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Abstract 

The main purpose of this thesis is to study the nonlinear ac stationary response of dipolar 

systems to superimposed ac and dc bias fields via the rotational Brownian motion model. 

In this way we investigate (i) the nonlinear dielectric and Kerr effect ac stationary 

responses of noninteracting permanent electric dipoles and the analogous nonlinear 

magnetic relaxation of noninteracting magnetic dipoles in ferrofluids, (ii) the nonlinear 

dielectric and dynamic Kerr effect of a system of permanent dipoles in a uniaxial mean 

field potential, and (iii) the frequency-dependent dc component of the magnetization of 

noninteracting magnetic nanoparticles possessing simple uniaxial anisotropy. A new 

effective matrix method of calculation of the nonlinear ac stationary responses of dipolar 

systems for arbitrary dc field strength via perturbation theory in the ac field is developed 

for a uniaxial mean field potential. Furthermore, accurate analytic equations for nonlinear 

dynamic susceptibilities, allowing one to qualitatively understand the main features of the 

nonlinear ac stationary response of dipolar systems, are also derived using the two-mode 

approximation. Two distinct dispersion regions appear in the dc components of the 

polarization and birefringence of electric dipoles and the dc component of the 

magnetization for magnetic dipoles at low- and mid-frequencies, corresponding to slow 

overbarrier and fast intrawell relaxation modes, respectively. Such frequency-dependent 

behaviour allows one to estimate the longest relaxation time via the half-width of the low-

frequency spectra of the dynamic susceptibility. In the nonaxially symmetric case, a third 

high-frequency resonant dispersion in the dc component of the magnetization appears, 

accompanied by parametric resonance behaviour due to excitation of transverse resonance 

modes with characteristic frequencies close to the precession frequency. It is also shown 

how the results obtained can be generalized to anomalous relaxation via the fractional 

rotational diffusion equation. Possible experimental verifications of theoretical predictions 

in polar dielectrics and ferrofluids, are discussed. 
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1 Introduction 

When studying the nonlinear effects of polar dielectrics subjected to an ac driving force, 

one of the most interesting cases is where a strong ac force and a strong dc bias force are 

applied simultaneously. If we compare this situation to a system [1-3] where (a) a strong 

ac force is applied alone or (b) a strong dc bias force is applied alongside a weak ac force, 

we can observe new effects due to the entanglement of the nonlinear ac and dc responses. 

Many of these new effects are of particular interest as they depend on the frequency of the 

driving ac field. In this thesis I considered these nonlinear effects on the ac stationary 

response in three systems: (i) noninteracting electric/magnetic dipoles; (ii) permanent 

electric dipoles in the mean field potential; and (iii) magnetic nanoparticles. The approach 

developed is then generalized to treat anomalous relaxation for disordered materials and 

complex liquids. 

In a dipolar system consisting of an assembly of electrically noninteracting particles 

with permanent electric moment μ  in a time-varying external electric field  tE , the 

torque due to the external field tends to align the particles in the direction of the applied 

field, thus causing the system to become polarized. The polarization ( )tP  in dielectrics is 

usually delayed with respect to the time-varying electric field, resulting in dielectric 

relaxation which is measured relative to the mean dipole moment in the direction of the 

electric field [1],  

     ~ co( ) / sEP t t E t  μ E , (1.1) 

i.e., the expectation value    1 cosP t of the first Legendre polynomial  1 cosP   (  

being the polar angle of the electric dipole moment vector μ  of the molecule). Dielectric 

relaxation of electric dipoles in a time-varying electric field is analogous to magnetic 

relaxation of magnetic dipoles Μ  in a time-varying magnetic field  tH , where the mean 

moment is then in the direction of the magnetic field of    / cosSM tt H  M H

[4], i.e., also    1~ cosP t . Furthermore, when a dipolar system comprised of polar 

and anisotropically polarizable particles is acted on by an external electric field E, it 

becomes birefringent, acquiring the same properties as a uniaxial crystal. The 
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birefringence can be described by the electric birefringence function K(t) which is defined 

using the expectation value of the second Legendre polynomial    2 cosP t  as [1] 

    2 0 0

|| 2( ) cos ( )~K t E P t    (1.2) 

where 0

||  and 0
 are the components of the optical polarizability due to the electric field 

(optical frequency) of the light beam passing through the liquid medium. This electro-

optical (Kerr) effect is a purely nonlinear phenomenon. Related nonlinear phenomena 

include nonlinear dielectric relaxation of polar liquids and nematic liquid crystals and 

nonlinear magnetic relaxation of ferrofluids (colloidal suspension of magnetic 

nanoparticles). The theories describing all these nonlinear phenomena, regardless of the 

physical system being considered, usually have been based on very similar mathematical 

approaches (Langevin equation [1] and/or Fokker-Planck equation [5]) involving the 

rotational Brownian motion of a rigid body in an external potential.  

The starting point for analysing nonlinear dielectric relaxation and Kerr effect 

phenomena in dipolar systems is usually either the Langevin equation or the corresponding 

Fokker-Planck equation for the noninertial rotational diffusion model in the mean field 

potential when inertial effect are neglected. The Fokker-Planck equation (also called the 

Smoluchowski equation), directly derived from the Langevin equation, describes the time 

evolution of the orientational distribution function of a particle on a unit sphere. Here, we 

shall use the Fokker-Planck equation approach (see Chapter 2 for details). The Fokker-

Planck equation for the probability distribution function  , ,W t   of orientations of 

Brownian particles can be written down in a general form as [1]  

 

2

2 2

2

1 1
sin

sin sin

1 1
sin ,

sin sin

W W W
D

t

D V V
W W

kT


    


     

     
   

     

      
     

       

 (1.3) 

where  and  are the polar and azimuthal angles in Fig. 2.1, respectively, V is the mean 

field potential, D is the rotational diffusion coefficient, k  is the Boltzmann constant, and 

T  is the absolute temperature. Equation (1.3) can then be used to calculate the response 

of noninteracting electric or magnetic dipoles if V in Eq. (1.3) only considers the potential 

due to an external field  tE , for example, 
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    , sinV t E t    . (1.4) 

Equation (1.3) can also be used to evaluate the dielectric response of permanent electric 

dipoles in the mean field potential if V is composed of a mean-field potential part and a 

field dependent part, for example, 

    2o, sinc sV t E tK    . (1.5) 

Now, the theory of dielectric relaxation of polar fluids bears a close resemblance 

to the theory of magnetic relaxation of single domain ferromagnetic particles as 

formulated by Brown [6]. Fine single domain ferromagnetic particles possessing internal 

magnetocrystalline anisotropy potential, which, by their very nature, have several 

equilibrium states with potential barriers between them, exhibit unstable magnetization 

behaviour due to thermal agitation, causing superparamagnetism and magnetic viscosity. 

When the barrier energy is comparable to the thermal energy, a change in field will lead 

to a change in magnetization due to the large magnetic dipole moment (lagging, however, 

behind the field change) analogous to the solid state-like (Arrhenius) Debye relaxation 

process in polar dielectric solids over a potential barrier. Brown’s major contribution to 

this theory was the derivation of the Fokker-Planck equation for the distribution function 

of the particle magnetic moment orientations on the unit sphere: 
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 (1.6) 

where V is now the particle free energy per unit volume, N  is the free diffusion relaxation 

time,  /v kT  , v is the volume of the particle, and  is the damping coefficient. When 

   with N const  , i.e., ignoring the gyromagnetic term, Brown’s Fokker–Planck 

equation (1.6) has the same mathematical form as the noninertial rotational diffusion 

equation, Eq. (1.3). 

To treat the longitudinal relaxation in axially symmetric potentials  ,V t where the 

azimuthal angle dependence may be ignored (see, e.g., Eq.(2.19) below), both Eqs.  (1.3) 

and (1.6) can be written as a single-variable rotational diffusion equation. Then, their 
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solutions may be expanded as a series of Legendre polynomials  cosnP   (see Eq. (2.23) 

below). In the general case where the azimuthal angle  must also be considered, solutions 

of Eqs.  (1.3) and (1.6) may be presented as a series of spherical harmonics,  , ,  n mY  

(see e.g., Eqs. (2.59) and (2.60) below). After substituting the general solutions into the 

diffusion equations, Eqs.  (1.3) and (1.6), the problem is reduced to the solution of an 

infinite hierarchy of differential-recurrence relations of the expectation values of the 

Legendre polynomials  cos ( )nP t  (or spherical harmonics  , , ( ) n m tY   ), which 

can be solved by using the matrix continued fraction method (see Chapter 2 for details). 

As we have seen above, the physical quantities of interests describing the ac stationary 

response of dielectric and Kerr effect relaxation are the electric polarization function, 

1~ (cos ) ( )P t  , and the electric birefringence function, 2~ (cos ) ( )P t  , respectively. 

To review the previous treatments of the nonlinear dielectric and magnetic relaxation 

in dipolar systems, we start with Debye’s theory of dielectric relaxation of polar molecules 

using two distinct models of the phenomenon [7]. In the first of the two models, the 

rotation of a polar molecule in a liquid composed of noninteracting polar molecules is 

treated as a type of Brownian motion [7] (e.g., Eq. (1.4)). This theory can be used to predict 

the dispersion and absorption of microwave (GHz) radiation by polar fluids and is the 

principle underlying the microwave oven as the dipoles cannot keep in phase with the fast 

field. The phase lag results in heating as energy is interchanged with the bath. Put more 

precisely, the energy of the dipoles is dissipated via friction due to the bath, which may be 

regarded as a collection of harmonic oscillators. Debye also considered a second solid 

state-like mechanism of relaxation which mainly pertains to relaxation in solids, whereby 

a dipole can stay either of two directions (i.e., parallel or antiparallel to the applied field) 

and reverse its direction by crossing over a potential barrier due to thermal agitation which 

is modelled by Brownian motion (e.g., Eq. (1.5)). The relaxation time (the time to cross 

the barrier from one orientation to the other) is an Arrhenius process and is thus 

exponentially long [8]. This discrete orientation model was used much later by Néel in 

order to calculate the relaxation time of the magnetization of fine single-domain 

ferromagnetic particles [9]. His calculation is a famous generalization of the Debye theory 

to treat the overbarrier relaxation process via the rotational Brownian motion of a rodlike 

particle in an external mean field uniaxial potential, commonly called the Maier-Saupe 

potential (cf. Eq. (1.5)). 
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Now, in this liquid state-like Debye model (cf. Eq. (1.4)), when the stimulus due to 

the field is much smaller than the thermal energy, the linear ac response term is sufficient 

to determine the relaxation process, as demonstrated by Debye [7]. Much later, the Debye 

calculation was extended by Coffey and Paranjape [2] to include terms cubic in the applied 

field via perturbation theory. In all cases of nonlinear response, no unique response 

function exists as it always depends on the precise form of the stimulus, unlike the linear 

response. They studied the response to (i) a strong ac field and (ii) a weak ac field 

combined with a strong dc bias field. The results of the first case have been compared 

with nonlinear response measurements by De Smet et al. [10] and Jadżyn et al. [11] and 

agree with these experiments. Additionally, the perturbation calculation for the strong ac 

field was verified by Déjardin and Kalmykov [12] by solving the differential-recurrence 

relation generated by the rotational Smoluchowski equation [1] using matrix continued 

fractions in the frequency domain (see Section 2.3). They also used this method to consider 

the strong ac and dc fields case [13]. In the case (ii) of a weak ac field combined with a 

strong dc bias field, the ac field was supposed so weak that terms in its square and higher 

are omitted. Subsequently, Déjardin et al. [14] extended this perturbation calculation to 

include the nonlinear ac terms. Similar results may pertain to the magnetization response 

under the influence of strong ac and dc bias fields of a blocked ferrofluid composed of a 

colloidal suspension of single domain ferromagnetic particles. Here, the solid state-like or 

Néel [4] magnetization relaxation (cf. the second Debye model) mechanism over the 

internal magnetocrystalline anisotropy-Zeeman energy barriers inside the particle due to 

magnetic Brownian motion is frozen so that only the liquid state-like Brownian 

mechanical motion remains. We remark that the nonlinear relaxation effect is easier to 

observe experimentally in the ferrofluid because of the large magnetic moment, 

4 510 ~10 B , of single domain particles compared to that of polar molecules. This 

behaviour was experimentally detected by Fannin et al. [15] for a strong ac magnetic field. 

The perturbation method for calculating the nonlinear response of noninteracting 

dipoles (e.g., Eq. (1.4)) described above was then generalized by Coffey et al. [3] to 

include a mean field potential (e.g., Eq. (1.5)). This paper, which considered the response 

to an ac field alone, gave analytic formulas for the nonlinear dielectric and Kerr effect 

relaxation based on an existing two mode approximation for linear response in the 

presence of a mean field potential 
2sin   ( is the anisotropy parameter), whereby the 

linear response, consisting of a series of infinite relaxation modes, can be approximated 
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by two modes only [1]. These are the slow over-barrier relaxation (interwell) mode and a 

set of fast near-degenerate “intrawell” modes, represented as a single high frequency mode. 

In the combined field case, however, it is difficult to get closed form results due to the 

vector-valued coupling between each member of the hierarchy of differential-recurrence 

relations. Since the calculation of the dielectric response of polar molecules in a mean-

field potential is analogous to the problem of magnetic relaxation of single domain 

ferromagnetic particles from a mathematical point of view, this approach will also be 

extended to the superimposed external dc bias and ac fields case for fine single domain 

magnetic nanoparticles with uniaxial anisotropy.  

As mentioned above, the solution of the Fokker-Planck equation can be reduced 

to that of an infinite hierarchy of differential-recurrence equations for the statistical 

moments   cos ( )nP t  or  , , (  ).n mY t   Generally, these differential-recurrence 

relations comprise three or more terms. The three-term differential-recurrence equation 

can be solved in terms of ordinary infinite continued fractions [5], while recurrence 

relations with more than three terms should be solved by the matrix continued fraction 

method by converting the equations to a three-term matrix recurrence relation [1]. Here, 

the scalar continued fraction method is just a special case of the matrix one. Efficient 

numerical algorithms for the calculation of the nonlinear ac stationary response of the 

magnetization of uniaxial magnetic nanoparticles have been proposed in Refs. [16-18] by 

assuming that the dc bias and ac driving fields are directed along the easy axis of the 

particle, so that the matrix continued fraction methods for axially symmetric potentials as 

discussed above may be applied. However, in this configuration many interesting 

nonlinear effects are suppressed because no dynamical coupling between the longitudinal 

and transverse precessional modes of motion exists. These mode coupling effects in the 

nonlinear ac stationary response can only be modelled for uniaxial particles driven by a 

strong ac field applied at an angle to the easy axis of the particle so that the axial symmetry 

is broken by the Zeeman energy [19-22]. Now, building on the axially symmetric solutions 

described in Refs. [16-18], an exact nonperturbative method for the determination of the 

nonlinear magnetization of magnetic nanoparticles with an arbitrary anisotropy potential 

and subjected to a strong ac driving field superimposed on a strong dc bias field has 

recently been given by Titov et al. [23]. The method is rooted in posing the solution of the 

averaged magnetic Langevin equation for the statistical moments (which are now the 

expectation values of the spherical harmonics) in terms of matrix continued fractions in 
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the frequency domain (see also Section 2.6). So far this method has been used to determine 

the dynamic susceptibilities (linear, cubic, etc.) and dynamic hysteresis loops in uniaxial 

magnetic nanoparticles in Refs. [21, 23]. 

Many disordered materials such as glass-forming liquids and polymers have very 

significant departures from the Debye behaviour resulting in anomalous relaxation [1, 24]. 

The relaxation processes in such complex systems are characterized by the temporally 

nonlocal behaviour arising from the energetic disorder, which produces obstacles or traps, 

simultaneously delaying the motion of the particle and producing memory effects [25]. 

Thus it is also useful to generalize the nonlinear normal relaxation results to anomalous 

relaxation via the fractional Fokker-Planck equation [1, 26]. 

1.1 Layout of the Thesis 

This thesis is organized as follows: 

In Chapter 2, the general theory of the dielectric and magnetic relaxation is presented. 

The derivations of the noninertial Fokker-Planck equation for the rotational Brownian 

motion of dipoles are reviewed first. Then, the differential-recurrence relations for the 

statistical moments,  cos ( )nP t  or  , cos ( )n mY t , are derived for both the electric 

and magnetic cases. The general solutions in the frequency domain of these differential-

recurrence relations are given via the matrix continued fraction method. These continued 

fraction solutions can be used for comparisons with our analytic approximate results for 

various models considered in the thesis. In addition, the two-mode approximation and 

methods of treating anomalous relaxation in dipolar systems are also discussed. 

In Chapter 3, the perturbation method is used to calculate the nonlinear ac stationary 

response of noninteracting electric and magnetic dipoles for the particular case of a strong 

dc bias field superimposed on a strong ac field with a view towards encouraging the 

experimental detection of the frequency-dependent dc term, as well as the nonlinear 

effects due to the interaction of the two fields at the fundamental and second harmonic 

frequencies and the term with the fundamental frequency which also appears in the cubic 

response. In particular, we shall highlight the frequency dependence of the dc term and 

show the calculation of the dynamic Kerr-effect response as well. We shall also show how 

the calculation may be extended to anomalous relaxation governed by a fractional Fokker-

Planck equation. This material has been published in Ref. [27].  
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In Chapter 4, the nonlinear dielectric and Kerr-effect relaxation of permanent electric 

dipoles, interacting via a mean field potential under the influence of ac and dc bias fields, 

are investigated by two complementary approaches. The first is based on perturbation 

theory, allowing one to calculate numerically the nonlinear ac stationary responses using 

powerful matrix methods, while the second semi-analytic approach, based on the two-

mode approximation [1], effectively generalizes the existing analytic results for dipolar 

systems in superimposed ac and dc fields to a mean field potential. The results of this 

chapter has been published in Ref. [28]. 

In Chapter 5, Brown’s continuous diffusion model [6, 29] is applied to investigate the 

dc magnetization of uniaxial magnetic nanoparticles in superimposed strong ac and dc 

fields. Both cases of an ensemble of fully aligned noninteracting particles and particles 

with randomly oriented easy axes are studied using a nonperturbative approach. Here, we 

focus for the first time on nonlinear frequency-dependent effects in the dc component of 

the magnetization, which were overlooked in previous studies. In the presence of a strong 

ac driving field, the dc component of the magnetization of uniaxial particles alters 

drastically leading to new nonlinear effects; in particular, it becomes frequency-dependent. 

This material was published in Ref. [30]. 
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2 Diffusion Model of Orientational Relaxation in 

Dipolar Systems 

In order to study the nonlinear response of dipolar systems in superimposed ac and dc bias 

fields, we start by describing how to setup the rotational diffusion model for the electric 

and magnetic dipoles where the derivations of the Fokker-Planck equations will be 

summarised. Then, the Fokker-Planck equation will be postulated in terms of infinite 

hierarchies of differential-recurrence equations for the statistical moments of different 

systems which will be solved numerically using the matrix continued fraction method. 

Moreover, the basic approximation approaches to yield the analytical formula of nonlinear 

responses will be introduced, as well as the equations for the generalization of the results 

to the anomalous relaxation. 

2.1 Smoluchowski Equation for Electric Dipoles 

The Debye theory [7] of dielectric relaxation commences with a special form of the 

Fokker-Planck equation for rotational Brownian motion in the space of a sphere when 

inertial effects are neglected, which is also called the rotational Smoluchowski equation. 

A detailed derivation of this equation is given by Debye [7]. However, we shall follow the 

derivation given in Section 1.15 of Ref. [1], which is based on the vector Euler-Langevin 

equation of Lewis et al. [31]. 

To study the rotational Brownian movement of a spherical body, one first assumes 

that the homogeneous sphere contains a rigid electric dipole μ  [1]. Then the rate of change 

of  tμ  is given by the kinematic relation 

       ,t t t μ ω μ   (2.1) 

where  tω is the angular velocity of the body and obeys the Euler-Langevin equation  

          I t t t t t   ω ω μ E λ . (2.2) 

Here I is the moment of inertia of the sphere,  tω is the damping torque due to the 

friction,    t tμ E is the torque of the externally applied electic field, and  tλ is the 

white noise driving torque which has the properties: 



 

10 

 

  ,( ) 0, ( ) ( ) 2n n n mmt t t kT t t         , (2.3) 

where the indices , 1,  2,  3n m   in Kronecker’s delta, 
,n m , correspond to the Cartesian 

laboratory coordinate axes X, Y, Z. The angular velocity vector after omitting the inertial 

( 0I  ) term is 

        1t t t t     ω μ E λ . (2.4) 

Substituting Eq. (2.4) into the kinematic relation, Eq. (2.1), we obtain the Langevin 

equation for the motion of μ  in the noninertial limit 

          1t t t t t      μ μ E λ μ . (2.5) 

 er 

e 

Y 

Z 

X 

e 

 

 
 u 

 
Fig. 2.1. Spherical polar coordinate system. 

Now, the distribution of Brownian particles  ,W tμ  of orientations μ  under the influence 

of an external field  tE  can be calculated via the continuity equation 

 div 0W  J , (2.6) 

where the current density (flux) d diff J J J  contains a conservative part dJ  called the 

drift current density which describes J  in the absence of the thermal agitation (i.e. leaving 

out the term  tλ  in Eq. (2.5)) 

 d WJ u , (2.7) 

where u is a unit vector along the dipole moment μ  described by the polar and azimuthal  

angles   and   of the spherical polar coordinate system (Fig. 2.1) so that the direction 
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cosines of u are given by sin sin ccos , sin s, oX Y Zu u u       . Now, the external 

field    grad ,Vt t E μ  can be written in the form of 

  
1

sin

1
r

V V V
t

u
 

   


   
 
  

  


E e e e , (2.8) 

where 
re , e  and e  are unit vectors in the direction of increasing r ,   and   

respectively. The vector products in Eq. (2.5) are then in spherical coordinates, 
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e e e

μ E e e   (2.9) 

and 

  
1 1

sin sin

0 0

0 ,

r

V V V V

 

 
     
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e e e

μ E μ e e   (2.10) 

so that the drift current density dJ , Eq. (2.7), is 

 
1 1

sin
d

V V
W 

  


  

  
  

J e e . (2.11) 

Then the diffusion part diffJ of the the current density, which accounts for the thermal 

agitation, is given by 

 
1

sin
diff R R

W
D D W 

  
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J e e
u

, (2.12) 

where the diffusion parameter RD can be obtained from the stationary solution of Eq. (2.6) 

with the Boltzmann distribution      , /1

0 ,
V kT

W Z e
 

 
 , where Z  is defined by 

Eq. (2.101). Hence, by substituting Eqs. (2.11) and (2.12) into the divergence of the total 

current density J  
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where 
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Eq. (2.6) yields the rotational Smoluchowski equation for the orientations of μ  on a unit 

sphere 
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  (2.15) 

which can be written in a vector form as 

  1(2 )D

W
W W V

t
 

      
. (2.16) 

Here / (2 )D kT   is the Debye relaxation time, 1( )kT   is the inverse thermal 

energy, k is Boltzmann’s constant, T is the absolute temperature, and  and   are the 

gradient and Laplacian on the surface of the unit sphere, respectively, 
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  

 
  

 
e e , (2.17) 
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2 2

2 1 1
sin

sin sin


    

   
  

 



 . (2.18) 

Debye [7] specialized this equation to the case where an external field E is applied along 

the polar axis. Here, due to the axial symmetry, the azimuthal angle dependence may be 

ignored, so that Eq. (2.15) becomes  

 
1

2   sin
sin

D

W W V
W

t
  

   

      
   

     
. (2.19) 

2.2 Five-Term Differential-Recurrence Relations 

The rotational diffusion Smoluchowski equation (2.19) for an axially symmetric problem 

can be rewritten as 

    2 22   1 1D

W W V
x x W

t x x x x
 

       
             

, (2.20) 
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where s .cox   The potential V, consisting of the Maier-Saupe uniaxial anisotropy 

potential and the external field potential of  tE applied along the easy axis, can be written 

as [1] 

    2 2cos cosV t x t x            , (2.21) 

where K  is a dimensionless inverse temperature parameter, K is the anisotropy 

constant and    t E t  is a dimensionless external field parameter. 

By substituting Eq. (2.21) into Eq. (2.20), we have the Fokker-Planck equation for our 

specific system, 

       2 22   1 1 2D

W W
x x x t W

t x x x
  

                 
. (2.22) 

The general solution of Eq. (2.22) has the form 

      
0

, n n

n

W t a t P x





 , (2.23) 

where  nP z  are the Legendre polynomials [32]. Since the Legendre polynomials form a 

complete orthogonal set over  1,1 , an arbitrary function defined in the interval  1,1  

can be expanded in a series of Legendre polynomials, just like the Fourier series. 

Firstly, we consider the term of Eq. (2.22) due to the external field, 

    21t W x
x



  
 

. (2.24) 

Substituting Eq. (2.23) into this term gives us 

         2 2

0

1 1 2n n n

n

t W x a t x P xP
x



 



        
   

 . (2.25) 

Making the use of the recurrence relations of the Legendre polynomials [32], 

    2

11 n n nx P n P xP     (2.26) 

and 

 
 

  1 1

1
     1  

2 1
n n nxP n P nP

n
     

, (2.27) 

Eq. (2.25) becomes 
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      
 

 

  2

1 1

0

1 1 2
1   .

2 1 2 1
n n n

n

n n n n
t W x a t P P

x n n



   



                   
 (2.28) 

The remaining term in Eq. (2.22), 

      2 2  1 2 1
W

x x W x
x x x


              

, (2.29) 

may be written using Eqs.  (2.23) and (2.27) and by making use of the Legendre’s 

differential equation [32], 

    2  1 1n
n

P
x n n P

x x

  
      

, (2.30) 

so that 

 

     

 
 
 

 

2 2

2

1 1

0

  1 2 1

1
1 2    1 .

2 1
n n n n

n

W
x x W x

x x x

x
a n n P n P nP

x n





  



              

   
              



 (2.31) 

Substituting Eqs.  (2.31) and (2.28) into Eq. (2.22) gives us 

          

 
 

 

  

 
 
 

 

1 1

0 0

2

1 1

0

1 1 2
2  

2 1 2 1

1
1 2    1 .

2 1

D n n n n n

n n

n n n n

n

n n n n
a P a t P P

n n

x
a n n P n P nP

x n

 



 



 

 

 



     
    

    

   
              

 



 (2.32) 

Thus, by orthogonality, we have 

 
    

 

  

 

  
 

 

2

2 1 1

2 22 2
1

1 2 3 2 1 2 5 2 3

2 1 1 1
  .

2 3 2 1 2 3 2 1

D
n n n

n n n

n
a a a

n n n n n n

n
a t a a

n n n n

 






  

  
    

     

 
   

    

 (2.33) 

We now rewrite the differential-recurrence relation, Eq. (2.33), in terms of the expectation 

values of the Legendre polynomials of order n (statistical moments), viz., 

          
1

1
  ,n n nf P x t W x t P x xt d


   , (2.34) 

which, using Eq. (2.23) and the orthogonality relation for the Legendre polynomials 

 nP x , 
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     ,

1

1

2

2 1
n nm mP x P x dx

n





 , (2.35) 

can be written as 

 

       

   

1

1

,

0

0

2
.

2 1

2

2 1

n m

m m

n

n

m

n

m

m

f a t P x P x dxt

a t a t
m n














 
 

 



 (2.36) 

Thus Eq. (2.33) becomes 

              2 2 1 1    ,D n n n n n n n n n nf t d f t g f t c f t t a f t f t            (2.37) 

where 

 

( 1)
,

2(2 1)

( 1)( 1)
,

(2 1)(2 1)

( 1) 2
1 ,

2 (2 1)(2 3)

( 1)( 2)
.

(2 3)(2 1)

n

n

n

n

n n
a

n

n n n
c

n n

n n
d

n n

n n n
g

n n












 
 

 

 
  

  

 


 

  (2.38) 

This five-term differential-recurrence relation (2.37) is used to study the nonlinear 

dielectric relaxation and dynamic Kerr effect of permanent dipoles in an axially symmetric 

uniaxial mean field potential as shown in Chapter 4. Equation (2.37) can also be used to 

consider the nonlinear response of noninteracting electric and magnetic dipoles by setting 

0  , so that Eq. (2.37) reduces to a three-term differential-recurrence relation 

  
 

   
 

 
   1 1

1 1
   

2 2 2 1
D n n n n

n n n n
f t f t t f t f t

n
   

 
    

, (2.39) 

which we will use in Chapter 3. 

2.3 Calculation of the Stationary Response of Electric Dipoles 

via the Matrix Continued Fraction Method  

In the current situation the external fields are applied along the easy axis of the particle so 

that the problem becomes axially symmetric and the relaxation functions depend only on 

the colatitude angle  . Thus, the solution of the Smoluchowski equation (2.19) reduces 
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to the solution of an infinite hierarchy of differential-recurrence equations (2.37) for the 

expectation values of the Legendre polynomials  cosnP  . We remark that the Fokker-

Planck equation (2.58) for the uniaxial magnetic nanoparticles under the influence of the 

combined fields applied along the easy axis has an identical mathematical form to the 

rotational Smoluchowski equation (2.19) used here so that it can be solved using the same 

method. The ac stationary solution of the five-term differential-recurrence equation (2.37) 

subjected to the combined ac and dc fields has been developed in Refs. [18, 33] which we 

will summarize in this section. 

 The ac stationary solution of Eq. (2.37) may be written as the Fourier series 

     ik t

n

n

k

k

f t F e 




    (2.40) 

where the Fourier amplitudes satisfy  
*

n n

k kF F  (the asterisk denotes the complex 

conjugate). On substituting Eq. (2.40) and the applied field   0 cost t     into 

Eq. (2.37), we have the set of recurrence relations for the Fourier amplitudes n

kF , viz., 

 
 

     

2 2

1 1 1 1 1 1

10 1 1 1/ 0,2

n D n n

n

n n n

k k k

n n n n n n

k k k k kn k

d c gik F F F

F F F F F Fa a



 

 

     

   

 

 



 



  
 (2.41) 

where the coefficients na , nd , etc. are given by Eq. (2.38). Now, we introduce a column 

vector 

 
2

2 1

n

n

n



 
  
 

c
C

c
, (2.42) 

where the subvector nc  is 

    

2

1

0 0

1

2

0 0

0 0

1 , 0 0 , 0

0 0

0 0

n

n

n

n

n n

n

F

F

n F n

F

F





    
    
    
    
    
        
    
    
    
           

c c c . (2.43) 

Now the nine-term scalar recurrence relation (2.41) can be transformed into a three-term 

matrix recurrence relation  
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1 1 0n nn n n n 

   Q C Q C Q C , (2.44) 

where the matrices andn n


Q Q  are defined as 

 

2

2 1 2 1

2 2

2 1 2 1

2 2

2 1

,

,

.

n

n n

n n

n n

n

n

n

n

n

n

c

a c

a

a

g a

g

 











 
  

 

 
  

 

  
  

 

I O

Y I

Z Y

Y Z

I Y

O I

Q

Q

Q

 (2.45) 

Here I  and O are the identity and zero matrices of infinite dimension, respectively, and 

Y  and nZ  are defined as 

 
 

 

, 1 , 0 , 1,

, ,,

/ 2 / 2,

,

r s r s r sr s

n r s n sr s
z

  



   



Y

Z
 (2.46) 

where 
,n s n Dz d i s    and , .r s    

Since Eq. (2.44) is a frequency-dependent matrix three-term recurrence relation, it can be 

solved using the matrix continued fraction method where we introduce a new function 

( )n S and assume that  

 1( ) ( ) ( )nnn n  

C Q CS . (2.47) 

We now have via successive iterations of Eq. (2.47), 

 
1

1 1 0 0

0

( ) ( ) ( )
n

n n n kn n

k

k  


  





 
   

 
C QS SCS Q Q C . (2.48) 

Now our task is to determine ( )n S . By applying Eq. (2.47) to Eq. (2.44) we have  

 1 1 1 1 1( ) ( ) ( ) 0n n n n n n n nn n n n      

      S SQ C Q Q C Q SQ Q C , (2.49) 

where ( )n S can be obtained directly as 

 1

1

1( ) ( )n n nnn 




 


    QS Q QS . (2.50) 

Therefore, by solving this matrix three-term recurrence relation (2.44), we can calculate 

the Fourier amplitudes n

kF  which can be used later to evaluate the nonlinear stationary 

response of permanent electric dipoles (see Chapters 3 and 4) and uniaxial magnetic 

nanoparticles with an axially symmetric potential. 
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2.4 Fokker-Planck Equation for Magnetic Dipoles 

When the size of a ferromagnetic nanoparticle is below a certain critical size (typically 

15nm in radius), the particle is said to stay in a single domain state where the 

magnetization is uniform for all applied magnetic fields [4]. In this situation, the 

magnetization of the nanoparticles can be written as a single giant magnetic moment M  

(~104–105 B ) which is the sum of all the aligned individual magnetic moments carried 

by the atoms of the nanoparticles. Fine single-domain magnetic nanoparticles exhibit 

thermal instability of the magnetization, resulting in the magnetic after-effect or Néel 

relaxation, because of thermal agitation originating in a heat bath. To develop this 

dynamical behaviour of the magnetization ( )tM for an individual particle, Brown [1, 6] 

started with Gilbert’s equation [1, 4] (see Fig. 2.2) 

  ( ) = ( ) ( )t t t      
M M H M , (2.51) 

and added a white noise term to accounting for thermal agitation to create a magnetic 

Langevin equation, 

  ( ) = ( ) ( )+ ( )t t t t      
M M H M h . (2.52) 

Here,  is the gyromagnetic ratio,  is the damping parameter,  0/V   H M  is the 

effective magnetic field, 7 2 1

0 4 10 JA m       is the permeability of free space in SI units, 

V is the Gibbs free energy density (the total free energy is vV ), and h(t) is a random 

magnetic field with Gaussian white noise properties: 

    ,( ) 0, ( ) ( ) 2 / nn n m mt t h t kT v t th h        , (2.53) 

where the indices , 1,  2,  3n m   in Kronecker’s delta ,n m  correspond to the Cartesian 

laboratory coordinate axes X, Y, Z and v is the volume of the particle. 
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Fig. 2.2. Magnetization M  with spherical polar coordinates   and  . In the absence of 

damping M  will precess along orbits of constant energy called Stoner-Wohlfarth orbits 

[34] (dashed line). According to Eq. (2.51) if damping is involved the precession will 

slowly collapse by spiraling towards an energy minimum (solid line). 

Assuming that the single-domain particle is at its saturation magnetization SM  so 

that only the direction of M  can change, we may then write SMM u , where u is a unit 

vector along M, and Eq. (2.52) without the thermal agitation becomes 

 
h V V

h


  
    

  


  
  

 
u u u u

u u
, (2.54) 

where the dimensionless damping constant SM   and  2

0/ 1 Sh M     
 

. 

The orientation of u  is specified by the polar and azimuthal angles  and  of the 

spherical polar coordinate system (Fig. 2.1) so that the direction cosines of u  are given 

by sin sincos , sin , and cosX Y Zu u u       . Now, let us consider a statistical 

ensemble of identical particles and let ( , , )W t d    be the probability that M has 

orientation ( , )   within the solid angle sin d dd    on the unit sphere. Since the 

Fokker-Planck equation describes the evolution of a probability density function 

( , , )W t   of magnetization orientations on the surface of a sphere of constant radius SM

(see Fig. 2.2), it can be related to the probability current J  along the sphere by a continuity 

equation, just like we treated the Smoluchowski equation in Section 2.1, 

 div 0W  J  (1.55) 
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where the probability current J  consists of a deterministic part, which describes the 

probability current in the absence of thermal agitation, and a diffusive part, which 

represents the effect of thermal agitation,  

 k WW  
u

J u , (2.56) 

where k  is a constant to be determined later and the deterministic part of the probability 

current, Wu , uses the deterministic equation (2.54). By substituting the divergence of 

Eq. (2.56) in spherical polar coordinates into the continuity equation (1.55) and evaluating

k  by requiring that the Boltzmann distribution      , /1

0 ,
vV kT

W Z e
 

 
 (Z is the 

partition function) should be its stationary (equilibrium) solution (in a similar way to the 

electric dipoles case in Section 2.1), Eq. (1.55) yields Brown’s Fokker-Planck equation  

          

2

2

1 1

1 1
  sin

sin sin

1
sin ,

s n

2

i

FPN W

v V V V V
W W

kT

W
L W

t


    

  




     

 

      
   

     

          
        

   


 

      


 (2.57) 

which may be written in a compact vector form for ( , )W tu  as 

     2 N

W
W V W W V

t


 




        


u . (2.58) 

Here  and   are, respectively, the gradient and the Laplacian operator on the surface of 

the unit sphere, 1

0( )N       is the characteristic free diffusion time of ( )tM ( N  is of 

the order of 
10 810 10  s) with 0 0 S / (2 )M   , / ( )v kT  , k is Boltzmann’s 

constant, and T is the absolute temperature. The term in 1  is the precessional 

(gyromagnetic) term which gives rise to ferromagnetic resonance (usually in the GHz 

range) and the term in   is the alignment term. It is worth noting that, by omitting the 

second (precessional) term on the right hand side (when   ), Eq. (2.58) is essentially 

similar to the rotational Smoluchowski equation (2.16) describing dielectric and Kerr-

effect relaxation in polar liquids [15], as derived in Section 2.1. However, the precessional 

term has a profound effect on the magnetization dynamics, especially in the nonlinear case, 

because it may couple, depending on the direction of the applied field, the longitudinal 

and transverse modes in Eq. (2.58). This coupling is discussed further in Section 5.3. 
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2.5 11-Term Differential-Recurrence Relations 

Just as in Section 2.2 where the Smoluchowski equation for electric dipoles was converted 

to a differential-recurrence relation for the expectation values of the Legendre polynomials  

 cos ( )nP t , Eq. (2.37), the magnetic Fokker-Planck equation (2.57) can be converted 

into a differential-recurrence relation for the expectation values of the spherical harmonics 

 , , ( ) n m tY   . This equation is given in a general form, Eq. (2.73), which can be then 

applied to a specific free energy density. The derivation can be based on either the 

Langevin equation [1, 29] or the Fokker-Planck equation [1, 5]. Here we shall follow the 

derivation in Section 9.2.2 of Ref. [1] and then apply it to the case of a uniaxial anisotropy 

in the presence of an external field, Eq. (2.75), to produce the 11-term differential-

recurrence relation, Eq. (2.80). 

Since  , ,W t  in the Fokker-Planck equation (2.57) should be physically 

meaningful (positive and real), the solution of Eq. (2.57) is sought in the form of [1] 

      *, , Ψ , , Ψ , ,  W t t t      , (2.59) 

where the asterisk denotes the complex conjugate and  Ψ , , t   is expanded in spherical 

harmonics  , ,  l mY    as 

      , ,

,

Ψ , , ,  l m l m

l m

t f t Y    . (2.60) 

Due to the orthogonality of the spherical harmonics 
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, , , ,

0 0

l m l m l l m mY Y d

 

       , (2.61) 

where sind d d   , the normalisation condition for  , ,W t   is 

    
2

2

,

0 0

, , 1l mW t d f t

 

      . (2.62) 

It is worth noting that W is similar to the probability density 
2

Ψ , which obeys the 

continuity equation
2

Ψ div  0t  j ( Ψ  is the wave function and j  is the probability 

current density), so this problem is analogous to the quantum mechanics case [35]. 

By using Eqs.  (2.57), (2.59), (2.60), and  
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   , (2.63) 

and reducing the products of  , ,  l mY    to a sum of  , ,  l mY    [36] 
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 , (2.64) 

where ,

, , ,

c r

a bC    are the Clebsch-Gordan coefficients [36], the moment system for the 

averaged spherical harmonics can be obtained by means of the transformation 
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 (2.65) 

where  
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and 
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 (2.67) 

In order to evaluate 
*

,FP l mL Y    in Eq. (2.66) we write the Fokker-Planck operator, Eq. (2.57), 

entirely in terms of the angular momentum operators 2ˆ anˆ ˆd,ZL L L , which are defined as 

[36] 
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Thus 
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 (2.69) 

where 

 V V V    . (2.70) 

Furthermore, by writing the half sided sums of the potential as linear combinations of 

spherical harmonics 
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and using the action of the angular momentum operators,  
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 (2.72) 

Eqs.  (2.64) and (2.63), Eq. (2.65) finally yields the differential-recurrence relation for the 

averaged spherical harmonics  ,l mY t  after tedious manipulation, 

    , ,, , ,
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d
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t
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d
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 , (2.73) 

where the coefficients are 
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 (2.74) 

Equation (2.73) is a general differential-recurrence relation which can be used for any 

potentials. In order to consider the case of a particular potential, the coefficients 
, , ,l m l me    

should be evaluated via Eqs. (2.70) and (2.71). 

Now, for example, we shall consider the free-energy density V of a uniaxial 

particle in superimposed homogeneous external dc bias and ac magnetic fields 

0 cos tH H  of arbitrary strengths and orientations relative to the easy axis of the 

particle as used in Chapter 5, 

    2

0 0 0cos / cos /V H t H          u H u H , (2.75) 

where K  , 0 0 0 SH M   , 0 SHM    are the dimensionless anisotropy and 

external field parameters, and K is the anisotropy constant. If 0H  and H  are parallel, 

Eq. (2.75) can be written as 
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2

0

2

0 2 31 cos s
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cos cos sin sin cn si o ,

V t
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u h
 (2.76) 

where / Hh H and 21 3, ,    are the direction cosines of h . 

Using the spherical harmonics of degree 1 and 2 [36], 
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

    ,  (2.77) 

and letting   0 cost t     , the free energy density Eq. (2.76) can be expanded in 

terms of spherical harmonics as 

       1,0 1, 1 1,12,0 3 1 2 1 2

4 2
2 .

3 35
V t YY Y i i Y
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
          (2.78) 



 

25 

 

Thus, we have equations for the coefficients 
,r sv 

in Eq. (2.74): 
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 (2.79) 

On using Eq. (2.79) in the evolution equation of the statistical moments 
, ( )l mY t , 

Eq. (2.73), we obtain the 11-term differential-recurrence relation for the specific free 

energy density, Eq. (2.76), via Mathematica®, viz., 
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 (2.80) 

where the coefficients ,l mx , ,

t

l my , etc. are given in Appendix 2A. 

2.6 Calculation of the Stationary Response via the Matrix 

Continued Fraction Method for Magnetic Dipoles 

Efficient numerical algorithms for the calculation of the nonlinear ac stationary response 

of the magnetization of uniaxial magnetic nanoparticles have been proposed [16-18] by 

assuming that the dc bias and ac driving fields are directed along the easy axis of the 

particle. In this case, the Fokker-Planck equation which arises from the axial symmetry is 

mathematically identical to the Smoluchowski equation, occurring in the nonlinear 

dielectric relaxation and Kerr effect of permanent electric dipoles, whose stationary 

solution has been demonstrated in Section 2.3. However, in the nonaxially symmetric 

configuration where a strong ac field is applied at an angle to the easy axis of the particle, 

the axial symmetry is broken by the Zeeman energy [19-22] so that the coupling of the 



 

26 

 

longitudinal and transverse precessional modes causes many interesting nonlinear effects 

in the ac stationary response. Now, building on the axially symmetric solutions described 

in Refs. [16-18] and Section 2.3, an exact nonperturbative method for the determination 

of the Fourier amplitudes, and so the nonlinear magnetization of magnetic nanoparticles 

with an arbitrary anisotropy potential and subjected to a strong ac driving field 

superimposed on a strong dc bias field, has recently been given by Titov et al. [23]. Thus, 

we are going to use their method to investigate the ac stationary response governed by the 

11-term differential-recurrence relation (2.80) for the spherical harmonics  , ,  l mY   . 

In order to solve Eq. (2.80), we introduce the column vectors    1,2,3,...n t n c  

with 
0 0,0 1/ 4Y  c so that Eq. (2.80) becomes  
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 (2.81) 

where ( )n tc  is the statistical moment vector  
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and the supermatrix coefficients nq , n


q , np  and n


p are 
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Here the matrix elements of the diagonal submatrices 2nX , 2

t

nX etc. are given by 
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where the coefficients are given in Appendix 2A. 

Thus the 11-term differential-recurrence relations, Eq. (2.80), have been transformed into 

a matrix six-term differential-recurrence relation, Eq. (2.81), where three matrix terms 

contains the static coefficients (
nq  and 

n


q ) and three matrix terms with the sinusoidal 

coefficients (
np  and 

n


p ), Eq. (2.81). Since we only seek the stationary ac response, which 

is independent of the initial conditions, we can write , ( )n mY t  in the form of the time Fourier 

series,  

 
, ,( ) ( )k ik

n

k

m m

t

nY t c e 






  . (2.85) 

Thus, the various time-dependent vectors in Eq. (2.81) can be represented in terms of 

frequency-dependent vectors according to 
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Thereby Eq. (2.81) becomes 
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Thus, by orthogonality, we must have 



 

28 

 

 

 1 1

1 1 1

1 1

1 1 1

1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) 0

k k k

n n n n n n

k k k

n n n n n n

k k

n n n n

N

k

n n

ik    

  

  

 

 

    

 

    

 

 

 

 





c I c c

c p c p c

c p c p

q q q

p c

p  (2.88) 

or, on simplification, 
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which can be arranged as the supermatrix three-term algebraic recurrence relation, 
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and the supermatrix coefficients are given by 

    , 1 , , 1,n r s n r s n N r s nr s
ri    Q p q pI , (2.92) 

   , 1 , , 1, r sn n n nr s r sr s
     

  Q p q p , (2.93) 

where , .r s    

Since Eq. (2.90) is a frequency-dependent matrix three-term recurrence relation, similarly 

it can be solved using the matrix continued fraction method where we introduce a new 

function ( )n S and assume that  

 1( ) ( ) ( ) ( )n nn n   

C Q CS . (2.94) 

By successive iterations of Eq. (2.94) we then have 
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Now our task is to determine ( )n S . By applying Eq. (2.94) to Eq. (2.90) we have  
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      S SQ C Q Q C Q SQ Q C , (2.96) 

where ( )n S can be obtained directly as 
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    QS Q QS . (2.97) 

Therefore, by solving this matrix three-term recurrence relation (2.90), we can calculate 

the coefficients , ( )k

n mc  which can be used later to calculate the ac stationary response of 

uniaxial magnetic nanoparticles subjected to strong ac and dc fields.  

2.7 Static Susceptibilities 

So far the nonlinear response of the permanent electric dipoles with a mean field potential 

subjected to ac and dc bias fields, the 5-term differential-recurrence relation (2.37) for the 

averages of the Legendre polynomials  nf t  has been derived in Section 2.2. Now, we 

are interested in the equilibrium ensemble averages (0)nf  evaluated by letting the 

frequency of the ac field tend to zero. The expansions of (0)nf  in terms of ac field strength 

k  are defined as the static susceptibilities nk , which are the initial values of the dynamic 

susceptibilities  nk   in the frequency domain and will be used to normalize  nk   in 

the two-mode approximation in Section 2.8. Moreover this method can be applied to the 

approximation of initial values of the magnetization of the uniaxial superparamagnetic 

particles in Chapter 5. 

As we defined in Section 2.2,  nf t  is the expectation values of the Legendre 

polynomials of order n  (statistical moments), viz., 
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and the equilibrium averages 
0nP  are defined as 
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1
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 n nP W x xx P d


  , (2.99) 

where  0W x is the Boltzmann distribution, viz., 
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and Z  is the partition function, viz., 
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In the case of superimposed ac and dc fields 0 cos t    in the static limit, 0 , the 

initial values (0)nf  to cubic order in   are 
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 (2.102) 

Because  1P x x  and   2

2 (3 1) / 2P x x  , we have the first-, second-, and third-order 

contributions to (0)nf , respectively, 
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where  1,2,3nk k  are the static susceptibilities and the index k in 
 k

nf  and in nk is the 

order of  . 

For the zero dc field case, 0 0  , the above results are dramatically simplified. 

Here, the odd term 2 1(0)nf   are expressed via the stationary averages up to cubic order in 

  as 
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Similarly, the even term  2 0nf  up to second order in   are given by 
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2.8 Two-Mode Approximation 

In a system with several thermal equilibrium states, the linear approximation of the 

expected value of the relevant dynamical variable in the stationary state is sufficient in the 

case where the external stimulus is much lower than the thermal energy. As far as the 

electric dipolar system (cf. Section 2.2) is concerned, the linear response of dipoles in a 

mean field potential comprising an infinity of relaxation modes may be accurately 

represented by two modes only as demonstrated by Kalmykov et al. [3, 37], namely, a 

slowest interwell barrier crossing mode and a fast mode representing the infinity of high-

frequency near-degenerate “intrawell” modes approximated as a single mode. This two-

mode approximation combined with Morita’s treatment [38, 39] (where the distribution 

function induced by an ac stimulus may be calculated by the nonperturbative Green 

function) can then be used to derive the analytical formula for the nonlinear response of 

permanent electric dipoles as shown in Chapter 4, as well as the dc magnetization of 

uniaxial magnetic nanoparticles as shown in Chapter 5. 

In linear response theory [1], in order to get the linear ac stationary response 

   1

nf t (the index ‘(1)’ means the response is linear in the ac field  ), we suppose that a 

small probing field 1 1  applied along the easy axis at t    is removed at 0t  . The 

step-off solution 
   1

,n offf t  is then given by [3, 38] 

 
     1

1, 11 nn off nf t t   , (2.108) 

where the normalized equilibrium correlation functions  km t  are defined as  
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and 1n  is the static susceptibility (see Eq. (2.103)) 

  1 1 1 10 0 0
0n n n nP P P P    . (2.110) 

The Green function (the unit impulse response) of this unperturbed system is the time 

derivative of the step-on response, viz., 

    1nG t t  , (2.111) 

where the negative sign in front of  1n t  means the field is switched off at 0t  . Thus 

the linear ac stationary response to an ac field  t can be written as 
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If we consider a system in the absence of a dc bias field and write   i tt e   , Eq. (2.112) 

yields 
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  (2.113) 

Similarly, if we consider a sinusoidal ac field   cost t   , we get  

      1

1Ren n

i tt ef         (2.114) 

We introduce the normalized complex susceptibilities  1 1 1( ) /n n nX      (cf. 

Eq. (2.113)) via the normalized equilibrium correlation function  1n t  as 
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The time behaviour of  1n t  is characterized by three time constants, namely the integral 

relaxation time n  defined as the area under the decaying 1( )n t , 
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  1

0

n n t dt


  ,  (2.116) 

the effective relaxation time eff

n  describing the initial decay of 1( )n t  defined by 

 eff

1

1

(0)
n

n

  


, (2.117) 

and the longest relaxation time defined by the inverse of the smallest nonvanishing 

eigenvalue 1  of the Fokker-Planck operator FPL  which describes the slowest relaxation 

mode [1]. When one has, say, a double-well potential, the smallest nonvanishing 

eigenvalue 1  of the system is the sum of long-time rates of escape of particles over the 

potential barriers. If the potential is symmetric, 1  may be approximated by the inverse of 

the integral relaxation time. This is also true if the imposed field causing the asymmetry 

in a skewed or biased double-well potential is not too large. Otherwise, the smallest 

nonvanishing eigenvalue 1  will diverge exponentially from the inverse of the integral 

relaxation time due to the depletion of the population of the shallower of the two wells by 

the action of the applied field. The critical value of the applied field at which this occurs 

depends on the shape of the double-well potential and is far less than that needed to 

entirely destroy the double well structure (i.e, the nucleation field). Now, the low-

frequency behaviour of the normalized susceptibility 1( )nX   is evaluated by taking the 

low-frequency limit 0  in Eq. (2.115), 
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while the high-frequency limit is obtained by taking the limit  , 
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Thus, the low- and high-frequency behaviour of 1( )nX   is completely determined by the 

integral and effective relaxation times, respectively. Hence the equivalent definitions of 

n  and eff

n  can be given via Eqs.  (2.118) and (2.119) as 
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Here, the integral and effective relaxation times, 
n  and eff

n , are given by the exact 

analytic equations [1] 
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and 
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where 
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The correlation function 1( )n t  generally comprises an infinity of relaxation 

modes (decaying exponentials), i.e., 
1( ) ktn

n k

k

t c e


  . However, we can suppose 1( )n t  

may be approximated by two modes only [27, 40], 
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where the parameters 1n  and ( 1)n

W  are given by 
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Equations (2.125) and (2.126) are the solutions of algebraic equations obtained by 

substituting Eq. (2.128) into Eqs.  (2.118) and (2.119), viz. 

 
 
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( 1)

1 1

( 1) eff

1 1 1

/ 1 ,

1 / 1/ .

n

n n W n

n

n n W n

  

  

   

   
 (2.127) 

By inserting Eq. (2.124) into Eq. (2.115),  1n   is obtained as the sum of two 

Lorentzians 
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   

 
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 
. (2.128) 

2.9 Anomalous Relaxation 

One of the most noteworthy features of the dielectric relaxation of disordered materials 

and complex liquids such as glass forming liquids, liquid crystals, amorphous polymers, 

etc. is the failure of the Debye theory [7] of normal dielectric relaxation to adequately 

describe the low-frequency spectra of their linear dielectric susceptibilities. Our results in 

Chapters 3 and 4 based on the random walk of rotational Brownian motion where the 

mean-square displacement of each jump is fixed at fixed time intervals, may be extended 

to the case of a continuous time random walk where no mean waiting time exists (see 

Sections 3.5 and 4.7). The relaxation processes in such complex systems are characterized 

by the temporally nonlocal behaviour arising from the energetic disorder, which produces 

obstacles or traps, simultaneously delaying the motion of the particle and producing 

memory effects.  

A significant amount of experimental data on anomalous relaxation of complex 

liquids supports the empirical equation of Havriliak-Negami [41]: 

 ( )
[1 ( ) ]

S
HN

Di  


 





, (2.129) 

where S  is the static susceptibility and   (0     1) and  (0    1) are parameters 

with values which are usually obtained by fitting to experimental data. For the particular 

cases 1v   and 1,   Eq. (2.129) reduces, respectively, to the other well-known 

phenomenological equations of Cole and Cole [42] and Cole and Davidson [43], 
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
, (2.130) 

 
 

( )
1

S
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Di



 





. (2.131) 

In the context of the linear susceptibility, the Cole-Cole parameter   is a broadening 

parameter because the dielectric loss spectrum broadens as   is reduced, while the Cole-

Davidson parameter  in Eqs.  (2.129) and (2.131) is a skewing parameter. The interested 

reader can find detailed discussions of anomalous relaxation behaviour in complex 

disordered systems and various underlying microscopic models in Refs. [1, 24-26, 44-47]. 
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Equations (2.129) - (2.131), which are generalizations of the Debye equation for the 

complex susceptibility, viz., 

 ( )
1

S
D

Di


 





, (2.132) 

may be derived using a variety of microscopic models of the relaxation process. For 

example, Debye [7] extended Einstein’s treatment of the translational Brownian motion 

to the rotational Brownian motion of noninteracting permanent dipoles subjected to an 

external time-varying field. It might also happen that the motion which prevails is different 

for different kinds of dipoles. Moreover, both large and small jump transitions may exist 

simultaneously. The above observations lead us to the second microscopic (relaxator) 

model considered by Debye [7] (and much extended by Fröhlich [48]), which is a Poisson-

like process, where relaxation occurs due to rare members of an assembly of dipoles 

crossing over a potential barrier by large jumps due to the shuttling action of thermal 

agitation. This model also produces a relaxation spectrum of the form of Eq. (2.132). 

However, the overbarrier relaxation time has Arrhenius-like behaviour as it depends 

exponentially on the height of the potential barrier.  

The Cole-Cole, Cole-Davidson, and Havriliak-Negami relaxation processes can be 

modelled via fractional diffusion equations by using the method of Nigmatullin and 

Ryabov [49]. According to this approach, the conventional kinetic equation describing the 

ac stationary response to a forcing function ( ) i tF t Fe  , namely, 

 1 ( ) ( )D

d
f t F t

dt

 

  
 

, (2.133) 

for a system characterized by the single exponential relaxation function /
( ) Dt

f t e


  and, 

hence, the Debye equation for the complex susceptibility, Eq. (2.132), may be generalized 

to a fractional kinetic equation of fractional order  , so describing a system with Cole-

Cole anomalous relaxation behaviour as [25] 

  ( ) 1 ( ) ( )D tD f t F t     , (2.134) 

where the fractional derivative tD

  is given by the Riemann-Liouville definition [44], 

  
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
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 


   , (2.135) 
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( )z  is the gamma function, and 0 1  . The physical meaning of the parameter   is 

the fractal dimension of the set of waiting times, which is the scaling of the waiting time 

segments in the random walk with magnification. The fractional exponent   measures 

the statistical self-similarity (or how the whole looks similar to its parts) of the waiting 

time segments [45]. Assuming that the ac field can be written as ( ) i tF t Fe  , the solution 

of Eq. (2.134) yields the Cole-Cole equation (2.130). In the time domain, the exponential 

relaxation function /
( ) Dt

f t e


  for the normal diffusion becomes ( ) ( / )Df t E t 

      

for anomalous relaxation, where  E z  is the Mittag-Leffler function defined as [44] 

  
0 (1 )

n

n

z
E z

n









 

 . (2.136) 

The Mittag–Leffler function interpolates between the initial stretched exponential form  

D( / ) / (1 )

D[ ( / ) ] ~
t

E t e
 

    
  and the long-time inverse power-law behaviour 

D D[ ( / ) ] ~ ( / ) / (1 )E t t 

       [1]. In like manner, one may also introduce the 

fractional kinetic equation [25, 45, 47] 

  ( ) 1 ( ) ( ),D tD f t F t


      (2.137) 

to incorporate the Havriliak-Negami anomalous relaxation. The fractional derivatives in 

Eqs.  (2.134) and (2.137) are memory functions with a slowly decaying power law kernel 

in the time. Such behaviour arises from random torques with an anomalous waiting time 

distribution. We shall demonstrate that the characteristic times of the normal diffusion 

process, namely n , eff

n  and 11/   allow one to evaluate the nonlinear dielectric and Kerr-

effect responses for anomalous diffusion (see Sections 3.5 and 4.7). Moreover, these 

characteristic times yield simple analytical equations describing the anomalous relaxation 

of the system. Just as for normal diffusion, the exact solution of the problem reduces to 

the solution of the infinite hierarchies of differential-recurrence equations for the relevant 

relaxation functions. 

Appendix 2A: Coefficients in the 11-Term Differential-

Recurrence Relations  

We now write explicitly the coefficients in the 11-term recurrence relation for the response 

(2.80). Here the superscript t denotes the sinusoidal components,   is the dimensionless 
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anisotropy parameter, 
0 and  are external field parameters,   is the damping parameter, 

and 21 3, , and    are the direction cosines of the external fields. 
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3 Nonlinear AC Stationary Response of 

Noninteracting Electric and Magnetic Dipoles 

In Chapter 2, the approach to solving the orientation relaxation problem of the electric 

dipoles is introduced. The response of electric dipoles under the influence of the heat bath 

and applied fields can be described by the rotational diffusion equation (2.16) or (2.19) 

(or Smoluchowski equation) which can be reduced to an infinite hierarchy of differential-

recurrence equations for the averaged Legendre polynomials, Eq. (2.37), that can be 

solved numerically with the matrix continued fraction method. Now, in this charpter we 

will apply Eq. (2.19) to the simplest case of noninteracting dipoles under the influence of 

strong ac and dc bias fields using the perturbation theory approach.  

The theory of electric polarization of dielectric fluids is essential for understanding 

dielectric and electro-optical relaxation phenomena. This problem was originally treated 

by Debye [7], who calculated the linear dielectric susceptibility of noninteracting polar 

molecules subjected to a weak ac electric field ( ) cost tE E  using the rotational 

diffusion model when inertial effects are negligible and the rotation of the molecule can 

be described by a random walk over small angular orientations. Now, in the linear 

response, the complex dielectric susceptibility is independent of the electric field strength 

E so that the orientational electric polarization of noninteracting permanent dipoles in an 

ac field ( )tE  depends solely on the first order Legendre polynomial averaged over dipole 

orientations  1 cos ( )P t ,   being the polar angle of the electric dipole moment vector 

μ  of the molecule. Later, the original Debye calculation was generalized using 

perturbation theory to nonlinear phenomena in polar dielectrics subjected to strong 

external fields [50, 51]. In particular, we cite the dynamic Kerr-effect response, governed 

by the averaged second order Legendre polynomial  2 cos ( )P t , and the nonlinear 

dielectric effect [2, 51]. The conclusions for the Kerr-effect relaxation in a pure sinusoid 

electric field are that the square law nonlinearity rectifies ( )tE , yielding a frequency-

dependent dc response, superimposed on a dephased second harmonic one [2]. In the 

nonlinear dielectric relaxation, additional terms in the fundamental, third, etc. harmonic 

appear in 1 ( )P t  [2, 51]. For example, Coffey and Paranjape [2] have extended the Debye 

theory to include terms cubic in the applied field using perturbation theory. The small 
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perturbation parameter is, as usual, the ratio of the interaction energy of a dipole with the 

applied field to the thermal energy kT ( k  is the Boltzmann constant and T  is the absolute 

temperature). In particular, they considered the response to a strong alternating (ac) field 

alone and a weak field superimposed on a strong dc one. In the second of these cases, the 

ac field was supposed so weak that terms in its square and higher are negligible. The 

response exhibits typical nonlinear behaviour in so far as it always depends on the precise 

form of the driving fields unlike the linear response. These nonlinear effects have been 

confirmed by experimental data (e.g., Ref. [10, 11, 52-57]). Additionally, the Debye 

theory has also been extended to nonlinear effects in dipolar systems in arbitrarily large 

external fields (see, for example, Refs. [12, 13, 58-60]).  

Subsequently, the perturbation calculation was verified numerically for the strong 

ac field situation by Déjardin and Kalmykov [12] who also considered the strong ac and 

dc field case [13]. They achieved this by solving the differential-recurrence relation 

generated by the rotational Smoluchowski equation [1] using matrix continued fraction 

methods in the frequency domain. All the results are summarized in section 7.6 of Ref. [1]. 

Following the work of Coffey and Paranjape [2], Déjardin et al. [8, 14] extended the 

perturbation calculation to include the nonlinear ac terms in the constant plus ac field case, 

showing that the combined effect of the two strong fields is to give rise to additional 

dispersion and absorption phenomena which do not appear at all when only the linear term 

in the ac field is considered. These comprise a time-independent but frequency-dependent 

dc term in the response, as well as a second harmonic contribution and one at the 

fundamental frequency which is cubic in the ac field. These terms do not appear if the 

nonlinear response due to a strong ac field alone is calculated. Despite these novel features 

in the combined field nonlinear response, experimental investigations of the nonlinear 

dielectric response seem to have been largely confined to that due to the strong ac field 

alone. For example, the results of Coffey and Paranjape [2] for the strong ac field have 

been favourably compared with nonlinear response measurements by De Smet et al. [10] 

and Jadżyn et al [11, 56]. 

Now, for electric dipoles, which typically have a small dipole moment, it is often 

difficult to realize experimentally the strong nonlinear response conditions because of the 

consequent small value of the interaction energy between a dipole and the electric field. 

However, in a ferrofluid consisting of blocked single-domain ferromagnetic particles in a 

colloidal suspension, it is much easier to create the strong nonlinear regime because of the 
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large magnetic moment, 
4 510 ~10  

B , of such particles. This feature of a typical 

ferrofluid particle was recognized by Fannin et al. [61, 62] who were able to detect 

nonlinear relaxation effects due to strong ac fields in the magnetic susceptibility of a 

ferrofluid. The terminology ‘blocked’ refers to the fact that the solid state-like or Néel [4] 

magnetization relaxation mechanism over the internal anisotropy-Zeeman energy barriers 

inside the single domain particle due to the shuttling action of the Brownian motion [4, 6, 

63] is assumed to be frozen. Finally, we should recall that the Debye theory is based on 

the extension of Einstein’s theory [1] of the translational Brownian motion to orientational 

relaxation. Now, that theory pertains to a very large particle of size visible in a microscope 

(e.g., a pollen grain) immersed in a ‘sea’ of very small particles. Therefore, one would 

expect that the ferrofluid situation, where the relaxation effects begin to appear at low 

MHz frequencies because of the great size of the particles, provides a much more suitable 

vehicle for the verification of the Debye theory than minute electric dipoles. 

Thus, the perturbation calculation of the combined field situation will be revisited 

with a view towards encouraging the experimental detection of the frequency-dependent 

dc term, as well as the nonlinear effects due to the interaction of the two fields at the 

fundamental and second harmonic frequencies, and the term with the fundamental 

frequency which also appears in the cubic response (see Eq. (3.28)). In particular, we shall 

highlight the frequency dependence of the dc term and show the calculation of the dynamic 

Kerr-effect response as well. Additionally, we shall also show how the calculation may be 

extended to anomalous relaxation governed by a fractional Fokker-Planck equation [1]. 

3.1 AC Stationary Solution for the Statistical Moments 

The basis of the Debye theory [7] of orientational relaxation of polar fluids is the rotational 

diffusion Smoluchowski equation for the evolution of the probability distribution function 

 ,W t  in the configuration space of polar angles of an ensemble of rigid noninteracting 

electric dipoles of moment μ , undergoing rotational Brownian motion at absolute 

temperature T under the influence of an external time-varying electric field  tE  which 

has been derived in the preview chapter (Section 2.1, Eq. (2.19)), viz., 
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. (3.1) 
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In Eq. (3.1),  , sinW t d    is the probability that at time t  a dipole has an orientation 

lying between colatitudes   and d   relative to the direction of  tE ,  ,V t  is the 

potential of the dipole due to  tE ,  / 2D kT   is the Debye relaxation time where 

38 a   is the viscous drag coefficient of a dipole which is treated as a rigid sphere of 

radius a  rotating in a fluid of viscosity   representing all the microscopic degrees of 

freedom of the surroundings, and  ,W t  is the surface density of orientations of dipoles 

on the unit sphere. Here we consider a strong unidirectional field 0E  superimposed on a 

strong alternating field 0cos tE , so that 

              0 00 0, cos cos cos 1 cos cosV t E t E E t E t                 , (3.2) 

where 0/E E   and 0  is the driving frequency. Furthermore, the potential is axially 

symmetric so that  ,W t  is independent of the azimuthal angle  . 

The general solution of Eq. (3.1) is of the form of the Fourier series (i.e. substituting 

Eq. (2.36) into Eq. (2.23)), 

        
0

, 1/ 2 cosn n

n

W t n f t P 




  , (3.3) 

where      cosn nf t P t  are the expectation values of the Legendre polynomials of 

order n  (statistical moments) given by Eq. (2.34). Proceeding as in Section 2.2, Eqs. (3.1) 

- (3.3) reduce to a three-term differential-recurrence relation (i.e. Eq. (2.39)) [1], 
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. (3.4) 

In general, the solution  y t  of the first-order ordinary differential equation, 

 
 

   
dy t

y t f t
dt

  , (3.5) 

where   is a constant, in 0t u t   is [64] 

          0
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Since we confine our attention to the stationary response, the field is assumed to be 

switched on at the instant 0t    so that all the initial effects can be ignored, viz., 

    0

0
0lim 0

t t

t
y t e

 


 , (3.7) 

so that Eq. (3.6) reduces to 
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t u
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  . (3.8) 

Similarly Eq. (3.4) has the stationary solution (i.e., pertaining to the forced response) for 

an arbitrary  tE  in the form of  
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 



     . (3.9) 

While Eq. (3.9) is entirely general, if we consider  ,V t  given by Eq. (3.2) we would 

have   01 cose tt     and 0 0 / )(E kT  . Equation (3.9) indicates that, if we can 

calculate the Fourier coefficients  nf t  for a given  tE , we will then have the time 

evolution of the observables  ,W t via Eq. (3.3). Here, our goal is to evaluate the ac 

stationary response of the electric polarization ( )P t  and dynamic Kerr effect ( )K t  ac 

stationary responses [1, 7], which are defined as 

 1 1 1 1( ) (cos ) ( ) ( )P t b P t b f t    , (3.10) 

 2 2 2 2( ) (cos ) ( ) ( )K t b P t b f t    , (3.11) 

where the coefficients b1 and b2 depend on the concentration of polar particles, particle 

depolarization factors, the relative permittivity, and other parameters. Here, for simplicity, 

we assume that b1 = 1 and b2 = 1, i.e., we consider normalized responses only. Furthermore, 

we suppose that the internal field effects and the long-range torques due to the connection 

between the dipole moments and the Maxwell fields may be ignored [1]. In the dynamic 

nonlinear response, these effects present a very difficult problem [65]. However, in the 

first approximation they may be ignored for dilute systems.  

3.2 Successive Approximation Solution for  1f t  and  2f t  

The rotational diffusion equation (3.1) and its alternative representation as a differential-

recurrence relation, Eq. (3.4), (which may also be derived from the appropriate Langevin 
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equation [1]), although in itself a linear equation, implicitly contains all the nonlinear 

behaviour. The linear response, which is in the first order of the external field strength, 

can be enough to describe the dielectric response when the external stimulus is very small 

compared to the thermal energy. The perturbation procedure to determine corrections to 

the linear response may be implemented as follows. First we write out the integral equation 

(3.9) explicitly for the first few  nf t , viz. 

 0 1f  ,  (3.12) 

  
 

   0
1 0 2 

3
D

t ut

D

f t e e u f u df u








    ,  (3.13) 
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 
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t ut

D

f ff t e e u u u du








    . (3.14) 

Assuming that 0 1   in order to maintain convergence, the first approximation of the 

dielectric response, using Eq. (3.12) and leaving out  2f u , is  

    0
1

3
D

t ut

D

t e e u duf









  , (3.15) 

which is the linear solution. Similarly, the first approximation of  2f t  can be obtained 

by omitting the term  3f t  in Eq. (3.14) and replacing the term  1f t  by Eq. (3.15). Then 

by substituting this approximation of  2f t  and Eq. (3.15) into Eq. (3.13), the second 

approximation of  1f t  yields 
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and these successive approximation steps are repeated to get higher order approximations. 

The formal solutions for  1f t  and  2f t  will then be rendered by the perturbation 

method. We have in general for the dielectric response 
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 (3.17) 
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and in general for the dynamic Kerr-effect response 
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 (3.18) 

Notice that the leading term in Eq. (3.17) is simply the linear dielectric response, while 

the Kerr-effect response (3.18) is intrinsically nonlinear due to the product of the stimulus, 

 0e u , with  1f u  in the leading term of Eq. (3.14). So far the procedure is entirely 

general. Next we consider the particular time variation given in Eq. (3.2), so that the 

solutions are best obtained using two sided Fourier transforms. 

3.3 Analytical Form of Responses via Fourier Transforms 

Before we solve Eqs. (3.17) and (3.18) using the two-sided Fourier transform, we first 

consider the first order differential equation given by Eqs. (3.5) - (3.8). First, by taking the 

two-sided Fourier transform of Eq. (3.5), we get 

  
 

i

F
Y




 



,  (3.19) 

where  Y   and  F   are the Fourier transforms of  y t  and  f t  respectively. If we 

ignore initial conditions (i.e. the stimulus is applied in the infinite past, see Eq. (3.7)), we 

can then use Eq. (3.8) to write 
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 
 

 
F . (3.20) 

The solution  y t  in the time domain can then be obtained by taking the inverse Fourier 

Transform of Eq. (3.19), viz., 

     
 1 1

e
2 i

i t
F

y t Y d
 

  







 
F . (3.21) 

Now, in order to solve Eq. (3.17), we start by taking the two-sided Fourier 

transform of its first term using Eq. (3.20), 
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F = F , (3.22) 

where, for   01 cose tt    , 

           0 02E e t                F . (3.23) 

Thus, substituting Eq. (3.23) in Eq. (3.22), we get 
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F = . (3.24) 

The first term of the dielectric response in the time domain can then be calculated by 

taking the inverse Fourier transform of Eq. (3.24), 
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Since  

      f x x dx f  




  , (3.26) 

Eq. (3.25) may be written as  
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f t
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
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 
       
= . (3.27) 

The other terms of  1f t  and terms of  2f t  can also be obtained in a similar way (see 

Appendix 3A) and consequently we find, after elementary but tedious manipulations and 

changing the notation 0   for simplification, the nonlinear dielectric response as 
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(3.28) 

and the Kerr-effect response as 
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 (3.29) 

In particular, we are interested in the frequency-dependent dc components of  1f t  and 

 2f t  given by  
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and 
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respectively. 
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Fig. 3.1. Freqency-dependent dc components of dielectric response  1

dcf   (a) and Kerr-

effect response  2

dcf   (b) vs. D  for various values of the ac field amplitude   and 

the dc field amplitude 0  showing pronounced frequency-dependence caused by the 

strong entanglement of the dc and ac responses. Solid lines: the matrix continued fraction 

solution in Section 2.3. Symbols: the dc response approximate equations (3.30) and (3.31), 

respectively. 

The observable given by Eq. (3.28) pertains to the normal nonlinear dielectric relaxation 

of noninteracting rigid dipoles under the combined influence of strong dc bias and ac fields 

and, with appropriate changes of notation, also pertains to the magnetic relaxation of a 

blocked ferrofluid. The most striking features of Eq. (3.28), when compared with the 

single ac field case, are the appearance of a frequency-dependent dc term 2( )O   (see 

Fig. 3.1), terms in the second harmonic of the applied field 2( )O  , and a correction 

3( )O   at the fundamental ac frequency to the third harmonic term. In the weak ac and 

strong dc field case, all that appears is the correction 2

0  at the fundamental frequency to 

the linear response as well as the frequency independent 2

0 /15  term due to the action of 

the strong dc field alone. The frequency-dependent but time-independent term (the first 
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line of Eq. (3.28)) is also the result previously obtained by Déjardin et al. [14] confirming 

the present perturbation calculation. The appearance of the frequency-dependent dc and 

the other harmonic terms in Eq. (3.28) alluded to above suggests that experiments like 

those described in Refs. [61, 62, 66] should be made on ferrofluid systems with the 

objective of detecting these terms. The methods we have described may be extended to a 

mean field potential whereupon the integral equation (3.9) above becomes vector-valued 

(details are available in [3, 23, 67] and Chapter 4 of this thesis). 

3.4 Application to Noninteracting Magnetic Dipoles 

It is worth noting that, by applying Eq. (3.28) to the magnetization of an assembly of 

noninteracting magnetic dipoles in superimposed ac and dc fields as in a ferrofluid, it is 

customary [23] to write the applied field as 0 cos tH H  and the resulting magnetization 

as 

 
0 0 0

1

( ) ( , , ) Re[ ( , , ) ]k ik t

H k

k

M t e         




  , (3.32) 

where 00 00 ,/ ( )   / ( ),H kT H kT       the dc term is given by  

 2 2

0 0 0 0 2 2 2 2

1 1 5 1
( , , ) 1 ... ,

15 60 1 1 / 9
S

ND ND

H      
   

  
      

   

 (3.33) 

where 2

0 0 / (3 )S N kT    is the static susceptibility,   is the magnitude of the 

magnetic dipole moment of a ferrofluid particle, and 0N  is the number of particles per 

unit volume. Here, the Debye relaxation time is now denoted by ND  in order to 

distinguish it from the exponentially long overbarrier or Néel relaxation time. By 

inspection of the first line of Eq. (3.28) with suitable replacements, Eq. (3.33) is entirely 

equivalent to the dc term of the nonlinear dielectric response.  

3.5 Generalization to Anomalous Relaxation 

The nonlinear dielectric relaxation treated in previous sections via the rotational diffusion 

model may be extended to anomalous relaxation by using the fractional kinetic equation 

approach (see Section 2.9 for detials). Here we only consider as a definite example the 

Cole-Cole relaxation mechanism given by Eqs. (2.130) and (2.134), and characterized by 

the anomalous exponent .  Other relaxation mechanisms can be treated in like manner 
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[26]. The generalization of the theory based on a fractional version of the Smoluchowski 

equation (3.1), namely,  
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, (3.34) 

has been fully explained in Section 2.9 and Refs. [1, 25, 46]. Here the general solution of 

Eq. (3.34) is also of the form of the Fourier series, Eq. (3.3). Now, just as for the normal 

diffusion, we can obtain from Eq. (3.34) the fractional analogue of the recurrence equation 

(3.4) for the response functions ( ) (cos ) ( )n nf t P t  [26],  

    0
, 1 1

cos
1 ( ) ( ) ( )

2 1
D n t n n n

t
D f t f t f t

n

    
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
  


, (3.35) 

where  , 2( ) / ( 1)DD n n n     and tD

  is defined by Eq. (2.135). Under linear 

response conditions, 1  , and 0 0  , Eq. (3.35) yields the linear susceptibility from 

Eq. (2.130). Moreover, just as for the normal diffusion, Eq. (3.35) also allows one to 

evaluate the nonlinear ac stationary responses (see for details [26]). In particular, we have 

the generalization of Eq. (3.33), viz., 

    
   

2 2

0 0 0 0

1 1 5 1
,  ,  1 Re

15 60 1 31 /
s
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. (3.36) 

Such a generalization is likely to be important as the Cole-Cole relaxation behaviour has 

proved useful in the analysis of magnetic and dielectric relaxation data. 

3.6 Conclusion 

In this chapter, we have emphasised the rectifying effect of a strong dc bias field 

superimposed on a strong ac field on the electric polarization (or magnetization) and the 

Kerr-effect response of an assembly of noninteracting dipolar particles. Furthermore, we 

have suggested that experiments should be designed to detect the frequency-dependent 

but time-independent dc component of the nonlinear ac stationary response induced by 

the bias field (see Eq. (3.28)). In this context, the appearance of individual nonlinear 

fundamental and third harmonic frequency components in Eq. (3.28) is also important 

because the latter frequency components may on occasion be easier to detect than the 

frequency-dependent dc one. Moreover, because they constitute part of the relaxation 
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process, they will also serve as experimental evidence of a frequency-dependent dc 

response. 

We have also demonstrated how the anomalous nonlinear dielectric and magnetic 

relaxation can be treated by using fractional kinetic equations. The results obtained can 

explain the anomalous nonlinear relaxation of complex dipolar systems, where the 

relaxation process is characterized by a broad distribution of relaxation times (see 

Eq. (3.36)). The advantage of having kinetic equations incorporating the anomalous 

relaxation then becomes apparent, as it is now possible to study the effect of the nonlinear 

anomalous behaviour on fundamental parameters associated with the fractional diffusion. 

We finally remark that the perturbation method of the calculation of nonlinear ac 

responses is quite general. The method can also be applied to nonlinear dielectric and 

Kerr-effect relaxation of molecules under the influence of a mean-field potential. This will 

be discussed in Chapter 4. 

Appendix 3A: Analytical Forms of Responses  1f t  and  2f t  

In Section 3.3, we only show the calculation of the first term of the dielectric response 

(3.17). Here we present the details of the calculation of the second term of  1f t  (cf. 

Eq. (3.17)) and terms of  2f t  (cf. Eq. (3.18)) via the Fourier transform method. First we 

consider the second term of  1f t  (cf. Eq. (3.17)), 
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Proceeding as in Section 3.3, Eqs. (3.19) - (3.27), the innermost integral of Eq. (3A.1)

becomes 
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Substituting the result (3A.2) into Eq. (3A.1), the middle integral of Eq. (3A.1), again 

proceeding in the way of Fourier transform, becomes  
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Similarly, substituting the result (3A.3) into Eq. (3A.1), the outer integral of Eq. (3A.1) 

yields 

     

     

   

  

 

   

 

 

1 1 2

2 1

3

2 1 2 1

2 2

0

2
2 2 2 2

0 0 0 0 02 2 2 2

0 0

2
2

2 2

0

 
3 3

2 3 cos 5 si

s

1 9

6 1

co

n

D D D

D D

D

D

t u u u u u

u u u t

t u t ut t

D D

t ut

D
D D D

D D

t ut

D

D

e e e e u e u e u du du du

e du e udu

e u u du

e

  

 





 
 


       

   




 

  
  

   

 
 

 











 

  



 










 




   

  

 

 

 
 

 
 

2 2

0 0 0 0

2 2

0

2 2
2 2 2

0 02 2 2 2

0 0

2 2

0 0 0 0

2 22
0 0 03

2 2

0

1 2 cos 2 5 2 / 3
1

1 4

2 3 cos
1 9

5 sin cos

1 2 cos 2 5
1

6

/ 3 sin

/ 9

/ 3

1

s

D

D

D D

D

t ut

D
D

D D

D D

t ut
D DD

D

u u
du

e u

u u du

u
e





     

 

 
  

   

     

    


 











   
  

  

 
 

 


 
 















 0

02 2

0

2 / 3
c

in
os

9
.

1 4 /D

u
udu




 

 
 

   (3A.4) 

Now, proceeding as in Section 3.3, Eqs. (3.19) - (3.27), we can calculate each term of 

Eq. (3A.4) separately. The first term is 
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The second term of Eq. (3A.4) is 
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The third term of Eq. (3A.4) is calculated as 
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The fourth term of Eq. (3A.4) becomes 

  

 

 
   

 

   

 

2 22
0 0 0 02

2 22 2
00

2 22
2 0

02 22 2
00

0

2 2

0

/ 3 sin

/ 9

/ 3
cos

/ 9

/ 3
sin

/ 9

1 2 cos 2 5 2 / 3
1

1 46 1

1 2
2

1 46 1

5

1 4

D

D D

D

t ut
D DD

DD

t u t ut t

DD

DD

t ut

D

D

u u
e du

e du e udu

e



 

 





     


  

 
 

  

 

 






 
 

 






    
  

     

 
 

 






 



 
   

  

0

2 2 2 23
0 0 0 0 02

2 2 2 2 2 2

0 0 0

si

2

cos 2 1 4 2 11/ 3 4
1 .

6 1 1

n /

94 1 4

3

/

D D DD

D D D

udu

t t



       


     





    
  

    

(3A.8) 

The fifth term of Eq. (3A.4) becomes 

 

  

 

 

 

 
  

 

 

 
  

 

 

2 2
2 2 2

0 02 2 2 2

0 0

2 2

0 0 0 0

2 2 2 2

0

02 2 2 2

0 0

2 2 2 2

0 0

02 2 2 2

0 0

2 3

2 2

0

2 3 cos
1 9

5 sin cos

3
cos 2 1

1 9

5
2

2 1 9

1

sin

D

D

D

t ut

D
D

D D

D D

t ut
D D

D D

t ut
D D D

D D

D

D

e u

u u du

e u du

e udu











 
  

   

     

   


   

     


   

 

 

















 

 





 

 




 













 
 

 

 

2 2 4 4

0 0 02 2

0 2 22 2
00

2 2

0 0 0

2 2

0

cos2 3 4
3

1 49

2 17 / 2 5
.

1

sin / 2

4

D D

D

DD

D D

D

t

t

    
 

  

    

 

  
  

 




 

 (3A.9) 

Finally the sixth term in Eq. (3A.4) becomes 
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Thus, by substituting Eqs. (3A.5) - (3A.10) into Eq. (3A.4) we can get the second term of 

 1f t . Therefore the third order approximation of  1f t  is obtained as the sum of this 

second term and the first term given by Eq. (3.27), viz. 
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Now we consider the analytical form of the Kerr effect  2f t  by evaluating only the first 

term in Eq. (3.18), viz.  
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Now, proceeding as in Section 3.3, Eqs. (3.19) - (3.27), the inner integral of Eq. (3A.12)

becomes 
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so that the outer integral of Eq. (3A.12) becomes 
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Thus, by substituting Eq. (3A.14) into Eq. (3A.12), the first term approximation of  2f t  

yields 
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Again proceeding as in Section 3.3, Eqs. (3.19) - (3.27), the first term of Eq. (3A.15) 

becomes 
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The second term of Eq. (3A.15) becomes 
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using 

      0 0 0cos u            F . (3A.18) 
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The third term of Eq. (3A.15) becomes 
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As the first term of Eq. (3A.19) has been given by Eq. (3A.17), we only need to consider 

the second term so that, by using 

      0 0 0sin u
i


           F  (3A.20) 

and proceeding as in Section 3.3, Eqs. (3.19) - (3.21), we have the second term of 

Eq. (3A.19), 
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Thus the third term in Eq. (3A.15) is evaluated from Eqs. (3A.17) - (3A.21) as 

 

   

   

  

3 3

0 0 02 2

0

2

0 0 0 0

2 2 2 2

0 0

cos sin
1

cos 6 / 2 sin 8
.

2 1 9 /

D D

t u t ut t

D
D

D

D D D

D D

e udu e udu

t t

 
   

 

      

   

 
 

 

 
 

   

  
 

 

 
 (3A.22) 

Proceeding as in Section 3.3, Eqs. (3.19) - (3.27), we get the fourth term of Eq. (3A.15) 
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Obviously the second and third terms in Eq. (3A.23) are complex conjugates so that 

Eq. (3A.23) is reduced to 
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Finally, we can substitute these four terms, i.e. Eqs.  (3A.16), (3A.17), (3A.22), and 

(3A.24), into Eq. (3A.15) to get the second order approximation of  2f t  by evaluating 

the first term of Eq. (3.29) only, viz. 
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4  AC Stationary Response of Permanent Electric 

Dipoles in the Mean Field Potential 

In chapter 3, the Debye theory [7] of dielectric relaxation of noninteracting rigid electric 

dipoles under the combined influence of a time varying and a dc bias applied fields was 

extended to consider the nonlinear effects of a strong ac and dc bias field using 

perturbation theory, following the method of Coffey and Paranjape [2]. Nevertheless, 

these calculations still assume assemblies of noninteracting dipoles, implying that the 

Debye model and its extensions may not be used for dense dipolar systems, where 

intermolecular interactions occur. However, experimental data of such dipolar systems 

may be explained using a more sophisticated model of the noninertial rotational Brownian 

motion of dipoles in an external mean field potential V (e.g., [68-72]). In particular, this 

mean field approximation was used to treat nematic liquid crystals in Refs. [70-72], where 

the linear dielectric response was calculated via the rotational Brownian motion in the 

Maier-Saupe uniaxial anisotropy potential  

 2cosV K   . (4.1) 

Here K is the anisotropy constant and   is the colatitude, i.e., the angle between μ  and 

the Z-axis of the laboratory coordinate system. The mean field approximation has a 

restricted applicability because it ignores local order effects. Nevertheless, it is easily 

visualized and permits quantitative evaluation of dielectric parameters, so demonstrating 

the effect of intermolecular interactions on dielectric parameters that must be accounted 

for to agree with experimental results [73, 74]. 

Now, the theory of dielectric relaxation of nematic liquid crystals bears a close 

resemblance to the theory of magnetic relaxation of single domain ferromagnetic particles 

as formulated by Brown [6], which we will use to investigate the dc magnetization in the 

next chapter. Brown’s major contribution to this theory was the derivation of the Fokker-

Planck equation (2.57) for the distribution function of the particle magnetic moment 

orientations on the unit sphere. For the longitudinal relaxation in uniaxial magnetic 

nanoparticles, this Fokker-Planck equation becomes mathematically identical to that used 

in the theory of dielectric relaxation of nematic liquid crystals [1], Eq. (2.19). Various 

numerical methods have also been developed [18, 21, 23, 75] for calculating the nonlinear 
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ac stationary response of dipolar molecules (electric dipoles) in the Maier-Saupe uniaxial 

potential, Eq. (4.1), and for that of uniaxial magnetic nanoparticles (magnetic dipoles), 

which, in most respects, is just a replica of dielectric relaxation of nematics. Such 

numerical approaches cannot yield, however, simple formulas for comparison with 

experiments and the qualitative behaviour of the nonlinear response is not obvious. 

Preliminary steps towards an accurate analytical treatment of the nonlinear response of 

dipoles in the uniaxial potential, Eq. (4.1), were made in Refs. [3, 67] (see also Chapter 3), 

showing that the nonlinear response to an ac driving field ( )tE  can be evaluated by 

utilizing the so-called two-mode approximation [1, 37, 40] (see Eqs. (4.33) and (4.34)) 

combined with Morita’s treatment [38, 39] of the nonlinear response of dipolar systems, 

whereby the distribution function induced by an external perturbing field may be 

calculated from the appropriate Green function in the absence of the perturbation, with the 

linear response theory as a special case, which we showed in Section 2.8. Thus the linear 

response of dipoles in a mean field potential comprising an infinity of relaxation modes 

may be accurately represented by two modes only [1, 37, 40], namely, a slowest interwell 

barrier crossing mode and a fast mode representing the infinity of high-frequency near-

degenerate “intrawell” modes approximated as a single mode. Here we generalize this 

approach [3, 37, 40, 67] to include the effects of an external dc bias field on the nonlinear 

ac stationary response of a system of permanent dipoles in the uniaxial mean field potential, 

Eq. (4.1). Both matrix perturbation and analytical solutions are given for the ac stationary 

response of the first- and second-rank response functions,  1 cos ( )P t  and 

 2 cos ( )P t , determining, respectively, the nonlinear dielectric and Kerr-effect 

responses. Our calculations are, in particular, motivated by recent measurements of the 

nonlinear frequency-dependent polarization response in strong dc electric fields [76], 

where the influence of the dc field on the glass temperature Tg of glycerol was 

demonstrated, showing that Tg increases in proportion with the square of the dc field 

amplitude. Hence an accurate representation of the nonlinear components of the ac 

stationary dielectric response spectrum is required in order to compare with experimental 

data [76, 77]. 
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4.1 Noninertial Rotational Diffusion Model in the Mean Field 

Potential 

We shall consider the nonlinear ac stationary response of a rigid dipolar particle 

undergoing rotational Brownian motion in a mean field potential, Eq. (4.1), acted on by 

strong external superimposed dc E0 and ac ( ) cost tE E  fields. Each particle contains 

a rigid dipole .μ  For simplicity we suppose that both E0 and E  are directed along the Z-

axis of the laboratory coordinate system so that the potential will be polar angle dependent 

only. Effects due to the anisotropy of the polarizability of the particles can also be 

neglected when only permanent dipoles are considered (no induced dipoles). The 

calculation of the nonlinear ac stationary response of permanent dipoles to an ac driving 

field usually starts with the rotational diffusion or Smoluchowski equation for the 

distribution function ( , )W tμ  of orientations of dipole moments μ  on the surface of the 

unit sphere under the influence of external electric fields [1] (see Section 2.1), which in 

this case we write as, 

 FP t

W
L W LW

t


 


, (4.2) 

where  

  1(2 )FP DL W W W V        , (4.3) 

is the unperturbed Fokker-Planck operator, which contains the effect of the potential V 

due to the mean field and the time-independent dc bias field, while 

  1(2 )t D tLW W V    , (4.4) 

contains the effect of the time-dependent potential tV  due to the ac field ( )tE . Here  and 

 are the gradient and Laplacian on the surface of the unit sphere, defined by Eqs. (2.17) 

and (2.18) respectively, D  is the Debye relaxation time, and 1( )kT   is the inverse 

thermal energy. When the superimposed effective field (due to the uniaxial anisotropy) 

and external dc bias field 0E  are directed along the Z-axis of the laboratory coordinate 

system, the axially symmetric potential ( )V   is given by 

 2

0( ) cos cosV        , (4.5) 
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where K   is the dimensionless anisotropy or inverse temperature parameter (K is the 

anisotropy constant, see Eq. (4.1)) and 0 0E   is the dimensionless dc bias field 

parameter. The time-dependent ac field is assumed to be parallel to the dc bias field so 

that  

 ( ), cos costV t t      , (4.6) 

where E   is the dimensionless ac field parameter. 

 
Fig. 4.1. The profile of the uniaxial potential, Eq. (4.5), which has two non-equivalent 

wells with minima at  = 0 and  separated by a barrier at 0 0arccos( / 2 )    . For a 

positive, finite dc field, 0 0  , the dipoles in the shallower well at  =  are inhibited 

from crossing into the deeper well by the potential barrier of height 2

0(1 / 2 ) .    

However, the dipoles populating the deeper well at  = 0 have smaller probability to 

escape from the well, owing to the elevated potential barrier height 2

0(1 / 2 ) .    Thus 

the escape rate strongly depends on the dc field strength which affects the orientational 

relaxation and, hence, the dielectric and Kerr-effect responses. 

As discussed in Section 2.2, the Smoluchowski equation (4.2) can be written in the form 

of a differential-recurrence relation for the expectation values of the Legendre 

polynomials      cosn nf t P t , viz., 

       2 2 0 1 1( ) ( ) ( ) ( ) cos ( ) ( ) ,D n n n n n n n n n n

d
f t d f t c f t g f t a t f t f t

dt
             (4.7) 

where 1,2,n   and the coefficients na , nc , nd , and ng  are given by Eq. (2.38). 

In particular, we shall be interested in averages of the Legendre polynomial of order 1, 

     11 cosf t P t , and 2,      2 2 cosf t P t , pertaining to the dielectric response 

and dynamic Kerr-effect responses, respectively. 

 

 

0   
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4.2 Matrix Perturbation Solution 

Now, although the applied ac electric field in experiments [10, 11, 52-57] can be high 

enough ( 106 V/m) to observe nonlinear effects, the energy of the dipole in the field tV  

remains sufficiently weak compared to the thermal energy to allow one to use perturbation 

theory in the calculation of the ac stationary response for a weak ac field s( o) ct t    

( 1  ) since the electric dipole moment is quite small. Thus, we may seek perturbation 

solutions of Eq. (4.7) in the form  

 
       0 1 2 3

( ) ( ) ( ) ( )n n n n nf t f f t f t f t     , (4.8) 

where 
 m m

nf  , yielding the coupled differential-recurrence relations 
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   

 (4.9) 

1,2,...m  , with the initial conditions at t    given by 

 
 0(0) ( )( ) , ( ) 0 ( 1,2,...)m

n n nf f f m     . (4.10) 

For 0  , the system of dipoles is in equilibrium with Boltzmann distribution  

 
2

0cos cos1

0( )W Z e
     , (4.11) 

where Z  is the partition function (see Eq. (2.101)), so that (0)

0n nf P  can be calculated 

as 

 (0)

0

0

(cos ) ( )sinn nf P W d



     . (4.12) 

Clearly, the equilibrium averages (0)

nf  also satisfy the following five-term recurrence 

equation: 

 
          0 0 0 0 0

2 2 0 1 1 0n n n n n n n n nc f d f g f a f f        . (4.13) 

Equations (4.9) and (4.13) are seven- and five-term differential-recurrence relations, 

respectively, which can be solved for weak ac fields ( 1  ) using matrix perturbation 
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methods [64, 67]. To proceed, we rearrange Eqs. (4.9) and (4.13) for  0

nf  and  
( )

m

nf t  (m 

= 1, 2, 3, …) into matrix form as the set of coupled linear matrix differential equations: 

 
(1) (1)

1( ) ( ) ( )
d

t t t
dt

 c Ac c , (4.14) 

 ( ) ( ) ( 1)( ) ( ) ( ) ( )m m md
t t t t

dt
  c Ac Bc , (4.15) 

with the initial conditions  (0) (0)( ) c c and ( ) ( )m  c 0  (m = 1, 2, 3, …) yielded by 

Eq. (4.10). Here, s( o) ct t    and the infinite column vectors ( ) ( )m tc  and 1c  are given 

by 
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c c Bc c  (4.16) 

while the matrix elements of the time-independent five-diagonal matrix A  and two-

diagonal matrix B  are  
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  (4.17) 

Now, the column vector 
(0)

c  can be evaluated via inversion of the system matrix 

A  as [1] 
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 
 
 

c A , (4.18) 

thereby yielding the initial condition vector 1c  in Eq. (4.14) (we remark in passing that 

both Eqs. (4.18) and (4.12) yield identical results for 
0nP ). Equations (4.14) and (4.15), 
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which are coupled matrix first-order linear differential equations, may then be solved 

analytically, yielding the linear response 
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 (4.19) 

where the response (1) ( )tc  is entirely real so that  
1

i


A I  and  
1

i


A I  must be a 

conjugate pair. Similarly we have the second order response (2) ( )tc   
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the third order response  
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 (4.21) 

and so on to any desired order in m . Here the column vectors (1)

1 ( )φ , (2)

0 ( )φ  and 

matrices (2)

2 ( )Φ , (3)

1 ( )Φ  are given by  
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  
1(1)

1 1( ) i 


 φ A I c , (4.22) 

  
1(2) 1

0 1( ) i 
 φ A B A I c , (4.23) 

  
1(2)

2 ( ) i 


 Φ A I A , (4.24) 

  
1(3)

1 ( ) i 


 Φ A I B , (4.25) 

where I  is the unit matrix, and we have used the fact that 0t

t
e


A  (because all the 

eigenvalues 
k  of A  are positive, i.e., 0k  ). We note that the column vectors (1)

1 ( )φ  

and (2)

0 ( )φ  can also be written as 
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where  1nX   and (2)

0 ( )nX   are the normalized (i.e., (2)

01(0 ( ) 10)n nX X  ) linear and 

second-order nonlinear dc dynamic susceptibilities, respectively, while 
(1)

1 1 (0)n n
    φ  

and 
(3) (2)

2 1 0(0) (0)n n
    Φ φ  are the corresponding static susceptibilities (which are 

evaluated in Section 2.7).  

These matrix solutions (cf. Eqs. (4.19) - (4.21)) are very useful for computational 

purposes. As far as the practical calculation is concerned, we approximate all infinite 

matrices and column vectors involved by the corresponding matrices and column vectors 

of finite dimensions N×N and N, respectively. The value of N, depending on the numerical 

values of the model parameters  0 ,   as well as on the rank n and the order of 

perturbation solution m of 
 

( )
m

nf t  required, must be chosen according to the desired 

degree of accuracy. For example, in evaluating 
 

1 ( )
m

f t  and 
 

2 ( )
m

f t  for m = 1, 2, 3 and for 

 and 0   up to 20, we found that the matrix dimension N need not exceed 60 for an 

accuracy of not less than 6 significant digits in most instances. The numerical results 

obtained using this method are in complete agreement with those from the independent 

numerical methods developed in Refs. [18, 21, 23, 75] which we have summarized in 

Section 2.3. 
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4.3 Approximate Expressions for Linear Response 

Although the matrix solutions obtained in the previous section allow us to evaluate 

nonlinear responses numerically, it does not give us a qualitative understanding of the 

relaxation dynamics of the system. However, such a qualitative understanding of the 

dynamical behaviour is provided by the two-mode approximation, which is based on the 

large separation of the time scales of the fast intrawell and slow overbarrier (interwell) 

relaxation processes in the double-well mean field potential, Eq. (4.5) [1, 40] (see also 

Section 2.8). In this section, we shall now show how the two-mode approximation 

explains the relaxation dynamics in the presence a weak ac field ( 1)  , yielding a 

simple analytic description of the linear response characteristics of dipolar particles in the 

potential Eq. (4.5) for all ranges of the model parameters   and 0 . In Sections 4.4 and 

4.5, we will extend this method to include nonlinear effects. According to Eq. (4.8), the 

ac stationary linear response is governed by the response functions 
 1 (1)( ) ( )n n

f t t   c , 

which are given by the n-th element of the column vector (1) ( )tc  in Eq. (4.19), so that 
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φ , (4.27)  

where 
     1

1

1nn nF X   , and  1nX   and (1)

1 1 (0)n n
    φ  are the normalized linear 

dynamic and static susceptibilities, respectively, and are defined by Eq. (4.26). The static 

susceptibilities 1n  are expressed via the expectation values of the Legendre polynomials 

at equilibrium as (see Section 2.7, Eq. (2.103)) 

 1 1 10 0 0n n nP P P P   . (4.28) 

According to linear response theory, the normalized dynamic susceptibility  1nX   is 

defined by the Kubo equation, as we describe in Section 2.8 [5, 78], 

   11

0

( )1 i
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te tX ti d 


   , (4.29) 

where 1( )n t  is the normalized equilibrium correlation function, viz., 
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which comprises, in general, an infinity of relaxation modes (decaying exponentials), i.e., 

[1, 78] 

 
1

1

( ) ktn

n k

k

t c e







  . (4.31) 

Here 1 2 3, , ,...    are the eigenvalues of the system matrix A  and, therefore, the 

eigenvalues of the Fokker–Planck operator FPL  defined by Eq. (4.3). These eigenvalues 

can be evaluated from the characteristic equation [1] 

 det( ) 0  I A . (4.32) 

For high potential barriers, 2

0(1 / 2 ) 1V       , the relaxation process is dominated 

by the smallest nonvanishing eigenvalue 1,  which is much smaller than all other 

eigenvalues, i.e., 1 2 3, ,...    [1]. This eigenvalue has an Arrhenius-like behaviour, 

1 ~ ,Ve   and is associated with the slowest overbarrier relaxation mode (the explicit 

equations for 1  in the low- and high-barrier limits are given by Eqs. (4A.6) and (4A.9), 

respectively). All other eigenvalues 2 3, ,...   are associated with the fast “intrawell” 

relaxation modes and weakly depend on the temperature [1, 40]. Thus one may suppose 

[1, 37, 40] that 1( )n t  may be approximated by two relaxation modes only, 

 
( 1)

1 /

1 1 1( ) (1 )
n

Wtt

n n nt e e
 

     , (4.33) 

where 
 1n

W  is the inverse of the characteristic frequency of the near degenerate high-

frequency modes, while 1n  and 11 n  are amplitudes accounting for the overbarrier and 

intrawell relaxation processes, respectively. The parameters 1n  and 
 1n

W  can be 

expressed in terms of the characteristic relaxation times of the correlation function 
1( )n t  

[1, 37] (details in Section 2.8). By inserting Eq. (4.33) into Eq. (4.29), the normalized 

dynamic susceptibility  1nX   can be obtained analytically as the sum of two 

Lorentzians, viz., 
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In particular, both for the linear dielectric and Kerr-effect response, the parameters 1n  

and 
 1n

W  in Eq. (4.34) are evaluated by letting 1n   and 2n   in Eqs. (2.125) and 

(2.126), respectively.  

In Fig. 4.2 and Fig. 4.3, we show the real and imaginary parts of  11X   and 

 12X   calculated using the matrix solution, Eqs. (4.19) and (4.22), and the approximate 

equation (4.34). These figures indicate that there is no practical difference between the 

matrix solution and the two-mode approximation (the maximum relative deviation 

between the corresponding curves does not exceed a few percent). Clearly, two dispersion 

regions are noticeable in the spectra of the real parts,  11Re X     and  21Re X    , and 

two peaks appear in the spectra of the imaginary parts,  11Im X      and 

 21Im X     . The low-frequency part of the spectra is dominated by the slowest 

overbarrier relaxation mode. 
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Fig. 4.2. Real (a) and imaginary (b) parts of the linear susceptibility 
     1

1 11 11XF    

vs. the normalized frequency D  for various values of the dc field amplitude 0  with the 

anisotropy parameter 10.   Solid lines: the matrix solution, Eq. (4.19). Symbols: the 

two-mode approximation Eq. (4.34) with parameters calculated from Eqs.  (4.32), (2.121), 

(2.122), (2.125), and (2.126).  
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Fig. 4.3. Real (a) and imaginary (b) parts of the linear Kerr-effect response 

     1

2 21 21XF    vs. D  for various values of the dc field amplitude 0  with the 

anisotropy parameter 10.   Solid lines: the matrix solution, Eq. (4.19). Symbols: the 

two-mode approximation Eq. (4.34) with the parameters calculated from Eqs.  (4.32), 

(2.121), (2.122), (2.125), and (2.126). 

The characteristic frequency 
max  and the half-width   of low frequency spectrum are 

determined by the smallest nonvanishing eigenvalue 1 . The eigenvalue 1  is related to 

the frequency max  of the low-frequency peak in  11Im X      and  21Im ,X      

where they attain maxima, and/or the half-width   of the low-frequency dispersion 

region in  11Re X     and  21Re X     via 

 
1 max     . (4.35) 

Here, comparison of 1  as extracted from the spectra of  11X   and  12X   via 

Eq. (4.35), with 1  calculated independently via the system matrix A, shows that both 

methods yield identical results. Our calculations indicate that, on increasing the dc field 

parameter 0 , the magnitude of the low-frequency band drastically decreases due to the 

depletion of the population in the shallower potential well of the potential V  [1, 40] which 

results in the virtual disappearance of the low-frequency peak in the spectra 

 11Im X      and  21Im X      (see Fig. 4.2 and Fig. 4.3). Furthermore, the low-
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frequency peak shifts monotonically to higher frequencies with increasing 
0 . The high-

frequency peaks of  11Im X      and  21Im X      are due to the near degenerate 

high-frequency intrawell modes corresponding to the eigenvalues 
k  (k  2). These 

individual intrawell modes are indistinguishable in the spectra of  11Im X      and 

 21Im X     , appearing merely as a single high-frequency Lorentzian band (see 

Fig. 4.2 and Fig. 4.3).  

We shall now show that the two-mode approximation also yields an accurate 

description of the dynamic Kerr effect spectra and nonlinear dielectric relaxation. 

4.4 Approximate Expressions for Dynamic Kerr Effect 

By inspection of Eq. (4.20), the second-rank response 
(2) (2)

2 2
( )( )f t t   c  governing the 

dynamic Kerr-effect response can be written as a sum of a dc term and a term depending 

on 
2 tie 

, so that 
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,22 Re( ) i tf F et F     
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, (4.36) 

where  
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In the two-mode approximation, the Fourier amplitudes 
   2

2,0F   and 
   2

2,2F   can be 

written as 
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and 
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where the static susceptibility 22  is given by (see Section 2.7) 
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and the dynamic susceptibilities  (2)

20X  ,  (2)

20X  , and  22X   may again be written 

in the two-mode approximation as 
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    
(2) 20 20

20 20

1

1

1 / 1 W

X
i i


  

  
  

 
, (4.43) 

and 

    
22 22

22 22

22

1

1 1 W

X
i i


 

 
 

 
.  (4.44) 

In the Kerr-effect response, 20 and 
 20

W  in Eq. (4.42) can be calculated [3, 67] via 

Eqs.  (2.125) and (2.126), where the time constants 20  and eff

20  are estimated from the 

low- and high-frequency asymptotes, Eq. (2.120), yielding  

 (2) eff 22
20 0 20 (220

2

)
22 0

1 1 1
lim Im ( ) lan im Im

( )
d

 



 
  

 

    
              

φ
φ

.(4.45) 

However, analytic equations for the other parameters 20
 , 

 20

W  , 22 , 
22 , and 

 22

W  like 

Eqs.  (2.121) and (2.122) no longer exist. Therefore, they are treated as adjustable 

parameters.  

The spectra of the dc component of the 2nd order Kerr effect 
   2

2,0Re F  
 

 and the 

Kerr effect 2nd harmonic component 
 2

2,2Re ( )F  
 

 are shown in Fig. 4.4 for various 

values of the dc field parameter 0  as calculated from the matrix and two-mode 

approximation solutions. Just as with the linear response, no practical difference exists 

between the matrix and two-mode approximation solutions. 
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Fig. 4.4. DC component of the 2nd order Kerr effect 
   2

2,0Re F  
 

 (a) and the Kerr effect 

2nd harmonic component 
 2

2,2Re ( )F  
 

 (b) vs. D  for various values of the dc field 

amplitude 0  with the anisotropy parameter 10  . Solid lines: the matrix solution, 

Eq. (4.20). Symbols: the two-mode approximation Eq. (4.39) using parameters given by 

Eq. (4.45), and Eq. (4.40) using fitting parameters. 

4.5 Higher Order Dielectric and Kerr-Effect Responses 

In the nonlinear dielectric response, where the terms of order 2  and 3  cannot be 

neglected, the second-rank response function 
   2 (2)

1 1
( )f t t   c , which is proportional to 

2 , can be written, by inspection of Eq. (4.20), as a sum of a dc term and a term depending 

on 
2 tie 

, so that 

 
       2 22 2

1,0

(2

1

)

,21 Re( ) i tf F et F     
 

, (4.46) 

where  

 
    (

0

2

,0

2)

11

1
( )

2
F     φ   (4.47) 

and  
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    (2) (2)

1

2

,2 21 0

1
(2 ) ( ) .

2
F     Φ φ   (4.48) 

Furthermore, the third-order contribution 
   3 (3)

1 1
( )f t t   c , which is proportional to 3 , 

can be written, by inspection of Eq. (4.21), as  

 
           3 33 3

1,1

3

11 ,3Re i t i tF e F ef t      
 

, (4.49) 

where  

 
     (3) (2) (3) (2) (2)

1 0

3

1,1 1 2 11
0

1
( ) ( ) ( ) (22 e )R ( ) ,

4
F         

   Φ φ Φ Φ φ   (4.50) 

and 

 
    (3) (2)3

1,

)

13

(

2 1

2

0

1
(3 ) (2 ) ( ) .

4
F      Φ Φ φ   (4.51) 

In the two-mode approximation, the Fourier amplitudes 
   2

1,0F  , 
   2

1,2F  , 
   3

1,1F  , and 

   3

1,3F   can be written as 

 
     (2)12

0

2

1, 10
2

F X


 , (4.52) 

 
       2

1,2 12

(2)12
102

2
F X X  


 , (4.53) 

 
              3 (2) (2)

1,1 13 1
13

0 13 12 102Re 2
4

F X X X X X     


   , (4.54) 

and 

 
         3 (13 2)

1,3 13 12 103 2
4

F X X X  


 , (4.55) 

where the generalized dynamic susceptibilities  (2)

10X  ,  (2)

10X  ,  12X   and 

 13X   are given by 

    
(2) 10 10
10 10

1

1
,

1 / 1 W

X
i i


  

 
 

 
 (4.56) 

    
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1

1
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1 / 1 W

X
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
  

  
  

 
 (4.57) 

    
12 12

12 12
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1
,

1 1 W

X
i i


 

 
 

 
  (4.58) 
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and 

    
13 13

13 13

1

1
,

1 / 1 W

X
i i


  

 
 

 
  (4.59) 

and the static susceptibilities 12  and 13  are (see Section 2.7) 

    22

12 2 1 2 1 1 1 10 0 0 0 00

1
,

3
P P P P P P P      (4.60) 

and 

 
   

   

24 3 2 2

13 1 1 1 1 1 10 00 0 0 0

2 22 3 2

1 1 1 1 1 1 10 0 0 00 0 0

1 1

6 2

1
.

2

P P P P P P

P P P P P P P

    

   

 (4.61) 

Here, 10 and 
 10

W  in Eq. (4.56) can be calculated via Eqs.  (2.125) and (2.126), where the 

time constants 10  and eff

10  are estimated from the low- and high-frequency asymptotes, 

Eq. (2.120), yielding  

 (2) eff 12
10 0 10 (20 )1

12 0 1

1 1 1
lim Im ( ) lan im Im

( )
d

 



 
  

 

    
              

φ
φ

. (4.62) 

However, analytic equations for the other parameters 10
 , 

 10

W  , 12 , 
12 , and 

 12

W  like 

Eqs.  (2.121) and (2.122) no longer exist. Therefore, they are treated as adjustable 

parameters.  

Similarly, the third order contribution 
   3 (3)

2 2
( )f t t   c  to the second-rank 

response function 2 ( )f t  governing the Kerr-effect relaxation is, by inspection of 

Eq. (4.21), 

 
           3 33 3

2,1

3

22 ,3Re i t i tF e F ef t      
 

, (4.63) 

where  

 
    (3) (2) (3) (2) (2)

1 0 1 2 0

2

3

2,1

1 1
( ) ( ) ( ) (2 ) ( )

2 2
ReF        
 

 





Φ φ Φ Φ φ , 

and 
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)
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(2

2 0 2

1
(3 ) (2 ) ( )

4
F       Φ Φ φ . 
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Again, using the two-mode approximation, these Fourier amplitudes are 

 
              3 (2) (2)

2,1 23 2
2

0 23 22 20
3

4
2Re 2F X X X X X   


      , (4.64) 

and 

 
         3 (23 2)

2,3 23 22 203 2
4

F X X X  


 , (4.65) 

where the dynamic susceptibility  23X   is given by 

    
23 23

23 23

1

1

1 / 1 W

X
i i


  

 
 

 
, (4.66) 

and the static susceptibility 23  is (Section 2.7) 

 
   

   

23 3 2

23 1 1 2 1 10 0 00 0 0

22 2

1 2

2

1 1 1 1 10 0 0 00

1 2

1 20 020

1 1

6 2

1
.

2

P P P P PP P P

P P P P P P P P PP

    

   

 (4.67) 

Again, 23  and 
 23

W  are treated as adjustable parameters. 

The frequency spectra of the dc component 
   2

1,0Re F  
 

 and the 2nd harmonic 

component 
   2

1,2Re F  
 

 of the second order nonlinear dielectric response, the 

fundamental component 
   3

1,1Re F  
 

 and the 3rd harmonic component 
   3

1,3Re F  
 

 of 

the third order nonlinear dielectric response, and the fundamental component 

   3

2,1Re F  
 

 and the third harmonic component 
   3

2,3Re F  
 

 of the third order 

nonlinear Kerr-effect response are shown in Fig. 4.5 and Fig. 4.6 for various values of the 

dc field parameter 0 , which are calculated using the matrix (see Section 4.2) and two-

mode approximation solutions. Just as with the other responses, the matrix and two-mode 

approximation solutions are in complete agreement. 
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Fig. 4.5. DC component 
   2

1,0Re F  
 

 (a), the 2nd harmonic component 
   2

1,2Re F  
 

 

(b), the fundamental component 
   3

1,1Re F  
 

 (c), and the 3rd harmonic component 

   3

1,3Re F  
 

 (d) of the nonlinear dielectric response vs. D  for various values of the dc 

field amplitude 0  with 10  . Solid lines: the matrix solution, Eqs.  (4.20) and (4.21). 

Symbols: the two-mode approximation, Eqs.  (4.52), (4.53), (4.54), and (4.55), using 

fitting parameters. 
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Fig. 4.6. Fundamental component 
   3

2,1Re F  
 

 (a) and the third harmonic component 

   3

2,3Re F  
 

 (b) of the 3rd order Kerr effect vs. D  for various values of the dc field 

amplitude 0  with the anisotropy parameter 10  . Solid lines: the matrix solution, 

Eq. (4.21). Symbols: the two-mode approximation, Eqs.  (4.64) and (4.65), using fitting 

parameters. 

For the particular case of zero anisotropy 0  , the equations we have obtained 

above for the dielectric and Kerr-effect response functions 1 ( )f t  and 2 ( )f t  subjected to 

combined ac and dc fields, by evaluating 1 ( )mf t  and 2 ( )mf t  for 3m   in Eqs.  (4.19) - 

(4.21) explicitly, reduce to Eqs. (3.28) and (3.29), respectively. Similarly, if we consider 

the particular case of both zero anisotropy 0   and zero dc bias field 0 0  , our 

equations of 1 ( )f t  and 2 ( )f t  obtained in this chapter will reduce to the known results of 

Ref. [2], namely,  
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 (4.68) 

and 
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4.6 DC Component of the Dielectric and Kerr-Effect AC 

Stationary Responses 

Now we consider in detail the time-independent but frequency-dependent components of 

the dielectric and Kerr-effect ac stationary responses 1( )f  , and 2 ( )f  , defined as the 

time averages over a period of the ac field: 

      22

,0

2 /

2

0

0
Re  1,( ) ( ) , .

2
 2nn n nP F nf f t dt o

 

 


 


     
 

  (4.70) 

First, in contrast to the Kerr-effect response, the dc component of the dielectric response 

1( )f   is nonzero only when an external dc bias field is superimposed on the ac field. The 

nonlinear ac field contributions to 1( )f   and 2 ( )f   are of order 2  and both strongly 

depend on the dc bias field 0  and the anisotropy parameter  . According to the results 

of Sections 4.4 and 4.5, namely Eqs. (4.39), (4.42), (4.52) and (4.56), in the two-mode 

approximation both 1( )f   and 2 ( )f   may be approximated by a sum of two Lorentzians, 

viz., 
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, (4.71) 

where 12  and 22  are given by Eqs.  (4.60) and (4.41), respectively, while 0n and 
 0n

W  

can be calculated via Eqs.  (2.125) and (2.126), respectively, in the manner we treated the 

dynamic Kerr effect in Section 4.4. 
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Fig. 4.7. DC components 1( )f   (a) and 2 ( )f   (b) vs. D  with 10,   0.1,   and 

0 1   showing pronounced frequency-dependence including two distinct dispersion 

regions caused by the entanglement of the dc and ac responses. Solid lines: the matrix 

solution of Section 4.2. Crosses: the two-mode approximation, Eq. (4.71). 

In Fig. 4.7, we plot 1( )f   and 2 ( )f   as functions of frequency in order to 

illustrate the nonlinear effects induced by the ac field in the dc components 1( )f   and 

2 ( )f  , which exhibit a pronounced frequency dependence. Clearly, the approximate 

equation (4.71) is in agreement with the numerical calculations. By inspection of Fig. 4.7, 

two distinct low- and high-frequency dispersion regions appear in the spectra of 1( )f   

and 2 ( )f  , just as with the real part of the dynamic susceptibilities  11Re )(X   (cf. 

Fig. 4.2). The low-frequency dispersion region of each of the two functions 1( )f   and 

2 ( )f   is clearly governed by the barrier crossing relaxation modes with the same 

characteristic frequency 1  indicating that the overbarrier relaxation time may be 

determined directly from measurements of the dc responses 1( )f   and 2 ( )f  . In addition, 

for weak ac fields, the characteristic frequency 1  of this low-frequency band is 

associated with the overbarrier relaxation processes and may be determined as 1 1  . 
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Now, at the opposite end of the spectrum, the high-frequency band is due to “intrawell” 

relaxation modes. These individual near-degenerate high frequency modes are, however, 

virtually indistinguishable in the frequency spectra of 1( )f   and 2 ( )f  , appearing merely 

as a single high-frequency relaxation band, just as with  11Re )(X   (see Fig. 4.2). The 

results clearly demonstrate that the dc components of the ac stationary nonlinear dielectric 

and Kerr-effect responses contain the same information about the relaxation processes as 

the linear and nonlinear dynamic susceptibilities. This fact suggests that a new method of 

measurement of the overbarrier relaxation time is possible via the dc component of 

dielectric (or magnetic) relaxation and birefringence. 

4.7 Generalization to Anomalous Relaxation 

The nonlinear dielectric and Kerr-effect relaxation, treated in this chapter via the rotational 

diffusion model, may be extended to anomalous relaxation by using the fractional kinetic 

equation approach of Section 2.9, just like we have done for the noninteracting dipoles in 

Section 3.5. Here we consider, as an example, the Cole-Cole relaxation mechanism given 

by Eqs. (2.130) and (2.134) and characterized by the anomalous exponent   (other 

relaxation mechanisms can be treated in like manner). The generalization of the theory, 

based on a fractional version of the Smoluchowski equation, namely,  

 1( ) L L ,tD FP tD W W W  

    (4.72) 

has been fully explained in Section 2.9 and Refs. [1, 25] and tD

  is defined by 

Eq. (2.135). Here the general solution of Eq. (4.72) is of the form of the Fourier series, 

Eq. (2.23), so that, just as for the normal diffusion, we can obtain from Eq. (4.72) the 

fractional analogue of the differential-recurrence equation (4.7) for the response functions 

( ) (cos ) ( )n nf t P t , 
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 (4.73) 

Under linear response conditions, 1  , and 0, 0   , Eq. (4.73) yields the linear 

susceptibility from Eq. (2.130). Moreover, just as for the normal diffusion, Eq. (4.73) also 

allows one to evaluate the nonlinear ac stationary responses via a generalization of the 

two-mode approximation (see Ref. [78] for details). In the time domain, such a two-mode 
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approximation is equivalent to assuming that the relaxation function ( )nm t  may be 

approximated by two Mittag-Leffler functions only (cf. Eq. (4.33)), 

 ( )

1( ) ( / ) (1 ) ( / ) / .nm

nm nm D D nm D D Wt E t E t 
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In general, ( )nm t  comprises an infinite number of Mittag-Leffler functions  E z [25] 

which are defined by Eq. (2.136). Noting that [1] 
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the corresponding normalized dynamic susceptibility  nmX   may now be approximated 

by a sum of two Cole-Cole functions, viz., 

   ( )

1
,

1 ( / ) 1 ( / )

nm nm
nm nm

c W

X
i i  


 

 
 

 
 (4.76) 

where 1 1/

1( )c D D

     and ( 1) 1 ( 1) 1/( / )n n

W D D W

     are the characteristic frequencies. In 

particular, we have the generalization of Eqs.  (4.71) for the dc component of the dielectric 

or Kerr-effect response, viz., 
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All other nonlinear response equations obtained can be readily generalized in like manner. 

Such a generalization is likely to be important as the Cole-Cole relaxation behaviour has 

proved useful in the analysis of magnetic and dielectric relaxation data. 

4.8 Discussion and Conclusion  

We have presented two complementary approaches for treating the effects of an external 

dc bias field on the nonlinear ac stationary response of permanent dipoles in a uniaxial 

mean field potential to any desired order of the ac field amplitude with arbitrary dc field 

strength. The first approach (Section 4.2) is based on perturbation theory, allowing one to 

calculate numerically the nonlinear ac stationary responses using powerful matrix 

methods. For weak ac fields, 1  , the results obtained from these numerical 

calculations are in complete agreement with the independent numerical matrix continued 

fraction solution of Ref. [18] which we introduced in Section 2.3. The second, semi-

analytic approach (Sections 4.3-4.5), based on the two-mode approximation, originally 

proposed to model linear response functions of dipolar systems [27, 40], effectively 
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generalizes the existing results to treat the nonlinear response of dipolar particles over 

wide ranges of the anisotropy and external field parameters. Our results apply both to 

nonlinear dielectric and Kerr-effect relaxation of nematic liquid crystals and to nonlinear 

magnetization relaxation and magnetic birefringence relaxation of axially symmetric 

magnetic nanoparticles. In particular, one may explain the successful application of the 

known frequency dependence of the Kerr-effect response for free rotational diffusion to 

the analysis of experimental spectra of electric birefringence of nematics, which was 

previously done without any theoretical justification (see, for example, Ref. [79]). 

Furthermore, the analytic solution for the Kerr-effect response (e.g., Fig. 4.3 and Fig. 4.4) 

clearly demonstrates that this response contains information about the longest relaxation 

time of the system, which is due to the overbarrier relaxation processes. This fact suggests 

that new methods of measurement of the overbarrier (longest) relaxation time are possible 

via the electric or magnetic birefringence. We remark that, until now, two kinds of 

nonlinear response experiments have usually been carried out, namely: where either (i) a 

strong ac field alone (e.g., [52-54]) or (ii) a weak ac field superimposed on a strong dc 

bias field (e.g., [10, 11, 55-57]) were applied to the dielectric liquids. In polar dielectrics, 

although the applied fields in these experiments were high enough ( 106 V/m) to observe 

nonlinear effects, their strengths were sufficiently weak to allow one to use the nonlinear 

response equations obtained using perturbation theory. Comparison of experimental data 

[10, 11, 52-57] with the perturbation theory results demonstrated that they are in 

agreement. However, as the theory presented here is also applicable for arbitrary dc field 

strengths, it provides a theoretical basis for comparison with nonlinear response 

experiments in high dc fields. Note that some molecular and Brownian dynamics 

simulation data for systems of dipolar molecules in strong ac fields are also available (e.g., 

[80-83]). Furthermore, the use of computer simulation data is preferable to experimental 

data for testing a nonlinear theory as it is much easier to achieve high values of the dc field 

parameter 0 1  . 

It is worth mentioning the experimental results of Wandersman et al. [84] in the 

context of the present work. In particular, these authors measured the magnetic 

birefringence in two dense ferrofluids. Their experimental data is fitted by the 

birefringence function 
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where a is the normalized amplitude of the short-time decay mode and 1  is the associated 

time scale, while the 2  time scale describes the stretched exponentially long time decay 

of the magnetic birefringence. Bearing in mind that this stretched exponential behaviour 

is the short time expansion of the Mittag-Leffler function, one may say that anomalous 

diffusion manifests itself at long times only. Equation (4.33) is then formally a special 

case of Eq. (4.78) with 1  . Equation (4.78) in turn suggests a straightforward 

generalization to fractional birefringence dynamics, which has been alluded to in 

Section 4.7 (see, for example, Eqs.  (4.74) and (4.76)).  

Now, as mentioned to at the beginning of this chapter, Ladieu et al. [77] have 

recently suggested a model of nonlinear dielectric relaxation of supercooled liquids that 

has been compared with experimental data. The work presented here may be of importance 

in order to accurately represent their so-called “trivial” component (the term “trivial” 

component, used by Ladieu and coworkers refers to the monotonic frequency behaviour 

of the nonlinear response modulus, similar to the “ideal gas” behaviour of the Coffey-

Paranjape formulas [2], so that the nonlinear polarization response consists of this “trivial” 

component augmented by a “singular” component which must definitely be associated 

with intermolecular dynamical correlations). The formulas obtained in this chapter cannot 

describe all the features of the experimental spectrum because dynamical correlations are 

not accounted for in the mean field approximation. This is clearly illustrated by the quasi-

monotonic behaviour of the moduli of the Fourier amplitudes for the nonlinear dielectric 

response, as can be seen in Fig. 4.8 (conversely, the moduli of the Fourier amplitudes for 

the Kerr-effect response have nonmonotonic behaviour; see Fig. 4.9). However, the 

formulas presented here can be used to calculate the quasi-static nonlinear properties of 

the polarization of glass-forming liquids, and can therefore be included in Ladieu’s model 

[77] as a first approximation. 
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Fig. 4.8. Moduli of the dc component 
   2

1,0F   (a), the 2nd harmonic component 

   2

1,2F   (b), the fundamental component 
   3

1,1F   (c), and the 3rd harmonic component 

   3

1,3F   (d) of the nonlinear dielectric response vs. D  for various values of the dc field 

amplitude 0  with 10  . Solid lines: the matrix solution of Section 4.2. Symbols: the 

two-mode approximation, Eqs.  (4.52), (4.53), (4.54), and (4.55), using fitting parameters. 
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Fig. 4.9. Moduli of dc component 
   2

2,0F   (a) and 2nd harmonic component 
 2

2,2 ( )F   (b) 

of the 2nd order Kerr effect, the fundamental component 
   3

2,1F   (c) and the third 

harmonic component 
   3

2,3F   (d) of the 3rd order Kerr effect vs. D  for various values 

of the dc field amplitude 0  with the anisotropy parameter 10  . Solid lines: the matrix 

solution of Section 4.2. Symbols: the two-mode approximation, Eqs.  (4.39), (4.40), (4.64) 

and (4.65), using fitting parameters. 
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The given methods of the solution of infinite hierarchies of multi-term recurrence 

relations are quite general and can be applied to analogous nonlinear response problems 

where time-dependent stimuli in high ac external fields are considered. In particular, our 

methods can also be used for the nonlinear dielectric and Kerr-effect ac stationary 

responses of polar and anisotropically polarizable molecules [50, 58-60]. Furthermore, 

they may be extended to nonstationary responses and to other mean field potentials. 

Moreover, they can be applied (with small modifications) to the nonlinear magnetic 

response of uniaxial magnetic nanoparticles, which we will discuss in the next chapter 

(see Eqs.  (5.26)). Here the magnetization dynamics are governed by equations very 

similar to the Smoluchowski equation (4.2) [1, 6, 75]. Finally, the range of applicability 

of the rotational diffusion model in the mean field potential is restricted to the low-

frequencies range ( 1)D  , because the model does not include inertial effects. A 

consistent treatment of these effects must be carried out using the Fokker-Planck equation 

for the probability density function in configuration-angular velocity space. The inertia 

corrected rotational diffusion model in the uniaxial potential was used in Ref. [85] to 

determine the linear complex dielectric susceptibility tensor of polar liquid crystals in the 

entire frequency range of orientational polarization (up to 5 THz). 

Appendix 4A: Parameters for the Two-Mode Approximation 

of the Linear Dielectric and Kerr-Effect Responses 

We calculate explicitly the parameters appearing in Eq. (4.34) for the linear dielectric and 

Kerr-effect responses. For the dielectric response, the equations for 1  and eff

1  required 

for the calculation of 11  and 
 11

W  in Eq. (4.34) can be evaluated by letting 1n   in 

Eqs.  (2.121) and (2.122), which yields after simplifications  
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Here the equilibrium averages 01P   and 2

1 0P  , according to Eqs.  (2.99)-(2.101), are 
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where 0 / 2h    is the dimensionless dc bias field parameter, Z  is the partition function 

given by 

 
22
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( 2 )

1
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4

hx hxZ e dx e h h
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and 

 
2

0

2
erfi( )

z

tz e dt


  , 

is the error function of imaginary argument [32]. Now, in the low barrier case, , 1h  , 

the behaviour of 
1 , 11 , and 

 11

W  is [1] 
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5 875 21875 10 87
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 
, (4A.6) 
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and 
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.

375
h     , (4A.8) 

respectively. Equation. (4A.6) is related to the smallest nonvanishing eigenvalue of the 

Fokker Planck operator, while Eqs.  (4A.7) and (4A.8) may be evaluated by taking the 

Taylor series expansions of Eqs.  (4A.1) and (4A.2) and then substituting the results into 

Eqs.  (2.125) and (2.126). In the high barrier case, 2(1 ) 1h    and 1h  , the behaviour 

of 1 , 11 , and 
 11

W  is given by [40] 

        
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, (4A.9) 
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and 

 

 

11 2
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(1 )cosh (2 )
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h h
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
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






, (4A.11) 

where Eq. (4A.9) follows from asymptotic expansions of the mean first-passage time [7], 

while Eqs.  (4A.10) and (4A.11) follow from Eqs.  (4.15) and (3.15) of Ref. [40] 

respectively. 

For the Kerr-effect response, the parameters 21  and 
 21

W  are again expressed via 

three characteristic time constants, namely, the inverse of the smallest nonvanishing 

eigenvalue 
11/  , the integral relaxation time 2  defined by Eq. (2.121), and the effective 

relaxation time eff

2  defined by Eq. (2.122). The relaxation times 2  and eff

2  are now 

given by Eqs.  (2.121) and (2.122) for n = 2. In the low barrier case, , 1h  , the 

behaviour of 21 , and 
 21

W  are given by, following the method for calculating 11  and 

 11

W  (Eqs.  (4A.7) and (4A.8)),  
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while for the high barrier case,  
2

1 1h   , we have the following relaxation times 2  

and eff

2 : 
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Equations (4A.14) and (4A.15) can be used to evaluate 
 21

W  and 21  by Eqs.  (2.125) and 

(2.126), respectively, for large   in the range 0.17h  , since outside this range 

Eq. (4A.14) diverges exponentially from 1

1
 .
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5 DC Response of Uniaxial Magnetic 

Nanoparticles 

In the previous chapters, the model of the Brownian motion was used to study the 

behaviour of the electric dipoles under the influence of the ac and dc bias field. Since the 

motion of the uniaxial magnetic nanoparticles can also be described by a similar Fokker-

Planck equation, in this chapter we are going to investigate the nonlinear frequency-

dependent effects in the dc magnetization in superimposed strong ac and dc fields. 

A fine ferromagnetic particle is characterized by an internal magnetocrystalline 

anisotropy potential with several local states of equilibrium and potential barriers between 

them, the heights of which depend on the size of the particle. If the particles are small (~10 

nm) so that the energy barriers are comparable to the thermal energy, the magnetization 

vector M may cross over from one potential well to another and vice versa due to the 

thermal agitation, with a relaxation time which depends exponentially on the volume of a 

particle. The ensuing thermal instability of the magnetization of fine particles results in 

superparamagnetism and magnetic after-effect. The thermal fluctuations and relaxation of 

the magnetization of such particles play a central role in information storage, rock 

magnetism, magnetic hyperthermia, etc. [86, 87]. In addition, the Zeeman energy is 

relatively large even in moderate external magnetic fields due to the large magnitude of 

the particles’ magnetic dipole moment (~104–105 B ). Hence we expect that their 

magnetization dynamics will exhibit a pronounced dependence on the strength, frequency 

and orientation of these fields [75], which is significant because the nonlinear response of 

fine particles driven by a strong ac field occurs in diverse physical applications. These 

include nonlinear dynamic susceptibilities and field induced birefringence [75, 88-90], 

nonlinear stochastic resonance [91], dynamic hysteresis [17, 33], and microwave field 

effects [92]. 

The calculation of the nonlinear magnetic response of nanomagnets in the presence 

of thermal agitation originating in a heat bath usually commences with the magnetic 

Langevin equation (2.52). This is Gilbert’s (or the Landau-Lifshitz) equation augmented 

by a random magnetic field h(t) with Gaussian white noise properties, Eq. (2.53), 

accounting for the thermal fluctuations of the magnetization ( )tM  of an individual 
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particle [29]. The stochastic differential equation (2.52) is then used to derive the 

accompanying Fokker-Planck equation governing the time evolution of the probability 

density function ( , )W tu  of the magnetization orientations on the surface of a sphere of 

constant radius SM  (u is a unit vector along M) (see Fig. 2.2), where the relevant Fokker-

Planck equation is [29]  

     22 N

W
W V W W V

t


 




       


u . (5.1) 

Here /   u  is the gradient operator on the unit sphere, SM   is the 

dimensionless damping constant, 1

0( )N       is the characteristic free diffusion time 

of ( )tM  with 0 0 S / (2 )M   , / ( )v kT  , v is the volume of a typical particle, k is 

Boltzmann’s constant, T is the absolute temperature, and 0  is the permeability of free 

space. A general method of solving the Fokker-Planck equation (5.1) for arbitrary 

magnetocrystalline anisotropy energy density has been given in Chapter 2 (see also 

Refs. [1, 15]). We remark that Eq. (5.1), omitting the second (precessional) term on the 

right hand side, is essentially similar to the Smoluchowski equation (2.16) describing the 

dielectric and Kerr-effect relaxation in polar liquids [1], as discussed in the previous 

chapters. However, the precessional term has a profound effect on the magnetization 

dynamics, especially in the nonlinear case, because it may couple, depending on the 

direction of the applied field, the longitudinal and transverse modes in Eq. (5.1) as we 

shall presently see. 

 Now, in the most basic model used to study nonlinear relaxation processes, the 

free-energy density V (Fig. 5.1) of a single-domain nanoparticle with uniaxial anisotropy 

in superimposed homogeneous external dc bias and ac magnetic fields 0 cos tH H  of 

arbitrary strengths and orientations relative to the easy axis of the particle is given by 

    2

0 0 0sin / cos /V H t H         u H u H , (5.2) 

where K  , 0 0 SH M  , SHM   are the dimensionless anisotropy and external 

field parameters, and K is the anisotropy constant.  
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Fig. 5.1. Uniaxial anisotropy with the dc bias and ac magnetic fields applied along the 

easy axis (Z-axis) (a) and at an oblique angle   (b) as used in this chapter. 

Various treatments of the nonlinear ac stationary response have been effected by 

means of numerical solutions of the governing dynamical equations (2.52) and/or (5.1). In 

particular, efficient numerical algorithms for the calculation of the nonlinear ac stationary 

response of the magnetization of uniaxial magnetic nanoparticles have been proposed [16-

18] by assuming that the dc bias and ac driving fields are directed along the easy axis of 

the particle. However, in the axially symmetric configuration, many interesting nonlinear 

effects are suppressed because no dynamical coupling between the longitudinal and 

transverse precessional modes of motion exists. These mode coupling effects in the 

nonlinear ac stationary response can only be modelled for uniaxial particles driven by a 

strong ac field applied at an angle to the easy axis of the particle, so that the axial 

symmetry is broken by the Zeeman energy [19-22]. Now, building on the axially 

symmetric solutions described in Refs. [16, 18], an exact nonperturbative method for the 

determination of the Fourier amplitudes (see Eq. (5.9)) and so the nonlinear magnetization 

of magnetic nanoparticles with an arbitrary anisotropy potential and subjected to a strong 

ac driving field superimposed on a strong dc bias field has recently been given by Titov 

et al. [23]. The method is rooted in posing the solution of the averaged magnetic Langevin 

equation for the statistical moments (expectation values of the spherical harmonics) in 

terms of matrix continued fractions in the frequency domain, which can be applied to the 

Fokker-Planck equation approach as fully explained in Chapter 2. So far this method has 

been used to determine the dynamic susceptibilities (linear, cubic, etc.) and dynamic 

hysteresis loops in uniaxial magnetic nanoparticles in Refs. [21, 23]. Here, we focus for 

the first time on nonlinear frequency-dependent effects in the time-independent dc 

Z-axis Z-axis 
(a) (b) 
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component of the magnetization in superimposed external dc bias and ac magnetic fields, 

which were not sufficiently investigated in previous studies. Thus we shall demonstrate 

that under such conditions, the dc magnetization of a magnetic nanoparticle drastically 

alters leading to pronounced nonlinear effects including three dispersion bands at low, 

intermediate and high frequencies in the dc magnetization spectrum. We shall also 

evaluate the dc magnetization of an assembly of noninteracting uniaxial nanoparticles with 

randomly oriented easy axes in space which display similar nonlinear phenomena. 

5.1 Exact AC Stationary Solution of DC Magnetization 

Henceforth, we shall assume for simplicity that the easy axis of the particles coincides 

with the Z-axis (see Fig. 5.1) and that 0H  and H  are parallel. Now, due to cylindrical 

symmetry about the Z-axis, the component of the magnetization in the direction of 0H  

and H  depends only on the oblique angle   between 0H  and the Z-axis. In Chapter 2 we 

extended the method of Titov et al. [23] to determine the magnetization in the direction of 

the ac field when the system was subjected to ac and dc magnetic fields. First, the magnetic 

Langevin equation (2.52) is used to derive the accompanying Fokker-Planck equation 

(2.57). Then the Fokker-Planck equation (2.57) instead of using ( , )  as variables, is 

transformed to an infinite hierarchy of differential-recurrence relations for the statistical 

moments (the averages of the spherical harmonics) 
, ( )l mY t  (see Eq. (2.80)). Here, 

without loss of generality, we may suppose that both 0H  and H  lie in the XZ plane of the 

laboratory coordinate system (see Fig. 2.2). Thus, by replacing the direction cosines of the 

fields with    31 2, , si ,0,n cos    , Eq. (2.80) becomes 
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 (5.3) 

where the angular brackets    denote the ensemble averaging in the presence of the ac 

field. Now, by confining ourselves to the stationary solution for the magnetization in the 

direction of the ac driving field ( ) cos ( )Sm t M t   , where   is the angle between the 

vectors M  and H  so that 

 
   

 

( ) / cos

sin sin cos cos cos ,

S

S

m t t H M t

M t   

    

 

HM
 (5.4) 

and, using the known definitions of the spherical harmonics of the first rank, viz., [36] 

 1,0 1, 1

3 3
cos , sin

4 8

iY Y e  
 



  , (5.5) 

we see that the magnetization ( )m t  can be expressed via the statistical moments 1,0 ( )Y t  

and 1, 1 ( )Y t  as 

  1,0 1, 1 1,1

2
( ) 2 cos ( ) sin ( ) ( )

3
Sm t M Y t Y t Y t


  

     .  (5.6) 

Since, as in Section 2.6, the averaged spherical harmonics can be written as a Fourier 

series in the time,  
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, ,( ) ( )k ik t

l m l m

k

Y t c e 




  ,  (5.7) 

Eq. (5.6) can be written as 

 
1, 1 1,1

1,0

( ) ( )4
( ) cos ( ) sin

3 2

k k

k ik t

S

k

c c
m t M c e 

 
  






 
  

 
 , (5.8) 

which we write in the compact form 

 
1( ) ( )k ik t

S

k

m t M m e 




  , (5.9) 

where 
1 ( )km   is the amplitude of the kth harmonic in the nonlinear response given by [23] 

(cf. Eq. (8) of that paper specialized to cylindrical symmetry)  

 
1, 1 1,1

1 1,0

( ) ( )4
( ) cos ( ) sin

3 2

k k

k k
c c

m c
 
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 

  
 

. (5.10) 

Therefore the magnetization ( )m t  can be determined exactly using the method of 

Section 2.6. The , ( )k

l mc   are themselves the Fourier coefficients in a Fourier series 

development in the time of the average spherical harmonics governed by the evolution 

Eq. (5.3), viz. Eq. (5.7). However, the Fourier coefficients , ( )k

l mc   of the kth harmonic 

component in Eq. (5.7) of the average first rank spherical harmonics, 
1,0 ( )Y t  and 

1, 1 ( )Y t
, underpinning the magnetization nonlinear response, are connected to all other 

Fourier coefficients , ( )k

l mc   of spherical harmonics of different ranks via the differential-

recurrence relation, Eq. (5.3). Nevertheless, despite this entanglement, the particular 

coefficients 1, ( )k

mc   pertaining to Eq. (5.10) can be calculated numerically via matrix 

continued fractions [23] (details in Section 2.6). Here, we focus on the time-independent 

or dc component of the magnetization ( )M  , defined by the mean value 

 
2 /

0

1

0

( ) ( ) ( )
2 S

M m t dt m
M

 




 


  , (5.11) 

which, we note, is entirely real. 
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5.2 Limit Values of DC Magnetization  

In Section 5.1 we developed an exact solution for the dc magnetization (cf. Eqs.  (5.10) 

and (5.11)) using matrix continued fractions (Section 2.6) which is valid for all strengths, 

orientations, and frequencies of the applied fields. In the cases of a vanishing ac field, very 

high driving frequency or very low frequency, however, we can derive asymptotic 

solutions for the dc magnetization. 

First, we note that Eqs. (5.10) and (5.11) yield two limiting values for the dc 

magnetization in the limits of vanishing ac field,   0, and/or of very high frequency 

field,   , which are 

 0
0

lim ( )M M





     and    lim ( ) ( )M M 





  , 

respectively. However, both of the foregoing limits are equal, i.e., 

0 0 0( ) ( , , )M M M      , and can be expressed simply in terms of the stationary 

average 0cos   as 

 0 0( ) cosM M      , (5.12) 

where the angular brackets 0   denote stationary ensemble averaging, namely, 
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Z

 
      

     , (5.13) 

where Z is the partition function given by 
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sinZ e d d

 
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In the very low frequency limit,   0, the mean value (0)M  can also be evaluated by 

using a quasistatic Boltzmann distribution in Eqs.  (5.13) and (5.14) as 
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which can be rewritten as  

  

2
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. (5.16) 
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Moreover, if we consider the response to a weak ac field   << 1, perturbation theory will 

be valid (which we used to find the static susceptibilities for electric dipoles in Section 2.7). 

Thus, using the expansion of the functions in the limit of 1x  [32], 
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2       
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1 , 1
2! 1

 x x
e x x x
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, (5.17) 

Eq. (5.16) to the second order of   becomes 
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which we can write in terms of the stationary averages, 
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Using Eq. (5.17) then gives us  
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which reduces to 
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Thus, the dispersion amplitude ( ) (0)M M    can be evaluated from Eqs. (5.12) and 

(5.21) via the stationary averages 
0

cos , 
2

0
cos  , and 

3

0
cos  , viz., 
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Furthermore, for axial symmetry (i.e., where both the dc bias and ac fields are applied 

along the easy axis) we have 0   and   , so that Eqs.  (5.12) - (5.14) become 

known integrals, viz., 
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where the partition function Z  is given by 
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and 

2

0

2
erfi( )

z

tz e dt


  , 

is the error function of imaginary argument. Hence, in all the foregoing limits, only a 

knowledge of the equilibrium averages is required. 

Now regarding the behaviour of ( )M   as a function of the ac field amplitude, 

we remark that strong nonlinear effects in the dc magnetization are expected for   > 1. 

For example, for cobalt nanoparticles with mean diameter a ~10 nm and saturation 

magnetization 6

S

11.4 10 A m ,M    the field parameter   has order unity for 

3 3 1

0~ 6 / ( ) ~ 4.5 10 A mSH kT a M    at ~ 30 KT  [16]. Moreover, an ac field of this 

order of magnitude is easily attainable in practical measurements of the nonlinear response 

of magnetic nanoparticles [88]. On the other hand, the condition   << 1 corresponds to 

the response to a weak ac field, where we have stated that perturbation theory is valid. 

Here, because the nonlinear contribution to the dc magnetization has order 2 , ( )M   is 

itself only weakly dependent upon  . Nevertheless, ( )M   strongly depends on the 

angle  , dc bias field 0 , barrier height  , and damping . 

5.3 DC Magnetization for 0    

In order to illustrate the nonlinear effects in the time-independent but frequency-dependent 

magnetization ( )M   induced by the ac field, which in general exhibits a pronounced 

frequency dependence due to the ac field acting in conjunction with the bias field, we plot 
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( )M   as a function of the dc field 
0 , frequency  , and inverse temperature   for 

various values of the ac field magnitude , damping , and lastly (in Section 5.3) the 

oblique angle  between the bias field and easy axis.  
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Fig. 5.2 Comparison of the dc magnetization M , Eq. (5.11), (solid lines) and real part of 

the fundamental component of the nonlinear dynamic susceptibility 1

12Re( ) /m   (dashed 

lines) vs. normalized frequency N  for 0 1  , 2  , 1  , and various values of the 

anisotropy parameter / ( )vK kT  .  

We first present results for the dc magnetization of an assembly of aligned 

nanoparticles with the angle 0   so that axial symmetry prevails. Then, in the small ac 

field limit, 1  , the dc component ( )M   can be evaluated analytically via 

perturbation theory (see Section 4.6) while, in strong ac driving fields, 1  , ( )M   can 

be determined using the matrix continued fraction method as applied to axially symmetric 

problems [18] (see Section 5.1). To facilitate our discussion, plots of both ( )M   and the 

real part of the fundamental component (i.e., the term prefixed by
i te 

 in Eq. (5.9)) of the 

nonlinear dynamic susceptibility 1

1( ) 2 /m    [1] as a function of the normalized 

frequency N  for various values of the anisotropy (or inverse temperature) parameter 

/ ( )vK kT   are shown in Fig. 5.2. By inspection of that figure, two distinct low- and 

high-frequency dispersion bands appear in the spectrum of ( )M   just as with the 

susceptibility ( )   (in the latter, the high-frequency dispersion region would be visible 

on the logarithmic scale [1, 18]). Moreover, the low-frequency dispersion of each of the 

two functions ( )M   and ( )   are clearly governed by the barrier crossing relaxation 
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modes with the same characteristic frequency indicating that the magnetization reversal 

time may be directly determined from measurements of the dc response ( )M  . 

In addition, for weak ac fields, the characteristic frequency 1  of this low-frequency band 

may be determined explicitly as 
1 1   via the smallest nonvanishing eigenvalue 

1  of 

the Fokker-Planck operator in Eq. (5.1) associated with the overbarrier relaxation 

processes. We recall that, subject to   << 1, 1 for the potential given by Eq. (5.2) with 

0  , corresponding to axial symmetry, is given by Brown’s asymptotic high barrier 

formula [6, 29] 

 
2 2

2 3
(1 ) (1 )

1

(1 )
~ (1 ) (1 )h h

N

h
h e h e 


 

       
 

, (5.25) 

where 0 0 S 0/ (2 ) / (2 )h M H K    . Equation (5.25), because it relates to an axially 

symmetric system governed by a scalar differential-recurrence relation for the observables 

in the time domain, is valid for all values of the damping  . Now, for cobalt nanoparticles 

with anisotropy constant 5 3~10 J/mK  and ~ 0.1 , the free diffusion relaxation time is 

10~ 4 10 sN
  (with 52.2 10    mA1s1). Furthermore, considering the critical value [1] 

of the dimensionless parameter 0 S 0 / (2 ) 1h M H K   at which the double well structure 

of the magnetocrystalline/Zeeman energy 2

0sin cos     disappears, one may infer 

that the low-frequency overbarrier relaxation processes vanish for a dc bias field 

5

0 1.14 10H    Am1. Now, at the opposite end of the spectrum, the high-frequency band 

is due to “intrawell” relaxation modes. These individual near-degenerate high frequency 

modes are, however, virtually indistinguishable in the frequency spectrum of ( )M  , 

appearing merely as a single high-frequency dispersion band, just as with the magnetic 

dynamic susceptibility. Thus, like the susceptibility ( )  , the spectrum of ( )M   may 

in practice be approximated by a sum of two Lorentzians, viz., 

 
2 2

1 2

1
( ) ( ) (0) ( )

1 ( / ) 1 ( / )
M M M M   

   

  
           

. (5.26) 

Here 1  and 2  are, respectively, the characteristic frequencies of the overbarrier 

relaxation modes, which are related to the Kramers escape rate 1~  , and the near-
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degenerate high frequency “intrawell” relaxation modes (both in the presence of an ac 

external field), and   is an adjustable amplitude parameter.  

The dc magnetization ( )M  , obtained via the matrix continued fraction method 

[1], is shown as a function of the normalized frequency 
N  and as a function of the dc 

field 
0  in Fig. 5.3 and Fig. 5.4, respectively for various values of the ac driving field 

amplitude  . Furthermore, M  is shown as a function of the inverse temperature 

parameter   for the particular dc field amplitude 0 1   in Fig. 5.5. As shown in Fig. 5.3 

- Fig. 5.5, the approximate equation (5.26) accurately fits the numerical matrix continued 

fraction results. The corresponding fitting parameters 1 , 2 , and   are exhibited in 

Fig. 5.6 as functions of the ac field amplitude  , dc field amplitude 0 , and inverse 

temperature parameter .  In Fig. 5.2 and Fig. 5.3, the limiting value of ( )M   as 

  is 
0 0( ) ( , ,0)M M    , calculated from Eq. (5.23) with 0  , and the limiting 

value of ( )M   as 0  is (0)M , calculated from Eq. (5.15) with 0  . We remark 

that for weak ac fields 1   and high barriers 2(1 ) 1h   , 1  can be evaluated 

explicitly from Brown’s asymptotic lowest nonvanishing eigenvalue expression Eq. (5.25) 

as then 1 1  . Furthermore, for both 0, 1    with 0   (i.e., zero anisotropy), the 

approximate equation (5.26) concurs with the known perturbation solution of the Fokker-

Planck equation (5.1) for axial symmetry, Eq. (3.33) in Chapter 3 with appropriate 

changes of variables (see also Fig. 3.1(a)), namely, 

 
3 2

0 0 0

2 2 2 2

5 1
( ) ...

3 45 180 1 1 / 9N N

M

   


   

 
     

  
. (5.27) 

Here the first two terms on the right hand side constitute the expansion of the Langevin 

function in the dc field alone while the last term refers to the frequency-dependent 

combined effect of the strong dc and ac fields. Moreover, comparing Eq. (5.27) to 

Eq. (5.26), now 1

1 N   , where the free diffusion time N  is a characteristic time of the 

first rank relaxation function 1,0 ( )Y t  (see Eq. (3.13)), while the frequency 1

2 3 N    

characterizes the contribution of the second rank relaxation function 2,0 ( )Y t  (see 

Eq. (3.14)) to the dc magnetization. 
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Fig. 5.3. DC magnetization M  vs. normalized frequency N  for 10  , 0 1  , and 

various values of the ac field amplitude   showing pronounced frequency-dependence 

including two distinct dispersion regions caused by entanglement of the dc and ac 

responses. Solid lines: exact matrix continued fraction solution, Eq. (5.11). Symbols: the 

approximate fitting equation (5.26). 
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Fig. 5.4. DC magnetization M  vs. dc field 0 00 / ( )Sv M H kT   for 0.0016N  , 

10  , and various values of the ac field   ( 0.01   represents linear response 

conditions, where the ac and dc field responses do not entangle). Solid lines: exact matrix 

continued fraction solution, Eq. (5.11). Asterisks: the weak ac field solution rendered by 

Eq. (5.23). Other symbols: the approximate equation (5.26). All curves display more or 

less monotonic increase to the asymptotic value.  
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Fig. 5.5. DC magnetization M  vs. inverse temperature parameter / ( )vK kT   with dc 

field parameter 0 1   for various values of the ac parameter   at 0.0016N   (a) and 

for various values of N  at 1   (b). Solid lines: exact matrix continued fraction 

solution, Eq. (5.11). Symbols: the approximate fitting equation (5.26). Notice the 

pronounced field strength and frequency dependence. 
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Fig. 5.6. Characteristic fitting parameters 1 2, ,   and   vs. (a) the ac field parameter  , 

(b) the dc field parameter 0 , and (c) the inverse temperature parameter  . These 

parameter values were used in Fig. 5.3, Fig. 5.4 and Fig. 5.5. 
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5.4 DC Magnetization for 0   

The results of Section 5.3 pertain to the case where both dc bias and ac fields are applied 

parallel to the easy axis of a uniaxial particle. Thus the inherent coupling between the 

longitudinal relaxational and transverse precessional modes implied by the magnetic 

Langevin equation (2.52) is automatically suppressed due to axial symmetry, where the 

orders 0m   of the spherical harmonics in Eq. (5.3) are not involved. Hence the 

important precessional and mode coupling effects, which are present in nonaxially 

symmetric potentials, cannot be detected if one is so restricted. If, in contrast, the external 

fields are applied at an oblique angle   to the easy axis, so breaking the axial symmetry 

(meaning that the differential-recurrence relation (5.3) involves averages of spherical 

harmonics of different orders m besides those of different rank l), pronounced precessional 

and longitudinal mode coupling effects will occur in the frequency-dependent dc 

magnetization. These nonlinear frequency-dependent effects due to the loss of axial 

symmetry principally comprise a new high-frequency dispersion of resonant character in 

the vicinity of the frequency pr  of the ferromagnetic resonance (FMR), which also 

exhibits parametric resonance (see Fig. 5.7), and angular dependence of the dc 

magnetization curves (see Fig. 5.8). Both effects arise from the coupling of the slow 

thermally activated magnetization reversal mode with the fast precessional modes via the 

driving ac field acting in conjunction with the dc bias field, which is inherent in Eq. (5.3) 

The high-frequency resonance dispersion in the spectrum of ( )M  , originating 

in the excitation of transverse modes, having frequencies close to the precession frequency 

pr  of the magnetization, appears only at low damping and 0  , i.e., when the axial 

symmetry is broken. In contrast, for axial symmetry 0  , the high-frequency dispersion 

disappears altogether because the transverse modes no longer take part in the relaxation 

process (see Fig. 5.7 and Eq. (5.3)). Furthermore, just as with the nonlinear dynamic 

susceptibility for low damping [23], a subharmonic weak resonance dispersion appears at 

frequencies ~ / 2pr  (Fig. 5.7), due to parametric resonance of the nonlinear oscillatory 

(precessional) motion of the magnetization ( )tM . In Fig. 5.7, the limiting values of 

( )M   as 0  and   are given by Eqs. (5.15) and (5.12), respectively. Notice 

that the appearance of a high-frequency dispersion region of resonant character is entirely 

consistent with the concept [1] of the role of the coupling between transverse and 
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longitudinal modes in the magnetization problem as being, in certain ways, analogous to 

that played by inertia in mechanical problems with separable and additive Hamiltonians 

[8, 93]. For example, in the escape rate problem for both mechanical and magnetic systems, 

the role of inertia and mode-coupling, respectively, is to give rise to the limiting cases of 

spatially and energy-controlled diffusion identified by Kramers [63] with a turnover 

region between them [94, 95]. This is true regardless of the fact that the physical origin of 

the various diffusion regimes is, in each case, entirely different. In the magnetic situation, 

the diffusion regimes spring from the lack of axial symmetry and so are geometric in origin, 

while in the mechanical one, they stem from including the inertia of the particles. However, 

the common feature that unites the two systems is that very similar differential-recurrence 

relations in the time domain are involved in both. For example, in the magnetic case, the 

recurrence relation is in the recurring numbers l  and m  of the spherical harmonics, while 

in the mechanical case, the recurrence relation is in the order n  of the orthogonal Hermite 

polynomials, describing the variation of the phase space density function with momentum, 

while the second recurring number m  is that associated with the variation of the phase 

space density function with position [1]. 
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Fig. 5.7. DC magnetization M  vs. normalized frequency N  for 10  , 0 1  , 5  , 

and various values of the oblique angle   between the bias field and easy axis showing 

pronounced frequency dependence, now comprising three distinct dispersion regions. 

Solid lines (1-4): exact matrix continued fraction solution, Eq. (5.11). Dashed line 5: the 

average dc magnetization M  from Eq. (5.30) below. Notice the much weaker frequency 

dependence for a purely transverse applied field / 2  . 
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Fig. 5.8. M  vs. normalized dc field 0 0 / ( )SvM H kT   for various values of the ac field 

amplitude   (a), oblique angles   (b), and normalized frequencies N  (c). 

For the oblique field configuration, just as with 0,   the low-frequency 

dispersion of ( )M   is governed by slow barrier crossing relaxation modes with the 

characteristic frequency 1 . Therefore, for relatively weak ac driving fields, 1  , 1  

may again be associated with the smallest nonvanishing eigenvalue 1 for the potential 

given by Eq. (5.2) with 0   as 1 1  . Now, the high barrier (or low temperature) 

asymptote for 1 for nonaxially symmetric potentials, valid for all damping regimes, has 
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been obtained by Coffey et al. [8, 93]. This was accomplished by extending the Kramers 

theory [63], as generalized by Mel'nikov and Meshkov [94, 95], of thermally activated 

escape of point particles over a potential barrier to the magnetization reversal, so as to 

include the turnover region between the transition state theory and the very low damping 

or energy-controlled diffusion regime (see Ref. [4] for a review of the application of 

Kramers theory to magnetic nanoparticles). Therefore, since in the weak ac field case we 

are effectively treating a nonaxially symmetric double-well potential with nonequivalent 

wells, as is evident from Eq. (5.2), 
1  is formally given by [96] 

   1 2
1 0 1 2

1 2

( ) ( )
( , , , ) ~

( )

IHD IHD A S A S

A S S

 
    

 
 


. (5.28) 

Despite being formally similar to that for point particles, Eq. (5.28) is rooted in the lack 

of axial symmetry rather than in inertial effects. Here ( )A   and iS  are, respectively, the 

depopulation factor and the action calculated at the saddle point of the ith well, 

 0 0/ 2iVIHD

i ie 
   is the Kramers escape rate in the so-called intermediate-to-high 

damping (IHD) limit, where iV  is the dimensionless barrier height, i  and 0  are the 

well and saddle angular frequencies, respectively, and 0  is the damped saddle angular 

frequency. Explicit equations for all quantities appearing in the asymptotic smallest 

nonvanishing eigenvalue equation (5.28) are given in Refs. [4, 96]. The simple analytic 

equation (5.28) then allows one to accurately estimate [1] the damping dependence of the 

relaxation time of the magnetization for values of the angle  and the field parameter 

0 / (2 )h    such that 

  
3/2

2/3 2/3sin 0.03 ( )and cos sinch h h   


    . (5.29) 

5.5 DC Magnetization for Assemblies 

All the previous frequency-dependent nonlinear dc response results concern either a single 

particle or an assembly of noninteracting particles with aligned easy axes. However, we 

can also calculate the dc magnetization M  of an assembly of noninteracting uniaxial 

particles with randomly oriented easy axes, where the overbar denotes averaging over the 

angle  . Averaging over the particle easy axis orientations can be accomplished 
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numerically. In the calculation of M  for randomly oriented easy axes using Gaussian 

quadratures [36], we only require [36] 

 
/2

0 0

1 1

10

( , )sin ( , )sin
4

n

i i i

i

M m d w m






      



   , (5.30) 

where 

 
 

2

2

1

2

2(1 )
, 1

4( )

i
i i i

n i i n i

x
w x

n P x x P x







  

  

, 

and xi is the ith  root of the Legendre polynomial ( )nP x  (here we have noted that 

0 0

1 1( ) ( )m m    ) and the usual recursion relations for the Legendre polynomials [36] , 

e.g., Eq. (2.26), have been used. 
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Fig. 5.9. Average dc magnetization M  vs. normalized frequency N  for 10  , 

0.1  , 0 1  , and various values of the ac field amplitude  . Notice the parametric 

resonance behaviour in the high frequency dispersion in curve 4 (a subharmonic weak 

resonance dispersion at frequencies ~ / 2pr ).  

First of all, referring to Fig. 5.7 alone, M of an assembly for noninteracting 

uniaxial particles with randomly oriented easy axes is compared with M  for an 

individual particle as a function of the normalized frequency N  for the particular values 

0  , / 6 , / 4 , and / 2 . Here, three distinct dispersion bands again appear in the 

spectrum of M , just as with the average dynamic susceptibility [1, 18]. In Fig. 5.9, plots 
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of M  as a function of 
N  for various values of the ac driving field amplitude   are 

shown. As seen in Fig. 5.9, with increasing , the magnitude of the dispersion in the 

vicinity of the precession frequency 
pr  increases, showing pronounced nonlinear effects 

including parametric resonance.  

5.6 Conclusion  

We have treated the time-independent but frequency-dependent dc magnetization for an 

ensemble of fully aligned noninteracting particles, as well as that of an ensemble of 

particles with randomly oriented easy axes, driven by strong dc and ac fields using a 

nonperturbative approach. We have shown, owing to the coupling between the fast 

precession of the magnetization and its slow thermally activated reversal, that the average 

magnetization (with a strong ac field applied in conjunction with a strong dc bias field at 

an angle to the easy axis of the particle so that the axial symmetry is broken) is very 

sensitive to the ac field orientation, amplitude, and frequency. The influence of the field 

orientation and magnitude seems particularly obvious in retrospect by inspection of the 

equation of motion of an average spherical harmonic explicitly in the time domain, 

Eq. (5.3). All our calculations, since they are valid for ac fields of arbitrary strengths and 

orientations, allow one to predict and interpret quantitatively nonlinear phenomena in 

magnetic nanoparticles, where perturbation theory and the assumption that axial symmetry 

is preserved are no longer valid. In general, from a theoretical point of view, the nonlinear 

behaviour of the frequency-dependent dc component of the magnetization of nanomagnets 

driven by an ac external magnetic field closely resembles that of the frequency-dependent 

dc component of the dynamic Kerr effect in both polar liquids and liquid crystals [97, 98] 

insofar as it has a frequency-dependent dc response (e.g., Eq. (4.69)). A nonlinear 

frequency-dependent dc response due to the combined effect of strong ac and dc fields 

can also be observed in the dielectric response for noninteracting dipoles as considered in 

Chapter 3 (see Eq. (3.28)), as well as the dielectric response and Kerr effect for permanent 

dipoles in a mean-field potential, as considered in Chapter 4 (see Fig. 4.7). This is because, 

from a physical point of view, the stochastic magnetization dynamics of single-domain 

ferromagnetic particles (magnetic dipoles) in magnetic fields are analogous to the 

rotational Brownian motion of polar molecules (electric dipoles) in electric fields [1]. The 

results we have obtained suggest that the existing experimental measurements of nonlinear 

susceptibilities of fine particles, e.g., Refs. [88-90], should be repeated for the frequency-
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dependent dc component of the magnetization in a strong bias-field configuration to show 

pronounced nonlinear effects which were not sufficiently investigated in previous 

measurements.  

For simplicity, only uniaxial particles have been treated in this chapter. Particles with 

non-axially symmetric anisotropies (cubic, biaxial, etc.) can be considered in like manner. 

We have assumed throughout that all the particles are identical and that interparticle 

interactions are negligible. In order to account for polydispersity, it is necessary to average 

over the appropriate distribution function, e.g., over the particle volumes, cf. Ref. [75]. 

The assumption in the present model suggests that the results apply only to systems where 

interparticle interactions are ignored, such as individual nanoparticles and dilute solid 

suspensions of nanoparticles. 
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6 Conclusions 

In this thesis, the nonlinear effects in the ac stationary response of both electric and 

magnetic dipoles are studied under the influence of combined ac and dc fields via the 

noninertial rotational diffusion model. In particular, the approximate analytical formulas 

are obtained using perturbation theory and the two-mode approximation. Additionaly, the 

matrix continued fraction methods to generate numerical solutions as the comparisons of 

analytical formulas are very useful. They can be used to determine the nonlinear ac 

stationary responses of electric and magnetic dipoles with an arbitrary anisotropy potential 

and subjected to a strong ac driving field superimposed on a strong dc bias field applied 

with a tilted angle from the easy axis. In the case of permanent electric dipoles in a 

symmetric potential, the perturbative matrix solution allows one to calculate numerically 

the nonlinear ac stationary responses in high dc fields using powerful matrix methods. 

Moreover, the generalisations of the results of the normal diffusion to the anomalous 

relaxation behaviour via the fractional diffusion equation have also been investigated.  

In Chapter 3, we have emphasised the rectifying effect of a strong bias field 

superimposed on a strong ac field on the electric polarization (or magnetization) of an 

assembly of noninteracting dipolar particles. We suggested that experiments should be 

designed to detect the frequency-dependent dc nonlinear response introduced by the bias 

field, as well as the nonlinear fundamental and third harmonic frequency components (cf. 

Eq. (3.28)). Furthermore, we demonstrated how the anomalous nonlinear dielectric and 

magnetic relaxation can be treated using fractional kinetic equations (Eq.(3.34)). The 

results obtained can explain the anomalous nonlinear relaxation of complex dipolar 

systems, where the relaxation process is characterized by a broad distribution of relaxation 

times. Since the perturbation method of the calculation of nonlinear ac responses is quite 

general, we also applied this method to the calculation of the dynamic Kerr-effect ac 

response of polar and anisotropically polarizable molecules, and to nonlinear dielectric 

and Kerr-effect relaxation of molecules under the influence of a mean-field potential as 

considered in the next chapter. 

In Chapter 4, we have developed two complementary approaches for treating the 

nonlinear ac stationary responses of permanent dipoles in a uniaxial mean field potential 

to any desired order in the ac field amplitude and for arbitrary dc field. The first is based 
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on perturbation theory, allowing one to calculate numerically the nonlinear ac stationary 

responses using powerful matrix methods, with results that agree with the independent 

numerical solution in Ref. [18] for weak ac fields, 1   (see Eqs.  (4.19) - (4.21)). The 

second semi-analytic approach (see Eqs. (4.34), (4.27), (4.36) and (4.46)), based on the 

two-mode approximation [27, 40], effectively generalizes the existing analytic results for 

dipolar systems in superimposed ac and dc fields to a mean field potential. The results 

apply both to nonlinear dielectric relaxation and dynamic Kerr effect of nematics and also 

to magnetic birefringence relaxation of ferrofluids. However, the applicability of the 

rotational diffusion model in the mean field potential is restricted to the low-frequency 

range ( 1)D  , because the model does not include inertial effects. Furthermore, these 

methods can be applied (with small modifications) to the nonlinear magnetic response of 

uniaxial magnetic nanoparticles which are governed by equations very similar to the 

Smoluchowski equation used here. This motivates the investigation of the dc 

magnetization case discussed in the next chapter.  

In Chapter 5, we have treated the time-independent but frequency-dependent dc 

component of the magnetization for an ensemble of fully aligned noninteracting particles, 

as well as that of an ensemble of particles with randomly oriented easy axes, driven by 

strong dc and ac fields using a nonperturbative approach. We have shown that, owing to 

the coupling between the fast precession of the magnetization and its slow thermally 

activated reversal, the average magnetization (with a strong ac field applied in conjunction 

with a strong dc bias field at an angle to the easy axis of the particle, so that the axial 

symmetry is broken) is very sensitive to both the ac field orientation, amplitude, and 

frequency. All our calculations, since they are valid for ac fields of arbitrary strengths and 

orientations, allow one to predict and interpret quantitatively nonlinear phenomena in 

magnetic nanoparticles, where perturbation theory and the assumption that axial symmetry 

is preserved are no longer valid. The results we have obtained suggest that experimental 

measurements of nonlinear susceptibilities of fine particles, e.g., Refs. [88-90], should be 

carried out to measure the frequency-dependent dc component of the magnetization in a 

strong bias-field configuration to show pronounced nonlinear effects. We also remark that 

similar nonlinear effects should be observed in the dc polarization of polar liquids in 

superimposed external dc bias and ac electric fields, because from a physical point of view 

the stochastic magnetization dynamics of single-domain ferromagnetic particles 

(magnetic dipoles) in magnetic fields is analogous to the rotational Brownian motion of 
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polar molecules (electric dipoles) in electric fields as we mentioned in Chapter 4. For 

simplicity, only uniaxial particles have been treated here. Particles with non-axially 

symmetric anisotropies (cubic, biaxial, etc.) can be considered in like manner. We have 

assumed throughout that all the particles are identical and that interparticle interactions 

are negligible. In order to account for polydispersity, it is necessary to average over the 

appropriate distribution function, e.g., over the particle volumes, cf. Ref. [75]. The 

assumptions in the present model suggests that the results apply only to systems, where 

interparticle interactions can be ignored, such as individual nanoparticles and dilute solid 

suspensions of nanoparticles. 

The treatment of the dielectric and Kerr-effect responses studied in this thesis can be 

extended to include inertial effects using the Fokker-Planck equation for the probability 

density function in configuration-angular velocity space. The inertia corrected rotational 

diffusion model in the uniaxial potential was used in Ref. [85] to determine the linear 

complex dielectric susceptibility tensor of polar liquid crystals in the entire frequency 

range of orientational polarization (up to 5 THz). In the future, work can also be carried 

out on the calculations of nonstationary responses, inspired by the methods used here for 

the ac stationary response. Moreover, our model in this thesis only focuses on a simple 

uniaxial anisotropy potential where the amplitude of the potential is a constant. In order 

to accurately explain more complex systems, other mean-field potentials, e.g., time-

dependent ones, should be taken into consideration, while our formulas may still be used 

as a starting point of the calculation. 
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