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Abstract

Spin electronics is a young and thriving research and technology field which relies more on the

spin of the electron rather than its charge. The tunneling magnetoresistance and giant magnetoresis-

tance effects have been already utilized in novel non-volatile magnetic memories and highly sensi-

tive magnetic sensors. The improvement of the current magnetic storage and detection devices de-

pends critically on integration of new compositions with enhanced magnetic and magneto-transport

properties. The data retention and further scalability depend on materials with higher anisotropy

and lower magnetization. A critical parameter is the spin polarization, because the tunneling mag-

netoresistance and the giant magnetoresistance effects depend on it, so does the switching efficiency

through the spin-transfer torque. Therefore, novel materials with higher anisotropy, lower magne-

tization and higher spin polarization are sought-after. Among the spin polarization measurement

techniques, point contact Andreev reflection has established itself as a reliable, straight-forward

and swift method. This thesis focuses on the technique of point contact Andreev reflection (PCAR)

for spin polarization measurements in new materials like topological insulators and disorder ferro-

magnetic compositions. Systematic effort is made to extend the technique of Andreev reflection to

high magnetic field in order to determine the sign of the spin polarization. The integration of novel

compensated half-metallic ferromagnetic composition in magnetic tunnel junctions is presented as

well.

The thesis starts with a brief theoretical overview of the spin electronic field in Chapter 1. The

main devices and physical effects are described. The Blonder-Tinkham-Klapwijk (BTK) theory,

which is the most widely used one for data analysis of PCAR experiments is outlined as well.

All measurement techniques and equipment used during this work are described in the experi-

mental Chapter 2.

Topological insulators have become an intense scientific area during the last decade after the

realization of Quantum Spin Hall effect by Molenkamp’s group in 2007. Later, topological insu-

lating state has been achieved in single materials with high spin-orbit interaction, where arguably

the biggest success is the topological insulating family (BixSb1−x)2Te3, in which case a total com-

pensation of the bulk conductivity can be achieved. Chapter 3 focuses on the spin polarization

measurements in this topological insulator family. The in-plane spin polarization of all pristine
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compositions is extracted to be above 57 %, and it reaches 83 % for the composition which exhibits

the most reduced bulk conductance. More importantly, carrier depletion has been demonstrated in

the two end compositions, Bi2Te3 and Sb2Te3, by the observation of structure in the differential

conductance when the superconducting tip is quenched in high-field. Furthermore, the influence of

paramagnetic ion doping on the spin polarization values has been investigated. Both chromium and

vanadium doping decrease the spin polarization values. The spin momentum locking in topologi-

cal insulators provides spin polarization sign reversal by a mere switch in the polarity of a ballistic

current, a functionality which can be very beneficial in future spin electronics devices.

The magnetotransport and magnetic properties of the Fe60Al40 disordered composition have

been investigated in Chapter 4. The disorder is induced by irradiation with Ne+-ions with variable

fluences. The pristine Fe60Al40 is weakly paramagnetic, however, Fe-Al antisite defects lead to

higher number of Fe-Fe nearest neighbours and ferromagnetic order with Curie temperature up to

620 K. The spin polarization is determined to increase from 10 % in the non-irradiated to 46 % in

the sample with the highest irradiation dose. The spontaneous Hall angle is analyzed as well and

extracted to reach 3 %, a value close to the highest reported so far for ordinary magnetic compo-

sitions *. Furthermore, the saturation magnetization and the Curie temperature are investigated to

increase systematically as a function of the irradiation dose.

Chapter 5 focuses on Andreev reflection in high magnetic field. The main goal is extraction of

the spin polarization sign through the observation of Zeeman-splitting in the superconductor quasi-

particle density of states at temperature of 2 K. The experiments involve Nb-Ti superconducting

wires and MgB2 superconducting films. Clear PCAR signal has been observed up to 9 T with Nb-

Ti wires, unfortunately, with no Zeeman splitting. This provides opportunity for spin polarization

investigation of novel ferromagnetic compositions where the spin polarization depends strongly on

the applied magnetic field. High-field PCAR with MgB2 superconducting films have demonstrated

clear Zeeman splitting of the density of states and the spin polarization sign has been correctly

extracted as positive for Fe.

High tunneling magnetoresistance (TMR) effect of 40 % (at 10 K) has been achieved with com-

pensated half-metallic ferrimagnet Mn2RuxGa in Chapter 6. The TMR has been investigated as

a function of the applied bias and it exhibits positive-negative sign reversal which is typically not

observed in standard magnetic tunnel junctions. Extensive analysis is given of the magnetotrans-

port properties of the devices and the latter demonstrates that the TMR effect is currently limited

by the imperfection in the MgO barrier (mainly caused by Mn diffusion). Crucially, appreciable

TMR effect has been observed at the very compensation point of the Mn2RuxGa electrode where

the magnetization is strictly zero. The latter is taken as a clear indication that the Fermi level spin

*Magnetic topological insulators have reached 99 % in the quantum anomalous Hall regime but they are not con-
sidered as "ordinary" magnetic compositions.
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polarization in this composition is determined by one of the Mn sublattices rather than by the over-

all magnetization. Importantly, the devices have demonstrated high magnetic field immunity (at

least 0.5 T) in broad temperature range (10 K-300 K), a property which will be critical in future

high areal density magnetic random access memories.

Each result chapter finishes with a short conclusion and a more in-depth overview is given at

the end of the thesis.
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Chapter 1

Spin electronics

1.1 Definition of spin

The existence of an intrinsic angular momentum of an electron has been first postulated by

Goudsmit and Uhlenbeck. In classical physics terms, the rotation of a charged ball produces cur-

rent loops and, therefore, has magnetic moment. In reality, the electron is a fundamental particle,

has no compound structure and, therefore, it has no volume charge density. Instead, the internal

magnetic moment of the electron is a quantum mechanical property which cannot be interpreted in

classical physics terms. The crucial Stern-Gerlach experiment (SGE) has led to the postulation of

the electron spin. The imminent fundamental problem before this experiment is the fine structure

of the hydrogen spectral lines. The SGE represents splitting of a beam of silver atoms in gradient

magnetic field. The observation is that a well-collimated beam splits into two separate paths. The

gradient magnetic force acts on a magnetic dipole and, therefore, the experiment is an indication

of an intrinsic magnetic moment of the silver atoms. The orbital moment in the case of silver is

zero, hence, the effect is ascribed to the intrinsic magnetic moment of the electron*. Historically,

the spin of the electron has been introduced as a mathematical entity in the quantum mechanics by

Wolfgang Pauli.

1.1.1 Orbital moment

Bohr’s idea of the orbital motions of electrons is historically the first successful incorporation of

the wave-particle duality. The basic postulate is that the circulating electron must form a standing

wave along its orbit in order not to emit electromagnetic radiation. The theory is a remarkable

*In fact, the physical community has been unaware at that stage that the total orbital momentum of the silver is
zero. Stern and Gerlach initial idea is that the orbital magnetic moment of the outermost valent electron of silver is
measured. A few years later, it is realized that the orbital moment of an s electron is zero. An interesting review on
how the experiment is performed and largely disbelieved for a few years is given by Friedrich and Herschbach[99]
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Chapter 1. Spin electronics

success because it calculates accurately the observed spectral lines in the hydrogen spectrum. A

significant leap is attributed to Schrödinger who has introduced the idea of the wavefunction and a

quantum mechanical Hamiltonian. The time-independent form of the Schrödinger equation is(
− h̄

2m
∇

2 +V
)

Ψ = EΨ, (1.1)

where V is the potential acting on the electron wavefunction, E is the energy eigenvalue, and

∇2(= ∆) = (∂ 2/∂x2,∂ 2/∂y2,∂ 2/∂ z2) is the Laplacian operator. The modulus of the wavefunction,

Ψ(~r)2, gives the probability for locating the particle in infinitesimal volume dV at position~r. The

Coulomb repulsion potential between the atom and the electron in the hydrogen atom has spherical

symmetry and, therefore, the respective ∇2 operator has the form:

∇
2 =

∂ 2

∂ r2 +
2
r

∂

∂ r
+

1
r2

(
∂ 2

∂θ 2 + cotθ
∂

∂θ
+

1
sin2

θ

∂ 2

∂φ 2

)
. (1.2)

The fact that there are no mixed derivatives means that the wavefunction can be split into three

components: radial(r), polar(θ ), and azimuthal(φ ):[
− h̄

2m
∇

2− e2

4πε0r

]
R(r)Θ(θ)Φ(φ) = ER(r)Θ(θ)Φ(φ). (1.3)

The separation leads to three independent differential equations:

1
Φ

d2Φ

dφ 2 =−m2
l , (1.4)

1
Θ

[
sinθ

d
dθ

(
sinθ

dΘ

dθ

)]
+ l(l +1)sin2

θ = m2
l , (1.5)

d
dr

(
r

dR
dr

)
− 2mr2

h̄2

[
− e2

4πε0r
−E

]
R = l(l +1)R, (1.6)

in which case the eigenfunctions and (some) eigenvalues of each part are

Φ(φ) = exp(imlφ) ml = 0,±1,±2, . . . ,±l (1.7)

Θ(θ) = APml
l (cosθ) l = 0,1,2, . . . ,n−1 (1.8)

R(r) = A jl(kr)+Bnl(kr) k =

√
2mE
h̄

, (1.9)

where Pml
l is the associated Legendre function, jl(kr) and nl(kr) are the spherical Bessel and Neu-

mann functions of order l. After imposing boundary conditions on the radial component, the prin-

cipal quantum number n appears and n = 0,1, . . .. The three quantum numbers n, l,ml appear from

2



1.1. Definition of spin

the solution of the Schrödinger equation in a purely mathematical way. It can be demonstrated that

if the quantum angular momentum operators are considered:

l̂llx = ih̄
(

sinφ
∂

∂θ
+ cotθ cosφ

∂

∂φ

)
, (1.10)

l̂lly = ih̄
(
−cosθ

∂

∂θ
+ cotθ sinφ

∂

∂φ

)
, (1.11)

l̂llz =−ih̄
∂

∂φ
, (1.12)

then the operator l̂ll
2

coincides with the differential operator acting on the polar component,Θ, above.

Therefore, the magnitude of the angular momentum is h̄
√

l(l +1). The differential operator acting

on the azimuthal component, Φ, coincides with l̂llz. Therefore, the z- axis projection of the angular

momentum is h̄ml (see Fig. (1.1) (b)). The commutator relations between the angular momentum

operators are: [
l̂llx, l̂lly

]
= ih̄l̂llz,

[
l̂llz, l̂llx

]
= ih̄l̂lly,

[
l̂llz, l̂lly

]
= ih̄l̂llx. (1.13)

It is important that the operators l̂llz and l̂ll
2

commute which means in quantum mechanical terms that

their eigenvalues can be simultaneously measured.

1.1.2 Spin of the electron

In a purely mathematical fashion, Pauli has proposed that the internal angular momentum op-

erators of the electron must obey the same commutation rules. Furthermore, it is that required the

eigenvalues to be ±1
2 h̄ and the eigenvectors to be ’spin-up’

(
1
0
)

and ’spin-down’
(

0
1

)
. The Pauli

matrices are

ŝssx =
h̄
2

(
0 1

1 0

)
ŝssy =

h̄
2

(
0 −i

i 0

)
ŝssz =

h̄
2

(
1 0

0 −1

)
(1.14)

It can be checked that the square of the total spin angular momentum is

ŝss2 = ŝssx
2 + ŝssy

2 + ŝssz
2 =

3h̄2

4

(
1 0

0 1

)
. (1.15)

Therefore, the magnitude of the spin is
√

3h̄/2 =
√

s(s+1)h̄ and it has projection along the z-

axis: ±(1/2)h̄. The forth quantum number, ms, is introduced, so that the spin moment is msh̄ and

ms = ±(1/2) (see Fig. (1.1) (a)).In applied external magnetic field, the Zeeman effect results in

two energy levels splitting

HZ =−m̂.µ0~H, (1.16)
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Chapter 1. Spin electronics

where each has eigenvalues gemsµBµ0H. The electron spin gyromagnetic ratio is ge ≈ 2.*. The

Pauli exclusion principle states the two electrons cannot have the same combination of the four

atomic numbers: n, l,ml , and ms. This law along with the empirical Hund’s rules determine how

electrons populate the energy levels in an atom.

O

z

mlℏ �� ℏ

z

1/2ℏ

-1/2ℏ
3/4ℏ

µ0H

(a) (b)

O
3/4ℏ

l ( l + 1 )

Figure 1.1: Schematic representation of the spin (a) and orbital angular moment (b) magnitudes. The magnitudes and
the projections along the z-axis are presented. The applied magnetic field µ0H defines the z-axis direction.

1.1.3 Moment of an atom

The total magnetic moment of an isolated atom is a sum of its orbital and spin magnetic mo-

ments

m̂ =−µB

h̄
(gl l̂ll +gsŝss), (1.17)

m̂ =−µB

h̄
(l̂ll +2ŝss), (1.18)

where gl = 1 and ge = 2 are the orbital and spin g-factors, respectively.

There is an additional Coulomb repulsion term in a multi-electron atom

Ve−e =
1
2 ∑

i, j

e2

4πε0ri j
, (1.19)

and the Schrödinger equation is not analytically solvable for more than two electrons. A possible

way to treat the system is by considering that each additional electron experiences a central po-

tential of the rest of the electrons occupying lower levels. The potentials are then determined self-

consistently following the Hartree-Fock approximation. An important consequence of the electron

*With quantum electrodynamics corrections, ge ≈ 2.002319
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1.1. Definition of spin

cloud shielding of the central potential is that the electron energy levels does not depend only on the

principle quantum number n but on the orbital number l as well. This becomes important at level

n = 4, l = 0 (4s) which has lower energy than n = 3, l = 2 (3d), and therefore, the 4s state is pop-

ulated first. The latter is important for the electronic configuration of the transition metal elements.

For instance, Fe (Z = 26) has configuration [Ar]3d6 4s2 and Co (Z = 27) is [Ar]3d7 4s2*. This rule

leads to modified occupation of the higher energy levels as well. The electron fill up sequence looks

like that: 1s→ 2s→ 2p→ 3s→ 3p→ 4s→ 3d→ 4p→ 5s→ 4d→ 5p→ 6s→ 4 f → 5d→ 6p

Once the electronic configuration of an atom is known the spin and the orbital moments obey three

empirical rules, Hund’s rules:

1. The maximum total atomic spin S = ∑msi is obtained while obeying the Pauli exclusion

principle.

2. The total orbital momentum L = ∑mli is maximized.

3. Total angular momentum, J, is equal to |L− S| when the shell is less than half full, and is

equal to |L+S|when the shell if more than half full. If a shell is half full L = 0, and therefore

J = S.

This means that electrons occupy the free states with all spin parallel within a shell as long as the

Pauli principle is not violated.

The transition metal magnetic ions follow the L−S coupling scheme†. In this case, the individ-

ual orbital mli and spin quantum numbers msi of each electron are "good" quantum numbers and

they are added separately. Therefore, the total orbital number and the total spin number are

S = ∑msi , L = ∑mli. (1.20)

in this case the total angular momentum ~J is a vector sum of the two: ~J = ~L+~S. Therefore, the

magnitude is |L−S| ≤ J ≤ L+S. In elements with high-atomic number, the spin-orbit interaction

is strong and tends to couple the orbital and spin moment of each electron individually. In this

case, the coupling between the orbital and spin moments is stronger ~Ji = ~Li +~Si. Then the total

moments of the electrons are added together ~J = ∑~Ji. This case pertains to heavy elements in the

lanthanide family.

An example is given here for the Cr3+ ion which is [Ar]3d3‡. The spin configuration in this

case is:
*It is instructive to mention that after the 3p shell is filled up in Ar (Z = 18), K (Z = 19) is [Ar]4s1, then Ca

(Z = 20) is [Ar]4s2, at this point 4s is filled up and the next element is Sc (Z = 21) with electronic configuration
[Ar]3d14s2.

†Also known as Russell-Saunders
‡Starting from [Ar]3d54s2 for Cr atom, and removing first the two s electrons and then one d
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Chapter 1. Spin electronics

ml 2 1 0 -1 -2 2 1 0 -1 -2

ms 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

polarity s ↑ ↑ ↑

Then, the total spin moment is S = 3/2. The orbital angular moment of the 3d elements is

quenched (L = 0) and, therefore, J = S. Therefore, the moment of the Cr3+ is m= 2µB
√

S(S+1)

≈ 3.87µB. This type of calculations applies relatively well to the cases when the paramagnetic ions

are isolated from each other. Such is the case in paramagnetic salts[134]. When paramagnetic

ions interact between each other, bands are formed by the hybridization of the outermost valence

electrons and the magnetic behaviour depends on the orbitals overlap and the distance between the

neighbouring atoms.

1.1.4 Exchange interaction and band splitting

There are two general theories on the magnetic behaviour of the elements: the localized mag-

netism and the itinerant magnetism. The former describes well the heavy rare-earth elements while

the latter fits the behaviour of the 3d transition elements. Whenever electrons are brought together,

the wavefunction of the electron cloud is represented by the wavefunctions of all separate electrons.

Consider the simple system of two electrons with single electron wavefunction ψ(r1) and ψ(r2),

then the compound two-electron wavefunction Ψ(r1,r2) could be:

Ψ(r1,r2) = ψa(r1)ψb(r2)+ψa(r2)ψb(r1) (1.21)

Ψ(r1,r2) = ψa(r1)ψb(r2)−ψa(r2)ψb(r1), (1.22)

where the ψa(r1) is the wavefunction of electron 1 on atom a, and ψa(r2) is the wavefunction

of electron 2 on atom b. It is important that the modulus of the combined wavefunction Ψ∗Ψ

is unchanged when the electrons are swapped, i.e. Ψ(r1,r2) must be antisymmetric. If Ψ∗Ψ is

symmetric upon electrons interchange, this is violation of the Pauli exclusion principle. The first

combination above is symmetric and it should be excluded, while the second in antisymmetric. In

this simple two-electron model, the energy is calculated in a Heilter-London approximation[133]

E =
∫ ∫

Ψ
∗(r1,r2)〈H〉Ψ(r1,r2)dr1dr2, (1.23)

with the total Hamiltonian 〈H〉= 〈H1〉+ 〈H2〉+ 〈H12〉, where 〈H1〉 and 〈H2〉 are the single particle

Hamiltonians, and 〈H12〉 is the electron-electron interaction Hamiltonian. In this case the sin-

gle particle Hamiltonians obey the relations: 〈H1〉ψa(r1) = Eaψa(r1) and 〈H2〉ψb(r2) = Ebψb(r2).
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1.1. Definition of spin

Therefore, the total energy integral is reduced to

E =Ea

∫
ψ
∗
a (r1)ψa(r1)dr1 +Eb

∫
ψ
∗
a (r2)ψa(r2)dr2

+
1
β

∫ ∫
ψ
∗
a (r1)ψ

∗
b (r2)〈H12〉ψa(r1)ψb(r2)dr1dr2

+
1
β

∫ ∫
ψ
∗
a (r1)ψ

∗
b (r2)〈H12〉ψb(r1)ψa(r2)dr1dr2,

where two double integrals result from the Coulomb electrostatic interaction (Q) and the exchange

energy (J) of the electrons between the two atoms. The latter exchange energy is the quantum

mechanical reason for the formation of bulk magnetism.

In fact, the total wavefunction is a sum of the orbital (Ψ) and the spin component (φ ): Ψ̃ =

Ψ(r1,r2)φ(s1,s2). Where the spin component is constructed in the same fashion as the orbital one:

φ(s1,s2) = φa(s1)φb(s2)+φa(s2)φb(s1), (1.24)

φ(s1,s2) = φa(s1)φb(s2)−φa(s2)φb(s1). (1.25)

Where symmetric spin wavefunction φ(s1,s2) means parallel spin alignment, and antisymmetric

function - antiparallel spin alignment. Therefore, the Pauli exclusion principle requires the total

wavefunction Ψ̃ to be antisymmetric. Hence, the allowed combinations are: 1. symmetric orbital

and antisymmetric spin component; 2. antisymmetric orbital and symmetric spin component*. The

exchange energy is equal to −J 1
β

for parallel spin. Therefore, positive J means parallel spin order

and, therefore ferromagnetic behaviour, whereas negative J corresponds to antiparallel orientation,

and therefore, antiferromagnetic behaviour.

In the Heisenberg model, the Hamiltonian of the interaction between the spins of neighbouring

atoms is calculated as a summation

〈H〉=−2∑∑Ji jsis j, (1.26)

where the summation is usually assumed between the nearest neighbours. A simple observation

within the Heisenberg model is that the atoms with filled shells have no exchange energy and,

therefore, are not magnetic: Eex = −2J ∑si ∑s j = 0, because ∑si = 0. Therefore, only unfilled

shells contribute to the magnetic interaction.

An important contribution towards the physical understanding of the exchange interaction is

the Bethe-Slater curve (see Fig. (1.2)). The latter pertains to the 3d transition metal chromium,

manganese, iron, cobalt and nickel. Slater has compared the values of the interatomic distance rab

and the rd radii of the incomplete d shells for these elements. A clear correlation is found and in this

*That is why the symmetric combination in the orbital wavefunction has not been discarded.
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case small ratios rab/rd result in antiferromagnetic interaction with a cross-over to ferromagnetic

interaction for higher rab/rd . The exchange constant has maximum between the values of Fe and

Co, and then decreases. Theory for calculation of the exchange integral J as a function of the

atomic spacing and the orbital radius for the case of two one electron atoms is given by Bethe

J =
∫ ∫

ψ
∗
a (r1)ψ

∗
b (r2)

(
1

rab
− 1

ra2
− 1

rb1
+

1
r21

)
ψa(r1)ψb(r2)dr1dr2, (1.27)

where rab is the distance between the atomic cores, ra2 and rb1 are the distances between the

electrons and the corresponding nuclei, and r21 is the distance between the two electrons. Good

agreements is achieved with the experimental data of Slater. Although this model is proven to be

Figure 1.2: Bethe-Slater curve for the exchange interaction sign and magnitude of the 3d transition metal elements.

incorrect by Herring[135], it demonstrates good agreement for the 3d elements. One important

point is the case of Mn. It is weakly antiferromagnetic with TN ≈ 96K and is positioned close to

the cross-over of the exchange integral sign and on the maximum slope. Therefore, small changes in

the interatomic separation of a Mn-containing composition might result in significant change in the

magnetic behaviour. Such tunability is demonstrated in the ferrimagnetic composition Mn2RuxGa

in Chapter 6.

The magnetization of 3d elements and their alloys obey an empirical law known as the Slater-

Pauling curve. The magnetization depends directly on the number of valence electrons. This

is known as itinerant magnetism as the magnetic moments do not reside on localized electrons.

The fact that the magnetic moment is carried by nearly-free conduction electrons implies that the

electrical current has overall non-zero spin polarization. The spin electronics domain is built upon

this feature. In a simple free electron picture, the electron spins aligned parallel with the applied

field have lower energy, while antiparallel electron spins have higher energy. This is due to the fact

that a magnetic moment experiences Zeeman energy E = −µ0~m.~H. In ferromagnetic materials,

the band energy offset is determined by the exchange energy J = 2µ0µsHex. Where for 3d Fe

and Co, the exchange energy is ∼ 1eV and the exchange field is ∼ 1000T. In reality, the density

8



1.1. Definition of spin

of states of the 3d ferromagnets consists of exchange-split d-pockets and parabolic s-bands. The

Stoner criterion requires diverging susceptibility. The latter results in spontaneous band splitting

and magnetization. The limit for this is set by

IN↑,↓(EF)> 1, (1.28)

where the density of states per atoms for each spin state is N↑,↓(EF) = ρ↑,↓(EF)/(2n). The latter

means that the band population at the Fermi level must be sufficiently high. The Stoner exchange

parameter I is similar to the exchange constant J defined above.

1.1.5 Spin polarization

The three distinct spin-split density of states structures are represented in Fig. (1.3). There is

no exchange splitting in non-magnetic elements and alloys (like Cu, Al, Au), and the spin-up and

spin- down bands have the same population for all energies. The case of 3d transition metal ferro-

magnetic elements and their alloys (Fe, Co, Ni, FexCo1−x, NixCo1−x), 4 f rare-earth elements and

the 3d-4 f intermetallic alloys (CoxGd1−x) results in finite exchange-splitting, magnetization and

finite spin polarization. Generally, the transport value of the spin polarization for these materials

has been determined to be in the range 40-50 %. The spin polarization can be defined at different

binding energies with respect to the Fermi level*. However, the Fermi level spin polarization is

the most important as the spin electronic devices are operated at low bias for two main reasons -

smaller power dissipation and higher magnetoresistance effect. A clear distinction must be made

between the spin polarization and the magnetization. The spin polarization is a differential prop-

erty of the density of states in a very narrow energy window, ∆E, : P(E) = (µ↑(E)−µ↓(E))∆E,

where the energy window ∆E is determined by the thermal energy. The net magnetization is an

integral property of the spin-split density of states: M =
∫
(µ↑(E)− µ↓(E))dE. Therefore, the

Fermi level spin polarization might depend on narrow spin pockets which have small contribution

towards the overall magnetization. It is generally assumed that the spin polarization decreases with

temperature and this is attributed to spin-wave excitation and thermal smearing of the density of

states. Unfortunately, there is no reliable technique for the extraction of the P(T ) dependence. The

latter is sometimes estimated from the temperature dependence of the tunneling magnetoresistance

effect in magnetic tunnel junctions, however, it is well-known that the tunneling spin polarization

depends significantly on the quality and properties of the ferromagnetic/insulator interface rather

than on the bulk properties of the ferromagnet.

Finally, the case of half-metallic compositions is considered. There is no density of states at

*For instance, spin polarization at different binding energies is studied by spin-resolved photoemission spec-
troscopy, however, the latter has limited energy resolution.
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Chapter 1. Spin electronics

Figure 1.3: Schematic example of spin-split density of states. Panel (a) - zero spin polarization (P = 0%), panel (b) -
non-zero spin polarization 0% < P < 100%, panel (c) - half-metal with P = 100%.

the Fermi level for one of the spin sub-bands. The spin polarization is 100 %. Materials consid-

ered to be half-metals are CrO2, La0.67Sr0.33MnO3(LSMO), and some Heusler compounds like

NiMnSb and Mn2Ru0.5Ga. The highest measured transport spin polarization has been reported for

CrO2(≈ 90%) and LSMO(≈ 73%). Unfortunately, they have little technogical significance due

to low Curie temperature ≈ 360K and poor carrier mobility. Half-metallicity is a property which

is usually predicted by density functional theory calculations. In real materials, crystallographic

disorder, interface imperfections and spin-orbit interaction may destroy this beneficial property.

Strictly speaking, the spin polarization has to be defined in multiple ways. For instance, the

transport spin polarization does not depend only of the density of states but also on how mobile the

electrons are. Therefore, the spin polarization definition is:

Pi =
ρ↑vi
↑−ρ↓vi

↓
ρ↑vi
↑+ρ↓vi

↓
, (1.29)

where ρ↑(↓), vi
↑(↓) are the density of states and velocity for spin-up (spin-down), and i = 0,1, and

2. Summation over all bands is assumed in the expression above. The bare density of states spin

polarization is defined by n = 0 and is usually measured by spin-resolved photoemission spec-

troscopy. The ballistic definition of the spin polarization is given by n = 1 and can be measured by

both spin-polarized tunneling and point contact Andreev reflection (PCAR). Finally, the diffusive

definition (n = 2) is measurable by diffusive PCAR. The different velocities for the spin-subbands

might lead to spin polarization in material which has otherwise close-to-zero bare density of states

spin polarization. Such is the case for the 4d itinerant ferromagnet SrRuO3[275].

10



1.2. Spin electronic devices

1.2 Spin electronic devices

A brief overview will be presented on the effect of giant magnetoresistance (GMR) and tun-

neling magnetoresistance (TMR). The devices built upon the GMR effect are known as GMR spin

valves (SVs), whereas these constructed around the TMR are known as magnetic tunneling junc-

tions (MTJs). The basic structure of the devices and a concise review will be given.

1.2.1 Spin valves

The GMR effect has been discovered independently by Baibich et al.[14] and Binasch et al.[28]

(see Fig. (1.4)). The multilayers are ferromagnet/non-magnetic(x) spacer with multiple periods.

The thickness x is chosen so that there is antiferromagnetic coupling between the ferromagnetic

layers and the stable configuration in the structure is alternating polarities in zero external applied

field. The coupling between two ferromagnetic layers through a metallic spacer is known as the

Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction[283, 165, 400]. The RKKY theory explains

the coupling between the localized magnetic moments in a material via the indirect exchange inter-

action with the conduction electrons.

Figure 1.4: Panel (a) - first demonstration of GMR effect by Baibich[14] in Fe(3 nm)/Cr(0.9 nm)) multilayers with
40 periods. The maximum observed GMR is 74 % at T = 4K. Curve a© - field is applied in the plane and along
the current direction, curve b© - field is in plane and perpendicular to the current direction, and curve c© - field is
perpendicular to the plane of the stack. Panel (b) - saturation magnetoresistance in Co/Ru(x)/Co multilayers which
demonstrates RKKY coupling. The graph is after Parkin[267].

The fact that the coupling is oscillatory and varies between ferromagnetic and antiferromagnetic

is established shortly afterwards by Parkin[267, 266]. The current flows in the plane of the structure

and it is demonstrated that the resistance in the antiparallel magnetization alignment is higher than

in the parallel resistance alignment. This configuration is known as current-in-plane GMR (CIP-
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Chapter 1. Spin electronics

GMR) and the GMR effect is defined as

GMR =
RAP−RP

RP
, (1.30)

where RAP and RP are the antiparallel and the parallel state resistances, respectively.

I

I↑

I↓

I

I↑

I↓

r/2 r/2 r/2

r/2

R/2

R/2R/2 R/2

(a) - Parallel state (b) - Antiparallel state

Figure 1.5: Mott two current model for the spin dependent scattering in CIP-GMR spin valves. The top part repre-
sents the spin scattering at the two interfaces and the bottom part the corresponding circuits theory. Panel (a)-parallel
configuration, Panel (b)-antiparallel configuration.

The behaviour is ascribed to spin dependent scattering between the magnetic layers. Further-

more, the antiparallel resistance increases when the period of the multilayered structure is higher

which is a further demonstration of spin related scattering. The effect can be phenomenologically

described by the Mott two current model which is outlined in Fig. (1.5). In this case, the overall

current, I, is split into spin-up, I↑, and spin-down, I↓, current components. Then the spin scatter-

ing of each component on the two ferromangetic/spacer interfaces is considered. For the parallel

resistance case, the majority, spin-up, component has low scattering rate on both interfaces and,

therefore, lower resistance r/2, whereas the minority, spin-down, component has high scattering

rate on both interfaces and, therefore, higher resistance. For the antiparallel orientation, the spin-up

electrons have high scattering rate on one of the interfaces R/2 and low scattering rate on the other

interface r/2; the spin-down electrons have similar behaviour but the scattering rates are inversed.

Therefore, the resistance in the parallel and antiparallel case is

RAP =
Rr

R+ r
, RP =

R+ r
4

, (1.31)

it could be easily shown that the relation RAP ≥ RP is always true.
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1.2. Spin electronic devices

There is alternative measurements configuration in which the current flow perpendicular to the

stack - CPP-GMR effect. Such measurements have been first done by Pratt et al.[272]. Due to the

fact that the resistance in these devices is very low, they are measured with high sensitive current

SQUID pre-amplifier for low impedances[272] or they have to be patterned into nano-pillars. The

CPP-GMR devices attract significant attention because the CPP-GMR effect is higher[272, 410]

and CPP-GMR nano-pillar magnetic sensor are projected to be integrated in higher areal den-

sity hard-disk drives[82]. While CIP-GMR effect is mainly due to spin scattering at the inter-

faces, the CPP-GMR is due to spin accumulation as the current is injected across the spacer. Re-

cently, CPP-GMR effect up to 72 % has been realized with the structure Co2Fe(Ga0.5Ge0.5)-AgZn-

Co2Fe(Ga0.5Ge0.5) [82]. The extensive theory of the CPP-GMR is given by Valet and Fert[352].

1.2.2 Magnetic tunnel junctions

Another building block in the field of spin electronics is the magnetic tunnel junction (MTJ). It

has close similarity with the GMR SV, however, in this case the role of metallic spacer is played by

an insulating barrier (AlOx, MgO, SrTiO3, AlN are some of the exploited choices). The tunneling

magnetoresistance (TMR) ratio in the MTJ devices is significantly higher than the GMR achieved

with SVs. The room temperature records are 70 %[363] in AlOx-based MTJs and 600 %[148]

in MgO-based MTJs. The discussion on the difference between the incoherent (through AlOx

barriers) and coherent tunneling (through MgO barriers) is left for later (see Chapter 6). Because

of the higher MR effects and the better electrical control of the magnetization through spin-transfer

torque, MgO-based MTJs are more suitable for storage elements at present*.

The first observation of TMR has been made by Jilliere [154] in MTJs with the structure

Fe/Ge/Co (see Fig. (1.6) (a)). The observed effect is approximately 11 % at 4.2 K at zero bias and

decreased quickly both in bias and in temperature. The result has not attracted significant attention

apart from a report of TMR with the antiferromagnetic barrier NiO by Maekawa and Gäfvert[208].

The breakthrough is made in 1995, when Moodera[235] and Miyazaki[229] demonstrate room-

temperature TMR in excess of 10 % in MTJs with amorphous AlOx barrier (see Fig. (1.6) (b)).

Significantly higher TMR ratios are obtained in 2004 by Parkin[268] and Yuasa[403] when MTJs

with a crystalline MgO barrier are grown and investigated. For technological reasons, the structure

of an MTJ is significantly more complicated than the simple ferromagnet-insulator-ferromagnet

trilayer. An optimized in-plane MgO-based MTJ grown on Si/SiO2 standard wafer is presented on

Fig. (1.7). The reason for most of the layers is explained on the graph. The synthetic antiferromag-

netic (SAF) structure is utilized for the bottom electrode in order to reduce the stray field effect

*The resistance-area product in MTJs is constant. Therefore, the area reduction in the MTJs leads to higher
resistance. Possible solution is reduction of the barrier thickness, however, this degrades the TMR ratios and generally
results in lower device yield due to defects in the ultrathin barrier.
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Figure 1.6: Panel (a)-the first demonstration of TMR effect. Graph is after Julliere [154]. Panel (b)-high room temper-
ature TMR effect demonstrated by Moodera[235].

on the top electrode[212]. The Ru thickness is chosen so that the RKKY exchange interaction is

antiferromagnetic and the two CoFe(B) layers in the SAF have opposite magnetizations. There-

fore, the overall SAF stray field on the free ferromagnetic layer is reduced. The Ru layer acts as

an efficient boron getter. The boron is pushed away upon annealing from the amorphous CoFeB

and the CoFe crystallizes. If no boron getter layer is present, boron-oxide is formed at the MgO

interfaces and this has detrimental effect on the TMR values[401]. Finally, the Ru layer acts as Mn

diffusion barrier as well[212].

Julliere’s model which describes the relation between the spin polarizations of the ferromag-

netic electrodes and the TMR effect is considered in detail. The tunneling current between two

electrodes is given by:

I(V ) ∝

∫ +∞

−∞

ρ1(E)T (E− eV )ρ2(E− eV )( f (E)− f (E− eV ))dE, (1.32)

where ρ1(E) and ρ2(E) is the density of states energy dependence of the two electrodes*, and

T (E − eV ) is the tunneling probability for the particular energy and applied bias. When the tun-

neling is between ferromagnetic electrodes then it is spin dependent and depends on the particular

spin-split density of states. Therefore, there are antiparallel (IAP) and parallel (IP) state currents.

The representation of the tunneling between the spin sub-bands of the two ferromagnetic electrodes

is shown on Fig. (1.8). In the parallel case, the current depends on the products of the majority-

majority and minority-minority carriers density of states of the 1-2 electrodes. In the antiparallel

case, the magnetization M2 of the second electrode is assumed to be opposite with respect to the

magnetization M1 of the first electrode. The negative magnetization inverses the structure of the

*It is assumed that the electrodes have the same Fermi energy EF, and that E = 0 is the Fermi level.
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Promotes fcc(111) texture in IrMn

Antiferromagnetic RKKY coupling

Si/SiO2

Ta(5)

Ru(30)

Ta(5)
NiFe(5)
IrMn(10)

CoFe(2.5)
Ru(0.9)

CoFeB(3)
MgO(x)

CoFeB(3)
Ta(5)
Ru(5)

Substrate
Seed layer for Ru

Bottom electrode

Seed layer for NiFe

Produces exchange bias
Exchange biased layer

Pinned layer of SAF
Tunnel barrier
Free layer
Boron getter
Capping layer

SAF

Figure 1.7: Optimized stack structure for in-plane magnetization MgO-based MTJs. The thickness of each layer is
displayed in brackets in nm. This structure has been optimized in our lab and achieves TMR of 295 %. The structure
is after Lau[193].

M2M1 M2M1

(a) (b)

Figure 1.8: Schematic representation of the tunneling magnetoresistance between the spin-split density of states of
the two ferromagnetic layers, 1 and 2. Positive spin polarization is assumed for both electrodes. Panel (a)-parallel
resistance, panel (b)-antiparallel resistance. Red arrows indicate tunneling between spin-up states and blue arrows-
between spin-down states. The magnetization directions, M1 and M2, are presented as green arrows.

spin-split bands. Therefore, the spin-up electrons are in this case minority, and the spin-down

electrons are majority. The current in the antiparallel case depends on the products of the majority-
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Chapter 1. Spin electronics

minority and minority-majority carriers DOS of the 1-2 electrodes.

Generally, the respective tunneling probabilities, T , are spin-dependent as well, then the tun-

neling current can be represented as

IAP(V ) ∝

∫ +∞

−∞

[
ρ
↑
1 (E)T↑↓(E− eV )ρ↓2 (E− eV )+ρ

↓
1 (E)T↓↑(E− eV )ρ↑2 (E− eV )

]
×

× ( f (E)− f (E− eV ))dE,

IP(V ) ∝

∫ +∞

−∞

[
ρ
↑
1 (E)T↑↑(E− eV )ρ↑2 (E− eV )+ρ

↓
1 (E)T↓↓(E− eV )ρ↓2 (E− eV )

]
×

× ( f (E)− f (E− eV ))dE.

Then the differential conductances GAP = dIAP/dV , and GP = dIP/dV are

GAP(V ) ∝
d

dV

∫ +∞

−∞

[
ρ
↑
1 (E)T↑↓(E− eV )ρ↓2 (E− eV )+ρ

↓
1 (E)T↓↑(E− eV )ρ↑2 (E− eV )

]
×

× ( f (E)− f (E− eV ))dE

GP(V ) ∝
d

dV

∫ +∞

−∞

[
ρ
↑
1 (E)T↑↑(E− eV )ρ↑2 (E− eV )+ρ

↓
1 (E)T↓↓(E− eV )ρ↓2 (E− eV )

]
×

× ( f (E)− f (E− eV ))dE.

The integration is from −∞ to +∞, however, the sensible numerical limits are set by the spread

of the difference of the Fermi distributions. In principle, the differentiation d/dV must act on

ρ
↓
2 (E− eV ) and ρ

↑
2 (E− eV ), however, for low bias or for large exchange splitting approximation

the spin-split density of states might be assumed to be constant or their derivatives to be small.

The transmission probabilities should also be differentiated but in amorphous barrier approxima-

tion it can be assumed that there is no particular spin dependent transmission and, therefore, the

transmission probability is not bias or spin dependent (T↑↓ = T↓↑ = T↑↑ = T↓↓ = T ). That

means that essentially only the difference of the Fermi distributions is differentiated. The Fermi

level derivative can be approximated by a Gaussian distribution with full-width-half- maximum

(FWHM) of ≈ 3.8kBT [318]. At low temperatures, the derivative might be assumed to be a delta

function δ (E− eV ):

GAP(V ) ∝

∫ +∞

−∞

[
ρ
↑
1 (E)T (E− eV )ρ↓2 (E− eV )+ρ

↓
1 (E)T (E− eV )ρ↑2 (E− eV )

]
δ (E− eV )dE

(1.33)

GP(V ) ∝

∫ +∞

−∞

[
ρ
↑
1 (E)T (E− eV )ρ↑2 (E− eV )+ρ

↓
1 (E)T (E− eV )ρ↓2 (E− eV )

]
δ (E− eV )dE,

(1.34)
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1.2. Spin electronic devices

Therefore, GAP(V ) ∝ ρ
↑
1 (eV )ρ↓2 (0)+ρ

↓
1 (eV )ρ↑2 (0) and GP(V ) ∝ ρ

↑
1 (eV )ρ↑2 (0)+ρ

↓
1 (eV )ρ↓2 (0).

These expressions demonstrate an important concept: the tunneling process happens between the

Fermi level of electrode 2 and the conduction band of electrode 1 at level E = eV above EF.

When the bias is opposite, the tunneling happens between the Fermi level of electrode 1 and the

conduction band of electrode 2 at level E = eV . Therefore, the bias dependence of the con-

duction gives information about the energy dependence of the spin polarization (see Fig. (1.9)).

At zero bias approximation the tunneling transport is between the Fermi levels of the two elec-

trodes: GAP(0) ∝ ρ
↑
1 (0)ρ

↓
2 (0)+ρ

↓
1 (0)ρ

↑
2 (0) and GP(0) ∝ ρ

↑
1 (0)ρ

↑
2 (0)+ρ

↓
1 (0)ρ

↓
2 (0). Starting from

the DOS definitions of the spin polarizations

P1(0)P2(0) =
ρ
↑
1 (0)−ρ

↓
1 (0)

ρ
↑
1 (0)+ρ

↓
1 (0)

ρ
↑
2 (0)−ρ

↓
2 (0)

ρ
↑
2 (0)+ρ

↓
2 (0)

, (1.35)

it can be easily checked that
GP(0)

GAP(0)
=

1+P1(0)P2(0)
1−P1(0)P2(0)

, (1.36)

and the TMR is then

TMR(0) =
GP(0)

GAP(0)
−1 =

1+P1(0)P2(0)
1−P1(0)P2(0)

−1, (1.37)

TMR(0) =
2P1(0)P2(0)

1−P1(0)P2(0)
(1.38)

The last expression is known as the Julliere’s formula as is often used to estimate spin polarization

of ferromagnetic compositions. The expression can be generalized for finite bias*.

V > 0 V < 0V ≈ 0

e- e-

e-

eV eV

(a) (b) (c)

EF2

EF1

d

U0

Figure 1.9: Schematic representation of adiabatic tunneling through a rectangular barrier with thickness d and height
U0. Panel (a): positive bias, panel (b): close to zero bias, and panel (c): negative bias. The transport direction of the
tunneling electrons is indicated with a red arrow. It is assumed that the barrier height is not reduced: eV �U0.

*Again, there is the assumption that there are no high-bias related inelastic excitations like magnons and phonons.
In real devices, this conditions is not true.
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TMR(V ) =


2P1(eV )P2(0)

1−P1(eV )P2(0)
, if V > 0,

2P1(0)P2(|eV |)
1−P1(0)P2(|eV |) , if V < 0.

(1.39)

There has been a significant problem in the understanding of the spin transport because the

spin-polarized tunneling (see Sec.(1.4.5)) measures positive spin polarization whereas the density

of states spin polarization is negative. The tunneling spin polarization is demonstrated to depend

not only on the density of states weight but as well on the Fermi velocities from the different bands.

The lighter s electrons are delocalized and, hence, their contribution towards the tunneling current

is higher than the localized d electrons.

Ψ1 = R ↓ e-ik
↓
x + R↑e-ik

↑
x

h = 0
U0

U

x0 d

Ψσ2 = Aσe- κx + BσeκxΨ1 = (k↑)-1/2eik
↑
x

h = hA h = hB

σ = ↑,↓

Ψσ3 = Cσeik
σ

(x-d) 

σ = ↑,↓

EF

Figure 1.10: Schematic representation of the quantum mechanical model of TMR by Slonczewski[310]. Spin-up elec-
tron plane wave is assumed to travel from−∞ towards x = 0 . The exchange axes in the two ferromagnets are generally
non-colinear and their magnitude is different. In the barrier region 0 < x < d, the electron wavefunction, ψσ2 , is
evanescent. The important parameters are the spin-dependent transmission coefficients in the second ferromagnetic
layer: C↑ and C↓.

The models of Stearns[319] and Slonczewski[310] give theoretical overview of how the Fermi

level and the barrier properties change the effective spin polarization. Stearns has suggested that

the tunneling spin polarization depends on effective mass of the carriers located around the Fermi

level. The simple model proposes that the electrical transport polarization is dominated by the

more dispersive s- electrons* which are hybridized with the more localized d-bands. The carriers

from the dispersive bands behave like free-electrons, therefore, Stearns has stated that the spin

*Stearns calls them "itinerant d electrons"
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polarization depends on the Fermi wavevectors of the dispersive bands:

PStearns =
k↑− k↓

k↑+ k↓
. (1.40)

The term "tunneling density of states" is often used to designate the difference between the cumu-

lative DOS and the part of the DOS which is relevant in the spin transport[208].

The model of Slonczewski considers one-dimensional tunneling transport between two semi-

infinite ferromagnetic layers (layer 1: x < 0 and layer 3: x > d) through an insulating barrier (layer

2: 0 < x < d) (see Fig. (1.10)). Low bias, close to Fermi level, transport is assumed. By stitching

the spinor wavefunctions and their derivatives at the interfaces, the required spin-dependent trans-

mission probabilities are calculated. The important conclusion from Slonczewski’s model is that

the effective spin polarization in the MTJ structure is not necessarily an intrinsic properties of the

ferromagnetic layer instead it is considered as a general property of the ferromagnet-barrier bilayer

Pfb =
k↑− k↓
k↑+ k↓

κ2− k↑k↓
κ2 + k↑k↓

, (1.41)

where k↑ and k↓ are the spin-up and spin-down wavevectors at the Fermi level of the left ferromag-

netic layer, and κ is the decay constant in the insulating barrier. The most important implication

of this result is that both the magnitude and the sign of Pfb depend on the relative magnitude of the

wavefunction decay κ and the geometric mean of the spin-up and spin-down Fermi wavevectors√
k↑k↓. Therefore,

Pfb =

Pf, if κ �
√

k↑k↓,

−Pf, if κ �
√

k↑k↓,
, (1.42)

where Pf = (k↑− k↓)/(k↑+ k↓) is the intrinsic Fermi level spin polarization of the ferromagnetic

layer. The dependence of the effective spin polarization Pfb on the barrier height κ2/k2
↓ is presented

on Fig. (1.11 (a)). In fact, the TMR ratio is higher in MTJs with thicker barriers.The other crucial

suggestion by the Slonczewski’s model is that the conductance through the barrier depends on the

angle Θ between the spin polarization axis of the two ferromagnetic layers

G = G0 (1+PfbPf′b cos(Θ)) , (1.43)

Apart from the trivial cases of antiparallel (Θ = 0) and parallel alignment (Θ = π), the above

expressions suggests that the measured TMR is reduced when the magnetization axes of the two
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ferromagnetic layers are non-colinear. The TMR is represented in this case as:

TMR(Θm) =
GP−GAP

GAP
=

G0(1−P1P2 cos(Θm))−G0(1+P1P2 cos(π−Θm))

G0(1+P1P2 cos(π−Θm))
, (1.44)

TMR(Θm) =
2P1P2 cos(Θm)

1−P1P2 cos(Θm)
= TMR(0)

1−P1P2

1−P1P2 cos(Θm)
cos(Θm), (1.45)

where Θm is the angle between the two spin polarization axes and the dependence TMR(Θm) is

presented on Fig. (1.11) (b).
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Figure 1.11: Panel (a)-Dependence between the effective spin polarization Pfb and the barrier height κ2/k2
↑ for different

ratios between the Fermi wavevectors for spin-up and spin-down. Panel (b)-Dependence between the normalized
TMR and the angle between the magnetizations of the two ferromagnetic electrode. The black curve corresponds to
P1 = P2 = 0.5, and the red curve to P1 = P2 = 0.8.

1.2.3 Spin electronic devices as memory and oscillator elements

Magnetic tunnel junctions can be used as memory cells. In that case, the magnetic alignment

of the electrodes determines whether the bit is ’1’(antiparallel state) or ’0’(parallel state). The

application of MTJs as non-volatile magnetic memory is particularly intriguing. This concept is

known as magnetic random access memory (MRAM). The two main competitors in the RAM

domain are the DRAM and the SRAM but they both rely on the charge accumulated either on

capacitors or transistors, and hence are volatile memory elements. Furthermore, there is a necessity

for data refreshment due to charge leakage and this adds up to the energy consumption in the

DRAM case, while a single bit memory cells contains 4-6 transistors in the SRAM case and has

large footprint. In that sense, the non-volatility of the MRAM is very beneficial. The state of the

MTJs must be electrically, and not magnetically, controlled. There are three main approached for

the electrical control of MTJs: toggle switching (TS)[91], spin Hall effect (SHE)[228], and spin-

transfer torque (STT) switching[311]. The most prospective and investigated approach nowadays is
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the the STT-based MRAM→ STT-MRAM. Such memory chips are already commercially available

and their density scalability is of particular scientific and technological interest. The essence of

the STT is that the spin polarized electrons from the bottom electrode carry not only charge but

angular momentum as well. If the spin polarization axis from the polarizing electrode, σ̂σσ , is not co-

linear with the magnetization unit vector of the analyzer, m̂mm, then the total angular momentum must

relax. The lost angular momentum is absorbed by the magnetization of the analyzer. Due to this

absorbed angular momentum, the magnetization gets offset from its equilibrium position and starts

precessing around the direction of the effective magnetic field. The precession is naturally damped

for low current densities, however, if the spin-transfer torque is sufficiently strong, the damping is

overcome and the magnetization switches from up to down state. The effect of STT is theoretically

predicted by Slonczewski[311] and Berger[21]. Other extensive treatment on the topic is given

by Stiles[320]. The equation which describes the magnetization dynamics under spin-polarized

current is the Landau-Lifshitz-Gilbert equation*:

∂ m̂mm
∂ t

=−γm̂mm×µ0HHHeff +αm̂mm× ∂ m̂mm
∂ t
−aSLm̂mm× (σ̂σσ × m̂mm)−bFLm̂mm× σ̂σσ . (1.46)

The first term above is the usual Larmor precession of the magnetization around the local effective

field HHHeff with a gyromagnetic ratio γ . The second term, Gilbert torque, describes magnetiza-

tion dynamics damping with a material constant α , Gilbert damping parameter. The third term,

Slonczewski torque aSL, describes the transfer of angular momentum between the spin polarized

incoming electrons and the magnetization of the free layer. The forth term, bFL, is known as field-

like torque. The latter is due to the Oersted field created by the electron flow. The important figure

of merit for the STT-based switching is the critical switching current density ( jc). For the case

of in-plane easy axis ferromagnetic layer with thickness, t, and coercive field Hc in the macrospin

approximation[326]:

jc =
2e
h̄

2αµ0Mst
η

(
Hc +

Heff

2

)
, (1.47)

where η is the STT efficiency and Heff is the effective out-of-plane demagnetizing field. Whereas,

the critical current density for the case of a layer with perpendicular magnetic anisotropy (PMA) is

jc =
2e
h̄

αµ0Mst
η

Han

2
, (1.48)

where Han is the anisotropy field. In the case of MTJs with PMA, lower switching currents can be

achieved for the same value of thermal stability[211]. It is projected that next generation of MRAM

cells will be with PMA layers in order to achieve areal density of 1 Gbit/in2 while maintaining the

data stability figures. For an asymmetric structure with different spin polarizations of the two

*It is true within the macrospin approximation or neglecting the demagnetizing field.
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ferromagnetic layers, the complete dependence is rather complicated[389], while for symmetric

structure the expression is:

η ≈ PΛ2 sinθ

(Λ2 +1)+(Λ2−1)cosθ
, (1.49)

where θ is the angle between the magnetizations of the two ferromagnetic layers, P is the spin

polarization and Λ2 is a device- and material- related constant, which is independent of the magnetic

properties (see Eq. (2) in [389]). The important information out of Eq. (1.49) is that for a fixed

angle, θ , the STT efficiency increases linearly with the spin polarization.

Figure 1.12: Panel (a)-magnetization oscillation regimes under spin-transfer torque for magnetization along z with no
anisotropy. Panel (b)-low current results in damped motion. Panel (c)-high current results in stable precession along
the axis of the effective field. Panel (d)-higher current leads to magnetization switching. The picture is after Ralph and
Stiles[274].

Apart from the magnetization switching by STT, another mode of operation is stable oscil-

lations. The MTJs must be patterned into nano-pillars in order to utilize the STT effect, and,

therefore, these devices are called spin-transfer nano-oscillators (STNO). In this case, the current

density is sufficiently high so that the magnetization precession is not damped but on the other hand

the STT is not too strong, so that the magnetization is not switched (see Fig. (1.12)). Application

of different current through the device leads to tunability of the output frequency[277].

The maximum output frequency in STNO devices to date is 65 GHz[35]. Such high frequencies

are achieved by application of strong magnetic field of more than 1 T which is not very practical.

High operational frequencies can be achieved with materials with higher anisotropy constants. For

instance, very high sub-THz magnetization precession frequencies of 280 GHz and 500 GHz are

measured in Mn3−δ Ga[233] and Mn3Ge[232], respectively. There has been no integration of these

compositions in STNO so far. Particularly intriguing is the excitation of the antiferromagnetic

resonance frequency (AFMR) in compensated ferrimagnets or in antiferromagnets. This mode

provides theoretically oscillations at much higher frequencies. Following the original work by
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Kittel[171], the AFMR frequency is:

fAFMR =
γ

2π

[
Heff +

√
Han(Han +2Hex)

]
, (1.50)

where Han, Hex are the anisotropy and exchange fields, respectively. In approximation Han � Hex

and for Heff = 0, the frequency is

fAFMR =
γ

2π

√
2HanHex. (1.51)

The situation is far more complicated in the AFMR with ferrimagnets as the two (or more) sub-

lattices have different gyromagnetic ratios and anisotropies*. The reader is referred to the works

of Kaplan[160], Geschwind[108] and Wangness[366]. In fact, both the usual FMR and the AFMR

modes can be observed in ferrimagnetic compositions. Schematically, the FMR mode corresponds

to the two sublattice magnetizations, M1 and M2 , being colinear and oscillating synchronously

around the effective field Heff. The sublattice magnetizations are not colinear in the case AFMR

(see Fig. (1.13)).

Figure 1.13: Schematic representation of FMR resonance mode (a) and AFMR mode (b) in ferrimagnetic systems. The
picture is after Geschwind[108].

The limitation of the present STNOs is the small output power. The output power in GMR SVs

is in the order of 1 pW whereas the output power in MTJs is in order of 100 nW[405].† Significant

progress has been made recently towards in-phase synchronous oscillations of multiple GMR SV-

based STNOs[142].

*This resonance is often referred to as exchange mode.
†MTJs have the apparent disadvantage that current pulsing might cause dielectric breakdown.
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1.3 Superconductivity

The most technogically important quality of superconductors is their capacity to carry very

large electric current which is used to produce high magnetic field for MRI scanners*. In this

thesis, the focus falls on two other properties: the excitation density of states in superconductors

and the macroscopic coherence of their wavefunctions which leads to very high magnetic flux

sensitivity of the superconducting quantum interference devices (SQUIDs) based on the Josephson

effect. The structure of the quasiparticle density of states plays crucial role in the superconducting

based techniques for spin polarization extraction. The microscopic theory of superconductivity is

developed by Bardeen, Cooper and Schrieffer (BCS) theory. The theory is based on the Cooper’s

prediction that even weak attractive potential can cause instability of the Fermi sea of electrons and

lead to formation of at least one bound pair[65]-Cooper pair. The electron-phonon interaction is the

reason for this attractive potential. The assumption is that the potential is constant below a cut-off

energy, h̄ωc, and is zero above. The threshold energy of the Cooper attractive potential is of the

order of the Debye energy h̄ωD = kBΘD which is characteristic of the phonon spectrum cut-off

energy. The Cooper pair consists of two electrons with opposite spins and momentum vectors-

(kkk↑,−kkk↓). A finite energy ∆ is required to break apart a pair. ∆ is known as the superconducting

excitation gap: below that energy all electrons are paired, there are unpaired electrons above it.

Some of the successes of the BCS theory are the explanation of the Meissner effect, the relation

between the superconducting gap ∆ and the critical temperature Tc, and the derivation of the energy

dependence of the quasiparticle density of states†. The relation between the low temperature gap,

∆(0), and the critical temperature, Tc, which holds for all classical superconductors is:

∆(0) = 1.76kBTc. (1.52)

The BCS theory is based on the assumption that the superconducting gap ∆ and the superconduct-

ing electrons density, ns, are constant in space. On the other hand, the Ginzburg-Landau theory

treats the spatial variation of the superconducting pseudowavefunction φ(r) at the vicinity of the

critical temperature[112]. The modulus |φ(r)|2 represents the local density of the superconducting

electrons ns(r)‡.

There are two important length scales which describe the properties of the superconducting

condensate and appear naturally in the Ginzburg-Landau (GL) theory: coherence length ξ and

*It is expected that liquid nitrogen superconducting winding will be installed on the next generation wind turbines.
The Meissner effect has been used to demonstrate the viability of frictionless train transport, however, presently the
construction of such "Maglev" train track is financially unjustifiable-almost two orders of magnitude more expensive
than the conventional one.

†An unpaired electron is called a quasi-particle in a superconductor.
‡It is demonstrated by Gor’kov that the GL theory is a limiting case of the microscopic BCS theory[117].
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1.3. Superconductivity

penetration depth λ . The coherence length sets a scale over which the Cooper pairs recover ex-

ponentially to equilibrium after an external perturbation. The penetration depth sets the scale over

which external applied field decays exponentially in the superconductor. The postulate of the GL

theory is how the free-energy density F can be represented as

F = Fn0 +α|ψ|2 + β

2
+

1
2m∗
|
(

h̄
i
∇− e∗

c
AAA
)

ψ|2 + h2

8π
, (1.53)

where h is the constant external field, AAA is the vector potential, m∗ ≈ 2me* is the mass of the

Cooper pair, α and β are parameters. Relation about the α and β parameters could be extracted

from physical arguments. For instance, the superconducting state is more energetically favourable

only for α < 0. The coherence length ξ is related to α: ξ = h̄/
√

2m∗α . The important GL

parameter κ is

κ =
λ

ξ
. (1.54)

The paramameter κ � 1 for classical superconductors. The value κ = 1/
√

2 separates the classes

of type I and type II superconductors. Abrikosov[2] predicted theoretically that above certain ex-

ternal field Hc1 for κ > 1/
√

2, it is energetically more favourable the field to be concentrated

in normal cylindrical regions-type II superconductivity. These regions are known as Abrikosov

vortices and each one carries a flux quantum Φ0 = h/(2e). There are two critical fields in type

II superconductors: lower critical field Hc1 is the field at which vortex penetration starts but there

are still superconducting regions, and upper critical field Hc2 at which the sample has no super-

conducting regions. A vortex consists of a central core of radius ≈ ξ with a maximum field Hc2

and circulating supercurrent region where the internal magnetic field decays exponentially at large

distance from the core†

h(r)≈ Φ0

2πλ 2

(
πλ

2r

)1/2

exp
(
− r

λ

)
. (1.55)

The applied field is concentrated in the core of the vortex and maintained by the circular supercur-

rents (see Fig. (1.14 (a)).

The superconducting order parameter is totally suppressed in the vortex and increases to its

equilibrium value following the dependence

f (r)≈ tanh
(

r
ξ

)
, (1.56)

where f (r) = |ψ(r)|/|ψ∞|. In a thin superconducting film, the vortices form a regular hexagonal

*This is strictly speaking effective mass and it is higher than the mass of a free electron in heavy fermion super-
conductors.

†This is a single vortex, or very large inter-vortex, separation, the exact solution is h(r) = Φ0/(2πλ 2)K0(r/λ ),
where K0 is a zeroth-order Hankel function (see Tinkham[342] p.152).
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Figure 1.14: Panel (a)-Schematic representation of the concentration of the field lines in Abrikosov vortex cores. The
picture is after Kleiner[173]. Panel (b)-Scanning tunneling microscopy of the Abrikosov vortex lattice in NbSe2 at
1.8 K and applied field of 1 T. The figure is after Hess[136].

honeycomb structure*. A problem is that the vortex pattern might move (vortex flow) which leads

to non-zero resistance in the superconductor. In practical materials, defects are used to pin the

vortices.

1.3.1 Quasi-particle density of states

There are two ways to obtain the energy dependence of the free states in the DOS above the

∆ gap. The first, canonical approach is following the BCS theory and introducing the elementary

excitation operator γkkk - often called Bogoliubon (see Tinkham[342] pp. 59-62 and pp. 67-70).

The other one is a less demanding approach following the Bogoliubov-de Gennes equation (see

Kant[159] pp. 22-24). In superconductors, the unpaired electrons are referred to as quasiparticles.

The quasiparticles are known as electron-like (|e〉) and hole-like (|h〉) depending on whether they

are in the conduction or valence band. In this case, the wavefunction describing the unpaired

condensate is

Ψ(x, t) = ψ1(x, t)|e〉+ψ2(x, t)|h〉, (1.57)

where |ψ1(x, t)|2 and |ψ2(x, t)|2 are the probabilities for finding the quasi-particle in the electron-

like or hole-like state, respectively. The spinor wavefunction Ψ must obey the Bogoliubov-de

Gennes (BdG) equation [
H0 ∆

∆ −H0

]
Ψ = ih̄

∂Ψ

∂ t
, (1.58)

*The original prediction is that the vortices should form square pattern. However, it was demonstrated that the
hexagonal structure is slightly more energetically favourable.
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where the one-dimensional single particle Hamiltonian is

H0 =−
h̄2

2m
d2

dx2 −EF +V (x), (1.59)

where m is the effective mass, EF is the Fermi level and V (x) is the potential. For heavy-fermion

superconductors, the effective electron mass is significantly higher than the rest electron mass

m�me. However, the focus falls on (almost) classical s-wave superconductors with m ≈ me in our

experiments. The gap parameter ∆ has the role of coupling strength. Apart from that, the electron-

like particle obeys the Schrödinger equation and the hole-like particle obeys the time-reversed

Schrödinger equation. The time-dependent BdG equation can be reduced to time-independent by

the substitution Ψ(x, t) = ψ(x)e−iωt , where E = h̄ω , when there are no time-dependent interac-

tions*. Then, the BdG equation becomes[
H0 ∆

∆ −H0

]
ψ = Eψ. (1.60)

For the case of V (x) = 0 and a trial wavefunction ψ =
(

1
0
)

eikx, the eigenvalues are

E2 =

(
h̄2k2

2m
−EF

)2

+∆
2. (1.61)

The density of states in momentum space is ρ(k)dk:

ρ(k)dk =
V

(2π)3 4πk2dk, (1.62)

where V/(2π)3 is the density of states in k-space. Therefore, the density of states can be calculated

straightforward if the energy dispersion E(k) is known. The important quantities in order to convert

k→ E are k and dk. Starting from Eq. (1.61), it can be easily checked that:

k =

√
2m
h̄

√
Ẽ +EF, (1.63)

dk =
√

m
2h̄2

E
Ẽ

dE√
Ẽ +EF

, (1.64)

where Ẽ2 = E2−∆2. Therefore, it can be derived that the superconducting density of states is

ρs(E)dE =
V

2π3

√
2m3

h̄3

√
Ẽ +EFE

Ẽ
dE, (1.65)

*like strong a.c. magnetic and electric fields
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for material in normal state: Ẽ = E, and therefore the normal metal density of states is

ρ0(E)dE =
V

2π3

√
2m3

h̄3

√
E +EFdE, (1.66)

The normalized superconducting density of states is hence written as

ρs(E)
ρ0(E)

=

√
Ẽ +EF√
E +EF

E
Ẽ
. (1.67)

In classical BCS superconductors the gap parameter ∆ ∼ 1meV, whereas the Fermi energy EF ∼
1eV, and therefore EF� Ẽ,E. Therefore, the quasi-particle density of states for a BCS supercon-

ductor is obtained as

ρs(E) = ρ0


E√

E2−∆2 , if E > ∆,

0, if E ≤ ∆,
(1.68)

where ρ0 is the superconductor DOS at very high bias, and the energy E is measured with respect

to EF (see Fig. (??) (a)).

- 3 - 2 - 1 0 1 2 3- 1

0

1

2

3

4

5

- 3 - 2 - 1 0 1 2 30

1

2

3

( a )

 

� s/�
0

E  ( ∆ )

 B C S  D O S ( b )

 

� s/�
0

E  ( ∆ )

 �  =  0 . 0 ∆
 �  =  0 . 1 ∆
 �  =  0 . 2 ∆
 �  =  0 . 3 ∆
 �  =  0 . 4 ∆
 �  =  0 . 5 ∆

Figure 1.15: Panel (a)-BCS ideal density of states in a superconductor. Panel (b)-the effect of the Dynes’ quasiparticle
lifetime broadening parameter on the density of states.

In strongly-coupled superconductors, the quasiparticles recombination time into the supercon-

ducting fluid is longer than in weakly-coupled superconductors. The effect of this extended lifetime

is that the density of states is not that sharp. The change can be incorporated in the BCS form in

Eq. (1.68) by the introduction of imaginary component to the energy E → E + iΓ. The parameter

Γ is known the Dynes parameter [85]. The DOS becomes

ρs(E) = ρ0Re
(

E− iΓ
(E− iΓ)2−∆2

)
. (1.69)

The modification of the DOS by Γ is shown in Fig. (1.15) (b). The Dynes parameter has been used
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in Point Contact Andreev Reflection measurements to account for experimental spectral broad-

ening of unknown origin. * Another important functional dependence ∆(T ) is the temperature

dependence of the superconducting gap. It can be computed numerically from the BCS theory:

1
N0V

=
∫ h̄ωc

0

tanh
[
0.5β (ε2 +δ 2)1/2

]
(ε2 +δ 2)1/2 dε, (1.70)

where h̄ωc is the cutoff energy of the electron-phonon interaction, V is the electron-phonon at-

tractive constant, N(0) is the density of states at the Fermi level for one spin orientation at the

Fermi level, and β = 1/(kBT ). An approximate formula which is true to within 2 % in classical

superconductors is:

∆(T ) = ∆(0) tanh
(

1.74
√

(Tc/T )−1
)
. (1.71)

Another important relation is the temperature evolution of the gap on the applied field[124] in

classical type I superconductors

∆(T,H)

∆(T,0)
=

(
1− H2

H2
c (T )

)1/2

(1.72)

These dependences were studied by Giaver[110], Douglass[78], and Meservey[223]. Various pair-

breaking mechanisms like current, field, spin-orbit interaction or presence of magnetic impurities

have been demonstrated to be equivalent and change the structure of the DOS beyond simple gap

suppression. If sufficiently strong, they might cause non-zero density of states below the supercon-

ducting gap-a regime known as gapless superconductivity.

1.3.2 Critical field-type I superconductors

Very important property of type I superconductors is that their critical field increases when they

are grown ultrathin†. This relation is particularly important in the field of spin polarized tunneling

spectroscopy where Al is typically employed[49]. The bulk critical field of Al is just 10 mT at

300 mK, however, the ultrathin-grown films have critical fields > 3T and this makes the Zeeman-

split density of states observation possible. A superconducting film of thickness d is under applied

magnetic field of Ha. Then, the boundary conditions at the surface of the film are h(±d/2) = Ha.

*Possibly related to partially oxidized interfaces or non-equilibrium effects in the superconductor due to injection
of spin polarized current.

†This is fundamental property which is true whenever the superconductors can be grown ultrathin and continuous.
The island-like growth leads to not-well maintained electron-phonon interaction and this fundamental relation does not
hold.
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Then, the penetrated magnetic field is

h = Ha
cosh(x/λ )

cosh(d/2λ )
, (1.73)

where λ is the penetration depth and, then, the magnetic field is reduced to a minimum value

Ha/cosh(d/2λ ) at the midplane of the slab. Averaged over the sample thickness d, the median

magnetic field is

h = Ha +4πM = Ha
2λ

d
tanh

d
2λ

. (1.74)

Two special cases are clearly distinguished. When d� λ , h → 0 and M → −Ha/4π . This is

the classical Meissner effect of perfect diamagnetism. In the other extreme d� λ , the expansion

of tanh(x) ≈ x− x3/3+ . . . leads to h → Ha(1−d2/12λ 2), so that

M→−Ha

4π

d2

12λ 2 . (1.75)

This relations was used in the early investigations of superconductors as an approach to determine

the penetration depth, λ , in superconductors. More importantly, the magnetization determines the

experimental critical field. The superconducting state becomes energetically unfavourable above

certain magnetic field, Hc, because the magnetic energy associated with the diamagnetic behaviour

of the superconductor becomes bigger than its contribution in zero field. Then, free energy differ-

ence between the superconducting and the normal states is

(Fn−Fs)|H=0 =
∫ Hc

0
M(H)dH. (1.76)

In the Meissner state (M = −H/4π), the maximum field is known as thermodynamic critical field

and in this case

(Fn−Fs)|H=0 =
H2

c
8π

. (1.77)

For the case d� λ considered above the expression M ≈ (Ha/4π)(d2/12λ 2) is used. Then the

critical field for applied in plane field is

Hc‖ =
√

12Hcλ/d. (1.78)

This results is correct to a good approximation, but the Ginzburg-Landau theory replaces
√

12 with
√

24.
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1.3.3 SQUID device

The Superconducting QUantum Interference Device (SQUID) is the most sensitive field detec-

tor to date*. The SQUID is based on the Josephson effect. The Josephson effect is the existence

of a non-zero superconductor in an unbiased superconductor-insulator-superconductor (SIS) loop

structure. There are two types of SQUIDs: a superconducting loop with a single weak link is known

as a.c. SQUID, and a superconducting loop with two weak links is known as d.c. SQUID. Some

general properties of an a.c. SQUID are described here but a more in-depth treatment is given in

Appendix. When a magnetic flux is applied to a SQUID loop, the total flux Φt has two terms-the

externally applied flux Φe and the flux due to the induced circulating current along the loop

Φt = Φe−LI = Φe−LIc sin
(

2π
Φt

Φ0

)
, (1.79)

where the first Josephson relation I = Ic sin(φ) has been used and, the phase difference must

comply with the flux quantization condition

φ +
2πΦt

Φ0
= 2πn. (1.80)

After introducing the important parameter βL = 2Lc/Φ0, the relation between the externally ap-

plied flux and the total flux is

Φt

Φ0
=

Φe

Φ0
− βL

2
sin
(

2π
Φt

Φ0

)
. (1.81)

The relation on the parameter βL. For βL = 2, the curve is actually a succession of quasilinear

regions with jumps between them (see Fig. (E.8)). Regions with positive slope are stable. The effect

is that an increase (or decrease) of the external flux Φe leads to jumps in the total flux Φt. Therefore,

a hysteretic behaviour exists as the flux is ramped up or down. These jumps are associated with

dissipated energy IcΦ0. The a.c. SQUID is inductively coupled, with a mutual inductance M, to a

resonant LTCT tank circuit (see Fig. (1.18)). An r.f. current source supplies a current to the tank

circuit, in this way inducing flux in the SQUID loop. The current frequency is typically in the radio-

frequency range†. The voltage across the coil of the resonant circuit depends on the magnitude of

the RF current and the value of the externally applied flux. I-V curves for an a.c. SQUID for flux

values nΦ0 and (n+1/2)Φ0 are presented of Fig. (1.17). When the rf current is fixed at particular

values, the voltage turns out to be a triangular- shaped dependence with amplitude ωLT/(2M). The

*In fact, it is a flux-to-voltage converter, but the area is usually constant.
†The a.c. SQUID is often known as RF SQUID.
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Figure 1.16: The total flux Φt in an a.c. SQUID as a function of the externally applied flux Φe. The black curve
corresponds to βL = 1, the red one to βL = 2, and the blue dotted line is Φt = Φe. A hysteretic behaviour is present for
βL > 1. It is discernible, that the red curve is in effect a succession of quasilinear regions with jumps between them.
These jumps are associated with energy dissipation in the SQUID ring, and are crucial for the operation of the detector.

Figure 1.17: Transfer function of an a.c. SQUID.

optimum flux-to-voltage transfer is
∂V
∂Φ

=
ωLT

M
. (1.82)

SQUIDs usually operate in flux-locked loops in which case the external flux is adjusted, so that

the SQUID operates at a point of maximum sensitivity. A counting circuit can be used to track the

number of quantum flux jumps. The SQUIDs are used from their very invention as precise current

pre-amplifiers. In that case, the SQUID detects the oersted field from the current carrying input

coil. All superconducting circuitry has to be housed within a superconducting shielding capsule

in order to reduce the detrimental effect of stray parasitic magnetic field. The SQUID is a very

sensitive detector for low impedance devices*.

*This is mainly limited by the Johnson noise in the input circuit.
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Figure 1.18: Simple schematic of a.c. SQUID read-out circuit. The input coil and tank circuit are represented.

1.4 Spin polarization measurements

1.4.1 Spin-resolved photoemission spectroscopy

Spin-resolved photoemission spectroscopy (SRPES) and spin-polarized inverse photoemission

spesctroscopy (SPIPES) are the two main radiative techniques for spin polarization measurements.

The electrons are ejected by soft X-rays or ultraviolet radiation in the SRPES technique (see

Fig. (1.20)). The spin-resolution is provided by relatively high energy spin-dependent scatter-

ing mechanisms. The deflection of different spins is often achieved by the spin-orbit scattering in

heavy element metals. A gold foil is utilized and is known as Mott detector. SRPES investigates

successfully the spin polarization of core levels. It has poor Fermi level resolution due to detector

limitations.

On the other hand, SPIPES[349] relies on bombarding the sample with variable energy spin-

polarized electrons[270] and detecting the emitted photon flux due to radiative transitions. The

impinging electrons populate the empty levels between the Fermi level and the vacuum level.

Therefore, SPIPES is a complementary technique to the SRPES (see Fig. (1.19)).

Both methods are surface sensitive as the escape depth of the photoemitted electrons is ap-

proximately 1 nm in the electron energy range 10 eV to 1000 eV*. Therefore, careful capping of

the samples is required before transfer to the measurement, often synchrotron facility, or in-situ

transfer between the growth and the measurement chambers. The extracted spin polarization (both

magnitude and sign) of the Fe, Ni, Co have been demonstrated to depend on the excitation energy.

The latter is in line with the simple band structure theory by Wohlfarth[375]. More importantly,

Fermi level spin polarization[189, 71] has been demonstrated to be negative. This is as well ex-

pected from Wohlfarth’s model where the majority (spin-up) band is fully populated and, hence,

below the Fermi level, while the minority spin band is not full. Therefore, the density of states

contribution from the minority spins at the Fermi level is higher than the majority spins. As will

be explained below, these negative values have been a significant puzzle because the spin polarized

*The reader is referred to [313] for a graph of the escape depth dependence on the electron energy.
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Figure 1.19: Spin-polarized inverse photoelectron spectroscopy. Panel (a)-relative intensity for majority and minority
spins and spin polarization (asymmetry) for Ni. Left side-angle of incidence α = 0°, right side-α = 20°. Panel
(b)-schematic representation of the experimental setup-the photon detector was a Geiger-Müller counter. The sample
is a single crystal Ni(110) crystal magnetized along the (111) direction by the C-shaped electromagnet. The data is
after Unguris et al.[349].

Figure 1.20: Panel (a)-schematic representation of SRPES measuring setup. Panel (b)-example of spin polarization
measurement on Fe(110) by SRPES. The data is after Dedkov textitet al.[71].

tunneling extracts positive sign for the transport spin polarization.

1.4.2 Spin-polarized positron annihilation spectroscopy

The spin-polarized positron annihilation spectroscopy (SP-PAS) is a technique which bears

some similarity with SPIPES technique described above. The SP-PAS has been pioneered by Hanna

and Preston [127, 128] and later developed by Berko and Zuckerman [22, 23]. The sample is bom-

barded with a beam of positrons from a radioactive source. One particular advantage of the SP-PAS

is that it is less surface sensitive and more bulk sensitive due to the larger implantation depth of
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the positrons (> 10µm)[40]. The positron beam by a radioactive source has finite spin polarization

along the axis of the beam because parity is not conserved in β decay. The source often used is
22Na with approximate P≈ 30 %. The longitudinal spin polarization is determined by the helicity,

v/c, with v-positron velocity and c-speed of light, respectively. Therefore, higher spin polarization

can be achieved in beams emitted by radioisotopes with high Q values, like 68Ge-68Ga[168]. The

impinging positrons annihilate with the electrons in the sample and 2 γ rays are produced so that en-

ergy and momentum of the system are conserved. Spin-up positron will annihilate with spin-down

electrons and this determines a two-dimensional angular correlation of the annihilation radiation.

The band structure of the ferromagnetic sample can be inverted by saturating it in different direc-

tions. The analysis of the annihilation radiation can give reconstruction of the spin polarization

and the Fermi surfaces of the investigated ferromagnetic compositions following the analysis of

Hanssen et al.[129, 130]. The SP-PAS has been successfully applied to bulk samples, however, it

is more complicated and less applicable to thin films. SP-PAS has been used recently to investigate

the current-induced spin polarization on metal surfaces [407].

1.4.3 Spin-polarized scanning tunneling microscopy

Scanning tunneling microscopy (STM) has been providing deeper insight into the structure of

conducting surfaces since its invention. The technique relies on the recording of the small tunneling

current between the apex of a sharp tip and the surface of the investigated sample. The topography

of the surface can be investigated either in the constant current or in the constant height mode. The

piezo-scanners adjust the distance between the tip and the sample in order to maintain constant

separation in the constant current mode. The displacements of the piezo-steppers are used as a

topography indicator when the surface of the sample is scanned in the latter mode. In the constant

height mode, there is no vertical motion of the piezo-scanner. In this configuration, terraces or dips

on the surface of the sample result in increase or decrease in the tunneling current, respectively.

More relevant to our discussion is the scanning tunneling spectroscopy (STS). In this case, the

current-voltage characteristic of the tip-surface configuration is investigated. The tunneling I−V

characteristic is directly dependent on the convolution between the density of states of the tip and

the sample.

I(V ) ∝

∫ +∞

−∞

ρs(E− eV )ρt(E)T (E,eV ) [ f (E− eV )− f (E)]dE, (1.83)

where ρs, ρt are the density of states of the sample and the tip, respectively. The transmission

probability T = |Mµν |2 is represented by the modified wavefunctions of the tip and the sample

surface. The tunneling matrix element is

Mµν =− h̄2

2m

∫
Σ

(
χ
∗
ν∆Ψµ −Ψµ∆χ

∗
ν

)
.dS, (1.84)
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where the integration is over the Fermi surfaces. The tunneling matrix element represents the en-

ergy lowering due to the interaction between the two electrodes. ψ is the sample wavefunction mod-

ified by the tip potential, and χ is the tip wavefunction modified by the sample potential. Therefore,

information about the local density of states (LDOS) structure of the investigated sample can be ob-

tained since the tip is metallic and its DOS is essentially flat close to EF. STS has been successfully

used to extract quantitative information about the LDOS structure of molecules, semiconducting

compositions and the gap of superconducting materials. Of course, the techniques of STM and STS

can be unified in order to gain insight about the spatial variation in the LDOS. An example of such

experiment is the imaging of the Abrikosov vortex lattice in type II superconductors[136]. The

analysis of the data in a quantitative manner is not straight-forward though since the tunneling cur-

rent depends on both the LDOS, the topography structure and the tunneling matrix coefficients[94].

If the tip (or at least its apex) and the sample are magnetic, then the tip-sample configuration can

be imagined as an MTJ with an "ideal" vacuum tunnel barrier. The first demonstration of such

experiment is made by Wiesendanger et al.[372]. As in an MTJ, the conductance depends on the

angle (Θ) between the two spin polarization

G = G0× (1+P1P2 cos(Θ)). (1.85)

Figure 1.21: SP-STM imaging of magnetic vortex structure. Panel (A)-spin structure with in-plane sensitive tip, Panel
(B)-spin structure with out-of-plane sensitive tip, Panel (C)-signal corresponding to the circular path on Panel (A).
Panel (D)-the in- plane scan corresponds to the line scan on Panel (A), the out-of-plane scan corresponds to the line
scan on Panel (B). The picture is after Wachowiak [362].
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The are two choices for tip in SP-STM: ferromagnetic or antiferromagnetic. The disadvantage

of the ferromagnetic tip is that its stray field might influence the state of the sample below. In

order to reduce the moment and the stray field, the ferromagnetic tip is often prepared by in-situ

evaporation of very thin Fe on the tip. Another possibility is the tip to be "functionalized" by pick-

up of magnetic atoms. It is possible to achieve easy-axis both in-plane and perpendicular to plane

for the tip by different preparation procedures. The natural pointed structure of the apex favours

out-of-plane (or along tip axis) anisotropy, and this is indeed the case for thin coatings [362]. A

brilliant demonstration of the high spatial resolution of SP-STM is given by Wachowiak et al.[362]

in imaging of a magnetic vortex structure. With a thick film Cr-coated tip, the in-plane component

of the spin structure is imaged (see Fig. (1.21)). The fact that the spins have predominantly in-plane

spin alignment is demonstrated both in the circular scan around the core and the line scan through

the core of the vortex (Fig. (1.21) (A) and (C)). With a thin film Cr-coated tip, the out-of-plain

component of the spin structure is investigated. The out-of-plain direction of the spin orientation

in the core of the vortex is demonstrated by the line scan through the core in this case (Fig. (1.21)

(B) and (D)).

Magnetic film-coated tip could be used for several days at room temperature before residual

gas absorption becomes excessive and contaminates too much the surface of the tip[34]. In order

to completely suppress detrimental mechanical or stray field effects from ferromagnetic tips, anti-

ferromagnetic tips are often used. The sharp apex has uncompensated moment whereas the overall

magnetization is zero. Both antiferromagnetically coated[182], or bulk antiferromagnetic tips (Cr

or MnNi[245]) have been used.

Figure 1.22: Schematic representation of domain structure at the apex of a ferromagnetic (a) and antiferromagnetic tip
(b). Panel (c)-schematic representation of a modulation coil wound around the tip. The picture is after Bode [32].

An important mode of operation of the SP-STM is known as local magnetoresistance (see 1.22

(c)). In this case, the magnetic state of the apex is changed periodically. The polarization of the
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tip is modulated with a coil wound around the tip. The applied a.c. current has frequency much

higher than the cut-off of the feedback loop for the piezo-steppers. In this way, the feedback loop

compensates the spin averaged conductance. It is important that the tip has low coercivity, so

that the switching field is low and the stray field from the coil is minimized*. Furthermore, the

magnetostriction must be low in order to minimize off-axis movement of the tip in which case

the tip will become partially sensitive to the perpendicular component of the magnetization†. An

example is the utilization of amorphous CoFeNiSiB tip[385]. The conductance asymmetry, δ , is

δ =
GP−GAP

GP +GAP
. (1.86)

Since δ = PtPs, and the spin polarization of the tip Pt is assumed to be constant, the spin polar-

ization of the sample is essentially proportional to δ : Ps ∝ δ . Furthermore, the dependence of the

asymmetry on the bias is a direct indication of the sample-bias spin polarization Ps(V ) ∝ δ (V ) (see

Fig. (1.23)).

Figure 1.23: Spin polarization bias dependence of Gd(0001) sample. Two different experimental techniques are com-
pared: SP-STM[33] and spin-polarized inverse photoemission spectroscopy[76]. The picture is after Wiesendanger
[373].

A demonstration of superconducting spin polarized tunneling with V-tip has been recently

demonstrated by Eltschka et al.[89] at mK temperatures.The reader is referred to Wiesendanger

for extensive review on the SP-STM [373].

*The stray field from the tip is often far bigger problem.
†It is assumed here that the tip has in-plane easy-axis.
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1.4.4 Anisotropic magnetoresistance sign method

The anisotropic magnetoresistance (AMR) is the resistance change in ferromagnetic materials

depending on the angle between the applied current and the magnetization. Predominantly positive

AMR is observed* and in this case the electrical resistance is smaller when when the magnetization

is orthogonal to the current direction and is larger when their orientation is co-linear. The AMR

is due to the spin-orbit interaction which mixes the spin-up and spin-down carriers. A theoreti-

cal proposal by Kokado et al.[177, 176] suggests that half-metallicity can be quickly tested by a

measurement of the AMR sign method. Their prediction is based on the fact that the s-d electron

scattering, responsible for the AMR, happens preferentially from s↑ to d↑ or s↓ to d↓ states in fully

spin polarized compositions and this leads to negative AMR effect†. Investigation of the AMR

sign dependence in Co2FexMn1−xSi has been performed by Yang[392]. In this material, the AMR

changes sign from negative to positive for x > 0.8 which implies loss of the high spin polarization.

This AMR study is corroborated by TMR[183] and CPP- GMR[286] measurements on devices

with the same electrode. The AMR sign has been systematically investigated in the Heusler com-

pounds Co2MnZ and Co2MnZ (where Z = Al, Si, Ge, and Ga) by Sakuraba[285]. The Heusler

compounds are briefly discussed in Sec. (6.3). In this case, the varying number of valence electrons

modify the spin polarizaion. The AMR effect on Co2FexMn1−xSi switch sign from positive to

negative when x > 0.2, and furthermore, it is demonstrated that the Gilbert damping parameter α

decreases significantly for x > 0.2. The latter is indication of high spin polarization as well[358].

The AMR sign of the compositions Co2MnGa0.25Ge0.75 and Co2FeGa0.5Ge0.5 is shown to be neg-

ative. Finally, the annealing dependence of the AMR amplitude in these materials follows the same

trend as the ∆RA values obtained in CPP-GMR devices with the same compositions[330, 201].

1.4.5 Spin polarized tunneling

Historically, spin polarized tunneling (SPT) has given the impetus on the research of spin elec-

tronic devices. The technique is initiated and developed over the years by Tedrow, Meservey and

Moodera. The basic building block in the SPT is the tunnel junction with the general structure:

superconductor-insulator-ferromagnet‡. The measurement procedure relies on the sharp structure

of the quasiparticle density of states of a superconductor. The application of high magnetic field

leads to Zeeman-splitting of the density of states. When the Zeeman-energy becomes appreciably

higher than the thermal smearing, a distinguishable four-peak structure appears in the differential

conductance spectrum. In this case, the quasiparticle DOS in the superconductor is sum of the

*for instance in Ni1− xFex
†The low resistance is when the magnetization and the current are parallel to each other, and the high resistance is

when they are perpendicular to each other.
‡or any metal
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spin-up and spin-down components ρs = ρ
↑
s +ρ

↓
s and the spin-split DOS is offset from the Fermi

level with the Zeeman energy µBµ0H:

ρ
↑
s =

1
2

ρ0

(
u√

u2−1

)
, (1.87)

ρ
↓
s =

1
2

ρ0

(
d√

d2−1

)
, (1.88)

where the normalized energies for spin-up (u) and spin-down (d) sub-bands are

u =
E−µBµ0H

∆
, (1.89)

d =
E +µBµ0H

∆
. (1.90)

The spin dependent conductances are then

G↑,(↓)(V ) ∝

∫
ρ
↑,(↓)
s (E) f ′(E− eV )dE, (1.91)

which in approximation of very low temperature is G↑(V )∝ ρ
↑
s (V ) and G↓(V )∝ ρ

↓
s (V ). It has been

assumed that the normal metal electrode has flat density of states for the small applied bias in the

SPT experiments. Furthermore, no explicit tunneling probability as in Eq. () is taken into account

in this case*. The spin polarization is defined as the imbalance in the spin-dependent conductance

P =
G↑−G↓

G↑+G↓
, (1.92)

in which case the total conductance is represented as

G(V ) = (1+P)G↑(V )+(1−P)G↓(V ), (1.93)

G(V ) = (1+P)ρ↑s (V )+(1−P)ρ↓s (V ). (1.94)

Example of the spin-up and spin-down quasiparticle DOS splitting in applied magnetic field is

presented in Fig. (1.24) (a). The full normalized conductance spectrum for the case of zero spin

polarization with thermal smearing is presented in Fig. (1.24 (b)). The spectrum is symmetric since

the conductance contributions of the spin-up and spin-down DOS are equal. The indicated four

peaks due to the Zeeman splitting should be noted.

For a spin-polarized metal there will be unequal conductances from the spin-up (G↑) and spin-

down (G↓) subbands. For most known ferromagnetic compositions the transport spin polarization

is positive: G↑ > G↓. The latter leads to higher contribution of the quasiparticle spin-up DOS in

*The reason is again related to the fact that the bias range is very narrow.

40



1.4. Spin polarization measurements

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 50 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0
 

 

DO
S (

arb
. u

n.)

U  ( ∆ / q )

 s p i n - d o w n
 s p i n - u p

( a ) 4

32

( b )

 

 

G/
G n

U  ( ∆ / q )

� 0 H  =  2  T
T  =  0 . 3  K
∆ =  4 0 0  µe V

1

Figure 1.24: Representation of the Zeeman-split quasiparticle density of states in a superconductor on panel (a). Sim-
ulated spin tunneling spectroscopy for the case of non-polarized metal with the parameters applied field µ0H = 2T,
temperature T = 0.3K, and superconducting gap ∆ = 400µeV on panel (b).

the superconductor and the four-peak structure becomes asymmetric. Three different SPT curves

are simulated and presented on Fig. (1.25). In the case P 6= 0.0, the spin polarization can be

estimated by the height of the conductance peaks using one of the following two formulas

P =
G3−G2

G3 +G2
, (1.95)

P =
G3−G2 +G4−G1

G3 +G2 +G4 +G1
, (1.96)

From Fig. (1.24), it is obvious that the peaks G3 and G2 are the clearer indicators of the spin-up

and spin-down DOS, respectively. They are better estimators because they are inside the main su-

perconducting gap and their height is dependent only on the quasiparticle sub-bands. The other two

peaks G1 and G4 originate from the spin-up and spin-down DOS, respectively, however, each has

a small contribution from the opposite DOS*. However, the simplified expressions lead to under-

estimation of the spin polarization. That is because the approximate equations do not account for

the effects of magnetic field depairing, spin-orbit interaction in the superconductor and tunneling

matrix elements.

The most widely used superconductors for SPT is aluminum. There are a few experimental

reasons for that:

• Low atomic number

• Well-established growth as ultra-thin films

• Beneficial increase in the critical field when grown ultra-thin

*For instance, consider the leftmost peak on Fig. (1.24). It is mainly determined by the spin-up DOS but there is
structure from the spin-down DOS at the same bias as well.
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Figure 1.25: Spin-polarized tunneling simulated for three different spin polarizations P = 0.0 (black), P = 0.4 (red),
and P = 0.6 (green curve). Constants for the simulation are temperature T = 0.3K, and the ratio of the Zeeman
splitting energy to superconducting gap is µBµ0H/∆ = 0.43.

• Formation of high-quality pinhole-free oxide barrier

The low atomic number is important because higher atomic number leads to higher spin-orbit

coupling. Higher spin-orbit coupling causes mixture of the spin-up and spin-down quasiparticle

density of states and this results in poorer resolution of the four-peak structure of the differential

conductance.

The correction for the spin-split quasiparticle DOS due to spin-orbit coupling and orbital de-

pairing is then given by Bruno and Schwarz[44] following the Maki-Fulde theory

u =
E−µBµ0H

∆
+ζ

u√
1−u2

+b
d−u√
1−d2

, (1.97)

d =
E +µBµ0H

∆
+ζ

d√
1−d2

+b
u−d√
1−u2

, (1.98)

where ζ and b are the orbital depairing and the spin-orbit scattering constants, respectively. This

system of equations must be self-consistently solved. Pathological cases in the numerical solution

of this system are clarified by Worledge and Geballe[381].

The orbital depairing parameter depends significantly on the thickness of the superconducting

film t and the angle between the field direction and the plane of the film

ζ = ζ0 +
τmvF(evFµ0H⊥)

3∆
+

τmt2(evFµ0H‖)2

18h̄∆
, (1.99)
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where ζ0 is a natural depairing parameter, vF is the Fermi velocity, τm is the momentum scattering

time, H⊥ and H‖ are the perpendicular and the in-plane projections of the applied field. It could

be noticed that for equal magnitude of the two field projections (H⊥ = H‖), the ratio between

the two contributions towards the depairing parameter is 6h̄/(t2eµ0H). For typical applied field

of µ0H ≈ 3T and usual thickness (t ≈ 3nm), the ratio is ∼ 103. This estimation demonstrates

that the perpendicular field is much more efficient pair breaker. The orbital motion of the electrons

induced by the in-plane field is naturally quenched by the film thickness whereas the perpendicular

field creates cyclotron motion in the plane of the field, i.e. non-restricted. The importance of the

alignment of the magnetic field with the plane of the film is demonstrated by Kant[159], where only

few degrees off-plane tilt results in loss of the four peak structure and smearing of the Zeeman-split

density of states.

The spin-orbit coupling parameter b is mainly determined by the average atomic number of the

composition. From the perspective of the moving electrons the charged nuclei represent electric

current. The latter creates magnetic field which interacts with the magnetic moment of an electron.

The spin-orbit interaction is proportional to the fourth order of the average atomic number. The

spin-flip scattering rate is
1

τso
∝ Z4 1

τm
. (1.100)

Then, the spin-orbit scattering rate is defined as a dimensionless spin-orbit scattering rate by the

relation

b =
h̄

3∆

1
τso

. (1.101)

The orbital depairing ζ and spin-orbit scattering b are usually set as free fitting parameters. They

can be determined independently for each superconductor if a junction with the structure superconductor-

insulator-unpolarized metal is used. Then, since P = 0, only ζ and b are unknown. Such analysis

was performed on Al-Al2O3-Ag junctions by Meservey et al. [225]. When Al is used as supercon-

ducting electrode, the spin-orbit scattering is usually very small-b ≈ 0.02.

When type I superconductors are grown ultra-thin, their critical field scales up, as the thickness

decreases. This is discussed above in Eq. (1.78) and it is a fundamental relation which should

always hold for type I superconductors. However, experimentally this is not the case for supercon-

ductors like V and Ta. They cannot be grown ultrathin with very low surface roughness and this is

the reason why their critical field does not scale up as the thickness is decreased. Aluminum is the

closest example to an ideal BCS superconductor and its critical field reaches the Pauli paramagnetic

limit*.

The detrimental effect of the magnetic field (orbital depairing) and the high atomic number

superconductors (spin-orbit scattering) are crucial for the discussion of the point contact Andreev

*It is also known as Clogston- Chandrasekhar limit[63, 52].
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Figure 1.26: Simulated spin-polarized tunneling curve with polarization P = 0.4, temperature T = 0.3K, supercon-
ducting gap ∆ = 400µeV, and magnetic field µ0H = 2T. Panel (a) - the orbital depairing, ζ , is varied while the
spin-orbit coupling, b, set to zero. Panel (b) - the spin-orbit coupling, b, is varied while the orbital depairing, ζ , is set
to zero.

Reflection in high-magnetic field. In order to gain better insight into how the SPT spectra change,

multiple curves are generated for different values of ζ and b on Fig (1.26). It is important to stress

the effect of the spin-orbit scattering on the spectra (Fig (1.26) (b)). For the value of b = 0.7

(which corresponds roughly to Nb), the spin-split quasiparticle DOS are completely smeared and

the four peaks can not be distinguished.

Superconducting Zeeman-splitting has been demonstrated with V[89], V-Ti[336], Al98Cu2[234],

and NbN[393] superconductors. One of the big advantages of the spin polarized tunneling is that it

measures the tunneling spin polarization, i.e. the cumulative spin polarization of the ferromagnetic-

insulator interface. Exactly the tunneling spin polarization definition is the most relevant for TMR

devices. For instance, SPT confirms that the CoFe-MgO spin polarization is higher than the CoFe-

AlOx spin polarization due to the spin filtering in the MgO barrier [268]. Unfortunately, this is a

disadvantage of the technique as well. It has been demonstrated that the extracted spin polarization

depends significantly on the deposition conditions and the quality of barrier[226]. A technique

which investigates the direct, unweighted by tunneling probabilities, Fermi level spin polarization

of materials is very much needed. Such method is the point contact Andreev reflection.

1.4.6 Point Contact Andreev Reflection

The technique of Point Contact Andreev Reflection (PCAR) uses as well a superconductor for

spin polarization detection, however, in this case there is a highly transparent, metallic, contact be-

tween the superconductor and the investigated material[31]. PCAR relies on the effect of Andreev

reflection which is the only allowed process for injection of electrons into the superconductor at
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applied bias lower than the superconducting gap (|U | < ∆)[9]. It is assumed for definiteness that

a spin-up electron impinges from the superconductor into the normal metal. For |U | < ∆, there

are no available states in the single particle density of states of the superconductor, and, hence, an

impinging spin-up electron must pair with a spin-down electron in order to be injected as a Cooper

pair in the superconductor. When a spin-up is injected through Andreev reflection, the spin and

charge conservation laws require that a hole with spin-down is back propagated into the normal

metal. Exactly the back-scattering of a hole is the process of Andreev reflection (see Fig. (1.27)).

The process of Andreev reflection is forbidden, if there are no spin-down density of states in the

normal metal. That is the case in half-metallic ferromagnets where only one of the spin bands has

states at the Fermi level. It is instructive to consider how the process of Andreev reflection changes

quantitatively the differential conductance of the point contact at sub-gap applied bias.

Figure 1.27: Schematic representation of the Andreev reflection process and the corresponding differential conduc-
tance. Panel (A)-spin sub-bands of a non- polarized metal (Cu). Panel (B)-the corresponding differential conductance
of a Nb/Cu point contact with an increasing zero bias conductance. Panel (C)-spin sub-bands of a half-metallic ferro-
magnet (CrO2). Note the Andreev reflection is forbidden. Panel (D)-the corresponding differential conductance of a
Nb/CrO2 point contact with a suppressed zero bias conductance. The picture is after Soulen et al.[314].

In the case of non-polarized metal, the Andreev reflection is fully allowed in which case the

differential conductance at zero-bias increases with respect to the high-bias background due to the

conversion from a single electron to two electrons Cooper pair. In the opposite case of fully-spin
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polarized metal, the Andreev reflection is fully forbidden and, hence, the zero bias conductance is

suppressed with respect to the high bias conductance. The magnitude of the zero bias anomaly was

initially used as a crude estimate for the spin polarization P:

GNS

GNN
= 2× (1−|P|), (1.102)

where GNS is the differential conductance of the contact and GNN is the high-bias different con-

ductance. In the intermediate case for the spin polarization 0.0 < P < 1.0, the current in the

ferromagnetic material must be decomposed into fully spin polarized (Ipol) and fully spin unpolar-

ized components (Iunpol). Then, the Andreev reflection is allowed for the Iunpol, and forbidden for

the Ipol. The two current components, the total current and the spin polarization P are then related

accordingly:

I = (1−P)Iunpol +PIpol (1.103)

The Andreev reflection is a fundamentally different process from the SPT. The Andreev reflec-

tion represents conversion of single electron to two electron injection at the superconductor-normal

metal interface whereas the SPT represents single electron tunneling transport between the super-

conductor and the normal metal.

Similar argument can be put through for the transfer between a normal metal and a super-

conductor without referring to the Andreev reflected holes (see Fig. (1.28)). For a non-polarized

material, there would be equal amount of spin-up and spin-down electrons impinging on the N/S

interface. Therefore, they will all pair together and be injected as Cooper pairs. Hence, the sub-

gap differential conductance is high. On the opposite side is the case of fully polarized material,

all electrons are with the same spin orientation and therefore can not find partners in order to be

injected as Cooper pairs. This leads to suppressed conduction through the contact. Although some

readers might prefer this view, the transmission coefficients are calculated quantum mechanically

using a single electron plane wave conventionally, as it will be outlined below.

1.5 Point Contact Andreev Reflection

This section will discuss in depth the processes of Andreev reflection starting from the original

Blonder-Tinkham-Klapwijk (BTK) theory[31], progressing through the modified BTK by Strijkers

et al. [321] and finishing with a discussion on the effect of barrier strength Z on the extracted spin

polarization P.
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(a) (b)

N S N S

Figure 1.28: Alternative view on the electron conversion between a normal metal (N) and a superconductor (S) at
sub-gap bias. Panel (a): non-polarized material, there are equal density of spin-up and spin-down electrons and the
conductance is high. Panel (b): fully spin polarized material, there are no electrons with opposite spin and the conduc-
tance is suppressed.

1.5.1 BTK theory

Starting from Eq. (1.103) and differentiating with respect to the voltage, the differential con-

ductance through the point contact is

G = (1−P)Gunpol +PGpol, (1.104)

where Gunpol and Gpol are the unpolarized and polarized differential conductances, respectively.

The BTK theory treats the two differential conductances independently using the spinor represen-

tation for the wave-functions of the electrons and using the Bogolubov-de Gennes (BdG) equation.

At the interface, an electron can undergo either specular (normal) reflection, or Andreev re-

flection in which a Copper pair propagates in the superconductor. Because of the charge and spin

conservation laws, in the Andreev reflection, a hole with an opposite spin must propagate backward

into the normal metal*. Based on the last considerations, the wavefunction of the electron in the

normal metal is:

Ψn =

(
1

0

)
eikex +b

(
1

0

)
e−ikex +a

(
0

1

)
eikhx. (1.105)

In a similar fashion, the possible quasiparticle states in the superconductor are quasielectron and

quasihole. Then, the wavefunction of the electron in the superconductor is:

Ψs = c

(
u0

v0

)
eiqex +d

(
v0

u0

)
e−iqhx. (1.106)

The coherence factors u0 and v0 are directly related to the BCS DOS of the superconductor. The

*Strictly speaking, electrons enter evanescent states in the gap which decay into the condensate within a distance
∼ ξ , the superconducting coherence length.
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probabilities for creation and annihilation of quasi-particles are described by the coherence factors.

Extensive treatment can be found in Tinkham [342]. In the above expression ke,kh,qe and qh are

the momenta of the electron and hole in the normal metal, quasielectron and quasihole in the super-

conductor, respectively. The so-constructed wavefunctions must be solutions to the Bogoliubov-de

Gennes (BdG) equation [
H0 ∆

∆∗ −H0

]
Ψs,n = EΨs,n. (1.107)

Where H0 is the single particle Hamiltonian and ∆ is the gap parameter. The gap parameter is zero

in the normal metal. Then, the wavefunction in the normal metal must satisfy[
−h̄2

2m
∂ 2

∂x2 −EF 0

0 h̄2

2m
∂ 2

∂x2 +EF

]
Ψn = EΨn. (1.108)

The energy of the electron and the hole eigenstates are respectively(
1

0

)
→ E =

h̄2k2

2m
−EF, (1.109)

(
0

1

)
→ E =− h̄2k2

2m
+EF. (1.110)

Hence, the wavevectors the electron and hole states are

ke = kF

√
1+

E
EF
≈ kF

(
1+

E
2EF

)
, (1.111)

kh = kF

√
1− E

EF
≈ kF

(
1− E

2EF

)
. (1.112)

The above approximations are correct when EF =
h̄2k2

F
2m � E. The last assumption is essentially

always true in PCAR and it will be clarified later in this section. In a similar fashion, the wavefunc-

tion in the superconductor must satisfy the BdG equation with a non-zero gap[
−h̄2

2m
∂ 2

∂x2 −EF ∆

∆
h̄2

2m
∂ 2

∂x2 +EF

]
Ψs = EΨs. (1.113)

The energy of the quasielectron and quasihole eigenstates are(
u0

v0

)
→ E =

√(
h̄2q2

2m
−EF

)
+∆2, (1.114)
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(
v0

u0

)
→ E =−

√(
h̄2q2

2m
−EF

)
+∆2. (1.115)

In the above equations, it has been tacitly assumed that the effective electron mass in the supercon-

ductor is the same as in the normal metal. Furthermore, zero mismatch in the Fermi level of the

two materials is considered. The wavevectors of the states in the superconductor are then:

qe,h = kF

√√√√1±

√
E2−∆2

E2
F

. (1.116)

Again the assumption EF � E,∆ is valid, hence:

qe,h =

kF
(
1± ν

2

)
, if E > ∆,

kF
(
1± iν

2

)
, if E < ∆,

(1.117)

where ν =

√
E2−∆2

E2
F

. Once the expressions for the electron and hole wavevectors in the normal metal

and the quasiparticles in the superconductor have been derived, the stitching of the wavefunctions

has to be made at the N/S interface. A Dirac delta function potential with an arbitrary strength

W models the interface in the BTK theory U(x) = Wδ (x). Then the boundary conditions for the

wavefunctions are:
Ψn(0) = Ψs(0),

Ψ
′
s(0)−Ψ

′
n(0) = 2m

h̄2 Ψ(0).
(1.118)

Where Ψ
′
n,s(0) must be interpreted as the value of the derivative at x = 0. The wavefunctions are

spinors. Therefore, the boundary conditions provide effectively four equations which determine

uniquely the transmission coefficients a,b,c and d:
−1

0

2Z + i

0

=


1 u0 0 −v0

0 −v0 1 −u0

i−2Z iu0 0 −iv0

0 iv0 −i−2Z −iu0




b

c

a

d

 , (1.119)

where Z = W
h̄vF

. After solving the above system, we get the reflection and transmission coefficients:

a = u0v0
γ
,

b = −Z(u2
0−v2

0)(Z+i)
γ

,

c = −u0(1−Zi)
γ

,

d = iv0Z
γ
,

(1.120)
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where γ = u2
0+Z2(u2

0−v2
0). The important information out of this calculation is the probability for

Andreev reflection A(E,Z) = a∗a and normal reflection B(E,Z) = b∗b. Therefore, the probabilities

for two processes are:

E < ∆ E > ∆

A = ∆2

E2+(∆2−E2)(1+2Z2)2 A =
u2

0v2
0

γ2

B = 1−A B =
(u2

0−v2
0)Z

2(1+Z2)

γ2

Table 1.1: BTK theory reflection probabilities

The expressions for the BCS coherence factors u0 and v0 are

[
u2

0

v2
0

]
=


1
2

(
1±

√
E2−∆2

E

)
, if E > ∆,

1
2e±iarccos(E

∆
), if E < ∆.

(1.121)

The reflection probabilities derived above will be used to calculate the current through the

contact. Two reservoirs (named n and s in this case) biased at voltage V are considered. The

convention that the bias lifts the Fermi function is assumed, hence the electrons coming from n-

reservoir have Fermi distribution f (E−eV ), while those coming from s-reservoir have f (E). There

exist transport currents in both directions: from the normal metal to the superconductor (In→n), and

from the superconductor to the normal metal (Is→n). The currents in an energy window dE at

energy E are expressed respectively as:

In→s = eSv(E)ρ(E) f (E− eV )T (E)dE, (1.122)

Is→n = eSv(E)ρ(E) f (E)T (E)dE, (1.123)

where S is the area of the junction, v(E) is the velocity of the electron, ρ(E) is the density of states

in the normal metal, and T (E) is the transmission probability. The total transport current is the

difference between the currents in the two directions and the difference integrated over the energy

I = eSvρ

∫
( f (E− eV )− f (E))T (E)dE. (1.124)

The energy scale is set by the size of the thermal energy kBT , whereas the applied bias is normally

in the range [−10∆,10∆], where ∆ is the superconducting gap. The superconducting gap of nio-

bium is around 1.5 meV, hence E � eV . This is the reason why the velocity and the density of
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states could be taken in front of the integral as these characteristics do not change. Furthermore,

the normal density of states of the superconductor is taken to be constant. The transmission prob-

ability is T (E) = 1−R(E), where R(E) is the reflection probability. The reflection probability is

R(E) = B(E)−A(E). It is reminded again that the Andreev reflection is in effect a backpropagated

hole which carries opposite charge and that is why the Andreev reflection probability comes with

negative sign in the reflection probability R(E). The current is then

I = eSvρ

∫
( f (E− eV )− f (E))(1+A(E)−B(E))dE. (1.125)

The Fermi distributions mismatch could be approximated using the Taylor series expansion as

f
′
(E− eV )(−e). The applied bias V is taken in front of the integral. It is natural to get rid of the

voltage variable by taking the differential conductance Gns = dI/dV . In the experimental section

it will become clear that actually it is experimentally easier to measure directly the differential

conductance. The result for the last is

Gns =−e2Svρ

∫
( f
′
(E− eV ))(1+A(E)−B(E))dE. (1.126)

From Table(1.1), it is obvious that in the case of contact between two normal metals, there is no

probability for Andreev reflection and the only possible process is normal reflection B = Z2/(1+

Z2). Then the normal-to- normal metal differential conductance is:

Gnn =−e2Svρ
1

1+Z2

∫
f
′
(E− eV )dE (1.127)

=−e2Svρ
1

1+Z2 (1.128)

At cryogenic helium temperatures (1.9 - 4.2 K), the derivative of the Fermi function behaves almost

as a Dirac delta-function ( f
′
(E−eV ) ≈ δ (E−eV )) *, and the integral over the energy is one. The

normalized differential conductance is expressed as:

Gns

Gnn
=−(1+Z2)

∫
( f
′
(E− eV ))(1+A(E)−B(E))dE. (1.129)

1.5.1.1 Spin polarization in the BTK model

The expression for the differential conductivity obtained above still does not provide the oppor-

tunity to utilize Andreev reflection for measuring the spin polarization. The total current I is split

into a fully-polarized Ip and fully-unpolarized Iu components. The current could be then written

*This approximation is taken only for the derivation of a clear mathematical form. The actual form of the Fermi
function derivative is considered and calculated in our analysis software. The proper normalization of the spectrum is
critical, otherwise the spin polarisation is underestimated.
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with the spin polarization P

I = PIp +(1−P)Iu. (1.130)

Each of the two current components have their own probabilities for normal and Andreev reflection:

I =−P(1+Z2)
∫

f
′
(E)(1+Ap(E)−Bp(E))dE− (1−P)(1+Z2)

∫
f
′
(E)(1+Au(E)−Bu(E))dE,

=−P(1+Z2)
∫

f
′
(E)(1−Bp(E))dE− (1−P)(1+Z2)

∫
f
′
(E)(1+Au(E)−Bu(E))dE.

(1.131)

The Andreev reflection for the fully-spin polarized current Ip is forbidden, hence Ap(E) = 0. On the

other hand, the reflection probabilities Au(E),Bu(E) are the same as the ones derived in Table(1.1).

What is left to be clarified is the normal reflection probability for the fully-spin polarized. It is

obvious, that at energies below the superconducting gap ∆, the only possible process is normal re-

flection, as the transmission is not allowed, hence Bp(E) = 1 for |E| ≤ ∆. The reflection probability

is derived on the assumption that the ration between the reflected and transmitted electron should

not depend on the type of the spin. In other words

Bp

Cp +Dp
=

Bu

Cu +Du
, (1.132)

furthermore, in the fully-spin polarized case

Bp +Cp +Dp = 1, (1.133)

⇒Cp +Dp = 1−Bp (1.134)

Then the expression for the normal reflection of the spin polarized component at energies E ≥ ∆ is

Bp

1−Bp
=

Bu

Cu +Du
,

⇒ Bp =
Bu

1−Au
. (1.135)

In order to demonstrate clearly the effect of the barrier strength Z on the PCAR spectra with

different spin polarization, multiple curves are generated on Fig. (1.29). All spectra are simulated

with assumed temperature of T = 4K. The case of a perfectly transparent barrier Z = 0.0

(panel (a)), demonstrates that the zero bias anomaly roughly follows the simplified expression

Gns = 2Gnn(1−P|). Another general trend, which is apparent, is that the spectra with high spin

polarization, 0.75 < P < 1.0, exhibit the same overall shape for Z < 1.0. In other words,

modest barrier strength does not affect the spectral features as long as the spin polarization is high.

52



1.5. Point Contact Andreev Reflection

However, the situation is very different for low values of the spin polarization. The spectral features

for unpolarized metal P = 0.0 change dramatically from Z = 0.0 to Z = 0.75. The reason is

that the Andreev reflection probability is inversely proportional to the square of the barrier strength

A ∝ Z−2. Therefore, less transparent interfaces suppress the sub-gap conductance and result in

spectral features which are dominated by the structure of the quasiparticle density of states of the

superconductor. For Z = 0.5,0.75, moderate values of the spin polarization (0.3 < P < 0.6)

become more difficult to be distinguished and to be fitted to the correct value of P. The spectra are

closer to each other. Experimentally, it is important the tip to land multiple times on the sample

in order to have good statistics on spectra of contacts with different barrier heights. Alternative

approach to distinguish between low and high barrier heights is a temperature scan of the contact.
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Figure 1.29: Simulated PCAR spectra following the BTK theory for different barrier strength Z and spin polarization
P. The temperature for the simulations is set at T = 4K. Each panel has curves for five different values of the spin
polarization P = 0.0,0.25,0.5,0.75, and 1.0. Panel (a)-Z = 0.0, panel (b)-Z = 0.25, panel (c)-Z = 0.5, and
panel (d)-Z = 0.75.

Two set of curves for 0 % and 100 % spin polarizations and Z = 0.0,1.0,2.0, and 5.0 are

presented in Fig. (1.30). It is obvious that in the case of Z = 5.0, the spectra for non and full spin
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polarization are essentially identical. A clear indication of high Z is the appearance of the sharp

singularities in the quasiparticle DOS of the superconductor around U = ±∆/q. The offset and the

smearing of the DOS in the present simulated curves is due to thermal broadening. For large barrier

heights, the Andreev reflection is fully suppressed and the spectra are analyzed as tunneling. The

case of Z � 1.0 corresponds to spin polarized tunneling which is discussed before in Sec. (1.4.5).

The increased height of the δ barrier can be considered as oxide barrier at the interface. In SPT,

the spin resolution is achieved due to the Zeeman splitting of the quasiparticle DOS and not due to

the Andreev reflection process.
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Figure 1.30: Simulated PCAR spectra for P = 0.0 (panel (a)) and P = 1.0 (panel (b)). Different barrier strengths
(Z = 0.0,1.0,2.0, and 5.0) are presented. The temperature is set at T = 4K.

1.5.2 Modified BTK theory

In the original BTK theory, presented above, the superconducting properties are supposed to

change with a jump at the N/S interface. It has been observed in the contact between a super-

conducting electrode and a normal metal electrode, that the superconductor induces small super-

conductivity in the normal metal. The effect is known as superconducting proximity effect[47].

Furthermore, there exists the opposite effect in which the presence of the normal metal destroys

slightly the superconducting properties of the superconductor. The last is known as inverse prox-
imity effect[342]. The proximity effect is incorporated by introducing two gap values, one for the

Andreev reflection (∆1, the proximity gap), and one for the quasiparticle transport(∆2). The model

is developed by Strijkers et al.[321] and is known as modified BTK (mBTK) theory.

An important contribution of the mBTK is the explanation of the finite bias conductance dips

(FBD), which have been previously observed but unexplained. The proximity effect broadens the

spectrum as well. Though, there is still controversy among the community about the validity of the

approach, whether the proximity effect is the only contributing effect, and whether the proximity

effect could be so easily incorporated. An extension of the BTK model for spatial variation of
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|E| ≤ ∆1 ∆1 < |E|< ∆2 |E| ≥ ∆2

Au =
∆2

1
E2+(∆2

1−E2)(1+2Z2)2 Au =
u2

01v2
01

γ2 Au =
u2

01v2
01

γ2
2

Bu = 1−Au Bu = 1−Au Bu =
(u2

02−v2
02)

2Z2(1+Z2)

γ2
2

Bp = 1 Bp = 1 Bp =
(u2

02−v2
02)

2Z2(1+Z2)

γ2
3

Table 1.2: Modified BTK theory reflection probabilities. The notations are represented as follow: u2
01 = 1− v2

01 =

0.5(1 + [(E2 − ∆2
1)/E2]1/2),u2

02 = 1− v2
02 = 0.5(1 + [(E2 − ∆2

2)/E2]1/2),γ2
1 = (u2

01 + Z2[u2
01 − v2

01])
2,γ2

2 = u2
01v2

01 +
(u2

02− v2
02)[u

2
02 +Z2 +(u2

02− v2
02)Z

2(1+Z2)], and γ2
3 = (u2

02− v2
02)[u

2
02 +Z2 +(u2

02− v2
02)Z

2(1+Z2)].
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Figure 1.31: Simulated spectra following the modified BTK theory. The spin polarization is fixed to P = 0.5 on all
panels. Panel (a)-Z = 0.0, Panel (b)-Z = 0.25, Panel (c)-Z = 0.5, and Panel (d)-Z = 0.75. Features known as finite
bias dips are indicated with brown arrows on panel (a). The temperature is set at T = 4K.
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the order parameter both in the superconductor and in the normal metal is given by van Son et al.

[355]. The proposed model has been applied to thin-film sandwiches of normal metal-ferromagnet

but it is unclear what is a realistic distribution of the proximity effect in the point contact geome-

try. Extensive review of the superconductor-ferromagnet proximity effect is given by Buzdin[47].

Westbrook and Javan [370] argue that the finite bias conductance dips can be due to quenching of

part of the contact, however, the conductance features are much sharper in this case. Evolution of

the proximity gap effect in the depth of the superconductor is studied extensively by the supercon-

ductivity community. The function exhibits simple exponential decay for the case of contact with

non-magnetic materials. On the other hand, the superconducting gap is a damped sine function in

the case of contact with a ferromagnetic material. The latter is known as FFLO state* [104, 192].

Figure 1.32: Superconducting order parameter at the interface between a superconductor and a normal metal (a), and
between a superconductor and a ferromagnet (b). The picture is after Buzdin[47].

1.5.3 Barrier strength

It is demonstrated in Fig. (1.30) that the barrier strength can completely suppress the Andreev

reflection. The Z parameter is a parameter which absorbs a few physical effects: Fermi level

mismatch between the two metals, oxide at the interface and scattering by impurities or interfacial

defects[158]. The band mismatch is an inevitable contribution present even in a nominally "clean"

contact. Fermi level mismatch between the two electrodes is considered in the follow-up work by

Blonder[30]. In this case, the effective barrier strength is

Zeff =

√
Z2 +

1− r2

4r
, (1.136)

where r = vF1/vF2 is the ratio between the Fermi velocities in the two metals. For instance,

r ≈ 1.15 for Nb/Cu contact and r ≈ 1.45 for Nb/Fe contact. Therefore, the effect of the Fermi

*Fulde-Farrell-Larkin-Ovchinnikov

56



1.5. Point Contact Andreev Reflection

mismatch towards the Z2
eff is up to 0.03 in the free-electron approximation*. If an ab initio calcu-

lation accounting for the band structure of transition metals is considered, the contribution towards

Z2 is 0.1[387].

Figure 1.33: Panel (a)-spin polarization of Co and Fe depending on Z2 following the extrapolation
P = P0 exp(−2αψZ2). The inset demonstrates fit on the Co data with a parabola, the high Z region is not cov-
ered well. The graph is after Kant[158]. Panel (b)-spin polarization of Ni, Co, and Fe with the quadratic extrapolation.
The graph is after Strijkers[321].

The effect of the interfacial oxides is often manifested as a dependence between the barrier

strength of the contact and the spin polarization (see Fig. (1.33)). High resistance, low cross-section

area contact might have unbroken oxide interface and, therefore, the impinging electrons undergo

multiple scattering events and/or the Cooper pairs cannot maintain coherence. The effect has been

reported by Strijkers[321], Bugoslavsky[45], Kant[158]. Varying the pressure on the contact results

in significant change in the spectral features when the sample/tip is oxidized. It is reported that the

fitted spin polarization decreases with higher barrier strength. Two models are utilized to extract

the inherent spin polarization out of the P(Z) dependence for Z→ 0. The model by Kant et al.[158]

considers the interface as an extended scattering region with width l. The transmission process is

calculated as a random walk problem of an electron with mean free path λ and scattering anisotropy

*If the initial Z = 0, Zeff ≈ 0.2 only due to Fermi velocities mismatch. It is a significant contribution!
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ψ*. In this approximation, the barrier strength is

Z2 =
1

1+ψ

l
λ
. (1.137)

Each scattering event has a spin-flip probability α . Electrons with initial spin polarization P0 are

impinging on the disordered region and then the transmitted polarization P is calculated to be

P = P0
(1+Z2η)

(1+2αφ)sinh(ηZ2)+η cosh(ηZ2)
, (1.138)

where η2 = 4α(1+ψ)+4α2(ψ2−1). For large forward scattering, i.e. large ψ , the cumbersome

expression above is approximated by

P≈ P0 exp(−2αψZ2). (1.139)

The other fitting procedure is suggested by Strijkers[321] and it is based on parabolic extrapolation

towards Z = 0. There is, however, no theoretical justification of such a model. In our work,

extrapolation the value of P towards Z = 0 is avoided. Large number of different spectra are

obtained and the one with the highest spin polarization is considered to be the intrinsic value for the

material. First of all, extrapolation towards Z = 0 is not always physically reasonable because such

transparent contacts are unattainable even in high quality in-situ grown point contacts. Second, the

dependence P(Z) is not always true and it might be a spurious correlation due to the fit converging

in a local minimum.

1.5.4 Important remarks

As it is outlined in the work of Blonder and Tinkham [30], the barrier strength, Z, depends on

the Fermi velocity mismatch between the superconducting and the ferromagnetic electrodes. The

Fermi velocities for the two spin channels are often different, therefore, there should be two differ-

ent barrier strengths in principle. The theoretical work of Zutic and Valls discusses the band mis-

match and its effect on the conduction spectrum[146]. It might be difficult to distinguish between

the effect of spin polarization and band mismatch (for example see Fig. 6 in Chalsani et al.[51]).

Furthermore, the effect of interfacial scattering and spin-flip scattering may have significant effect

on the observed PCAR features[51]. Additionally, spurious P(Z) dependence might appear when

the superconducting gap is left as a free fitting parameter [379] (the gap is fixed in our analysis

routine). Therefore, it could be generally more appropriate to trace the P(Z) dependence although

it is not well established what is the correct theoretical dependence [321, 158]. Extrapolation of the

*The scattering anisotropy represents the probability for forward and backward scattering
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1.5. Point Contact Andreev Reflection

P(Z) towards Z = 0 is performed in one of our published results [36].

Another point which should be mentioned is that the used theory of Strijkers et al.[321] has

the shortfall of incorrect normalization. The correct treatment is given in the work of Mazin et al.

[215]. Expressions are outlined in their work both for ballistic and diffusive transport regimes (see

Table 1.3 and Table 1.4). It is important to mention that usually the difference in the extracted spin

polarization between the theories of Mazin and Strijkers is within a few percents. Nevertheless, in

order to be consistent fitting approaches following the two models must be compared for particular

experimental data set.

|E|< ∆ |E| ≥ ∆

Iu
1+β

2β
Im[F(−iβ )−F(iβ )] 2β

1+β+2Z2

Ip 0 4β

(1+β )2+4Z2

Table 1.3: Diffusive BTK theory after Mazin et al.[215]. β is defined as follows: β = E√
|∆2−E2|

. Z is the barrier

strength.

|E|< ∆ |E| ≥ ∆

Iu
1+β

2β
Im[F(−iβ )−F(iβ )] 2βF(β )

Ip 0 βF [(1+β 2)/2−1]

Table 1.4: Diffusive BTK theory after Mazin et al.[215]. F(s) and β are defined as follows: F(s) = cosh−1(2Z2+s)√
(2Z2+s)2−1

and

β = E√
|∆2−E2|

.

1.5.5 Transport regimes

There are three different transport regimes through a point contact: ballistic, diffusive, and

inelastic (or thermal). The type of the transport regime is determined by the relation between three

characteristic lengths: the size of the nanoconstriction d, the elastic mean free path lel, and the

inelastic mean free path lin.
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Chapter 1. Spin electronics

The most sough-after regime in PCAR experiments is ballistic transport in which case d < lel.

In this situation, the carriers move through contact region without experiencing even elastic scat-

tering, the transport is considered one dimensional and is described by the BTK theory outlined in

Sec. (1.5.1). The ballistic spin polarization is what matters the most for MTJs because the trans-

mission probability through the oxide barrier is exponentially decreased for electrons with in-plane

momentum vector component. The ballistic nature of the contact can be checked by the Sharvin’s

formula[300, 13]:

RS =
4ρl

3πd2 , (1.140)

where ρ is the characteristic resistivity of the contact area and l is the mean free path, which is cal-

culated following Matthiesen’s rule. The product ρl =mVF/(ne2) is a material specific ratio, where

m,VF, and n are the effective mass, Fermi velocity and carrier concentration, respectively[120]. The

contact resistivity is usually assumed to be an average of the resistivities of the left and right elec-

trodes: ρ = (ρ1+ρ2)/2 and ρl = (ρ1l1+ρ2l2)/2. Gramich et al.[120] have used second derivative

, d2I/dV 2, as an indicator whether a contact is in a ballistic or diffusive regime. If it is ballistic, the

characteristic phonon excitation modes of the metallic electrodes should be observed.

The diffusive transport regime happens when lel < d < lin. In this case, the electrons expe-

rience elastic scattering in the area of the contact. This configuration is very probable to occur

in a PCAR experiment, although it has the disadvantage that the spectral information is averaged

over the momentum direction. The resistance of the contact area in this case is given by Wexler’s

formula[371, 13]:

RW =
4ρl

3πd2 + γ
ρ

2d
, (1.141)

where the second, Maxwell’s term, is multiplied by a slowly varying function, γ , which can be

approximated using Padé fit[255, 120].

The final transport regime is the inelastic or thermal regime, where the relation d > lin, lel holds

and the electrons lose both their initial momentum orientation and some of their energy. This is

a transport regime which must be avoided as the energy resolution is no longer well-defined. The

thermal regime results in local Joule heating in the contact area which may have two manifestations:

the superconducting tip is quenched at temperature significantly below the bulk critical temperature

of the composition, and/or the PCAR spectrum exhibits significant quadratic background[13]. The

resistance of a thermal contact is given at low bias by Maxwell’s formula:

RM =
ρ

2d
. (1.142)

It is not well-established how justifiable is the contact size estimation following the Sharvin’s

Eq. (1.140), Wexler’s Eq. (1.141) and Maxwell’s Eq. (1.142) formulas because the Fermi surface
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1.5. Point Contact Andreev Reflection

mismatch of the two metals have significant contribution towards the resistance of the point con-

tact. An extreme case in that respect is the work of Turel et al.[348], where a radius in the range

0.7 nm-6.0 nm is determined from the resistance of YBa2Cu3O7/CrO2(Au) point contacts.

As outlined above, the second derivative can be used as an indicator of whether the contact is in

the diffusive or ballistic regime[120]. The latter technique is known as point-contact spectroscopy

(PCS) and it has been pioneered by Yanson[397, 396]. PCS is a handy tool to investigate electron-

phonon interactions in normal metals and in superconductors [216]. In a ballistic contact, elec-

trons release their energy eV upon reaching the counter-electrode by generating phonons. Such

scattering process produces non-linear I-V curve. It has been demonstrated by Kulik et al.[184]

that the characteristic is representative for the electron-phonon interaction. Why a ballistic current

through a nanoconstriction would excite phonons? It is intuitively expected that ballistic electrons

do not scatter. They do not within the contact region but they do scatter outside of it (into the

electrodes). Ballistic electrons preserve their total energy, eV , and their wavevector direction as

they pass through the point contact. Therefore, they realize high energy upon scattering beyond

the nanoconstriction. On the other hand, diffusive electrons would scatter elastically multiple times

within the contact region and lose their wavevector directionality. Upon scattering in the coun-

terelectrode, their momentum vector loss will be averaged off and this is the reason why phonon

modes are not excite by diffusive electrons. More quantitative description is given by Yanson and

Naidyuk [396]. In the thermal regime, there will be multiple inelastic scattering events within the

contact region, therefore big portion of the eV energy will be lost before the electrons reach the

counterelectrode. Hence, phonon modes are again not excited.

1.5.6 Importance of PCAR

Critical parameters of spin electronic devices depend on the spin polarization of the ferromag-

netic electrodes. The TMR increases for higher spin polarization following Julliere’s model and

the critical current switching density of STT-based MTJs depends hyperbolically on the spin po-

larization of the analyzer. Therefore, it is important to extract the Fermi level spin polarization

of potential spin electronic materials in a swift and reliable manner. PCAR offers exactly that.

There is no need for device fabrication as is the case for spin-polarized tunneling, and there is no

necessity for in-situ transfer of the sample between the deposition chamber and the analyzing one

in ultra-high vacuum conditions as is the case for the spin-resolved photoemission spectroscopy.

Furthermore, PCAR probes the direct transport spin polarization unaffected by the quality of tun-

neling barriers. The PCAR can be performed on both thin films and tiny single crystals*. Extensive

*During the course of this work, attempt has been made to measure PCAR on the NdFeAsO1−xFex superconductor
in order to investigate its order parameter. The investigated sample is in pressed sintered powder. Unfortunately, the
measurement has been unsuccessfully, but that might be related to the fact that the surface of the sample oxidizes
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review of the compositions studied by PCAR goes beyond the limit of this work but some overview

is given in the two tables below.

Outside of the spin electronics area, PCAR has been used for extraction of the size and the

symmetry of the gap of superconductors. The measurement idea is similar to original tunnel-

ing configuration of superconductor-insulator-superconductor by Giaever et al.[109], however, a

direct electrical contact between the two electrodes in this case. For instance, a few important

achievements have been made folliwing this approach: the dual gap superconductivity nature of

MgB2[116], gap symmetry in Fe-based superconductors [287, 66, 66, 345], gap parameters in

Bi2Sr2CaCu2Oy [271] and d-wave superconductivity in PuCoGa5[67],

quickly after its polishing.
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1.5. Point Contact Andreev Reflection

1 - PCAR literature values of spin polarization, P

Composition P Reference

p-In0.96Mn0.04As 72.5 % Akazaki[3]

CoFeMnGa 70(1)% Bainsla[16]

CoFeCrAl 67(2)% Bainsla[15]

Mn2FexGa 51(2)% Bettoa

SrRuO3 51(2)% Raychaudhuri[275]

NiMnSb 45 % Branford[41]

(Fe/Co)n 60 % Chu[61]

La0.65Ca0.35MnO3 80 % D’yachenko[83]

Co2FeSi 49(2)% Gercsi[107]

SrLaVMoO6 50 % Goteh[118]

Fe-N 52 % Ji[152]

Co2CrxFe1−xSi 64 % Karthik[164]

Co75Fe25 58(3)% Karthik[163]

Co3FeN 62 % Kawai[167]

MnBi 63(1)% Kharel[169]

Mn2Ga 40 % Kurt[188]

Mn3Ga 58(6)% Kurt[188]

Mn3Ge 46(2)% Kurt[185]

Mn2Ru0.48Ga 54(3)% Kurt[186]

Ni76Al24 51 % Mukhopadhyay[243]

Co2MnSi 55 % Miyoshi[231]

NixFe1−x 45 % Nadgorny[247]

La0.7Sr0.3MnO3 75 % Nadgorny[246]

Mn5Ge3 42(5)% Panguluri[260]

Co2FeAlxSi1−x 60(1)% Nakatani[250]

Table 1.5: Literature values of spin polarization of various materials measured by PCAR.

aTo be submitted in PRB with title "Structure, element-specific magnetism and magneto-transport properties of
epitaxial DO22 Mn2FexGa thin films".
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2 - PCAR literature values of spin polarization, P

Composition P Reference

Fe4N 59 % Narahara[251]

Co1−xGdx 55 % Naylor[253]

Fe1−xVx 52(3)% Osofsky[256]

MnAs 49 % Panguluri[259]

In1−xMnxSb 52(3)% Panguluri[258]

(Ga, Mn)As 83 % Panguluri[257]

(Ga, Mn)Sb 57(5)% Panguluri[262]

Cr:In2O3 50(5)% Panguluri[261]

Eu1−yLayO1−x 91 % Schmehl[292]

FePt 42 % Seemann[295]

Ru1−xFexCrSi 53 % Shigeta2011[302]

CeMnNi4 60 % Singh[307]

CrO2 90 % Soulen[314]

Co2MnSixSn1−x 67(1)% Srinivasan[315]

Th 41(8)% Stamenov[317]

Er 58(2)% Stamenov[316]

In0.95Cr0.05N 50(2)% Thapa[338]

Ho 42 % Usman[350]

Gd 52 % Valentine[351]

Dy 50 % Valentine[351]

Co2MnGa0.5Sn0.5 72 % Varaprasad[356]

Co2Mn(Ga0.5Sn0.5) 66 % Varaprasad[357]

CoS2 56 % Wang[364]

(In0.95Sn0.05)2O3 58 % Xia[386]

Table 1.6: Literature values of spin polarization of various materials measured by PCAR.
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Chapter 2

Experimental section

"You have to make again this electrical

break-box. It is disgusting!"

Dr. Plamen Stamenov

2.1 Physical Properties Measurements System

Most Point Contact Andreev Reflection (PCAR) measurements in this thesis have been per-

formed in our Physical Properties Measurements System (PPMS) with a superconducting solenoid

with maximum applied magnetic field of µ0H = 14T. The PPMS is a highly versatile cryo-

stat with measurement capabilities like Vibrating Sample Magnetometry (VSM), Heat Capacity,

Thermal Transport, DC and AC (magneto-)transport with a possible rotation option. This is not

a conventional helium vapour through sample space cryostat, instead the helium is injected into

a cooling annulus through an impedance valve. The sample chamber is inserted into the cooling

annulus but the sample chamber is completely gas insulated from the sample space. This means

that the sample is never in direct contact with helium gas or liquid from the cooling space. More

importantly, the impedance valve is not exposed to atmosphere when the sample space is vented,

therefore, the icing probability of the impedance valve (from the back end) is significantly reduced

and the lifetime of the system between cool-down and a necessary warm-up is greatly extended.

The sample chamber itself is made of stainless steel in order to reduce thermal loss between the

cold bottom and the warm top of the system. Only the bottom-most ≈ 10cm of the sample cham-

ber is made of copper, so that the sample is in good thermal equilibrium with the cooling annulus.

The continuous low- temperature control (CLTC) option provides smooth transition through the

helium boiling point (4.2 K)[74]. The CLTC is a low helium flow procedure, and therefore, it fails

when the impedance valve is partially blocked and the helium flow is reduced. In such cases, the
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system can be switched to "on-the-pot" option*. In this regime, liquid helium is accumulated in the

cooling annulus for 30 min-40 min, then the impedance valve is fully closed and then this helium

bath is used. Once the bath is exhausted, the system loses temperature control for ≈ 30min before

the impedance valve cools down again.

2.2 Point-contact Andreev reflection setup

An electro-optical probe is wired with insulated copper twisted pairs. The twisted pairs are

organized in three separate bundles in order to reduce cross talk between the different signals:

• Bundle for temperature sensors

• Bundle for PCAR signals

• Bundle for piezo-steppers

The bundles for the temperature sensors and the PCAR signals are wound around the rod in different

directions - clockwise and counter-clockwise, respectively. The twisted pairs are tightened to the

rod with fishing cord and nail varnish is applied between the fishing cord and the stainless steel

rod†. The twisted pairs must be as immobilized as possible in order to reduce the vibration noise.

The bundle of twisted pairs for the piezo-steppers is intentionally passed through the core of the

hollow stainless steel probe rod in order to minimize the influence of the relatively high stepper

voltages (30 V-50 V) on the PCAR signal and on the temperature sensor‡. The PCAR signal and

the temperature sensor wires are soldered to 7-pin push-pull connectors close to the sample space

assembly. In this way, the sample space can be disconnected without affecting the wiring from

the top of the rod. These intermediate connectors are placed on a brass baffle. The four standard

aluminum baffles are used as guidance for the twisted pair bundles. There are small segments of

rubber insulation tube between the bundles and the baffles in order to prevent direct contact. The

latter would lead to destruction of the insulation of the twisted pair due to contraction/expansion

of the assembly after multiple cool-down cycles. The main purpose of the aluminum baffles is

reduction of the infrared radiation from the top of the rod to the bottom, because of that each baffle

is rotated at an angle of 120° with respect to the other.

There are 4 twisted pairs in total for two temperature sensors. One Cernox sensor is presently

in use and it is placed just below the sample holder. The sensor is calibrated in the range 2 K-300 K

*This is mainly important for measurements below 5 K. The "on-the-pot" option can be used in cases where the
CLTC fails to cool down in general. Beware that this option has higher helium consumption.

†Beware that nail varnish must not touch the wires because it dissolves the insulation!
‡During the automatic landing procedure, the PCAR signal does pick-up small contribution from the stepper

voltages.
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2.2. Point-contact Andreev reflection setup

and the calibration table is uploaded on the PPMS Model 6000 internal memory. The resistance

measurement bridge on the PPMS is used for the temperature measurements. The sample holder

is designed by the author and machined out of brass in the mechanical workshop in the School

of Physics, Trinity College Dublin. The PCAR measurement procedure is usually based on two

Figure 2.1: PCAR sample space for standard needle(Nb)-anvil(sample) measurement configuration. Some of the
important components of the setup are indicated: Nb tip, vertical piezo-stepper, horizontal piezo-stepper, and the
Cernox temperature sensor.

point differential conductance (dI/dV ) measurement. The dI/dV is obtained in an a.c. procedure

instead of current-voltage measurement and its numerical differentiation. This preferred approach

has better signal-to-noise ratio because of the narrow-band lock-in detection. An analog triangular

voltage waveform is provided by a Thandar (TG102) function generator. The frequency of the

triangular waveform is ≈ 0.5Hz, therefore, the Vmin to Vmax trend takes ≈ 1 s and this is the

duration of a single spectrum acquisition. The analog waveform is modulated with a sine wave from

the internal oscillator of a Perkin Elmer 7265 lock-in amplifier (LIA). The a.c. signal frequency

is conventionally 1.23 kHz. It is chosen high enough in order to avoid the 1/ f noise from the

amplifiers and low enough in order to have insignificant inductive pick-up in the sample leads. The

triangular voltage waveform is divided with a simple two resistors divider with a ratio 1:100, while

the a.c. sine wave is divided with a ratio 1:10000. The a.c. signal amplitude should always be kept

at least an order of magnitude smaller than the quasi-d.c. bias in order not to distort the applied

bias waveform. The output impedance of the divider is 10 Ω. Therefore, the current through the

circuit is due to d.c. bias, v, and a small a.c. bias, v = v0 sin(ωt):

I(V + v)≈ I(V )+
dI
dV

v0 sin(ωt). (2.1)
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The modulated waveform is fed into the contact and the current is passed to a current pre-amplifier

SR570, where it is amplified with a bandpass filter (300Hz - 3kHz) with a filtering slope 6 dB/octave.

The latter cuts off low frequency signals like thermal offsets and higher harmonics of the a.c. power

supply. The amplified current is passed to the LIA, where it is recorded synchronously with a volt-

age reference form the TG102 generator *. The LIA is operated in a curve buffer mode. The

transistor-to-transistor logic (TTL) signal of the TG102 is used as a trigger. Schematic of the elec-

tric circuit is shown on Fig. 2.3. Once a TTL signal is obtained from the TG102, data is collected in

a predetermined array by the LIA: 200 points, with time separation of 5 ms and saving the signals

- X, Y components on the input and the auxiliary voltage. Once the buffer is filled up, the data is

transferred to the program where it is concatenated with the PPMS temperature, Cernox tempera-

ture and field values obtained from the PPMS controller program. The curve buffering acquisition

is preferred because the LIA is not queried during data collection and this reduces the noise.

Figure 2.2: Picture of the wired electro-optical probe for PCAR measurements. The 7 pin connectors are visible on the
bottom-most brass baffle just above the samples space.

Figure 2.3: Schematic representation of the PCAR experimental setup and the electronic measurements circuit. Mi-
crometer positioning rod is available in the old PCAR setup constructed by Dr. P. Stamenov for an Oxford cryostat.

*The TG102 reference signal is passed to one of the auxiliary channels at the back panel of the LIA

68



2.2. Point-contact Andreev reflection setup

The outlined procedure above describes a single LIA acquisition only on the upward trend of

the triangular waveform. This means that essentially 50 % of the measurement time is lost. A

second, slave, LIA is introduced in order to reduce the dead time practically to zero. An HP 4284A

waveform generator delays the TTL signal from the TG102, so that the slave LIA is triggered on

the downward trend of the triangular waveform. In this way, the two LIAs measure concurrently

on the upward and downward trend of the triangular waveform, respectively. The same acquisition

routine is used for the slave LIA. The circuit is presented on Fig. (2.4).

The real time, raw, acquired data is consequently preprocessed. This allows contact drifts

and reorientations to be avoided in the averaging. The signals from the two LIAs are averaged

separately and then manually overlapped. There is a small impedance mismatch between the LIAs

and this results in offset of the master and slave spectra along both the bias and the conduction

axes. No matter how well the delay of the second LIA is adjusted, the applied bias range of the two

LIAs never overlap perfectly. Therefore, a common bias window is determined for two LIAs and

then the raw data is interpolated using this window before averaging.

HP4083A Pulse Generator 

OSC OUT INPUT 

REF IN TRIGGER 

LIA PE7265 Master 

Thandar Function Generator 

TTL OUT SIG OUT 

SR570 Pre-amp 

INPUT OUTPUT 

100:1 

10000:1 

Out (10 Ω) 

to the mechanical contact 

LIA PE7265 Slave 

OSC OUT INPUT 

REF IN TRIGGER 
INPUT OUTPUT 

REF OUT 

Figure 2.4: Schematic representation of the electronic circuit for the two LIA PCAR data acquistion.
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The point contact between the tip and the investigated sample is achieved with a vertical piezo-

stepper ANPz30. The landing procedure is fully automatic and it is terminated when a particular

contact conductance threshold is achieved*. Two horizontal piezo-steppers ANPx51 are used as

well in order to land on a pristine area of the sample. They can be used as well in order to make a

two-dimensional investigation of the spin polarization or to scan through a feature†.

Some of the measurements with the MgB2 superconductor are performed in setup configuration

which is rotated to 90° with respect to the original one. In this case, the applied magnetic field is in

plane of the superconducting thin film and an Fe tip lands on the MgB2 (see Sec.(5.4)). Only the

two horizontal piezo-steppers are used in this case: the top one is used to adjust the point contact

between the MgB2/CoFe while the bottom one is used in order to change the landing position on

the MgB2. The ferromagnetic (Fe) tip is soldered on a small brass platform which is insulated

from the sample holder with a slotted teflon cylinder with 6 mm outer diameter and 3 mm inner

diameter. The brass platform is glued with nail varnish to the teflon cylinder. The measurements on

Figure 2.5: Experimental setup for in-plane PCAR spectroscopy measurements. The MgB2 superconducting film is
mounted on an L-shaped holder. The Fe tip is insulated from the sample holder with a slotted Teflon cylinder. An
auxiliary two wire connector is present just to the left of the L-shaped holder. This connector is used for providing the
polling voltage for the investigation of the spin polarization strain dependence in ferroelectric/ferromagnetic bilayers.

the MgB2-CoFe shadow-masked junctions are performed with the standard rotator option for the

PPMS (see Sec.(5.5)). The sample with the junction is mounted on top of the rotational platform

and, therefore, as the sample is rotated, the field direction changes from in-plane of the MgB2 thin

film to perpendicular to plane. The junctions are measured in two point configuration and the same

measurement electronic configuration is used as for the conventional needle-anvil approach. The

PPMS Labview controller for the junction measurements is modified and the angle‡ can be changed

and is constantly recorded in the PCAR data files. The angle, θ , can be varied in the range −5° to

*Usually set at 20 G0.
†Such approach is used for the investigation of Sb 2Te3 and Bi0.36Sb1.64Te3 in Sec. (3.3). A very narrow strip of

TI is left and the Nb tip is scanned through it.
‡And the rotation speed
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2.2. Point-contact Andreev reflection setup

365°. There is always small angular offset between the real orientation and the measured one due

to backlash in the rotational mechanism* and imperfection in the mounting of the sample on the

platform. From the measurements in Sec. (5.5), it is extracted that the maximum angular offset is

always below 10°. The speed of rotation varies between 0.1 ° s−1 and 1.0 ° s−1. An intermediate

speed of ≈ 0.4° s−1 is chosen for the full angular dependencies. The smallest rotational speed

is chosen for the fine angular scans around the field in-plane direction (80° < θ < 100° and

260° < θ < 280°). PCAR spectra are recorded on-the-fly, therefore, there is error in the angle

of each PCAR scan of approximately ∆θ ≈ 0.4° in the full range angular scans†. No appreciable

difference is observed between the scans obtained on-the-fly and scans performed at constant field.

The outlined procedure can be easily extended, so that there is a wait of a few seconds at each angle

value‡.

(a) Picture of the PCAR setup electronics rack. (b) Picture of our group Physical Properties Measurement
System.

Figure 2.6: Pictures of the PCAR electronics rack (a) and the Physical Properties Measurements System (b).

*The backlash is more pronounced for rotation with high speed because the mechanism is spring-loaded.
†Because the spectra are acquired at frequency of 1 Hz, the error in the angle is assumed to be equal to the rotational

speed. Therefore, swift rotation should be avoided.
‡The latter will result in significantly bigger size of the data files and reduced data acquisition speed but it will

improve the noise as multiple spectra will be averaged at each θ .
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2.3 Differential spectroscopy

Differential spectroscopy (DS) is recorded on magnetic tunnel junctions with a layer of the

highly spin polarized ferrimagnet Mn2RuxGa in Sec. (6.4). DS provides valuable information about

the density of states of the electrodes of the tunnel junctions as well information about the inelastic

processes involved in the tunneling *. The measurement setup is similar to the PCAR setup outlined

above. This time the bias range is ±1 V and the voltage is supplied by a Keithley 2400. The d.c.

bias step is ∆V = 1mV. The voltage modulation between the Keithley and the LIA is achieved in

this case with differential amplifiers. As before, the current is preamplified by an SR570 and then

recorded by the LIA. The modulation frequency is again 1.23 kHz and the modulation amplitude is

Vrms = 3mV. The pre-amplifier is calibrated beforehand with a resistor similar to the resistance

of the magnetic tunnel junctions†.

Two other possible approaches for DS measurement are mentioned here. A small resistor can

be connected in series with the investigated junctions ‡, then the voltage drop across this resistor

is measured and the current through the circuit is determined in this way. The voltage should be

amplified with voltage amplifiers. This measurement approach can be used when the current pre-

amplifier is not available. It has a disadvantage due to Johnson noise on the additional resistor.

Another approach is DS in current sourcing setup. In this case, the a.c. sine wave and the d.c.

voltage are passed through resistors much bigger that the resistance of the investigated device§. The

a.c. and d.c. current components are added together and are fed into the investigated device. This

measurement scheme is particularly suitable for investigation of relatively low resistance devices

(R < 10kΩ) because this is a natural configuration for four-wire measurement.

Monsma and Parkin have suggested a four-point voltage sourced dI/dV (V ) as the most accurate

experimental approach in their spin polarized tunneling experiments[234]. A dc bias in range from

−1.5 mV to 1.5 mV is modulated with a 10 µV sine waveform at frequency of 42.8 Hz and fed into

the two input electrodes. The ac current through the circuit is measured with the sourcing lock-in.

The ac/dc voltage drop on the junction is measured at two separate output electrode using a second

lock-in, which is synchronized with the first one and a separate dc voltmeter. This methodology

has the following advantages: the voltage over the junction is measured explicitly, so are the ac

components dI and dV . As mentioned by the authors, current sourcing leads to poor gap resolution

because the sub-gap resistance is very high.

More sophisticated measurement approaches in resistance bridge configuration are used as well.

They have significantly higher sensitivity with the disadvantage that measurements in bridge con-

*For instance, phonon or magnon scattering.
†The same amplification range is used both for the calibration and for the differential spectroscopy.
‡Small with respect to the resistance of the junctions
§Or better, the Keithley is directed set in current sourcing mode.
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figuration are usually very time consuming and, furthermore, they are more prone to mechanical

drifts. An extensive review of the differential spectroscopy methodology is given by Magno and

Adler[209].

2.4 SQUID-based PCAR

Superconducting quantum interference devices (SQUID) are known as the most sensitive flux-

to-voltage converters. SQUIDs have been used since their invention as very sensitive current pre-

amplifiers. The SQUID pre-amplfier is especially useful when the impedance of the device is very

low. For instance, the initial studies on CPP-GMR structures are carried out on high-area stacks

with a SQUID pre-amplifier[272]. SQUID pre-amplifier is utilized here for measurements of low-

resistance, high-area, Andreev contacts. The first configuration for which data is recorded is as

follows: the PCAR is performed in one cryostat while the SQUID pre-amplifier is in a separate

cryostat. The current is brought from low temperature to high temperature and then again to low

temperature for the amplification at the SQUID washer. The measurements are performed between

Nb and bulk polished Fe piece.

The obvious disadvantage of the above experimental configuration is that there is Johnson noise

on the current leads which go from 4 K to 300 K. In order to circumvent this problem, an old Oxford

instruments cryostat is repurposed. A different top plate is designed by the author and machined out

of stainless steel in the School of Physics mechanical workshop. In this configuration, the SQUID

washer is brought close to the probe and the connections between the sample and the SQUID are

made with mono-filament superconducting Nb-Ti wire. The SQUID is positioned approximately

10 cm above the superconducting magnet in order to reduce the effect of the stray field on the Nb

shield. This experiment is constructed as a dipper probe, i.e. there is no variable temperature insert

and the temperature of the whole helium bath, which include the PCAR probe, the SQUID chip,

and the magnet, can be changed only by the pressure. The maximum attainable field with this

magnet is 7 T.

An example of PCAR measurements of bulk Fe with superconducting Nb tip are given in

Fig. (2.7). The contact is large area and the conductance is high: Gn = 332.0(5)G0. The ex-

tracted spin polarization of 45(2)% is in accordance with literature data on Fe. The field scan in

the range ±1T demonstrates the shrinking of the superconducting gap.
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(a) Old SQUID setup with the pre-amplifier in a separate
dewar.

(b) New SQUID setup with the PCAR probe and the
SQUID chip in the same dewar.

Figure 2.7: Pictures of the SQUID pre-amplifier setup: old (a) and new (b).
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(a) PCAR measurements of Nb/Fe with a SQUID pre-
amplifier.

(b) Field scan of an Nb/Fe PCAR with a SQUID pre-
amplifier. Temperature is 2.2 K.

Figure 2.8: Example of PCAR measurements with SQUID pre-amplifier: single PCAR (a) and PCAR magnetic field
scan(b).
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2.5 Change of the spin polarization by induced strain in ferro-

magnetic layers

Another experimental extension of the PCAR methodology which has been attempted over the

course of this work is the investigation of the spin polarization dependence on the strain of fer-

romagnetic layers. The effect is sought after in bilayers of ferroelectric-ferromagnetic materials

(AlN/CoFe) and piezoelectric- ferromagnetic materials (BaTiO3/La0.7Sr0.3MnO3). In this experi-

mental configuration, there is a pair of leads which provide the polling voltage for the

ferro-(piezo-)electric layers. The negative polarity is given to the ferromagnetic layer and the pos-

itive polarity is set to the back gate. High biases of up to 220 V are used for polling thick piezo-

(ferro-)electric layers and the negative polarity is at the same potential with the lead for the current

pre-amplifier. Otherwise, the current pre-amplifier overflows in d.c. biases > 1V. An additional

precaution is taken by placing two arresting diodes in front of the pre-amplifier input and this pre-

vents the blow up of the the JFET amplifiers by a possible discharge of the piezo-(ferro-)electric

layers. The result of these experiments are inconclusive and only a single PCAR example of the

effect of strain on the spin polarization of CoFe is given here (see Fig. (2.9) (b)). There is little

decrease in the zero-bias conductance when the applied bias is 200 V which correspond to electric

field of E = 0.4V µm−1. The latter is an indication that the spin polarization increases slightly.

The extracted change within the mBTK model in the spin polarization is rather low ≈ 0.8%. Fu-

ture research effort are needed toward measuring PCAR on lithographically patterned structures in

order to reduce the detrimental effect of the multidomain states in both the ferromagnetic and the

piezo-(ferro-)electric layers.

sample

tip

Modulated voltage source

Polling 
voltage

Towards current pre-amplifier

(a) Wiring configuration for PCAR biasing setup.
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(b) Example of two PCAR measurements on AlN/CoFe
bilayers in applied bias of 0 V and 200 V.

Figure 2.9: Example of spin polarization dependence on the applied electric field in AlN/CoFe bilayer.
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2.6 Organic deposition chamber and argon ion milling

A home-built thermal evaporation ultrahigh vacuum chamber is used for the deposition of the

MgB2-CoFe shadow-masked junctions investigated in Sec (5). The base pressure is < 5× 10−9

mbar and the maximum current is 300 A*. The chamber is constructed with the main aim for

preparation of magnetic tunnel junctions with organic barrier. The system chamber consists of

main deposition chamber and a load lock which are separated with a gate vale. The main chamber

has a low angle argon plasma gun and the sample can be pre-cleaned before additional layers are

deposited. The main chamber is pumped with a Pffeifer™turbomolecular pump, which is backed

by an Agilent™scroll pump, and there is a Perkin Elmer™ion pump for achieving the low base

pressure. Quartz crystal monitor is used for determination of the thickness of the layers. SiO is

thermally evaporated when insulation is needed between the devices on the chip. The sample stage

can be heated up to 200 ◦C or cooled down to −196 ◦C (with liquid nitrogen) when it is required.

(a) Inside view of the organic deposition chamber. (b) Outside view of the organic deposition chamber.

Figure 2.10: Pictures of the organic deposition chamber. (a) - inside view of the sample stage rotational mechanism.
The argon gun is switched on for illumination. (b) - overview picture of the chamber.

The Millatron is an Ar ion milling machine with base pressure 6 10−6 mbar which can be used

for variable purposes: cleaning of thick oxide layers, patterning of Hall bars and magnetic tunnel

junctions. It has plasma gun which is usually operated at a power of 300 W-400 W and there are

four adjustable knobs for tuning of the impedance of the gun. The sample stage holder is water-

cooled and rotatable in both angular directions. The φ direction rotation assures that the features

are uniformly milled while the θ direction adjustment provides opportunity for low-angle milling

which cleans the redeposited material on the side walls of multi-layer stacks. The side-wall clean-

ing is of critical importance in patterning of magnetic tunnel junctions because redeposited material

electrically shorts the device otherwise. There is a secondary ion mass spectrometer (SIMS) detec-

tor which is located on top of the chamber. The latter is used for real time detection of the layer

*This is limited presently by the melting temperature of the insulation of the high current leads and not by the
capabilities of the power supply.
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which is milled*. The deflecting voltages on the plates in the SIMS have to be adjusted depending

on the angle of milling. The SIMS relies on quadrupole mass spectrometer (QMS) for detection.

Different ac and dc electric fields are set in order to adjust for particular charge/mass ratio. The

selected ions impinge on a multiplier tube and secondary ion cascade is created which is then de-

tected†. If more than one element is scanned overall by the SIMS, the QMS is tuned to a single

ion at a time and multiple ions scans suffer from worse time resolution. It is advisable to limit the

number of traced elements to 4-6 otherwise the procedure is too slow.

2.7 Wire bonder

The wire bonder used is Kulicke and Soffa Ltd. model 4700. The wire bonder is an industrial

widely used machine for interconnects between integrated circuits and chip carriers. The wire

bonding is in essence a process in which a thin wire is locally attached by ultrasound frequency

vibration on top of the bond pads of the device. Wire bonding is done in either wedge bonding

or ball bonding method‡. All magnetic tunnel junctions (MTJs) are wedge bonded due to concern

over the electrical current which flows during the ball formation in the ball bonding method. All

MTJs are bonded with gold wire on gold bond-pads. Before bonding the MTJs, the surface of the

chip is bonded to ground; also the chip carrier contacts are shorted between each other and one is

connected to ground. These precautions are taken in order to reduce the chance for an dielectric

breakdown of the insulating barrier during the bonding procedure. The force, time and power

are the main parameters which determine the bonding process. The tail and loop determine how

much wire is left after a bond is made and how high the wedge is retracted after the first bond.

Heating of the sample stage facilitates the adhesion process, however, no heating is applied in the

wire bonding of the MTJs due to a ground loop concern. A short manual on the wire bonding is

provided in Appendix. The bonding parameters depend on the geometry of the wedge as well as the

adhesion of the bond pads, therefore, there are no magical parameters which work on any machine

and any device. An important note is that the bonding is heavily affected by contamination of the

wedge, the wire and the chip§.

*The SIMS and the main chamber are pumped separately and, hence, the SIMS may not be pumped and used for
simpler processes like patterning of Hall bars.

†The absolute amplitude of the signal can be adjusted accordingly in order to extend the life-time of the detector.
‡Ball bonding is the preferred method in the industry.
§The wire must never be touched with hands due to carbon contamination reasons, the chip should be sonicated in

isopropanol for 2 minutes before bonding, and the wedge should be cleaned often as well.
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Figure 2.11: Picture of the wire bonder used for bonding of the Mn2RuxGa-based magnetic tunnel junctions.

2.8 Magnetometry

Only DC magnetometry measurements are performed during this work. The used experimental

tools are the Vibrating Sample Magnetometer (VSM) in the PPMS or SQUID magnetometer in

a Magnetic Properties Measurements System (MPMS). Both setups are conceptually similar al-

though the detection scheme and, ultimately, the sensitivity are greatly different. An investigated

sample is vibrated and thus following the Lenz’ law an electromotive voltage is induced in the

pick-up coils due to the variable magnetic flux. The induced voltage is detected synchronously

at the frequency of the oscillator drive of the sample. The induced voltage is amplified by JFET

transistors in the VSM, whereas it is fed to a SQUID detector in the SQUID magnetometry. The

SQUID detection is much more sensitive mainly due to the superior flux-to-voltage characteristics

of a SQUID (see Appendix E). Another difference is that the pick-up coils of the VSM are made of

normal metal whereas the SQUID pick-up coils are superconducting. The latter contributes to the

superior SQUID sensitivity*. Another difference between the measurement tools is the gradiometer

configuration of the pick-up coils. There are inevitable magnetic field gradients within the sample

area and a single pick-up coil would detect not only the magnetic moment of the sample. In order

to prevent that, the pick-up coils are constructed in a gradiometer configuration. A first-order gra-

diometer is essentially two coils which has induced voltage with opposite polarities. In this way, it

can be shown that the configuration detects only odd derivatives dBn/dzn. The contribution from

the external field is canceled is canceled and the lowest derivative which contributes to the signal is

dB1/dz2. First order gradiometer is used in the VSM setup. Second-order gradiometer is in essence

*The superconducting coils might trap magnetic flux and there are separate heaters for quenching of the coils.
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a configuration of three coils. This configuration detects only even derivatives, the first derivative

is canceled and the lowest derivative detected is d2B/dz2. Second-order gradiometer is used in the

SQUID magnetometry. The sensitivity of the VSM is 10−9 A m2, whereas the sensitivity of the

SQUID magnetometry is two orders of magnitude better-10−11 A m2*.

The oven options of the VSM and the SQUID have been used as well for Curie temperature

determination of novel materials - Mn2FexGa and Ne+ ions irradiated Fe60Al40. The two setups

have different approach towards the high temperature measurement. The VSM relies on a ceramic

platform with an integrated meander heater and a temperature sensor. The sample is placed on

top of the heater either with a high-temperature cement paste or wrapped around with copper foil.

The VSM oven option is under high vacuum conditions provided by the PPMS cryopump so that

the power from the heater does not overheat the whole chamber. On the other hand, the SQUID

magnetometry oven is essentially "dewar in dewar". The oven itself has a thin insulating annulus

(≈ 1mm) and the oven is inserted into the standard SQUID sample space. The central tube of the

SQUID oven is with diameter 4 mm. In this case, the whole oven sample space is heated unlike the

VSM local heat-up by the meander heater. The SQUID oven sample rod ends far above the pick-up

coil, therefore, a sample mounting approach is needed. Sealing a sample in a thin wall quartz tube

is perhaps the best approach for bulk samples. The thin film mounting procedure used in this work

is to wrap the sample in long and narrow stripe of aluminum foil (l ≈ 22cm and w ≈ 1.2cm)

and attach the sample to the bottom of the rod with a bare copper wire. The aluminum is a very

good choice because it has low paramagnetic susceptibility which is essentially temperature inde-

pendent. A disadvantage of the Al is that it has low melting point, and, therefore, the temperature

measurement range should be limited to T < 800K. The sensitivity of the VSM and SQUID mag-

netometry is an order of magnitude lower in the oven setup than in the standard configuration due

to the added background from other elements in the sample area. A short summary of the SQUID

oven mounting procedure is given in Appendix D. It is possible to mount thin films in direction

perpendicular to the plane but significant effort must be taken in mounting the sample in this di-

rection and the sample has to be very small†. An example is given here of a Curie temperature

measurement of Mn2FexGa, a composition with perpendicular magnetic anisotropy.

*It can reach 3×10−12 A m2 in AC magnetometry.
†Since the oven has a bore of 4 mm, the sample size has to be at most 2 mm × 2 mm when it has to measured in

the field perpendicular to plane direction.
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Figure 2.12: (1) - schematic representation of the second-order superconducting gradiometer pick-up coils configura-
tion in a SQUID magnetometer. (2) - representation of the measured signal as a function of distance. The graph is after
Black and Wellstood [29].
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Figure 2.13: SQUID oven measurement of a Mn2Fe0.75Ga thin film with perpendicular magnetic anisotropy. The
extracted Curie temperature is 695 K and the scan is done in the remanent magnetic state.
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Chapter 3

Spin polarization of topological insulators

"No experiment is so dumb, that it should

not be tried."

Walther Gerlach

3.1 Introduction to topological insulators

Topological insulators (TIs) are a novel kind of quantum materials and artificial structures.

They are characterized by bulk bandgap and gapless conductive surface states with correlation

between the direction of the momentum and the spin directions. There are two types of TIs: two-

dimensional (2D) and three-dimensional (3D). The observation of topological insulation in 2D is

known as Quantum Spin Hall (QSH) effect. The quantum Hall effect (QHE) is the first fundamental

physical observation which demonstrates the importance of topology on the transport properties.

The integer quantum Hall (IQH) effect was theoretically predicted by Ando[7] and realized by von

Klitzing[175] in a silicon-based metal-oxide-semiconductor field-effect-transistor (MOSFET). A

two dimension electron gas (2DEG) is created in the invertion layer of a MOSFET and when the

Hall effect is investigated in high magnetic field, the Hall conductivity, σxy, is quantized:

σxy = ν
e2

h
, ν = 1,2, . . ., (3.1)

where e2/h is the quantum of conductance. There are plateaus in the σxy(B) scan which occur

at fields B = (n/ν)Φ0, where n is the electron density and Φ0 = h/(2e) is the magnetic flux

quantum. The longitudinal conductance σxx is zero everywhere apart from the fields at which a

step in σxy occurs where a sharp spike is observed. The quantization happens due to fill up of the

Landau levels (LLs). When electrons are subjected to magnetic field and restricted in 2D, their

energy is quantized: Eν = (ν + 1
2)h̄ωc, where ωc = eB/m is the cyclotron angular frequency.
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Figure 3.1: Panel (a): Example of the first demonstration of quantum Hall effect in Si-MOSFET. The graph is after von
Klitzing[175]. Panel (b): Schematic representation of the locked electrons orbits and the edge transport in a quantum
Hall effect. The magnetic field is applied outside of the plane.

When exactly ν LLs are filled, there is an energy gap and this explains the zero σxx. The

electrons are locked in circular orbits in the middle of the Hall bar. However, there are skipping

orbits at the edge of the Hall bar because the circular motion is terminated at end of the sample.

The electrons bounce back and, therefore, there is linear motion of the electrons along the edges

of the Hall bar. The chirality of the electron flow depends on the direction of the magnetic field.

For the field direction on Fig. 3.1 (b), electrons move along~x of the top edge and along −~x on the

bottom edge. The σxy can be determined if the expectation value of the current is computed in a

quantum mechanical sense[194].

On the other hand, the QSH in 2D TIs can be considered as dual versions of the QHE. Two

edge states propagate in opposite direction and the spin and momentum directions are correlated.

The latter is known as helical edge states. The spin-momentum locking means that backscattering

is forbidden because an electron must flip its spin in order to reverse its proparagation direction*.

(a) (b)

Figure 3.2: Comparison between the edge states in Quantum Hall effect for fill factor ν = 2 (a) and Quantum Spin
Hall effect (b).

Historically, 2D TIs have been realized first in semiconducting quantum wells (QWs) with

*This requirement can be lifted by perturbations which break the time-reversal symmetry: inelastic scattering and
magnetic impurities, for instance.
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inverted band structure. Kane and Mele[157] and Bernevig and Zhang[26] have theoretically pro-

posed realization of QSH in graphene and in semiconductors with strain gradients. However, it is

the later prediction by Bernevig et al.[25] about inverted type-III HgTe/CdTe QWs that is realized

experimentally. The band ordering of HgTe is inverted with respect to the (Hg,Cd)Te compound.

When a QW is formed in a Hg0.32Cd0.68Te/HgTe/Hg0.32Cd0.68Te sandwich structure, the quantum

confinement depends critically on the QW thickness. For narrow QW with d < 6.3 nm, the band

ordering is normal and the structure has positive energy gap. For wider QWs with d > 6.3 nm, the

hole band becomes the conduction band and this band structure is referred to as inverted. A con-

ductance of 2e2/h has been achieved by electrical gating and tuning of the Fermi level, EF, in the

bulk bandgap (see König[179]). The latter corresponds to one pair of edge states. This is presented

on Fig. 3.3 (a). For regular band structure (sample I), quantum regime is not reached and the sample

becomes just insulating when the Fermi level is in the bandgap. For inverted band structure, QSH

state is achieved; however, the exact quantization is maintained only when the size of the Hall bars

is comparable with the inelastic scattering mean-free path lin ≈ 1µm. Different possible reasons

for the instability of the QSH are discussed by Schmidt[293], Maciejko[207], and Ström[322] and

among them are thermal fluctuations, charge pockets and crystallographic disorder.

Figure 3.3: Panel (a)-demonstration of the Hall effect quantization once the Fermi level is tuned in the bulk bandgap
(gate voltage = threshold voltage). Sample I-normal QW band structure→ no quantization (d = 5.5nm), samples II,
III, and IV are samples with inverted band structure (d = 7.3nm). The size of the devices is (20× 13.2) µm2 for I and
II, (1.0 × 1.0) µm2 for III, and (1.0 × 0.5) µm2 for IV. The graph is after König[179]. Panel (b)-demonstration of the
edge channel conductance additivity depending on the number of edges. The graph is after Roth[280].

The helical nature of the edge states has been proven by nonlocal transport[280] and the demon-

stration of the edge nature of the transport is presented on Fig. 3.3 (b). If the voltage probe is con-

nected between contacts 2-3, the voltage is detected along a single edge and the resistance reaches

a single half quantum of resistance. On the other hand, if the voltage probe is connected between

contact 1-4, then there are three edges involved and, hence, the measured resistance is 3h/(2e2).
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Therefore, in a general case, the resistance is:

Rn = n
h

2e2 , (3.2)

where n is the number of independent edges along the path between the two voltage probes.

The spin polarization of the edge states is demonstrated by inverse spin Hall effect on H-bar

geometry[43]. Similar demonstration of 2D topological insulating nature is made on inverted

InAs/GaSb QWs[327, 81].

3.2 Three-dimensional topological insulators

Shortly after the discovery of the 2D topological insulators, theoretical predictions are made

for realization of 3D TIs by Fu[102], Moore[241], and Roy[282]. In the case of 3D TIs, the cross-

over from topologically trivial (bulk insulator) to topologically non-trivial surface states depends

on the surface band-bending and the spin-orbit interaction in these materials. A topological phase

transition study has been performed on BiTl(S1−δ Seδ )2[391] and a 3D topological insulator is

predicted in Bi1−xSbx[100] and demonstrated by ARPES[144]. Five distinct surface state bands

cross the Fermi level in this composition and the existence of multiple bands at EF complicates

the investigation of the DOS structure and the analysis of electrical transport. Next generation

3D TIs were experimentally realized shortly afterwards in Bi2Te3[143], Sb2Te3, and Bi2Se3[388]

where the advantage of the second generation TIs is the existence of larger bulk bandgap of up to

300 meV (for Bi2Se3) and simpler DOS structure of the surface states.

Figure 3.4: Panel (a)-ARPES study of Bi0.91Sb0.09 along the Γ-M direction. Five bands cross EF. The graph is after
Hsieh[144]. Panel (b) and (c)-ARPES study of Bi2Se3(111) along Γ-M and Γ-K, respectively. Single Dirac cone is
present. These graphs are after Xia[388].
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In this second generation 3D TIs, there is a well-defined single Dirac cone of the surface states

and the Dirac point is buried in the bulk-valence band in the cases of Bi2Se3 and Bi2Te3, while the

Fermi level is in the bulk conduction band. Therefore, these compositions demonstrate degenerate

semiconducting behaviour. The placement of the Dirac cone within the bulk bandgap with the

Fermi level above is very beneficial for ARPES studies of the surface states, however, not for

electrical transport. The Bi2Se3 Fermi level can be tuned by Ca addition where the substitution of

Bi3+ with Ca2+ is essentially hole doping. For instance, Bi1.9975Ca0.0025Se3 has Fermi level tuned

at the Dirac point, alias in very close proximity to the bulk valence band as well (see Fig. (2) (d) and

(j) from Hsieh et al.[143]). In most experimental situations, the bulk insulation state is achieved

with electrical gating.

These 3D TI compositions (Bi2Se3, Bi2Te3, Sb2Te3) have a tetradymite structure with cova-

lently bonded quintuple layers (QLs) where the QLs are separated by weak van der Walls gaps.

Because of that, many of the ARPES and STM/STS studies on the TIs have been performed on

cleaved flakes from bulk crystals. The procedure results in atomically sharp surfaces terminated by

chalcogen atoms because the nature of the bonding makes the (111) orientation the natural cleav-

age plane. High-quality TI films are prepared as well by molecular beam epitaxy on heat-treated

substrates in order to reduce crystallographic defects which have detrimental effects on the band

structure.

Figure 3.5: Panel (a)-tetradymite crystal structure of (Bi1−xSbx)2Te3. Panel (b)-schematic representation of the band
structure of Bi2Te3. Panel (c)-schematic representation of the band structure of Sb2Te3. The graph is after Zhang et al.
[408].
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One of the biggest issues in the field of TIs is the uncompensated bulk conductivity and the

topologically protected spin-polarized surface states coexist with the bulk states, therefore, the

contribution from the surface states is lower than it would be in ideal topological insulators. A

significant progress in this respect has been achieved in the work of Zhang et al.[408] on the family

(Bi1−xSbx)2Te3*. The two end compositions, Bi2Te3 and Sb2Te3, are electron and hole conduc-

tors, respectively, and the Fermi level is positioned near the bulk conduction and valence band

edges, accordingly. There is bulk band gap, however, the Fermi level is not positioned in it, there-

fore, these compositions are degenerate semiconductors, but total compensation of the bulk states

can be achieved with a suitable tuning of the Bi:Sb ratio. For x ≈ 0.9, the Fermi level is posi-

tioned in the center of the band gap and the resistance increases on cool down, as expected for a

semiconductor. The low temperature resistance reaches half the value of the resistance quantum,

R0 = 25.8kΩ, indicating that the transport is two-dimensional and is, therefore, dominated by

the surface states. This isovalent, isostructural TI composition family resembles the famous semi-

conducting composition AlxGa1−xAs which has been utilized in epitaxial, low strain, multilayer

quantum well structures. Two important characteristics, Rxx(T ) and the density of states around the

Fermi level for the (Bi1−xSbx)2Te3 family, are presented in Fig. 3.6 and Fig. 3.7, respectively. As

x → 1, the composition becomes progressively more insulating but for x > 0.94 the carriers are

holes. The ARPES measurements demonstrate that the Dirac point is shifted from the bulk valence

band towards the bulk conduction band.

Figure 3.6: Temperature dependence of the sheet resistance of the (Bi1−xSbx)2Te3. The figure is after Zhang et al.[408].

*Similar tunability of the Fermi level and the Dirac cone has been achieved in quarternary composition
Bi2−xSbxTe3−ySey by Arakane[11].
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Figure 3.7: Angular resolved photoemission spectroscopy of (Bi1−xSbx)2Te3. Panel (a)-x = 0, panel (b)-x = 0.88,
panel (c)-x = 0.94, and panel (d)-x = 0.96. The figure is after Zhang et al.[408]. The abbreviations are as follow:
BCB-bulk conduction band, BVB-bulk valence band, SS-surface states, DP-Dirac point, and EF-Fermi level.

Figure 3.8: Spin-momentum locking data on Bi2Se3/TiO2/Co devices. Panel (a)-electrons flow from III to I in Bi2Se3,
panel (b)-electrons flow in reversed direction. The TMR-like response is represented below the transport schematics.
The graph is after Dankert[68].

Importantly, 3D TIs provide the opportunity for direct integration is MTJ-like structures where
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a mere flip in the current polarity should result in change of the spin polarization sign. Demonstra-

tion of the helical spin structure has been achieved in tunnel junction geometries and in non-local

spin injection: such experiments are performed with (Bi0.53Sb0.47)2Te3[332],

Bi1.5Sb0.5Te1.7Se1.3[8], Bi2Se3[125] and Sb2Te3[200]. Recently, room-temperature spin momen-

tum locking has been shown in Bi2Se3/TiO2/Co tunnel MTJ type devices in four contact configu-

ration by Dankert et al.[68] (see Fig. (3.8)). In their case, a current is passed between contacts I

and III, and the spin accumulation is detected as a voltage signal between contacts II and IV (see

Fig. (3.8)), where IV is a reference electrode outside of the current path. For a constant current

polarity through Bi2Se3, the magnetization direction of the Co electrode is changed by an in-plane

field and this results in TMR-like response due to parallel-antiparallel alignment of the spin polar-

ization of the TI surface carriers and the majority carriers in the ferromagnetic electrode. When the

current polarity is reversed, similar a TMR-like curve is observed, however, mirrored with respect

to 0 T and this is a direct demonstration that the spin orientation in the surfaces states depends on

the current propagation direction.

Despite these demonstrations, the magnitude of the effect is disappointingly small*. The rea-

sons are possibly related to defects induced in the TI structure by the deposition of other layers on

top, Schottky barrier formation or destruction of the spin-momentum locking due to close proximity

with a ferromagnetic layer.

Very large spin Hall effect has been observed in TI/Magnetic TI and TI/Ferromagnet bilayers[93,

221] where demonstration is made up to room temperature in the latter case. The results do not

depend on whether the TI is insulating in the bulk and the spin Hall effect is attributed to the spin-

orbit interaction in the TI compositions rather than to the electronic properties of the surfaces states.

Spin Hall angles larger than 1 are reported while the authors themselves question these values be-

case the deposition of an overlayer influences the crystal structure, and hence, the bulk conductivity

of the TI underlayer†. The latter might lead to wrong estimation of the current flowing densities

in the topological insulator and ferromagnetic layers. If real, this "spin amplification" might have

significant impact in the development of future devices.

Ferromagnetic TI have been grown by Cr[53], V[84], and Mn[140] doping and, interestingly,

some of these compositions have been investigated years ago as diluted magnetic semiconductors.

These compositions exhibit perpendicular magnetic anisotropy (PMA). Quantum Anomalous Hall

effect (QAHE) has been a long sought phenomenon which has bee realized recently in Cr-[53, 181]

and V-doped[55] TIs. The origin of QAHE lies in the intrinsic spin-orbit coupling and ferromag-

*For instance, Tang[332] estimated that the effective spin polarization of the surface states is 1.02 % in
(Bi0.53Sb0.47)2Te3.

†The spin Hall effect is the generation of transverse spin current, ~jspin, when a longitudinal charge current, ~jcharge,
flows in a material with high spin-orbit interaction: ~jspin = (h̄/2e)θSHE~jcharge×~σ , where ~σ is the unit vector of the
spin angular momentum and θSHE is the spin Hall angle. If θSHE > 1, this means that an electron generates transverse
spin higher than its own; an unrealistic physical situation.
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netism. The QHE is the quantization of ρxy in a 2DEG in the presence of strong magnetic field,

whereas QAHE represents quantization without external field while the longitudinal conductance

decreases almost to zero. Therefore, QAHE represents a possibility for realization of dissipation-

less Hall transport. Very high spontaneous Hall angle in zero field of 89.993(4)° is achieved by

Chang et al.[55] in V-doped Sb2Te3 and the Curie temperature of this compositions reaches 115 K

for Sb1.73V0.27Te3. While Cr-doped TIs have exhibited QAHE as well, the Curie temperature in

this case is lower and the sample requires magnetic training in order to enter the QAHE regime.

The magnetic training is required due to the fact that the ferromagnetism in the Cr-doped mag-

netic TI is weaker. The coercive field, µ0Hc, in Cr-doped TIs is roughly an order of magnitude

smaller than in V-doped ones. For optimal doping, Cr-TIs have µ0Hc ≈ 0.1T, while V-TIs have

µ0Hc ≈ 1.1T. Furthermore, the Curie temperature in Cr-doped TIs is three times smaller than in

V-doped TIs for the same concentration of doping ions. Because of these reasons, the cool down in

zero external field of Cr-doped TIs results in spontaneous magnetic state with more domain walls

than in V-doped compositions and the multidomain state impedes the observation of QAHE.

Figure 3.9: Panel (a)-example of a quantized AHE in magnetic TI with optimal composition (Bi0.29Sb0.71)1.89V0.11Te3
at the charge neutral point V 0

g . Note the high coercive field µ0Hc = 1.1T and that the longitudinal resistivity has
spikes at Hc. Panel (b)-temperature dependence of ρxx and ρxy of the same sample in zero magnetic field. The graph is
after Chang[55].

Apart from the realization of QAHE in magnetic TIs, these compositions are interesting for

two other reasons. The first is that magnetic doping is predicted to open a small gap in the surface

states Dirac cone due to the breaking of the time-reversal symmetry, however, the literature data is

contradictory on this topic. For instance, Wray et al.[382] and Chen et al.[57] have demonstrated

gap opening of up to ≈ 100 meV in the Dirac cone of Fe-doped Bi2Se3. At the same time, robust

behaviour of the surface states upon deposition of both magnetic and non-magnetic impurities

has been shown by Valla et al.[353]. Sanchez-Barriga et al.[288] have demonstrated that the gap

opening persists in (Bi1−xMnx)2Se3 at temperatures far above the Curie temperature, and they
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question the idea that the Dirac cone opening is due to the magnetic nature of the impurities.

The second interesting research direction stems from the competition between the topological

order and the PMA. The latter promotes out-of-plane spin polarization while the former locks the

spins in a helical in-plane texture and this competition might result in a peculiar hedge-hog type

spin structure. The investigation of the latter effect is more of fundamental interest rather than

technological. A brief example is given by the spin-resolved ARPES results on Mn-doped Bi2Se3

by Xu et al.[390]*.

Figure 3.10: Panel (a)-Schematic representation of the gapped Dirac cone and the hedge-hog like spin structure. Panel
(b)-measured out of plane spin polarization. The in-plane momentum for each spin-resolved spectrum is indicated on
top. The polar angle (θ ) of the spin vectors is indicated as well. The graph is after Xu et al.[390].

In this case, there is a small gap in the Dirac cone and, hence, there are top and bottom Dirac

bands. The out-of-plane spin polarization component, Pz, has been demonstrated to be close to

zero far away from the gapped Dirac point. Closer to the Dirac point, however, there is an apparent

difference in the spin polarization along +~z and −~z. The imbalance becomes more pronounced as

the gapped Dirac point is approached. Furthermore, at momentum k‖ = 0 (Γ point), the spin polar-

ization is completely out-of-plane at the vertices of the gapped Dirac cone and the spin polarization

is along −~z in the top Dirac band and along~z in the bottom Dirac band.

*Another interesting result of their work is the fact that the Dirac cone structure is more stable when the composi-
tion is doped with the same concentration of non-magnetic Zn.
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3.3 PCAR of (Bi1−xSbx)2Te3

All samples in this investigation are provided by Dr. C.-Z. Chang from Prof. Moodera’s group

in the Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA,

United States. The thin films are deposited by evaporation from Knudsen cells with high-purity

Bi(99.999 %), Sb(99.9999 %), and Te(99.9999 %), while Cr(99.999 %) and V(99.995 %) are evap-

orated using electron guns. All films have been grown on heat-treated α-Al2O3 substrates in a

custom-built molecular beam epitaxy system with a base pressure better than 5 × 10−10 torr and

the compositions are confirmed by element ratios obtained in-situ on separate quartz crystal mon-

itors. Cross-calibration is performed ex-situ with inductively-coupled plasma secondary ion mass

spectroscopy (ICP-SIMS). Further details concerning the growth optimization can be found in the

manuscripts from Zhang[408] and Chang[55]. The TI thickness of each sample is 20 quintuple

layers (QLs) and they are capped all with insulating Te (2 nm). Some of the samples have been par-

tially shadow-masked with Al(40 nm)/Au(30 nm) due to the high-sheet resistance. A narrow strip

of 125 µm is left from the TI sample, while the rest is covered with the Al-Au layers, and horizontal

stepping with the x-axis piezo-stepper has been performed in order to land on it. The main results

from this chapter can be found in a recent article[38].

Figure 3.11: Schematic representation of the Andreev process between a superconducting Nb tip a TI sample. The spin
direction of the surface carriers in the TI are locked in plane at right angles with respect to the momentum direction
whereas the Cooper pairs have in general arbitrary spin orientation.

PCAR is a well-established technique for spin polarization measurements of bulk exchange-

split ferro- and ferri-magnets, however, it is not intuitively clear why PCAR would be helpful in

the investigation of topological insulators. In this case, PCAR probes the alignment of the spins

with respect to the in-plane direction. The argument is related to symmetry: the Cooper pairs have
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arbitrary wavevector direction in the Nb tip, and more importantly, they have a non-zero z-axis

projection ~kz 6= 0 (see Fig. (3.11)). Furthermore, the Cooper pairs have preferential spin orienta-

tion along the z-axis when the transport is ballistic and when there is finite spin-orbit interaction

in the tip*. On the other hand, the spin-polarized surface electrons in the TI have spin restricted

in the plane of the sample (~kz = 0) and, therefore, the injection of Cooper pairs in the TI sam-

ple is partially suppressed because the momentum at the interface must be conserved. Spin-flip

scattering or highly diffusive transport in the contact area will lead to reduced value of the spin

polarization. The maximum possible spin polarization which can be measured in such geometry is

unrestricted, i. e. 100 %, provided that there are three requirements: no out-of-plane spin compo-

nent of the topological surface carriers, no bulk conduction and no spin-flip scattering in the contact

region. The average spin polarization for a given wavevector direction in the plane might be signif-

icantly different from the theoretical value of 100 % due to strong spin-orbit entanglement [398].

Such prediction is shown to depend on the photoexcitation energy[296]. What is important for our

experimental configuration is the out-of-plane spin polarization, Pz, which is demonstrated experi-

mentally to be very small, though finite [296]. The extracted spin polarization values presented in

this section are always the highest obtained during the measurements of each sample. This proce-

dure is followed because pronounced interface spin scattering may decrease the spin polarization

in some of the measurements.

The focus falls first on the two end composition samples, which exhibit metallic behaviour

(see Fig. 3.12). The extracted spin polarization of Bi2Te3 and Sb2Te3 is 70(4)% and 57(3)%,

respectively, where both values are high and demonstrate the significant in-plane spin polarization

in these compositions. The literature data suggests that the bulk carrier concentration in Sb2Te3

should be lower than in Bi2Te3[408]. The latter should lead in principle to higher spin polarization

in Sb2Te3. However, it is well known that the bulk conduction is very sensitive to crystallographic

defects. This is the probable explanation for the relation between the spin polarization values.

An interesting correlation which will be elaborated later is that the spectrum with the higher spin

polarization, P, exhibits the higher effective electronic temperature, Te. The latter is ≈ 6.0(3)K

for Bi2Te3, and 3.9(9)K for Sb2Te3.

The compositions Bi2Te3 and Sb2Te3 exhibit quasi-metallic behaviour, and their resistance de-

creases on cool down (see Fig. 3.6). The tuned composition (Bi0.18Sb0.82)2Te3 is studied as well

and its spin polarization reaches 83(9)% (see Fig. (3.13)). This is attributed to the fact that the bulk

conduction is suppressed and, therefore, the contribution from the spin polarized surface states to-

wards the total current is higher. The maximum conduction through the PCAR attained is ≈ 6.0G0

which is an indication of the high sheet resistance of this sample.

These analyzed spectra exhibit insignificant proximity effect and the extracted proximity gaps

*Indeed, Nb has appreciable spin- orbit interaction.
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Figure 3.12: PCAR spectra along with the mBTK fit and the extracted parameters for Bi2Te3 (a) and Sb2Te3 (b). The
obtained spin polarizations are 70(4)% in Bi2Te3 and 57(3)% in Sb2Te3. The extracted parameters from the fits are
denoted with asterisks. Each PCAR curve is normalized with a spectrum above the critical temperature of Nb. The
inset in panel (a) demonstrates two PCAR conductance curves obtained at T = 2K and T = 10K. The two curves are
offset for clarity.

are in the range ∆1 = 1.3 to 1.4 meV which is close to the value of the bulk Nb gap, ∆2 = 1.5meV*.

This is expected because there is energy mismatch between the two spin sub-bands in materials with

strong magnetic or spin-orbit interaction, hence, a Cooper pair is easily destroyed and the supercon-

ducting order parameter decays very quickly with distance[47]. Another important point is that the

effective temperature of the electrons is in the range 3.9 to 6.0 K, significantly above the bath tem-

perature of T ≈ 2.0K. Such observations are often encountered in PCAR measurements and there

are few possible reasons: tunneling process of some sort, local Joule heating in the contact area

and the sheet resistance of the sample. There might be an unbroken thin insulating layer between

*Reminder: appreciable proximity effect exists when there is a serious difference between ∆1 and ∆2, see
Sec. (1.5.2).
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Figure 3.13: PCAR spectrum along with the mBTK fit and the extracted parameters for a TI composition
(Bi0.18Sb0.82)2Te3. The obtained spin polarization is 83(9)%. The extracted parameters from the fit are denoted
with asterisks.

the tip and the sample which creates tunnel barrier and causes the usual quasi-quadratic form of

the differential spectroscopy curve[306, 42]. Therefore, "hot" electrons with higher energy are the

predominant tunneling carriers and this leads to higher electronic temperature. However, a serious

tunneling contribution should manifest itself in the appearance of sharp spikes at applied bias equal

to superconducting gap due to the superconducting quasi-particle density of states. Furthermore,

significant tunneling results in very high barrier strength parameter, Z, which is not the case in the

presented spectra.

The measured differential spectroscopy is a sum of two components in series: the point contact

resistance and the sheet resistance of the sample. Therefore, the sheet resistance changes the relative

voltage drop on the contact area and the PCAR features are broader in voltage and smaller in

conductance. The latter experimental effect might be corrected by additional thermal smearing. The

additional thermal smearing broadens the voltage scale and reduces the conductance profile. Such

correction of an additive effect (series resistance) with a completely different physical parameter

(effective temperature) is not physically correct. The inset of Fig.3.12 (a) demonstrates the "raw"

PCAR curves for the Nb/Bi2Te3 contact. It is apparent that the uncorrected PCAR signal at T =

2K has significant non-linear background. This background might be caused by various reasons.

A possibility is tunneling component through the contact, another explanation is non-flat density

of states of the investigated composition. All PCAR spectra presented in this chapter have been

normalized with a background spectrum at T = 10K, above the critical temperature of Nb (TC =

9.2K).

It is important to comment on the different resistance values obtained in the PCAR spectra. The

presented spectra in Fig. (3.12) and Fig. (3.13) have normalized conductance of 21 G0 (Bi2Te3), 11

94



3.3. PCAR of (Bi1−xSbx)2Te3

G0 (Sb2Te3), and 6 G0 ((Bi0.18Sb0.82)2Te3). The sheet resistance of these samples is approximately

500 Ω (Bi2Te3), 1 kΩ (Sb2Te3), and 10 kΩ ((Bi0.18Sb0.82)2Te3) (see Fig. (3.6)). It is clear that the

sheet resistance and the contact resistance are comparable in magnitude. A further complication

is that the sheet resistance of topological insulators depends on defects in the crystal structure and

the Nb tip has detrimental effect on the crystallinity. An estimate for the point contact resistance

itself is between 100 Ω (Bi2Te3) and 4 kΩ ((Bi0.18Sb0.82)2Te3). The determined resistivities are

ρ(Bi2Te3)= 3× 10−6 Ω m and ρ((Bi0.18Sb0.82)2Te3)= 5.25× 10−5 Ω m [408]. The mean free

path is approximately l ≈ 20nm (for Bi2Te3 [75]) based on the Hikami-Larkin-Nagaoka [138] fit

of the topological insulators magnetoresistance. Following Wexler’s formula 1.141, the contact

dimensions are calculated to be 16 nm (for Bi2Te3) and 80 nm (for (Bi0.18Sb0.82)2Te3). The first

value is below the mean free path and, therefore, the transport regime is assumed to be ballistic. The

point contact radius for the (Bi0.18Sb0.82)2Te3 case is above the mean free path for Bi2Te3, however,

the mean free path in (Bi0.18Sb0.82)2Te3 is expected to be higher because the bulk conductivity is

suppressed and the latter leads to reduced scattering processes. Both contact radii are smaller than

the coherence length, lφ , which is indicative of inelastic processes in TIs. Therefore, the PCAR on

Bi2Te3 can be assumed to be in ballistic regime, while the PCAR on (Bi0.18Sb0.82)2Te3 in quasi-

ballistic regime.

The temperature evolution of the PCAR spectra of Bi2Te3 and Sb2Te3 are presented in Fig. (3.14).

The temperature scans are measured during slow warm-up (0.4 K min−1) in order to acquire enough

statistics and avoid contact drifts. Subsequently the raw data is averaged in narrow temperature in-

tervals (∆T = 0.2K) and thus multiple, smooth and low noise PCAR curves are produced for

T [i] = 2K,2.2K, . . . ,9.8K. Each PCAR curve between 2 K and 9.8 K is normalized to a back-

ground spectrum obtained at 10 K (above the critical temperature of Nb). The background curve

corrects possible high bias density of states contribution from the sample and tunneling contribution

of the contact.

First of all, the PCAR signal follows the expected temperature change and this proves definitely

that the observed features are due to Andreev reflection. The superconducting gap progressively

shrinks and the magnitude of the PCAR decreases, while Andreev-related signal persists all the

way to the critical temperature of Nb (Tc = 9.2K) and the latter is a demonstration that there is

no Joule heating effect. In principle, the high level contours G/Gn = [0.96,0.99] can be used as

a direct measure of the temperature change of the superconducting gap, however, these contours

first surprisingly expand and then close up around the Tc. This deviation suggests that there is some

small contribution towards the PCAR signal which is not of superconducting nature. This effect

could be due to tunneling contribution, which has quadratic shape and becomes more obvious as

T ≥ 0.5×Tc, where the PCAR features lose magnitude. Another possibility is that the DOS of

the investigated sample is not flat within the experimental bias range U ≈ ±10meV and evolves

95



Chapter 3. Spin polarization of topological insulators

(a) PCAR temperature scan of Bi2Te3

(b) PCAR temperature scan of Sb2Te3.

Figure 3.14: PCAR temperature scans of Bi2Te3 (a) and Sb2Te3 (b). The x-axis is in units of ∆2/q, where
∆2 = 1.5meV is the bulk superconducting gap of Nb and q is the elementary charge.

significantly with temperature, so that the normalization with the background curve at T = 10K

is not a sufficient correction. This is the case for semi-metals or very small gap semiconductors

which is exactly our experimental situation and it is be proven later.

There is a potential pitfall in the temperature scans analysis which must be clarified. The high-

bias conductance of each spectrum might change with temperature. This evolution could be either

96



3.3. PCAR of (Bi1−xSbx)2Te3

due to contact drift* or due to the change in the sheet resistance of the sample. Therefore, after each

PCAR(T [i]) curve is normalized to the background curve at 10 K, it must be normalized further with

respect to the high bias conductance profile: G(U → ∞,T [i])/G(U → ∞,T = 10K)†. This is

a sufficient procedure in almost all experimental situations. However, the last normalization does

not account for the fact that, as the high-bias conductance increases, the applied bias axis expands

and the PCAR amplitude shrinks‡. The last effect is due to the resistance contribution in series

with the contact itself (sample sheet resistance and lead resistance) and, hence, the applied bias

and the conductance axes must be rescaled. A comparison between corrected and non-corrected

temperature scans is presented in Fig. 3.15. In this particular case, the additional scaling procedure

does not alter significantly the shape but the difference is still apparent, for instance, in the contour

at level (G/Gn) = 0.99. In fact, this simple rescaling procedure is only partially correct because

the impedance of the voltage divider in our experimental setup must be taken into account as well.

A calibration with standard resistors must be done, therefore, in order to properly correct the contact

drift. This drift is small in our scans but it is worth noting that such correction is indeed needed in

some cases.

(a) Corrected scan (b) Not corrected scan

Figure 3.15: Comparison between properly (a) and not corrected (b) PCAR temperature scans of the Bi2Te3. The
x-axis is in units of ∆2/q, where ∆2 = 1.5meV is the bulk superconducting gap of Nb and q is the elementary charge.

It is interesting to discuss the temperature change of the PCAR zero-bias anomaly (ZBA). The

PCAR ZBA anomaly should directly follow the superconducting gap evolution. However, both

samples demonstrate almost linear behaviour of the ZBA with the temperature. The extracted criti-

cal exponents are γ = 0.91(2) , and 0.71(2), respectively for Bi2Te3 and Sb2Te3 (see Fig. (3.16)).

*For instance, the metallic pieces of the tip and sample holders might expand slightly and push the tip further down
into the sample. In the worst case, there might be a complete contact reorientation. The latter is manifested by a very
sharp change in the spectral features.

†U → ∞ indicates high-bias.
‡Respectively, if the high-bias conductance decreases, the applied bias axis shrinks and the PCAR amplitude

expands.
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The values are significantly higher than what is expected from the BCS theory (γ = 0.5, see

Eq. (??)). Furthermore, there is correlation between the critical exponent and the extracted spin

polarization: the higher the spin polarization is, the higher the critical exponent is, because a higher

spin polarization results in more significant deviation from the classical superconducting properties.

The latter is attributed to the formation of narrow Schottky barrier at the interface between the tip

and the sample (see Fig. (3.18)). It is proven in the next section that this narrow barrier reduces the

coherence of the Cooper pairs and leads to this stronger than usual decrease of the superconducting

gap.
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Figure 3.16: Temperature evolution of the zero-bias anomaly of the PCAR data on Bi2Te3 (a) and Sb2Te3 (b). The
phase transition approach is fitted with (Tc−T )γ and the extracted critical exponents are 0.91(2) (Bi2Te3) and 0.71(2)
(Sb2Te3).

3.4 High-field spectroscopy

Point contact spectroscopy (PCS) is measured on the same Bi2Te3 and Sb2Te3 samples. The

magnetic field is increased to µ0H = 14T and the Nb tip quenches in modest field magnitude

µ0Hc2 ≈ 0.5T−1.0T. The latter is close to the reported Nb upper critical field, µ0Hc2, reported in

literature, however, the PCS demonstrates features when the tip is normal. The spectral line-shape

changes from a PCAR structure to a Lorentzian curve. The latter is attributed to the semiconducting

behaviour of these TI compositions. The magnitude of the PCS at 14 T is less than 10 % of the

magnitude of the PCAR magnitude at 2 K, hence, the contribution of the PCS towards the PCAR

on Fig. (3.12) and Fig. (3.13) is negligible.

The ZBA of the PCS scans is an indication of the size of the semiconducting gap in these close-

to-degenerate semiconducting compositions. The PCS temperature scans of Bi2Te3 and Sb2Te3

between 2 K and 10 K are shown on Fig. (3.17) and the ZBA-temperature dependence of the two

compositions is plotted separately on Fig. (3.18). The anomaly follows the exponential decay shape
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(a) PCS temperature scan of Bi2Te3

(b) PCS temperature scan of Sb2Te3.

Figure 3.17: PCS temperature scans of Bi2Te3 (a) and Sb2Te3 (b). Note he amplitude in comparison with amplitudes
on Fig. 3.14. The x- axis is in units of ∆2/q, where ∆2 = 1.5meV is the bulk superconducting gap of Nb and q is the
elementary charge.

typical for the resistance of semiconductors and the data is fitted with the Arrhenius law:

δ = exp
(
−

Eg

kBT

)
, (3.3)

where Eg is the semiconducting gap. The extracted gaps for the Bi2Te3 and Sb2Te3 compositions
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Figure 3.18: Arrhenius law fit of the zero-bias anomaly (ZBA) of the high-field point- contact spectroscopy (PCS).
Panel (a)-PCS ZBA on Bi2Te3 with extracted gap of Eg = 0.40(4)meV, panel (b)-PCS ZBA on Sb2Te3 with extracted
gap of Eg = 0.28(2)meV.

are Eg = 0.40(4)meV and 0.28(2)meV, respectively. There is a positive correlation between the

gap, the critical exponent and the spin polarization. The relation between the gap and the spin

polarization is expected because the more insulating the bulk of the sample is, the higher the con-

tribution from the surface states is with respect to the overall electrical transport. It has to be noted

that the values of the extracted gaps are much lower than the ones reported in literature (100 meV-

200 meV). As noted before, the Bi2Te3 and the Sb2Te3 are close to degenerate semiconductors and

the Fermi level does not lie in the gap (see Fig. (3.6) and Fig. (3.7)), therefore, the extracted gaps

by PCS are not the full band gaps of these compositions but the difference between the Fermi level

and the respective band edge. Furthermore, the tip might induce defects in the crystal structure and,

therefore, in the band structure.

There is another correlation which needs clarification: between the electronic temperature, Te,

and the extracted gap, Eg. For Bi2Te3: Te = 6.0(3)K and Eg = 0.40(4)meV while for Sb2Te3:

Te = 3.9(9)K and Eg = 0.28(2)meV. Therefore, the higher electronic temperature correlates

with the higher extracted gap (and the higher spin polarization) which can be interpreted as the

formation of a very narrow Schottky barrier at the tip/topological insulator interface.

These barriers explain the elevated electronic temperature because bulk electrons will have to

tunnel through the formed Schottky barrier. The differential conductance of a Schottky barrier has

been investigated experimentally and the problem is solved analytically by Conley et al.[64]. If a

parabolic depletion layer barrier is assumed, it results in:

φ(x) =
e2ND(d− x)2

2ε
+ eV −µ, 0 < x < d, (3.4)

d =

√
2ε(UB +µ−V )

eND
, (3.5)
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where φ is measured with respect to the Fermi energy of the semiconductor, the coordinate x goes

from the metal-semiconductor interface into the semiconductor, ND is the donor concentration and

ε is the dielectric constant and positive bias is assumed to raise the energy of the semiconductor

conduction band. The width of the depletion layer d depends on the bias voltage, and UB is the

barrier height at the metal-semiconductor interface. N-type germanium with doping concentrations

∼ 1018cm−3 is considered in this case. In principle, the minimum in the differential conductance

provides the opportunity to determine the band edge (the Fermi degeneracy µ). The effect of ran-

dom fluctuations of donor impurities in the depletion layer at very high dopant concentrations have

been discussed by Wolf[376] in a study of silicon Schottky barrier junctions. Similar zero-bias,

strongly-temperature-dependent features have been observed in the differential conductance of In-

Ge:As (irradiation compensated) Schottky barrier tunnel junction by Christopher et al. [60]. In this

case, the effect is attributed to a variable range phonon-assisted tunneling model by Wolf[377, 378].

Unfortunately, in our experimental data the minimum in the differential conductance spectra

is comparable to the instability of the voltage source and, hence, no reliable extraction of µ is

possible. Cross-over from Andreev reflection dominated to Schottky barrier dominated transport

process has been discussed before by Kleinsasser et al.[174] in Nb/InGaAs with various doping

concentrations.

It is important to comment on the full field scan of Bi2Te3 and Sb2Te3 and the extracted field

dependence of the zero-bias magnitude which are presented in Fig. (3.19) and Fig. (3.20), respec-

tively. The three-dimensional plots demonstrate that the Nb tip is fully quenched in a magnetic field

of ≈ 1T. This value is slightly above the typical bulk quench field of Nb (µ0Hc2 ≈ 0.5T)[161].

There are two possible explanations for this effect: small proximity maintained superconductivity*

or increase of the critical field in thin superconductors. The latter option is considered first. The

critical field in ultrathin superconductors is increased beyond the bulk value (see Sec. 1.4.5). For

instance, PCAR has been measured in magnetic field up to 3 T with bulk Nb by Shan[297]† and

this can be the case if the superconducting tip is very sharp. The option of proximity maintained

superconductivity at the contact area is very probable. An evidence is given by the shape of the

PCAR spectrum on Fig. 3.20 (a). The features around Ua ≈ 2 are indicative of the superconducting

density of states. These features disappear close to 0.4 T which means that the superconductivity

order nature perhaps changes slightly.

The focus shifts now towards the high field scans in Fig. 3.19 (b) and Fig. 3.20 (b). The scan

of Bi2Te3 demonstrates that the gap feature shrinks in bias as the field increases. The same is true

for the zero-bias amplitude of Bi2Te3 as well. The behaviour of the gap feature and the zero-bias

amplitude is completely opposite for Sb2Te3 in the high-field scan and they demonstrate small

*Josephson effect has been demonstrated in Nb/Bi2Te3/Nb structure over very large distance-see [360].
†Such high field PCAR has not been achieved by our group with Nb tips.
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Chapter 3. Spin polarization of topological insulators

magnitude increase as the magnetic field goes towards 14 T.

The zero-bias amplitude in Fig. 3.21 is normalized to the value at 0 T for both scans. The high-

field gap amplitude in the case of Sb2Te3 is much smaller than the PCAR signal at 0 T. However,

this appears not to be the case for Bi2Te3. The temperature scan used for the Bi2Te3 exhibits

overall lower spin polarization than the spectrum in Fig. 3.12 (a) and it explains why the ZBA

due to the semiconducting behaviour looks significant in this temperature scan. The contribution

from the semiconducting ZBA is never higher than 10 % in the PCAR spectra analyzed for spin

polarization.

Figure 3.19: Magnetic field scan of a Nb/Bi2Te3 point contact. Panel (a)-low field scan up to 1 T. The superconductivity
disappears around 0.5 T. Panel (b)-high-field scan up to 14 T. The structure does not vanish.

Figure 3.20: Magnetic field scan of a Nb/Sb2Te3 point contact. Panel (a)-low field scan up to 2 T. The superconduc-
tivity disappears around 1.0 T. Panel (b)-high-field scan up to 14 T. The structure does not vanish.
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Figure 3.21: Magnitude of the zero-bias amplitude during a field scan of Bi2Te3 and Sb2Te3.

3.5 Magnetic topological insulators

Magnetic topological insulators with Cr and V doping have attracted significant attention re-

cently due to the realization of the quantum anomalous Hall effect and the achieved Curie tem-

perature of TC ≈ 115K. Both Cr and V are substitutional on the Bi(Sb) atomic positions and

apart from having magnetic moment, the dopants affect the carrier concentration in the TI compo-

sitions as well. Vanadium is an electron donor in Sb2Te3, whereas the contribution of chromium

is generally lower but of the hole type in the same initial composition. Four topological insulators

with small concentration of Cr and V doping are investigated: Bi1.97Cr0.03Te3, Sb1.975Cr0.025Te3,

Bi1.975V0.025Te3 and Sb1.97V0.03Te3. The idea behind these experiments is to study the spin polar-

ization of a magnetic topological insulator below and above TC*.

*It proved to be elusive so far because the Curie temperature must be tuned around 5 K, so that the PCAR can be
measured reliably both above and below Tc.
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Figure 3.22: PCAR spectra along with the mBTK fit and the extracted parameters for two samples with Cr-doping :
Bi1.97Cr0.03Te3 (a) and Sb1.975Cr0.025Te3 (b). The obtained spin polarizations are 52(1)% in Bi1.97Cr0.03Te3 and
52(1)% in Sb1.975Cr0.025Te3. The extracted parameters from the fits are denoted with asterisks.

The spin polarizations of the Cr-doped Bi1.97Cr0.03Te3 and Sb1.975Cr0.025Te3 are 52(1)% and

52(1)%, respectively (see Fig. (3.22)). As it is the case on the pristine samples, the proximity

effects are negligible (∆1 ≈ ∆2) and the electronic temperature is significantly above the bath one

(Te > T). The carrier concentration in Cr-Bi2Te3 is expected to be reduced and, therefore, the spin

polarization should increase[58, 54] because the bulk conduction is decreased. On the contrarily,

Cr-doped Bi2Te3 demonstrates spin polarization of 52(1)%, lower than in the pristine composition

(see Fig. 3.12 (a)). This reduction is attributed to spin-flip scattering by the paramagnetic dopants.

On the other hand, the Cr addition in Sb2Te3 should increase slightly the bulk hole carrier concen-

tration. The latter should lead to a small decrease in the spin polarization with respect to the pure

Sb2Te3, which is exactly what is observed. Spin-flip scattering from the paramagnetic ions is a

possible contribution as well. Both compositions do not exhibit magnetic ordering above 2 K.
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Figure 3.23: PCAR spectra along with the mBTK fit and the extracted parameters for two samples with V-doping:
Bi1.975V0.025Te3 (a) and Sb1.97V0.03Te3 (b). The obtained spin polarizations are 58(5)% in Bi1.975V0.025Te3 and 50 %
in Sb1.97V0.03Te3. The extracted parameters from the fits are denoted with asterisks.

Vanadium-doped magnetic TIs exhibit higher coercivity and Tc. PCAR on V-doped TI compo-

sitions is presented in Fig. 3.23. Vanadium has small electron donor contribution in Bi2Te3[84].

The extracted spin polarization of Bi1.975V0.025Te3 is found to be 58(5)% which is lower than in

the pristine composition and this composition does not exhibit magnetic order above 2 K. Over-

all, these three magnetically doped compositions demonstrate lower values of the spin polarization

than the pristine samples which is attributed to the detrimental effect of the paramagnetic impuri-

ties on the spin-momentum locking. It has been predicted theoretically that scattering by magnetic

impurities destroys the TI surface properties and the stability of the topological surface states with

additional Mn and Fe doping has been investigated before experimentally by spin-resolved photoe-

mission spectroscopy[382, 288].
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Figure 3.24: Anomalous Hall effect measurements on the magnetic topological insulator Sb1.97V0.03Te3. The curves
are vertically offset for clarity. The curve at 15 K (above the TC) demonstrates slight paramagnetic signal. The violet
arrow indicates the peak observed at the coercive field due to longitudinal resistance pick-up (see Fig. 3.9).
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Figure 3.25: Panel (a)-Temperature dependence of the absolute anomalous Hall effect signal of Sb1.97V0.03Te3 in
remanent state after the sample was saturated in positive and negative direction, respectively. Panel (b)-temperature
dependence of the AHE magnitude along with the extracted Curie temperature of 11.6(6)K.

Finally, the composition Sb1.97V0.03Te3 has been investigated where vanadium acts as electron

donor and should suppress the hole conductivity in Sb2Te3[84, 55]. Spin polarization of only 50 %

has been demonstrated and this is the lowest measured value on all samples. This composition ex-

hibits ferromagnetic order above 2 K. The significant decrease in the spin polarization is attributed

to the competition between the in-plane spin structure of a pristine TI and the perpendicular mag-

netic anisotropy of the magnetic topological insulator.

The magnetic order in Sb1.97V0.03Te3 is measured by anomalous Hall effect in van der Pauw

configuration and an example of four AHE loops is presented in Fig. 3.24. There is inevitable
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longitudinal resistance pick- up when AHE is measured on an unpatterned film, therefore, in order

to correct for this contribution, two separate temperature scans are performed. The sample is first

saturated in positive field, then left in remanence and the Hall resistance is measured while the

temperature increases. Then the sample is saturated in negative direction, and another temperature

scan has been performed. In this way the temperature dependence of the AHE magnitude is ob-

tained by subtracting the two curves and the Curie temperature TC = 11.6(6)K is determined (see

Fig. 3.25).

3.6 A peculiar case

An interface between a TI and a superconductor has been proposed to be a testing ground for

the observation of new interesting effects like Majorana fermions[101]. There is no real creation-

annihilation of fundamental particles, instead a very low energy pronounced peak in the differen-

tial conductance is interpreted as a quasiparticle excitation. Such excitations have potential to be

exploited as fault-stable superconducting qubits. For instance, CuxBi2Se3 has been theoretically

predicted to be a topological superconductor and it is indeed superconducting with critical temper-

ature of 3.8 K[141]. A "soft" point-contact spectroscopy on the same composition has shown low

bias conduction spike[289]. The latter is a possible indication for such Majorana fermion[203].

The scanning tunneling spectroscopy on this material, however, shows that it behaves as a classical

Bardeen-Cooper-Shrieffer superconductor with a gap of ≈ 0.4meV. The presence of states within

the gap has been expected, however, the superconductivity has been demonstrated to be classical

s-wave type without any nodal symmetry of the gap or sub-gap structure. Interestingly, when the

tip is crashed in the sample, a zero-bias conductance peak is observed[199].

Figure 3.26: Panel (a)-example of s-wave superconducting gap in Cu-intercalated Bi2Se3 by scanning tunneling spec-
troscopy. Panel (b)-example of zero-bias conductance peak when the Ir tip was crashed in the surface. The data is after
Levy et al.[199].
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Here, two such examples are presented on some of the contacts which are investigated during

the PCAR measurements of Nb/Bi2Te3 (see Fig. (3.27) and Fig. (3.28)). The zero-bias spike is

observed multiple times with various intensities. In all cases, the spike disappears at temperature

T
′
= 3K− 4K, significantly lower than the critical temperature of Nb. For T > T

′
, an usual

PCAR spectrum is observed. The (non)existence of this spike definitely depends on the contact

geometry because these irregular zero-bias features are not observed in approximately 90 % of the

cases (see Fig. (3.12) for a "clean" Andreev reflection on Bi2Te3). No similar contact features have

been measured on any of the other investigated compositions, and, therefore, this observation might

be related to particular density of states structure of Bi2Te3. Allowance is made for two other very

probable explanations of this peculiar result. First, such features are represented and fitted very

well by the model of Strijkers[321], which considers Andreev reflection with significant proximity.

In this case, the contact area can be seen as a Josephson junction of S-c-S
′

type, where S is the

superconducting tip, c is the constriction, i. e. the contact itself, and S
′

is the proximity induced

superconducting area is the sample. Once the S
′

region is quenched, the Josephson supercurrent is

lost. Another possibility is the formation of multiple (at least two) contacts in parallel at the end

of the tip. In this case, one of the sections might be quenched and its conductance contribution is

responsible for the existence of the zero-bias peak[370].

Large superconducting proximity effect and Josephson effect have been achieved in Nb/ Bi2Te3/-

Nb[360] where Josephson effect is maintained over a length of 1 µm. The Bi2Te3 has significant

bulk conduction and low bulk mean free path and , therefore, the supercurrent is carried by the

surface states. Proximity induced superconductivity in TI has been reported by Zhanget al.[406]

in W/Bi2Se3. Finally, supercurrent and Josephson effect have been reported in Al/Bi2Se3 and

Ti/Bi2Se3 by Sacepe et al.[284] and by Williams et al.[374], respectively.

(a) Example of a zero-bias anomaly on Nb/Bi2Te3 (b) The same graph but from another point of view

Figure 3.27: Normalized differential conductance (G/Gn) temperature scan of a zero-bias conductance peak (ZBCP)
on a contact Nb/Bi2Te3. The x-axis is in units ∆2/q, where ∆2 = 1.5meV is the bulk Nb superconducting gap and q
is the electrons charge. The bias axis is intentionally zoomed-in to emphasize the ZBCP small structure.
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(a) Example of a zero-bias anomaly on Nb/Bi2Te3 (b) The same graph but from another point of view

Figure 3.28: Second example of zero-bias conductance peak observed on an Nb/Bi2Te3 contact.
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Figure 3.29: Temperature dependence of the zero-bias peak amplitude from Fig. 3.27 and Fig. 3.28.

3.7 Conclusion and outlook

Very high in-plane spin polarization of the (Bi1−xSbx)2Te3 TI family has been determined by

PCAR measurements. The extracted spin polarizations for the end compositions Bi2Te3 and Sb2Te3

are 70(4)% and 57(3)%, respectively. It has been confirmed that the PCAR effect persists up to

the critical temperature of bulk Nb (TC ≈ 9.2K) and the zero-bias anomaly does not obey the BCS

behaviour. The spectra are not featureless above the critical field of the Nb because of the exis-

tence of a bulk bandgap. The extracted gaps of 0.40(4)meV (Bi2Te3) and 0.28(2)meV (Sb2Te3)

correlate with the determined spin polarization. When the Fermi level is finely tuned in the bulk

bandgap, which is the case in the (Bi0.18Sb0.82)2Te3 composition, the bulk carrier concentration is

reduced and even higher spin polarization of 83(9)% is measured. The obtained values are the low

limits of the intrinsic TIs spin polarization because the Nb tip induces inevitably small defects in
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the sample and there is a finite probability of spin-flip scattering due to disorder at the contact area

resulting in a non fully ballistic transport regime.

Additionally, the spin polarization of four TI compositions doped with magnetic Cr and V ions

is investigated: Bi1.97Cr0.03Te3, Sb1.975Cr0.025Te3, Bi1.975V0.025Te3 and Sb1.97V0.03Te3. The com-

positions Bi1.97Cr0.03Te3, Sb1.975Cr0.025Te3, and Bi1.975V0.025Te3 demonstrate no magnetic order

above 2 K and have spin polarization of 52(1)%, 52(1)% and 58(5)%, respectively. The decrease

of the spin polarization in the Cr- and V-doped TIs is attributed to the spin-flip scattering by the

paramagnetic ions. Only the composition Sb1.97V0.03Te3 is magnetic above 2 K and it has Curie

temperature of TC = 11.6(6)K, extracted by AHE, and possesses the lowest spin polarization of

50 %. The further reduction in the magnetic Sb1.97V0.03Te3 is related to the competition between

the perpendicular anisotropy of the magnetic ordering and the in-plane spin polarization of pristine

topological insulators.

Contact structures between superconductors and topological insulators have been gaining more

and more popularity. From a fundamental perspective, it is interesting to investigate the interplay

between two different spin correlations: Cooper pairing and the surface spin-locking. From appli-

cation perspective, superconductors-TI junctions are investigated as hosts for quantum computing

systems.

Spin polarization measurement of magnetic topological insulators in the QAHE regime at mK-

temperature is a possible extension of the current methodology. The progress in the high-field

PCAR with Nb-Ti (see Chapter (5)) makes PCAR measurements in variable magnetic field possible

without the limitation of the relatively low upper critical field of Nb (µ0Hc2 ≈ 0.5T). This opens

the opportunity for investigation of the magnetic TIs throughout their hysteresis loop. Finally, the

gating of TIs is known to influence the bulk conductivity and, therefore, to increase the contribution

of the surface states. PCAR measurements with variable gate bias could be investigated in order to

confirm the correlation between the overall conductivity and the spin polarization.
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Chapter 4

Spin polarization and magnetotransport
properties of irradiated Fe60Al40 thin films

"Why think about this? Let’s do it."

Dr. Yong Chang Lau

Crystallographic disorder in condensed matter systems is usually a state which experimen-

tal physicists avoid. However, this is not always the case. For instance, thin Si film is strained

when deposited on SiGe and this results in higher carrier mobility, faster switching and reduced

power consumption*. Another two examples of beneficial disorder in condensed matter systems

are hard magnetic materials and high-current superconductors. Hard magnetic materials have al-

ways small concentration of secondary component. The secondary component inclusions act as

magnetic domain pinning centers and this increases the coercive field and the remanent mag-

netization. Impurity inclusions have similar effect in high-critical-current superconductors. All

high-current superconductors are type-II and the Abrikosov vortex lattice displacement results in

non-zero resistance. Therefore, vortex pinning is extremely important for the technological appli-

cation of type-II superconductors. For instance, α-Ti grain inclusions are known to act as vortex

pinning centers in Nb-Ti superconductors[219, 218]. Similarly, natural twin boundaries in ceramic

superconductors[190, 191] (like YBa2Cu3O7−δ ) and metallic inclusions like Zn, Fe act as vortex

pinning centers. Bombardment with heavy ions is demonstrated to improve significantly the critical

current as well, because dislocations are created along the extended stopping path.

In this chapter, the focus falls on spin polarization, magnetotransport and magnetic property

measurements of thin Fe60Al40 films which are irradiated with Ne+ ions with energy E = 30keV

and variable fluences. This work is done in collaboration with Dr. Rantej Bali and Dr. Ciaran Fow-

ley from Helmholtz Centrum Dresden-Rossendorf (HZDR), Germany. All samples are deposited

*The straining is not exactly crystallographic disorder but it can be considered as non-equilibrium state.
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by co-sputtering from stoichiometry Fe and Al targets on Si/SiO2(100 nm) substrates. The thick-

ness of the film is 40 nm and the surface of the films has thick, natural oxide (≈ 5nm). The ion

irradiation is performed with the facilities of the Ion Beam Center at HZDR. All samples are an-

nealed for one hour after the deposition (and irradiation) in a high vacuum annealing furnace (10−5

mbar) at 500 ◦C.

4.1 Modification of thin film magnetic properties by irradiation

with Ne ions

The idea of magnetic properties modification by irradiation with heavy ions is historically first

demonstrated on Pt-Co(0.5 nm)-Pt sandwich by Chappert et al.[56]. The multilayer has perpendic-

ular magnetic anisotropy due to the induced surface anisotropy from the heavy element - Pt. The

irradiation with Ne+ ions with energy E = 30keV and dose up to 2×1016 ions/cm2 result in grad-

ual modification of the magnetic properties. The magnetic anisotropy field decreases from 1.15 T

in the as-deposited sample to 0.13 T in the irradiated sample with dose 1016 ions/cm2 ions (see

Fig. (4.1)). The latter is related to the fact that the interfaces are no longer smooth after the irradia-

tion and this leads to reduced interface magnetic anisotropy. The perpendicular magnetic anisotropy

is destroyed completely for higher fluences and the easy axis is in the plane. The coercivity de-

creases from 20 mT in the as-deposited sample to practically zero in the sample irradiated with dose

of 1016 ions/cm2. Upon irradiation with higher dose, the remnant magnetization decreases as well

due to the loss of perpendicular anisotropy. Finally, it is shown that the Curie temperature decreases

from above 120 ◦C in the as-grown to 60 ◦C after irradiation with 1016 ions/cm2. Patterning of mag-

netic regions down to 1 µm is achieved. This method is proposed for patterning of perpendicular

magnetic anisotropy bits which are embedded in the matrix of in-plane magnetization of the same

material*.

The idea in the present chapter is similar, however, the mechanism is opposite. The Fe60Al40

thin films are paramagnetic (or weakly ferromagnetic) as-deposited. Upon irradiation, the crystal-

lographic order is destroyed and the film is partially amorphosized. An experimental proof for the

effect of irradiation on the crystal structure of Fe60Al40 is given by X-ray diffraction. The (100)

superstructure peak is demonstrated to disappear upon ion irradiation (see Fig. 2 (b) in Bali et

al.[17]). In this case, the nearest-neighbour coordination between Fe-Fe atoms increases on aver-

age and this leads to higher exchange energy and magnetic order is induced. The latter is known

as local environment model[369, 329]. Before discussing in detail the so far achieved magnetic

*Presently, bit patterned recording media is not considered viable because of the large area density which is lost.
Instead perpendicular anisotropy compositions are considered to be deposited on textured matrix underlayer, so that
there is natural bit formation with practically no area lost between the bits.
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Figure 4.1: Hysteresis loop measurements of Pt-Co(0.5 nm)-Pt sandwich irradiated with different fluences. (1) - as-
grown sample, (2) - sample irradiated with a dose of 3.1015 ions/cm2, and (3) - sample irradiated with a dose of 1016

ions/cm2. All curves are normalized with the saturation magnetization of the as-deposited sample. The data is after
Chappert et al.[56].

Figure 4.2: Lattice parameter (a) and Curie temperature (b) change of Fe1−xAlx alloy as a function of the Al atomic
concentration. The data is after Yelsukov et al.[399].

modification of thin films, the magnetic properties of bulk Fe1−xAlx alloy are reviewed briefly. The

magnetization of bulk iron-aluminum alloys decreases as x increases and the ordered composition

is paramagnetic for x > 0.32 according to Taylor[333] and Menendez[222]. On the other hand,

Yelsukov et al.[399] reported that the Curie temperature is higher than 4 K for compositions with

x < 0.7. The properties of the alloy depend significantly on the preparation conditions. It is

demonstrated that single phase composition samples for x > 0.32 is paramagnetic, however, if

the composition is quenched from high temperature disorder exists and the composition exhibits

ferromagnetism. The addition of Al leads to small lattice expansion. Therefore, apart from re-

ducing Fe-Fe nearest-neighbours coordination, Al reduces the exchange interaction by increasing

the Fe-Fe average interatomic distance. There is a general agreement in literature that two ranges

of parameters evolution exist. For x < 0.2, there is smooth linear decrease of the magnetization
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and the lattice parameter increases linearly at the same time (see Fig. (4.2)). The average mag-

netic moment of an Fe atom in the alloy follows a simple dilution model µ = 2.2µBα(1− x),

where α is constant. At x ≈ 0.2, there is a kink in both characteristics. When the annealed

samples are quenched from temperature up to 1000 ◦C, there is a plateau in the lattice constant for

0.2 < x < 0.35, which is attributed to formation of Fe3Al phase[333]. For higher annealing

temperatures, there is no plateau but the slope of the lattice constant evolution changes with x. The

magnetic configuration of the alloys in the range 0.2 < x < 0.4 is debatable. Arrott and Sato[12]

have proposed ferro-antiferromagnetic transition, however, this is not confirmed by neutron scat-

tering experiments[269]. Vincze et al.[361] considers the existence of Fe3Al super-paramagnetic

clusters near the stoichiometric concentration and a reasonable agreement with the experimental

data is observed. A ferro-mictomagnetic transition on cool down is proposed by Huffman et al.

[145]. This is confirmed by Shull et al.[305] in Fe3Al and FeAl and it is verified in Fe0.7Al0.3 by

Cable et al.[48]. Shukla[304] and Grest[122] have proposed that alloys with 0.27 < x < 0.5

are spin glasses at low temperature and this is substatiated with 4 K Mössbauer spectroscopy by

Shiga et al.[301]. In this composition range, there is competition between the Fe-Fe ferromagnetic

exchange and the Fe-Al-Fe antiferromagnetic superexchange. Bernal-Correa et al.[24] have inves-

tigated the magnetic and structural properties of Fe60Al40 ball milled alloys for various preparation

time. The magnetization decreases from the state of separated pure Fe and Al powders towards the

ordered Fe-Al alloy and then increases again when the alloys become disordered. The magnetic or-

dering and the hyperfine field have been investigated through Mössbauer spectroscopy in Fe1−xAlx
by Alcazar et al.[4], Huang et al.[73], and Schmool et al.[294].

Figure 4.3: Equilibrium Fe-Al phase diagram. The graph is after Taylor et al.[333].
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4.1. Modification of thin film magnetic properties by irradiation with Ne ions

Figure 4.4: Panels (a)-(c): definition of a pristine Fe60Al40 microwire through UV lithography, resist patterning for the
Ne+ exposure, and the magnetic contrast determined by Kerr microscopy. Panel (d) - magnetic contrast determined by
spin-polarized photoemission electron microscopy. Schematic representation of the B2 crystal structure of as-deposited
Fe60Al40 (e) and the A2 (disordered) structure of irradiated sample (f). The substitution with Al atoms on otherwise
pure Fe planes is indicated with green arrows. Graphs are after Bali et al.[17].

In the current investigation, the focus falls on the thin film of composition Fe60Al40 which is

preferred because the equilibrium phase diagram demonstrates single phase up to the melting point

for this value of Al concentration (see Fig. (4.3)). Heavy ion irradiation induced chemical disor-

der has similar effect to the mechanical preparation approach outlined above. The stopping power

of the heavy ions results in knock-out of Fe and Al atoms from their crystallographic positions

in the ordered B2 structure. This leads to destruction of the crystal structure (B2→A2) and an

increase in the number of Fe-Fe nearest-neighbours number which leads to higher exchange in-

teraction and ferromagnetic ordering. The amorphosizing effect of the irradiation is demonstrated

through the disappearance of the (100) superstructure reflection[17]. The irradiation induced mag-

netism provides the opportunity for patterning of high resolution structure when a lithographic step

is performed beforehand on the crystallographically ordered film. For instance, Bali et al.[17] have

demonstrated sub-50 nm magnetic stripe patterning with spacers of 40 nm (see Fig.(4.4)). The irra-

diation is performed with Ne+* at energy of 30 keV because it provides in depth homogeneous dis-

tribution of the stopping power and, therefore, the magnetic order is induced in the whole thickness

of the film (see Röder et al.[279]). The magnetic contrast of the irradiated areas is demonstrated

by Kerr microscopy and spin polarized photoemission electron microscopy (SPEEM). In principle,

the proposed method provides the opportunity for patterning of planar GMR structures where the

irradiated areas are the ferromagnetic electrodes and the non-exposed film region is utilized as a

*The irradiation can be performed with a He-Ne ion microscope.
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non-magnetic spacer*. The main thrust behind this chapter is the analysis of the spin polarization

values and the magnetic properties of the irradiated samples in order to understand whether such

magnetic structures are feasible.

4.2 Spin polarization, magnetotransport and magnetometry prop-

erties of Fe60Al40
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Figure 4.5: PCAR spin polarization measurements of Fe60Al40 thin films irradiated with Ne+ ions. Panel (a): PCAR
of a non-irradiated sample, which demonstrates negligible spin polarization of P ≈ 10(10)%. Panel (b): PCAR of a
sample irradiated with 2.1016 ions/cm2, which demonstrated the highest spin polarization of 46(3)%. Panel (c): PCAR
spin polarization values of five samples irradiated with different doses. The blue interpolation line is drawn by hand.

Spin polarization measurements are performed on Fe60Al40 sample with different irradiation

doses in the conventional needle(Nb)-anvil(sample) PCAR configuration. The surface oxidation

layer of a sample is removed by low power Ar ion milling for 2 minutes and the pre-cleaned sam-

ple is quickly transferred to the PCAR probe stick. The spin polarization measurements are shown

in Fig. (4.5). The as-deposited sample exhibits very low spin polarization of 10(10)% which is

essentially a vanishing value due to the high error. It is well established that the PCAR technique

*In this case, current perpendicular to plane GMR configuration is achieved without pillar patterning.
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4.2. Spin polarization, magnetotransport and magnetometry properties of Fe60Al40

is not very sensitive to low spin polarization values of P < 20%[45]. The spin polarization of the

sample with the highest irradiation dose of 2.1016 ions/cm2 is P = 46(3)%. This might be consid-

ered as a surprising result because the value reaches the value of the spin polarization of bulk Fe,

while the magnetization of the irradiated Fe60Al40 is demonstrated below to be approximately three

times lower than the bulk Fe magnetization. This implies that the spin polarization at the Fermi

level is determined by complicated (narrow) spin-split bands rather than by the overall magnetiza-

tion picture. The evolution of the spin polarization with the irradiation dose is presented on Fig. (4.5

(c)). The spin polarization demonstrates steady increase as the irradiation dose increases. The spin

polarization of a sample irradiated with 6.1014 ions/cm2 is P = 25(3)%, a sample irradiated with

2.1015 ions/cm2 is P = 26(3)%, a sample irradiated with 9.1015 ions/cm2 is P = 40(6)%.
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Figure 4.6: Resistance-temperature dependence of Fe60Al40 thin films irradiated with different fluences. Black curve -
as-deposited sample, red curve - irradiation dose 6.1014 ions/cm2, green curve - irradiation dose 9.1015 ions/cm2, and
blue curve - irradiation dose 2.1016 ions/cm2.

The resistance temperature dependence of samples irradiated with different dose is investigated

and presented in Fig. (4.6). The measurements are performed in van der Pauw configuration. First

of all, the resistance of the as-deposited sample demonstrates decrease expected for a metallic

sample on cool down. The residual resistance ratio at 10 K is 0.85, which is a typical value for thin

films deposited by sputtering with expected significant concentration of dislocations. An important

observation is that the curvature of the R(T ) has multiple slopes between 300 K-10 K which might

implies two scenarios: either there are multiple narrow carrier pockets contributing to the transport,

or there are multiple scattering mechanisms activated at different temperatures. The irradiation

with even the lowest dose of 6.1014 ions/cm2 changes drastically the R(T ) characteristics. The

resistance changes within a very narrow range of ±1 % with respect to its value at 300 K which

shows that the irradiation induced disorder leads to destruction of the metallic density of states

structure. Amorphous materials with essentially temperature independent resistance have been
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Chapter 4. Spin polarization and magnetotransport properties of irradiated Fe60Al40 thin films

used as standard resistance calibration. The resistance first increases slightly with a local maximum

at approximately 250 K and then decreases. The latter indicates that multiple carrier pockets (or

even phases) are involved in the electronic transport close to the Fermi level. There is a resistance

minimum at approximately 40 K, which is usually attributed to Kondo effect in magnetic systems.

This possibility is ruled out because the temperature position of the resistance minimum does not

change its position with the application of magnetic field. The irradiation with higher fluence

results in even more complicated density of states structure close to EF. For irradiation dose of

9.1015 ions/cm2, the resistance goes up on cool down with local maximum at T ≈ 225K and then

it is decreases slightly. In this case, the resistance at the lowest measured temperature is higher than

the room temperature value. Interestingly, the resistance dependence of the sample with the highest

irradiation dose of 2.1016 ions/cm2 exhibits behaviour which is expected for a more ordered sample

than the irradiated at 9.1015 ions/cm2. First of all, the increase in the resistance on cool down is less

pronounced in the range 225K < T < 300K, then the resistance decreases more on further cool

down than is the case for irradiation dose of 9.1015 ions/cm2, and finally the residual resistance

ratio at the lowest temperature is approximately 1.0. This unexpected behaviour is attributed to

annealing process during the irradiation process with the highest dose. The sample is heated up

and this decreases to some extent the disorder and therefore the resistance behaviour looks closer

to a more metallic composition. The disorder leads to partial localization of the electrons. In this

case, the conduction is through variable range hopping and the resistance increases on cool down

because the thermal activation energy decreases. A dated, but extensive, review of the electrical

conductivity in disordered alloys is given by Mooij[240]. The behaviour of the Ti1−xAlx is similar

to our case and the residual resistance ratio increases as x increases and the latter becomes higher

than 1 for x > 0.33. Localization dependent low temperature resistance upturn is observed in

ultrathin Fe film[383] as well. The temperature dependence of the resistivity of a metal, ρ(T ), is

given by:

ρ(T ) = ρ0 +β1T +β2T 3 +β3T 2 +β4T 3/2 +β5 ln(T/T0), (4.1)

where ρ0 is the residual low-temperature sample resistivity due to sample imperfections*, the terms

∝ T and ∝ T 3 are due to electron-phonon scattering while the terms ∝ T 2 and ∝ T 3/2 are

magnetic scattering related. The phonon terms contribution decreases when the crystal structure

is destroyed. It is important to note that the T 3/2 represents two separate physical effects within

the spin-disorder model[166, 249]: inelastic electron-magnon scattering and elastic scattering of

conduction electrons from the randomly oriented temperature-dependent local moments. This term

does not exist for crystalline ferromagnets whereas it is finite for amorphous ferromagnets. Finally,

the term ∝ ln(T/T0) has negative factor in front and is due to localization of electrons[205]. Fischer

*In high quality single crystals, the ratio ρ(4K)/ρ(295K) can reach ∼ 10−5[87].
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has proposed an alternative formula for the electrical resistivity of spin glasses : ρ(T ) = AT 2−
BT 5/2[97]. Kondo effect term is not considered here but it contains a term ∝ ln(µ/T ) and it has

resistivity minimum at low temperature[178].

The R(T ) dependence of the irradiated samples can be explained in a different way if coexis-

tence of two disordered phases is considered. Apart from the general disordering effect of the Ne+

irradiation, the stopping of the ions creates extended, columnar dislocations in the depth of the film.

These cracks provide path which might facilitate oxidation of not only the interface but along the

dislocations in the depth of the film. In this case, the film can be considered as disordered Fe60Al40

and disordered Fe-Al-O. The last oxide compositions are expected to be non-stoichiometric, how-

ever, FeOx and AlOx exhibit insulating or semiconducting behaviour[132]. Therefore, the R(T ) of

the irradiated Fe60Al40 can be considered as a superposition of two contributions: a metallic one

which drives the resistance down and a disordered oxide which drives the resistance up upon cool

down. The proposed scenario can explain the R(T ) with resistance maximum at T ≈ 250K and

resistance minimum at T ≈ 50K.

Anomalous Hall effect (AHE) at various temperature of two samples irradiated with dose of

6.1014 ions/cm2 and 2.1016 ions/cm2, respectively, is presented in Fig. (4.7). The measurements are

done in the van der Pauw geometry and there is always small longitudinal resistance contribution*.

In order to determine only the AHE part of the signal, the raw data is antisymmetrized and the

corrected version is obtained as follows:

AHE(µ0H) =
1
2
(
Rxy(µ0H)−Rxy(−µ0H)

)
. (4.2)

The magnetic field is applied perpendicular to the plane of the film, and therefore perpendicular

to the easy-axis. There is essentially no coercivity in the data, and therefore, the easy direction is

completely in the plane. The AHE signal is normalized with the longitudinal resistance and the

spontaneous Hall angle (SHA) is obtained in this way. The AHE contains both signal due to the

magnetization and due to the usual Hall effect. Once the magnetization is fully driven out of the

plane†, the AHE should demonstrate straight line which is due to the carrier concentration. The

focus fall first on the sample with the lower irradiation dose - panel (a). The AHE signals at tem-

peratures 10 K, 50 K, 100 K and 200 K are essentially indistinguishable. The initial slope up to

≈ 1.2T is due mainly to the anisotropy field of the film. Beyond that, there are two contributing

effect: small paramagnetic related rotation and linear slope due to the carrier concentration. The

small paramagnetic signal is typical for a sample with low irradiation dose which has low mag-

netization and the change in carrier concentration with temperature is expected as well from the

R(T ) characteristics[404, 202]. On the other hand, the sample with the highest irradiation dose

*It is magnetoresistance in this case
†For applied magnetic field higher than the anisotropy field
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does not exhibit significant quadratic high field AHE signal. The latter is attributed to the higher

magnetization and the higher exchange energy*. More interesting is the change in linear slope of

the AHE. The fact that slope decreases at lower temperatures is a prove of carrier depletion due to

localization of carriers or due to fuzzy density of states structure around the Fermi level. However,

the observation that the slope changes to negative at 10 K is even more peculiar. One possibility

is change of the carrier type from electrons to holes, however, this is unlikely the case. Since the

effect is rather small, the change in the slope is attributed to change of the carrier localization by

the magnetic field.
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Figure 4.7: Anomalous Hall effect loop at variable temperature for two sample irradiated at doses 6.1014 ions/cm2 (a)
and 2.1016 ions/cm2 (b), respectively.
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Figure 4.8: Panel (a): comparison between the spontaneous Hall angle and the magnetization temperature dependence
of a sample irradiated wit a dose of 2.1016 ions/cm2. The temperature evolution of the spontaneous Hall angle (red
curve) is approximated with a quadratic function. Panel (b): comparison between the spontaneous Hall angle at
various temperatures of three samples irradiated at different doses of 2.1016 ions/cm2, 2.1015 ions/cm2, and 6.1014

ions/cm2, respectively. The temperature dependence of the magnetization of each sample is given with a solid line.
The magnetization is normalized to the SHA value at 10 K for comparison purposes.

Comparison between the spontaneous Hall angle temperature evolution and the magnetiza-

*This is demonstrated below in terms of the Curie temperature in Fig. (4.10).
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tion temperature dependence of a sample irradiated with a dose of 2.1016 ions/cm2 is presented

in Fig. (4.8) (a). It is observed that the spontaneous Hall angle has slightly different temperature

dependence than the magnetization temperature decrease. The spontaneous Hall angle amplitude

is determined at applied magnetic field of µ0H = 1.2T in order to avoid the high-field non-linear

background, the M(T ) is obtained at the same applied field. The dependence between the magne-

tization and the anomalous Hall effect in various ferromagnetic materials have attracted significant

attention, however, there is no universal functional dependence. It has been demonstrated for the

3d ferromagnetic metals that the anomalous Hall effect is approximately proportional to the per-

pendicular component of the magnetization[273]. On the other hand, investigation by Thiygarajah

et al.[340] on the very low moment ferrimagnet Mn2Rux Ga has demonstrated that the sponta-

neous Hall angle is high and constant in a broad temperature range irrespective of the size of the

magnetization. The latter is taken as an indication that the Fermi level transport properties are not

determined by the overall magnetization. Similar should be the situation in the irradiated Fe60Al40

samples. The spin polarization is probably determined by complicated spin-split structure of the

density of states. The SHA is defined as the ratio between the Hall conductance, σxy, and the

longitudinal conductance, σxx:

SHA = arctan
(

σxy

σxx

)
, (4.3)

because σxy � σxx, SHA = (σxy/σxx). Where the resistivity ρ̂ρρ and the conductivity tensors σ̂σσ

abide by Ohm’s law between the current density, ~j, and the applied electric field, ~E: ~j = σ̂σσ .~E and

ρ̂ρρ.~j = ~E. It can be demonstrated by matrix inversion that:

ρxx =
σxx

σ2
xx +σ2

xy
, ρxy =

σxy

σ2
xx +σ2

xy
, (4.4)

therefore σxy/σxx = ρxy/ρxx. In Fig. (4.8) (b), the temperature dependence of the spontaneous

Hall angle (SHA) of three samples irradiated at different doses is presented. The sample irradi-

ated at the highest dose of 2.1016 ions/cm2 has spontaneous Hall angle of ≈ 3% which is much

higher compared with the SHA observed in high-quality Fe, Ni thin film [77] (0.2 %-0.3 %), but is

comparable to the value of 2.3% reported in amorphous Co40Fe40B20[323]. The SHA is shown to

scale with the irradiation dose and the sample irradiated with doses of 2.1015 ions/cm2 and 6.1014

ions/cm2 exhibit SHA of 1.2 % and 0.8 %, respectively. The last values are still higher than the

SHA in pure 3d ferromagnetic films and signify the importance of disorder on the anomalous Hall

effect magnitude. It is very important to point out that the temperature dependencies of the SHA

and the magnetization are essentially the same for the lower irradiation doses (see the green and red

curve in Fig. (4.8) (b)). The anomalous Hall effect is considered to depend on three mechanisms:
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intrinsic, skew scattering and side jump*. Karplus and Luttinger theory predicts that spin-orbit in-

teraction and interband mixing lead to carrier drift perpendicular to the applied electric field which

gives a ρint ∝ ρ2
xx contribution[162]. On the other hand, the skew scattering at impurities is pre-

dicted to scale as ρsk ∝ ρxx[312]. Finally, the side jump mechanism, proposed by Berger, scales as

ρsj ∝ ρ2
xx[20]. The distinction between the extrinsic and the intrinsic contributions is not straight-

forward due to the same functional dependence of ρint and ρsj. It has been generally accepted that

the anomalous Hall effect dependence is ρxy = aρxx + bρ2
xx, although different scaling has been

reported for different samples: bρ2
xx (for Fe)[150], aρxx (ultrapure Ni at low temperature)[95],

aρxx + bρ2
xx (for Co)[404], and bρα

xx (for Ni)[195], where 1 < α < 2. Another general scaling

relation is proposed by Tian et al.[341]:

ρxy = (αρxx0 +βρ
2
xx0)+bρ

2
xx, (4.5)

where ρxx0 is the residual low temperature resistivity.

The SQUID magnetometry of four samples with different irradiation doses is presented in

Fig. (4.9). Panel (a) demonstrates the hysteresis loops obtained at T = 4K with magnetic field

applied perpendicular to the plane of the film, i.e. along the hard direction. The saturation magneti-

zation of the irradiated samples is demonstrated to increase gradually with the irradiation dose. For

instance, the Ms is 630kA m−1 for the sample irradiated with the lowest dose of 6.1014 ions/cm2,

and the Ms is 800kA m−1 for the sample irradiated with the highest dose of 2.1016 ions/cm2. The

latter is significantly lower than the saturation magnetization of bcc Fe (Ms ≈ 1.7MA m−1). From

hysteresis loops along the hard direction, the anisotropy field of the sample can be determined as

the field where the magnetization reaches its saturation value: µ0Han ≈ 1.0T for the different

irradiation doses. The effective anisotropy constant, Keff, can be estimated following the Stoner-

Wohlfarth model: Keff = (µ0HanMs)/2. For the highest dose, Keff = 800kJ m−3. The anisotropy

constant, Keff, is the sum of the magnetocrystalline anisotropy, K1, and the demagnetizing en-

ergy: Keff = K1 +
1
4 µ0M2

s (1− 3N), where N is the demagnetizing factor for the sample along

the applied field direction†. Another approach to extract the magnetocrystalline anisotropy of the

irradiated thin films is to determine the internal anisotropy field after correcting for the demagne-

tizing field. This approach is followed here. The value of the extracted applied anisotropy field is

µ0Han = 1.0T or Han = 795.8kA m−1. The internal anisotropy when corrected for the demag-

netizing field is (Han)int = Han−NMs. The internal anisotropy field for the highest irradiation dose

is: (Han)int = 795.8kA m−1− 1 ∗ 800kA m−1 ≈ −4kA m−1. After this calculation, the internal

anisotropy field is used in the Stoner-Wohlfarth model to extract the magnetocrystalline anisotropy

*The latter two effects are from extrinsic nature and are considered to happen at impurities or sample crystallo-
gaphic defects.

†For thin film, N = 0 in the plane of the film and N = 1 perpendicular to the plane of the film.

122



4.2. Spin polarization, magnetotransport and magnetometry properties of Fe60Al40

(K1 = (µ0(Han)intMs)/2) and K1 ≈ −2kJ m−3. The magnetocrystalline anisotropy is very small

and this is expected for an essentially amorphous composition with no crystal structure.

On panel (b), the normalized M(T ) dependence for the same four samples in applied magnetic

field of µ0H = 1.2T, just above the anisotropy field, is presented. The magnetization decreases

slower for the sample irradiated with the highest dose and this implies that the Curie temperature

and the dose are directly related as well. While the sample with the highest irradiation dose is

clearly distinguished, the temperature dependencies of the others have intersecting curves.
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Figure 4.9: Magnetization measurements of four Fe60Al40 thin films irradiated with different doses. Panel (a) - hys-
teresis loops obtained at T = 4K in magnetic field range µ0H = ±5T. Panel (b) - M(T ) scans of the four sample in
temperature range 4 K-300 K in applied magnetic field of µ0H = 1.2T. The magnetic field is applied perpendicular
to the plane of the films for both measurements.

The Curie temperature measurements of a few samples irradiated with different doses is pre-

sented in Fig. (4.10). The experiments are performed with the SQUID oven option which is de-

scribed in Sec. (2.8). All temperature scans are done under applied magnetic of field of µ0H = 1.2T

and this explains the rather broad phase transition. The point of maximum magnetization decrease

is determined (dM/dT ) and then a linear fit is taken in a narrow temperature interval ∆T = ±20K

around the point of maximum slope. In this way, the Curie temperatures are extracted. There is

always some small residual moment after the magnetization flattens out above the Curie tempera-

ture due to the paramagnetic signal from the Al sample holder. The highest Curie temperature of

620 K is obtained on the sample irradiated with the highest dose of 2.1016 ions/cm2. The Curie

temperature decreases to 560 K for irradiation dose of 9.1015 ions/cm2. Finally, the Curie tem-

perature of 505 K is measured on a sample irradiated with fluence of 9.1014 ions/cm2. The Curie

temperature increases with the irradiation dose which is expected because the disorder increases

the Fe-Fe nearest neighbours coordination and hence the exchange energy[369, 329]. Samples

with lower irradiation dose are measured as well, however, due to the low moment of the samples

and the background from the Al sample holder foil, reliable extraction of the Curie temperature is

not possible.
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Figure 4.10: SQUID oven magnetometry measurements of the Curie temperature of three Fe60Al40 samples irradiated
with different doses. The magnetization of each sample is normalized with its magnetization at T = 300K. The
applied magnetic field is µ0H = 1.2T.

4.3 Conclusion and outlook

High spin polarization of 46(3)% is measured in Fe60Al40 thin film which is irradiated with

Ne+ ions with fluence of 2.1016 ions/cm2. This value is essentially equal to the spin polarization

of bulk Fe and, therefore, it is expected that the spin polarization is saturated. As anticipated,

there is positive correlation between the spin polarization and the irradiation dose. The electrical

measurements demonstrate that the irradiation makes the sample amorphous and the latter leads to

increased residual resistance ratios. The observed different curvatures in the Rxx(T ) on cool down

give evidence that there are at least two different scattering mechanisms involved. The magneto-

transport of the samples shows high spontaneous Hall angle of 3 %. The latter scales up with the

irradiation dose. The very high Hall angle should be further investigated as well as its temperature

dependence. The temperature evolution of the anomalous Hall effect is shown to be different from

the magnetization temperature dependence and, therefore, the Fermi level spin polarization is gov-

erned by complicated band structure rather than by the overall magnetization. Finally, the Curie

temperature is demonstrated to scale up with the irradiation dose and reaches 620 K for the highest

irradiation dose of 2.1016 ions/cm2.

Future investigation directions on these samples are scanning tunneling spectroscopy, spin-

polarized scanning tunneling spectroscopy, magnetotransport measurements on Hall bars, Curie

temperature of samples irradiated with even higher doses and reproducibility tests. Scanning tun-

neling spectroscopy has the capability to unravel the peculiar density of states structure close to the

Fermi level. If the latter is performed is performed with spin polarized tip a further insight can be

gained in the spin-split structure of the density of states and in the energy dependence of the spin
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polarization. It is advisable to investigate the anomalous Hall effect amplitude on patterned Hall

bars in order to study in greater detail the temperature dependence of the spontaneous Hall angle

and its relation to the magnetization. The Curie temperature increase is expected to saturate and to

stay constant above some threshold irradiation dose which must be determined by further investiga-

tions. The reproducibility of the irradiation procedure must be tested, i.e. if samples are subjected

to the same irradiation procedure do they exhibit the same magnetic properties afterwards. Finally,

the spin diffusion length, λs, in the pristine Fe60Al40 layer has to be estimated in order to understand

whether it can be used as a metallic spacer in GMR structures*.

*The general expectation is that λs is short due to spin scattering from Fe or from secondary Fe-Al phase which is
slightly ferromagnetic.
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Chapter 5

High-field Andreev reflection

"Oh, my God! Your knowledge of Star

Wars is very limited."

Dr. Davide Betto

5.1 Introduction and importance

Andreev reflection has established itself as one of the most straightforward techniques for swift

spin polarization measurements of new potential magnetic materials for application in spin elec-

tronic devices. One shortfall of the technique is the lack of spin polarization sign resolution.

The spin-polarized tunneling (the other superconductor-based spin polarization measurement tech-

nique) relies on the Zeeman-split quasiparticle density of states for spin-polarization measurements

and sign extraction. The resolution of the Zeeman splitting depends significantly on the spin-

orbit interaction in the superconductor and the orientation of the applied field with respect to the

plane of the superconducting film. Therefore, the spin-polarized tunneling (SPT) spectroscopy has

been mainly limited to measurements with ultrathin superconducting Al films at temperatures of

≈ 300mK. Furthermore, tunnel junctions have to be patterned, which provides additional exper-

imental complication. The spin-polarized tunneling is as well very dependent on the quality of

the oxide barrier. For instance, the initial spin polarization of NiFe is estimated to be 32 %[226]

and it has improved later to 48 %[238] with enhanced device quality. Attempts to extend the tech-

nique towards higher temperatures have been made by Yang et al.[394]. They have demonstrated

successfully subtle features of Zeeman splitting in SPT experiments with NbN at temperature of

1.2 K*. NbN has spin-orbit interaction stronger than Al, but weaker than Nb, and that makes it

a suitable superconductor for the purpose. The necessity for 3He cryostat is eliminated with this

*Interestingly, they demonstrate spin resolution with Nb as well although at T = 250mK.
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material choice. Recently, very clear Zeeman splitting has been demonstrates in scanning tunneling

spectroscopy with V at mK temperatures by Eltschka et al.[89]. The experimental configuration is

complicated in that case due to the necessity for pristine surface quality and low temperature*.

PCAR provides, at least in principle, determination of the direct Fermi level spin polarization

unmasked by tunneling probability or oxide quality†. It is our aim to perform high-field Andreev

reflection in order to extract the spin polarization sign in a more accessible experimental configu-

ration. In order to do that, high-field type-II superconductor are used in wire and thin film form.

Since the spin-orbit interaction depends on the atomic number (∝ Z4), superconductors with low

Z are chosen: Nb-Ti and MgB2. Since these are type II superconductors, the existence of vortex

lattice and the accompanying (possible) flux flow means that the PCAR spectral structure might be

significantly time-dependent due to trapping and release of vortices.

5.2 Theoretical analysis

Observation of Zeeman-splitting in Andreev reflection at T = 2K has two important difficul-

ties related to the thermal smearing and the nature of the Andreev process. The Zeeman splitting

results in ≈ 2µBµ0H energy separation of the superconducting quasiparticle density of states in

ideal free-electron approximation at very low temperature. The Fermi level thermal smearing can

be approximated with a Gaussian with full width at half maximum of ≈ 3.8kBT [318]. Because

the Boltzmann constant and Bohr magneton have very similar values‡, the thermal energy tends to

smear out the Zeeman splitting and this leads to less distinguishable effect at elevated temperature.

A simulation is presented of the detrimental effect of the thermal smearing in Fig. (5.1). A super-

conductor with a gap of ∆ = 1.5meV is assumed and the gap does not change with the temperature

while the latter is varied in the range T = 0.3K−4K, and the magnetic field is set at µ0H = 5T.

The simulation is performed in pure tunneling regime§ with no correction related to spin-orbit in-

teraction or magnetic field depairing effect and the spin polarization is P = 50%. The detrimental

effect of the temperature smearing on the Zeeman-splitting is apparent. The effective splitting en-

ergy decreases as the temperature increases because the peak structure of the DOS is rounded off.

The sharp spikes are smeared to broad local extrema in the range T = 0.3K−1.5K, then the four

peak structure is further suppressed and is practically indistinguishable as four separate peaks at

temperature of 2K. The Zeeman splitting is still evident as asymmetry in the spectral lineshape at

*There are only a handful of systems in the world which possess deposition chamber connected in-situ to a mK
STM with high magnetic field.

†Diffusive transport averaging in the contact area leads to decreased value of the spin polarization.
‡The Bohr magneton is µB = 5.7883818066(38) × 10−2 meV T−1 and the Boltzmann constant is

µB = 8.6173324(78)× 10−2 meV K−1, therefore for same values of field in tesla and temperature in kelvin, the
Zeeman splitting and thermal excitation energy are comparable

§Tedrow-Meservey type
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T = 4K (G(Ua) 6= G(−Ua)). This idealized example sets a rough limit for the temperature at

which the Zeeman effect related asymmetry is still observable*.

(a) Temperature range 0.3 K-4.0 K. (b) Temperature range 2.0 K-4.0 K.

Figure 5.1: Simulated Tedrow-Meservey spin polarized tunneling for an ideal superconductor with ∆ = 1.5meV. The
applied magnetic field is µ0H = 5T and the spin polarization is P = 50%.

A further complication arises from the nature of the Andreev reflection process. As it is dis-

cussed in Chap. 1, the tunneling can be considered as an extreme case of Andreev reflection for

Z → ∞ and the Andreev reflection process is completely forbidden in this situation. For the usual

experimental range of barrier strength (0.1 < Z < 0.6), the spectral signal at subgap voltages

is non-negligible part of the normalized conductance, Gn. This means that the Andreev reflec-

tion itself decreases the apparent Zeeman splitting since the peak structure is observed as sub-gap

contribution. The effect of magnetic field in the Andreev reflection is introduced as a correction

towards the coherence factors u0 and v0, and, therefore, this time the Andreev reflection process is

considered to happen between the ferromagnetic exchange-split DOS and Zeeman-split supercon-

ducting DOS. The theory modification is given by Melin[220] and Ren et al.[276]. In this case, the

spin dependent coherence factors are

u2
↑,(↓) = 1− v2

↑,(↓) =
1
2

(
1+

√
(E±µBµ0H)2−∆2

|E±µBµ0H|

)
. (5.1)

The Andreev reflection is still a single electron-Cooper pair conversion at the interface, however,

this time there are two separate processes towards the spin-up and spin-down quasiparticle density

of states of the superconductor. Therefore, the PCAR signal is calculated in the usual fashion,

however, the two transfer processes are now offset in energy due to Zeeman energy term. The

*Higher field leads to higher Zeeman splitting, however, the orbital depairing effect scales as ∝ H(field applied
perpendicular to plane, which is the preferred orientation in our setup) or ∝ H2 (field applied in-plane). This is given
by Eq. (1.99).
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Zeeman-split PCAR signal is then:

GZ =
1+P

2
G↑+

1−P
2

G↓, (5.2)

where the two conductances G↑(↓) are calculated with the respective coherence factors. A few

graphs are generated in order to demonstrate that the Zeeman-split Andreev reflection process is

less resolvable than the spin polarized tunneling. The case of PCAR of an unpolarized metal with a

fully transparent contact in magnetic field of µ0H = 5T and temperature T = 2.0K is presented

in Fig. (5.2). The PCAR signal due to two spin sub-bands in the superconductor is plotted in panel

(a). Since the assumed spin polarization is zero, the spin-up and the spin-down contributions are

equal and no asymmetry in bias should be observed. The Zeeman-split PCAR signal has different

lineshape compared with the PCAR simulated spectrum without magnetic field because the Zeeman

energy term shifts the contribution of the spin sub-bands towards higher bias. Such slight variation

in the curve is unresolvable in real experimental situation and can easily be accounted by free fitting

parameters used in literature like effective temperature(Teff)[38], superconducting gap (∆)[45] or

Dynes parameter(Γ)[85, 244].
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Figure 5.2: Simulated Zeeman-split PCAR with Z = 0.0, P = 0.0, µ0H = 5T. Panel(a) - PCAR process towards
the spin-up and spin- down density of states, respectively. Panel(b) - comparison between PCAR in magnetic field and
without magnetic field.

The more important and experimentally often observed situation of spin polarization of 50 %

and modest barrier strength of Z = 0.5 in the same magnetic field and temperature is demon-

strated in Fig. (5.3). In this case, the Zeeman splitting becomes apparent as asymmetry, however,

clear four-peak structure can not be distinguished due to the thermal broadening. The conductance

bias asymmetry is determined in order to gain insight into the maximum observable effect. The

conductance asymmetry peaks at around 20 % under such conditions* but the applied bias position

*It is clarified below but the correction due to Abrikosov vortex shunting results in approximately 1/3 of this value
in superconductors like Nb-Ti.
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of this extremum is very important. The maximum asymmetry occurs at subgap bias, where usually

peaks 2 and 3 are located in the classical spin polarized tunneling (see Fig. (1.24) in Chapter (1)).

This peaks can not be distinguished here but the change in the lineshape is most dramatic at their

positions. On the other hand, the pronounced peak structure* observed around the gap biases re-

sults in a smaller asymmetry with opposite sign. Therefore, the most important experimental range

for high field PCAR study is |Ua| < 2.0∆/q, where ∆ is the bulk superconducting gap. The com-

parison between the PCAR curve without applied field and with applied field demonstrates that the

Zeeman-split signal is broader along the bias axes which, as is intuitively expected due to energy

offset of the Zeeman-split spin sub-bands. It is only proper to establish an experimental fingerprint

for Zeeman-split Andreev reflection: that is the observation of pronounced asymmetry at sub-gap

bias, followed by a much smaller asymmetry† with opposite sign at bias slightly above the gap

values. Since thermal smearing has non-negligible detrimental effect and clear four peak splitting

is not evident, the above indication is very suitable for real measurements.
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Figure 5.3: Simulated Zeeman-split PCAR with Z = 0.0, P = 0.5, µ0H = 5T. Panel(a) - PCAR process towards
the spin-up and spin- down density of states, respectively. Panel(b) - comparison between PCAR in magnetic field and
without magnetic field.

The gap is assumed to be constant with the applied magnetic field and the shunting contribution

from the Abrikosov vortices is not taken into account for the simulated Zeeman-split Andreev re-

flection considered above. It has been computationally verified that the above Zeeman-split PCAR

model is reduced to the spin-polarized tunneling case[225, 336, 226] for Z � 1. The spin-orbit

interaction and the orbital depairing can be introduced the same way as in the Maki-Fulde the-

ory. Andreev reflection related conductance asymmetry is observed in Al/EuS by Ren et al.[276].

PCAR asymmetry and spin polarization sign extraction has been demonstrated as well on Er by

Stamenov[316].

The focus falls now on the effect of the magnetic field on the overall PCAR spectral structure.

*Indicated with dark green arrows in Fig. (5.3) (a).
†The below-gap asymmetry is approximately -4 times bigger than the above-gap asymmetry in this particular case.
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Experiments with high-field type-II superconductors are performed above the lower critical field,

Hc1. Therefore, there are four important complications in the data analysis:

• Existence of normal transport through the cores of the Abrikosov vortices

• Modification of the superconducting quasiparticle density of states

• Temporal variation of the PCAR spectra due to dynamics of the flux lattice

• Vortex density of states

The simplest approach towards treatment of superconducting vortices is presented by Miyoshi et

al.[230]. In their, approach the vortices are treated as rigid rectangular structures. Hence, the

superconducting order parameter (∆) has two values:

∆ =

0, within the vortex ,

∆0, outside of the vortex ,
(5.3)

where ∆0 is the bulk equilibrium superconducting gap. Therefore, the cores act as normal conduc-

tance channels which do not contribute towards the Andreev reflection. In this case, the overall

conductance through the channel is

G = (1−h)Gns +hGnn, (5.4)

where Gns is a PCAR-related conductance and Gnn = 1 is flat bias-independent conductance

through the vortex cores and h = H/Hc2 is assumed in this case. For instance, if magnetic field

of µ0H ≈ 5T is applied to a superconductor with an upper critical field of µ0Hc2 ≈ 15T (like Nb-

Ti, see Fig. (5.6)), this means that the overall contribution of the Andreev reflection related signal

towards the overall conductance is reduced to approximately 2/3.

This model is applicable only to field values which are below the limit where the vortices start

overlapping. It has been investigated by Shan et al.[297] that the simplified two-channel model

breaks down above a cross-over field µ0H∗. For µ0H > µ0H∗, the fitting of the PCAR data results

in distorted extracted parameters, for instance, the barrier strength Z becomes significantly field

dependent.

The density of states of a type II superconductor is position dependent in the mixed state: the

superconductivity is completely suppressed in the core of a vortex and, therefore, the density of

states is flat in this case, whereas the equilibrium BCS DOS is recovered at a position exactly

between two vortex cores. The equilibrium Abrikosov lattice represent hexagonal honey-comb

structure. Accurate treatment of the vortex lattice influence on the superconductor density of states
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is given by Golubov and Hartmann[114]. In this case, the hexagonal vortex cell is treated as a

circular one in a fashion similar to the Wigner-Seitz cell. The circular cell has radius

ρs =

√
Φ0

πµ0H
, (5.5)

where Φ0 is the flux quantum. This approximation is demonstrated to be accurate within 0.2 %[147,

367]. The critical cell radius at which the whole sample turns normal is ρc =
√

Φ0/(πµ0Hc2).

The normal, G, and anomalous, F , Green functions abide by the Usadel equations in the case of a

"dirty" superconductor, i.e. the mean free l is smaller than the coherence length ξ . Usadel equations

are an approximation of the more general Eilenberger[86] equations.The Usadel equations are the

following two coupled equations:

ωF− D
2

G

(
∇− 2πi~A

Φ0

)2

−F∇
2G

= ∇G, (5.6)

ln
(

T
Tc

)
+2πT ∑

ω

(
∆

ω
−F

)
= 0, (5.7)

where D= vFl/3 is the diffusion constant, ω = πT (2n+1) are the Matsubara frequencies, and ~A is

the vector potential. The two Green functions can be substituted with a new function θ : F = sinθ

and G = cosθ and after transforming to cylindrical coordinates, the system above becomes:

θ
′′
+

1
ρ

θ
′
−ω sinθ −Q2(ρ)sinθ cosθ +∆cosθ = 0, (5.8)

ln
T
Tc

+2πT ∑
ω

(
∆

ω
− sinθ

)
= 0, (5.9)

where the prime represents differentiation with respect to ρ , and the gradient-invariant vector po-

tential, Q(ρ), in the limit κ � 1 is

Q(ρ) =
1
ρ
− ρ

ρs
, (5.10)

where ρ = 0 signifies the center of the vortex. The latter approximation pertains to strong type-

II superconductors where the coherence length is much shorter than the penetration depth. The

system of equations above is complemented with the boundary conditions at the center and the

edge of a circular cell:

∆(0) = θ(ω,0) = 0, ∆
′
(ρs) = θ

′
(ω,ρs) = 0. (5.11)

The boundary conditions essentially denote that the superconductivity is completely suppressed
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(a) Vortex cell. (b) Vortex cell averaged superconducting density of states.

Figure 5.4: Panel(a): Schematic representation of the hexagonal honey-comb Abrikosov vortex lattice. Each vortex
has approximately core size ≈ ξ and is surrounded by six neighbours. The circulating supercurrent around the vortex
cores is indicated. The approximated circular cell with radius ρs is depicted as well. The points 1, 2, and 3 denote
different positions in the circular cell: 0,ρs/2, and ρs. Panel (b): numerically calculated density of states averaged over
a vortex lattice following the solution of the Usadel equations. The curves (d)-(a) correspond to reduced magnetic field
values H/Hc2 = 0.0, 0.05, 0.2, and 0.5, respectively. The data is after Golubov and Kupriyanov[115].

in the core of a vortex and that the gap parameter* has reached its equilibrium value at the edge

of the circular cell. The gap, ∆(ρ), and the DOS parameter, θ(ω,ρ), are normalized to πTc, the

length to the coherence length ξs =
√

(D/(2πTc)), and the vector potential to Φ0/(2πξs). The

density of states is given by the real part of the normal Green function, G: N(E,ρ) = ReG(E,ρ) =

Re[cosθ(E,ρ)]. The quasi-particle density of states has to be calculated numerically for different

positions of the vortex circular cell and then averaged over the vortex:

N(E) =
1

πρ2
s

∫
ρs

0
N(E,ρ)2πρdρ. (5.12)

In fields close to Hc2, the functions are small and this allows linearization of the self-consistent

equations. A relation between the temperature dependence of the critical cell radius ρc(T ) and the

upper critical field Hc2(T ), known as Maki-de Gennes equation, can be obtained in this approxi-

mation:

ln
(

Tc

T

)
= ψ

(
1
2
+

Tcξ 2
s

T ρ2
c

)
−ψ

(
1
2

)
, (5.13)

*and the density of states
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where ψ(x) = Γ
′
(x)/Γ(x) is the digamma function*. The numerical self-consistent solution of the

Usadel equations goes beyond the scope of this work, however, the detrimental effect is demon-

strated in Fig. (5.4) (b). Even small field values of h = 0.05 cause significant rounding of the sharp

quasiparticle density of states, and moderately high field values of h = 0.5 result in practically

indistinguishable maximum in the DOS structure. Since the sharp features are important for Zee-

man splitting observation in PCAR, this vortex induced DOS modification makes the experimental

observation more complicated. The existence of density of states at sub-gap voltages is known

as gapless superconductivity. Gapless superconductivity exists in type I superconductors as well,

however, at field values very close to the critical field: H = 0.95Hc[198, 227]. The method of

vortex cell averaging is extended to two-band superconductors (like MgB2) by Koshelev[180].

It is especially important to suppress vortex dynamics in superconducting wires for high-field

solenoid magnets but the concern falls here on the PCAR spectral temporal evolution due to flux

flow. There is dissipative force between the current in the superconductor and the flux threading it,

which is the Lorentz force density:

~F = ~J×
~B
c
, (5.14)

where ~J is the current density. It can be shown (see Tinkham[342] p. 154-155) that the force on a

single vortex is:
~f = ~J×~nΦ0

c
, (5.15)

where ~n is the unit vector normal to the surface of the superconducting film. The vector product

determines that this force moves the vortices in direction which is transverse to the current direction.

If the vortices move at velocity~v, this leads to induced electric field:

~E = ~B×~v
c
, (5.16)

which is parallel to the current density ~J. This means that there is potential drop and therefore

power is dissipated. It is more important from PCAR perspective that there is vortex movement

rather than the dissipated power. The flux flow is reduced in practical superconductors with the

introduction of inhomogeneities with average distance ≈ λ−ζ between them. Nevertheless, there

is still thermally activated flux creep for strong current in which case usually whole bundles of

vortices jump from one equilibrium position to another. The Bardeen-Stephen model[19] describes

the flux flow dissipation as limited only by viscous damping η , and therefore the viscous force per

unit length of a vortex line is −η~v. In this case, the ratio between the resistance in the mixed state

and the normal resistance, ρm/ρn, is proportional to the ratio between the applied magnetic field

*Γ(z) =
∫

∞

0 xz−1e−xdx is the gamma function
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and the upper critical field:
ρm

ρn
=

H
Hc2

. (5.17)

More sophisticated treatment is given by Caroli and Maki[50]. The Anderson-Kim flux creep

theory[6] treats the flux jumps due to thermal excitations. Since variable magnetic field induces

winding electric field (∇×~E =−∂~B/∂ t), this will mean that variable magnetic field has detrimental

effect on the vortex lattice stability as well. High-field PCAR experiments have to be performed

in variable ~B in order to observe the evolution of the Zeeman spliting as a function of ~B and,

therefore, the ramp rate has to be minimized. In our experiments, the magnetic field increase is

limited to 5 mT s−1. Another problem, which is difficult to quantify is the vortex lattice behaviour

in the contact between the tip and the sample. Concentration of Abrikosov vortices in the contact

area leads to significant reduction in the Andreev-related signal. Mechanical vibration and the

contact reorientation lead to different pinning structure and, therefore, it is advisable to analyze

multiple high-field spectra in order to statistically average out vortex induced dynamical effects on

the PCAR conductance.

Figure 5.5: Scanning tunneling spectroscopy data of Abrikosov vortex bound states. Panel (a) - dI/dV (V ) of vortex
lattice at three different positions: in the core (top), at distance of 7.5 nm (middle) and at distance of 200 nm from the
core (bottom). The data is obtained on NbSe2 at 1.85 K and 0.02 T and is after Hess et al.[136]. Panel (b) - higher
resolution spacial evolution of local dI/dV . The data is obtained on NbSe2 at 0.3 K in 50 mT. The splitting of the
zero-bias peak is manifested in the vicinity of the vortex core.

Another complication is the existence of vortex bound states. The different nature of den-

sity of states within the core of a superconducting vortex is predicted by Kramer and Pesch and

is confirmed by Hess et al.[136, 137] shortly after the advent of scanning tunneling microscopy

(spectroscopy). The density of states evolves from a peaked structure in the core of a vortex to-

wards a BCS fully-gapped structure very far away from the vortex. Perhaps more intriguing is the

observation that the zero-bias peak splits up as a function of the distance from the vortex core. It has

been successfully theoretically modeled by Shore et al.[303] that the in-core zero-bias peak is due
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5.3. High-field experiments with Nb-Ti

to quasiparticle bound states. The latter theory successfully predicts the splitting of the zero-bias

anomaly at distance r ≈ ξ observed by Hess et al. [137]. The investigation of vortex bound states,

quasiparticle interference, moving vortex lattice and lattice dependence on the crystallographic de-

fects is a vast research field. Extensive review of the so far achieved imaging of superconducting

vortex lattice in different superconductors is given by Suderow et al.[324]. It is worth noting that

vortex bound states have not been observed in MgB2, a superconductor used in this work.

5.3 High-field experiments with Nb-Ti

Contemporary superconducting magnets are mainly wound with Nb-Ti and Nb3Sn multifila-

mentary wires. Nb3Sn has superior superconducting properties: its critical temperature is 15.3 K

and its upper critical field is 15 T at 4.2 K. It has two disadvantages for our PCAR aims: it has high

average atomic number and it is rarely prepared in monofilament wire forms. Therefore, the focus

falls on Nb-Ti. The latter is easily obtainable in monofilament superconducting wire form with Cu

sheath and insulation.
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Figure 5.6: Critical superconducting temperature of Nb-Ti wires. Panel (a) - superconducting transition of Nb-Ti at
various fields. Panel (b) - superconducting transitions at various fields in normalized resistance R/Rn. Panel (c) -
critical temperatures at various fields along with the superconducting transition width. Panel (d) - Critical temperature
of 9.30(6)K of Nb-Ti in zero applied external field.
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The insulation layer is stripped mechanically. The Cu sheath is etched for 10 min in concen-

trated nitric acid (HNO3). After the etching, the surface of the cylindrical Nb-Ti core is gently

scrapped with scalpel in order to remove any left-over contaminants from the etching process. The

Nb-Ti wire is brittle, hence, scissors shear cutting results in sharp, good quality tips for PCAR. First

of all, the electrical properties of the Nb-Ti wires are presented in Fig. 5.6. Since the resistance of

a short (10 mm) wire segment is below 1 mΩ, the electrical properties are measured in standard

four-point a.c. configuration. Constant current is provided by a lock-in voltage source in series

with a 1 kΩ resistor and the voltage is pre-amplified with bandpass filter before being fed back to

the lock-in for detection. The zero-field critical temperature is approximately Tc = 9.30(5)K,

close to the one of bulk Nb Tc ≈ 9.25K. The critical temperature of Nb-Ti at our highest possible

field of µ0H = 14T is 3.5(2)K*.

Since systematic PCAR experiments with Nb-Ti have not been performed before, it is important

to demonstrate that this superconductor is reliable. PCAR measurements on classical 3d ferromag-

netic alloy CoFe and the non-polarized Au are performed in this case, their spin polarization is

very well studied in literature. The gold layer (30 nm) is deposited by thermal evaporation on

Al2O3 substrate with Al(30 nm) adhesion layer. The CoFe(40 nm) is deposited by sputtering on

Si/SiO2 with Ta(10 nm) adhesion layer and capped with AlOx(3 nm). The PCAR measurements on

this well established compositions demonstrate the expected values. The spin polarization of CoFe

is PCoFe ≈ 48(3)%, while measurement on the Au film results in negligible spin polarization of

PAu ≈ 4(7)% (see Fig. (5.7)). More than 30 landings have been performed on the films and the

observed PCAR features have not demonstrated any peculiar structure. Therefore, the Nb-Ti wire

behaves as an s-wave superconductor and has potential to be used in PCAR, routinely.

- 1 5 - 1 0 - 5 0 5 1 0 1 50 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

1 . 0 5

1 . 1 0

- 8 - 6 - 4 - 2 0 2 4 6 80 . 9 5

1 . 0 0

1 . 0 5

1 . 1 0

1 . 1 5

1 . 2 0

1 . 2 5

T  =  2 . 0  K
� 1 *  =  1 . 4 3 ( 4 )  m e V
� 2  =  1 . 5 0  m e V
Z *  =  0 . 3 2 ( 8 )
P *  =  0 . 4 8 ( 3 )
T e *  =  4 . 0 ( 3 )  K
G n  =  5 9 . 5 3 ( 1 )  G 0  

 

 N b - T i / C o F e  d a t a
 F i t

G/
G n

U a  ( m V )

( a ) ( b ) T  =  2 . 0  K
� 1

*  =  1 . 2 ( 1 )  m e V
� 2  =  1 . 5 0  m e V
Z *  =  0 . 4 8 ( 8 )
P *  =  0 . 0 4 ( 7 )
T e

*  =  3 . 8 ( 9 )  K
G n  =  1 0 0 . 1 ( 1 )  G 0  

 N b - T i / A u  d a t a
 F i t

G/
G n

U a  ( m V )

Figure 5.7: PCAR measurements with Nb-Ti on CoFe (a) and Au (b). The extracted spin polarization are
PCoFe = 48(3)%(a) and PAu = 4(7)%, respectively.

*The careful reader will notice that there is a very small residual resistance below the superconducting transition.
It is not clear whether this is due to vortex lattice motion or due to inductive pick-up in the measurement leads.
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5.3. High-field experiments with Nb-Ti

Furthermore, the temperature evolution of the PCAR signal on the CoFe sample has been in-

vestigated. The same measurement, data analysis and normalization procedure is applied as in

Fig. 3.14. Separate PCAR temperature scans are obtained at T = 2 K, 2.2 K, . . . 10 K. All indi-

vidual spectra are normalized with a background curve recorded at 10 K*. The temperature evo-

lution demonstrates the behaviour of a polarized ferromagnet, the conductance features shrink in

amplitude and the spread along the applied bias axis decreases because of the reduction of the su-

perconducting gap as the critical temperature is approached. A comparison is made between the

experimental PCAR data in Fig. (5.8) and a simulated PCAR spectrum in Fig. (5.9). The simu-

lated data is obtained with the following constants: barrier strength Z = 0.4, spin polarization

P = 0.5, and bulk superconducting gap of ∆2 = 1.55meV. No proximity effect is taken into

account for the simulation, the electronic temperature is assumed to follow the temperature of the

bath and the superconducting gap temperature evolution is considered to follow the approximate

formula ∆(T ) = ∆0 tanh(1.74
√

(Tc/T )−1). There is very high similarity between the experimen-

tal and the simulated temperature scans, apart from the broader structure along the bias axis and

smaller conductance amplitude in the experimental set. The latter is attributed to the existence of

resistance contributions in series with the contact. The qualitative agreement between the last tem-

perature scans shows conclusively that the Nb-Ti is a reliable alternative to the widely used Nb for

PCAR experiments. The focus falls now on high magnetic field PCAR measurements with Nb-Ti

superconducting tips.

Figure 5.8: PCAR scan of a Nb-Ti/CoFe contact in the temperature range from T = 2K to T = 10K. All spectra are
normalized with a background curve at 10 K.

*above the critical temperature of Nb-Ti
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Chapter 5. High-field Andreev reflection

Figure 5.9: Simulated PCAR data for barrier strength Z = 0.4 and spin polarization P = 0.5 in the temperature scan
T = 2K to T = 9.2K.

An example of magnetic field scan at 2 K of an Nb-Ti/CoFe point contact up to 9 T is presented

in Fig. 5.10. Low field ramp rate of 5 mT s−1 is used usually during the PCAR field scans in order to

minimize induced flux flow and mechanical vibrations. Consequently, the data is averaged at field

values µ0H[i] = 0.0,0.1,0.2 . . .9.0T in this way producing 91 low noise spectra. Figure (5.10)

represents the normalized PCAR conductance. The normalization of each field scan, µ0H[i], is

achieved with the high-bias points

G(Ua,µ0H[i]) =
2G(Ua,µ0H[i])

G(−∞,µ0H[i])+G(+∞,µ0H[i])
, (5.18)

where G(−∞) and G(∞) denote the conductance at the highest available negative and positive bias,

and G(Ua,µ0H[i]) represents the full PCAR array at field µ0H[i]. The Andreev reflection con-

tribution towards the overall conductance decreases as the magnetic field increases. The latter is

evidenced by the fact that the spectra become flatter as a function of applied bias for higher mag-

netic field. The detrimental effect of the flux lattice is apparent as jumps in the three-dimensional

plot. Such flux jumps in the area of the contact are clearly discernable, for instance, at field values

approximately: 2.5 T, 4.0 T, 5 T, and 6 T*. Spectra without drift can be obtained up to 2 T in most

of the cases. The landing of the Nb-Ti tip inevitably creates crystallographic defects which act as

pinning centers for the vortices. However, this disorder is expected to be irreproducible and, hence,

the behaviour of the Abrikosov lattice is different in each separate point contact formation.

*In fact, the vortex dynamics is significant above 6 T but the colour scale distorts the perception.
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5.3. High-field experiments with Nb-Ti

Figure 5.10: Demonstration of flux jumps (or contact reorientation) on the structure of Andreev reflection in a magnetic
field scan of a Nb-Ti/CoFe point contact. The applied bias is in units ∆2/q, where ∆2 = 1.5meV, and q is the
elementary charge. The temperature is 2 K.

It has been observed occasionally that the PCAR in-field scans demonstrates no superconduct-

ing features at fields much smaller than the upper critical field. This happens because the con-

centration of multiple vortices in the contact area leads to a quench of the point contact. A sim-

ple rescaling procedure for PCAR temperature/field scans is described in Fig. (3.16). The same

rescaling procedure is applied here on the data from Fig. (5.10). In this situation, the high bias

profile, G(µ0H[i])†, is first determined for each separate field scan. Then, the zero-field spectrum

G(µ0H[0])† is used as reference and a multiplicative rescaling factor, M[i], is defined with respect

to it. After that, the conductance and voltage axis of each PCAR spectrum (at different field) are

shrunk/expanded accordingly. The full procedure is summarized in the equations below:

G(µ0H[i])† =
G(−∞,µ0H[i])+G(∞,µ0H[i])

2
, (5.19)

M[i] =
G(µ0H[i])†

G(µ0H[0])† , (5.20)

Ũ(µ0H[i]) =
U(µ0H[i])

M[i]
, (5.21)

G̃(µ0H[i]) = G(µ0H[i]).M[i], (5.22)

where Ũ(µ0H[i]) and U(µ0H[i]) are the rescaled and original voltage axis arrays of a PCAR scan
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Chapter 5. High-field Andreev reflection

recorded at field µ0H[i], respectively. The rescaled and original PCAR conductances at field µ0H[i]

are G̃(µ0H[i]) and G(µ0H[i]), respectively. This rescaling procedure is approximately correct for

small variations of the contact resistance. The rescaled version of the same graph is plotted in

Fig. (5.11) (a). This simple procedure smooths out well some of the features. However, there

are contact reorientations with the changes in the barrier strength Z. The most apparent such fea-

ture is at µ0H ≈ 4.9T. There is no established way to correct for such effects. The PCAR bias

asymmetry as a function of magnetic field is presented in Fig. (5.11) (b). The outlined finger-

print for Zeeman-split Andreev reflection from Fig. (5.3) shows that the conductance asymmetry

below the gap should be with higher magnitude than the above gap one and the two asymmetries

should be with opposite signs. The PCAR scan in Fig. (5.11) (a) exhibits maximum conductance at

Ua ≈ ± 2.5, therefore, the focus should fall on the bias range |Ua| ≤ 2.5 for the asymmetry scan.

The low bias asymmetry appears to be most pronounced at applied bias of Ua ≈ 1.0. It increases

gradually in magnitude up to 5 T where it suddenly changes sign*. The latter is attributed to vortex

dynamics. The vortex lattice contribution leads to another change of the sign at field of around

6.5 T. The highest sub-gap asymmetry is at approximately 7.8 T, however, it is unclear whether

the observation is not caused by vortex dynamics. The high bias asymmetry at Ua ≈ 2.5− 3.0

demonstrates overall negative asymmetry with a magnitude lower than the low bias asymmetry. An

exclusion from this picture presents the field range from 5 T to 7 T where both the low and high bias

asymmetry behave randomly. As a brief conclusion on the high field PCAR, the asymmetry field

range 0 T-5 T demonstrates features similar to the expected fingerprint of positive-negative asym-

metry. Similar tendency is present in the field range 7 T-9 T. Unfortunately, the asymmetry bias

picture is very dynamic and complicated and an overall tendency cannot be certainly established†.

In order to crosscheck some of the observation on the field scan from Fig. (5.11), a separate one

this time in the field range from 0 T to −9 T is presented later in Fig. (5.15) and Fig. (5.16).

*If a look is taken at panel (a) of the same figure, there is a definite change in the contact configuration at approxi-
mately 4.9 T.

†It appears that vortex contribution distorts the picture the most in the field range from 5 T to 7 T in this particular
contact.
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5.3. High-field experiments with Nb-Ti

(a) PCAR field scan from µ0H = 0T to µ0H = 9T.

(b) PCAR bias asymmetry of field scan from (a).

Figure 5.11: PCAR field scan of a Nb-Ti/CoFe point contact: (a) - field scan from 0T to 9T and (b) - PCAR bias
asymmetry of the data from panel (a). The temperature is 2 K. The most pronounced vortex jumps are indicated with
black arrows on panel (a). 143



Chapter 5. High-field Andreev reflection

PCAR fits have been performed on the high-field NbTi/CoFe spectra. The data along with

the fits and the extracted parameters for the applied fields µ0H = 0T,1T, . . .7T is presented in

Fig. 5.12. It is apparent from the individual scans, that the PCAR conductance signal is shrunk due

to the fact the Abrikosov vortices contribution increases its weight towards the overall conductance,

and therefore, the PCAR-related signal is diminished. As is usually the case in our fitting routine,

the rescaling factors of the voltage and conductance axes are left as free fitting parameters. These

parameters vary slightly due to the shrinking of the gap and pinning/depinning of vortices within

the contact area. The proximity gap ∆1 is always close to the bulk gap ∆2, therefore, no appreciable

proximity effect is observed. Furthermore, the proximity gap is essentially magnetic field inde-

pendent. The reader should pay attention to the lineshape of the fitted curve (always in red). As

the magnetic field is increased, the BTK model can not account accurately for some fine details of

the spectral features. The most pronounced disagreement is evident close to zero bias. The PCAR

scan at around µ0H = 7T demonstrates the effect of vortex dynamics, the scan is very asymmet-

ric, for instance, the normalized conductance G/Gn at Ua ≈ 3mV is significantly higher than at

Ua ≈ −3mV. The focus shifts towards the three most important parameters-spin polarization P,

the effective electronic temperature Te, and the barrier strength Z. The field evolution of these pa-

rameters is presented in Fig. 5.13. First of all, the spin polarization is shown to be almost constant

within the experimental error for all fields in the range from 0 T to 7 T. It has to be noted that this

is in contrast with the result demonstrated by Gifford et al.[111] in their experimental investigation

of spin polarization with Nb-Ti in magnetic field of up to 1.5 T. Their spin polarization increases

slightly from 38.5 % (µ0H = 0T) to 41.5 % (µ0H = 1.5T), however, their values do not quote er-

rors and it might be case that the spin polarization is constant within the error in their experiments,

as well. The magnetic field evolution of the effective electronic temperature, Te, is presented in

Fig. 5.13 (b). The electronic temperature systematically increases from ≈ 3.9K (µ0H = 0T) to

≈ 7.1K (µ0H = 7T). This is actually the most apparent indicator of the increased vortex contri-

bution towards the overall conductance. As the magnetic field is increased, more current is carried

through the normal conducting channel of the vortex cores. The latter results in broadening of the

PCAR spectral features and this leads to the increased effective electronic temperature. Finally, the

magnetic field dependence of the barrier strength is presented on Fig. 5.13 (c). It is demonstrated

that the barrier strength is constant within the experimental error.
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Figure 5.12: PCAR data and extracted parameters on point-contact between NbTi and CoFe at different applied mag-
netic field. Panel (a): µ0H = 0T, panel (b): µ0H = 1T, panel (c): µ0H = 2T, panel (d): µ0H = 3T, panel (e):
µ0H = 4T, panel (f): µ0H = 5T, panel (g): µ0H = 6T, and panel (h): µ0H = 7T. Note the asymmetry at 7 T,
which is most likely related to vortex dynamics.
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Figure 5.13: Extracted parameters from the fits of the high-field NbTi/CoFe PCAR. Panel (a): spin polarization, P,
as a function of the applied magnetic field µ0H, panel (b): effective electronic temperature Te as a function of the
applied magnetic field µ0H, and panel (c): barrier strength Z as a function of the applied magnetic field µ0H. The bath
temperature for all spectra is T = 2K. The interpolation lines are drawn by hand on each graph.

PCAR signal at fields of 9 T-14 T is observed as well, however, the density of states is heav-

ily affected and the vortex induced motion has significant effect on the signal-to-noise level. The

PCAR spectra obtained at 10 T, 11 T, and 12 T still demonstrate the expected shape for Andreev

reflection with the accompanying dwindling of the magnitude. The effect of the vortex dynamics is

again very clear in the scan at µ0H = 11T, where there is pronounced asymmetry in the conduc-

tance (G(4mV) 6= G(−4mV)). However, this asymmetry is not reproduced in the PCAR scans

at 10 T and 12 T, therefore, the latter is attributed certainly to vortex dynamics and not to Andreev

Zeeman splitting. The broad PCAR conductance maxima observed before at Ua ≈ ±4mV have

disappeared completely in µ0H = 13T and the latter absence can be wrongly attributed to higher

spin polarization. The suppression happens most probably due to the rounding of the DOS structure

(see Fig. (5.4)). Finally, the PCAR scan at µ0H = 14T demonstrates almost completely destroyed

superconducting order and the Andreev reflection magnitude is a very small feature on top of a

quadratic background. The latter could be due to small tunneling component. Alternative explana-

tion is gapless superconductivity in which case the BCS density of states is heavily distorted and,

therefore, the PCAR signal as well. Reliable spin polarization extraction is not possible with Nb-Ti
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in fields µ0H > 9T.
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Figure 5.14: PCAR measurements between Nb-Ti tip and CoFe sample in magnetic field from 10 T to 14 T on panel
from (a) to (e). The temperature in all measurements is 2 K.

Figure 5.15: PCAR magnetic field scan from µ0H = −9T to µ0H = 0T of a Nb-Ti/CoFe point contact. The applied
bias is in units ∆2/q, where ∆2 = 1.5meV, and q is the elementary charge. The temperature is 2 K.
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(a) Nb-Ti/CoFe high field PCAR.

(b) Conductance asymmetry with respect to the applied bias Ua. The spectra are rescaled.

Figure 5.16: Demonstration of PCAR spectroscopy in a magnetic field scan from µ0H = −9T to µ0H = 0T of a
Nb-Ti/CoFe point contact. The spectra are rescaled following the procedure described in Eq. (5.19) - Eq. (5.22). The
applied bias is in units ∆2/q, where ∆2 = 1.5meV, and q is the elementary charge. The temperature is 2 K. Black
arrows indicate the most pronounced flux jumps on panel (a). A square conductance asymmetry region is indicated
with black dashed lines on panel (b).
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Another set of high-field PCAR measurements on a Nb-Ti/CoFe contact in the field range from

0 T to −9 T is presented in Fig. (5.15) and Fig. (5.16). The colour plots contain individual PCAR

field scans at fields µ0H = 0 T, −0.1 T, . . . , −9.0 T. Figure (5.15) represents the raw spectral data

which is only normalized with the high-bias conductance of each individual field scan. A few

contact changes related to vortex dynamics or mechanical movement of the tip are clearly visible

at fields of −5.8 T and −7.5 T. The drift corrected picture following the Eq. (5.19)-Eq. (5.22) is

shown in Fig. (5.16) (a), however, it is evident that this routine does not help significantly in the

considered field scan. From the same panel, it is extracted that the PCAR conductance maxima

occur at Ua ≈ 2.5 ∆2/q and, hence, the focus on the asymmetry scan should fall in the bias range

Ua ≤ 2.5 ∆2/q. There is a pronounced positive PCAR asymmetry maximum running through the

colour plot as a line at applied bias of Ua = 2.5 ∆2/q on Fig. (5.16) (b). The asymmetry is expected

to reduce to zero for Ua > 2.5 ∆2/q(see Fig. (5.3)), however, this is not the case and the high bias

asymmetry is high in the field ranges −4.2 T:−5.2 T and −7 T:−9 T. The sub-gap asymmetry be-

haviour is essentially random. It is switching from positive to negative as a function of the bias in

the field range −1 T: −4 T, then it is predominantly positive in the field range −4.2 T:−5.8 T, and

finally it is mainly negative in the range −6 T:−9 T. A direct comparison between the asymmetry

pictures of the two PCAR high field scans on Fig. (5.11) (b) and Fig. (5.16) (b) shows that the

behaviour is not reproducible and most likely due to small experimental noise and/or vortex-related

dynamics. The maximum asymmetry observed is ±1 % which is within the noise level for PCAR

measurements in the needle-anvil configuration. Similar field scans have been measured multiple

times and they have shown similar structure with no obvious Zeeman splitting of the PCAR signal.

It is possible that the PCAR experimental configuration is directly responsible for the inability to

resolved Zeeman splitting. Eltschka[88] have clarified that the density of states of superconducting

tips depends critically on the cone opening. Zeeman splitting is observed with V tips at mK tem-

perature in scanning tunneling spectroscopy in magnetic field of 3 T-5 T but the presence/absence

of clear splitting depends on the geometry of the tip[90]. Zeeman splitting is not observable with

blunt tips but it is clear in spectroscopy with sharper tips. The experimental data is confirmed by

numerical solution of the Usadel equations in cone geometry. Since the superconducting tip is in

direct electrical contact with the investigated sample in a PCAR experiment, it is perhaps squashed

and with big cone angle at the apex. Therefore, this might be the reason for the inability to reliably

observe conductance asymmetry due to Zeeman splitting in the Nb-Ti measurements.

5.4 High-field PCAR experiments with MgB2

MgB2 is discovered as a superconductor in 2001 by Nagamatsu et al. [248] and the maximum

achieved critical temperature is 39 K, and the maximum achieved critical field in thin film form is
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Figure 5.17: Critical superconducting temperature of MgB2 films. Panel (a)-superconducting transition of MgB2
at various fields. Panel (b)-superconducting transitions at various field in normalized resistance R/Rn. Panel (c)-
critical temperatures at various fields along with the superconducting transition width. Panel (d)- critical temperature
of 32.8(8)K of MgB2 in zero applied external field.

70 T[39]. Recently, multi-filament MgB2 superconducting wires have broken the record for critical

current density at 20 K. MgB2 is projected as replacement wires for future MRI scanners. The

reason behind is that MgB2 provides similar current density at 20 K to the one, which is maintained

by Nb-Sn-Ti wires at 4.2 K*. From fundamental perspective, MgB2 is the highest critical tempera-

ture superconductor which obeys roughly the BCS theory. It is an anisotropic superconductor with

two distinct gaps. Two separate bands are responsible for the superconducting properties: π-band,

which is associated to the boron pz orbitals, and σ -band, which is associated to the boron pxy or-

bitals. The π-band is essentially isotropic, whereas the σ -band is two-dimensional and lies in the

a− b plane[59]. The gap values have been extracted to be ∆π = 2.2 - 2.4 meV and ∆σ = 6.3 -

6.8 meV by tunneling spectroscopy in MgB2/Al2O3/V junctions[170]. Only the ∆π is observed if

the transport is fully ballistic along the c-axis. However, if the MgB2 crystallographic orientation is

slightly tilted or the transport is diffusive, the ∆σ band is manifested in tunneling and point contact

*which are presently the most widely used superconducting windings
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5.4. High-field PCAR experiments with MgB2

spectroscopy as well. The MgB2 thin films have been prepared by our collaborators Dr. M. Gregor

and Prof. A. Plecenik from Comenius University, Bratislava, Slovakia. The Mg and B have been

deposited on Al2O3(001) substrate by thermal and electron-beam evaporation, respectively. The

samples have been annealed ex situ in Ar atmosphere with pressure of 700 Pa and temperature of

800 ◦C[121].

From PCAR point of view, MgB2 is interesting for high-field measurements because it has low

atomic number and that means low spin-orbit interaction which is needed for clear resolution of the

Zeeman-split density of states.

The superconducting critical temperatures of the MgB2 films are measured in van der Pauw

geometry at various magnetic fields and all scans are performed on cool down (see Fig. 5.17).

The magnetic field is applied perpendicular to the plane. The critical temperature in zero field is

32.8(8)K. The critical temperature of a superconducting transition is conventionally defined as the

temperature at which the resistance falls to half of its normal state value: T = Tc when R = 0.5Rn.

The superconducting transition width, ∆T , is defined as the difference between the temperatures at

90 % and 10 % of the normal resistance value: ∆ T = T (0.9Rn)−T (0.1Rn). The superconducting

critical temperatures along with the transition region widths are presented in Fig. 5.17 (c). The

MgB2 is fully superconducting for T < 7K for our maximum magnetic field of 14 T*. All field-

related PCAR experiments are performed at the base temperature of 2K.
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Figure 5.18: PCAR measurements at zero-field with Fe tip on MgB2. Panel (a)-example of spectrum which demon-
strates single gap and the correct value of the spin polarization is extracted PFe = 44(4)%. Panel (b)-example of
spectrum which exhibits dual gap. Such spectra are discarded in the high-field analysis.

The PCAR with the MgB2 films is performed in reversed geometry: the anvil is the super-

conductor and the needle is a polycrystalline ferromagnetic tip (Fe). Initial PCAR measurements

without external magnetic field are presented in Fig. (5.18). First of all, a PCAR spectrum exhibit-

ing a single gap feature is analyzed. The extracted spin polarization is in accordance with the values

*There are Abrikosov vortices, of course.
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(a) PCAR normalized spectra (b) PCAR bias asymmetry

Figure 5.19: PCAR measurements between MgB2(thin film) and Fe(tip) in magnetic field µ0H = ±5T perpendicular
to the MgB2 and temperature T = 2K. Black arrows indicate pronounced asymmetric regions in the field scan.

reported before for Fe, P ≈ 44%. An example of a dual-gap PCAR spectrum is presented on the

right-hand side of the same figure. The observation of dual gap features significantly complicates

the analysis and the interpretation of the high-field data. Therefore, the focus falls on PCAR spectra

which demonstrate a single gap feature*.

First of all, PCAR high-field measurements are performed with the field applied perpendicular

to the surface of the MgB2 superconducting film. This configuration is the less favourable one

because the circular orbits of the Cooper pairs are not quenched by the thickness of the film and

the orbital depairing effects are more significant in this case. Furthermore, the mixed states vor-

tex lattice is more detrimental in the perpendicular configuration. The effect of vortex dynamics

(pinning/depinning) in the contact are presented in Fig. (5.19) in magnetic fields µ0H = ±5T.

As it has been case with Nb-Ti (see Fig. (5.11) and Fig. (5.16)), the decrease of the zero bias am-

plitude and the shrink of the PCAR signal with increasing field demonstrates the shunting effect

of the vortex lattice and the fact that the superconducting gap becomes smaller. The PCAR line

scans in the range from 2.5 T to 3.0 T and from −2.5 T to −3.0 T are indicative of vortex dynamics

because the Andreev signal suddenly becomes flatter and then returns to its previous shape. There

is pronounced bias asymmetry at the 0 T field scan which indicates that complicated vortex con-

figuration is trapped in the contact area as the field is ramped down from 5 T towards 0 T. There

are other smaller indications of vortex reorientation: for instance, the sudden increase in PCAR

asymmetry at −1 T. The bias asymmetry of the field scan is calculated and presented in Fig (5.19)

(b). The PCAR conductance maximum is observed at Ua ≈ 5meV. Therefore, the Zeeman split-

ting induced asymmetry should be most pronounced at Ua ≤ 5meV following the fingerprint from

Fig. (5.3). Such asymmetry profile is not observed. Interestingly, another asymmetry behaviour at

*Or more correctly, the contribution from the second gap is indistinguishable.
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5.4. High-field PCAR experiments with MgB2

higher bias can be clearly distinguished. Four pronounced asymmetry regions are observed at high

bias, 5meV < Ua < 13meV, and modest magnetic field −2T < µ0H < 2T (see the black arrows

in Fig.(5.19) (b)). These features are antisymmetric with respect to the applied field. This result is

reminiscent of the PCAR observed asymmetry on Er by Stamenov[316]. MgB2 is an anisotropic

superconductor with different penetration depths and coherence lengths. The latter leads to ellipti-

cal vortices when the field is not perfectly along the c-axis[206]*. Therefore, the possibility for a

peculiar vortex dynamics cannot be ruled out completely.

Another magnetic field scan of MgB2/Fe in the range µ0H = ±5T is shown in Fig (5.20).

The PCAR field scan shows essentially symmetric behaviour with respect to bias with no ef-

fect of the magnetic field on the asymmetry change. The PCAR conductance maximum hap-

pens at |Ua| ≈ 2.5meV and, hence, the conductance asymmetry should be most pronounced for

|Ua| 6 2.5meV. The latter is not observable and instead the asymmetry is almost featureless (see

Fig. (5.20) (b)). The purpose of this measurement is to demonstrate that the field induced PCAR

bias asymmetry is not reproducible and therefore is most probably due to vortex dynamics. The

direct comparison between Fig. (5.19) and Fig. (5.20) shows that there is no reproducible magnetic

field effect on the asymmetry of the PCAR signal in the field perpendicular to plane configuration.

(a) PCAR normalized spectra (b) PCAR bias asymmetry

Figure 5.20: Second demonstration of PCAR measurements between MgB2 (thin film) and Fe (tip) in magnetic field
µ0H = ±5T perpendicular to the MgB2 and temperature T = 2K.

A demonstration of the detrimental effect of vortex pinning in the contact area is given in

Fig. (5.21). In this case, the field is set constant at 5 T and the data is acquired real time with a

single spectrum each second. Two metastable PCAR spectra have been observed at this relatively

high field and it can be clearly noticed that the two PCAR spectra have different asymmetry sign.

This implies that the temporal evolution of the Abrikosov vortex lattice is very important and might

hinder the correct interpretation of the features.

*Because the MgB2 films in this study are polycrystalline, this situation is very probable.
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Figure 5.21: Example of the effect of vortex dynamics on the PCAR structure of MgB2/Fe contact in constant field-two
metastable asymmetric configurations are presented. The magnetic field is µ0H = 5T and the temperature is T = 2K.

Measurements are performed in the orthogonal direction as well. In this case, the magnetic

field is applied in plane of the MgB2 superconductor and the Fe tip is horizontal, this configuration

is presented in Fig. (2.5). A problem arises from the fact that the axis between the magnetic field

and the plane of the MgB2 can not be adjusted. As it is well known from spin polarized tunneling

experiments with Al, the angle is a critical parameter and even a degree offset has a detrimental

consequence for the quasiparticle density of states. Another problem is the fact that the MgB2

is a polycrystalline film and, therefore, the applied field direction does not necessarily coincide

with the a− b plane of the MgB2. Some of the scans demonstrate four peak structure which is

reminiscent of a Zeeman-split PCAR, see Fig. (5.22). The experiment at µ0H = 5T demonstrates

four-peak structure, while the one at µ0H = 7T does not show the outer peak probably due to

high-field modification of the quasiparticle density of states. It is critical to comment on the spin

polarization sign in these Zeeman-split PCAR spectra. The bias in these experiments is defined as

follows: positive on the Fe tip, negative on the MgB2 thin film. The heights of the peaks 2 and 3

are used in order to determine the sign of the spin polarization (see Fig. (1.25)), because the heights

of the peaks 1 and 4 are more affected by the orbital depairing and the spin-orbit coupling (see

Fig. (1.26)). A positive spin polarization for the Fe is determined in this way, because peak 2 is

higher than peak 3. The latter is in accordance with the SPT by Tedrow and Meservey (see Fig.7,

Fig.8 and Fig.9 in [334]).

The energy splitting between the inner and outer peaks can be easily determined at 5 T and it

is ∆E = 2.3meV (see Fig. (2.5)). The Zeeman-split energy cannot be determined unambiguously

at 7 T as the outer peaks are not present. If it is assumed that the position of the outer peaks
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in unchanged*, then the Zeeman splitting energy is ∆E(7T) = 2.7meV. However, there is an

apparent discrepancy which needs clarification. The Zeeman splitting energy between the spin-up

and spin-down electrons is determined by ∆EZ = 2gssµBµ0H, where gs is the g-factor of the

electron, s = 1/2 is the spin of the electron, and µB is Bohr magneton. The g-factor is gs ≈ 2 for

most superconductors†. Therefore, the Zeeman splitting has to be ∆EZ(5T) ≈ 0.58meV, and this

value is approximately four times smaller than the experimentally observed splitting.
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Figure 5.22: Example of four-peak structure in PCAR experiments between MgB2 thin film and Fe tip. The temperature
is T = 2K and the field is applied in plane of the MgB2 film. Panel (a)-experiment at field µ0H = 5T. Panel (b)-
experiment at field µ0H = 7T.

The following four possible explanations for the observed four peak structure and the energy

splitting are discussed:

• Dual gap contribution

• High g-factor

• Abrikosov bound states

• High effective magnetic field

First of all, the possible simultaneous contribution from the MgB2 two superconducting gaps is

considered. The outer peaks are located at applied bias Ua = ±3.3meV at µ0H = 5T, which is

slightly higher than the smaller MgB2 gap (∆π = 2.2meV) but it is significantly below the larger

gap (∆σ = 6meV− 7meV). Additionally, the two inner peaks are located at very low bias of

Ua ≤ 1mV. Therefore, the four peak structure can not be attributed to simultaneous contributions

of Andreev reflection from the ∆π and ∆σ gaps.

Another possibility is that the experimentally observed energy splitting can be due to high g-

factor, because the Zeeman splitting is ∆EZ = 2gssµBµ0H. However, it has been shown before by

*This means that the gap does not shrink from 5 T to 7 T.
†Exclusion from that are the heavy-fermion superconductors[328].
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electron paramagnetic resonance measurements that g ≈ 2 for MgB2[254]. Hence, high g-factor

cannot be a correct explanation for the observed structure.

Another pathological situation might happen if there are Abrikosov bound states contributing

to the PCAR signal. Zero bias peaks have been observed in the density of states of vortex cores

of some superconductors (see Fig. (5.5)). Peculiar dynamics of these low energy excitations might

lead to Andreev reflection with similar structure, however, bound states have not been observed in

the MgB2 superconductor[92]. Therefore, the observation cannot be attributed to this, as well.
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Figure 5.23: Linear fit of the rescaled Zeeman split energies versus the applied magnetic field. The intercept corre-
sponds to a zero field effective Zeeman splitting energy of E∗Z = 1.25meV.

Finally, the possibility of high effective field due to the proximity effect from the ferromagnet

is considered. It has to be noted that the applied bias scale in the PCAR experiments is not well

defined due to two main reasons: barrier strength and series resistance. The barrier strength "opens

up" the bias axis as it is presented in Fig. (1.30), and the series resistance has the same effect because

the potential drop is shared between the Andreev point contact and the leads. The outer peaks are

located at Ua ≈ ±3.3mV, and if the MgB2 gap is assumed to be ≈ 2.2meV*, the maximum

rescaling factor is 1.5. It is interesting to comment on how much the Zeeman splitting opens

up between 5 T and 7 T. The experimentally observed increase is 0.3 meV, while the theoretical

prediction is for 0.23 meV. Hence, the correct rescaling ratio is 0.3meV/0.23meV ≈ 1.3, not far

off from the previous estimate of 1.5. Ren et al.[276] have introduced an effective field in order to fit

their Zeeman split PCAR. The latter is justified by the stray field of the EuS ferromagnetic layer and

its exchange field. Nevertheless, their extracted field offset is not very high: 0.52 T. The Zeeman

split points from our experiments are rescaled with a correction factor of 1.3 and a linear fit is passed

*Here it is again assumed that the MgB2 gap is constant from 0 T to 5 T.
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through them in Fig. (5.23). The intercept indicates that the effective zero field Zeeman splitting

amounts to E∗Z ≈ 1.25meV which corresponds to µ0H∗ ≈ 10.7T. This value is significantly

above the polarization of Fe (≈ 2T). The fact that the Fe tip is in direct electrical contact with the

MgB2 film means that there is an inevitable proximity effect in the contact area (see Fig. (1.32)).

The ferromagnetic electrode proximity means that the superconducting layer experiences part of

the exchange field. The latter is ∼ 1000T in classical 3d ferromagnetic materials and following

Heisenberg model the Curie temperature is directly related to the exchange integral. This relation

clarifies why there is so significant difference between the cases of EuS and Fe, the former has

significantly lower Curie temperature of ≈ 17K[242]. There is literature experimental data which

confirms partially this explanation. For instance, exchange splitting of µ0H∗ ≈ 3T has been

observed by Hao et al.[131] in Al/EuS/Al junctions and by Tedrow et al.[335] in EuO-Al/Al2O3/Fe

junctions with µ0H∗ ≈ 1T. However, the full justification of an effective field of 10.7 T in our

measurements would require further analysis and more data collected with variable ferromagnetic

(and non-magnetic) compositions on top of the MgB2 film.

5.5 Data on MgB2-CoFe junctions

High-field PCAR measurements in the usual needle-anvil configuration are more susceptible

to mechanical vibration. Apart from contact reorientation (with change in the Z parameter), the

vortex configuration at the tip apex might change significantly. Shadow-masked junctions have

been prepared in the organic evaporator chamber (see Fig. (2.10)). The blanket MgB2 thin film

has been first Ar-ion milled in the Millatron and then transferred quickly to the organic thermal

evaporation chamber. In the organic chamber, it is pre-cleaned again with Ar. Then insulating layer

of SiO has been evaporated through shadow mask which leaves stripes of 200 µm from the MgB2

film. After that, the top contact Co50Fe50 stripes have been evaporated perpendicular with respect

to the MgB2 stripes at thickness of 20 nm. In this way, rather large junctions are made of size

200µm× 200µm. These cannot be considered point-contact junctions but usual PCAR with spin

polarization expected for CoFe has been observed nevertheless (see Fig. (5.24)). The advantage of

this large geometry configuration is that the vortex lattice contribution is averaged spatially over

very large area. First, the discussion starts with high-field PCAR in range µ0H = ±14T on

Fig. 5.25. The experiments are performed with the horizontal rotator option of the PPMS and two

configuration are presented: in-plane and perpendicular to plane.

The zero-bias amplitude demonstrates the expected behaviour from a superconductor in exter-

nal magnetic field. The increase of the magnetic field results in denser vortex lattice, therefore,

more pronounced normal conductance through the junction. The Andreev reflection is suppressed

and the zero-bias value is closer in value to the high-bias conductance. However, the supercon-
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Figure 5.24: PCAR spectrum along with the BTK fit and the extracted parameters for an MgB2/CoFe junctions at zero
applied field of and T = 2K.

ducting density of states is modified beyond the simple two-channel model (see Eq. 5.2). The latter

is most clearly distinguished at bias Ua = ± 3 ∆2/q if the cut from −14 T to 14 T is taken. The

smearing of the superconducting density of state could be roughly described with the introduction

of the Dynes’ imaginary gap (see Eq. (1.69) and Fig. (1.15)). This can be understood as extended

lifetime of the superconducting quasiparticles before they recombine into Cooper pairs. The ac-

curate treatment is given in terms of the Usadel equation which gives the DOS averaged over the

vortex cell (Fig. (5.4)). More interesting is to comment on the difference in the behaviour between

the in-plane and perpendicular to plane scans. Two contours at levels 0.92 and 0.86 are presented

in order to outline the (a)symmetry. The perpendicular to plane geometry demonstrates essentially

symmetric spectra with respect to the zero bias line. This is expected because in this geometry

the vortex dynamics is more pronounced. Furthermore, the Maki-Fulde theory explains that orbital

depairing effect is much more pronounced in perpendicular geometry (Eq. (1.99)). This explains

why no appreciable voltage asymmetry is observed in perpendicular geometry. If the same level

contours are followed on the in-plane full field scan, there is an apparent voltage asymmetry. For

instance, the negative bias contour at level 0.92 evolves slightly towards zero-bias while the positive

bias contour 0.92 evolves differently. First, it moves inwards towards zero bias in field range from

0 T to ±4 T. This contour has a local minimum there. After that, it starts drifting towards higher

bias. The behaviour of the contours is symmetric with respect to field. The slight bias asymmetry

is an indication of the Zeeman-splitting of the density of states. The conductance bias asymmetry

effect is very small. This is attributed to the large area of the Andreev junction. In this is case,

the Zeeman-splitting contribution towards the Andreev reflection is crystallographically averaged

because both the MgB2 and the Co50Fe50 electrodes are polycrystalline. The Zeeman-asymmetry

contribution comes from MgB2 grains which are well-aligned with the field direction.
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(a) In plane field scan.

(b) Perpendicular to plane field scan.

Figure 5.25: In plane (a) and perpendicular to plane (b) high field PCAR scans of MgB2/Co50Fe50 shadow-masked
junction. The maximum applied field is ±14 T. The applied bias is in units ∆2/q, where ∆2 = 1.5meV, and q is the
elementary charge. The temperature is 2 K.
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Full PCAR angular dependences are presented in Fig. (5.26), Fig. (5.27), Fig. (5.28), and

Fig. (5.29) for applied magnetic field of µ0H = 0T,1T,2T,3T,4T,5T,7T, and 14T, respec-

tively. The zero-field scan is, as expected, featureless and demonstrates independence of the PCAR

signal on angle*. The maximum PCAR conductance is observed at |Ua| ≈ 3.5 ∆2/q. The scan

in 1 T starts showing the effect of the magnetic field orientation on the PCAR structure. In this

case, the PCAR-related conductance maxima are clearly visible at |Ua| ≈ 3.5 ∆2/q around angles

θ = 90° and 270° (when the field is in plane of the MgB2 film) but the maxima disappear for field

orientation θ = 180° and 360° (when the field is perpendicular to the plane of the MgB2 film).

The latter is due to the dependence of the orbital depairing parameter ζ on the field orientation

(Eq. (1.99) and Fig. (1.26) (a)). The orbital depairing distorts more the PCAR density of states in

the field perpendicular to plane configuration and that is why the the sharp DOS structure is not

present for θ = 180° and 360°. The dependence of the PCAR on the angle of the applied magnetic

field is more apparent for higher magnetic field of 2 T where the conductance maxima are present

as more compact areas in angular dependence very close to 90° and 270°. Furthermore, the zero-

bias anomaly starts showing clearly the suppression of the PCAR signal at perpendicular fields.

The applied field 3 T shows further suppression of the PCAR conductance maxima and this time

they are barely observable for field in plane orientation. The angular dependence of the zero-bias

anomaly is sharper as well.

(a) Full angular scan of MgB2/CoFe Andreev junctions in
applied field of 0 T.

(b) Full angular scan of MgB2/CoFe Andreev junctions in
applied field of 1 T.

Figure 5.26: Full angular scans of MgB2/CoFe junction at applied field of 0 T (a) and 1 T (b). A feature, which is most
likely related to noise, is observed on panel (a) for angle θ ≈ 180° (indicated with a black arrow).

*There is small zero-bias feature at θ ≈ 180° in Fig. (5.26) (a) which should be related to noise. It is indicated
with an arrow.
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(a) Full angular scan of MgB2/CoFe Andreev junctions in
applied field of 2 T.

(b) Full angular scan of MgB2/CoFe Andreev junctions in
applied field of 3 T.

Figure 5.27: Full angular scans of MgB2/CoFe junction at applied field of 2 T (a) and 3 T (b).

PCAR conductance maxima are no longer distinguishable at higher magnetic field of 4 T and

the zero-bias conductance demonstrates that the low-bias anomaly is pronounced very close to

in-plane orientations. The PCAR angular scan at 5 T has similar features to the one at 4 T with

further shrinking of the zero-bias anomaly and indistinguishable maxima around Ua ≈ 3.5∆2/q.

The highest fields of 7 T and 14 T show that the orbital depairing is very significant in the plane

configuration as well. Furthermore, the spectral features are much broader which is due to the

presence of higher concentration of Abrikosov vortices. The highest field scan of 14 T demonstrates

that the Andreev reflection contribution towards the overall conductance is very small.

(a) Full angular scan of MgB2/CoFe Andreev junctions in
applied field of 4 T.

(b) Full angular scan of MgB2/CoFe Andreev junctions in
applied field of 5 T.

Figure 5.28: Full angular scans of MgB2/CoFe junction at applied field of 4 T (a) and 5 T (b).
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(a) Full angular scan of MgB2/CoFe Andreev junctions in
applied field of 7 T.

(b) Full angular scan of MgB2/CoFe Andreev junctions in
applied field of 14 T.

Figure 5.29: Full angular scans of MgB2/CoFe junction at applied field of 7 T (a) and 14 T (b).

Figure 5.30: PCAR temperature evolution of MgB2/CoFe shadow masked junctions. The temperature scan is per-
formed in zero applied magnetic field.

The temperature dependence of the PCAR signal of the MgB2/CoFe junctions is presented in

Fig. 5.30. The data is acquired on slow warm-up (0.5 K min−1) and individual spectra are saved

in narrow temperature interval ∆T ≈ 40mK. The background curve used for normalization is ac-
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quired at 22 K. As before, each separate curve is normalized with the high bias conductance*. The

most notable feature is that the PCAR signal is completely suppressed at temperature of ≈ 20K.

The latter is significantly below the Tc of our MgB2 thin films (≈ 32.8K). This is due to suppression

of the surface superconductivity of the MgB2 films. Two are the possible reasons for that: magnetic

impurities or amorphous interface. The MgB2 surface quality is degraded by the Ar plasma cleaning

procedure in-situ the chamber. This approach probably modifies the electron-phonon interaction

at the interface and, therefore, the interface superconductivity. Another possible reason is critical

temperature depression due to magnetic impurities. The effect of magnetic inclusions on the crit-

ical temperature of thin films is discussed theoretically by Abrikosov and Gor’kov (AG)[308] and

the first systematic experimental investigation is performed by Woolf and Reif[380]. It is expected

that the MgB2 surface is corrugated after the Ar cleaning process, therefore, after the CoFe depo-

sition the MgB2/CoFe interface is an "orange-peel" of interpenetrating supeconductor-ferromagnet

regions†. The original AG theory describes that the critical temperature is significantly suppressed

and the density of states is modified in the presence of magnetic impurities. Later extensions by

Maki[210] and de Gennes[69] demonstrate that the same effect is played by other time-reversal

perturbation like magnetic fields, current, rotations, spin exchange and hyperfine fields[342]. The

relation between the critical temperature and the pair-breaking energy, α , is given by:

ln
Tc

Tc0
= ψ

(
1
2

)
−ψ

(
1
2
+

α

2πkBTc

)
, (5.23)

where Tc0 is the nominal superconductor transition temperature‡, Tc is the observed critical temper-

ature, and ψ(x) is the digamma function. The pair breaking energy α is related to a time constant

τK: 2α = h̄/τK (see Tinkham[342] p. 391). The latter constant is equal to the average time

needed for randomization of the relative phase of the Cooper pair electrons by the time-reversal

perturbation. The original AG theory considers the exchange interaction coupling effect between

a magnetic impurity spin ~S and the electron spin ~s in the form J(r)~S.~s, where J(r) is the local ex-

change interaction. The approximate relation between the pair-breaking energy α and the averaged

exchange J is:

2α ≈ xJ2

EF
, (5.24)

where x is the fractional impurity concentration and EF is the Fermi energy. The relevant parameters

for the case of MgB2 with and without CoFe deposited are Tc0 = 32.8K and Tc = 20K and the

pair breaking constant calculated is then α = 1.3meV. The latter corresponds to a reduced pair-

*No rescaling is required in this case, as the high-bias conductance is essentially temperature independent. To be
more precise, the normalization conductance is Gn = 24.6 Gn at 2 K and Gn = 24.3 Gn at 22 K.

†As a possible future investigation direction, the quality of this interface might be investigated by electron mi-
croscopy techniques.

‡Which is assumed to be equal to Tc ≈ 32.8K from Fig. (5.17).
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breaking energy of α/∆π = 0.6 . The density of states modification as a function of the ratio

α/∆ has been theoretically treated by Skalski et al.[308] and for α/∆ > 0.5 the sharp structure

of the superconducting quasiparticle DOS is no longer present. A way to distinguish whether the

magnetic scattering or the surface amorphization is more prevalent is to investigate PCAR junctions

between MgB2 and non-magnetic metal. If the observed PCAR Tc is similar to the ferromagnetic

junctions, then the interface roughness is the main culprit. Otherwise, it is the magnetic nature of

the electrode.
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Figure 5.31: Temperature decrease of the PCAR zero-bias anomaly for an MgB2/CoFe shadow-masked junction. The
red curve represents an exponential decay fit.

Finally, it is important to comment on the zero-bias conductance temperature evolution from

Fig. (5.30). The zero-bias conductance demonstrates essentially exponential decrease with the tem-

perature on Fig. (5.31). The latter behaviour is rather surprising because the MgB2 has almost clas-

sical BCS temperature dependence of the superconducting gap. The PCAR zero-bias conductance

should follow the temperature dependence of the gap. However, there are two additional effects

in this case: elevated temperature and the existence of a ferromagnetic layer on top. The higher

critical temperature of the MgB2 superconductor means that the thermal smearing will have a more

significant effect on the zero bias conductance than is the case for more classical superconductors

like Nb, Nb-Ti, with Tc ≤ 9.3K. Equally important is the presence of a ferromagnetic layer on top

of the superconductor. The effect of magnetic impurities on the quasiparticle density of states of a

superconductor has been investigated for the cases of lead and indium by Woolf and Reif[380]. The

superconducting gap is not as sharp as in the classical case because there are sub-gap states. The

existence of subgap states along with the more pronounced Fermi distribution thermal smearing

are responsible for the exponential decrease of the PCAR zero-bias conductance as a function of

temperature.
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5.6 Conclusions and outlook

High-field PCAR measurements with MgB2 have demonstrated small but reliable asymmetry

which indicates the sign of the spin polarization. Angular dependence scans on MgB2/Co50Fe50

junctions have been performed in order to investigate the depairing effect of the field on the MgB2

superconductor. Presently, high-field PCAR with MgB2 is possible only in reversed geometry

where the superconducting film is the anvil.

In future, high-field experiments with MgB2 very thin films (d < ξ ) must be performed in

order to quench the depairing effect when the field is applied in-plane of the film. Furthermore,

the application of magnetic field in type-II superconducting films with thickness lower than the

coherence length prevents entrance of vortex lattice*. The arrival of MgB2 superconducting wires

in mono-filament form provides the opportunity to perform high-field PCAR on thin films.

The demonstration of very high-field PCAR spectroscopy with Nb-Ti opens new fundamental

research directions like investigation of the spin polarization as a function of the applied field, for

instance, investigation on magnetic topological insulators as the applied field is swept through the

coercivity. Over the course of our work, high-field PCAR with Nb-Ti has been investigated by

Gifford et al.[111]. Their measurements demonstrate clear PCAR in field up to 1.5 T.

Another potential superconductor for high-field Andreev reflection in reversed geometry is

NbN. Zeeman-splitting has been demonstrated with it in spin-polarized tunneling[394], and the

nitrides are more stable in atmosphere.

*The determined coherence length for MgB2 is ≈ 30nm−50nm [92, 206].
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Chapter 6

Magnetic tunnel junctions with the
compensated half-metallic ferrimagnet
Mn2RuxGa

"Great, great, great! Brilliant, brilliant,

brilliant! Now we need a plan!"

Dr. Karsten Rode

6.1 Introduction

Giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) are the effects which

the field of spin electronics is biult upon. The basic unit in the area is the spin-valve (SV) for

the GMR and magnetic tunnel junction (MTJ) for the TMR. The SV comprises roughly of a fer-

romagnetic electrode/non-magnetic spacer/ferromagnetic electrode trilayer, while for the MTJ the

non-magnetic spacer is replaced with an insulating barrier. There are three main classes of func-

tional devices biult around the concepts of SVs and MTJs presently:

• Magnetic Random Access Memory

• Magnetic Sensors

• Spin-transfer torque (STT) based nano-oscillators

The magnetic sensors area is highly relevant both for construction of more sensitive read-heads

for hard disk drives and novel biomagnetic sensors[98]. This area is essentially not related to the

present work.
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The idea of STT-based magnetic random access memory (STT-MRAM) is the most perspective

candidate for non-volatile memory and it is already commercially available (for a brief introduction

see Sec. (1.2.3)). A crucial quality of each contemporary memory storage is scalability. In other

words, can the device size be reduced while maintaining data retention and the same read-write

characteristics of the memory element? The stability in MTJs depends critically on two effects:

• Cross-talk between adjacent bits

• Thermal stability of the ferromagnetic layers

The thermal stability depends on the magnetic anisotropy energy barrier of the magnetic storage

layers which are patterned to form the MTJs. The magnetic anisotropy barrier Keff is a sum of the

magnetocrystalline (Kmag), shape (Kshape), and interface (or surface) anisotropy(Ks):

Keff = Kmag +Kshape +Ks/t, (6.1)

where t is the thickness of the ferromagnetic layer. The thermal stability criterion ∆ is determined

by the ratio between the total anisotropy energy and the thermal excitation energy

∆ =
KeffV
kBT

, (6.2)

where V is the volume of the ferromagnetic layer, kB is Boltzmann’s constant, and T is the temper-

ature.* The parameter ∆ determines the probability for reversal of the magnetic state due to thermal

excitation. The figure of merit for 20 year data retention is ∆ > 70. If the size of the storage ele-

ments shrinks, the effective anisotropy must increase in order to keep the anisotropy energy (and,

hence, ∆) constant. The main ferromagnetic compositions used in present MTJ-containing memo-

ries and sensors are based on 3d transition metal alloys with the elements Fe, Co, Ni: Co100−xFex,

Ni100−xFex, and Co/Ni multi-layers. These alloys are cubic and have low values of the magne-

tocrystalline anisotropy. In order to enhance the overall anisotropy, the storage elements are pat-

terned into elliptical pillars with aspect ratios between 1/3 and 1/2. The demagnetizing field of

the elliptical form provides additional shape anisotropy. Furthermore, the vertices of the ellipse act

as domain pinning centers, therefore, even if a domain is nucleated at the vertex, its propagation

is seriously impeded. The problem with the shape-stabilized MTJs is that the scalability is lim-

ited because an elliptic junction occupies higher area than a circular one and the critical switching

current is lower for pillar with PMA (see Eq. (1.47) and Eq. (1.48)). Materials with perpendicular

magnetic anisotropy (PMA) must be used in order to reduce the critical current density and to avoid

the area limitation. There are two main classes of materials with PMA. The first class are materials

*It is assumed to be 300 K.
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which exhibit high perpendicular magneto-crystalline anisotropy, and the second class are materi-

als with induced surface anisotropy. The surface anisotropy is presently more widely used and it is

induced by sandwiching thin ferromagnetic layers between a layer of heavy element (like W, Ta,

Pt) and an MgO-insulating layer. The spin-orbit coupling from the heavy elements and the CoFe-

MgO interface provide the interfacial anisotropy. The most widely-used example is junctions with

the structure Ta/CoFe/MgO/CoFe/Ta, where the Ta layer and the CoFe/MgO interface provide the

PMA[149]. The ferromagnetic CoFe electrode has to be grown very thin in order to utilize the sur-

face anisotropy. On the other hand, it cannot be grown ultra-thin as there is a magnetic dead layer

in extremely thin ferromagnetic films and the spin polarization decreases. Therefore, there is a

narrow thickness region where PMA is present and the magnetotransport properties are preserved:

0.8nm < tCoFe < 1.2nm. The main reason for the Ta/CoFe/MgO utilization is that it is a natural ex-

tension of the in-plane CoFe/MgO/CoFe MTJs which exhibit high TMR ratios[268, 403]. This elec-

trode structure has uniaxial anisotropy Ku = 0.2MA m−3. The value could be enhanced 1.9 times

when two CoFe/MgO interfaces are provided in a MgO/CoFeB/Ta/CoFeB/MgO structure[290].

The Ta thickness must be kept low enough so that there is ferromagnetic coupling between the

two ferromagnetic layers otherwise they would switch independently. Another examples of PMA

electrodes are the multi-layer structures: Co/Pt[265], Co/Pd[139], and Fe/Pt[1] where both the

ferromagnetic and the heavy metal layers are grown at sub-nm thicknesses. The problem of these

multi-layers is that the uniaxial anisotropy is low. If it were only for the anisotropy problem, it could

be solved in principle by the use of highly anisotropic tetragonally-distorted hard magnetic layers.

However, there is another face to the problem. The hard magnetic compositions have very high

magnetization and, therefore, the stray field is very high. The latter leads to magnetic cross-talk

between the two layers in an MTJ and between adjacent MTJ pillars. This problem exacerbates

as the distance between the pillars decreases and, therefore, a magnetic material with very low

magnetization and high spin polarization is the Holy Grail of spin electronic materials. The idea

of such material has been initially proposed by van Leuken and de Groot and termed "half-metallic

antiferromagnet"[354]. So far, there has been no successful growth of spin-polarized antiferromag-

netic compositions. The two magnetic sublattices are chemically and crystallographically similar

and it is unlikely that one of them would have higher contribution towards the Fermi level spin

polarization. Furthermore, magnetic storage elements must be rewrittable and both the electrical

and the magnetic control of the antiferromagnetic state is very difficult at present. The main topic

of interest in this chapter is the incorporation of the ferrimagnetic composition Mn2RuxGa (MRG)

in magnetic tunnel junctions. The expositions will start with a brief literature review of the electri-

cal properties of AlOx- and MgO-based MTJs in Sec. (6.2) as this will serve as a comparison with

the properties of our MRG-containing devices. Brief overview of the development of this novel

material as well as the magnetic and electrical characterization of its properties so far is given in
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Sec. (6.3). High TMR values of up to 40 % at 10 K and up to 6.6 % at 300 K are presented in

Sec. (6.4) with the composition Mn2Ru1Ga. The unusual TMR-bias dependence is discussed as

well as the effect of the annealing on the TMR values. The most important result is the obser-

vation of appreciable TMR values in MTJs with strictly zero moment Mn2Ru0.8Ga electrodes in

Sec. (6.6). The barrier properties are analyzed in Sec. (6.7). The main results from this chapter are

summarized in a recent publication[37].

6.2 Important characteristics of classical AlOx and MgO-based

magnetic tunnel junctions

This short section has the main aim to remind the reader about some general characteristics

observed in "standard" high-quality MTJs. This overview will serve as a comparison basis with the

characteristics of our MRG containing MTJs. The important characteristics we would like to keep

in mind are:

• Parallel resistance state change as a function of temperature: RP(T )

• Behaviour of the resistance-area product upon annealing

• Tunneling spectroscopy of the MTJs

• Maximum achieved TMR

The first technologically relevant TMR values of≥ 10% were achieved almost simultaneously by

Moodera[235] and Miyazaki[229] in the structures CoFe/Al2O3/Co and Fe/Al2O3/Fe, respectively.

AlOx had been used extensively at that stage for growth of TJs for spin-polarized tunneling in the

standard trilayer Al-AlOx-ferromagnet. The ease of growth of ultrathin alumina, its uniformity and

lack of pinholes, makes it the perfect candidate for MTJs. On top of that, slight composition varia-

tion (possible Al clustering) does not affect the barrier quality significantly*. The electron transport

through AlOx is by incoherent tunneling. The latter means that the amorphous barrier has no sig-

nificant effect on the evanescent wavefunction of the electrons. The amorphous (or polycrystalline

barrier) forms hopping centers at grain boundaries and impurities. A very important characteristic

of all MTJs is the temperature decrease of the parallel resistance (RP(T )). In the case of AlOx bar-

rier, there is a slight decrease in the RP of approximately 20 %-25 % from 10 K to 300 K. Tunneling

through a high gap insulator should not be in principle affected by the relatively modest thermal

excitation energy (≈ 25meV) at room temperature. Unfortunately, thin amorphous and polycrys-

talline barriers tend to have lower effective barrier due to interface charges and impurities in the

*MTJs with ferromagnetic oxides, NiO, have been grown as well but ferromagnetic ions clustering leads to forma-
tion of spin-flip scattering centers which are detrimental to the TMR values of the devices.
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barrier*. However, the decrease of the parallel resistance temperature decrease RP(T ) in magnetic

tunnel junctions is significantly higher than the decrease of the resistance of non-magnetic AlOx

containing tunnel junctions. The resistance drop in the latter is 10 %-15 %. This implies that the

magnetic nature of electrodes has detrimental effect. The important characteristic for the TMR(V )

decrease is the voltage at which the TMR is reduced to half-magnitude compared with the zero

bias one. For the case of AlOx, the initial values were around 250 mV but increased with improved

barrier quality to about 500 mV. The TMR(V ) decrease is generally attributed to density of states

effects, magnon excitations or spin-flip scattering in the barrier[347]. Electron tunneling at higher

bias corresponds to injection towards a level above the Fermi level of one of the ferromagnetic

electrodes. As such a ferromagnet has finite exchange energy (∼ 1eV), the energy dependence of

the spin-split density of states changes significantly and, hence, the "effective" spin polarization

does as well. However, counter arguments are provided by a spin polarized scanning tunneling mi-

croscopy on Co films through vacuum[384]. In this case, the spin polarization signal demonstrated

no voltage dependence up to 1 V, in this way supporting the idea that the interfaces and the barrier

quality are responsible for the TMR decrease and not the DOS of the ferromagnetic electrodes. The

perceived spin polarization in tunneling (hence, the TMR) depends significantly on the quality of

the barrier. A perfect example is the spin polarization of NiFe which is initially determined to be

32 %[226] and reaches later 48 %[237] with improved deposition conditions. Another important

contributing effect is the "hot-electron" injection. As higher applied bias means injection above the

EF, electrons must relax upon reaching the counter electrode. This relaxation might lead to spin-

flip event or spin-wave excitation. Finally, migration of ions from the ferromagnetic electrodes is

possible. Paramagnetic impurities in the barrier act as spin-scattering centers and might flip the

spin of a tunneling electron.

Another important characteristic of a tunnel barrier is the resistance-area product change upon

annealing. Annealing improves the crystallinity of a barrier which leads to higher band gap and

reduction of the grain boundaries which act as scattering centers. In agreement with that, the RA

product of AlOx barriers increases upon annealing. The maximum achieved TMR with AlOx MTJs

is approximately 70 %[363].

A major breakthrough is caused by the realization of giant TMR ratios with MgO-based MTJs.

Initially the values are in the range from 120 % to 250 %[403, 268] but with improvement in the

growth and the annealing conditions the TMR reaches 350 %. The maximum room-temperature

TMR achieved in this configuration is 600 % with enhanced Ta diffusion suppression[148] in

pseudo SVs. It has been predicted that transport through crystalline barriers should result in co-

herent tunneling and higher TMR[214]. In particular for MgO, evanescent states from the CoFe

electrode with particular symmetry are filtered and, hence, the overall tunneling spin polarization

*Each hopping step has finite probability for energy loss or spin-flip.
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Figure 6.1: RP, RAP, TMR for an MgO-based MTJ annealed at 380 ◦C on the left hand side. Annealing dependence of
the TMR and the RA product on the right hand side. The graphs are after Parkin et al.[268].

is higher that the bulk value of the same ferromagnetic composition[46, 213]. The original papers

of Yuasa[403] and Parkin[268] are published for fully crystalline epitaxial Fe/MgO/Fe (grown by

MBE), and polycrystalline ferromagnet/crystalline barrier/polycrystalline ferromagnet (grown by

sputtering), respectively. Because of technological ease and yield, the sputtering approach is the

preferred method at the moment. The polycrystalline (or fully amorphous for the case of CoFeB)

ferromagnetic layers crystallize by utilizing the crystalline MgO as a template. Because of the

very close lattice match, a high-quality, low-strain CoFe/MgO interface is achieved. There are sig-

nificantly different TMR(V ) and RP(T ) characteristics in the MgO-based MTJs than in the AlOx-

based ones. First, the RP(T ) remains essentially constantly from 10 K to 300 K as evidenced in

Fig. (6.1). Thus, the TMR(T ) is almost only dependent on the RAP(T ). That means that the TMR

is determined predominantly by the overlap between the spin-split density of states of the two fer-

romagnetic electrodes. The constancy of RP is due to the crystallinity and the larger gap of the

MgO barrier. The high crystallinity means that there are very few hopping centers in the MgO

barrier then thermal activation does not play significant role in increasing the conductance of the

MTJ when the temperature is changed. Furthermore, the wider gap in MgO leads to the fact that

elevated tunneling probability due to higher thermal energy is insufficient to have a significant

effect on the RP resistance. On right hand panel of Fig. (6.1), the TMR and the parallel resistance-

area product (RAP) are presented as a function of the annealing temperature. First of all, TMR

increases from ≈ 20% in an as-deposited junction to ≈ 220% in an annealed junction at 350◦C.

The annealing crystallizes the CoFe electrode, so that the CoFe/MgO interface becomes epitaxial

as is evidenced by the transmission electron microscopy data on the same junctions[268]. Sec-

ond, the crystallized CoFe electrode has higher spin polarization because of the ∆-bands filtering

by MgO. The higher spin polarization due to spin filtering is proven to increase from P ≈ 57%

(in the as-prepared state) to P ≈ 74% (in the annealed state) by superconducting spin-polarized
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Figure 6.2: Comparison between the tunneling spin polarizations (TSP) of Fe in Fe-MgO-Al96Si4 junctions. Panel (a)-
TSP in the case of non-annealed junction-TSP = 57 %. Panel (b)-TSP in the case of a junction annealed at 380 ◦C-TSP
= 74 %. The fitting is performed following the Maki-Fulde theory where the superconducting gap (∆), the spin-orbit
coupling (b), the orbital depairing (ζ ), and the tunneling spin polarization (TSP) are considered free fitting parameters
(see Sec.(1.4.5)). The graphs are after Parkin et al.[268].

tunneling in Co70Fe30/MgO/Al96Si4 (see Fig. (6.2)). Another important observation is that the RP

decreases upon annealing. Due to the improved CoFe/MgO interface (and the crystalline barrier),

the coherent tunneling electrons experience less scattering events in the tunnel barrier.

It is demonstrated in the work of Yuasa et al.[403] that the RAP ≈ 1kΩ µm2 (for tMgO = 2.0nm)

and that it roughly changes by an order of magnitude for every 0.4 nm. On the other hand, Parkin

et al.[268] found RAP ≈ 10kΩ µm2 for the same barrier thickness*. The difference is that the

latter stacks are deposited by sputtering whereas the former are grown by MBE. The resistance-

per-nanometer of MgO is higher than the AlOx because MgO has higher bandgap. RAAP and

RAP exhibit exponential dependence on the barrier thickness which is expected from the Wenzel-

Kramer-Brillouin (WKB) approximation and proves that MgO behaves as a very high quality tunnel

barrier in the window 1.5 nm-3.0 nm. The slope of the ln(RA)(tMgO) must be a equal to 4π
√

2mφ/h,

where m is the mass of the electron, h is Planck’s constant, and φ is the height of the barrier. The

slope on the LHS of Fig. (6.3) corresponds to barrier height φ ≈ 0.39eV.

Another approach to determine the barrier height is to fit the current-voltage characteristic fol-

lowing Simmon’s [306] or Brinkman’s model[42]. The procedure produces similar low values for

the barrier height: 0.37 eV-0.40 eV. These values are significantly lower than the expected half-

magnitude of the MgO bulk bandgap. The MgO bulk bandgap is Eg = 7.8eV. In fact, it is quite

common even high-quality MTJs to demonstrate φ < 1eV. The discrepancy is often ascribed

to oxygen vacancies in the insulating barrier. Another possible contribution comes from interface

charges and small concentration of diffused atoms. The interface and image charges lead to "round-

ing" of the rectangular walls of the potential barrier. This results in lower effective height of the

*The sputtering results are more relevant to our junctions

173



Chapter 6. Magnetic tunnel junctions with the compensated half-metallic ferrimagnet Mn2RuxGa

Figure 6.3: Left Hand Side: Resistance-area product as a function of thickness of the MgO barrier for the case of paral-
lel and antiparallel resistance states. TMR effect of 247 % (20 K) and 180 % (293 K) for a junction with tMgO = 2.3nm.
Right Hand Side: TMR dependence of the barrier thickness tMgO. The picture is after Yuasa et al.[403].

barrier. The latter is especially important in MTJs because the insulating layers are very thin and

even small charging might significantly alter the barrier profile. Second, diffused metallic atoms

from the electrodes into the barrier act as hopping centers for electron transport. If a sharp, δ -like,

distribution of such metallic atoms is assumed to be in the middle of the insulating layer, the tun-

neling electrons will effectively "see" half of the barrier and the tunneling process is assisted by

the impurities. In reality, the distribution of the hopping centers could be much more complicated,

and, furthermore, the existence of metallic centers will change even further the barrier profile. In

the latter case, there is additional rounding of the potential barrier wall around the impurity cen-

ters*. The right hand side of Fig. (6.3) demonstrates that the TMR ratio increases as the thickness

of the barrier increases. Tunneling electrons with wave-vectors normal to the barrier are prevalent

because the tunneling probability decreases significantly when momentum vectors are tilted with

respect to the junction axis. Furthermore, the evanescent wavefunctions of the Fe minority spin

band decay faster than the evanescent wavefunctions of the majority spin band in the MgO bar-

rier. Therefore, the effective spin polarization of the Fe electrode is higher[46]. The oscillation

pattern in TMR(tMgO) dependence is not due to oscillations from addition of another monolayer of

MgO, because the thickness of the latter along the (001) direction is 0.22 nm. Yuasa et al.[403]

have attributed that to wave-vector "beating" from the two main evanescent state (∆1 and ∆5). This

oscillatory behaviour is a confirmation of the coherent tunneling through MgO.

Furthermore, the conductance voltage dependence, G(V ), of the CoFe-MgO-CoFe tunnel junc-

tions is significantly different from the G(V ) for AlOx-based ones. The parallel conductance curve

does not show any zero-bias dip feature[365] contrary to the case for AlOx-based MTJs[409]. The

*The oxygen vacancies and defects are a type of hopping center as well.
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Figure 6.4: Left Hand Side: TMR(U) for different MgO thicknesses, tMgO, at T = 293K. The data is normalized to
the value TMR(0 V) for each curve. The picture is after Yuasa et al.[403]. Right Hand Side: Differential spectroscopy,
dI/dV , of MgO-based tunneling junctions at 10 K and 300 K for parallel and antiparallel state, respectively. The graph
is after Wang et al.[365].

low bias plateau demonstrates the transport is coherent and elastic up to U ≈ 0.5V (see RHS of

Fig. (6.4)).

6.3 Mn2RuxGa: a half-metallic compensated ferrimagnet

The vast family of Heusler alloys has attracted the attention of the spin electronic community

due to tunable magnetic properties. As it will be discussed, Heusler compounds obey empirical

rules for their magnetic moment per formula unit, the latter is always an integral number of Bohr

magnetons. The periodic table along with the possible choice of elements for a Heusler compound

is presented in Fig. (6.5). Different Heusler alloys exhibit semiconducting, ferro-(ferri-)magnetic,

and superconducting behaviour. Interestingly, many properties of these alloys are found to depend

on the number of their valence electrons rather than the chemical elements in the composition.

For instance, non-magnetic Heusler compounds with 27 valence electrons are superconducting.

Heusler alloys are a class of materials with one of the chemical formulas-XY Z (known as half-

Heusler) or X2Y Z (full Heusler). X and Y are transition metals and Z is a main group element. Y

could be replaced by a rare earth or an alkaline earth element. From magnetic point of view, the two

classes obey an empirical relation between the number of valence electrons and the demonstrated

magnetization per formula unit. Elements with integer Bohr magnetons magnetization per formula

unit are particularly interesting for spintronic application because they should be half-metallic. The

full Heusler alloys usually crystallize in cubic L21 structure and their moment per unit cell obeys

the modified Slater-Pauling rule:

m = Nv−24, (6.3)
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where Nv is the number of valence electrons per formula unit. The corresponding valences are

Nv = 1 for Li; Nv = 2 for Be, Mg; Nv = 3 for B, Al, Ga, In, Sc, Y; Nv = 4 for Si, Ge, Sn, Pb,

Ti, Zr, Hf; Nv = 5 for As, Sb, Bi, V, Nb; Nv = 6 for Cr, Mo, W; Nv = 7 for Mn, Nv = 8 for Fe,

Ru; Nv = 9 for Co, Rh, Ir; Nv = 10 for Ni, Pd, Pt. On the other hand, the magnetization on the

cubic half-Heusler compositions obey another modified Slater-Pauling rule:

m = Nv−18 (6.4)

Figure 6.5: Periodic table describing the possible combinations of elements in Heusler compounds. X is in red, Y is in
blue, and Z is in green. The diagram is after Graf et al.[119].

Significant investigations have been performed over the last two decades mainly on Co-based

Heusler alloys. Some of the successful results are the realization of TMR > 300% and coherent

tunneling with Co2MnSi[204]. Recently, extremely high current-perpendicular-to-plane GMR ef-

fect of≈ 60% have been demonstrated with the quarternary Heusler composition Co2FeGa0.5Ge0.5

and Ag-Zn spacer[82]. Many Co-based Heusler have been incorporated in MTJs and spin valves

and have demonstrated high Fermi level spin polarization. The reader is referred to Takahashi[331]

for an extensive review of the spin polarization in Heusler alloys. However, these compositions

exhibit in-plane anisotropy whereas future generation of MRAM will require materials with per-

pendicular magnetic anisotropy in order to scale down the bit size without affecting negatively

data retention. On the other hand, tetragonally-distorted Mn-based compounds exhibit both high
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perpendicular uniaxial anisotropy and high spin polarization[187, 185, 186].

Bulk (α) manganese is a weak antiferromagnet with TN = 95K and the exchange interac-

tion of Mn is close to the switch between antiferromagnetic to ferromagnetic. This provides

the tunability of the Mn exchange interaction in different crystal structures due to variation in

the Mn-Mn interatomic distance and bonding angles (see Fig. (1.2)). Ferrimagnetic Mn3Ge and

Mn3Ga in the tetragonal DO22 have been investigated by Kurt et al.[185, 187]. Both compo-

sitions demonstrate small room temperature magnetization of approximately 73 kA m−1(Mn3Ge)

and 110 kA m−1 (Mn3Ga), respectively. Very importantly, the uniaxial anisotropy constant is high

and equal to 0.91 MJ m−3 (Mn3Ge) and 0.89 MJ m−3 (Mn3Ga). Both compositions demonstrate

small soft in-plane component due to canting of the Mn 2b moment[278]. The spin polarization

has been measured by PCAR to be 46 % (Mn3Ge) and 58 % (Mn3Ga). A distinction must be

made between the tetragonal DO22 and the hexagonal DO19 structures. Mn3Ga and Mn3Ge can

crystallize in both, however, the hexagonal structure results in antiferromagnetic order whereas the

tetragonal is ferrimagnetic. Recently, there have been tremendous developments in the area of spin

Hall effect magnetization switching using antiferromagnets [103]. There are observations of large

anomalous Hall effect in Mn3Ge[172, 252] and a theoretical prediction for a large spin Hall angle.

The antiferromagnetic compositions, however, are not directly relevant to the present thesis.

The search for high spin polarized materials has naturally led to the idea of fully spin polarized

materials with no net magnetization. The term "half-metallic antiferromagnet" itself is introduced

by van Leuken and de Groot[354]. Materials with such predicted properties have been investigated.

However, they either decompose[217] (Co2CrGa), have no magnetic moment on the transition

metal element[126], or do not crystallize in a cubic structure. A potential half-metallic ferrimagnet

which will not be dicussed here is Cr2CoGa[126].

Mn2Ga is a member of the half-Heusler family while the Mn3Ga, and Mn2RuGa are mem-

bers of the full Heusler family. In these films, Mn2Ga crystallizes in the non-centrosymmetric C1b

structure (see Fig. (6.6)). It has easy axis in the plane of the films and a low Curie temperature

of Tc ≈ 225K. Following, the Slater-Pauling rule the magnetization is expected to be −1µB/f.u.,

whereas the measured moment by Kurt et al.[186] is ≈ 1.65µB/f.u.. On the other hand, the full

Heusler composition Mn2RuGa should have moment of 1µB/f.u., whereas the experimental value

is 0.44µB/f.u.. The incompatibility is perhaps related to small tetragonal distortion (up to 3 %).

It is worth noting, that the end compositions seem to obey the magnetization slope of 2µB/Ru. It

is conceived and realized by Kurt et al.[186], that for the ideal Ru concentration x ≈ 0.5, zero

magnetic moment is achieved. In this case, the composition Mn2Ru0.5Ga is half-way between

the half-Heusler and the full Heusler family and it obeys yet another law for the magnetization:

m = Nv−21. The spin polarization of the compensated Mn2Ru0.5Ga has been measured by PCAR

and the extracted value is 54 %, whereas the spin polarization of the end member Mn2Ga is de-
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Figure 6.6: Panel (a)-L21 crystal structure of a full Heusler alloy X2Y Z (Mn2RuGa) with X(green), Y (gray), and Z(red).
Panel (b)-C1b half-Heusler XY Z (Mn2Ga).

termined to be significantly lower 41 %. The Ru addition leads to higher Curie temperature. The

Curie temperature is in the range from 500 K to 550 K for 0.7 > x > 0.3. Furthermore, Ru doping

leads to slight tetragonal distortion which drives the easy axis from the in-plane direction to per-

pendicular to plane direction. Finally, the role of Ru doping is to change the inter-lattice exchange

interaction between the two Mn sublattices and in this way to vary the ferrimagnetic compensation

temperature, Tcomp.

Because of the low magnetization of the Mn2RuxGa, magnetometry measurements are not very

suitable for quick optimization. Anomalous Hall effect (AHE) in van der Pauw configuration is of-

ten used in order to extract swiftly key properties of an MRG blanket film. The AHE loops provide

coercivity, sign, and may indicate the perpendicular magnetic anisotropy. The latter parameters are

used during growth optimization. First, sputtering rates on the Mn2Ga and Ru guns are determined

in order to achieve the desired compositions. The PMA and its strength are mainly governed by

the deposition temperature of the MRG and its post-deposition in-situ annealing. The existence of

secondary phase might as well be spotted in the AHE loops. Tuning of the Ru concentration leads

to different compensation temperature for the ferrimagnet (Tcomp) and the dependence between the

x and Tcomp and between the bi-axial strain and Tcomp have been investigated by Thiyagarajah et

al.[340]. It is important to note that the maximum coercivity indicates the location of Tcomp in

MRG because following the classical Stoner-Wolfarth model the anisotropy field (and, hence, the

coercivity) diverges when the magnetization tends to zero

µ0Han =
2KMRG

u
MMRG , (6.5)

where KMRG
u and MMRG are the uniaxial anisotropy and the saturation magnetization of MRG,
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respectively. Very important is the observation that the AHE signal has different sign above and

below Tcomp (see Fig. 6.7 (a)). When high-magnetic field is applied, the MRG magnetization di-

rection must follow the orientation of the applied field which means that above and below Tcomp,

the MRG magnetization does not change sign which is shown on the M(H) loops above and below

compensation (see Fig. 6.8 (b)). So, why does the AHE changes sign? The AHE is sensitive not

only to the bare magnetization but to the spin dependent scattering of the conduction electrons on

the magnetic moment of the atoms. The reason for the sign reversal is that the spin polarization of

the conduction electrons switches its sign with respect to the overall magnetization. Critism has ben

expressed by Galanakis et al.[105] that our interpretation of the switching AHE signal is incorrect.

However, the correlation between the diverging µ0HMRG
c and the observed zero magnetic moment

is strongly reinforced by the comparison between the AHE signal (Fig. (6.7)) and the M(T ) mag-

netometry(6.8 (a)). The AHE effect is measured at temperatures from 10 K to 350 K in field up to

µ0H = 14T (see Fig. (6.7) (a)). It is apparent from the AHE loops that Tcomp ≈ 250K, where the

strange hysteresis loop is due to complicated domain dynamics. At the Tcomp, the applied field is

insufficient to saturate the composition and the ferrimagnetic domains rotation is incomplete. The

AHE signal changes sign when the compensation is passed*. Furthermore, the µ0HMRG
c decreases

both below and above Tcomp due to the increase in the MRG magnetization. Another quick and

reliable approach to extract the compensation temperature of MRG is to measure the temperature

dependence of the AHE signal in high constant magnetic field. When Rxy(T ) is measured, the

compensation temperature corresponds to the maximum signal change because the AHE signal

switches sign. Unfortunately, the AHE measurement in van der Pauw configuration always con-

tains some longitudinal resistance pick-up Rxx. The approach to uncover the compensation is then

to take the derivative dRxy/dT and determine the point of maximum derivative. The extracted Tcomp

by the derivative approach corresponds very well to the temperature determined by AHE loops and

M(T ) scans.

Both the M(T ) magnetometry and dRxy/dT peak derivative result in extracted Tcomp ≈ 253K.

The SQUID M(T ) magnetometry is performed on the same sample by saturating it at 10 K in

µ0H = 5T, and warming it up through compensation in small field of µ0H = 5mT < µ0HMRG
c

†.

In this configuration, the MRG magnetization goes through zero and it is antiparallel with respect

to the applied field above Tcomp. On the other hand, the full hysteresis loops, M(H), at 200 K

(below Tcomp) and at 300 K (above Tcomp) demonstrate that the MRG moment always follows the

direction of the applied magnetic field when saturated in high field. The latter observation comes

as a confirmation that the AHE signal inversion is due to sign change of the Fermi level spin polar-

ization. The spin polarization sign reversal implies strongly that the Fermi level spin polarization

*Note the shape of the AHE loops at 10 K and 350 K, for instance.
†The field must be low in order to eliminate the significant diamagnetic contribution from the MgO substrate and

to be below the coercive field of MRG.
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Figure 6.7: AHE data of an Mn2Ru0.9Ga blanket film with approximate Tcomp = 250K. Panel (a)-AHE loops at
multiple temperatures from 10 K to 350 K and in applied field µ0H = ±14T. The AHE signal changes its sign
above 250 K. Panel (b)-AHE signal dependence on the temperature from 300 K to 10 K in constant magnetic field of
µ0H = 14T. The point of maximum slope corresponds to the compensation temperature. The inset demonstrates
dRxy/dT (T ), the maximum value of the derivative demonstrates Tcomp.
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Figure 6.8: SQUID magnetometry measurements on an Mn2Ru0.9Ga with compensation temperature of
Tcomp ≈ 250K, the AHE data on the same sample is presented in Fig. (6.7). The applied magnetic field is perpen-
dicular to the plane of the sample. Panel (a)-M(T ) data acquired on warm up in small applied field of µ0H = 5mT.
The sample was first saturated in 5 T at 10 K. Note that the magnetic moment switches from positive to negative at the
compensation point. Panel (b)-M(H) hysteresis curves on the same sample acquired at 300 K and 200 K, above and
below compensation, respectively. Do note that the magnetization is always positive when the sample is saturated. The
two curves are offset vertically for clarity. For this sample, the magnetic moment → magnetization is: 10 nA m2 →
7.9 kA m−1. Hence, the saturation magnetization at 300 K is Ms ≈ 26kA m−1.

is determined by one of the Mn sublattices rather than the overall magnetization. This is further

demonstrated to be the case in magnetic tunnel junctions with a compensated MRG electrode in

Sec. (6.6). The PMA of the sample is confirmed as well, however, the existence of a non-negligible

secondary component is present which appears to be stronger that the one observed on the AHE

loops*.

*Apart from possible misalignments, the secondary component might be due to partial oxidation of a not-well
capped sample. The time difference between the AHE and SQUID measurements is approximately 1 year, and the
sample might have oxidized due to moisture despite the fact that it is capped with 3 nm of AlOx.
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6.4 Tunneling magnetoresistance realized with Mn2RuxGa

The MTJ stack structures are grown by sputtering in a fully automated Shamrock deposition

system. The stack structure is as follows: MgO(001-substrate)/ MRG(40)/ Al(0.6)/ MgO(1.5)/

CoFeB(1.0)/ Ta(0.3)/ CoFeB(0.9)/ MgO(0.7)/ Ta(3.0)/ Ru(4.0), where the thickness of each layer

is indicated in brackets in nanometers (see Fig. (6.9)). The MRG electrode is deposited by co-

sputtering from Mn2Ga and Ru target. The deposition current on the Ru gun is kept constant, while

the current of Mn2Ga gun is varied in order to change the x of the composition and tune Tcomp.

The MRG electrode is normally deposited at temperatures from 300 ◦C to 350 ◦C, while the rest of

the stack is deposited at room temperature. It is demonstrated that such conditions provide good

crystallinity and improved surface roughness. The latter is of critical importance for the growth

of MTJs. The MRG electrode is grown relatively thick, 40 nm, because the disorder in ultrathin

MRG films is significant and the crystallinity is poor. Extensive details on the growth of MRG thin

films, as well as the dependence of the compensation temperature on the Ru concentration x and the

tetragonal distortion can be found in [186, 340, 193]. A dusting layer of Al-0.6 nm is deposited im-

mediately after the MRG electrode. The purpose of this layer is twofold: first, it improves the MRG

roughness, so that the deposited insulating barrier on top is smoother, second, Al provides a diffu-

sion barrier against Mn atoms.* Finally, the top ferromagnetic electrode CoFeB/Ta/CoFeB/MgO

and a capping layer of Ta/Ru are deposited. The structure of the top ferromagnetic electode is often

known as a "frame"[290]. Perpendicular magnetic anisotropy of CoFe is provided through surface

anisotropy either with a heavy metal or with MgO. In the case of the "frame", the two ultrathin

CoFeB layers are provided with surface anisotropy at both interfaces and furthermore the dipole-

dipole interaction between them stabilizes the easy-axis of the composite electrode. The frame

structure is used in the present stack because it provides better thermal stability against annealing

and achieves higher uniaxial anisotropy[290].

The resistance contribution (if any) of the ultrathin MgO(0.7 nm) layer in the frame electrode

has to be roughly two orders of magnitude smaller than the resistance of the main tunnel barrier†.

The magnetic tunnel junctions are patterned by three step ultra-violet lithography, Ar-ion milling,

and definition of the top contact by lift-off process of an electron beam deposited Cr(10)/Au(150)

top layer. The junctions sizes are 6µm×6µm and 20µm×20µm. Most of the presented data in this

thesis is obtained on 20µm×20µm junctions due to the lower resistance of these junctions (16 kΩ

to 24 kΩ). It should be noted that the small junctions have been cross-checked as well and they

demonstrate consistently the same TMR values as the bigger ones. The resistance-area product is

*Other configurations with Ta and Hf insertion layers have been tested. However, they have not shown good TMR
effect. It has been confirmed by time-of-flight secondary-ion-mass-spectroscopy that there is significant diffusion of
Mn into the MgO barrier when these two materials are used as diffusion barrier.

†Derived by the trend in Yuasa et al.[403] and in Fig. (6.3) that the resistance of an MgO-based MTJ changes by
an order of magnitude for every 0.4 nm.
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Figure 6.9: Schematic representation of the MTJs structure with MRG bottom electrode. The thickness of each layer
is indicated in brackets in nm.

checked to be roughly constant for the two kinds, and the parallel state resistance of the 6µm×6µm

is around 120 kΩ.

The positive voltage contact is connected to the top of the stack, and the negative voltage con-

tact to the bottom one (MRG). In this way, positive bias corresponds to electrons tunneling from

the MRG into the CoFe, while negative bias corresponds to electrons tunneling from the CoFe

into the MRG. All MTJs are wedge bonded on a wire bonder without any heating of the chips

or of the electrical puck. All d.c. electrical measurements are performed with a Keithley 2400

source-meter in a two-point configuration. The contribution from the series resistance of the bot-

tom MRG electrode has been measured separately and found to never exceed 500 Ω. In this way,

the contribution towards the overall resistance in the low bias regime is always below 3.3 %* and

no appreciable magnetoresistance is measured on the MRG bottom contact. The a.c. measurements

are performed in two-point configuration with voltage sourced by a Keithley 2400 and modulated

with the internal oscillator of a Perkin Elmer 7265 lock-in amplifier (LIA), the current modulated

signal is preamplifier with a bandwidth filter (Stanford Research 570) and synchronously detected

again by the LIA. All measurements are performed in a Physical Properties Measurement System

in temperature range from 2 K to 400 K and magnetic field of up to µ0H = 14T.

The tunneling magnetoresistance of a junction annealed at T = 350◦C is presented in Fig.(6.10).

Panel (a) shows the TMR effect observed at applied bias of U = 10mV. This is essentially a close

to zero bias TMR effect in which case the tunneling happens between the Fermi levels of the MRG

and the CoFe electrodes. The first noticeable feature is the high TMR of 40% at T = 10K. It will

*In fact, if all resistances are corrected for the bottom electrode contribution, the TMR values are slightly higher.
This correction is not done as it affects insignificantly the values.
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Figure 6.10: Tunneling magnetoresistance of an MTJ annealed at T = 350 ◦C. Panel (a) shows the TMR effect at
applied bias U = 10mV at different temperature. Panel (b) shows the TMR at the same MTJ but at applied bias of
U = −1V.

be latter shown that the transport in the present MTJs is incoherent, i.e. the ∆ band MgO filtering

is not efficient in our case. In light of this, a low temperature high TMR implies high Fermi level

spin polarization of the MRG electrode. Another important observation is the the coercive field

of MRG, it gradually increases from 150 mT to 900 mT between 10 K to 400 K. The increase in

the coercive field of MRG is mainly governed by the diminishing magnetization as the compensa-

tion temperature is approached. The composition is x≈ 1.0 in this particular MRG, which implies

rather high Tcomp (> 400K). Important observation is the strong temperature decrease of the low

bias TMR. The TMR effect decreases from 40 % at T = 10K to 6.6 % at T = 300K. This is a

high, six-fold decrease of the TMR, the reasons for it are discussed latter. The PMA of the CoFe

electode is not very well defined which is evidenced by the rotation of the CoFe magnetization at

close to zero field. The latter is perhaps due to rough interfaces in the top ferromagnetic "frame"

electrode.

On the right hand side of Fig. (6.10), the TMR effect at applied bias of U = −1V is presented.

The TMR effect is negative. Applied bias of such magnitude and polarity means that electrons are

tunneling from the Fermi level of the CoFe towards a level high above the Fermi level of MRG. It is

well-established that the TMR effect in standard CoFe/MgO/CoFe and CoFe/AlOx/CoFe does not

change sign (see Fig. (6.3)). Hence, the change of the TMR sign might be broadly speaking due

to three effects: significant energy dependence of the spin polarization of MRG, very complicated

tunneling probabilities through the barrier and inelastic (magnon) scattering at the interfaces. The

discussion is left for later. Another important observation on panel (b) is that the TMR(−1V)

is actually far more temperature robust than the TMR(10mV). The latter is a rather puzzling

observation because a higher applied bias implies normally excitation of more inelastic processes

(both phonon and magnon related scattering). Finally, it is crucial to note that the coercive fields of
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MRG at U = 10mV and U = −1mV are essentially the same.

The TMR sign change implies that there is a zero TMR value at negative bias in between

10 mV and −1 V. Full TMR(U) dependences at temperatures of T = 10K and T = 300K

are presented in Fig.(6.11) for a chip annealed at 350 ◦C. An MTJ is set in the antiparallel state

and a current-voltage characteristic is measured, then it is set in the parallel state and the another

current-voltage characteristic is measured, then the two curves are used to calculate the TMR(U).

The discussion starts with the low temperature curve. The negative bias tunneling corresponds to

electrons tunneling from the EF of CoFe towards the conduction band of MRG. The negative bias

branch demonstrates a sharp decrease in the TMR value and TMR = 0 at U ≈ −250mV. Then,

the TMR turns negative and remains essentially constant for U <−0.5V . This rather flat voltage

dependence is strange, since the more energetic tunneling electrons will tend to experience more

pronounced inelastic scattering processes. Positive applied bias corresponds to electrons tunneling

from the EF of MRG towards the bulk conduction band of CoFe. The TMR effect does not change

sign along the positive bias dependence, however, the lineshape of TMR(U) is much different than

the expected one. This tunneling configuration essentially probes the CoFe spin-split levels above

the EF, however, the TMR is expected to decrease to half of its zero-bias value at significantly

higher bias (see Fig. 6.4). The latter implies that there is a spin-flip scattering process in the barrier

(or at the interfaces) which causes the the sharp decrease of the TMR at U > 0V. This is further

evidenced by the unusual plateau in the TMR(U) dependence measured around U ≈ 0.5V .
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Figure 6.11: TMR(U)for an Mn2Ru1.0Ga MTJ annealed at 350 ◦C. Panel (a) - The red curve shows the TMR(U) at
10 K, and the blue curve represents the TMR(U) at 300 K. The zero TMR points are indicated with orange arrows
and the local TMR plateau at positive bias is indicated with magenta arrows. Panel (b) - TMR(U) at various different
temperatures.

The TMR(U) at T = 300K shows some similarities to the low temperature curve: the TMR

changes sign at negative bias, the TMR is relatively voltage independent at high negative bias and

there is a local plateau at U ≈ 0.5V. There are, however, two distinct differences. First of all, it is

apparent that the close-to-zero-bias TMR ratio shrinks disproportionately with respect to the rest of
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6.4. Tunneling magnetoresistance realized with Mn2RuxGa

the dependence. Second, the TMR = 0 point shifts towards zero bias by roughly ∆U = 100mV

from −250mV (at T = 10K) to −150mV (at T = 300K). This again implies that the zero-bias

TMR is more heavily suppressed than the rest of the dependence. The physical process cannot

be attributed to inelastic scattering as this will be more pronounced at higher biases rather than

at low, close to zero, bias. However, a possible explanation is the process of resonant scattering

from impurities in the barrier. Impurities might form resonant scattering levels very close to the

Fermi level of the insulation barrier[346]. The overall TMR(U) behaviour at various temperatures

is plotted in Fig. 6.11 (b). The TMR plateau region around U ≈ 0.5V increases in size. In

fact, there is a small local dip formation around U ≈ 0.25V, this dip formation is an absolutely

clear indication of a resonant scattering within the barrier with levels at U ≈ 250mV. It is very

probable that there are more resonant scattering levels, however, there are indirect proofs for them.

This dip is much more pronounced in other samples which will be discussed later (see Fig. (6.21)

and Fig. (6.43)).

- 1 . 0 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 05
1 0
1 5
2 0
2 5
3 0
3 5
4 0

- 1 . 0 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 05
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5

( b ) R P  -  1 0  K
 R P  -  3 0 0  K

 

R P (k
Ω

)

U  ( V )

( a )

 

R AP
 (k

Ω
)

U  ( V )

 R A P  -  1 0  K
 R A P  -  3 0 0  K

Figure 6.12: Parallel (RP) and antiparallel (RAP) resistance dependence on the applied bias U at T = 10K and
T = 300K. Panel (a) shows the RP(U) at T = 10K and T = 300K. Panel (b) shows the RAP(U) at T = 10K and
T = 300K.

It is beneficial to have a discussion on the bias dependences of the parallel (RP) and antiparallel

(RAP) resistance states which are shown in Fig. (6.12). Panel (a) represents the voltage dependence

of the RP, and panel (b)-the voltage dependence of the RAP. The parallel resistance state is more

sensitive to tunneling processes, which are not effected by magnetic processes (magnon excitation

and spin-split density of states structure). First of all, RP demonstrates good symmetry between the

positive and negative bias branches. This indicates that there is no significant charging imbalance

accumulated at the two interfaces of the MTJ*. Furthermore, it is obvious that there is a dispropor-

tionately large decrease of the close to zero bias resistance between 10 K and 300 K compared to

*If one of the interfaces has tendency to trap charges then the resistance behaviour for positive and negative bias
would be significantly different.
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the high bias resistance. The line-shape of the RP(U) demonstrates very concave structure, in fact

standard very high TMR CoFe/MgO/CoFe tunnel junctions demonstrate normally RP(U) which

resembles roughly the shape of an inversed parabola. The sharp zero bias decrease of RP is a clear

proof of incoherent tunneling process. Another possible contribution towards the effect is hopping

conductance through impurity states in the insulating barrier. As the temperature is decreased, the

energy gap between the hopping states (∆g) is comparable to the thermal excitation energy (kBT )

and consequently the probability (∝ e−∆g/kBT ) for hopping conductance through the barrier is low-

ered, and, therefore, the resistance is increased. Whereas at higher temperature the hopping process

probability is increased due to the higher thermal activation energy, hence, hopping conductance

might become dominant over tunneling, and this leads to significantly lower RP at 300 K compared

to 10 K. The RAP(U) is more striking. A pronounced asymmetry in the bias dependence is ob-

served which is a clear indication that the overall TMR(U) behaviour is predominantly determined

by the RAP(U) behaviour. The latter means that the asymmetry in the TMR(U) is governed by

spin scattering related processes. As expected, the zero-bias resistance decrease between 10 K and

300 K in the RAP is even higher than the decrease in the RP.
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Figure 6.13: Parallel (RP) and antiparallel (RAP) resistance reduction as a function of the applied bias U . Panel (a) shows
the RP(U) reduction for different temperature ratios 50K/10K, 100K/10K, 150K/10K, 200K/10K, 250K/10K, and
300K/10K. Panel (b) shows the RAP(U) reduction as a function of the applied bias U for the same temperature ratios.
The orange, vertical dotted lines (U ≈ −0.2V) indicate roughly the position where TMR switches sign.

In order to investigate how the reduction evolves with the temperature, the different reductions

are plotted R(50K)/R(10K), R(100K)/R(150K), R(200K)/R(10K), R(250K)/R(10K),

R(300K)/R(10K) for RAP and RP in Fig. (6.13). The dependence is rather unusual. First of all,

the RP has its strongest reduction at U ≈ 0V. This is atypical since inelastic scattering processes

are more pronounced at higher biases. At positive bias the reduction in RP decreases sharply which

indicates that the tunneling process is less inelastic. On the other hand, RAP is almost constant

along the negative bias branch for U < −0.2V. The antiparallel resistance RAP shows behaviour

which demonstrates that the spin-flip related processes are most pronounced at close to zero bias.
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6.4. Tunneling magnetoresistance realized with Mn2RuxGa

The spin-flip scattering, however, is suppressed at higher voltages, both positive and negative. This

is a strong implication that there is resonant spin-flip scattering states in the MgO barrier which are

very close to EF. The latter are perhaps due to Mn atoms which have diffused from the MRG into

the MgO barrier. It is crucial to note that there is essentially no reduction in the RAP at U = −1V.

Strictly speaking, the definition of RAP and RP has to be swapped once the TMR turns negative*.

The behaviour of RAP and RP reduction is in sharp contrast with the typical behaviour of MTJs with

both coherent (MgO-based)[291] and incoherent (AlOx-based) barriers.
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Figure 6.14: Differential conductance (G) of an MTJ at 2 K. Panel (a)-G in parallel (red curve) and antiparallel state
(black curve). Panel(b)-magnetoconductance calculated from the two curves in Panel (a).
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Figure 6.15: Differential conductance GAP on panel (a) and GP on panel (b) at T = 2 K, 10 K, 100 K, and 300 K.
The curves at 2 K are kept as they are, and each of the others is offset vertically by 10 mS with respect to the lower
temperature.

Differential conductance spectroscopy with AC modulation is measured on the junctions in

order to get higher quality data close to zero bias. The experimental setup is similar to the one

for PCAR discussed before (see Sec. (2.2) and Sec. (2.3)), however, the d.c. staircase voltage

*RAP and RP are defined in terms of mutual magnetization orientation, not in terms of "effective" spin polarization
orientation.
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waveform, provided by a Keithley 2400, is modulated with 3 mV from the internal oscillator of a

Perkin Elmer 7265 lock-in amplifier at a frequency of 1.23 kHz. The ac-dc modulation is achieved

with differential amplifiers. The modulated waveform is fed into the junction and then the a.c.

current signal is amplified by a current preamplified (Stanford Research 570) in the bandwidth

from 0.3 kHz to 3 kHz with 6 db/octave. Differential conductance is measured both in AP and P

configuration of an MTJ at temperatures 2 K, 10 K, 100 K, and 300 K. The AP and P curves and

the magnetoconductance (MC) curve are presented in Fig. (6.14). It is obvious that a zero-bias

anomaly exists at very low bias in the P resistance state, something which is not typical for MgO-

based tunnel junctions[365], but usual in AlOx-based tunnel junctions[409]. This implies that there

are inelastic scattering processes in the barrier or at the interfaces at energies very close to the

Fermi level. The magnetoconductance curve is the ac analog of the TMR(U) dependence* and,

in fact, the original Julliere’s model[154] is applied to ac conductances and not to the dc obtained

signal. The peak of MC is equal to 48 % close to zero bias. Since, it has been proven that tunneling

in our MTJs is incoherent, the ∆-band filtering is not efficient and, hence, it can be assumed that

the spin polarization of the CoFe electrode is ≈ 45%, this will imply that following the Julliere’s

formula the MRG spin polarization is 43 %. The magnetoconductance demonstrates as well a local

minimum (U ≈ 0.15V) and then a local maximum (U ≈ 0.4V) at positive bias. Because the MC is

more sensitive towards the DOS structure and the tunneling probability as a function of applied bias

than the TMR, this would imply specific spin loss (most likely by resonant scattering) at ≈ 0.15V.

This process will be discussed later in cases where it is more pronounced.

The currents in the parallel and antiparallel resistance states are determined by the spin-split

density of states overlap of the two ferromagnetic electrodes. The expression is furthermore multi-

plied with the different spin-dependent tunneling probabilities (T↑,↓,T↓↑,T↑↑,T↓,↓) and and the dif-

ference between the Fermi distributions ( f (E)− f (E− eV )) in the two electrodes

IAP(U) ∝

∫ +∞

−∞

[
D↑1(E)T↑↓(E−qU)D↓2(E−qU)+D↓1(E)T↓↑(E−qU)D↑2(E−qU)

]
( f (E)− f (E−qU))dE

IP(U) ∝

∫ +∞

−∞

[
D↑1(E)T↑↑(E−qU)D↑2(E−qU)+D↓1(E)T↓↓(E−qU)D↓2(E−qU)

]
( f (E)− f (E−qU))dE,

where D↑1, D↓1, D↑2, and D↓2 are the spin-split density of states in the two ferromagnetic electrodes.

*MC = (GP−GAP)/GAP
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Then the differential conductances GAP = dIAP/dU , and GP = dIP/dU are

GAP(U) ∝

∫ +∞

−∞

[
D↑1(E)T↑↓(E−qU)D↓2(E−qU)+D↓1(E)T↓↑(E−qU)D↑2(E−qU)

]
∂ f (E−qU)

∂V
dE

GP(U) ∝

∫ +∞

−∞

[
D↑1(E)T↑↑(E−qU)D↑2(E−qU)+D↓1(E)T↓↓(E−qU)D↓2(E−qU)

]
∂ f (E−qU)

∂V
dE,

The integration is from −∞ to +∞, however, the sensible numerical limits are set by the spread

of the Fermi distributions difference. In principle, the differentiation d/dU must act on D↓2(E−qU)

and D↑2(E− qU), however, in small bias and for large exchange splitting approximation the spin-

split density of states might be assumed to be constant. The transmission probabilities should also

be differentiated but in amorphous barrier approximation it can be assumed that there is no partic-

ular spin dependent transmission and the transmission probability is not bias dependent at least at

low bias. That means that essentially only the Fermi distributions difference is differentiated.

The Fermi level derivative can be approximated by a Gaussian distribution with full-width-half-

maximum (FWHM) of ≈ 3.8kBT . At low temperatures, the derivative might be assumed to be a

delta function δ (E−qU). Then at close to zero bias:

GAP(0) = D↑1(EF)D
↓
2(EF)+D↓1(EF)D

↑
2(EE)

GP(0) = D↑1(EF)D
↑
2(EF)+D↓1(EF)D

↓
2(EF).

Then the magnetoconductance at zero bias is

MC(0) =
GP−GAP

GAP
. (6.6)

Starting from the product of the two spin polarization values:

P1P2 =
D↑1−D↓1
D↑1 +D↓1

D↑2−D↓2
D↑2 +D↓2

. (6.7)

It can be easily checked that

GP

GAP
=

1+P1P2

1−P1P2
, (6.8)

hence

MC(0) =
GP

GAP
−1 =

2P1P2

1−P1P2
, (6.9)
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which is exactly the Julliere’s formula for the TMR effect.

Furthermore, the separate GAP and GP scans are used in order to determine the barrier height.

The preferred method in this case is the Brinkman’s approach[42] and not the Simmons’s one[306].

The reason is that the former can account for asymmetric barrier properties whereas the latter

assumes symmetric barrier. It is observed from the differential conductance graphs that the barrier

is slightly asymmetric. The simplified formula does not account for image charges and is accurate

within 10 % for barrier width d > 10Å[42]:

G(U)

G(0)
= 1−

(
A0∆φ

16φ̄

3/2
)

eU +

(
9A2

0
128φ̄

)
(eU)2 , (6.10)

where ∆φ = φ2− φ1 is the barrier height asymmetry, A0 = 4
√

2md/3h̄*, and G(0) = (3.16×
1010

√
φ̄/d)exp(−1.025d

√
φ̄). The barrier width d is in Å, and the potentials are in V . There

is a known problem in applying Brinkman’s fit to magnetic tunnel junctions. Since the model is

essentially expansion in powers of U at low temperatures, it is inherently more sensitive when it

is applied to the low bias region. However, the low bias dip anomaly features at low temperature

cannot be fitted with a parabola because of that the analysis is focused here on the differential

conductances measured at T = 300K. Three approached are attempted here:

• The curves are fitted for |U |> 0.4V,

• The curves are fitted for |U |< 0.2V,

• The curves are fitted for |U |< 0.1V

The barrier thickness d = 15Å is kept as constant.

The extracted values in the high bias region (|U |> 0.4V) are not physical because the expected

maximum height for thick MgO barrier is φMgO = 3.9eV†(see Fig. (6.16)). The median barrier

height for the antiparallel and parallel state is φAP = 4.879eV and φP = 4.940eV, respectively.

These unrealistic values demonstrate that Brinkman’s fit is not applicable for high bias. A further

complication is the fact that for U <−0.2V the role of antiparallel and parallel curves are switched

because the TMR changes sign.

The next attempt for Brinkman’s fit is on the same curves but in the voltage range |U |< 0.2V

in Fig. (6.17). In that case, the extracted barrier height is φAP = 0.755eV and φP = 0.881eV,

respectively. These values are closer to the values reported in literature where φ 6 1.0eV. It should

be noticed that the obtained fits do not match well the experimental data.

*Where the standard dimensions kg and J s are used for the two constants.
†Assuming the the barrier height is half of the bulk-band gap of MgO-∆MgO = 7.8eV.
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Figure 6.16: Differential conductance GAP on panel (a) and GP on panel (b) at T = 2 K in voltage range |U |> 0.4V
along with the Brinkman quadratic fit and the extracted average barrier height φAP = 4.879eV and φP = 4.940eV
for the antiparallel and the parallel case, respectively.
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Figure 6.17: Differential conductance GAP on panel (a) and GP on panel (b) at T = 2 K in voltage range |U |< 0.2V
along with the Brinkman quadratic fit and the extracted average barrier height φAP = 0.755eV and φP = 0.881eV
for the antiparallel and the parallel case, respectively.

Finally, the differential conductance is analyzed in the voltage rage |U | < 0.1V in Fig. (6.18).

The extracted barrier height for the antiparallel and parallel state is φAP = 0.497eV and φP = 0.587eV,

respectively. These values are slightly lower that the values obtained on high TMR MTJs before

[268, 291]. This might be related to hopping conductance through the MgO barrier in the presented

MTJs. Also, it must be noticed that the barrier height in the antiparallel state is higher than the

parallel state one φAP < φP which is strange considering the fact that RAP > RP. However, it has

been shown and analyzed before that such unphysical relation is due to defects in the barrier [291].

Because Brinkman’s model depends on the normalization with the zero bias conductance, it is not

possible to directly take the second derivative of the differential conductance in order to extract the

barrier height as a function of the applied bias.

Furthermore, Brinkman’s fits demonstrate barrier asymmetry only as a shift of the parabola

from U = 0mV. On the other hand, the experimental conductance shows minimum of the con-
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Figure 6.18: Differential conductance GAP on panel (a) and GP on panel (b) at T = 2 K in voltage range |U |< 0.1V
along with the Brinkman quadratic fit and the extracted average barrier height. φAP = 0.497eV and φP = 0.587eV
for the antiparallel and the parallel case, respectively.

ductance close to zero-bias but asymmetric growth for positive and negative bias. The close to

zero-bias minimum implies that there is no real barrier asymmetry (or interface charging), but

the different growth rate means that the electron tunneling probabilities in the two directions are

different. The latter is not accounted by the Brinkman’s approach. It could be easily noticed in

Fig. (6.15) that the AP and the P conductances have significant deviation from quadratic behaviour

both at close to zero bias and at high positive and negative bias.

The dependence of the TMR ratio as a function of Tanneal is investigated as well. The patterned

MTJ chips have been annealed in a high vacuum magnetic furnace with a base pressure better than

6×10−6 mbar. Magnetic field µ0H = 800mT is provided by a permanent magnet and the applied

field direction is perpendicular to the surface of substrates. The annealing has four main effects:

• Barrier crystallization

• Crystallization of the CoFeB electrode

• Setting the anisotropy axis of the CoFe electrode

• Improved quality of the MRG electrode

First of all, it crystallizes the barrier. The amorphous (or poly-crystalline) barrier has inevitable

defects which provide centers for hopping conduction transport. Each hopping step has finite prob-

ability to cause a spin-flip scattering and, hence, the tunneling probability in amorphous barriers

is smaller. Second, the CoFeB are deposited amorphous. During the annealing, boron diffuses

out and is absorbed by a getting layer (Ta in our case), and the CoFe electrode crystallizes. The

crystallization of the CoFe electrode leads to higher spin polarization (see Fig. (6.2)). Finally, the

crystallization of the CoFe interfaced on both side with a heavy metal (Ta) and MgO leads to in-

duced perpendicular surface anisotropy. As the easy axis of the CoFe electrode is set perpendicular,
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its magnetization stable orientation becomes colinear with the natural perpendicular easy-axis of

MRG and, hence, the tunneling magnetoresistance is improved. The room temperature TMR ra-

tios at applied biases of U = 10mV and U = −1V are plotted in Fig. (6.19) for non-annealed

and annealed samples at Tanneal = 275 ◦C, 300 ◦C, 325 ◦C, and 350 ◦C*. The as-deposited MTJs

exhibit the lowest TMR ratio of 1.7 % (U = 10mV) and −4 % (U = −1mV). The easy-axis

is naturally in-plane and is gradually rotated out-of-plane as magnetic field is applied. There are

two reasons why the TMR in the as-prepared sample is low: the magnetization of the CoFeB is

never fully saturated in the antiparallel configuration of the MTJ and the CoFeB is amorphous.

Because the MRG and CoFeB magnetization are then not aligned, the TMR is lower following the

Slonchewski’s rule (see Eq. (1.45) and Fig. (1.11)). Secondly, the amorphous CoFeB has lower

spin polarization than the crystalline one and the crystallization of top ferromagnetic electrode in-

creases the spin polarization. The annealing process does not cause any obvious change to the

properties of the MRG, the coercivity stays constant. As the samples are annealed in the range

275◦C ≤ Tanneal ≤ 325◦C, some PMA in the CoFe electrode is induced and the TMR grows. The

former is evidenced by the appearance of a plateau in the antiparallel resistance state. The rest of the

values are summarized in Table 6.1 and Table 6.2. The annealing induces disproportionate increase

of the TMR at different applied biases. For instance, the TMR(U = 10mV) for Tanneal = 275◦C

and 300 ◦C has essentially the same value, however, the TMR(U =−1V) is different. Particularly

interesting is that the low bias region is more heavily affected because the low bias transport has

to be more elastic than the high bias. The RP(10mV), RP(−1V), and RAP(−1V) are plotted as a

function of the annealing temperature as well in Fig. 6.19 (b). The observation that the low resis-

tance state increases upon annealing contradicts with the usual decrease of the low resistance state

in high-quality CoFe/MgO/CoFe MTJs (see Fig.(6.1)). There are a two possible reasons for that

behaviour:

• Barrier crystallization without coherent tunneling

• Effective increase of the barrier width

The fact that the tunneling is incoherent in our structure will be proven conclusively in Fig. (6.20).

Therefore, barrier crystallization with incoherent tunneling might be the reason. Furthermore, Al

is known to be more electronegative than Mg, hence, upon annealing Al might extract some of

the O atoms from the MgO and, hence, it may get partially oxidized. Since the RP(10mV) for

Tanneal = 350◦C is roughly 1.5 times the RP(10mV) for the as-prepared sample, the scenario of

partial Al oxidation is very probably. Similar increase is observed for the resistance states (RAP

*The chip annealed at Tanneal = 350 ◦C is from another sample. Although it is prepared with the same deposition
conditions, the MRG coercivity is slightly different. Because of that, the focus falls on the chips annealed up to 325 ◦C
because they are from the same original piece.
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Figure 6.19: Panel(a)-TMR annealing dependence for applied biases of U = 10mV and U = −1V for as-deposited
chips and chips annealed at Tanneal = 275 ◦C,300 ◦C,325 ◦C, and 350◦C. Panel(b)-dependence of the parallel and
antiparallel resistance states on the annealing temperature. The measurements are done on a junction with area of
400 µm2 and tMgO = 1.5nm.

and RP) at applied bias of U = −1V as well. Purposefully, both RAP and RP are presented for

U = −1V because RAP becomes the low resistance state and RP-the high resistance state for

U < −0.2V. Another important observation is that the resistance-area product of our junctions

is higher than the expected value for the nominal MgO thickness (tMgO = 1.5nm). A possible

explanation is that even the as-deposited junctions have slightly oxidized Al dusting layer due to

its more electronegative nature.

TMR and RP comparison for different annealing condition at applied bias U = 10mV

Annealing TMR(10 K) TMR(300 K) T MR(300K)
T MR(10K) RP(10 K) RP(300 K) RP(300K)

RP(10K)

as prepared 10.6 % 1.6 % 0.15 27.7 kΩ 16.0 kΩ 0.58

275 ◦C 23.2 % 3.5 % 0.15 31.6 kΩ 19.7 kΩ 0.62

300 ◦C 27.8 % 3.6 % 0.13 31.6 kΩ 19.5 kΩ 0.62

325 ◦C 33.3 % 4.6 % 0.14 33.5 kΩ 21.8 kΩ 0.65

350 ◦C 40.3 % 6.6 % 0.16 36.1 kΩ 24.2 kΩ 0.67

Table 6.1: TMR and RP comparison for different annealing condition at applied bias U = 10mV.
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TMR and RAP comparison for different annealing condition at applied bias U = −1V

Annealing TMR(10 K) TMR(300 K) T MR(300K)
T MR(10K) RAP(10 K) RAP(300 K) RAP(300K)

RAP(10K)

as prepared −6.7 % −4.5 % 0.67 5.5 kΩ 4.8 kΩ 0.87

275 ◦C −12.5 % −8.3 % 0.66 6.2 kΩ 5.4 kΩ 0.87

300 ◦C −14.5 % −9.8 % 0.68 6.4 kΩ 5.6 kΩ 0.88

325 ◦C −17.4 % −11.9 % 0.68 6.8 kΩ 6.0 kΩ 0.88

350 ◦C −16.2 % −10.9 % 0.67 7.7 kΩ 6.7 kΩ 0.87

Table 6.2: TMR and RAP comparison for different annealing condition at applied bias U = −1V.

In order to discuss further the physical processes of the TMR switching and the puzzling TMR

decrease at different biases, the focus is placed on the samples which exhibit stable CoFe PMA

(Tanneal ≤ 325◦C). The temperature dependence RP(T ) has to be essentially constant for the

case of coherent tunneling through MgO and decreases slightly for the case of tunneling through

amorphous AlOx (not more than 20 %). The RP(T ) curves for MTJs annealed at different tem-

peratures are plotted in Fig.(6.20 (a)). The first noticeable feature is that RP decreases by roughly

35 % between 10 K and 300 K. This proves that the transport through our MTJs is incoherent. The

incoherent transport is expected since the MRG does not have the required ∆-band symmetry in

order to utilize the spin-filtering of MgO. Furthermore, the symmetry at the MRG/MgO interface

is broken due to the insertion of the thin Al diffusion barrier. However, even incoherent tunnel-

ing in amorphous AlOx does not exhibit such strong temperature decrease. Significant hopping

conduction contribution is a possible reason for the stronger than expected RP reduction. Another

important observation is that the RP(T ) is essentially independent of the Tanneal. It is not expected

because the annealing should improve the barrier quality, and, hence, reduce the resistance de-

crease. The TMR(T ) decrease demonstrates similar independence on the annealing temperature,

see Fig. (6.20). This is unusual because the annealing treatment improves CoFe crystallinity (higher

spin polarization), the MRG crystallinity (higher spin polarization) and the barrier quality. The

overall TMR grows, however, the processes related to the temperature decrease are remarkably

temperature independent. One hypothesis is that the TMR decrease is affected by a strong Fermi

level spin polarization decrease of the MRG. The annealing improves significantly the CoFe elec-

trode properties, however, its effect on the MRG is smaller. Another hypothesis is that the improved

qualities are finely balanced by another type of degradation: Mn-diffusion related. Although the

Al-diffusion layer reduces the Mn-diffusion, some migration has been measured in the MgO by

time-of-flight secondary-ion-mass spectroscopy. The annealing-driven crystallization reduces the

grain boundaries in the barrier which act as tunneling steps, but Mn diffused atoms will play the

role of hopping conduction centers and thus contribute to the TMR(T ) reduction. This possibility
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Chapter 6. Magnetic tunnel junctions with the compensated half-metallic ferrimagnet Mn2RuxGa

will be discussed later (see Fig. (6.39), Fig. (6.42), and Fig. (6.43)). Perhaps the same reason is

behind the RP(T ) dependence. The temperature dependence at U = −1V demonstrates similar

independence on the annealing process. The RAP(T ) at U = −1V has much lower temperature

dependence than the RP(T ) at U = 10mV. RAP(−1V) decreases by approximately 12 % from

10 K to 300 K. *
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Figure 6.20: Temperature dependence of the TMR effect and the low resistance state in the MTJs for three different an-
nealing temperatures 275 ◦C, 300 ◦C, and 325 ◦C. Panel (a) and (b)-RP(T ) and TMR(T ), respectively, for U = 10mV.
Panel (c) and (d)-RAP(T ) and TMR(T ), respectively, for U = −1V.

The higher energy electron tunneling at applied bias of U = −1V should lead to higher prob-

ability of inelastic processes: phonon- and magnon-related. Apparently, this is not the case in our

MTJs, hence, the low bias transport is heavily affected by impurity related tunneling states in the

barrier which are located close to EF. The high negative bias transport is influenced less because

most of the tunneling happens through the barrier levels above the resonant states. Furthermore, the

TMR(U = −1V) decrease demonstrate similarly very little dependence on the Tanneal. The electron

*The reader might notice that RAP(−1V) demonstrates a small excursion above normalized resistance values 1.0
on Fig. (6.20 (c))(small hill at T ≈ 75K). In absolute terms, the maximum resistance deviation is 10 Ω. The reason
for this behaviour is resistance contribution from the bottom MRG electrode. The sheet resistance of the MRG changes
from 400 Ω(10 K) to 500 Ω(300 K). Hence, the resistance increase of the bottom electrode leads to the slight increase of
the overall RAP. The correction is negligible. The raw ratio for the RAP is 5.1 kΩ/5.7 kΩ = 0.895, whereas the corrected
ratio is 4.7 kΩ/5.2 kΩ = 0.904. The estimation is based on the chip with the smallest resistance - Tanneal = 275 ◦C.
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6.4. Tunneling magnetoresistance realized with Mn2RuxGa

tunneling happens towards the MRG majority spin gap and in this case the spin polarization of the

MRG is very high and with opposite sign (see Fig. (6.29))[186, 37]. The big "effective" MRG spin

polarization explains the temperature robust TMR(−1 V). The curves for the non-annealed chips

and the chips annealed at 350 ◦C are not plotted because the PMA is not well-defined in them and

this leads to distorted temperature dependence. However, the bare ratios TMR(300 K)/TMR(10 K)

and RP(300K)/RP(10K) are calculated from the bare TMR(H) scans obtained on these samples.

These ratios are summarized in Table (6.2) and Table (6.1).

A full range two dimensional TMR(U,T ) dependence is presented in Fig. (6.21) for a sample

with Tanneal = 325◦C. Separate I(V ) curves have been measured each 5K between 10 K and 300 K

in AP and P resistance state in order to determine the TMR(U , T ) dependence. The focus is on this

sample because it exhibits the highest TMR ratios without compromising the PMA of CoFe due to

high Tanneal. The very sharp TMR structure at zero-bias is observed. The gradual evolution of the

zero TMR point is noticeable as well, so is the very temperature robust high negative bias TMR

(at U = −1V). However, the extremely striking feature is the existence of a local dip at positive

bias around U = 0.3V.* There is no possible spin-split density of states related argument which

can explain a decrease followed by an increase in the TMR as the voltages is increased. Positive

voltage corresponds to electrons tunneling from the Fermi level of MRG towards the bulk valence

band of CoFe. The latter is very well-studied and known to exhibit no such sharp dependences due

to the high exchange energy Eex > 1eV (see Fig. (6.4)). Since the effect cannot to be attributed to

CoFe density of states features, it must be related to the tunneling probabilities through the barrier

as a function of applied bias. This is a strong argument that resonant scattering states in the MgO

barrier have detrimental effect on the overall TMR(U) dependence. Similar structure (both positive

bias dip and negative bias TMR sign reversal) of the TMR(U , T ) has been previously reported by

Yang et al.[393] in CoFe/NiO/MgO/CoFe MTJs. Their initial interpretation is that the effects are

due to resonant tunneling states. However, their subsequent analysis [395] has investigated that

probably spin canting at the ferromagnetic/antiferromagnetic (CoFe/NiO) interface is the reason

for the TMR sign reversal. It is possible that partial Mn oxidation at the MRG/MgO might result

in antiferromagnetic MnO. However, since MnO has low Neel temperature (≈ 120K), this would

imply that canting effect should disappear in the temperature range from 10 K to 300 K. No sharp

decrease or abrupt behaviour change is observed in Fig. (6.21) and, therefore, spin canting is an

unlikely explanation in our MTJs.

*It has to be stressed again that this sample is slightly different than the sample measured before with
Tanneal = 350 ◦C. Yet, the latter exhibited plateau at positive bias (see Fig. (6.11) which is a weaker manifestation
of the same effect.
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Chapter 6. Magnetic tunnel junctions with the compensated half-metallic ferrimagnet Mn2RuxGa

Figure 6.21: Three dimensional applied bias-temperature-TMR dependence of a sample annealed at Tanneal = 325 ◦C.
Voltage step is ∆U = 1mV, temperature step is ∆T = 5K.

6.5 Reasons for a switch in the TMR sign a function of the ap-

plied bias

TMR-voltage dependence has been studied extensively in MTJs because the investigation of

the TMR(U) provides insight into the quality of the MTJs. The higher the half-maximum bias is,

the better the quality of the barrier is. Furthermore, the overall shape of the TMR(U) dependence

carries information about the tunneling processes through the barrier. It has been demonstrated in

some cases that the TMR might switch sign at different biases. Quantum well tunneling states,

interface tunneling probability modification, resonant tunneling state, and interface disorder are

some of the reasons which have been demonstrated to cause TMR(U) sign change[238, 70, 346,

344].

The first systematic investigation of TMR sign reversal has been done on Co/Au(t)/Al2O3/Ni80Fe20,

where tAu is varied from 0.1 nm to 1.2 nm. As the Au thickness increases, the TMR(U) curve

changes substantially*. The TMR(U) curves for different t are shown in Fig. (6.22). The zero

*This is the first observation of negative TMR. In a separate article, direct spin polarization has been measured by
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6.5. Reasons for a switch in the TMR sign a function of the applied bias

Figure 6.22: Quantum well states: TMR(U) curves on an Co/Au(t)/Al2O3/Ni80Fe20 MTJs. Panel (a)-t ≤ 0.3nm, panel
(b)-t ≥ 0.4nm. The diagram is after Moodera et al.[238].

bias TMR decreases, furthermore, the TMR(U) shows stronger reduction for U < 0V which cor-

responds to electrons tunneling towards the modified interface. The maximum value of the TMR

is still at close to zero bias for tAu < 0.5nm, however, for 0.6nm > tAu > 0.4nm, the TMR

switches sign at negative bias, however, for tAu > 0.6nm, the zero bias TMR is negative and the

sign change happens at positive bias. The maximum TMR is no longer at close to zero bias. The

effect has been theoretical predicted and is known as quantum-well tunneling [359]. The insertion

layer forms a quantum-well which modifies significantly the tunneling probabilities for the spin-

up and spin-down electrons. Only 0.5 nm of Au insertion results in 40-times decrease of the zero

bias TMR value! Similar QWS have been later demonstrated in NiFe/Ta2O5/Al2O3/NiFe[299],

Co/Cu/Al2O3/Co[197], Co/Ru/Al2O3/Co [196], Co/Cu/Al2O3/NiFe[402], and Fe/Cr/MgO/Fe[123].

The work of Yuasa et al.[402] demonstrated that the TMR shows oscillatory behaviour as a func-

tion of the insertion layer thickness. This indicates that the QWS effect might be similar in nature

to the RKKY coupling effect.

The chemical bonding between the ferromagnetic and the insulating barrier was demonstrated

to affect the tunneling probabilities for spin-up and spin-down by Teresa et al.[70]. They have

investigated MTJs with the structure Co/I/La0.7Sr0.3MnO3(LSMO) where the insulating barrier, I,

is picked among SrTiO3(STO), Ce0.69La0.31O1.845(CLO), and Al2O3(ALO). Different sign of the

TMR effect was measured for different insulators. It is well-established that the Co/ALO results

in positive spin polarization, but it is further confirmed that the LSMO/ALO tunneling spin polar-

ization is positive as well in Fig. (6.23 (c))*. However, if ALO is replaced with STO, the TMR

becomes negative (see Fig. (6.23 (a)). An additional barrier combination is cross-checked in or-

der to find out whether the Co/STO interface or the LSMO/STO interface is responsible for the

negative sign of the TMR effect. The composite Co/ALO/STO/LSMO MTJ structure exhibits pos-

superconducting tunneling spectrosopy Fe/Au/Al2O3/Al[236].
*The bare LSMO EF spin polarization has been demonstrated to be positive as well [264].
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Figure 6.23: TMR effect between Co and LSMO with different insulation layers. Panel (a) TMR with SrTiO3 barrier,
panel (b) - TMR with CeLaO barrier, panel (c) - TMR(U) with SrTiO3 barrier, panel (d) - TMR with Al2O3 barrier,
panel (e) - TMR with Al2O3/SrTiO3 barrier, and panel (e) - TMR(U) dependence with Al2O3/SrTiO3 barrier. Please
note that panel (a) demonstrates negative TMR, whereas panel (e) - positive one. The plots are after de Teresa et al.[70].

itive TMR effect (panel (d)) and, therefore, the Co/AlO and the LSMO/STO interfaces have both

positive spin polarization. From the last observation, it follows that the Co/STO interface is re-

sponsible for the negative TMR effect in the Co/STO/LSMO MTJ structure (panel (a)). Therefore,

the Co/STO interface spin polarization is negative. The latter means that the chemical bonding

between the ferromagnet and the barrier has significant effect on the tunneling probabilities for the

spin-up and the spin-down electrons. The negative tunneling polarization of the Co/STO interface

can be explained as preferential tunneling of the d electrons and the latter have negative EF spin

polarization with respect to the overall magnetization. It is interesting to comment on the different

TMR(U) behaviour for the STO and ALO/STO barriers (see Fig. (6.23) panel (c) and (f), respec-

tively). The Fermi level of LSMO is situated above the Fermi level of Co for negative bias, and

this is the other way around for positive bias. The TMR(U) reaches maximum negative TMR at

U ≈ −0.4V which corresponds well to the maximum in the spin-down DOS for Co. For higher

negative bias, the difference between the spin-down DOS and spin-up DOS is lower and, hence,

the "effective" negative spin polarization is decreased. The situation is different for U > 0V, then

the electrons tunnel from the Fermi level of the Co electrode towards the free states above the EF
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in LSMO. At high positive bias (U = 0.7V), the contribution from the spin-up and the spin-down

DOS of the Co d-bands is equal and the TMR crosses zero. The TMR grows positive for U > 0.7V

because the spin-up DOS is higher than the spin-down DOS for deeper levels in the Co valence

band. Furthermore, the TMR(U) of a Co/ALO/STO/LSMO demonstrates positive TMR for both

positive and negative bias, as is usually the case. Both the Co/ALO and the LSMO/STOinterfaces

have preferential transmission of s-electrons which have positive spin polarization.

Figure 6.24: TMR of Ni/NiO/Co tunnel junctions. Panel (a)-demonstrates classical TMR(U) behaviour with gradual
symmetric decrease as the bias is raised. Panel (b)-TMR(U) for a junction with a resonant level located approximately
35 meV above the Fermi level. The TMR is positive close to zero bias, however, it changes sign when the Fermi level of
the left electrode is raised to the point of the resonant level. The schematic with the Fermi levels of the two electrodes
and the position of the localized state is presented on the right-hand side of the panel. Panel (c)-TMR(U) of a junction
with a narrow localized state at the Fermi level. Panel (d)-statistical distribution of the TMR effect. The distribution
peaks at small positive TMR values. The samples are measured at 4 K. The plots are after Tsymbal et al.[346].

Another possibility for TMR sign reversal is the effect of resonant tunneling via localized states

in the barrier. Tsymbal et al.[346] discuss the effect in the Ni/NiO/Co structure which has been

electrodeposited in nanoporous polyester track-etched membranes. Large number of junctions have

been investigated in order to understand the statistical spread in the zero-bias TMR value. TMR

sign reversal is observed at various voltages because due to impurities (or incomplete oxidation of

the NiO), there are different energy levels within the band gap of the insulating barrier. Tunneling

through these levels might change the TMR sign at some energies. Furthermore, the distribution

of these energy levels depends significantly on the deposition conditions and the related formation

of paramagnetic defects into the barrier. The sign reversal of the TMR is explained by assisted

tunneling through an impurity state in the insulator. The conductance in the case of localized states
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is represented by

G(E) =
4e2

h
Γ1Γ2

(E−Ei)2 +(Γ1 +Γ2)2 , (6.11)

where Ei is the energy of the localized state, and Γ1/h̄ and Γ2/h̄ are the tunneling rates of an

electron between the impurity level and the left and right ferromagnetic electrodes, respectively.

The leak rates depend on the density of states of the two electrodes and the position of the impurity

within the insulator: Γ1 ∝ ρ1 exp(−2kx) and Γ2 ∝ ρ2 exp(−2k(d−x)), where k is the decay rate of

the wave-function. It is assumed that the impurity state is located at x from the left electrode, and

d is the barrier thickness. For magnetic electrodes, the respective rates are spin-dependent: Γ
↑
1 ∝

ρ
↑
1 exp(−2kx), Γ

↓
1 ∝ ρ

↓
1 exp(−2kx)), etc.*. For tunneling far above, or far below the impurity states

|E−Ei|>> (Γ1 +Γ2), then the conductance is G j,l ∝ ρ
j

1ρ l
2, where j, and l are picked from ↑ and

↓. However, close to resonance |E−Ei| ≈ 0, and then the conductance is G ∝ Γ1Γ2/(Γ1 +Γ2)
2.

If the impurity state is located non-symmetrically in the barrier |x| > |x−d|, then Γ1 << Γ2, and,

hence, G ∝ Γ1/Γ2 ∝ ρ1/ρ2. Respectively, for asymmetry towards the left electrode |x| < |x− d|:
G ∝ Γ2/Γ1 ∝ ρ2/ρ1. It is assumed for definiteness that Γ1 <<Γ2. Then the resonant spin dependent

conductances and the parallel and antiparallel state conductances are calculated like:

Gres
AP ∝ G↑↓+G↓↑ ∝

ρ
↑
1

ρ
↓
2

+
ρ
↓
1

ρ
↑
2

∝
ρ
↑
1 ρ
↑
2 +ρ

↓
1 ρ
↓
2

ρ
↓
1 ρ
↑
2

, (6.12)

Gres
P ∝ G↑↑+G↓↓ ∝

ρ
↑
1

ρ
↑
2

+
ρ
↓
1

ρ
↓
2

∝
ρ
↑
1 ρ
↓
2 +ρ

↓
1 ρ
↑
2

ρ
↓
1 ρ
↑
2

. (6.13)

The numerators in the final expressions above have to be carefully noticed. The role of the antipar-

allel and parallel conductances are inverted under resonant conditions: Gres
AP ∝ GP, and Gres

P ∝ GAP.

Therefore, the resonant TMRres is inverted with respect to the usual, off-resonant, TMR:

TMRres =−TMR. (6.14)

When the resonant states are far away from the Fermi level, the TMR is high and positive as

expected (see Fig. 6.24 (a)). It demonstrates the usual gradual symmetric decrease for positive and

negative bias as well. If there are resonant scattering levels close above the Fermi level, the zero bias

TMR is positive but switches to negative at small bias when the Fermi level of one of the electrodes

is raised to the impurity level (Fig. (6.24) (b)). If the bias is increased further, tunneling through

the resonant states decreases its contribution as more electrons tunnel through insulator bandgap

region, which is free from defects. If the resonant level is positioned at the Fermi level and its width

is small, then a sharp, narrow TMR negative switch is observed (Fig. (6.24) (c)). The authors have

*The situation becomes more complicated if the wave-function decay rates are spin-dependent as well.
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Figure 6.25: Panel (a)-TMR(U) dependence of a standard MgO-based MTJ. The stack has been exposed to atmosphere
just after the MgO deposition (solid circles). The standard symmetric TMR(U) is recovered when the air-exposed MTJ
is pre-etched with Ar-plasma before the deposition of the top ferromagnetic contact (empty circles). Similar result on
intentionally C-contaminated MTJ interfaces has been reported before [343]. Panel (b)-TMR(U) dependence of an
MTJ with a composite MgO/Alq3(t) tunnel barrier. Three different thicknesses of the organic barrier are presented.
The graph is after H. Tokuc[344].

analyzed many devices and it has been concluded that the different zero bias TMR and TMR(U)

is due to statistical distribution of disorder and the spread in the resonant levels distribution among

the devices (Fig. (6.24) (d)). It has been demonstrated before that similar devices with larger pillar

size show almost zero TMR due to the statistical averaging of the disorder[325].

Finally, Tokuc[344] has investigated the effect of composite barrier deposition or the exposure

to atmosphere of MgO barrier on the TMR(U). Half MTJs with the structure Si/ SiO2/ Ta(5)/-

Ru(30)/ Ta(5)/ NiFe(5)/ IrMn(10)/ CoFeB(3)/ MgO(2) have been deposited by sputtering, then the

vacuum is broken and the stack is transferred to another deposition chamber where a top electrode

Alq3(t)/ Co(10)/ Cu(5) is deposited in a separate thermal evaporation system. TMR switches sign

even for t = 0 when the MgO barrier is not pre-etched with low energy Ar plasma before the

deposition of the top ferromagnet but this time at positive bias (see Fig. (6.25)). Positive bias corre-

sponds to tunneling from the bottom towards the top ferromagnetic electrode in this case. The same

effect has been observed as well in MTJs with purposefully carbon-contaminated interfaces[343].

The latter implies that the top MgO interface degradation due to atmosphere exposure is responsible

for the TMR(U) behaviour. MgO is known to adsord readily water molecules. If the air-exposed

MgO is Ar-etched in situ, the TMR(U) is symmetric and shows no indication of sign change up

to 0.7 V. Furthermore, if organic Alq3 barrier is deposited on top of a pre-cleaned MgO and the

top ferromagnetic layer is deposited afterwards, the TMR switch is observed again. The thicker the

Alq3 barrier is, the stronger the TMR decrease is. The decrease in the zero-bias TMR correlates

with the decrease of the zero-TMR point towards U = 0V. Furthermore, it should be noted that the

peak of the TMR effect moves towards higher negative voltage. Similar behaviour is demonstrated
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in MTJs with MgO/Znq2 insulator. These observations show that composite barrier structures have

detrimental effect on the overall TMR behaviour. This might be related as well to spin-filtering

through the organic barrier because both positive and negative TMR values have been reported

before.

6.6 Tunneling magnetoresistance in MTJs with a zero magneti-

zation Mn2RuxGa electrode

The TMR effect at small bias is determined by the spin polarization at the Fermi levels of the

two ferromagnetic electrodes. Furthermore, it is generally accepted in the spin electronic commu-

nity that the spin polarization P is linearly dependent on the magnetization M[224]. The latter is

true for classical 3d ferromagnets which exhibit Stoner ferromagnetism. However, the Fermi level

spin polarization is in effect a differential property of the density of states whereas the magneti-

zation is in reality an integrated property of the spin-split density of states. Hence, such general

statement (P(T ) ∼ M(T )) should not be always true. Ferrimagnetic compositions with conve-

niently tuned compensation temperatures provide excellent testing opportunity that this accepted

correlation for many materials cannot be regarded as a strict dependence for all magnetically or-

dered compositions. It has been already discussed that the inversion in the AHE signal is a strong

indication that the spin polarization of the MRG changes its sign from positive (below Tcomp) to

negative (above Tcomp) at the compensation temperature (see Fig. (6.7) and Fig. (6.8))*. In this

section, TMR data on MTJs with a compensated Mn2Ru0.8Ga (Tcomp ≈ 200K) bottom electrode

is presented.
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Figure 6.26: TMR of an MTJ with Mn2Ru0.8Ga at applied bias U 10mV . Panel(a) - TMR measured at 10 K. Panel(b)
- TMR measured at 300 K. Note that TMR switches sign as a function of temperature at close to zero bias.

*The positive direction is the orientation of the MRG overall magnetization.
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First of all, two magnetoresistance scans at 300 K and 10 K at low applied bias (U = 10mV)

are presented in Fig. (6.26). The MTJ chip is annealed at 325 ◦C and the size of the measured

junctions is 6 µm × 6 µm. The TMR switches sign at low bias as a function of temperature unlike

the previously extensively discussed sample. In order to confirm that the TMR switch is due to

compensation of the MRG electrode, the divergence of the MRG coercive field must be observed.

Additionally, figure (6.27) represents three TMR curves very close to the compensation temperature

of the MRG (T = 165 K, 200 K, 235 K). The obtained TMR ratios are 4.5 %, 1.75 %, and−3.5 %,

respectively. It has to be noticed that the maximum applied magnetic field is µ0H = 14T. The

coercivity of MRG is above 10 T at T = 200K, and, hence, this can be assumed to be very close

to the compensation temperature. Furthermore, the fact that the MRG coercivity decreases both

below and above 200 K is a clear indication that this is the Tcomp for this particular MRG bottom

electrode. The TMR has the same sign at T = 165K and T = 200K which means that strictly

speaking Tcomp is slightly above 200 K. Two more things have to be noted in the shape of these

TMR scans. First, the MRG switch is not abrupt. It is evidenced by the fact that the AP to P state

switch is not as rectangular as it has been in the previously investigated set of MTJs (Fig. (6.10)).

The latter suggests that the MRG electrode does not have a well-defined PMA in these MTJs.

Second, there is an appreciable high-field background after the MRG coercive field in the TMR

loops. Since the anisotropy field of the CoFe cannot be above 2 T, the non-linear background is

most likely related to an in-plane magnetization component of the MRG electrode. As the applied

field is increased well above the coercivity of MRG, its small in-plane magnetization component is

rotated gradually out-of-plane towards the vertical direction. The RP of the MTJ decreases as the

overall MRG magnetization gets more aligned with the CoFe magnetization. The latter effect is

in agreement with the prediction of Slonchewski that the TMR effect depends on the cosine of the

angle between the magnetization orientations of the two ferromagnetic electrodes (see Eq. (1.45)

and Fig. (1.11)). At T = 200K ≈ Tcomp, the coercivity of the CoFe increases significantly as well.

It is related to exchange coupling between the MRG electrode and the CoFe electrode through the

MgO barrier*. Furthermore, there is an apparent decrease of the TMR when a full loop is recorded

at T = 200K ≈ Tcomp. The MRG electrode is in a multi-domain state when full TMR scan is

performed very close to the compensation temperature. This is attributed to small Ru concentra-

tion variation within a single MTJ and anisotropy angle spread due to the mosaicity of the MRG

film. There is inevitable small, lateral Ru concentration difference within a single tunnel junction.

This spread means that the different grains of the MRG electrode have tight distribution of their

compensation temperatures. The spread is not very important for temperature very far from Tcomp

but it is critical close to Tcomp. This would mean that very close to Tcomp some of the grains would

*Exchange coupling has been achieved with MRG in MRG/Hf/CoFe stack but it is not discussed in this thesis. The
exchange coupling sign has been determined to be independent of the compensation temperature and not due to direct
dipole-dipole interaction.
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Figure 6.27: TMR of an MTJ with Mn2Ru0.8Ga close to compensation at an applied bias U = 10mV. The black
curve is recorded just below compensation (165 K), the red curve-at compensation (200 K), and the blue curve just
above compensation (235 K). Note that the maximum applied field is µ0H = 14T.

have already passed the compensation point. The grains which have undergone compensation and

these which have not will then contribute spin polarization of opposite signs and, hence, the cumu-

lative tunneling spin polarization will be decreased. This will lead to a reduced TMR value. The

anisotropy variation within the MRG of a single MTJ has a similar detrimental effect. Since the

MRG coercivity diverges, the magnetic field can no longer align the magnetization of the MRG

and the CoFe electrode. This will mean that the angle (Θcomp) between the M(MRG) and M(CoFe)

will be significantly higher close to compensation that it is far away from compensation (Θaway).

Hence, cos(Θcomp) < cos(Θaway) and following the Slonchewski’s rule this leads to lower TMR.

The variation of the anisotropy due to mosaicity of the MRG exacerbates even further the situation

because the anisotropy axes form a cone and the injection happens at different Θ’s.

The discussion does not provide so far an unambiguous prove that there is a non-zero spin po-

larization at the very Tcomp, it only points out that when full TMR loops are measured above and

below the compensation temperature of MRG, the TMR sign switches. The TMR reversal is a

strong indication that the Fermi level spin polarization is determined by one of the Mn sublattices

rather than by the overall MRG moment because the latter stays aligned with the magnetic field in

these high-field scans. When full loops are performed and the applied field is higher than the coer-

cive field of MRG (µ0Happ > µ0HMRG
c ), the MRG magnetization must follow the field orientation.

This is because negative magnetic moment with respect to the magnetic field is unstable equilib-

rium position of the Zeeman magnetic energy. Therefore, the two Mn sublattices must inverse their

magnetic moments in order to keep the overall magnetization positive, and because the Fermi level
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Figure 6.28: TMR minor loops measured from 235 K to 190 K at interval ∆T = 5K. The MTJ is saturated at 235 K
in 14 T. The field sweep direction is positive→negative→positive, and, hence, the TMR effect is negative. The minor
loop at 190 K is kept as it is, while each of the others is offset downwards by −1 % with respect to the previous loop.
The compensation temperature is indicated with a green asterisk.

spin polarization is governed by one of the Mn sublattices, the TMR changes sign. Similar change

in the TMR sign has been demonstrated in the ferrimagnetic composition GdxCo1−x by Kaiser et al.

[156]. They attribute that to higher contribution of the Co sublattice towards the Fermi level spin

polarization. However, there is no clear demonstration of the TMR at Tcomp in their work. In order

to demonstrate non-zero spin polarization at the compensation temperature in our MTJs, minor

loops in a field range much smaller than the MRG coercivity have to be measured. In this way, the

CoFe electrode switches but the MRG magnetic state is left unperturbed. As it is discussed above,

this means that the MRG magnetization goes through zero without having the added complexity

of a multi-domain state. In order to do that, the temperature range from 235 K to 190 K has been

chosen. The MTJ has been saturated in µ0H = 14T at T = 235K, then minor loops have been

acquired in the direction 0.5T → −0.5T → 0.5T at each 5 K (see Fig. (6.28)).

The TMR effect is negative, as expected, because the MRG is saturated above its compensation

temperature. The ratio is −3.5 % at 235 K and −4.1 % at 190 K. The critical observation is that

the TMR effect does not change sign in the temperature range when minor loops are performed.

It has to be noticed that the TMR flips sign in the same temperature range when major loops

are performed (see Fig. (6.27)). Furthermore, no sharp change in the TMR effect is observed as

the MTJ is passed through the MRG compensation. The latter is a confirmation that the apparent

decrease in the full TMR loop at Tcomp is due to the multi-domain state supported by small sample

imperfections. When the applied field µ0Happ < µ0HMRG
c , the magnetization flips from positive to
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negative because this is no longer a non-stable equilibrium configuration which has been evidenced

before in the M(T ) scan (see Fig. (6.8)). However, because the spin polarities on the two Mn

sublattices are not inversed, the Fermi level spin polarization does not change sign at all. This is

exactly confirmed in the minor loop scans. In order to further clarify the different behaviour of the

MTJ when full and minor loops are performed, a schematic diagram of the overall magnetization,

Fermi level spin polarization, and Mn sublattice magnetic moments is presented in Fig. (6.29) as a

function of temperature. It is assumed that the MRG is saturated at the lowest possible temperature

on both panels. The Fermi level spin polarization is determined by the imbalance of Mn 4c and Mn

4a DOS.

The high coercivity, which is supported by the very low magnetization, of the MRG electrode

should imply that the field immunity of our MTJs is rather high. TMR temperature dependence

scans are performed through compensation in order to confirm that. First, the MTJ is saturated at

T = 10K in µ0H = 14T, set in antiparallel configuration at µ0H = −0.5T, and the RAP(T )

is measured from 10 K to 300 K. Then the sample is cooled down again, saturated again at 10 K

in µ0H = −14T and set in parallel configuration at µ0H = −0.5T, and the RP(T ) dependence

is measured from 10 K to 300 K. In this way, the TMR(T ) dependence is calculated (Fig. (6.30)

(a)-black curve). As expected the TMR has positive sign and no sharp change is observed at Tcomp.

The applied magnetic field is always below the coercive field of the MRG in this temperature range

(−0.5T < µ0HMRG
c ). The TMR values range from 9 % (at T = 10K) to 2 % (at T = 300K).

Furthermore, a similar measurement procedure has been applied but this time an MTJ has been

saturated in antiparallel or parallel state at T = 300K, above the compensation temperature. The

same smooth TMR(T ) behaviour is observed through Tcomp but with negative TMR sign, which is

expected (Fig. (6.30) (a)-red curve). It should be pointed out that these MRG-compensated MTJs

are generally of lower quality: the resistance is rather low and the raw current-voltage charac-

teristics indicates that there is a significant non-tunneling contribution. These MTJs have been

probably partially shorted* and this leads to an appreciable reduction of the TMR. The TMR de-

creases approximately 4 times from 10 K to 300 K. The low resistance state (RP for saturation

below Tcomp, and RAP for saturation above Tcomp) demonstrates again significant temperature de-

crease which indicates incoherent and defect-mediated tunneling (see Fig. (6.30) (b)). This along

with the non-ideal PMA of the MRG are the main reasons why the measured TMR values are

far below the expected results for a highly spin polarized composition. The sample imperfections

cannot, however, undermine the fact that TMR effect has been demonstrated with a strictly zero

moment ferrimagnet.

The demonstrated high-field stability of the MTJ state means that MRG has the potential to be

used as an electrode in future MRAM-type devices, furthermore, there would be negligible cross-

*Or they had significant hopping conductance.
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Figure 6.29: Schematic representation of the MRG DOS behaviour when it is passed through the compensation Tcomp.
Panel(a)-when the applied field is much higher than the MRG coercive field. Panel(b)-when the applied field is lower
than the MRG coercive field. It is assumed that MRG is saturated at the lowest possible temperature in both cases. The
black curves represent the MRG magnetization in arbitrary units. The magenta arrows indicate the Fermi level spin
polarization orientation with respect to the applied field. The spin-split DOS represent the Mn sublattice magnetization
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209



Chapter 6. Magnetic tunnel junctions with the compensated half-metallic ferrimagnet Mn2RuxGa

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0- 1 0
- 8
- 6
- 4
- 2
0
2
4
6
8

1 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 01 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0

� 0 H  =  - 0 . 5  T

( b )
 

 

TM
R (

%)

T  ( K )

 T M R ( T )  s a t u r a t e d  a t  1 0  K
 T M R ( T )  s a t u r a t e d  a t  3 0 0  K

( a )

� 0 H  =  - 0 . 5  T

 

 

R (
kΩ

)

T  ( K )

 R A P ( T )  -  s a t u r a t e d  a t  1 0  K
 R P ( T )  -  s a t u r a t e d  a t  1 0  K
 R A P ( T )  -  s a t u r a t e d  a t  3 0 0  K
 R P ( T )  -  s a t u r a t e d  a t  3 0 0  K
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talk between adjacent bits due to the low stray field from MRG.

6.7 Analysis of the barrier properties

The observation of high (40 %) TMR effect with MRG is very motivating. However, the MTJs

exhibit characteristics which are not compatible with standard MTJs. There are two particularly

interesting observations:

• The strong zero bias TMR decrease as a function of temperature

• TMR switching sign as a function of the applied bias

The strong zero-bias TMR reduction might be attributed to resonant scattering through impurities,

multi-step tunneling, or magnon-excitation at the ferro-(ferri-)mangetic/MgO interfaces. The anal-

ysis will demonstrate that the most likely mechanism for the strong zero-bias TMR decrease is

through resonant scattering. The TMR sign switching might be related to quantum-well formation

in the Al dusting layer, modification of the electrode/barrier spins transmission probabilities, reso-

nant scattering or density of states structure of the MRG electrode. The analysis will demonstrate

that the sign change is probably related to the density of states structure of the MRG electrode. The

analysis has been based mainly on the RAP(T ), RP(T ), TMR(T ), and the differential spectroscopy

of dI/dV , d2I/dV 2.

First, the possibility of a multistep tunneling regime through the barrier is discussed. It has

been proposed by Shang et al.[298] that the temperature decrease of the zero-bias TMR effect can

be modelled successfully by the surface magnetization temperature dependence and the existence

of multi-step tunneling process. A multi-step tunneling is based on a previous model of incoherent
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tunneling through amorphous barrier by Glazman and Matveev [113]. The overall conductance of

an MTJ depends on the elastic magneto-conductance and the spin-independent conductance GSI:

G(θ) = GT (1+P1P2 cos(θ))+GSI, (6.15)

where θ = 0° for parallel and θ = 180° for antiparallel state of an MTJ. The term GT

represents elastic direct tunneling and varies slightly with temperature due to the altered Fermi

distribution broadening

GT = G0CT/sin(CT ), (6.16)

where G0 is constant and C = 1.387× 10−4d/
√

φ : φ is the average barrier height in eV, and

d is the barrier width in Å. For d (≈15 Å), and φ (≈ 1eV), it can be shown that GT is relatively

temperature independent. From Eq. (6.15), it can be easily noticed that

G(0°) = GT (1+P1P2)+GSI (6.17)

G(180°) = GT (1−P1P2)+GSI (6.18)

G(0°)+G(180°) = 2GSI +2GT (6.19)

The spin-independent GSI conductance is then equal to

GSI = 〈G〉−GT, (6.20)

where 〈G〉 is the averaged conductance between the antiparallel and the parallel configurations. GT

is assumed to be a constant. GSI = 0.5(G(0°)+G(180°)) = 0.5(1/RAP+1/RP) is assumed to be

an average of the d.c. AP and P conductances*. The spin-independent conductance should follow

a temperature power law

GSI = aT γ +b, (6.21)

where γ determines the average number of tunneling steps: γ(N) = N− [2/(N + 1)]. The GSI is

fitted for the sample annealed at 350 ◦C and it is extracted that the average number of tunneling steps

at U = 10mV is N(10mV) = 2.2 , whereas the average number of tunneling steps at U = −1V

is N(−1V) = 2.8 (see Fig. (6.31)). It is obvious that the multistep tunneling is not the reason for

our strong zero-bias TMR reduction because the higher number of tunneling steps at U = −1V

does not correlate with the significantly more temperature robust TMR(−1V). Furthermore, this

proves that the tunneling process in these MTJs can not be regarded as a pure incoherent tunneling.

*This assumption is made by Shang et al. [298]. Strictly speaking, G should be the differential conductance.
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Figure 6.31: Spin independent conductance GSI as a function of T for a chip annealed at 350 ◦C, the same as the one
in Fig. (6.10) . Panel (a)-applied bias U = 10mV and extracted N(10mV) = 2.2, Panel (b)-applied bias U = −1V
and extracted N(−1V) = 2.8.

There is, however, an interesting correlation which has been uncovered. If the data from

Fig. (6.21) is fitted to the same model, then it is possible to extract the bias dependence of the

average tunneling steps N(U) (Fig. 6.32). The dependence demonstrates that the average tunneling

steps at negative bias are more than the steps at positive bias. This is logical, since it is expected

that the MRG-Al-MgO interface will be more disordered than the MgO-CoFe one. The focus

moves to a more in-depth analysis of the 3D data plot from Fig. (6.21). First of all, the same anal-

ysis procedure for the spin-independent conductance, GSI(T ), is applied. This time, however, two

separate definitions of the conductance are used: direct conductance (Gdc
SI) and differential conduc-

tance (Gac
SI). Strictly speaking, Shang’s model is an extension of an earlier model by Glazman and

Matveev[113], where actually the differential conductance is analyzed. The two definitions should

match close to zero-bias where the I-V characteristic are close to linear and, hence, the slope should

be constant. However, Fig. (6.15) shows that these MTJs demonstrate pronounced cusp anomalies.

Gac
SI ≈ Gdc

SI for small applied biases, however, they differ significantly at higher bias as is apparent

in Fig. (6.32), where the number of tunneling steps is practically equal for the two curves at zero

bias. First of all, Nac and Ndc are significantly higher at negative bias than they are at positive bias.

That is somewhat expected because the MRG-Al-MgO interface is more disordered. Second, there

are two broad peaks in the Nac(U) dependence at U ≈ ±75mV. This is most probably related to

low lying inelastic tunneling contribution (possibly due to resonant tunneling through diffused Mn

atoms). It is important to point out that the TMR dip at U = 0.3V in Fig. (6.21) does not show

up in the Nac(U) dependence. Nac(U) is derived from the spin-independent differential conduc-

tance, hence, the features should be more sensitive to non-magnetic excitation. This implies that

the TMR(0.3 V) dip is attributable to spin scattering process. It is important to mention that the

Nac(U) dependence cannot be obtained by direct differentiation of the Ndc(U).
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Figure 6.32: Number of tunneling steps determined for the chip annealed at 325 ◦C(see Fig. (6.21)). Panel (a)-
determined from Gdc

SI , panel (b)-determined from Gac
SI. Note the broad peaks at ≈ ±75 mV indicated with blue arrows.

There is a famous critism expressed by Drewello et al. [79] about the applicability of this model

for coherent tunneling. In this case, RP(T ) is constant and then the whole temperature evolution

of the spin-independent conductance is determined by RAP(T ). The latter might lead to unrealisti-

cally high values of tunneling steps for coherent tunneling in high quality CoFe/MgO/CoFe MTJs.

Therefore, this model is strictly not applicable to coherent tunneling. However, the RP(T ) of the

MRG MTJs demonstrates that the transport in these devices is incoherent, hence, the presented

model could be relevant in our case.

If it is started from the Eq. (6.15), the definitions of the tunneling magnetoresistance* and the

parallel resistance are

TMR =
GP−GAP

GP
, (6.22)

=
2P1P2

1+P1P2 +GSI/GT
, (6.23)

(6.24)

RP =
1

GT

1
1+P1P2 +GSI/GT

, (6.25)

which demonstrates that in the presence of significant spin-independent conductance the TMR

ratio may significantly deviate from the Julliere’s prediction. Additionally, the difference G(0°)−
G(180°) is actually independent of the spin-indepedent conductance GSI:

∆G = 2GTP1P2, (6.26)

which means that it is more relevant to analyze the behaviour of ∆G(T ) instead of the behaviour

of TMR(T ). The latter might be significantly affected by the spin-independent conductance. Fur-

*The pessimistic definition of the TMR is used here, as it is by Julliere, as well [154].
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thermore, the spin polarization in standard ferromagnetic tunnel junctions is assumed to follow the

surface magnetization temperature dependence (Bloch’s law)

P(T ) = P(0)(1−αT 3/2), (6.27)

where the power 3/2 is related to the dispersion of ferromagnetic spin-waves, and α is known as the

surface exchange stiffness. The latter is significantly higher in thin films than it is in bulk samples.

Of course, there is the problem that the same law cannot be applied to the MRG and, therefore, the

following assumption is made:

PCoFe(T ) = PCoFe(0)(1−αCoFeT 3/2), (6.28)

PMG(T ) = PMRG(0)(1−αMRGT β ), (6.29)

where αCoFe, αMRG and β are kept as free fitting parameters. Attempt has been made to fit the

temperature dependence of the TMR’s with β = 3/2. The fitting procedure can not converge with

such parameters.

∆G(T ) = 2GT(T )PCoFe(T )PMRG(T ) (6.30)

∆G(10K) = 2GT(10K)PCoFe(10K)PMRG(10K) (6.31)

The two equations above are normalized in order to get rid of the PCoFe(0), PMRG(0), and the GT

constants. Then
∆G(T )

∆G(10K)
=

1−αCoFeT 3/2

1−αCoFe(10K)3/2
1−αMRGT β

1−αMRG(10K)β
(6.32)

Using that expression, it is possible to fit the modified TMR dependence and extract the parameters

for U = 10mV and U = −1V *.

The fitted parameters for the CoFe electrode do not match well with previously published data

at low bias[298]. An unusual behaviour is that αCoFe(−1V) < αCoFe(10mV). This means that

the CoFe spin polarization is more robust at high negative bias than it is at low bias, which is

not true. There is no ground for comparison for the MRG parameters. The main point that must

be mentioned is that βMRG does not obey the behaviour of a ferromagnet. Also, if the extracted

parameters from the fits are used, it can be calculated that actually the MRG spin polarization

*One might be tempted to leave the factor 3/2 for the CoFe as a free fitting parameter as well. However, it can
be shown that this is an ill-defined computational problem. The temperature dependences for the MRG and CoFe are
functionally equivalent, then the fitting algorithm will converge to two nonphysical results, which depend on the initial
conditions. If the initial guesses for the MRG and CoFe parameters are close, the fitting converges to an equal value for
the two electrodes. This is obviously not possible. If the initial guesses for the parameters are significantly different,
then the algorithm converges by "placing" the whole temperature dependence on one of the electrodes and leaving the
other one essentially temperature independent. Obviously, this is not a realistic physical situation, too.
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Figure 6.33: Fitting of the normalized TMR dependence following the SNJM model[298] along with the extracted
parameters. Panel (a)-U = 10mV, Panel (b)-U = −1V.

decreases more with temperature. For instance, PMRG(300K)/PMRG(10K) ≈ 0.76 for U = −1V

whereas the same ratio is≈ 0.40 for U = 10mV. However, this model can not distinguish between

PMRG(T ) and barrier imperfections which might have similar detrimental effect. Another important

criticism towards the model is that the extracted surface exchange stiffness parameters (α) cannot

be determined by another independent technique. These values might only be compared to results

by other authors. The question of the MRG spin polarization temperature dependence is an open

one. Anomalous Hall Effect demonstrates constant spontaneous Hall angle in the range from 10 K

to 400 K[340], however, this is not a direct proof. It has been shown by Betto et al.[27] that the

moment on the Mn 4c has linear decrease with temperature, whereas the moment on the Mn 4a

site stays relatively constant. Because the EF is mainly determined by the Mn 4c, it is possible that

the 4c sublattice magnetization decrease might affect the PMRG(T ). The latter dependence has not

been investigated. In fact, the only technique which can investigate proper voltage and temperature

dependence of spin polarization with good Fermi level resolution is SP-STM (see Chapter (1)).

Another possibility is that the low bias TMR decrease is due to magnon excitation at the

ferromagnetic-insulator interface. The approach is developed by Zhang[409] and extended by

Drewello[79]. The essence is fitting of the zero bias dip anomaly often observed in MTJs. The

model assumes that there is magnon excitation cut-off energy Ec. The TMR(T , U) dependence at

low temperature and low bias is

TMR(0,U) = TMR(0,0)−Q
SeV
Em

RAP(0,0)
RP(0,0)

(
1
ζ
−ζ

)
, (6.33)

where TMR(0, 0), RP(0,0), and RAP(0,0) are TMR ratio, parallel and antiparallel resistance, re-

spectively, at low temperature and low bias. The probability Q for a magnon to be involved in the

tunneling process is left as a free fitting parameter. The spin parameter is S, and Em is determined
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by both the spin S and the Curie temperature TC: Em = 3kBTC/(S+1). * It can be seen in Eq. (6.33)

that the magnon excitation probability Q is scaled by S/Em. Hence, these parameters do not affect

the temperature dependence but only the value of Q. Furthermore, it is beneficial to use the whole

configuration QS/Em as a free fitting parameter. The parameter ζ = 2ρAPρP/(ρ
2
AP+ρ2

P) is the ratio

of the products of density of states in the parallel and antiparallel state. It can assumed that this is

equal to the ratio of the current densities or of the resistances ζ = jAP(0,0)
jP(0,0)

= RP(0,0)
RAP(0,0)

, therefore, it

is easy to notice that in a low bias approximation the TMR(0, U) is essentially a linear function of

the applied bias:

TMR(0,U) = TMR(0,0)−Q
SeU
Em

RAP(0,0)
RP(0,0)

(
RAP(0,0)
RP(0,0)

− RP(0,0)
RAP(0,0)

)
, (6.34)

TMR(0,U) = TMR(0,0)−Q
SeU
Em

RAP(0,0)−RP(0,0)
RP(0,0)

RAP(0,0)+RP(0,0)
RP(0,0)

, (6.35)

TMR(0,U) = TMR(0,0)
[

1−Q
SeU
Em

RAP(0,0)+RP(0,0)
RP(0,0)

]
. (6.36)

The low bias temperature dependence of the two resistance states can then be presented in the form

RP(T,0) = RP(0,0)
[

1+Qζ
2S
Em

kBT ln
(

kBT
Ec

)]−1

, (6.37)

RAP(T,0) = RAP(0,0)
[

1+Q
1
ζ

2S
Em

kBT ln
(

kBT
Ec

)]−1

. (6.38)

The combination of parameters QS/Em can be extracted from the TMR(0,U) and used to fit the

temperature scans RP(T,0) and RAP(T,0). Alternatively, it might be left as a fitting parameter

Rα = Rα(0,0)
[

1+βα ln
(

kBT
Ec

)]−1

, (6.39)

where α = (P,AP) refers to parallel and antiparallel configuration. Furthermore, βP = 2SQζ/Em

and βAP = 2SQ/(Emζ ). Then, each dependence Rα has two fitting parameters: βα and Ec.

An analysis by Schleicher et al.[291] identifies particular kinds of oxygen defects in the MgO

barrier by I-V characteristics and their temperature dependence. Oxygen defects and off-stoichiometry

is expected in the MgO barrier of our devices because the electronegativity of the Al dusting layer

is higher than the electronegativity of the Mg. The I(V ) characteristics are compared along the

temperature axis. The essence of the analysis is to compare adjacent I(V ) curve at two close tem-

*The model is usually applied to MTJs with the same ferromagnetic electrodes. This is not our case. If MRG is
assumed then S = 5/2 and TC = 550K.
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(a) GAP
rel (b) GP

rel

Figure 6.34: Grel in the antiparallel (a) and parallel (b) configuration, respectively. Features, which are due to noise in
the data are indicated with black arrows.

peratures in order to uncover thermally excited defects. Their plot presents Irel:

Irel =
I(T +∆T )

I(T )
−1, (6.40)

where ∆T = 5K in our measurements, and I(T ) is an I-V for each particular temperature. In

our analysis, both the direct current relation Irel and the differential conductance relation Grel have

been calculated*. Only the data for the Grel for the antiparallel state (panel (a)) and the parallel

state (panel (b)) is presented in Fig. (6.34), because the two characteristics (Grel and Irel) exhibit

essentially the same temperature behaviour.

No features similar to the ones reported by Schleicher et al.[291] are present. This does not

necessarily mean that the barrier has no oxygen defects. It might imply that defects of other nature

are more prevalent than oxygen defects.

Another approach proposed by Rottländer et al.[281] aims to extract the barrier height inde-

pendently from the barrier thickness. In essence, the derivative of the logarithmic conductance is

plotted as a function of the voltage:

g(V ) =
dln[I(V )/V ]

dV
. (6.41)

There is approach which is similar but it traces the normalized difference between the I(V ) at a

particular T and the I(V ) curve at the lowest possible possible T (10 K in our case)

Î(V ) =
I(V,T )− I(V,Tlowest)

I(V,Tlowest)
, (6.42)

*The differential conductance relative temperature decrease is defined in the same fashion Grel =
G(T+∆T )

G(T ) −1.
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secondary broad cusps should be distinguished in the characteristic. It can be checked from this

analysis on our junctions that no such features are observed up to U = ±1V. The latter implies

that the barrier height in the MTJs is higher.

Another approach proposed by Schleicher et al. [291] aims to determine the barrier height by

observing the absolute and relative TMR decrease. Then, the plot for the absolute TMR thermal

decrease using the formula:

TMRabs(U,T ) =
(

TMR(U,T )
TMR(U,Tref)

−1
)
, (6.43)

where the Tref is the reference temperature which in our case is Tref = 10K. Unfortunately, the full

TMR decrease cannot be analyzed because of the TMR sign change. The latter leads to singularities

when ratio with a TMR close to zero value is calculated. The data for U > −0.1V is, therefore,

analyzed here. Significant drop in the TMRabs(U,T ) is used as an indication for the barrier height.

Furthermore, this potentially gives an opportunity to study its temperature dependence of the barrier

height. The absolute TMR decrease graph is presented in Fig. 6.35 . No dip feature is observed in

our voltage range (U < 1V). The graph demonstrates that the most pronounced TMR decrease

happens at close to zero bias in marked contrast with high quality MgO MTJs [291]. On the other

Figure 6.35: Absolute TMR decrease of the MTJ presented on Fig. (6.21). The bias range is −0.1V < U < 1V.

hand, the relative TMR decrease is:

TMRrel(U,T ) =
(

TMR(U,T +∆T )
TMR(U,T )

−1
)
. (6.44)

Graphs are presented for dT = 5K and dT = 10K in Fig. (6.36). The higher dT usually results

in more distinguishable features, however, this is not the case in these MTJs. Both plots have no
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(a) Relative TMR decrease for dT = 5K (b) Relative TMR decrease for dT = 10K

Figure 6.36: Relative TMR decrease for the MTJ presented on Fig. (6.21). Two features, which are caused by noise,
are indicated with black arrows.

obvious dip features in contrast to the ones observed in [291]. The latter two analyses confirm

that our MTJs does not exhibit magnetrotransport properties commensurate with other high quality

MgO-based MTJs. Finally, the same data set is used to calculate the asymmetry in the resis-

tance in Fig. 6.37. The antiparallel and the parallel resistance asymmetries are defined as follows:

R̃AP(V ) = (RAP(V )− RAP(−V ))× 100/RAP(V ) and R̃P(V ) = (RP(V )− RP(−V ))× 100/RP(V ).

Important observation in the R̃AP is the asymmetry decrease around U = 70mV at low tempera-

ture which gets smeared with temperature and is practically absent above 200 K. This implies that

the low lying localized resonant levels discussed before (Fig. (6.43)) in the barrier have different

leak rates towards the two electrodes. The latter confirms the assumption which has been made

earlier. The high bias (U = 1V) R̃AP has high value and of ≈ 20% and it is almost tempera-

ture independent. The parallel resistance state has its highest asymmetry at intermediate voltages

400 mV. This peak asymmetry is temperature smeared. Even more peculiar is the temperature

dependence of R̃P at U = 1V. The asymmetry is first negative at low temperatures (T < 100K)

and then positive at T > 200K. This is possibly related to disordered very thin oxide at one of the

interfaces which traps charges*. It is more probable to be at the MRG-Al-MgO interface. Inelastic

electron tunneling spectroscopy (IETS) is often used in order to find evidence for defects or par-

ticular excitations. For instance, CoFe magnon and MgO phonon excitations could be uncovered

by IETS. The technique has also been used in investigation of semiconducting structures, super-

conductors and tunnel junctions with organic molecules. The second derivative, d2I/dV 2, has to be

obtained. There are, apparently, three approaches: double differential of a raw I(V ) data (the worst

approach), single differentiation of a dI/dV data obtained by LIA(acceptable and the most widely

used approach), and direct second derivative by detection of the second harmonic signal shifted

*The asymmetry effect is not very high, anyway.
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(a) R̃AP (b) R̃P

Figure 6.37: Resistance asymmetry R̃ for the cases of antiparallel (panel (a)) and parallel state (panel (b)). The data is
obtained on a chip annealed at 325 ◦C (see Fig. (6.21)).

by π phase with respect to the reference signal (the best, however, rarely used approach). Cor-

relation between resonant features observed in tunneling spectroscopy and transmission electron

microscopy of the investigated devices has been given by Teixeira et al.[337]. The numerical dif-

ferentiation followed by smoothing of the data often produces spurious "oscillations" which might

be wrongly attributed to resonant scattering. Here, the first derivative is taken from the LIA mea-

surements in Fig. (6.15) and it is numerically differentiated to obtain the IETS at T = 2K (see

Fig. (6.38)). First of all, there are pronounced low bias spikes both in the parallel and antiparal-
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Figure 6.38: Inelastic electron tunneling spectroscopy measured in antiparallel (black) and parallel state (red). The
data is measure at low temperature (T = 2K) on a chip annealed at 350 ◦C.
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lel curves and these are attributed usually to interface magnon excitations[409, 239] or magnetic

impurities[368]. The positive bias demonstrates significant difference between the AP and P curves

for 0.1V <U <

0.6V, this correlates roughly with the plateau on the TMR(U) curves. This feature is attributed

to spin-flip scattering by paramagnetic impurities in the barrier. Similar, but more pronounced,

feature is observed at negative bias (−0.5V < U < −0.05V) and corresponds roughly to the

high slope on the TMR(U) curve where the TMR switches sign. Very prominent is the lack of two

important peaks which are usually observed in MTJs with MgO and CoFe: the MgO phonon peak

and the CoFe magnon peak. The MgO phonon peak is usually observed at U ≈ 80mV[80, 339].

Its lack is an indication that the MgO barrier of our tunnel junctions is not well-crystallized or is

poly-crystalline which isis probably due to Mn diffusion. The CoFe bulk magnon peak should be

observed as secondary structure in the AP curve [18] but is not present as well. This implies that

the MgO/CoFe interface is relatively rough and the CoFe electrode has not crystallized properly

too.
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Figure 6.39: TMR(U) behaviour comparison between an as-prepared and an annealed at 325 ◦C MTJ. The measure-
ments are performed at 10 K and each curve is normalized to the maximum TMR at low bias. Blue arrow indicates the
voltage range where the contribution from resonant states is most pronounced. The MTJs are physically from the same
chip but treated differently.

The MTJ chips annealed at different temperatures demonstrate essentially the same temperature

decrease of key values like RP(T ) and TMR(T ) (see Fig. (6.20)). The TMR(U) behaviour of the

same sample in the non-annealed and the annealed at 325 ◦C state is presented now in Fig. (6.39).

The measurements are performed at 10 K and the two curves are normalized to their respective
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zero bias TMR values. The two curves have the same quantitative behaviour. However, the as

prepared MTJ demonstrates smaller TMR decrease for positive bias and it has greater relative TMR

at high negative bias than the annealed chip. Pronounced difference in the line-shape of the two

curves is obvious in the bias range from 0.2 V to 0.4 V. The as prepared MTJ data shows gradual

decrease with no local minimum. The annealed device exhibits sharper TMR drop, then local dip

and finally a small plateau and almost a return towards the line shape of the the non-annealed

device. This behaviour is ascribed to Mn diffusion during the annealing process. The diffused Mn

atoms create resonant scattering states inside the MgO barrier. The resonant scattering states lead

to stronger spin-flip scattering and thus the TMR(U) decreases and reaches a local minimum when

the contribution of tunneling through these defects states is the highest. For higher bias, the MRG

Fermi level is raised above the resonant states and the TMR increases slightly. This comparison

between the TMR(U) in an annealed and a non-annealed sample gives a possible explanation why

TMR(T ) and RP(T ) have relatively constant behaviour for different annealing conditions. The

annealing improves the crystallinity of the barrier and the electrodes but leads to creation of more

resonant scattering states located just above the Fermi level of the MgO. Therefore, the beneficial

and the detrimental effects are finely balanced.

A sample without insertion layer has been investigated in order to understand whether the Al

dusting layer forms quantum well states which can alter significantly the TMR(U) behaviour (see

Fig. (6.22)). The investigated MTJ chips have bottom electrode with the approximate composi-

tion Mn2Ru0.6Ga which has compensation temperature Tcomp = 100K. The full TMR-applied

field curves for U = 10mV are presented in Fig. (6.40). As before, the diverging coercive field

of the MRG at 100 K is the indication for the compensation. The TMR has positive sign below

Tcomp and negative sign above Tcomp. The MRG electrode is significantly oxidized and this is ap-

parent from the order of magnitude lower TMR values with respect to the values obtained with

Mn2Ru1Ga/Al/MgO (see Fig. 6.10). The highest measured TMR is 4.5 % at 10 K. The high-field

background demonstrates positive magnetoresistance in contrast with what is expected for not-

perfectly aligned anisotropy axes of the MRG and the CoFe electrodes (see Fig. 6.27). The TMR(U)

behaviour is the most important reason for investigating this sample. The TMR changes sign again

for negative bias, i.e. electron tunneling towards the MRG. Quantum well states in the previous

MTJs (Fig. (6.10)) can be ruled out as an explanation because the same qualitative TMR(U) be-

haviour is observed here without Al insertion here. Furthermore, different spin-dependent tunneling

probabilities due to chemical bonding at the MRG-MgO interface is not a possible explanation for

the TMR(U) dependence as well (see Fig. (6.23)). Additionally, the spin-split density of states

inversion is clearly demonstrated here too. The sample has been saturated in µ0H = 14T at 200 K

(above compensation), set in anti-parallel state and then cooled down through Tcomp in small ap-

plied field. Then, the same procedure has been applied but this time the sample has been set in
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parallel state at 200 K. The black curve on Fig. (6.40 (b)) has been calculated in this way. The

curves obtained by saturation above and below compensation are essentially symmetric with re-

spect to the zero TMR line. This is a strong indication that the TMR sign switch is due to the

energy dependence of the MRG spin-split density of states.
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Figure 6.40: TMR measurements on MTJs with Mn2Ru0.6Ga and no Al insertion layer. The compensation temper-
ature is approximately 100K. Panel (a)-TMR(µ0H) scans at temperatures: 10 K, 100 K, and 200 K and applied bias
U = 10mV. Panel(b)-TMR(U) dependences measured at 10 K for an MTJ set at 10 K-red curve and 200 K-black
curve (above compensation).

It is instructive to comment on the unusual behaviour of the high-field background. When the

magnetic field increases, this should lead to better alignment of the magnetization axes of the MRG

and CoFe electrode and, therefore, the resistance must decrease. On the contrary, this sample with

no Al insertion layer demonstrates the opposite behaviour and the resistance of the MTJ increases

for higher applied magnetic field. The reason for this observation is tilted anisotropy axes of the

MRG and CoFe electrodes away from the nominal z-axis of the MTJ (or (001) crystallographic

orientation). The anisotropy axes are tilted off the nominal direction most probably due to interface

roughness ("orange-peel" barrier). The MRG anisotropy depends critically on the tetragonal dis-

tortion while the ultrathin CoFe perpendicular magnetic anisotropy depends on the hybridization

at the CoFe-MgO interface. Therefore, it is justified to assume that high surface roughness would

lead to off vertical easy axes for the magnetization of the two electrodes. The schematic of the

two anisotropy axes is presented in Fig. (6.41) for the case of T = 10K. For zero magnetic field,

the two electrodes anisotropy axes are aligned but tilted. As the magnetic field is increased, the

magnetization of the CoFe will tend to align with the direction of the applied magnetic field. The

latter leads to opening of an angle between the magnetization of the MRG and CoFe electrode and,

therefore, the resistance gets higher following the Slonczewski’s rule (see Eq. (1.43)). The MRG

magnetization is less susceptible to rotation by the field due to its anisotropy field. The high-field

background is less pronounced as the temperature is increased (see the three different temperatures

in Fig. (6.40)). The interface MRG perpendicular magnetic anisotropy is perhaps strongly tem-
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perature dependent in these MTJs and because of that the MRG magnetization gets more aligned

with the applied field direction for higher temperature. In the latter case, the cone opening between

the MRG and CoFe magnetizations is smaller and, hence, the high-field magnetoresistance is less

pronounced.
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Figure 6.41: Panel (a) - TMR loop for an MTJ without Al insertion layer at T = 10K. The mutual MRG and CoFe
magnetization orientations are indicated with arrows: blue arrows for CoFe, red arrows for MRG. The TMR scan is
performed in the following direction: 14 T→ 0 T→−14 T→ 0 T→ 14 T. When the magnetization arrows are above
the graph, this corresponds to the initial field scan: 14 T → −14 T. When the magnetization arrows are below the
graph, this corresponds to the field scan in the opposite direction: −14 T→ 14 T. Panel (b) - the same TMR loop from
panel (a) after background correction.

A sample which has been prepared in conditions similar to the one on Sec. (6.4) will be dis-

cussed now in order to emphasize even further the effect of resonant tunneling contribution. The

device structure is essentially the same as the one in Fig. (6.10). The only difference is that the

Al insertion layer has been deposited by RF sputtering and then post-annealed in-situ whereas the

same layer has bee deposited by DC sputtering in the previous stack. It has been investigated af-

terwards that the Al layer is flatter when it is deposited by RF sputtering, however, the uniformity

is compromised due to the post-annealing. The lack of uniformity creates areas where the MRG

electrode is in direct contact with the tunnel barrier and, hence, Mn migration is more pronounced.

First of all, the TMR(H) scans are presented in Fig. (6.42) (a) for applied bias U = −1V. It is

apparent that the coercivity of the MRG increases slightly with increasing temperature which is a

proof that the Tcomp > 300K which confirms that the bottom electrode is close to the Mn2Ru1Ga

composition. The TMR is negative for this bias as before. More important is the unusual behaviour

of the TMR(U) curves at 10 K and 300 K. The zero-bias TMR at 10 K in these junctions is signifi-

cantly lower than the TMR observed before which indicates that the defect states in the barrier have

higher concentration. The low temperature TMR(U) behaviour demonstrates dual crossing of the

zero TMR line this time-both at positive and negative voltages. Such behaviour is not expected at

positive bias because the spin-split density of states in CoFe are well-studied and no sign inversion
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is expected, because the CoFe spin polarization has constant sign (see Fig. (6.4)). Therefore, the

sign change should be attributed to the tunneling probabilities through the barrier. The reason for

this behaviour is that the resonant spin-flip scattering contribution in these MTJs is far stronger

than in the previous ones (see Fig. (6.11)). In this case, the spin-flip scattering rate is so high

that it reverses the TMR sign. Furthermore, the TMR at the positive bias branch first decreases

sharply and then increases. This implies that the resonant scattering levels in the MgO barrier are

mainly located around 100 meV-300 meV above the Fermi level of the MgO barrier. For applied

bias U > 200mV, the negative TMR starts decreasing. In other words, the contribution from

the spin-flip scattering is lowered as the Fermi level of the MRG electrode is raised significantly

above the impurity levels. For high positive bias the TMR approaches its usual positive value, be-

cause there is higher and higher contribution from electrons which tunnel through part of the MgO

bandgap which is less affected by impurity levels. The TMR(U) curve at 300 K demonstrates sharp

collapse of the zero bias TMR and the TMR close to the Fermi level becomes negative at high

temperature. The low bias TMR values have been confirmed by full TMR(H) scans. They could

be understood if there are resonant states very close to the Fermi level of the MgO barrier. As the

temperature is raised, the thermal excitation and Fermi level broadening are sufficient so that more

electrons tunnel through the resonant states and their spin polarization is reversed. The distribution

of the resonant states in the MgO bandgap is probably as follows: there are states just above the

Fermi level but their contribution towards the spin-flip scattering is not the highest, the highest

contribution comes from states which are located between 100 meV and 300 meV, and it looks like

there is very little distribution of spin-flip states above 300 meV. Unfortunately, the distribution

of resonant states below the MgO Fermi level cannot be investigated due to the fact the tunneling

process happens above the EF.
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Figure 6.42: Example of the detrimental effects of resonant tunneling in MTJs with Mn2Ru1Ga bottom electrode.
The MTJ is annealed in the magnetic annealing furnace at 325 ◦C. Panel (a)-TMR(H) curves measured at applied bias
U = −1V and at different different temperatures. Panel (b)-TMR(U) of the same junction obtained at 10 K and 300 K.
Note that the TMR is negative for positive bias this time in contrast with Fig. (6.11). The points where the TMR(U)
curve at 10 K switches sign are indicated with blue circles.
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Figure 6.43: Comparison of the resonant tunneling contribution between three samples prepared under similar con-
ditions. All three MTJ chips are annealed at 325 ◦C. The temperature is 10 K for each measurement. Panel (a)-the
sample with the highest TMR and best control of the Mn diffusion, this is sample presented completely in Fig. (6.21).
Panel (b)-sample with intermediate quality and more pronounced resonant scattering contribution. Note that the TMR
crosses twice the zero line for positive bias. Panel (c)-sample with the most apparent resonant scattering contribution.
The TMR crosses zero for positive bias and does not changes sign back up to U = 1V. Magenta arrows indicate on
each graph the most obvious feature from the resonant spin-flip scattering contribution. The points, where the TMR
changes sign, are indicated with brown circles. The resonant scattering contribution gradually increases from panel (a)
through panel (c).

Three TMR(U) curves measured at 10 K on three different MTJ samples are presented in

Fig. (6.43). They demonstrate quantitatively the same behaviour, however, it is emphasized that the

contribution from the resonant tunneling is different for the three samples. The higher contribution

of defect states result in zero-bias TMR decrease and in change of the TMR sign at positive bias.

The most obvious resonant states population is around 200 mV. As the spin-flip scattering increases

around U = 200mV, the TMR drops sharper around this bias. The best Mn migration control is

achieved in Fig. (6.43 (a)), because the resonant states appear only as a slight dip. Medium quality

MTJ is presented in Fig. (6.43 (b)), where stronger spin-flip scattering results in TMR double sign

change at positive bias. First, the TMR crosses positive→ negative at U ≈ 100mV, and then it

crosses again this time negative→ positive at U ≈ 700mV. Finally, the worst quality is presented

in Fig. (6.43 (c)), it has the lowest low bias TMR and the TMR crosses from positive→ negative
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sign sharply at around 20 mV and the TMR stays negative up to U = 1V, although there is a ten-

dency to switch back to the expected positive values at U > 1V. Figuratively speaking, one might

imagine that the resonant scattering is a strong force which distorts the overall TMR(U) curve from

its usual quasi-quadratic form (Fig. (6.4)) towards the profiles in Fig. (6.43). This distortion affects

significantly the low bias transport as well. Therefore, the presently achieved TMR maximum val-

ues are not limited by the spin polarization of the MRG but by the quality of the MTJs (in particular

the quality of the barrier).

After the comparison between the TMR(U) behaviour in the non-annealed and the annealed

sample and the discussion of the three similar samples, a simple schematic picture of the resonant

scattering levels in our MTJs can be envisioned. It is reasonable to assume that that in these MRG-

based MTJs, the resonant tunneling does not happen through discrete energy levels in the MgO

barrier but rather through small bands. Discrete level resonant scattering should lead to very sharp

features in the differential spectroscopy at low temperature, however, this is not the case. Further-

more, the depth and the profile of the TMR dip observed at U ≈ 0.25V in Fig. (6.21) does not

change significantly from 10 K to 300 K. The latter means that the thermal excitation energy has

little effect on the resonant scattering contribution. This can be the case if bands with energy width

bigger than the thermal excitation energy are formed.
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6.8 Conclusion and outlook

The observation of high TMR ratios of up to 40 % (at T = 10K) with very low magnetiza-

tion Mn2Ru1Ga is a strong indication that high spin polarization can be achieved irrespective of

the magnetization value. Furthermore, the demonstration of appreciable TMR at the very com-

pensation temperature of the MTJ with Mn2Ru0.8Ga is even a stronger proof that the magnitude

of the spin polarization does not necessarily depend on the magnitude and sign of the magnetic

moment. The demonstrated broad temperature (10 K to 300 K) high-field (up to µ0H = 0.5T)

stability of these MRG-based MTJs holds a promise that similar compensated half-metallic fer-

rimagnetic compositions have high chance to become a basic building block in next generation

MRAM-based memory. At the moment, MRG is not a potential candidate for application in mem-

ory stack due to its relatively low uniaxial anisotropy Ku ≈ 0.04MJ/m3. The MRG research has

already generated significant interest in the spin electronic community. Recently, the Heusler com-

position (Mn0.5Co0.5)2VAl* has been synthesized by arc-melting and demonstrated to have spin

polarization of 60 % by PCAR. The Curie temperature is though very low for practical devices

TC ≈ 105K[72]. High TMR of −35 % at room temperature has been measured in Mn3Ge-based

MTJs [151].

More in-depth analysis on the TMR dependence as a function of the insertion layer thickness

is underway. New insertion compositions will be investigated in order to find out which one leads

to the highest TMR effect. Ideally, a magical new combination of diffusion barrier/tunnel barrier

has to be developed. The diffusion barrier should simultaneously block efficiently Mn ions while

having low spin diffusion length, so that the injected spin polarization from the MRG is not heavily

reduced before tunneling through the barrier. Furthermore, the diffusion barrier should possess

good band matching both to the MRG and to the barrier. This may sound as a rather daunting

task but similar achievement has been recently performed in current-perpendicular-to-plane GMR

stacks of Co2FeGa0.5Ge0.5/NiAl/Ag- Zn/NiAl/Co2FeGa0.5Ge0.5[155] †. Another idea is to elimi-

nate the need for diffusion barrier altogether, however, the attempts to produce MTJs with decent

TMR without insertion layer have failed so far. It is a possibility that the TMR sign switch which

is demonstrated for the sample without insertion layer is due to formation of MnO at the interface

which essentially creates quantum well states (Fig. (6.22)). There are indication from other ex-

periments that the MRG crystalline quality improves when it is annealed ex-situ in temperatures

from 350 ◦C to 400 ◦C. Unfortunately, the CoFe/Ta frame electrode in the present MTJ stacks starts

losing PMA when annealed at T > 350◦C. A possible improvement to the configuration is to

*It should have 0µB/f.u. following the Slater-Pauling rule.
†NiAl has been theoretically predicted to provide very good band matching with the ferromagnetic

Co2FeGa0.5Ge0.5. It is latter demonstrated that the spin diffusion length of NiAl is rather low and it has been de-
posited as ultrathin, dusting layers on the interfaces.
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replace Ta with W. It has been demonstrated that a W-based composite electrode maintains PMA

at T ≤ 450◦C[5, 309].

The study of the spin polarization temperature dependence in MRG is of fundamental impor-

tance. The latter could be achieved by either spin-resolved photoemission spectroscopy or spin-

polarized scanning tunneling spectroscopy *. The constant temperature behaviour of the sponta-

neous Hall angle is a strong point that the spin polarization does not change with temperature but

this is an indirect proof.

The barrier analysis has demonstrated that the tunneling process in these devices is incoherent

and heavily affected by defects. In-depth analysis of the MTJs by high-resolution transmission

electron microscopy will shed more light on the correlation between the barrier structure/disorder

and the observed changes in the TMR(U) behaviour.

Finally, MRG is the first member of a new family of magnetic materials-compensated half-

metallic ferrimagnets. Such materials hold significant potential to be integrated in future memory

elements due to their high coercivity, i.e. high magnetic field immunity, which is governed by the

low magnetization. Furthermore, observation of TMR at the very Tcomp provides an opportunity

for a realization of exchange mode ferrimagnetic resonance in MTJ nano-pillars at the MRG com-

pensation point, which should be essentially terahertz spin-transfer torque based oscillators[340].

*SP-STM provides better energy resolution close to EF.
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Chapter 7

Conclusion and outlook

"People wait all week for Friday, all year

for summer, all life for happiness."

Unknown author

PCAR has demonstrated the ability to quantify the degree of in-plane spin ordering in topo-

logical insulators(TIs). The extracted very high in-plane spin polarization demonstrates that TIs

hold great potential to be integrated in future spin electronic devices. Furthermore, point contact

spectroscopy has provided direct insight into the band structure of these degenerate semiconducting

compositions at magnetic fields higher than the quench field of the superconducting tip. Paramag-

netic (chromium and vanadium) doping is demonstrated to reduce the spin polarization values. The

latter is attributed to spin-flip scattering from the moment of the paramagnetic ions. Higher vana-

dium doping concentration induces ferromagnetic order with perpendicular magnetic anisotropy.

For the composition investigated, which has a low Curie temperature of TC ≈ 11.6K, the spin

polarization decreases to 50 % which is attributed to the competition between the in-plane spin

order of the pristine TIs and the perpendicular magnetization of the magnetic TIs. Furthermore,

the interfacing between topological insulators and superconductors will continue as the latter sys-

tem is predicted to host in some cases Majorana fermions (or Andreev bound states), low energy

excitations which are supposed to offer fault-tolerant quantum computing.

The spin polarization of the disordered Fe60Al40 compositions is investigated to increase from

essentially zero to 46 % as a function of the irradiation dose, while the Curie temperature reaches

620 K at the same time. The spontaneous Hall angle reaches a value of 3 % which is among the

highest recorded on magnetic compositions, although it is not investigated whether the mechanism

is intrinsic or extrinsic.

The lack of the spin polarization sign resolution, one of the shortcomings of the PCAR method,

has been addressed by high-field Andreev reflection experiments with type-II superconductors with

relatively low average atomic number: MgB2 and Nb-Ti. High-field Andreev reflection and spin
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polarization extraction has been achieved with both compositions and the sign has been correctly

extracted with the MgB2 superconductor. The latter is confirmed in large area MgB2/CoFe junc-

tions in configuration in which the magnetic field is applied in plane of the MgB2 superconducting

electrode.

Finally, high tunneling magnetoresistance of up to 40 % has been realized in magnetic tunnel

junctions with the compensated half-metallic ferrimagnet Mn2RuxGa. More importantly, finite tun-

neling magnetoresistance has been achieved with a ferrimagnetic electrode with a strictly zero mag-

netization. Furthermore, broad temperature range (10 K-300 K) high magnetic field (at least 0.5 T)

immunity is achieved with the same devices. The analysis of the transport properties demonstrates

that the values are currently limited by the imperfect control of Mn diffusion.

The presented results in this thesis have answered many questions. As it is usually the case with

research, potential new experimental directions open up as well. A short outlook is given below for

each of the result chapters.

Topological insulators will continue to be a hot research topic in foreseeable future. First of

all, magnetic topological insulators have achieved recently Curie temperature of up to 110 K and

the long sought-after quantum anomalous Hall effect (QAHE) has been demonstrated as well. Our

PCAR methodology can easily be transferred to mK temperature range in order to study the spin

polarization in the QAHE regime. Furthermore, the achieved high-field PCAR with Nb-Ti implies

that this superconducting wire can be directly used for investigation of the spin polarization field

dependence on ferromagnetic TIs. As the coercive field of V-doped TIs reaches about 1.1 T, high-

field PCAR might shed more light on the transport properties as the magnetization is switched.

Direct gating of TI compositions should suppress the bulk conductance of topological insulators,

and therefore increase the spin polarization. PCAR measurements of the TI spin polarization with

gating is a possible straight-forward experimental extension.

The spin polarization of the irradiated Fe60Al40 composition has reached 46 %, a value compa-

rable with the spin polarization of the exemplary Co1−xFex. It is an open question whether the spin

polarization will increase with higher irradiation dose. Furthermore, the spontaneous Hall angle

of up to 3 % requires further investigation. It is beneficial to study the temperature dependence of

the latter in order to understand whether extrinsic or intrinsic mechanisms are responsible for this

high values. It is interesting whether the spontaneous Hall angle will increase above this value for

higher irradiation dose. It will be curious to investigate as well whether higher irradiation will lead

to higher Curie temperature and what would be the maximum achieved value.

Mn2RuxGa is the first member of a broad class of ferrimagnetic compositions: compensated

half-metallic ferrimagnets. The material has already demonstrated high spin polarization and high

TMR values (although quickly decreasing with temperature). The notorious tendency of Mn to

diffuse will have to be controlled in future devices in order to reach the physical limits of the high
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Mn2RuxGa spin polarization. The most important research direction is device improvement and

better control of Mn migration either through new dusting layers between Mn2RuxGa and the MgO

barrier or with some "magical" growth/annealing procedure which crystallizes better the ferrimag-

netic electrode. Particularly interesting is the possibility to achieve ferrimagnetic resonance mode

with Mn2RuxGa as the expected frequency is approximately 0.7 THz. Spin-transfer torque-based

nano-oscillators with Mn2RuxGa has the opportunity to generate on chip THz-radiation. A func-

tionality which will revolutionize the field of data transfer.
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Appendix B

PPMS cool down from warm dewar

This short manual is based on a procedure by Dr. Plamen Stamenov which has been used mul-

tiple times. If the reader has never dealt with cryogenic liquids, the procedure has to be performed

with an experienced member from the group. Although this procedure is specifically focused on

the PPMS system, it can be applied to cool down of other cryostats with small modifications as

well. This is a two day procedure: the system is flushed with helium gas and pre-cooled with liquid

nitrogen during the first day and liquid helium is transfer during the second day.

• The insulation vacuum of the system has to be pumped down through the insulation vacuum

valve (see Fig. (B.1) (b)). The pressure has to be 6 10−5 mbar.

• The pump on the PPMS system has to be checked. If it is an oil mist pump, make sure that it

has enough oil and it does not need a service. If it is a scroll pump, make sure that the pump

does not need a service. The best way to check the pump is to test its pumping capacity

through the gas system of the PPMS controller. Open the gas monitor program GasMon32,

open fully the proportional valve and disconnect the pumping line from the cooling annulus*.

When the pump is pumping on atmosphere, the flow on the GasMon32 must show around

4.1-4.2 L min−1. If it does not, there is something wrong with the pump.

• Make sure you have at least one full bottle of CP grade helium gas.

• Make sure that you have at least 150 L of liquid helium in the dewar. The cool down operation

will consume around 120 L if everything goes smoothly.Make sure that your next helium

dewar will arrive shortly afterwards: 3-4 days after the cool down.

• Order around 120 ltrs of liquid nitrogen.

*When the system is warm the proportional valve opens fully when you set low temperature 5 K at high rate
20 K min−1. Alternatively, the system control can be aslept from the GasMon32: File-Advanced-password: "quandsn",
and then the angle on the proportional valve can be controlled.
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• Connect the helium gas line on one of the ports of the PPMS, the other port should be blank

(see Fig. (B.2) (a)).

• From MultiVu: set the system to go 5 K with a rate of 20 K min−1. The first value will

deactivate completely the heaters, while the second will open fully the proportional valve.

The reason for that is to flush helium gas through the impedance and cooling annulus with

maximum flow.

• Open the helium gas bottle. Make sure you give enough pressure but not too much (0.1-0.2

bar). You can check whether the system is at positive pressure by placing a finger wet with

IPA/ethanol at the back of the hissing valve.

• Leave the helium gas to flush through the system for 2-3 hours. This must dry out any residual

moisture. Make sure in the meantime that the nitrogen dewars are full and collected.

• Open slightly more the pressure on the helium gas bottle.

• Start liquid nitrogen transfer in the nitrogen jacket. Since the system is warm, there will

be violent evaporation. REMINDER: WINDOWS AND DOORS HAVE TO BE ALWAYS

OPEN WHEN TRANSFERRING CRYOGENIC LIQUIDS! It will take approximately 30 L

for the nitrogen jacket to be cooled down and then the pitch of the exhaust sound will change.

Keep transferring until the nitrogen jacket is full. Close the nitrogen jacket with the two caps.

There will be serious nitrogen boil-off (since most of the system is still warm) and most likely

one of the pressure relief valves will freeze. This is all fine, defrost it every now and then

with the hot air gun. There is a problem only if both pressure relief valves freeze. You might

be tempted to open up the caps to release the pressure: DO NOT DO THAT*!

• It is advisable to connect the helium purge line to the dewar in order to save helium gas. Close

the safety valve on the liquid helium dewar. Shake the helium dewar to create overpressure

inside. Open slightly the pressurization valve on the helium dewar. Switch quickly the gas

line from the bottle to the dewar. Open fully the pressurization valve on the helium dewar.

The pressure from the helium dewar provides the gas for flushing the impedance valve and

the cooling annulus.

• After you have switched for providing the gas from the dewar, check again with a wet

(IPA/ethanol) finger at the hissing valve that there is positive pressure in the system.

• Shake the liquid helium dewar a few more times in order to create overpressure. Leave the

PPMS overnight, the liquid nitrogen will go its job.

*The overpressure will create a jet of cold nitrogen gas and liquid droplets into the air.
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• First thing in the morning: check that there is positive pressure in the PPMS. Again check

the overpressure at the hissing valve with an IPA/ethanol finger.

• Top up the nitrogen jacket. The system has lost a lot of liquid nitrogen overnight. If the

temperature of the system is around 150 K, it is convenient to start the real helium cool

down. If not, wait for more. You may leave the PPMS one more night to get pre-cooled from

the nitrogen.

• If the temperature is around 150 K, it is time for starting the liquid helium transfer. On the

helium transfer line, make sure that you have the longest extension on the end which will go

in the PPMS. The cold gas and then the liquid helium must flow at the very bottom of the

system. On the supply dewar side of the line, the extension should be enough to reach the

bottom of the dewar.

• Lower the transfer line in the liquid helium dewar. Lower it only half-way, it should be just

touching the liquid. Lower the transfer line in the PPMS dewar all the way to the bottom of

the PPMS dewar.

• Close the pressurization valve on the helium dewar. Swap quickly the other port on the PPMS

dewar with a blank.

• Make sure that there is positive pressure in the PPMS dewar.

• Lower the transfer line gradually in the liquid helium dewar over the next 0.5-1.0 hour. Make

sure that you always have positive pressure and good exhaust. When the transfer line has

reached the bottom of the helium supply dewar, it has to be raised around 5 cm from the

bottom. In this way, ice particles or other dirt which settle at the bottom will not be transferred

during the cool down.

• When the transfer line has reached its final position in the helium dewar, the latter must be

pressurized with the external helium bottle. Make sure that the line is purged well with helium

gas before connecting it to the dewar. NITROGER, OXYGEN, AND WATER VAPOUR

MUST NOT ENTER THE DEWAR!

• Start the pressurization on the helium supply dewar. The required pressure is around 0.2 bar.

• The GasMon32 program must be opened. Right-click on the helium monitor and measure

the level. Refresh the helium level monitor in this way every 15-20 minutes. If everything

has gone fine so far, you must be at around −5 %.
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• Keep an eye on the pressure from the helium bottle. Make sure that it does not drop because

the transfer must not be terminated.

• The helium condenses when the level reaches 0 %.

• Shortly after that the exhaust timing nature will change to a steady, high exhaust.

• The flow through the proportional valve should change around 0 % level and it should be

around 2.5-2.9 L min−1.

• It is advisable to start PPMS data logging at that stage (MultiVu: Utilities → Log Data →
Mark all fields in the three Tabs→ Start acquiring with an interval 10 s).

• When the level reaches 40 %, the impedance valve is fully immersed in liquid and, hence,

protected from the atmosphere. You should close the impedance valve by setting new tem-

perature (or putting the system in standby) and this will save helium.

• The pitch of the exhaust will decrease significantly when the level goes above 55 % because

the magnet is fully immersed and most of the system is already cold.

• Stop the transfer when level has reached 80 %-85 %*. Let the system to settle for 2-3 hours

and preferably overnight, the dynamics in the liquid helium is still high.

• Test the cooling of the system. Set the temperature to 2 K and the cooling rate to 20 K min−1

and cool down from initial temperature T ≥ 200K. The flow has to be above 2.5 L min−1

when the proportional valve is fully open† this means that there is a leak in the gas control

system of the PPMS. The system should manage to reach 2 K. Make sure that the base

temperature can be maintained for an hour.

• Congratulations! You should be having a cold and working PPMS system. Now measure

your samples. If something has failed, as a wise person says: Find out what your are doing

wrong and stop doing it!

*Some people might prefer to terminate the transfer earlier at around 70 % but since the transfer line is already
cold, it might be better to reach higher level.

†Stable flows up to 2.7 L min−1 have been reached. If the flow is above 3.0 L min−1
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(a) Setting low temperature before starting the He gas
flushing of the system.

(b) Relative TMR decrease for dT = 10K

Figure B.1: Setting low temperature and high cooling rate before flushing the system with He (panel (a)), the hissing
valve and the pumping line are indicated (panel (b)).

(a) The helium gas is connected to one of the transfer
ports, the other one is blanked.

(b) Pre-cooling with nitrogen.

Figure B.2: The He gas line (panel (a)) and the nitrogen pre-cooling procedure (panel (b)).

(a) The He gas line is swapped to the He supply dewar. (b) The He transfer line must have the longest possible
extension on the PPMS end in order to reach the bottom
of the PPMS dewar.

Figure B.3: The He gas line (panel (a)) and the nitrogen pre-cooling procedure (panel (b)).
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Wire bonding MTJs

This is a short procedure how to wedge bond MTJs. It is supposed that the operator has initial

training on wedge-bonding, i.e. the wedge can be mounted, the wire can be threaded, and the

main device settings are known. The procedure is given for bonding to PPMS pucks. The given

settings are for the wedges used in our lab and for our bond pads. The bond pads on the samples are

Cr(10 nm)/Au(150 nm). The PPMS puck bond pads are gold plated copper. The bonding settings

settings have to be adjusted for different adhesion layers.

• Sonicate the MTJ chip in IPA in order to clean any organic residue on the surface.

• Clean well the bond pads on the PPMS puck.

• Glue the chip to a PPMS puck, so the contact bond pads are aligned with the bond pads of

the chip.

• Make bonds between the bond pads on the PPMS puck which you plan to use for connecting

the MTJs (these are V+ and V- usually).

• Ground yourself with the anti-static wrist strap.

• Connect one of the puck bond pads to ground.

• Wire bond one of the MTJ contacts.

• Wire bond the other MTJ contact.

• Disconnect the grounding cable. The bonded MTJ should be shorted through the PPMS bond

pads.

• Ground yourself and have a look at the bonded MTJ under microscope.
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• Disconnent the shorting string of wire between the PPMS bond pads with a small needle (for

instance, W tip for probe station micromanipulators)

• Check the I-V curve of the bonded MTJ, i.e. make sure that it has not blown during the

procedure.

• Congratulations! You should have a bonded MTJ. If it is a short, find another victim on the

chip and repeat the procedure.

Below, I have outlined the settings which have worked for me with the wedges currently in use.
Wire bonding between PPMS resistivity puck bond pads

Bonding Power Time Force

First bond PPMS puck 2.0 1.4 1.0

Second bond PPMS puck 2.0 3.5 3.0

Table C.1: Wire bonding parameters which have worked for bonding between bond pads of a PPMS resistivity puck.

Wire bonding between an MTJ bond pad and a PPMS resistivity puck bond pad

Bonding Power Time Force

First bond MTJ chip 2.0 3.0 1.0

Second bond PPMS puck 2.0 3.5 3.0

Table C.2: Wire bonding parameters which have worked for bonding between an MTJ chip and a PPMS resistivity
puck.

A few more remarks on the bonding parameters for semi-automatic bonding:

• Tail parameter: keep the highest possible (9). The tail determines how much wire is left

under the wedge after a bonding has finished. If the tail is too short, the wedge will not be

well covered with wire and wire bonding does not work. However, too long tail might in

principle be a problem if the bond pads on the chip are too close. The longest tail setting

has worked for the MTJs in this work (bond-pads 50 µm-100 µm with a distance between the

bond pads of 100 µm). Shortening of the tail usually requires more frequent rethreading.

• Loop parameter: This determines how high the wedge retracts after the first bond. This

parameter should be slightly higher than the height of both the first and the second bonds*.

The loop must be set just before the first bond is made. The loop parameter should be

slightly larger than the search height when the wedge is close to the first bonding position.

For instance, if the search height is 7.0, the loop has to be between 7.5-8.0.

• Speed parameter: This parameter has been 3.6 for all bonding throughout my thesis.

*The chip bond pads and the chip carrier bond pads are usually at very similar heights.
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SQUID oven measurements

SQUID magnetometry with its unrivaled sensitivity is a very important tool for investigation

of new compositions. The SQUID oven has the possibility to determine the Curie temperature of

thin films. The SQUID oven is a dewar itself with internal diameter of 4 mm and the whole inside

sample space is heated up*. The SQUID oven sample rod finish approximately 13 cm above the

the center of the pick-up coils. Therefore, the experimental physicist should come up with a good

idea how to bring the sample within the pick-up coils. If the sample is bulk, perhaps, the best

approach is to seal it inside a quartz cylinder. However, thin films represent a more complicated

story. One has to find intelligent way to bring them down to the sample space. In this case, we

wrap the samples in Al foil and hook the Al foil with the sample to the sample rod†. The heating

temperature must be limited to nothing higher than 750 K because of the low melting point of Al. If

a sample with in-plane magnetization has to be measured, the sample size should be 3mm×4mm

and the long side of the sample has to be along the axis of the oven. If the sample has perpendicular

magnetic anisotropy, then the size must be 2mm× 2mm so that the diagonal is below 3 mm. A

short procedure for in-plane measurement is outlined below:

• Stretch some good length of Al kitchen foil (30cm×30cm).

• You need a very sharp surgical blade.

• Mark out stripes with length ≈ 22cm−24cm and width 1.2 cm.

• Cut out the stripes.

• Fold one stripe along its length axis in half-width, so that you get Al foil at angle of ≈ 90°.

*Unlike the Quantum Design PPMS VSM oven which uses a ceramic platform with integrated heater and temper-
ature sensor.

†The technique is after Dr. Plamen Stamenov.
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Appendix D. SQUID oven measurements

• Put the sample so that its long edge lies along the formed angle. The sample must be ap-

proximately 12cm−14cm from the Al end which will be attached to the sample rod. THIS

IS VERY IMPORTANT FOR BEING ABLE TO CENTER THE SAMPLE WITHIN THE

PICK-UP COILS.

• Gently fold the Al foil around. Squash it as much as possible but be carefully around the

sample, as the sharp edges might tear the foil.

• Make a small hole with sharp tweezers at the end of the folded Al foil.

• Get a thin copper wire (r ≈ 0.1mm). If the wire is insulated, burn the insulation with a

lighter under a fume hood. Use the copper wire in order to attach the sample to the sample

rod. There should be a small hole at the bottom of the sample rod for the SQUID oven as

well.

• Make sure (again) with a ruler that the sample is at least 12 cm below the end of the rod.

You will be able to get a good centering even if the sample is around 11 cm, however, if the

sample is at around 10 cm, the centering will fail due to the fact that the sample is at the end

of the range. On the RSO, 12 cm corresponds roughly to 2 cm, and 10 cm from the bottom of

the rod to 0 cm in the RSO.

• Unscrew the RSO head and remove it from the SQUID. Insert the SQUID oven following the

procedure in the SQUID manual.

• The mounting of the suspended, folded sample is a two person operation. This is because the

folded aluminium "holder" is easily bendable.

• One person holds the RSO driving motor, so that the bore is clear from both ends. The other

person passes the sample rod with the suspended sample through the motor head.

• After the sample is passed through the RSO head, one person lifts the head while the other is

holding the sample rod.

• The sample is inserted into the oven and lowered gently down. After that the RSO head is

adjusted on top of the oven, screwed and the sample space is evacuated.

• Make sure that the vacuum is good. This is critical for the SQUID measurements with the

oven.

• Center your sample. Make sure that the measurement frequency is low (0.5 Hz), and the

amplitude is small as well (1 cm). Otherwise big acceleration might cut the copper wire or

the Al foil.
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The sample can be mounted as well in perpendicular direction. Greater care should be taken

and the forming of the Al foil around the sample is trickier. However, it is doable. The Curie

temperature of the tetragonal Heusler alloy Mn2FexGa has been determined in this way and it is

presented in Fig. (2.13).
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Appendix E

SQUID devices: a brief introduction

The presented material is a brief introduction to the physics of SQUID devices. The exposition

has been submitted by the author of this thesis as a course work in the post-graduate course on

Magnetic Sensor by J.M.D. Coey in Trinity College Dublin. A few sections are dropped from

the original work: the mixed SQUID-GMR sensor[263], the gradiometers section and the SQUID

application section.

E.1 Introduction

The physics behind a Superconducting QUantum Interference Device (SQUID) is the Joseph-

son effect. The Josephson effect is the existence of a non-zero current in an unbiased Superconductor-

Insulator- Superconductor (SIS) structure. In the following subsections I will lay down the basic

Josephson relations. They will be used extensively to explain the principle of operation of the

SQUIDs, which are the most sensitive magnetic sensors up-to-date. The Josephson effect is a tun-

nelling of Cooper pairs from the first superconducting electrode (S1) to the second superconducting

electrode (S2) through an insulating barrier. Although the original Josephson prediction was for

tunnelling through a thin insulating layer, nowadays, the "barrier" is more generally referred to as

a "weak-link". In Sec.(E.2), the flux quantization is derived and the general theory of a Joseph-

son junction following Feynman’s approach. The basic structure and electric properties of an a.c.

SQUID are presented in Sec.(E.3). The same properties but for a d.c. SQUID are reviewed in

Sec.(E.4). In Sec.E.5, the different kinds of weak-links are commented, the basic and flux-locked

readout circuits for an a.c. and d.c. SQUID are presented. Some used gradiometers as pickup coils

are reviewed as well. In Sec.(E.6), the sensitivity, noise and gain characteristics of the two SQUID

configurations are briefly given.
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Appendix E. SQUID devices: a brief introduction

E.2 Flux in a superconducting loop

E.2.1 Flux in a homogeneous superconducting ring

In the Ginzburg-Landau (GL) phenomenological treatment of the superconductivity, the Cooper

pairs condensate wavefunction is represented as

Ψ(r) = |Ψ(r)|eiθ . (E.1)

where |Ψ(r)|2 is the Cooper pairs density

ρs = |Ψ(r)|2. (E.2)

If the Ginzburg-Landau expression for the Gibbs free energy is varied with respect to the vector

potential A, the variational derivative must be zero, in this way the second GL equation is obtained

∇× (∇×A)+
ih̄e∗

2m∗
(Ψ∗∇Ψ−Ψ∇Ψ

∗)+
e∗2

m∗
A|Ψ|2 = 0, (E.3)

where m∗ and e∗ are the mass and the charge of a Cooper pair. Assuming the London-Landau gauge

∇.A = 0, we get ∇×(∇×A) =−∇2A. We use the definition for a vector potential B = ∇×A, and

put into the Maxwell equation ∇×B = µ0J, we get the result for the current density:

µ0J =− ih̄e∗

2m∗
(Ψ∗∇Ψ−Ψ∇Ψ

∗)− e∗2

m∗
A|Ψ|2. (E.4)

Calculating the gradient of Ψ

∇Ψ = iΨ∇θ + eiθ
∇|Ψ|, (E.5)

and plugging it back into the expression for the current density, we get

µ0J =
h̄e∗

m∗
|Ψ|2∇θ − e∗2

m∗
|Ψ|2A. (E.6)

Let us now consider a superconducting loop placed in a magnetic field (Fig.(E.1)), and we integrate

the above expression along a closed contour along the superconductor

m∗

e∗2

∮
µ0J
|Ψ|2

.dl =
h̄
e∗

∮
∇θ .dl−

∮
A.dl (E.7)
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E.2. Flux in a superconducting loop

The superparticle condensate wavefunction must be a single-valued function, then the contour in-

tegral over the phase must be a multiple of 2π:∮
∇θ .dl = 2πn, (E.8)

then the expression could be rewritten as

m∗

e∗2

∮
µ0J
|Ψ|2

.dl+
∮

A.dl = nΦ0 (E.9)

where the quantum of flux Φ0 is

Φ0 =
h
e∗

=
h
2e

. (E.10)

Applying the Stokes’ theorem for the circulation of the vector potential∮
A.dl =

∫
B.dS = Φ, (E.11)

we get finally
m∗

e∗2

∮
µ0J
|Ψ|2

.dl+Φ = nΦ0 (E.12)

Equation (E.12) expresses that the sum of enclosed flux Φ and the contour integral of the current

density J is quantized. But the supercurrent flows in a thin layer on the outer sheath, thus the current

density on the central contour is zero, and the expression reduces to Φ = nΦ0.

Figure E.1: Superconducting loop with applied magnetic field and indicated contour of integration.

E.2.2 General theory of Josephson effect

The following derivations follow the pedagogical approach of Feynman [96] and Poole Jr et al.

[153].Let us consider the case of two superconductors, S1 and S2 on Fig. (E.2), separated with an

insulating barrier. If the barrier is thick enough, the superconductors do not alter their properties

via proximity effect. Then the time-dependent Schrödinger equations for the two superconducting
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condensates are:

ih̄
dΨ1

dt
= H1Ψ1, (E.13)

ih̄
dΨ2

dt
= H2Ψ2, (E.14)

where Ψi and Hi are the wavefunctions and the Hamiltonians in the two superconductors respec-

tively. It is assumed that a voltage V is applied between the superconductors. ( The special case of

zero bias Josephson effect could easily be seen once the general equations are present.) If the zero

of the potential is assumed to occur in the middle of the insulating barrier, then, superconductor

1 is at −1
2V potential, and superconductor 2 is at 1

2V . Because each Cooper pair carries a charge

−2e, the potential energy of the pairs in +eV and −eV , respectively. The existence of the barrier

could be accounted with the introduction of coupling between the wavefunctions:

ih̄
dΨ1

dt
= eV Ψ1 +KΨ2, (E.15)

ih̄
dΨ2

dt
=−eV Ψ2 +KΨ1, (E.16)

where K is the coupling constant. The square of a wavefunction is the probability that paired

electrons are present at a particular region. Then, the two wavefunctions could be rewritten as

Ψ1 = (ρs1)
1/2eiθ1, (E.17)

Ψ2 = (ρs2)
1/2eiθ2, (E.18)

φ = θ2−θ1, (E.19)

where ρs1 and ρs2 are the densities of super electrons in the left and right superconductors, and

φ is the phase difference across the barrier. The derivatives of E.17,E.18 are straightforwardly

calculated

dΨ1

dt
=

(
1
2

1
(ρs1)

1/2
dρs1

dt
+(ρs1)

1/2i
dθ1

dt

)
eiθ1 , (E.20)

dΨ2

dt
=

(
1
2

1
(ρs2)

1/2
dρs2

dt
+(ρs2)

1/2i
dθ2

dt

)
eiθ2 . (E.21)

If the above derivatives are plugged back into the coupled wave equations E.15 and E.16, we

could obtain a system of complex equations for the time dependence of the pair densities and the
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phase difference:

h̄ρs1

ddθ1

dt
=−eV ρs1−K(ρs1ρs2)

1/2 cos(φ), (E.22)

h̄ρs2

dθ2

dt
= eV ρs1−K(ρs1ρs2)

1/2 cos(φ), (E.23)

h̄
2

dρs1

dt
= K(ρs1ρs2)

1/2 sin(φ), (E.24)

h̄
2

dρs2

dt
=−K(ρs1ρs2)

1/2 sin(φ). (E.25)

The first two equation above are determined by the matching of the real parts, and the last two are

obtained by matching the imaginary parts. The current density could be obtained by subtracting

equations E.24 and E.25 and multiplying the result with the electron charge e

J = e
d(ρs1−ρs2)

dt
, (E.26)

which is equal to

J = Jc sin(φ), (E.27)

where the critical current density is

Jc =
4eK(ρs1ρs2)

1/2

h̄
, (E.28)

where the coupling constant K is of unknown value. However, we can elicit more information from

equations E.22 and E.23. Dividing them by ρs1 and ρs2 , respectively, and then taking the difference,

we get
d(θ2−θ1)

dt
=

2eV
h̄
−K cos(φ)

((
ρs1

ρs2

)1/2

−
(

ρs2

ρs1

)1/2
)
. (E.29)

The factor in the brackets multiplying the K cos(φ) is zero but it is a bit unclear at first sight. The

reason is that, in fact, ρs1 = ρs2 . The change of the super electrons densities is happening for a short

duration. In real situation, superconductors 1 and 2 are either connected to a voltage supply or they

form a superconducting loop with a weak link. In both cases, ρs1 and ρs2 are equilibrated. Hence,

we can summarize the Josephson relations into

J = Jc sin(φ)
dφ

dt
=

2e
h̄

V

(E.30)

(E.31)

Equation E.30 is often called the d.c. Josephson effect. It is essentially the observation of direct
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current flowing through a Josephson junction in the absence of any applied voltage. Equation E.31

is called the a.c. Josephson junction. Under voltage bias, the phase difference changes with a rate

determined by the second Josephson relation. As a consequence, an a.c. current flows through the

junction.

Figure E.2: Picture of a Josephson junction.

E.3 Principle of operation of an a.c. SQUID

An a.c. SQUID is essentially a superconducting loop with one weak link as pictured on Fig.(E.3

A).

Figure E.3: Josephson junction. Field and vector potential behaviour.
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E.3.1 Josephson junction diffraction equation

Let us consider Equation [E.7] along the contour (A→ B→C→ D) on Fig.(E.4). The current

flows perpendicularly to the barrier. Thus the current integrals on B→ C and D→ A are zero.

On the A→ B and C→ D, the current line integrals are non-zero but with opposite signs and thus

cancel out. We get a simple relation between the phase difference and the vector potential:∮
∆θ .dl =

2π

Φ0

∮
A.dl. (E.32)

The magnetic field B0k̂ is applied along the vertical z direction. The thickness of the insulating

barrier is d and the cross-sectional dimensions are a and c as shown on the Fig.(E.3). The magnetic

field has no component along the x and y axes, but its z-component does vary along the y-axis

B = Bz(y)k̂. (E.33)

The reason for the y-axis variation is that the field penetrates through the barrier and has a constant

value there, but it dies out exponentially in the two superconductor S1 and S2 with characteristic

length λ , the penetration depth. The applied field is described in terms of the vector potential

B = ∆×A:

A = Ax(y)î, (E.34)

hence

A =−yB0î |y| ≤ 1
2

d. (E.35)

Deep into the superconductors, the field Bz goes to zero and the vector potential A to constant

values. Let us assign asymptotic values for the vector potential of A1 in S1 and −A2 in S2 respec-

tively. The phase difference θ1(x)−θ10 could be evaluated by integrating ∆θ .dl along the contour

A→ B→C→ D. The last operation is equivalent to integrating A.dl along the same path. But A

is essentially a vector normal to the paths A→ B and C→ D, hence its integral along them is zero.

The only non-zero result comes from B→C, so we get

θ(x) = θ10 +
2π

φ0
A1(x− x0), (E.36)

in a similar fashion, we get the phase of the wavefunction in S2. Then the phase difference is

θ(x) = θ2−θ1 = θ0 +
2π

Φ0
(A1 +A2)x, (E.37)

the factor (A1 +A2) could be evaluated by forming a large contour which encloses the whole barrier

and goes in the two superconductors. Using Stokes’ theorem, the resulting circulation gives the flux
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Figure E.4: Josephson junction.

threading the junction,

Φ =
∫

B.dS =
∮

A.dl. (E.38)

The reasoning is the same as in the contours above, hence

Φ = a(A1 +A2) , (E.39)

then (A1 +A2) = Φ/a, and putting back this expression into E.37, we obtain

φ(x) = φ0 +
2πΦ

Φ0
.
x
a
, (E.40)

inserting back the final expression into the first Josephson relation, and integrating along the x, we

arrive at an expression for the total current I flowing through the junction

I = Jc

∫
sin(φ(x))dxdz, (E.41)
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after straightforward integration, we obtain the famous Josephson junction diffraction equation

I = Ic
sin(πΦ/Φ0)

πΦ/Φ0
, (E.42)

where we have assumed that sin(φ0) = 1. The above expression has the same mathematical be-

haviour as the Fraunhoffer diffraction from a single slid. The Fraunhoffer diffraction is the light

distribution which is obtained when a narrow single slid is illuminated with monochromatic light

with wavelength λ . The variable of the x-axis is then πd sin(θ)/λ , where d is the width of the slid

and θ is the angle of observation.

−5 5
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|Imax/Ic|

Figure E.5: Maximum zero-voltage current as a function of the magnetic flux.

E.3.2 McCumber parameter and hysteresis

Consider an experimental situation in which the applied magnetic field is zero, but the junction

is biased by a current source (current-driven junction). We shall obtain the DC current-voltage

characteristic. Josephson junctions always have a shunting resistance associated with the passage

of normal state electron through the barrier (such normal state electrons always exist in supercon-

ductors). The shunting resistance R is connected in parallel to the junction. Furthermore, the barrier

thickness is around 1−2 nm, hence, the two superconducting electrodes will have non-negligible

capacitance. This simplified model is known as RCSJ (resistance and capacitance shunted junc-

tion).The capacitance of the SIS structure is in parallel as well. The bias current is then a sum of

three terms

I = Ic sin(φ)+
V
R
+C

dV
dt

. (E.43)
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Using the second Josephson relation V = (h̄/2e)dφ/dt, we arrive at a second order non-linear

differential equation for φ :

I = Ic sin(φ)+
h̄

2eR
dφ

dt
+

h̄C
2e

d2φ

dt2 . (E.44)

The time-averaged value of the voltage, hence 〈dφ/dt〉, must be taken to obtain the current-voltage

characteristic. As a good first approximation, assume that C = 0 (which is reasonable for point-

contacts and small-area tunnel junctions). Then the voltage of the resistively shunted Josephson

junction can be derived:

V =
h̄
2e

〈
dφ

dt

〉
=

0 f or I < Ic

IcR
√

I2/I2
c −1 f or I ≥ Ic.

(E.45)
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Figure E.6: The black curve is a nonhysteretic RSJ I-V characteristic (βc � 1). The blue dotted one is simply the
bisector, which is the asymptote of the I-V Josephson junction curve, it is the I-V curve of a resistor R as well.

The resulting I−V characteristic is a nonhysteretic for a junction in the zero-capacitance limit.

It is presented on Fig.(E.6). In order to appreciate the complete physical picture the non-zero

capacitance model must be considered

I =
h̄C
2e

d2φ

dt2 +
h̄G
2e

dφ

dt
+ Ic sin(φ), (E.46)

where G = 1/R is the conductance. The equation could be rewritten using the following variables:

characteristic frequency ωc = (2e/h̄)(Ic/G)

McCumbert parameter βc = ωcC/G

normalized time τ = ωct

normalized current i = I/Ic
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βc
d2φ

dτ2 +
dφ

dτ
+ sin(φ) = i. (E.47)

This set of parameters was first proposed by McCumbert. This is a nonlinear second- order dif-

ferential equation and it must be solved numerically. The parameter βc, known as the McCumbert’s

parameter, determines the hysteretic properties of the Josephson junction

βc =
2πIcR2C

Φ0
. (E.48)

The bigger βc is, the more hysteretic the junction is. On Fig.(E.7 (b) (c)), the path taken for

sweeping up the current does not coincide with the path for sweeping down the current. The

hysteresis could be reduced by shunting the junction with an additional resistor Rs in parallel to

the junction. This approach had been used, however, in the 1980s, the thin-film Josephson junction

technology developed by IBM for digital SQUID devices enabled creation of tunnel junctions of

area as small as 1µm. This improvement reduced the capacitance, and McCumbert parameter

βc� 1 is easily obtainable.

Figure E.7: Numerical simulations of hysteretic properties of Josephson junction. The solid curves are obtained at
zero temperature. The parameter Γ = 2πkT/IcΦ0 is known as the normalized thermal energy. The dotted curves are
numerically obtained when the Nyquist noise current contribution is added in the RCSJ model. The picture is taken
from [10].

E.3.3 Principle of operation

The a.c. SQUID consists of a superconducting loop with inductance L with one Josephson

junction with critical current Ic and characterized by a nonhysteretic I−V curve. The total flux Φt

entering the loop has two terms - the externally applied flux Φe and the flux due to the circulating
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current along the loop

Φt = Φe−LI = Φe−LIc sin(2πΦt/Φ0), (E.49)

where the first Josephson relation I = Ic sin(φ) has been used and, furthermore, the phase differ-

ence must comply with the flux quantization condition

φ +2πΦt/Φ0 = 2πn. (E.50)

Introducing an important parameter βL = 2LIc/Φ0. Thus the relation between the externally applied

flux and the total flux is
Φt

Φ0
=

Φe

Φ0
− βL

2
sin(2πΦt/Φ0). (E.51)
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Figure E.8: The total flux Φt in an a.c. SQUID as a function of the externally applied flux Φe. The black curve
corresponds to βL = 1, the red one to βL = 2, and the blue dotted line is Φt = Φe. A hysteresis behaviour is present for
βL > 1. It is discernible, that the red curve is in effect a succession of quasilinear regions with jumps between them.
These jumps are associated with energy dissipation in the SQUID ring, and are crucial for the operation of the detector.

The red curve on Fig.(E.8) is actually a succession of quasilinear regions with jumps between

them. Only the regions with positive slope are stable. The effect is that an increase (or decrease)

of the external flux Φe leads to jumps in the total flux Φt. In this way, a hysteretic behaviour is

present as the flux is ramped up and down. These jumps are associated with energy dissipation of

the order IcΦ0. The AC SQUID is inductively coupled (mutual inductance M) to a resonant tank

LTCT circuit. An RF current source supplies a current to the tank circuit, in this way inducing a flux

in the SQUID loop. The current is typically in the radio-frequency range (The AC SQUID is often

called a RF SQUID). The voltage across the coil of the resonant circuit depends on the magnitude

of the RF current and the value of the externally applied flux. I-V curves for an RF SQUID for flux

values nΦ0 and (n+ 1/2)Φ0 are shown on Fig. (E.9). When the RF current is fixed at particular

values, the voltage turns out to be a triangular-shaped dependence with amplitude ωLTΦ0/2M and
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period Φ0. The optimum flux-to-voltage transfer is

∂V
∂Φ

=
ωLT

M
. (E.52)

A more detailed treatment is presented in Sec.(E.6). From Fig.(E.9), it is visible that the suitable

working points are at current bias I2, and I4. Whereas, I1 and I3 present basically no response of

the voltage under flux change. In practice, an AC SQUID is always operated at the first voltage

step (biased at current I2 on Fig. (E.9)). In conclusion, RF SQUIDs are less sensitive than the

DC SQUIDs although comparable sensitivity can be reached if the operating frequency is in the

gigahertz range.

Figure E.9: I-V characteristic of an AC SQUID. The flux-voltage transfer function V −Φ as a dependence on the IRF
current is presented on the right-hand side.
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E.4 Principle of operation of a DC SQUID

E.4.1 Structure and Interference equation

The d.c. SQUID is in principle a superconducting loop with two weak links. Integrating along

the dashed line from Fig.(E.10) the expression for the phase difference in a two-junction loop is

(θα2−θα1)− (θβ2−θβ1) =
2πΦ

Φ0
. (E.53)

Then using the phase difference equation, we arrive at

φα = φβ +2πΦ/Φ0. (E.54)

The total current flowing through this parallel arrangement of Josephson junctions is the sum of

Figure E.10: Schematic structure of a d.c. SQUID loop.

the individual currents in the two sections,

I = Iα + Iβ , (E.55)

where each current satisfies the first Josephson relation I = Ici sin(φi),

I = Icα sin(φα)+ Icβ sin(φβ ) (E.56)

= Icα sin(φα)+ Icβ sin
[

φα −2π
Φ

Φ0

]
, (E.57)

assuming that the critical currents are the same in both arms Icα = Icβ = Ic, the total current is

expressed as

I = Ic

(
sin(φα)+ sin

[
φα −

2πΦ

Φ0

])
, (E.58)
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the value for the maximum current could be found by finding the zero of the first derivative

dI/dφα = 0, the values for the phase differences are then

φα =
1
2

π +
πΦ

Φ0
, (E.59)

φβ =
1
2

π− πΦ

Φ0
. (E.60)

It can be straightforwardly proven that the obtained extremum is a maximum. The maximum

current in a balanced d.c. SQUID is

I = 2Ic |cos(πΦ/Φ0)| . (E.61)

−2 −1 1 2

1

2

3

Φ/Φ0

Imax/Ic

Figure E.11: Maximum current dependence Imax of a balanced two Josephson junctions loop (Icα = Icβ ) on the nor-
malized applied flux Φ/Φ0.

The last equation is often referred to as Josephson loop interference equation. It has the same

mathematical form as the one describing the interference pattern in the famous Young’s double slits

experiment. When the two current are not equal, it is more intricate to determine the expression for

the maximum current. Starting with the system of equations for the total current and its derivative

I = Icα sin(φα)+ Icβ sin
[

φα −2π
Φ

Φ0

]
, (E.62)

dI
dφα

= Icα cos(φα)+ Icβ cos
[

φα −2π
Φ

Φ0

]
= 0. (E.63)
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Squaring the two equations

I2
max = I2

cα sin2(φα)+ I2
cβ

sin2
[

φα −2π
Φ

Φ0

]
+2Icα Icβ sin(φα)sin

[
φα −2π

Φ

Φ0

]
, (E.64)

0 = I2
cα cos2(φα)+ I2

cβ
cos2

[
φα −2π

Φ

Φ0

]
+2Icα Icβ cos(φα)cos

[
φα −2π

Φ

Φ0

]
. (E.65)

Summing the two equation, we will eliminate the dependence on φα

I2
max = I2

cα + I2
cβ

+2Icα Icβ

[
cos(φα)cos

(
φα −2π

Φ

Φ0

)
+ sin(φα)sin

(
φα −2π

Φ

Φ0

)]
, (E.66)

= I2
cα + I2

cβ
+2Icα Icβ cos

(
2πΦ

Φ0

)
, (E.67)

= I2
cα + I2

cβ
+2Icα Icβ cos

(
2πΦ

Φ0

)
+2Icα Icβ −2Icα Icβ , (E.68)

= (Icα − Icβ )
2 +2Icα Icβ

[
1+ cos

(
2πΦ

Φ0

)]
, (E.69)

= (Icα − Icβ )
2 +4Icα Icβ cos2

(
πΦ

Φ0

)
, (E.70)

and we get the final result for the maximum current

Imax =

[
(Icα − Icβ )

2 +4Icα Icβ cos2
(

πΦ

Φ0

)]1/2

(E.71)

E.4.2 Working point and screening parameter

When a d.c. SQUID is unbiased and is under external flux, there is an effective current circu-

lating around the loop

Icirc =
1
2
(Iα − Iβ ), (E.72)

which leads to the existence of self-induced flux LIcirc. Then the total flux Φt through the loop is

Φt = Φe +LIcirc, (E.73)

= Φe +
1
2

L(Iα − Iβ ). (E.74)

Furthermore, the phase differences must comply with the flux quantization condition of the

loop

φα −φβ = 2πΦt/Φ0. (E.75)
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Figure E.12: Circulating supercurrent in a current biased DC SQUID.

Substituting E.75 into E.73 yields for the circulating current

Icirc =
(φα −φβ )Φ0−2πΦe

2πL
. (E.76)

The two junctions are described as in E.3.2 by the RCSJ model. The equations for the two junctions

are

Iα =
1
2

I + Icirc = Icα sin(φα)+Vα/R+C
dVα

dt
, (E.77)

Iβ =
1
2

I− Icirc = Icβ sin(φβ )+Vβ/R+C
dVβ

dt
, (E.78)

where Rs and C are the shunting resistance and capacitance, respectively, and I is the biasing cur-

rent. Here, we shall assume again that the critical currents for the two junctions are the same

Icα = Icβ = Ic, as well as equal resistance and capacitance.

I = Iα + Iβ (E.79)

=
h̄C
2e

d2(φα +φβ )

dt2 +
h̄

2eR
d(φα +φβ )

dt
+ Ic

(
sin(φα)+ sin(φβ )

)
. (E.80)

After introducing the auxiliary variables γ = (φα +φβ )/2 and ζ = (φα −φβ )/2

I =
h̄C
e

d2γ

dt2 +
h̄

eR
dγ

dt
+2Ic sin(γ)cos(ζ ) (E.81)

I
2Ic
≡ i =

h̄C
2eIc

d2γ

dt2 +
h̄

2eRIc

dγ

dt
+ sin(γ)cos(ζ ). (E.82)

Using the McCumbert parameter βc = (2πIcR2C)/(Φ0) and another time variable τ = 2πRIct/Φ0,

we get

i = βc
d2γ

dτ2 +
dγ

dτ
+ sin(γ)cos(ζ ). (E.83)
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Continuing in a similar fashion, we take the difference Iα − Iβ and we obtain another equation

βc
d2ζ

dτ2 +
dζ

dτ
+ cos(γ)sin(ζ )− 2

πβL

(
ζ − πΦe

Φ0

)
= 0, (E.84)

where we used the definition for the screening parameter βL = 2LIc/Φ0, and the expression for the

circulating current Icirc from Eq.(E.76). In this way, we arrived at a system of coupled differential

equations for the variables γ and ζ

0 = βc
d2ζ

dτ2 +
dζ

dτ
+ cos(γ)sin(ζ )− 2

πβL

(
ζ − πΦe

Φ0

)
, (E.85)

i = βc
d2γ

dτ2 +
dγ

dτ
+ sin(γ)cos(ζ ). (E.86)

We refer again to a simplified model where the circulating current is zero Icirc = 0, thus Φt = Φe

and ζ = (φα −φβ )/2 = πΦe/Φ0. Then from Eq.(E.86), we obtain an equation similar to the one

for an a.c. SQUID in the RCSJ model

I = 2Ic cos(πΦe/Φ0)sin(γ)+
Φ0

2π

2
R

dγ

dτ
+

Φ0

2π
2C

d2γ

dτ2 . (E.87)

Hence, the d.c. SQUID behaves, in a crude approximation, as an a.c. SQUID with shunting

resistance R/2 and capacitance 2C. Then the current-voltage characteristics in the limit βc� 1 for

I > Ic is

V =
R
2

√
I2− I2

c , (E.88)

in this way we could obtain the voltage-to-flux transformation characteristic. Consider the deriva-

tive ∂V/∂Φe, and find the optimal working point

∂V
∂Φe

=−2πIcR
Φ0

Ic sin(πΦe/Φ0)cos(πΦe/Φ0)√
I2− I2

c
. (E.89)

By taking the derivative ∂/∂Φe(∂V/∂Φe) = 0, the point of maximum flux-to-voltage transfer

could be found
Φe

Φ0
=

(
n
2
+

1
4

)
. (E.90)

Although the above calculation is overly simplified, it gives the correct result for the working points.

If the system of coupled differential equations is solved numerically the full picture of the transfer

function could be obtained(Fig. (E.14)). A d.c. SQUID is operated under current bias and under

externally applied magnetic flux. The voltage change is measured and it determines the applied

flux.
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Figure E.13: (a) - The d.c. SQUID with the RCSJ circuit model; (b) - I-V characteristics of a d.c. SQUID in the cases
of integer and half-integer applied flux.

Figure E.14: Numerical simulation for the flux-voltage transfer function of a d.c. SQUID. For two set of parameter βL
and βC, the dependence on the reduced current i = I/2I0 is studied. (a) βL = 1, βC = 0; (b) - βL = 1, βC = 1. Obviously,
the quality of the transfer degrades as the McCumbert parameter βC is increased. The picture is taken from [62].

In the readout electronic circuits, described in Sec.(E.5), it is explained how the d.c. SQUID is

operated at optimal working conditions.
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E.5 Measuring principles, gradiometers, flux-locked loops

E.5.1 Different structure of weak links

Although the original Josephson prediction was for tunnelling through a thin insulating layer,

nowadays, the "barrier" is more generally referred to as a "weak-link". When the critical current in

the contact region is much lower than these in the superconductors, the contact is called a weak-

link. The weak-link could be just a point-contact between two superconductor, where a sharpened

superconducting wire is pressed lightly on another superconductor. This device structure is partic-

ularly useful because the resistance and capacitance of the junction are negligible, and this leads to

a non- hysteretic I-V curve. The I-V curve of a Josephson junction was explained in Sec. (E.3.2).

Another used device structure is the microbridge weak link, where the connection between the two

superconductor is a narrowing of the conduction channel. A problem is that the shunting resis-

tance is temperature dependant because of the temperature dependence of the coherence length

in superconductors ξ (T ). Finally, there is the thin film tunnel junction technique which uses a

thin insulating layer as a separator between the two superconductors. Nowadays, because of the

advances in thin-film deposition, thin-film tunnel junctions are the only practical devices for low-

Tc SQUID technology [62]. In high- temperature superconducting SQUIDS using Y Ba2Cu3O7−δ

(YBCO), naturally occurring weak links or microbridges patterns in thin films are the used type of

junctions. The production of high-quality high- temperature superconductors is nontrivial. Usually

regrinding, compressing, and sintering repeatedly are necessary. The resulting bulk material is a

fine-grained ceramic, brittle, with high-density of defects and grain boundaries. A contemporary

method, specially for high-Tc superconductors, utilizes their very short coherence length ξ . A very

narrow interruption of superconducting properties could be achieved by depositing the material

across a naturally occurring grain boundary in a substrate like SrTiO3. The superconducting film

forms defects along the length of the grain boundary. Thus the grain boundary forms a weak link

between the two parts of the superconducting film. When it comes to grain boundary junctions,

a major problem is the possible high reduction of critical current. Due to the dx2−y2 character of

the wavefunction in high-Tc ceramics, grains misorientation at the boundaries represent an obsta-

cle for the current transport. The importance here is the reproducibility of critical current density

properties for different grain boundary junctions.

E.5.2 Measurement principles

E.5.2.1 AC SQUID basic readout

In its simplest form, the readout scheme consists of an a.c. SQUID inductively coupled via

a mutual inductance M to a RF current-driven tank LTCT-circuit. An oscillatory flux modulation
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Figure E.15: Different type of weak links. (a) - insulating barrier between two superconductors; (b) - microbridge; (c) -
grain boundary junction. Methods (b) and (c) are specially used in high-Tc superconductors. The picture is taken from
[10].

Figure E.16: Different type of weak links. (a) - insulating barrier between two superconductors; (b) - microbridge; (c) -
grain boundary junction. Methods (b) and (c) are specially used in high-Tc superconductors. The picture is taken from
[10].

is applied to the SQUID ring via the tank inductance LT normally in the range 20-30 MHz [106].

Then the current circulating in the SQUID ring is MQIT sin(ω0t), where Q is the quality factor of

the tank circuit, IT is the current, and ω0 is the set frequency. The DC flux Φe, which must be

measured, is fed through another input coil coupled to the SQUID loop. To measure a change in
Φe, it is sufficient to amplify and detect any change in the RF voltage in the resonant circuit.
Let us assume that at the beginning Φe = nΦ0, and the current It is set too low to produce internal

flux transitions. When Φe is altered to (n+1/2)Φ0, the SQUID undergoes changes in its internal

flux state. The jumping between two internal flux states is in effect a transition from one quasilinear

region on the Φt/Φe characteristic to another quasilinear branch on Fig.(E.8). These changes lead

to energy dissipation, and these energy changes are drawn from the energy in the tank circuit. As a

result, there will be a drop in the mean voltage amplitude in the resonance circuit. After a low-noise

amplification, a direct voltage which is periodic in Φe could be detected.
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Figure E.17: Basic readout circuit of an a.c. SQUID.

E.5.2.2 DC SQUID basic readout

The DC SQUID basic readout circuit is much simpler than the one for an AC SQUID. The

essential elements of the detection system of a DC SQUID are presented in Fig. (E.18). First of

all, a means of direct current biasing the junctions, then, a low-noise amplifier detects the voltage

change through the junctions, which is the result of the externally applied flux Φe. The DC SQUID

is biased by a constant current into the finite voltage regime. The output voltage is a periodic

function of the applied flux. The current bias point which gives the system its maximum gain, which

is in effect the first derivative ∂V/∂Φ Eq.(E.89), varies as the applied flux changes. Obviously, a

variable gain is not a desired characteristic. In real d.c. SQUIDs a gain-linearising circuit, based

on negative feedback is used.

Figure E.18: Basic readout circuit of an d.c. SQUID.

E.5.3 Flux-locked loops

Flux-locked loops are the contemporary electronic circuits used for detection in SQUID-based

sensors. In effect, they are just one additional feedback supplied in the above circuits. In a nutshell,
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the flux through the SQUID is kept constant with modulation. The aim is to operate the SQUID at

a maximum of the flux-voltage transfer function.

E.5.3.1 RF SQUID flux-locked circuit

The triangular response shown in Fig.(E.9) means that the RF SQUID is in effect a linear

detector of magnetic flux when the changes are in the range ±Φ0. In order to make this detector

linear in a larger range, a negative feedback is used. A flux modulation of amplitude ±Φ0/2 is

applied via the tank circuit coil. The detected RF voltage is fed to a lock-in amplifier, referenced

by the modulation signal. The output can be used to apply feedback flux, via a feedback resistor

and the RF tank coil.

Figure E.19: Flux-locked circuit of an a.c. SQUID.

E.5.3.2 DC SQUID flux-locked circuit

If a DC SQUID is biased with only a direct current while a linear flux change is applied, the

voltage across the ring varies periodically as a function of the flux. The variation is not strictly

sinusoidal, and depends on the parameters of the SQUID Fig.(E.14). A gain-linearising circuit

with negative feedback is used in real SQUIDs. In addition to the input coil, a second modulation

coil is coupled to the superconducting ring. This coil is flux modulated with amplitude Φ0/2

and frequency ω0. The voltage output of the SQUID ring is amplified, phase-sensitively detected

(P.S.D), and fed back into the same coil. The feedback ensures that the sum of the applied flux

and the fed-back flux is constant, and maintained at an optimal working point in accordance with

Eq.(E.89). In this way, the gain of the device is linearised.
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Figure E.20: Flux-locked circuit of a d.c. SQUID.

E.6 Sensitivity of SQUIDs

E.6.1 Sensitivity, noise and gain of an a.c. SQUID

The main noise contributors in an an a.c. SQUID-based detector are the parts from its readout

circuit. Let us consider a linear approximation for the behaviour of Φe(Φt):

Φt = Φe +LIs f or Φe ≈ nΦ0, (E.91)

where Is is the supercurrent circulating in the SQUID loop. If the mutual inductance between the

ring and the input coil is M, and the current flowing in the pickup coil is I, then the externally ap-

plied field to the SQUID is Φe(t) = MI(t). But the flux between the input coil and superconducting

loop must be null, hence

LIs +MI = 0⇒ Is =−MI/L. (E.92)

While n is fixed because the current I is not sufficient to cause transitions, there will be just two

contributions to the voltage V across the tank inductor are

V = iωLTI + IωMIs = iωLTI(1− k2), (E.93)

where k is the coupling between the ring and the coil, expressed as M2 = k2LLT. The ring is

normally weakly coupled to the tank coil k2 � 1 (the condition k2Q ≈ 1 should be satisfied for

reasons that will be clarified). The increase of the RF current in the tank coil at the beginning is

I = Q [1− exp(ω0t/2Q)] I0 sin(ω0t). (E.94)

272



E.6. Sensitivity of SQUIDs

When the current exceeds the threshold IcL/M, then Is > Ic, the SQUID ring makes a transition

to the neighbouring internal flux state (n+1), in a time of order L/R. This time is typically much

shorter than the RF oscillation. Hence, the transition happens at constant flux through the resonant

tank circuit. At any time, the total flux threading the tank coil is

Φt = LTIT +MIs− ITM2/L. (E.95)

When the flux through the SQUID ring changes with 1Φ0, the supercurrent change is |∆Is|= Φ0/L.

The resulting change in the inductor current is

|∆IT|= Φ0k2/(M(1− k2)). (E.96)

Half a cycle later the ring undergoes another flux change in the opposite direction. The average

voltage across the tank inductor is

〈V 〉= ω0LT(1− k2)LIc/M = ωLQI0/
√

2. (E.97)

So far, we assumed that the applied flux consists only of alternating term. When there is a time-

independent term Φ̃e, the onset of internal flux state transitions will occur when the the sum of the

alternating and constant term is LIc. It could be shown that, this happens at

|V |= (ωLT/M)(1− k2)(LIc− Φ̃e). (E.98)

The voltage modulation amplitude dV which is produced as Φe is changed could be expressed as

dV = ω0Φ0LT(1− k2)/2M, (E.99)

where Φ0/2 is the supposed flux change. It could be mistakenly considered that the modulation

could be unlimitedly increased by decreasing the mutual inductance M. In fact, if the coupling k

is made too small, then the tank circuit will be less sensitive to the dissipated energy. The above

equation does not show that, actually, k and Q are interdependent. The slope of I-V curve between

between constant voltage steps is
V
Ic

= ω0LTQ
√

2, (E.100)

and the length of each constant voltage step is

∆Ic = 2Φ0k2/M(1− k2). (E.101)
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If we try to match the above two conditions, so that the point B, which is the start of the step for

integer quanta, lies above the end of the step for half- integer quanta, then the optimum is k2Q≈ 1.

Further reduction of the coupling k will move point B to the right and then the full voltage separation

between the steps will not be available. The condition k2Q≈ 1 maximises the flux-voltage transfer

ratio ∂V/∂Φ for an AC SQUID. For a change in the flux dΦe at the input, the available energy

change is dE = (dΦ2)/2L, and this change happens in a bandwidth d f , then the available signal

power is dE×d f . The available output power from this change is

dP = dV 2/2R = (dV/dΦ)2(dΦ
2/2R), (E.102)

using the relation for a quality factor Q = ω0L/R for a parallel circuit, we get the power gain

g = ω0Q2/d f . (E.103)

For an RF SQUID working at frequency 30 MHz with Q=50, and in a signal bandwidth 1kHz the

power gain is 5×108[106]. This is a remarkable number, which explains why RF SQUIDs could be

used as amplifiers. Taking into account the condition k2Q≈ 1, and a typical value of Q≈ 50−100,

it is clear that k2� 1, and we can assume that (1− k2)≈ 1 in Eq.(E.99). The transfer function for

an AC SQUID is then

VΦ = ∂V/∂Φ = ω0LT/M. (E.104)

The two main contributors to the noise characteristic are the superconducting loop noise itself and

the amplifier voltage noise. Then the flux sensitivity is

SΦ = Sloop +Samp/V 2
Φ. (E.105)

In the next subsection (E.6.2), it will be estimated that the flux sensitivity of the loop itself is

a few 10−6Φ0/
√

Hz. Typical value for a commercially available preamplifier voltage noise is

1nV/
√

Hz. The transfer coefficient is normally VΦ ≈ 100µV/Φ0. As a result, the amplifier flux

noise contribution is 10−5Φ0/
√

Hz. Typically, the sensitivity of an AC SQUID is limited by the

properties of the readout circuits.

E.6.2 Sensitivity, noise and gain of a d.c. SQUID

For RF SQUIDs, the external circuit noise is almost always much more significant than the

noise of the SQUID ring itself. For DC SQUIDs, the situation is usually the opposite. The reason

is that the preamplifier noise could be suppressed by using a step-up transformer at cryogenic

temperature. Extensive review of all the noise suppression means could be found in [62]. Then,
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the two main physical effect are the Nyquist voltage noise and the current fluctuation related to the

normal state resistance of the junctions. Two identical Josephson junctions with equal resistance R

have thermal noise voltage spectrum

S(V ) = 4kT R/2, (E.106)

and furthermore, there will be current fluctuation in the ring with spectral density

S(I) = 8kT/R, (E.107)

and in approximation, we could assume that these noise contributions are uncorrelated. Although,

in practice, circulating noise current will generate new voltage contribution across the junctions,

and vice versa. The flux spectral noise density S(Φ) is simply related to the minimum detectable

energy in unit bandwidth dE and to S(V ) and S(I):

dE = S(Φ)/2L =

(
S(V )

(∂V/∂Φ)2 +
S(I)

(∂ I/∂Φ)2

)
/2L. (E.108)

In principle, the above analysis must be carried out by numerical simulation of the RCSJ, but this

time with adding the voltage contributing terms. A simple solution which is correct within a small

numerical factor could be given. It could be shown that the maximum change in critical current

which can be produced by an applied flux is Φ0/2L, and this happens when the flux is changed by

Φ0/2. Then, we assume that ∂ I/∂Φ≈ 1/L. In a similar fashion, it could be estimated

∂V/∂Φ≈ (∂V/∂ I)(∂ I/∂Φ) = R/2L. (E.109)

Plugging back these two expressions into Eq.(E.108), we obtain the minimum detectable energy

dE determined by the thermal fluctuations in the SQUID loop

dE ≈ 8kT L/R. (E.110)

Then the minimum detectable energy could be converted to minimum detectable flux by dE =

dΦ2/2L, hence

dΦ = 4L
√

kT/R. (E.111)

For a typical SQUID with inductance L ∼ 1nH, and resistance R ∼ 1Ω, operating at T = 4.2K,

a sensitivity dΦ ∼ 10−5Φ0Hz−1/2 is attainable. Experimental work at IBM during 1980s with

impedance of the loops as low as few pH confirmed the validity of the above expression. An im-

portant point to be made is that the sensitivity is dΦ∼ 1/
√

R whereas the McCumbert’s parameter
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βc ∼ R2. Hence, the production of extremely low resistance junction is not desired because that

would sacrifice sensitivity. The gain of a d.c. SQUID is more complicated because of the non-

linear behaviour of the flux-to-voltage transfer function. Nevertheless, a simple treatment is given

by J C Gallop [106]. Consider that a the d.c. SQUID is biased by a direct current I > Icα + Icβ

(which is bigger than the sum of the critical currents for the two junctions). A time- average voltage

〈V 〉 exists across the junctions. The application of external flux leads to flow of circulating current

whose frequency is determined by 〈V 〉 in accordance with the second Josephson relation. If the

junctions have resistance R, and the loop induction is L, above a frequency f ∼ R/πL, the circulat-

ing supercurrent will be damped by the significant impedance. The total voltage change resulting

from the flux change Φ0 is

IcircR∼ ∆V < Φ0R/πL. (E.112)

Hence, the maximum circulating current is Imax
circ .Φ0/πL. When an oscillating signal Φ0 sin(ωt) is

supplied, the input energy per one cycle is Ein = Φ2
0/2L, and the input power is then Pin = ωEin =

ωΦ2
0/2L. But the output power is

Imax
circ ∆V/2∼ (Imax

circ )
2R∼

RΦ2
0

2π2L2 . (E.113)

Then the limit on the power gain g is

g =
Pout

Pin
.

R
π2Lω

. (E.114)

Sometimes, the maximum frequency ωp = R/L is referred to as the pump frequency of the d.c.

SQUID.
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– 148, 2003.

[246] B. Nadgorny, I. I. Mazin, M. Osofsky, R. J. Soulen, P. Broussard, R. M. Stroud, D. J. Singh,

V. G. Harris, A. Arsenov, and Ya. Mukovskii. Origin of high transport spin polarization in

298



Bibliography

La0.7Sr0.3MnO3 : Direct evidence for minority spin states. Phys. Rev. B, 63:184433, Apr

2001.

[247] B. Nadgorny, R. J. Soulen, M. S. Osofsky, I. I. Mazin, G. Laprade, R. J. M. van de Veerdonk,

A. A. Smits, S. F. Cheng, E. F. Skelton, and S. B. Qadri. Transport spin polarization of

NixFe1−x : Electronic kinematics and band structure. Phys. Rev. B, 61:R3788–R3791, Feb

2000.

[248] Jun Nagamatsu, Norimasa Nakagawa, Takahiro Muranaka, Yuji Zenitani, and Jun Akimitsu.

Superconductivity at 39 K in magnesium diboride. Nature, 410(6824):63–64, Mar 2001.

[249] S. R. Nagel. Temperature dependence of the resistivity in metallic glasses. Phys. Rev. B,

16:1694–1698, Aug 1977.

[250] T. M. Nakatani, A. Rajanikanth, Z. Gercsi, Y. K. Takahashi, K. Inomata, and K. Hono.

Structure, magnetic property, and spin polarization of Co2FeAlxSi1x Heusler alloys. Journal

of Applied Physics, 102(3), 2007.

[251] A. Narahara, K. Ito, T. Suemasu, Y. K. Takahashi, A. Ranajikanth, and K. Hono. Spin

polarization of Fe4N thin films determined by point-contact Andreev reflection. Applied

Physics Letters, 94(20), 2009.

[252] Ajaya K. Nayak, Julia Erika Fischer, Yan Sun, Binghai Yan, Julie Karel, Alexander C. Ko-

marek, Chandra Shekhar, Nitesh Kumar, Walter Schnelle, Jürgen Kübler, Claudia Felser, and

Stuart S. P. Parkin. Large anomalous Hall effect driven by a nonvanishing Berry curvature

in the noncolinear antiferromagnet Mn3Ge. Science Advances, 2(4), 2016.

[253] A. D. Naylor, G. Burnell, and B. J. Hickey. Transport spin polarization of the rare-earth

transition-metal alloy Co1−xGdx. Phys. Rev. B, 85:064410, Feb 2012.
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