck round-bottomed flask containing a stirring bar was charged with 313 ($1.0 \mathrm{~g}, 2.34 \mathrm{mmol}, 13: 87$ (cis:trans) ratio). The flask was then fitted with a condenser and a septum and flushed with argon. Freshly distilled acetyl chloride (10 mL) was added to the flask via syringe, the flask was flushed for an additional 2 min and then kept under an argon atmosphere. The reaction mixture was heated under reflux for 16 h , and then concentrated in vacuo to give a crude solid. The crude product was purified by flash chromatography on a short plug of silica gel (eluting with 50% EtOAc in hexanes) to afford 315 ($592.0 \mathrm{mg}, 62 \%$, combined yield for both diastereomers) in a $36: 64$ (cis:trans) ratio. M.p. $180-182{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, $50: 50 \mathrm{v} / \mathrm{v}): \mathrm{R}_{\mathrm{f}}=0.88$.
trans-315:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.54(4 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{H}-1), 7.08(4 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{H}-2), 4.31$ (2 H, s, H-3).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.1(\mathrm{C}=\mathrm{O}), 132.7,131.9(\mathrm{q}), 129.4,123.25(\mathrm{q}), 54.55$. cis-315:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.32(4 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{H}-1), 7.76(4 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{H}-2), 4.68(2$ H, s, H-3).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.7(\mathrm{C}=\mathrm{O}), 132.1,130.3,130.0(\mathrm{q}), 122.80(\mathrm{q}), 52.2$.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: * \quad 1834,1769,1593,1488,1407,1256,1217,1047,1010$, 935, 815, 761, 667.

HRMS (m / z-ESI):* Found: $406.8917(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{16} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{O}_{3}$ Requires: 406.8923.

* Refers to mixture of trans-315:cis-315 in the ratio 64:34.

Ethyl 2-(4-(trifluoromethyl)phenyl)acetate (310)

A 250 mL round-bottomed flask containing a stirring bar was charged with 4trifluoromethylphenylacetic acid (308) ($5.0 \mathrm{~g}, 24.49 \mathrm{mmol}$). EtOH (50 mL) followed by conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mL})$ were added, the flask was fitted with a condenser and the resulting mixture was stirred under reflux overnight. The solution was cooled to room temperature and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and washed with a saturated NaHCO_{3} solution until basic pH was reached. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 100 \mathrm{~mL})$, and the combined organic fractions were washed with deionised water, and dried over MgSO_{4} and the solvent was removed in vacuo to afford ester $\mathbf{3 1 0}$ pure as a colourless oil that solidified upon standing at room temperature ($5.4 \mathrm{~g}, 23.26 \mathrm{mmol}, 95 \%$). M.p. $34-36{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 9:1 v / v): $\mathrm{R}_{\mathrm{f}}=0.51$.

Spectral data for this compound were consistent with those in the literature. ${ }^{172}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.58(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{H}-1), 7.40(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{H}-2), 4.16(2$ H, q, J 7.1, H-4), $3.67(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 1.26(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{H}-$ 5).

HRMS (m / z - APCI): \quad Found: $231.0646(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}_{2}$ Requires: 231.0638.

Diethyl 2,3-bis(4-(trifluoromethyl)phenyl)succinate (312)

A 250 mL oven dried round-bottomed flask containing a stirring bar was charged with ethyl 2-(4-(trifluoromethyl)phenyl)acetate (310, $3.82 \mathrm{~g}, 16.46 \mathrm{mmol}$). The flask was
flushed with argon, then fitted with a septum and placed under an argon atmosphere. Dry THF (60 mL) was added via syringe and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. Potassium tert-butoxide (tert-BuOK, $1.94 \mathrm{~g}, 17.28 \mathrm{mmol}$) was added portion wise directly as a solid. The solution turned red and was stired for 5 min . After 5 min , iodine $(2.08 \mathrm{~g}, 8.23 \mathrm{mmol})$ was added portion wise directly as a solid, the solution was allowed to warm to room temperature and the reaction mixture was stirred overnight. The mixture was treated with a saturated solution of sodium thiosulfate until the characteristic iodine colour has completely disappeared. THF was removed under reduced pressure and the remaining aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50$ $\mathrm{mL})$. The combined organic extracts were washed with deionised water, and dried over MgSO_{4} and the solvent was removed in vacuo to allow the formation of a crude solid that was purified by recrystallisation from boiling ethanol. The recrystallised product was filtered off from the mother liquor to afford $\mathbf{3 1 2}(2.82 \mathrm{~g}, 74 \%$, combined yield for both diastereomers) in a 1:99 (cis:trans) ratio. M.p. $134-136{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 90:10 v / v): $\mathrm{R}_{\mathrm{f}}=0.5$ (trans-312).
trans-312:

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:*	$\text { 7.64-7.60 (8 H, m, H-1 and H-2), } 4.42 \text { (2 H, s, H-3), 3.95- }$
	3.80 (4 H, m, H-4), 0.92 ($6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{H}-5$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:*	$\begin{aligned} & 170.4(\mathrm{C}=\mathrm{O}), 139.9(\mathrm{q})\left(\mathrm{q},{ }^{5} J_{C-\mathrm{F}} 1.3 \mathrm{~Hz}\right), 130.4(\mathrm{q})\left(\mathrm{q},{ }^{2} J_{C-\mathrm{F}}\right. \\ & 32.8 \mathrm{~Hz}), 128.9,125.6\left(\mathrm{q},{ }^{3} J_{C-\mathrm{F}} 3.8 \mathrm{~Hz}\right), 123.9(\mathrm{q})\left(\mathrm{q},{ }^{1} J_{C-\mathrm{F}}\right. \\ & 272.2 \mathrm{~Hz}), 61.3,54.8,13.6 . \end{aligned}$
$\delta_{\mathrm{F}}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	-62.76.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$:*	$\begin{aligned} & 2988,1159,1615,1327,1216,1159,1104,1071,1019, \\ & 832 . \end{aligned}$
HRMS (m/z-ESI):*	Found: $461.1184(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{O}_{4}$ Requires: 461.1193.

2,3-bis(4-(Trifluoromethyl)phenyl)succinic acid (314)

trans-314

cis-314

In a 250 mL round-bottomed flask containing a stirring bar, $\mathbf{3 1 2}(1.5 \mathrm{~g}, 3.24 \mathrm{mmol}, 1: 99$ (cis:trans) ratio) was dissolved in a solution of $\mathrm{KOH}(3.0 \mathrm{~g}, 53.47 \mathrm{mmol})$ in $\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}$ ($100 \mathrm{~mL}, 50: 50 \mathrm{v} / \mathrm{v}$). The flask was fitted with a condenser and the solution was stirred under reflux for 16 h . The solution was allowed to cool to room temperature. EtOH was removed under reduced pressure and the remaining aqueous solution was washed several times with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was discarded and the aqueous layer was cooled to $0^{\circ} \mathrm{C}$. Acidification with conc. HCl (added dropwise to the aqueous layer until $\mathrm{pH} 1)$ resulted in the precipitation of diacid 314. The solid was filtered off and washed with a little warm water, then transferred to a 250 mL round-bottomed flask followed by an addition of $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ to remove residual water. The solvent was removed in vacuo to afford 314 ($1.03 \mathrm{~g}, 78 \%$, combined yield for both diastereomers) in a 13:87 (cis:trans) ratio. The mixture was further purified by recrystallisation from boiling water to afford analytically pure trans-314. M.p. 194-200 ${ }^{\circ} \mathrm{C}$.

trans-314:

$\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d 6): 12.79 ($2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4$), 7.52 (4 H, d, J 8.2, H-1), 7.44 (4 H, d, J 8.2, H-2), 4.44 (2 H, s, H-3).

$$
\begin{aligned}
\delta_{\mathrm{C}}(100 \mathrm{MHz}, \text { DMSO-d } & \text {): } \\
& 173.6(\mathrm{C}=\mathrm{O}), 141.5(\mathrm{q}), 129.80,128.2(\mathrm{q})\left(\mathrm{q},{ }^{2} J_{C-\mathrm{F}} 31.9 \mathrm{~Hz}\right), \\
& 125.6\left(\mathrm{q},{ }^{3} J_{C-\mathrm{F}} 3.7 \mathrm{~Hz}\right), 124.5(\mathrm{q})\left(\mathrm{q},{ }^{1} J_{C-\mathrm{F}} 271.8 \mathrm{~Hz}\right), 53.5 .
\end{aligned}
$$

$\delta_{\mathrm{F}}\left(376.5 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right):-61.1$
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2984,1773,1705,1619,1417,1320,1162,1119,1068$, 1019, 925, 828.

HRMS (m / z - ESI): \quad Found: $405.0567(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{O}_{4}$ Requires: 405.0567.

2,3-bis(4-(Trifluoromethyl)phenyl)succinic anhydride (316)

trans-316
A 50 mL oven dried two-neck round-bottomed flask containing a stirring bar was charged with trans-314 ($220.0 \mathrm{mg}, 0.54 \mathrm{mmol}$). The flask was then fitted with a condenser and a septum and flushed with argon. Freshly distilled acetyl chloride (10 mL) was added to the flask via syringe, the flask was flushed for an additional 2 min and then kept under an argon atmosphere. The reaction mixture was heated under reflux for 16 h , and then concentrated in vacuo to provide pure trans- $\mathbf{3 1 6}$ ($124.0 \mathrm{mg}, 59 \%$). The product was used without further purification. M.p. $140-142{ }^{\circ} \mathrm{C}$.
trans-316:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.69(4 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-1), 7.36(4 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-2), 4.49(2$ H, s, H-3).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.7(\mathrm{C}=\mathrm{O}), 136.6(\mathrm{q}), 131.5(\mathrm{q})\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 33.0 \mathrm{~Hz}\right), 128.3$, $126.6\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 3.7 \mathrm{~Hz}\right), 123.5(\mathrm{q})\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}} 272.5 \mathrm{~Hz}\right), 54.6$.
$\delta_{\mathrm{F}}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad-62.96$.
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad 1846,1774,1622,1422,1322,1259,1224,1165,1109$, 1044, 1020, 938, 832, 756, 659, 593.

HRMS (m / z - ESI): \quad Found: $387.0467(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{18} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{O}_{3}$ Requires: 387.0461.

Scheme 4.2 Synthetic route towards anhydride 322.

2-(4-Nitrophenyl)acetic acid (318)

In a 250 mL round-bottomed flask containing a stirring bar, concentrated sulfuric acid $(20 \mathrm{~mL})$ was added to deionised water (20 mL) followed by 4-nitrophenylacetonitrile ($\mathbf{3 1 7}, 6.6 \mathrm{~g}, 40.70 \mathrm{mmol}$) added portion wise directly as a solid. The flask was fitted with a condenser and the resulting suspension was refluxed for 1 h , diluted with 20 mL of deionised water, and cooled to $0^{\circ} \mathrm{C}$ when colourless crystalline solid separated. The solid was filtered off, washed with ice-cold water to remove traces of acid and dried to yield acid $\mathbf{3 1 8}$ as a light-yellow solid ($7.18 \mathrm{~g}, 97 \%$). M.p. $140-142{ }^{\circ} \mathrm{C}$ (lit., ${ }^{173}$ M.p. 153$155^{\circ} \mathrm{C}$).

Spectral data for this compound were consistent with those in the literature. ${ }^{173}$
$\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d 6): $10.06(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4), 8.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{H}-1)$, $7.55(2 \mathrm{H}, \mathrm{d}$, J 8.7, H-2), 3.77 (2 H, s, H-3).
$\delta_{\mathrm{C}}(100 \mathrm{MHz}, \text { DMSO-d })_{6}$: $172.2(\mathrm{C}=\mathrm{O}), 146.8(\mathrm{q}), 143.5(\mathrm{q}), 131.2,123.6,40.6$.

HRMS (m / z - ESI): \quad Found: $180.0297(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}_{4}$ Requires: 180.0302.

tert-Butyl 2-(4-nitrophenyl)acetate (319)

To a solution of acid $\mathbf{3 1 8}(5 \mathrm{~g}, 27.6 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$, dry pyridine (11 mL , 138.0 mmol) and t-BuOH ($25.9 \mathrm{~mL}, 276.0 \mathrm{mmol}$) were added followed by $\mathrm{POCl}_{3}(3.3$ $\mathrm{mL}, 36.0 \mathrm{mmol}$) dropwise over 2 min . After 5 h , the reaction mixture was poured into a solution of ice containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and of HCl solution ($2.0 \mathrm{M}, 10 \mathrm{~mL}$). The aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x} 50 \mathrm{~mL})$. The combined organic extracts were washed with brine, and deionised water, and dried over MgSO_{4}, the solvent was removed in vacuo and the residue was purified by flash column chromatography, eluting in gradient from 100% hexanes to 10% EtOAc in hexanes to yield ester 319 as a yellow liquid ($5.9 \mathrm{~g}, 90 \%$). TLC (hexanes:EtOAc, 9:1 v / v): $\mathrm{R}_{\mathrm{f}}=$ 0.38 .

Spectral data for this compound were consistent with those in the literature. ${ }^{174}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.18(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-1), 7.44(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-2), 3.63$ (2 $\mathrm{H}, \mathrm{s}, \mathrm{H}-3), 1.44$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.3(\mathrm{C}=\mathrm{O}), 146.9(\mathrm{q}), 142.2(\mathrm{q}), 130.2,123.4,81.4(\mathrm{q})$, 42.1, 27.8 .

HRMS (m / z - ESI): \quad Found: $236.0923(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{4}$ Requires: 236.0928.

Di-tert-butyl-2,3-bis(4-nitrophenyl)succinate (trans-320)

A 250 mL oven dried round-bottomed flask containing a stirring bar was charged with tert-butyl 2-(4-nitrophenyl)acetate (319, $3.0 \mathrm{~g}, 12.6 \mathrm{mmol}$). The flask was flushed with argon, then fitted with a septum and placed under an argon atmosphere. Dry THF (50 mL) was added via syringe and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. Potassium tert-butoxide (tert-BuOK, $1.48 \mathrm{~g}, 13.3 \mathrm{mmol}$) was added portion wise directly as a solid. The mixture turned red and was stired for 5 min . After 5 min , iodine ($1.59 \mathrm{~g}, 6.3$ mmol) was added portion wise directly as a solid, the solution was allowed to warm up to room temperature and the reaction mixture was stirred overnight. The mixture was treated with a saturated solution of sodium thiosulfate until the characteristic iodine colour has completely disappeared. THF was removed under reduced pressure and the remaining aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with deionised water, and dried over MgSO_{4} and the solvent was removed in vacuo to allow the formation of a crude solid that was triturated with cold $\mathrm{Et}_{2} \mathrm{O}$. The solid was filtered from $\mathrm{Et}_{2} \mathrm{O}$ to afford trans-320 (2.58 g, 86\%) as a single pure product diastereomer. M.p. $156-158{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 90:10 v / v): $\mathrm{R}_{\mathrm{f}}=0.27$ (trans-320).
trans-320:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.03(4 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-1), 7.21(4 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-2), 4.22(2$ H, s, H-3), 1.40 ($18 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 170.4(\mathrm{C}=\mathrm{O}), 147.3(\mathrm{q}), 143.0(\mathrm{q}), 128.98,123.9,82.5(\mathrm{q})$, 55.4, 27.7.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2980,1721,1517,1346,1147,1109,847,785,748,696$.

HRMS $(m / z-E S I): \quad$ Found: $471.1470(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{8}$ Requires: 471.1767.

2,3-Bis(4-nitrophenyl)succinic acid (321)

trans-321

cis-321

A 250 mL round-bottomed flask containing a magnetic stirring bar was charged with diester $\mathbf{3 2 0}$ ($1.39 \mathrm{~g}, 2.9 \mathrm{mmol}$). HPLC grade $\mathrm{CHCl}_{3}(40 \mathrm{~mL})$, followed by trifluoracetic acid (TFA, 26 mL) were then added via syringe. The flask was fitted with a condenser and the reaction mixture was heated at reflux temperature for 24 h and then cooled to room temperature. The volatiles were removed in vacuo to afford diacid $\mathbf{3 2 1}$ as a white solid ($1.0 \mathrm{~g}, 95 \%$) in a 19:81 (cis:trans) ratio. M.p. $>200^{\circ} \mathrm{C}$ (decomposition).
trans-321:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): * 8.01(4 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-1), 7.53(4 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-2), 4.57$ (2 $\mathrm{H}, \mathrm{s}, \mathrm{H}-3)$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right): 177.9(\mathrm{C}=\mathrm{O}), 152.3(\mathrm{q}), 151.8,149.8(\mathrm{q}), 149.1,58.0$. cis-321:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right.$) : * 8.25 (4 H, d, J 8.6, H-1), 7.78 (4 H, d, J 8.6, H-2), 4.55 (2 H, s, H-3).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right): 176.4(\mathrm{C}=\mathrm{O}), 135.1,135.0(\mathrm{q}), 128.9(\mathrm{q}), 128.7,58.96$.

* The protic signal (H-4) is not visible in DMSO-d 6 .
$\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: * * \quad 2860,1710,1604,1519,1424,1348,1301,1110,903,856$, 838, 735, 706, 692.

HRMS (m / z - ESI): ${ }^{* *} \quad$ Found: $359.0519(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{8}$ Requires: 359.0515.
** Refers to mixture of trans-321:cis-321 in the ratio 81:19.

2,3-Bis(4-nitrophenyl)succinic anhydride (322)

A 25 mL oven dried two-neck round-bottomed flask containing a stirring bar was charged with diacid 321 ($500.0 \mathrm{mg}, 1.39 \mathrm{mmol}, 19: 81$ cis:trans ratio). The flask was then fitted with a condenser and a septum and flushed with argon. Freshly distilled acetyl chloride (5 mL) was added to the flask via syringe, the flask was flushed for an additional 2 min and then kept under an argon atmosphere. The reaction mixture was heated under reflux for 16 h , and then concentrated in vacuo. The crude solid was triturated with dry $\mathrm{Et}_{2} \mathrm{O}$, filtered and dried under high vacuum to afford trans-anhydride 322 ($381.1 \mathrm{mg}, 80 \%$) as a single diastereomer. M.p. $126-130{ }^{\circ} \mathrm{C}$.
trans-322:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.27(4 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}-1), 7.45(4 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}-2), 4.61(2$ $\mathrm{H}, \mathrm{s}, \mathrm{H}-3$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 167.7(\mathrm{C}=\mathrm{O}), 148.4(\mathrm{q}), 139.0(\mathrm{q}), 129.0,124.8,54.3$.
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad 1863,1782,1604,1517,1345,1206,1045,932,692,690$, 769, 841.

HRMS (m / z - ESI): \quad Found: $341.0413(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{7}$ Requires: 341.0410.

4.3.2 Synthesis of catalysts: procedures

Scheme 4.3 Synthesis of the catalyst precursors 260 and 263.

Tris(4-(trifluoromethyl)phenyl)methanol (289)

A 100 mL oven dried three-neck round-bottomed flask containing a stirring bar was charged with methyl 4-bromobenzotrifluoride (287, $5.8 \mathrm{~g}, 25.72 \mathrm{mmol}$). Anhydrous diisopropyl ether (30 mL) was then added via syringe and the solution was cooled to -10 ${ }^{\circ} \mathrm{C}$. A solution of n-butyl lithium (1.6 M in hexanes, $17.6 \mathrm{~mL}, 28.17 \mathrm{mmol}$) was added dropwise via syringe and the reaction was stired for 30 min . A solution of methyl 4(trifluoromethyl)benzoate (288, $2.5 \mathrm{~g}, 12.25 \mathrm{mmol}$) in dry diisopropyl ether (5 mL) was added dropwise via syringe at $-10^{\circ} \mathrm{C}$ and the resulting solution was allowed to come back to room temperature and stirred for 16 h . The reaction mixture was then quenched with cold water, acidified with aqueous $\mathrm{HCl}(2.0 \mathrm{~N})$, and extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo to afford a residue that was purified by flash column chromatography (hexanes:EtOAc, 95:5 v / v) furnishing alcohol 289 (5.34 g , 94%) as a light yellow solid. M.p. $88-90{ }^{\circ} \mathrm{C}$ (lit., ${ }^{175}$ M.p. $92-93{ }^{\circ} \mathrm{C}$); TLC (hexanes:EtOAc, $95: 5 v / v$): $\mathrm{R}_{\mathrm{f}}=0.19$.

Spectral data for this compound were consistent with those in the literature. ${ }^{175}$

```
\deltaH
    H, bs, H-3).
```



```
    3.6 Hz), 123.8 (q) (q, '1 JC-F 272.2 Hz), 81.3 (q).
\delta ( }376.5\textrm{MHz},\mp@subsup{\textrm{CDCl}}{3}{}): -62.7
v max (neat)/cm }\mp@subsup{}{}{-1}:\quad3460,2108,1617,1322,1162,1114,1068,1016, 832.
HRMS (m/z - ESI): Found: 463.0745 (M-H)- C C22 H12 OF9 Requires: 463.0744.
```


4,4',4'-(Azidomethanetriyl)tris((trifluoromethyl)benzene) (292)

A 250 mL oven dried three-neck round-bottomed flask containing a stirring bar was charged with alcohol 289 ($5.08 \mathrm{~g}, 10.94 \mathrm{mmol}$). Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(110 \mathrm{~mL}-0.1 \mathrm{M})$ was then added via syringe and the solution was cooled to $-10^{\circ} \mathrm{C}$. Triflic acid $(1.06 \mathrm{~mL}$, 12.03 mmol) was added via syringe and the reaction was stired for 15 min (Caution: triflic acid is a highly corrosive liquid and should be handled very carefully). Trimethylsilyl azide ($1.6 \mathrm{~mL}, 12.03 \mathrm{mmol}$) was added dropwise via syringe at $-10^{\circ} \mathrm{C}$ and the resulting solution was allowed to come back to room temperature and stirred for 30 min . After complete disappearance of the starting material (monitored by TLC, ≈ 30 min), the reaction mixture was poured in a large beaker containing crushed ice $(\approx 200$ g). The product was extracted with dichloromethane ($4 \times 50 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo to afford a residue that was purified by flash column chromatography eluting in gradient from 100% hexanes to 5% EtOAc in hexanes to isolate azide $292(5.20 \mathrm{~g}, 97 \%)$ as a white solid. M.p. $70-72{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, $95: 5 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.89$.

```
\deltaH
\deltaC (100 MHz, CDCl )
    3.7 Hz), 123.7 (q) (q, }\mp@subsup{}{}{1}\mp@subsup{J}{C-F}{}272.8 Hz), 75.8(q)
\deltaF (376.5 MHz, CDCl 3): -62.8.
v max (neat)/\mp@subsup{cm}{}{-1}: 2106, 1615,1412, 1321,1253,1164, 1112, 1068, 829, 600.
HRMS (m/z - APCI): Found: 462.0898 (M-N N ) + C C22 H12F9N N Requires: 462.0898.
```


Tris(4-(trifluoromethyl)phenyl)methanamine (293)

A 100 mL oven dried round-bottomed flask containing a stirring bar was charged with azide 292 ($4.24 \mathrm{~g}, 8.92 \mathrm{mmol}$), activated zinc powder ($2.33 \mathrm{~g}, 35.68 \mathrm{mmol}$) and ammonium formate ($2.25 \mathrm{~g}, 35.68 \mathrm{mmol}$). Dry MeOH ($35.7 \mathrm{~mL}-0.25 \mathrm{M}$) was added via syringe and the reaction mixture was stired at room temperature (N_{2} gaz was observable almost immediately), under argon until completion of the reaction (approx. 1 h , monitored by TLC). After the completion of the reaction, the reaction mixture was filtered through a Celite pad, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then the combined filtrates were evaporated under vacuum. The residue was taken into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed twice with a saturated brine solution and finally with deionised water. The organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo to afford a residue that was purified by flash column chromatography eluting in gradient from 100% hexanes to 30% EtOAc in hexanes to isolate 293 ($3.57 \mathrm{~g}, 86 \%$) as a white solid. M.p. $82-84{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 70:30 v / v): $\mathrm{R}_{\mathrm{f}}=0.64$.

```
\deltaн (400 MHz, CDCl}3): 7.59 (6 H, d, J 8.3, H-1), 7.43 (6 H, d, J 8.3, H-2), 2.31 (2
    H, bs, H-3).
```



```
    3.7 Hz), 123.9(q)(q, }\mp@subsup{}{}{1}\mp@subsup{J}{C-F}{}272.0 Hz), 66.1 (q).
\deltaF (376.5 MHz, CDCl ): -62.6.
vmax (neat)/cm }\mp@subsup{}{}{-1}:\quad1616,1408,1322,1159,1113,1068,1014, 844, 823, 601.
HRMS (m/z-ESI): Found: 462.0901 (M-H)- C22 H13NF9 Requires: 462.0904.
```


3,4-Dimethoxycyclobut-3-ene-1,2-dione (77)

A 100 mL round-bottomed flask containing a magnetic stirring bar under argon atmosphere was charged with squaric acid (76, $4.00 \mathrm{~g}, 35.07 \mathrm{mmol}$). Dry MeOH (40 mL), followed by trimethyl orthoformate ($\mathbf{2 6 4}, 11.5 \mathrm{~mL}, 105.2 \mathrm{mmol}$) and TFA (536.8 $\mu \mathrm{L}, 7.01 \mathrm{mmol}-20 \mathrm{~mol} \%$), were then added via syringe. The flask was fitted with a condenser and the reaction mixture was heated at reflux temperature for 48 h and then cooled to room temperature. The volatiles were removed in vacuo and the residue obtained was purified by flash column chromatography (hexanes:EtOAc, 2:1 v / v) to give 77 as a white solid ($4.1 \mathrm{~g}, 84 \%$). M.p. $52-54{ }^{\circ} \mathrm{C}$ (lit., ${ }^{176}$ M.p. $52-54{ }^{\circ} \mathrm{C}$); TLC (hexanes:EtOAc, 2:1 v / v): $\mathrm{R}_{\mathrm{f}}=0.21$.

Spectral data for this compound were consistent with those in the literature. ${ }^{176}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 4.36(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-1)$.

3-Methoxy-4-(tritylamino)cyclobut-3-ene-1,2-dione (266)

A 25 mL sample vial containing a magnetic stirring bar was charged with 3,4-dimethoxycyclobut-3-ene-1,2-dione (77, $1.02 \mathrm{~g}, 7.2 \mathrm{mmol}$) and tritylamine ($\mathbf{2 6 5}, 1.87 \mathrm{~g}$, 7.2 mmol). To the mixture of solids, dry MeOH (approx. 5 mL - the yield of the reaction is highly concentration dependant) was added via syringe. The resulting suspension was stirred at room temperature for 96 h . The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ with an ice bath and the precipitate was filtered, washed with cold MeOH before being dried under high vacuum to yield 266 as a white solid (1.21 g , 46%). M.p. $196-198^{\circ} \mathrm{C}$. TLC (hexanes:EtOAc, $2: 1 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.3$.

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	7.35-7.31 ($9 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-5$), 7.11-7.08 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 6.79 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-2$), 3.79 ($3 \mathrm{H}, \mathrm{bs}, \mathrm{H}-1$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	$\begin{aligned} & 189.2(\mathrm{q}), 184.5(\mathrm{C}=\mathrm{O}), 178.1(\mathrm{C}=\mathrm{O}), 172.4(\mathrm{q}), 143.7(\mathrm{q}), \\ & 128.7,128.3,127.9,73.0(\mathrm{q}), 59.8 . \end{aligned}$
$v_{\text {max }}$ (neat)/ $/ \mathrm{cm}^{-1}$:	$\begin{aligned} & 3380,3283,3023,2961,1803,1701,1593,1490,1442 \text {, } \\ & 1361,1058,1002,899,831,752,698 . \end{aligned}$
HRMS ($m / z-\mathrm{ESI}$)	Found: $\quad 392.1267 \quad(\mathrm{M}+\mathrm{Na})^{+} \quad \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}$ Requires: 392.1263.

3-Methoxy-4-((tris(4-(trifluoromethyl)phenyl)methyl)amino)cyclobut-3-ene-1,2dione (294)

A 25 mL sample vial containing a magnetic stirring bar was charged with 3,4-dimethoxycyclobut-3-ene-1,2-dione (77, $460 \mathrm{mg}, 3.24 \mathrm{mmol}$) and amine $293(1.50 \mathrm{~g}$, 3.24 mmol). To the mixture of solids, dry MeOH (approx. 3-4 mL - the yield of the reaction is highly concentration dependant) was added via syringe. The resulting suspension was stirred at room temperature for 12 days. After 12 days, the solvent was removed under vacuum and the residue was purified by flash column chromatography eluting in gradient from $20 \% \mathrm{EtOAc}$ in hexanes to $30 \% \mathrm{EtOAc}$ in hexanes to isolate amido ester 294 ($572.2 \mathrm{mg}, 31 \%$) as a white solid. M.p. $94-98{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 70:30 v / v): $\mathrm{R}_{\mathrm{f}}=0.43$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.65(6 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}-4), 7.27(6 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}-3), 6.90(1$ $\mathrm{H}, \mathrm{bs}, \mathrm{H}-2), 3.85(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-1)$.

```
\deltaC (100 MHz, CDCl )
```



```
                                    272.4 Hz), 72.1 (q), 60.1).
\deltaF (376.5 MHz, CDCl 3): -62.8.
vmax (neat)/cm-1: }\quad1804,1708,1591,1708,1522,1449,1362,1321, 1164
    1114, 1069, 1016, 834, 823, 612.
HRMS (m/z - ESI): Found: 572.0912 (M-H)- C C27H15NO3F9 Requires: 572.0908.
```


(R)-(6-Methoxy-2-phenylquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2yl)methanol - C-2 phenyl derived quinine (267)

An oven dried 500 mL round-bottomed flask containing a magnetic stirring bar was charged with quinine ($\mathbf{6 1}, 6.48 \mathrm{~g}, 20.0 \mathrm{mmol}$), fitted with a septum and placed under an argon atmosphere. Anhydrous THF (120 mL) was added via syringe and the resulting suspension was cooled to $-15^{\circ} \mathrm{C}$. A solution of phenyllithium (1.8 M in THF, 33.3 mL , 59.9 mmol) was added via syringe to the vigorously stirred suspension and the reaction mixture was stired at $-15^{\circ} \mathrm{C}$ for 30 min then warmed to room temperature and stired for 3 h . Acetic acid (15 mL) was added dropwise via syringe to the reaction mixture at 0 ${ }^{\circ} \mathrm{C}$, followed by water (50 mL) and $\mathrm{EtOAc}(50 \mathrm{~mL})$. The reaction mixture was then warmed to room temperature and iodine was added in several portions to the stirred mixture until the appearance of a persistent deep brown colouration. A solution of sodium thiosulfate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, 3.00 \mathrm{~g}\right)$ in water (50 mL), followed by a concentrated solution of aqueous ammonia ($35 \%, 30 \mathrm{~mL}$) were added and the mixture was stired for 10 min . The organic phase was then washed with brine and the aqueous phase extracted
with dichloromethane ($4 \times 50 \mathrm{~mL}$), the combined organic extracts were dried over anhydrous MgSO_{4}, filtered and the solvent removed in vacuo. The crude oily residue was purified by flash column chromatography (hexanes:EtOAc:MeOH:Et ${ }_{3} \mathrm{~N}$, 8:1:0.5:0.5) to obtain the 2-phenyl derivative $267(3.6 \mathrm{~g}, 45 \%)$ as a white solid. M.p. 144-146 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{83}$ M.p. $151{ }^{\circ} \mathrm{C}$). TLC (hexanes:EtOAc:MeOH:Et ${ }_{3} \mathrm{~N}, 7: 1: 1.5: 0.5$): $\mathrm{R}_{\mathrm{f}}=$ 0.35 .

Spectral data for this compound were consistent with those in the literature. ${ }^{83}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\quad 8.07(2 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-5), 8.02(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-4), 7.94(1$ H, s, H-1), 7.45 (2 H, app. t, H-6), 7.39 (1 H , app. t, H-7), 7.28 (1 H , app. d, J 8.6, H-3), 7.14 (1 H , app. d, H-2), 5.73$5.64(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-16)$, 4.96-4.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-17$), 3.84 (3 H, s, H-18), 3.66-3.55 (1 H, m, H-14a), 3.16-3.10 (2 $\mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-10 \mathrm{~b}$), 2.78-2.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10 \mathrm{a}$ and $\mathrm{H}-$ 14b), 2.36-2.27 (1 H, m, H-11), 1.86-1.73 (3 H, m, H-12, H13 b and $\mathrm{H}-15 \mathrm{~b})$, 1.58-1.46 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{a}$ and $\mathrm{H}-15 \mathrm{a}$).

HRMS (m / z-ESI): \quad Found: $401.2227(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}$ Requires: 401.2229.

* The protic signal $(\mathrm{H}-19)$ is not visible in CDCl_{3}.

General procedure I: General procedure for the preparation of 9-epi-aminederivatives (3.HCl salts) of quinine (279) and C-2 phenyl quinine (268).

A 500 mL oven-dried round bottom flask was charged with triphenylphosphine (1.2 equiv.) and the appropriate alkaloid (1 equiv.), placed under an argon atmosphere and fitted with a septum. Dry THF (150 mL) was added via syringe and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$. Diisopropyl azodicarboxylate (DIAD, 1.2 equiv.) was added dropwise via syringe followed by diphenylphosphoryl azide (DPPA, 1.2 equiv.) and the resulting mixture was allowed to warm up to room temperature. After stirring for 16 h , the solution was heated to $50^{\circ} \mathrm{C}$ for 2 h . Triphenylphosphine (1.2 equiv.) was then added and heating was maintained for 2 h . After cooling the solution to ambient temperature, water (15 mL) was added and the mixture was stirred for 4 h . The reaction was then concentrated in vacuo and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and $\mathrm{HCl}(2$
$\mathrm{N}, 60 \mathrm{~mL})$. The aqueous phase was separated and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The aqueous layer was then concentrated under reduced pressure and the crude product was recrystallised from EtOAc and MeOH or EtOH .

(S)-(6-Methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-

 yl)methanamine•3HCl (279)

Prepared according to general procedure I, using quinine (61, $8.16 \mathrm{~g}, 9.25 \mathrm{mmol}$). The crude product was recrystallised from EtOH to obtain $\mathbf{3 H C l} \cdot \mathbf{2 7 9}(8.9 \mathrm{~g}, 82 \%)$ as a yellow solid. M.p. $216-218{ }^{\circ} \mathrm{C}$, decomposition (lit., ${ }^{177}$ M.p. $220-222{ }^{\circ} \mathrm{C}$).

Spectral data for this compound were consistent with those in the literature. ${ }^{177}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$: $^{*} \quad 9.08(1 \mathrm{H}, \mathrm{d}, J 5.8, \mathrm{H}-1), 8.30(1 \mathrm{H}, \mathrm{d}, J 9.4, \mathrm{H}-5), 8.26(1$ H, d, J 5.8, H-2), 7.92 ($1 \mathrm{H}, \mathrm{dd}, J$ 2.4, 9.4, H-4), 7.86 (1 H , bs, H-3), 5.88 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14$), 5.8 ($1 \mathrm{H}, \mathrm{d}, ~ J 10.6, \mathrm{H}-6$), 5.28-5.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$), 4.50-4.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 4.12 (3 H, s, H-16), 4.08-3.97 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$), $3.86(1 \mathrm{H}, \mathrm{dd}, J$ 10.6, 13.4, H-8b), 3.65-3.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-12 \mathrm{~b}$), 2.982.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 2.14-2.03 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{H}-11 \mathrm{a}$ and $\mathrm{H}-$ 11b), 1.91-1.85 (1 H, m, H-13b), 1.18-1.12 (1 H, m, H-13a).

HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{APCI}$): \quad Found: $324.2068(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}$ Requires: 324.2070.

* The protic signal ($\mathrm{H}-17$) is not visible in $\mathrm{D}_{2} \mathrm{O}$.
(S)-(6-Methoxy-2-phenylquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2yl)methanamine 3 HCl (268)

Prepared according to general procedure I, using C-2 phenyl quinine (267, $2.9 \mathrm{~g}, 7.25$ mmol). The crude product was recrystallised from EtOAc and MeOH to obtain 3HCl$\cdot 268$ ($3.1 \mathrm{~g}, 84 \%$) as a yellow solid. M.p. $195-200^{\circ} \mathrm{C}$, decomposition.

Spectral data for this compound were consistent with those in the literature. ${ }^{83}$
$\delta_{\mathrm{H}}(600 \mathrm{MHz}$, DMSO-d $)$): $8.85(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 8.36(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-5), 8.14(1 \mathrm{H}, \mathrm{d}, J$ 9.1, H-4), 7.84 ($1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{H}-3$), 7.59-7.50 (4 H, m, H-4, H-6 and H-7), 5.90-5.84 (2 H, m, H-8 and H-16), 5.28 (1 H , d, $J 17.3, \mathrm{H}-17$), $5.11(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{H}-17), 4.83-4.79(1 \mathrm{H}$, m, H-9), 4.20-4.16 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14 \mathrm{a}$), 4.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18$), 3.76-3.72 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10 \mathrm{~b}$), 3.39-3.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10 \mathrm{a}$ and H-14b), 2.79-2.73 (1 H, m, H-11), 1.91-1.82 (3 H, m, H-12, $\mathrm{H}-13 \mathrm{a}$ and $\mathrm{H}-13 \mathrm{~b}$), 1.56-1.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{~b}$), 0.94-0.90 (1 $\mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{a}$).

HRMS $\left(\mathrm{m} / \mathrm{z}\right.$ - ESI): \quad Found: $400.2391(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}$ Requires: 400.2389.

3-(((S)-(6-Methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-
 yl)methyl)amino)-4-(tritylamino)cyclobut-3-ene-1,2-dione (259)

A 25 mL oven dried round-bottomed flask containing a stirring bar was charged with 279 ($1.10 \mathrm{~g}, 3.42 \mathrm{mmol}$) and 266 ($1.26 \mathrm{~g}, 3.42 \mathrm{mmol}$). Dry MeOH ($6.8 \mathrm{~mL}-0.5 \mathrm{M}$) was added via syringe and the reaction mixture was placed under an argon atmosphere. The solution was stired at room temperature for 72 h . The solvent was removed in vacuo and the residue was purified by flash column chromatography (hexanes:EtOAc:MeOH:Et ${ }_{3} \mathrm{~N}, 70: 20: 5: 5 \mathrm{v} / \mathrm{v}$) furnishing 259 as a white solid (1.79 g , 79%). M.p. $160-162{ }^{\circ} \mathrm{C}$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 95: 5 v / v\right): \mathrm{R}_{\mathrm{f}}=0.19 ;[\alpha]_{\mathrm{D}}^{20}=+41.8(c=$ $\left.0.10, \mathrm{CHCl}_{3}\right)$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.62(1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{H}-1), 8.01(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{H}-5), 7.57-7.49$
($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-3$), 7.39 ($1 \mathrm{H}, \mathrm{dd}, J$ 2.6, 9.2, H-4), 7.20-7.12 (9 $\mathrm{H}, \mathrm{m}, \mathrm{H}-18$ and H-19), 7.03-6.98 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-17$), $6.56(1 \mathrm{H}$, bs, H-2), $6.49(1 \mathrm{H}, \mathrm{bs}, \mathrm{N}-\mathrm{H}), 5.88-5.75(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and H-14), 5.06-4.98 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$), 3.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.74 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{N}-\mathrm{H}$), 3.31-3.17 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}$ and $\mathrm{H}-12 \mathrm{a}$), 2.652.57 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-8 \mathrm{a}$ and $\mathrm{H}-12 \mathrm{~b}$), 2.28 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.67-1.61 (1 H, m, H-10), 1.56-1.42 (3 H, m, H-11a, H-11b and $\mathrm{H}-13 \mathrm{~b}), 0.68-0.63(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{a})$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{*}: \quad 183.5(\mathrm{C}=\mathrm{O}), 183.0(\mathrm{C}=\mathrm{O}), 167.0(\mathrm{q}), 158.5$ (q), 146.8, 144.8 (q), 144.1 (q), 142.8 (q), 141.8, 131.4, 128.6, 128.5, $128.2,122.7,117.9,114.4,101.2,72.1$ (q), 60.1, 56.5, 56.1, 52.5, 40.8, 39.7, 27.7, 27.5, 26.5.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2934,1792,1668,1624,1509,1576,1433,1228,1031$, 844, 699, 631.

HRMS (m / z - APCI): Found: $661.3176(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{43} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{3}$ Requires: 661.3173.

* The resonance of one carbon could not be identified in the spectrum.

3-(((S)-(6-Methoxy-2-phenylquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)amino)-4-(tritylamino)cyclobut-3-ene-1,2-dione (260)

A $50 \times 10 \mathrm{~mm}$ sample vial containing a magnetic stirring bar was charged with 268 ($64.89 \mathrm{mg}, 0.162 \mathrm{mmol}$) and $266(60.0 \mathrm{mg}, 0.162 \mathrm{mmol}$). To the resulting mixture, dry $\mathrm{MeOH}(0.8 \mathrm{~mL})$ was added via syringe. The resulting suspension was stirred at room temperature for 96 h . The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ with an ice bath and the precipitate was filtered, washed with cold MeOH before being dried under high vacuum to yield 260 as a white solid ($67.0 \mathrm{mg}, 56 \%$). M.p. $152-156{ }^{\circ} \mathrm{C}$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 95: 5 v / v\right): \mathrm{R}_{\mathrm{f}}=0.49 .[\alpha]_{\mathrm{D}}^{20}=-250\left(c=0.064, \mathrm{CHCl}_{3}\right)$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.09(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{H}-5), 8.01(2 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{H}-1), 7.59-7.53$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-20$), 7.51-7.47 (1 H , app t, H-21), 7.40 (1 H , app. dd, J 2.6, 9.2, H-4), 7.14-7.05 (9 H, m, H-18 and H-19), 7.01-6.97 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-17$), 6.58 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-2$), $5.96-$ 5.79 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and H-14), 5.08-5.01 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$), 3.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.65 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{N}-\mathrm{H}$), 3.38-3.20 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-8 \mathrm{~b}$ and $\mathrm{H}-12 \mathrm{a}$), 2.73-2.58 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-8 \mathrm{a}$ and $\mathrm{H}-12 \mathrm{~b}$), 2.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.60-1.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$ and $\mathrm{H}-13 \mathrm{~b}$),
1.15-0.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{a}, \mathrm{H}-11 \mathrm{~b}$), $0.76-0.68$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 13a).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{*}: \quad 183.5(\mathrm{C}=\mathrm{O}), 183.0(\mathrm{C}=\mathrm{O}), 166.8(\mathrm{q}), 158.6(\mathrm{q}), 154.2$, 145.0 (q), 144.1 (q), 143.3 (q), 141.9 (q), 139.7 (q), 131.9, $129.2,129.0,128.6,128.5,128.3,127.2,123.0,115.8$, $114.4,101.1,72.2$ (q), 63.1, 60.2, 56.6, 56.2, 52.6, 40.9, 39.8, 31.9, 29.7.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 1789,1666,1624,1575,1508,1441,1351,1233,1033$, 833, 767, 693, 633.

HRMS (m / z - ESI): Found: $737.3492(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{49} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{3}$ Requires: 737.3492.

* The resonance of two carbon could not be identified in the spectrum.

3-(((S)-(6-Methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)amino)-4-((tris(4-(trifluoromethyl)phenyl)methyl)amino)cyclobut-3-ene-

1,2-dione (263)

A 5 mL oven dried round-bottomed flask containing a stirring bar was charged with $\mathbf{2 9 3}$ ($290.0 \mathrm{mg}, 0.896 \mathrm{mmol}$) and $294(514.1 \mathrm{mg}, 0.896 \mathrm{mmol})$. Dry MeOH (2 mL) was added via syringe and the reaction mixture was placed under an argon atmosphere. The solution was stired at room temperature for 48 h . The solvent was removed in vacuo and the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 95: 5 \mathrm{v} / \mathrm{v}\right)$ furnishing 263 as a pale yellow solid ($541 \mathrm{mg}, 70 \%$). M.p. 212-214 ${ }^{\circ} \mathrm{C}$, decomposition.

TLC (hexanes:EtOAc:MeOH:Et $\left.{ }_{3} \mathrm{~N}, 7: 2: 0.5: 0.5\right): \mathrm{R}_{\mathrm{f}}=0.25 ;[\alpha]_{\mathrm{D}}^{20}=-313(c=0.15$, CHCl_{3}).
 863.2644.

Acide 2-iodoxybenzoic (IBX, 335)

A 500 mL round-bottomed flask containing a magnetic stirring bar was charged with 2iodobenzoic acid ($\mathbf{3 3 4}, 15.0 \mathrm{~g}, 60.48 \mathrm{mmol}$), oxone ($46.0 \mathrm{~g}, 302.40 \mathrm{mmol}$) and 250 mL of deionised water. The flask was fitted with a condenser and the resulting suspension was heated at $105{ }^{\circ} \mathrm{C}$ for 5 h and then cooled to room temperature. The suspension was
filtered, the solid washed several times with cold acetone, then allowed to dry on the bench overnight to afford IBX (335) as a white solid (13.62 g, 80\%).
tert-Butyl (3-hydroxypropyl)carbamate (337)

A 500 mL round-bottomed flask containing a magnetic stirring bar was charged with 3-amino-1-propanol ($\mathbf{3 3 6}, 10.1 \mathrm{~g}, 134.5 \mathrm{mmol}$) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$. The resulting solution was placed under an argon atmosphere and cooled to $0^{\circ} \mathrm{C}$. A solution of di-tert-butyl dicarbonate ($32.3 \mathrm{~g}, 148.0 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added dropwise over 30 min . The reaction mixture was then allowed to come back to room temperature and stirred overnight. The reaction was quenched with a saturated sodium hydrogen carbonate solution (100 mL). The organic layer was separated, washed with water and brine, and dried over MgSO 4 , the solvent was then removed in vacuo to allow the formation of a crude oil that was purified by flash column chromatography (hexanes:EtOAc, 1:1 v / v) to obtain carbamate 337 as a colorless oil $(21.6 \mathrm{~g}, 92 \%)$. TLC (hexanes:EtOAc, 1:1 v / v): $\mathrm{R}_{\mathrm{f}}=0.31$.

Spectral data for this compound were consistent with those in the literature. ${ }^{178}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 5.11(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-5), 3.59-3.56(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-2), 3.20-$
3.16 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 1.61-1.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 1.36 ($9 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-6)$.

HRMS (m / z - ESI): \quad Found: $198.1106 \quad(\mathrm{M}+\mathrm{Na})^{+} \quad \mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NNaO}_{3} \quad$ Requires: 198.1100.

tert-Butyl (3-oxopropyl)carbamate (338)

A 250 mL round-bottomed flask containing a magnetic stirring bar was charged with tert-butyl (3-hydroxypropyl)carbamate (337, $1.5 \mathrm{~g}, 8.56 \mathrm{mmol}$), IBX (335, $7.2 \mathrm{~g}, 25.7$
mmol) and EtOAc (100 mL). The resulting suspension was stirred at $80^{\circ} \mathrm{C}$ for 5 h , cooled to room temperature and filtered. The solvent was then removed in vacuo to afford a crude oil. The crude product was purified by flash column chromatography (hexanes:EtOAc, 2:1 v / v) to obtain pure aldehyde 338 as a colorless liquid (1.48 g , $>99 \%$). TLC (hexanes:EtOAc, $1: 1 \mathrm{v} / \mathrm{v})$: $\mathrm{R}_{\mathrm{f}}=0.5$.

Spectral data for this compound were consistent with those in the literature. ${ }^{179}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 9.80(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 4.88(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4), 3.44-3.39(2 \mathrm{H}, \mathrm{m}$, H-3), 2.72-2.69 (2 H, t, J 5.8, H-2), $1.42(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-5)$.

HRMS (m / z - ESI): \quad Found: $196.0936 \quad(\mathrm{M}+\mathrm{Na})^{+} \quad \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NNaO}_{3} \quad$ Requires: 196.0944.

4.3.3 Synthesis of racemic lactones

Racemic preparation for lactones 246d, 296-306, 324-329, 340.

An oven-dried 5 mL reaction vessel containing a magnetic stirring bar under argon atmosphere was charged with the relevant anhydride (0.1 mmol). Anhydrous MTBE or THF ($1.0 \mathrm{~mL}, 0.1 \mathrm{M}$) was added via syringe followed by the relevant freshly distilled or recrystallized aldehyde (0.1 mmol). N, N-Diisopropylethylamine ($3.6 \mu \mathrm{~L}, 20.0 \mu \mathrm{~mol}-20$ mol\%) was added via syringe and the resulting mixture was stired for 20 to 96 h at room temperature. To the reaction mixture containing the corresponding crude carboxylic acids, anhydrous $\mathrm{MeOH}(202 \mu \mathrm{~L}, 5.0 \mathrm{mmol})$, followed by trimethylsilyldiazomethane (2.0 M solution in diethyl ether, $60 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$) were added via syringe and the reaction mixture was stired for 15 min at $0^{\circ} \mathrm{C}$. The solvent was then removed in vacuo and the crude mixture of diastereomeric esters was purified by flash column chromatography, eluting in gradient from 100% hexanes to 30% EtOAc in hexanes to isolate all of the diastereomers combined. A sample of the purified diastereomer, isolated after column chromatography, was then re-purified by preparative TLC chromatography to produce racemic material for HPLC traces analysis.

4.3.4 Catalyst evaluation (general procedures)

Catalyst evaluation and reaction optimisation in the cycloaddition reaction between 2,3-diphenyl-succinic anhydride (239) and 4-nitrobenzaldehyde (244).

An oven-dried 5 mL reaction vessel containing a magnetic stirring bar under argon atmosphere was charged with 2,3-diphenyl-succinic anhydride (trans-239, $25.2 \mathrm{mg}, 0.1$ $\mathbf{m m o l}), 4$-nitrobenzaldehyde $(\mathbf{2 4 4}, 15.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and the relevant catalyst $(0.005$ mmol - $5 \mathrm{~mol} \%$). Dry MTBE ($1.0 \mathrm{~mL}, 0.1 \mathrm{M}$) was added via syringe and the reaction mixture was brought to the temperature indicated in Table 1 and Table 2. The resulting mixture was stired for the time indicated in Table 1 and Table 2. The yield and diastereomeric ratio of the products were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole ($11.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$) as an internal standard. To the reaction mixture containing the corresponding crude carboxylic acids, anhydrous MeOH (202 $\mu \mathrm{L}, 5.0 \mathrm{mmol}$), followed by trimethylsilyldiazomethane (2.0 M solution in diethyl ether, $60 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$) were added via syringe and the reaction was stired for 15 min at 0 ${ }^{\circ} \mathrm{C}$. The solvent was then removed in vacuo and the crude mixture of diastereomeric esters was purified by flash column chromatography, eluting in gradient from 100\% hexanes to 15% EtOAc in hexanes to isolate both diastereomers combined.

The enantiomeric excess of the products was determined by CSP-HPLC using the conditions indicated.

CSP-HPLC analysis. Chiralcel OD-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/i-PrOH: 90/10, 1.0 $\mathrm{mL} . \mathrm{min}^{-1}$, RT, UV detection at 254 nm , retention times: 246d 61.3 min (major enantiomer) and 74.1 min (minor enantiomer).

General procedure II: Enantioselective preparation of lactones 246d, 296-306.

A 10 mL oven dried two-neck round-bottomed flask containing a stirring bar was charged with 2,3-diphenyl-succinic anhydride (trans-239, $100.9 \mathrm{mg}, 0.4 \mathrm{mmol}$) and catalyst 259 ($13.2 \mathrm{mg}, 0.02 \mathrm{mmol}-5 \mathrm{~mol} \%$). The air was evacuated from the reaction vessel by placing the reaction flask under vacuum and backfilling several times with argon before being placed under an argon atmosphere (balloon). A mixture of

MTBE:THF ($4.0 \mathrm{~mL}, 0.1 \mathrm{M}, 9: 1 \mathrm{v}: \mathrm{v}$) was added via syringe followed by the relevant freshly distilled or recrystallised aldehyde (0.4 mmol). The resulting mixture was stired for 10 days at room temperature. To the reaction mixture containing the corresponding crude carboxylic acids, anhydrous MeOH ($809 \mu \mathrm{~L}, 20.0 \mathrm{mmol}$), followed by trimethylsilyldiazomethane (2.0 M solution in diethyl ether, $240 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) were added via syringe and the reaction was stired for 15 min at $0{ }^{\circ} \mathrm{C}$. The major diastereomer produced in the reaction was then purified using a flash chromatographic purification system (Biotage SP4) using a high performance prepacked silica cartridge (Biotage SNAP 10 g), eluting the mixture in gradient of EtOAc from 100% hexanes and slightly modifying the following general method.

Flow rate: $10 \mathrm{~mL} . \mathrm{min}^{-1}$; Unit: $\mathrm{CV}=$ column volume.

Gradient: 100% hexanes for $3 \mathrm{CV} ; 100 \%$ hexanes to 20% EtOAc in hexanes over 40 CV.

The enantiomeric excess of the products was determined by CSP-HPLC using the conditions indicated for each case.

General procedure III: Enantioselective preparation of lactones 324-329, 340.

A 25 mL oven dried carousel tube containing a stirring bar was charged with the relevant anhydride ($\mathbf{3 1 5 - 3 1 6}, \mathbf{3 2 2}, 0.4 \mathrm{mmol}$) and catalyst $\mathbf{2 5 9}$ ($26.4 \mathrm{mg}, 0.04 \mathrm{mmol}-10$ $\mathrm{mol} \%$). The air was evacuated from the reaction vessel by flushing with a flow of argon before being placed under an argon atmosphere (balloon). A mixture of MTBE:THF ($4.0 \mathrm{~mL}, 0.1 \mathrm{M}, 9: 1 \mathrm{v}: v$) was added via syringe and the flask was cooled to $-15^{\circ} \mathrm{C}$. The relevant freshly distilled or recrystallized aldehyde (0.4 mmol) was added via syringe or directly as a solid. The resulting mixture was stired for the time indicated for each case and the temperature was maintained to $-15{ }^{\circ} \mathrm{C}$ To the reaction mixture containing the corresponding crude carboxylic acids, anhydrous MeOH ($809 \mu \mathrm{~L}, 20.0 \mathrm{mmol}$), followed by trimethylsilyldiazomethane (2.0 M solution in diethyl ether, $240 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) were added via syringe and the reaction was stired for 15 min at $-15{ }^{\circ} \mathrm{C}$. The major diastereomer produced in the reaction was then purified using a flash chromatographic purification system (Biotage SP4) using a high performance prepacked silica cartridge
(Biotage SNAP 10 g), eluting the mixture in gradient of EtOAc from 100% hexanes and slightly modifying the following general method.

Flow rate: $10 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$; Unit: $\mathrm{CV}=$ column volume.
Gradient: 100% hexanes for $3 \mathrm{CV} ; 100 \%$ hexanes to 20% EtOAc in hexanes over 40 CV.

The enantiomeric excess of the products was determined by CSP-HPLC using the conditions indicated for each case.

4.3.5 Experimental procedures and data for lactones 246d, 296-306, 324-329, 340.

Methyl (2R,3S,4S)-2-(4-nitrophenyl)-5-oxo-3,4-diphenyltetrahydrofuran-3-

 carboxylate (246d)

Prepared according to general procedure II, using recrystallized 4-nitrobenzaldehyde $(\mathbf{2 4 4}, 60.5 \mathrm{mg}, 0.4 \mathrm{mmol})$. The reaction mixture was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 1.5:1 (major:others) ratio. After esterification, the major diastereomer (246d) was isolated and purified by flash column chromatography to give a pale yellow solid ($81.2 \mathrm{mg}, 53 \%$). M.p. $62-64{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, $8: 2 v / v)$: $\mathrm{R}_{\mathrm{f}}=0.26 ;[\alpha]_{\mathrm{D}}^{20}=+50\left(c=0.44, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Methanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 4.78 min (minor enantiomer) and 5.23 min (major enantiomer). $\mathbf{9 0 \%} \boldsymbol{e e}$.

$\delta_{\text {H }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	$\begin{aligned} & 8.14(2 \mathrm{H}, \mathrm{~d}, J 8.8, \mathrm{H}-7), 7.48(2 \mathrm{H}, \mathrm{~d}, J \mathrm{~B} .8, \mathrm{H}-6), 7.46-7.41 \\ & (3 \mathrm{H}, \mathrm{~m}, \mathrm{H}-9 \text { and H-10), 7.37-7.33 (2 H, m, H-8), 7.27-7.22 } \\ & (3 \mathrm{H}, \mathrm{~m}, \mathrm{H}-1 \text { and H-2), 7.11-7.09 (2 H, m, H-3), } 6.15(1 \mathrm{H}, \\ & \mathrm{s}, \mathrm{H}-5), 4.54(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-4), 3.26(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-11) . \end{aligned}$
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$	$\begin{aligned} & 172.1(\mathrm{C}=\mathrm{O}), 168.7(\mathrm{C}=\mathrm{O}), 148.1(\mathrm{q}), 141.4(\mathrm{q}), 134.4(\mathrm{q}), \\ & 130.5(\mathrm{q}), 130.3,128.8,128.7,128.5,128.4,128.2,127.6, \\ & 123.3,82.0,67.2(\mathrm{q}), 57.2,52.0 . \end{aligned}$
$v_{\text {max }}$ (neat)/ $/ \mathrm{cm}^{-1}$:	$\begin{aligned} & 3032,2952,1786(\mathrm{C}=\mathrm{O}), 1726(\mathrm{C}=\mathrm{O}), 1603,1520(\mathrm{~N}-\mathrm{O}), \\ & 1497,1448,1434,1347(\mathrm{~N}-\mathrm{O}), 1293,1242,1205,1151, \\ & 1109,1042,1013,863,746,697 . \end{aligned}$
HRMS (m/z - APCI):	Found: $418.1293(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}_{6}$ Requires: 418.1285.

Methyl (2R,3S,4S)-2-(3-nitrophenyl)-5-oxo-3,4-diphenyltetrahydrofuran-3carboxylate (296)

Prepared according to general procedure II, using recrystallized 3-nitrobenzaldehyde ($60.5 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 2.3:1 (major:others) ratio. After esterification, the major diastereomer (296) was isolated and purified by flash column chromatography to give a pale yellow solid ($84.3 \mathrm{mg}, 53 \%$). M.p. $174-176{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 8:2 $v / v): \mathrm{R}_{\mathrm{f}}=0.23 ;[\alpha]_{\mathrm{D}}^{20}=-26\left(c=0.90, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Methanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 3.41 min (minor enantiomer) and 3.83 min (major enantiomer). $\mathbf{8 5 \%} \boldsymbol{e e}$.

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	8.22 (1 H, s, H-6), 8.20 (1 H, d, J 8.2, H-7), 7.62 (1 H, d, J
	7.8, H-9), 7.51 (1 H , app. t, J 8.0, H-8), 7.46-7.44 ($3 \mathrm{H}, \mathrm{m}$,
	$\mathrm{H}-11$ and $\mathrm{H}-12), 7.36-7.34$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 7.29-7.26 (3 H ,
	m, H-1 and H-2), 7.19-7.16 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 6.0 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$),
	4.62 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 3.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13)$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	172.2 (C=O), 168.7 (C=O), 148.0 (q), 136.3 (q), 134.2 (q),
	$132.8,130.6$ (q), 130.1, 129.2, 128.8, 128.7, 128.5, 128.33,
	128.27, 123.9, 121.9, 82.3, 67.0 (q), 56.4, 52.0.
$v_{\text {max }}\left(\right.$ neat $/ \mathrm{cm}^{-1}$:	3070, 1799 (C=O), 1721 (C=O), 1586, 1532 (N-O), 1493,
	1445, 1433, 1352 (N-O), 1241, 1211, 1138, 1039, 957, 857.
HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{ESI}$)	Found: $456.0848(\mathrm{M}+\mathrm{K})^{+} \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{KNO}_{6}$ Requires: 456.0843 .

Methyl (2R,3S,4S)-2-(2-nitrophenyl)-5-oxo-3,4-diphenyltetrahydrofuran-3carboxylate (297)

Prepared according to general procedure II, using recrystallized 2-nitrobenzaldehyde ($60.5 \mathrm{mg}, 0.4 \mathrm{mmol}$). The reaction was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 1:1 (major:others) ratio. After esterification, the major diastereomer (297) was isolated and purified by flash column chromatography to give a pale yellow solid ($54.0 \mathrm{mg}, 34 \%$). M.p. $54-56^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, $8: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=$ 0.19 .

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Methanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 4.50 min (minor enantiomer) and 4.87 min (major enantiomer). $\mathbf{9 7 \%} \boldsymbol{e} \boldsymbol{e}$.

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	7.88 ($1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-6$), 7.82 ($1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-9$), 7.65 (1 H, app. t, $J 7.8, \mathrm{H}-7), 7.65(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-8), 7.38-$ 7.32 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$ and $\mathrm{H}-12$), 7.27-7.22 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and H-10), 7.18-7.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $6.89(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 4.73$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 3.31 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	$\begin{aligned} & 172.2(\mathrm{C}=\mathrm{O}), 169.0(\mathrm{C}=\mathrm{O}), 149.0(\mathrm{q}), 133.6(\mathrm{q}), 132.6, \\ & 130.9 \text { (q), 130.0, 129.7, 129.1, 128.8, 128.7, 128.20(q), } \\ & 128.17,128.08,128.05,125.0,78.6,67.2(\mathrm{q}), 55.8,52.0 . \end{aligned}$
$v_{\text {max }}$ (neat)/ $/ \mathrm{cm}^{-1}$:	$\begin{aligned} & 3327,2944,1793(\mathrm{C}=\mathrm{O}), 1719(\mathrm{C}=\mathrm{O}), 1660,1602,1526 \\ & (\mathrm{~N}-\mathrm{O}), 1433,1351(\mathrm{~N}-\mathrm{O}), 1277,1203,1157,1106,1021, \\ & 966,830,743,697 . \end{aligned}$
HRMS (m / z - ESI):	Found: 416.1129 (M-H) ${ }^{-} \mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO}_{6}$ Requires: 416.1139.

Methyl (2R,3S,4S)-2-(4-chlorophenyl)-5-oxo-3,4-diphenyltetrahydrofuran-3carboxylate (298)

Prepared according to general procedure II, using recrystallized 4-chlorobenzaldehyde $(56.2 \mathrm{mg}, 0.4 \mathrm{mmol})$. The reaction was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 2.3:1 (major:others) ratio. After esterification, the major diastereomer (298) was isolated and purified by flash column chromatography to give a white solid ($84.2 \mathrm{mg}, 52 \%$). M.p. $52-54{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, $9: 1 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=$ $0.1 ;[\alpha]_{\mathrm{D}}^{20}=+319\left(c=0.27, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL2, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}(1: 1, v: v)$ gradient as shown in Table 4.1, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 3.11 min (major enantiomer) and 3.27 min (minor enantiomer). $\mathbf{9 5 \%} \boldsymbol{e} \boldsymbol{e}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.42-7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-10), 7.34-7.31(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and H-8), 7.29-7.25 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-6$), 7.17-7.14 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $6.0(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 4.49$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 3.32 (3 $\mathrm{H}, \mathrm{s}, \mathrm{H}-11$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 172.6(\mathrm{C}=\mathrm{O}), 169.0(\mathrm{C}=\mathrm{O}), 134.9(\mathrm{q}), 134.7(\mathrm{q}), 132.6(\mathrm{q})$, 130.8 (q), 130.3, 128.64, 128.57, 128.51, 128.47, 128.22, 128.22, 128.1, 82.5, 66.9 (q), 56.9, 52.0.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3046,2951,1785(\mathrm{C}=\mathrm{O}), 1725(\mathrm{C}=\mathrm{O}), 1599,1493,1448$, 1433, 1240, 1202, 1153, 1091, 1013, 805, 761, 697.

HRMS $\left(\mathrm{m} / \mathrm{z}\right.$ - ESI): \quad Found: $405.0893(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClO}_{4}$ Requires: 405.0899.

Methyl (2R,3S,4S)-2-(3-chlorophenyl)-5-oxo-3,4-diphenyltetrahydrofuran-3carboxylate (299)

Prepared according to general procedure II, using freshly distilled 3chlorobenzaldehyde ($45.3 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 3.5:1 (major:others) ratio. After esterification, the major diastereomer (299) was isolated and purified by flash column chromatography to give a white solid (114.2 mg, 70\%). M.p. $126-128{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 9:1 v/v): $\mathrm{R}_{\mathrm{f}}=0.1 ;[\alpha]_{\mathrm{D}}^{20}=+227\left(c=0.1, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL1, $2.5 \mu \mathrm{~m}$ (3.0 x 150mm). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Methanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.1, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 230 nm , retention times: 3.00 min (minor enantiomer) and 3.06 min (major enantiomer). $\mathbf{9 7 \%} \boldsymbol{e e}$.

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$	$7.42-7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$ and $\mathrm{H}-12), 7.38-7.37(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$
	$7), 7.33-7.21(7 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-6, \mathrm{H} 8$ and $\mathrm{H}-10), 7.17-$
	$7.14(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{and} \mathrm{H}-9), 6.03(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 4.48(1 \mathrm{H}, \mathrm{s}$,
	$\mathrm{H}-4), 3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13)$.

Methyl (2R,3S,4S)-5-oxo-2,3,4-triphenyltetrahydrofuran-3-carboxylate (300)

Prepared according to general procedure II, using freshly distilled benzaldehyde (40.8 $\mu \mathrm{L}, 0.4 \mathrm{mmol})$. The reaction was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 3.5:1 (major:others) ratio. After esterification, the major diastereomer (300) was isolated and purified by flash column chromatography to give a white solid ($90.4 \mathrm{mg}, 61 \%$). M.p. $158-160{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, $9: 1 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=$ $0.15 ;[\alpha]_{\mathrm{D}}^{20}=+291\left(c=0.1, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Methanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 212 nm , retention times: 3.70 min (minor enantiomer) and 3.79 min (major enantiomer). $\mathbf{9 9 \%} \boldsymbol{e e}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad 3030,1787(\mathrm{C}=\mathrm{O}), 1714(\mathrm{C}=\mathrm{O}), 1495,1454,1433,1360$, 1323, 1245, 1166, 1154, 1024, 1010, 965, 767, 756, 746, 692,671, 649, 592.

HRMS $(m / z-E S I): \quad$ Found: $371.1299(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{4}$ Requires: 371.1288.

Methyl (2R,3S,4S)-5-oxo-3,4-diphenyl-2-(4-(trifluoromethyl)phenyl)

 tetrahydrofuran-3-carboxylate (301)

Prepared according to general procedure II, using freshly distilled 4-CF3-benzaldehyde ($69.7 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 1.3:1 (major:others) ratio. After esterification, the major diastereomer (301) was isolated and purified by flash column chromatography to give a white solid ($81.3 \mathrm{mg}, 46 \%$). M.p. $52-54{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, $9: 1 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=$ $0.1 ;[\alpha]_{\mathrm{D}}^{20}=+310\left(c=0.43, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Methanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.1, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 212 nm , retention times: 2.91 min (minor enantiomer) and 3.06 min (major enantiomer). $\mathbf{9 4 \%} \boldsymbol{e e}$.

$\delta_{\text {H }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	$\begin{aligned} & 7.57(2 \mathrm{H}, \text { app. d, } J 8.2, \mathrm{H}-7), 7.46-7.42(5 \mathrm{H}, \mathrm{~m}, \mathrm{H}-6, \mathrm{H}-9 \\ & \text { and H-10), 7.37-7.32 (2 H, m, H-8), 7.29-7.24 (3 H, m, H-1 } \\ & \text { and H-2), 7.16-7.13 (} 2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-3), 6.15(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-5), 4.52 \\ & (1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-4), 3.27(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-11) \text {. } \end{aligned}$
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	$\begin{aligned} & 172.5(\mathrm{C}=\mathrm{O}), 168.9(\mathrm{C}=\mathrm{O}), 138.2(\mathrm{q}), 134.6(\mathrm{q}), 131.0(\mathrm{q}) \\ & \left(\mathrm{q},{ }^{2} J_{C-\mathrm{F}} 32.7 \mathrm{~Hz}\right), 130.7(\mathrm{q}), 130.4,128.61,128.59,128.55, \\ & 128.25,128.17,126.98,125.08\left(\mathrm{q},{ }^{3} J_{C-\mathrm{F}} 3.8 \mathrm{~Hz}\right), 123.81(\mathrm{q}) \\ & \left(\mathrm{q},{ }^{1} J_{C-\mathrm{F}} 272.1 \mathrm{~Hz}\right), 82.2,67.1(\mathrm{q}), 57.2,51.9 . \end{aligned}$
$\delta_{\mathrm{F}}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	-62.7.
$v_{\text {max }}$ (neat)/ $/ \mathrm{cm}^{-1}$:	1786, 1725, 1324, 1167, 1123, 1113, 1068, 1015, 856, 758.
HRMS ($m / z-\mathrm{ESI}$)	Found: $463.1133(\mathrm{M}+\mathrm{Na})^{+} \quad \mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NaO}_{4} \quad$ Requires:
	463.1127.

Methyl (2R,3S,4S)-2-(4-methoxyphenyl)-5-oxo-3,4-diphenyltetrahydrofuran-3carboxylate (302)

Prepared according to general procedure II, using freshly distilled 4Methoxybenzaldehyde ($48.7 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 2.1:1 (major:others) ratio. After esterification, the major diastereomer (302) was isolated and purified by flash column chromatography to give a white solid ($47.0 \mathrm{mg}, 29 \%$). M.p. $48-50{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 9:1 v/v): $\mathrm{R}_{\mathrm{f}}=0.14 ;[\alpha]_{\mathrm{D}}^{20}=+85\left(c=0.7, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}: i-\mathrm{PrOH}(1: 1: 1, v: v: v)$ gradient as shown in Table
4.1, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 3.25 min (major enantiomer) and 3.34 min (minor enantiomer). $\mathbf{9 3 \%} \boldsymbol{e e}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.42-7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$ and $\mathrm{H}-11)$, 7.34-7.26 $(7 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$, H-2, H-6 and H-9), 7.23-7.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 6.88-6.86 (2 H , app. d, J 8.9, H-7), 5.99 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 4.52 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), 3.39 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 173.0(\mathrm{C}=\mathrm{O}), 169.4(\mathrm{C}=\mathrm{O}), 160.1(\mathrm{q}), 135.1(\mathrm{q}), 131.2(\mathrm{q})$, 130.3, 128.8, 128.34, 128.30, 128.18, 128.16, 128.0, 125.7 (q), 113.6, 83.4, 66.7 (q), 56.5, 55.3, 51.97.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3031,2952,2926,1784,1741,1724,1612,1514,1451$, $1299,1250,1204,1154,1025,1009,835,810,754,697$.

HRMS (m / z - APCI): Found: $403.1534(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{5}$ Requires: 403.1540.

Methyl (2R,3S,4S)-2-(naphthalen5-2-yl)-5-oxo-3,4-diphenyltetrahydrofuran-3carboxylate (303)

Prepared according to general procedure II, using recrystallized 2-naphthaldehyde (62.5 $\mathrm{mg}, 0.4 \mathrm{mmol})$. The reaction was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 2.8:1 (major:others) ratio. After esterification, the major diastereomer (303) was isolated and purified by flash column chromatography to give a white solid ($94.7 \mathrm{mg}, 56 \%$). M.p. $50-52{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, $4: 1 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.32$; $[\alpha]_{\mathrm{D}}^{20}=+297\left(c=0.59, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}: i-\mathrm{PrOH}(1: 1: 1, v: v: v)$ gradient as shown in Table
4.2, column temperature: $30^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 5.11 min (minor enantiomer) and 5.26 min (major enantiomer). $\mathbf{9 6 \%} \boldsymbol{e e}$.

```
\deltaн (600 MHz, CDCl ): 7.86(1 H, bs, H-12), 7.82-7.78 (2 H, m, H-8 and H-11),
    7.77 (1 H, app. d, H-7), 7.51-7.47 (2 H, m, H-8 and H-9),
    7.44-7.40 (3 H, m, H-14 and H-15), 7.39-7.35 (3 H, m, H-6
    and H-13), 7.30-7.27 ( 3 H, m, H-1, H-2 and H-3), 6.22 (1
    H, s, H-5), 4.55 (1 H, s, H-4), 3.24 (3 H, s, H-16).
\deltaC (150.9 MHz, CDCl 3): 172.9 (C=O), 169.2 (C=O), 135.0 (q), 133.3 (q), 132.7 (q),
131.4 (q), 131.0 (q), 130.4, 128.8, 128.42, 128.38, 128.20,
128.1, 128.0, 127.9, 127.6, 126.6, 126.5, 126.2, 124.0, 83.3,
67.0 (q), 56.9, 51.9.
v max (neat)/\mp@subsup{cm}{}{-1}: 3058, 2950, 1783, 1724, 1497, 1448, 1237, 1203, 1151,
1031, 956, 811, 745, 696, 647.
HRMS \((m / z-\mathrm{APCI}): \quad\) Found: \(423.1590(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{28} \mathrm{H}_{23} \mathrm{O}_{4}\) Requires: 423.1590.
```


Methyl (2S,3S,4S)-5-oxo-3,4-diphenyl-2-(thiophen-2-yl)tetrahydrofuran-3carboxylate (304)

Prepared according to general procedure II, using freshly distilled 2thiophenecarboxaldehyde ($37.4 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 10:1 (major:others) ratio. After esterification, the major diastereomer (304) was isolated and purified by flash column chromatography to give a white solid ($49.3 \mathrm{mg}, 37 \%$). M.p. $165-167{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 9:1 v/v): $\mathrm{R}_{\mathrm{f}}=0.17 ;[\alpha]_{\mathrm{D}}^{20}=+296\left(c=0.18, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=\mathrm{E}$ thanol $/ i-\operatorname{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.1, column
temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 3.40 min (minor enantiomer) and 3.57 min (major enantiomer). $\mathbf{8 7 \%} \boldsymbol{e e}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.39-7.34(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-10$ and $\mathrm{H}-11), 7.32-7.23(7 \mathrm{H}, \mathrm{m}$, H-1, H-2, H-3 and H-9), 7.04-7.02 (1 H, H-8), 7.03-6.97 (1 H, m, H-7), 6.11 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 4.52 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), $3.50(3 \mathrm{H}$, s, H-12).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 172.5(\mathrm{C}=\mathrm{O}), 169.4(\mathrm{C}=\mathrm{O}), 135.5(\mathrm{q}), 134.6(\mathrm{q}), 131.2(\mathrm{q})$, 130.1, 128.5, 128.4, 128.32, 128.27, 128.20, 128.0, 127.0, 126.5, 80.9, 66.2 (q), 55.8, 52.3.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2951,1783(\mathrm{C}=\mathrm{O}), 1714(\mathrm{C}=\mathrm{O}), 1496,1435,1338,1256$, 1154, 1079, 1013, 957, 816, 752, 698.

HRMS (m / z - ESI): \quad Found: $377.0842(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{4}$ S Requires: 377.0853.

Methyl (2R,3S,4S)-5-oxo-2-phenethyl-3,4-diphenyltetrahydrofuran-3-carboxylate (305)

Prepared according to general procedure II, using freshly distilled hydrocinnamaldehyde ($52.7 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 13:1 (major:others) ratio. After esterification, the major diastereomer (305) was isolated and purified by flash column chromatography to give a white solid ($124.5 \mathrm{mg}, 78 \%$). M.p. $172-174{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, $9: 1 v / v)$: $\mathrm{R}_{\mathrm{f}}=0.15 ;[\alpha]_{\mathrm{D}}^{20}=+307\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.2, column
temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 3.78 min (minor enantiomer) and 4.22 min (major enantiomer). $\mathbf{> 9 9 \%} \boldsymbol{e} \boldsymbol{e}$.

```
\deltaн (400 MHz, CDCl}3): 7.37-7.23 (11 H, m, H-1, H-2, H-8, H-9, H-10, H-12 and H-
    13), 7.19-7.15 (2 H, m, H-3), 8.86-6.84 (2 H, m, H-11), 4.90
    (1 H, dd, J 1.8, 10.5, H-5), 4.10 (1 H, s, H-4), 3.64 (3 H, s,
    H-14), 3.11 (1 H, ddd, J 4.4, 8.3, 13.4, H-7a), 2.87 (1 H,
    ddd, J 8.3, 8.4, 13.8, H-7b), 2.18 (1 H, dddd, J 1.8, 8.3, 8.4,
    14.5, H-6a), 2.07 (1 H, m, H-6b).
\deltaC (100 MHz, CDCl )
        131.1, 128.8, 128.7, 128.3, 128.25, 128.20, 128.19, 127.8,
        126.5, 80.7, 64.0 (q), 57.4, 52.2, 32.6, 31.7.
vmax (neat)/\mp@subsup{cm}{}{-1}: 3029, 2950, 1778, 1725, 1497, 1454, 1438, 1255, 1203,
        1151, 1046, 959, 696, 651.
HRMS (m/z-APCI): Found: 401.1744 (M+H)+ C26 H25O4 Requires: 401.1747.
```


Methyl (2R,3S,4S)-2-cyclohexyl-5-oxo-3,4-diphenyltetrahydrofuran-3-carboxylate (306)

Prepared according to general procedure II, using freshly distilled cyclohexanecarboxaldehyde ($48.5 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 1.2:1 (major:others) ratio. After esterification, the major diastereomer (306) was isolated and purified by flash column chromatography to give a white solid ($66.0 \mathrm{mg}, 44 \%$). M.p. $139-141{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 9:1 v/v): $\mathrm{R}_{\mathrm{f}}=0.19 ;[\alpha]_{\mathrm{D}}^{20}=+178\left(c=0.23, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}: i-\mathrm{PrOH}(1: 1: 1, v: v: v)$ gradient as shown in Table 4.2, column temperature: $30^{\circ} \mathrm{C}$, UV detection at 212 nm , retention times: 4.42 min (minor enantiomer) and 4.60 min (major enantiomer). $\mathbf{9 9 \%} \boldsymbol{e e}$.

$$
\begin{array}{ll}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 7.27-7.26(3 \mathrm{H}, \mathrm{~m}, \mathrm{H}-1 \text { and H-2), 7.19-7.12 (5 H, m, H-3, } \\
& \mathrm{H}-13 \text { and H-14), 6.86-6-84 (2 H, app. d, H-12), 4.94-4.91 (1 } \\
& \mathrm{H}, \mathrm{~d}, \mathrm{~J} \mathrm{9.5}, \mathrm{H}-5), 3.90(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-4), 3.66(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-15), \\
& 2.16-2.14(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-6), 1.73-1.71(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-7 \mathrm{a}), 1.57- \\
& 1.54(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-11 \mathrm{a}), 1.53-1.45(3 \mathrm{H}, \mathrm{~m}, \mathrm{H}-7 \mathrm{~b}, \mathrm{H}-9 \mathrm{a} \text { and H- } \\
& 11 \mathrm{~b}), 1.23-0.93(4 \mathrm{H}, \mathrm{~m}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-8 \mathrm{~b}, \mathrm{H}-10 \mathrm{a} \text { and H-10b), } \\
& 0.82-0.74(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-9 \mathrm{~b}) .
\end{array}
$$

HRMS (m / z - APCI): Found: $379.1896(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{4}$ Requires: 379.1903.

Methyl (2R,3S,4S)-3,4-bis(4-bromophenyl)-5-oxo-2-phenethyltetrahydrofuran-3carboxylate (324)

Prepared according to general procedure III, using 315 ($164.0 \mathrm{mg}, 0.4 \mathrm{mmol}$) and freshly distilled hydrocinnamaldehyde (323, $52.3 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 8 days to give a diastereomeric mixture of carboxylic acids in a 34:1 (major:others) ratio. After esterification, the major diastereomer (324) was isolated and
purified by flash column chromatography to give a white solid ($205.7 \mathrm{mg}, 92 \%$). M.p. $60-62{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 9:1 v/v): $\mathrm{R}_{\mathrm{f}}=0.23 ;[\alpha]_{\mathrm{D}}^{20}=-126\left(c=0.31, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 230 nm , retention times: 5.94 min (major enantiomer) and 6.60 min (minor enantiomer). $\mathbf{9 8 \%} \boldsymbol{e e}$.

$$
\begin{aligned}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 7.34-7.32(2 \mathrm{H}, \mathrm{~d}, J 8.4, \mathrm{H}-11), 7.28-7.26(2 \mathrm{H}, \mathrm{~d}, J 8.6, \mathrm{H}- \\
& 1), 7.28-7.13(5 \mathrm{H}, \mathrm{~m}, \mathrm{H}-7, \mathrm{H}-8 \text { and H-9}), 6.93-6.90(2 \mathrm{H}, \mathrm{~d}, \\
& J 8.4, \mathrm{H}-10), 6.53-6.51(2 \mathrm{H}, \mathrm{~d}, J 8.6, \mathrm{H}-2), 4.78-4.76(1 \mathrm{H}, \\
& \text { app. d, H-4), 3.81 }(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 3.56(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-12), 3.00- \\
& 2.94(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-6 \mathrm{a}), 2.78-2.70(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-6 \mathrm{~b}), 2.02-1.84(2 \\
& \mathrm{H}, \mathrm{~m}, \mathrm{H}-5 \mathrm{a} \text { and H-5b). }
\end{aligned}
$$

$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 172.4(\mathrm{C}=\mathrm{O}), 169.8(\mathrm{C}=\mathrm{O}), 139.9$ (q), 134.0 (q), 132.9, 131.5, 131.4, 129.8 (q), 129.3, 128.79, 128.76, 126.6, 122.8 (q), 122.6 (q), 79.96, 63.5 (q), 57.0, 52.4, 32.3, 31.7.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 3028,2951,1781,1730,1491,1208,1160,1076,1009$, 972, 810, 797, 749, 726, 700.

HRMS (m / z - ESI):
Found: $554.9813(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{26} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{O}_{4}$ Requires: 554.9812.

Methyl (2R,3S,4S)-5-oxo-2-phenethyl-3,4-bis(4-(trifluoromethyl)phenyl) tetrahydrofuran-3-carboxylate (325)

Prepared according to general procedure III, using 316 ($155.3 \mathrm{mg}, 0.4 \mathrm{mmol}$) and freshly distilled hydrocinnamaldehyde (323, $52.3 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 5 days to give a diastereomeric mixture of carboxylic acids in a 11:1
(major:others) ratio. After esterification, the major diastereomer (325) was isolated as a mixture and purified by flash column chromatography to afford a white solid (176.2 mg , 82%). M.p. $78-80^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, $\left.4: 1 \mathrm{v} / \mathrm{v}\right): \mathrm{R}_{\mathrm{f}}=0.47 ;[\alpha]_{\mathrm{D}}^{20}=+52(c=1.2$, CHCl_{3}).

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Methanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.3, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 230 nm , retention times: 5.13 min (minor enantiomer) and 6.06 min (major enantiomer). $\mathbf{9 8 \%} \boldsymbol{e e}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.38-7.36(2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{H}-11), 7.34-7.24(9 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-$ 7, H-8, H-9 and H-10), 6.88-6.86 ($2 \mathrm{H}, \mathrm{d}, J 8.2$, H-10), 6.79-6.77 (2 H, d, J 8.2, H-2), 5.12 ($1 \mathrm{H}, \mathrm{dd}, J 2.3,11.6$, H4), $5.04(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12)$, 3.12-3.05 (1 H , m, H-6a), 2.91-2.84 (1 H, m, H-6b), 2.20-2.09 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $5 a), 1.95-1.87(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b})$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 173.3(\mathrm{C}=\mathrm{O}), 170.9(\mathrm{C}=\mathrm{O}), 140.0(\mathrm{q}), 139.8,135.8,131.7$, $130.9,128.8,128.7,128.67,128.52,128.1,127.6,126.6$, $125.4,124.7,80.7,64.5$ (q), 50.08, 52.7, 33.2, 31.6.
$\delta_{\mathrm{F}}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad$ Minor: $-62.86,-62.89$; Major: -62.92, -62.98.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2921,1782,1735,1620,1420,1323,1237,1164,1112$, 1067, 1018, 850, 786, 749, 700.

HRMS (m / z - ESI): \quad Found: $535.1340(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{O}_{4}$ Requires: 535.1349.

Methyl (2R,3S,4S)-3,4-bis(4-nitrophenyl)-5-oxo-2-phenethyltetrahydrofuran-3carboxylate (326)

Prepared according to general procedure III, using 322 ($136.9 \mathrm{mg}, 0.4 \mathrm{mmol}$) and freshly distilled hydrocinnamaldehyde (323, $52.3 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 3 days to give a diastereomeric mixture of carboxylic acids in a 5:1 (major:others) ratio. After esterification, the major diastereomer (326) was isolated as a mixture and purified by flash column chromatography to afford a white solid (156.5 mg , 79%). M.p. $60-62{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 70:30 $\left.v / v\right)$: $\mathrm{R}_{\mathrm{f}}=0.47 ;[\alpha]_{\mathrm{D}}^{20}=-29.5(c=$ $0.45, \mathrm{CHCl}_{3}$).

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}: i-\mathrm{PrOH}(1: 1: 1, v: v: v)$ gradient as shown in Table 4.2, column temperature: $30^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 3.98 min (minor enantiomer) and 4.07 min (major enantiomer). $>\mathbf{9 9 \%} \boldsymbol{e} \boldsymbol{e}$.
$\begin{array}{ll}\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 8.01-7.99(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{H}-11), 7.96-7.94(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}- \\ & 1), 7.39-7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-8 \mathrm{and} \mathrm{H}-9), 7.01-6.99(2 \mathrm{H}, \mathrm{d}, \\ & J 8.9, \mathrm{H}-10), 6.87-6.86(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-2), 5.14-5.10(1 \mathrm{H}, \\ & \mathrm{dd}, J 2.4,8.96, \mathrm{H}-4), 5.13(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), \\ & 3.12-3.06(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}), 2.92-2.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 2.21- \\ & 2.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{a}), 1.96-1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b}) .\end{array}$

HRMS $\left(m / z\right.$ - ESI): \quad Found: $489.1308(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{8}$ Requires: 489.1303.

Methyl (2R,3S,4S)-3,4-bis(4-bromophenyl)-5-oxo-2-phenyltetrahydrofuran-3carboxylate (327)

Prepared according to general procedure III, using 315 ($164.0 \mathrm{mg}, 0.4 \mathrm{mmol}$) and freshly distilled benzaldehyde ($40.8 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 7 days to give a diastereomeric mixture of carboxylic acids in a 4.4:1 (major:others) ratio. After esterification, the major diastereomer (327) was isolated and purified by flash column chromatography to give a white solid ($145.6 \mathrm{mg}, 69 \%$). M.p. $78-80^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 9:1 v/v): $\mathrm{R}_{\mathrm{f}}=0.15 ;[\alpha]_{\mathrm{D}}^{20}=+44\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}: i-\mathrm{PrOH}(1: 1: 1, v: v: v)$ gradient as shown in Table 4.1, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 230 nm , retention times: 3.79 min (major enantiomer) and 4.08 min (minor enantiomer). $\mathbf{9 7 \%} \boldsymbol{e e}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.55-7.53(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-9), 7.42-7.40(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-1)$, 7.34-7.27 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-6$ and H-7), 7.20-7.18 ($2 \mathrm{H}, \mathrm{d}, J$ 8.6, H-8), 7.04-7.02 ($2 \mathrm{H}, \mathrm{d}, J$ 8.5, H-2), 6.05 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 4.32 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 3.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 171.9(\mathrm{C}=\mathrm{O}), 168.6(\mathrm{C}=\mathrm{O}), 133.8(\mathrm{q}), 133.5(\mathrm{q}), 132.0$, 131.6, 131.4, 130.3, 129.7 (q), 129.2, 128.4, 126.3, 122.9 (q), 122.6 (q), 82.8, 66.3 (q), 56.5, 52.1.
$v_{\max }$ (neat) $/ \mathrm{cm}^{-1}: \quad 2950,1778,1727,1489,1238,1205,1157,1074,1009$, 974, 798, 753, 698, 627.

HRMS (m / z - ESI): \quad Found: $526.9480(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{24} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{O}_{4}$ Requires: 526.9499.

Methyl (2R,3S,4S)-3,4-bis(4-bromophenyl)-2-(4-methoxyphenyl)-5-oxotetrahydrofuran-3-carboxylate (328)

Prepared according to general procedure III, using 315 ($164.0 \mathrm{mg}, 0.4 \mathrm{mmol}$) and freshly distilled 4-methoxybenzaldehyde ($48.7 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 10 days to give a diastereomeric mixture of carboxylic acids in a 10:1 (major:others) ratio. After esterification, the major diastereomer (328) was isolated and purified by flash column chromatography to give a white solid ($115.0 \mathrm{mg}, 51 \%$). M.p. $60-62{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 4:1 v/v): $\mathrm{R}_{\mathrm{f}}=0.29 ;[\alpha]_{\mathrm{D}}^{20}=+89\left(c=0.08, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL2, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 230 nm , retention times: 5.22 min (minor enantiomer) and 5.63 min (major enantiomer). $\mathbf{9 9 \%} \boldsymbol{e e}$.

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$	$7.54-7.52(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-9), 7.43-7.41(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-1)$,
	$7.21-7.19(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-6), 7.17-7.15(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-8)$,
	$7.07-7.05(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-2), 6.87-6.84(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-5)$,
	$5.90(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 4.35(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7)$,
	$3.59(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10)$.

Methyl (2R,3S,4S)-3,4-bis(4-bromophenyl)-2-(4-nitrophenyl)-5-oxotetrahydrofuran-3-carboxylate (329)

Prepared according to general procedure III, using 315 ($164.0 \mathrm{mg}, 0.4 \mathrm{mmol}$) and freshly recrystallised 4 -nitrobenzaldehyde ($60.4 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 6 days to give a diastereomeric mixture of carboxylic acids in a 4:1 (major:others) ratio. After esterification, the major diastereomer (329) was isolated and purified by flash column chromatography to give a white solid ($150.7 \mathrm{mg}, 66 \%$). M.p. $88-90^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 4:1 v/v): $\mathrm{R}_{\mathrm{f}}=0.20 ;[\alpha]_{\mathrm{D}}^{20}=+25\left(c=0.3, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL2, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 230 nm , retention times: 5.47 min (minor enantiomer) and 6.43 min (major enantiomer). $\mathbf{9 2 \%} \boldsymbol{e e}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.20-8.18(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-6), 7.61-7.59(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-8)$, 7.49-7.47 (2 H, d, J 8.6, H-5), 7.43-7.41 (2 H, d, J 8.4, H-1), 7.24-7.22 (2 H, d, J 8.5, H-7), 7.00-6.98 (2 H, d, J 8.4, H-2), 6.14 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 4.37 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 3.27 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 171.1(\mathrm{C}=\mathrm{O}), 168.1(\mathrm{C}=\mathrm{O}), 148.3(\mathrm{q}), 140.8(\mathrm{q}), 133.2(\mathrm{q})$, 132.0, 131.97, 131.5, 130.0, 129.0 (q), 127.3, 123.5, 123.3 (q), 123.0 (q), 81.6, 66.6 (q), 56.8, 52.3.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2952,1789,1730,1606,1522,1491,1346,1258,1207$, $1155,1075,1041,1009,799,749,686$.

HRMS (m / z - APCI): Found: 571.9338 (M-H) ${ }^{-} \quad \mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{NO}_{4} \quad$ Requires: 571.9349.

Methyl (2R,3S,4S)-3,4-bis(4-bromophenyl)-2-(2-((tert-butoxycarbonyl)amino) ethyl)-5-oxotetrahydrofuran-3-carboxylate (340)

Prepared according to general procedure III, using $\mathbf{3 1 5}$ ($164.0 \mathrm{mg}, 0.4 \mathrm{mmol}$) and tertbutyl (3-oxopropyl)carbamate (338, $67.9 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The reaction was stired for 12 days at $-30{ }^{\circ} \mathrm{C}$, to give a diastereomeric mixture of carboxylic acids in a 19:1 (major:others) ratio. After esterification, the major diastereomer (340) was isolated and purified by flash column chromatography to give a white solid ($139.5 \mathrm{mg}, 58 \%$). M.p. $62-64{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, 70:30 $\left.v / v\right)$: $\mathrm{R}_{\mathrm{f}}=0.34 ;[\alpha]_{\mathrm{D}}^{20}=+40.0\left(c=0.05, \mathrm{CHCl}_{3}\right)$. HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}: i-\mathrm{PrOH}(1: 1: 1, v: v: v)$ gradient as shown in Table 4.2, column temperature: $30^{\circ} \mathrm{C}$, UV detection at 230 nm , retention times: 4.61 min (minor enantiomer) and 5.14 min (major enantiomer). $\mathbf{9 0 \%} \boldsymbol{e e}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.46-7.42(4 \mathrm{H}, \mathrm{m}($ app. t$), \mathrm{H}-1$ and $\mathrm{H}-10)$, 7.05-7.03 $(2 \mathrm{H}$, d, J 8.5, H-9), 6.93-6.91 (2 H, d, J 8.6, H-2), 5.06 (1 H, app. d, H-4), $4.92(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-7(\mathrm{NH})), 4.02(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 3.62$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$), 3.45-3.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}$ and $\mathrm{H}-6 \mathrm{~b}$), 2.272.15 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{a}$), 1.75-1.66 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b}$), 1.45 ($9 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-8$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: Mixture of diastereomers: $173.5(\mathrm{C}=\mathrm{O}), 172.2(\mathrm{C}=\mathrm{O}), 171.1$ (C=O), 169.8 ($\mathrm{C}=\mathrm{O}$), 156.2 ($\mathrm{C}=\mathrm{O}$), 156.0 ($\mathrm{C}=\mathrm{O}$), 134.9 (q), 133.9 (q), 132.8, 132.2, 131.68, 131.66, 131.44, 131.08, 130.7 (q), 129.8 (q), 129.3, 128.8, 79.8, 79.7, 63.8 (q), 63.6 (q), 56.6, 53.0, 52.7, 52.5, 38.0 (q), 37.3 (q), 30.26, 30.20, 28.4, 28.3 .

$v_{\text {max }}\left(\right.$ neat $/ \mathrm{cm}^{-1}$:	3405, 2977, 1774, 1729, 1690, 1523, 1491, 1365, 1238, 1165, 1075, 1010, 987, 835, 777, 746.				
HRMS (m / z - APCI)	Found:	594.0151	(M-H) ${ }^{-}$	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{NO}_{6}$	Requires:
	594.0132.				

(2R,3S,4S)-3,3a-Bis(4-bromophenyl)hexahydrofuro[3,2-c]pyridine-2,4-dione (343b)

A 10 mL oven-dried round-bottomed flask containing a stirring bar was charged with the free amine of $\mathbf{3 4 0}(97.5 \mathrm{mg}, 0.168 \mathrm{mmol}, 86: 14 \mathrm{dr})$ and placed under an argon atmosphere. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ was added via syringe and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. A 2 M solution of trimethylaluminium in hexanes ($168 \mu \mathrm{~L}, 0.337 \mathrm{mmol}$) was then added dropwise via syringe. The resulting solution was allowed to come back slowly to room temperature and stirred for 5 h . After 5 h , the reaction mixture was quenched by adding dropwise cold MeOH via syringe followed by cold deionised water. The resulting biphasic mixture was then diluted with water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic fractions were washed with water, and brine, and dried over MgSO_{4} and the solvent was removed in vacuo to afford the crude product. Purification by flash column chromatography eluting in gradient from hexanes to 50% of EtOAc in hexanes furnished the desired product $\mathbf{3 4 3 b}$ (74 mg , 81%). M.p. $80-82{ }^{\circ} \mathrm{C}$; TLC (hexanes:EtOAc, $\left.1: 1 \mathrm{v} / \mathrm{v}\right): \mathrm{R}_{\mathrm{f}}=0.29$; $[\alpha]_{\mathrm{D}}^{20}=+245(c=$ $\left.0.146, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}: i-\mathrm{PrOH}(1: 1: 1, v: v: v)$ gradient as shown in Table 4.2, column temperature: $30^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 7.11 min (major enantiomer) and 7.29 min (minor enantiomer). $\mathbf{8 6 \%} \boldsymbol{e e}$.

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$	$7.30-7.28(4 \mathrm{H}, \mathrm{app} . \mathrm{bd}, \mathrm{H}-1 \mathrm{and} \mathrm{H}-9), 7.01(2 \mathrm{H}, \mathrm{d}, J 8.6$,
	$\mathrm{H}-8), 6.77(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-2), 6.02(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-7(\mathrm{NH}))$,
	$5.39(1 \mathrm{H}, \mathrm{dd}, J 2.4, J 2.5, \mathrm{H}-4), 4.77(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 3.63-$
	$3.56(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}), 3.30-3.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 2.45-2.38(1$
	$\mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{a}), 2.28-2.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b})$.

4.4 Experimental procedures for Chapter 3

4.4.1 Synthesis of anhydrides: procedures

Scheme 4.4 Synthesis of anhydrides 366, 412 and 413.

General procedure IV: Synthesis of anhydride precursors S02, 417-418

A 500 mL oven dried round-bottomed flask containing a stirring bar was charged with the relevant ethyl ester (236, 309-310, 1.0 equiv.). The flask was flushed with argon, fitted with a septum and placed under an argon atmosphere. Dry THF was added via syringe and the resulting stirring solution was cooled to $-15^{\circ} \mathrm{C}$. To the stirred solution, potassium tert-butoxide (1.05 equiv.) was added portion wise and the mixture was stired for 30 min . After 30 min , a cooled solution of ethyl 2-bromopropionate (1.0 equiv.) in dry THF was slowly added via syringe over a $10-\mathrm{min}$ period. The reaction mixture was allowed to come back to room temperature and stirred for 16 h . The solvent was then removed under reduced pressure, deionised water was added to the residue and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with deionised water, dried over MgSO_{4} and the solvent was removed in vacuo to afford a mixture of the crude esters $\mathbf{S 0 1}, \mathbf{4 1 5}-\mathbf{4 1 6}$. The crude products were purified with a plug of silica gel (eluting with 50% of EtOAc in hexanes) affording almost analytically pure material that was used into the next step without further purification.

The crude mixture of diastereomers (1 equiv.) was transferred into a 500 mL roundbottomed flask containing a stirring bar and dissolved in a solution of KOH (10 equiv.) in $\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}(50: 50 \mathrm{v} / \mathrm{v}, 200 \mathrm{~mL})$. The flask was fitted with a condenser and the solution was stirred under reflux for 16 h . The solution was allowed to cool to room temperature, the excess of EtOH was removed under reduced pressure and the remaining aqueous solution was washed several times with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was discarded and the aqueous solution layer was cooled to $0{ }^{\circ} \mathrm{C}$. Acidification with conc. HCl (added dropwise until pH 1 was reached) generally resulted in the precipitation of the sole pure trans-isomer. The solid was then filtered and washed with a little warmed water, transferred to a 250 mL round-bottomed flask followed by an addition of $\mathrm{Et}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$. The solvent was removed in vacuo to help removing residual water to afford the pure trans products. When the product did not precipitate as a single diastereomer, the resulting mixture of diacids was dissolved in the minimum amount of a dilute sodium hydroxide solution and the pH of the solution was adjusted to pH 5 with dilute HCl before being stored in a freezer. The monosodium salt of the trans succinic acid generally crystalysed out, the solid was filtered off and the free acid was recovered by redisolving the monosodium salt in dilute sodium hydroxide until basic pH was reached
followed by acidification with conc. HCl until pH 1 was reached, resulting in the precipitation of the pure trans isomer. The solid was then filtered off and washed with a little warmed water before being dried under high vacuum.

General procedure V: Synthesis of anhydrides S03, 412-413

A 25 mL oven dried two-neck round-bottomed flask containing a stirring bar was charged with the appropriate succinic acid derivative $\mathbf{S 0 2}, 417-418$ (1.0 equiv.). The flask was then fitted with a condenser and a septum and flushed with argon. Freshly distilled acetyl chloride ($\approx 15 \mathrm{~mL} / \mathrm{g}$ of product) was added to the flask, the flask was flushed with argon for an additional 2 min and then kept under an argon atmosphere (balloon). The reaction mixture was heated under reflux for 16 h , and then concentrated in vacuo. The crude solid was triturated in dry $\mathrm{Et}_{2} \mathrm{O}(\approx 10 \mathrm{~mL} / \mathrm{g}$ of product) to get rid of the remaining acetyl chloride/acetic acid, cooled to $0{ }^{\circ} \mathrm{C}$, filtered off and dried under high vacuum to yield $\mathbf{S 0 3}, 412$-413.

2-Methyl-3-phenylsuccinic acid (S02)

Prepared according to general procedure IV, using potassium tert-butoxide (4.45 g , 39.65 mmol), ethyl 2-phenylacetate ($\mathbf{2 3 6}, 6.20 \mathrm{~g}, 37.76 \mathrm{mmol}$) in dry THF (80 mL) and ethyl 2-bromopropionate ($6.84 \mathrm{~g}, 37.76 \mathrm{mmol}$) in dry THF (50 mL). After hydrolysis of the esters and work up as described in the general procedure I, trans-S02 was obtained as a white solid ($5.1 \mathrm{~g}, 64 \%$ over 2 steps). M.p. $174-175{ }^{\circ} \mathrm{C}$ (lit, ${ }^{180}$ M.p. $192-193{ }^{\circ} \mathrm{C}$).

Spectral data for this compound were consistent with those in the literature. ${ }^{180}$
trans-S02:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$: $12.3(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-3$ and H-4), 7.36-7.26 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7$ and H-8), 3.59 ($1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{H}-5$), 2.95-2.87 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 2), 0.83 ($3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-1$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): 177.1$ (C=O), 174.6 (C=O), 137.6 (q), 129.1, 128.7, 127.8 (q), 54.2, 42.2, 15.7.
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad 2985,1690,1421,1313,1275,1253,1204,917,900,723$, 698.

HRMS (m / z - ESI): \quad Found: $207.0654(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{4}$ Requires: 207.0657.

3-Methyl-4-phenyldihydrofuran-2,5-dione (366)

Prepared according to general procedure V, using trans-S02 (940 mg, 4.51 mmol) and freshly distilled acetyl chloride ($\approx 15 \mathrm{~mL}$). After work up as described in general procedure II, trans-S03 was obtained as a white solid ($0.804 \mathrm{~g}, 93 \%$). M.p. $79-81{ }^{\circ} \mathrm{C}$. TLC (hexanes:EtOAc, $4: 1 v / v$): $\mathrm{R}_{\mathrm{f}}=0.42$ (trans-366).
trans-366:
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.60-7.49(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ and $\mathrm{H}-6)$, 7.43-7.34 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 4.02 ($1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-3$), 3.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 1.62 ($3 \mathrm{H}, \mathrm{d}, J$ 7.1, H-1).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 172.4(\mathrm{C}=\mathrm{O}), 170.6(\mathrm{C}=\mathrm{O}), 133.7(\mathrm{q}), 129.4,128.7,127.7$, 54.5, 44.3, 14.3 .
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2923,1835,1772,1695,1498,1455,1259,1217,1102$, 983, 924, 763, 739, 699, 589.

HRMS (m / z - ESI): \quad Found: $189.0556(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{3}$ Requires: 189.0552.

(4-Bromophenyl)-3-methylsuccinic acid (417)

Prepared according to general procedure IV, using potassium tert-butoxide ($1.05 \mathrm{~g}, 9.37$ mmol, 1.1 equiv.), ethyl 2-(4-bromophenyl)acetate ($\mathbf{3 0 9}, 2.09 \mathrm{~g}, 8.52 \mathrm{mmol}$) in dry THF (20 mL) and ethyl 2-bromopropionate ($1.1 \mathrm{~mL}, 8.52 \mathrm{mmol}$) in dry THF (10 mL). After hydrolysis of the esters and work up as described in the general procedure I, trans-417 was obtained as a white solid ($1.4 \mathrm{~g}, 57 \%$ over 2 steps). M.p. $175-178{ }^{\circ} \mathrm{C}$.
trans-417:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 12.37(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-3$ and $\mathrm{H}-4), 7.54(2 \mathrm{H}, J 8.4, \mathrm{H}-7), 7.25(2$ H, J 8.4, H-6), 3.62 (1 H, d, J 11.1, H-5), 2.93-2.85 (1 H, m, H-2), 0.83 (3 H, d, J 7.3, H-1).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): 176.8(\mathrm{C}=\mathrm{O}), 174.2(\mathrm{C}=\mathrm{O}), 137.1(\mathrm{q}), 132.0,131.0,121.0$ (q), 53.5, 42.0, 15.6.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad$ 2982, 2601, 1694, 1489, 1458, 1408, 1280, 1198, 1074, 1012, 918, 809, 750, 646, 582.

HRMS (m / z - APCI): \quad Found: $284.9765(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrO}_{4}$ Requires: 284.9767.

(4-Bromophenyl)-4-methyldihydrofuran-2,5-dione (412)

Prepared according to general procedure V, using trans-417 (500 mg, 1.74 mmol) and freshly distilled acetyl chloride ($\approx 10 \mathrm{~mL}$). After work up as described in general procedure II, trans-412 was obtained as a white solid ($372 \mathrm{mg}, 80 \%$). M.p. $116-118{ }^{\circ} \mathrm{C}$.
trans-412:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.56(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-5), 7.14(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-4), 3.86(1$
H, d, J 9.1, H-3), 3.24-3.16 (1 H, m, H-2), 1.49 (3 H, d, J
7.1, H-1).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 171.9(\mathrm{C}=\mathrm{O}), 170.0(\mathrm{C}=\mathrm{O}), 132.6,132.4(\mathrm{q}), 129.4,123.0$
(q), 54.0, 44.1, 14.3.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2988,2942,2894,1867,1768,1493,1448,1409,1382$,
1260, 1217, 1112, 1076, 1014, 978, 907, 851, 835, 804,
741, 702, 626.

HRMS (m / z - APCI): Found: $266.9649(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{BrO}_{3}$ Requires: 266.9662.

2-Methyl-3-(4-(trifluoromethyl)phenyl)succinic acid (418)

Prepared according to general procedure IV, using potassium tert-butoxide (0.761 g , $6.68 \mathrm{mmol})$, ethyl 2-(4-(trifluoromethyl)phenyl)acetate (310, $1.5 \mathrm{~g}, 6.46 \mathrm{mmol}$) in dry THF (40 m L) and ethyl 2-bromopropionate ($1.17 \mathrm{~g}, 6.46 \mathrm{mmol}$) in dry THF (20 mL). After hydrolysis of the esters and work up as described in the general procedure I, trans-418 was obtained as a white solid ($1.26 \mathrm{~g}, 69 \%$ over 2 steps). M.p. $160-162{ }^{\circ} \mathrm{C}$. trans-418:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 12.47(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-3$ and $\mathrm{H}-4), 7.70(2 \mathrm{H}, J 8.2, \mathrm{H}-7), 7.53$ (2 H, J 8.2, H-6), 3.77 (1 H, d, J 11.1, H-5), 3.01-2.93 (1 H, m, H-2), 0.84 (3 H, d, J 7.3, H-1).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \quad 176.8(\mathrm{C}=\mathrm{O}), 174.0(\mathrm{C}=\mathrm{O}), 142.4(\mathrm{q}), 129.7,128.5(\mathrm{q})\left(\mathrm{q},{ }^{2} J\right.$ 31.8 Hz), 125.9 (q, ${ }^{3} J 3.5 \mathrm{~Hz}$), 124.6 (q) ($\mathrm{q},{ }^{1} J 272.0 \mathrm{~Hz}$), 54.0, 42.0, 15.5.
$\delta_{\mathrm{F}}\left(376.5 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right):-61.07$.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3245,2994,2575,1747,1672,1461,1421,1324,1202$, $1173,1161,1128,1107,1067,1020,915,833,724,676$.

HRMS (m / z - APCI): Found: $275.0525(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}_{4}$ Requires: 275.0536.

3-Methyl-4-(4-(trifluoromethyl)phenyl)dihydrofuran-2,5-dione (413)

Prepared according to general procedure V, using trans-418 ($650 \mathrm{mg}, 2.35 \mathrm{mmol}$) and freshly distilled acetyl chloride ($\approx 10 \mathrm{~mL}$). After work up as described in general procedure II, trans-413 was obtained as a white solid ($421.6 \mathrm{mg}, 70 \%$). TLC (hexanes:EtOAc, $1: 1 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.79$ (trans-413). M.p. $80-82^{\circ} \mathrm{C}$.
trans-413:

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$	$7.70(2 \mathrm{H}, J 8.1, \mathrm{H}-5), 7.40(2 \mathrm{H}, J 8.1, \mathrm{H}-4), 3.96(1 \mathrm{H}, \mathrm{d}, J$
	$9.2, \mathrm{H}-3), 3.29-3.22(1 \mathrm{H}, \mathrm{dq}, J 9.2, J 7.1, \mathrm{H}-2), 1.52(3 \mathrm{H}$,
	$\mathrm{d}, J 7.1, \mathrm{H}-1)$.

$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 171.7(\mathrm{C}=\mathrm{O}), 169.8(\mathrm{C}=\mathrm{O}), 137.4(\mathrm{q}), 131.2(\mathrm{q})\left(\mathrm{q},{ }^{2} \mathrm{~J} 32.7\right.$ $\mathrm{Hz}), 128.4,126.5\left(\mathrm{q},{ }^{3} J^{3.7} \mathrm{~Hz}\right), 123.7(\mathrm{q})\left(\mathrm{q},{ }^{1} J 272.3 \mathrm{~Hz}\right)$, 54.2, 44.1, 14.3 .
$\delta_{\mathrm{F}}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad-62.89$.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2942,1871,1846,1773,1422,1324,1264,1227,1166$, 1111, 1067, 985, 926, 839, 751, 726, 628.

HRMS (m / z - APCI): \quad Found: $257.0422(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{O}_{3}$ Requires: 257.0431.

Scheme 4.5 Synthesis of anhydride 414.

2-Methyl-3-(4-nitrophenyl)succinic acid (421)

A 25 mL oven-dried round-bottomed flask fitted with a thermometer and containing a magnetic stirring bar was charged with fuming nitric acid ($\approx 4 \mathrm{~mL}$) and cooled to $0^{\circ} \mathrm{C}$. 2-Methyl-3-phenylsuccinic acid (420, $1.0 \mathrm{~g}, 4.8 \mathrm{mmol})$ was added portion wise while keeping the temperature $<20^{\circ} \mathrm{C}$. The solution stired for 2 h , at $0^{\circ} \mathrm{C}$, then crushed ice $(\approx$ 10 g) and water ($\approx 5 \mathrm{~mL}$) were added to the reaction mixture. A pale yellow solid precipitate formed. The solid was filtered off and washed with cold water. The crude product was obtained as a mixture of diastereomers in a $45: 55$ ratio (cis:trans) $(0.840 \mathrm{~g}$, 69%). The crude product was recrystallised from boiling water to obtain trans-414 as a white solid ($320 \mathrm{mg}, 26 \%$). M.p. $>200^{\circ} \mathrm{C}$, decomposition.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 12.34(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-3), 8.18(2 \mathrm{H}, J 8.8, \mathrm{H}-6)$, $7.59(2 \mathrm{H}, J$ $8.8, \mathrm{H}-5$), 3.83 ($1 \mathrm{H}, \mathrm{d}, J 10.2, \mathrm{H}-4$), 3.11-3.03 ($1 \mathrm{H}, \mathrm{dq}, J$ $10.2, J 6.7, \mathrm{H}-2), 1.21$ ($3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{H}-1$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): 175.2(\mathrm{C}=\mathrm{O}), 172.8(\mathrm{C}=\mathrm{O}), 147.2$ (q), 145.8 (q), 130.2, 123.9, 54.6, 43.1, 16.5.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2920,2916,1696,1599,1519,1423,1351,1296,1196$, 913, 836, 733, 697, 650.

HRMS $(\mathrm{m} / \mathrm{z}-\mathrm{APCI}): \quad$ Found: $252.0505(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{6}$ Requires: 252.0513.

3-Methyl-4-(4-nitrophenyl)dihydrofuran-2,5-dione (414)

Prepared according to general procedure V, using 421 ($273.0 \mathrm{mg}, 1.08 \mathrm{mmol}$) and freshly distilled acetyl chloride ($\approx 5 \mathrm{~mL}$). After work up as described in general procedure II, 414 was obtained as a brown crude residue (241.3 mg - 95% (crude)). The residue was stirred in boiling $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ and the resulting solution was separated from the insoluble remaining residue. The organic solvent was transferred to a small vial and stored in a freezer. After storage overnight, a yellow solid had formed. The solid was filtered off and dried under high vacuum to yield $\mathbf{4 1 4}$ as a mixture of pure diastereomers in the ratio $83: 17$ (trans:cis) $(93.6 \mathrm{mg}, 37 \%)$. M.p. $* 88-90^{\circ} \mathrm{C}$.
trans-414:
$\begin{aligned} \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 8.28(2 \mathrm{H}, J 8.4, \mathrm{H}-5), 7.37(2 \mathrm{H}, J 8.4, \mathrm{H}-4), 4.59(1 \mathrm{H}, J \\ & 10.0, \mathrm{H}-3), 3.61-3.52(1 \mathrm{H}, \mathrm{dq}, J 10.0, J 7.7, \mathrm{H}-2), 1.02(3 \\ & \mathrm{H}, J 7.7, \mathrm{H}-1) .\end{aligned}$
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 172.4(\mathrm{C}=\mathrm{O}), 170.0(\mathrm{C}=\mathrm{O}), 138.8(\mathrm{q}), 147.9(\mathrm{q}), 138.8(\mathrm{q})$, 129.9, 124.4, 50.8, 40.3, 12.6 .
cis-414:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.30(2 \mathrm{H}, J 8.5, \mathrm{H}-5), 7.48(2 \mathrm{H}, J 8.5, \mathrm{H}-4), 4.05(1 \mathrm{H}, J$ 9.3, H-3), 3.33-3.25 (1 H, dq, J 9.3, J 7.1, H-2), 1.54 (3 H, J 7.1, H-1).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 171.2(\mathrm{C}=\mathrm{O}), 169.3(\mathrm{C}=\mathrm{O}), 142.5(\mathrm{q}), 140.3(\mathrm{q}), 128.9$, 124.6, 54.0, 44.0, 14.3.
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: * \quad 2894,1859,1779,1602,1521,1456,1348,1219,1093$, 981, 917, 853, 832, 698.

HRMS (m / z - APCI):* Found: $234.0419(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{NO}_{5}$ Requires: 234.0407.

* Refers to mixture of trans-414:cis-414 in the ratio 83:17.

Scheme 4.6 Synthesis of anhydrides 428 to 430.

2-Ethyl-3-phenylsuccinic acid (435)

Prepared according to general procedure IV, using potassium tert-butoxide (3.02 g , 26.92 mmol), ethyl 2-bromobutyrate ($5.0 \mathrm{~g}, 25.63 \mathrm{mmol}$) in dry THF (100 mL) and ethyl 2-phenylacetate ($\mathbf{2 3 6}, 4.21 \mathrm{~g}, 25.63 \mathrm{mmol}$) in dry THF (50 mL). After hydrolysis of the esters and work up as described in the general procedure I, $\mathbf{4 3 5}$ was obtained as a mixture of diastereomers in a 45:55 (cis:trans) ratio as a white solid ($1.54 \mathrm{~g}, 27 \%$ over 2 steps). M.p. $>200^{\circ} \mathrm{C} . *$
trans-435:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 12.32(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-5$ and $\mathrm{H}-6), 7.36-7.22$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and H-3), 3.68 ($1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{H}-4$), 2.92-2.86 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 7), 1.67-1.52 (2 H, m, H-8), 0.72 ($3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{H}-9$).
cis-435:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$: 12.32 ($2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-5$ and $\mathrm{H}-6$), 7.36-7.22 (5 H, m, H-1, H-2 and H-3), 3.58 ($1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{H}-4$), 2.92-2.86 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 7), 1.37-1.28 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.16-1.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 0.90 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{H}-9$).
cis-435 + trans-435:
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$:* $176.0(\mathrm{C}=\mathrm{O})$, $174.60(\mathrm{C}=\mathrm{O})$, 174.58 ($\mathrm{C}=\mathrm{O}$), 173.8 ($\mathrm{C}=\mathrm{O}$), 137.9 (q), 137.6 (q), 129.8, 129.1, 128.75, 128.7, 127.83, 127.77, 54.3, 52.3, 50.7, 48.4, 24.8, 22.2, 12.0, 10.6.
$v_{\max }$ (neat)/cm ${ }^{-1}: * \quad 2969,1688,1499,1456,1405,1278,1195,934,695,633$.

HRMS $\left(m / z\right.$ - ESI):* Found: $221.0810(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{4}$ Requires: 221.0819.

* Refers to mixture of trans-435:cis-435 in the ratio 55:45.

2-Phenyl-3-propylsuccinic acid (436)

Prepared according to general procedure IV, using potassium tert-butoxide (2.22 g , 19.74 mmol), ethyl 2-phenylacetate ($\mathbf{2 3 6}, 3.09 \mathrm{~g}, 18.80 \mathrm{mmol}$) in dry THF (80 mL) and ethyl 2-bromovalerate ($3.93 \mathrm{~g}, 18.80 \mathrm{mmol}$) in dry THF (50 mL). After hydrolysis of the esters and work up as described in the general procedure I, 436 was obtained as a white solid as a mixture of diastereomers in the ratio $43: 57$ (cis:trans) $(3.2 \mathrm{~g}, 63 \%$ over 2 steps, combined yield for both diastereomers). M.p. $184-188^{\circ} \mathrm{C}$.
cis-436 + trans-436:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): * 12.31$ ($2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-5$ and $\mathrm{H}-6$), 7.37-7.23 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and H-3), 3.66 ($\left.1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{H}-4_{(\text {trans })}\right), 3.57(1 \mathrm{H}, \mathrm{d}, J$ 11.1, H-4 (cis)), 3.00-2.88 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7_{(\text {cis }+ \text { trans })}$), 1.62-1.47 (1 $\left.\mathrm{H}, \mathrm{m}, \mathrm{H}-8_{(\text {trans })}\right)$, 1.62-1.47 (1 H, m, H-8(cis) $), 1.37-1.22(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}-\mathrm{8}_{(\text {trans }}\right)$, $1.20-1.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9_{(\text {cistrans })}\right), 0.89(3 \mathrm{H}, \mathrm{t}, J$ $\left.7.3, \mathrm{H}-10_{(c i s)}\right), 0.68\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{H}-10_{(\text {trans })}\right)$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): * 176.3(\mathrm{C}=\mathrm{O}), 174.8(\mathrm{C}=\mathrm{O}), 174.5(\mathrm{C}=\mathrm{O}), 173.8(\mathrm{C}=\mathrm{O})$, 137.8 (q), 137.7 (q), 129.8, 129.1, 128.8, 128.75, 127.85, $127.78,54.6,53.0,49.0,47.3,33.9,31.7,20.6,19.4,14.3$, 14.2.
$v_{\max }$ (neat)/ $\mathrm{cm}^{-1}: * \quad 2961,1690,1411,1280,1198,934,725,697$.

HRMS (m / z - ESI):* \quad Found: $\quad 259.0950 \quad(\mathrm{M}+\mathrm{Na})^{+} \quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{4} \quad$ Requires: 259.0940 .

* Refers to mixture of trans-436:cis-436 in the ratio 57:43.

Ethyl 2-bromo-3-methylbutanoate (S04)

A 250 mL round-bottomed flask containing a stirring bar was charged with commercially available 2-bromo-3-methylbutyric acid ($10.0 \mathrm{~g}, 55.24 \mathrm{mmol}$). MeOH (100 mL) followed by conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.8 \mathrm{~mL})$ were added, the flask was fitted with a condenser and the resulting mixture was stirred under reflux for 16 h . The solution was cooled to room temperature and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with a saturated NaHCO_{3} solution until basic pH was reached. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 50 \mathrm{~mL}$), the combined organic fractions were washed with deionised water, dried over MgSO_{4} and the solvent was removed in vacuo to afford $\mathbf{S 0 4}$ pure as a colourless liquid ($10.6 \mathrm{~g}, 50.7 \mathrm{mmol}$, 92%). TLC (hexanes:EtOAc, $9: 1 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.76$

Spectral data for this compound were consistent with those in the literature. ${ }^{181}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 4.23(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{H}-5), 4.03(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-4), 2.27-2.19$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 1.29 ($3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{H}-6$), 1.09 ($3 \mathrm{H}, \mathrm{d}, J 6.6$, H-3), 1.03 (3 H, d, J 6.7, H-1).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.5(\mathrm{C}=\mathrm{O}), 61.8,54.7,32.3,19.9,19.8,14.0$.

HRMS $(m / z-\mathrm{APCI}): \quad$ Found: $209.0171(\mathrm{M}+\mathrm{H})^{+} \mathrm{C} 7 \mathrm{H} 17 \mathrm{BrO}_{2}$ Requires: 209.0172.

2-Isopropyl-3-phenylsuccinic acid (437)

trans-437

Prepared according to general procedure IV, using potassium tert-butoxide (2.15 g , 19.18 mmol), ethyl 2-bromo-3-methylbutyrate ($3.82 \mathrm{~g}, 18.27 \mathrm{mmol}$) in dry THF (80 mL) and ethyl 2-phenylacetate ($\mathbf{2 3 6}, 3.0 \mathrm{~g}, 18.27 \mathrm{mmol}$) in dry THF (20 mL). After hydrolysis of the esters and work up as described in the general procedure I, 437 was
obtained as a mixture of diastereomers in a 22:78 (cis:trans) ratio as a white solid ($0.750 \mathrm{~g}, 64 \%$ over 2 steps, combined yield for both diastereomers). M.p. $>200^{\circ} \mathrm{C}$.
trans-437:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 12.24(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-5$ and $\mathrm{H}-6), 7.36-7.22$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and H-3), 3.76 ($1 \mathrm{H}, \mathrm{d}, ~ J 11.8, \mathrm{H}-4), 2.90(1 \mathrm{H}, \mathrm{dd}, J 2.8$, 11.8, H-7), 1.40-1.33 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 0.88 ($3 \mathrm{H}, \mathrm{d}, J 6.9$, H9), 0.73 ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}-10$).
cis-437:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 12.24(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-5$ and $\mathrm{H}-6), 7.36-7.22$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and H-3), 3.74 ($1 \mathrm{H}, \mathrm{d}, ~ J 11.3, \mathrm{H}-4$), 3.02 ($1 \mathrm{H}, \mathrm{dd}, J 4.3$, 11.3, H-7), 2.01-1.93 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 0.99 ($3 \mathrm{H}, \mathrm{d}, J 6.9$, H9), 0.96 ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}-10$).
trans-437 (only):
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 174.70(\mathrm{C}=\mathrm{O}), 174.67(\mathrm{C}=\mathrm{O}), 137.8(\mathrm{q}), 129.2,128.7$, 127.8, 53.0, 51.7, 26.5, 22.4, 17.2.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: * \quad 3216,1699,1418,1070,944,796,725,698$.
HRMS (m / z - ESI):* Found: $235.0967(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4}$ Requires: 235.0975.

* Refers to mixture of trans-437:cis-437 in the ratio 78:22.

2-Ethyl-3-phenylsuccinic acid anhydride (428)

Prepared according to general procedure V, using 435 ($1.7 \mathrm{~g}, 7.64 \mathrm{mmol}$) and freshly distilled acetyl chloride ($\approx 20 \mathrm{~mL}$). After work up as described in general procedure II, 428 was obtained as a brown liquid. The residue was filtered through a small pad of
silica eluting with 100% EtOAc. After evaporation of the solvent the product was dried under high vacuum to yield $\mathbf{4 2 8}$ as a mixture of pure diastereomers in the ratio 52:48 (trans:cis) (1.14 g, 73\%).
trans-428:

$$
\begin{array}{ll}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 7.43-7.15(5 \mathrm{H}, \mathrm{~m}, \mathrm{H}-1, \mathrm{H}-2 \text { and } \mathrm{H}-3), 4.00(1 \mathrm{H}, \mathrm{~d}, J 7.7, \\
& \mathrm{H}-4), 3.24-3.19(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-5), 2.04-1.89(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-6), \\
& 1.09(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{H}-7) .
\end{array}
$$

cis-428:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.43-7.15(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3), 4.43(1 \mathrm{H}, \mathrm{d}, J 9.5$, H-4), 3.28-3.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.72-1.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}$), $1.37-1.26(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 0.91$ ($3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{H}-7$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 171.04(\mathrm{C}=\mathrm{O}), 171.01(\mathrm{C}=\mathrm{O}), 131.6(\mathrm{q}), 129.2,128.70$, 128.66, 50.9, 47.3, 23.2, 11.7.
$\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: * \quad$ 2972, 2939, 1863, 1775, 1496, 1455, 1208, 1107, 1080, 1208, 1034, 1017, 914, 763, 698, 735.

HRMS (m / z - APCI):* Found: $203.0707(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3}$ Requires: 203.0713.

* Refers to mixture of trans-428:cis-428 in the ratio 52:48.

2-Phenyl-3-propylsuccinic acid anhydride (429)

Prepared according to general procedure V, using 436 ($2.3 \mathrm{~g}, 9.78 \mathrm{mmol}$) and freshly distilled acetyl chloride ($\approx 20 \mathrm{~mL}$). After work up as described in general procedure II,

429 was obtained as a brown liquid. The residue was filtered through a small pad of silica eluting with 100% EtOAc. After evaporation of the solvent the product was dried under high vacuum to yield $\mathbf{4 2 9}$ as a mixture of pure diastereomers in the ratio 64:36 (trans:cis) ($1.52 \mathrm{~g}, 72 \%$).
trans-429:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.43-7.14(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3), 3.98(1 \mathrm{H}, \mathrm{d}, J 7.5$, H-4, 3.28-3.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 2.02-1.94 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}$), 1.87-1.77 (1 H, m, H-6b), 1.58-1.39 (2 H, m, H-7), 0.91 (3 H, t, J 7.3, H-8).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 172.3(\mathrm{C}=\mathrm{O}), 171.0(\mathrm{C}=\mathrm{O}), 134.6(\mathrm{q}), 129.5,128.66,127.7$, 52.8, 48.8, 32.3, 19.8, 13.6.
cis-429:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.43-7.14(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3), 4.40(1 \mathrm{H}, \mathrm{d}, J 9.6$, H-4, 3.37-3.31 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.66-1.57 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}$), 1.45-1.36 (1 H, m, H-6b), 1.28-1.17 (2 H, m, H-7), 0.79 (3 H, t, J 7.2, H-8).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 172.9 \quad(\mathrm{C}=\mathrm{O}), 171.0(\mathrm{C}=\mathrm{O}), 131.7(\mathrm{q}), 129.2,128.72$, 128.63, 51.1, 45.5, 28.6, 20.3, 13.5 .
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: * \quad 2963,2935,1862,1776,1498,1455,1208,1051,1038$, 927, 769, 731, 698, 596.

HRMS (m / z - APCI):* Found: $217.0861(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{3}$ Requires: 217.0870.

* Refers to mixture of trans-429:cis-429 in the ratio 64:36.

2-Isopropyl-3-phenylsuccinic acid anhydride (430)

trans-430

cis-430

Prepared according to general procedure V, using $437(0.750 \mathrm{~g}, 3.17 \mathrm{mmol})$ and freshly distilled acetyl chloride ($\approx 10 \mathrm{~mL}$). After work up as described in general procedure II, 430 was obtained as a brown liquid. The residue was filtered through a small pad of silica eluting with 100% EtOAc. After evaporation of the solvent the product was dried under high vacuum to yield $\mathbf{4 3 0}$ as a mixture of pure diastereomers in the ratio 86:14 (trans:cis) ($0.408 \mathrm{~g}, 58 \%$).

trans-430:

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$	$7.42-7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and H-3), $4.02(1 \mathrm{H}, \mathrm{d}, J 6.4$,
	$\mathrm{H}-4), 3.19-3.36(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.40-2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6)$,

Scheme 4.7 Synthesis of anhydride 431.

Ethyl 2-(naphth-2-yl)acetate (439)

A 250 mL round-bottomed flask containing a stirring bar was charged with commercially available 2-naphthaleneacetic acid (438) ($5.46 \mathrm{~g}, 29.32 \mathrm{mmol}$). MeOH $(50 \mathrm{~mL})$ followed by conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.4 \mathrm{~mL})$ were added, the flask was fitted with a condenser and the resulting mixture was stirred under reflux for 16 h . The solution was cooled to room temperature and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL), washed with a saturated NaHCO_{3} solution until basic pH was reached. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 50 \mathrm{~mL})$, the combined organic fractions were washed with deionised water, dried over MgSO_{4} and the solvent was removed in vacuo to afford 439 as a colourless liquid ($6.05 \mathrm{~g}, 28.24 \mathrm{mmol}, 96 \%$). TLC (hexanes:EtOAc, 9:1 v / v): $\mathrm{R}_{\mathrm{f}}=0.49$.

Spectral data for this compound were consistent with those in the literature. ${ }^{182}$

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$	$7.84-7.80(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7$ and $\mathrm{H}-10), 7.74(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4)$,
	$7.50-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-8$ and H-9), $4.18(2 \mathrm{H}, \mathrm{q}, J 7.2$,
	$\mathrm{H}-2), 3.78(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 1.26(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{H}-1)$.

2-Methyl-3-(naphth-2-yl)succinic acid (441)

Prepared according to general procedure IV, using potassium tert-butoxide (3.33 g , 29.65 mmol), ethyl 2-(naphth-2-yl)acetate ($439,6.05 \mathrm{~g}, 28.24 \mathrm{mmol}$) in dry THF (100 mL) and ethyl 2-bromopropionate ($5.11 \mathrm{~g}, 28.24 \mathrm{mmol}$) in dry THF (10 mL). After hydrolysis of the esters and work up as described in the general procedure I, 441 was obtained as a white solid as a mixture of diastereomers (trans:cis) in the ratio 63:37 ($4.87 \mathrm{~g}, 67 \%$ over 2 steps, combined yield for both diastereomers). M.p. $102-104^{\circ} \mathrm{C} .{ }^{*}$ trans-441:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 12.42(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4$ and $\mathrm{H}-5)$, $7.91-7.87$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-9$ and H-12), 7.84 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-6$), 7.53-7.42 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-$ 10 and H-11), $3.80(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{H}-3), 3.12-3.04(1 \mathrm{H}, \mathrm{m}$, $J 7.2,11.2, \mathrm{H}-2), 0.88$ ($3 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{H}-1$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): 177.2(\mathrm{C}=\mathrm{O})$, $174.6(\mathrm{C}=\mathrm{O})$, 135.2 (q$), 133.4$ (q), $132.7(\mathrm{q})$, $128.8,128.1,128.0,127.8,126.9,126.8,126.4,55.1,43.3$, 16.8.
cis-441:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 12.42(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4$ and $\mathrm{H}-5)$, $7.91-7.87$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-9$ and H-12), 7.81 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-6$), 7.53-7.42 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-$ 10 and H-11), 3.82 ($1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{H}-3$), 3.20-3.13 ($1 \mathrm{H}, \mathrm{m}$, $J 6.9,10.8, \mathrm{H}-2), 1.27$ ($3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{H}-1$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): 175.6(\mathrm{C}=\mathrm{O}), 173.7(\mathrm{C}=\mathrm{O}), 135.8(\mathrm{q}), 133.2(\mathrm{q}), 132.7(\mathrm{q})$, $128.3,128.2,127.91,127.89,127.5,126.7,126.5,54.4$, 42.2, 15.8 .
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: * \quad 2886,2598,1693,1421,1306,1195,934,818,747$.

HRMS (m/z-ESI):* Found: $281.0787 \quad(\mathrm{M}+\mathrm{Na})^{+} \quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NaO}_{4} \quad$ Requires: 281.0784.

* Refers to mixture of trans-441:cis-441 in the ratio 63:37.

3-Methyl-4-(naphth-2-yl)dihydrofuran-2,5-dione (431)

Prepared according to general procedure V, using 441 ($3.8 \mathrm{~g}, 14.71 \mathrm{mmol}$) and freshly distilled acetyl chloride ($\approx 40 \mathrm{~mL}$). After work up as described in general procedure II, 431 was obtained as a brown crude residue. The residue was triturated in $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}(\approx 10$ mL). The remaining solid was filtered off and dried under high vacuum to yield $\mathbf{4 3 1}$ as a mixture of pure diastereomers in the ratio 81:19 (trans:cis) (1.25 g, 35\%). The mother liquor containing the remaining anhydride was stored under in a vial under an argon atmosphere. M.p.* $135-137{ }^{\circ} \mathrm{C}$.
trans-431:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.91(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-6), 7.87-7.81(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and $\mathrm{H}-10)$, 7.72 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4$), $7.56-7.51$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-9$), 7.31
(1 H, d, J 8.6, H-5), 4.05 (1 H, d, J 8.8, H-3), 3.38-3.31 (1 H, dq, J 8.8, J 7.2, H-2), 1.52 (3 h, d, J 7.2, H-1).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): 172.5(\mathrm{C}=\mathrm{O}), 170.7(\mathrm{C}=\mathrm{O}), 133.3$ (q), 133.1 (q), 130.9 (q), $129.6,129.3,127.9,127.8,127.4,126.97,126.88,124.7$, 54.8, 44.4, 14.4.
cis-431:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.87-7.81(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7$ and $\mathrm{H}-10)$, $7.64(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4)$, 7.56-7.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and $\mathrm{H}-9$), 7.16 ($1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-5$), 4.57 (1 H, d, $J 10.2, \mathrm{H}-3$), 3.57-3.49 (1 H, dq, J 10.2, J 7.5, $\mathrm{H}-2), 1.02$ ($3 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{H}-1$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): 173.7(\mathrm{C}=\mathrm{O}), 171.2(\mathrm{C}=\mathrm{O}), 133.3$ (q), 132.96 (q), 129.31 (q), 129.26, 128.2, 127.9, 127.8, 126.9, 126.89, 125.6, 51.5, 40.64, 12.0.
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: * \quad 1838,1771,1255,1229,1103,993,955,925,814,760$, 737.

HRMS (m / z - ESI):* \quad Found: $263.0675(\mathrm{M}+\mathrm{Na})^{+} \quad \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NaO}_{4} \quad$ Requires: 263.0678.

[^4]
4.4.2 Synthesis of catalysts: procedures

2,4,6-Triisopropyl-N-((S)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)benzenesulfonamide (178)

A 50 mL round-bottomed flask containing a stirring bar was charged with quinine 3 HCl salt ($\mathbf{2 7 9}, 900.0 \mathrm{mg}, 2.08 \mathrm{mmol})$ and suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and dry triethylamine ($1.45 \mathrm{~mL}, 10.4 \mathrm{mmol}$) was added. To the resulting clear solution 2,4,6-triisopropyl-phenyl sulfonyl chloride (390, $629.8 \mathrm{mg}, 2.08$ mmol) was added portion wise as a solid. The reaction mixture was allowed to come back to room temperature and stirred overnight. After 16 h , the reaction was diluted with water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic extracts were combined, washed successively with brine (30 mL), water (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford the crude product. The catalyst was purified by flash column chromatography eluting with 50% EtOAc in hexanes, to afford the product as a white solid ($940.0 \mathrm{mg}, 77 \%$). M.p. $110-112{ }^{\circ} \mathrm{C}$. TLC (hexanes:EtOAc, 50:50 v / v): $\mathrm{R}_{\mathrm{f}}=0.48$.

Spectral data for this compound were consistent with those in the literature. ${ }^{109}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ analysis showed the presence of two rotameric species in the ratio 78:22.

Major rotamer:

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 8.51(1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{H}-1), 7.90(1 \mathrm{H}, \mathrm{d}, J 9.8, \mathrm{H}-5), 7.49-7.41$
($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and H-4), 7.39 ($1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{H}-2$), 6.98 (2 H ,
s, H-19), 5.77-5.64 (1 H, m, H-14), 5.15 ($1 \mathrm{H}, \mathrm{d}, J 10.5$, H-
6), 4.99-4.80 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$), 3.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.89-3.85
($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-17$), 3.12-3.00 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 2.97-
2.74 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-12 \mathrm{a}$ and $\mathrm{H}-20$), 2.68-2.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 8b), 2.50-2.39 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{~b}$), 2.23-2.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.55-1.38 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{a}, \mathrm{H}-11 \mathrm{~b}$ and $\mathrm{H}-13 \mathrm{a}$), 1.18-1.06 (12 H, m, H-18), 0.86 ($6 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{H}-21$), 0.76-0.71 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-13 \mathrm{~b})$.

2,4,6-Triisopropyl-N-((S)-(6-methoxy-2-phenylquinolin-4-yl)((1S,2S,4S,5R)-5-

 vinylquinuclidin-2-yl)methyl)benzenesulfonamide (251)

A 50 mL round-bottomed flask containing a stirring bar was charged with C-2'-phenyl-9-amino-epi-quinine hydrochloride salt ($\mathbf{2 6 8}, 250.0 \mathrm{mg}, 0.49 \mathrm{mmol}$) and suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The solution was cooled to $0^{\circ} \mathrm{C}$ and dry triethylamine ($0.31 \mathrm{~mL}, 2.21$ mmol) was added. To the resulting clear solution 2,4,6-triisopropyl-phenyl sulfonyl chloride ($\mathbf{3 9 0}, 148.78 \mathrm{mg}, 0.49 \mathrm{mmol}$) was added portion wise as a solid. The reaction was allowed to come back to room temperature and stirred overnight. After 16 h , the reaction mixture was diluted with water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30$ $\mathrm{mL})$. The organic extracts were combined, washed successively with brine (30 mL), water (30 mL), and dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford the crude product. The catalyst was purified by flash column chromatography eluting with the solvent system hexanes: $E t O A c: E t_{3} \mathrm{~N}(80: 15: 5 v: v)$, to afford the product as a white solid ($220.0 \mathrm{mg}, 68 \%$). M.p. $81-83{ }^{\circ} \mathrm{C}$. TLC (hexanes:EtOAc:Et ${ }_{3} \mathrm{~N}, 80: 18: 2$ $v / v): \mathrm{R}_{\mathrm{f}}=0.17 ;[\alpha]_{\mathrm{D}}^{20}=-10.4\left(c=0.5, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ analysis showed the presence of two rotameric species in the ratio 89:11.

Major rotamer:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.04(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{H}-5), 7.67(2 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{H}-1), 7.62(1$ H, s, H-2), 7.51 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 7.41-7.37 (4 H, m, H-4, H-22 and H-23), $6.87(2 \mathrm{H}, \mathrm{H}-19), 5.67-5.58(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14), 5.43$ ($1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{H}-6$), 4.94-4.87 (2 H, m, H-15), 4.02 ($3 \mathrm{H}, \mathrm{s}$, H-16), 3.83-3.74 (2 H, m, H-17), 3.3-3.24 (2 H, m, H-7 and H-8a), 2.85-2.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$ and H-20), 2.68-2.60 (2 H , m, H-9 and H-8b), 2.34-2.24 (1 H, m, H-12b), 1.71-1.61 (3 $\mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{a}, \mathrm{H}-11 \mathrm{~b}$ and $\mathrm{H}-13 \mathrm{a}$), 1.29-1.23 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$ and H-13b), 1.21-1.17 (4 H, m, H-18), 1.07-0.98 ($8 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-18), 0.74$ ($6 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{H}-21$).

Major and minor rotamers:
$\delta_{\mathrm{C}}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 157.9(\mathrm{q}), 156.8(\mathrm{q}), 154.6(\mathrm{q}), 154.0(\mathrm{q}), 152.7(\mathrm{q}), 152.3$ (q), 150.1 (q), 149.4 (q), 145.4 (q), 144.8 (q), 143.6 (q), 141.8 (q), 141.2, 141.1, 139.5 (q), 139.4 (q), 134.4 (q), 132.8 (q), 132.1, 132.0, 129.0, 128.8, 128.5, 127.5 (q), $127.3,127.2,126.0$ (q), 123.4, 123.3, 121.5, 121.2, 120.6, $118.4,114.7,104.5,101.4,65.9,62.5,62.1,56.6,56.0$, $55.9,55.7,55.6,53.1,40.4,39.8,39.7,39.6,34.0,33.9$, 29.9, 29.6, 28.0, 27.7, 27.6, 27.4, 26.9, 26.6, 25.2, 24.9, 24.7, 23.9, 23.5, 23.2, 15.3, 14.2.
$v_{\max }$ (neat) $/ \mathrm{cm}^{-1}: \quad 2954,2867,1622,1598,1553,1498,1459,1359,1333$, 1262, 1226, 1148, 1031, 882, 827, 776, 660.

HRMS (m / z - ESI): \quad Found: $\quad 666.3730 \quad(\mathrm{M}+\mathrm{H})^{+} \quad \mathrm{C}_{41} \mathrm{H}_{52} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ Requires: 666.3729 .

2'-Iodo-1,1':3',1'-terphenyl (388)

A 250 mL oven dried two-neck round-bottomed flask containing a stirring bar was placed under argon atmosphere (balloon) and charged with dry $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. To the solvent, a commercially available solution of $\mathrm{PhLi}\left(15.75 \mathrm{~mL}, 30 \mathrm{mmol}: 1.9 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ was added carefully via syringe. The resulting solution was cooled to $0^{\circ} \mathrm{C}$ and $1,3-$ dichlorobenzene ($\mathbf{3 8 7}, 0.85 \mathrm{~mL}, 7.5 \mathrm{mmol}$) was added dropwise to the mixture. The reaction mixture was allowed to come back to room temperature and stired for 16 h . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath) and a solution of $\mathrm{I}_{2}(5.7 \mathrm{~g}, 22.5 \mathrm{mmol})$ in dry THF (15 mL) was slowly added. The reaction mixture was allowed to come back to room temperature and an aqueous saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added to quench the excess of iodine until its characteristic colour disappeared. The organic phase was separated and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 30 mL). The combined organic layers were washed with brine (15 mL), water (15 mL), dried over MgSO_{4} and the solvent was removed in vacuo to afford the crude product that was purified by recrystallisation from boiling MeOH affording the product in form of pale yellow needles ($2.67 \mathrm{~g}, 45 \%$).

Spectral data for this compound were consistent with those in the literature. ${ }^{183}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad$ 7.45-7.35 $(12 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4$ and $\mathrm{H}-5)$, 7.25-7.24 (1 $\mathrm{H}, \mathrm{m}, \mathrm{H}-1$).

HRMS $(m / z-\mathrm{APCI}): \quad$ Found: $356.0061(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{18} \mathrm{H}_{13}$ I Requires: 356.0056.

[1,1':3',1''-Terphenyl]-2'-sulfonyl chloride (389)

A 100 mL oven dried two-neck round-bottomed flask containing a stirring bar was charged with 2,6-diphenyliodobenzene ($\mathbf{3 8 8}, 0.3 \mathrm{~g}, 0.842 \mathrm{mmol}$) and dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was placed under argon atmosphere (ballon), cooled to $0^{\circ} \mathrm{C}$ (ice bath) and n-BuLi ($0.53 \mathrm{~mL}, 0.842 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise. The mixture turned yellow and a white solid precipitated. After the mixture was stirred for 8 h at room temperature, the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and freshly distilled sulfuryl chloride ($0.136 \mathrm{~mL}, 1.68 \mathrm{mmol}$) was added slowly. The mixture was allowed to come back to room temperature and stirred overnight, cooled to $0{ }^{\circ} \mathrm{C}$ and poured into a solution of hydrochloric acid ($1.5 \mathrm{M}, \sim 20 \mathrm{~mL}$). The mixture was diluted with water (20 mL) and the product extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The organic layer was washed with brine (15 mL), water (15 mL), and dried over MgSO_{4}, filtered and the solvent was concentrate under reduced pressure to afford the crude product that was purified by recrystallisation from a mixture hexanes $-\mathrm{CHCl}_{3}(1: 1, v: v)$ affording the product as a pale yellow solid ($0.171 \mathrm{~g}, 62 \%$). TLC (hexanes:EtOAc, $95: 5 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.3$.

Spectral data for this compound were consistent with those in the literature. ${ }^{184}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.68(1 \mathrm{H}$, app.t, $\mathrm{H}-1), 7.50-7.41(12 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4$ and $\mathrm{H}-5$).

HRMS (m / z - ESI):
Found: $327.0249(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{SCl}$ Requires: 327.0247.

N-((S)-(6-Methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-[1,1':3',1'-terphenyl]-2'-sulfonamide (383)

A 25 mL round-bottomed flask containing a stirring bar was charged with quinine ($190.4 \mathrm{mg}, 0.589 \mathrm{mmol}$) and 2,6-diphenylbenzene sulfonyl chloride ($\mathbf{3 8 9}, 193.6 \mathrm{mg}$, $0.589 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $2 \mathrm{M} \mathrm{NaOH}(0.29$ $\mathrm{mL}, 0.589 \mathrm{mmol}$) was added. The reaction mixture was allowed to come back to room temperature and stirred overnight. After 16 h , the reaction was diluted with water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic extracts were combined, washed successively with brine (30 mL), water (30 mL), and dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford the crude product. The catalyst was purified by flash column chromatography, eluting in gradient from 100% hexanes to 50% EtOAc in hexanes, to afford the product as a white solid ($342.3 \mathrm{mg}, 94 \%$). M.p. $88-90^{\circ} \mathrm{C}$. TLC (hexanes:EtOAc, $\left.1: 1 \mathrm{v} / \mathrm{v}\right)$: $\mathrm{R}_{\mathrm{f}}=0.18 ;[\alpha]_{\mathrm{D}}^{20}=-85.2\left(c=0.05, \mathrm{CHCl}_{3}\right)$.
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.41(1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{H}-1), 7.98(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{H}-5), 7.39(1$ $\mathrm{H}, \mathrm{m}, \mathrm{H}-4), 7.39-7.19$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{H}-19, \mathrm{H}-20$ and $\mathrm{H}-21$), 7.34 (1 H, t, J 7.8, H-17), 7.18 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-3$), 7.07-7.06 (2 H, d, J 7.8, H-18), 6.91 ($1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{H}-2$), $5.67-5.59(1 \mathrm{H}$, m, H-14), 4.93-4.90 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and $\mathrm{H}-15$), 3.76 ($3 \mathrm{H}, \mathrm{s}$, H-16), 2.99-2.93 (1 H, m, H-7), 2.89-2.78 (1 H, m, H-8b), 2.52-2.32 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, \mathrm{H} 12 \mathrm{a}$ and $\mathrm{H}-12 \mathrm{~b}$), 2.20-2.11 (1 H , m, H-9), 1.53-1.30 (3 H, H-10, H11a and H11b), 1.18-1.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 13 \mathrm{a}$), 0.59-0.54 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{~b}$).
$\delta_{\mathrm{C}}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 157.9(\mathrm{q}), 146.6,144.5(\mathrm{q}), 142.8$ (q), 142.2 (q), 141.3, 141.0 (q), 139.4 (q), 131.4, 131.2, 130.0, 129.3 (q), 128.9
(q), 127.33, 127.27, 121.9, 119.4, 114.4, 101.6, 60.4, 55.56, 55.53, 52.9, 40.2, 39.4, 27.8, 27.2, 25.0.
$v_{\max }$ (neat) $/ \mathrm{cm}^{-1}: \quad 2933,1620,1571,1508,1474,1452,1355,1317,1227$, $1155,1028,909,854,808,758,748,662,592$.

HRMS (m / z - ESI): \quad Found: $\quad 616.2640 \quad(\mathrm{M}+\mathrm{H})^{+} \quad \mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ Requires: 616.2628 .

N-((S)-(6-Methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-

yl)methyl)piperidine-1-sulfonamide (398)

A 25 mL round-bottomed flask containing a stirring bar was charged with quinine ($300.0 \mathrm{mg}, 0.927 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and dry triethylamine ($0.48 \mathrm{~mL}, 4.63 \mathrm{mmol}$) was added. To the resulting solution piperidine-1sulfonyl chloride $(\mathbf{4 0 4}, 140.0 \mathrm{mg}, 1.01 \mathrm{mmol})$ was added via syringe. The reaction mixture was allowed to come back to room temperature and stirred overnight. After 16 h , the reaction was diluted with water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic extracts were combined, washed successively with brine (30 mL), water (30 mL), and dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford the crude product. The catalyst was purified by flash column chromatography, eluting in gradient from $2 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $5 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to afford the product as a pale yellow solid ($130.0 \mathrm{mg}, 30 \%$). M.p. $50-52^{\circ} \mathrm{C} . \mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\mathrm{CH}_{3} \mathrm{OH}$, $95: 5 v / v): \mathrm{R}_{\mathrm{f}}=0.29 ;[\alpha]_{\mathrm{D}}^{20}=+36.8\left(c=0.05, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ analysis showed the presence of two rotameric species in the ratio 68:32.

Major rotamer only:
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.81(1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{H}-1), 8.05-8.02(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 7.57(2$ $\mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-4$), 7.43-7.39 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 5.75-5.69 (1 H, m, H-14), 5.10 (1 H, d, J 10.8, H-6), 5.03-4.94 (2 H, m, H-15), 3.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.35-3.27 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 3.24$3.06(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 2.88-2.77(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and $\mathrm{H}-12 \mathrm{a})$, 2.71-2.60 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}, \mathrm{H}-12 \mathrm{~b}$ and H-17), 2.39-2.31 (1 H , m, H-10), 1.73-1.64 (3 H, m, H-11a, H-11b and H-13a), 1.08-0.70 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-18$ and $\mathrm{H}-19$), 0.67-0.63 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 13b).

Major and minor rotamers:

$\delta_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: * 158.2 (q), 157.2 (q), 147.7, $147.2,145.4$ (q), 144.6 (q), 144.5 (q), 140.5 (q), 137.2, 132.1, 131.8, 129.3 (q), 127.2 (q), 123.8, 121.9, 121.7, 119.8, 115.1, 115.0, 103.2, 100.8, $63.2,60.4,56.1,55.8,55.7,55.5,52.9,46.2,46.1,40.5$, 40.0, 39.1, 27.5, 27.4, 27.3, 26.5, 25.3, 25.2, 24.4, 24.3, 23.1, 23.0.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad$ 2937, 2863, 1620, 1590, 1508, 1473, 1452, 1319, 1302, $1228,1139,1052,1028,988,936,854,762,709,568$.

HRMS (m / z - ESI): \quad Found: $\quad 471.2423 \quad(\mathrm{M}+\mathrm{H})^{+} \quad \mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ Requires: 471.2424.

[^5]General procedure VI: Synthesis of sulfamoyl chlorides for aliphatic substrates 400, 408

$$
\text { Alk }-\mathrm{NH}_{2} \xrightarrow[\mathrm{CH}_{3} \mathrm{CN} \text {, reflux, } 16 \mathrm{~h}]{\substack{\mathrm{SO}_{2} \mathrm{Cl}_{2} \text { (4.0 equiv.) }}} \stackrel{\substack{\mathrm{N}^{-} \\ \mathrm{H}}}{\substack{\mathrm{O}}} \mathrm{O}
$$

A 25 mL oven-dried two-neck round-bottomed flask containing a stirring bar was charged with the relevant amine (1.0 equiv.) in dry $\mathrm{CH}_{3} \mathrm{CN}$ (10 mL per gram). To the resulting solution, sulfuryl chloride ($\mathrm{SO}_{2} \mathrm{Cl}_{2} \sim 4.0$ equiv.) was carefully added, at $0{ }^{\circ} \mathrm{C}$ (ice bath cooled). The flask was then flushed with argon, fitted with a condenser and placed under an inert atmosphere (Ar, balloon). The reaction mixture was heated under reflux for 48 h , cooled to room temperature and, the excess of sulfuryl chloride was distilled off using a pump connected to a trap cooled with liquid nitrogen, the residue was diluted with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quickly filtered through a small plug of silica eluting with a mixture of $50 \% \mathrm{EtOAc}$ in hexanes. The solvent was removed under reduced pressure affording the crude sulfamoyl chloride, immediately used into the next step, as a crude material, without any further purification.

tert-Butylsulfamoyl chloride (400)

Prepared according to the general procedure VI, using tert-butylamine (399, 1.44 mL , $13.67 \mathrm{mmol})$, dry $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The crude product was isolated as a yellow oil ($0.941 \mathrm{mg}, 40 \%$). M.p. $20-22{ }^{\circ} \mathrm{C}$ (lit, ${ }^{163}$ M.p. $23-24{ }^{\circ} \mathrm{C}$). The product was used into the next step without further purification and stored under argon in a freezer.

Spectral data for this compound were consistent with those in the literature. ${ }^{163}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 5.54(1 \mathrm{H}, \mathrm{bs}, \mathrm{N}-\mathrm{H}, \mathrm{H}-1), 1.47(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 58.4(\mathrm{q}), 29.2$.

(Adamantan-1-yl)sulfamoyl chloride (408)

Prepared according to the general procedure VI, using 1-adamantylamine (407, 1 g , $6.61 \mathrm{mmol})$, dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}(2.7 \mathrm{~mL}, 33.06 \mathrm{mmol})$. The crude product was isolated as a white solid ($1.09 \mathrm{~g}, 66 \%$). M.p. $100-104{ }^{\circ} \mathrm{C}$ (lit, ${ }^{163}$ M.p. $104-106{ }^{\circ} \mathrm{C}$). The product was used into the next step without further purification and was stored under argon in a freezer.

Spectral data for this compound were consistent with those in the literature. ${ }^{163}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 5.45(1 \mathrm{H}, \mathrm{bs}, \mathrm{N}-\mathrm{H}, \mathrm{H}-4), 2.17(3 \mathrm{H}$, app. s, H-2), $2.07(6 \mathrm{H}$, m, H-1), 1.70 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 58.9(\mathrm{q}), 41.9,35.6,29.5$.
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad 2993,2923,1403,1362,1348,1319,1275,1244,1169$, 1080, 1049, 887, 617, 644, 617, 583.

HRMS (m / z - ESI): \quad Found: $\quad 250.0665 \quad(\mathrm{M}+\mathrm{H})^{+} \quad \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{SCl}$ Requires: 250.0669 .

General procedure VII: Synthesis of sodium sulfamic acids 402, 410

A 250 mL oven dried three-neck round-bottomed flask containing a stirring bar was carefully charged with chlorosulfonic acid (1.0 equiv.), fitted with a condenser, flushed with argon and placed under an inert atmosphere (argon, balloon). The flask was cooled to $0{ }^{\circ} \mathrm{C}$ (ice bath) and a solution of the relevant amine (1.0 equiv.), in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mL} / 10 \mathrm{mmol}$ of amine), was added dropwise via syringe. The mixture was allowed to come back to room temperature and stirred for 16 h . The chlorosulfonic salt (Salt 1) of the amine formed a suspension in the organic layer.

Over a 20-min period, a solution of the relevant amine (2.0 equiv.), in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mL} / 10 \mathrm{mmol}$ of amine), was added to the stirred suspension, at room temperature. After completion of the addition, the mixture was heated to reflux for 1 h . The Salt 1 was converted to the mixture of Salts 2.

The reaction mixture xas cooled to room temperature and, an aqueous solution of sodium hydroxide (2.5 equiv.) was added. After 3 h of stirring, the sodium sulfamic acid salt was formed, the organic layer is separated from the aqueous layer and washed with water ($3 \times 30 \mathrm{~mL}$). The water washes were added to the water layer and the combined water layers washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The aqueous layers were concentrated under reduced pressure. The white residue was suspended in ethanol (100 mL for 30 mmol of starting material of amine), stirred at room temperature for 30 min , then refluxed for 10 min . The boiling solution was filtered and the volatiles were concentrated under reduced pressure to afford the appropriate sodium sulfamate salt that was used into the next step without further purifications.

Sodium (3,5-bis(trifluoromethyl)phenyl)sulfamate (402)

Prepared according to the general procedure VII, using 3,5-bis(trifluoromethyl)aniline (401, $3.3 \mathrm{~g}-2.25 \mathrm{~mL}, 14.42 \mathrm{mmol}$, i.e. 3.0 equiv.), chlorosulfonic acid ($0.56 \mathrm{~g}-0.32$ $\mathrm{mL}, 4.81 \mathrm{mmol}$, i.e. 1.0 equiv.) and sodium hydroxide ($0.48 \mathrm{~g}, 12.02 \mathrm{mmol}$, i.e. 2.5 equiv.). The sodium sulfamic acid salt $\mathbf{4 0 2}$ was obtained as a white solid ($1.5 \mathrm{~g}, 94 \%$). M.p. > $200^{\circ} \mathrm{C}$, decomposition.

Spectral data for this compound were consistent with those in the literature. ${ }^{160}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 7.59(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 7.25(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 6.99(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1)$.

Sodium mesitylsulfamate (410)

Prepared according to the general procedure VII, using 2,4,6-trimethylaniline (409, 12.2 $\mathrm{g}-12.65 \mathrm{~mL}, 90.12 \mathrm{mmol}$, i.e. 3.0 equiv.), chlorosulfonic acid ($3.5 \mathrm{~g}-2.0 \mathrm{~mL}, 30.04$ mmol , i.e. 1.0 equiv.) and sodium hydroxide ($3.0 \mathrm{~g}, 75.1 \mathrm{mmol}$, i.e. 2.5 equiv.). When the aqueous layer was concentrated under reduced pressure, a white solid precipitated. The solid was filtered off, washed with cold water and dried under high vacuum to yield the sodium sulfamic acid salt as a white solid ($4.4 \mathrm{~g}, 62 \%$). M.p. $190-200^{\circ} \mathrm{C}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): ~ 6.70(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 5.85(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-1), 2.29(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$, 2.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right): 137.2(\mathrm{q}), 136.2,133.0(\mathrm{q}), 128.5,20.8,19.3$.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3483,3277,1621,1479,1398,1210,1049,880,848,815$, 739, 689, 610.

HRMS (m / z - APCI): \quad Found: $214.0534(\mathrm{M}-\mathrm{Na})^{-} \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{3}$ S Requires: 214.0543.

General procedure VIII: Synthesis of sulfamoyl chlorides for aromatic substrates 403, 411

A 25 mL oven dried round-bottomed flask containing a stirring bar was charged with the relevant sodium sulfamic acid salt (1.0 equiv.) in dry toluene (10 mL per gram). To the resulting suspension, phosphorus pentachloride ($\mathrm{PCl}_{5}, 1.0$ equiv.) was added portion wise, at room temperature. The flask was then flushed with argon, fitted with a condenser and placed under an inert atmosphere (Ar, balloon). The reaction mixture was heated under reflux for 16 h , cooled to room temperature, filtered through a Celite pad and the filtrate was then concentrated in vacuo to provide almost pure material. The
sulfamoyl chlorides synthesised were immediately used in the next step, as crude material, without further purification.

(3,5-Bis(trifluoromethyl)phenyl)sulfamoyl chloride (403)

Prepared according to the general procedure VIII, using the sodium sulfamic acid salt of 3,5-bis(trifluoromethyl)aniline ($\mathbf{4 0 2}, 1.5 \mathrm{~g}, 4.53 \mathrm{mmol}$), phosphorus pentachloride (943 $\mathrm{mg}, 4.53 \mathrm{mmol})$ and dry toluene (15 mL). The sulfamoyl chloride was obtained as a brown residue that crystallised upon standing ($701 \mathrm{mg}, 47 \%$).*
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.08(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-1), 7.89(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 7.82(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$.

* Full analysis for this compound cannot be reported as the entire batch was immediately employed as a crude material, in the next reaction step, due to its assumed instability.

Mesitylsulfamoyl chloride (411)

Prepared according to the general procedure VIII, using the sodium sulfamic acid salt of the 2,4,6-trimethylaniline ($\mathbf{4 1 0}, 1.0 \mathrm{~g}, 4.21 \mathrm{mmol}$), phosphorus pentachloride (878.0 mg , 4.21 mmol) and dry toluene (10 mL). The reaction mixture was refluxed for 3 h . The sulfamoyl chloride was obtained as a crude pale-yellow residue that solidified upon standing ($340 \mathrm{mg}, 35 \%$).*
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.41(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-1), 6.95(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 2.41$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$), 2.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$).

HRMS (m / z - APCI): \quad Found: $232.0196(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClNO}_{2}$ S Requires: 232.0205.

* Full analysis for this compound cannot be reported as the entire batch was immediately employed as a crude material, in the next reaction step, due to its assumed instability.

General procedure IV: Synthesis of the sulfamide based catalysts 252-254, 405-406

A 25 mL oven-dried round-bottomed flask containing a stirring bar was charged with the relevant free amine of quinine ($\mathbf{2 7 9}$ or $\mathbf{2 6 8}, 1.0$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL per 100 mg of quinine). The flask was flushed with argon and placed under an inert atmosphere (Ar, balloon). Freshly distilled triethylamine (2.0 equiv.) was added to the solution via syringe at room temperature. The solution was cooled to $0^{\circ} \mathrm{C}$ and the relevant freshly synthesised crude sulfamoyl chloride (1.0 to 5.0 equiv.) was added portion wise, directly as a solid. The reaction was monitored by TLC chromatography. If required an excess of sulfamoyl chloride (up to 4 more equivalents) was added to the reaction mixture until TLC analysis indicated completed disappearance of the quinine starting material. After the reaction was judged complete, as indicated by TLC analysis, the reaction was diluted with water (20 mL) and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 40 \mathrm{~mL}$). The organic extracts were combined, washed successively with brine (30 mL) and water (30 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure to afford the crude product. The catalyst was purified by flash column chromatography, eluting in gradient with the conditions as indicated for each case, to afford the relevant sulfamide based catalyst.
N-((S)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-3,5bis(trifluoromethyl)benzenesulfamide (252)

Prepared according to the general procedure IV, using the free amine of quinine (279, $306.0 \mathrm{mg}, 0.94 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.26 \mathrm{~mL}, 1.9 \mathrm{mmol})$ and the sulfamoyl chloride 403 $(461.0 \mathrm{mg}, 1.41 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The catalyst was purified by flash column chromatography, eluting in gradient from $1 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $5 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to afford the product as a white solid ($220.3 \mathrm{mg}, 38 \%$). M.p. $120-122{ }^{\circ} \mathrm{C}$. $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}, 95: 5 v: v\right): \mathrm{R}_{\mathrm{f}}=0.18 ;[\alpha]_{\mathrm{D}}^{20}=+40.0\left(c=0.05, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ analysis showed the presence of two rotameric species in the ratio 69:31.

Major rotamer:
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.48(1 \mathrm{H}, \mathrm{d}, J 4.3, \mathrm{H}-1), 8.01(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{H}-5), 7.54(1$ H, s, H-3), 7.48 (1 H, s, H-18), 7.41 (1 H, d, J 9.2, H-4), 7.20 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-17$), 7.15-7.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 5.80-5.75 (1 H, m, H-14), 5.29 (1 H, d, J 11.5, H-6), 5.09-5.06 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-15), 3.98$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.41-3.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and $\mathrm{H}-$ 9), 2.92-2.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 2.82-2.74(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b})$, 2.47-2.39 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$), 1.79-1.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{~b}$), 1.731.52 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{H}-11 \mathrm{a}, \mathrm{H}-11 \mathrm{~b}$ and $\mathrm{H}-13 \mathrm{a}$), 0.84-0.78 (1 H, m, H-13b).

Minor rotamer:

$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.61(1 \mathrm{H}, \mathrm{d}, J 3.9, \mathrm{H}-1), 7.86(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{H}-5), 7.27(1$ H, s, H-18), 7.26-7.24 (1 H, m, H-2), 7.22 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$),
7.16 ($1 \mathrm{H}, \mathrm{d}, J$ 9.2, H-4), 6.84 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-17$), 5.61-5.55 (1 H, m, H-14), 4.49 (1 H, d, J 11.5, H-6), 4.95-4.87 (2 H, m, H-15), 3.63 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 3.01-2.97 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-8 \mathrm{~b}$), 2.77 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 2.35-2.28 ($1 \mathrm{H}, \mathrm{m}$, H-12a), 1.75-1.71 (1 H, m, H-12b), 1.34-1.22 (4 H, m, H10, $\mathrm{H}-11 \mathrm{a}, \mathrm{H}-11 \mathrm{~b}$ and $\mathrm{H}-13 \mathrm{~b}), 0.94-0.88$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{a}$).

Major and minor rotamers:
$\delta_{\mathrm{C}}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 158.7(\mathrm{q}), 156.8(\mathrm{q}), 147.1,147.0,144.8$ (q), 144.6 (q), 141.1 (q), 140.8 (q), 140.1 (q), 139.5 (q), 139.1 (q), 138.4, 132.48 (q) (q, ${ }^{2} J_{\text {C-F }} 32.6$), 132.23 (q) (q, ${ }^{2} J_{\text {C-F }} 33.3$), 132.08, 131.87, 128.1, 128.09, 126.4, 125.6, 123.8, 123.78, 123.7, 122.7 (q) (q, ${ }^{1} J_{\mathrm{C}-\mathrm{F}} 272.3$), 122.2, 122.0, 121.0, 120.2, 119.2 , $117.9,116.6,116.2,115.6,115.0,102.9,100.5,63.1,60.7$, $55.9,55.8,55.7,55.2,55.1,53.5,40.8,40.1,39.3,38.7$, 27.4, 27.2, 27.1, 27.0, 26.2, 25.9.
$\delta_{\mathrm{F}}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad-62.96$ (minor), -63.08 (major).
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3154,2921,1623,1510,1472,1432,1377,1274,1177$, 1156, 1131, 982, 878, 693, 610.

HRMS (m / z - ESI): \quad Found: $615.1876 \quad(\mathrm{M}+\mathrm{H})^{+} \quad \mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~F}_{6} \mathrm{~S}$ Requires: 315.1865 .
N-((S)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-2-methylpropane-2-sulfamide (253)

Prepared according to the general procedure IV, using the free amine of quinine (279, $417.0 \mathrm{mg}, 0.94 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.36 \mathrm{~mL}, 2.6 \mathrm{mmol})$ and the sulfamoyl chloride 400 ($381.0 \mathrm{mg}, 2.2 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The catalyst was purified by flash column chromatography, eluting in gradient from $1 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $5 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to afford the product as a white solid ($377.1 \mathrm{mg}, 64 \%$). M.p. $120-122{ }^{\circ} \mathrm{C} . \mathrm{TLC}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}, 95: 5 v: v\right): \mathrm{R}_{\mathrm{f}}=0.18 ;[\alpha]_{\mathrm{D}}^{20}=+151\left(c=0.05, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ analysis showed the presence of two rotameric species in the ratio 80:20.

Major rotamer:

$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.75(1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{H}-1), 7.98(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{H}-5), 7.57(1$ H, s, H-3), 7.42-7.34 (2 H, m, H-2 and H-4), 5.77-5.71 (1 H , m, H-14), 5.17 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.7, \mathrm{H}-6$), 5.04-4.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 15), 4.72 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{N}-\mathrm{H}$), 3.95 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.37-3.28 (1 H, m, H-7), 3.27-3.19 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 3.16-3.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 8b), 2.84-2.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$ and $\mathrm{H}-12 \mathrm{~b}$), 2.35-2.28 (1 H , m, H-9), 1.69-1.63 (1 H, m, H-10), 1.65-1.63 (2 H, m, H11a and H-11b), $1.50-1.44(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{a}), 1.00(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 17), 1.01-0.94 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{~b}$).

Minor rotamer:
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.75(1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{H}-1), 8.00(1 \mathrm{H}, \mathrm{d}, J 9.7, \mathrm{H}-5), 7.75(1$ $\mathrm{H}, \mathrm{bs}, \mathrm{H}-3), 7.42-7.34$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and $\mathrm{H}-4$), 5.62-5.57 (1 H, m, H-14), 4.44 (1 H, d, J 10.9, H-6), 4.96-4.83 (2 H, m, $\mathrm{H}-15), 3.89$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.57-3.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 3.273.19 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 3.16-3.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}$), 2.74-2.65 (2 $\mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$ and $\mathrm{H}-12 \mathrm{~b}$), 2.30-2.24 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.691.63 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.65-1.63 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{a}$ and $\mathrm{H}-11 \mathrm{~b}$), 1.32-1.24 (1 H, m, H-13b), 0.84 ($9 \mathrm{H}, \mathrm{s}, \mathrm{H}-17$), 0.78-0.72 (1 H, m, H-13a).

Major rotamer:
$\delta_{\mathrm{C}}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 158.3$ (q), 147.3, 144.6 (q), 143.5 (q), 141.2, 131.7, 128.9 (q), 122.0, 119.6, 114.7, 101.0, 60.7, 55.9, 55.5, 53.8, 53.4, 40.5, 39.4, 29.6, 27.7, 27.3, 26.1.

Minor rotamer:

$\delta_{\mathrm{C}}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 157.0(\mathrm{q}), 147.2,145.2(\mathrm{q}), 144.5(\mathrm{q}), 141.3,131.9,127.1$ (q), 123.9, 121.3, 114.6, 103.5, 63.2, 56.3, 55.9, 55.5, 54.1, 39.9, 39.7, 29.3, 27.7, 27.4, 26.5.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2941,1618,1475,1435,1299,1239,1227,1083,1057$, 1016, 973, 857, 711, 660, 611.

HRMS $(m / z-E S I): \quad$ Found: $\quad 459.2430 \quad(\mathrm{M}+\mathrm{H})^{+} \quad \mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ Requires: 459.2430.
(3R,5R,7R)-N-((S)-(6-Methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)adamantane-1-sulfamide (254)

Prepared according to the general procedure IV, using the free amine of quinine ($\mathbf{2 7 9}$, $372.0 \mathrm{mg}, 1.15 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.31 \mathrm{~mL}, 2.3 \mathrm{mmol})$ and the sulfamoyl chloride 408 ($574.0 \mathrm{mg}, 2.3 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The catalyst was purified by flash column chromatography, eluting in gradient from $1 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $5 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to afford the product as a white solid ($252.0 \mathrm{mg}, 41 \%$). M.p. $118-120^{\circ} \mathrm{C}$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}, 95: 5 v: v\right): \mathrm{R}_{\mathrm{f}}=0.21 ;[\alpha]_{\mathrm{D}}^{20}=+30\left(c=0.05, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ analysis showed the presence of two rotameric species in the ratio 77:23.

Major rotamer:
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.78(1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{H}-1), 8.02(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{H}-5), 7.62(1$ H, s, H-3), 7.44 ($1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{H}-2$), 7.42-7.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 4), $5.83-5.75$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14$), 5.21 ($1 \mathrm{H}, \mathrm{d}, J 10.8$, H-6), 5.05-5.01 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$), 3.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.40-3.32 (1 H, m, H-7), 3.30-3.23 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 3.19-3.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 8b), 2.87-2.77 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$ and H-12b), 2.38-2.32 (1 H , m, H-9), 1.97-1.91 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{H}-11 \mathrm{a}$ and $\mathrm{H}-11 \mathrm{~b}$), 1.74$1.22(15 \mathrm{H}, \mathrm{m}, \mathrm{H}-17, \mathrm{H}-18$ and $\mathrm{H}-19), 0.89-0.82(1 \mathrm{H}, \mathrm{m}$, H-13a), 0.80-0.75 (1 H, m, H-13b).

Minor rotamer:

$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.67(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{H}-1), 8.05(1 \mathrm{H}, \mathrm{d}, J 9.3, \mathrm{H}-5), 7.79(1$ H, s, H-3), 7.29 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.6, \mathrm{H}-2$), 7.42-7.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 4), 5.68-5.60 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14$), 4.97-4.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$), 4.48 ($1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{H}-6$), 3.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.59-3.45 ($1 \mathrm{H}, \mathrm{m}$, H-7), 3.51-3.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 3.19-3.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}$), 2.77-2.68 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$ and $\mathrm{H}-12 \mathrm{~b}$), 2.32-2.27 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-9)$, 1.84-1.78 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{H}-11 \mathrm{a}$ and $\mathrm{H}-11 \mathrm{~b}$), 1.74$1.22(15 \mathrm{H}, \mathrm{m}, \mathrm{H}-17, \mathrm{H}-18$ and $\mathrm{H}-19), 1.57-1.50(1 \mathrm{H}, \mathrm{m}$, H-13a), 1.31-1.28 (1 H, m, H-13b).

Major rotamer:

$\delta_{\mathrm{C}}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 158.4(\mathrm{q}), 147.4,144.7$ (q), $141.0(\mathrm{q}), 131.8,129.0$ (q), $122.1,119.8,114.9,101.1,60.6,55.8,55.6,54.4,53.4$, $42.6,40.7$ (q), 39.3, 35.9, 34.7, 29.7, 29.5, 27.6, 27.4, 26.1.

Minor rotamer:

$\delta_{\mathrm{C}}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 157.1(\mathrm{q}), 147.3,143.5(\mathrm{q}), 141.3(\mathrm{q}), 132.1,127.2$ (q), 124.2, 121.3, 114.7, 103.9, 63.3, 56.3, 56.0, 54.6, 42.2, 40.1 (q), 39.7, 35.8, 34.5, 31.6, 29.3, 27.7, 27.5, 26.9, 26.6.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad$ 2904, 2848, 1620, 1508, 1453, 1358, 1308, 1229, 1150, 1087, 988, 911, 852, 824, 582, 569.

HRMS $\left(\mathrm{m} / \mathrm{z}\right.$ - ESI): \quad Found: $537.2891 \quad(\mathrm{M}+\mathrm{H})^{+} \quad \mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ Requires: 537.2899.
$(3 R, 5 R, 7 R)-N-((S)-(6-M e t h o x y-2-p h e n y l q u i n o l i n-4-y l)((1 S, 2 S, 4 S, 5 R)-5-$ vinylquinuclidin-2-yl)methyl)adamantane-1-sulfonamide (405)

Prepared according to the general procedure IV, using the C-2 arylated free amine of quinine ($\mathbf{2 6 8}, 85.0 \mathrm{mg}, 0.21 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(57 \mu \mathrm{~L}, 0.43 \mathrm{mmol})$ and the sulfamoyl chloride 408 ($106.0 \mathrm{mg}, 0.43 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The catalyst was purified by flash column chromatography, eluting in gradient from $1 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to 5% $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to afford the product as a white solid ($75.4 \mathrm{mg}, 57 \%$). M.p. $54-56$ ${ }^{\circ} \mathrm{C}$. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}, 95: 5 v: v\right): \mathrm{R}_{\mathrm{f}}=0.34 ;[\alpha]_{\mathrm{D}}^{20}=+280\left(c=0.102, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ analysis showed the presence of two rotameric species in the ratio 76:24.

Major rotamer:

$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.15(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 8.11(1 \mathrm{H}, \mathrm{d}, J 9.3, \mathrm{H}-5), 7.97(1$ H, s, H-3), 7.61 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-2$), 7.61-7.38 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-$ 20 and H-21), 5.79-5.74 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14$), $5.24(1 \mathrm{H}, \mathrm{d}, J 10.8$, H-6), 5.03-4.97 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$), 4.00 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 3.393.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 3.30-3.26 (1 H, m, H-8a), 3.17-3.16 (1 $\mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}$), 2.83-2.78 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$ and $\mathrm{H}-12 \mathrm{~b}$), 2.342.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.85-1.83 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.69-0.82 (13 H, m, H-11a, H-11b, H-13a, H-13b and H-17).

Major and minor rotamers:
$\delta_{\mathrm{C}}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 158.2(\mathrm{q}), 157.0(\mathrm{q}), 154.4(\mathrm{q}), 152.4(\mathrm{q}), 145.4(\mathrm{q}), 144.7$ (q), 144.4 (q), 144.0 (q), 141.3 (q), 141.0 (q), 139.5 (q), 139.2 (q), 132.3, 132.1, 129.1, 128.9, 128.8, 128.0, 127.2, 127.1, 122.1, 122.0, 121.4, 117.9, 114.8, 114.7, 103.8, $100.9,63.7,60.6,56.2,55.9,55.7,55.6,55.5,54.5,54.5$, 53.6, 42.3, 42.1, 40.5 (q), 39.4 (q), 35.8, 35.7, 32.8, 31.9, 29.7, 29.6, 29.3, 29.3, 27.7, 27.4, 22.7, 14.1.
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad 2919,2848,1622,1600,1497,1450,1358,1308,1229$, 1149, 1084, 990, 897, 829, 693, 577, 555.

HRMS (m / z - ESI): \quad Found: $\quad 613.3212 \quad(\mathrm{M}+\mathrm{H})^{+} \quad \mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ Requires: 613.3212 .

N-((S)-(6-Methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-

2,4,6-trimethylbenzenesulfonamide (406)

Prepared according to the general procedure IV, using the free amine of quinine (279, $282.0 \mathrm{mg}, 0.87 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.24 \mathrm{~mL}, 1.74 \mathrm{mmol})$ and the sulfamoyl chloride 411 ($305.0 \mathrm{mg}, 1.3 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The catalyst was purified by flash column chromatography, eluting in gradient from $1 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $5 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to afford the product as a white solid (194.4 mg, 43%). M.p. $88-90{ }^{\circ} \mathrm{C} . \mathrm{TLC}$ (EtOAc: $\left.\mathrm{CH}_{3} \mathrm{OH}, 95: 5 v: v\right): \mathrm{R}_{\mathrm{f}}=0.28 ;[\alpha]_{\mathrm{D}}^{20}=+16.8\left(c=0.05, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ analysis showed the presence of two rotameric species in the ratio 98:2.

Major rotamer:

$$
\begin{aligned}
\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 8.66(1 \mathrm{H}, \mathrm{~d}, J 4.2, \mathrm{H}-1), 7.99(1 \mathrm{H}, \mathrm{~d}, J 9.2, \mathrm{H}-5), 7.57(1 \\
& \mathrm{H}, \mathrm{bs}, \mathrm{H}-3), 7.37(1 \mathrm{H}, \mathrm{~d}, J 9.2, \mathrm{H}-4), 7.25(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-2), \\
& 6.75(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-18), 5.87-5.76(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-14), 5.37(1 \mathrm{H}, \mathrm{~d}, \\
& J 10.8, \mathrm{H}-6), 5.10-5.00(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-15), 3.98(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-16), \\
& 3.55-3.42(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-7), 3.31-3.14(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-8 \mathrm{a}, \text { and H-9}), \\
& 2.90-2.83(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-8 \mathrm{~b}), 2.40-2.31(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-12 \mathrm{a}), 2.25 \\
& (6 \mathrm{H}, \mathrm{~s}, \mathrm{H}-17), 2.20(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-19), 2.13-2.05(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}- \\
& 12 \mathrm{~b}), 1.75-1.70(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-10), 1.68-1.54(3 \mathrm{H}, \mathrm{~m}, \mathrm{H}-11 \mathrm{a}, \\
& \mathrm{H}-11 \mathrm{~b} \text { and H-13a)}, 0.87-0.78(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-13 \mathrm{~b}) .
\end{aligned}
$$

Major rotamer:

$\delta_{\mathrm{C}}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 158.3(\mathrm{q}), 147.3,144.7(\mathrm{q}), 142.8(\mathrm{q}), 141.0,136.9(\mathrm{q})$, 136.4, 131.6, 131.2 (q), 129.2, 128.4 (q), 122.2, 118.9, 115.0, 101.2, 61.2, 55.8, 54.3, 41.0, 39.3, 27.6, 27.3, 26.6, 20.8, 19.1, 17.6.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2919,1620,1508,1474,1310,1227,1143,1029,988,911$, 851, 828, 713, 610.

HRMS (m / z - APCI): Found: $519.2444(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ Requires: 519.2435.

4.4.3 Synthesis of racemic lactones

Racemic preparation of lactones 368a, 425-427, 436-439

An oven-dried 5 mL reaction vessel containing a magnetic stirring bar under argon atmosphere was charged with the relevant anhydride (0.1 mmol). Anhydrous MTBE or THF ($1.0 \mathrm{~mL}, 0.1 \mathrm{M}$) was added via syringe followed by recrystallized 4-nitrobenzaldehyde aldehyde ($\mathbf{2 4 4}, 0.1 \mathrm{mmol}$). N, N-diisopropylethylamine ($3.6 \mu \mathrm{~L}, 20.0 \mu \mathrm{~mol}$ - $20 \mathrm{~mol} \%$) was added via syringe and the resulting mixture was stired for 48 h at room temperature. To the reaction mixture containing the corresponding crude carboxylic acids, anhydrous $\mathrm{MeOH}(202.3 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$), followed by trimethylsilyldiazomethane
(2.0 M solution in diethyl ether, $60 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$) were added via syringe and the reaction mixture was stired for 15 min at $0^{\circ} \mathrm{C}$. The solvent was then removed in vacuo and the crude mixture of diastereomeric esters was purified by flash column chromatography, eluting in gradient from 100% hexanes to 30% EtOAc in hexanes to isolate all of the 4 diastereomers combined. A sample of the purified diastereomer, isolated after column chromatography, was then re-purified by preparative TLC chromatography to produce racemic material for HPLC traces analysis.

4.4.4 Catalyst evaluation (general procedures)

General procedure X: Evaluation of the substrate scope with respect to the anhydride component and derivatisation procedure for the determination of the enantiomeric excess of the recovered starting materials 367, 422-424, 432-435.

A $10-25 \mathrm{~mL}$ two-neck oven-dried round-bottomed flask containing a magnetic stirring bar was charged with the relevant anhydride (0.1 mmol), recrystallised 4nitrobenzaldehyde (0.5-0.7 equiv.) followed by the catalyst 254 (5-10 $\mathrm{mol} \%$). The air was evacuated from the reaction vessel by placing the reaction flask under vacuum and backfilling several times with argon before being placed under an argon atmosphere (balloon). Methyl tert-butyl ether (0.1 M) was added via syringe to the reaction vessel. The resulting mixture was stired, at the temperature and, for the time as indicated in each specific case. The enantiomeric excesses of the unreacted starting materials were determined by CSP-HPLC after derivatisation of the anhydrides following the procedure as follow: the conversion of the reaction was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 4-iodoanisole (0.5-0.7 equiv.) as an internal standard and the reaction was immediately quenched by adding to the reaction mixture, via syringe, hplc grade MeOH (200 equiv.). The reaction was stired for 2 h , at room temperature, after which time the starting material anhydrides have been determined to be fully converted to the corresponding methyl hemiester opened form. The reaction mixture containing both hemiester and the crude mixture of carboxylic acid lactones products was cooled to $0^{\circ} \mathrm{C}$, followed by the addition via syringe of trimethylsilyldiazomethane (1.2 equiv., 2 M solution in $\mathrm{Et}_{2} \mathrm{O}$). The reaction mixture was stired for 15 min at $0{ }^{\circ} \mathrm{C}$. The excess of
solvent was removed under reduced pressure and the crude residue was immediately subjected to flash column chromatography to isolate unreacted starting material (as its open bis-methyl ester derivative) and the major lactone diastereomer, eluting the mixture in gradient from 100% hexanes to 20% EtOAc in hexanes.

4.4.5 Experimental procedures and data for succinates and lactones

Dimethyl (2R,3S)-2-methyl-3-phenylsuccinate (367)

Prepared according to general procedure X, using anhydride 366 ($100.0 \mathrm{mg}, 0.525$ mmol), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 39.7 \mathrm{mg}, 0.263 \mathrm{mmol}$), 4-iodoanisole ($61.5 \mathrm{mg}, 0.263 \mathrm{mmol}$) and the catalyst $254(14.1 \mathrm{mg}, 0.026 \mathrm{mmol}-5 \mathrm{~mol} \%$) in dry MTBE ($5.25 \mathrm{~mL}-0.1 \mathrm{M}$). The reaction was stired for 168 h , quenched with MeOH $(4.25 \mathrm{~mL}, 105.1 \mathrm{mmol})$ following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(315 \mu \mathrm{~L}, 0.631 \mathrm{mmol})$ the unreacted starting material (367) was isolated by flash column chromatography (as its open bismethyl ester opened form) as a colourless liquid ($47.4 \mathrm{mg}, 37 \%$). TLC (hexanes:EtOAc, $9: 1 \mathrm{v} / \mathrm{v}): \mathrm{R}_{\mathrm{f}}=0.31 ;[\alpha]_{\mathrm{D}}^{20}=+118.6\left(c=0.07, \mathrm{CHCl}_{3}\right)$.

trans-367:

CSP-HPLC analysis. Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/i-PrOH: 95/5, 0.5 mL min^{-1}, RT, UV detection at 254 nm , retention times: 11.71 min (minor enantiomer) and 12.72 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.34-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7$ and $\mathrm{H}-8), 3.77(1 \mathrm{H}, \mathrm{d}, J 11.3$, H-5), 3.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 3.62 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 3.21-3.13 (1 H , dq, J 11.3, J 7.3, H-2), 0.95 ($3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-1$).

```
\deltaC (100 MHz, CDCl )
54.1, 52.2, 52.0, 42.3, 15.4.
vmax (neat)/\mp@subsup{cm}{}{-1}: 2953,1730(C=O), 1455, 1435, 1319, 1277, 1240, 1192,
1161, 1059, 1005, 735, 700.
HRMS (m/z-ESI): Found: 259.0944 (M+Na)+ 
259.0940.
```


Methyl (2S,3S,4S)-4-methyl-2-(4-nitrophenyl)-5-oxo-3-phenyltetrahydrofuran-3carboxylate (368a)

Prepared according to general procedure X, using anhydride $\mathbf{S 0 3}$ ($100.0 \mathrm{mg}, 0.525$ $\mathbf{m m o l}$), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 39.7 \mathrm{mg}, 0.263 \mathrm{mmol}$), 4-iodoanisole ($61.5 \mathrm{mg}, 0.263 \mathrm{mmol}$) and the catalyst $254(14.1 \mathrm{mg}, 0.026 \mathrm{mmol}-5 \mathrm{~mol} \%)$ in dry MTBE ($5.25 \mathrm{~mL}-0.1 \mathrm{M}$). The reaction was stired for 168 h to give a diastereomeric mixture of carboxylic acid lactones in a 95:5 (major:others) ratio, quenched with MeOH ($4.25 \mathrm{~mL}, 105.1 \mathrm{mmol}$) following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(125.2 \mu \mathrm{~L}, 0.250 \mathrm{mmol})$ the major diastereomer (368a) was isolated by flash column chromatography as a white solid ($75.2 \mathrm{mg}, 40 \%$). TLC (hexanes:EtOAc, $70: 30 v / v): \mathrm{R}_{\mathrm{f}}=0.39 ;[\alpha]_{\mathrm{D}}^{20}=+19.2(c=0.238$, CHCl_{3}).

CSP-HPLC analysis. Chiralcel ODH ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/i-PrOH: 90/10, 1.0 mL $\min ^{-1}$, RT, UV detection at 254 nm , retention times: 19.88 min (major enantiomer) and 29.75 min (minor enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.90(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-5), 7.20-7.07(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7$ and H-8), 6.66 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-4$), 6.34 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 3.79 (3 H , s, H-9), 3.48 (1 H, q, J 7.6, H-2), 1.52 ($3 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{H}-1$).

$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$	$176.8(\mathrm{C}=\mathrm{O}), 171.8(\mathrm{C}=\mathrm{O}), 147.6(\mathrm{q}), 141.9(\mathrm{q}), 135.3(\mathrm{q})$,
	$128.6,128.4,127.7,126.8,122.7,82.2,64.0(\mathrm{q}), 52.8,43.8$,
	13.2.
$v_{\max }($ neat $) / \mathrm{cm}^{-1}:$	$2935,1781,1730,1603,1521,1436,1346,1315,1272$,
	$1250,1221,1174,1043,1021,979,861,838,718,691$.

Dimethyl (2S,3R)-2-(4-bromophenyl)-3-methylsuccinate (422)

Prepared according to general procedure X, using anhydride 412 ($107.6 \mathrm{mg}, 0.4 \mathrm{mmol}$), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 42.3 \mathrm{mg}, 0.280 \mathrm{mmol}$), 4-iodoanisole (65.5 $\mathrm{mg}, 0.280 \mathrm{mmol}$) and the catalyst $\mathbf{2 5 4}(10.7 \mathrm{mg}, 0.02 \mathrm{mmol}-5 \mathrm{~mol} \%)$ in dry MTBE $(4.0 \mathrm{~mL}-0.1 \mathrm{M})$. The reaction was stired for 3 days, quenched with $\mathrm{MeOH}(3.24 \mathrm{~mL}$, 80.0 mmol) following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(240 \mu \mathrm{~L}, 0.480 \mathrm{mmol})$ the unreacted starting material (trans-422) was isolated by flash column chromatography (as its open bismethyl ester opened form) as a colourless liquid ($38.6 \mathrm{mg}, 31 \%$). TLC (hexanes:EtOAc, $9: 1 v / v): \mathrm{R}_{\mathrm{f}}=0.25 ;[\alpha]_{\mathrm{D}}^{20}=+59.5\left(c=0.04, \mathrm{CHCl}_{3}\right)$.

trans-422:

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL2, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 230 nm , retention times: 1.46 min (minor enantiomer) and 3.15 min (major enantiomer).

$$
\begin{aligned}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 7.46(2 \mathrm{H}, \mathrm{~d}, J 8.4, \mathrm{H}-7), 7.14(2 \mathrm{H}, \mathrm{~d}, J 8.4, \mathrm{H}-6), 3.74(1 \\
& \mathrm{H}, \mathrm{~d}, J 11.3, \mathrm{H}-5), 3.72(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 3.62(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-4), \\
& 3.17-3.09(1 \mathrm{H}, \mathrm{dq}, J 11.3, J 7.3, \mathrm{H}-2), 0.95(3 \mathrm{H}, \mathrm{~d}, J 7.3, \\
& \mathrm{H}-1) .
\end{aligned}
$$

$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$):	$175.8(\mathrm{C}=\mathrm{O}), 173.2(\mathrm{C}=\mathrm{O}), 135.3(\mathrm{q}), 132.0,130.1,121.8$
	53.6, 52.3, 52.1, 42.2, 15.3.
$v_{\text {max }}\left(\right.$ neat $/ / \mathrm{cm}^{-1}$:	2952, 1729 ($\mathrm{C}=\mathrm{O}$), 1488, 1434, 1312, 1273, 1238, 1193, 1161, 1072, 1009, 822, 769.
HRMS (m / z - ESI):	Found: $337.0033(\mathrm{M}+\mathrm{Na})^{+} \quad \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrNaO}_{4}$ Requires: 337.0045

Methyl (2S,3S,4S)-3-(4-bromophenyl)-4-methyl-2-(4-nitrophenyl)-5-oxotetrahydrofuran-3-carboxylate (425)

Prepared according to general procedure X , using anhydride 412 ($107.6 \mathrm{mg}, 0.4 \mathrm{mmol}$), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 42.3 \mathrm{mg}, 0.280 \mathrm{mmol}$), 4-iodoanisole (65.5 $\mathrm{mg}, 0.280 \mathrm{mmol}$) and the catalyst $254(10.7 \mathrm{mg}, 0.02 \mathrm{mmol}-5 \mathrm{~mol} \%)$ in dry MTBE $(4.0 \mathrm{~mL}-0.1 \mathrm{M})$. The reaction was stired for 3 days to give a diastereomeric mixture of carboxylic acid lactones in a 87.5:12.5 (major:others) ratio, quenched with MeOH (3.24 $\mathrm{mL}, 80.0 \mathrm{mmol}$) following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(240 \mu \mathrm{~L}, 0.480 \mathrm{mmol})$ the major diastereomer (425) was isolated by flash column chromatography as a white solid (75.2 $\mathrm{mg}, 39 \%$). TLC (hexanes:EtOAc, 70:30 $v / v): \mathrm{R}_{\mathrm{f}}=0.44 ;[\alpha]_{\mathrm{D}}^{20}=+21.1(c=0.189$, CHCl_{3}).

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL2, $2.5 \mu \mathrm{~m}$ (3.0 x 150mm). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 230 nm , retention times: 3.37 min (major enantiomer) and 3.60 min (minor enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.98(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-5), 7.26(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-7), 7.22(2$ H, d, J 8.8, H-4), 6.54 ($2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-6$), $6.33(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$
3), 3.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), 3.42 ($1 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{H}-2$), 1.51 ($3 \mathrm{H}, \mathrm{d}$, J 7.5, H-1).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 176.3(\mathrm{C}=\mathrm{O}), 171.3(\mathrm{C}=\mathrm{O}), 147.7(\mathrm{q}), 141.5(\mathrm{q}), 134.4(\mathrm{q})$, 131.7, 128.5, 127.7, 122.9, 122.7 (q), 81.8, 63.7 (q), 52.9, 43.8, 13.2.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2920,1776,1731,1605,15171493,1452,1344,1208$, $1170,1025,1010,857,829,780,730,695$.

HRMS (m / z - APCI): \quad Found: $432.0098(\mathrm{M}-\mathrm{H})^{-} \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrNO}_{6}$ Requires: 432.0088.

Dimethyl (2R,3S)-2-methyl-3-(4-(trifluoromethyl)phenyl)succinate (423)

Prepared according to general procedure X , using anhydride $\mathbf{4 1 3}$ ($103.3 \mathrm{mg}, 0.4 \mathrm{mmol}$), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 42.3 \mathrm{mg}, 0.280 \mathrm{mmol}$), 4-iodoanisole (65.5 $\mathrm{mg}, 0.280 \mathrm{mmol})$ and the catalyst $254(10.7 \mathrm{mg}, 0.02 \mathrm{mmol}-5 \mathrm{~mol} \%)$ in dry MTBE ($4.0 \mathrm{~mL}-0.1 \mathrm{M}$). The reaction was stired for 2 days, quenched with $\mathrm{MeOH}(3.24 \mathrm{~mL}$, $80.0 \mathrm{mmol})$ following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(240 \mu \mathrm{~L}, 0.480 \mathrm{mmol})$ the unreacted starting material (trans-423) was isolated by flash column chromatography (as its open bismethyl ester opened form) as a colourless liquid ($42.3 \mathrm{mg}, 35 \%$). TLC (hexanes:EtOAc, $9: 1 \mathrm{v} / \mathrm{v}): \mathrm{R}_{\mathrm{f}}=0.28$ (trans), $\mathrm{R}_{\mathrm{f}}=0.36($ cis $) ;[\alpha]_{\mathrm{D}}^{20}=+150\left(c=0.05, \mathrm{CHCl}_{3}\right)$.
trans-423:

CSP-HPLC analysis. Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/i-PrOH: 95/5, 0.5 mL min^{-1}, RT, UV detection at 254 nm , retention times: 12.35 min (minor enantiomer) and 14.50 min (major enantiomer).

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	7.60 ($2 \mathrm{H}, \mathrm{d}, J$ 8.1, H-7), 7.39 ($2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{H}-6$), 3.86 (1
	H, d, J 11.2, H-5), 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 3.64 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$),
	3.23-3.15 (1 H, dq, J 7.3, J 11.3, H-2), 0.96 (3 H, d, J 7.3,
	$\mathrm{H}-1)$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	175.7 (C=O), 173.0 (C=O), 140.3 (q), 130.1 (q) (q, ${ }^{2} J 32.4$
	Hz), 128.9, 125.8 (q, $\left.{ }^{3} \mathrm{~J} 3.5 \mathrm{~Hz}\right), 123.9$ (q) (q, $\left.{ }^{1} J 272.1 \mathrm{~Hz}\right)$,
	53.9, 52.4, 52.1, 42.2, 15.3.
$\delta_{\mathrm{F}}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	-62.69.
$\nu_{\text {max }}\left(\right.$ neat $/ \mathrm{cm}^{-1}$:	2956, 1732 (C=O), 1619, 1459, 1436, 1421, 1322, 1278,
	1244, 1161, 1122, 1066, 1018, 836, 602.
HRMS (m / z - APCI)	Found: 305.0985 (M+H) ${ }^{+} \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{4}$ Requires: 305.0995.

Methyl (2S,3S,4S)-4-methyl-2-(4-nitrophenyl)-5-oxo-3-(4-(trifluoromethyl)phenyl) tetrahydrofuran-3-carboxylate (426)

Prepared according to general procedure X , using anhydride 413 ($103.3 \mathrm{mg}, 0.4 \mathrm{mmol}$), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 42.3 \mathrm{mg}, 0.280 \mathrm{mmol}$), 4-iodoanisole (65.5 $\mathrm{mg}, 0.280 \mathrm{mmol}$) and the catalyst $\mathbf{2 5 4}(10.7 \mathrm{mg}, 0.02 \mathrm{mmol}-5 \mathrm{~mol} \%)$ in dry MTBE $(4.0 \mathrm{~mL}-0.1 \mathrm{M})$. The reaction was stired for 2 days to give a diastereomeric mixture of carboxylic acid lactones in a 83:17 (major:others) ratio, quenched with MeOH (3.24 $\mathrm{mL}, 80.0 \mathrm{mmol}$) following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(240 \mu \mathrm{~L}, 0.480 \mathrm{mmol})$ the major diastereomer (426) was isolated by flash column chromatography as a white solid (72.5 $\mathrm{mg}, 43 \%$). TLC (hexanes:EtOAc, 70:30 $v / v): \mathrm{R}_{\mathrm{f}}=0.41 ;[\alpha]_{\mathrm{D}}^{20}=+24.5(c=0.268$, CHCl_{3}).

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL2, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 2.46 min (major enantiomer) and 2.69 min (minor enantiomer).

$$
\begin{array}{ll}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad & 7.95(2 \mathrm{H}, \mathrm{~d}, J 8.8, \mathrm{H}-5), 7.39(2 \mathrm{H}, \mathrm{~d}, J 8.4, \mathrm{H}-7), 7.21(2 \\
& \mathrm{H}, \mathrm{~d}, J 8.8, \mathrm{H}-4), .39(2 \mathrm{H}, \mathrm{~d}, J 8.4, \mathrm{H}-6), 6.37(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), \\
& 3.81(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-8), 3.48(1 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{H}-2), 1.54(3 \mathrm{H}, \mathrm{~d}, J \\
& 7.5, \mathrm{H}-1) . \\
\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad & 176.1(\mathrm{C}=\mathrm{O}), 171.1(\mathrm{C}=\mathrm{O}), 147.8(\mathrm{q}), 141.3(\mathrm{q}), 139.4(\mathrm{q}), \\
& 130.7(\mathrm{q})\left(\mathrm{q},{ }^{2} J 32.6 \mathrm{~Hz}\right), 127.6,127.4,125.5\left(\mathrm{q},{ }^{3} J 3.6 \mathrm{~Hz}\right), \\
& 123.4(\mathrm{q})\left(\mathrm{q},{ }^{1} J 272.5 \mathrm{~Hz}\right), 81.8,64.0(\mathrm{q}), 53.1,43.8 .
\end{array}
$$

$\delta_{\mathrm{F}}\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad-62.91$.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2956,1786,1735,1608,1522,1349,1325,1220,1168$, $1125,1069,1026,1014,859,751,713$.

HRMS (m / z - ESI): \quad Found: $422.0872(\mathrm{M}-\mathrm{H})^{-} \quad \mathrm{C}^{-} 20 \mathrm{H} 15 \mathrm{~F}_{3} \mathrm{NO}_{6}$ Requires: 422.0856.

Dimethyl (2R,3S)-2-methyl-3-(4-nitrophenyl)succinate (424)

Prepared according to general procedure X, using anhydride 414 ($30.5 \mathrm{mg}, 0.129$ mmol), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 13.7 \mathrm{mg}, 0.091 \mathrm{mmol}$), 4-iodoanisole ($21.2 \mathrm{mg}, 0.091 \mathrm{mmol}$) and the catalyst $254(3.5 \mathrm{mg}, 0.0068 \mathrm{mmol}-5 \mathrm{~mol} \%$) in dry MTBE ($1.3 \mathrm{~mL}-0.1 \mathrm{M}$). The reaction was stired for 1 day, quenched with MeOH (1.05 $\mathrm{mL}, 25.94 \mathrm{mmol}$) following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(78 \mu \mathrm{~L}, 0.155 \mathrm{mmol})$ the unreacted starting material (trans-424) was isolated by flash column chromatography (as its open
bis-methyl ester opened form) as a colourless liquid (12.3 mg, 34\%). TLC (hexanes:EtOAc, 9:1 $v / v)$: $\mathrm{R}_{\mathrm{f}}=0.16 ;[\alpha]_{\mathrm{D}}^{20}=+52.7\left(c=0.03, \mathrm{CHCl}_{3}\right)$.
trans-424:

CSP-HPLC analysis. Chiralcel ODH ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/i-PrOH: 90/10, 1.0 mL min^{-1}, RT, UV detection at 254 nm , retention times: 17.21 min (minor enantiomer) and 19.36 min (major enantiomer).

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	8.16 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-7$), 7.52 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-6$), 3.93 (1 H, d, J 10.9, H-5), 3.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 3.45 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), $3.31-3.23$ ($1 \mathrm{H}, \mathrm{dq}, J 10.9, J 6.9, \mathrm{H}-2$), 1.32 ($3 \mathrm{H}, \mathrm{d}, J 6.9$, $\mathrm{H}-1)$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	$\begin{aligned} & 173.9(\mathrm{C}=\mathrm{O}), 171.6(\mathrm{C}=\mathrm{O}), 143.98 \text { (q), } 130.3(\mathrm{q}), 129.4, \\ & 123.7,54.4,52.6,51.8,43.6,16.5 . \end{aligned}$
$\nu_{\text {max }}\left(\right.$ neat $/ / \mathrm{cm}^{-1}$:	2967, 1727 ($\mathrm{C}=\mathrm{O}$), 1596, 1517, 1454, 1438, 1346, 1318, 1291, 1197, 1153, 1107, 1057, 1001, 973, 860, 737, 691.
HRMS (m / z - ESI):	Found: $\quad 304.0781 \quad(\mathrm{M}+\mathrm{H})^{+} \quad \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NNaO}_{6} \quad$ Requires: 304.0791 .

Methyl (2S,3S,4S)-4-methyl-2,3-bis(4-nitrophenyl)-5-oxotetrahydrofuran-3-

 carboxylate (427)

Prepared according to general procedure X , using anhydride $414(30.5 \mathrm{mg}, 0.129$ $\mathbf{m m o l}$), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 13.7 \mathrm{mg}, 0.091 \mathrm{mmol}$), 4-iodoanisole ($21.2 \mathrm{mg}, 0.091 \mathrm{mmol}$) and the catalyst $254(3.5 \mathrm{mg}, 0.0068 \mathrm{mmol}-5 \mathrm{~mol} \%$) in dry MTBE ($1.3 \mathrm{~mL}-0.1 \mathrm{M}$). The reaction was stired for 1 day to give a diastereomeric mixture of carboxylic acid lactones in a 87.5:12.5 (major:others) ratio, quenched with $\mathrm{MeOH}(1.05 \mathrm{~mL}, 25.94 \mathrm{mmol})$ following the derivatisation method as described in the
general procedure. After esterification with $\mathrm{TMSCHN}_{2}(78 \mu \mathrm{~L}, 0.155 \mathrm{mmol})$ the major diastereomer (427) was isolated by flash column chromatography as a white solid (19.8 $\mathrm{mg}, 38 \%$). TLC (hexanes:EtOAc, 70:30 $\mathrm{v} / \mathrm{v}): \mathrm{R}_{\mathrm{f}}=0.27 ;[\alpha]_{\mathrm{D}}^{20}=+21.6(c=0.05$, $\left.\mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Methanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.1, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 3.47 min (minor enantiomer) and 3.80 min (major enantiomer).

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	8.00-7.96 (4 H, m, H-5 and H-7), 7.24 (2 H, d, J 8.6, H-6),
	$6.88(2 \mathrm{H}, \mathrm{~d}, J \text { 8.8, H-4), } 6.4(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}-3), 3.83(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-$
	8), 3.49 (1 H, q, J7.5, H-2), 1.55 ($3 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{H}-1)$.
$\delta_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	175.7 (C=O), 170.7 (C=O), 147.9 (q), 147.4 (q), 142.5 (q),
	141.0 (q), 128.1, 127.5, 123.6, 123.2, 81.7, 64.0 (q), 53.2,
	44.0, 13.3
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$:	2921, 1785, 1734, 1606, 1517, 1348, 1221, 1171, 1026,
	1012, 861, 724, 697.
HRMS (m / z - ESI):	Found: 399.0839 (M-H) ${ }^{-} \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{8}$ Requires: 399.0833.

Dimethyl (2R,3S)-2-ethyl-3-phenylsuccinate (432)

Prepared according to general procedure X, using anhydride 428 ($98.9 \mathrm{mg}, 0.484$ mmol), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 51.2 \mathrm{mg}, 0.339 \mathrm{mmol}$), 4-iodoanisole ($79.3 \mathrm{mg}, 0.581 \mathrm{mmol}$) and the catalyst $254(13.0 \mathrm{mg}, 0.024 \mathrm{mmol}-5 \mathrm{~mol} \%$) in dry MTBE ($4.8 \mathrm{~mL}-0.1 \mathrm{M}$). The reaction was stired for 5 days, quenched with MeOH ($3.92 \mathrm{~mL}, 96.8 \mathrm{mmol}$) following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(290 \mu \mathrm{~L}, 0.580 \mathrm{mmol})$ the unreacted
starting material (trans-432) was isolated by flash column chromatography (as its open bis-methyl ester opened form) as a colourless liquid ($41.2 \mathrm{mg}, 34 \%$). TLC (hexanes:EtOAc, 9:1 v/v): $\mathrm{R}_{\mathrm{f}}=0.46$ (cis), $\mathrm{R}_{\mathrm{f}}=0.31$ (trans); $[\alpha]_{\mathrm{D}}^{20}=+243.6(c=0.123$, CHCl_{3}).
trans-432:

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.4, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 230 nm , retention times: 1.85 min (minor enantiomer) and 2.71 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.28-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3), 3.80(1 \mathrm{H}, \mathrm{d}, J 11.4$, H-4), 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$), 3.54 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 3.07-3.01 (1 H , m, H-7), 1.42-1.32 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.27-1.16 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 0.71 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{H}-9$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 175.4(\mathrm{C}=\mathrm{O}), 173.7(\mathrm{C}=\mathrm{O}), 136.4(\mathrm{q}), 128.9,128.4,127.7$, 52.4, 52.2, 51.8, 48.8, 22.5, 10.5.
$v_{\max }$ (neat)/ $/ \mathrm{cm}^{-1}: \quad \quad 2953,1730,1454,1434,1256,1235,1160,747,734,700$.
HRMS (m / z - ESI): \quad Found: $\quad 273.1091 \quad(\mathrm{M}+\mathrm{Na})^{+} \quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{4} \quad$ Requires: 273.1097.

Methyl (2S,3S,4S)-4-ethyl-2-(4-nitrophenyl)-5-oxo-3-phenyltetrahydrofuran-3carboxylate (436)

Prepared according to general procedure X , using anhydride 428 ($98.9 \mathrm{mg}, 0.484$ $\mathbf{m m o l}$), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 51.2 \mathrm{mg}, 0.339 \mathrm{mmol}$), 4-iodoanisole ($79.3 \mathrm{mg}, 0.581 \mathrm{mmol}$) and the catalyst $254(13.0 \mathrm{mg}, 0.024 \mathrm{mmol}-5 \mathrm{~mol} \%$) in dry

MTBE ($4.8 \mathrm{~mL}-0.1 \mathrm{M}$). The reaction was stired for 5 days to give a diastereomeric mixture of carboxylic acid lactones in a 91:9 (major:others) ratio, quenched with MeOH ($3.92 \mathrm{~mL}, 96.8 \mathrm{mmol}$) following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(290 \mu \mathrm{~L}, 0.580 \mathrm{mmol})$ the major diastereomer (436) was isolated by flash column chromatography as a white solid (76.6 $\mathrm{mg}, 43 \%$). M.p. $152-154{ }^{\circ} \mathrm{C}$. TLC (hexanes:EtOAc, $\left.4: 1 \mathrm{v} / \mathrm{v}\right): \mathrm{R}_{\mathrm{f}}=0.34 ;[\alpha]_{\mathrm{D}}^{20}=+63.2(c$ $\left.=0.05, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL2, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 230 nm , retention times: 2.69 min (major enantiomer) and 2.90 min (minor enantiomer).

$$
\begin{aligned}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 7.91(2 \mathrm{H}, \mathrm{~d}, J \mathrm{~B} .8, \mathrm{H}-6), 7.18-7.15(3 \mathrm{H}, \mathrm{~m}, \mathrm{H}-8 \text { and H-9), } \\
& 7.12-7.08(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-7), 6.66(2 \mathrm{H}, \mathrm{~d}, J \mathrm{~J} .8, \mathrm{H}-5), 6.33(1 \\
& \mathrm{H}, \mathrm{~s}, \mathrm{H}-4), 3.78(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 3.25(1 \mathrm{H}, \mathrm{dd}, J 10.9,4.7, \mathrm{H}- \\
& 3), 1.98-1.89(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-2 \mathrm{a}), 1.87-1.77(1 \mathrm{H}, \mathrm{~m}, \mathrm{H}-2 \mathrm{~b}), 1.26 \\
& (3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{H}-1),
\end{aligned}
$$

$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 175.4(\mathrm{C}=\mathrm{O}), 171.8(\mathrm{C}=\mathrm{O}), 147.5(\mathrm{q}), 142.0(\mathrm{q}), 135.5(\mathrm{q})$, $128.5,128.3,127.7,126.9,122.7,82.3,64.5$ (q), 52.7, 50.0, 21.4, 11.3.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2945,1770,1743,1608,1516,1435,1348,1250,1202$, $1167,1125,1072,1011,979,875,857,846,760,715,704$, 693, 585.

HRMS (m / z - APCI): \quad Found: $370.1288(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{6}$ Requires: 370.1285.

Dimethyl 2-phenyl-3-propylsuccinate (433)

trans-433

cis-433

Prepared according to general procedure X , using anhydride 429 ($148.6 \mathrm{mg}, 0.680$ mmol), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 72.0 \mathrm{mg}, 0.476 \mathrm{mmol}$), 4-iodoanisole $(111.5 \mathrm{mg}, 0.476 \mathrm{mmol})$ and the catalyst $254(10.7 \mathrm{mg}, 0.02 \mathrm{mmol}-5 \mathrm{~mol} \%)$ in dry MTBE ($4.0 \mathrm{~mL}-0.1 \mathrm{M}$). The reaction was stired for 5 days, quenched with MeOH (5.5 $\mathrm{mL}, 136.17 \mathrm{mmol}$) following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(408 \mu \mathrm{~L}, 0.817 \mathrm{mmol})$ the unreacted starting material (trans-433) was isolated by flash column chromatography (as its open bis-methyl ester opened form) as a colourless liquid ($73.2 \mathrm{mg}, 41 \%$). TLC (hexanes:EtOAc, 9:1 v/v): $\mathrm{R}_{\mathrm{f}}=0.56\left(\right.$ cis-433), $\mathrm{R}_{\mathrm{f}}=0.36($ trans -433$) ;[\alpha]_{\mathrm{D}}^{20}=+254.8(c$ $=0.213, \mathrm{CHCl}_{3}$).
trans-433:
HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.4, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 212 nm , retention times: 1.83 min (minor enantiomer) and 2.88 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.36-7.26(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3), 3.85(1 \mathrm{H}, \mathrm{d}, J 11.6$, H-4), 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$), 3.61 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 3.17-3.11 (1 H , m, H-7), 1.32-1.24 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-8 \mathrm{a}$), 1.18-1.05 (1 H , m, H-8b), 0.74 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7, \mathrm{H}-10$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 175.6(\mathrm{C}=\mathrm{O}), 173.7(\mathrm{C}=\mathrm{O}), 136.4(\mathrm{q}), 128.9,128.4,127.7$, 53.0, 52.2, 51.8, 47.6, 31.7, 19.6, 13.8.
cis-433:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.32-7.23(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3), 3.77(1 \mathrm{H}, \mathrm{d}, J 11.2$, H-4), 3.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$), 3.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 3.25-3.18 (1 H , m, H-7), 1.72-1.63 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 1.58-1.49 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $8 b), 1.37-1.25(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 0.92(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{H}-10)$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 174.0(\mathrm{C}=\mathrm{O}), 172.8(\mathrm{C}=\mathrm{O}), 136.4(\mathrm{q}), 128.5,128.3,127.7$, 54.3, 52.2, 51.3, 49.6, 33.9, 20.7, 13.8.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2955,1730,1434,1328,1239,1160,1003,782,735,700$.

HRMS $\left(\mathrm{m} / \mathrm{z}\right.$ - ESI): \quad Found: $\quad 287.1259 \quad(\mathrm{M}+\mathrm{Na})^{+} \quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{4} \quad$ Requires: 287.1253.

Methyl (2S,3S,4S)-2-(4-nitrophenyl)-5-oxo-3-phenyl-4-propyltetrahydrofuran-3carboxylate (437)

Prepared according to general procedure X, using anhydride 429 ($148.6 \mathrm{mg}, 0.680$ mmol), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 72.0 \mathrm{mg}, 0.476 \mathrm{mmol}$), 4-iodoanisole $(111.5 \mathrm{mg}, 0.476 \mathrm{mmol})$ and the catalyst $254(10.7 \mathrm{mg}, 0.02 \mathrm{mmol}-5 \mathrm{~mol} \%)$ in dry MTBE $(6.8 \mathrm{~mL}-0.1 \mathrm{M})$. The reaction was stired for 5 days to give a diastereomeric mixture of carboxylic acid lactones in a 90:10 (major:others) ratio, quenched with $\mathrm{MeOH}(5.5 \mathrm{~mL}, 136.17 \mathrm{mmol})$ following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(408 \mu \mathrm{~L}, 0.817 \mathrm{mmol})$ the major diastereomer (437) was isolated by flash column chromatography as a white solid (109.4 mg, 42\%). M.p. $150-152{ }^{\circ} \mathrm{C}$. TLC (hexanes:EtOAc, 4:1 v / v): $\mathrm{R}_{\mathrm{f}}=0.40 ;[\alpha]_{\mathrm{D}}^{20}=$ $+79.6\left(c=0.05, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $i-\operatorname{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 2.36 min (minor enantiomer) and 2.62 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.90(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-7), 7.19-7.15(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-10)$, 7.12-7.08 (2 H, m, H-8), 6.66 ($2 \mathrm{H}, \mathrm{d}, ~ J ~ 8.8, ~ H-6), ~ 6.33 ~(1 ~$ H, s, H-5), 3.78 (3 H, s, H-11), 3.34 (1 H, dd, J 10.6, 4.0, H4), 1.94-1.84 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}$), 1.84-1.74 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}$), 1.69-1.53 (2 H, m, H-2), 1.02 (3 H, t, J 6.9, H-1).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 175.5(\mathrm{C}=\mathrm{O}), 171.8(\mathrm{C}=\mathrm{O}), 147.5(\mathrm{q}), 142.0(\mathrm{q}), 135.5(\mathrm{q})$, $128.5,128.3,127.7,126.9,122.7,82.2,64.5$ (q), 52.7, 48.3, 29.9, 19.8, 13.8.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2947,1771,1744,1664,1595,1518,1458,1434,1349$, 1204, 1167, 857, 716, 560.

HRMS $(m / z-\operatorname{APCI}): \quad$ Found: $384.1454(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{6}$ Requires: 384.1441.

Dimethyl (2R,3S)-2-isopropyl-3-phenylsuccinate (434)

Prepared according to general procedure X , using anhydride $430(90.8 \mathrm{mg}, 0.416$ mmol), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 44.0 \mathrm{mg}, 0.291 \mathrm{mmol}$), 4-iodoanisole $(68.2 \mathrm{mg}, 0.291 \mathrm{mmol})$ and the catalyst $254(11.2 \mathrm{mg}, 0.021 \mathrm{mmol}-5 \mathrm{~mol} \%)$ in dry MTBE ($4.2 \mathrm{~mL}-0.1 \mathrm{M}$). The reaction was stired for 6 days, quenched with MeOH ($3.37 \mathrm{~mL}, 83.2 \mathrm{mmol}$) following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(250 \mu \mathrm{~L}, 0.499 \mathrm{mmol})$ the unreacted starting material (trans-434) was isolated by flash column chromatography (as its open bis-methyl ester opened form) as a colourless liquid ($50.2 \mathrm{mg}, 46 \%$). TLC (hexanes:EtOAc, 9:1 v / v): $\mathrm{R}_{\mathrm{f}}=0.33$ (trans-434); $[\alpha]_{\mathrm{D}}^{20}=+130\left(c=0.145, \mathrm{CHCl}_{3}\right)$.
trans-434:
HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $i-\operatorname{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.4, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 212 nm , retention times: 1.69 min (minor enantiomer) and 2.64 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.35-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2$ and $\mathrm{H}-3), 3.97(1 \mathrm{H}, \mathrm{d}, J 11.9$, H-4), 3.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$), $3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 3.14$ ($1 \mathrm{H}, \mathrm{dd}, J$ $11.9, J 3.05, \mathrm{H}-7), 1.56-1.48(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 0.93(3 \mathrm{H}, \mathrm{d}, J$ 6.9, H-9), 0.79 ($3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{H}-10$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 173.93(\mathrm{C}=\mathrm{O}), 173.91(\mathrm{C}=\mathrm{O}), 136.5$ (q), 128.9, 128.4, 127.7, 53.3, 52.2, 51.6, 51.4, 26.7, 22.0, 16.8.
$\nu_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2958,1729,1454,1435,1286,1259,1235,1158,1006$, 734, 700.

HRMS (m / z - ESI): \quad Found: $\quad 287.1252(\mathrm{M}+\mathrm{Na})^{+} \quad \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{4} \quad$ Requires: 287.1253.

Methyl (2S,3S,4S)-4-isopropyl-2-(4-nitrophenyl)-5-oxo-3-phenyltetrahydrofuran-3carboxylate (438)

Prepared according to general procedure X , using anhydride $\mathbf{4 3 0}(90.8 \mathrm{mg}, 0.416$ mmol), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 44.0 \mathrm{mg}, 0.291 \mathrm{mmol}$), 4-iodoanisole ($68.2 \mathrm{mg}, 0.291 \mathrm{mmol}$) and the catalyst $254(11.2 \mathrm{mg}, 0.021 \mathrm{mmol}-5 \mathrm{~mol} \%)$ in dry MTBE ($4.2 \mathrm{~mL}-0.1 \mathrm{M}$). The reaction was stired for 6 days to give a diastereomeric mixture of carboxylic acid lactones in a 86:14 (major:others) ratio, quenched with $\mathrm{MeOH}(3.37 \mathrm{~mL}, 83.2 \mathrm{mmol})$ following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(250 \mu \mathrm{~L}, 0.499 \mathrm{mmol})$ the major diastereomer (438) was isolated by flash column chromatography as a white solid (54.6 $\mathrm{mg}, 34 \%)$. TLC (hexanes:EtOAc, $4: 1 \mathrm{v} / \mathrm{v}): \mathrm{R}_{\mathrm{f}}=0.35 ;[\alpha]_{\mathrm{D}}^{20}=+38.8\left(c=0.05, \mathrm{CHCl}_{3}\right)$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Methanol: $i-\mathrm{PrOH}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 2.10 min (minor enantiomer) and 2.40 min (major enantiomer).

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$	$7.89(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{H}-6), 7.18(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-7), 7.13-7.05$
	$(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and H-9), 6.65 (2 H, d, J 8.9, H-5), 6.39 (1 H,
	$\mathrm{s}, \mathrm{H}-4), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10), 3.37(1 \mathrm{H}, \mathrm{d}, J 2.8, \mathrm{H}-3), 2.29-$
	$2.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.33(1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}-1 \mathrm{a}), 1.22(1 \mathrm{H}, \mathrm{d}$,
	$J 7.0, \mathrm{H}-1 \mathrm{~b})$.

Dimethyl (2R,3S)-2-methyl-3-(naphthalen-2-yl)succinate (435)

Prepared according to general procedure X , using anhydride 431 ($96.1 \mathrm{mg}, 0.4 \mathrm{mmol}$), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 42.3 \mathrm{mg}, 0.280 \mathrm{mmol}$), 4-iodoanisole (65.5 $\mathrm{mg}, 0.280 \mathrm{mmol}$) and the catalyst $254(10.7 \mathrm{mg}, 0.02 \mathrm{mmol}-5 \mathrm{~mol} \%)$ in dry MTBE $(4.0 \mathrm{~mL}-0.1 \mathrm{M})$. The reaction was stired for 6 days, quenched with $\mathrm{MeOH}(3.24 \mathrm{~mL}$, 80.0 mmol) following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(240 \mu \mathrm{~L}, 0.480 \mathrm{mmol})$ the unreacted starting material (trans-435) was isolated by flash column chromatography (as its open bismethyl ester opened form) as a white solid ($29.6 \mathrm{mg}, 26 \%$). TLC (hexanes:EtOAc, 9:1 $v / v): \mathrm{R}_{\mathrm{f}}=0.45\left(\right.$ cis-435), $\mathrm{R}_{\mathrm{f}}=0.36($ trans -435$) ;[\alpha]_{\mathrm{D}}^{20}=+93.4\left(c=0.08, \mathrm{CHCl}_{3}\right)$.

trans-438:

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}: i-\mathrm{PrOH}(1: 1: 1, v: v: v)$ gradient as shown in Table 4.2, column temperature: $30^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 2.18 min (minor enantiomer) and 3.92 min (major enantiomer).

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	8.83-8.81 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-9$ and $\mathrm{H}-12$), 7.74 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-6$), 7.52-7.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$ and $\mathrm{H}-11$), 7.39-7.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 7), 3.96 ($1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{H}-3$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 3.64 (3 H , s, H-5), 3.34-3.26 (1 H, m, J 7.2, 11.2, H-2), 0.99 ($3 \mathrm{H}, \mathrm{d}, J$ 7.2, H-1).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	$\begin{aligned} & 176.2(\mathrm{C}=\mathrm{O}), 173.7(\mathrm{C}=\mathrm{O}), 133.7(\mathrm{q}), 133.4(\mathrm{q}), 132.8(\mathrm{q}), \\ & \text { 128.7, 127.82, 127.81, 127.7, 126.4, 126.1, 125.7, 54.3, } \\ & 52.3,52.0,42.3,15.5 . \end{aligned}$
$v_{\text {max }}\left(\right.$ neat $/$ /cm ${ }^{-1}$:	$\begin{aligned} & 2955,1728,1454,1433,1375,1316,1281,1233,1170, \\ & 1154,1063,1007,858,817,762 . \end{aligned}$
HRMS (m / z - ESI):	Found: $\quad 309.1096 \quad(\mathrm{M}+\mathrm{Na})^{+} \quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NaO}_{4} \quad$ Requires: 309.1097.

Methyl (2S,3S,4S)-4-methyl-3-(naphthalen-2-yl)-2-(4-nitrophenyl)-5-oxotetrahydrofuran-3-carboxylate (439)

Prepared according to general procedure X , using anhydride 431 ($96.1 \mathrm{mg}, 0.4 \mathrm{mmol}$), recrystallized 4-nitrobenzaldehyde ($\mathbf{2 4 4}, 42.3 \mathrm{mg}, 0.280 \mathrm{mmol}$), 4-iodoanisole (65.5 $\mathrm{mg}, 0.280 \mathrm{mmol})$ and the catalyst $254(10.7 \mathrm{mg}, 0.02 \mathrm{mmol}-5 \mathrm{~mol} \%)$ in dry MTBE ($4.0 \mathrm{~mL}-0.1 \mathrm{M}$). The reaction was stired for 6 days to give a diastereomeric mixture of
carboxylic acid lactones in a 90:10 (major:others) ratio, quenched with MeOH (3.24 $\mathrm{mL}, 80.0 \mathrm{mmol}$) following the derivatisation method as described in the general procedure. After esterification with $\mathrm{TMSCHN}_{2}(240 \mu \mathrm{~L}, 0.480 \mathrm{mmol})$ the major diastereomer (439) was isolated by flash column chromatography as a white solid (52.4 $\mathrm{mg}, 40 \%$). M.p. $155-157^{\circ} \mathrm{C}$. TLC (hexanes:EtOAc, $\left.4: 1 \mathrm{v} / \mathrm{v}\right)$: $\mathrm{R}_{\mathrm{f}}=0.18 ;[\alpha]_{\mathrm{D}}^{20}=+34.8(c$ $=0.764, \mathrm{CHCl}_{3}$.

HPLC analysis. ACQUITY UPC ${ }^{2}$ Trefoil CEL2, $2.5 \mu \mathrm{~m}$ (3.0 x 150mm). ABPR: 1500 (psi). $\mathrm{A}=\mathrm{CO}_{2} / \mathrm{B}=$ Ethanol: $\mathrm{CH}_{3} \mathrm{CN}(1: 1, v: v)$ gradient as shown in Table 4.2, column temperature: $30{ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 3.46 min (major enantiomer) and 3.74 min (minor enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.84(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-5), 7.75-7.68(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and H-7), 7.51-7.41 (4 H, m, H-8, H-9, H-10 and H-11), 7.20 ($2 \mathrm{H}, \mathrm{d}$, J 8.8, H-4), 6.41 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$), 6.39 (1 H , app. dd, H-12), 3.80 (3 H, s, H-13), 3.65 (1 H, q, J 7.4, H-2), 1.57 ($3 \mathrm{H}, \mathrm{d}, J$ 7.4, H-1).
$\delta_{\mathrm{C}}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 176.8(\mathrm{C}=\mathrm{O}), 171.8(\mathrm{C}=\mathrm{O}), 147.6(\mathrm{q}), 141.7(\mathrm{q}), 132.65(\mathrm{q})$, 132.62 (q), 132.3 (q), 128.08, 128.07, 127.9, 127.5, 127.1, $126.9,125.5,124.9,122.8,82.1,64.1$ (q), 52.9, 43.9, 13.3.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2950,1784,1721,1607,1518,1463,1437,1351,1253$, 1200, 1162, 1013, 837, 787, 727, 745, 692.

HRMS (m / z - APCI): \quad Found: $406.1292(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{6}$ Requires: 406.1285

4.5 X-ray crystallography data

4.5.1 X-ray crystallography data for 300

A specimen of $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{4},(\mathbf{3 0 0})$ approximate dimensions $0.010 \mathrm{~mm} \times 0.250 \mathrm{~mm} \times 0.450$ mm , was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at $100(2) \mathrm{K}$ using an Oxford Cryosystems low temperature device using a MiTeGen micromount. See Table 4.6 for collection parameters and exposure time. Bruker APEX software was used to correct for Lorentz and polarization effects.

A total of 4462 frames were collected. The total exposure time was 13.63 hours. The integration of the data using an orthorhombic unit cell yielded a total of 26460 reflections to a maximum θ angle of 68.40° ($0.83 \AA$ resolution), of which 3533 were independent (average redundancy 7.489, completeness $=99.6 \%, \mathrm{R}_{\text {int }}=3.42 \%, \mathrm{R}_{\text {sig }}=$ $1.82 \%)$ and $3525(99.77 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=$ $9.3600(4) \AA, \underline{b}=10.9241(4) \AA, \underline{c}=18.8533(7) \AA$, volume $=1927.74(13) \AA^{3}$, are based upon the refinement of the XYZ-centroids of reflections above $20 \sigma(\mathrm{I})$. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of
minimum to maximum apparent transmission was 0.843 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6347 and 0.7531 .

The structure was solved using the Bruker APEX Software Package and refined with XL in Olex2, using the space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$, with $\mathrm{Z}=4$ for the formula unit, $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{4}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 254 variables converged at $\mathrm{R} 1=3.10 \%$, for the observed data and $\mathrm{wR} 2=7.72 \%$ for all data. The goodness-of-fit was 1.080 . The largest peak in the final difference electron density synthesis was $0.152 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.328 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.063 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.283 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 784 \mathrm{e}^{-}$.

Refinement Note: Chirality assignment:

$$
\begin{aligned}
& \mathrm{C} 4=\mathrm{R} \\
& \mathrm{C} 5=\mathrm{S} \\
& \mathrm{C} 6=\mathrm{S}
\end{aligned}
$$

Figure 4.1 Packing of diagram of $\mathbf{3 0 0}$ viewed to the a-axis.

Table 4.5 Data collection details for $\mathbf{3 0 0}$

Axis	dx/mm	20/ ${ }^{\circ}$	$\omega /^{\circ}$	$\varphi /{ }^{\circ}$	χ^{10}	Width $/{ }^{\circ}$	Frames	Time/s	Wavelength/i̊	Voltage/kV	Current/mA	Temperature/K
Omega	45.000	104.23	94.63	324.00	-54.74	0.80	157	11.00	1.54184	45	0.6	100
Omega	45.000	104.23	342.74	0.00	64.50	0.80	163	11.00	1.54184	45	0.6	100
Omega	45.000	104.23	94.63	135.00	-54.74	0.80	157	11.00	1.54184	45	0.6	100
Omega	45.000	90.14	352.61	59.39	82.71	0.80	91	11.00	1.54184	45	0.6	100
Phi	45.000	-41.42	341.01	238.61	23.00	0.80	314	11.00	1.54184	45	0.6	100
Omega	45.000	104.23	94.63	0.00	-54.74	0.80	157	11.00	1.54184	45	0.6	100
Omega	45.000	104.23	94.63	189.00	-54.74	0.80	157	11.00	1.54184	45	0.6	100
Omega	45.000	-39.23	312.62	160.00	-64.50	0.80	128	11.00	1.54184	45	0.6	100
Omega	45.000	104.23	94.63	297.00	-54.74	0.80	157	11.00	1.54184	45	0.6	100
Omega	45.000	104.23	342.74	216.00	64.50	0.80	163	11.00	1.54184	45	0.6	100
Omega	45.000	-39.23	205.13	120.00	54.74	0.80	157	11.00	1.54184	45	0.6	100
Omega	45.000	104.23	94.63	162.00	-54.74	0.80	157	11.00	1.54184	45	0.6	100
Omega	45.000	104.23	342.74	81.00	64.50	0.80	163	11.00	1.54184	45	0.6	100
Omega	45.000	104.23	342.74	270.00	64.50	0.80	163	11.00	1.54184	45	0.6	100
Omega	45.000	-39.23	312.62	0.00	-64.50	0.80	128	11.00	1.54184	45	0.6	100
Omega	45.000	104.23	94.63	54.00	-54.74	0.80	157	11.00	1.54184	45	0.6	100
Omega	45.000	104.23	342.74	135.00	64.50	0.80	163	11.00	1.54184	45	0.6	100
Omega	55.000	110.58	93.39	120.00	-54.74	0.80	179	11.00	1.54184	45	0.6	100
Omega	55.000	94.75	352.44	168.66	80.84	0.80	92	11.00	1.54184	45	0.6	100
Omega	55.000	110.58	338.50	192.00	64.50	0.80	185	11.00	1.54184	45	0.6	100
Omega	55.000	110.58	338.50	24.00	64.50	0.80	185	11.00	1.54184	45	0.6	100
Omega	55.000	110.58	93.39	96.00	-54.74	0.80	179	11.00	1.54184	45	0.6	100
Omega	55.000	110.58	93.39	168.00	-54.74	0.80	179	11.00	1.54184	45	0.6	100
Omega	55.000	-0.33	234.22	360.00	54.74	0.80	179	11.00	1.54184	45	0.6	100
Phi	55.000	-53.29	323.96	235.29	57.00	0.80	322	11.00	1.54184	45	0.6	100
Phi	55.000	110.89	0.81	292.00	23.00	0.80	230	11.00	1.54184	45	0.6	100

Table 4.6 Crystal data and structure refinement for $\mathbf{3 0 0}$.

Identification code	tcd698	
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{4}$	
Formula weight	372.40	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	$\mathrm{P} 22_{1} 1_{21}$	
Unit cell dimensions	$\mathrm{a}=9.3600(4) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=10.9241$ (4) \AA	$\beta=90^{\circ}$
	$\mathrm{c}=18.8533(7) \AA$	$\gamma=90^{\circ}$
Volume	1927.74(13) \AA^{3}	
Z	4	
Density (calculated)	$1.283 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.703 \mathrm{~mm}^{-1}$	
F(000)	784	
Crystal size	$0.45 \times 0.25 \times 0.01 \mathrm{~mm}^{3}$	
Theta range for data collection	4.678 to 68.398°.	
Index ranges	$-11 \leq \mathrm{h} \leq 11,-11 \leq \mathrm{k} \leq 12,-22 \leq 1 \leq 22$	
Reflections collected	26460	
Independent reflections	$3533[\mathrm{R}(\mathrm{int})=0.0342]$	
Completeness to theta $=67.679^{\circ}$	99.8\%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7531 and 0.6347	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	3533/0/254	
Goodness-of-fit on $\mathrm{F}^{\mathbf{2}}$	1.080	
Final R indices [I>2 $\sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0310, \mathrm{wR} 2=0.0772$	
R indices (all data)	$\mathrm{R} 1=0.0311, \mathrm{wR} 2=0.0772$	
Absolute structure parameter	-0.01(3)	
Largest diff. peak and hole	0.152 and -0.328 e. \AA^{-3}	

Table 4.7 Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for $\mathbf{3 0 0}$.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalised U_{ij} tensor.

	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U (e q)}$
$\mathrm{O}(1)$	$6359(1)$	$7245(1)$	$8433(1)$	$23(1)$
$\mathrm{O}(3)$	$6032(1)$	$6888(1)$	$7280(1)$	$20(1)$
$\mathrm{O}(20)$	$3923(1)$	$8997(1)$	$7401(1)$	$20(1)$
$\mathrm{O}(21)$	$2442(1)$	$8399(1)$	$6527(1)$	$19(1)$

$\mathrm{C}(2)$	$5571(2)$	$6960(1)$	$7960(1)$	$18(1)$
$\mathrm{C}(4)$	$4892(2)$	$6490(1)$	$6812(1)$	$18(1)$
$\mathrm{C}(5)$	$3482(2)$	$6836(1)$	$7223(1)$	$16(1)$
$\mathrm{C}(6)$	$4015(2)$	$6590(1)$	$7992(1)$	$17(1)$
$\mathrm{C}(7)$	$3149(2)$	$7055(2)$	$8611(1)$	$20(1)$
$\mathrm{C}(8)$	$1996(2)$	$6362(2)$	$8851(1)$	$26(1)$
$\mathrm{C}(9)$	$1168(2)$	$6760(2)$	$9419(1)$	$35(1)$
$\mathrm{C}(10)$	$1482(2)$	$7848(2)$	$9757(1)$	$37(1)$
$\mathrm{C}(11)$	$2628(2)$	$8542(2)$	$9524(1)$	$33(1)$
$\mathrm{C}(12)$	$3459(2)$	$8155(2)$	$8958(1)$	$24(1)$
$\mathrm{C}(13)$	$2157(2)$	$6084(2)$	$7050(1)$	$18(1)$
$\mathrm{C}(14)$	$806(2)$	$6559(2)$	$7206(1)$	$20(1)$
$\mathrm{C}(15)$	$-418(2)$	$5869(2)$	$7103(1)$	$24(1)$
$\mathrm{C}(16)$	$-319(2)$	$4682(2)$	$6846(1)$	$27(1)$
$\mathrm{C}(17)$	$1010(2)$	$4193(2)$	$6702(1)$	$29(1)$
$\mathrm{C}(18)$	$2240(2)$	$4880(2)$	$6808(1)$	$24(1)$
$\mathrm{C}(19)$	$3291(2)$	$8205(2)$	$7082(1)$	$16(1)$
$\mathrm{C}(22)$	$2349(2)$	$9645(2)$	$6274(1)$	$26(1)$
$\mathrm{C}(23)$	$5100(2)$	$7071(2)$	$6093(1)$	$21(1)$
$\mathrm{C}(24)$	$4497(2)$	$6525(2)$	$5499(1)$	$28(1)$
$\mathrm{C}(25)$	$4606(2)$	$7090(2)$	$4840(1)$	$37(1)$
$\mathrm{C}(26)$	$5326(2)$	$8190(2)$	$4770(1)$	$36(1)$
$\mathrm{C}(27)$	$5941(2)$	$8728(2)$	$5358(1)$	$32(1)$
$\mathrm{C}(28)$	$5838(2)$	$8171(2)$	$6019(1)$	$24(1)$

Table 4.8 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{3 0 0}$.

$\mathrm{O}(1)-\mathrm{C}(2)$	$1.197(2)$	$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{O}(3)-\mathrm{C}(2)$	$1.356(2)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800
$\mathrm{O}(3)-\mathrm{C}(4)$	$1.4507(19)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{O}(20)-\mathrm{C}(19)$	$1.208(2)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800
$\mathrm{O}(21)-\mathrm{C}(19)$	$1.3310(19)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.389(3)$
$\mathrm{O}(21)-\mathrm{C}(22)$	$1.4453(19)$	$\mathrm{C}(23)-\mathrm{C}(28)$	$1.393(2)$
$\mathrm{C}(2)-\mathrm{C}(6)$	$1.513(2)$	$\mathrm{C}(24)-\mathrm{H}(24)$	0.9500
$\mathrm{C}(4)-\mathrm{H}(4)$	1.0000	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.390(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.577(2)$	$\mathrm{C}(25)-\mathrm{H}(25)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(23)$	$1.508(2)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.385(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.558(2)$	$\mathrm{C}(26)-\mathrm{H}(26)$	0.9500
$\mathrm{C}(5)-\mathrm{C}(13)$	$1.523(2)$	$\mathrm{C}(26)-\mathrm{C}(27)$	$1.381(3)$
$\mathrm{C}(5)-\mathrm{C}(19)$	$1.529(2)$	$\mathrm{C}(27)-\mathrm{H}(27)$	0.9500
$\mathrm{C}(6)-\mathrm{H}(6)$	1.0000	$\mathrm{C}(27)-\mathrm{C}(28)$	$1.390(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.509(2)$	$\mathrm{C}(28)-\mathrm{H}(28)$	0.9500

$\mathrm{C}(7)-\mathrm{C}(8)$	1.393(3)		
$\mathrm{C}(7)-\mathrm{C}(12)$	1.398(3)	$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(4)$	111.07(12)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500	$\mathrm{C}(19)-\mathrm{O}(21)-\mathrm{C}(22)$	116.47(13)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.391(3)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	121.56(15)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	129.22(15)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.381(3)	$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	109.17(13)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	108.9
$\mathrm{C}(10)-\mathrm{C}(11)$	1.385(3)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	104.16(12)
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(23)$	109.01(13)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.387(3)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	108.9
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500	$\mathrm{C}(23)-\mathrm{C}(4)-\mathrm{H}(4)$	108.9
$\mathrm{C}(13)-\mathrm{C}(14)$	1.398(2)	$\mathrm{C}(23)-\mathrm{C}(4)-\mathrm{C}(5)$	116.65(13)
$\mathrm{C}(13)-\mathrm{C}(18)$	1.394(2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	98.55(12)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500	$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(19)$	113.29(12)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.386(2)	$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(4)$	116.59(13)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500	$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(6)$	111.49(12)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.387(3)	$\mathrm{C}(19)-\mathrm{C}(5)-\mathrm{C}(4)$	104.30(12)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500	$\mathrm{C}(19)-\mathrm{C}(5)-\mathrm{C}(6)$	111.59(12)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.381(3)	$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	102.97(12)
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500	$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{H}(6)$	105.3
$\mathrm{C}(17)-\mathrm{C}(18)$	1.388(2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	105.3
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(2)$	117.24(13)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.7
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	119.37(13)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	120.64(16)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	105.3	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	119.7
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	118.88(15)	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18)$	119.6
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	118.43(16)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	120.73(16)
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(6)$	122.68(15)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	119.6
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.6	$\mathrm{O}(20)-\mathrm{C}(19)-\mathrm{O}(21)$	124.73(14)
C(9)-C(8)-C(7)	120.74(18)	$\mathrm{O}(20)-\mathrm{C}(19)-\mathrm{C}(5)$	123.80(14)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.6	$\mathrm{O}(21)-\mathrm{C}(19)-\mathrm{C}(5)$	111.23(13)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	119.8	$\mathrm{O}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	120.36(18)	$\mathrm{O}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.8	$\mathrm{O}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.3	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.35(18)	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.3	$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.6	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(4)$	119.47(15)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.72(19)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(28)$	119.38(17)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	119.6	$\mathrm{C}(28)-\mathrm{C}(23)-\mathrm{C}(4)$	121.10(15)
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12)$	119.8	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	120.0
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	120.39(17)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	120.07(18)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	119.8	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	120.0
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(5)$	119.41(14)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	119.8

$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(5)$	$122.27(14)$	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	$120.33(18)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	$117.99(15)$	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	119.8
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.5	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	120.1
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$121.09(15)$	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	$119.78(18)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	119.5	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	120.1
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.9	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27)$	119.8
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120.15(16)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$120.31(19)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.9	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{H}(27)$	119.8
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120.3	$\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{H}(28)$	119.9
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$119.37(16)$	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(23)$	$120.10(17)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	120.3	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28)$	119.9

Table 4.9 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{3 0 0}$.

The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k\right.$ $a^{*} b^{*} U_{12}$]						
	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	U_{13}	\mathbf{U}_{12}
$\mathrm{O}(1)$	19(1)	24(1)	26(1)	2(1)	-6(1)	0 (1)
$\mathrm{O}(3)$	14(1)	22(1)	23(1)	-1(1)	0(1)	-1(1)
$\mathrm{O}(20)$	22(1)	16(1)	21(1)	-2(1)	-1(1)	-3(1)
$\mathrm{O}(21)$	21(1)	17(1)	20(1)	3(1)	-3(1)	0 (1)
$\mathrm{C}(2)$	18(1)	13(1)	23(1)	2(1)	-1(1)	1(1)
C(4)	14(1)	17(1)	23(1)	-3(1)	0(1)	0 (1)
C(5)	15(1)	15(1)	17(1)	-1(1)	0(1)	1(1)
C(6)	17(1)	15(1)	20(1)	3(1)	-2(1)	1(1)
C(7)	19(1)	24(1)	17(1)	4(1)	-2(1)	3(1)
C(8)	25(1)	32(1)	22(1)	5(1)	-1(1)	-2(1)
C(9)	28(1)	52(1)	26(1)	7(1)	7(1)	-3(1)
C(10)	34(1)	58(1)	19(1)	-2(1)	4(1)	7(1)
$\mathrm{C}(11)$	34(1)	43(1)	22(1)	-7(1)	-4(1)	5(1)
C(12)	23(1)	30(1)	19(1)	-1(1)	-3(1)	2(1)
C(13)	17(1)	19(1)	16(1)	2(1)	-1(1)	-1(1)
C(14)	20(1)	19(1)	20(1)	2(1)	1(1)	1(1)
C(15)	16(1)	31(1)	25(1)	6(1)	2(1)	0 (1)
C(16)	20(1)	29(1)	31(1)	4(1)	-3(1)	-10(1)
C(17)	29(1)	21(1)	37(1)	-3(1)	-1(1)	-6(1)
C(18)	18(1)	19(1)	33(1)	-1(1)	1(1)	0 (1)
C(19)	13(1)	19(1)	15(1)	0 (1)	2(1)	1(1)
C(22)	31(1)	20(1)	27(1)	7(1)	-3(1)	2(1)
C(23)	14(1)	25(1)	22(1)	-3(1)	5(1)	3(1)
C(24)	24(1)	36(1)	26(1)	-7(1)	3(1)	-4(1)
C(25)	32(1)	58(1)	21(1)	-5(1)	2(1)	-6(1)

$\mathrm{C}(26)$	$32(1)$	$55(1)$	$23(1)$	$7(1)$	$6(1)$	$-1(1)$
$\mathrm{C}(27)$	$29(1)$	$37(1)$	$30(1)$	$6(1)$	$8(1)$	$-3(1)$
$\mathrm{C}(28)$	$22(1)$	$28(1)$	$23(1)$	$-2(1)$	$5(1)$	$-1(1)$

Table 4.10 Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 300 .

	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U}(\mathbf{e q})$
$\mathrm{H}(4)$	4941	5580	6760	21
$\mathrm{H}(6)$	4021	5679	8044	21
$\mathrm{H}(8)$	1773	5610	8623	31
$\mathrm{H}(9)$	382	6280	9574	42
$\mathrm{H}(10)$	918	8118	10146	44
$\mathrm{H}(11)$	2847	9292	9755	39
$\mathrm{H}(12)$	4243	8640	8805	29
$\mathrm{H}(14)$	727	7369	7386	23
$\mathrm{H}(15)$	-1328	6210	7208	29
$\mathrm{H}(16)$	-1157	4210	6771	32
$\mathrm{H}(17)$	1084	3379	6530	35
$\mathrm{H}(18)$	3147	4526	6714	28
$\mathrm{H}(22 \mathrm{~A})$	1662	9688	5882	39
$\mathrm{H}(22 B)$	3290	9913	6107	39
$\mathrm{H}(22 \mathrm{C})$	2032	10179	6661	39
$\mathrm{H}(24)$	4011	5766	5542	34
$\mathrm{H}(25)$	4183	6718	4435	45
$\mathrm{H}(26)$	5398	8573	4319	44
$\mathrm{H}(27)$	6436	9483	5311	38
$\mathrm{H}(28)$	6272	8541	6421	29

Table 4.11 Torsion angles [${ }^{\circ}$] for $\mathbf{3 0 0}$.

$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$158.70(16)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-179.83(16)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$25.5(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	$179.93(16)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$-23.60(15)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-0.3(3)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$-156.81(13)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	$-0.3(2)$
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-34.89(14)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$0.2(3)$
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(13)$	$-154.19(12)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$-0.1(3)$
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(19)$	$80.09(14)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	$0.1(3)$
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(23)-\mathrm{C}(24)$	$156.97(15)$	$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$0.4(3)$
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(23)-\mathrm{C}(28)$	$-25.6(2)$	$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	$157.47(12)$

$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$22.93(16)$	$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-70.57(17)$
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(23)$	$148.12(13)$	$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(19)-\mathrm{O}(20)$	$151.58(15)$
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-151.32(15)$	$\mathrm{C}(13)-\mathrm{C}(5)-\mathrm{C}(19)-\mathrm{O}(21)$	$-33.83(18)$
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	$28.5(2)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$0.5(2)$
$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	$178.22(14)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$2.1(3)$
$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	$0.31(16)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$0.6(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	$34.41(14)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-0.4(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$166.37(13)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	$-1.0(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)$	$-159.49(14)$	$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-1.9(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(18)$	$27.2(2)$	$\mathrm{C}(19)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	$-74.74(15)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(19)-\mathrm{O}(20)$	$-80.65(17)$	$\mathrm{C}(19)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$57.22(18)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(19)-\mathrm{O}(21)$	$93.95(14)$	$\mathrm{C}(19)-\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)$	$-38.4(2)$
$\mathrm{C}(4)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$176.05(17)$	$\mathrm{C}(19)-\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(18)$	$148.30(15)$
$\mathrm{C}(4)-\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{C}(27)$	$-176.01(16)$	$\mathrm{C}(22)-\mathrm{O}(21)-\mathrm{C}(19)-\mathrm{O}(20)$	$3.6(2)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(23)-\mathrm{C}(24)$	$-85.48(19)$	$\mathrm{C}(22)-\mathrm{O}(21)-\mathrm{C}(19)-\mathrm{C}(5)$	$-170.96(13)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(23)-\mathrm{C}(28)$	$91.94(18)$	$\mathrm{C}(23)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-155.05(13)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$83.27(19)$	$\mathrm{C}(23)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(13)$	$85.65(17)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	$-96.93(18)$	$\mathrm{C}(23)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(19)$	$-40.07(17)$
$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-175.48(15)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$0.7(3)$
$\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$175.51(16)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{C}(27)$	$1.4(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(14)$	$88.45(17)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$0.0(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(13)-\mathrm{C}(18)$	$-84.83(18)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$0.0(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(19)-\mathrm{O}(20)$	$24.8(2)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(23)$	$-0.7(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(19)-\mathrm{O}(21)$	$-160.64(12)$	$\mathrm{C}(28)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$-1.4(3)$

Table 4.12 Hydrogen bonds for $\mathbf{3 0 0}\left(\AA^{2}\right.$ and $\left.{ }^{\circ}\right)$.

Symmetry transformations used to generate equivalent atoms: \#1-x+1,y-1/2,-z+3/2				
D-H...A	d(D-H)	d(H...A)	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{C}(4)-\mathrm{H}(4) \ldots \mathrm{O}(20) \# 1$	1.00	2.57	$3.2942(19)$	129

4.5.2 X-ray crystallography data for 305

A clear colourless block fragment-like specimen of $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{4}$ (305), approximate dimensions $0.100 \mathrm{~mm} \times 0.260 \mathrm{~mm} \times 0.360 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at $100(2) \mathrm{K}$ with an Oxford Cryosystems low temperature device using a MiTeGen micromount. See Table 4.14 for collection parameters and exposure time. Bruker APEX software was used to correct for Lorentz and polarization effects.

A total of 4075 frames were collected. The total exposure time was 14.80 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 24619 reflections to a maximum θ angle of 69.83° ($0.82 \AA$ resolution), of which 3890 were independent (average redundancy 6.329, completeness $=99.5 \%, \mathrm{R}_{\text {int }}=3.62 \%, \mathrm{R}_{\text {sig }}$ $=2.01 \%$) and $3867(99.41 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=$ $9.3111(3) \AA, \underline{b}=14.0732(5) \AA, \underline{c}=15.7875(6) \AA$, volume $=2068.75(13) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 9982 reflections above $20 \sigma(\mathrm{I})$ with 6.280° $<2 \theta<139.6^{\circ}$. Data were corrected for absorption effects using the Multi-Scan method
(SADABS). The ratio of minimum to maximum apparent transmission was 0.851 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6413 and 0.7533 .

Using Olex2, the structure was solved with the XT structure solution program using Intrinsic Phasing and refined with the XL refinement package using Least Squares minimisation, using the space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$, with $\mathrm{Z}=4$ for the formula unit, $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{4}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 272 variables converged at $\mathrm{R} 1=3.00 \%$, for the observed data and $\mathrm{wR} 2=7.73 \%$ for all data. The goodness-of-fit was 1.048. The largest peak in the final difference electron density synthesis was $0.168 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.225 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.044 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.286 \mathrm{~g} / \mathrm{cm}^{3}$ and $F(000), 848 \mathrm{e}^{-}$.

Refinement Note: The model has chirality at:

$$
\begin{aligned}
& \mathrm{C} 4=\mathrm{S} \\
& \mathrm{C} 11=\mathrm{S} \\
& \mathrm{C} 22=\mathrm{R}
\end{aligned}
$$

Table 4.13 Data collection details for 305.

Axis	dx/mm	20/ ${ }^{\circ}$	$\omega /^{\circ}$	$\varphi /{ }^{\circ}$	$\chi{ }^{10}$	Width/ ${ }^{\circ}$	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Omega	50.043	108.90	95.00	264.00	-54.74	0.90	150	15.00	1.54184	45	0.6	100
Omega	50.043	108.90	95.00	144.00	-54.74	0.90	150	15.00	1.54184	45	0.6	100
Omega	50.043	-49.30	189.65	128.00	54.74	0.90	150	9.00	1.54184	45	0.6	100
Omega	50.043	108.90	95.00	48.00	-54.74	0.90	150	15.00	1.54184	45	0.6	100
Omega	50.043	-49.30	189.65	224.00	54.74	0.90	150	9.00	1.54184	45	0.6	100
Omega	50.043	108.90	341.90	168.00	64.50	0.90	155	15.00	1.54184	45	0.6	100
Omega	50.043	-49.30	298.92	192.00	-64.50	0.90	129	9.00	1.54184	45	0.6	100
Omega	50.043	108.90	341.90	120.00	64.50	0.90	155	15.00	1.54184	45	0.6	100
Omega	50.043	108.90	95.00	240.00	-54.74	0.90	150	15.00	1.54184	45	0.6	100
Omega	50.043	-49.30	298.92	0.00	-64.50	0.90	129	9.00	1.54184	45	0.6	100
Omega	50.043	108.90	95.00	168.00	-54.74	0.90	150	15.00	1.54184	45	0.6	100
Omega	50.043	108.90	95.00	24.00	-54.74	0.90	150	15.00	1.54184	45	0.6	100
Omega	50.043	-49.30	189.66	160.00	54.74	0.90	150	9.00	1.54184	45	0.6	100
Phi	50.043	109.30	95.73	215.75	-57.00	0.90	276	15.00	1.54184	45	0.6	100
Omega	50.043	-11.30	227.66	204.00	54.74	0.90	150	9.00	1.54184	45	0.6	100
Omega	50.043	-49.30	189.65	32.00	54.74	0.90	150	9.00	1.54184	45	0.6	100
Omega	50.043	108.90	95.00	72.00	-54.74	0.90	150	15.00	1.54184	45	0.6	100
Phi	50.043	94.30	80.73	0.00	-57.00	0.90	400	15.00	1.54184	45	0.6	100
Omega	50.043	108.90	95.00	288.00	-54.74	0.90	150	15.00	1.54184	45	0.6	100
Omega	50.043	108.90	95.00	120.00	-54.74	0.90	150	15.00	1.54184	45	0.6	100
Omega	50.043	108.90	341.90	72.00	64.50	0.90	155	15.00	1.54184	45	0.6	100
Omega	50.043	-49.30	189.65	288.00	54.74	0.90	150	9.00	1.54184	45	0.6	100
Omega	50.043	-11.30	227.66	102.00	54.74	0.90	150	9.00	1.54184	45	0.6	100
Phi	55.043	110.89	93.65	215.75	-57.00	0.90	276	15.00	1.54184	45	0.6	100

Table 4.14 Crystal data and structure refinement for $\mathbf{3 0 5}$.

Identification code	tcd810	
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{4}$	
Formula weight	400.45	
Temperature	100.0 K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$	
Unit cell dimensions	$\mathrm{a}=9.3111(3) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=14.0732(5) \AA$	$\beta=90^{\circ}$
	$\mathrm{c}=15.7875(6) \AA$	$\gamma=90^{\circ}$
Volume	2068.75(13) \AA^{3}	
Z	4	
Density (calculated)	$1.286 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.690 \mathrm{~mm}^{-1}$	
F(000)	848	
Crystal size	$0.36 \times 0.26 \times 0.1 \mathrm{~mm}^{3}$	
Theta range for data collection	4.208 to 69.831°.	
Index ranges	$-11 \leq h \leq 11,-17 \leq k \leq 16,-19 \leq 1 \leq 19$	
Reflections collected	24619	
Independent reflections	$3890[\mathrm{R}(\mathrm{int})=0.0362]$	
Completeness to theta $=67.679^{\circ}$	100.0\%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7533 and 0.6413	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	3890 / 0 / 272	
Goodness-of-fit on F^{2}	1.048	
Final R indices [I>2 $\mathbf{\sigma}^{(\mathrm{I}}$)]	$\mathrm{R} 1=0.0300, \mathrm{wR} 2=0.0771$	
R indices (all data)	$\mathrm{R} 1=0.0301, \mathrm{wR} 2=0.0773$	
Absolute structure parameter	-0.08(3)	
Largest diff. peak and hole	0.168 and $-0.225 \mathrm{e} . \mathrm{A}^{-3}$	

Table 4.15 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 305 .

$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalised U_{ij} tensor.				
	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U (e q)}$
$\mathrm{O}(1)$	$6582(1)$	$4392(1)$	$4697(1)$	$18(1)$
$\mathrm{O}(3)$	$8109(1)$	$3205(1)$	$4458(1)$	$22(1)$
$\mathrm{O}(13)$	$8113(1)$	$4397(1)$	$6386(1)$	$19(1)$
$\mathrm{O}(14)$	$6339(1)$	$4961(1)$	$7204(1)$	$19(1)$

$\mathrm{C}(2)$	$7131(2)$	$3522(1)$	$4863(1)$	$17(1)$
$\mathrm{C}(4)$	$6299(2)$	$3063(1)$	$5581(1)$	$16(1)$
$\mathrm{C}(5)$	$7096(2)$	$2294(1)$	$6060(1)$	$16(1)$
$\mathrm{C}(6)$	$6348(2)$	$1490(1)$	$6332(1)$	$21(1)$
$\mathrm{C}(7)$	$7046(2)$	$761(1)$	$6763(1)$	$26(1)$
$\mathrm{C}(8)$	$8509(2)$	$825(1)$	$6922(1)$	$23(1)$
$\mathrm{C}(9)$	$9266(2)$	$1618(1)$	$6651(1)$	$20(1)$
$\mathrm{C}(10)$	$8571(2)$	$2345(1)$	$6220(1)$	$17(1)$
$\mathrm{C}(11)$	$5676(2)$	$3949(1)$	$6055(1)$	$15(1)$
$\mathrm{C}(12)$	$6860(2)$	$4436(1)$	$6567(1)$	$15(1)$
$\mathrm{C}(15)$	$7415(2)$	$5510(1)$	$7652(1)$	$25(1)$
$\mathrm{C}(16)$	$4339(2)$	$3729(1)$	$6573(1)$	$17(1)$
$\mathrm{C}(17)$	$4489(2)$	$3233(1)$	$7336(1)$	$21(1)$
$\mathrm{C}(18)$	$3301(2)$	$2996(1)$	$7821(1)$	$27(1)$
$\mathrm{C}(19)$	$1939(2)$	$3250(1)$	$7552(1)$	$28(1)$
$\mathrm{C}(20)$	$1772(2)$	$3748(1)$	$6800(1)$	$26(1)$
$\mathrm{C}(21)$	$2961(2)$	$3986(1)$	$6316(1)$	$21(1)$
$\mathrm{C}(22)$	$5396(2)$	$4594(1)$	$5270(1)$	$17(1)$
$\mathrm{C}(23)$	$5330(2)$	$5661(1)$	$5419(1)$	$20(1)$
$\mathrm{C}(24)$	$4797(2)$	$6196(1)$	$4632(1)$	$24(1)$
$\mathrm{C}(25)$	$4832(2)$	$7268(1)$	$4736(1)$	$23(1)$
$\mathrm{C}(26)$	$5538(2)$	$7841(1)$	$4153(1)$	$29(1)$
$\mathrm{C}(27)$	$5548(3)$	$8825(1)$	$4242(1)$	$39(1)$
$\mathrm{C}(28)$	$4873(2)$	$9250(1)$	$4921(1)$	$39(1)$
$\mathrm{C}(29)$	$4163(3)$	$8692(1)$	$5503(2)$	$41(1)$
$\mathrm{C}(30)$	$4142(2)$	$7707(1)$	$5412(1)$	$34(1)$

Table 4.16 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{3 0 5}$.

$\mathrm{O}(1)-\mathrm{C}(2)$	$1.352(2)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.387(2)$
$\mathrm{O}(1)-\mathrm{C}(22)$	$1.4545(18)$	$\mathrm{C}(21)-\mathrm{H}(21)$	0.9500
$\mathrm{O}(3)-\mathrm{C}(2)$	$1.199(2)$	$\mathrm{C}(22)-\mathrm{H}(22)$	1.0000
$\mathrm{O}(13)-\mathrm{C}(12)$	$1.2025(19)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.521(2)$
$\mathrm{O}(14)-\mathrm{C}(12)$	$1.3386(19)$	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9900
$\mathrm{O}(14)-\mathrm{C}(15)$	$1.450(2)$	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9900
$\mathrm{C}(2)-\mathrm{C}(4)$	$1.518(2)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.536(2)$
$\mathrm{C}(4)-\mathrm{H}(4)$	1.0000	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.515(2)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(11)$	$1.565(2)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.517(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.396(2)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.388(3)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.399(2)$	$\mathrm{C}(25)-\mathrm{C}(30)$	$1.390(3)$
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500	$\mathrm{C}(26)-\mathrm{H}(26)$	0.9500

$\mathrm{C}(6)-\mathrm{C}(7)$	$1.392(2)$	$\mathrm{C}(26)-\mathrm{C}(27)$	$1.392(3)$
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500	$\mathrm{C}(27)-\mathrm{H}(27)$	0.9500
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.389(2)$	$\mathrm{C}(27)-\mathrm{C}(28)$	$1.379(3)$
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500	$\mathrm{C}(28)-\mathrm{H}(28)$	0.9500
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.386(2)$	$\mathrm{C}(28)-\mathrm{C}(29)$	$1.379(3)$
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500	$\mathrm{C}(29)-\mathrm{H}(29)$	0.9500
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.389(2)$	$\mathrm{C}(29)-\mathrm{C}(30)$	$1.395(3)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	$\mathrm{C}(30)-\mathrm{H}(30)$	0.9500
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.529(2)$		
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.521(2)$	$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(22)$	$110.08(12)$
$\mathrm{C}(11)-\mathrm{C}(22)$	$1.559(2)$	$\mathrm{C}(12)-\mathrm{O}(14)-\mathrm{C}(15)$	$114.23(12)$
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$109.71(13)$
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800	$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	$121.44(14)$
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9800	$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	$128.83(15)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.399(2)$	$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{H}(4)$	105.9
$\mathrm{C}(16)-\mathrm{C}(21)$	$1.393(2)$	$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(11)$	$101.94(12)$
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(2)$	$115.27(12)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.386(2)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	105.9
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	$120.82(12)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.384(3)$	$\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{H}(4)$	105.9
$\mathrm{C}(19)-\mathrm{H}(19)$	0.9500	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$119.22(13)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.386(3)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$118.43(14)$
$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500	$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$	$122.32(14)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	119.5	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	120.0
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.99(15)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	120.1
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	119.5	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$119.71(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	120.0	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	120.1
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$119.91(16)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	119.9
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	120.0	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$120.26(17)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	120.2	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	119.9
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$119.64(16)$	$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{H}(21)$	119.6
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	120.2	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	$120.84(16)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	119.7	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	119.6
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.51(15)$	$\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{C}(11)$	$104.71(12)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.7	$\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{H}(22)$	108.6
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{H}(10)$	119.7	$\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{C}(23)$	$108.66(12)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	$120.51(14)$	$\mathrm{C}(11)-\mathrm{C}(22)-\mathrm{H}(22)$	108.6
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.7	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(11)$	$117.31(13)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(4)$	$110.02(12)$	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	108.6
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(22)$	$106.23(12)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.3
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(12)$	$113.49(12)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.3
$\mathrm{C}(22)$	$113.37(12)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$111.83(13)$
	$114.17(12)$	$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	107.9

$\mathrm{C}(22)-\mathrm{C}(11)-\mathrm{C}(4)$	$98.39(11)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.3
$\mathrm{O}(13)-\mathrm{C}(12)-\mathrm{O}(14)$	$123.67(14)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.3
$\mathrm{O}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$123.63(14)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	108.9
$\mathrm{O}(14)-\mathrm{C}(12)-\mathrm{C}(11)$	$112.54(12)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	108.9
$\mathrm{O}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	107.8
$\mathrm{O}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	$113.17(14)$
$\mathrm{O}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	108.9
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	108.9
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	$121.05(16)$
$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(30)$	$118.02(16)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(11)$	$118.86(14)$	$\mathrm{C}(30)-\mathrm{C}(25)-\mathrm{C}(24)$	$120.92(16)$
$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(11)$	$123.00(14)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	119.5
$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)$	$118.13(15)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$120.93(19)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.5	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	119.5
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$121.05(17)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27)$	119.8
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	119.5	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	$120.47(19)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120.0	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{H}(27)$	119.8
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$120.00(16)$	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28)$	120.3
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	$119.34(18)$	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29)$	119.9
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28)$	120.3	$\mathrm{C}(25)-\mathrm{C}(30)-\mathrm{C}(29)$	$120.96(19)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29)$	119.9	$\mathrm{C}(25)-\mathrm{C}(30)-\mathrm{H}(30)$	119.5
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$120.3(2)$	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30)$	119.5

Table 4.17 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 305.
The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a^{*} b^{*}\right.$ $\left.\mathrm{U}_{12}\right]$

	$\mathbf{U}_{\mathbf{1 1}}$	\mathbf{U}_{22}	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
$\mathrm{O}(1)$	$20(1)$	$18(1)$	$17(1)$	$2(1)$	$2(1)$	$2(1)$
$\mathrm{O}(3)$	$21(1)$	$24(1)$	$20(1)$	$1(1)$	$5(1)$	$4(1)$
$\mathrm{O}(13)$	$14(1)$	$19(1)$	$25(1)$	$-3(1)$	$1(1)$	$-1(1)$
$\mathrm{O}(14)$	$17(1)$	$22(1)$	$18(1)$	$-6(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(2)$	$16(1)$	$18(1)$	$16(1)$	$-2(1)$	$-3(1)$	$-1(1)$
$\mathrm{C}(4)$	$14(1)$	$16(1)$	$16(1)$	$-1(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(5)$	$15(1)$	$16(1)$	$15(1)$	$-2(1)$	$1(1)$	$2(1)$
$\mathrm{C}(6)$	$16(1)$	$21(1)$	$26(1)$	$2(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(7)$	$26(1)$	$19(1)$	$33(1)$	$6(1)$	$2(1)$	$-3(1)$
$\mathrm{C}(8)$	$25(1)$	$22(1)$	$23(1)$	$3(1)$	$-1(1)$	$5(1)$
$\mathrm{C}(9)$	$18(1)$	$21(1)$	$21(1)$	$-3(1)$	$-2(1)$	$4(1)$
$\mathrm{C}(10)$	$16(1)$	$16(1)$	$18(1)$	$-2(1)$	$1(1)$	$0(1)$
$\mathrm{C}(11)$	$14(1)$	$14(1)$	$17(1)$	$-1(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(12)$	$16(1)$	$14(1)$	$15(1)$	$2(1)$	$-1(1)$	$1(1)$

$\mathrm{C}(15)$	$23(1)$	$29(1)$	$24(1)$	$-9(1)$	$-5(1)$	$-4(1)$
$\mathrm{C}(16)$	$16(1)$	$14(1)$	$21(1)$	$-4(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(17)$	$21(1)$	$19(1)$	$23(1)$	$-1(1)$	$3(1)$	$0(1)$
$\mathrm{C}(18)$	$32(1)$	$23(1)$	$26(1)$	$-2(1)$	$10(1)$	$-5(1)$
$\mathrm{C}(19)$	$24(1)$	$24(1)$	$36(1)$	$-10(1)$	$14(1)$	$-8(1)$
$\mathrm{C}(20)$	$14(1)$	$26(1)$	$38(1)$	$-13(1)$	$2(1)$	$-3(1)$
$\mathrm{C}(21)$	$18(1)$	$18(1)$	$26(1)$	$-6(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(22)$	$14(1)$	$19(1)$	$16(1)$	$0(1)$	$0(1)$	$1(1)$
$\mathrm{C}(23)$	$21(1)$	$18(1)$	$20(1)$	$0(1)$	$-2(1)$	$2(1)$
$\mathrm{C}(24)$	$31(1)$	$20(1)$	$23(1)$	$2(1)$	$-5(1)$	$2(1)$
$\mathrm{C}(25)$	$24(1)$	$20(1)$	$25(1)$	$3(1)$	$-7(1)$	$3(1)$
$\mathrm{C}(26)$	$35(1)$	$26(1)$	$25(1)$	$3(1)$	$-6(1)$	$-4(1)$
$\mathrm{C}(27)$	$54(1)$	$26(1)$	$37(1)$	$8(1)$	$-12(1)$	$-12(1)$
$\mathrm{C}(28)$	$56(1)$	$19(1)$	$42(1)$	$0(1)$	$-21(1)$	$3(1)$
$\mathrm{C}(29)$	$52(1)$	$29(1)$	$42(1)$	$-5(1)$	$-5(1)$	$15(1)$
$\mathrm{C}(30)$	$39(1)$	$25(1)$	$37(1)$	$4(1)$	$4(1)$	$8(1)$

Table 4.18 Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 305 .

	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U (e q)}$
$\mathrm{H}(4)$	5457	2742	5311	19
$\mathrm{H}(6)$	5348	1440	6221	25
$\mathrm{H}(7)$	6521	221	6948	31
$\mathrm{H}(8)$	8990	329	7216	28
$\mathrm{H}(9)$	10266	1663	6761	24
$\mathrm{H}(10)$	9103	2881	6032	20
$\mathrm{H}(15 \mathrm{~A})$	7968	5889	7245	38
$\mathrm{H}(15 \mathrm{~B})$	8062	5079	7955	38
$\mathrm{H}(15 \mathrm{C})$	6943	5934	8058	38
$\mathrm{H}(17)$	5420	3056	7525	25
$\mathrm{H}(18)$	3421	2659	8337	32
$\mathrm{H}(19)$	1122	3085	7881	33
$\mathrm{H}(20)$	838	3926	6616	31
$\mathrm{H}(21)$	2835	4329	5803	25
$\mathrm{H}(22)$	4481	4388	4994	20
$\mathrm{H}(23 \mathrm{~A})$	6298	5895	5573	23
$\mathrm{H}(23 \mathrm{~B})$	4678	5793	5900	23
$\mathrm{H}(24 \mathrm{~A})$	5402	6018	4141	29
$\mathrm{H}(24 \mathrm{~B})$	3800	5996	4507	29
$\mathrm{H}(26)$	6020	7557	3687	35
$\mathrm{H}(27)$	6024	9206	3832	47

	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U (e q)}$
$\mathrm{H}(28)$	4897	9921	4986	47
$\mathrm{H}(29)$	3685	8980	5969	49
$\mathrm{H}(30)$	3649	7329	5817	40

Table 4.19 Torsion angles [${ }^{\circ}$] for 305.

$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	-157.25(12)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(17)$	-52.01(18)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(11)$	-24.49(15)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(21)$	129.10(15)
$\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	71.37(16)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(22)-\mathrm{O}(1)$	77.45 (14)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	24.6(2)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(22)-\mathrm{C}(23)$	-43.07(17)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(11)$	157.36(16)	$\mathrm{C}(15)-\mathrm{O}(14)-\mathrm{C}(12)-\mathrm{O}(13)$	1.6(2)
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{C}(11)$	23.67(15)	$\mathrm{C}(15)-\mathrm{O}(14)-\mathrm{C}(12)-\mathrm{C}(11)$	-174.11(13)
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{C}(23)$	149.78(12)	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(13)$	155.04(14)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-141.92(14)	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(14)$	-29.24(17)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	36.2(2)	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(22)-\mathrm{O}(1)$	-156.86(12)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	-75.19(14)	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(22)-\mathrm{C}(23)$	82.62(17)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(16)$	156.60(13)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	0.0(3)
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(22)$	35.57(13)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$	-0.6(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	179.09(15)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	-0.4(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	-179.10(14)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	0.3(2)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(13)$	26.8(2)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	0.2(2)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(14)$	-157.52(12)	$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	0.5(2)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(17)$	74.46(18)	$\mathrm{C}(22)-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	179.07(14)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(21)$	-104.43(17)	$\mathrm{C}(22)-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	0.76(16)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(22)-\mathrm{O}(1)$	-36.34(13)	$\mathrm{C}(22)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(13)$	-78.78(18)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(22)-\mathrm{C}(23)$	-156.85(13)	$\mathrm{C}(22)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(14)$	96.94(14)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	54.18(17)	$\mathrm{C}(22)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(17)$	-173.85(13)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(16)$	-74.04(17)	$\mathrm{C}(22)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(21)$	7.3(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(22)$	164.93(13)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	-175.37(15)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-0.5(3)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	126.20(18)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$	-1.0(2)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(30)$	-54.6(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	0.1(3)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	178.94(18)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-0.2(3)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(30)-\mathrm{C}(29)$	-179.43(19)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	0.6(2)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	1.0(3)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	0.9(2)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(30)-\mathrm{C}(29)$	-0.2(3)
$\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	94.85(17)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	-1.2(3)
$\mathrm{C}(11)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	-87.06(18)	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	0.7(3)
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-178.42(15)	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(25)$	0.0(3)
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$	178.27(14)	$\mathrm{C}(30)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	-0.3(3)
$\mathrm{C}(11)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	-170.21(13)		

Table 4.20 Hydrogen bonds for $305\left(\AA^{2}\right.$ and $\left.{ }^{\circ}\right)$.

Symmetry transformations used to generate equivalent atoms: \#1 x-1/2,-y+1/2,-z+1 \#2 -x+3/2,-y+1,z+1/2				
D-H...A	d(D-H)	d(H...A)	d(D....A)	< (DHA)
$\mathrm{C}(4)-\mathrm{H}(4) \ldots \mathrm{O}(3) \# 1$	1.00	2.59	3.4647(18)	147
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C}) \ldots \mathrm{O}(3) \# 2$	0.98	2.52	3.413(2)	151

4.5.3 X-ray crystallography data for 368a

A clear colourless fragment-like specimen of $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{6}$ (368a), approximate dimensions $0.110 \mathrm{~mm} \times 0.260 \mathrm{~mm} \times 0.500 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at $100(2) \mathrm{K}$ on a Bruker D8 Quest ECO with an Oxford Cryostream low temperature device using a MiTeGen micromount. See Table 4.22 for collection parameters and exposure time. Bruker APEX software was used to correct for Lorentz and polarization effects.

A total of 7382 frames were collected. The total exposure time was 14.35 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a hexagonal unit cell yielded a total of 41115 reflections to a maximum θ angle of 69.94° ($0.82 \AA$ resolution), of which 3197 were independent (average redundancy 12.860, completeness $=99.6 \%, \mathrm{R}_{\mathrm{int}}=3.69 \%$, $\left.\mathrm{R}_{\text {sig }}=1.49 \%\right)$ and 3194 (99.91%) were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of a $=9.3038(3) \AA, \underline{b}=9.3038(3) \AA, \underline{c}=33.9408(13) \AA$, volume $=2544.33(19) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 9971 reflections above $20 \sigma(\mathrm{I})$ with
$10.42^{\circ}<2 \theta<139.8^{\circ}$. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.890 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6704 and 0.7533 .

The structure was solved with the XT structure solution program using Intrinsic Phasing and refined with the XL refinement package using Least Squares minimisation with Olex2, using the space group P_{1}, with $\mathrm{Z}=6$ for the formula unit, $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{6}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 237 variables converged at $\mathrm{R} 1=2.56 \%$, for the observed data and $\mathrm{wR} 2=6.61 \%$ for all data. The goodness-of-fit was 1.060 . The largest peak in the final difference electron density synthesis was 0.181 e^{-} / \AA^{3} and the largest hole was $-0.188 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.037 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.391 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 1116 \mathrm{e}^{-}$.

Refinement Note: Flack parameter refined. Chiral Centres:

$$
\begin{aligned}
& \mathrm{C} 4=\mathrm{S} \\
& \mathrm{C} 6=\mathrm{S} \\
& \mathrm{C} 7=\mathrm{S}
\end{aligned}
$$

Figure 4.2 Packing diagram of 368a viewed normal to the a-axis. Dotted lines indicate hydrogen bonds.

Table 4.21 Data collection details for 368a.

Axis	dx/mm	20/ ${ }^{\circ}$	$\omega /{ }^{\circ}$	$\varphi /{ }^{\circ}$	$\chi{ }^{\circ}$	Width ${ }^{\circ}$	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Omega	50.004	108.90	95.60	168.00	-54.74	0.70	192	7.00	1.54184	45	0.6	100
Omega	50.004	108.90	95.60	48.00	-54.74	0.70	192	7.00	1.54184	45	0.6	100
Omega	50.004	-49.30	298.82	32.00	-64.50	0.70	166	7.00	1.54184	45	0.6	100
Omega	50.004	108.90	95.60	120.00	-54.74	0.70	192	7.00	1.54184	45	0.6	100
Phi	50.004	-47.74	343.92	252.00	23.00	0.70	309	7.00	1.54184	45	0.6	100
Omega	50.004	108.90	95.60	0.00	-54.74	0.70	192	7.00	1.54184	45	0.6	100
Omega	50.004	108.90	95.60	72.00	-54.74	0.70	192	7.00	1.54184	45	0.6	100
Omega	50.004	108.90	95.60	192.00	-54.74	0.70	192	7.00	1.54184	45	0.6	100
Omega	50.004	-49.30	298.82	256.00	-64.50	0.70	166	7.00	1.54184	45	0.6	100
Phi	50.004	79.30	65.73	360.00	-57.00	0.70	514	7.00	1.54184	45	0.6	100
Omega	50.004	108.90	95.60	96.00	-54.74	0.70	192	7.00	1.54184	45	0.6	100
Omega	50.004	108.90	95.60	24.00	-54.74	0.70	192	7.00	1.54184	45	0.6	100
Omega	50.004	108.90	95.60	144.00	-54.74	0.70	192	7.00	1.54184	45	0.6	100
Omega	50.004	-49.30	298.82	96.00	-64.50	0.70	166	7.00	1.54184	45	0.6	100
Phi	50.004	-7.14	24.51	296.58	23.00	0.70	284	7.00	1.54184	45	0.6	100
Phi	50.004	109.30	95.73	360.00	-57.00	0.70	514	7.00	1.54184	45	0.6	100
Phi	50.004	-49.30	73.15	0.00	-57.00	0.70	514	7.00	1.54184	45	0.6	100
Omega	50.004	108.90	95.60	216.00	-54.74	0.70	192	7.00	1.54184	45	0.6	100
Phi	50.004	94.30	80.73	360.00	-57.00	0.70	514	7.00	1.54184	45	0.6	100
Omega	50.004	108.90	342.10	216.00	64.50	0.70	199	7.00	1.54184	45	0.6	100
Omega	50.004	108.90	95.60	264.00	-54.74	0.70	192	7.00	1.54184	45	0.6	100
Phi	50.004	-47.74	325.81	360.00	57.00	0.70	514	7.00	1.54184	45	0.6	100
Omega	55.004	-55.62	289.02	160.00	-64.50	0.70	180	7.00	1.54184	45	0.6	100
Omega	55.004	-55.62	178.62	32.00	54.74	0.70	205	7.00	1.54184	45	0.6	100
Omega	55.004	110.58	93.09	168.00	-54.74	0.70	205	7.00	1.54184	45	0.6	100
Omega	55.004	110.58	93.09	120.00	-54.74	0.70	205	7.00	1.54184	45	0.6	100
Omega	55.004	-55.62	178.62	96.00	54.74	0.70	205	7.00	1.54184	45	0.6	100
Omega	55.004	110.58	93.09	192.00	-54.74	0.70	205	7.00	1.54184	45	0.6	100
Omega	55.004	110.58	93.09	72.00	-54.74	0.70	205	7.00	1.54184	45	0.6	100

Table 4.22 Crystal data and structure refinement for 368a.

Identification code	tcd893	
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{NO}_{6}$	
Formula weight	355.33	
Temperature	100(2) K	
Wavelength	1.54178 £	
Crystal system	Hexagonal	
Space group	P61	
Unit cell dimensions	$\mathrm{a}=9.3038(3) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=9.3038(4) \AA$	$\beta=90^{\circ}$
	$\mathrm{c}=33.9408(13) \AA$	$\gamma=120^{\circ}$
Volume	2544.33(19) \AA^{3}	
Z	6	
Density (calculated)	$1.391 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.876 \mathrm{~mm}^{-1}$	
F(000)	1116	
Crystal size	$0.5 \times 0.26 \times 0.11 \mathrm{~mm}^{3}$	
Theta range for data collection	5.490 to 69.943°.	
Index ranges	$-11 \leq h \leq 11,-10 \leq k \leq 11,-40 \leq 1 \leq 41$	
Reflections collected	41115	
Independent reflections	$3197[\mathrm{R}(\mathrm{int})=0.0369]$	
Completeness to theta $=67.679^{\circ}$	100.0 \%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7533 and 0.6704	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	3197/1/237	
Goodness-of-fit on $\mathrm{F}^{\mathbf{2}}$	1.060	
Final R indices [I>2 $\boldsymbol{\sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0256, \mathrm{wR} 2=0.0661$	
R indices (all data)	$\mathrm{R} 1=0.0256, \mathrm{wR} 2=0.0661$	
Absolute structure parameter	0.03(3)	
Largest diff. peak and hole	0.181 and -0.188 e. \AA^{-3}	

Table 4.23 Atomic coordinates ($\mathrm{x}_{10} 0^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 368a.

$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.				
	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U (e q)}$
$\mathrm{O}(1)$	$3738(2)$	$3686(2)$	$5501(1)$	$19(1)$
$\mathrm{C}(2)$	$4447(2)$	$2987(2)$	$5279(1)$	$20(1)$
$\mathrm{O}(3)$	$5305(2)$	$2509(2)$	$5425(1)$	$28(1)$
$\mathrm{C}(4)$	$3941(2)$	$2886(2)$	$4852(1)$	$19(1)$

$\mathrm{C}(5)$	$2651(2)$	$1070(2)$	$4760(1)$	$24(1)$
$\mathrm{C}(6)$	$3288(2)$	$4125(2)$	$4834(1)$	$16(1)$
$\mathrm{C}(7)$	$2612(2)$	$3971(2)$	$5262(1)$	$17(1)$
$\mathrm{C}(8)$	$2537(2)$	$5453(2)$	$5421(1)$	$17(1)$
$\mathrm{C}(9)$	$1177(2)$	$5633(2)$	$5327(1)$	$20(1)$
$\mathrm{C}(10)$	$1076(2)$	$6988(2)$	$5461(1)$	$22(1)$
$\mathrm{C}(11)$	$2334(2)$	$8131(2)$	$5700(1)$	$20(1)$
$\mathrm{N}(12)$	$2216(2)$	$9542(2)$	$5855(1)$	$23(1)$
$\mathrm{O}(13)$	$1239(2)$	$9883(2)$	$5696(1)$	$28(1)$
$\mathrm{O}(14)$	$3087(2)$	$10294(2)$	$6139(1)$	$31(1)$
$\mathrm{C}(15)$	$3695(2)$	$7980(2)$	$5804(1)$	$20(1)$
$\mathrm{C}(16)$	$3799(2)$	$6644(2)$	$5656(1)$	$19(1)$
$\mathrm{C}(17)$	$1873(2)$	$3560(2)$	$4537(1)$	$16(1)$
$\mathrm{O}(18)$	$450(2)$	$3105(2)$	$4621(1)$	$20(1)$
$\mathrm{O}(19)$	$2413(2)$	$3603(2)$	$4171(1)$	$21(1)$
$\mathrm{C}(20)$	$1168(2)$	$3110(2)$	$3864(1)$	$23(1)$
$\mathrm{C}(21)$	$4650(2)$	$5906(2)$	$4750(1)$	$18(1)$
$\mathrm{C}(22)$	$4227(2)$	$7015(2)$	$4584(1)$	$22(1)$
$\mathrm{C}(23)$	$5414(3)$	$8668(2)$	$4531(1)$	$29(1)$
$\mathrm{C}(24)$	$7051(3)$	$9246(2)$	$4640(1)$	$29(1)$
$\mathrm{C}(25)$	$7480(2)$	$8157(2)$	$4811(1)$	$26(1)$
$\mathrm{C}(26)$	$6285(2)$	$6494(2)$	$4864(1)$	$21(1)$

Table 4.24 Bond lengths [$\AA \AA$] and angles $\left[{ }^{\circ}\right]$ for $\mathbf{3 6 8 a}$.

$\mathrm{O}(1)-\mathrm{C}(2)$	$1.361(2)$	$\mathrm{C}(23)-\mathrm{H}(23)$	0.9500
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.450(2)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.389(3)$
$\mathrm{C}(2)-\mathrm{O}(3)$	$1.198(2)$	$\mathrm{C}(24)-\mathrm{H}(24)$	0.9500
$\mathrm{C}(2)-\mathrm{C}(4)$	$1.511(2)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.388(3)$
$\mathrm{C}(4)-\mathrm{H}(4)$	1.0000	$\mathrm{C}(25)-\mathrm{H}(25)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.538(2)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.394(3)$
$\mathrm{C}(4)-\mathrm{C}(6)$	$1.551(2)$	$\mathrm{C}(26)-\mathrm{H}(26)$	0.9500
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9800		
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9800	$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(7)$	$110.18(13)$
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	0.9800	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$110.43(14)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.560(2)$	$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	$121.37(17)$
$\mathrm{C}(6)-\mathrm{C}(17)$	$1.528(2)$	$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	$128.17(17)$
$\mathrm{C}(6)-\mathrm{C}(21)$	$1.527(2)$	$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{H}(4)$	110.2
$\mathrm{C}(7)-\mathrm{H}(7)$	1.0000	$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$108.18(15)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.514(2)$	$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(6)$	$102.59(13)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.394(3)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	110.2
$\mathrm{C}(8)-\mathrm{C}(16)$	$1.394(2)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$	$115.29(15)$

$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500	$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{H}(4)$	110.2
$\mathrm{C}(9)-\mathrm{C}(10)$	1.387(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)$	1.384(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{N}(12)$	1.468(2)	$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(15)$	1.388(3)	$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{N}(12)-\mathrm{O}(13)$	1.229(2)	$\mathrm{H}(5 \mathrm{~B})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{N}(12)-\mathrm{O}(14)$	1.227(2)	$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(7)$	100.61(13)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500	$\mathrm{C}(17)-\mathrm{C}(6)-\mathrm{C}(4)$	111.18(13)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.388(3)	$\mathrm{C}(17)-\mathrm{C}(6)-\mathrm{C}(7)$	110.20(13)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500	$\mathrm{C}(21)-\mathrm{C}(6)-\mathrm{C}(4)$	113.13(14)
$\mathrm{C}(17)-\mathrm{O}(18)$	1.206(2)	$\mathrm{C}(21)-\mathrm{C}(6)-\mathrm{C}(7)$	110.51(14)
$\mathrm{C}(17)-\mathrm{O}(19)$	1.331(2)	$\mathrm{C}(21)-\mathrm{C}(6)-\mathrm{C}(17)$	110.80(14)
$\mathrm{O}(19)-\mathrm{C}(20)$	1.452(2)	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	104.06(13)
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{H}(7)$	108.8
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	109.45(13)
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	108.8
$\mathrm{C}(21)$-C(22)	1.395(3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	116.64(14)
$\mathrm{C}(21)$-C(26)	1.389(3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	108.8
$\mathrm{C}(22) \mathrm{H}(22)$	0.9500	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	119.03(15)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.385(3)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(16)$	119.35(16)
$\mathrm{C}(16)-\mathrm{C}(8)-\mathrm{C}(7)$	121.61(16)	$\mathrm{O}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	119.6	$\mathrm{O}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	120.78(17)	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.6	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.8	$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	118.41(17)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(6)$	119.34(15)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.8	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(6)$	121.83(16)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(12)$	119.02(17)	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	118.62(17)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(15)$	122.31(17)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	119.6
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{N}(12)$	118.67(16)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	120.75(18)
$\mathrm{O}(13)-\mathrm{N}(12)-\mathrm{C}(11)$	117.96(16)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	119.6
$\mathrm{O}(14)-\mathrm{N}(12)-\mathrm{C}(11)$	117.91(16)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	119.8
$\mathrm{O}(14)-\mathrm{N}(12)-\mathrm{O}(13)$	124.13(16)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	120.41(19)
$\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{H}(15)$	120.8	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	119.8
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(11)$	118.37(16)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	120.4
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	120.8	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	119.29(18)
$\mathrm{C}(8)-\mathrm{C}(16)-\mathrm{H}(16)$	119.6	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	120.4
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(8)$	120.72(16)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	119.9
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.6	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	120.21(18)
$\mathrm{O}(18)-\mathrm{C}(17)-\mathrm{C}(6)$	124.67(15)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	119.9
$\mathrm{O}(18)-\mathrm{C}(17)-\mathrm{O}(19)$	124.31(16)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	120.71(18)
$\mathrm{O}(19)-\mathrm{C}(17)-\mathrm{C}(6)$	111.02(14)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{H}(26)$	119.6

$\mathrm{C}(17)-\mathrm{O}(19)-\mathrm{C}(20)$	$115.55(13)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	119.6
$\mathrm{O}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5		

Table 4.25 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 368a.

The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}_{11}+\ldots+2 \mathrm{hk}\right.$ $\left.\mathrm{a}^{*} b^{*} \mathrm{U}_{12}\right]$						
	$\mathbf{U}_{\mathbf{1 1}}$	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
$\mathrm{O}(1)$	$23(1)$	$21(1)$	$16(1)$	$-1(1)$	$-3(1)$	$13(1)$
$\mathrm{C}(2)$	$21(1)$	$17(1)$	$22(1)$	$-2(1)$	$-2(1)$	$9(1)$
$\mathrm{O}(3)$	$34(1)$	$32(1)$	$27(1)$	$-6(1)$	$-10(1)$	$23(1)$
$\mathrm{C}(4)$	$19(1)$	$20(1)$	$19(1)$	$-2(1)$	$0(1)$	$10(1)$
$\mathrm{C}(5)$	$28(1)$	$20(1)$	$23(1)$	$-4(1)$	$-4(1)$	$12(1)$
$\mathrm{C}(6)$	$14(1)$	$18(1)$	$16(1)$	$-2(1)$	$-1(1)$	$7(1)$
$\mathrm{C}(7)$	$17(1)$	$17(1)$	$17(1)$	$0(1)$	$-2(1)$	$8(1)$
$\mathrm{C}(8)$	$19(1)$	$17(1)$	$13(1)$	$2(1)$	$3(1)$	$7(1)$
$\mathrm{C}(9)$	$19(1)$	$20(1)$	$20(1)$	$-3(1)$	$-2(1)$	$8(1)$
$\mathrm{C}(10)$	$22(1)$	$24(1)$	$21(1)$	$-1(1)$	$0(1)$	$13(1)$
$\mathrm{C}(11)$	$23(1)$	$16(1)$	$18(1)$	$1(1)$	$4(1)$	$9(1)$
$\mathrm{N}(12)$	$26(1)$	$20(1)$	$22(1)$	$0(1)$	$6(1)$	$10(1)$
$\mathrm{O}(13)$	$33(1)$	$25(1)$	$30(1)$	$0(1)$	$3(1)$	$19(1)$
$\mathrm{O}(14)$	$34(1)$	$27(1)$	$31(1)$	$-12(1)$	$-3(1)$	$15(1)$
$\mathrm{C}(15)$	$19(1)$	$20(1)$	$18(1)$	$-1(1)$	$0(1)$	$6(1)$
$\mathrm{C}(16)$	$18(1)$	$20(1)$	$17(1)$	$1(1)$	$1(1)$	$8(1)$
$\mathrm{C}(17)$	$18(1)$	$13(1)$	$17(1)$	$-1(1)$	$-1(1)$	$6(1)$
$\mathrm{O}(18)$	$16(1)$	$22(1)$	$19(1)$	$-2(1)$	$-1(1)$	$7(1)$
$\mathrm{O}(19)$	$19(1)$	$28(1)$	$14(1)$	$-3(1)$	$-2(1)$	$12(1)$
$\mathrm{C}(20)$	$24(1)$	$30(1)$	$18(1)$	$-5(1)$	$-6(1)$	$15(1)$
$\mathrm{C}(21)$	$18(1)$	$19(1)$	$13(1)$	$-2(1)$	$2(1)$	$7(1)$
$\mathrm{C}(22)$	$23(1)$	$22(1)$	$18(1)$	$1(1)$	$-3(1)$	$8(1)$
$\mathrm{C}(23)$	$36(1)$	$22(1)$	$22(1)$	$4(1)$	$-2(1)$	$9(1)$
$\mathrm{C}(24)$	$29(1)$	$21(1)$	$21(1)$	$-1(1)$	$4(1)$	$0(1)$
$\mathrm{C}(25)$	$16(1)$	$28(1)$	$24(1)$	$-7(1)$	$1(1)$	$4(1)$
$\mathrm{C}(26)$	$20(1)$	$23(1)$	$20(1)$	$-4(1)$	$1(1)$	$10(1)$

Table 4.26 Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 368a.

	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U}(\mathbf{e q})$
$\mathrm{H}(4)$	4931	3269	4678	22
$\mathrm{H}(5 \mathrm{~A})$	3124	359	4817	36

	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U}(\mathbf{e q})$
$\mathrm{H}(5 \mathrm{~B})$	2344	969	4481	36
$\mathrm{H}(5 \mathrm{C})$	1662	726	4923	36
$\mathrm{H}(7)$	1479	2970	5277	21
$\mathrm{H}(9)$	309	4817	5169	24
$\mathrm{H}(10)$	166	7129	5390	26
$\mathrm{H}(15)$	4535	8772	5972	25
$\mathrm{H}(16)$	4740	6540	5716	23
$\mathrm{H}(20 \mathrm{~A})$	1672	3143	3608	35
$\mathrm{H}(20 \mathrm{~B})$	731	3875	3861	35
$\mathrm{H}(20 \mathrm{C})$	262	1980	3915	35
$\mathrm{H}(22)$	3112	6633	4507	27
$\mathrm{H}(23)$	5106	9410	4418	35
$\mathrm{H}(24)$	7868	10375	4599	35
$\mathrm{H}(25)$	8593	8546	4892	31
$\mathrm{H}(26)$	6591	5756	4979	26

Table 4.27 Torsion angles [${ }^{\circ}$] for 368a.

$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$-104.99(17)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(21)-\mathrm{C}(26)$	$83.1(2)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(6)$	$17.30(18)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-178.84(16)$
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-159.14(15)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(16)-\mathrm{C}(15)$	$-179.06(16)$
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(16)$	$21.3(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-2.0(3)$
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$-25.26(17)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(16)-\mathrm{C}(15)$	$1.4(3)$
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$-150.62(14)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(12)$	$-177.99(16)$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(7)$	$-30.33(16)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(15)$	$1.2(3)$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(17)$	$-147.04(14)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{O}(13)$	$-17.1(2)$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(21)$	$87.54(17)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{O}(14)$	$162.05(17)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$73.2(2)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(16)$	$0.9(3)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(6)$	$-164.55(19)$	$\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(8)$	$-2.2(3)$
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(1)$	$33.96(15)$	$\mathrm{N}(12)-\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(16)$	$-179.95(15)$
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$154.61(14)$	$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{O}(13)$	$163.69(16)$
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(17)-\mathrm{O}(18)$	$112.54(19)$	$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{O}(14)$	$-17.1(2)$
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(17)-\mathrm{O}(19)$	$-66.18(18)$	$\mathrm{C}(16)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$0.7(3)$
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(21)-\mathrm{C}(22)$	$156.48(16)$	$\mathrm{C}(17)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(1)$	$151.39(13)$
$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(21)-\mathrm{C}(26)$	$-28.8(2)$	$\mathrm{C}(17)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-87.97(17)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(7)$	$87.00(17)$	$\mathrm{C}(17)-\mathrm{C}(6)-\mathrm{C}(21)-\mathrm{C}(22)$	$30.9(2)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(17)$	$-29.7(2)$	$\mathrm{C}(17)-\mathrm{C}(6)-\mathrm{C}(21)-\mathrm{C}(26)$	$-154.45(16)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(21)$	$-155.12(15)$	$\mathrm{O}(18)-\mathrm{C}(17)-\mathrm{O}(19)-\mathrm{C}(20)$	$2.1(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$83.1(2)$	$\mathrm{C}(21)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(1)$	$-85.82(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(16)$	$-96.42(19)$	$\mathrm{C}(21)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$34.83(19)$
$\mathrm{C}(6)-\mathrm{C}(17)-\mathrm{O}(19)-\mathrm{C}(20)$	$-179.19(14)$	$\mathrm{C}(21)-\mathrm{C}(6)-\mathrm{C}(17)-\mathrm{O}(18)$	$-120.75(18)$

$\mathrm{C}(6)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$175.36(18)$	$\mathrm{C}(21)-\mathrm{C}(6)-\mathrm{C}(17)-\mathrm{O}(19)$	$60.53(18)$
$\mathrm{C}(6)-\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$-175.13(17)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$0.3(3)$
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	$-173.23(17)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$-0.4(3)$
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$5.07(19)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$-1.1(3)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(17)-\mathrm{O}(18)$	$1.9(2)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$1.2(3)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(17)-\mathrm{O}(19)$	$-176.84(14)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	$-0.5(3)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(21)-\mathrm{C}(22)$	$-91.59(19)$	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$0.5(3)$

Table 4.28 Hydrogen bonds for $\mathbf{3 6 8 a}\left(\AA\right.$ and $\left.{ }^{\circ}\right)$.

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots . \mathrm{A})$	$\mathrm{d}(\mathrm{D} . . . \mathrm{A})$	<(DHA)
$\mathrm{C}(9)-\mathrm{H}(9) \ldots \mathrm{O}(18)$	0.95	2.49	$3.183(2)$	129

4.5.4 X-ray crystallography data for 252

A specimen of $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ (252), approximate dimensions $0.110 \mathrm{~mm} \times 0.290 \mathrm{~mm} x$ 0.380 mm , was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at $100(2) \mathrm{K}$ on a Bruker D8 Quest ECO with an Oxford Cryostream low temperature device using a MiTeGen micromount. See Table 4.30 for collection parameters and exposure time. Bruker APEX software was used to correct for Lorentz and polarization effects.

A total of 1002 frames were collected. The total exposure time was 2.53 hours. The integration of the data using an orthorhombic unit cell yielded a total of 39589 reflections to a maximum θ angle of 28.43° ($0.75 \AA$ resolution), of which 7137 were independent (average redundancy 5.547, completeness $=99.1 \%, \mathrm{R}_{\mathrm{int}}=5.03 \%, \mathrm{R}_{\text {sig }}=$ $3.43 \%)$ and $6559(91.90 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{\mathrm{a}}=$ $10.0847(3) \AA, \underline{b}=12.3157(4) \AA, \underline{c}=23.0056(7) \AA$, volume $=2857.30(15) \AA^{3}$, are based upon the refinement of the XYZ-centroids of reflections above $20 \sigma(\mathrm{I})$. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.879 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6554 and 0.7457 .

The structure was solved with the XT structure solution program using Intrinsic Phasing and refined with the XL refinement package using Least Squares minimisation with Olex2, using the space group $\mathrm{P}_{1} 2_{1} 2_{1}$, with $\mathrm{Z}=4$ for the formula unit, $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 405 variables converged at $\mathrm{R} 1=4.58 \%$, for the observed data and $\mathrm{wR} 2=11.44 \%$ for all data. The goodness-of-fit was 1.103 . The largest peak in the final difference electron density synthesis was $0.530 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.343 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.064 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.471 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 1312 \mathrm{e}^{-}$.

Refinement Note: Donor hydrogen atoms (O1, N24, N28) were located and refined with restraints (DFIX). The vinyl carbons (C22, C23) were refined with restraints (SIMU). Chirality at C14, S; C18, S; C21, R.

Figure 4.3 Packing diagram of 252 viewed normal to the a-axis. Dotted lines indicate hydrogen bonds.

Table 4.29 Data collection details for 252.

Axis	$\mathbf{d x} / \mathbf{m m}$	$\mathbf{2 \theta} /{ }^{\circ}$	$\boldsymbol{\omega} /{ }^{\circ}$	$\boldsymbol{\varphi} /{ }^{\circ}$	χ°	Width/ ${ }^{\circ}$	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Phi	41.320	8.00	0.00	0.00	54.76	1.00	180	5.00	0.71073	50	20.0	100
Omega	41.320	34.33	216.97	0.00	54.76	0.80	212	10.00	0.71073	50	20.0	
Phi	41.320	34.33	27.26	260.49	54.76	0.80	199	10.00	0.71073	50	20.0	
Omega	41.320	-23.04	159.61	80.00	54.76	0.80	212	10.00	0.71073	50	20.0	100
Phi	41.320	34.33	216.32	172.49	54.76	0.80	199	10.00	0.71073	50	20.0	100
100												

Crystal Data for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}=632.62 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group $\mathrm{P}_{1} 2_{1} 2_{1}$ (no. 19) , $\mathrm{a}=10.0847(3) \AA$, $\mathrm{b}=12.3157(4) \AA$, $\mathrm{c}=$ $23.0056(7) \AA, \mathrm{V}=2857.30(15) \AA^{3}, \mathrm{Z}=4, \mathrm{~T}=100(2) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=0.195 \mathrm{~mm}^{-1}$, Dcalc $=1.471 \mathrm{~g} / \mathrm{cm}^{3}, 39589$ reflections measured $\left(5.22^{\circ} \leq 2 \Theta\right.$ $\left.\leq 56.86^{\circ}\right), 7137$ unique $\left(\mathrm{R}_{\mathrm{int}}=0.0503, \mathrm{R}_{\text {sigma }}=0.0343\right)$ which were used in all calculations. The final R_{1} was $0.0458(\mathrm{I}>2 \sigma(\mathrm{I}))$ and wR_{2} was 0.1144 (all data).

Table 4.30 Crystal data and structure refinement for $\mathbf{2 5 2}$.

Identification code	tcd698
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$
Formula weight	632.62
Temperature	100(2) K
Wavelength	0.71073 £
Crystal system	Orthorhombic
Space group	$\mathrm{P} 22_{1} 1_{2}$
Unit cell dimensions	$\mathrm{a}=10.0847(3) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=12.3157(4) \AA \quad \beta=90^{\circ}$
Volume	2857.30(15) \AA^{3}
Z	4
Density (calculated)	$1.471 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.195 \mathrm{~mm}^{-1}$
F(000)	1312
Crystal size	$0.38 \times 0.29 \times 0.11 \mathrm{~mm}^{3}$
Theta range for data collection	2.610 to 28.430°.
Index ranges	$-13 \leq h \leq 13,-16 \leq k \leq 16,-30 \leq 1 \leq 30$
Reflections collected	39589
Independent reflections	7137 [$\mathrm{R}(\mathrm{int}$) $=0.0503]$
Completeness to theta $=25.242^{\circ}$	99.8\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.6554
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7137/12/405
Goodness-of-fit on F^{2}	1.103
Final R indices [I>2 $\mathbf{\sigma}^{(I)}$]	$\mathrm{R} 1=0.0458, \mathrm{wR} 2=0.1113$
R indices (all data)	$\mathrm{R} 1=0.0517, \mathrm{wR} 2=0.1144$
Absolute structure parameter	0.02(3)
Largest diff. peak and hole	0.530 and $-0.343 \mathrm{e} . \AA^{-3}$

Table 4.31 Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 252.

$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalised U_{ij} tensor.				
	\mathbf{y}	\mathbf{z}	$\mathbf{U}(\mathbf{e q})$	
$\mathrm{F}(1)$	$2263(3)$	$1790(3)$	$275(1)$	$65(1)$
$\mathrm{N}(1)$	$-69(3)$	$2947(2)$	$2839(1)$	$23(1)$
$\mathrm{O}(1)$	$7295(2)$	$2165(2)$	$2730(1)$	$17(1)$
$\mathrm{C}(2)$	$338(3)$	$3896(3)$	$3091(1)$	$21(1)$

$\mathrm{F}(2)$	$4163(3)$	$2542(2)$	$305(1)$	$58(1)$
$\mathrm{C}(3)$	$-640(3)$	$4673(3)$	$3241(2)$	$27(1)$
$\mathrm{F}(3)$	$3572(4)$	$1438(2)$	$963(1)$	$66(1)$
$\mathrm{C}(4)$	$-292(4)$	$5635(3)$	$3489(2)$	$30(1)$
$\mathrm{F}(4)$	$-1171(2)$	$4392(2)$	$689(1)$	$34(1)$
$\mathrm{F}(5)$	$-480(2)$	$5925(2)$	$1022(1)$	$34(1)$
$\mathrm{C}(5)$	$1044(4)$	$5884(3)$	$3590(2)$	$25(1)$
$\mathrm{O}(6)$	$1290(3)$	$6892(2)$	$3818(1)$	$37(1)$
$\mathrm{F}(6)$	$-1255(2)$	$4721(3)$	$1604(1)$	$46(1)$
$\mathrm{C}(7)$	$2646(4)$	$7191(3)$	$3884(2)$	$42(1)$
$\mathrm{C}(8)$	$2024(3)$	$5150(3)$	$3456(1)$	$21(1)$
$\mathrm{C}(9)$	$1690(3)$	$4130(2)$	$3208(1)$	$16(1)$
$\mathrm{C}(10)$	$2653(3)$	$3327(2)$	$3059(1)$	$15(1)$
$\mathrm{C}(11)$	$2233(3)$	$2394(3)$	$2797(1)$	$20(1)$
$\mathrm{C}(12)$	$869(3)$	$2242(3)$	$2699(2)$	$24(1)$
$\mathrm{C}(13)$	$4121(3)$	$3489(2)$	$3197(1)$	$13(1)$
$\mathrm{C}(14)$	$4596(3)$	$2597(2)$	$3614(1)$	$14(1)$
$\mathrm{N}(15)$	$6036(2)$	$2696(2)$	$3742(1)$	$16(1)$
$\mathrm{C}(16)$	$6342(3)$	$3770(3)$	$4000(1)$	$21(1)$
$\mathrm{C}(17)$	$5403(4)$	$4025(3)$	$4514(2)$	$26(1)$
$\mathrm{C}(18)$	$4707(3)$	$2964(3)$	$4688(1)$	$21(1)$
$\mathrm{C}(19)$	$3786(3)$	$2617(3)$	$4191(1)$	$18(1)$
$\mathrm{C}(20)$	$6371(3)$	$1842(3)$	$4170(1)$	$21(1)$
$\mathrm{C}(21)$	$5790(3)$	$2097(3)$	$4778(1)$	$23(1)$
$\mathrm{C}(22)$	$5281(4)$	$1134(3)$	$5111(2)$	$32(1)$
$\mathrm{N}(24)$	$4905(2)$	$3511(2)$	$2657(1)$	$14(1)$
$\mathrm{S}(25)$	$5151(1)$	$4687(1)$	$2360(1)$	$17(1)$
$\mathrm{O}(26)$	$6015(2)$	$4497(2)$	$1878(1)$	$26(1)$
$\mathrm{O}(27)$	$5492(2)$	$5512(2)$	$2775(1)$	$23(1)$
$\mathrm{N}(28)$	$3678(2)$	$5034(2)$	$2145(1)$	$16(1)$
$\mathrm{C}(29)$	$2924(3)$	$4493(2)$	$1726(1)$	$15(1)$
$\mathrm{C}(30)$	$3397(3)$	$3621(3)$	$1400(1)$	$20(1)$
$\mathrm{C}(31)$	$2583(3)$	$3158(2)$	$979(1)$	$22(1)$
$\mathrm{C}(32)$	$3144(4)$	$2237(3)$	$629(2)$	$31(1)$
$\mathrm{C}(33)$	$1304(3)$	$3528(3)$	$876(1)$	$22(1)$
$\mathrm{C}(34)$	$857(3)$	$4392(2)$	$1209(1)$	$19(1)$
$\mathrm{C}(35)$	$-507(3)$	$4841(3)$	$1133(2)$	$26(1)$
$\mathrm{C}(36)$	$1641(3)$	$4867(2)$	$1633(1)$	$16(1)$
$\mathrm{C}(23)$	$5037(7)$	$162(4)$	$4926(2)$	$65(2)$

Table 4.32 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 252.

$\mathrm{F}(1)-\mathrm{C}(32)$	1.324(5)	$\mathrm{N}(15)-\mathrm{C}(16)$	1.481(4)
$\mathrm{N}(1)-\mathrm{C}(2)$	1.368(5)	$\mathrm{N}(15)-\mathrm{C}(20)$	1.479(4)
$\mathrm{N}(1)-\mathrm{C}(12)$	1.323(4)	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9900
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A})$	0.867(14)	C(16)-H(16B)	0.9900
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	0.874(14)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.548(5)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.417(4)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9900
$\mathrm{C}(2)-\mathrm{C}(9)$	1.419(4)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9900
$\mathrm{F}(2)-\mathrm{C}(32)$	1.323(4)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.536(5)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18)$	1.0000
$\mathrm{C}(3)-\mathrm{C}(4)$	1.361(6)	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.533(4)$
$\mathrm{F}(3)-\mathrm{C}(32)$	1.322(5)	$\mathrm{C}(18)-\mathrm{C}(21)$	1.541(5)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(5)$	1.401(5)	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9900
$\mathrm{F}(4)-\mathrm{C}(35)$	1.340(4)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9900
$\mathrm{F}(5)-\mathrm{C}(35)$	1.359(4)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9900
$\mathrm{C}(5)-\mathrm{O}(6)$	1.370(4)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.547(4)
$\mathrm{C}(5)-\mathrm{C}(8)$	1.376(4)	$\mathrm{C}(21)-\mathrm{H}(21)$	1.0000
$\mathrm{O}(6)-\mathrm{C}(7)$	1.424(5)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.503(5)
$\mathrm{F}(6)-\mathrm{C}(35)$	1.330(4)	$\mathrm{C}(22)-\mathrm{H}(22)$	0.9500
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9800	$\mathrm{C}(22)$-C(23)	1.294(7)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9800	$\mathrm{N}(24)$-H(24)	0.878(13)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	0.9800	$\mathrm{N}(24)$-S(25)	1.622(2)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500	$\mathrm{S}(25)-\mathrm{O}(26)$	1.428(2)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.420(4)	$\mathrm{S}(25)-\mathrm{O}(27)$	1.436(2)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.428(4)	$\mathrm{S}(25)$-N(28)	1.623(3)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.365(4)	$\mathrm{N}(28)-\mathrm{H}(28)$	0.887(13)
$\mathrm{C}(10)-\mathrm{C}(13)$	1.527(4)	$\mathrm{N}(28)$-C(29)	$1.396(4)$
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500	$\mathrm{C}(29)$-C(30)	$1.394(4)$
$\mathrm{C}(11)-\mathrm{C}(12)$	1.407(4)	$\mathrm{C}(29)$-C(36)	1.390 (4)
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500	$\mathrm{C}(30)-\mathrm{H}(30)$	0.9500
$\mathrm{C}(13)-\mathrm{H}(13)$	1.0000	$\mathrm{C}(30)-\mathrm{C}(31)$	1.392 (5)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.536(4)	$\mathrm{C}(31)-\mathrm{C}(32)$	1.501(5)
$\mathrm{C}(13)-\mathrm{N}(24)$	1.472(3)	$\mathrm{C}(31)-\mathrm{C}(33)$	1.388(5)
$\mathrm{C}(14)-\mathrm{H}(14)$	1.0000	$\mathrm{C}(33)-\mathrm{H}(33)$	0.9500
$\mathrm{C}(14)$-N(15)	1.486(4)	$\mathrm{C}(33)-\mathrm{C}(34)$	1.387(5)
$\mathrm{C}(14)$-C(19)	1.559(4)	C(34)-C(35)	1.493(5)
$\mathrm{C}(34)-\mathrm{C}(36)$	1.385(4)	$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	125.0(3)
$\mathrm{C}(36)-\mathrm{H}(36)$	0.9500	$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{H}(12)$	117.5
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9500	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	117.5
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9500	$\mathrm{C}(10)-\mathrm{C}(13)-\mathrm{H}(13)$	108.2
		$\mathrm{C}(10)-\mathrm{C}(13)-\mathrm{C}(14)$	109.8(2)
$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(2)$	116.7(3)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	108.2

$\mathrm{H}(1 \mathrm{~A})-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	103(5)	$\mathrm{N}(24)$-C(13)-C(10)	110.3(2)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	118.1(3)	$\mathrm{N}(24)-\mathrm{C}(13)-\mathrm{H}(13)$	108.2
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(9)$	122.8(3)	$\mathrm{N}(24)-\mathrm{C}(13)-\mathrm{C}(14)$	111.9(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(9)$	119.1(3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	108.0
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.7	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)$	110.9(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	120.7(3)	$\mathrm{N}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	111.7(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	119.7	$\mathrm{N}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	108.0
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	119.7	$\mathrm{N}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	110.0(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.6(3)	$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{H}(14)$	108.0
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	119.7	$\mathrm{C}(16)-\mathrm{N}(15)-\mathrm{C}(14)$	110.9(2)
$\mathrm{O}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	115.9(3)	$\mathrm{C}(20)-\mathrm{N}(15)-\mathrm{C}(14)$	107.2(2)
$\mathrm{O}(6)-\mathrm{C}(5)-\mathrm{C}(8)$	123.5(3)	$\mathrm{C}(20)-\mathrm{N}(15)-\mathrm{C}(16)$	108.7(2)
$\mathrm{C}(8)-\mathrm{C}(5)-\mathrm{C}(4)$	120.6(3)	$\mathrm{N}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.4
$\mathrm{C}(5)-\mathrm{O}(6)-\mathrm{C}(7)$	116.7(3)	$\mathrm{N}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.4
$\mathrm{O}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.5	$\mathrm{N}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	111.1(2)
$\mathrm{O}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	108.0
$\mathrm{O}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.4
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.4
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.2
$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	110.2
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{H}(8)$	119.9	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.5
$\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{C}(9)$	120.1(3)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	107.8(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.9	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.2
$\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	118.9(3)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	110.2
$\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	117.9(3)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	110.3
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	123.2(3)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(21)$	107.5(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(13)$	121.2(3)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	108.7(3)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	118.6(3)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	110.3
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(13)$	120.2(3)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(21)$	109.7(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	120.5	$\mathrm{C}(21)-\mathrm{C}(18)-\mathrm{H}(18)$	110.3
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.1(3)	$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.9
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	120.5	$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.9
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	108.7(2)	$\mathrm{C}(36)-\mathrm{C}(29)-\mathrm{N}(28)$	117.1(3)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.9	$\mathrm{C}(36)-\mathrm{C}(29)-\mathrm{C}(30)$	119.4(3)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.9	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30)$	120.4
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	108.3	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	119.2(3)
$\mathrm{N}(15)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.3	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30)$	120.4
$\mathrm{N}(15)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.3	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	117.5(3)
$\mathrm{N}(15)-\mathrm{C}(20)-\mathrm{C}(21)$	111.7(3)	$\mathrm{C}(33)-\mathrm{C}(31)-\mathrm{C}(30)$	122.1(3)
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	107.9	$\mathrm{C}(33)-\mathrm{C}(31)-\mathrm{C}(32)$	120.4(3)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.3	$\mathrm{F}(1)-\mathrm{C}(32)-\mathrm{C}(31)$	113.0(3)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.3	$\mathrm{F}(2)-\mathrm{C}(32)-\mathrm{F}(1)$	107.1(3)
$\mathrm{C}(18)-\mathrm{C}(21)-\mathrm{C}(20)$	106.7(2)	$\mathrm{F}(2)-\mathrm{C}(32)-\mathrm{C}(31)$	112.3(3)

$\mathrm{C}(18)-\mathrm{C}(21)-\mathrm{H}(21)$	107.5	$\mathrm{~F}(3)-\mathrm{C}(32)-\mathrm{F}(1)$	$105.6(3)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	107.5	$\mathrm{~F}(3)-\mathrm{C}(32)-\mathrm{F}(2)$	$106.5(4)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(18)$	$111.9(3)$	$\mathrm{F}(3)-\mathrm{C}(32)-\mathrm{C}(31)$	$111.9(3)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$115.5(3)$	$\mathrm{C}(31)-\mathrm{C}(33)-\mathrm{H}(33)$	121.3
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	107.5	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(31)$	$117.4(3)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	115.5	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33)$	121.3
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$128.9(4)$	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$121.3(3)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	115.5	$\mathrm{C}(36)-\mathrm{C}(34)-\mathrm{C}(33)$	$121.8(3)$
$\mathrm{C}(13)-\mathrm{N}(24)-\mathrm{H}(24)$	$124(3)$	$\mathrm{C}(36)-\mathrm{C}(34)-\mathrm{C}(35)$	$116.9(3)$
$\mathrm{C}(13)-\mathrm{N}(24)-\mathrm{S}(25)$	$117.05(18)$	$\mathrm{F}(4)-\mathrm{C}(35)-\mathrm{F}(5)$	$105.9(3)$
$\mathrm{S}(25)-\mathrm{N}(24)-\mathrm{H}(24)$	$109(3)$	$\mathrm{F}(4)-\mathrm{C}(35)-\mathrm{C}(34)$	$113.4(3)$
$\mathrm{N}(24)-\mathrm{S}(25)-\mathrm{N}(28)$	$102.89(12)$	$\mathrm{F}(5)-\mathrm{C}(35)-\mathrm{C}(34)$	$111.6(3)$
$\mathrm{O}(26)-\mathrm{S}(25)-\mathrm{N}(24)$	$105.95(13)$	$\mathrm{F}(6)-\mathrm{C}(35)-\mathrm{F}(4)$	$107.0(3)$
$\mathrm{O}(26)-\mathrm{S}(25)-\mathrm{O}(27)$	$119.05(14)$	$\mathrm{F}(6)-\mathrm{C}(35)-\mathrm{F}(5)$	$105.8(3)$
$\mathrm{O}(26)-\mathrm{S}(25)-\mathrm{N}(28)$	$111.42(14)$	$\mathrm{F}(6)-\mathrm{C}(35)-\mathrm{C}(34)$	$112.7(3)$
$\mathrm{O}(27)-\mathrm{S}(25)-\mathrm{N}(24)$	$112.78(13)$	$\mathrm{C}(29)-\mathrm{C}(36)-\mathrm{H}(36)$	120.0
$\mathrm{O}(27)-\mathrm{S}(25)-\mathrm{N}(28)$	$103.65(13)$	$\mathrm{C}(34)-\mathrm{C}(36)-\mathrm{C}(29)$	$120.0(3)$
$\mathrm{S}(25)-\mathrm{N}(28)-\mathrm{H}(28)$	$115(3)$	$\mathrm{C}(34)-\mathrm{C}(36)-\mathrm{H}(36)$	120.0
$\mathrm{C}(29)-\mathrm{N}(28)-\mathrm{H}(28)$	$119(3)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	120.0
$\mathrm{C}(29)-\mathrm{N}(28)-\mathrm{S}(25)$	$125.7(2)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	120.0
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{N}(28)$	$123.5(3)$	$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	120.0

Table 4.33 Anisotropic displacement parameters $\left(\AA^{2} \mathrm{x} 10^{3}\right)$ for 252.

The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k\right.$ $a^{*} b^{*} U_{12}$]

	\mathbf{U}_{11}	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	\mathbf{U}_{23}	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
$\mathrm{F}(1)$	$62(2)$	$64(2)$	$70(2)$	$-50(2)$	$2(2)$	$-10(2)$
$\mathrm{N}(1)$	$10(1)$	$31(1)$	$28(1)$	$5(1)$	$1(1)$	$-1(1)$
$\mathrm{O}(1)$	$14(1)$	$15(1)$	$21(1)$	$-1(1)$	$0(1)$	$0(1)$
$\mathrm{C}(2)$	$13(1)$	$29(2)$	$20(1)$	$7(1)$	$3(1)$	$2(1)$
$\mathrm{F}(2)$	$69(2)$	$34(1)$	$73(2)$	$-21(1)$	$46(2)$	$-13(1)$
$\mathrm{C}(3)$	$14(1)$	$39(2)$	$28(2)$	$10(2)$	$4(1)$	$8(1)$
$\mathrm{F}(3)$	$124(3)$	$26(1)$	$49(2)$	$-3(1)$	$16(2)$	$29(2)$
$\mathrm{C}(4)$	$24(2)$	$35(2)$	$31(2)$	$5(1)$	$9(1)$	$18(2)$
$\mathrm{F}(4)$	$32(1)$	$31(1)$	$39(1)$	$7(1)$	$-18(1)$	$-11(1)$
$\mathrm{F}(5)$	$26(1)$	$27(1)$	$48(1)$	$-3(1)$	$-11(1)$	$2(1)$
$\mathrm{C}(5)$	$26(2)$	$23(2)$	$27(2)$	$0(1)$	$3(1)$	$11(1)$
$\mathrm{O}(6)$	$39(2)$	$25(1)$	$46(2)$	$-11(1)$	$4(1)$	$16(1)$
$\mathrm{F}(6)$	$14(1)$	$85(2)$	$40(1)$	$16(1)$	$2(1)$	$-2(1)$
$\mathrm{C}(7)$	$41(2)$	$22(2)$	$64(3)$	$-18(2)$	$-1(2)$	$7(2)$
$\mathrm{C}(8)$	$22(1)$	$19(2)$	$22(1)$	$1(1)$	$4(1)$	$6(1)$

$\mathrm{C}(9)$	$15(1)$	$17(1)$	$17(1)$	$4(1)$	$4(1)$	$2(1)$
$\mathrm{C}(10)$	$13(1)$	$15(1)$	$17(1)$	$2(1)$	$3(1)$	$0(1)$
$\mathrm{C}(11)$	$14(1)$	$17(1)$	$27(2)$	$-2(1)$	$2(1)$	$0(1)$
$\mathrm{C}(12)$	$17(1)$	$25(2)$	$29(2)$	$-2(1)$	$-2(1)$	$-4(1)$
$\mathrm{C}(13)$	$8(1)$	$10(1)$	$20(1)$	$-1(1)$	$3(1)$	$1(1)$
$\mathrm{C}(14)$	$13(1)$	$12(1)$	$16(1)$	$0(1)$	$2(1)$	$-2(1)$
$\mathrm{N}(15)$	$12(1)$	$18(1)$	$17(1)$	$0(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}(16)$	$18(1)$	$24(2)$	$22(2)$	$-2(1)$	$-1(1)$	$-7(1)$
$\mathrm{C}(17)$	$31(2)$	$20(2)$	$26(2)$	$-7(1)$	$5(1)$	$-6(1)$
$\mathrm{C}(18)$	$22(2)$	$23(2)$	$17(1)$	$-4(1)$	$4(1)$	$-2(1)$
$\mathrm{C}(19)$	$12(1)$	$19(1)$	$21(1)$	$2(1)$	$4(1)$	$-1(1)$
$\mathrm{C}(20)$	$18(1)$	$24(2)$	$20(1)$	$4(1)$	$-2(1)$	$4(1)$
$\mathrm{C}(21)$	$23(2)$	$29(2)$	$16(1)$	$1(1)$	$0(1)$	$1(1)$
$\mathrm{C}(22)$	$38(2)$	$38(2)$	$21(2)$	$9(1)$	$2(2)$	$6(2)$
$\mathrm{N}(24)$	$11(1)$	$12(1)$	$20(1)$	$2(1)$	$3(1)$	$3(1)$
$\mathrm{S}(25)$	$11(1)$	$14(1)$	$25(1)$	$4(1)$	$1(1)$	$-2(1)$
$\mathrm{O}(26)$	$17(1)$	$27(1)$	$34(1)$	$10(1)$	$10(1)$	$2(1)$
$\mathrm{O}(27)$	$18(1)$	$15(1)$	$35(1)$	$3(1)$	$-6(1)$	$-6(1)$
$\mathrm{N}(28)$	$15(1)$	$11(1)$	$22(1)$	$-2(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(29)$	$14(1)$	$14(1)$	$17(1)$	$2(1)$	$2(1)$	$-2(1)$
$\mathrm{C}(30)$	$24(2)$	$14(1)$	$22(1)$	$1(1)$	$4(1)$	$-1(1)$
$\mathrm{C}(31)$	$31(2)$	$14(1)$	$21(2)$	$-1(1)$	$6(1)$	$-4(1)$
$\mathrm{C}(32)$	$41(2)$	$22(2)$	$29(2)$	$-8(1)$	$6(2)$	$-4(2)$
$\mathrm{C}(33)$	$28(2)$	$23(2)$	$16(1)$	$0(1)$	$1(1)$	$-11(1)$
$\mathrm{C}(34)$	$18(1)$	$19(2)$	$20(1)$	$3(1)$	$1(1)$	$-7(1)$
$\mathrm{C}(35)$	$18(1)$	$33(2)$	$28(2)$	$5(1)$	$-5(1)$	$-7(1)$
$\mathrm{C}(36)$	$17(1)$	$14(1)$	$19(1)$	$2(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(23)$	$116(5)$	$34(2)$	$46(2)$	$10(2)$	$32(3)$	$-5(3)$

Table 4.34 Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 252.

	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U}(\mathbf{e q})$
$\mathrm{H}(1 \mathrm{~A})$	$8090(30)$	$2430(50)$	$2700(30)$	$72(19)$
$\mathrm{H}(1 \mathrm{~B})$	$7120(40)$	$2270(30)$	$3099(6)$	$40(13)$
$\mathrm{H}(3)$	-1549	4521	3168	32
$\mathrm{H}(4)$	-960	6142	3594	36
$\mathrm{H}(7 \mathrm{~A})$	3101	7122	3510	63
$\mathrm{H}(7 \mathrm{~B})$	3068	6712	4170	63
$\mathrm{H}(7 \mathrm{C})$	2701	7944	4019	63
$\mathrm{H}(28)$	$3390(40)$	$5667(18)$	$2277(17)$	$24(10)$
$\mathrm{H}(8)$	2926	5325	3529	25

	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U}(\mathbf{e q})$
$\mathrm{H}(11)$	2854	1854	2682	23
H(12)	600	1583	2519	28
H(13)	4225	4206	3396	15
H(14)	4445	1879	3423	17
H(16A)	6248	4339	3699	25
H(16B)	7271	3776	4138	25
H(17A)	5915	4315	4847	31
H(17B)	4739	4575	4397	31
H(18)	4189	3070	5054	25
H(19A)	3039	3135	4157	21
H(19B)	3418	1887	4272	21
H(20A)	7347	1777	4200	25
H(20B)	6018	1137	4033	25
H(21)	6513	2435	5014	27
H(22)	5115	1256	5512	39
H(24)	$5600(30)$	$3100(30)$	$2590(17)$	$41(13)$
H(30)	4266	3347	1464	24
H(33)	757	3202	588	27
H(36)	1302	5448	1860	20
H(23A)	5180	-17	4530	78
H(23B)	4714	-374	5188	78

Table 4.35 Hydrogen bonds for $252\left(\AA\right.$ and $\left.{ }^{\circ}\right)$.

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{N}(1) \# 1$	$0.867(14)$	$1.99(2)$	$2.838(3)$	$165(6)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{N}(15)$	$0.874(14)$	$1.918(19)$	$2.732(3)$	$154(3)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C}) \ldots \mathrm{F}(4) \# 2$	0.98	2.45	$3.243(4)$	138
$\mathrm{~N}(28)-\mathrm{H}(28) \ldots \mathrm{O}(1) \# 3$	$0.887(13)$	$1.969(19)$	$2.817(3)$	$159(4)$
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A}) \ldots \mathrm{F}(4) \# 4$	0.99	2.52	$3.422(4)$	151
$\mathrm{~N}(24)-\mathrm{H}(24) \ldots \mathrm{O}(1)$	$0.878(13)$	$2.087(17)$	$2.930(3)$	$161(4)$
$\mathrm{C}(30)-\mathrm{H}(30) \ldots \mathrm{O}(26)$	0.95	2.45	$3.057(4)$	121

5. References

(a) Challener CA. Overview of chirality. In: Chiral drugs. 1st ed. Aldershot (England): Ashgate Publisher., 2001, 3-14; (b) H. D. Flack, Acta Crystallogr., Sect. A, 2009, 65, 371; (c) L. Pasteur, Cr. Hebd. Acad. Sci., 1848, 26, 535; (d) L. Pasteur, C. R. Hebd. Seances Acad. Sci., 1848, 26, 535.
(a) M. F. Landoni and A. Soraci, Current. Drug. Metabolism., 2001, 2 (1), 37; (b)
E. J. Ariens, Stereoselectivity of bioactive agents: general aspects. In: Stereochemistry and Biological activity of Drugs, by E. J. Ariens, Soudijn W \& Timmermans PBMWM (Eds). Oxford: Blackwell Scientific., 1983, 11; (c) D. E Drayer, Pharmacodynamic and pharmacokinetic differences between drug enantiomers in human: an overview. Clinical Pharmacology and Therapeutics., 1986, 40 (2), 125; (d) N. M. Davies and X. V. Teng, Importance of chirality in drug therapy and pharmacy practice. Implication for psychiatry. Advances in Pharmacy., 2003, 1 (3), 242. (e) J. Patocka and A. Dvorak, Biomedical aspects of chiral molecules. Journal of Applied Medicine., 2004, 2, 95. (f) F. Jamali, R. Mehvar and F. M. Pasutto, Enantioselective aspects of drug action and disposition: Therapeutic pitfalls. Journal of Pharmaceutical Sciences., 1989, 78 (9), 695.
(a) A. Marzo and E. Heftman, Enantioselective analytical methods in pharmacokinetics with specific reference to genetic polymorphic metabolism.

Journal of Biochemical and Biophysical Methods., 2002, 54 (1-3), 57. (b) M. F. Landoni and A. Soraci, Current. Drug. Metabolism., 2001, 2 (1), 37.
A. Marzo and E. Heftman, Enantioselective analytical methods in pharmacokinetics with specific reference to genetic polymorphic metabolism. Journal of Biochemical and Biophysical Methods., 2002, 54 (1-3), 57.

Parkinson's disease: diagnosis and clinical management, A. S. Factor and W. J. Weiner, Ed. Demos Medical Publishing, Inc., New York, 2002.
(a) L. Pasteur, Cr. Hebd. Acad. Sci., 1848, 26, 535; (b) J. T. Liu and R. H. Liu, Enantiomeric composition of abused amine drugs: chromatographic methods of analysis and data interpretation. Journal of Biochemical and Biophysical Methods., 2002, 54 (1-3), 115.
A. M. Thayer, Chem. Eng. News., 2007, 85, 11.
(a) B. J. A. Osborn, F. H. Jardine, J. F. Young, and G. Wilkinson, J. Chem. Soc. (A), 1966, 1711; (b) W. S. Knowles, Acc. Chem. Res., 1983, 16, 106.
J. A. Osborn, F. S. Jardine, J. F. Young and G. Wilkinson, J. Chem. Soc., 1966, 1711.
S. Borman, Chem. Eng. News., 2001, 79, 5.
(a) B. M. Trost, Proc. Natl. Acad. Sci. USA., 2004, 101, 5348; (b) P. J. Harrington and E. Lodewijk, Org. Process Res. Dev., 1997, 1, 72; (c) Principles and Applications of Asymmetric Synthesis, G.-Q. Lin, Y.-M. Li and A. S.C. Chan, John Wiley \& Sons, Inc., 2001.
(a) E. Pálovics, F. Faigl, and E. Fogassy, Separation of the Mixtures of Chiral Compounds by Crystallization, Advances in Crystallization Processes, Dr. Yitzhak Mastai (Ed.), InTech, 2012; (b) Y. Fujima, M. Ikunaka, T. Inoue and J. Matsumoto, Org. Process Res. Dev., 2006, 10, 905.
P. J. Harrington and E. Lodewijk, Org. Process Res. Dev., 1997, 1, 72.
(a) M. S. Taylor and E. N. Jacobsen, Proc. Natl. Acad. Sci. USA, 2004, 101, 5368;
(b) H.-U. Blaser, Chem. Rev., 1992, 92, 935; (c) G. Stork and S. Raucher, J. Am. Chem. Soc., 1976, 98, 1583; (d) G. Stork, T. Takahashi, I. Kawamoto and T. Suzuki, J. Am. Chem. Soc., 1978, 100, 8272.
(a) M. S. Taylor and E. N. Jacobsen, Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5368-5373; (b) J. Halpern and B. M. Trost, Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5347.
(a) E. J. Corey and H. E. Ensley, J. Am. Chem. Soc., 1975, 97, 6908; (b) Y. Gnas and F. Glorius, Synthesis, 2006, 12, 1899; (c) D. A. Evans, G. Helmchen, and M. Rüping, Chiral Auxiliaries in Asymmetric Synthesis, Asymmetric Synthesis - The Essentials, WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim, 2007.
(a) Houben-Weyl, Methods in Organic Chemistry, Stereoselective Synthesis, G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann (Eds.), Thieme-Verlag, Stuttgart, 1995; (b) Compendium of Chiral Auxiliary Applications, G. Roos (Ed.), Academic Press, New York, 2002; (c) F. Velàzquez and H. F. Olivo, Curr. Org. Chem., 2002, 6, 303.

Studies in Asymmetric Synthesis. The Development of Practical Chiral Enolate Synthons, D. A. Evans. Aldrichim. Acta., 1982, 15, 23.
(a) M. B. Hodge and H. F. Olivo, Tetrahedron, 2004, 69, 9397; (b) D. A. Evans, J. Bartroli and T. L. J. Shih, Am. Chem. Soc., 1981, 103, 2127.
(a) Biocatalysis: fundamentals and applications, A. S. Bommarius, B. R. Riebel, Ed. Wiley-VCH, Weinheim, 2004; (b) C. Wandrey, A. Liese, and D. Kihumbu, Org. Proc. Res. Dev., 2000, 4, 286.
(a) C. Wandrey, A. Liese, and D. Kihumbu, Org. Proc. Res. Dev., 2000, 4, 286; (b) A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt, Nature, 2001, 409, 258; (c) J. S. Dordick and D. S. Clark, Curr. Opin. Chem.

Biol., 2002, 6, 123; (d) D. E. Robertson and U. T. Bornscheuer, Curr. Opin. Chem. Biol., 2005, 9, 164.
(a) T. Johannes, M. R. Simurdiak, and H. Zhao, Biocatalysis, Encyclopedia of Chemical Processing, Taylor \& Francis, 2006; (b) T. Storz, P. Dittmar, P. F. Fauquex, P. Marschal, W. U. Lottenbach and H. Steiner, Organic Process Research \& Development, 2003, 7, 559; (c) The Organic Chemistry of EnzymeCatalyzed Reactions, R. B. Silverman, Ed. Academic Press, London, 2002.
(a) J. Halpern and B. M. Trost, Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5347; (b) M. S. Taylor and E. N. Jacobsen, Proc. Natl. Acad. Sci. USA, 2004, 101, 5368.
B. Saito and G. C. Fu, J. Am. Chem. Soc., 2008, 130, 6694.
P. M. Lundin and G. C. Fu, J. Am. Chem. Soc., 2010, 132 (32), 11027.
A. Thayer, Chem. Eng. News., 2005, 83, 55.
(a) W. S. Knowles, Angew. Chem. Int. Ed., 2002, 41, 1998; (b) T. Ikariya, K. Murataa and R. Noyorib, Org. Biomol. Chem., 2006, 4, 393; (c) S. C. Pan and B. List, New concepts for organocatalysis., Springer, 2008, 1.
W. E. Luttrell and C. B. Giles, J. Chem. Health Saf., 2007, 14, 40.
H. Pellissier, Tetrahedron., 2007, 63, 9267.
(a) B. List, Chem. Rev., 2007, 107, 5413; (b) B. List, Advanced Synthesis \& Catalysis, 2004, 346, 1021; (c) J. Seayad and B. List, Organic \& Biomolecular Chemistry, 2005, 3, 719; (d) P. I. Dalko and L. Moisan, Angew. Chem. Int. Ed., 2001, 40, 3726; (e) P. I. Dalko and L. Moisan, Angew. Chem. Int. Ed., 2004, 43, 5138.
J. Von Liebig, Justus Liebigs Ann. Chem., 1860, 113, 246.
(a) A. Berkessel and H. Groeger, Asymmetric Organocatalysis, Ed. Wiley-VCH, Weinheim, 2004; (b) C. E. Song, Cinchona Alkaloids in Synthesis and Catalysis, Ed. Wiley-VCH, Weinheim, 2009.
(a) Z. G. Hajos and D. R. Parrish, J. Org. Chem., 1974, 39, 1615; (b) U. Eder, G. Sauer and R. Wiechert, Angew. Chem. Int. Ed., 1971, 10, 496; (c) G. H. Douglas, J. M. H. Graves, D. Hartley, G. A. Hughes, B. J. McLoughlin, J. Siddall and H. Smith, J. Chem. Soc., 1963, 5072; (d) Z. G. Hajos, D. R. Parrish, and E. P. Oliveto, Tetrahedron, 1968, 24, 2039; (e) Z. G. Hajos and D. R. Parrish, J. Org. Chem., 1973, 38, 3244.
(a) P. I. Dalko and L. Moisan, Angew. Chem. Int. Ed., 2004, 43, 5138; (b) B. List, Adv. Synth. Catal., 2004, 346, 9-10, 1005; (c) C. Aleman, R. Gordillo, F. R. Clemente, P. H. Cheong and K. N. Houk, Acc. Chem. Res., 2004, 37, 558; (d) J. Seayad and B. List, Org. Biomol. Chem., 2005, 3, 719; (e) B. List, Chem. Rev., 2007, 107, 5413; (f) S. Bertelsen and K. A. Jørgensen, Chem. Soc. Rev., 2009, 38, 2178; (g) D. Yang, Y.-C. Yip, M.-W. Tang, M.-K. Wong, J.-H. Zheng and K.-K. Cheung, J. Am. Chem. Soc., 1996, 118, 491; (h) Y. Tu, Z.-X. Wang and Y. Shi, J. Am. Chem. Soc., 1996, 118, 9806; (i) S. E. Denmark, Z. Wu, C. M. Crudden and H. Matsuhashi, J. Org. Chem., 1997, 62, 8288; (k) S. J. Miller, G. T. Copeland, N. Papaioannou, T. E. Horstmann and E. M. Ruel, J. Am. Chem. Soc., 1998, 120, 1629; (1) M. S. Sigman and E. N. Jacobsen, J. Am. Chem. Soc., 1998, 120, 4901; (m) E. J. Corey and M. J. Grogan, Org. Lett., 1999, 1, 157.
T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672.
(a) A. Cordova, Acc. Chem. Res., 2004, 37, 102; (b) M. M. B. Marques, Ang. Chem., Int. Ed., 2006, 45, 348; (c) P. Dziedzic, J. Vesely and A. Cordova, Tetrahedron Lett., 2008, 49, 6631; (d) P. Dziedzic, P. Schyman, M. Kullberg and A. Cordova, Chem. Eur. J., 2009, 15, 4044; (e) A. G. Wenzel and E. N. Jacobsen, J. Am. Chem. Soc., 2002, 124, 12964.
(a) B. Tan, P. J. Chua, Y. Li and G. Zhong, Org. Lett., 2008, 10, 2437; (b) B. Tan, P. J. Chua, X. LZeng, M. Lu and G. Zhong, Org. Lett., 2008, 10, 3489; (c) T. P. Yoon and E. N. Jacobsen, Ang. Chem., Int. Ed., 2005, 44, 466; (d) T. Okino, S. Nakamura, T. Furukawa and Y. Takemoto, Org. Lett., 2004, 6, 625; (e) X. Xu, T. Furukawa, T. Okino, H. Miyabe and Y. Takemoto, Chem. Eur. J., 2006, 12, 466.
I. T. Raheem and E. N. Jacobsen, Advanced Synthesis \& Catalysis, 2005, 347, 1701.
M. S. Taylor and E. N. Jacobsen, J. Am. Chem. Soc., 2004, 126, 10558.
(a) D. W. C. MacMillan, Nature, 2008, 455, 304 ; (b) G. Bartoli and P. Melchiorre, Synlett, 2008, 12, 1759.
(a) T. Marcelli and H. Hiemstra, Synthesis, 2010, 8, 1229; (b) T. Ooi and K. Maruoka, Angew. Chem. Int. Ed., 2007, 46, 4222; (c) G. Bartoli and P. Melchiorre, Synlett, 2008, 1759; (d) Y. -C. Chen, Synlett, 2008, 1919.
(a) R. Schreiner, Chem. Soc. Rev., 2003, 32, 289; (b) T. Schustere, M. Kurz and M.W. GRbel, J. Org. Chem., 2000, 65, 1697; (c) Y. Huang and V. H. Rawal, J. Am. Chem. Soc., 2002, 124, 9662; (d) L. R. Dominge and J. AndrTs, J. Org. Chem., 2003, 68, 8662.
B. List, R. A. Lerner and C. F. Barbas III, J. Am. Chem. Soc., 2000, 122, 2395.
K. A. Ahrendt, C. J. Borths and D. MacMillan, J. Am. Chem. Soc., 2000, 122, 4243.
D. Schinzer, Selectivities in Lewis Acid Promoted Reactions, Kluwer Academic, Dordrecht, 1989.
(a) J. Hine, S.-M. Linden and V. M. Kanagasabapathy, J. Am. Chem. Soc., 1985, 107, 1082; (b) J. Hine, S.-M. Linden and V. M. Kanagasabapathy, J. Org. Chem., 1985, 50, 5096; (c) J. Hine, K. Ahn, J. C. Gallucci and S. -M. Linden, J. Am. Chem. Soc., 1984, 106, 7980.
T. R. Kelly, P. Meghani and V. S. Ekkundi, Tetrahedron Lett., 1990, 31, 3381.
(a) D. P. Curran and L. H. Kuo, Tetrahedron Lett., 1995, 36, 6647; (b) D. P. Curran and L. H. Kuo, J. Org. Chem., 1994, 59, 3259.
(a) M. C. Etter, Z. Urbakzyk-Lipkowska, M. Zia-Ebrahimi, and T. W. Panunto, J. Am. Chem. Soc., 1990, 112, 8415; (b) M. C. Etter and T. W. Panunto, J. Am. Chem. Soc., 1988, 110, 5896.
(a) T. Okino, Y. Hoashi and Y. Takemoto, Tetrahedron Lett., 2003, 44, 2817; (b) T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672.
A. Hamza, G. Schubert, T. Soòs and I. Pàpai, J. Am. Chem. Soc., 2006, 128, 13151.
(a) H. Hiemstra and H. Wynberg, J. Am. Chem. Soc., 1981, 103, 417; (b) C. E. Song, Cinchona Alkaloids in Synthesis ans Catalysis, Ligands, Immobilisation and Organocatalysis, WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim, 2009.
T. Marcelli and H. Hiemstra, Synthesis, 2010, 1229.
(a) H. M. R. Hoffmann and J. Frackenpohl, Eur. J. Org. Chem., 2004, 4293; (b) V. Prelog and H. Wilhelm, Helv. Chim. Acta, 1954, 37, 1634.
(a) R. Helder, R. Arends, W. Bolt, H. Hiemstra and H. Wynberg, Tetrahedron Letters, 1977, 18, 2181; (b) H. Pluim and H. Wynberg, Tetrahedron Letters, 1979, 20, 1251; (c) H. Hiemstra and H. Wynberg, J. Am. Chem. Soc., 1981, 103, 417; (c) S. H. McCooey and S. J. Connon, Angew. Chem. Int. Ed., 2005, 44, 6367.
(a) J. Ye, D. J. Dixon and P. S. Hynes, Chem. Commun., 2005, 4481; (b) S. H. McCooey and S. J. Connon, Angew. Chem. Int. Ed., 2005, 44, 6367; (c) B. J. List, L. Jiang, M. Liu, Y. C. Chen, L. S. Ding and Y. Wu, Synlett., 2005, 603.
B. Vakulya, S. Varga, A. Csàmpai and T. Soòs, Org. Lett., 2005, 7, 1967.
J. P. Malerich, K. Hagihara and V. H. Rawal, J. Am. Chem. Soc., 2008, 130, 14416.
(a) R. I. Storer, C. Aciro, and L. H. Jones, Chem. Soc. Rev., 2011, 40, 2330; (b) M. Bandini, R. Sinisi and A. Umani-Ronchi, Chem. Commun., 2008, 4360; (c) R. I. Storer, C. Aciro and L. H. Jones, Chem. Soc. Rev., 2011, 40, 2330.
(a) A. Verley and F. Bølsing, Ber. Dtsch. Chem. Ges, 1901, 34, 3354; (b) W. H. Perkin, J. Chem. Soc., 1868, 21, 181; (c) W. H. Perkin, J. Chem. Soc., 1877, 31, 388.
M. Gonzalez-Lopez and J. T. Shaw, Chem. Rev., 2009, 109, 164.
(a) W. H. Perkin, J. Chem. Soc., 1868, 21, 181; (b) I. Holme, Coloration Technol., 2006, 122, 235; (c) W. H. Perkin, J. Chem. Soc., 1877, 31, 660; (d) W. H. Perkin, J. Chem. Soc., 1877, 31, 388.
(a) R. Adams Ed., Organic Reactions Volume I, Ed. John Wiley \& Sons, New York, 1942; (b) R. Fittig and H. W. Jayne, Justus Liebigs Ann. Chem, 1883, 216, 97.
N. Castagnoli, J. Org. Chem., 1969, 34, 3187.
(a) M. Cushman and N. Castagnoli, J. Org. Chem., 1974, 39, 1546; (b) M. Cushman and N. Castagnoli, J. Org. Chem., 1973, 38, 440.
(a) M. Cushman and E. J. Madaj, J. Org. Chem., 1987, 52, 907; (b) M. Cushman, J. Gentry and F. W. Dekow, J. Org. Chem., 1977, 42, 1111.
M. A. Haimova, N. M. Mollov, S. C. Ivanova, A. I. Dimitrova and V. I. Ognyanov, Tetrahedron, 1977, 33, 331.
F. Manoni and S. J. Connon, Angew. Chem. Int. Ed., 2014, 53, 2628.
F. Manoni, U. Farid, C. Trujillo and S. J. Connon, Org. Biomol. Chem., 2017, 15, 1463.
(a) C. L. Jarvis, J. S. Hirschi, M. J. Vetticatt and Daniel Seidel, Angew. Chem. Int. Ed., 2017, 56, 2670; (b) S. A. Cronin, A. Gutiérrez. Collar, S. Gundala, C. Cornaggia, E. Torrente, F. Manoni, A. Botte, B. Twamley and S. J. Connon, Org. Biomol. Chem., 2016, 14, 6955.
C. Cornaggia, S. Gundala, F. Manoni, N. Gopalasetty and S. J. Connon, Org. Biomol. Chem., 2016, 14, 3040.
(a) N. Yu, R. Poulain, A. Tartar and J.-C. Gesquiere, Tetrahedron, 1999, 55, 13735; (b) N. Yu, R. Poulain and J. -C. Gesquiere, Synthesis, 2000, 3, 355.
M. G. Bogdanov and M. D. Palamareva, Tetrahedron, 2004, 60, 2525.
(a) M. Bogdanov, M. I. Kandinska, D. B. Dimitrova, B. T. Gocheva and M. D. Palamareva, Naturforsch., 2007, 62, 477; (b) T. K. Tabopda, G. W. Fotso, J. Ngoupayo, A.-C.Mitaine-Offer, B. T. Ngadjui and M.-A.Lacaille-Dubois, Planta Med., 2009, 75, 1228.
H. Hussain, N. Akhtar, S. Draeger, B. Schulz, G. Pescitelli, P. Salvadori, S. Antus, T. Kurtan and K. Krohn, Eur. J. Org. Chem., 2009, 749.
P. Kongsaeree, S. Prabpai, N. Sriubolmas, C. Vongvein and S. Wiyakrutta, J. Nat. Prod., 2003, 66, 709.
(a) Y. Shimojima, T. Shirai, T. Baba and H. Hayashi, J. Med. Chem., 1985, 28, 3.
(b) B. V. McInerney, W. C. Taylor, M. J. Lacey, R. J. Akhurst and R. P. Gregson, J. Nat. Prod., 1991, 54, 785.
A. Peschiulli, Y. Gun'ko and S. J. Connon, J. Org. Chem., 2008, 73, 2454.
A. Peschiulli, C. Quigley, S. Tallon, Y. Gun'ko and S. J. Connon, J. Org. Chem., 2008, 73, 6409.
C. Cornaggia, F. Manoni, E. Torrente, S. Tallon and S. J. Connon, Org. Lett., 2012, 14, 1850.
C. Trujillo, I. Rozas, A. Botte and S. J. Connon, Chem. Commun., 2017, 53, 8874.
(a) R. Fittig and H. W. Jayne, Justus Liebigs Ann. Chem., 1883, 216, 97; (b) H. Erdmann and R. Kirchhoff, Justus Liebigs Ann. Chem., 1888, 247, 368; (c) H. Erdmann and E. Schwechten, Justus Liebigs Ann. Chem., 1890, 260, 74; (d) S. -I. Yoshida, T. Ogiku, H. Ohmizu and T. Iwasaki, Tetrahedron Lett., 1995, 36, 1455; (e) S. -I. Yoshida, H. Ohmizu and T. Iwasaki, Tetrahedron Lett., 1995, 36, 8225.
(a) H. M. R. Hoffmann and J. Rabe, Angew. Chem. Int. Ed., 1985, 24, 94; (b) S. S. C. Koch and A. R. Chamberlin, Studies in Natural Products Chemistry, Vol. 16. (Ed.: Atta-ur-Rahman), Elsevier Science, 1995, pp. 687; (c) H. M. R. Hoffmann and J. Rabe, Angew. Chem. Int. Ed., 1985, 24, 94; (d) M. Seitz and O. Reiser, Curr. Opin. Chem. Biol., 2005, 9, 285.
R. Bandichhor, B. Nosse and O. Reiser, Top. Curr. Chem., 2005, 243, 43.
F. Manoni, C. Cornaggia, J. Murray, S. Tallon and S. J. Connon, Chem. Commun., 2012, 48, 6502.
(a) Y. Tamura, A. Wada, M. Sasho and Y. Kita, Tetrahedron Lett., 1981, 22, 4283; (b) Y. Tamura, A. Wada, M. Sasho, K. Fukunaga, H. Maeda and Y. Kita, J. Org. Chem., 1982, 47, 4376.
Y. Tamura, A. Wada, M. Sasho and Y. Kita, Chem. Pharm. Bull., 1983, 31, 2691
Y. Tamura, M. Sasho, K. Nakagawa, T. Tsugoshi and Y. Kita, J. Org. Chem., 1984, 49, 473.
(a) J. M. Lawlor and M. B. McNamee, Tetrahedron Lett., 1983, 24, 2211; (b) N. Yu, R. Poulain, A. Tartar and J.-C. Gesquiere, Tetrahedron, 1999, 55, 13735; (c) M. G. Bogdanov, B. T. Gocheva, D. B. Dimitrova and M. D. Palamareva, J. Heterocycl. Chem., 2007, 44, 673.
(a) M. Cushman, A. Abbaspour and Y. P. Gupta, J. Am. Chem. Soc., 1983, 105, 2873; (b) M. Cushman and J. K. Chen, J. Org. Chem., 1987, 52, 1517.
(a) R. D. Clark and M. Souchet, Tetrahedron Lett., 1990, 31, 193; (b) M. Cushman and J. K. Chen, J. Org. Chem., 1987, 52, 1517; (c) Y. Vara, T. Bello, E. Aldaba, A. Arrieta, J. L. Pizarro, M. I. Arriortua, X. Lopez and F. P. Cossio, Org. Lett., 2008, 10, 4759; (d) D. Q. Tan, A. Younai, O. Pattawong, J. C. Fettinger, P. H.-Y. Cheong and J. T. Shaw, Org. Lett., 2013, 15, 5126; (e) J. Liu, Z. Wang, A. Levin, T. J. Emge, P. R. Rablen, D. M. Floyd and S. Knapp, J. Org. Chem., 2014, 79, 7593.
J. M. Keith, J. F. Larrow and E. N. Jacobsen, Adv. Synth. Catal., 2001, 343, 5.
M. D. Greenhalgh, S. M. Smith, D. M. Walden, J. E. Taylor, Z. Brice, E. R. T. Robinson, C. Fallan, D. B. Cordes, A. M. Z. Slawin, H. C. Richardson, M. A. Grove, P. H.-Y. Cheong and Andrew D. Smith, Angew. Chem. Int. Ed., 10.1002/anie. 201712456.
W. Marckwald and A. McKenzie, Ber. Deut. Chem. Gel., 1899, 2, 2130.
R. Roger and J. Read, Obituary Notices of Fellows of the Royal Society, 1952, 21, 206.
(a) V. S. Martin, S. S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda and K. B. Sharpless, J. Am. Chem. Soc., 1981, 103, 6237; (b) Y. Gao, J. M. Klunder, R. M. Hanson, H. Masamune, S. Y. Ko and K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765.
M. Tokunaga, J. F. Larrow, F. Kakiuchi and E. N. Jacobsen, Science, 1997, 277, 936.
(a) G. C. Fu, Acc. Chem. Res., 2000, 33, 412; (b) G. C. Fu, Acc. Chem. Res., 2004, 37, 542; (c) S. J. Miller, Acc. Chem. Res., 2004, 37, 601; (d) A. C. Spivey and S. Arseniyadis, Angew. Chem. Int. Ed., 2004, 43, 5436.
E. G. Klauber, C. K. De, T. K. Shah and D. Seidel, J. Am. Chem. Soc., 2010, 132, 13624.
(a) A. Thuillier and P. Metzner, Sulfur Reagents in Organic Synthesis (Academic Press, 1994); (b) C. Chatgilialoglu and K.-D. Asmus, Sulfur-Centered Reactive Intermediates in Chemistry and Biology (Springer, 1991); (c) J. M. Berg, J. L. Tymoczko and L. Stryer, Biochemistry 5th edn (Freeman, 2002); (d) L. K. Moran, J. M. Gutteridge and G. J. Quinlan, Curr. Med. Chem., 2001, 8, 763.
A. Peschiulli, B. Procuranti, C. J. O'Connor and S. J. Connon, Nat. Chem., 2010, 2, 380.
(a) I. T. Harrison, B. Lewis, P. Nelson, W. Rooks, A. Roszkowski, A. Tomolonis and J. H. Fried, J. Med. Chem., 1970, 13, 203; (b) T. Y. Shen, Angew. Chem. Int. Ed., 1972, 11, 460; (c) C. T. Chiu, Z. Wang, J. G. Hunsberger, D.-M. Chuang, Pharmacol. Rev., 2013, 65, 105.
K. Tanaka and G. C. Fu, J. Am. Chem. Soc., 2002, 124, 10296.
K. Tanaka and G. C. Fu, J. Am. Chem. Soc., 2003, 125, 8078.
Y. Chen and L. Deng, J. Am. Chem. Soc., 2001, 45 (123), 11302.
(a) Y. Chen, S.-K. Tian and L. Deng, J. Am. Chem. Soc., 2000, 122, 9542; (b) C. Bolm, I. Schiffers, C. L. Dinter and A. Gerlach, J. Org. Chem., 2000, 65, 6984. F. F.Huerta, A. Minidis and J.-E. Bäckvall, Chem. Soc. Rev., 2001, 30, 321. R. S. Ward, Tetrahedron: Asymmetry., 1995, 6, 1475.
M. D. Tsai, H. J. Weintraub, S. R. Byrn, C. Chang and H. G. Floss, Biochemistry, 1978, 17, 3183.
A. J. Blacker, M. J. Stirling and M. I. Page, Org. Process Res. Dev., 2007, 11, 642.
S. Mukherjee, F. Cleemann, T. N. Muller, J. Lex and A. Berkessel, Chem. Comтип., 2005, 0, 1898.
S. Y. Lee, J. M. Murphy, A. Ukai and G. C. Fu, J. Am. Chem. Soc., 2012, 134, 15149.
Y. Ahn, S.-B. Ko, M.-J. Kim and J. Park, Coord. Chem. Rev., 2008, 252, 647.
S. Hoffmann, M. Nicoletti and B. List, J. Am. Chem. Soc., 2006, 128, 13074.
X. Chen, J. Z. M. Fong, J. Xu, C. Mou, Y. Lu, S. Yang, B-An. Song and Y. R. Chi, J. Am. Chem. Soc., 2016, 138, 7212.
R. S. Ward, Tetrahedron: Asymmetry, 1995, 6, 1475.
R. Noyori, M. Tokunaga and M. Kitamura, Bull. Chem. Soc. Jpn., 1995, 68, 36.
S. Caddick and K. Jenkins, Chem. Soc. Rev., 1996, 25, 447.
G. R. Cook, Curr. Org. Chem., 2000, 4, 869.
H. Stecher and K. Faber, Synthesis, 1997, 1.
(a) H. M. R. Hoffmann and J. Rabe, Angew. Chem. Int. Ed., 1985, 24, 94; (b) S. S.
C. Koch and A. R. Chamberlin, Studies in Natural Products Chemistry, Vol. 16. (Ed.: Atta-ur-Rahman), Elsevier Science, 1995, pp. 687.
R. Bandichhor, B. Nosse and O. Reiser, Top. Curr. Chem., 2005, 243, 43.
(a) B. Mao, M. Fañanás-Mastral and B. L. Feringa, Chem. Rev., 2017, 117, 10502;
(b) I. Collins, J. Chem. Soc. Perkin Trans 1, 1998, 1869; (c) N. B. Carter, A. E. Nadany and J. B. Sweeney, J. Chem. Soc. Perkin Trans. 1, 2002, 2324; (d) M. Seitz and O. Reiser, Curr. Opin. Chem. Biol., 2005, 9, 285; (e) R. R. A. Kitson, A. Millemaggi and R. J. K. Taylor, Angew. Chem. Int. Ed., 2009, 48, 9426; (f) S. Gil, M. Parra, P. Rodriguez and J. Segura, Mini-Rev. Org. Chem., 2009, 6, 345.

Selected reviews on DKR: (a) R. Noyori, M. Tokunaga and M. Kitamura, Bull. Chem. Soc. Jpn., 1995, 68, 36; (b) S. Caddick and K. Jenkins, Chem. Soc. Rev., 1996, 25, 447; (c) F. F. Huerta, A. B. E. Minidis and J. -E. Bäckvall, Chem. Soc. Rev., 2001, 30, 321; (d) J. Steinreiber, K. Faber and H. Griengl, Chem. Eur. J., 2008, 14, 8060; (e) H. Pellissier, Tetrahedron, 2008, 64, 1563; (f) H. Pellissier, Adv. Synth. Catal., 2011, 353, 659.
C. G. Goodman, M. M. Walker and J. S. Johnson, J. Am. Chem. Soc., 2015, 137, 122.
A. Verley and F. Bølsing, Ber. Dtsch. Chem. Ges., 1901, 34, 3354.

Selected reviews: (a) J. M. Keith, J. F. Larrow and E. N. Jacobsen, Adv. Synth. Catal., 2001, 343, 1615; (b) E. Vedejs and M. Jure, Angew. Chem. Int. Ed., 2005, 44, 3974; (c) A. C. Spivey and P. McDaid, in Enantioselective Organocatalysis, (Ed.: P. I. Dalko), Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, 2007, pp. 287; (d) A. C. Spivey and S. Arseniyadis, in Asymmetric Organocatalysis (Ed.: B. List), Springer, Heidelberg, 2009, pp. 233; (e) C. E. Müller and P. R. Schreiner, Angew. Chem. Int. Ed., 2011, 50, 6012.

Selected examples of anhydride desymmetrisation by thiolysis: (a) T. Honjo, S. Sano, M. Shiro and Y. Nagao, Angew. Chem. Int. Ed., 2005, 44, 5838; (b) A. Peschiulli, C. Quigley, S. Tallon, Y. K. Gun ko and S. J. Connon, J. Org. Chem., 2008, 73, 6409; (c) A. Peschiulli, B. Procuranti, C. J. ÓConnor and S. J. Connon, Nat. Chem., 2010, 2, 380.

Selected examples of anhydride alkylative desymmetrisation: (a) E. A. Bercot and T. Rovis, J. Am. Chem. Soc., 2002, 124, 174; (b) E. A. Bercot and T. Rovis, J. Am. Chem. Soc., 2005, 127, 247; (c) E. E. Stache, T. Rovis and A. G. Doyle, Angew. Chem. Int. Ed., 2017, 56, 3679.
J. Saltiel, P. T. Shannon, O. C. Zafiriou and A. K. Uriarte, J. Am. Chem. Soc., 19 80, 102, 6799.
C. Cornaggia, Ph. D. Thesis, Trinity College Dublin, 2013.

For recent examples of the use of a bromo-substituent as a removable tool to influence substrate control see: (a) C. A. Rose, S. Gundala, K. Zeitler and S. J. Connon, Synthesis, 2011, 190; (b) S. P. Curran and S. J. Connon, Angew. Chem. Int. Ed., 2012, 51, 10866.

Selected reviews: (a) D. L. Comins and S. P. Joseph in Advances in Nitrogen Heterocycles, Vol. 2 (Ed.: C. J. Moody), JAI, Greenwich CT, 1996, pp. 251-294;
(b) P. D. Bailey, P. A. Millwood and P. D. Smith, Chem. Commun., 1998, 633; (c) H.-P. Husson and J. Royer, Chem. Soc. Rev., 1999, 28, 383; (d) S. Laschat and T. Dickner, Synthesis, 2000, 1781; (e) P. M. Weintraub, J. S. Sabol, J. M. Kane and D. R. Borcherding, Tetrahedron, 2003, 59, 2953; (f) N. Toyooka, H. Nemoto, in Studies in Natural Products Chemistry, Vol. 29 (Ed.: Atta-ur-Rahman), Elsevier, Amsterdam (The Netherlands), 2003, pp. 419-448; (g) M. G. P. Buffat, Tetrahedron, 2004, 60, 1701; (h) M. S. M. Pearson, M. MathL-Allainmat, V. Fargeas and J. Lebreton, Eur. J. Org. Chem., 2005, 2159; (i) J. Cossy, Chem. Rec., 2005, 5, 70; (j) C. Escolano, M. Amat and J. Bosch, Chem. Eur. J., 2006, 12, 8198.
P. Kongsaeree, S. Prabpai, N. Sriubolmas, C. Vongvein and S. Wiyakrutta, J. Nat. Prod., 2003, 66, 709.
Y. Shimojima, T. Shirai, T. Baba and H. Hayashi, J. Med. Chem., 1985, 28.
T. K. Tabopda, G. W. Fotso, J. Ngoupayo, A.-C. Mitaine-Offer, B. T. Ngadjui and M.-A. Lacaille-Dubois, Planta Med., 2009, 75, 1228.
D. Hoppe, T. Krämer, J. R. Schwark and O. Zschage, Pure Appl. Chem., 1990, 62, 1999.

Catalytic Asymmetric Synthesis, 3rd ed.; Ojima, I., Ed.; Wiley-VCH: Hoboken, NJ, 2010.
L. Yan, X. Wu, H. Liu, L. Xie and Z. Jiang, Mini-Rev. Med. Chem., 2013, 13, 845.
F. F. P. Arantes, L. C. A. Barbosa, E. S. Alvarenga, A. J. Demuner, D. P. Bezerra, J. R. O. Ferreira, L. V. Costa-Lotufo, C. Pessoa and M. O. Moraes, Eur. J. Med. Chem., 2009, 44, 3739.
S. Fuchs, V. Berl and J.-P. Lepoittevin, Eur. J. Org. Chem., 2007, 1145.
J. Justicia, L. A. de Cienfuegos, R. E. Estevez, M. Paradas, A. M. Lasanta, J. L. Oller, A. Rosales, J. M. Cuerva and J. E. Oltra, Tetrahedron, 2008, 64, 11938.
H. Yokoe, M. Yoshida and K. Shishido, Tetrahedron Lett., 2008, 49, 3504.
H. M. R. Hoffmann and J. Rabe, Angew. Chem., 1985, 97, 96.
H. M. R. Hoffmann and J. Rabe, Angew. Chem. Int. Ed., 1985, 24, 94.
J. -W. Lee, T. Mayer-Gall, K. Opwis, C. E. Song, J. S. Gutmann and B. List, Science, 2013, 341, 1225.
G. Jaeschke, K. Gottwald, K. Matsuda, R. Formisano, D. A. Chaplin and D. Seebach, Tetrahedron, 1977, 53, 7539.
I. Schiffers, C. L. Dinter, L. Defrère, A. Gerlach, G. Raabe and C. Bolm, Synthesis, 2001, 11, 1719.
(a) G. K. S. Prakash, T. Mathew, C. Panja and G. A. Olah, J. Org. Chem., 2007, 72, 5847-5850; (b) H. Veisi, R. Ghorbani-Vaghei, S. Hemmati and J. Mahmoodi, Synlett, 2011, 2315.
K. Bahrami, M. M. Khodaei and M. Soheilizad, J. Org. Chem., 2009, 74, 9287.
(a) S. Tortoioli, S. Bacchi, C. Tortoreto, J. B. Strachana and A. Perboni, Tetrahedron Letters, 2012, 53, 1878; (b) X.-J. Zhang, S.-P. Liu, X.-M. Li, M. Yan and A. S. C. Chan, Chem. Commun., 2009, 7, 833.
J.-R. Chen, L. Fu, Y.-Q. Zou, N.-J. Chang, J. Rong and W.-J. Xiao, Org. Biomol. Chem., 2011, 9, 5280.
(a) J. A. Kloek and K. L. Leschinsky, J. Org. Chem., 1976, 41 (25), 4028; (b) G. Jakab, C. Tancon, Z. Zhang, K. M. Lippert and P. R. Schreiner, Org. Lett., 2012, 14 (7), 1724.
W. L. Matier and W. T. Comer, Journal of Medicinal Chemistry, 1972, 15 (5), 538.
C. Guo, L. Dong, S. Kephart and X. Hou, Tetrahedron Letters, 2010, 51, 2909.
S. D. McDermott and W. J. Spillane, Synthesis and reactions of sulfamides, 1984, 16, 49.
(a) N. C. Hansen, Acta Chem. Sand., 1963, 17, 2141; (b) G. Schulze and G. Weiss, Belgian Patent, 1966, 667,311; Chem. Abstr., 1966, 65, 5368; (c) G. Weiss and G. Schulze, Justus LiebigsAnn. Chem., 1969, 41, 729.
(a) F. Bell, J. Chem. Soc., 1953, 4182; (b) G. Welss and G. Schuize, Justus Liebigs Ann. Chem., 1969, 40, 729.
T. V. Nguyen and A. Bekensir, Org. Lett., 2014, 16, 1720.
H. Krause and C. Sailer, Journal of Organometallic Chemistry., 1992, 423, 271.
A. Zweig, K. R. Huffman, J. B. Gallivan, M. K. Orloff and F. Halverson, J. Am. Chem. Soc., 1974, 96, 1449.
X. Pan, X. Yinjun, Q. Bo, Z. Han, X. Chungu and H. Hanmin, Journal of the American Chemical Society., 2012, 134, 9902.
D. Owen, C. Rosemary and B. James, Chemical Communications., 2015, 51, 15446.
C. Meng-Yang and T. Chung-Yu, Tetrahedron Letters., 2014, 55, 5548.
H. Takuo and J. Hartwig, Organic Letters., 2008, 10, 1549.
D. Dieter, N. Wilhelm, A. Penenory and U. Stewen, Chemische Berichte., 1989, 122, 533.
M. Mohamed, T. P. Gonçalves, R. J. Whitby, H. F. Sneddon and D. C. Harrowven, Chem. Eur. J., 2011, 17, 13698.
S. Tallon, Ph. D. Thesis, Trinity College Dublin, 2013.
A. Millet, D. Dailler, P. Larini and O. Baudoin, Angew. Chem. Int. Ed., 2014, 53, 2678.
F. Tinto, D. Pagano and E. Manzo, Tetrahedron., 2015, 71, 4379.
H. Takahashi, Y. Suzuki and H. Inagaki, Chem. Pharm. Bull., 1982, 30, 3160.
W. J. Ang, L.-C. Lo and Y. Lam, Tetrahedron, 2014, 70, 8545.
S. Ozasa, Y. Fujioka, J.-I. Kikutake and E. Ibuki, Chemical and Parmaceutical Bulletin, 1983, 31, 1572.
Y. Kosugi, H. Akakura and K. Ishihara, Tetrahedron, 2007, 63, 6191.

[^0]: ${ }^{a}$ Conversion of 239 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole as an internal standard. ${ }^{\text {b }}$ Isolated yield of the main diastereomer. ${ }^{c}$ dr determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. dr $=$ (major diastereomer): $\left(\Sigma\right.$ other diastereomers). ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}.

[^1]: ${ }^{a}$ Conversion of $\mathbf{3 3 8}$ was determined by ${ }^{1} \mathrm{H}$ using p-iodoanisole as an internal standard. ${ }^{b}$ Isolated yield of the main diastereomer. ${ }^{c}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. Here $\mathrm{dr}=$ (major diastereomer):(Σ other diastereomers). ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{e}$ Not determined. ${ }^{\prime} 259$ ($10 \mathrm{~mol} \%$).

[^2]: ${ }^{a}$ Conversion of starting material 244 was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using 4iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. $\mathrm{dr}=$ (major diastereomer):(\sum other diastereomers). ${ }^{c}$ Determined by CSP-HPLC after derivatisation of the carboxylic acid products to the methyl esters by in situ esterification with TMSCHN_{2}. Refers to the major diastereomer. ${ }^{d}$ Determined by CSP-HPLC after derivatisation of the unreacted starting material 366 by ring opening alcoholysis with MeOH followed by in situ esterification with $\mathrm{TMSCHN}_{2} .{ }^{e} \mathrm{~S}^{*}=$ selectivity factor calculated based on the starting material 366 after derivatisation to the product 367 by using the conversion (C) determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis and using the formula: $\mathrm{S}^{*}=\ln [(1-\mathrm{C})(1-$ $\left.\left.e e_{367}\right)\right]: \ln \left[(1-\mathrm{C})\left(1+e e_{367}\right)\right] .{ }^{\dagger}$ Not determined.

[^3]: * Refers to mixture of trans-313:cis-313 in the ratio 87:13.

[^4]: * Refers to mixture of trans-431:cis-431 in the ratio 81:19.

[^5]: * The resonance of one carbon of the minor rotamer could not be identified in the spectrum.

