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Summary

We study theoretical aspects of fractional quantum Hall devices based on tunnelling point 

contacts. The fractional quantum Hall effect is the prime example of a (2 + 1) dimensional sys­

tem with non-trivial topological order. Fractional quantum Hall systems exhibit quasiparticle 

excitations (anyons) which carry fractional charge and obey a generalized form of statistics. 

These anyons can be observed and studied in transport experiments using point contacts. 

In this work we use both perturbative and non-perturbative techniques to study the current 

through a double point contact interferometer and the properties of non-equilibrium noise in 

a single point contact.

In a fractional quantum Hall interferometer quasiparticles can tunnel along multiple paths 

which gives rise to interference effects due to dynamical contributions, the Aharanov-Bohm 

effect and braiding of edge and bulk quasiparticles. In this thesis we determine the tunnelling 

current in linear response theory (linear in the tunnelling couphng constant). Our novel 

result is an expression for the interference current expressed in terms of a hypergeometric 

function called Carlson’s R function which applies to generic quantum Hall edge theories. 

The expression is a function of properties of the quasiparticle (electric charge, conformal 

dimension, edge velocities) and of the point contact (distance between the point contacts, 

source-drain voltage, temperature). We provide a numerical scheme to compute this function. 

The code used to produce the plots of the current in this thesis is publicly available.

Shot noise experiments measure the noise of a tunnelling current through a single point 

contact in an effort to determine the fractional charge of the quasiparticles. However, these 

experiments actually measure the noise in the edge current, instead of the tunnelling current. 

We develop a non-equilibrium, non-perturbative Kubo formula which relates the edge current 

to the tunnelling current. Through this expression we obtain a non-equilibrium fluctuation- 

dissipation theorem which expresses the noise in the edge current in terms of the noise in 

the tunnelling current. Our results again apply to generic edge theories. We also discuss the 

linear response theory of the noise, and compare our results to recent experimental work.
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Chapter 1 

Topological phases of matter

1.1 Introduction

The quantum  Hall effect was discovered in 1980 by K. Von Klitzing, G. Dorda and M. Pepper 

[138]. The effect is observed in effectively two-dimensional electron systems subject to a mag­

netic field aligned perpendicular to the plane and low tem peratures (typically T  < 25  [mK] 

and i? > 3 [T]). The effect refers to a quantization of the Hall resistance at values of

R h =  - ^  ( 1.1)
V  e -

and a simultaneous vanishing of the longitudinal resistance R i .  Quantization in this context 

means that the measured values of i' are stable against small deviations of the magnetic field 

and is independent of the sample geometry. Von Klitzing observed what is now known as the 

integer or integral quantum Hall effect as they m easured an integer-valued factor u. For this 

discovery Von Klitzing was awarded the Nobel prize of 1985 [168]. In between, in 1982, the 

experimentalists D. Tsui and H. L. Stormer m easured in samples grown by A. Goddard the 

quantization of the Hall resistance [208]. In addition to the integral effect they also measured, 

unexpectedly, a range of fractional values for i/. This is known as the fractional quantum  

Hall effect. Their m.ost prom inent observation is the =  1/3 case for which R. B. Laughlin 

constructed a theoretical framework [145]. For their work Tsui, Goddard and Laughlin were 

awarded the 1998 Nobel prize [169].

The factor u is called the filling fraction and is related to the dimensionless electron den­

sity, which is a dimensionless ratio of the electron density and the magnetic field strength. 

Figure 1.1 shows m easurem ents of the Hall and longitudinal resistance as a function of the 

magnetic field strength. As the magnetic field strength is varied the system tends to “lock” 

into a particular filling fraction where the Hall resistance is quantized and the longitudinal 

resistance vanishes. These plateaux signal the stability of the quantum  Hall effect against 

deviations of the magnetic field.
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Figure 1.1: Examples of measurements of the longitudinal and Hall resistance. Note the formation of 
plateaux in the Hall resistance as a function of the magnetic field, which occurs simultaneously with a 
vanishing of the longitudinal resistance. Final plot only shows longitudinal resistance measurements. 
From left to right plots are taken from [174, 64, 62],

Principal features of the quantum Hall effect

Figure 1.2 shows an experimental setup known as a quantum Hall bar, commonly used to 

measure the quantum Hall effect. A current I  is injected at the source S  which flows through 

the Hall bar and is collected by the drain D. Simultaneously, a magnetic field is applied 

perpendicular to the plane. As a consequence a voltage difference V// (the Hall voltage) arises 

along the transverse direction. This is the classical Hall effect, already discovered in 1879 by 

E. Hall [104]. The quantum Hall effect arises in effectively two-dimensional systems. This 

dimensionality reduction is accomplished in special samples which are grown such that a 

layered structure is formed. Commonly used layered compounds are MOSFET {Si -  Si02)  

and HEMT {GaAs -  AlGaAs).  At the interface of these layers a quantum well forms. The 

quantum well “freezes” a direction of movement of the electrons stuck in the well. As a results 

these electrons are effectively confined to a two-dimensional plane, and the magnetic field is 

aligned perpendicular to this plane. In addition to the dimensionality reduction the quantum 

Hall effect requires strong magnetic fields (B > 3 [T]), low temperature (T < 25 [mK]) and 

the so-called ballistic conduction regime in which the mean free path of the electrons is of the 

order of the system size. The effect is now summarized by the following key features

• Quantization of the Hall resistance. This quantization is given by R h  = V h / I  = 

where i' takes on integer or fracdonal values, and it is incredibly precise (more than one 

part in a billion).

• An approximately vanishing longitudinal resistance, R l  = V l I I  ~  0 (equivalently, 

Vl =  0, see Fig. 1.1 for rough estimate bounds o n R i ) .  This gives rise to dissipationless 

flow.
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1

Figure 1.2: The experimental setup of a quantum Hall bar. The left and right edges of the system 

are connected to the source(5) and drain (D). As a consequence a current flows through the system. 

Probes attached to upper and lower edges measure the longitudinal and Hall resistance (or equivalently 

the corresponding voltage drop).

•  These observations are relatively stable against perturbations, such as deviations of 

the magnetic field, disorder, and the shape and size o f the sample.

Related to this is the conductivity tensor a which is defined through the current density 

response Jj =  a i j E j  w ith  Ei  the electric field that forms inside the Hall bar. The in-plane 

Hall conductivity is given by

and the diagonal conductivity vanishes Uxx =  (^yy =  0.

Quantum Hall states

Each plateau corresponds to a different electronic phase o f matter characterized by the filling 

fraction There are then two important questions that arise. (1) What is the mechanism 

responsible for the formation o f a quantum Hall plateau, and (2) given a quantum Hall 

plateau, what are its properties? The first is complex interplay between the Lorentz force, 

disorder and electron-electron interactions. We briefly discuss this in the next section. The 

main work presented in this thesis is contained w ith in  the second question.

What is important to know is that there is currently no general and universal method that 

accounts for all observed filling  fractions. Laughlin’s approach [145] is the most successful 

description o f a quantum Hall state {u =  I/2>) but it does not generalize to generic filling frac­

tions. Other approaches are for instance the composite fermions, hierarchy and more general 

tria l wavefunctions approaches (this includes so-called conformal field theory approaches). 

But these approaches do not always agree on the nature o f a quantum Hall state for fixed
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filling fraction u. For a large class of filling fractions multiple effective theories have been put 

forward as candidates for the effective field theory. One plateau for which this is the case 

is the V = hj2  state discovered in 1987 [226, 174, 232], There are at least four different 

effective theories. It is not clear why one effective theory is favoured over another, and which 

one is realized in the physical sample.

Spontaneous symmetry breaking does not apply

To appreciate the complexity associated with the classification of quantum Hall states and the 

nature of quantum  Hall physics we point to one of the great successes of the 20th century; 

spontaneous symmetry breaking and its classification scheme of phases of matter. In this 

theory a phase of e.g. a collection of electrons, spins or atoms is characterised by a local order 

parameter. Upon a phase transition this param eter obtains a non-vanishing expectation value 

which breaks a symmetry of the system. This gives rise to an effective field theory description 

of the free energy known as Ginzburg-Landau theory [90]. The classification of phases of 

m atter and phase transitions is accomplished by identifying the corresponding symmetry 

classes. W hat is remarkable about the quantum  Hall effect is that the different quantum  Hall 

states cannot be classified according to this scheme of spontaneous symmetry breaking. All 

quantum Hall states have the same symmetry and, most importantly, there are no local order 

parameters which can distinguish different quantum  Hall phases [221].

Topological order

Fractional Quantum  Hall states fall into a new paradigm known as topological order. This 

concept was introduced in 1989 by X. G. Wen [214] in the context of spin liquids and high 

tem perature superconductivity Topological order is a type of quantum  order, that persists at 

zero tem perature and gives rise to an incredibly rich field of emergent physics. The low-energy 

effective theory is an em ergent gauge theory, and corresponds to a topological quantum field 

theory. It is responsible for a robust ground state degeneracy on Riemannian manifolds with 

non-zero genus (e.g. a torus). This degeneracy is sensitive to the topology of manifold. The 

system is topologically protected, meaning local perturbations such as disorder cannot induce 

transitions within this internal degenerate subspace. The theory contains quasiparticles known 

as anyons which are fractionally charged and obey a generalized type of statistics different from 

Bose and Fermi statistics. In the fractional quantum  Hall effect it also predicts the existence 

of protected edge states which are responsible for dissipationless flow of the electric current.

One of the greatest challenges in FQH physics is the theoretical and experimental identifi­

cation of the topological order associated with a filling fraction u. Related to this is trying to
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understand the emergent physics predicted by this topological order and ultimately devising 

technological applications, for instance, a topological quantum computer [136, 53, 165, 212],

Overview of this chapter

The remainder o f this chapter is a survey o f all that is quantum Hall. Starting v^ith a single 

particle picture subject to a magnetic field we introduce the main ideas behind the integer 

and fractional quantum Hall phases, and the special role o f the edge. Our focus then shifts to 

the fractional quantum Hall effect and its interpretation as topological quantum matter. The 

survey ends w ith  a short overview of the two main topics o f this thesis: fractiona l quantum  

Hall in te rfe rom etry  and non-equ ilib rium  noise in  fractiona l quantum  Hall tunne lling  

po in t contacts.

1.2 Aspects of the quantum Hall effect 

1.2.1 Single particle system

The quantum Hall effect is an intrinsically many-body effect. Still, we can learn a great deal 

and develop a certain intuition by first considering the single particle case. Both classical and 

quantum mechanical treatments appear in any given introductory text on the quantum Hall 

effect, for instance Refs. [177, 155, 38, 92, 236, 124, 96]. Here we prim arily use results of 

the lecture notes by Girvin [92].

The classical system

Consider a charged particle confined to a two-dimensional plane and subject to a perpendicu­

larly aligned magnetic field B  =  Bz. The dynamics of the charged particle w ith in itia l velocity 

V are completely determined by the Lorentz force, which reduces to eBv  A z. The general 

solution of the classical equations of motion is a cyclotron orbit: the particle follows a circular 

trajectory w ith an angular velocity tUc that is independent o f the in itia l velocity and the radius 

o f the orbit. This angular frequency is called the cyclotron frequency and is given by

LOc =  —  . (1.3)
rn.eC

The edge o f a finite-size system acts as a barrier for these orbits. Upon an elastic collision 

w ith  the wall the momentum is reversed and the center o f the cyclotron orbit shifts parallel 

to the wall. The resulting motion is depicted in Figure 1.3 and is called a skipping orbit. On 

average the guiding center of a skipping orbit moves parallel to the wall. Since the orbits are
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Figure 1.3: Figure of cyclotron motion and skipping orbits. The circular orbits is the cyclotron motion. 

Note that the motion along any given orbit is always counter-clockwise. There are no clockwise orbits 

due to the absence of time-reversal symmetry. The skipping orbits trace out the edge o f the system. The 

movement along the edge is, again, chiral. Semi-classically there exists a lower bound on the possible 

radii o f classical orbits.

unidirectional due the m agnetic field, the net m otion parallel to the edge is chiral. This reflects 

the absence of tim e-reversal symmetry, since the o rien ta tion  of the m agnetic  field reverses 

with respect to this symmetry.

Landau quantization

The quantization  of the single partic le  system  first appeared  in a p ap er by Lev D. Landau 

from 1930 [141, 142]. We again  use results from Girvin [92]. Typically w hen  a system  is 

quantized the energy spectrum  is partially discretised. For free particles this discretisation is a 

consequence of the boundary  conditions im posed by the edge of the system . The energy gap 

betw een the different states vanishes as [system size]“ .̂ W hat m akes the system  of a charged 

particle in a m agnetic field special is th a t (1 ) the m agnetic field can do no w ork, m eaning 

all energy is kinetic and  the partic le  is free (yet its classical orbits are n o t stra igh t lines), 

com bined w ith  (2) the  energy  levels becom e partially  discretised w ith  a gap th a t persists 

on the m acroscopic scale. In th is case the discretisation occurs because of the boundary  

conditions im posed by the  periodic cyclotron orbits. Semi-classically the  electron  “w ave” is 

periodic and only a w hole num ber of w avelengths can fit along the circum ference of the orbit, 

which is sim ilar to the idea of the Bohr model. The spectrum  of allow ed radii is discrete w ith 

a gap tha t is independen t of the system  size. In particular there exists som e sm allest possible 

orbit. We can use Som m erfeld’s quan tiza tion  condition to  derive this sm allest radius [142, p. 

170]. This condition is a constra in t on the m om entum  and coordinates. The pred ic ted  low er
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bound follows from

p • dq =  27t/i . (1-4)
/o rb it

We set Ip I =  rnv =  mRoJc w ith R  the radius of the smallest orbit. Integrating over q and 

solving for R  results in R  — Ib  where

as)
The quantity Is  is called the magnetic length. Semi-classically it is the radius of the smallest 

possible orbit, which also correspond to the lowest energy states. Quantum mechanically the 

quantity 27t/^ is interpreted as the spread of a coherent wave packet.

To fully appreciate this discretisation we take a step further and look at w hat happens 

when the system is properly quantized. The Hamiltonian is given by

H = ^ { p - e A f  ( 1.6 )
2m

with B  — {dxAy — dyAx)  and canonical commutation relations [x,px] =  [v^Py] = To obtain 

the energy spectrum we introduce the gauge covariant momenta -  eA^. The different

components ttx and ny do not commute, in fact [nx,'Ky\ = —iheBjc.  These commutation 

relation are similar to that of a “momentum ” 7Ty and “coordinate” ttx, up to normalization. By 

writing the Ham iltonian as H  = we recognise the structure of a ID  harmonic

oscillator, since the two terms appearing in the Hamiltonian do not commute. Diagonalisation

of the Hamiltonian results in the energy spectrum of a harmonic oscillator

= {n + 0 , 1 , 2 , . . .  (1.7)

These energy levels are known as Landau levels. The states in the lowest Landau level (n  =  0) 

correspond to the orbits with semi-classical radius l^- The gap between two Landau levels is 

set by the cyclotron frequency Uc which grows linearly with the magnetic field strength. In 

addition each Landau level is degenerate with a degeneracy of the order of the system size, 

although to justify this last statem ent we need to fix the gauge.

To analyse the structure within a Landau level requires a basis for the Hilbert space, which 

is obtained by fixing the gauge. The two most popular choices are the Landau gauge (A — 

- B y x )  and the symmetric gauge (A  =  ^ { y x - x y ) ) ,  both of which are treated in e.g. Ref [92]. 

These choices differ in their residual symmetries, with the Landau (symmetric) gauge retaining 

translational (rotational) symmetry. A basis for the Hilbert space is constructed using this 

extra symmetry and a short calculation [92] then gives that for a finite system with area A  

the degeneracy per Landau level equals

B A
Degeneracy per Landau level =  —— (1.8)

< l> o
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where $o =  ^  is defined as the unit magnetic flux quantum. The ratio on the right hand side of 

Eq. (1.8) represents the number of flu x  quanta piercing through the system. The degeneracy is of 

the order o f the system size and grows linearly w ith the magnetic field strength. Alternatively, 

we can write  the degeneracy per Landau level as A/{2-kI \ ) .  The minimum spread (area) of 

any localized wave packet corresponds to 27t/| and so this degeneracy can be formulated as 

there is one independent quantum state per Landau level and per unit f lu x  quantum.

1.2.2 Many particle system

The magnetic field strength determines both the macroscopic degeneracy w ith in  each Landau 

level and the energy gap separating the Landau levels. Consider now the many particle case at 

zero temperature consisting of Ne electrons. We assume that we can ignore the spin degrees 

of freedom as we expect these to align w ith the (strong) magnetic field. The fillin g  fraction is 

the ratio o f the number o f electrons to the degeneracy per Landau level

" “ I -

This is a dimensionless electron density. The integer quantum Hall effect corresponds to an 

integer number o f fu lly  filled Landau levels. In the fractional case we deal w ith  a single, 

fractionally filled Landau level and it is possible that this state forms on top o f one or multiple 

fully filled Landau levels.

The integer quantum Hall effect

The origin o f the integer quantum Hall effect is well understood. It is a combination o f the 

Landau level structure (essentially the Lorentz force at the quantum level) in combination 

w ith disorder. The energy gap between two Landau levels separates the ground state from 

its excitations. Each Landau level acts as a tj^^e o f flat electron band. In the integer case the 

chemical potential sits in between two bands (Landau levels) and this resembles the band 

structure o f an ordinary insulator. At the boundary the gap closes and chiral edge states form. 

These edge states turn the system into a conductor.

The presence o f some disorder is required to stabilize the quantum Hall state against small 

perturbations. For an integer state to form we require the Fermi energy to sit in between two 

Landau levels. In the absence o f disorder this can only be accomplished by the (non-physical) 

fine-tuning o f the chemical potential as it  requires a very precise electron density. Disorder 

causes localization of states [2, 179]. Electrons sitting in a localized state do not contribute 

to the conductivity of the system. Effectively these localized states act as a reservoir for the 

electrons. When the magnetic field is varied the reservoir can either absorb or supply electrons.

10



Figure 1.4: Sketch of broadening of Landau levels due to disorder. On the right hand side the gray 

area represents the localized states that do not contribute to the conductivity. The states in the thick 

white stripes are extended and cause the quantum Hall effect.

thereby keeping the electron density in the extended states fixed. It is these extended states 

which are responsible for the current-carrying properties of the system.

Figure 1.4 sketches the effect of disorder on the Landau level structure. It causes a broad­

ening of the Landau levels and some states become localized. All localized states sit between 

the Landau levels and fine tuning of the chemical potential is no longer needed.

The integer quantum Hall effect is not the main focus of this thesis. The reason is that the 

system is actually not an example of a topologically ordered system as we define in Section 1.3. 

There are no fractionally charged quasiparticles and the system does not develop a ground 

state degeneracy that is sensitive to the topology of the space.

The fractional quantum Hall effect

The fundam ental difference between the fractional and integer case is that the interaction 

between the electrons plays a central role in the formation of the fractional state. The impor­

tance of the electron-electron interaction follows from degeneracy of the Landau levels. In 

the absence of this interaction a fractionally filled Landau level is macroscopically degenerate 

and there is no energy gap protecting the ground state from its excitations. The lack of a gap 

implies that electrons can easily be scattered and a vanishing longitudinal resistance cannot 

occur. Electron-electron interactions are responsible for the formation of a unique ground 

state accompanied by an energy gap. The exact mechanisms responsible for the emergence 

of a gap are complicated and there is currently no general microscopic picture that explains 

why certain fractional quantum  Hall states are favoured (more stable) compared to others^.

^Specific approaches, such as the composite fermion approach, do provide a physical picture regarding the 

stabihty of the state, see e.g. [124] and references therein. But these approaches cannot account for all observed 

filling fractions.
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However, we bypass this question and instead focus on the properties of FQH states and the 

corresponding em ergent physics these states provide.

In both the fractional and integer effect the bulk of the liquid has a mobility gap. There are 

low energy states present in the bulk, but these do not contribute to conductivity properties 

of the system. We usually ignore this subtlety and speak of an energy gap instead.

1.2.3 Importance of the edge

The energy gap separates the ground state from its bulk excitations. Extracting or adding an 

electron to the bulk of the system requires at least enough energy to cross this gap. Quantum 

Hall liquids are therefore an example of an incompressible liquid, see e.g [155, 34]. The liquid 

behaves as a puddle of electrons with a tendency to keep its electron density fixed at î . 

Therefore, in an incompressible liquid the spectrum of sound waves in the bulk is gapped. 

Deformation of the liquid through gapless excitations is possible, but only at the edge of the 

system.

At the edge the liquid allows for gapless excitations which arise due to the force exerted 

by the boundary of the system. Figure 1.5 shows the (cross-sectional) effect of a confining 

potential on the Landau levels. At the boundary the energy of the states is pushed upwards 

and crosses the Fermi level. Halperin showed that these edge states are extended [106, 156]. 

Electrons in these edge states traverse the edge at a (non-zero) velocity Vc and are immune 

to backscattering. Due to the absence of time-reversal symmetry they are also chiral meaning 

they flow along the edge in a fixed direction. The existence of extended edge states can 

also be attributed to topological properties of the Brillouin zone. This approach is known as 

topological band theory and it reveals interesting connections between the integer QHE and 

other electron states known as topological insulators and topological superconductors [113].

We can now understand the current-carrying properties of the system. In the quantum Hall 

effect charge is always flowing along the extended states. Furthermore, the system physically 

separates left and right moving states. All left moving states are confined to one edge (e.g. 

the upper edge), and all right moving states to the other edge^. A net total current through 

the system is generated by causing an imbalance in the left moving versus right moving states. 

This is depicted in Figure 1.5.

The longitudinal resistance vanishes due to the chirality of the edge states and the absence 

of backscattering. Extended states exist both in the bulk and at the edge of the system. How­

ever, a current injected into the system can only be added at the boundary, since this is where

^Some fractional states actually contain both chiralities on both edges. However, also in these cases the net 

direction in which charge is moving is again left moving on one edge and right moving on the other.
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Figure 1.5: Left figure depicts the effect of the boundary on two Landau levels one of which is partially
filled. In the bulk the states lie well beneath the Fermi level. The confining potential pushes the states
situated at the edge upwards. The system allows for gapless excitations at the edge. Right figure depicts
an imbalanced filling of the edges. The left/right moving edge is filled up to a chemical potential of

2
and hji. Since the edge states are extended a current flows through the system equal to /  =

the (empty) states are located with an energy close to the Fermi level. For this reason it is 

often said that the edge carries the current through the system. This is partially correct, since 

in experiments the injected current indeed ends up in the edge of the system. On the other 

hand the conductivity properties of the system (absence of backscattering and quantization of 

the Hall conductivity) can only be understood if the bulk is taken into consideration as well. 

In addition, a local current does flow through the bulk of the system but the net current is 

determ ined by the relative filling of the edge states. See for instance [54] for further discus­

sions. We explore the properties of the edge states in greater detail in Section 2. This includes 

a discussion on the total current and local current density operators.

Quantization of Hall conductivity

The conductivity properties of the system are determined by the combined bulk and edge sys­

tem. For the quantization of the Hall conductivity in the IQHE Laughlin provides an argument 

based on gauge invariance and spectral flow [144]. This results in the characteristic resistivity 

R jj = i A  fQi- fhe =  integer) case. This argum ent has the benefit of providing a natural 

robustness of the conductivity against disorder as it does not require an exact expression for 

the basis states. A related approach is the Landauer formalism [54] in which the current is 

determ ined by integrating over all extended states. This leads to the same conclusion: each 

Landau level develops a channel at the edge, and the conductivity is determined by the number 

of filled channels (which equals the filling fraction).

Another approach is the famous TKKN paper [205] which computes the Hall conductivity 

of a quantum  Hall state on a torus using the Kubo formula. In this approach the Hall conduc­

tivity is (1) given by an integral over all momentum  states and (2) this integral is a Chern
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number, which is an example of a topological invariant. This is a powerful conclusion, as it 

shows that conductivity is a topological quantum number and has a natural robustness against 

deformations of the system. The quantization of the conductivity is an intrinsic property of 

the electronic phase. The surprising aspect of this approach is that there are no edge states, 

since the system is considered on a torus, yet we can still determine the conductivity. The 

reason is, again, that the conductivity is a property of the entire system and not just the edge. 

For fractional quantum  Hall states the quantization of the conductivity is attributed to gauge 

invariant properties of the effective theory.

Collective nature of the edge states

Figure 1.5 suggests that it is reasonable to approximate the energy spectrum at the edge by a 

linear potential. In the integer case [106, 54] this linear approximation results in a (1 + 1)D 

Fermi liquid describing the collective nature of the extended edge states. In the fractional case 

this Fermi liquid is insufficient to account for the range of observed filling fractions i/. One 

reason is that a Fermi hquid is unstable against interactions in (1 + 1)2? making it unsuitable 

as a starting point for the FQH edge theory [89].

In a series of papers X.G. Wen [216, 215, 213, 222, 217, 219] conjectured that the edge 

degrees of freedom span a representation of a Kac-Moody algebra. The (linearised) action 

which determines the dynamics of this representation is a chiral Tomonaga-Luttinger liquid 

[101, 213, 97, 209, 44]. Wen derived this low energy picture using a hydrodynamical frame­

work.

It was also shown that the edge theory can be viewed as a consequence of anomaly 

cancellation [216, 86, 84]. The effective bulk theory for the electromagnetic field develops an 

anomaly when the theory is put on a system with a boundary. This chiral anomaly is resolved 

by introducing an edge action with the same anomaly, but opposite in sign. The combined 

bulk plus edge theory is anomaly free. This anomaly has a natural physical interpretation: it 

signals that in the effective bulk theory charge is not conserved when a boundary is included. 

Charge flowing through the bulk eventually ends up in the edge, and we require an edge 

current to act as a drain of this charge flowing from the bulk into the edge. Electric charge is 

therefore conserved only in the combined bulk plus edge system.

There is no general theory of the edge of fractional quantum  Hall states. Each proposed 

phase predicts a unique edge theory. There is some degree of universality though. For one, 

all edge theories are gapless and chiral. Furthermore, in the long wavelength limit the edge 

theory becomes a chiral conformal field theory and is closely related to the bulk phase due 

to the bulk-edge correspondence [213, 222, 200, 201, 33, 34, 52, 85]. However, not all chiral
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CFTs are a cand ida te  for a FQH edge theory. T here are certain  consistency conditions tha t 

determ ine w h a t kind of chiral CFTs can describe an  edge theo ry  [85]. One of these is the 

presence of a f7(l) sym m etry associated w ith  the  coupling to the  electrom agnetic field. The 

chiral CFT associated w ith a t / ( l )  sym m etry is called the chiral boson [81]. The chiral boson 

m odel and its connection to the chiral anom aly are the subject of Section 2.

1.3 Topological order

A fractional quan tum  Hall liquid is an  exam ple of a topological phase o f quantum  m atter  d e ­

scribed by topological order [219, 221, 220]. We define a topologically o rdered  state as a 

gapped phase o f m atter which in the long range and low energy lim it is described by a topological 

quantum  field  theory. By gapped  phase we m ean th a t if w e consider the liquid on a com pact 

surface w ith no boundaries (e.g. a sphere or a to rus) then  the  system  has no gapless excita­

tions. However, gapless excitations m ay arise w hen w e consider a system  w ith  an  edge. The 

earliest exam ple of a topologically ordered state is, perhaps surprisingly, the effective theory of 

superconductivity w ith a dynam ical electrom agnetic field [214, 112]. O ther examples include 

gapped quantum  spin liquids [137], string net condensates [152], discrete gauge theories [6], 

BF theory  [112], Chern-Sim ons theory  [233], fractional C hern insulators [185] and rotating 

Bose-Einstein gases [50]. Recently there is also a large in terest in topological insulators [164], 

of w hich the  in teger quan tum  Hall effect is an exam ple. However, these  arise in system s of 

non- or w eakly in teracting  electrons or bosons and do no t contain  topological o rder in the 

sense defined above.

In the fractional quan tum  Hall effect the collective behav iour o f  the electrons together 

w ith  the m agnetic field is described by an effective topological qu an tu m  field theory  know n 

as Chern-Sim ons theory  [233, 65, 165, 15]. In this effective descrip tion  the energy gap 

separating  the ground state from  its excitations is taken  to infinity, and  the en tire  theory  has 

trivial dynam ics. The H am iltonian  is zero and all properties of the ground state  are based 

on topological properties such as homotopy. Put differently, all correlation  functions and 

observables a re  invarian t w ith  respect to sm ooth deform ations o f th e  space-tim e manifold. 

The physics predicted by topological order is far from trivial though. For instance, it predicts a 

g round state degeneracy which is sensitive to the topology of the underlying space [171]. This 

degeneracy m ay be used to distinguish different phases. More generally, the Hilbert space of a 

Chern-Sim ons theory  is finite-dim ensional and all states have zero energy. O ther predictions 

of the topological o rder are the connection of the bulk w avefunction to conform al field theory 

[162], the collective behaviour of the pro tected  edge states [217], topological entanglem ent
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entropy [135], fractionalised quantum  numbers [204] and bulk-edge correspondence [85, 

201, 200]. Last but certainly not least are the quasiparticle excitations of the theory: anyons.

1.3.1 Anyons

Excitations arise as topological defects of the liquid and can be formed by extracting or 

injecting an electron or locally increasing the magnetic flux. These excitations are vortices in 

the liquid, similar to flux tubes that arise in superconductivity. They carry charge and spin, 

and may be treated as quasiholes or quasiparticles. What makes the FQHE special is that the 

“elem entary” quasiholes carry fractional charge and obey a generalized form  o f statistics, of 

which Fermi and Bose statistics are special cases. Quasiholes /  quasiparticles which obey these 

types of statistics are called anyons. This form of statistics [149, 225] can only arise in an 

effectively (2 + l)Z3 space-time.

(Non-)Abelian anyons and Braiding

Anyons fall into two categories; Abelian and non-Abelian. The (non-)Abelian nature refers to 

the commutative properties of the anyons exchange statistics. An Abelian anyon is essentially 

an intermediate version of a fermion or boson. Upon the adiabatic exchange of two anyons in 

real space the wavefunction picks up a phase The cases 0 =  0 and tt correspond to Bose 

and Fermi statistics. In the pure TQFT description the exchange is completely determined by 

the homotopy properties of the world lines of the anyons. This is called braiding. In a physical 

sample the exchange is assumed to be performed adiabatically. When multiple, identical 

Abelian anyons are braided the final wavefunction depends on the orientation in which the 

anyons are exchanged (clockwise or anti-clockwise) but not on the exact order.

Non-Abelian anyons are a different story. In this case the final wavefunction depends more 

strongly on the exact braiding pattern of the anyons. Consider a quantum  Hall state with 

four non-Abelian anyons (see Figure 1.6). This configuration with fixed coordinates of the 

anyons is degenerate. The wavefunction is an elem ent of a non-local (topological), internal 

space. Suppose we fix a basis {|4'a)} of this internal space. The |^ 'a)’s all have the same spatial 

configuration of anyons, yet they form an orthonormal basis. The braiding of anyons induces 

a unitary transformation of the form

. ( 1 .10)
b

Here Mab represents the action of that particular braiding pattern on the internal space. 

The system is said to be topologically protected because local perturbations cannot induce 

transitions within this internal space. In addition when multiple anyons are braided the final
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Figure 1.6: Braiding of (identical) non-Abelian anyons. The arrow represents the direction of time. At 
the the initial time there is some configuration of anyons. These anyons are adiabatically braided and 
interchanged. The final spatial configuration is identical to initial one. However, the braiding induces 
a unitary transformation on the wavefunction within the internal, topological space.

wavefunction depends on the exact order of the braiding operators, as in general M M '  ^  

M 'M .  To summarize, non-Abelian braiding statistics refers to the non-commutative nature 

of exchange operations which is realized by the presence a non-local, degenerate, internal 

Hilbert space.

Fusion

A second important property of (both Abelian and non-Abelian) anyons is fusion. Two anyons 

brought in close proximity fuse together and form a third. For Abelian anyons the resulting 

fusion product is unique. For non-Abelian anyons there may be multiple possible fusion 

outcomes, which is related to the degenerate internal space m entioned before. If we denote 

a, b and c as types of anyons then the fusion is schematically represented by

a x b  = ^ N ^ , , c ,  K , e ' L > o .  ( 1 .11)
C

For Abelian anyons a and b there is a unique anyon c for which is non-zero, since the 

fusion product is unique. Non-Abelian anyons on the other hand have multiple possible fusion 

outcomes c (multiple non-zero iV^^), and the exact outcome of a fusion process depends on 

the history of the system. The possible fusion channels are closely related to the degenerate 

subspace appearing in the exchange relations (1.10). Roughly speaking, a collection of anyons 

spans an internal, non-local space. In the pure CS theory (the effective theory limit) this 

internal space is the Hilbert space of the theory with the anyons represented by inserted



Wilson loop operators. All other states are gapped out. The dimensionality of the internal 

space is determined by the number of fusion channels appearing in the fusion product of the 

anyons and coefficients of these fusion channels (since can be bigger than 1).

Bulk-edge correspondence

The bulk-edge correspondence is a natural property of topologically protected systems. The 

theory which describes the (1 +1 )D  edge of the system is “equal” to the theory which describes 

the (2 + 0 )D  bulk. Before we explain this correspondence we first mention the connection be­

tween the bulk wavefunction and conformal field theory. In a famous work by Witten [233, 67] 

it was shown that the Hilbert space of a Chern-Simons theory corresponds to the space of con- 

formal blocks of a corresponding Wess-Zumino-Witten model. A WZW model is an example of 

a conformal field theory constructed using a conserved current. In the FQHE this correspon­

dence leads to an interesting property: the ground state wavefunction of a fractional quantum 

Hall state is given by a conformal block (a correlator) of the corresponding WZW model. This 

wavefunction is not the “true” wavefunction, but rather that of an idealized system (e.g. no 

disorder, a special geometry, etc.). The idea is that this wavefunction captures the relevant 

physics of the corresponding topological order. For instance, the theory predicts the spectrum 

of anyons, including their electric charge, and the fusion and braiding rules. Conformal field 

theory is a powerful tool through which the properties of the topological order can be studied 

as it places stringent conditions on the correlation functions of the theory. Through this con­

nection CFT can be used to devise so-called representative wavefunctions, which are candidate 

wavefunctions that (hopefully) capture the relevant physics of a particular fractional quantum 

Hall state, see e.g Refs. [162, 183, 184, 3].

The CFT describes the wavefunction for a fixed time slice through its space of confor­

mal blocks. Electrons and anyons are represented by conformal primary operators, and the 

wavefunction is constructed through a CFT correlator.

The bulk-edge correspondence [85] refers to the idea that the spectrum at the edge of 

the system is described by the same CFT which is used to generate bulk wavefunctions. The 

difference is that this edge CFT describes the dynamics of the + gapless edge theory and 

its correlators are not interpreted as wavefunctions. The edge and bulk theory both contain 

the same type of anyons, meaning that for eveiy iO+2)D  bulk operator there exists a (l-l-l)Z? 

edge operator, with the same charge and statistical properties. Stone [201, 200] provides an 

intuitive interpretation of this correspondence. We start with an FQH state on an annulus 

geometry. The edges are described by a CFT and we consider the inner edge which is carrying 

an elementary excitation. This elementary excitation is generated through the application of a
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conformal primary operator of the edge CFT. Because this inner edge is of finite size its energy 

spectrum is gapped. By decreasing the size of the inner hole this gap increases. Eventually, 

the size of the inner edge is so small that only its lowest energy state is accessible -  all other 

states are gapped out. All that is left is a tiny depletion of the electron liquid; a non-dynamical 

vortex that behaves as a quasiparticle, with the same charge and conformal dimension as the 

original prim ary operator that we started with. This procedure can be performed for each 

primary state in the edge CFT. As a result, for each prim ary operator on the edge we can 

construct a vortex-like object in the bulk. The spectrum of bulk quasiparticles is therefore 

equal to those present on the edge.

Bulk-edge correspondence ensures that the “inform ation” about the topological order of 

the system is present in both the bulk and the edge of the system. In addition, the edge 

is responsible for carrying the electric current through the system. These two properties 

combined imply that experiments involving the edge of the system (i.e. charge, heat or spin 

transport) are a good candidate for identifying the topological order.

Modular tensor categories and topological quantum computation

There is a very rich mathematical structure underlying the statistical properties of anyons 

called a modular tensor category (MTC). Such a category models the “topological properties” 

of a collection of anyons with a consistent set of braiding and fusion rules. A given set of 

n (non-)Abelian anyons forms a representation of the Braid group B,i. The Braid group by 

itself is already very rich, for instance due its relation to knot theory (see e.g. Ref. [134] 

for an overview on knot theory from a physics perspective), and the study of anyons and 

types of topological order is closely related to mapping out the representation theory of the 

braid group. Fusion of anyons results in mappings between configurations with a different 

number of anyons. Hence we need to combine the representation theory of the braid groups 

for all possible numbers of particles 'This is the anyon version of a Fock space with

the im portant difference that the multi-anyon space is not a simple tensor product of single 

particle Hilbert spaces. In addition, fusion and braiding need to be “compatible” which leads 

to consistency relations imposed on the braiding and fusion rules [163, 178, 136, 212].

There are also potential technological implications associated with non-Abelian anyons 

and topological order. The internal space spanned by the anyons has a natural protection 

against decoherence since local operators cannot induce transitions in this space. This makes 

the system an interesting candidate for the realization of topological quantum memory, as it 

has an intrinsic protection against its environment. Quantum  gates are realized through the 

braiding relations of the anyons, which is hoped to be a controllable operation. The realization
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of a scalable topological quantum computer [83, 136, 53, 165, 212] might be just around the 

corner.

1.3.2 (Non-)Abelian fractional quantum Hall states

The prediction of fractionally charged particles was first due to Laughlin [145] for the v =  \/2> 

state. This included an effective description of the state using a tria l wavefunction. This is the 

famous Laughlin wavefunction given by

^U ughlin(^ l,---,2 „) =  . (1.12)
i< j

The Zi =  Xi +  iyi are complexified coordinates and we consider the system on a disk ge­

ometry in the symmetric gauge. The exponential factor is a so-called geometric factor, and 

arises because the system is analysed on a disk. Stability and incompressibility o f the model 

wavefunction was proven using the plasma analogy [145]. The anyons carry a charge e/3, 

are Abelian [5] and were observed in experiments measuring shot noise [193, 55]. Laughlin’s 

approach may be extended to apply to states at filling  fractions ^ =  n  +  ^  w ith  n and M  

integers, and M  odd. In the case of n > 1 there are n  multiple fu lly  filled Landau levels. Two 

generalizations of the Laughlin state are the hierarchy [102, 107] and composite fermion 

[122, 123, 124] approach. These predict states which are all Abelian and have a filling  frac­

tion of the form , where p and q are co-prime and q is odd. These two approaches predict 

different tria l wavefunctions and do not agree on the physical mechanism responsible for the 

formation o f a state. However, they do agree on the predicted topological order [182], e.g. the 

types of anyons present. More recently, the CF approach has also been cast into a conformal 

field theory language [111, 110, 203].

The u — 5/2 plateau [226, 174] was discovered in 1987 and is considered, as o f yet, the 

most promising candidate for the realization o f a non-Abelian state. The discovery came as a 

surprise, as the theoretical framework o f the “ traditional” hierarchy or CF approach cannot 

account for this particular filling  fraction because it has an even denominator. The exact 

mechanisms responsible for the formation o f the state appear to be different in origin as 

compared to e.g. the Laughlin state. One surprising aspect is, for instance, the absence of a 

1/ =  ^ state in the lowest Landau level, which suggests that an interplay between the electrons 

in the fractionally and fu lly  filled Landau levels is necessary for the stability properties of 

the state. In the CF approach the absence of a ly =  ^ can be explained as follows [108]; the 

effective magnetic field o f the composite fermions vanishes at this specific filling fraction. As a 

result the CF’s form a CF Fermi sea of non-interacting fermions. This Fermi sea does not have 

a gap and so no incompressible liquid is formed. Therefore the fractional plateaux that form

20



in the second and  higher Landau levels could very w^ell be realized by different FQH states as 

com pared to  those th a t form in the low est level.

M ultiple constructions exist as candidates for the topological o rder and underlying physics 

of the  V =  5 /2  p lateau . The Haldane-Rezayi state  [103] (based  on  a variation  of the  CF 

approach) and  H alperin’s (331) sta te  [105] are tw o Abelian proposals. By far the m ost 

fam ous proposal is the Moore-Read state [162, 183] w hich is one of the  earliest examples of a 

non-Abelian quan tum  Hall state. The MR trial w avefunction is constructed  using a correlator 

o f a chiral Ising m odel times a u { l )  boson. This results in the Pfaffian w avefunction

= p f a f f ( - ^ — Z j f ] e  . (1 .13)
t< 3

The Ising m odel is responsible for neu tra l degrees of freedom  w hich do no t couple to the 

electrom agnetic field. E lectrons and quasiparticle operato rs carry  bo th  charged and neu tra l 

degrees of freedom , and in general they  are of the  form  0  W c ,  w ith  )-V„ the neu tra l part 

and  W c  the charged  part. The Ising m odel is responsible for the non-A belian natu re  of the 

state. It p redicts a non-Abelian anyon w ith  electric charge e /4  [162, 166]. A varian t o f the 

M oore-Read sta te  is the Anti-Pfaffian [151, 148], w hich is the  particle-hole conjugate o f the 

Pfaffian state. It also predicts an e /4  anyon, b u t w ith  slightly  d ifferen t statistical properties 

(the  tw o candidates have different topological o rder).

P inpointing the nature of the u  =  5 j 2  p lateau still rem ains one of the greatest challenges of 

the field. For a recent overview on the nature of the ^ =  5 /2  state and  the current state of the 

experim ental, num erical and  theoretical side we po in t to  the  review  article by W illett [232]. 

Experim ents such as fractional quan tum  Hall in terferom etry  and  sho t noise in tunnelling  

point contacts hope to either rule out or verify part of the topological order. Such experim ents 

m easure, e ither directly or indirectly, the charge and statistics of the anyons. This thesis aims 

to shed light on theoretical aspects of these experim ents, w hich includes bu t is not limited to 

the I' =  5 /2  plateau.

We refer to the lite ra tu re  for m any o th er approaches and  generalizations th a t generate  

trial w avefunctions or o ther effective models for fractional quan tum  Hall states [154, 22, 184, 

4, 85, 195, 111, 26, 12, 11, 223].

1.4 What this thesis is about

Two of the biggest challenges curren tly  faced in the dom ain  of FQH physics are (1) how  can 

w e distinguish betw een  differen t types of topological order, and (2 ) do non-Abelian anyons 

exist? One of the m ost appealing properties of a topologically ordered  state is tha t the effective
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theory has no local degrees of freedom. However, it is also this property which prevents the 

experimentalist from directly probing the order Topological order can therefore only be 

identified through indirect means, for instance by identifying the type of anyons present the 

system, which includes measuring their charge and statistics.

In this thesis we focus on theoretical aspects of two types of FQH experiments that attempt 

to measure properties of non-Abelian anyons. These are shot noise experiments such as 

Refs. [193, 55, 95, 187, 94, 100, 114, 49, 46, 47, 115, 116, 64, 45, 13, 60, 62, 61, 63] 

and fractional quantum Hall interferometry [126, 32, 228, 229, 1, 230, 231, 227]. The edge 

is central in both of these experiments, since both experiments use the edge current as an 

experimental probe.

1.4.1 The chiral boson

We mentioned that although there is no single action that describes all FQH edges, there 

are still universal features present in the edge theories of different fractional quantum Hall 

states. These are the chiral conformal nature, bulk-edge correspondence and coupling to the 

the electromagnetic field. The coupling is accounted for by the presence of a U{1) gauge 

symmetry, and the chiral CFT based on this symmetiy is the chiral boson. Therefore it is 

expected that one or multiple copies of this theory are always part of the edge theory of a 

generic fractional quantum Hall state. The chiral boson is the subject of Section 2. We show 

how the system necessitates a (7(1) gapless edge theory through the chiral anomaly, and how 

the chiral boson resolves this anomaly. Furthermore, we study the quantization of the chiral 

boson and determine some its correlators.

1.4.2 Fractional quantum Hall interferometry

A tunnelling point contact is a constriction in the quantum Hall hquid, which forces the 

opposite edges together. This generates an overlap of the edge states of the left and right 

moving edge. As a consequence anyons tunnel between the edges along the point contact, 

which results in a tunnelling current flowing from one edge to other. This current depends on 

the type of anyon tunnelling. In particular, the current is typically a non-linear function of e.g. 

the temperature, voltage bias, and the anyon’s conformal dimension and electric charge.

In Section 3 we treat the linear response theory of the current through a fractional quan­

tum Hall interferometer. The interferometer we consider is, simply speaking, multiple point 

contacts sequentially aligned, also known as a Fabry-Perot interferometer In this section we 

derive an expression for the tunnelling current using perturbation theory. Our final expression 

is valid for general fractional quantum Hall edges.
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1.4.3 Non-equilibrium noise in tunnelling experiments

Shot noise experiments have been successfully employed to m easure the fractional charge of 

the tunnelling anyons. These experiments measure the noise or fluctuations of the tunnelling 

current. The zero-frequency component of these fluctuations is the shot noise, and can be 

used (together with the tunnelling current) to extract the fractional charge of the tunnelling 

anyon.

However, these experiments do not actually m easure the tunnelling current directly. In­

stead, w hat is being m easured is the noise of the edge current, and consequently we require 

an expression relating the noise in the edge current to the noise in the tunnelling current. In 

Section 4 we study these relations, and prove them to all orders of perturbations theory. This 

results in a non-equilibrium  fluctuation-dissipation theorem . We comment on results from 

linear response theory and the relevance to experiments in Section 5.
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Chapter 2 

The chiral boson

2.1 Purpose of this chapter

This chapter discusses some universal features of the edge theory of a fractional quantum  

Hall state at a generic filling fraction. In particular we focus on the chiral boson model. This 

model describes the edge degrees of freedom which couple to the electrom agnetic field and 

are responsible for the charge transport properties of the edge of the system. This work lays 

the basis for Chapters 3 and 4 in which we study transport properties of tunnelling point 

contact systems.

The chiral boson by itself is an interesting model which requires some special care. It arises 

as a consequence of the chiral anomaly, which is a mechanism which necessitates the existence 

of edge degrees of freedom. Loosely speaking, the bulk electric current of an incompressible 

Hall liquid does not conserve electric charge at the boundary of the system. This is resolved 

by introducing an edge current. Charge which flows in the bulk cannot flow through the 

boundary of the system, and instead ends up in the edge current. On the level of the action 

this manifests itself as the chiral anomaly. The bulk action is not invariant with respect to the 

(7(1) gauge symmetry of the electromagnetic field. The chiral boson has the same anomaly, but 

opposite in sign. Therefore in the combined bulk and edge description the anomaly cancels 

out, gauge symmetry is restored and the total charge is conserved.

The chiral boson is an example of a constrained, bosonized theory. The Hilbert space 

is constructed using bosonic operators, even though the edge contains both fermionic and 

anyonic operators. The constrained nature arises because the edge is chiral. In this chapter 

we study the aspects of this model relevant to the fractional quantum  Hall effect. We look at 

the quantum  transport properties of the system, its constrained quantization procedure and 

we look at some im portant correlation functions that appear in later chapters.
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2.2 The chiral anomaly

The chiral anomaly is the mechanism responsible for the existence of protected edge degrees 

of freedom. A fractional quantum  Hall state on a system with a boundary automatically 

implies the existence of w hat we call a charged channel. This is an effective one-dimensional 

model describing the collective behaviour of the edge degrees of freedom. The model arises 

as a consequence of the chiral anomaly and it ensures that the complete (bulk and edge) 

system is anomaly free. The chiral anomaly states, in short, that the bulk of the system breaks 

gauge invariance at the edge, meaning electric charge is not conserved and the bulk system 

is anomalous. This is resolved by the edge theory, which is itself also anomalous. In the 

combined combined edge and bulk system gauge invariance is restored, the anomalies cancel 

and charge is conserved.

Our discussion on the chiral anomaly follows closely the work of Refs. [15, 217, 216, 85, 

200]. We start with a phenomenological description of the quantum Hall effect by combining 

the Hall response with {2 + \ ) D  electromagnetism. We take the Hall response, i.e. Eq. (2.4), 

as phenomenological input since this is what is observed in experiments. In this work we do 

not discuss the exact mechanisms underlying the Hall response, although we discussed in 

the introductory chapter that it is due to some interplay of the Lorentz force, disorder and 

the electron-electron interaction. We show how these phenomenological laws naively lead to 

inconsistencies when we consider a system with a boundary. In particularly in the presence 

of a boundary the phenomenological laws violate conservation of charge. This is the chiral 

anomaly which is resolved by taking into account the edge degrees of freedom.

2.2.1 Phenomenological considerations

The quantum  Hall effect arises in an effective (2 + 1) dimensional system. Through use of 

interfaces of certain layered compounds a quantum  well is formed. Electrons sitting at the 

interface are trapped by this quantum  well and their motion along the z-axis is frozen out. 

The electrons become confined to a two-dimensional plane, and we model the system as 

effectively (2-1-1) dimensional with no spin degrees of freedom.

Consider now the electromagnetic field in {2 + l ) D.  It is described by a two-component 

electric field {Ex,  Ey)  and a single component magnetic field B.  We do not consider in-plane 

magnetic components or perpendicular electric fields. Similarly the gauge potential is a three-
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Figure 2.1: The simplest depiction of the chiral anomaly. Charge flowing through the bulk eventually 

encounters the edge of the system. The bulk current is deflected by the edge and charge ends up in 

the edge current. The bulk and edge currents act as each others source and drain. Charge is conserved 

only in the combined bulk and edge system.

vector =  (At ,  A ;̂, Ay)  and the electrom agnetic field tensor is

(  °
E x E y \

^iuA — (^iJ.A\ Ox Af i < = > F  = - E x 0 B

\ ~ E y - B o y

( 2 .1)

This antisym m etric tensor is subject to the Maxw^ell-Faraday equation in (2  +  1) dim ensions

d t B  =  - V a E  (2 .2 )

in units w here c =  1. The current and charge density also com bine into a three-vector, 

Jfi =  { J t ,  J x ,  Jxj) and no current flows in the 2 -direction. Since the system  is closed and charge 

is conserved w e  have the continuity equation

Jf +  V  • J =  0 . (2 .3 )

The characteristic equation o f the quantum Hall effect is the Hall transport equation or simply 

Hall’s law. It relates the current density J =  Jy) to the external electric field E  as

0 (Til
J =  I IE

- a n  0
(2 .4 )

w here o’// =  conductivity and i , j  =  1 ,2 . The matrix on the right hand side

is the conductivity tensor; its inverse is the resistivity o f  the system . The conductivity tensor  

has a vanishing diagonal com ponent (dissipationless flow ) and a constant off-diagonal (H all) 

com ponent a n .  W hen Faraday’s law  (2 .2 )  and the continuity  equation (2 .3 )  are com bined  

with Hall’s law  (2 .4 )  w e obtain a fourth relation know n as the Chern-Sim ons-Gauss’ law. We 

have

diJ t  =  - V  • J =  -CT//V A E  =  ( j f i d iB (2 .5 )
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Upon integrating we obtain a relation between the charge density and the magnetic flux. The 

Chern-Simons Gauss law effectively binds magnetic flux and electric charge

J t { x )  =  cthB { x ) . ( 2 .6 )

Upon integration of Eq. (2.5) we also encounter integration constants. These are the homoge­

neous, background electron density rie and the background magnetic field B. The current 

and the vector potential are fluctuations on top of these backgrounds. The effective theory 

models the behaviour of the system against this background.

Finally Hall’s and the CS-Gauss law can be combined to

j/< =  . (2.7)

This expression reflects the response of charge and current in the Hall fluid to the external 

(perturbed) electromagnetic field. The relations (2.2) through (2.6) are the phenom enolog­

ical laws governing the physics of a quantum  Hall fluid and any effective theory is required 

to reproduce them. These laws also naturally give rise to the necessity of an edge current. 

This becomes apparent when we combine the continuity equation with Hall’s law on a finite 

system M  with some boundary OM. The Hall conductivity aj] is constant throughout M  and 

vanishes outside of it. When we take the divergence of the current this leads to

^  0 . (2 .8 )

The right hand side is non-zero whenever a n  varies which happens precisely a t the boundary 

d M  of the sample. Consequently the boundary invalidates the continuity equation and both 

the symmetry and the current associated with the continuity equation have become anomalous. 

Physically, the bulk of the system is gapped which is required for the vanishing of the diagonal 

conductivity (dissipationless flow). The boundary acts as a confining potential which pushes 

the energy up and closes the gap locally at the boundary The anomaly manifests itself as the 

right hand side of Eq. (2.8), i.e. the non-conservation of the electric current. It is called a 

chiral anomaly as we deal with an anomalous current in a system which breaks time reversal 

symmetry. The name itself refers to the chiral anomaly of (1 + 1)D  chiral fermions [121]. 

In the quantum  Hall effect these chiral fermions live on the edge of the system. The chiral 

anomaly can be resolved by combining left and right moving fermions, or, in the case of the 

quantum Hall effect, by including a lower dimensional theory which produces the same gauge 

symmetry breaking term, but opposite in sign.

In the QHE the resolution to this paradox is the observation that the current we have been 

working with is not the total current. There are edge degrees of freedom that need to be taken
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into account as well. We introduce an  edge current which has the same gauge symmetry 

breaking term , bu t opposite in sign

=  (2 .9)

We also set and set the to tal current equal to The total current

is now conserved since the anom alies cancel

^VCal =  0 .  (2.10)

This is called the Callan-Harvey m echanism  [128, 200, 201, 240]. Since our bulk  picture 

is already  com plete through the relations (2 .2 ) to (2 .6) the  edge cu rren t m ust indeed flow 

along the edge and it has no com ponent perpendicu lar to the boundary

■^edge ^  ( ‘̂ edge > '^edge > ‘ ( 2 . 1 1 )

W hen considered separately  the bulk  and edge curren ts do n o t conserve electric charge (i.e 

they are anom alous currents). The edge current acts as a source or drain of charge for the bulk 

curren t, and vice versa. W hen a cu rren t flows through  the bu lk  it eventually  encounters the 

edge of the system, see Figure 2.1. Charge cannot flow th rough  the  boundary  and therefore 

ends up in the edge current.

2.2.2 The effective action

The effective action of the quan tum  Hall fluid can refer to tw o closely re la ted  concepts. The 

first is an  effective descrip tion  of the electrons in a quan tum  Hall liquid; the second is an 

effective description of the electrom agnetic field inside the fluid. We are prim arily interested 

in the latter, b u t to understand  its origin we need to study  the former.

The effective action of the electrons is a low energy, long w avelength and low tem perature 

description of a fractional quan tum  Hall phase. This action captures the low energy features 

of the phase such as the curren t-response and quasipartic le excitations, and it arises from 

a subtle in terp lay  of the Lorentz force, the electron-electron in teraction  and  disorder. In 

particular, there  exists an  electrical curren t w hich couples to the residual electrom agnetic 

field. The partition  function is given by

Z  — j  V ^ T > A  _ (2 .12)

The correlators of the  cu rren t follows from  the  derivative Note th a t is the gauge 

po ten tial of the pertu rbed  electrom agnetic field and does no t include the static m agnetic 

background field. For the Laughlin series this action is ob tained  starting  from  a microscopic
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picture, see e.g. Refs. [181, 238, 154] and the resulting action is a Chern-Simons-Landau- 

Ginzburg theory (see aforementioned references). Based on this and many other results (see 

e.g. the review article Ref. [165] and references therein) it is now commonly accepted that 

all fractional quantum Hall phases are described by a type of Landau-Ginzburg-Chern-Simons 

theory of the electron degrees of freedom in the low-energy limit.

The effective action of the (perturbed) electromagnetic field arises from Eq. (2.12) by 

integrating over the remaining electron degrees of freedom. Because 5ei[^'] contains a Chern- 

Simons term and the coupling of A  with the electrons is linear the effective action of

the EM gauge potential is also a Chern-Simons action. It is given by

5 b u lk  =  ^  /  A A d .A  + . . .
^ Jm

= ^  f  ( f x d t  + . . .  (2.13)
471- Jm

where o-// =  ^  is the conductivity and we use units where e = h = 1. The dots represent 

higher order terms of A  such as the Maxwell action (dA'^).

This is, of course, just a simple sketch of how the effective action for A^  is obtained and it 

does not constitute a proof. However, there are very solid arguments in favour of this action. 

Most importantly, this action reproduces the phenomenological laws of Section 2.2.1. The 

current is obtained by the derivative

J U  =  ^  -  crne^^^^dxA^ ■ (2.14)

This is exactly the Hall response Eq. (2.4) and CS-Gauss law Eq. (2 .5). The action also 

reproduces the chiral anomaly as we will show below.

In addition to reproducing the phenomenological laws we also note that this action is the 

most relevant term  from a renorm alization group point of view [216]. Alternative actions, 

such as a Maxwell term  f  (dA)^, are all of higher degree and less relevant in the RG sense. 

Finally, the coupling constant of the Chern-Simons action (cr//) is quantized and can only be 

an integer: non-integer values break gauge invariance when the system is considered on a 

compact manifold [56, 165]. This also means that adding weak perturbations of A  to the 

action does not affect the value of the coupling constant. There is no RG flow away from 

the CS action and the action is itself a fixed point. The coupling constant also represents 

the conductivity (see Eq. (2 .14)) and so its quantization is in agreem ent with the observed 

stability of quantum  Hall plateaux.^

We refer to the literature for an in-depth analysis of the Chern-Simons action [65, 233, 67]. 

Here we focus the remaining discussion on the chiral anomaly The gauge field A/^ corresponds

'The Chem-Simons theory presented here is actually not general enough to explain the wide range of observed 

plateaux. We return to this issue in Section 2.3.2.

30



to a C/(l) gauge symmetry associated w ith the electromagnetic field. The field transforms as 

A,I ->• An +  dfif.  The edge breaks gauge invariance o f the action. Gauge transformations 

which do not vanish on the edge generate a boundary term. We fix the coordinates {t, x, ij), 

such that X is parallel and y is perpendicular to the boundary. The action transforms as

5 'bu ik  — > 5 'bu ik  +  <5‘S 'b u ik ( / )  (2.15)

<55buik =  ^  I {e^^^dxA,)fl^^^dxdt (2.16)

The boundary term spoils gauge invariance and the action is said to be anomalous. This gauge 

symmetry breaking term arises for any gauge transformation /  which does not vanish at the 

edge. From now on we use to denote the gauge potential at the edge, i.e.

, where a , ^  . (2.17)

We now have two equivalent views of the chiral anomaly. The first is the non-conservation 

o f the bulk electric current. The second is the non-invariance o f the bulk action w ith  respect 

the U{1) gauge symmetry. These are, of course, two sides o f the same coin. I f  the action is 

invariant w ith  respect to a C/(l) symmetry then this implies conservation o f electric charge, 

and vice versa.

The remedy is, as before, the introduction of charged edge degrees of freedom, described 

by an action 5edge which breaks gauge symmetry in the same manner, but opposite in sign. 

We set

•^tota l =  *^bulk +  ‘5'eijge ( 2 . 1 8 )

Af, — A,, +  d f j '  : <55'edge(/) =  -^5'buik(/) (2.19)

The total action is again gauge invariant.

2.3 Introducing the chiral boson

The chiral anomaly necessitates the existence o f an edge current. This current has the same 

anomaly as the bulk current, but opposite in sign. However, this mechanism does not specify 

the exact dynamics of the edge degrees o f freedom. This is not surprising since the edge 

theory can contain several non-universal features provided these are consistent w ith  the 

chiral anomaly.

There are multiple ways to derive the edge action. We w ill not discuss them in fu ll detail 

here, but do mention the main ideas. The first approach [217] reduces the set o f allowed 

gauge transformation to those which vanish at the edge o f the system, =  0. In turn
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the edge gauge degrees of freedom become “dynamical” and by solving the bulk equations 

of motion we obtain a solution for its boundary (the edge theory). The second approach is 

the so-called hydrodynamical approach [217, 153]. The low-energy excitations are confined 

to the edge due to incompressibility of the quantum  Hall fluid, and by using Hall’s law an 

equation of motion is obtained for the charged edge degrees of freedom. A third approach 

constructs an edge theory with the aim to cancel the chiral anomaly on the level of edge 

current correlators [215].

The approaches use the same input which are the phenomenological laws, locality of the 

edge current and the chiral anomaly. They lead to the same conclusion that in the simplest 

case the edge is described by the action

This action describes the chiral boson [81, 213, 44]. The chiral boson (/? is a real-valued field 

and its modes satisfy bosonic commutation relations. The non-universal param eter Vc is the 

velocity of the modes. Upon quantization the modes of the current (to be defined below) form 

what is known as a ?7(1) Kac-Moody current algebra [207, 58]. The theory is also known as a 

chiral Luttinger liquid [213, 44], as two chiral bosons can be combined to form a Luttinger 

liquid [209].

The chiral boson description of a fractional quantum Hall edge is an example of bosoniza- 

tion [97, 209]. The edge is a fermionic system, yet we use bosonic operators to construct the 

Hilbert space and determine the correlators. We will explore this connection in more detail in 

Section 2.6. For now it suffices to note that the model contains both chiral fermions and frac­

tionally charged quasiparticle excitations, all of which are described in term s of the bosonic 

field (/?. More physically, we interpret the field ip as representing the phase of the boundary 

electrons, 4'ei ~

For general (recall Eq. 2.17) the action is given by

where /z and A run over (t, x).  It reduces to Eq. (2.20) when — 0. Upon a gauge transfor­

mation we have —>■ +  8 ^ /  and the bosonic field transforms as<p (p — s /v f .  The final

term in the action produces the chiral anomaly as we show below.^ The operator

Di is the gauge covariant derivative which arises from the minimal coupling and it is given by

( 2 .20 )

( 2 .2 1 )

(2 .22)

În the literature one frequently encounters a different convention for the normalization of the bosonic field 

given by the replacement ip
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This is indeed invariant with respect to a gauge transform ation. Note that minimal coupling 

refers to the construction of a gauge invariant derivative D^(^. The construction is different 

from the m inimal coupling of a fermionic field, due to the gauge transform ation properties. 

Upon a gauge transform ation a fermionic field transforms as 'I' —>• \1/, while the bosonic

field transforms according to y? -> </? — y ^ / .  Note that this consistent with the interpretation 

of V? as the phase of the electron, ^'ei ~

2.3.1 The chiral constraint

The Lagrange equations of motion and Hamiltonian are

The gauge covariant terms (D^ip) are gauge invariant by construction, while the final term in 

the action generates the chiral anomaly. We have upon a gauge transformation

we simply note that the system is an example of a constrained system, which requires some 

special care. Ham ilton’s equations of motion are given by

This equation is also referred to as the chiral constraint despite the fact that in our approach 

it is not a constraint but an equation of motion. In the absence of a gauge field it reduces to 

the first order wave equation {dt -  Vcdx)<  ̂ = 0, which shows that (^(x,t) is a function of the 

combination (x +  Vct) i.e. a left-moving wave.

The name “chiral constraint" arises from a different approach used in for instance Ref [213]. 

In this approach one starts with a boson containing both chiralities, and extracts the left mov­

ing part by imposing Eq. (2.26) as a constraint (i.e. throw away ever)^hing that violates this 

equation). In our approach the chiral constraint arises naturally from the equations of motion. 

To add to the confusion, the chiral boson is also a constrained system, but the constraint 

equations do not equal the chiral constraint.

A different m anifestation of the constrained nature becomes apparent when we compare 

the chiral constraint (Hamilton’s equation of motion) Eq. (2.26) with the Lagrange equation 

of motion Eq. (2 .23). The chiral constraint automatically reproduces the Lagrange equation 

of motion and we do not require the equation of m otion for the m omentum  of the system.

Ko(‘P,at,ax)

(2.23)

(2.24)

[  {e''^d^,ax)fdxdt 
J d M

(2.25)

This is the now familiar chiral anomaly. In the next section we will quantize this theory. Here

{D t  -  Vc.Dx)(fi =  0 . (2.26)
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The reason is that, as stated before, the system is constrained which simply means that in the 

Hamilton formalism the m omentum and coordinates are not independent. We discuss this in 

more detail in Section 2.5, but it suffices to say that this has to be taken into account when 

the system is quantized.

2.3.2 Generalizations of the edge theory

The rem ainder of this section is dedicated to studying the chiral boson. We look at how 

the model is quantized, study the mode expansion of the field, determ ine the correlation 

functions, and we construct a physical picture of its relation to the quantum  Hall effect (e.g. 

by determining the edge current and density operators in terms of </?). However we emphasize 

that the chiral boson by itself is not sufficient to fully describe the edge theory of generic 

fractional quantum Hall states.

There are, roughly, three ways in which can obtain a more general picture. First, we 

can move away from the low energy picture and include higher order terms such as self­

interactions of the chiral boson. This leads to non-linearities in the spectrum and possibly 

edge reconstruction [43, 235].

A second approach is to consider multiple chiral bosons. This picture arises when we deal 

with multiple filled Landau levels or multiple fractional states layered together [86, 224]. 

Each Landau level or state gives rise a different chiral boson and the edge action is described 

by a collection of chiral bosons, which also interact with each other. The general action is 

given through use of w hat is known as the A'-matrix [21, 224]

 ̂j  K i j d t ^ i d x ^ j  -  Vjjdx4>idxip.j dtdx . {2.27)

Here I  and J  run over the different bosonic fields, and there is an implicit summation over 

repeated indices. The third approach is to include neutral degrees of freedom in the edge 

theory which are not described in terms of the chiral boson [162, 85]. This neutral channel 

fully decouples from the electromagnetic field. We will describe this construction in more 

detail in Chapter 3. The most important feature is that the electron operator decomposes into 

a neutral (W „) and charged (Wc) piece

(8) Wc . (2.28)

In fact, all operators of the theory follow this decomposition. This is the construction used 

for non-Abelian quantum  Hall states. For instance, in the Moore-Read trial state [162, 183] 

the neutral piece corresponds to the chiral Ising model, and in the Read-Rezayi series [184] 

we deal with the paraferm ion model The neutral part is responsible for the non-Abelian 

nature of the quasiparticle.
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Figure 2.2: Sketch of a Quantum Hall bar and the coordinate system. The lower edge corresponds to 
a right moving chiral boson, and the upper edge to a left moving.

It is also possible to mix these three approaches and, for instance, construct a quantum  

Hall edge w ith several neutral and charged channels. But in all cases a charged channel 

corresponds to the chiral boson.

2.3.3 The quantum Hall bar setup

The quantum  Hall bar setup is depicted in Figure 2.2. In this simple geometry we deal with 

two edges of size L, denoted andS/,, both described by the same edge theory. We use 

Cartesian coordinates (x, y) with y perpendicular to the edges, and the edges are situated at 

y =  ±/i. The edge theory consists of a single chiral boson (right-moving on the lower edge 

and left-moving on the upper) plus a possible neutral channel. We focus the discussion on the 

charged channel. The total edge action is given by S^dge = S r + S l + Sn,R +  •?„,/, where Sn 

is the action of the neutral channel. For the charged channels we have

for i = R ,L  and where rm — - 1 ,  ?//, =  +1 represent the chiralities. Furthermore we recall the 

gauge covariant derivative +  y/urna^i,. The grand canonical Hamiltonian is given

The chiral constraint is Dt^pi -  'qiVcDxipi =  0 for each edge. We consider the grand canonical 

Hamiltonian as the system is coupled to an external voltage, which acts as a chemical potential. 

We focus on the case of a DC voltage bias between the edges, a perturbed magnetic field and 

no bulk current flowing perpendicular from the edges. We set af u / i  — Uji/i  constant along 

the edges and is time independent. Then Ex — 0, Ey = dyAt and — dxAy — dyA^ is the 

perturbed magnetic field.

^  f  IriiDfifiiDxiPi -  V c{D x^if  + y/ue^'^au.d^ipi\dtdx (2.29)

by

-  VcO-x) dx . (2.31)
47T J
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2.3.4 The edge current

The current density in the system consists of an anomalous bulk and edge current, with 

opposite anomaly. The sum of these currents forms the total current which is anomaly-free 

and obeys the continuity equation. The bulk current is given by

.'bulk =  ^  ■ ( 2 .3 2 )

with the bulk action given by Eq. (2 .13 ). In our gauge we have for the bulk current

'̂ bulk =  -  h) -  at,R6{y +  h)) .

and the y component vanishes =  0. The delta functions are the surface terms, which  

arise from integration by parts in the action. For the edge currents the y com ponent also 

vanishes =  0, and for the x  component we have

•̂ eV  ^  { - V c^ D : ĉ l +  ^ ( h ,L )S { y  -  h) +  -  ■^at^R)6{y +  h) .

This follows from the action (2 .30). The total current density is the sum of these quantities,

=  -̂ edge +  <4"ulk =  {D^ipiAy -  h) -  D,<pa5{y +  h)) (2 .33)

This is the total current density. To obtain an expression for the total current flowing through 

the system we integrate the component along a line from the lower to the upper edge. This 

gives

(2 .34)

Here we made use of the equations of motion, qidtipi =  D^ipi -  Within our setup and

choice of gauge the total current through the system is determined by the quantities 

which we refer to as the edge current density (not to be confused with the edge current 

which is a (2 +  l ) D  object). We have

j U x ,  t) =  - d t t p i i x ,  t) (2 .35)

and the same definition for the right-moving current jn  — -dt ipR{x, i ) .  The total current is 

completely determined by the edge degrees of freedom. However, this expression does not 

follow from the edge action itself (i.e. it is not a Noether current of the edge action).

The edge current is the spatial com ponent of a (1 +  1)D  conserved current (yu- =  0,1, 

i =  R ,L )  flowing along the edge. This current is conserved since in this particular system and 

gauge no charge flows from the bulk into the edge. The components of are the edge charge 

density j f  =  pi and edge current density j }  =  ji.  Together they obey the continuity equation

d tp i ix ,  t) +  d x j i ix ,  t) =  0 . (2 .36)
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Using jf  ̂ — - d t i p L  gives p i { x , t )  =  ^ d x < P L  +  h { x ) .  We fix h { x )  by demanding that the 

resulting expression is gauge invariant. This gives

PL
27T

D x ^ p l  ■ (2.37)

In the gauge — 0 this reduces to the more commonly known expression for the edge 

charge density operator = ^dx<PL- An important quantity which follows from the charge 

density is the total charge on the edge. It is the conserved charge associated with the continuity 

equation and given by

Q l  = [  P L { x ) d x  =  ^  [ ^pi{x)dx (2.38)

These definitions also apply to the right-moving edge.

2.4 Decomposition due to the electromagnetic coupling

In the action of the chiral boson Eq. (2.21) the coupling to the external gauge field is linear 

in dx^.  This linear term causes a shift in the ground state configuration of the chiral boson. 

For instance both derivatives of ip, i.e. dtip and dx^p, obtain non-zero ground state expectation 

values in the presence of a gauge field. Our goal in this section is to separate the effect of 

the coupling to the gauge field from the remaining degrees of freedom, i.e. those degrees 

of freedom which are not fixed by the gauge field. This is the background field m ethod and 

significantly simplifies the computation of correlation functions. Put differently, we decompose 

the classical solution ip in terms of a particular and homogeneous solution of the equations of 

motion. We set

(p{x,t) ^  (p{x,t) + iph{x,t) (2.39)

where (p{x, t) and ^phi^x, t) are the particular and homogeneous solution of the equations of 

motions, respectively. The coupling to the gauge field is linear and therefore this decomposi­

tion completely decouples the homogeneous solution from the gauge field. This is the idea of 

“completing the square” in the action. On the quantum level this decomposition decouples the 

quantum  fluctuations from the background field configuration. This technique is also used to 

determine the path integral of quadratic action augm ented with a linear potential [79].

We now make this decomposition explicit. The particular solution is a fixed solution to the 

equations of motion,

{dt -  Vcdx)<p{x, t)  =  - y / v { u  -  Vcax(x ) )  . (2.40)
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We solve this equation using the Greens functions m ethod [66], We introduce the Greens 

function g{x, t) as the solution to the equation {dt — Vcdx)g{x, t) = 6{x — x')S{t — t'). In Fourier 

space by this is solved by

= — T~~T (2.41)LJ - f *  VcK

Transforming back requires regularization of the singular behaviour when lo — -Vck.  The 

regulator is chosen such that we obtain the (physically relevant) retarded propagator. This 

amounts to adding a term  in the denominator. We obtain

^  1 ̂  ^ik{vct+.x)-0UQ^^^ ^  4- V j , ) 9 { t )  . ( 2 .4 2 )

k
where the sum is over k — '^7i with n  integer. Including a possible homogeneous term the 

particular solution is (taking 0+ ->■ 0)
roo p L / 2

( p { x , t )  =  f { x  +  V e i t  -  iref)) -  V i '  /  x ' , t -  t ’)(U -  V c a x { x ' ) ) d x ' d t '
r̂ef ~L/‘2,

=  f { x  +  V c { t  -  iref)) -  { t  -  iref) +  '^cV ^ f  a ^ i x  +  V c { t  -  t ' ) ) d t '  . ( 2 .4 3 )
•/£[-ef

The param eter <ref is some reference time and /  is a homogeneous function we use to fix the 

boundary conditions on (p. We set /  equal to

f { x )  =  f  a r , { y ) d y  .
J Xrpi

(2.44)
 ̂‘̂ ref

where x^^f is a reference point, usually the boundary at a: =  +L/2.  We have for the particular 

solution
f r̂ef

(p{x,t) = ~ \/u U t + y/u ax{x)dy . (2.45)
J x

The homogeneous solution solves (5/ -  Vcdx)<p{x, t) = 0 and is any function of the form 

iph(x +  Vet). Returning to the decomposition of ip{x, t) we merge /  with the integral over ax 

and obtain
    /*̂ ref

(2.46)/ ^ref
ax{y)dy +  ^h{x  +  Vet)

The homogeneous solution <fh{x +  Vct) completely decouples from the gauge field. To see this 

we substitute this decomposition into the action Eq. (2.30). This gives

5[(^ +  ^h,  Q/x] =  a.fj] +  So[(Ph] (2.47)

S[v>,afj] =  —  /  {U -  Vcax)axdx  
27T J - L / 2-LI2

1
=  7-  /  [ d m i d x ^ h  -  V c { d x ^ h f ] d x

J - L / 2
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Here w e rep laced  (p by its expression in term s of a^ . The resu lting  action 5[(^, represents 

the effective edge action of the electrom agnetic gauge po ten tia l evaluated  at our particu lar 

configuration of the gauge field. More importantly, we obtain  the edge action of the hom oge­

neous part 5'o[(p/i], which is (by construction) com pletely decoupled from the gauge field. The 

H am iltonian of the hom ogeneous part is given by

2.4.1 Effect of decomposition on partition function

The decom position  has a fu rther natu ra l in terp re ta tion  on the  quan tu m  level w here it sepa­

rates the classical background configuration from  the quan tum  fluctuations. This is d em on­

strated  by considering the path  integral representation  of the partition  function

We substitu te by its decom position. Since (p is fixed and  classical it can be taken out of the 

path  in tegral, provided w e shift the  in tegration  variable in the pa th  in tegral -> The 

action splits as in (2 .47) and w e obtain  for the partition  function

The partition  function  naturally  splits into classical and q u an tu m  degrees of freedom . This 

approach is a m ethod used to solve quadratic actions in the path  in tegral formalism  [79].

This decom position also applies to the correlators. Consider a correlation function of some 

functional F[(p], We have

The second form  in Eq. (2 .51) uses the canonical approach (i.e. is operato r valued) and the 

density operato r of a Gibbs state, This form is cast into a path  integral expression in

the last equation. Here w e allow  for the possibility that the tim e contour is along the im aginary 

axis in w hich case w e deal w ith the Eucledian action and therm al correlators. We now insert 

ip = (p -\- ipi^in the path  in tegral represen ta tion  of the correlator. This gives

integral. These tw o factors cancel out. In the second step  w e sw itch back to a canonical

(2 .48)

(2 .49)

(2 .50)

(F M )  ^  ^  |  (2 .51)

In the first step  a phase factor appears in bo th  the  partition  function and the path
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form (operato r valued). However, this tim e only is prom oted  to an  o p era to r and  (p stays 

classical. The corresponding density operato r is w ith respect to H q (instead of A'o) since this 

is the H am iltonian of (pi,.

We then  arrive at the following expression for a correlator

(2 .53)
Z[Ph]

Note th a t by sw itching to  a decom position into a background field +  fluctuations the H am il­

tonian appearing in the density  operato r also changes from K q to H q.

2.5 Quantization of the chiral boson

We have separated  the  background field from the rem aining degrees of freedom . We now 

quantize this hom ogeneous p art using Dirac’s quantization  procedure. This is a generalized 

form of canonical quan tiza tion  applicable to constrained systems. O ur goal is to m otivate 

the origin of the (som ew hat unusual) com m utation relations of the chiral boson m odel. The 

result is Eq. (2.76).

The constrained n a tu re  of the chiral boson can be read off from the action. C onsider the 

action of the hom ogeneous p art of the chiral boson

‘5'oM ~  J  d u p d x ^ p d x d t  — J  H d t  . (2.54)

The kinetic term  dt^pdx^ is only linear in the velocity {dtip). If w e w ere to blindly im pose the 

canonical com m utation relations betw een  (p and its conjugate field E , then  this im m ediately 

leads to inconsistencies. By definition the conjugate m om entum  is given by

S  jCf 1
n (x , t )  =  =  — d x f  ■ (2.55)

dot(p 47T

The H am iltonian is a functional of the conjugate m om entum , H  =  /f[Il(a;)]. Im posing the 

canonical com m utation relation Il(y)] =  i6{x — y),  [n (x ) , 11(2/)] =  0 leads to the follow­

ing equations of m otion

dtYl =  z[i/, n] =  0 . (w rong) (2.56)

This clashes w ith the Lagrange equations of motion.

The subtlety ignored here is already evident on the classical level. The conjugate m om en­

tum  n  is no t defined in term s of the velocity dt^p (bu t ra th e r in term s of dx^) -  Therefore 

the velocity cannot be w ritten  as a function of the “m om entum " n  and  “coordinate" ip and  

we cannot perform  a Legendre transform ation  w hich m aps the system  described in config­

uration space (spanned  by {dt(p,(p)) to one described in phase space (spanned  by (II, <p)).
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Put differently, the m om entum  and coordinates are not in d ep en d en t and the system  is said  

to be constrained. Since quantization is perform ed using phase space coordinates w e need  

to circum vent the usual Legendre transform ation to describe the system  using H am ilton’s 

m echanics. This is done through the use o f  constraints and the introduction of Dirac’s bracket.

2.5.1 Dirac’s quantization procedure

The fo llow ing discussion o f Dirac’s quantization procedure [59] is based on treatm ents in 

Refs. [202 , 117] and ultim ately leads to the procedure outlined in [121] for the quantization  

o f certain constrained system s. We consider a Lagrangian linear in the velocity  using the 

dum m y m odel

L =  \QiCi jqj  +  V{q, )  . (2 .5 7 )

Here, Cij  is a non-singular and antisym m etric two-form  w ith  indices i — 1 , . . .  , N  and N  must 

be even. Sum m ation over repeated indices is im plied. This Lagrangian serves as a discrete, 

prototypical version o f the chiral boson. The conjugate m om entum  pi is obtained in the usual 

w ay and given by

Pi =  • (2 .5 8 )

The m om enta and coordinates pi and qt are not independent and the system  is said to be 

constrained.

We define the full phase space P as the space spanned by independent m om enta and  

coordinates, {qi ,Pi } .  The physical system  only  has access to a subspace Fp c  F o f the full 

phase space. This subspace Fp is defined through a set o f constraint equations, classified as 

primary and secondary constraints. The definition o f the canonical m om enta (2 .5 8 ) provides 

us w ith N  primary constraints

Tj =  Pj -  ^Cijqi  w 0 . (2 .5 9 )

T hese equations define the subspace Fp. Secondary constraints do not play a role in our 

system . The notation «  0 stands for w eakly zero, m eaning the equation holds w hen restricted 

to the subspace Fp but not necessarily aw ay from Fp. By defin ition  o f Fp the constraints Tj  

are all w eakly  zero. In contrast, the derivatives o f  the constraints are not w eakly zero, since
f ) 'T '  1

— ~ ^ C i j  ^  0 and =  S-ij 56 0. The fact that the derivatives o f  the constraints do not

vanish is a key feature o f  a constrained system . This b ecom es clear w hen  w e  consider the

dynam ics o f  the system .
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A priori, the extension of the Hamiltonian from the subspace Tp to the full phase space T 

is not uniquely determ ined. With H  =  piqi -  L  defined in the usual w ay we obtain a whole 

family of Hamiltonians labelled by coefficients îj

( 2 .60)

These Hamiltonians are all equal to each other in the weak sense {Ĥ î «  since the 

constraints vanish on Tp. However, the different choices of do not give rise to the same 

dynamics. Minimizing the action pjqj -  in the full phase space, and restricting to the 

subspace Fp afterwards leads to the (constrained) Hamilton equations of motion.

where these brackets are evaluated before the constraints Tj are imposed (otherwise g/, and 

Pfc cannot be varied independently).

The fact that we end up with different dynamics for the Hamiltonians is attributed to 

the derivatives of the constraints which are not weakly zero. We therefore need a criterium 

that fixes the Lagrange multipliers The natural choice is to dem and that the constraints 

remain weakly zero in time. Recall that the time evolution of some function g{q,p) in the 

complete phase space F is given by ^ =  { g , H  + i i jTj } .  We therefore demand that the Lagrange 

multiplier solve the equation

These N  equations uniquely fix the N  Lagrange multipliers. Using the derivatives of the 

constraints {pi ,Tj} — - \ C i j  and {qi,Tj} = Sij we obtain

This fixes the Lagrange multipliers as fj,j =  - {Ti ,H}{C~^) i j .  We have now arrived at a 

consistent Hamiltonian formalism of the constrained system. In this approach the physical 

phase space is described through an embedding in a larger phase space and the constrained 

dynamics is accounted for through use of extra terms in the Hamiltonian. These terms ensure 

the dynamics of the system preserve the constraints. Before we proceed to quantize the theory,

(2 .61)

(2 .62)

Here we have introduced the usual Poisson bracket

dA d B  d B  dA
( 2 .63)

( 2 .64)

{TuT,} = Cij. ( 2 .65 )
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it pays off to reform ulate our results. For th a t w e in troduce a generalized  bracket know n as 

the Dirac bracket {•, -}d b ,

{ f , g } m  -  { f , g }  -  { f , T , } { C - % { T , , g }  . (2 .66)

This bracket obeys the usual properties of a Lie bracket, including the Jacobi identity. In term s 

of this the tim e evolution is given by

= (2 .67)

w here H  is the standard  H am iltonian pjqj  -  L.  It is then  a straightforw ard exercise to obtain 

the brackets for the m om enta and  coordinates,

{ q i , Q j } D h  =  { P i , P j } D h  = - ^ C i j  { q i , P j } D B  =  ^ S i j . ( 2 .68)

Finally, the quan tization  itself consists of prom oting the  phase  space variables to operators, 

f/i —> qi and Pi Pi, and  replacing the Dirac bracket by the com m utator,

(2 .69)

This leads to the following set of som ew hat unconventional com m utation  relations,

I z
[qi,(lj] = \Pi,Pj] = - - ^Ci j  [Qi,Pj] = ■ (2 .70)

In particular, different coordinates do not com m ute w ith each o ther (sam e for the m om enta) 

and a factor of ^ appeared  in the com m utator of qi and  pi.

2.5.2 Quantization of the chiral boson

With this procedure in hand  the quan tization  of the chiral boson is alm ost a straightforw ard 

process [81, 51, 91, 57]. The m ain difference is th a t w e are dealing w ith a continuous system. 

We w rite the Lagrangian as

L  =  J  dxdyi f {x)dx5{x -  y)dt^{iy) -  H  . (2 .71)

w ith conjugate m om entum  11(2:, t) = -^dxip- This also applies to a system w ith a non-vanishing 

gauge field. The antisym m etric tensor as defined in (2 .57) generalizes to  a continuous form 

Cij C{ x , y )  — ~  y)- Q uantization of the system  requires the inverse C~^,  which

is defined through the Kernel re lation J  d z C{ x , z ) C~ ^ { z , y )  = 6{x — y).  The caveat [57, 198] 

here is th a t the inverse is no t unique and w e have for any function  hit)

C,7^(x,2/) =  -7TSgn(2; -  y) +  h{t) . (2 .72)
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Here sgn is the  sign function. For now  w e fix h{t) =  0 and com m ent on this issue a t the end 

of this section. The conjugate m om entum  provides a continuous set of prim ary constraints,

T{x)  =  n(x) -  - ^ O M x )  «  0 . (2 .73)
47T

The analysis of determ in ing  the Lagrange m ultipliers and the corresponding Dirac bracket

runs along the sam e lines. In particu lar the Dirac bracket is given by

{ f { x ) , g { x ) } m  =  { f , g }  -  J { f , T { w ) } C - \ w , z ) { T { z ) , g }  dwdz  . (2 .74)

With respect to the Dirac bracket the fields obey

{</5(x’) ,< / :5 (y )} D B  =  C"^{x,y)  { n ( x ) , n ( 2 / ) } D B  =  ~ ^ C { x , y )

{(/p(x), n(y)}DB =  -  y) . (2 .75)

Q uantization is now  a straightforw ard process. The equal tim e com m utation  relations are

[(p{x),(p{y)] =  -■j7TSgn(x -  y) [dxip{x),dy(p{y)] =  i2-Kdx5{x -  ij)

[p{x),dyip{y)]  =  i2i^5{x -  y) . (2 .76)

In these equations w e have perform ed an  additional step: w e have replaced the m om entum  

n(x) by its expression in term s of v?(x). This is valid since w e are only in terested  in the physics 

tha t takes place w ith in  the constra ined  phase space. It’s the usage of D irac’s b racket and  the 

corresponding quantization tha t allows us to apply this reduction of the phase space variables. 

The com m utation  relation  of w ith  itself is typical of a tf(l) Kac-Moody cu rren t algebra 

[207].

From this w e can also derive the chiral constraint using the Heisenberg equation of motion. 

A straightforw ard calculation gives for dt p̂ =  i[Ko,y^]

{Dt -  VcDj.)ip =  0 . (2 .77)

This equation  also holds on the classical level, w here it corresponds to H am ilton’s equation

of m otion. As m entioned  before, in o u r approach this equation  is no t a constra in t b u t an

equation of m otion. In o ther approaches [213] it used as a constraint.

The final issue w e have left ou t is the non-uniqueness of the inverse see Eq. (2 .72). 

Different choices of h{t) result in d ifferent com m utation relations for ^{x).  As is discussed in 

Ref [57, 198] this am biguity arises because of the continuous natu re  of the system. A proper 

trea tm en t requires defining the  boundary  conditions of the system , w hich in a non-trivial 

m anner determ ines the  function  h{t).  Instead of analysing this m ethod  in d ep th  we instead 

switch to a m om entum  basis, which fixes periodic boundary conditions (on dx^p) and sets h{t) 

to be zero.
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2.6 Mode Expansion and dynamics

In this section we treat the chiral boson using a mode expansion for a finite size system. This 

serves two goals. The first is that it clears up the remaining issues of quantization. By switching 

to a momentum basis we implicitly impose boundary conditions on the field ip, which in turn 

fix the function h{t) — 0 m entioned in Eq. (2.72) as is explained in Ref. [57, 198].

The second goal is that we use the modes to determ ine the correlation functions of the 

system. The one-dimensional massless boson is notorious for both its infrared and ultraviolet 

divergences and these are regularized by using a mode expansion on a finite size system. We 

follow the conventions of [209]. See also [217, 219] for related treatm ents.

2.6.1 Mode expansion of the chiral boson

The background configuration is a fixed classical solution, and only the homogeneous solution 

is quantized. The mode expansion is performed only on the homogeneous part. Recall

r^ref
ip{x,t) = - s / v U t  + / ax{y)dy + .

J  X

(2.78)

We assume a finite system of length L and impose periodic boundary conditions on dxiph- 

Note that the field <p itself is an angular variable and represents the phase of (quasi-)particle 

operators. It is therefore not periodic, and we clarify below how we interpret the boundary 

conditions on ipî . We impose periodic boundary conditions on dx<̂ h as it is more convenient 

for the treatm ent of the homogeneous part. The bosonic field (fh{x) contains a linear term 

which accounts for the zero mode structure of dx^Ph- The expansion is given by

<̂ 0 +  ^ f f p o x  -  (2 .79)

where k = ^ n ,  n e  Z. The positive, infinitesimal constant 6 regulates the UV divergences of 

the theory while the finite-size L of the system regulates the infrared divergence. The modes 

6fc are (proportional to) the Fourier modes of dx<Ph- The mode expansion for the density 

operator is

d x M 'x )  = J ^ P O  + (2.80)
k>0

The modes ipo and po are the zero modes of iph and dx^Ph respectively. We refer to both these 

operators as simply “the zero m odes” and it should be clear from context which mode is 

referred to. The field dx<Ph is periodic, meaning the boundary condition imposed on (ph is

r L / 2
iPh{L/2) -  i f h { - L / 2 )  =  /  dx'p)h{x)dx =  ■̂ 2-kL pq (2.81)

J - L j i
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This is also proportional to the total charge operator Eq. (2 .38). Put differently, the boundary 

condition on corresponds to the amount of charge inserted in the system (the edge). The 

inverse relations are

7̂0 = - 7 = /  ip h { x )d x  bk =  r -—r - 7f  /  (a')e’ (2 .82)
V27rL J - L / 2  v'27rL \ Jk  J - l / 2

In terms of the (c-number) modes the action is^

5  =  \ { p o ^ o  -  ^oPo) +  5 Y . ( h l h  -  hkhl) -  H  (2 .84)
k>0

with H  the Hamiltonian. From this action we can read of the matrix elements of the antisym­

metric matrix Ctj. Its non-vanishing elements are

^V’o.PQ =  ~Cp0,‘P0 — 1 ^bl,bk ~  ~^bk,b\ ~  * (2 .85)

Furthermore, the zero m odes form a conjugate pair meaning =  ^po and =  - \ p o .  

Similarly each pair hk and b̂ . are also conjugate, TTb̂, =  — 7T{,- =  ^bk- These define the 

constraints of the system and quantization now follows along the usual route as explained in 

the previous section. Applying the rules of constrained quantization gives

[<ŷ o,Po] =  j [h ,b l]  =  1 . (2 .86)

The operators b^ and 6̂  satisfy the usual commutation relations of harmonic ladder operators.

2.6.2 The Hilbert space

For the Hilbert space w e define a vacuum state |0) =  |vac) which has zero charge and is 

annihilated by all the annihilation operators, i.e.

po\0) = bk\0) = 0 . (2 .87)

We create a tower o f m om entum  states upon this vacuum state using the operators b^. All 

these states carry zero charge, since po commutes with b\.. Charged states are created through 

the coherent-state-like operator This operator acts as a raising operator o f the charge 

eigenstate, as can been seen from the commutation relation

^  _ ( 2 .88 )

^The modes entering the expression for the action are classical. It should be clear from context when we switch 

to the operator-valued modes.
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A charged eigenstate is of the form

e‘“‘̂ “ lO) =  |q ) . (2 .89)

On top of this charged state ano ther tow er of m om entum  states arises through the apphcation 

of the W ith these operation we generate the full H ilbert space. However, we note tha t not 

all values o f a  constitu te  an  opera to r on the H ilbert space. Only a d iscrete set of charges a  

en ter the theory. This is due to the compactification of the chiral boson as a result of the t / ( l )  

sym m etry of the theory. We identify

<f{x) — <p{x) + 2 t t v  (2.90)

The filling fraction u is the com pactification radius [58, 33]. By dem anding tha t the operator 

which creates a charge is invariant w ith respect to this identification, we obtain a discrete 

spectrum  o f charges, since

g27Tiâ  =  1 (2.91)

m ust be satisfied by all charges a  appearing  in the theory. This is the charged p art of the 

H ilbert space. The full H ilbert space is also determ ined by the neutra l part of the edge theory, 

see e.g. Ref. [85].

2.6.3 The Hamiltonian and time evolution

Having quan tized  the system  we now  explore its dynam ics. H ere w e analyse the left moving 

edge. We set ai{t, x) = U constan t and take ax{x)  tim e in d ep en d en t and  a vanishing zero 

m ode. We recall the grand canonical H am iltonian, Eq. 2 .31, for a chiral boson coupled to a 

DC voltage

I<o[v>] = f  -  ^ { U  -  Vcax)dx^p -  - ^ a x { U  -  Vcax)]dx (2 .92)
J-L/2  47T 2 tv 47T

This H am iltonian applies to the full chiral boson which includes the background configuration. 

We now  switch to the decom position Eq. (2 .78 ). The H am ilton ian  is given by

i /
= Ho -  { U - V c a x ) a x d x  (2 .93)

J - L / 2

V
{dx^f ■

47!" J-L/2

The H am iltonian H q describes the decoupled chiral boson  iph- N ote th a t the H am iltonian 

Ko[ip,iph.] does not  follow from  sim ply replacing v? by <̂  +  (ph in Eq. (2 .9 2 ). Instead, the 

substitu tion of (p is perform ed in the action after w hich the H am iltonian follows.
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In terms o f the mode expansion the Hamihonian H q is given by

=  +  +  bkbi) (2.94)
k>0

This expression needs to be normal ordered. In this context this comes down to moving all 

annihilation operators to the right and regularizing the corresponding divergences. In the 

last term we replace b^bl =  6^6^ +  1, and obtain an infinite sum over integers n (k =  ^ n )  

regularized by Using a Laurent series we find

valid for Re [5] > 0. The sum is divergent in the 5 |  0 lim it which is the UV divergence o f the 

theory Regularization effectively comes down to removing the singular behaviour and taking 

5 J, 0. This procedure gives
OO ^

^ n  =  - — (regularized). (2.96)
■*n —1

The normal ordered canonical Hamiltonian is

Ho =  I ^  k b %  -  ^  . (2.97)
k>0

Dynamics

The free field (ph{x, t) obeys the chiral half of the wave equation, {dt -  Vcdx)(ph{x, t) — 0. This 

is solved by iph{x,t) =  +  Vct). When we apply this to to the mode expansion (2.79) we

simply replace x —> x +  Vct at each occurrence of x. Alternatively, we can solve the equations 

o f motion for each mode separately. For instance, the zero mode (po obeys

dt^po =  i[Ho, v?o] =  VcPo ipo{t) =  (/Po(0) +  poVct . (2.98)

The other zero mode po is conserved. From now on we set ipo =  (yi)o(O)- Similarly the momen­

tum modes evolve as plane waves

bk{t) =  bl i t )  =  . (2.99)

This gives for the chiral boson

r^ref
ip{x,t) =  - y / u U t +  a^iy)dy 

J X

+  y  +  Vct)po +  ¥5+(x +  Vct) +ip>-{x +  Vct) (2.100)

where the positive and negative frequencies are collectively w ritten by

=  -  \/y  <p_{x) =  - J ^ Y l
^  fe>o ^ ^

48



2.6.4 Non-equal time commutation relations

The chiral boson obeys the commutation relations of Eq. (2.76). Here we show that the modes 

reproduces these comm utation relations in the limit of a vanishing IR regulator 5 — 0. To 

compute the com m utator of the chiral boson with itself we can ignore the gauge potential 

and focus on the (operator-valued) homogeneous solution The mode expansion (2.100) 

gives

m  sgi\[x + Vet), with the step function due to the branch cut. The non-equal time commutation 

relation is

This expression holds for finite L  on the restricted dom ain {x +  Vct) e  [—L /2 ,L /2], It corre­

sponds to the commutation relation found in Section 2.5 with x replaced by x  +  Vct. A  similar 

calculation applies to

The function ^ ( l - c o s ( ^ (x + i ;c i ) ) )  is approximated by {x+Vct) around the points x+Vct — riL 

with n  integer In the limit of 5 J, 0 we obtain the Dirac comb, i.e. a periodic delta function. 

On the restricted domain [ -L /2 ,L /2]  we have

We have recovered two of the three commutators of expression (2.76) and the last one 

follows using a similar calculation. In particular the commutation relations all depend on the 

combination (x +  Vct), regardless of finite-size effects, the presence of a regulator and the 

coupling to the external gauge field. The resulting relations apply to both the full chiral boson 

and the hom ogeneous part, since the latter corresponds to the operator-valued part of the 

former.

In the limit of 5 J, 0 the complex logarithm reduces to log(—e* ^

[p{x, t), (^(0,0)] =  - m  sgn(x +  Vct) ( 2 .102)

‘̂ ^ ^ { l - c o s { ^ { x  +  Vct))) + S'̂  ■

(2.103)

[dx^{x, t),ip{0,0)] =  —2TTi5{x +  Vct) . (2.104)
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2.6.5 Vertex operators

Quasiparticles and electron operators are constructed using vertex operators. Vertex operators 

are normalized, coherent-state operators which create charged eigenstates as localized wave 

packets. We first define the normal ordered exponentiated operator as

. a x { y ) d y ^ l a ' J ^ P o i x + V c t ) (2 .105)

The exponentiated operator creates a charged eigenstate and therefore it appears to the 

left of the zero mode pq. The total operator has a non-vanishing vacuum expectation value. A 

vertex operator with label a  is a normalized exponential operator

V'aCx, t) =  . (2 .106)
Lj

This operator has vanishing expectation value {ipa{x)) in the large L  limit. The operator carries 

an electric charge • /u a  as follows from its commutation relation with the charge operator Q

f v  / ’° °  (5
[Q,i)a{x)] = -----atpaix') /  T-Zr~KTT~H^'-^ = ^/i^a'ipa{x) ■ (2 .107)

^  7 —00  ^  ^

These relations also hold for finite 6 and L. We conclude that the vertex operator carries an

electric charge of Q =  v ^ a . The conjugate operator carries the opposite charge and is

defined as

tpl = 1p-a{x,t) . (2 .108)

This operator provides us with the first realization of an anyonic quasiparticle operator. It 

carries a charge which can take on fractional values, and it has a fractional spin given by

h a ^ Y '

This last result is motivated through conformal field theory [8, 58] and arises from covariant 

transformation properties of the operator i p a  with respect to (conformal) coordinate transfor­

mations. The quantity h a  is called the fractional spin or conformal dimension of the operator 

V'i. To clarify, the homogeneous part of the operator only depends on the holomorphic combi­

nation z = x  + Vet. Upon a coordinate transformation z = x  + Vct —> w{z)  the hom ogeneous 

part transforms covariantly as

I p a i w )  =  ■ ( 2 .110 )

This transformation law is typical for conformal primary operators, see e.g. Ref [8, 58]. The 

fractional spin of quasiparticle operators is closely related to statistics of the quasiparticle.
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Bosons and fermions carry integer and half-integer spins respectively. A fractional spin dif­

ferent from half-integer implies the particle is an anyon and obeys a generalized form of 

statistics.

For the commutator of two vertex operators we employ the identity

(2 .111)

which is valid provided the commutator [A, B] is commutes with A and B. We have

. ( 2 . 112 )

For anyons the product afi is typically a fraction and the commutation relation involves a 

complex phase. This is a reminiscent of the fractional exchange statistics of anyons in (2 +1)1? 

dimension. There the exchange of two Abelian anyons results in a phase factor of The 

difference in (1 + 1)D is that there is no notion of braiding, so Eq. (2.112) by itself cannot be 

interpreted as a phase arising from exchange statistics.

In the presence of a neutral channel the quasiparticle operators take on the form

y^n® i>a{x,t) . (2.113)

The exchange of two operators then depends on the neutral operator Wn as well.

Finally, we recall the idea of the bulk-edge correspondence [85]. For each (H -l)L ) edge 

quasiparticle operator there exists a (0-l-2)D operator that acts on the bulk. These edge and 

bulk operators satisfy the same operator product expansion, and so the spectrum of edge 

“anyons” is the same as that of the bulk.

2.6.6 The density operator from point splitting

Consider the simple case of an edge consisting of a single chiral boson. All quasiparticle 

operators correspond to vertex operators t). One requirement for a fractional quantum

Hall edge is the existence of an electron operator. This operator carries unit electric charge
2

and has a half-integer spin. A vertex operator tpa carries charge y/va  and spin The electron 

operator is therefore of the form

» * „ „ „  =  M  = C2.114)

and the filling fraction is This is the only possible family of quantum Hall edges which

can be constructed using a single chiral boson and the requirement of the existence of an 

electron operator. The series of filling fractions i/ =  . is the Laughlin series and this

construction shows that the single chiral boson model is not sufficient to explain the wide
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variety of observed quantum Hall edges. In Section 2.3.2 we discussed possible extensions of 

the chiral boson model.

We finally note that we can use the electron operator to construct the charge density 

operator. This amounts to obtaining the normal ordered product : '̂gigj-ĵ on̂ eiectron for 

instance through use of point splitting, see Ref. [209]). Specifically, we can determine

-  « /2) ■

The lowest order, non-singular term in this expansion corresponds to the charge density 

operator p(x, i) =  ^Dx^p{x, i ) .

2.7 Correlation functions

To compute the correlation functions for the chiral boson, its various derivatives and the vertex 

operators we use an operator-based approach. The calculations presented here follow closely 

the steps outlined in Refs. [209, 93]. As before we consider the case of DC voltage U and a 

static gauge field a^ix). The correlation function of some functional of the chiral boson F[ip] 

at finite temperature is given by

(2.116)

__ V r  O X —> , . + , . 27T _
^ 0 = -^Po + Vc ^k b l hk ,  k =  — n, n ^ Z .  

k>0

Mode expectation values The non-zero modes are bosonic ladder operators and their cor­

relations functions are the usual Bose-Einstein occupation numbers

, 0 T  =  0 , , f l  T  =  0
{bkhl) =  {blbk) +  l = {  (2.117)

^nsivck) T > 0  \ -ns { -Vck )  T > 0

withriBivck) =  1)~^ The zero mode po is proportional to the electric charge operator.

The vacuum is charge-neutral and so the zero temperature correlator vanishes. To compute 

the finite temperature correlator requires knowledge of the full chiral algebra. More concretely 

the correlator is given by

(P) =  ^  ' ^ {n \ e~T^P^n)  =  ^  X I  (2.118)
n&A n&A

where the sum runs over a complete basis of charge eigenstates, which is specified by the full 

chiral algebra. However, we always encounter this correlator multiplied by a factor of \ / l / L
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or x ^ l / L x .  In the Hmit of L ^  oo the correlator vanishes,

^ ( A ) > = 0  ( L ^ o o ) .  (2,119)

The correlator is constant with no physical implications. We set it to zero

—  =  const ^  0 . (2.120)

2.7.1 One-point correlators

In the large L limit the one point correlator of the homogeneous solution vanishes {;^h) =  0. 

What remains for the one-point correlator of ip is the particular solution given by
r^ref

{ip{x,t)) =  (p{x,t) — —y/uUt + y/v / ax{x')dx' .
J X

(2.121)

From this we obtain the one-point correlators of the edge charge density p =  and

edge current density j  =  - d t ^ .  By construction the charge density vanishes

{p{;x,t)) =  ^{D: , ip{x , t) )  =  Q . ( 2 . 122 )
Z7T

For the current density we have

{j{x, t)) =  - ^ { d t ( p { x ,  t)) = . (2.123)

From this we can also obtain the total current through the system. The current density of the 

right-mover is {jn{x, t)) — ~ ^ U r , which gives for the total current

7o(x) =  { j L { x , t ) )  + {jR{x,t)) = ~ { U l  -  Ur) . (2.124)
ZTT

We finally recover the full quantum Hall relation of current and voltage from the quantized 

edge theory.

2.7.2 Two-point correlators

We consider the bosonic autocorrelator (<̂ (2;, t ) i p{Q,  0)). Substituting in the particular solution 

and the mode expansion for the homogeneous solutions gives

{ip{x,t)if{x',t')) = (p{x,t)(p{x',t') + {ip+{x,t)ip^{x',t')) + {if^{x,t)ip+{x',t')) + ...  (2.125)

where </?+ and (/?_ are given by Eq. (2.100).

At zero temperature the correlator {(p+ipJ) — 0 vanishes and what remains is

((/p_(x,0¥:>+(0,0)) =  ^  V  =  _  l o g ( l  _
k>0

= -  log((5 i{x + Vet)) + lo g (^ )  + . . .  (2.126)
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This expression is logarithmically divergent in the large L limit. This is the infrared divergence 

of the system and is a reflection of the invariance ip ^  (p + const. We have

{^p{x,t)(p{Q,Qi)) = -  log((5 +  i{x + Vct ) )  + l o g ( ^ )  +  • • • (2.127)

At finite tem p era tu re  we cannot perform the summation directly and we instead evaluate it 

in the large L  limit. The complete expansion of the correlators of </?+/_ is

{if+{x,t)(p-{0,0)) +  {(fi^{x,t)ip+{0,0))
O 'j r  1
—  y  . (2.128)
L  kk>Q

Here we set x' ,tf  = 0, since the homogeneous part is transladonal invariant. To simplify this 

expression we note that nB{vck) acts as an effective regulator for large, positive k (this does 

not apply to n s { - V c k ) ) .  Since 5 is infinitesimal we can switch its sign in the first term  thereby 

obtaining a symmetric expression in k,

2^   1
{(fi+{x,t)(p-{0,0)) + (y?_(0,0)(^+(0,0)) — >■ —  ^ . (2.129)

The next step is to take the L ^  oo limit and approximate the sum by an integral which runs 

over the real axis. The summation excludes the k = 0 term meaning the domain of integration 

is 7 =  ( - 00, - ^ ]  U oo). The resulting integral is

(<^+(a-,i)<^_(0,0)) +  {ip^{x,t)(p^{x',t ')) = J   --------------- -̂---- dy . (2.130)

In the appendix we compute this integral using a contour integral. This is essentially a sum 

over residues located a t y  — rni with m  integer. The divergence at the origin requires a more 

subtle approach. The result is Eq. (A. 17) in the appendix where the constant C  represents the 

infrared divergence, which arises in the L -> oo limit. This constant is fixed by dem anding 

that the finite tem perature expression matches with the zero tem perature case, Eq. (2.127). 

This fixes C = lo g ( ^ ) .  We have

-  log(5 + ?;(Aa: + VcAt)) + lo g (^ ) T = 0

log
7) tt' I ' n T

- ^ s h i { — {6 + i{Ax + Vc^t))) + log(— ) T > 0
TTi '  V c J 2 n

(2.131)

where we use the notation Ax = x — x' and At = t — t', and

tp'̂  =  ip{x, t)(p{x' , t ' )  (y i^ U t + J  a:^{y)dy^(^^/l^Ut'+ J ^  ax{y')dy' (2.132)
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2.7.3 Density and edge current autocorrelators

The computation of the density autocorrelator for p{x, t) = =  ^ d x ^ h  is performed

using the same techniques. Using the mode expansion we find for the charge density autocor­

relator

(p(x,Op(0.0))  =  + e
'  fc> 0

(2.133)

At zero tem perature the expression reduces to a geometric sum which results in

V ,w\-2
(p(x,i)^(0,0)) =  j ^ { j )  sin(-((5 +  i(x +  ^;ci))) 

u 1
(27r)‘-̂ (5 +  i{x +  Vct)Y

(2.134)

At finite temperature we encounter a similar summation as in the case of {(pip). After the same 

manipulations we express the correlator as an integral

{p{x,t)p{0,0)) I' / 27rT'2 f
V c  ^  J -{2ir[ oS ttj/ _  I

dy
T  > 0 

L  —̂ 00 .
(2.135)

Here we again switched the sign of <5 in the summation over {h\hk) and approximated the 

sum by an integral. In this case the integrand is regular at the origin and the |fc| J. 0 regime 

does not produce a divergence. Using the methods of contour integration (see Appendix A) 

we obtain for the density autocorrelator

(27r)2 ((5 +  i{x +  Vct))'^

{ttT  I  Vc)
(2.136)

^ --— ^—  ------------------- T > 0 .
(2^)^  s i n ( ^ ( ( 5  +  i{x + Vct)))

To obtain the expression for the edge current j{x ,  t) density autocorrelator we use the chiral 

constraint dt^p =  VcD^^p — y/i'U,

( / ' i ^ U y  ly 1

27T /  (27t)2 (5 +  i{x +  Vct)y

\ 2 tt /  { 2 ' n - y  ^  +  V c t ) ) )

T > 0

(2.137)

Alternatively, these correlators are obtained from the correlator {ip{x, t)(p{Q, 0)) by differenti­

ating with respect to x  or t.
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2,7.4 Vertex operator correlators

In this section we derive the two-point correlators of vertex operators and the generalized 

iV-point correlators along the lines o f Refs. [209, 93]. To compute the correlators we analyse 

each mode separately, and merge them together at a final stage. The correlator we investigate 

is

O  ^  - 4 -  H  ^

X  ( — ) " *  ^ (2.138)
L

As before the correlator o f the zero modes is rather triv ia l in the large L  lim it. We have

=  1 +  . . . (2.139)

The correlator o f the non-zero modes is handled through use o f two identities: (a version 

of) the Baker-Campbell-Hausdorff formula and Wick’s theorem applied to exponentiated 

operators. These identities are

e/^e^ =  (2.140)

^  _ (2.141)

The first of these is valid as long as [A, B] is central. We combine these rules to each pair of 

modes, 6][. and fâ .. For complex /  and g this results in

îg-hx ^  g i( |/|24-|g|2)^_m!^((btfc)+((,fct))^_(/g.(6t(,)+/.g(fcfct)) (2.142)

For the chiral boson the parameters /  and g are those appearing in the expansion o f (p+{x, t), 

see Eq. (2.100). By taking into account all modes we arrive at the following identity

l^ ^ ia ip i { x , t ) ^ i f j i p - ^ { x , f ) ^ i a ^ + { 0 , 0 ) V  JJ" g -^ ^ ^ ^ F * :(0 ,0 )  jQ

k k

Ft,(x,t) =  (2.143)

Here we used the summation and approximation

'  a' ^ +  2 t t 1 _ , g \  , . 2 -k
exp(^ ^-----77  ̂^  '  (2.144)

k>0

The sum J2k>o computed before. Comparing (2.143) w ith  (2.128) we find

J 2 F k { x , t )  =  {(p+{x ,t ) tp- {0,0)  +  ip^{x,t)( f i+{0,0))
k>Q

- l o g { S +  i { x  + V e t ) ) + l o g { ^ )  T  =  0
yv ttT  1 L  <^2.145)

- lo g  ^ s i n ( — (<5-f z(.T +  Vci))) + lo g (— ) T > 0
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These are all the ingredients needed to determine the two-point correlator. Putting everything 

together, which includes the normalization of the vertex operator, results in (for small <5)

operators is the normalization {‘2tt/L)   ̂ . In the L -> oo limit this factor, and therefore

the entire correlator, vanishes unless v\̂ e have a = —/S. This is called the neutrality condition 

referring to the fact that a  and (3 are directly proportional to the charge of each vertex 

operator. The condition is enforced by the infrared divergence and represents invariance of 

the correlator v^ith respect to the symmetry + const. Setting a = —j3 gives for the

two-point correlator

In later chapters this is denoted hyujQ — QeU/h.

A^-point correlator The N  point correlator of vertex operators generalizes from the two- 

point correlator through repeated application of Wick’s theorem. As before the correlator 

factorizes in terms of its zero and non-zero modes. The contribution of the zero modes results 

in a time-dependent phase factor, while for the non-zero modes we employ Wick’s theorem. 

The repeated application of the identity Eq. (2.140) followed by applying Eq. (2.141) results 

in

/  a x( y ) dy  +  /  a,r(y)(iy))

O-TT

X (y -)  " Pa^{x -  x ' + Vc{t -  t')) (2.146)

where we use

1
r  =  0

P a H { x  - f  V et )  =

(5 +  i{x +  Vct)Y^
(2.147)

The neutrality condition One important property of the two-point correlator for vertex

(2.148)

The phase factor e ' x̂(y)dy jg Berry phase of the external (perturbed) magnetic field.

The frequency ^/VaU is called the Josephson frequency for a particle with charge Qe = ^/ua.

(2.149)
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This gives for the iV-point correlator

L

k k

With use of the expression for Fk{x, t) we obtain

(V>ai(a;i, l̂) • ■ ■ ' I p a n i x 2 , t 2 ) )  =

i<j

with Pa{x) defined as before. We have also left out the normalization factor proportional to 

since we assume the neutrality condition holds. The 7V-point correlator version of the 

neutrality condition is

2.8 Ward Identity

2.8.1 Schwinger-Dyson equations

The combined edge and bulk action are gauge invariant with respect to the combined gauge 

transformation (p - r  (p -  y ^ /  and ->• + Of^f. When we fix the gauge the edge action

is invariant with respect to the residual symmetry of a shift, ip ip + const. Associated with 

this symmetry is a conserved current and a set of Schwinger-Dyson equations [175] which we 

derive here. For this we switch to a path integral representation. For now we restrict ourself 

to real-time, vacuum expectation values. The path integral representation of a time ordered 

product of N  vertex operators is given by

This correlator is not exactly the same as the N -point correlator we computed before, the 

reason being that we are dealing with a time-ordered object. To derive the Schwinger-Dyson 

equations we consider the transform ation

with e{x) real-valued and small. We do not  perform the corresponding transform ation on the 

gauge field. This is essentially a change of variables. The measure is invariant with respect to

(2.152)

(2.153)

(p(x) (p'(x) = (p(x) + e{x) (2.154)
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this transformation and so we have the identity 

1 / '  1 c-  J  =  - ^  J  ^ l > a i W { t i , X i ) ]  . (2.155)

On the right hand side we expand everything to lowest order in e. The vertex operators are of 

the form ipa ~  and are therefore approximated as ipa[<-p'{t,x)] =  iae{t,x)%pa[^{t,x)].

The change in action requires a bit more work and through use of integration by parts we 

obtain

SS  = ——  I e{x, t ){dt  — Vcdx)Dxip{x,t )dxdt  + (D{e^) . (2.156)
27t  j

Plugging this back into the path integral results in

1 /■ . ^
-  /  i ’ai {U,Xi)

7 1 = 1

f  r i " -]
X / e{x,t ) -  —  {dt -  Vc(%)D^ip{x,t) + i ' ^ a i 5 { t  -  ti)S{x -  Xi) dxdt  (2.157)

2 = 1

This holds for all e and results in the Schwinger-Dyson equation

- V c d x ) { T D j . ( p { x , t )  i p c { t i , X i ) )  =  

n = \
n N

^  y/uaiS{t -  t i)6{x -  X i ){ T  ipai{ti,Xi)) . (2.158)
1 =  1 7 1 = 1

As this is derived in the context of a gauge symmetry this equation is also known as a Ward 

identity. The two-vector J'^ = -VcDx^p) is the associated current.

2.8.2 Operator approach to Ward identities

The Schwinger-Dyson equation provide us with differential equations relating different corre­

lation functions. We are interested in an integrated version of these equations, applicable at 

finite tem peratures. Instead of deriving these from the SD equations directly we pursue a dif­

ferent approach which makes use of the commutation relations and the mode decomposition 

of the chiral boson. More specifically, we are interested in “reducing" the following correlators 

containing a mode and a num ber of vertex operators
n 71 n

{p o \ \ ' ^oc i{x i , t i ) )  (&̂• J7V'a,(2;i,fi)) • (2.159)
i = l  2 =  1 2 =  1

By reducing we m ean relating each of these correlators to the n-point correlator (HiLi i’ai)- 

Once we succeed in this we can take different combinations of the modes to construct a Ward 

identity for e.g. the current or the charge density operator.
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By definition the correlator is computed by the trace

7-1 i=l
(2.160)

The relevant part of the Hamiltonian is

=  Vckblb/, (2.161)

In the expression on the right hand side in Eq. (2.160) the operator bl can be moved to the 

the farthest right position of the trace by commuting it with all the ip a operators. We have

n

i=l
n

( [ ^ I .V ’a i ]  ■ ■ ■ ' f p a n i ^ n , t n ) )  +  • ■ . +  (V 'ai ‘ V-'anl) +  ( [ H
«=1

(2.162)

The com m utator of and a vertex operator follows from the field operator commutation 

relations, Eq. (2.104). It is the t)q3ical form of a commutator with a coherent state operator

[bl,'ipa{t, x)] ^  iafkix ,t )ipa{t ,x)  

M x , t )  =

(2.163)

The final term in (2.162) is m anipulated through use of the cyclicity of the trace and by 

commuting b  ̂ w ith the density operator. This commutation is accomplished through use of 

the identity e ^ Y e ~ ^  =  e°‘Y , valid when [X, Y\ = o Y . This results in

fetg-Wo/r ^ (2.164)

and therefore
n

{ [ Y l i ’aiixuU) b\) =  - T r ^tg ^o/'i n ^ a .(a - .i,f j)  = {bl^J^ipai{xi,ti)  ) . (2.165)
1=1 i=l i=l

We plug this back into Eq. (2.162) together with the expression for the commutators (2.163). 

Some rearrangements result in

i=l
n

1= 1

(2.166)

(2.167)
i—1 1=1 i—1

Here we also given the corresponding identity for the bk’s, which is obtained following the 

same steps. Next we look at the zero mode po. Since (po does not enter the Ham iltonian the
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above steps lead to a different outcome if w e apply it directly to pq. Instead w e consider the 

correlator containing ipo

i = l
n

{[‘P0,'4>ai{Xl,tl)] •■•) +  ... +  (•■• [ipo,1pan{^n,tn)]) +  ( ( n  '>Pai{Xi,ti)jipo) (2 .168)
i = l

The commutator with a vertex operator is given by

b o , i ’ait ,  x)] =  -a W  + Vct)%pa{t, x)  . (2 .169)

In the final term w e again use the cyclicity of the trace and commute </pq with the density 

operator. The Hamiltonian is given by

Holm] = j p I (2 .170)

Note that p̂o does not enter the Hamiltonian and so [Ho,ipo] 9  ̂ (po, which is why the zero 

modes do not behave as the ladder operators. Instead for the commutation with the density

operator we apply the relation = Y  [X, Y] +  [A', [X, Y]]/2\  +  The second and

higher order terms all vanish for X  = H q/ T  and Y  — ipQ. We have

-  i ^ P o )  (2 .171)

When this is plugged into (2 .168) the correlators containing (po cancel and we are left with a 

relation for po

n I ‘2iJ  ̂ ^  ^

{po'[\'>Pai{xi,ti)) = i — j + Vcti ){Y[tpai{xi ,t i))  . (2 .172)
/=! i=l i=l

With these identities for the modes we can construct Ward identities for the charge and current 

density operators using their mode expansions. For instance, the Ward identity for the charge 

density operator is given by (up to normalization)

T 2 tt

L  . 
1= 1

' ^ a i {x i  +  Vcti)

4_ V  rvM V  fkixi,h)
+  V L  ^  V 1 -  e'>ok/T +  ® 1 _  f , -V ck /T

i=l k>0
(2 .173)

To simplify this expression w e take the large L  limit. In this limit the term linear in 

vanishes, while the summation over k  can be approximated by an integral over the domain
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-y =  ( - 00, - ^ ]  U c » )  which is treated in Appendix A. We have according to (A. 17) 

K ( .  -  X . + vAt
k>0

27TT /  , n T  ( i r T . ^  .. , ,
I  — ^ 2 ^ ^ 7 3 1 — ^Vc J f

(2 .174)

Two important Ward identities are those associated with the charge density and edge current 

operators. These are given by

(2 .175)
n n /— n

{p{x , t ) \ \ l l )a i {X i , t i ) )  =  ' ^ - ^ K { X  -  Xi +  Vc{t -  ti))YX[i>ai{:Xi,ti)) 
i = l  i = l  1=1

n  71 /—  71

{j{x,t)Y[ipaciiXi,ti)) = + Y ^ - ^ V cK{ x -  Xi + Vc{t -  ti))^ (̂W'4)a {̂Xi,ti)) .
i = l  1=1 i = l

(2 .176)

We are not aware o f any earlier work which calculates these identities. This Ward identity 

plays an important role in Chapter 4.

2.9 Discussion

In this Chapter w e discussed the chiral boson model in the context of a fractional quantum  

Hall edge. We showed how the bulk of a FQH fluid necessitates the existence of an anomalous 

edge current, which can be constructed using the chiral boson model. The chiral boson plays 

a universal role in the edge theory of generic fractional quantum Hall states, as it accounts 

for the coupling of the edge to the electromagnetic field, due to its C/(l) gauge symmetry.

The important properties of the chiral boson model discussed in this chapter are

• D ecom position  o f the chiral boson. The coupling of the chiral boson model to the 

EM field can be accounted for using the background field method. This decouples the 

quantum fluctuations from the background configuration.

• Constrained quantization. The chiral boson model is constrained. To quantize the 

model requires Dirac’s quantization procedure, which results in som ewhat unconven­

tional commutation relations.

• Vertex operators. These coherent-state operators represent the quasiparticle excitations 

of the theory.

•  Correlation functions. Using a mode expansion w e compute the one- and two-point 

correlation functions of the edge current and charge density operators. We also com-
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puted the iV-point correlators of vertex operators. We also found restrictions on the 

correlators through use of Ward identities.
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Chapter 3 

Fractional quantum Hall interferometry

This chapter is based on and overlaps with the pubhcation:

O. Smits, J. K. SHngerland, S. H. Simon, Tunnelling current through fractional 

quantum Hall interferometers, Physical Review B 89, (2014), 045308.

DQI: 1 0 . 1103/PhysRevB. 89 .045308  ArXiv e-prints: a r X iv : 1304 .6967

3.1 Introduction to the interferometer

One of the main challenges in fractional quantum  Hall physics is the identification of the 

topological order for a given filling fraction i/. The m ost prolific state is the j/ =  5/2 state 

[226, 174, 232] which could potentially reahze a non-Abelian FQH phase. Candidates for 

the corresponding topological order include the Moore-Read Pfaffian state [162, 99] and 

its particle-hole conjugate the anti-Pfaffian [151, 148]. M easuring the topological order is 

difficult since, by definition of the low-energy description, the theory has no local order 

parameters. Experiments which aim to identify the topological order of a particular fractional 

quantum  Hall phase therefore usually focus on exploring the quasiparticle content of the 

phase. These experiments aim to m easure properties of the anyons, such as the fractional 

charge, conformal dimension, fusion rules and statistics, which consequently tells us more 

about the corresponding topological order.

Tunnelling experiments probe the gapless excitations which reside at the edge of the 

system. Through the virtue of the bulk-edge correspondence the edge contains information 

on the properties of the bulk. Loosely speaking, for every operator which creates a bulk 

quasiparticle excitation there exists an operator which creates an identical quasiparticle at the 

edge. Tunnelling experiments such as interferom etry make use of this feature in an effort to 

explore the topological order of the system.

Experiments have successfully measured the fractional charge of tunnelling quasiparticles 

[193, 55, 64] for a variety of quantum  Hall phases. More recent experiments aim to fully

65



Figure 3.1: Figure of an interferometer. Constrictions bring the edges together and causes tunnelling 
of charge from one edge to the other. Hinnelling occurs only between the inner edge states. The outer 
edges carry excitations of lower density Hall liquids, such as underlying fully filled Landau levels. We 
assume these are fully transmitted.

determine the topological order through use of various interfere metric devices [126, 32, 228, 

229, 1, 230, 231, 227]. The early theory of tunnelling point contacts in the FQH regime 

focused mostly on the transport properties of a single point contact [215, 130, 161], In a 

point contact the edges are forced together which induces a partial overlap of the edge states 

of opposite edges. This allows for tunnelling of charge. Kane and Fisher showed using the 

Renormalization Group that in these systems the most relevant operator corresponds to the 

anyon with smallest charge and smallest conformal dimension. By applying a voltage bias 

between the edges a net current of charge will flow from one edge to the other through 

the tunnelling of these anyons. The resulting tunnelling current depends non-linearly on the 

type of anyon tunnelling and it was conjectured that this can be used to determ ine e.g. the 

conformal dimension and fractional charge.

Fractional quantum  Hall interferometry takes this one step further and uses two consecu­

tive tunnelling point contacts. The setup is conceptually very similar to optical interference 

experiments. The edge is chiral, and charge flows in a unidirectional manner. This is the elec­

tronic analogue of an optical beam. The tunnelling point contact act as an electronic version 

of a beam splitter. By combining two tunnelling point contacts we construct an electronic 

Fabry-Perot interferometer. This setup is depicted in Figure 3.1. The advantage of an interfer­

ometer over a single point contact is simply that it generates a richer signal. The tunnelling 

current contains a contribution due to interference attributed to the different paths along 

which anyons tunnel. This interference signal contains information on e.g. dynamical prop­

erties of the edge and statistics of the quasiparticles which is not present in the single-point 

contact case.
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Summary of results

In this chap ter w e analyse the  tunnelling  cu rren t th rough  a Fabry-Perot in terferom eter in 

linear response theory  [40, 82, 18, 80, 17, 153, 16], In a sim ple p ictu re w e assign ti and t -2 

as the complex am plitude of a quasiparticle tunnelling along the corresponding point contact. 

The tunnelling cu rren t follows from the absolute value

I b  ~  \ti +  +  1^2  ̂ +  2Re[tif2] (3 .1)

In linear response theory  the form  and is radically  d ifferen t for the case of a tu n ­

nelling anyon as com pared to w hat w ould be expected for electrons. It is a non-linear function 

o f the applied voltage, the tem p era tu re  of the  system , and  the fractional charge and scaling 

dim ension of the  tunneUing anyon [215, 44]. The term  2Re[iit2] is the  in terference current. 

Interference arises due to a variety  of causes, such as the Aharonov-Bohm  effect, the relative 

phases o f the tunnelling  coupling constants and  the dynam ical in terference due to the finite 

velocity of the anyons traversing the interferom eter. Perhaps the m ost interesting contribution 

to the in terference curren t is due to the statistics of the anyons. Anyons localized in the bulk 

and inside the in terferom eter braid w ith  anyons tunnelling betw een the  edges. This braiding 

o f anyons effectively reads o u t the topological state  of the bulk  anyons, and this signature 

m anifests itself in the in terference cu rren t [53, 199, 24, 25]. F u rther effects arise th a t go 

beyond braiding properties w hich are due to coupling of bulk quasiparticles and edge degrees 

of freedom  [173, 172, 190, 191, 19].

We are prim arily interested in the dependence of the in terference curren t on the dynamical 

p roperties of the edge, such as the velocity of the edge channels and  the applied voltage. 

Earlier w ork focused on edge states w ith a single characteristic velocity [40] or edge states of 

specific quantum  Hall candidates [18, 80] to obtain an expression for the interference current. 

We p resen t here the  m ore general case of an  asym m etric in terferom eter, a generic num ber 

of edge channels w ith possibly d ifferent edge velocities and  opposite chiralities, at both zero 

and  finite tem peratures.

O ur result is an  analytic expression for the in terference cu rren t in term s of a generalized 

hypergeom etric function know n as Carlson’s R function  [35]. This scaling function is closely 

re la ted  to the  Lauricella hypergeometric function  [145, 159]. This Lauricella function is a 

m ultivariable generalization  o f the Gauss hypergeom etric function [98], w hich is a function 

which enters the expression for the interference curren t for edge states described by a single 

velocity [40]. O ur expression generalizes this result to edge states consisting of an arbitrary 

num ber of decoupled  channels described in the conform al lim it. Each o f these channels has 

its own corresponding  velocity. We also find an expression for the in terference curren t at
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zero tem perature in terms of the confluent Lauricella hypergeometric function [159], which 

is a multivariable generalization of the Bessel function of the first kind. Finally we obtain 

an expression for the two-point correlator of an anyon situated at the edge in the {uj, x)- 

representation.

As a function of the voltage between the two edges the interference current behaves as a 

sum of decaying oscillations. The frequencies of these oscillations are determined by the edge 

lengths, edge velocities and the quasiparticle charge. For an antisymmetric interferom eter 

this results in four frequencies appearing in the Fourier spectrum of the interference current 

as a function of the voltage. These four frequencies correspond to the possible combinations 

of one edge length and one edge velocity. Alternatively, we can fix the voltage and vary the 

length of one edge. This again results in oscillating behaviour with frequencies determined by 

the voltage, edge velocities and the quasiparticle charge.

This behaviour of the interference current as a function of varying the edge length is 

relevant to experiments which m easure the Aharonov-Bohm oscillations through applica­

tion of a plunger gate [231, 227, 1]. The plunger gate effectively deforms the area inside 

the interferom eter through use of the Coulomb interaction. This deformation changes the 

Aharonov-Bohm phase of the tunnelling quasiparticles, which results in an oscillating interfer­

ence current as a function of the side-gate voltage. The frequency of these oscillations, which 

we denote by 4>a b > can be used to measure the charge of the tunnelling quasiparticle and the 

effect of quasiparticle braiding [40, 53, 199, 24, 25].

However, the change in area of the interferom eter can also result in a change in the 

edge length, depending on the specific geometry of the interferometer. We show that for 

certain assumptions, such as the geometry of the device, this change in edge length results in 

additional oscillations in the interference current. When the change in edge length is large 

enough and linear with the side-gate voltage, then the interference current shows multiple 

oscillations characterized by the frequencies <t>AB, (pAB + ^  and 4)A S  +  These shifted 

frequencies can be used to m easure the edge velocity.

Overview of this chapter

The chapter is structured as follows. We start in Section 3.2 with a discussion of the edge 

theory of a fractional quantum  Hall phase. We specify the structure of the edge theory and 

quasiparticle operators, which is based on the decomposition in terms of a charged and neutral 

channel.

In Section 3.3 we discuss the model Hamiltonian of the Fabry-Perot interferom eter in 

terms of the quasiparticle operators and the corresponding linear response. This leads to an
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expression of the tunnelling current in terms of four-point correlators of the quasiparticle 

operators, as shown in Section 3.4. Specifically, the tunnelling current is given by evaluating 

the Fourier transform of these four-point correlators at the value of the Josephson frequency, 

see expression (3.39).

The four-point correlators depend on the precise nature of the edge state and they do not 

have a universal form. But as we show in Section 3.5 the correlator has a leading dependence 

which does have a universal expression, which is a result of the conformal symmetry in the 

large system-size limit.

This leads to our main result in Section 3.6, which is the Fourier transform of the leading 

order expression of the four-point correlators at finite temperature, Eq. (3.60). This expression 

is given in terms of Carlson’s R function which acts as a modulating function. Since this 

function is somewhat obscure we summarize its properties in Appendix B.3 and describe our 

method of computing the function, which is through its relation to the Lauricella function.

In Section 3.7 the main result is further explored for special cases, such as the zero temper­

ature case. In Section 3.8 we plot the interference current and the R function for a range of 

experimentally relevant parameters and analyse the result for a number of trial states for the 

V = 5/2, V = 1 jZ and v = 12/5 plateaus. In general the R function has a decaying oscillating 

behaviour. We show how the frequencies of these oscillations relate to the physical parameters 

of the system. In Section 3.9 we discuss the relevance of our results to experiments involving 

the Aharonov-Bohm phase in the interferometer.

3.2 Edge Theory

In Chapter 2 we discussed several aspects associated with the edge of a quantum Hall fluid. 

These mostly revolve around the chiral anomaly and properties of the chiral boson, such as 

its quantization procedure and correlation functions. However, the chiral boson by itself is in­

sufficient to describe the edge theories of the abundance of quantum Hall state candidates. In 

particular, many quantum Hall states, which includes the non-Abelian ones, are characterized 

by the presence of neutral degrees of freedom which do not couple to the electromagnetic field. 

This section is devoted to developing a general framework of these edge theories containing 

neutral and charged degrees of freedom.

A quantum Hall fluid is an example of a system described by topological order [218, 219, 

165, 221]. The fluid has a mobility gap in the bulk of the system. Simultaneously, gapless 

states develop at the edge where the confining potential crosses the Fermi level [106, 217]. 

These gapless edge states are chiral and responsible for the transport properties of the fluid.
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The effective edge theory  of the  fractional quan tum  Hall effect can be seen as as a conse­

quence of anom aly cancellation [233, 86, 217, 162, 7, 237, 82, 85, 88, 15] described in detail 

in Section 2.2. The effective bulk theory  of the electrom agnetic field inside a qu an tu m  Hall 

fluid is a Chern-Sim ons theory; a topological field theory  which develops an anom aly  on the 

boundary w here gauge invariance is broken. A dynam ical edge theory  forms, w ith  the  sam e 

anomaly, bu t opposite in sign. The com bined bulk  plus edge system  is gauge invarian t and 

anom aly free.

In the long-w avelength approxim ation the resulting edge theory is a chiral conform al field 

theory. The electron and quasipartic les of the theory  are represen ted  by local operato rs in 

this conform al field theory. T he se t of all local operators forms the chiral algebra [85]. By 

specifying the  chiral algebra w e zoom  in on a cand ida te  fractional quan tum  Hall s tate  at 

some filling fraction u. To be a suitable candidate for a quantum  Hall state, the chiral algebra 

needs to fulfil a num ber of conditions. These conditions include for instance the existence of 

an electron o p era to r and the presence of a {7(1) symmetry. We assum e such conditions are 

always satisfied in our discussion.

The [ /( I )  sym m etry  arises due  to presence of the electric cu rren t and it is requ ired  to 

ensure anom aly cancellation. In the  case of a LaugU in state the U{1) sym m etry is the full 

gauge sym m etry of the edge theo ry  The corresponding edge theory is the chiral boson treated  

in C hapter 2. It is also know n as a chiral Luttinger liquid or chiral u ( l)  cu rren t algebra. 

[213 ,147 , 81, 209]. More com plicated Abelian edge theories involve the presence of m ultiple 

chiral bosons [217, 21, 219, 27]. For non-A behan quan tum  Hall states the U{1) sym m etry  

is also presen t, b u t only as a subgroup of a larger, m ore com plicated gauge group [162, 

184, 21, 82, 26]. Following Ref. [85, 27] w e lim it ourselves to  those states described by a 

representation of an  algebra w hich is form ed by a direct product

^  =  W „(g>ii(l) (3 .2 )

Here W„ is the sym m etry of the chiral algebra associated w ith the neutral degrees of freedom . 

For non-Abelian states it is W„ w hich is responsible for the non-Abelian natu re  of the system. 

Quasiparticle operato rs obey the sam e decom position. We refer to the d ifferent term s in the 

product as the neu tra l and charged channel of the edge theory. T hroughout the m ain text w e 

mostly deal w ith a single charged and  a single neu tra l channel, although we com m ent on the 

m ore general case o f edge states w ith  m ultiple modes.

Frequently, we deal w ith  quan tu m  Hall s tates w hich develop on top of one o r m ultip le 

com pletely filled Landau levels, as is the case w ith cand idate  states for the  filling fraction 

1/  =  5/2. These filled Landau levels form  edge states as well, and  for sim plicity w e assum e 

these states com pletely decouple from the quantum  Halls state of interest. In the presence of a
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point contact these filled edge states are assumed to fu lly  transmit, meaning charge transfers 

only between the inner-most edges, see Figure 3.1.

3.2.1 Charged channel -  the chiral boson

The action o f the charged channel is that of the chiral boson [213, 147, 81, 153, 209], and 

is treated extensively in Chapter 2. Here we summarize the main properties. We consider a 

single edge w ith  a right-moving chiral boson, held at a voltage bias U in the gauge =  0. 

The action is given by

Sc =  J  ^  [dtifidx^p -  Vc{dx^)'^] +  [d iM didx . (3.3)

The field is compactified by the identification ip — ip -\- and Vc is the velocity o f the

channel. The field ip represents the charge density along the edge through the relation p{x) =  

^ d x ip .  Quantization [81] results in the (non-local) equal-time commutation relations

=  -m sgn (x  -  y) [dxip{x), •p̂ {y)\ =  -i27r5(x -  y) (3.4)

w ith  sgn(x) =  + 1 ,0 ,—1 for x > 0, x =  0 and x < 0 respectively. Hamilton’s equations of 

motion are given by (dt — Vcdx)p =  —^/ueU. The electric charge operator is given by

S =  y  p[x)dx ^  ^  J  dxip(x)dx (3.5)

The Hamiltonian K l ,o,c for a right moving edge held subject to the potential U  which follows 

from the action (3.3) is

KLfl,c =  Hr.,o,c -  eUQ . (3.6)

The second term, ellQ ,  is the coupling to the electrostatic potential. The first term corresponds 

to the Hamiltonian o f the system in the absence o f an external potential,

/ / l .o.c =  (3.7)

The fu ll Hamiltonian (3.6) is a generalization o f the usual grand canonical Hamiltonian of 

the form K q — H q — fiN ,  w ith N  the number operator. Instead o f a number operator we use 

the charge operator.

3.2.2 Neutral channel and quasiparticles

We do not explicitly specify the nature o f the neutral channel, but only assume the decom­

position (3.2). What matters is that the fu ll chiral algebra fixes the quasiparticle content
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of the theory and it comes equipped with consistent rules for fusion and braiding of these 

quasiparticles [165, 178]. Each quasiparticle is characterized by its conformal dimension and 

its fusion and braiding rules with respect to the remaining quasiparticles. This specifies its 

quantum dimension as well.

A general quasiparticle operator factorizes as

-tp^(x,t) ex. a{x, t )  <Si e . (3.8)

'  ^  (  f \

The exponentiated operator represents a vertex operator, see Section 2.6.5. For the

sake of notation we do not explicitly write the normalization factor The operator a

represents the neutral channel.

The quasiparticle operator is characterized by its conformal dimension, + he- The

conformal dimension of the charged channel follows from the charge and the filling fraction, 

he = ^ .  The commutation relations (3.4) show that the operator obeys

[Q, f)] =  Q ^ \ x ,  t) (3.9)

and so the corresponding quasiparticle carries an electric charge Qe.

For each quasiparticle a conjugate particle exists with opposite charge and the same 

conformal dimension [178]. We set

'4>{x, t) =  ct( x , t) (g) . (3.10)

The operator a  is chosen such that the fusion product of ct and a contains the identity channel,

C7 X CT =  1 +  . . .  . (3.11)

For non-Abelian quasiparticles we have, in general, multiple fusion channels. We assume that 

for each operator a  there is a unique conjugate operator a in the theory which obeys the 

fusion rule (3.11). This assumption is in fact a condition on the chiral algebra.

The neutral channel comes equipped with some neutral Hamiltonian, Hn for which we 

assume it follows from a chiral conformal field theory, similar to the charged channel. The

channel is also characterized by a neutral velocity However, the neutral channel does not

couple to the electromagnetic field, and therefore no analogous coupling of a zero mode to 

the external electrostatic potential appears. Furthermore we assume the general situation in

which Vn Vc-
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Figure 3.2: Figure of an interferometer. Tunnelling of quasiparticles occurs at the point contacts, e.g. 

from Xi to Hi through the operator Vj. The dotted arrows represent the direction of the edge currents, 

with a right moving current on the lower edge. In the text we set a = \yj -  iji \ and b =  \xj -  Xi\.

3.3 Model of a Fabry-Perot interferometer

3.3,1 Tunnelling Hamiltonian

In this section we treat the basic idea behind the tunnelling formalism in a system of point 

contacts [40, 41, 18, 153]. We consider a quantum Hall bar o f in fin ite length at a uniform 

filling fraction u. The two edges, denoted as T,r / l , are disconnected and multiple constrictions 

are described by hopping terms allowing for the tunnelling o f quasiparticles from one edge to 

the other. Here the subscript L  and R  denote the left (upper) and right moving (lower) edge 

of the system. For each edge we have an electric charge operator

We apply a voltage bias between the two edges, which is incorporated by fixing the electro­

static potentials Ur  and Ul  at the lower and upper edge respectively. The fu ll Hamiltonian K  

is given by

Here H r  is the tunnelling Hamiltonian which is treated perturbatively w ith  respect to K q. The 

grand-canonical Hamiltonian K q consists o f the terms coupling to the DC voltages through 

the charge operators and Hq. The Hamiltonian Hq decomposes into the Hamiltonians for 

the decoupled left and right moving edges, H[^ and H r . In addition H ^ / r  describes both the 

charged and neutral channels He and o f each edge.

The tunnelling Hamiltonian H r  couples the edges through tunnelling o f quasiholes and 

quasiparticles. For this we first introduce the tunnelling operators V. We set x and y as the

(3.12)

K ^ K o  + Hr  . (3.13)

A 'o  — Ho -  cUl Ql -  eJjRQR (3.14)



coordinates of the lower and upper edge respectively. A generic operator which tunnels a 

quasiparticle with charge e* =  Qe (e >  0) from the lower to the upper edge is then

X — : V{x,y)  = 'ilj \y)^{x) . (3 .15)

The operators and are related as explained in Section 3.2.2. Similarly the operator 

y t (x ,  y) — {x)'i}){y) tunnels a quasi-particle from the upper to the lower edge.

We now consider a system of N  well-separated point contacts. Each point contact is ap­

proximated by a single tunnelling operator V{xi ,yi )  and a corresponding tunnelling coupling 

constant F,. We have in the Schroedinger picture for the tunnelling Hamiltonian

H r  =  T  +  T^ (3 .16)

where the T  operator is defined as

N
T =  . (3 .17)

i=\

Here the sum runs over the N  point contacts and Xi and yi denote the coordinate of the i ’th 

point contact on the lower and upper edge.

3.3.2 Tunnelling Current

The quantity of interest is the current running through the point contacts from one edge to 

the other, the so-called backscattering or tunnelling current (Ib )- It is defined as the rate of 

change of the difference in electric charge of the edges, {Qr  — Q l )- Using the equations 

of motion for operators in the Heisenberg picture we have

fB =  - i ^ [ Q R - Q r . , T  +  T ]̂ (3 .18)

Here we used that the charge operators commute with the free Hamiltonian Hq as the charge 

is conserved separately on each edge in the unperturbed system. The commutation relations 

(3 .9) imply [Qr ,T] — - Q T  =  -  [Ql ,T],  and so w e obtain

l B = i Q e { T - T ^ )  . (3 .19)

3.3.3 Linear Response

Initially, at some reference time to, the perturbation Hp  is absent and the two edges are de­

coupled. At this initial time to both edges are in thermal and (separate) chemical equilibrium

with respect to the Hamiltonian K q. The density matrix is given by

wq =  w(to)  =  e~^^°!Z . (3 .20)
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Note that the external DC voltage is not treated perturbatively, but directly incorporated into 

the initial density matrix.

The perturbation H r  is adiabatically switched on at f >  i,Q, slowly driving the system out 

of equilibrium. The time evolution follows from the usual time evolution operator 

which solves the Schroedinger equation with respect to K ,

idtUK{t,to) = KUK{t ,to)  . (3.21)

Next we factorize [180] the time evolution operator as Unit,  to) =

Through (3.21) it follows that satisfies

Ht H) = . (3.22)

The operator is expanded as a power series in the tunnelling coupling constants. In a

perturbative approach [180] we keep the term lowest order in F(x, y) which is

-  i [  H r { t ' ) d t '+ . . .  . (3.23)
Jta

The expectation value of an operator O  is {0{t)) = Tr woOK{t) where is the Heisen­

berg representation of the operator

OK{t) = u l { f , to )O K { tQ )U K { tM  . (3.24)

At the initial time to the perturbation H r  is absent, and so OK(to) = Oxoito)- This identity 

together with the factorization of Uk  and expression (3.24) results in

C>A'(i) =  Ko{t)U (3.25)

where we have defined

Oh'oit) = (3.26)

and O s  is the Schroedinger picture of the operator. W hen is expanded and we keep

only the low'est order term we obtain for the expectation value

{ 0 { t ) ) ^ { 0 K , { t ) h - i  f  { [ O K , { t ) , H T { t ' ) ] ) o d t '  +  . . .  . (3.27)
J —oo

Here (• • • )n -  Tr w q  ■ is the ensemble average with respect to the unperturbed thermal 

state of the edges, Eq. (3.20), and we have set to —>■ —oo. We emphasize that this thermal 

state still includes the nonperturbative effect of the DC voltage. Expression (3.27) is the Kubo 

formula for the operator O with respect to the perturbation Hr-
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3.3.4 Time evolution due to applied DC voltage and gauge invariance

In our approach a simpHfication is possible which elucidates some of the later manipulations. 

In the interaction picture the time dependence o f the operators, (3.26), follows from the edge 

Hamiltonian A'o, which includes the effect of the DC voltage bias. Since the charge operators 

Qr i i  commute w ith the Hamiltonian we can further factorize the time evolution operator 

as

g —iA 'o i  _  Q - i H o l L Q L l ^ i e U a Q i i t

The time evolution o f the tunnelling operators V due to the applied bias voltage can now be 

made explicit. We use the commutation relations o f the charge operators (3.9) and the form 

of the tunnelling Hamiltonian (3.16). This gives for the tunnelling operator V{x, y),

VKo(x,y,t)  =  , (3.28)

where . This is simplified further by using that when we

have two operators A  and B  w ith  a commutator of the form [A,B] — a B  then we have
^ - i 0A^pi0A _  gives

VKo{x,y,t) =  e^^*VHoi:x,y,t) . (3.29)

Here we have defined ooq — Qe{Un -  UL)/h,  which is the Josephson frequency for a particle 

w ith  charge Qe. The value o f the charge Q depends on the specific edge and quasiparticle 

under consideration. Typical experiments are carried out in the 0 -  100 [/iV ] regime, corre­

sponding to a Josephson frequency o f 0 — 10^° [Hz].

V\'e now have for the tunnelling Hamiltonian and current operator in the interaction 

picture

HT{t) =  T{ t)  +  T \ t )  (3.30)

i s i t )  =  =  iQe{T{t) -  T ^ t ) )  (3.31)

T{t)  =  (3.32)
i

V {x ,y , t )  =  VH,{^.,y,t) =  e^^°^Vs{x,y)e-^^°^ (3.33)

The effect o f the DC voltage on the time evolution of the tunnelling operators V is completely 

captured by the phase factor

VNTiat we have performed here is essentially substituted the chiral boson by its decomposi­

tion as explained in Section 2.4. This is the background field method, in which <f is w ritten 

as the sum ip +  <pf̂ , where ip =  —^/yUt  is a classical solution to the equations o f motion.
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Upon this substitution the quasiparticle operator pick ups a phase and the remaining 

fluctuations iph decouple from the electromagnetic potential, see Section 2.6.5.

The effective replacement of the tunnelling coupling constant F by a time dependent one, 

F can also be obtained by performing a suitable gauge transform ation; one that

gauges the scalar potential of both edges U to zero [147, 40, 219]. Since the quasiparticle 

operators -tp are charged, the tunnelling operators T  pick up a phase term  under this 

gauge transformation [27].

3.4 Linear response of the tunnelling current

In the absence of the tunnelling Hamiltonian the tunnelling current vanishes, so { I b ) o =  0- 

The linear response (3.27) for the tunnelling current (3.19) is therefore

I b { u q )  =  (/fi(0)> =  - i  f  ( [ / b (0) , / / t (0 ] ) o  d t .
J  — OO

We plug in the expressions for the tunnelling Hamiltonian (3.30) and the tunnelling current 

(3.19) in terms of the tunnelling operators T. This gives

/ OO

([T(i),Tt(0)])o dt.
-OO

(3.34)

The correlators of the type (TT) and (T ^rt) vanish, as they describe overlaps of states with 

different electric charge. Furthermore, we also rewrite the correlator of the comm utator as 

([T'f(t), T(0)])o =  —([T(—i), rt(0)])o  which is a consequence of time translational invariance. 

A change of integration variable finally results in (3.34).

Next we express Eq. (3.34) in terms of the tunnelling operators V{x,y)  by substituting 

Eq. (3.32) for T. For that we introduce the tunnelling-tunnelling correlators between the z’th 

and j ’th point contact

Gfj{t) =  {V{xi ,yi , t )vHxj,yj ,Q))o

-  {VHxj ,yj ,0)V{xi ,yi , t ) )o . (3.35)

This gives

([T(0,Tt(0)j)o =  ^ F , F * e - « '  [G>.(i) -  G<j{t)

where Fi is the tunnelling coupling constant of the i ’th point contact. Inserting this into the 

expression for the tunnelling current, (3.34), the integration over time results in an expression
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in terms of the Fourier transform of the G-correlators

(3.36)

^ ( o ; g )  = r,r* g >{uq ) - g <̂ {uq )

, and the Kubo-Finally, we make use of complex conjugation, which relates Gf-(uj) — Gĵ - (w) 

Martin-Schwinger condition [129]. The KMS condition applies to two-point equilibrium corre­

lators and relates (A(t)B(0))o =  (B(O)A(t +  iP))o- When applied to the tunnelling-tunnelling 

correlators G we obtain

G>{t) = G<j{t + ifi) 

G>{u) =

and so

U j { u j q )  +  I , i { u j Q )  =  2|rir*| Re ( l  -  G>-(wq)

(3.37)

(3.38)

Here we introduced Oij as the relative phase between the coupling constants FiF* =  iTiF* . 

One contribution to this phase is the Aharonov-Bohm (AB) effect. Quasiparticles traversing 

along different point contacts enclose a different am ount of flux, which causes an AB inter­

ference. This interference is independent of the applied voltage, provided the geometry is 

fixed as a function of this DC voltage [109]; an assumption which does not always apply We 

define <I>q = h/{Qe)  as the unit flux quantum for a particle with Q. The enclosed flux quanta 

between two point contacts i and j  is then given by ^i j  — 2n{^i  -  where is the

total flux enclosed by the path of quasiparticle tunnelling along the z’th point contact. We 

have for the tunnelling current

NN

\V,\\l-e-^^)Gl{ojQ) +2j]|r,r*|Re
1=1 i<j

; (1 ) (3.39)

where we replace aij = with aij the relative phase of the point contacts. The first

summation is the sum of the tunnelling current through each point contact in the absence of 

any interference. All interference effects are encapsulated in the second summation, which 

we call the interference current.

3.5 Correlators

The tunnelling current is completely determined through the G ^  correlators. In terms of the 

quasiparticle operators (3.8) these correlators are given by a product of four-point correlators,
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one correlato r for each edge channel,

X {a{yi , t )a{xi, t)a{xj,0)a{yj,0))o . (3 .40)

3.5.1 The neutral mode and conformal blocks

As it stands, the correlato r for the neu tra l channel as s ta ted  in Eq. (3 .40) is no t uniquely 

defined. Non-Abelian quasiparticles span an  in ternal, non-local H ilbert space. This is the 

realization o f the non-Abelian statistical properties. In the language of conform al field theory 

[58, 162] this in ternal space is identified as the space of conform al blocks and  the correlator

(3 .40) is a particular vector in this space. To identify this vector we first need to choose a basis 

in this space of conform al blocks [69, 70, 24, 18]

The conform al blocks in the correlator correspond to the different, possible fusion channels 

o f the quasiparticles a  and a .  Symbolically the fusion rules o f the fields a  and  a  are indicated 

as

6

The sum  runs over all prim ary  states 6  or quasipartic le types of the corresponding  chiral 

algebra, including the vacuum  state. The integers >  0 are non-zero w henever a field 0  is

the tw o quasiparticles, a  and a ,  are brought in close proximity. In this lim it the  quasiparticles 

fuse together and e ither form a new  quasiparticle or they annihilate to the vacuum . Generally, 

a co rre la to r such as Eq. (3 .40) represents a superposition  o f possible fusion outcom es. This 

superposition  is determ ined  by the history of the system.

M ore concretely, the correlato r is a linear com bination  of conform al blocks, w here each 

conform al block corresponds to an  in term ediate fusion channel. We w rite symbolically

The sum  runs over those prim ary fields 6  which appear in the fusion channel of a  and a .  With 

our choice o f a  and a  there is always one channel tha t corresponds to the iden tity  or vacuum  

channel. The functions £ $  are the conform al blocks and  depend  on the coord inates of the 

quasiparticles. The coefficients a g  do not follow from the correlator itself bu t are determ ined 

by the h istory  of the quasiparticles.

(3.41)

presen t in the fusion channel of ct and a .  This fusion rule signifies the possible outcom es when

( a c r a a )  =  ^  a o S e  ■ 
0

(3 .42)
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This sum m ation  a lready  assum es a certain  o rder in w hich the  quasiparticles a re  fused 

together w hen the co rre la to r is evaluated . This order is essentially a choice of basis in the 

space of conform al blocks. A differen t o rder in w hich the quasiparticles are fused together 

corresponds to a d ifferent basis. The corresponding basis transform ation that relates the two 

bases is determ ined  by an  object know n as the F -m atrix  [178]. To com pute a four point 

correlator, such as , we therefore need to choose a suitable basis of the space of conformal 

blocks for which the coefficients ae are know n.

In the case of the correlators the  quasiparticles are form ed from  the vacuum  in pairs 

at a po in t contact. This m eans the initial fusion channel is the vacuum  channel w ith  respect 

to this basis. Put differently, the tunnelling  o perato r V{xi , yi )  creates a quasiparticle-anti- 

quasiparticle pair from  the vacuum  at the i ’th  point contact. It is therefore natu ra l to use this 

basis, as the correlator is a single conform al block w ith respect to it,

{(r{yi , t )a{xi , t )a{xj ,0)a{iyj ,0))  =  fvac • (3.43)

Pictorially we have [70, 18]

a{xi , t )  o-(xj.O)

^vac =  cr(2j i , t )  1----- ^ ■

We now  identified the  vector in the  space of conform al blocks corresponding  to the G^  

correlator. However, a problem  w ith  this basis is th a t it m akes use of fusing quasiparticles 

on different edges. The conform al block Qy^c has com ponents w hich corresponds to overlaps 

betw een the tw o edges. We need  to  pro ject o u t these overlaps, before explicitly calculating 

the correlator [70, 18].

To perform  this projection, w e sw itch to a basis in w hich we first fuse together the  quasi­

particles on the sam e edge, follow ed by fusion of the these fusion products. We have

{a{yi,  t )a{xi ,  t ) a{x j , 0) a{y j , 0) )  =  ayac^vac +  Y l '  (3.44)
e

w here the basis is now  given by

=  a{yi , t )  1--- ---1--- .

Note th a t the quasipartic les of each  edge are paired together and  in p articu lar the vacuum

channel is always p resen t. The coefficients Ovac and  ao follow from the basis transform ation
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which relates the blocks T  and E, and they are determined by the components of the F-matrix 

[58]. In particular,

=  F
a a 

a a
(3.45)

A ll conformal blocks T q as appearing in Eq. (3.44) w ith  a fusion channel different from the 

vacuum {Q ^  vac) vanish in the large system-size lim it. This is the lim it in which the size of 

each edge is taken to infinity, but where the distance between the point contacts is held fixed. 

The conformal block that remains corresponds to the vacuum channel, and it factorizes into a 

product o f two-point correlators. We have fvac =  Ovac -̂ vac +  ■ ■ • and so

{a{yi , t )a{x i ,  0))o == a^ac{cr{rju t)a{yj ,Q))o{(r{xi , t)a{xj ,  0))o (3.46)

The dots represent finite-size corrections which w ill be ignored. The two-point correlators are 

non-zero only when u and d fuse to the identity, which is why we started w ith this assumption. 

What we have accomplished here is a disentangling o f the edges. In this basis the projection 

onto well-separated edges can be performed.

3.5.2 Two-point correlator of a conformal field theory

Two-point correlators in a conformal field theory are strongly constrained due to symmetries 

of the CFT [8, 58]. Following Ref. [58] we first consider the two-point correlator of some 

quasiparticle (prim ary) operator O,

Here the Zi are complex coordinates of the plane, the parameter g is called the algebraic decay 

and it  is related to the scaling or conformal dimension h o f the field O and O through g =  \h.  

The fields O and O must have the same conformal dimension or else the correlator vanishes 

identically.

A temperature is introduced through the conformal mapping o f the plane to the cylinder, 

given hy z =  exp(27riTiw/v) where T  is the temperature of the system, v is the velocity of the 

channel and we work in units where ks =  h ~  I. The fields transform covariantly [8, 58] 

according to 0{iu) =  0{z ) ,  which leads to

{0{ 'w, ) 6 { w2)) =  ■ . W • (3.48)sm(7rT(u>i — W2)/v)s

This transformation introduces a compactification o f the coordinates, which is a geometric 

realization of the temperature. The Euclidean-time expression is obtained through the relation
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IV =  V T  ±  ix.  The sign choice determ ines the chirahty  of the  CFT, and  a m inus sign ( — ) 

results in a right moving channel. The real-tim e expression is obtained by perform ing a Wick 

rotation. The ro tation  introduces the  infinitesim al regulator [209], v^^hich we call 5. We have 

lui -  W2  — S + i{v t i 2  — X1 2 ), w here t n  = t\  — 2̂ - This results in

-  (ttT  /
{0{x ,  t ) 0 { 0 , 0)) =  . , (3 .49)
'   ̂ ^   ̂ sin{nT{S +  i { t  + x / v ) ) ) s

This correlator is som etim es referred  to as the greater G reen’s function. In the end the propa­

gator is neatly  sum m arized as

( 0 { x ,  t ) 0 ( 0 ,  0)) =  v~^Pg(t  — x / v )

I V , r = o

[ sin(7rT ((5 4  it))9 ^  ^

For com pleteness, w e have included the zero-tem perature limit. Putting everything together 

we obtain for the correlator of the neu tra l m ode

{ a { y i , t ) a { x i , t ) a { x j , 0 ) a { y j , 0 ) ) o  =  a^ac{(^{yi , t )a{yj ,0))o{a{xi ,  t ) a { x j , 0 ) ) o  H------

~  + na/vn)Pg,,{t -  r ib / vn )  (3 .51)

Here a — \yi — yj\, b = \xj — Xi\, and  and  ,g„ =  are the  velocity and algebraic decay 

of the  neu tra l channel. The p aram ete r r] =  ±1  denotes the chirality  of the  neu tra l channel 

relative to the charged m ode, w ith  (77 =  + ) representing  the sam e chirality.

3.5.3 Correlators of the charged mode

The correlators of the charged m ode have been calculated in Section 2.7.4. The charged mode 

is Abelian, m eaning all fusion channels are unique and the projection onto disentangled edges 

can be done w ithou t having to  perform  a change of basis in the  space of conform al blocks. 

The projection onto  separate  edges is

(3.52)

The dots represen t finite-size corrections which we ignore.

At this stage w e recall th e  discussion in Section 3 .3 .4  w here  we show ed th a t the  applied 

DC voltage resu lted  in a phase factor This m anipulation  is the  decom position of the 

chiral boson as is discussed in Section 2.4. In this m ethod the chiral boson is substitu ted  by a 

classical field plus fluctuations (p = if + tph, and  in this case (p = - - ^ e l J t .
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When we perform this substitution an additional change occurs. The Hamiltonian which 

is used to compute the correlators, K q, is substituted by the Hamiltonian o f the remaining 

fluctuations, Hq. The coupling term U Q  drops out of the Hamiltonian. Explicitly

(3.53)

We have already substituted in the decomposition o f the chiral boson. The result is that the 

correlator o f the charged mode is given by

Tr Tr

Tr Tr Q - P H a [ i p j \

(3.54)

Here we also inserted the normalization factors. This correlator is treated in section 2.7.4 see 

Eq. (2.151). In our case F[^p] oc: : and since (p =  ^ e U t  we have

F[(f> +  ipf] =  F [p  f]. The phase factor corresponds to the Josephson frequency The

expression for the relevant correlator is

^  +  a / V c ) P g A t  -  b / V c )  +  . . .

(3.55)

This form matches w ith what we obtain by simply replacing the two-point correlators (3.52) 

by the propagators Pg.

3.5.4 Quasiparticle braiding and bulk-edge coupling

The correlators o f the neutral and charged modes, equations (3.51) and (3.55), encapture 

part of the dynamical effects o f quasiparticles traversing along the edge. The other dynamical 

contribution is due to the AB phase. In addition, there is also a topological contribution 

to the tunnelling current due to braiding o f bulk and edge quasiparticles [82, 53, 199, 24, 

25, 18]. The correlator Gfj  is interpreted as the amplitude o f the process in which a pair of 

quasiparticles 0 and are created from the vacuum at the j ’th point contact and annihilate to 

the vacuum at the i ’th point contact. I f  one or multiple quasiparticles is present between these 

point contacts, the resulting amplitude contains a contribution coming from the quasiparticle 

braiding. This so-called matrix element is depicted in Figure 3.3.

More generally. Figure 3.3 represents the expectation value o f Wilson lines computed with 

respect to the fu ll topological quantum field theory and it  is fu lly  determined in terms of the 

5-matrix [25]. To fu lly determine this expectation value we require to specify the exact TQFT 

and the configuration and state o f the bulk quasiparticles. In general the outcome is some 

complex valued function A i j { x ) ,  bounded by | A j ( x ) l  < 1> which depends on the topological
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Figure 3.3: Quasiparticles inside the interferometer braid with quasiparticles tunnelling along the point 
contacts. At lowest order the effect of braiding is captured by the corresponding braiding diagram, 
which is determined from the topological quantum field theory.

quantum num ber x  associated with the bulk anyons inside the interferometer. For the 

correlators we have

Gh =  Ovac -A-ijix) ^  (dynamical contributions) +  finite-size effects . (3.56)

The effect of quasiparticle braiding is a topological effect, due to the statistical properties 

of the anyons. In the case of the Moore-Read state the effect leads to w hat is known as 

the even-odd effect [82, 53, 199, 24, 25, 18]. When there are bulk quasiparticles present 

inside the interferom eter and these quasiparticles are located far from the edge then the 

interference current due to tunnelling of the e /4  quasiparticle vanishes when the num ber of 

bulk quasiparticles is odd. When the num ber is even the interference current re-emerges.

The situation is more complicated w hen the bulk quasiparticles are close enough to the 

edge of the system. In that case the coupling between the bulk quasiparticles and edge degrees 

of freedom needs to be taken into account [173, 172, 190, 191, 19]. This coupling can induce 

tunnelling of the neutral degrees of freedom associated with the non-Abelian statistics from 

the bulk quasiparticles to the edge theory. One result is that even in the case of an even 

number of bulk quasiparticles located inside the interferom eter this bulk-edge coupling can 

effectively flush out the interference current. Averaged over time the tunnelling of neutral 

degrees of freedom can greatly reduce the strength of the interference current. We do not take 

into account the effect of bulk-edge coupling, but we do note that this effect can be relevant 

to recent experiments [1, 231, 227]
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3.5.5 G> correlators and its Fourier transform

The expression for the correlator (3 .40) follows straightforwardly from combining the 

correlators for the neutral and charged mode, (3 .5 1 ) and (3 .55 ).

=  -  vJP yn it ~  ' (3 .57)

Here w e have defined a =  \yi -  yj\ and b =  |xj — Xj\ as the distance between the z’th and 

j ’th point contact along the upper and lower edge respectively. Recall furthermore that r; =  ±  

represents the chirality of the neutral channel relative to the charged channel and Aj(x) is 

due to braiding of quasiparticles.

For the tunnelling current w e need the Fourier transform of the correlator. In Ap­

pendix A.3 w e show how this Fourier transform is obtained. We first treat the contribution 

due to tunnelling along a single point contact, The correlator for G^^{t) is independent 

of position, since a =  6 =  0 in (3 .57 ). We have

=  (3 .58)

with 3 =  +  (jc twice the total scaling dim ension of the quasiparticle. Using the result of

(A.20) gives

Here B{ x , y )  is the Euler beta function and w e have set the integral regulator <5 to zero. We 

treat the zero temperature case later on.

The expression for the more general case {i ^  j )  is more complicated. We write the Fourier 

transform of Gf-(u) {i j )  as the integral definition o f Carlson’s R  function [35]. This is 

a multivariable generalization of the Gauss hypergeometric function. An alternative way of 

representing Carlson’s R  function is through the fourth Lauricella hypergeometric function 

[145, 35, 159], see also the appendix. We have cf. Eq. (A .23) the following expression,

G> {̂u q ) =  Ai,ix)H^°^{ujQ)GUiUQ)  (3 .60)

where all (trajectory-dependent) interference effects are hidden away in the modulating 

function H'^°^ given by

r r m o d /  \ 7r'r(b—a ) ( ^ - \ - r ] ^ \
H ^ ° ° { U Q ) = e   ̂ ' v n j

r > (  ■ (  1 - 2 7 r T - S -  27t7’ -̂ -̂ r Q  'iX R [ y - ' i ' l^ \ { 9 c , ( J c ,< J n ,9 n Y e  '’" ,e  '’c ,e  >-nj. (3 .61)
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The R  function is treated extensively in Ref. [35] and we have summarized some o f its 

properties in Appendix B. In particular, the order in which the parameters appear in (3.61) 

is relevant for its evaluation. Furthermore the R  function allows for certain transformations 

o f the arguments, see also the appendix. Computation o f the B. function is explained in 

Appendix B.3 using results o f Ref. [140]. We mention one transformation in particular which 

is equation (B.5). Through this transformation we have the equivalent expression o f the 

modulating function (3.61). This transformation effectively switches a ^ in the expression 

o f and simultaneously changes the sign of l o q ,

The function A j ( x )  describes the effect of possible quasiparticle braiding entering the corre­

lator Gij. Finally, in the expression for Gfj{uj) we recover the expression for the single point 

contact case, Eq. (3.59). The effect o f the spatial separation of the point contacts, and thus 

all interference effects, is completely captured by the modulating function

Since the R  function is so closely related to the Lauricella function we also mention the 

form of the Fourier transform in terms o f this function. The exact relation is explained in the 

appendix. Here we assume for simplicity a symmetric interferometer b = a. Assuming > f-  

and the expression reduces to

This expression no longer depends on the chirality parameter rj = ±.  The symmetric interfer­

ometer does not distinguish between chiral and anti-chiral edge states.

3.6 Expression for the tunnelling current

We combine the expression for the tunnelling current (3.39) w ith  the expression for the 

Fourier transform of the correlators (3.59) and (3.60) and obtain the follow ing expression

In the spirit o f Ref. [40] we have combined the effects due to interference into an effective 

tunnelling coupling amplitude.

. (3.62)

- 2 n T a ( ^  L )

(3.63)

N N

reff(c^Q)P =  iF ip  -f 2 ^  |r,r,-| R e[^ ,,(x )e * ‘̂ -+ --^ 7 /™ ‘̂ (a;Q)] . (3.65)
i=l i<j
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The function is given by (3.61), which we call the modulating function. The Pi’s

are the tunnelling coupling constant of the i’th point contact and O i j  is the relative phase 

between Fj and Fj. We also introduced the Aharonov-Bohm phase $ij and contributions 

due to quasiparticle braiding are attributed to A i j { x ) -  The disentangling of the conformal 

blocks results in the factor ayac- Within our setup only depends explicitly on the external 

voltage bias. The tunnelling constants Fj depend on the exact geometry of the interferometric 

device, and so the normalization of the current is not universal.

Expression (3.65) for the tunnelling current is of the form.

All interference effects are contained in the function which we call the interference term. 

We only deal with interference between pairs of point contacts; there are no interference 

effects involving tunnelling along three or more point contacts. This is due to the linear 

response approximation, which only takes into account effects up to order |F,Fj|.

A measure for the strength of the interference signal of a two-point interferometer is the 

visibility of the tunnelling current Vis(cjQ). This is defined as

Here max<i>(/B(a;Q)) and min<j.(/B(a;Q)) are the maximum and minimum values of the tun­

nelling current as a function of varying the AB phase <I>y, while keeping all other parameters 

fixed. In the absence of bulk quasiparticles the maximum and minimum values of the tun­

nelling current are given by /q ±  /qsc, with lose =  SjFiFal /single pc. and j • ■ • | the absolute

value. This gives for the visibility

The modulating function is a function of the different energy scales, which are set 

by the temperature and voltage bias, and the scales associated with the velocity and distance 

between the point contacts.

These parameters enter the expression for the function through dimensionless combi-

an exponential factor, determined by Carlson’s R  function which we treat in the appendix.

I b {u q̂ ) ~  ( E  Wpc.(^^q) =  h  +  lo se (3.66)
i i < j

^mod ^  2|FiF,i

^  ^  m a x ^ j l s M )  -  m i n j , ( / B ( t ^ Q ) )

^ m a x > t . ( - f i 3 ( ^ Q ) ) - 1 - m i n 4 > ( i ’j j ( w Q ) )  '
(3.67)

Vis(u;Q) =  . (3.68)

(3.69)

nations, and the function depends on the relative scales. The modulating function is, up to
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The R function is a scahng function, which manifests itself through the hom ogeneous scaling 

transform ation (B .4). It is com puted  through  its re lation to the Lauricella function and the 

corresponding Taylor series as described in Appendix B.3.

Tne expression for the interference current is very general, and the price w e pay for this is 

a limited intuition w hen it comes to the behaviour of the corresponding m odulating function, 

//moc y Jq sum m arize the general behaviour of the function as a function of the

physical param eters. As a function of increasing voltage ujq the m odulating  function  is the 

sum  of m ultiple, decaying oscillations. The frequencies of the oscillations are determ ined  

by the edge lengths and edge velocities. The tem peratu re  and  algebraic decay determ ines 

the relative am plitudes of the  oscillations. In addition, for large tem peratu res decays 

exponentially. Some o f these features are proven analytically, w hile o thers follow em pirically 

from num erical analyses.

3.7 Special cases and generalizations

The main result o f o u r w ork  is the expression for the in terference term  (3 .65) for the tu n ­

nelling curren t (3 .6 4 ) in term s of the  R  function (3 .61). H ere we consider several hm its 

and generalizations, such as the zero tem peratu re lim it and o ther cases in w hich the expres­

sion for the m odulating  function simplifies. This relates our results to earlier w ork

[40, 18, 80, 16, 17]. We consider the generalization to m ore th an  tw o m odes and  discuss a 

relation to the tw o-point quasiparticle propagator.

Recall th a t w e use gc and  g„ to deno te  the algebraic decay of the charged and  neutral 

channel, and Vc and  Vn the corresponding edge velocities and ij = ±  as the chirality  of the 

neutral mode. In th e  case of th ree o r m ore point contacts we obtain  a m odu lating  function 

for each unique p a ir of po in t contacts, We use a and b to deno te  the  leng th  betw een

the z th and j ’th  po int contact along the upper and lower edge respectively. In principle, these 

lengths depends on i and  j ,  so a =  aij and h = . However, we om it these subscripts for the

sake of brevity.

Finally, w e set g = Qc + 9n as the to tal algebraic decay and work in units w here k s  = h = 1. 

3.7.1 Zero tem perature limit

The zero tem perature lim it can be obtained in two ways. The first is to start w ith  the expression 

for the p ropagato r a t zero tem peratu re , (3 .50), and follow the sam e steps as in the finite- 

tem perature case by com puting  the  Fourier transform  of and G<. Alternatively, w e can 

start w ith the expression for the tunnelling current at finite tem perature, and  from  here take
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the zero tem perature Hmit. Both routes should produces the sam e result.

However, the first route leads to an obstruction. W hen w e  attem pt to determ ine the  

interference current w e encounter the follow ing integral (see  also Appendix C)

G > { u ) - G < ^ { u ) r ^

J  \Pgcii + ^)Pgnii + V-^)Pgdi ~ ^)P9n(i ~ V ^ )  ~ {t ^  - t )
-O O

dt. (3 .7 0 )
V c '  ' V n '  V c '  ' V n '  '  ' J

We do not know  how  to solve this integral w ith these general parameters and w e are not aware 

o f a reference in w hich it is treated. Therefore w e proceed w ith  the other route, in w hich w e  

start w ith  the finite tem perature expression, Eq. (3 .6 4 ) , and take the zero tem perature limit. 

For the current w e find the usual pow er-law  behaviour tim es an effective couphng am plitude

27T
Ib  ( o j q )  =  2Q e-2— ^avac|reff(wQ)|^|wQp®“ ^sgn(cjg) . (3 .7 1 )

Vn Vc

The expression  for |reff(wQ)p is the sam e as in the finite tem perature case, Eq. (3 .6 5 ) , but 

w ith  a different expression  for the m odulating function We have w orked out the zero

tem perature lim it o f  in A ppendix C. The result is

+  r?— ) , -  — )) (3 .7 2 )
\  Vn Vc Vn Vc Vn Vn >

The function >̂2 ^̂  is the confluent Lauricella hypergeometric function  o f  3 variables [159] and 

its series representation is given by Eq. (C .17). It can be extended  to include more than tw o  

m odes per edge. This expression for H™°'  ̂ should also be obtained by direct com putation o f  

the integral (3 .7 0 ) .

In the sym m etric case w here a — b the m odulating function reduces to

2g; ~  ;;7 )) •
\  Z’fi Vc Un Uji /

The function $ 2 ^̂  is know n as a Humbert confluent hypergeom etric function o f two variables 

[68, 9 8 ]. For the sym m etric interferom eter the chirality o f  the neutral m ode has no effect on  

the current.

3.7.2 Equal velocities and chiralities

For equal velocities and equal chiralities betw een  the tw o channels w e  set v  =  v„ — Vc and  

■q — + 1 .  This is effectively  an edge w ith a single channel. The m odulating function  

reduces to the Gauss hypergeom etric function.
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The function 2-F1 is the Gauss hypergeometric function. For equal distances betw een the 

tunnelling points on both edges (a =  h) the expression coincides with that found in Ref [40], 

although to arrive at this expression we require some m anipulations of the Gauss function. 

These can be found at e.g. [p. 1009] in Ref. [98]. Thus

r ( 2o)
eq. (3.73) y ^ I m

r ( 5f) s in h (^ )
(3.74)

Expression (3.74) seems obscure and overly complicated in comparison with (3.73). However, 

the representation (3.74) is an expansion in terms of the param eter «, which tends 

to zero for large tem perature. In contrast, the expansion appearing in (3.73) is in terms of 

meaning the argument of the Gauss function tends to one for high temperatures. 

The exact behaviour of the Gauss function around unit argument is problematic, and leads to 

slow convergence of its Taylor series or even singular behaviour. In fact, the standard way of 

analysing the behaviour of 2 F 1 (a, 6; c; 1 — z) for ^ 0 is by first transforming it into a function

of the form 2-f"i {a', b'; c'; z).

The zero tem perature limit can again be obtained in two ways: by directly computing the 

Fourier transform or by taking the zero tem perature limit of the finite tem perature expression. 

In this case it is possible to determine the Fourier transform directly, which we have done in 

Appendix C .l. We also show that this Fourier transform matches with the zero-tem perature 

limit, demonstrating the equivalence of both routes. We find

=  +  . (3.75)

Here is the Bessel function of the first kind and this expression matches w ith what

was found in Ref. [40] when we set a — b.

3.7.3 Fast charged channel

We consider the limit where the energy scales associated with the charged mode are far greater

than the remaining energy scales,

Vr  Vr  V n  v „  k n T  ____
. (3.76)

a b a 0 n

The scales on the right hand side are that of the neutral mode, the tem perature scale and the

applied voltage bias. In this limit the modulating function is

r rm o d /  \ 7 rT (b -a )2 a . f  ■ ^  f r ,  1 i -2 7 tT -2 -Hij  (w) =  e X - 'J— ; {2£/c,5n,5n}; l , e  ^ " , e  ' - n j .

—r r T ( a + b ) ^  —2-KT— gc iui —=  e  ̂ ' Vn e ’̂n ^ e

x M a - i  —  -, {2gc, 5„}; 25; 1 -  , 1 -  (3.77)
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On the  final line we obtain  the first Appell hypergeom etric function o f tw o variables [98], 

F ] (a ;/3 ,7 ; 21 , 22 )- W hen gc =  0 this function reduces to the case of a single edge m ode 

Eq. (3 .7 3 ), as expected.

3.7.4 Large interferometer and high temperature limit

For w ell separa ted  contacts w e consider large a +  b. In Appendix B.2 w e show  how  this 

behav iour can be extracted  from the integral. This lim it suppresses the in terference curren t 

exponentially  according to

^mod ex p ^—7rT(a +  b) ^
i

This is in terp re ted  as an  effective dephasing length

(3.78)

n k B T

-1

(3 .79)

Beyond this scale the interference curren t is suppressed as 7 oc e a + h the total

circum ference of the interferom eter. A sim ilar analysis applies for high tem peratures. Setting

-1
1

(3 .80)
7r(a +  5)

and the  in terference signal vanishes as /  a  . In general the  decoherence effects are

reduced by decreasing the tem perature. See Ref. [17] for fu rther discussion on energy scales 

and visibility of the interference signal.

3.7.5 Asymmetric interferometer

We now  consider the limit w here the length of one edge approaches zero. We set 0 =  0 which 

effectively m erges the point contacts on one edge. We obtain

(3.81)

The reduction  of this expression to the corresponding hypergeom etric form depends on the 

sign of 77. For r; =  +1 we have

(  2£ .4 . 2i l '\  ,
V  Vc V n  J  ^  i ^  r ,  1 - 27r T - 2-  1 - 27t T - ^^ ; 5 c,<7n ;2 ( / ; l - e  > ' c , l - e

while for ?7 =  — 1 we obtain

rp /■ ■ ^  0 1  - 2 7 r 7 '-2 -  ,  -2 7 r 7 ’a ( : ; f +  # - ) \

27tT ’
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Here Fi  is the Appell hypergeom etric function o f  tw o variables [9 8 ]. U sing transform ation  

properties o f the Appell function, w hich  can be found in e.g . [p. 1020] in Ref. [9 8 ], for the 

case o f 7? =  —1 w e can obtain a single expression for the function given by

r r mo d/  \ f  ^  o  1 —2-kT —  -1 —2-nTr}:^\ /-qH^°°(uj)  =  e , 1 -  e (3 .8 2 )

3.7.6 More than two channels

Our result for the interference current generalizes to edges w hich  consists o f  m ore than  

one m ode, all w ith  different velocities. We can also include the possibility o f  different edge  

velocities for each edge. The edge velocity  is not a topologically  protected property o f the 

edge m ode, and its v a lu e(s) can depend on the exact geom etric details o f  the corresponding  

device.

The generalized result is obtained if w e  assum e the m odes decouple in a sim ilar fashion  

as in the tw o-channel case or that the propagator factorizes along the lines o f (3 .5 7 ) . In these  

cases the correlator generalizes to
m

+  nia /v i ,L)Pg i { t  -  m b / v i j t )  (3 .8 3 )
i~ l

Here gi and rji are the algebraic decay and chirality o f the i ’th edge channel and and 

Vi L̂ the velocity o f  the i ’th ed ge m ode on the low er and upper edge. The function A i j { x )  

accounts for possib le braiding o f  quasiparticles and Ovac arises due to d isentangling o f the 

edges. The current is still determ ined by the Fourier transform, and the on ly  change arises in 

the m odulating function and the norm alization o f the tunnelling current w hich now  involves 

all o f the velocities, see (3 .6 4 ) . We have

(3 .8 4 )

Here the argum ents are ordered sets consisting o f the algebraic decay and energy scales,

{Si j  9 i} i= l  ~  {d i  > ) 9 2 i 92i ' ' ' ) 9m i .9m}

,  - n a n T - S ^  7 ) i 2 7 r T - ^ , „ ,  ,  - w 2 7 r T - ^  m 2 v T - ^  - m 2 ir T - S ^  r j i 2 7 r T — ^ ,

and g =  gi. C om putation o f this function is sim ilar to the tw o-channel case and covered  

in Appendix B.3.

3.7.7 Two-point correlators and the R  function

The tunnelling correlator Gfj  is constructed through projection onto decoupled  edges, w hich  

results in a decom position in terms o f a product o f  tw o-point correlators. A sim pler expression
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arises when we consider the the two-point propagator of a non-Abehan anyon on a single 

edge. We have in the conformal Hmit

m

x / v i )  . (3.85)
i=l

Here we absorb the chirality of each mode into the velocity Vi, which can therefore take on 

negative values. The corresponding Fourier transform with respect to time is

ni
i=l

V2 27tT’ 2 2ttT J

where g =  Y l i9 i  ^nd all spatial dependence is captured by the function

( f  ~ i) • (3.87)

This is the equilibrium two-point quasiparticle propagator in a frequency-coordinate represen­

tation.

From this we also have an expression for the R function in terms of a convolution integral. 

For instance, we can write for a product of four propagators

(3.88)

X>{ v \

The two-point propagators reduce to the Gauss hypergeometric function, see Eq. (3.73). In 

turn this expression can be rewritten into Eq. (3.74), through use of identities of the Gauss 

function. The advantage of this final expression is that it is a series expansion in terms of 

g-47rfi'7  ̂ contrast to the old expansion in terms of 1 — . This expansion in terms

of  ̂ behaves better in the high temperature lim it since it avoids the singularity of the 

Gauss function.

For the R function we only have the series expansion to our disposal, which converges very 

poorly in the large temperature limit. Perhaps through use of the convolution integral (3.88) 

and the transformation identities of the Gauss hj^Dergeometric function this high temperature 

can be better regulated, although we have not investigated this further.

3.8 Plots of the modulating function and interference current

In this section we plot the modulating function and the corresponding interference current. 

Based on experiments [228, 229, 230, 231, 227] we take the distance between two point 

contacts to be around 2 [^xm]. For the velocity no experimental data is available, but numerics
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[118] suggests a much faster velocity for the charged mode compared to the neutral mode 

on the order of v^vn  ^  10 and ~  10  ̂ [m/s]. The applied voltage bias lies typically in the 

range of 10 to 50 [/xV] and temperature ranges in the order of 10 — 25 [mK]. We assume a 

lower temperature of ~  1 [mK] as this significandy improves the rate of convergence of the 

series used to compute the expression for the tunnelling current, see Appendix B.3.

In this section we are mainly interested in the behaviour of the i? function. In the expres­

sion for the modulating function the factor is due to quasiparticle braiding,

the AB phase and the relative phase between the tunnelling amplitudes of the point contacts. 

They are assumed to be independent of the applied voltage bias and we set the total factor to 

unity. We comment on the AB effect in the next section.

The final parameters that need to be fixed are model-dependent, and correspond to the 

filling fraction v, the algebraic decay of the quasiparticle propagators and and the 

quasiparticle charge Qe. For a given edge state a renormalization group analysis predicts the 

quasiparticle with the lowest algebraic decay, -f go to be the most relevant perturbation 

[130, 161, 70], Quasiparticles with a larger algebraic decay are less relevant in the language 

of the renormalization group and we ignore their contributions in the plots. A second effect is 

that the effective magnetic length, l \  — hl{QeD), is larger for quasiparticles with a smaller 

charge. The bare tunnelling matrix element depends on this length scale, and it is expected 

that a smaller charge correspond to larger matrix elements. Some trial states predict multiple 

quasiparticles with the same algebraic decay. In these cases the contributions to the tunnelling 

current is expected to arise from the quasiparticles with the smaller charge.

Computation of Carlson’s R  function is not completely straightforward. The function is 

related to the Lauricella hypergeometric function which has a known multivariable Taylor 

expansion or one can resort to numerical integration of the Fourier transform G>. Using com­

binatoric results of Ref [140] the Taylor expansion is cast into a single summation, which we 

explain in Appendix B.3. We use this expansion for computing the R. function. For physically 

relevant values of the input parameters both the series expansion and numerical integration 

schemes converge very slowly. In particular a higher temperature scale reduces the conver­

gence rate significantly. We apply a series acceleration using the CNCT method [125] to 

partially remedy this problem, see also the appendix. However, even the CNCT method is not 

practical for high temperatures and to our knowledge an efficient numerical scheme is still 

lacking.

Due to these convergence problems we are not able to compute the R  function for all 

ranges of the physical parameters. For instance, we mostly assume temperatures of 1 or even 

0 [mK] for the sake of convergence of the modulating function. We also plot the modulating
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function over a range o f the source-drain voltage which lies outside o f what is reached in 

experiments. We have chosen for this range as we want to demonstrate the non-trivial be­

haviour o f the R  function over a greater voltage range. Finally, we point out that currently 

the edge velocities have not been measured and it is possible that the values used in the plots 

are inaccurate.

3.8.1 The tunnelling current without interference

Before we provide some plots o f the modulating function and the interference current we 

first discuss the general behaviour of the tunnelling current in the absence o f interference 

[213]. This expression also enters the result for the total interference current. It is given by 

Eq. (3.64) in terms o f the Euler beta and the hyperbolic sine function, w ith  the tunnelling 

amplitude held constant. The tunnelling current is characterized by the total algebraic decay, 

and we discuss two particular values of g for which the function simplifies. These follow from 

the properties o f the gamma function [68]

t a n h ( ^ )  g = -

(3.89)

T loq g =  1

In the lim it o f l o q  —> oo and g — ^ the expression for the tunnelling current approaches a 

constant value, while g — I  grows linearly w ith  u) q . For the remaining cases the current decays 

to zero for g <  grows sub-linearly for ^ < g < 1, and grows super-linearly for g >  I .  Finally,

at zero temperature the expression for the current follows the power law behaviour

I j 3 oc |tjQ|^^“ ^sgn(wQ) (3.90)

while for high temperatures the function follov\^s

/ b o c w q T ^ 3 - 2  ( 3  9 1 )

3.8.2 The tunnelling current with interference

The upper panel o f Figure 3.4 is a plot of the total tunnelling current (eq. (3.64)) w ith 

and w ithout interference for the case o f the Moore-Read /  Pfaffian quantum Hall tria l state 

[162, 99] for the v =  5/2 plateau. The lower panel of Figure 3.4 is a plot o f the corresponding 

modulating function Re[i7™‘̂ ], given by equations (3.65) and (3.61). The parameters for 

the set gc — gn — and Qe =  e/4. This result is also analysed in Ref. [18]. See the figure 

caption for the exact values o f all parameters.

95



1 Tunnelling current for the Pfaffian state

0.75
—  With interference
—  Without Interference

0.5 U ;

0.25 N \

Modulating function tor the Ptaffian state

0.75

0.5-3

-0.25

75 1000 25 50
Voltage [//V]

Figure 3.4: The tunnelHng current through an interferometer w ith  and w ithout the modulating func­

tion. The current is normahzed by the maximal value o f the tunnelling current w ithout interference 

(m a x(/B (//'"° ‘* =  0))). The quasiparticle is the Qe =  e/4 QP of the Pfaffian state which has 

The remaining parameters are Vc =  7 ■ 10^ [m /s ], =  1 • [m /s ], T  =  1 [m K], a =  2.0 [/im ] and

6 =  1.8 [^m ]. A ll coupling constants are equal. Interference effects due to braiding w ith  bulk quasipar­

ticles is absent, i.e. we set A j  (x) =  1-

The normalization o f the current, which is the prefactor appearing in expression (3.64), 

contains the tunnelling coupling constants Fj. These factors are non-universal, meaning the 

normalization o f the current is non-universal as vi^ell. In Figure 3.4 the current w ithout interfer­

ence is normalized by its maximum value. The normalization o f the current w ith interference 

is chosen such that when the two currents cross in Figure 3.4 the modulating function vanishes 
^ m o d  ^  0.
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3.8.3 Voltage and geometry dependent oscillations and frequencies

M odulating function (7’ -  0)0.5

0.25

■0.25,
100

Voltage (//V)
Fourier transform

0.05 0.2 0.25
Frequency [1///V]

Figure 3.5: Fourier analysis of the modulating 

function when the voltage is varied. Upper panel: 

the modulating transform. Lower panel: the cor­

responding Fourier transform. The vertical lines 

represent the predicted frequency components. 

Parameters are =  1/8 and g„ = I/G at T  =  0 

[K], Qe = e/4, tic =  3 ■ 10'̂  [m/s], !’„ =  9 ■ 10̂  

[m/s], a =  4.0 [/im] and b =  2.5 [pm].

M odulating function (T  -  0, V  -  GO !/tV|)
0.25

0.125

•0.125

-0.25, 0.6 2.4 3
Length of o n e  ed g e  [/nu]

Fourier transform
1 : 
1

A I ......  Q rV /i vJ i)A f''
Frequency [Viini]

Figure 3.6: Fourier analysis of the modulating 

function when the length of one edge is varied. 

The parameters used are Qc =  g,i =  1/8 at T =  0 

[K] and K =  60 [//V]. Furthermore Qe = e/4, 

I’c =  1 ■ 10  ̂ [m/s], Vn =  6-10^ [m/s] and b = 2.5 
[pm].

The m odulating  function Re[//?^°‘̂ ] shows m ultiple oscillations and  decays w hen V  oc, 

see the  low er panel of Figure 3 .4  and the upper panel of F igure 3.5. A num erical analysis 

(Figure 3 .5 ) shows th a t for an  asym m etric in terferom eter (a  ^  b) and  tw o different edge 

velocities the m odulating function consists of four oscillating signals w ith frequencies

^  (3 .92)
^ Vih

w here Xj =  a, b and  vj  =  Vc, These frequencies can be extracted  from the (x, t) representa­

tion of the tunnelling-tunnelling correlators see Eq. (3 .57 ). The peak values appearing

in this co rre la to r correspond to the frequencies (3 .9 2 ). We also find th a t the frequencies are 

in d ep en d en t of the tem peratu re  and  algebraic decay -  these p aram eters  only influence the 

to tal and relative am plitudes of the oscillations. In the  lim it of a sym m etric in terferom eter 

(a  w b) the  num ber of contribu ting  oscillating frequencies drops from  four to two, since 

fa,Vi ~  fb,vi- In this regime the two oscillations form a m odulating signal w ith ’fast’ and ’slow’ 

frequencies w hich w as also found in Ref. [18]. It is also possible tha t the edge

velocity for each channel is different on opposite edges. In tha t case w e still have four different 

frequencies in the Fourier spectrum , even in the case o f a sym m etric interferom eter.

The second analysis w e perform  looks a t the oscillating behav iour o f the m odulating
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function as a function of the length of one edge, while keeping all other param eters fixed. 

These are the oscillations in when a is varied. The frequencies of these oscillations are 

obtained through a numerical Fourier transform, see Figure 3.6. The m odulating function 

shows a similar decaying, oscillating behaviour as in the case of varying the voltage, with 

frequencies given by

U  = (3.93)
Vih

Since the other edge length b is kept constant we observe only two contributing frequencies. 

For the case of a single edge velocity these frequencies can be extracted from the expression 

of the current at zero tem perature, (3.75), by making use of properties of the Bessel function. 

However, we are not able to extract the frequencies in expression (3.93) analytically for the 

more general case. We suspect that such a result can be obtained from the R  function through 

an asymptotic expansion, which we leave as an open problem. We expect that these results 

carry over to the more general case of several edge channels and different velocities, see 

Section 3.7.6.

3.8.4 Temperature dependence

In Figure 3.7 the m odulating function is plotted for the tem peratures 0 [mK], 10 [mK] and 

18 [mK]. The T  = 0 case is computed using the confluent Lauricella hypergeometric function, 

as explained in Appendix C. Computation of the confluent Lauricella function is very similar 

to the finite tem perature case.

The convergence of the series representation used to compute R  function becomes pro­

gressively worse for tem perature scales larger compared to the remaining energy scales. Com­

puting the R  function using the series expansion in this regime becomes impracticable, even 

when we employ a series acceleration. This type of slow convergence is similar to that exhib­

ited by the Gauss function 2Fi{a, b; z) when \z\ -> 1. For the Gauss function a set of hnear 

transformations exist which allow one to avoid this \z\ — I singularity [98], see also Eq. (3.74) 

and the corresponding discussion. We are not aware of a generalized type of transformations 

applicable to the R  function. Due to this slow converge for high tem peratures we frequently 

put T  =  0 or T  =  1 [mK] throughout this work.

From Figure 3.7 we observe that the oscillations are independent of the tem perature. 

Other numerical analyses suggest that this remains vahd for other physical param eters as well. 

Instead the tem perature appears to be responsible for the relative and absolute amplitudes 

of the oscillations which were studied in the previous section. In particular, higher tem pera­

tures cause an exponential suppression of the function as was found in Section 3.7.4. Lower 

tem perature increases the visibility of the interference signal.
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The modulating function 
for different temperature scales

—  0[mKl
—  10 [mK]

18 [mK]
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100 
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Figure 3.7: The modulating function at three different temperatures, keeping all other parameters 

fixed. The tunnelling quasiparticle is the e/4 quasiparticle of the Pfaffian state w ith <7c =  ffn =  g - The 

remaining parameters are Uc =  9 • 10  ̂ [m /s], =  9 ■ 10'̂  [m /s], a =  3.5 [/^m] and 6 =  3.5 [/^m].

The experiments are tjqDically performed at temperatures o f T  — 25 [mK] or lower. Nu­

merically, we have not been able to reach temperatures higher than T  =  20 [m K], We expect 

that the behaviour o f the m odulating function as predicted by our results remains valid in this 

regime. In particu lar we expect that the frequencies o f the oscillations (3.92) and (3.93) are 

independent o f the temperature, although we have not proven this analytically.
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3.8.5 = 5 /2  State

Modulating function for u =  5 /2 candidates
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Figure 3 .8 : The m od u la tin g  fu n ction  o f  four candidate states for the i/ =  5 /2  state. T he proposed  

states and corresp ond in g  quasiparticles are listed  in  table 3 .1  w ith  L1/3 stan d in g  for the Laughlin  

quasiparticle. Data obtained  from  Ref. [1 7 ] . The e /2  Laughlin quasiparticle is present in all three states. 

The param eters used  for th is p lo t are Wc =  5 • 10'̂  [m /s ] ,  d„ =  1.4 • 10'̂  [m /s ] ,  7" =  1 [m K], a  =  2.4 

[/xm] and 6 =  2.1 [/zm ].

The most prominent state for which the corresponding topological phase is conjectured to 

be non-Abelian is the = 5/2 state [226, 174]. In table 3.1 we list some of the proposed edge 

states for the =  § state and their quasiparticle properties. The edge states we consider are 

the Moore-Read state [162, 99] also known as the Pfaffian, its particle-hole conjugate the Anti- 

Pfaffian [148, 151] and the (331)-state [105]. See also Ref. [17]. Of these the (331)-state 

is an Abelian theory. The proposed edge theories consist in all cases of a decoupled neutral 

and charged channel as described in Section 3.2. In the case of the Anti-Pfaffian the neutral 

and charged channels have opposite chiralities. All of these edge theories predict a charge 

of Qe =  e/4  associated with the quasiparticle with the lowest algebraic decay. Furthermore, 

the quasiparticle with second-smallest algebraic decay is for all cases a Laughlin-type anyon 

with a charge of e* — e /2  and algebraic decays of ,gc =  1/2 and gn = 0. Figure 3.8 is a plot 

of the corresponding m odulating functions for the different edge theories, including the e / 2  

quasiparticles.

As we m entioned before, in the language of the renormalization group the most relevant 

tunnelling operator correspond to quasiparticles with the lowest algebraic decay In the case of 

the Anti-Pfaffian the lowest algebraic decay is given by 5 and it corresponds to two quasiparti­

cles, the e/4 and e/2 anyon. In this case we also need to take into account that quasiparticles
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with a smaller charge have a larger magnetic length, and therefore a larger bare tunnelling 

amplitude. So also in the case of the Anti-Pfaffian it is expected that the interference current 

is due to tunnelling of the e /4  quasiparticle.

3.8.6 = 7 /3  State

Modulating function for 1/  7/3 candidates

—  DS,.,, (e/3) 

BS;,,,(e/3)

— R7Ti=, (e/6)
—  Laughlin (e/3)
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F igure 3 .9 : The m od u la tin g  function  o f  four candidate states for th e  u  — 7 /3  state. The proposed  

states and correspond ing  quasiparticles are listed  in table 3 .2  w ith  L1 / 3  rep resen tin g  the Laughlin  

quasiparticle. D ata ob ta in ed  from Ref. [1 7 ]. The e /3  Laughlin quasiparticle is present in the Laughlin  

u  =  2 +  1 /3  state  and all other non-A belian  states. The param eters used  for th is p lot are Vc =  5 ■ 10* 

[m /s ] , Vn =  1.4 • 10^ [m /s ] ,  T  =  1 [mK], a =  2.4 [^*m] and 6  =  2.1 [^ m ].

The next state look at is the v =  1 jZ plateau [226, 174]. The trial states and the 

corresponding quasiparticles with lowest algebraic decay are listed in table 3.2. These trial 

states are the Abelian Laughlin [145] state at =  2 +  1/3, the particle-hole conjugate of 

the Read-Rezayi [184] state at fc =  4, and two Bonderson-Slingerland states [26]. The BS 

states are formed through a hierarchical construction of a non-Abelian candidate state, in this 

case the Pfaffian and Anti-Pfaffian state. Figure 3.9 shows the m odulating function for the 

proposed states.

In addition to plotting the tunnelling current for a number trial states. Figures 3.8 and 3.9 

show the effect of different values of and on the R  function. The general rule is that a 

larger value of gi corresponds to a larger damping on the contributing frequency. In particular, 

a larger sum of +  9c corresponds to an R  function which decays more rapidly for increasing 

V̂ .
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3.8.7 V =  1 2 /5  state

Modulating (unction for u =  12/5 cand idates
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Figure 3.10: The modulating function of four candidate states for the v  =  12/5 state. The proposed 

states and corresponding quasiparticles are listed in table 3.3 with L1 / 3  standing for the Laughlin 

quasiparticle. Data obtained from Ref. [17]. The 2e/5 Laughlin quasiparticle is present in all the listed 

states. The parameters used for this plot are Vc =  5 ■ 10'* [m/s], v„ =  1.4 • 10'* [m /s], T  =  1 [mK], 

a  =  2.4 [ t̂m] and b =  2 . l  [/xm].

The last plateau w e discuss is [234] a t u  =  12/5. There are numerical studies [186, 197, 

23] each of which suggest a different quantum Hall trial state for the v =  12/5 plateau. 

The edge states w e discuss here are the particle-hole conjugate o f the Read-Rezayi state 

[184, 186] at A; =  3, a Haldane-Halperin edge [102, 107, 197], and a Bonderson-Slingerland 

state [26, 23]. The corresponding quasiparticles with lowest algebraic decay are listed in table 

3.3. The modulating functions for these states are plotted in 3.10.

From the plots on the u =  5 /2 , y  =  7 /3  and v  =  12/5 w e find empirically that the 

parameters gi control the amplitudes of the different oscillations present in the R  function. 

These are the oscillations discussed in Section 3.8.3. We find that a larger gt causes a relatively 

smaller amplitude o f the corresponding oscillation. This empirical rule is supported by the 

discussion on dephasing in Section 3.7.4. Here it was found that for a typical length or 

temperature scale the R  function is exponentially suppressed as a function of increasing 

temperature or increasing circumference of the interferometer. These scales are partially 

determined by Here w e find empirically that also the relative amplitude of each

oscillation is inversely related to the corresponding algebraic decay.
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3.9 The Aharonov-Bohm effect and the interference current

3.9.1 The Aharanov-Bohm phase revisited

The AB-phase is determined by the magnetic field strength B, the area o f the interferometer 

and the quasiparticle charge. The phase is given by

where
$  =  2ttB  X Area

(3.94)

^Q = We

Here $  is 2tt times the total number of flux quanta through the interferometer and is a 

unit flux quantum for a quasiparticle w ith charge Qe. So far the appearance o f the AB phase 

has been rather ad-hoc. Here we examine its origin in more detail.

Consider the tunnelling operators V. These operators tunnel a quasiparticle from the lower 

to the upper edge. It picks up an AB phase determined by the line integral along the tunnelling 

path j f  include this phase explicitly then the tunnelling Hamiltonian is given by

H r  -  +  (3.95)
i

where [■ c/1 integrates along a path from the lower to the upper edge along the i ’th point 

contact.

In addition, the quasiparticle propagators (V’V )  3lso pick up an AB phase. This is explicitly 

determined in Section 2.7.4. The final result for the two-point propagator is Eq. (2.148) and it 

includes the phase factors g iy/DaU{t-t')^ The first is the Josephson frequency

whereas the second is a line integral from the z’th to the j ’th point contact along either

the upper or lower edge. Since the interference current is determined by the product of

two-point propagators o f the lower and upper edge we end up w ith  a total phase factor of

i Q e f  A d\ f i A ' ie . (3.96)

This includes the phase coming from the tunnelling Hamiltonian (3.95). The line integral is 

along a closed contour which encircles the area between the i ’th and j ’th point contact. This 

is precisely the AB phase factor .

3.9.2 Weak tunnelling and the AB phase

The expression for the AB phase applies only in the weak tunnelling lim it, where quasiparticles 

w ith  the smallest algebraic decay are the most relevant operators in the language o f the 

Renormalization Group. In this lim it the interferometer is said to be in the Aharonov-Bohm 

regime and throughout this work we assume this always applies.
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Figure 3.11: Idea of the setup of an interferometer with a side gate. By applying a voltage on the side 

gate the electrons are repelled thereby deforming the edge of the quantum Hall liquid. As a function 

of the side-gate voltage the effective area of the interferometer and the length of the lower edge grow 

or shrink. This changes both the AB phase and the B. function.

In contrast, in the strong tunnelling lim it the tunnelling current effectively pinches off 

the area w ith in  the interferometer, thereby forming a quantum dot. This is called Coulomb 

blockade [189, 109]. In this lim it electrons tunnelling between the quantum dot and the 

fluid outside the interferometer form the most relevant operators. The AB phase is no longer 

determined by expression (3.94), see e.g. Ref. [239] for the case o f the integer QHE.

3.9.3 Manipulating tlie AB phase through a side gate

The AB phase is manipulated by either varying the magnetic field strength or deforming the 

effective area o f the interferometer. We are interested in the latter case. In practice [1, 228] 

the area is changed through a side-gate voltage. This setup is depicted in Figure 3.11 w ith  

the side-gate voltage given by Vg (not to be confused w ith  the voltage bias between the two 

edges, wq). By charging the side gate the Coulomb interaction repels electrons inside the 

interferometer, effectively deforming the area o f the quantum Hall fluid. I f  we ignore the 

interference effects due to the R  function or quasiparticle braiding, then the current shows 

the following oscillating behaviour due to the AB phase

Ib  =  Iq +  lose X cos +  6) (3.97)

‘̂ ABiVg) =  X Area(Fg) .

This oscillating signal arises in the weak tunnelling lim it. One typically assumes the change 

in area is linear w ith  respect to the side-gate voltage, meaning Area(Fg) oc Vg. The Coulomb 

interaction and localization effects can alter this behaviour and cause small, non-linear fluc­

tuations as a function o f the side-gate voltage [109]. This is called the Coulomb dominated 

regime (not to be confused w ith  Coulomb blockade). In this regime the edge and the area 

inside the interferometer readjust to keep the dot neutral. Quasiparticles still tunnel along
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the point contacts and the interference current is still visible, but the corresponding AB phase 

does not follow expression (3.97). We assume the interferom eter is not Coulomb dominated 

and the change in area is linear with respect to the side-gate voltage.

Recent experiments [231, 227, 1] observe on the order of <  5 full oscillations when the 

side-gate voltage is varied. This applies to the v =  bj2  state, with a magnetic field strength 

of i? ~  5.5 [T]. The area of the interferom eter is estim ated in the range of 0.1 - 0.4 [//m^], 

depending on the exact geometry of the device. For an interferometry area of 0.15 [/t/m^] and 

a quasiparticle with charge Qe — ejA this corresponds to a total of roughly 50 unit flux quanta. 

If we assume the interferom eter is in the AB dom inated regime, then a generous estimate of 

the change in area is about < 10% when five full oscillations are observed.

3.9.4 The interference current: combining the AB phase  and the func­

tion

When the side-gate is used to change the area of the interferometer, then almost inevitably 

the length of the edge betw een the two point contacts changes as well. This change in 

length causes interference effects through the m odulating function Including this in

the expression for the interference current gives

(3.98)

The function implicitly depends on the side-gate voltage Vg through the length of the 

lower edge, a { V g ) .  W hether the change in as a function of Vg  is significant is determined 

by the change in the length of the edge, the velocity of the edge modes and the voltage bias 

between the two edges u q .

For instance, in the experiment of Ref. [231] the quantum  Hall fluid inside the interferom­

eter is cigar-shaped with the ends of the cigar corresponding to the point contacts. We can 

picture the scenario in which the side-gate voltage deforms the lower edge uniformly, such 

that a 5% change in the area of the interferom eter is accompanied with relatively negligible 

change in the length of the edge. In this scenario the function Vg) is approximately

constant as a function of Vg.

The other possibility is that the change in a{Vg) is not small. The device used in the 

experiment of Ref. [1] has a circular shape, and it is possible that the change in edge length 

is relatively larger than that of Ref. [231]. It then depends on the remaining parameters, the 

velocity and voltage bias, if the change in Vg) is large enough to be observable.

In Figure 3.12 and 3.13 we have plotted these two scenarios. Figure 3.12 is the “w eak” 

case in which the function remains largely constant while Vg is varied. In the lower panel
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Figure 3.12: Plot of estimated AB oscillations as a function of the varying edge length. This variation is 

caused by the side-gate voltage and we assume a linear relation between the area of the interferometer, 

the side-gate voltage and the length of the edge. The parameters used are Q =  e/4 , 3c =  ffn = | ,  

Vc =  8 ■ 10  ̂ [m/s], =  3 ■ 10-'̂  [m/s], h =  2.5 [^*m], a =  2.25-2.75 [/^m], V = 50 [//V], T =  0 [K], The

plot is “weak” in the sense that the modulating function does not change much over the plotted range.

of this figure the function causes a small m odulation of the to tal in terference signal. The 

interference due to a varying edge length  is difficult to observe through m easurem ent of this 

signal. Figure 3.13 show/s the “s trong” case w here the change in is m uch larger. These 

plots differ in the values used for the velocities and edge lengths, keeping all o ther param eters 

fixed. The frequencies of the oscillations at which Hlj°^  varies are given by Eq. (3 .93).

3.9.5 Frequency analysis of interference current

In plotting the figures 3.12 and  3.13 w e assum e a linear relation  betw een  the area and the 

side gate voltage. Area oc Vg, and the length  of the edge and side-gate voltage, a{Vg) oc Vg. 

Under this assum ption the interference due to the AB effect oscillates at som e frequency with 

respect to the varying edge length  a{Vg).  We denote this frequency by 6 ^ 3 ,

gi$/<l>Q _  ^■ n i4> A B  0 .{V g) ^2 99)

In o ther w ords, (f>AB corresponds to the frequency o f the oscillations appearing  in the upper 

panels of figures 3 .12 and  3.13. Fixing the proportionality  constan t betw een  the  change in

106



AB oscillations without dynamical interference (normalized)

"  0.5

- 0.5

Modulating function (Strong)
0.2

Combined interference signal (normalized)
0.2

■S'

- 0.1

-0 .2 ,
2.2 2.3 2,5 2.7 2,8 3

Length of one edge [///«]

Figure 3.13: The same plot as in Figure 3.12, but with different velocities, namely Vc =  9 ■ 10̂  [m/s], 

v„  =  6 • 10̂  [m/s] and the range over which the edge length is varied is larger, a = 2,0-3,0 [//m]. 

These slower velocities and larger range lead to a function which varies significantly more than 
that of Figure 3.12.

area and the change in edge length equal to C\, i.e. AArea(Vy) =  C\ x Aa(Fg), then =  

C l X The proportionality constant depends on the exact details o f the interferometric 

device, and the change o f both area and edge length is performed through the side-gate 

voltage Vg. The charge o f the quasiparticle in the fractional regime can then obtained by 

looking at the ratio o f this frequency compared to that in the integer regime where Q =  1,

=  fractional) ^
^  integer)

In Figure 3.6 we showed that the as a function o f a varying edge length the modulating 

function oscillates w ith  frequencies A similar analysis shows that the combined 

signal of the AB oscillations and the modulating function oscillates at three frequencies, given 

by

frequency peaks =  1 I  • (3.101)
I Vnh VcJl j

These frequencies correspond to the signals appearing in the lower panels o f figures 3.12 

and 3.13. In particular the “ pure" AB oscillations corresponding to 4)a b  remain present and 

the quasiparticle charge can be measured through formula (3.100) even i f  the oscillations in 

^mod gj.g strong. The shifted peaks ĉ a b  +  provide an experimental probe of the velocity
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Figure 3.14: The four figures on the left plot the interference current Re[e"^-^° “7/™”'*] as a function 

of varying the edge length a =  [2.0 — 3.0] [pm] for an applied voltage bias of Kbias =  10, 20, 30 and 

40 [/^V], The voltage bias Vbias should not be confused w îth the side-gate voltage. The figures on the 

right are the corresponding Fourier transforms. The peaks correspond to Eq. (3.101). The remaining 

parameters are gc =  9n =  1/8, 7’ =  0 [K], Qe =  e / ,  6 = 2.5 [/im], =  5 • 10  ̂ [m/s], tv  =  9 ■ 10  ̂ [m/s].
Finally, =  C\ x =  4.11 [/im“ ]̂ with Ci =  1.0 ■ 10“  ̂ [//m] and B =  6.8 [T],

of the edge modes. Numerical estimates [118] indicate that Vc > Vn, meaning the largest 

frequency corresponds to the velocity of the neutral mode.

If the terms in (3 .101) are small compared to 4>a b > then the frequency peaks overlap 

in a Fourier analysis and becom e indiscernible. To enhance the visibility of the different 

peaks w e can either reduce (Pa b , increase the range over which the edge length is changed  

or increase The frequency 4>a b  and the variation in edge length are both determined by 

the geometric properties of the interferometric device and the side-gate voltage.

Increasing can be accomplished by injecting a larger current into the system which is 

equivalent to increasing the voltage bias u j q . The effect o f a larger current on the frequency 

spectrum is demonstrated in Figure (3 .1 4 ), where the applied voltage bias is increased from 

10 [fiV] to 40 [/iV] in steps of 10 [//V], while keeping all other parameters fixed. For a 

voltage bias of 10 [/iV] the frequency peaks merge and are indistinguishable. This is due to 

the relative magnitude of and 4>ab- At a voltage bias of 40 [;tiVJ three frequency peaks 

emerge corresponding to the frequencies (3 .101).
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3.10 Summary

We have calculated the tunnelling current through a Fabry-Perot fractional quantum Hall 

interferometer in linear response theory for a broad class of edge theories. Our main result is 

an expression for the tunnelling current in terms of Carlson’s R  function at finite temperatures 

and in terms of the confluent Lauricella hypergeometric function at zero temperature. This 

expression arises as the tunnelling current is related to the Fourier transform of the quasipar­

ticle propagators. In the conformal limit these propagators have a universal form, which is 

the reason behind the generality of our result.

Our result applies to both Abelian and non-Abelian edge theories with an arbitrary number 

of edge modes -  the neutral and charged degrees of freedom -  each of which is characterized 

by its own edge velocity and chirality. In addition our result is applicable to interferometers 

with different edge lengths between the point contacts and our result can be straightforwardly 

extended to include more than two point contacts as explained in Section 3.4.

We have implemented a numerical scheme to calculate Carlson’s R function and the 

confluent Lauricella hypergeometric function, and the corresponding interference current 

using a series representation. This numerical scheme is written in NumPy and Fortran and 

publicly available [196]. We have also made available the code that reproduce the plots in 

this work.

The interference in the tunnelling current is attributed to the Aharonov-Bohm phase, the 

dynamical interference induced by the voltage bias between the edges and the statistical 

properties of the quasiparticles. Recent experiments [231, 1] measure the Aharonov-Bohm 

phase by deforming the area inside the interferometer through a plunger gate. This setup 

also changes the edge length between the point contacts which induces interference effects 

through the dynamical interference. We show that the total interference results in oscillations 

in the tunnelling current as a function of the edge length. We have determined the frequency 

of these oscillations in terms of the edge velocities and the source-drain voltage, i.e. Eq. 

(3.101). These frequencies can be used to measure the edge velocities.

The visibility of the frequency peaks depends among other things on the geometry of the 

interferometer and the range over which the length of the edge is varied. If there are many AB 

oscillations, while the change in edge length is small then the dynamical interference effects 

are hardly discernible from the AB oscillations. It is possible that the change in edge length 

of current interferometric devices is negligible and the interference effects we describe are 

indeed not measurable. In this case our proposed experiment requires an alteration of the 

interferometer, using for instance a different geometry.

Another way to increase the visibility of the frequency peaks is to increase the strength of
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the injected current. The frequencies are directly proportional to the source-drain voltage bias. 

The frequency of the AB oscillations is independent of the source-drain voltage, while the 

frequencies of the oscillations due to dynamical interference increase with larger source-drain 

voltages.

Alternatively, this dependency can be used to check if the dynamical oscillations play a role 

in experiments which focus on the AB interference. If the effect of dynamical oscillations play 

a role in experiments which measure AB oscillations, then our results predict that this becomes 

apparent by running the experiment multiple times at different source-drain voltages.
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Chapter 4 

Non-equilibrium noise in a point contact

This chapter is based on and overlaps with the pre-print:

O. Smits, J. K. Slingerland, S. H. Simon, Non-equilibrium noise, in the 

(non-)Abelian fractional quantum Hall effect. ArXiv e-prints arX iv: 1401.4581

4.1 Introduction

In the previous chapter we analysed the linear response theory of a fractional quantum Hall 

interferometer. Our main result is a general expression for the tunnelling current and we 

provided an analysis of interference due to dynamical effects. In this Chapter we (1) con­

sider a simpler setup that consists of a single tunnelling point contact and (2) analyse non- 

perturbative aspects of transport properties of the system. In particular we look at the noise 

generated by the tunnelling and edge currents of a fractional quantum  Hall point contact, and 

our main result is a non-equilibrium fluctuation-dissipation theorem.

The tunnelling current through a point contact probes the edge theory and underlying 

topological order of the fractional quantum Hall plateau. The tunnelling is a stochastic process, 

and the tunnelling is a time-averaged measure of these processes. The intrinsic randomness 

of the current is characterized by the fluctuations around the mean. This is called, somewhat 

unfortunately, the noise of the signal. It is unfortunate, because the fluctuations around the 

mean explore the state space of the system and is therefore sensitive to e.g. the electric charge 

and statistics of the tunnelling anyon. The noise is therefore another im portant probe of the 

edge theory and the topological order [20, 157, 48].

The expression for the noise and in particular its relation to the tunnelling current (or, 

equivalently, the transmission) has been studied perturbatively for general and specific quan­

tum Hall states [131, 41, 42, 44, 157, 9, 10, 192, 77, 36, 120]. For special cases such as the 

integer quantum  Hall effect [143, 30, 158] and the Laughlin series [72, 74, 206] there are
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Figure 4.1: Sketch of a point contact. A current is injected at the source (S), flows along the edge 
and is collected by the drain (D). At the point contact quasiparticles tunnel between the edges and a 
backscattering current forms flowing from the lower to the upper edge. The probes 1 through 4 can be 
used to measure the local edge current and the corresponding noise.

also non-perturbative results. The simplest example of a perturbative approach is the Schot- 

tky relation [194], which arises in the low tem perature and weak tunnelling limit. It relates 

the shot noise and tunnelling current through = c*Ib  which can be used to m easure

the quasiparticle charge. However, a universal expression relating the noise and the current 

non-perturbatively is still an open question.

Experiments that measure shot noise [193, 55, 95,187, 94 ,100 ,114 , 49, 46, 47, 115, 116, 

64, 45, 13, 60, 62, 61, 63] do not actually measure the noise in the tunnelling current directly, 

but instead look at the noise in the outgoing edge currents. To clarify, consider Figure 4.1 

which shows a schematic of the experimental setup of a tunnelling point contact. A current 

is injected at the source (S). It flows along the edge and is partially reflected at the point 

contact. The dotted line represents the tunnelling current. This tunnelling current Ig  and 

the corresponding noise Sjg are not m easured directly, but instead end up in the outgoing 

branches of the edge currents. A probe located at position 3 or 4 then measures the local edge 

current and corresponding fluctuations (this probe can also be incorporated with the drain -  

here we use a simplistic picture).

This setup then begs the question: how is the noise at, say, probe num ber 3 related to 

the noise in the tunnelling current? In this work we derive such a relation based on general 

grounds: the conservation of electric charge combined with the chiral structure of the edge. 

Any charge tunnelling from the upper to the lower edge will end up at probe num ber 3 due 

to the chiral structure. In this work we study the non-perturbative expression relating the 

noise in the outgoing current to the noise in the tunnelling current. This question has been 

studied several times before, both non-perturbatively [30,131, 72,10, 211] and perturbatively
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[42, 210, 120],

We will give a summary of our approach and our results in the next section. W hat is 

im portant to keep in mind is that the expression which relates the noise in the edge current 

to the noise in the tunnelling current is not linear. The fluctuations of the tunnelling current 

do not simply add to the fluctuations in the edge current. The relation between the noise in 

the edge current and the noise in the tunnelling current is also known as a non-equilibrium 

fluctuation-dissipation theorem.

Where does the term “non-equilibrium fluctuation-dissipation theorem ” come from? First, 

there is a close relation of a fractional quantum Hall point contact system to quantum dissipa­

tive systems [133], such as the Caldeira-Leggett model [31]. Second, the theorem resembles 

the form of the fluctuation-dissipation theorem  for equilibrium systems [180]. Finally, the 

theorem  is an expression in terms of symmetric and anti-symmetric combinations of certain 

two-point correlators. For equilibrium systems in general such symmetric and anti-symmetric 

combinations are related to the dissipative properties and (auto-)correlations of the system.

4.1.1 Summary and overview of this chapter

Let us present an intuitive picture of the derivation in this Chapter which relates the noise in 

the outgoing edge current to the noise in the tunnelling current. We start with the simplified 

Figure 4.2. A current is injected at S  into the lower edge carried by the (right moving) edge 

current j/j. This chiral current is partially reflected by the point contact, where a tunnelling 

current I b tunnels to the upper edge and ends up in the left moving edge current. On the 

basis of charge conservation the edge current that is m easured by probe 3 equals

3a = 3 r - I b - (4.1)

Suppose we now m easure the noise of the edge current at probe 3. This noise is roughly 

given by the square of the operator or

S-A ~  [ j R  -  I b )~ =  f n  +  1 % -  [j r I b  +  I b J r )

~  5bg + S,g -  ^ S  . (4.2)

In the second line we identify / |  with the noise in the tunnelling current Sig and 5bg a type 

of background noise (the noise of the edge current in the absence of a point contact). There 

also appears a third term  A 5, which represents the coupling of the tunnelling current with 

the equilibrium edge current. This extra term quantifies the “backreaction” and shows that 

the noise of the tunnelling does not add linearly to the noise in the edge current.

In this work we reproduce this argum ent at the operator level to all orders o f perturbation 

theory, which is also what distinguishes our approach from previous work [131, 10, 210]. We
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II b

j R

Figure 4.2: Sketch of a point contact. An edge current is injected at the source S, and is partially 
reflected by the point contact resulting in a tunnelling current Ib - The edge current after the point 
contact is therefore jn  — Ib Con the basis of charge conservation and the chiral structure of the edge). 
The noise measured at probe 3 corresponds to Eq. (4.2). In this work this relations are derived at the 
operator level.

analyse the non-symmetrized noise in the outgoing edge current S's for generic quantum  Hall 

systems. For that -we use two new tools which we have developed in this work. The first is 

the non-equilibrium Kubo formula. This NE-Kubo formula formally extends the expression for 

linear response theory to all orders of perturbation theory, and from it we obtain the current 

equation (Kirchoff’s law) Eq. (4.1) at the operator level. Using the same logic we obtain a 

formula of the form Eq. (4.2).

The second tool we develop is a non-equilibrium Ward identity. A Ward identity is an 

identity imposed on correlation functions, due to the presence of a symmetry in the theory. 

In this work the symmetry is associated with charge conservation (and ja  is the associated 

conserved current), which leads to a well-known equilibrium Ward identity [139]. We have 

extended this identity to correlation functions evaluated in the non-equilibrium system. The 

non-equilibrium Ward identity is used to simplify the expression for the correction term

~  {Jr I b  +  I b J r )- This results in the anti-symmetrized noise of I b , i.e. this correction term 

is proportional to A 5  (5 ,^ ( c .) - 5 /^ ( - u ;) ) .

The final result is an expression for the noise in the edge current related to the noise in 

the tunnelling current, see Eq. (4.78). Therefore to compute the noise in the edge current, we 

only need to determ ine the expression for the noise in the tunnelling current which is often 

easier to obtain and for which more work has been performed. Related to this is an expression 

for the excess noise Eq. (4.82), a non-equilibrium fluctuation-dissipation theorem  Eq. (4.89) 

and an expression for the shot-noise limit Eq. (4.90). Our main work focuses on an edge with 

a single charged channel (described by a chiral boson) and possibly one or m ultiple neutral 

channels. In addition we show how the results extend to quantum  Hall edges with multiple 

charged modes, possibly counter propagating. Finally, we also look at similar expressions for
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the noise at the remaining probes of Figure 4.1, and the noise of combinations of these probes 

(i.e. cross-correlations of different probes). All results are valid to all orders of perturbation 

theory.

An important simplification that we assume is that away from the point contact the edge is 

described by a collection of free and decoupled channels, each described by a chiral conformal 

field theory in the long wavelength limit. Interaction effects and disorder [43, 133], which 

can for instance cause equilibration of the edge currents after the point contact, are beyond 

the scope of this work. We also note that this chapter looks at the (non-equilibrium) relation 

between the noise of the edge currents and the tunnelling current. We do not determine the 

expression for the noise or its relation to the tunnelling current. We will comment on this in 

the next Chapter, which treats the linear response theory of the noise and tunnelling current.

In Section 4.2 we recall the structure of a generic quantum Hall edge. We focus on the 

definition of the edge current operator in the chiral boson model and the non-equal time 

commutation relations of the theory, and extend this construction to edges with multiple 

charged channels.

In Section 4.3 we discuss the model of a point contact and in Section 4.4 we summarize 

the non-equilibrium formalism. This discussion is very similar to that of Chapter 3, although 

we need to go beyond the linear approximation. In Section 4.5 we discuss the non-equilibrium 

Kubo formula and in Section 4.6 we apply the NE-Kubo formula to the edge current operator 

which results in an operator-version of Kirchoff’s law.

The main results regarding the noise are obtained in Section 4.7. This makes use of the 

non-equilibrium Ward identity to simplify the expression for the correction term AS.  We 

obtain expressions for the non-symmetrized noise, the excess noise and the shot noise (all 

of the noise in the edge current) and generalize these expression to the multichannel case. 

Finally, Section 4.8 discusses expressions for the noise in related quantities. We discuss our 

findings in the Section 4.9

4.2 The edge theory revisited

In this section we discuss the edge theory of a generic fractional quantum Hall state. Before 

we come to this we emphasize that our main analysis is quite general and does not require 

all technical details associated with the edge theory. The required input for the treatment on 

the noise is (1) the edge current operator jn  (2) the quasiparticle operator which is used 

to represent quasiparticle tunnelling, and (3) the non-equal time commutation relations of 

the edge current and quasiparticle operator, Eq. (4.15). These relations combined with some
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basic assumptions, such as translational invariance and chirality, are enough input for our 

main work which is treated in Section 4.3 and beyond.

The treatm ent of the edge theory builds upon that of Chapter 3.2, and we refer to this 

chapter for a more involved treatment. In the long wavelength limit the effective edge theory 

is a chiral conformal field theory and it comes equipped with a set of quasiparticle operators 

and fusion rules [213, 85]. The edge contains a L''(l) symmetry due to the coupling with 

the electromagnetic field, which is accounted for by the chiral boson. In this chapter we also 

consider the possibility of multiple chiral bosons which couple to the electromagnetic field. 

We assume the quasiparticle operators a t the edge obey the following decomposition [85]

-^ e d g e  =  W n  ®  u{l)  (8> • ' • <8 ? < ( l)  • (4.3)

Here the i7(l)’s correspond to the different charged channels of the edge. Since we are in­

terested mostly in the properties of the charged channels we describe all neutral degrees of 

freedom collectively through W„. We first discuss the case of a single charged channel, and 

expand this to the multichannel case at the end of this section.

4.2.1 The charged and neutral channels in the absence of tunnelling

We consider the chiral boson [81, 213] from Chapter 2 coupled to a DC voltage bias. We do 

not consider a perturbed magnetic field. The action is given by

^  ^  [-r)Hdt(Piidx(pn ~  Vcid^tpnf] dtdx +  ^ U r  J  [Ox^r] dtdx . (4.4)

Throughout this work we mostly focus on a single right moving chiral boson defined on the 

lower edge with velocity Vc and coupled to the potential Ur . The chirality 77̂  =  1 is written 

explicitly, such that we can easily switch to a left moving boson by replacing i? -> L (and 

ijL = -1 )-  The quantization [81] is performed in Chapter 2.5 and results in

[‘PR{x),y:>Rix')] = iriRnsgn(x -  x') (4.5)

with sgn(x) =  +1, 0, 1 for the regions x > 0, a; — 0 and x < 0. Using the equations of motion 

{-TlRdt -  Vcdx)ipR = - \ / y U R  we can extend the commutation relations to non-equal time 

(see Chapter 2)

[ipnix, t),<pR{0,0)] =  iriRnsgn{x -  VRVct)

[dx^PRix, t), (Pr {0, 0)] =  iriR2nS{x -  i]RVct)) . (4.6)

The left and right moving bosons commute. The dependency on the combination x  ±  Vct 

reflects the chiral nature of the system and we assume the system is translational invariant.
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The non-equal time commutation relations play an im portant role in the derivation of the 

NE-FDT.The charge density and total charge operators along the edge are identified with the 

operator

P r { x ) = ^  dx . (4.7)
2vr 27t

The neutral channel describes edge degrees of freedom which do not couple to the external

voltage bias. In this work we are primarily interested in properties of the electric edge current.

This current completely decouples from the neutral channel. So although the neutral channel

plays an import role in specifying the topological we do not specify its exact nature and only

demand that the decomposition (4.3) holds.

The neutral channel is described in the long wavelength limit by some chiral CFT which

comes equipped with a consistent set of fusion rules [163, 178], a neutral velocity Vn and

some Hamiltonian //„ . A general quasiparticle operator is of the form

oc aR{x,t)  . (4.8)

It has a charge Q  (we work in units of e =  1) and conformal dimensions hn and he correspond­

ing to the neutral and charged part. In particular, he =  ^  and h =  +  he is the total confor-

mal dimension. In addition there exists a conjugate operator tp{x,t) =  aji{x,t)  

with charge —Q, where the fusion product of an  and an  contains the identity channel (see 

Chapter 3.2).

The total edge Hamiltonian is constructed using the Hamiltonians H q,c and of the 

neutral and charged channels, and the electric charge operators. The grand canonical Hamil­

tonian A'o of the total system is given by

Ko = Ho,c + Ho,n -  Ur Qr -  Ul Ql (4.9)

The combination H q̂c,r  ~  Ur Qr follows from the action Eq. (4.4), and we set //q,c =  H o.c.l + 

ffo.cji- Eq. (4.9) is of the form of a grand canonical Hamiltonian K q = Ho -  fiN, with Q a 

generalization of the num ber operator N.  Although the edges are held a t different chemical 

potentials we still refer to this system and the corresponding Hamiltonian as the equilibrium 

system. When we include the point contact we refer to the system as out of equilibrium.

4.2.2 Edge current operator

The main object under investigation in this Chapter is the edge current operator. This operator 

is derived in Chapter 2.3.4 using the complete bulk plus edge theory, see also Ref. [132]. It 

was found that the edge current operator is given by



Together w ith the charge density operato r Eq. (4 .7) it satisfies the continuity equation d iP R { x ) - ] -  

dxJR i: ^ )  =  0- Using the  equations of m otion w e have the alternative form in term s of the 

charge density" operato r

3r {x ) =  t i rVcPr {x ) -  V R ^ U r  (4 .11)

Here we recall th a t by replacing R L we obtain  the left moving chiral boson. The to tal 

current running through  the system  is given by

I o { x )  =  j n i x )  +  j L { x )  . (4 .12)

We have defined the vacuum  such th a t it is charge neutral. This im plies the vanishing of the 

one-point correlato r (p r {x )) =  {dx^PR{x) )  =  0 and we find for the cu rren t densities on the 

edge

{ j R{x, t ) )  = - t ] r - ^ U r  (4 .13)
ZTT

This one-point correlator is also treated  in C hapter 2.7. The expectation values are w ith respect 

to the equilibrium  H am iltonian at finite tem perature, i.e. ( •■■) = Tr[e“ ‘'̂ ^̂ ° • • ■ ]. For the total 

cu rren t we obtain  the  fam iliar Hall re lation betw een voltage and cu rren t in the  absence of 

backscattering

/m ax  =  (/o) =  O l)  +  U r )  =  U r )  . (4 .14)

in units w here h  =  e =  1. T hroughout this w ork /max is called the equilibrium  cu rren t w hich 

refers to the curren t running  through the system in the absence of tunnelling  betw een edges. 

We define Vsd =  Ui,  — U r  as the source-drain voltage. Finally, there is also the com m utation 

relation  betw een  the edge cu rren t and  the quasiparticle operato r at non-equal tim es. Using 

Eq. (4 .6) w e obtain

[ j R { x , t ) , t p R { 0 , 0 ) ]  =  r iRVcQi^^R{0,0)S{x  -  riRVct) . (4 .15)

4.2.3 Generalization to multiple charged  chan n e ls

The single chiral boson m odel is only sufficient to explain the Laughlin series a t filling fraction 

V =  l/(2 A f +  1) w ith M  a positive integer. This construction can be ex tended  through  use of 

neutra l channels, which allows for a diverse range of filling fractions. An alternative m ethod is 

to consider m ultiple copies of chiral bosons, each of w hich couples to the electrom agnetic field. 

Both constructions are needed  to  account for the w ide variety of observed filling fractions.
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We follow here the treatm ent of Ref. [153] and Ref. [217]. We assume the bosons are 

decoupled from each other. The action of the right moving edge is given by

5'h =   ̂̂  J  [ - r j i dt i piOxipi  -  d t d x  +  - ^ U r  J  ' (4.16)

Each chiral boson ipi has its own edge velocity V{, a chirality rji and a coupling param eter 

Kj > 0. The index i refers to the i’th chiral boson of the right-moving edge. The left moving 

edge consists of a similar set of bosons, but with opposite chiralities i.e. r/f =  etc. We will 

always work with the right moving current unless explicitly stated otherwise. It is possible to 

have Ki =  0, which corresponds to a chiral boson which does not couple to the electromagnetic 

field. Such a boson already falls into the category of neutral channels, so we assume Ki >  0.

It is possible to form ulate the edge theory in terms of coupled chiral bosons, which is 

usually done through use of a /('-matrix [215, 219]. Starting from this formulation we can 

always switch to a different basis of fields through a linear transformation, which results in an 

action of the form Eq. (4 .16). Therefore there is no loss of generality by assuming decoupled 

chiral bosons.

For each boson we have the equation of motion

{ - V i d t  -  Vcdx)v>i =  ->^iUR ■ (4.17)

Since the channels are decoupled we can apply the same argument as before to obtain the edge 

current operator for each channel separately. The charge density, its corresponding conserved 

charge and the edge current density operator of the z’th channel are

Pi =  , Qi  =  ^  f  dxiPi d x  , (4.18)

2

j i  =  =  ViVipi -  V i ^ U R  . (4.19)
ZTT ZTT

Likewise, the comm utation relations also decouple

[ dx (P i {x , t ) , i p j { Q , 0 ) ]  =  ir]i27T6{x -  r}iVit)8ij  . (4.20)

The total charge density' electric charge and edge current of the right moving edge is the 

sum of these operators

P R - ' ^ P i ,  Qfi =  ^  Qi , (4.21)
i i i

A  similar definition applies to the left moving edge.

The total current operator is again the sum j R { x ) + j L { x ) ,  Eq. (4.12). To obtain the current- 

voltage relation (4.14) we assume that each channel is in chemical equilibrium, meaning the
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density m atrix is of the form /Z  and the charge density of each channel vanishes (p;) =  0. 

The expectation value of the right-m oving edge curren t is

and similarly for the left-moving edge current. For a right moving edge w e require ■ r/jK?) > 

0, w hile for a left m oving edge it is negative. The usual conductivity re la tion  Eq. (4 .14) is 

obtained provided w e have

This restriction is in fact a consequence of anom aly cancellation [15], so w e assum e th a t it 

holds. Unlike the single-channel case the conductivity does not uniquely specify the couplings 

Ki (recall that in single channel case we simply have k \ =  i/5/). To fully specify the topological 

order we also need to define the electron operators of the theory, which in turn  determ ines the 

quasiparticle conten t. We refer to  the lite ra tu re  for fu rther discussions on this classification 

scheme.

A generic quasiparticle o perato r is of the form

Finally, the non-equal time com m utation  relations betw een the curren t and  the quasiparticle 

is given by

(4.22)

(4.23)

(4 .24)

which is defined by the qi's. The electric charge Q  of the quasiparticle is determ ined using the 

com m utation relation  w ith  the charge operator

(4.25)

It follows th a t the charge is given by

(4.26)

In addition the conform al dim ension for the i ’th  channel is /?.; =  ^  and so the to tal conform al 

dim ension equals h =  h„ +  he w ith

-  y  -  ViVi{t -  . (4 .28)
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The generic form  of the quasipartic le operato r (4 .24) involves all the  channels of the edge 

theory, although  this mixing does not always occur

An exam ple of a state w hich is described by m ultiple charged chiral bosons is the Moore- 

Read trial state [162, 99, 160] of the ^ p lateau [2 2 6 ,1 7 4 ]. Here we deal w ith a half-filled 

Landau level on top of tw o fully filled Landau levels. The edge theo ry  consists of two chiral 

bosons w ith  couplings =  k -2 =  1, a third chiral boson w ith  = : ^  and  a neu tra l channel 

described by the chiral Ising model. This corresponds to a conductivity of All channels 

are com pletely decoupled and have the same chirality. The quasiparticle operators do not mix 

d ifferen t chiral bosons, so for each quasiparticle the sum  appearing  in Eq. (4 .24) consists of 

only one term .

A second exam ple is a hierarchial trial state [102, 107] of the =  § plateau. The trial state 

is form ed through  condensation of quasiparticles in the — I  state. The corresponding edge 

[217] consists of tw o (co-propagating) chiral bosons w ith  couplings and K2 —

w hich brings the conductivity to v — K  sim plified descrip tion  assum es the distance b e­

tw een  the  tw o charged channels is large and the chiral bosons can be trea ted  as com pletely 

decoupled. Each quasiparticle operato r is then  associated w ith strictly one chiral boson.

In practice the d istance betw een  the channels is small, the Coulom b in teraction needs 

to be taken into account [217] and  the channels no longer decouple (a lthough  the currents 

still com m ute). In this case it is possible to diagonalize the in teraction  term  through a linear 

transfo rm ation  of th e  fields. T he new  fields are, again, com pletely decoupled. In this new  

basis the quasipartic le and electron operators are constructed  from m ultip le fields, and in 

particu lar the sum  appearing  in (4 .24) contains both  chiral bosons of the new  basis.

We finalize this discussion by noting  th a t it is curren tly  n o t com pletely clear if the case 

of coun ter p ropagating  charge m odes arises in the quan tum  Hall effect, as they  have never 

been experim entally  verified. One explanation for this is th a t co u n ter propagating  m odes 

are unstab le in the presence of disorder. In Ref. [133] it w as found th a t for the v — 2 /3  

state  d iso rder induces tunnelling  of charge betw een the  cou n ter p ropagating  modes. This 

results in a d ifferen t effective edge theory  th a t consists of a single charged m ode and a 

coun ter p ropagating  neutral m ode. In this w ork we do n o t consider such dynam ical effects 

w hich a lte r the edge theory  aw ay from the point contact. We sim ply assum e the d ifferent 

channels com pletely decouple, and allow for the possibility of coun ter propagating modes. A 

recen t experim ent [14] suggests th a t counter p ropagating  neu tra l m odes are in fact p resent 

in m ultiple states, including the i/ == 5 /2  state. However, we do expect th a t our results can be 

generalized to include for instance the /C-matrix formalism .
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j R , t o t

Figure 4.3: The point contact induces tunnelling between the two edges. Tunnelling occurs between 
the inner channels of the edges. We decompose the total edge current {jR/L,io\) into channels which 
are partially reflected (Jr/ l ), and which are fully transmitted (j/f/L.bg)-

4.3 Tunnelling point contact

4.3.1 Tunnelling Hamiltonian and tunnelling current

We consider a quantum  Hall bar at filling fraction v with two disconnected edges [41, 42, 70], 

see also Chapter 3.3 and Figure 4.3. The tunnelling operator tunnels a quasiparticle -0 between 

the edges and is defined as

V =  = 0)'iI>r {x =  0) . (4.29)

The quasiparticle is characterized by its quasiparticle charge Q and conformal dimensions 

hn and he- In the multichannel case we assume the couplings Ki and individual charges qi 

are known. The tunnelling Hamiltonian is the tunnelling operator together with a tunnelling 

coupling constant

H r  = rv + r*V^ . (4.30)

It is treated as a perturbation to the grand canonical Hamiltonian K q, Eq. (4.9). The tunnelling 

operator follows from the rate of change of charge

Ib  =  ~  ~  +  Ht ]

= -zQ e ( r V - r V ^ )  . (4.31)

Charge is conserved in the equilibrium system, so [Kq, Qn/i] = 0, and since the quasiparticles 

carry a charge Q we have [Q^, V] =  -  [Qr , V] =  QV. This also applies to the case of multiple 

charged channels.
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4.3.2 Background current and multichannel case

The poin t contact induces tunneUing of quasiparticles betw een the innerm ost channels of the 

left- and  righ t m oving edge. In particu lar it does n o t always involve all edge channels. An 

exam ple is the M oore-Read state  for the i^iot =  5 /2  p lateau . In this case the ou ter channels 

correspond to the fully filled Landau levels which are fully transm itted . Tunnelling occurs only 

betw een the inner channels described by the chiral Ising m odel tim es a chiral boson.

We therefore decom pose the edge cu rren t into tw o pieces: the  channels w hich are fully 

transm itted  and no t involved in the tunnelling process (called the background curren t), and 

the channels w hich are partia lly  reflected (called the reflected cu rren t). This decom position 

is sketched in Figure 4.3. The corresponding cu rren t operato rs are d eno ted  j;? bg for the 

background curren t and J r  for the reflected current. The to tal edge curren t operator is w ritten 

as

Jfi.tot =  j n  + ifi.bg (4.32)

In addition the reflected current and background current can also consist of m ultiple channels. 

Note also th a t the conductivity splits accordingly

t'tot = + ■ (4.33)

The decom position (4 .32 ) is reflected in the definition of the tunnelling H am iltonian and the 

tunnelling current. The perturbation  H r  com m utes w ith the curren t operators of the channels 

not involved in the tunnelling, i.e. [Qfl,bg, Ĥ t ] =  0 and so

[QR,iouHT] =  [ Q R , H r ] .  (4.34)

We can therefo re  trea t the background cu rren t as an  equilibrium  system  unaffected by the 

perturbation .

4.4 Non-equilibrium formalism

The non-equilibrium  form alism  is partially  trea ted  in C hapter 3.3.3. There we developed the 

linear response theory  of a system  of tunnelling  po in t contacts. The approach  used in this 

C hapter is m ore general, as w e keep track of all o rders in pertu rba tion  theory. We therefore 

keep the discussion self-contained.

The tunnelling  H am iltonian is trea ted  as a pertu rba tion  of the grand  canonical H am ilto­

n ian  K q. Initially at som e tim e t  < to the pertu rbation  is absen t and  the  system  is described 

by an equilibrium  density  m atrix of the form

wo =  w(to)  =  . (4.35)
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We also denote (• • •) as the expectation value v îth respect to w;q,

(•) =Tr[?z;o---] . (4.36)

This density matrix further factorizes as a product of density matrices -  one for each channel 

of the system. At some time to the perturbation is switched on adiabatically and the system 

is slowly driven away from equilibrium. Eventually, after the perturbation is fully switched 

on (t :§> to) the system is described by a steady state. In our approach we make use of the 

fact that (1) the initial state is an equilibrium state and (2) the unitary time evolution of the 

system is completely described by the (known) perturbed Hamiltonian K  =  I<o + Hr-

Concretely, when the system reaches a steady state the expectation value of an operator 

O is given by {0{t)) = lx[wQOK{t)] where 0 ^ ( 0  is the Heisenberg representation of the 

operator O with respect to the grand canonical Hamiltonian K,

OK{t) = S^i,{t,to)OK{to)SK{t,to) ■ (4.37)

The unitary time evolution operator SK{t,to) solves the Schrodinger equation,

idtSK{t,to) =  I<SK{t,to) (4.38)

and SK{t ,t ) = 1. Next, we follow Ref. [180] and factorize the time evolution operator ac­

cording to SK'it, to) = to). From Eq. (4.38) it follows that the unitary operator

U{t, to) satisfies the equation of motion

idtU{t,to) = HT{t)U{t,to) (4.39)

Hr{t)  = . (4.40)

Here Hr{t) is in an interaction-like picture with its time evolution dictated by the unperturbed 

Hamiltonian K q. The time evolution operator W is also known as the S-matrix operator and it 

is given by Dyson’s series
r t  oo i - \ n  /- t «

t,to) = T e x p { - i  HT{t ' )dt ' )  = l + Y , - ^ \ l l  dt, T Y [ H T i t j )  (4.41)
•^‘0 n = l  7 = 1

U{t,
“  W .  / * .  J

J =  1

Here T  is the time-ordering operator and the exponentiated form is an abbreviation for the 

corresponding expansion. Similarly, we set for an operator O

Oa'o(0 =  ^  . (4.42)

By using the factorization of the unitary time evolution operator in (4.37) and taking the limit 

<0 ^  — oo we obtain for an operator O its expectation value

0 ^ { t ) = U \ t , - o o ) O K o { t ) U { t , - ^ )  (4.43)

{ 0 ‘ { t ) )=Tr[woO^{ t ) ]  = T r [ wo U^ { t , - o o ) OK, { t ) Ui t , - o o ) ]  . (4.44)
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Here 0^{t) is still the Heisenberg representation OK{t), but with the time evolution operators 

factorized. The superscript  ̂ denotes that the tunnelling Hamiltonian is switched on and 

the operator is taken in the Heisenberg representation. The effect of the perturbation Hr  

is completely captured by the time evolution operator U. All correlators are evaluated with 

respect to the equilibrium density matrix wo-

As an example the expectation value of the tunnelling current is given by

Is  =  ( lUt))  (4.45)

i s i t )  —U ^ t , —oo)iB{t)U{t,—oo) . (4.46)

If we want to explicitly determine this correlator we need a different approach such as pertur­

bation theory.

4.5 A Kubo formula and Ward identity for non-equilibrium sys­

tems

The effect of the tunnelling perturbation is fully captured by the time evolution operator 

U[t,to). In linear response theory the time evolution operator Eq. (4.41) is expanded to 

lowest order in the tunnelling coupling constant, which leads to the Kubo formula,

0 \ t )  ^  OKoit) -  i f  [OKo[t), Hrit')] dt' + .. .  . (4.47)

The dots represent higher order contributions. We present here an extension of the Kubo 

formula, which includes the higher order contributions. It is based on Ref [87]. This non­

equilibrium Kubo formula is given by

(4.48)

We emphasize that this expression is an operator identity. Ref. [87] obtains this formula 

for the class of operators which commute with the equilibrium Hamiltonian K q and can be 

considered a conserved charge in the equilibrium system. The second term is the difference 

of the operator in a system in equilibrium and a system out of equilibrium,

5 0 \ t )  = 0 ‘ { t ) - 0 K , { t )  = - i  t  U^t ' , -oo)[OKo{t ) ,HT{t ' ) ]U{ t ' , -oo)dt '  (4.49)
J —oo

This equation separates the effect of the perturbation on the operator O when the perturbation 

is turned on and the system is forced out of equilibrium.
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4.5.1 Proof of the non-equilibrium Kubo formula

In the this subsection we prove the non-equihbrium Kubo formula Eq. (4.48) to all orders of 

perturbation theory. The proof combines the series expansion for the time evolution operator 

w ith some combinatorial manipulations.

We define the Hamiltonian as K { t )  =  Kq +  \ { t )H T  w ith  H r  some perturbation that is 

adiabatically switched on through the function X{t). This function starts o ff as \ { t  < to) =  0. 

Then at t =  to the function slowly increases until X{t > ta) ~  I at some time ta- This 

process adiabatically turns on the interaction. Measurement o f e.g. the current and noise are 

performed at a much later time t »  ta- In the main text we take ta, to —> —oo and set \ { t )  =  1. 

We assume that the final expression for the Kubo formula of this section obtained (Eq. (4.48)) 

converges to Eq. (4.59) when this lim it is taken.

We write Dyson’s series expansion o f the S matrix operator U as
oo / _ - y i  H  n

to) =  1 +  T . h r  I  X{t j )HT{t j )  (4.50)
n = l  j =  i

Here we use the notation Vtn ^  O IL i Itg prove the NE-Kubo formula we start w ith

the following expansion o f the left-hand side of Eq. (4.48) which follows automatically from 

the Dyson’s series o f U,

0^{t)  =  uHt, to)OK,{t)U{t , to)  -  OKoit) +  T  (4.51)
^ ^  n!
71=1

where OK„{t) — and
7Z y \ m  n

yi(") =  x ; ( - i ) -  "  /  V t n t [ l [ X { t j ) H T { t j ) ] O K o i t ) T \  n  K t j W t j ) ] .  (4.52)
m=0  ^ j=l i = m + l

Here T  and T  are time and anti-time ordering symbols, respectively, and they only act on the 

operators w ith in  the brackets. Empty products are equal to one, i.e. H jLn+ i K i j ) H T { t j )  =  1.

Each summation Â '̂> can be w ritten as a sum over commutators X{tj) [0(t) , iHT{t i ) ] .  

First notice that i f  we exclude the effect o f the remaining (anti-)tim e ordering but include 

the m ultip lic ity due to the binomial ("J , the sum contains 2”  terms. This sum can be 

written as a sum over 2 "“  ̂ commutators. To illustrate this we fix the time ordering. The m =  0 

and m =  1 terms combine as (for the sake o f notation we momentarily absorb X{t) into the 

definition of H r i t ) )

' " \ H T { t , ) f [ H T { t , ) - ( ' ' ^ H T { t x ) 0 { t ) \ [ H T { t j )  =
^ j=2 ^ ^ j=2

”  “  n  HT{t^) -  n  . (4.53)
^ j=2 ^ / j=2
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The first term  contains the desired  com m utator. The second term  can be com bined w ith the 

m  =  2 con tribu tion  in (4 .52 ). The rem ainder of this can be com bined w ith  the rn =  3 term , 

etc. The process is iterated  until all term s are com bined into com m utators. The multiplicity of 

the fc’th  term  in this sum  over com m utators is

th a t w e fix the dum m y indices such th a t { t \ , . . .  >  tm >  { t m+i ,  ■ ■ ■ , tn} ,  and relabel

t r n  t '  and  { t r n + i ,  ■ ■ ■ , t n }  { t , i „ _ i }. This can always be accom plished through 

relabelling of the integration variables for any given tim e ordering. The resulting expression is 

plugged back into the integration over all dum m y variables t m -  Since w e have a tim e-ordered 

(and  anti-tim e ordered) set of integrals the integration  limits need to be adjusted accordingly 

The resu lt is.

The upper lim it of the in tegration  variables t m  is t ' ,  w hich is the  label of H r  appearing in 

the com m utator. An ex tra factor o f n  appears because we are sum m ing over all possible 

(an ti-)tim e orderings. Plugging this expression back into the original expansion (4 .51) results 

in

The sum m ation over 5^”  ̂ m atches th a t of Eq. (4 .51 ), bu t w ith 0 { t )  replaced by [0{ t ) ,HT{t ' ) ] .  

The right hand  side of Eq. (4 .56) is therefore equal to

(4 .54)

To w rite dow n an expression of w e need to incorporate  the  effect of tim e ordering. For

n —l

T\Hx{t , )HT{t j )  [0{t),X{t')Hr{t')]r\  H K h W r i h )  (4 .55)
j=m +\

(4 .56)

w here B ^^\t!) =  [ 0{ t ] ,  H ’r it ') ] and for n  >  0 

B^^\t ' ) =

m = 0  \ - n) j — i j = m + ]

(4 .57)

I = / U \ t , t o ) [ 0 { t ) , X { t ' ) H T { t ' ) ] U { t , t o ) d t '  (4 .58)
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Putting everything together results in the non-equilibrium Kubo formula

0 ' { t )  =  O K o ( t ) - i  t u ^ { t , t o ) [ 0 ( t ) , X { t ' ) H T { t ' ) ] U { t , t o )  dt' . (4 .5 9 )
■I to

For the non-equilibrium Kubo formula used in the main text (Eq. (4 .49)) we take the limit 

to —oo, and set < =  0 and \ { t )  =  1. We assume that the resulting integral converges in this 

limit.

4.6 Edge current operator in the non-equilibrium formalism

In the absence of the point contact, the current through the system is given by the usual

quantum Hall relation /max =  ^ { U l - U h ). Inthe  presence of a point contact this Hall relation 

no longer holds. The point contact induces a tunnelling current I b , which is effectively a form 

of backscattering, since the edge currents of the system are chiral. On the basis of charge 

conservation we expect the current in the presence of a point contact to be

•̂ 0 -̂ max “  I b  ■ (4 .6 0 )

We now show that this relation is also satisfied at the level of the operators. For this we make 

use of the non-equilibrium Kubo formula. Recall that in the interaction representation the 

total current operator is

+ j [ [ y , t )  . (4.61)

Here jjj and are the edge currents in the interaction picture, Eq. (4 .43). We focus initially 

on an edge with a single charged channel and comment on the multichannel case at the end 

of the section.

We now apply the non-equilibrium Kubo formula Eq. (4.48). For this we need the commu­

tator of the edge current and the tunnelling Hamiltonian. We use the com m utation relations 

of the edge current with the quasiparticle operator, Eq. (4.15), and the expression of the 

tunnelling Hamiltonian in terms of the quasiparticles, H r  — -i- c.c.. This gives

[3r {x , t),  Hr i t ' ) ]  =  - i r ] R v j B { t ' ) 5 { x  -  7]RVc{t -  t'))

[3L{x, t ) ,  Hr i t ' ) ]  = ir]LvjB{t')S{x -  r]LVc{t -  t')) (4.62)

with riR = +1 and r/L = - 1 .  Plugging this into (4.48) for and performing the integration 

over t' results in

i) =  t) -  6{x)lBi t -  x/vc)  . (4.63)

jL ix , t )  = j U x , t )  -  0[ -x ) i \ j { t  +  x/vc)  (4.64)
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Here 9{x) is the unit step function, and j \ x ,  t) and are the edge current and the tunnelling 

current operator in the interaction representation, see Eq. (4.46).

This operator has an intuitive meaning. It is a reflection of both charge conservation and 

the chiral structure of the edge current. Consider Eq. (4.63) for the rightmoving current. For 

the region x < 0 the operator reduces to j j^(x, t)  = jR{x, t ) ,  meaning the current operator 

in this region is not affected by the presence of the tunnelling point contact. This is as 

expected, since the region x < 0 is “upstream" of the point contact. For the region x  > 0 

the backscattering current I s  at a retarded time {t — xjvc)  is subtracted. The backscattering 

current is the charge transferred from the low êr to the upper edge and is therefore subtracted 

from the current past the point contact (it is also subtracted from the left moving current 

because of the direction of total current). The identity resembles Kirchoff’s law as charge is 

conserved along the point contact.

The fact that we subtract the operator from j n  at a retarded time t ~  x/vc is a man­

ifestation of the chiral and causal structure. Chirality and translational symmetry enforces 

all observables to be functions of the combination t -  x/vc- A similar argument is used in 

Ref. [210] as a derivation of the edge current operator for the system out of equilibrium. The 

chiral structure takes into account the position of the point contact (at x r  = 0, hence the 

step function), the chirality of the edge (right-moving) and the finite velocity of the charged 

channel.

The total current operator in the interacting regime is now

+ j i { x , t )  -  ij^{t -  \x\/vc) . (4.65)

This indeed reproduces the current relation Eq. (4.60)

Iq = {jR{x,t) +j L{x , t ) )  -  -  \ x \ / V c ) )  = / ma x  -  Ib  ■ (4.66)

A similar relation applies to the charge density operators. When we apply the non-equilibrium 

Kubo formula to these operators we find

p ‘R { x , t )  =  p R { x , t )  -  — -  x / V c ) 0 { x )
Vc

p[(x , t) = pfXx, t) + — lB{t + x /vc )9{ -x )  (4.67)
Vc

Note that the sign of 1b  in the equations are merely a consequence of our conventions 

(direction of the current and backscattering current, charge of the tunnelling quasiparticle, 

etc.)

Let us remark on the more general case of multiple charged channels. First note that the 

inclusion of background currents (see Section 4.3.2) does not modify the relation, since the
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background currents commute w ith the tunneUing Hamiltonian. This is intuitively clear, since 

the background currents are fu lly  transmitted.

In the m.ore general case the additional charged channels do not commute w ith  the tun­

nelling Hamiltonian. The total edge current is a sum of the background currents plus the 

reflected edge currents

jn.toi =  3r +  jH.bg , JR =  ■ (4.68)
i

Each channel is characterised by its own edge velocity Vi and chirality r/j. The commutator of 

the edge current operator w ith  the tunnelling Hamiltonian becomes

[3R,ioi{:x,t),HT{i ')] =  [ jR {x , t ) ,H T{ t ' ) ]  =  - i i B { t ’ ) ' ^ ^ ~ r ] i V i 6 { x  -  riiVait -  t ' )) . (4.69)

and for completeness we also note the left moving edge (w ith  chiralities y jf)

^  ' ^ T ] f v i 5 { x  +  Tj fvdt  -  i ' ) )  . (4.70)
i  ^

The charge of the quasiparticle in this case is given by Q =  KiQi. The edge current operator 

in the interaction picture is given by

=  jR,tot{x,t) -  -  r ] ix/vi )  . (4.71)

The summation reflects the chiral structure of each channel separately and the current relation 

Eq. (4.60) is again obtained.

4.7 Non-equilibrium noise

The main result o f the previous section is the operator identity Eq. (4.65) which captures 

the effect o f the tunnelling Hamiltonian on the edge current. In this section we analyse the 

noise in the edge current in the non-equilibrium system. Using the identity Eq. (4.65) we can 

relate the noise in the edge current out o f equilibrium to the noise in the tunnelling current. 

This results in a non-equilibrium fluctuation-dissipation theorem [131] and an expression 

for the excess noise in the edge current. Put differently, we are studying the effects o f the 

non-equilibrium Kubo formula on autocorrelators and their Fourier transform.

Let us first recall some definitions [20, 157, 48]. Given an operator O we set AC>(i) =  

0 { t )  — {O) and define the autocorrelator So{t )  as

So{t )  =  (AO(^)AO(O)) =  { 0 { t ) 0 m  -  { O f  . (4.72)

130



J r  J r

Figure 4.4: The point contact viewed as a scattering source at x/i = x/, = 0 with the edges depicted 

as incoming and outgoing edge currents. The arrows denote the direction of the local electric current. 

The edge currents are taken in the interaction picture.

The non-sym m etrized noise is the corresponding Fourier transform

S o H  =  J e ^ ‘̂ *So{t) (It . (4 .73)

The sym m etric and  antisym m etric com binations of the noise are deno ted  by

Co{u)  =  i  { S o H  +  So{-uj ) )  (4 .74)

B.o{u;) =  i  (5o(w ) -  So{-co)) . (4 .75)

The sam e no tation  is used in Ref. [131].

4.7.1 Noise in tlie outgoing edge current

In the spirit of Ref. [42] w e th ink o f the po in t contact as a scattering  source w ith the edges 

as tw o incom ing and  tw o outgoing branches, see Figure 4.4. We focus on the noise in the 

outgoing b ranch  o f the right-m oving edge, w hich corresponds to the  noise in jfj 0  

X > 0. We first consider the case of a single reflected charged  channel plus any num ber of 

background curren ts w hich are fully transm itted . The edge cu rren t operato r is

0  =  jkix,  t) +  t) -  Ukix,  t) +  t)) (4 .76)

w ith given by (4 .63 ) and a: >  0. The noise in this outgoing edge curren t is defined as

5 'o u t( i)  =  0 ) )

=  (A j |j (x , / )A j^ (x ,0 ) )  +  (Ajfi_bg(a'’,i)A i/j,bg (x ,0 )), x > 0 . (4 .77)

We now show  th a t this non-equilibrium  noise is com pletely determ ined  in term s the noise of

the tunnelling  cu rren t and the equilibrium  noise of the edge cu rren t. For this we substitu te
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for ,7 ^ the operator equation (4 .6 3 )  and expand to obtain (m om entarily  suppressing the  

x-dependency o f the edge current operator)

■Sout(i) =  { A j R { t ) A j n { 0 ) )  +  (AjH,bg(0'^iR,bg(0)) +  -  x / v c J A l j ^ i - x / v c ) )

-  { A j n i t  +  x /v c ) I b { 0 )  +  I s i t -  x/ vc)Aj [ i {Q))

The term { A j n ^ b z { i ) A l B { - x / v c ) )  van ishes and the term { A j R { t ) A I j ^ { - x / v c ) )  sim plifies to 

(A j n { t  +  x /v c ) /g (0 ) ) .  This expression is an expansion of {Jr  +  bg — I b ) -̂ N ote that w e as­

sum e all edge currents operators com pletely decouple, and so there are no cross-correlations 

betw een different channels appearing in this expansion. The Fourier transform o f the autocor­

relator is the noise o f  in the outgoing current. We have

S'out(w) =  Sb^{uj) +  Sig{uj) -  AS{oj)  . (4 .7 8 )

These contributions correspond to the equilibrium noise { jRjn)  +  {jR,hgjn,bs)> noise in the

tunnelling current {Ib I b ) and the cross terms {Jr Ib ) +  {Ib Jr )- 

To be more precise, the first term in Eq. (4 .7 8 ) is given by

S'bg(w) =  J  e'-'^*-{AjR^tot{x,t)AjR^toi{x,0)) dt  =  ujN{uj)G . (4 .7 9 )

w hich represents the noise o f the edge in the absence o f a point contact. Here G =  ^  is half 

the total conductivity and N{uj) =  c o th ( 2 ] ^ )  -f 1- This w as determ ined in Section  4 .2 . This 

expression is know n as the (non-sym m etrized) Nyquist-Johnson noise.

The second term in Eq. (4 .7 8 ) is

Si^(uj)  =  J  e'‘̂ '(A /^ (O A /^ (0 ))  dt  (4 .8 0 )

which is the noise o f  the tunnelling current. It is a type of non-equilibrium  noise m eaning it is 

not described in terms o f the N yquist-Johnson relation.

The final term is a cross-term  betw een  the tunnelling and edge current

AS{uj)  =  J  e'^^(^{AjR{x,t  +  x /vc) l j3{0))  +  { lB {^ )A jR {x ,  - t  +  x / v c ) ) ^ d t

=  N{uj)Rig{uj)  . (4 .8 1 )

This contribution arises due to the correlation betw een the (equilibrium ) edge current and the 

tunnelling current. It is com pletely determ ined by the anti-sym m etrized noise o f  the tunnelling  

current.

The final expression  for AS^u;) in Eq. (4 .8 1 )  requires som e justification. We m ake use  

of a non-equilibrium Ward identi ty  to sim plify the expression  for the correlators { A j r I^)  

and {Iq A J r ). This is explained  in A ppendix D. Ward identities are identities im posed  on
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correlations functions due to symmetries of the theory. In this case this is due to the ii(l) 

symmetry associated with conservation of electric charge. The Ward identity allows us to 

incorporate the effect of the inserted current operator j n  in the correlator (Ajnl j^),  without 

explicitly determining these correlators. In particular, we do not need to specify the structure 

of the neutral mode since it decouples from the current operator.

The expression for the noise in the outgoing current Eq. (4.78) combined with the ex­

pression for the cross term Eq. (4.81) is our first main result. It is, up to a an equilibrium 

contribution, completely determined by the noise in the tunnelling current Sjg. This is not 

surprising, since fluctuations that arise in the tunnelling current I b  end up in the edge cur­

rent. However, 5out(‘̂ ) 5'bg(‘̂ ) +  Sig{u>). A correction term A S  arises due to the correlation

between the edge current and the tunnelling current.

An alternative way of writing the noise in the outgoing current, Eq. (4.78), is by replacing 

+ Rjg{u).  This gives

=  Cj , {u )  -  c o t h ( ^ ) i ? ; J a ; )  (4.82)

where we have also replaced the left-hand side by the excess noise in the outgoing current

=  5oui(c )̂ -  5out(w, F  =  0) =  5out(w) -  5bg(u;) . (4.83)

By definition the excess noise is obtained by subtracting the V  = 0 contribution from the 

noise. In Eq. (4.82) the right hand side vanishes at V =  0 due to the equilibrium fluctuation- 

dissipation theorem. We show this in the next section. Keep in mind that y  =  0) does

not vanish, but the combination appearing on the right hand side in Eq. (4.82) at K =  0 

does. The noise in the edge current at zero voltage is therefore simply the equilibrium noise

=  0) =  5bg(w).

Finally, we note that the excess noise S q̂ ^{lu) is symmetric as follows from the right hand 

side of Eq. (4.82)

SSuti^) = • (4.84)

Since 7?o^j(w) =  0 we also obtain

Routiuj) = Rbsi^)  ■ (4.85)

4,7.2 Non-equilibrium fluctuation-dissipation tlieorem

Equations (4.78) and (4.82) are non-equilibrium relations between the noise in the outgoing 

and tunnelling current. In equilibrium both sides of Eq. (4.82) are zero due to the equilibrium
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fluctuation-dissipation theorem (FDT). To analyse this further we recall the FDT for a system 

in equilibrium and some operator O,

-  c o th (^ ) i? ^ J (c ^ )  =  0 . (4.86)

The fact that the left hand side of Eq. (4.82) does not vanish signals the non-equilibrium 

nature of the excess noise in the outgoing current.

The equilibrium FDT is a direct consequence of the Kubo-Martin-Schwinger condition[180] 

satisfied by the autocorrelator 3^(1).  This condition states that a two-point correlator com­

puted with respect to a therm al state satisfies

( i ( 0 ^ ( 0 ) ) e q  =  {B{0)A{t + i / k B T ) ) , ^  . (4.87)

For an autocorrelator evaluated at equilibrium this gives

-  i/ksT)
. (4.88)

This equation and Eq. (4.86) are both known as the equilibrium fluctuation-dissipation theo­

rem.

The noise in the outgoing current 5'out(‘*̂’) does not satisfy the equilibrium FDT and is 

therefore a type of non-equilibrium noise. However, some terms appearing in its expansion

Eq. (4.78) do. In particular the noise in the background current Sbg and the correction

term A 5  both satisfy the FDT. For A S { lo) this follows from simply inserting Eq. (4.81) into 

Eq. (4.86).

With these results we apply the equilibrium FDT to the first main result (4.78) (the ex­

pansion of the noise in the outgoing edge current) and arrive at a non-equilibrium fluctuation- 

dissipation theorem (NE-FDT), satisfied by the noise in the tunnelling and outgoing currents,

Coufioj) -  c o th ( |^ ^ ^ )i?0 « t(w ) =  Cig{uj) -  Rig{uj) . (4.89)

This relation was derived by Kane and Fisher [131] for a system of a chiral Luttinger liquid. 

In the case of Ref [131] the noise in the tunnelling current is identified with the noise in
A 2

the voltage drop over the point contact through V/j =  As Kane and Fisher pu t it, this

equation shows that the fluctuations in the edge and tunnelling currents are locked together 

Here we have shown how this naturally follows from analysing the edge current operator in 

the non-equilibrium system.

This NE-FDT relation is our second main result. Here we have generalized the proof to 

general fractional quantum  Hall states, including non-Abelian states. The result also applies
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to the m ultichannel case, as we show in Section 4.7.4. The relation is a direct consequence 

of conservation of charge and the chirality of the edges. We emphasize though that the main 

result of this work is the expansion for the noise in the outgoing current Eq. (4.78) and the 

excess noise Eq. (4.82), and these results do not follow from the NE-FDT.

4.7.3 Zero frequency  limit

The zero frequency limit for the excess noise is given by[131, 73, 210, 192]

‘Som(0) = 5/^(0)-2fcBT d i B
dV

To obtain this we use the relation

d l s=  ‘̂ k sT —

(4.90)

(4.91)

Here ^  is the differential conductance of the tunnelling current. To prove (4.91)

requires more work. First note that

uliO

Next we show how you can prove that -^ {I b ) equals

(4.92)

. For this we use the expres­

sion for /g  in terms of the time evolution operator U, Eq. (4.46), and the expansion of U, 

Eq. (4.41). Acting with on U results in

dio

dV
ZY(0,-oo) =  - i  /

= - —  /  e*‘̂ *W(0, —oo)/jg(i)d^
J  — OO u;=0

Here we made use of

d
dV

H rit)
w=0

(4.93)

(4.94)

By applying this relation to ^  =  -^ {u HbU) we can relate the differential conductance to 

the noise

dlB d 
dV  ~  duj

dSi^{,u)
U!=0 du uj=0

(4.95)

Putting everything together results in the shot noise relation Eq. (4.90).
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4.7.4 The multichannel case

In the interaction representation the edge current operator in the multichannel case is given 

by (Eq. (4.71))

total = JRH + -  i^x/vi)  (4.96)
i %

The autocorrelator of the total edge current is this operator squared. Since all channels decou­

ple the autocorrelator is also a sum over the individual channels. Using the current relation 

Eq. (4.96) we expand this autocorrelator to

5out(i) =  5bg(i) + - Y , e { v f x ) ' ^ A S ^ , { t )  (4.97)
i i j

where is the autocorrelator of the total edge current in equilibrium jmou Sig{t) is the

autocorrelator of the tunnelling current, and

ASij{t) =  {A j i {xA  +  i ] jx/vj) iB{0)) +  { i 'Q{0)Aj i {x,-{ t  +  r i jx/vj))) . (4.98)

The expression ASij{t ) can be simplified using a non-equilibrium Ward identity which holds 

for each edge channel separately, see Appendix D. For the diagonal components (ASa) we 

obtain the same result as in the single-channel case, Eq. (4.81). For the off-diagonal compo­

nents (ASij  with i  ^  j )  some care is required since the velocities are assumed to be different. 

We find

5'out(w) =  ib g lw ) +
i

-  C4.99)

The functions 5bg, Sjg and AS{lu) are the same as for the single channel case, see Section 4.7.1. 

The tunnelling current mixes different channels, which manifests itself in expression (4.99) 

through the oscillating contributions. This mixing enters the expression through an oscillating 

contribution which oscillates at a frequency x (^  -  ^ )  for each pair of channels as a function 

of varying uj. For frequencies smaller compared to Vi/x these phase factors are unity. The 

noise relation Eq. (4.99) automatically takes into account the chirality of the edges and the 

effect of counter propagating modes.

The nonequilibrium FDT that follows from Eq. (4.99) is given by

C o u t ( ^ )  C O th(  ( ^ )  ~

(C /b (w) - coth(2^)i?/3(u;)) . (4.100)
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When all edge currents are co-propagating we have ^  ^  =  1. The extra factor in Eq. (4.100) 

compared to Eq. (4.89) only arises when we deal with counter propagating charged channels. 

The reason for this discrepancy is that the distinction of incoming and outgoing edge currents 

is not applicable for a system with counter propagating charged edge modes. If the left moving 

edge is taken into account we recover the usual NE-FDT.

The shot noise limit is given by

5 o u t ( 0 )  =  5 b g ( 0 )  +

+ (4 .101,

4.8 Cross- and autocorrelators of edge currents 

4.8.1 Edge current correlations

In this section we expand on our previous results and investigate the finite frequency noise 

between the different branches of a quantum  point contact. Following Ref. [42] the starting 

point is the definition of the different branches of a quantum  Hall point contact, as given by 

Figure 4.4. We label these as j k { t )  = j n / L i ^ k t i )  with k  = 1 ,2 ,3 ,4 . These correspond to the 

different in- and outgoing edge currents. When we apply the non-equilibrium Kubo formula 

we obtain

x i  < 0

J i W  =  Jl ,tot X'2 > 0

J s W  =  Jn, iot (x3,  t) -  if^{t -  x - i / v c ) X‘i > 0

j i  ( t )  = j L , t o t ( x 4 ,  t )  -  + X 4 / l ’c) X4 < 0 (4.102)

We define the correlation between the n ’th and m ’th branch as

S n M  = I  dt . (4.103)

It is now a straightforward process of determining all relations by inserting the current opera­

tors and simplifying all the terms. All autocorrelators decompose into terms already encoun­

tered in the main part of this Chapter and Appendix D. Here we list them once more (we use

137



r/ =  ±  to denote the right (r/ =  - )  and left moving (r? =  +) current),

5'bg(w) =  y  di =  wiV(u;)G'tot (4.104)

J  e - ‘( /i(t ) /^ (0 ))  (ii (4.105)

T{u)  =  I  e^'-^{Aj„{x,t)iUrix/vc)) dt =  ^N { uj) {R j^{uj) +  (4.106)

A5(o;) =  F{u}) +  e‘̂ /^J^(-w) =  N{u)Ri^ (u) . (4.107)

with i?o(w) the antisymmetric part of Sig{u;). Note also the relations

T{u;y =  2Re [J (̂w)] =  A5(a;) 2Im [Ĵ (u;)] =  Q^N{oj){H^) . (4.108)

The correlator {H^{0)) arises as a consequence of the non-equilibrium Ward identity. Further­

more, we also have

Sj, {u)  -  ASiuj) = Cj^iu)  -  c o t h { ^ ) R i , { o j )  . (4.109)

The diagonal terms of the correlation matrix S  are

5ii(a;) =  522(o;) =  5bg(u;) (4.110)

=  >5 4 4 (̂ 0 ') =  5'bg(w) +  Sig{uj) — AS{ lo) (4.111)

These autcorrelators are the noise of the edge currents. 5 3 3  and ^ 4 4  are treated extensively 

in Section 4.7 and correspond to the noise in the outgoing branches. The correlations in the 

incoming branches, < $ 3 3  and 5 4 4 , are equilibrium noise due to the chirality of edge.

The remaining correlators Snm (n ^  m) cannot be interpreted as noise. Since iS„,„ =  

we only look at the cases where m > n. We obtain

5 i 2(w ) = 0
5 3 4 ( w )  =  (SiJcj) -  ASH)

SisH = (Sbg(uj) -

S24M =  (5bg(u;) -  ^(u;))

5 i4(w) =

523(w) =  , (4.112)

Naturally the incoming edge currents are not correlated, hence 5 i 2  =  5 2 i =  0. The remaining

correlators all contain phase factors which depend on the relative distance of the points of 

measurements to the point contact.
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Figure 4.5: The noise represented pictorially. The operator J „„j corresponds to the sum jn + jm 

of edge current operators, and is the corresponding noise. The figures represents the possible 

combinations of and jm (with n ^ m).

4.8.2 Edge currents noise and FDT’s

The cross correlations Snm do not correspond to a type o f noise when n ^  m.. They do enter 

the expressions for the noise in operators which compare different edge currents. Such an 

operator is defined as

We note the symmetry J„,„ =  J,n„ and set m > n. This gives rise to six different autocorre­

lators, which are depicted in Figure 4.5. We also assume the frequency w at which the noise 

is measured is small compared to the combinations Vc/xij =  Vc/{xi ±  xj)  as they appear in 

Eq. (4.112), and the noise is measured relatively close to the point contacts. In this lim it there 

are four different cases for the cross-correlator noise. We first have Sj ^2 and 5 ,7 ,4 ,

J n r n { i }  —  j n ( t )  71 ^  T il . (4.113)

The corresponding noise is given by

S n m  ’ i”  ^ 7'mm * rmi (4.114)

Sj, {̂uj) =  2S'bg(w)

=  25'bg(w) +  45/„(o;) -  4AS{u) .

(4.115)

Next we have S — S where

5.7,,(w) =  25bg(w) +  57J w )  -  2AS{uj) (4.116)

And finally 5 j 2 ., =  w ith

SjM  =  45bg(o;) +  -  2AS{u;) (4.117)
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All cross correlations are expressed in terms of the equilibrium noise of the background 

current 5bg and the noise in the tunnelling current 5/^ (since A S  is also determined by S'/a). 

In addition all these autocorrelators satisfy the same nonequilibrium FDT

C j n M  -  c o t h { ^ ) R j ^ M  = C/s(w) -  C0th(2^)i?/J3(w) . (4.118)

In the shot noise limit we replace Sbg -> 2ksTG (with G — Gtot) and

limA5(w) =
wio dV

This results in

S j^ M ^ ^ ^ b TG (4.119)

S.H, (0) =  AUb T G  + 4%  (0) -  8 k s T ^

S .h M  =  5.7,3 (0) =  4/csTG +  5 ;^ (0 ) -  

S j M  = S j M  = SkBTG + 5/^(0) -  i k s T ^

4.9 Conclusion

In this Chapter we investigated the relation between the noise in the outgoing edge current 

and the noise in the tunnelling current. We found an expression for the finite frequency 

(non-symmetrized) noise of the outgoing edge current, in terms of the noise in the tunnelling 

current and the equilibrium Nyquist-Johnson noise (Eq. (4.78)). From this we also obtained 

an expression for the excess noise in the edge current (Eq. (4.82)). This excess noise is 

symmetric and completely determined by the noise in the tunnelling current. Finally, we 

also obtained a relation for the zero frequency limit of these expressions (Eq. (4.90)). The 

resulting expressions are called non-equilibrium fluctuation-dissipation theorems as they 

relate different types of noise in the system.

Our approach made use of two new tools, which are also derived in this work. The first 

is the non-equilibrium Kubo formula. This operator equation separates the effect of time 

evolution due to a perturbation from the time evolution due to the free Hamiltonian, and is 

a non-equilibrium extension of the Kubo formula. More specifically, in our context we obtain 

an equation relating the edge current operator for the system out of equilibrium, to the edge 

current operator for the system in equilibrium minus the tunnelling current (Eq. (4.63)). 

This is an operator-version of Kirchoff s law and reflects charge conservation and the chiral 

structure of the edge theory.

The second tool we made use of is a non-equilibrium Ward identity, which is treated in the 

appendix. This identity extends the equilibrium Ward identity to hold for certain correlators 

evaluated out-of-equilibrium.
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The treatm ent in this Chapter appHes to generic quantum Hall edges consisting of a single 

chiral channel and any num ber of neutral channels. We have also extended the relation to 

apply to edges with multiple charged channels, possibly counter-propagating. In the next 

Chapter we relate our results to recent experimental work.
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Chapter 5 

Linear response and relation to experiments

In the previous Chapter we analysed the noise in the edge current o f a tunnelling point 

contact system. One o f the main results is that the excess noise in the edge currents is 

completely determined by the noise in the tunnelling current through the relation

5'out(‘^ )  =  C '/b (w ) -

^  5 / ^ ( 0 ) - 2 f c s T ^  (5.1)

The second line is the zero frequency lim it. These results are non-perturbative, and essentially 

a manifestation o f charge conservation, and the symmetries and chira lity of the edges. They 

are examples o f non-equilibrium fluctuation-dissipation theorems as they relate different 

kinds o f non-equilibrium noise.

Related to these NE-FDT’s are so-called non-equilibrium Nyquist-Johnson relations. The 

equilibrium Nyquist-Johnson relation expresses the noise o f a system in equilibrium in terms 

of its conductivity, S'gjgg =  2/cbTG. The non-equilibrium generalization o f this is to express the 

non-equilibrium noise (i.e. S'/g or in terms of the non-equilibrium current (i.e. 1 b ) -  The 

biggest challenge here is to formulate this relation non-perturbatively, which is beyond the 

scope o f this thesis. There are some results for this which make use o f integrability properties 

o f the Laughlin state [71, 73, 72, 74, 206]. However, these results are obtained in the context 

o f the Laughlin state. In this Chapter we use linear response theory to compute the tunnelling 

current^ this I b , the noise in the tunnelling current 5/g and the excess noise in the edge 

current This also formulates the NE-Nyquist-Johnson noise in the linear approximation 

o f the tunnelling coupling constant. We then focus on the zero-frequency lim it of the noise in 

the tunnelling and edge current.
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Figure 5.1: Figure of the point contact setup. A current is injected at the source S,  flows chirally along 

the edge and is partially reflected at the point contact. A drain collects the current at D. The noise is 

measured at the probe which is the noise of the edge current.

Which noise is measured in the experiments?

M any theoretical efforts [41, 44, 157, 9, 36, 37] describe the (m odification of) noise in the 

tunnelling curren t S j g . However, here we w ant to em phasize tha t this is no t the noise which 

is m easured in experim ents such as Refs. [193, 55] (see below  for a larger list of references to 

experim ental papers). Figure 5.1 shows the experim ental setup used to in these experim ents. 

In particular, the probe w hich m easures the noise is situated at the edge of the system. There 

is no probe which m easures the tunnelling  curren t or its noise directly.

The NE-FDT (5 .1 ) does show  th a t the m easured noise is very closely re la ted  to the noise 

in the tunnelling curren t. The difference is due to the differential conductance. It has been  

shown [131] tha t in certain  limits this differential conductance vanishes, and in this lim it the 

excess noise reduces to  the noise in the tunnelling current.

We em phasize th a t the analyses in experim ental papers do not m istake the m easured noise 

for the noise in the tunnelling current. However, as we describe below, experim ental analyses 

use an expression for the noise w hich is based on non-interacting electrons.

Generalized Nyquist-Johnson noise

M any experim ents [193, 55, 95, 187, 94, 100, 114, 49, 46, 47, 115, 116, 64, 45, 13, 60, 62, 

61, 63] m easure the zero frequency noise and  obtain  the fractional charge o f the tunnelling  

quasiparticle by m aking use of the shot noise limit. In this lim it the tunnelling  cu rren t can 

be viewed a series of independen t, random  tunnelling events w here  the probability  of a 

quasiparticle tunnelling  is constan t. The corresponding noise 5 /^  is called Poissonian and  it

'The tunnelling current is already computed in Chapter 2. However, many quantities are expressed in terms of 
the tunnelling current, so we briefly recall the main results of that chapter.
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is related to the tunnelling current through the Schottky relation [194, 20]

Si^ =  Qela  . (5.2)

The fractional charge is determined by measuring the ratio Sj^/Ib - The Schottky relation is

the simplest approximation of a non-equilibrium Nyquist-Johnson expression.

However, all of the experiments referenced above also measure noise that goes beyond

the shot noise limit and the Schottky relation does not apply. In this regime interaction

effects become important and, consequently, the statistics of the anyons become important. To

describe this regime requires a non-perturbative, non-equilibrium Nyquist-Johnson relation,

which does not exist for anyons. Such a relation does exist for non-interacting electrons

[150, 158, 30]. To circumvent this discrepancy Refs. [55, 187, 100, 114, 49, 46, 47, 115,

116, 64, 45, 13, 60, 62, 61, 63] make an educated guess and generalize the expression for

the non-interacting electrons to anyons. We call this the “substitution approach”. Starting

with the expression for non-interacting electrons [150, 158, 30] the charge and conductivity
2 2are replaced by their fractional counterparts e ^  Qe, ^  ^  — Gi,. This results in the

following formula for the excess noise in the edge current

=  Q.G„Vs„T(l -  T) ( c o t h ( l g l )  + I I I )  C5.3)

where QeVsu — ujq is the Josephson frequency and Vsd is the source-drain voltage and we 

use units of h — 1. Furthermore, T is the transmission and Gq the conductivity of the channel 

involved in the tunnelling (we define all these parameters in this Chapter).

Overview of this chapter

In this Section 5.1 we analyze the linear response theory of the tunnelling point contact. We 

compute the tunnelling current, noise and related quantities such as the transmission and 

Fano factors. In Section 5.2 we discuss the origin of the formula Eq. (5.3). We then compare 

the results of linear response theory to the linear approximation of Eq. (5.3). We show that 

Eq. (5.3) does not reproduce the results from linear response theory, as it fails to take into 

account the contributions due to the differential conductance. In particular, Eq. (5.3) does 

not take into account the statistics of the anyons (or, equivalently, the interaction effects of 

the edge). We propose a modification to Eq. (5.3) to resolve this discrepancy.
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5.1 Linear response approximation

5.1.1 Tunnelling current

The linear response theory of the tunnelling current is treated in Chapter 2. For the upcoming 

discussion we provide here a short, concise summary based on Chapter 3.3, 3.4 and 3.5. 

The tunnelling operator is defined as V =  V’lV ’R. and from this we obtain the tunnelling 

Hamiltonian H r  =  TV +  F*V^ and tunnelling current operator Ib  =  - iQe{FV -  T*V^). We 

use units of h =  1. The effect of a voltage bias between the two edge is accounted for by the 

Josephson frequency phase factor V — > where uiq =  QeVso- In linear response

we only keep the terms up to order |rp  in the tunneling coupling constant. After some 

manipulations (see Chapter 3.4) we obtain for the tunnelling current

I b  {ujq) = = Qe|rp(l -  {ujq) . (5.4)

Here we use the tunneling-tunneling correlator G^{t) =  (V(i)V^(O)) and the KMS relation. 

These correlators are determined in Chapter 3.5. It was found that the correlators factorize 

into a product of two-point correlators; one for each edge.

G>{t) =  + . .. =  a ] Y l v ~ ‘̂ ^'P2giit) +  ... (5.5)
i

where i runs over the different channels, gi =  2hi is twice the conformal dimension of each 

channel and g =  ^ i 9 i -  The dots represent finite-size corrections to the propagator. The 

universal form of its Fourier transform is given by (see Appendix (A.3.1) for a derivation)

(2 ,« ,b T ) » -  B ( f  +  I  -   ̂ C5.6)

This gives for the backscattering current at lowest order [215]

(5.7)

Here we have combined all factors that are independent of the applied voltage into the non- 

universal normalisation |f(T )p

|f(T)|2 =  2a,Qe\T\^ (27rfcsr)29-i J ]  . (5.8)
i

In our analysis of experiments the temperature is kept fixed. The non-universality is due to 

the tunnelling couphng constant T which depends on the experimental setup. A final quantity 

of interest is the transmission T of a channel. It reflects the amount of the electric current 

in an edge channel which flows from the source to the drain. The quantity M =  1 — T is
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Figure 5.2: Plots of the “ transmission” (left) and tunnelling current (right) for three values of g as a 

function of The tunnelling current is normalized by |f(T )|^ . The left plot does not represent the 

true transmission, since its absolute value is non-universal. Instead, we plot 1 — C x R(wq) with R the 

reflection and set the non-universal constant C =  1/(2R(o;q =  0)). The true transmission is determined 

by linear response theory up to the non-universal constant C.

the reflection, w^hich represents the amount o f current reflected (backscattered) by the point 

contact. We have

=  (5.9)

=  (5.10)
An

where 9 — u — is the filling fraction of the channel(s) involved in the tunnelling process, i.e. 

we subtract the conductivity from the background channels, which are fu lly  transmitted. The 

quantity Gp is the conductivity of the channels involved in the tunnelling process. If  there are 

no background channels then 9 =  ly and /q =  Vsd equals the current through the system 

in the absence o f a point contact (the equilibrium current). It is more common to work w ith 

the transmission than the reflection.

Figure 5.2 shows plots o f the tunnelling current and the transmission for three cases of 

g. These three cases capture the qualitative dependency o f the current on the conformal 

dimensions. For g < l  the tunnelling current vanishes as wq —> oo and the current is fu lly 

transmitted (transmission approaches one). In addition, there is a maximum in the tunnelling 

current. For ^ <  g <  1 the transmission still approaches one as wg —> oo, but the tunnelling 

current keeps increasing and the function does not have a maximum. For 5 =  1 the tunnelling 

current is linear in the source-drain voltage and the transmission is constant. Finally, the 

current always vanishes at wg =  0.

Given a fractional quantum Hall edge we can construct a tunnelling point contact model

for each quasiparticle present in the theory. Renormalization group arguments [130] predict

that the quasiparticle w ith the lowest conformal dimension i g )  is the most relevant operator in
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the RG sense. Therefore it is usually assumed that there is only one quasiparticle contributing 

to the tunnelling current (which is the quasiparticle with lowest conformal dimension). In the 

case of multiple quasiparticles with an equal conformal dimension the quasiparticle with the 

lowest electric charge should make the dominant contribution. The reason is that this particle 

has the largest effective magnetic length, as this length scales with i.e. Is  = \J-^fs-

The magnetic length is a m easure for the size of a quasiparticle wavepacket along the edge.

5.1.2 Noise in tlie tunnelling and edge currents 

Finite frequency noise

The noise the backscattered current at lowest order in |Fp is the Fourier transform  of the 

autocorrelator^

=  {Qef\T\^  [g>(w  +  u q ) + -  w q ))] (5.11)

The tunneling current I s  is given in terms of through (5.4). Using this expression we can 

relate the noise to the tunnelling current [41]

Qe

p = ±
(5.12)

This relation is sometimes called a generalized or non-equilibrium Nyquist-Johnson rela­

tion [30], as it expresses the noise in terms of the tunnelling current. The symmetric and 

anti-symmetric noise are given by

C '/b H  =  ~  ^  /b  (u; +  puq)  coth )
p = ± 2 k B T

(5.13)

(5.14)
p = ±

The excess noise of the outgoing edge current is given by Eq. (5.1). At linear response this 

results in [42, 10]

(5.15)

This noise is already symmetric, i.e. 5out(w) =  Finite (i.e. non-zero) frequency noise

could be used as an experimental probe to determine properties of the tunnelling quasiparticle

^The standard definition of power noise, which is also used in the experiments, refers to the cosine transfor­

mation of the symmetric combination of the current /  dtcos{ujt){{lB{t), lB{Q))-  This noise equals the symmetric 

noise of the definition used here times a factor of 2.
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Figure 5.3: Plots of noise in the tunnelling current 5/^ (left) and the excess noise in the edge current 

(right) for three values of g. The noise is normalized by dividing it by |r(T)p. We use units of e =  1 

and we set Q =  1/4.

[42, 10, 37]. However, current experiments focus on the zero frequency lim it which we treat

in the remainder o f this Chapter. We w ill not explore the properties o f finite frequency noise in

greater detail, although this is certainly an interesting topic to investigate further. A possible 

topic is the finite frequency noise of a fractional quantum Hall interferometer, which would 

unite the results from Chapter 3 and 4.

Zero frequency limit

In the zero frequency lim it we take u; 0. This gives

5Vb(0) =  C/s(0) =  Q e c o i h ( j ^ ) l B { o j Q )  (5.16)

R,^{0)  =  QelB{,ujQ) (5.17)

In the zero temperature lim it { k s T  -c  u q ) we recover the Schottky relation [194], as 

coth(x) -> 1 for X ^  oc, and so =  Qeln-  This is the shot noise regime. In this hm it 

statistical effects do not play a role and the tunnelling can be viewed as a Poisson process, 

hence the noise is called Poissonian. For the differential conductance we obtain 

(I Ib  Qe \  27 f l ( a ,g ) ( c o th ( 2 ^ )  - - l m [ ^ ( s  +  i ^ ) ] )   ̂ (5,18)
d V s B  2 k s T  V \ 2 k B T J  i t  L V' 2 n k B T /

which gives for the excess noise (using Eq. (5.1) or taking the w |  0 lim it of Eq. (5.15))

2Qe
(5.19)

Here ip{x) =  is the digamma function and we are taking the imaginary part (note that 

tp{z) =  'ip{z)). For large (shot noise lim it) we have the Hmit [68]

lim  |coth(7Tx) Im tp{g +  ix ) j |  ^ (5.20)
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Fano factors4
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Figure 5.4: Plots o f the Fano factor for multiple values o f  g.  The case of g =   ̂ is a boundary case, 

as for (j <  I  the function Fs ^ , { ujq) always has a maximum. The gray line represents the Fano factor 

F s , ^ ,  which is independent o f  g.  All functions converge to a value of 1, which is the shot noise limit. 

The noise in the edge current changes from sub- to super-Poissonian behaviour as a function of 

forff <i For 5 >1 the noise is always sub-Poissonian.

Therefore the differential conductance vanishes in the shot noise lim it, and 5 “  ̂ =  5 /^  [131]. 

Put differently, in the shot noise lim it fluctuations in the tunnelling current carry over to the 

edge current and there is no additional backreaction betw een the tunnelling and edge current. 

The backreaction (differential conductance) is thermally activated, m eaning this contribution  

vanishes w hen k s T  u i q . We have

5'/b (0) - 'S'om(O) and ^ - > 0

Figure 5 .3  show s plots o f  the zero frequency noise in the tunnelling current and the excess 

noise in the edge current for three cases o f g  (sam e cases appear in Figure 5 .2 ) . We em phasize  

som e im portant qualitative behaviour. The tw o types of noise show  different behaviour at the 

origin. By definition, the excess noise alw ays vanishes w hen  u q  =  0. This is not the case for 

(for ^ <  i ) ,  w here the m axim um  value is located at l o q  =  0. Asym ptotically (large  

w hich is the shot noise lim it) the tw o types o f  noise becom e equal.

Alternatively, w e  can w rite the zero frequency relations in terms o f  the transm ission  

Eq. (5 .9 ) , source-drain voltage (w g =  QeVso) and the conductivity o f the channel

5 /^ (0 ) =  (1 - T ) G ^ Q e F s D C o t h ( ^ ^ )  (5 .2 2 )
2fcsT /

=  ^ (1  -  T)GpQeVsDlm[v<(,9 +  (5 .2 3 )

This notation is com m only used in the Landauer-Biittiker approach to w hich w e  w ill return.
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Fano factors

A Fano factor is a m easure o f the fluctuations com pared to the “m ean ” (average curren t). 

Ref. [20] defines it as the ratio  of the noise over the  noise in the  shot noise hm it. The Fano 

factor is a m easure for sub- ( F  < 1) or super-Poissonian ( F  >  1) noise. A Fano factor different 

from  one m eans th a t effects due to the  anyon’s statistics becom e im portan t. We define 

as the Fano factor of the noise 5 /^ . The shot noise lim it corresponds to Q e l s  and so

The function on  the  righ t hand  side converges to one for large argum en t w here the shot 

noise lim it is reached . The function coth(a:) >  ] for all x  > 0, therefo re  the noise is strictly 

super-Poissonian ( F  >  1). The Fano factor is independen t of the  statistics o f the tunnelling 

anyon and  the super-Poissonian characteristic is due to therm al effects.

A nother Fano factor is th a t of the excess noise of the edge curren t. This cu rren t has the 

sam e shot noise lim it as the noise in the tunnelling curren t, and so

This expression also appears in [120]. This Fano factor depends explicitly on the conform al 

dim ension, which is not the case w ith the o ther Fano factor Eq. (5 .24) (although implicitly Q 

is determ ined  by the conform al dim ension of the charged channel). The statistical properties 

of the anyons determ ine the properties of this Fano factor. However, the Fano factor does not 

d istinguish betw een Abelian and  non-Abelian anyons.

Figure 5.4 shows plots for the Fano factors for m ultiple values of g. The Fano factor of the 

edge cu rren t show s both sub- ( F  <  1) and super-Poissonian ( F  >  1) behaviour w hen g < ^. 

For g the noise is strictly sub-Poissonian. This non-Poissonian characteristic depends on 

the conform al dim ension of the anyon (w ith g — 2h).  Ref. [120] a ttribu tes properties of this 

Fano factor to “therm al bunching” as the noise is enhanced  due to a com bination of therm al 

fluctuations and the anyon’s statistics. Even at linear response the statistics already plays an 

im portan t in the properties of the Fano factor o f the excess noise o f the edge current. This is 

no t the case for the Fano factor of the tunnelling current.

5.1.3 Simplifications for special c a se s  of g

For tw o values of <; (^ =  ^ and  g = I)  the expressions for the  tunnelling  cu rren t and noise 

simplify. The case oi  g — ^ is, for instance, realized by an e /4  quasiparticle of the Anti-Pfaffian 

s ta te  [151, 148]. The case o i  g = l  corresponds to a ferm ion, and  is realized for instance by 

electrons of an  in teger QH edge state. Note th a t the interactions of a fractional QH edge cause

(5.24)

(5 .25)
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the electrons to have a 3  > 1 , so the case of g =  1 does not apply to the electrons of fractional 

edges (interacting electrons have half-integer h  greater than i ) .  The simplifications are due to 

a reflection formula of the gamma function which relates r ( l  -  x)r(j;) =  (see Ref. [6 8 ]

and the appendix). This gives for the tunnelling current and differential conductance

=  ■'* 2  ( 5  26)1 „  (? =  1

dVsQ 2 k B T

2 k B T  

'tt cosh
r ( T ) i ^ x  {  ' J ~ -I (5.27)

7T g = \

The tunnelling current becomes constant ( 5  =  i )  or grows linear w ith  V s d  ( 5  =  ! ) •  I n  

addition | f  (T )p  is independent o f T  for 5  =  ^ and | f  (T )p  oc T  for 5  =  1. The transmission T 

is constant for non-interacting electrons (g  =  1 ), and w ill tend to zero for 5  =  ^ and ujq  -> 0 0 . 

For the zero frequency lim it the expressions for the noise become

S,„(0 )  =  < 5 . | I ' ( T ) p x {  ■ ■ (5.28)
7T — - coth ( _  ) .9 = 1
 ̂ 2 / c r T  \2kFtTJ2 k f j T  V  2 k [ j T  >

■ ( - ^ ^ c o t h ( - ^ ! ^ )  -  1 )  9  =  1
\2A;rT \ 2 k n T /  /^ 2 k s T  \ 2 /c£jT/

Finally, we also have the Fano factor (the other Fano factor is independent of

F s „ = Q e x )  j Ib T n  (5.30)

5.2 Landauer-Buttiker formalism

5.2.1 Non-interacting electrons in the Landauer-Buttiker formalism

In the Landauer-Biittiker formalism [29, 20, 167] the tunnelling point contact is approached 

through a transmission formalism. The electrons reside in reservoirs held at a chemical po­

tential ///, and j iR .  These reservoirs are connected through some transmission channels, and 

to each channel we associate a transmission amplitude or coefficient which represents the 

probability of an electron tunnelling through this channel. The total current is determined by 

(1) the sum or integral over all transmission probabilities and (2) the Fermi-Dirac distribution 

of both reservoirs (since electrons can only tunnel from a filled to an empty state).
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To be exact, we consider tunnelling of non-interacting electrons through one channel and 

allow for an energy-dependent transmission coejficient t{u!). This quantity is not the same as the 

(total) transmission T defined in Eq. (5.9). In particular, we formulate the problem here is a 

transmission problem betw een the edges, with t{uj) representing the probability that a wave 

packet of energy u> tunnels from the lower to the upper edge. The Fermi-Dirac distributions of 

the two reservoirs are given by /j(w) =  with i = L , R  and ij,l ~  I-I‘R = eVso

the Josephson frequency ( l j q  —  eVso for Q =  1). In this formalism the total current flowing 

from one reservoir to the other is given by [167]

e r ° °
I  = (5.31)

J — OO

In general, t{uj) is some geom etric-dependent function. The advantage of this approach is 

that it is not restricted by the particular model used for the point contact. All information 

regarding the tunnelling probability is attributed to the (unknown) transmission coefficient 

t{uj). In particular, the resulting expressions for the noise also hold for small modifications of 

the point contact model.

In our simple model we compute the tunnelling perturbatively in jPp, which is equivalent 

to a linear approximation in t{ij) in the Landauer-Biittiker formalism. Using this formalism the 

noise in tunnelling point contacts of non-interacting electrons is analysed non-perturbatively in 

Refs. [150, 158, 30], In these references the expression for the zero frequency noise is found 

to be

/OO

t { u ) { f L { l  -  f i i )  +  f i t { l  -  f t ) )  -  t i u j f i h  -  f i i f d o j  . (5.32)
-OO

Here G — ^ \ s  the unit of conductance. This expression is a generalized or non-equilibrium 

Nyquist-Johnson relation. From the expression for the current we can also obtain a Landauer- 

like expression for the differential conductance

^

Here we used 2 k s T - ^ f i j t  =  -  fL,n)- Finally using our general formula we also

obtain a Landauer-like expression for the excess noise of the edge current

5ô ut =  G r -  f R ?  -  m H h  -  f R ?  +  2kBT{fL -  f R ) - ? ^ d u  . (5.34)= G j "  t { u ) i h  -  fR)'' -  t {uj ) \ fL  -  f R f  + 2kBT{fL -  .

This expression is obtained in Refs. [158, 30] using a scattering (S'-matrix) formalism of 

electron wave packets. However, in these references the final term involving the derivative of 

the transmission is absent, as it is assumed that the transmission is independent of the applied 

voltage bias. The formaHsm presented in this subsection has not been developed for strongly 

interacting systems or tunnelling anyons.
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Energy independent transmission

The expressions appearing in the preceding discussion apply to systems o f non-interacting 

electrons. Therefore it  is perhaps uprising to see that many experiments [55, 187, 100, 114, 

49, 46, 47, 115, 116, 64, 45, 13, 60, 62, 61, 63] determine the fractional charge using a 

modified non-equilibrium Nyquist-Johnson relation based on the non-interacting case. This 

formula, Eq. (5.39) below, is obtained by assuming an energy independent transmission 

t{u) = t, replacing the charge by the fractional charge e -> Qe and the conductivity by the 

conductivity o f the FQH channel involved in the tunnelling G ^  Gp.

To obtain this expression we start w ith  the tunnelling current and a t{u;) which is energy- 

independent. Then the tunnelling current becomes linear in Vsd as can be seen by performing 

the integral over w

Since by definition T =  1 — I b /{GVsd) we have T =  1 — t in this special case. With a constant 

transmission the integrals appearing in the expression for the noise Eq. (5.32) and Eq. (5.34) 

can be performed. This results in

and =  G. Finally, the formula used to determine the fractional charge is obtained by 

replacing the charge and conductance by their fractional counterparts

For completeness we also provided the equivalent generalization of the noise in the tunnelling 

current, although this expression is not used in experiments to determine the fractional charge. 

In the next subsection we compare these expressions to the results from linear response 

theory. However, it  is already apparent that one assumption cannot hold; the transmission 

is not constant in the case o f tunnelling anyons. Therefore the manipulations leading up to 

Eq. (5.38) and Eq. (5.39) cannot be correct when we consider anyons. We therefore assume 

Eq. (5.38) and Eq. (5.39) also hold when the transmission is a function o f the source-drain 

voltage, T ^  T(wg).

(5.35)

Sj^ = T(1 -  T)GeFsD c o t h ( | ^ )  +  2A:sTG(l -  T)^
I k b I

(5.36)

=  T(1 -  T)G(eVsD c o t h ( | ^ )  -  2ksT) (5.37)

Substitution approach (non-perturbative)

%  =  T(1 -  T )G ,Q e F s D C o th ( |g ^ )  +  2fesTG^(l -  T)'^ (5.38)

=  T(1 -  T )G p (Q e y s D C o th ( | |^ )  -  2ksT) . (5.39)
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5.2.2 Comparison between two approaches

To summarize, in the “substitution approach” outhned in the previous subsection we start 

with an expression for the noise of tunnelling, non-interacting electrons which is based on 

a constant transmission. We then replace the charge and conductivity by the equivalent 

quantities of the fractional quantum  Hall edge, and we assume the transmission is energy- 

dependent. We now compare the linear approximation of this “substitution approach” to the 

results from the linear response theory of a FQH tunnelling point contact.

Let us recall and compare the results from linear response theory (L.R.) of the model of 

a point contact (Eq. (5.22) and Eq. (5 .23)) to the linear approximation of Eq. (5.38) and 

Eq. (5.39))

Model of point contact (L.R.) Substitution approach (L.R.)

S i^  =  (1 -  T ) G , Q e y s D C o t h ( | ^ )  5 /^  -  (1 -  T )G ^ Q eF sc  c o t h ( | g p )

SZt =  (1 -  T)G ,Q el/sD ^Im [^(,9 -f i ^ ^ ) ]  =  (1 -  T)G^(QeV^sD c o t h ( | g ^ )  -  2ksT)

Linear response theory shows that the “substitution approach” fails for the excess noise, but 

is consistent for the noise in the tunnelling current. This is related to the properties of the 

Fano factor which we explored in Section 5.1.2. The Fano factor associated with Sig does not 

depend on the statistical properties of the anyon. It is therefore not  unreasonable to simply 

replace the charge, conductivity and transmission by their fractional values in the expression 

for Sig,  provided we allow for an energy-dependent transmission. This is not the case for the 

excess noise Eq. (5.38), which fails to reproduce the results from linear response theory. This 

is attributed to the incorrect assumption of a transmission independent of the voltage bias 

and energy.

An ansatz for the non-perturbative expression of the noise

We provide an alternative “educated guess” which assumes the expression for 5/g from the 

substitution approach (Eq. (5 .38)) holds. This is our first of two ansatzes. The expression 

for the excess noise in the edge current is obtained using the fluctuation-dissipation theorem 

from the previous chapter, Eq. (5.1). First, we can write the differential conductance as

(5.40)
rfVsD aVsD dVsD
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Using Eq. (5 .1) and  replacing S j^  by Eq. (5 .38) and  the transm ission by Eq. (5 .40) gives 

First ansatz

Si^  =  T(1 -  T ) G p Q e V s D C o t h { ^ ^ )  + 2 k B T G , { l  -  T f

= T(1 -  T)Gp {QeVsD c o t h ( | ^ ) )  -  2fcsT) +  . (5 .41)

where

=  2 k e T G o V s u ^ (5 .42)

is the term  w hich is absent in the substitu tion approach. For com pleteness w e have repeated  

the expression for Si^ .  We stress tha t in this expression the transm ission T =  1 -  I b / { G pVsd)

The background currents (fully transm itted) do not en ter the definition of the transm ission T. 

The extra term  vanishes w hen  =  0, w hich is valid for non-in teracting  electrons bu t not 

for strongly in teracting systems.

A second ansatz

Results from Ref. [39] show tha t the symmetric, finite frequency noise of the tunnelling current 

due to a chiral boson has the following limit near zero frequency

This limit is quadratic in / g  and therefore does not appear at linear response. The expression 

for the noise Sig from  the  substitu tion  approach does no t reproduce this lim it, w hich brings 

the validity of Eq. (5 .41) into question. It is not unreasonable to m ake a second ansatz which 

incorporates this limit. This is also done in Ref. [206]. Ref. [206] uses a non-perturbative ap ­

proach tow ards the e /3  quasiparticle in the i/ =  1/3 Laughlin state. In particular, in Eq. (5 .41) 

for Sig we replace

2
and conductivity Gp — are associated w ith the channel involved in the tunnelling  process.

(5 .43)

w hich gives (using the  NE-FDT for the excess noise)
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This ansatz for 5 /g  w as num erically com pared to results from the non-perturbative approach  

and sh ow ed  excellen t agreem ent [2 0 6 ], These expressions are also again consistent w ith  

the results from  linear response theory (keep ing on ly  term s linear in Ib )- In terms o f the  

transm ission (u sin g  Eq. (5 .4 0 ) )  these expressions are given by

Second ansatz

5 /3  =  Q e T { l  -  T)GpVsD  c o t h ( | ^ )  +  2fcj3T G p (l -  T)^ +  5S;

c x c
‘̂ o u t T(1 -  T)G, iQeVsD c o t h ( ^ ^ )  -  2ksT C q x c

w here

=  V s D ^ ( l  -  T )G ^ [Q e G ^ V ^ s D C 0 th (^ ^ )  -  4A:bT] +  2 k B T G o { V s u
dVsD

=  6Si^ + 2IcbTG ,V sd

QeVsD^
2kB T

dT

(5 .4 8 )

d J  \ 2  

' dVsD'
(5 .4 9 )

(5 .5 0 )

This ansatz m ight be too am bitious considering its complexity. However, it does have a feature 

(th e  squared term  ( 3^ ) ^ )  w hich  quaUtatively explains discrepancies observed in recent 

experim ents.

The second ansatz adds more com plexity com pared to the first. The m ost important feature 

that both ansatzes posses is that they  depend on the differential transm ission. Such a term  

does not appear in the non-interacting case on w hich the substitution approach is based.

W hy do w e  care about this differential term? One reason, w hich  w e  explore further in 

the next section , is that it m ight account for recent experim ental w ork w hich show s that the 

results from the substitution approach do not always explain the m easured shot noise. In these  

experim ents a large variation in the transm ission is observed, w hich  could explain w h y the  

substitution approach breaks down: it fails to take into account the slope o f the transmission.

A second reason is that it is quite reasonable to include such a term in the noise for strongly  

interacting system . The Landauer approach for non-interacting electrons treats the single­

electron states at energy w as com pletely decoupled [158 , 3 0 ]. In a strongly interacting system  

the quasiparticles are collective excitations o f the system . The tunnelling  o f a quasiparticle 

cannot be d ecom p osed  into the sim ple picture w here each w avepacket o f energy to tunnels 

in d ependently  through the point contact. Instead, correlation effects need  to be taken into  

account.
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5.3 Relation to experiments

We now consider some experiments which measure noise outside the pure shot noise regime. 

We do not at this point have a detailed analysis of the experimental data of these experiments, 

but we do identify some problems that are associated w ith the analyses o f the zero frequency 

noise. We suggest that our analysis hints at least at a qualitative solution to these problems.

Shot noise results from u =  l/?>

Zero frequency noise has been very successfully employed in measuring the e/3 charge in 

tunnelling experiments conducted at the v =  I j Z  state [193, 55]. To measure the charge 

Glattli, et al. (the authors o f Ref. [193] and later experiments [95, 94] ) employ the following 

formula (based on the work of Ref [131] which provide a linear approximation of the NE-FDT 

for the (V =  1/3 state)

This expression also follows from linear response theory, see Eq. (5.23), but w ithout an explicit 

expression for the differential conductance Consequently, the analyses performed here 

match w ith the linear response theory, and therefore also w ith the linear approximation of 

the proposed expressions Eq. (5.41) and Eq. (5.48).

Ref. [55], which is experimental work performed by a different group o f Heiblum et al., 

does not make use o f this expression but instead applies the results from the substitution 

approach, Eq. (5.39). They measure the same charge of e/3 at the =  1/3 plateau. A possible 

explanation for the fact that both approaches measure the same fractional charge is that 

Ref. [55] also reports a constant transmission T for each of their measurements, which means 

=  0. In that case the proposed expressions reduce to the result o f the substitution 

approach.

Shot noise experiments involving other states

The success o f measuring the e/3 quasiparticle at the =  1/3 plateau has not been replicated 

for all other filling  fractions. In fact, more recently the shot noise technique as a tool to 

measure the quasiparticle charge has been questioned [60, 61].

Experimental work that followed after the e/3-discovery looked at different plateaux and 

considered the low  transmission regime. These included =  2/5, 3/7 and 2/3 in the lowest 

Landau level and ly — 5/2, 8/3, 7/3 in the second Landau level [187, 100,114, 49, 46, 47, 115, 

116, 64, 45, 13, 60, 62, 61, 63]. In all these references the noise is fitted using the results from

(5.51)
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Figure 5.5: These plots of zero frequency noise measurements are taken from Ref [61]. They show 

multiple measurements of the noise and transmission for filling fraction u =  5/2. The upper plots 

represent the measured transmission and the lower plots the corresponding measurements of the zero 

frequency noise. The noise is fitted to the expression from the substitution approach and these fits 

performs poorly when the entire range of the voltage is taken into account. A clear correlation is 

present between a non-constant transmission and the appearence of a dip in the noise. Note that the 

voltage range on the right figure is much smaller compared to the other two figures.

the substitution approach. We do not go through all these papers, but do note that especially 

in experiments which measure shot noise in the u = b/2 plateau, the noise measurements do 

not provide consistent predictions of the quasiparticle charge [60, 61] (similar behaviour is 

found at other plateaux). In particular, the measurement of an e/4  charge in the v = state 

was already announced in 2008 (see Ref. [64]) on the basis of shot noise measurements, but 

more recent work showed that the noise predicted by the substitution approach does not fit 

the measured noise well nor is it consistent with a charge of e/4. This is especially the case at 

lower voltages and low temperature.

Figures 5.5 and 5.6 show plots taken from Ref. [60, 61], The fits shown in these plots are 

generated using the formula for the noise from the substitution approach. These fits perform 

poorly if the entire range of source-drain voltage is considered, and it is not clear what region 

should be used to determine the quasiparticle charge. In particular, near low voltages there is 

a sudden dip in the the measured noise. This occurs sim ultaneously with a sudden increase 

or decrease in the transmission. The slope of the transmission is non-zero. This is especially 

clear in Figure 5.6, which shows shot noise experiments of the u = \ j Z  plateau. The left figure 

shows a clear dip in the shot noise which is associated with a clear mound in the transmission.

We conjecture that this explains the failure of the fits, at least at a qualitative level. Even at
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Figure 5.6: Same type of plots and fits as Figure 5.5, taken from Ref. [61] but now for measurements of 

V =  1/2,. Upper plots are the measured transmission, and lower plots are the corresponding measured 

zero frequency noise. In the right plot the transmission is alm ost flat and the noise shows a good fit 

according the substitution approach. In the left plot the transmission is not flat, and the noise is poorly 

fitted using the the substitution approach. To account for these discrepancies w e conjecture that the 

slope of the transmission needs to be taken into consideration.

linear response our proposed expressions for the noise Eq. (5.41) and Eq. (5.48) predict that 

the derivative needs to be taken into account when the noise is fitted. The discrepancy is 

accounted for by SS^m =  5out(measured) -  (substitution approach) which we conjecture 

depends explicitly on the differential transmission. Eq. (5.42) and Eq. (5.50) are “educated 

guesses” of

The most im portant difference between our two conjectured expressions for the noise is 

that the second ansatz depends on the squared differential transmission. In figures 5.5 and 5.6 

a dip in the excess noise occurs at low voltage for both increasing and decreasing transmission. 

Therefore an expression for SS which is independent of the sign of the differential transmission 

is favourable, which suggests that the second ansatz better accounts (at least qualitatively) 

for the observed noise.

Possible obstructions

Although we feel that our conjectured expressions are a step into the right direction it is quite 

possible that neither of them  can fully explain the m easured noise. A possibly way to falsify 

or support our ansatzes is to look at the next order in perturbation theory. There exists some 

numerical work for this [9] and it would be interesting to see if an analytic expression can 

obtained as well. Ref. [9] also reports that the next order in perturbation theory explicitly
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depends on the (non-)Abelian nature of the tunnelhng quasiparticle. This is not the case at 

linear response, and our conjectured expressions also do not take this into account (although 

the transmission could possibly account for this).

Other scenarios which modify the properties of the noise and tunnelling current in a 

point contact are also possible. The system could be in the strong coupling regime and linear 

response theory does not apply. In fact, Figure 5.5 shows a transmission of ~  ^ which is 

well beyond the linear regime. Another possibility is that there could be multiple types of 

tunnelling quasiparticles contributing to the current [69, 70, 78, 36]. Renormalization Group 

arguments normally predict a unique quasiparticle to be the most relevant operator, but this 

does not prohibit the tunnelling of other quasiparticles. Other possibilities are interactions 

with the environm ent of the point contact [188, 28], finite-size effects [76, 75] and edge 

reconstruction [43, 235].

5.4 Conclusion

In this chapter we determ ined the linear response theory of a tunnelling point contact. We 

computed the tunnelling current, the transmission and the noise in the tunnelling current. 

These results are combined with the non-equilibrium fluctuation-dissipation theorem from the 

previous chapter to determine the excess noise in the edge current. From these we determine 

the Fano factors which measure the sub-Poissonian and super-Poissonian characteristics of the 

noise. In addition we obtain the linear approximation of a non-equilibrium Nyquist-Johnson 

relation betw een the noise (in either the tunnelling or edge current) and the tunnelling 

current.

The noise in the edge current is the noise which is m easured in the experiment. We com­

pared our results against the expression which is frequently used to determine the fractional 

charge in experiments. This so-called substitution approach is based on the expression for the 

noise of the current due to tunnelling of non-interacting electrons. As such it fails to take into 

account the statistics of the quasiparticles (caused by the interactions of the electrons). In 

particular, it does not take into account the dependency of the noise (for tunnelling quasipar­

ticles) on the differential transmission. This may provide an explanation for the discrepancy 

measured in recent shot noise experiments [60, 61].
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Summary and outlook

In this thesis we study theoretical aspects of tunnelling point contacts in the fractional 

quantum Hall regime. We employ both perturbative and non-perturbative techniques in re­

searching the transport properties of these systems. The original research presented in this 

thesis is captured in Chapter 3, 4 and 5. A compendium of essential background material is 

presented in Chapter 2.

The chiral boson

The transport properties of a quantum Hall system are to a great extent determined by the 

properties of the edge of the system. Although there is no single action which describes all 

quantum Hall edge theories, there are universal features which are shared among the different 

edge models. One of these features is the coupling to the electromagnetic field which in the 

low energy limit is accounted for through the chiral boson model. This (1 + 1)D model and 

its relation to the quantum Hall effect is the subject of Chapter 2. In this chapter we provide 

an overview of the chiral boson in the context of the quantum Hall effect. We discuss in detail 

the quantization of the theory and the computation of the correlation functions. We also show 

how the model recovers the quantum Hall transport equations and obtain a real-time Ward 

identity associated with the electric current.

Fractional quantum Hall interferometry

In Chapter 3 we study the linear response theory of the ttmnelling current through a fractional 

quantum Hall Fabry-Perot interferometer. We assume the edge theory decomposes into a 

neutral and charged channel, both of which are described by a conformal field theory in the 

long-wavelength limit. The charged channel corresponds to the chiral boson and is responsible 

for the coupling to the electromagnetic field. Through linear response theory we obtain an 

expression for the tunnelling current in terms of the Fourier transform of the edge quasiparticle 

propagator. Using the conformal nature of the edge we find an expression for the tunnelling 

current in terms of a multivariable hypergeometric function known as Carlson’s R function. 

The expression (see Eq. (3.64) and Eq. (3.61)) is a function of the quasiparticle’s conformal 

dimension and the various energy scales of the system, which are in turn determined by the
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source-drain voltage, the distance betvi^een the point contacts, the velocities of the neutral 

and charged channels and the tem perature of the system. Our result is novel in the sense that 

it is an analytical expression which applies to edge theories with different velocities for the 

neutral and charged channels, and different distances between the point contacts on the left- 

and right-moving edge. We provide an extensive analysis of the interference current and a 

numerical scheme to compute Carlson’s R  function.

Finally, we propose an experimental scheme which may be used to m easure the edge 

velocity of the neutral or charged channel traversing the edge of the system. In this setup the 

tunnelling current is m easured as a function of the distance betw een the point contacts on 

one edge. The velocities can be extracted from the Fourier spectrum of the tunnelling current.

Non-equilibrium noise

Noise experiments in quantum  Hall tunnelling point contacts are used to identify characteris­

tics of the tunnelling quasiparticles. For instance, in the weak tunnelling regime the Schottky 

relation can be used to measure the quasiparticle charge using the noise and the tunnelling 

current. This relation has been successfully employed to measure a fractional charge of e/3  at 

the V — I/?, plateau. More recent experiments involve tunnelling experiments that go beyond 

the shot noise regime, and consequently these require a model which takes into account the 

strongly interacting nature of the edge.

The tunnelling point contact is by itself not a closed system. The tunnelling current flows 

through the contact and ends up in the edge of the system. Therefore fluctuations that arise in 

the tunnelling current end up in the edge current, which reflects the non-equilibrium nature 

of the system. In Chapter 4 we study the noise in the edge current of the system in a non- 

perturbative setting. We find that the excess noise in the edge current is completely determined 

by the noise in the tunnelling current. However, the noise in the tunnelling current and the 

noise in the edge current do not simply add. The process is non-linear and a correction term 

arises which is proportional to the anti-symmetrized noise of the tunnelling current. We find 

a non-equilibrium fluctuation-dissipation theorem (NE-FDT), see Eq. (4.78), Eq. (4.82) and 

Eq. (4.90). This theorem  relates the noise in the edge current to the noise in the tunnelling 

current, w ithout explicitly determining them. In the zero-frequency limit the correction term 

becomes the differential conductance of the tunnelling current.

To prove the NE-FDT we have developed a new tool, called the non-equilibrium Kubo 

formula, Eq. (4.48). This formula is a non-perturbative generalization of the Kubo formula 

used in linear response theory. With this formula we show that the edge current operator after 

the point contact in the system out of equilibrium equals the same edge current in equilibrium
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(i.e. in the absence of a point contact) minus the tunnelling operator evaluated at a retarded 

time. Note that this is an operator identity. It is a consequence of charge conservation com­

bined with the chiral nature of the edge. With this explicit expression for the edge current 

operator in the system out of equilibrium we determ ine the noise in the edge current which 

results in the NE-FDT.

The NE-FDT has im portant consequences with regard to shot noise experiments. These 

experiments measure the noise in the edge current and therefore any analysis of the m easure­

ments needs to take into account this NE-FDT. In Chapter 5 we determine exphcit expressions 

for the noise in the tunnelling and edge current using linear response theory. We then com­

pare these results to the analyses performed in recent experimental work. We find that these 

analyses do not properly take into account the strongly correlated nature of the system. We 

provide a qualitative explanation for recent experimental work involving zero frequency noise. 

In these experiments the theoretical prediction is a poor fit for the measured noise, the reason 

being that this fit is based on a model for non-interacting particles. It does not properly take 

into account the strongly interacting nature of the system and we believe that this discrepancy 

can be understood using our model.

Future work

We mentioned some experimental opportunities suggested by our work. For the interferometer 

we already described an experiment which can be used to measure the velocities of the edge 

channels. The results from Chapter 5 should be tested against data from recent experimental 

work involving shot noise. In particular, we predict that the measured shot noise should be a 

function of the derivative of the transmission with respect to the source-drain voltage. Even at 

linear response theory this dependency needs to be taken into account. It would be interesting 

to see if recent measurements such as Ref. [60] can be understood using this modified noise.

On the theoretical side there are multiple possibilities for future study. Although we ob­

tained expressions for the finite frequency noise, we did not fully analyze the properties of 

this noise. This coloured noise (as opposed to white noise) again contains information on the 

properties of the edge theory that potentially cannot be m easured using the zero frequency 

regime. Another possibility is to study higher moments of (shot) noise, i.e. multi-point auto­

correlators, of the edge current. The goal would again be an NE-FDT which relates the higher 

moments (multi-point correlators) of shot noise in the tunnelling and edge current.

An im portant open problem is a non-equilibrium Nyquist-Johnson relation for the noise 

in the tunnelling current. Such a relation exists for non-interacting electrons and expresses 

the noise in term s of the tunnelling current, or a related quantity such as the transmission
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coefficient. In Chapter 5 we derive such an expression in linear response theory. Although a 

non-perturbative expression is difficult if not impossible to obtain, it should at least be possible 

to study the next order contribution in perturbation theory. This could either support or falsify 

our ansatzes for the NE-Nyquist-Johnson relation. Related to this is to compare our ansatzes 

to non-pertubative results of the =  1/3 state.

Finally, there is the opportunity to combine the results from both projects. The tools 

developed in the noise project are directly applicable to the fractional quantum  Hall interfer­

ometer, or other types of point contact systems. This should lead to a geometry-dependent 

non-equilibrium fluctuation-dissipation theorems, which take into account the presence of 

multiple point contacts. In particular the properties of finite-frequency noise need to be stud­

ied here, as most likely the shot noise limit is not sensitive to the presence of multiple point 

contacts.
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Chapter A 

Mathematical supplement

This section is dedicated to an overview of mathematical results used in the main text. 

References used include Refs. [68, 98].

A.1 Series and special functions

Some series which occur are
OO OO OO -

-a;"  =  -  lo g (l -  x) ^  ^  n.T" =  ^)
n=l n=0 n=l  ̂ '

for |x| < 1. These series are usually encountered with x —

The gamma function is defined by its integral representation

roo
T{z) =  / (A.2)

and obeys r (x  +  1) =  3,T(.x) and reduces to r{n  +  1) =  n! for ri > 0 and integer Furthermore, 

r (^)  =  Related to the gamma function is the Euler beta function. We frequently encounter 

the expression

D{x +  iy, X -  iy) ^  . (A.3)r(2x)

Some important relations are the doubling formula

oSx—1
r(2x) = ^^r(a;)r(x  + 1) (A.4)V7T

and the reflection formulas

r(l -  ,r)r(a:) =  r ( i  -  a:)r(i + x) =  — ^  . (A.S)
sin(7rrr)  ̂ cos(7ra:)

These expression extend to the complex plane. In particular, it leads to the relations

+  i y , \ -  i y)  =  • " Y f -T  -^(1 +  i  -  *y) =  .  ̂ • ̂ cosh(7rx) smh(7TxJ
(A.6)
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Another special function is the Gauss hypergeometric function 2-f’i(a , h-, c; x). It has the integral 

representation (Re[c] > Re [a] >  0)

2F1 (a, b- c; x) =  — ^ ----   r (1 -  -  z t y ^ d t  . (A.7)
B { a , c - a )  Jo

It also has a series representation

I , /  ,  ̂ r(c ) r (a  +  n )r(6  +  n) X"
2Fi{a,b;c;x) =  >     (A.8)r(« )r(6 )^^ r(c + n) nl

See Refs. [68, 98] for many more properties and identities of this function.

A.2 Integrals from Chapter 2 -  Integration over momenta

In Chapter 2 we encounter summations of the form

1 / =  ^  =  n e Z .  (A.9)
A :  5 ^ 0

Here f { k )  is a function of the form k"^. The relevant cases are m =  -1 , m =  0 and m — 1. 

In the large L  lim it the summation is approximated by an integral over the domain 7 =

( - o c , - ^ ]  U [ ^ ,00 ) ,  i.e.

(A.IO)

where + i { x  +  Vct)). We assume Im[^] < 0, although the final results also holds for
Vc

Im[^] > 0 (but requires a different proof). In the L -> 00 lim it the integral approaches the 

origin at y =  0. If  f { y )  is regular than this is no problem, and we can include the origin into 

the domain of integration. For the case o f f { y)  =  l / y  the function is singular at the origin, 

and the integral is formally divergent. This divergence needs to be regularized.

For now we assume a domain of integration equal to 7/, =  [ -R ,  -e ]u [e , R], which excludes 

the origin and has an upper and lower bound given by R (which we w ill take to 00). We extend 

this domain w ith  two contours, 7̂  ̂ and 7 ,̂ thereby closing the contour. See Figure A .I. The 

resulting integral is computed using the residue theorem.

The domain 7/? is a semi-circle o f radius R  in the upper-half plane o f complex y. The 

integral over this contour vanishes in the large R lim it. The contour is a semicircle of radius 

e. For f { y)  regular this contribution also vanishes in the lim it o f e |  0. For fin ite  R and e the 

integral I j  equals the difference

r /■ f  ^

168



Im[y]

IR

IL 7L:
Re[y]

Figure A.l: The contour along the integral is determined using the residue theorem. The function 
J{y) has poles at y =  ni with n integer. For }{y) = 1 / y  the limit of e 4- 0 is divergent and needs
to be regularized.

where 7 ' =  7 l  U 7 e U 7 /;.

The first in tegral is along a closed contour 7 ' and is handled using the residue theorem. 

The residues are situated at y =  ni for n > 0 and integer. We have

2ni Res
y= ni f i y ) -

oV2
(A.12)

-  1 .

valid since /(y )  =  y"* is regular at the the points y = ni. The contour integral is determined 

by taking the sum over n  and take the limit of 0 0 . For three cases of interest this gives

lim lim
e4,0 R —^ 0 0

p y z 00

I  I dy^iY^f ini )
^  n = l

- lo g ( l - e * ^ )  /(y )  = - ;  n = - l
y

f { y )  =  1

4 s\n{z/2Y
f { y )  =  y \  n  =  i

(A.13)

The rem ain ing  in teg ral is over the semi-circle corresponding to e. The contour is described 

by 7 ,; =  writh 6 G [tt, 0]. We have
■if)

dy -  lim I_ 1 ,27ree'» -ieê d̂O (A.14)
/7,  ̂ £io

For the case of f {k)  =  A;"̂  with m  > 0 the integral vanishes when we take e |  0. For m  = 0 

the integral is finite, while for m  < 0 it diverges. We approximate the integrand by a Laurent 

series in e for the cases of m =  — 1 and m  = 0  gives

1 

y
,2-KceyO _  1

27T e +  +  /(y )  =  f:
(A.15)

27T
f { y )  ^  1
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The dots represent terms hnear or higher order in e which vanish in the e J, 0 lim it. For the 

case of f {y)  =  ^ the ^ term captures the divergence of the integral. We denote this divergence 

by C  and integrate the remaining term. Plugging the Laurent series back into the integral 

gives

C - l o g ( i e - - / 2 )
y

0

f [ y)  =  1

f {y)  =  y

(A.16)

The final expression for the desired integral is obtained by summing (A.13) and (A.16). We 

have

-  log(sin(2:/2)) +  C 1II

cot (2 / 2) f {y)  =  1

1 1
, 4 s m {z / 2 Y f i y )  =  y ■

(A. 17)

where 2  =  ^ (̂<5 + i {x +  Vct)). This was proven for Im [z] < 0. The proof for Im[2 ] > 0 is 

almost the same, with the exception that the contour is closed along the lower half plane. 

The constant C represents the (regularized) divergence of the integral and its divergence is 

determined in the main text.

A.3 Integrals from Section 3.5.5 -  Propagators

In Chapter the interference current is written in terms of a Fourier transform of a product 

of propagators. Here we discuss how these transforms are determined and show that the 

interference current is given in terms of Carlson’s R function.

A.3.1 Single channel propagator

We require the Fourier transform of the two-point propagator. We start with the finite-temperature 

case and no spatial dependence,

P g ( t )  =  s m [ T r T { 6 +  . (A.18)

Here i5 > 0 is an infinitesimal integral regulator which is taken to zero in the end. To compute 

its Fourier transform P g { u j )  =  J e ^ ^ P g { t ) d t  we follow Ref. [157] and substitute 6 +  i t  =
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+  w-  leads to

P g { t )  =  (7rT)®cosh (I)"® = ( 2 7 t T ) ® ( l  +  e - ^ ) ~ ^  . (A.19)

With this substitution the limits of the contour are ±00 +  i {n — <5). The contour is deformed 

so that it  runs over the real line of x,  which can be done provided there are no singularities 

that prevent this deformation. The function cosh(x/2) is zero at the points =  (2n + l)7ri, 

for n integer. It is therefore the presence of the integral regulator 5, which allows for the 

deformation.

After substitution the resulting integral is an integral representation of the Euler beta 

function [98]. We have

7̂ -  p O O

Pg{^)  ^ d x
i2nT) '  —00

V2 27tT ’ 2 2ttT)(27rT)^"® V2 '27tT’ 2 '2ttT  

Here we have taken ^ ^  0 in the final result.

A.3.2 Multichannel propagators

Through a similar manipulation the Fourier transforms of products of two-point propaga­

tors w ith unequal arguments can be obtained. This results in the Fourier transform for G^j, 

Eq. (3.57). The propagators entering this expression for Gfj are given by Pg{t +  with ^ of 

the form ^ ± ^ . We first note that with the substitution 6 + i t  =  ^  we have

Pg{t + 0  -  (27rT)^e-"^«Se-t"^,(0  (A.21)

where A g { 0  =  ( l  +  .

When applying this substitution to the Fourier transform of the product of four propagators 

(setting g =  gn + 9c) we obtain

/ OO

+  v jP g c i t  -  l ) P g , X t  + -  V ^ ) ] d t  =  e# { 2 i ^ T f ^ - ^
-00

Q c U n  \

J  . (A.22)
J  —00

7tT ( 6—a ) ( “ -f-7?
X  e ' V n

The resulting integral is an integral definition of Carlson’s R function [35], see Eq. (B.3). 

This function is discussed in detail in Appendix B. It is a scaling function and it is closely 

related to the Lauricella hypergeometric function [146, 159] . This Lauricella function

is a multivariable generalization of the Gauss hypergeometric function of one variable and 

the Appall hypergeometric function of two variables [98]. For our purposes it is convenient
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to use the R  function to represent our main result, although the two representations are 

interchangeable, see Eq. (B.9).

Appljdng the integral representation (B.3) gives for the integral

(A.22) =  P2g{Lo)

X i ? (5 -  {9c, 9c, Sn, 9n}\er'^ '^^~c , j  (A.23)

where Pg{uj) is given by (A.20). The resulting R  function is Carlson’s R  function. Note that 

the order in which the param eters appear is important.
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Chapter B 

Carlson’s R function

The interference curren t for a fractional quantum  Hall state through a Fabry-Perot interfer­

om eter is given in term s of Carlson’s R. function. In this chap ter w e discuss its m ain features, 

such as its in tegral and  series representation, and  how  the function is com puted numerically.

B.1 Main properties of the R function

We first in troduce a notation. We define Qn as the ordered  set w ith  n  elem ents given by

G n =  { g i , - - - , 9 n }  (B .l)

and  we set
71

(B.2)

In the m ain tex t w e usually  w ork  w ith  the case w here  n  =  4,  the o rdered  set corresponds to 

Sn =  {.9c, fjc, f jn,gn} ,  and 7  =  2{gh +  gn) — 2g.  Carlson’s R  function is treated  in Ref [35] and 

is defined through  the in tegral representation

1 TOO ”

Z ? ( a , 7 - a )  7_oo 1-f-̂
dx . (B.3)

i = l

Here, B{x ,  y)  is the  Euler beta function, and {zi}  is the ordered  set = { z i , . .. Zn}.  We

require Re [a] >  0 and Re [7  — a] >  0 for convergence of the integral. Furtherm ore, we take the 

Zi’s to be real and  positive. The R  function is sym m etric u n d er the sim ultaneous interchange 

of 9i ^  9j and  Zi -h- zj .  In the main text the Zi correspond to the exponentials .

The R  function is a scaling function, i.e. it is hom ogeneous. This follows directly from the 

in tegral definition (B.3)

=  A"/?(q ;0„ ;{A x i , . . . ,A2:„}) . (B.4)

We also have the Euler-type transform ation
n

R { a - , g n ; z i , . . .Zn)  =  i? ( 7  -  a;  \  . . .  ) . (B.5)
i = l
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For some special values the R function w^ith n arguments reduces to one w ith  m < n argu­

ments. For instance

R. (a; Qn\ {z i , . . .  Zk, z , . . . ,  z})  =  R{a]  { g i , . . . ,  gk, g}; {zu ■ ■ ■ zk,z})  (B.6)

where g =  ,%+! +  • • • +  ,9n- We also have the case

B{a,  7  -  a)R  (a; Gn, {zu ■ ■ ■ Zk,0, ■ ■ ■ ,0}) =  B{a,  7  -  a -  g)R (a; 0^; {z i , - - -  Zk}) ■ (B.7)

The R function is closely related to the Lauricella hypergeometric function [146, 35, 159]. 

We define the Lauricella function through its series representation

T T  ( 1  -

U = i

(B.8)
m i= 0  m „ = 0

where (a )„j =  r[o: +  m ]/r [a ] is the Pochhammer symbol and we require |1 -  Wj| <  1 and 

arg(l -  Wi) >  0 for convergence of the series.

To demonstrate the relation between the two functions we define Zn =  max(2; i , . . .  ,Zn) 

as the largest parameter o f the Zi’s. Bccause o f the identity (B.3) we can always set this 

parameter to be the last argument of the R function. Furthermore, we w ill demand 2 ,; ^  zj for 

i  j ,  which can always be accomplished through the reduction property (B.6). The relation 

between R and Fd  is given by

R  (a; Qn, { z i , . . .  z„ } )  =  («; ; 7 ; {1 1 -  ^ } )  (B.9)
Zn

The arguments of the Lauricella function all satisfy |1 — zi/zn\ <  1 and a rg (l -  zi jzn) =  0 

meaning we have convergence of the series (B.8). We do not prove this relation explicitly, but 

it follows from manipulating the integral (B.3) and makes use o f the binomial series.

The Lauricella hypergeometric function is a generalization of the single-variable Gauss hy­

pergeometric function, denoted by 2 F 1, and the two-variable Appell hypergeometric function, 

F \ . We have

i ? ( a ; { . 9 i } ; { 2 i } ) = ^ r “  (B.IO)

R { o i \ { g i , g 2 } - , { z u Z 2 ] )  =  2^“ 2 F \ {a \ {51}; ,9i + .92; {1 -  §})

^  {51,52,53}; {21,22,^3}) =  2^" Fi{a]{gi ,g2 }\g\  +  52 +  53; {1 -  f ^ , l  -  § } ) .

Here we assume z ^ >  Z2 >  z\.
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B.2 High temperature behaviour

Consider again the expression for Gfj{u}), Eq. (3.57). We are interested in its behaviour at 

large T. The expression is proportional to the integral

roo

i=l

where the correspond to the energy scales set by the velocity and edge lengths, ^

and Pg{t) is the propagator given by Eq. (A.18). We are interested in the behaviour for this

function when T  grows large. For this we substitute (5 +  -> ix  +  ^ ,  which gives

Pgi [t + Ci) -  cosh (ttT  {x +  (B.12)

and the integral becomes

/
CX>

e'"^]^cosh(7rr(x + ^i))"®‘ dx
■oo ■

To be consistent w ith the main text we set ^  ■ gi — 2g. We split the integral into two domains, 

and pull out an exponential from the cosh function. This gives

Ie '12s(27tT)
rO

+

r o o  f .
=  /  +  g - 27T T ( x + f  ) ^ - 3 i

Jo .

f °  dx (B.13)
J — OO

Consider the first integral. We perform an integration by parts, and obtain a boundary term 

and a remainder,

/■oo/ g - ( 2 7 r T g - i w ) x  +  g - 2 7 r ' T ( 2 : + ^ ) ^ - 9 j

Jo j
1 [- r o o  ,

=  ------- TT
2nTg — ioj I ,/o J

where

dx (B.14)

f .  p -2 7 r7 ’ ( x + ^ )
/ ( x )  =  27rTTT(e’ '̂-''«* g .----?---------------- —  (B.15)

We can estimate an upper bound for the remainder term. For this we note that f { x )  is positive 

on the integration domain and bounded by

f { x )  <  4TTTgY[{e^'^^' +  , x G [0,oo)
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This gives an upper bound on the remainder given by (up to a factor o f {2nTg — iuj) 0
poo

<  47tT5 dxfJo
AttT  g

(B.16)
2wTg — iu!

t

The product also appears in the expression for the boundary term in Eq. (B.14). This product 

therefore determines the asymptotic behaviour of the boundary term in the high temperature 

lim it, and acts as an upper bound on the remainder term. A similar analysis can be applied to 

the second integral in Eq. (B.13). It follows that the asymptotic behaviour of the integral I  in 

the high temperature lim it is given by

I  ~  (2 7 rT )2 9 -2 e -7 rT E i ICilsi (B .1 7 )

The factor is the high temperature behaviour o f expression (A.20). This shows

that the high temperature behaviour o f the modulating function is given by the exponen­

tial e xp (-7 rrX ].

B.3 Computing the R function

For 71 =  1 and n =  2 the R  function reduces to the Gauss and Appell hypergeometric func­

tions respectively for which various efficient numerical implementations exist. For n >  3 no 

numerical implementation is available and we can either perform numerical integration or 

compute the expansion (B.8) to some finite order. Numerical integration of the integral (B.3) 

takes into account the Beta function as well, which is why we use the series expansion instead. 

We w ill follow Ref. [140] to cast this series expansion into a more tractable form suitable for 

a numerical implementation.

The main result of Ref. [140] is that the multivariate Taylor expansion (B.8) can be written 

as the single summation

{a \Qn\ r , { ^  !(;„}) =  1 +  X !  • • • >̂ m)
m = l

(B.18)

Here (q)„ =  F[a -I- n]/r[a] is the Pochhammer symbol and is the cycle index (o f the 

symmetric group Sm) o f the variables t j .  Defining the variables t j  ( j  =  1 , . . . ,  m)

t j  =  ^ g i { l - W i Y
i=l

then the cycle index Am o f this set is given by

E
A*1

k i + 2 k ' 2 - - - - ¥ m k m — fiT-

m  -

j = l  ^

(B.19)

(B.20)
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The summation over the ki’s (B .20) is constrained by j^ j  =  which makes its compu­

tation for large m  rather involved. It’s more efficient to use an iterative approach, as can 

be expressed in terms of {A„}„<„i. Defining Aq =  1 we have for m >  1

Let us also give the corresponding expansion for the /^-function. For that we again assume 

is the largest argument of the function. Then

where 7 =  9i and Zn =  m ax(;zi,. . . , z„) as before. The t j  =  1, . . .  , n  -  1) are given by

This algorithm is due to Laarhoven and Kalker [140].

In the main text the R  function which enters the expression for the interference term is 

a multivariate expansion in terms of the scales 1 -  =  1 — exp (-27rT (^  -  ^ ) )  <  1. For

large temperature scales (>  15 mK) the arguments approach the radius o f convergence, 

(1 — zi j zn)  <  1, and the rate of convergence of the series becom es extremely slow, especially 

when the frequency wq becomes large as well. This requires a very large number of terms in 

the expansion, which becomes problematic since the algorithm for A,„ scales as order 0{N'^) 

with N  the number of terms in the series. In this regime numerical integration does not seem  

to be an alternative, as the standard integration schemes suffer from slow convergence as 

well.

The situation is somewhat improved by using a series acceleration. We have chosen a series 

acceleration via the Combined Nonlinear-Condensation Transformation (CNCT) as outlined in 

Ref. [125]. The algorithm works in two steps. First, the (largely m onotone) series (B.18) 

is transformed into an alternating series via a Van Wijngaarden transformation. Alternating 

series are known to converge better using a series acceleration. Second, this alternating series 

is accelerated via a nonlinear sequence transformation. For our purposes w e have chosen 

Levin’s u transformation [125], although other choices yield similar results.

The advantage of the CNCT method is that only a handful of terms of the original series are 

needed to obtain a high precision estimate of the series. This method significantly improves 

the rate of convergence of many series [125]. However, the method requires the capability to 

compute “random” terms in the series (B .22). To be specific, to perform the Van Wijngaarden 

transformation w e require the terms with M  =  2^(j  +  1) — 1 and j  and k integers.

(B.21)

n —1

(B.23)
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see Ref. [125]. Typically w e need all term s w ith j ,  k  < 'SO for a decen t precision in the  final 

answer. But no te th a t the  index M  grows exponentially. This is problem atic, because our 

algorithm  is designed to determ ine iteratively and this itera tion  process grows as 0{N '^ ) .  

The CNCT m ethod and  sim ilar acceleration m ethods therefore do not fully resolve the issue of 

slow convergence. To avoid this problem  our plots are perform ed at low  tem peratu re  (T  =  1 

[mK] or T  =  0 [mK]).

A second problem  th a t arises is a lack of precision in the term s com puted. We found th a t 

the typical double floating po in t accuracy can lead to problem s w hen evaluating  the  series 

for large u i q  (>  100 [mK]) and  values of the velocities and  distance scales as m entioned  in 

Section 3.8. This issue is resolved by m aking use of high-precision floating po in t accuracy 

[127]. The dow nside to this is th a t the com putation of a large num ber of term s is extrem ely 

slow. In particular, w e canno t sim ultaneously  m ake use of the CNCT algorithm  and  high- 

precision floating point accuracy.

We have im plem ented this algorithm  through a com bination of NumPy [170] and  Fortran, 
m aking use of F2PY [176]. In som e cases we also m ade use of the high-precision floating-point 

arithm etic package mpmath [127]. All plots are generated  using matplotlib [119].
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Chapter C 

The interference current at zero temperature

In the zero temperature case the KMS relation o f the G correlators, see Eq. (3.37), no 

longer applies. W ithin our approximation we do have the relation Gf-{t) = G^-{-t). The 

expression o f the tunnelling current at zero temperature is therefore given by

=

N  N

Q e( X :  [ G I { u ; q )  -  G ^ u q ) ]  +  2 ^ ]  |F ,r;|R e  _  g < (u ;q )]] )  .

i= l i<j
(C .l)

The analysis of the G^  correlator is the same as in the finite temperature case, w ith  the 

exception that we use the zero temperature expression o f the propagator Pg{t). In particular 

(3.57) still applies, but w ith the propagator given by

=  wh  ■

The expression for and then boils down to

G>{io) -  G<{io) =

r  + ^)P,^{t -  ^)PySt + ri~)Pg,Xt ~ V^)
7—00 7̂1

dt (C.3)

-oo

P,A-t + ^ ) P 9 c i - t  -  ^ )P ,J - t  + r i^ )P ,J - t  -  r / f )
Uc Uc On, Vn

We have not found a reference or method to treat this Fourier transform directly. It can be 

treated for the special case o f a symmetric interferometer and a single edge mode, where 

Vc = Vn and a — b. This special case is treated in Appendix C .l. Alternatively, we can start 

w ith  the expression for the tunnelling current of the finite temperature case and take the zero 

temperature lim it. This approach allows for more general values o f the physical parameters 

and is performed in Section C.2. Finally, we suggest in Section C.3 a solution to the integral 

(C.3), obtained by taking the zero temperature lim it from the finite temperature expression.

As in the finite temperature case we find for the tunnelling current

Qe
I b {^q ) =  2nc 2o„ I r {bJQ) I^/2g(^Q)Sgn(cjQ) (C.4)

Vc Vn
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w ith l 2 g  given by (C.6 ) and the effective tunnelling am plitude equals

N  N

| r | 2  =  ^ | r i i 2  +  2 ^ |r i r * | R e
t=l  i < j

The m odulating function is given by (C .12) in the sym m etric interferom eter case

w ith a single m ode, and by (C .18) in the more general case.

C.1 Interference current -  single channel case

We start with the Fourier transform o f the correlator G n { u ) .  This corresponds to the tunnelling  

current through a single point contact, see Eq. (C .l) .  We require the Fourier transform o f the 

propagator P g { t ) ,  w hich is given by [98]

Pg{uj) =  Ig{u;)e{i j)  (C .6 )
O -TT

w here /^(w) =  

and is the step function. Then

Gii (w) -  (w) =  avacu“ ®̂'̂ r̂7 -̂’’*'f2 ff(w)sgn(a;) . (C .7)

For the expression o f the interference term w e set v =  Vc =  v„. and a =  b. The required integral 

is (see Eq. (C .3 ))

/OO

^  [Pg{t + ^ ) P g { t  -  -  P g { - t  -  ^ ) ) P , ( - t  +  ^)] dt  . (C.8 )

We consider the separate cases w here g < 1 and g > ^.  The tw o cases overlap, and w e find a 

single expression applicable for all values of g. For g < 1 the integral regulator is not required, 

so w e set  ̂ =  0. With som e careful m anipulations o f  the fractional pow ers o f i w e  obtain

=  4sm(7r,g)sgn(o;) dt

The function J g { x )  is the Bessel function o f the first kind. The integral is found in Ref. [98]. 

For the case o f 5  >  5  w e  n eed  an integral representation o f the confluent hypergeom etric  

function iF i

/OO

iP +  {g- 2g\ ( 7  -  /3)uj)hg{uj)e{uj) . (C.IO)

-00

This applies w h en  Re[/?], Re [7 ] >  0 and Re [5 ] >  | .  With this integral representation w e  find

K g ^ i i o j )  =  e -^ \ ‘̂ ^ e ^ ^ , F J g - , 2 g - ~ 2 i ^ - ^ ] l 2 g { u j ) s s n { u j )  . ( C . l l )

{ q̂ ) (C .5)
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For these specific parameters the confluent hypergeometric function iF i reduces to the Bessel 

function o f the first kind [98]

Mb _ /  - - . lc j|a \ 1, / |o;|a\ J-.9
e .  2.,; - 2 . i ^ )  =  r ( . ,  +  j )  ( U ^ )  ( i ^ )  ,

Therefore both cases (g and ,9 < 1) match in the lim it o f d ^  0 and expression (C.9) 

extends to all values o f g > 0. Finally, we have for the zero temperature expression of the 

modulating function o f a symmetric interferometer

1X /  |w|a\

C.2 Zero temperature limit from the finite temperature expres­

sion

The more general case in which we consider multiple modes w ith  different edge velocities 

involves a more complicated Fourier transform which we are not able to determine directly 

Instead, we use the result for finite temperatures and take the lim it o f T  4, 0.

We require the zero temperature lim it of the modulating function, see Eq (3.61). To 

perform this lim it we make use of the series representation o f the R function, Eq. (B.8). This 

gives

lim R { a -  . • • •, =
7'10

n —  1
I

mn ^ ( i
i=l

(C.13)

The Xj’s correspond to the (.real valued) energy scales associated w ith  the edge modes, i.e.

and so on. We assume >  Xj for all % and we write x „  -  Xi — Xn,i >  0. The lim it is 

determined term-by-term. We first note the approximation

(1 -  =  (27rT)"’ *x™‘ +  . . .  . (C.14)

The dots are o f higher order in T. Combining this w ith  the (a — i - ^ ) m  term, where we have 

set m =  rrii, we obtain for the zero temperature lim it

n — 1 m —1 n —1

lim n  (2>rrx-„)”-' n  (“ -  '5 ^  + *̂ ) = + ■ ■ ■ •
j= l  k=0 j= l
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The higher order corrections o f (C .14) vanish in this hm it. Plugging this back into (C .13) 

gives

OO OO ^

^ lO J X n E - E
■ ' { i ) t  m i = 0  m n - i = 0

n
.1=1

I V
111.

w ith m  =  The resulting series is called the confluent Lauricella hypergeometric

function  [159]

m i = 0  m „ = 0

(gt)nii n i j

. , m ,! *i=l
n (C .17)

This series is a m ultivariable generalization o f the confluent hypergeom etric $ 2" function  

[98]. The expression for the m odulating function is

Here w e  recall that the x* correspond to all com binations o f and the param eter

Xn satisfies x-„ >  Xi for i <  n  and x„,j =  Xn — Xi >  0. As a sanity check w e  look  at the case 

treated in Appendix C .l , w hich  corresponds to the sym m etric interferom eter and a single  

channel. The confluent Lauricella function reduces to the confluent hypergeom etric function, 

c; x) =  iFi {b,  c; x) ,  w hich follow s from the series representation. And so

This m atches w ith the result (C .9).

The series expansion  o f the confluent Lauricella function (C .17) is o f the sam e form as 

the non-confluent Lauricella function, (B .8 ). The sam e com binatoric trick as explained  in 

Appendix B.3 can be used to rewrite this multivariable series as a single expansion in terms of 

cycle indices, see Section B.3. For this expansion w e find that the convergence o f the confluent 

series is m uch better than the non-confluent (finite tem perature) case. In general, w e  do not 

require as m any terms in the series. However, for the physical values o f  the velocity, distance 

and voltage used  in the m ain text w e  find that double floating precision is still not sufficient 

and w e require high-precision floating point numbers [127 ].

C.3 Interference current -  general case

We have obtained the general expression for the zero tem perature case by taking the zero  

tem perature lim it o f  the finite tem perature expression. The sam e result can also be obtained
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by taking the Fourier transform  o f  the zero-tem perature expression  for the correlators. 

Since these calculations m ust produce the sam e answ er w e  obtain  the fo llow ing integral 

representation o f  the confluent Lauricella hypergeom etric function. W ith P g { t )  =  (5 +  i t ) ~ ^  

w e have

/ [ n ̂ 9: (̂ +̂ j) n ̂ 9 k d t =
j  k

/ 2y(w)sgn(w)e*‘̂ ~’’< l 4 " " ^ ^ ( 0 „ _ i ; 7 ; . (C .20)

Here Xn. i  — X n  — Xi  >  0  for all i  <  n ,  all <7i >  0 and 5 is taken to zero in the end. The function  

I g  is given by (C .6) and is the confluent Lauricella hypergeom etric function, which has

the series representation (C .17 ).
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Chapter D 

Non-equilibrium Ward identity and cross correla­

tions

In Chapter 4 we encounter a correlator AS,  which appears in the expression for the finite 

frequency noise o f the edge current (Eq. (4.78)). We recall the expression for this correlator

AS(lo) =  J (^{Ajn{x, t +  x/vc) Ib{^)) +  +  x/vc))^dt  . (D .l)

In this appendix we derive a non-equilibrium Ward identity. Such an identity arises because 

the correlator contains a conserved current Jr . In general, Ward identities arise in a QFT due 

to constraints imposed on correlation functions associated w ith symmetries o f the theory.

Cross correlation

The two correlators appearing in Eq. (D .l)  are determined w ith respect to a thermal density 

matrix. As a consequence the two correlators are related through the Kubo-Martin-Schwinger 

relation [180], This relation is explained in Section 4.7.2 and states that (/g (0 )A jR (x , i))o =  

{ A j j i { x , t  — i/T )/^ (0 ))o . We therefore write AS{t)  as

AS{t) =  T{ t )  +  T { - t  -  i / T )

F { t )  =  {A jn ix ,  t +  x / v c ) i h m  . (D.2)

In Fourier space the KMS relations results in

A5(w) =  -f (D.3)

Making the time evolution operators U  explicit we have for J'(cj) =  f

J'(t) =  (A j f i ( x , t  +x /vc)L /^ (Q,-oo) fB(0) l / (0, -oo)}  (D.4)

Here A jn { t )  =  j i i { x ,  t +  x/vc) -  ( jn) -  - V ĉ ^ x^ r - Our goal is to simplify the expression for 

This accomplished by making use o f the Ward identity associated w ith  the current j .

The equilibrium Ward identity

Ward identities are restrictions imposed on correlation functions in a theory as a consequence 

o f symmetries o f the theory. In our case the insert operator AJr is a conserved current as-
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sociated w ith  the U{1) symmetry. We derived the equilibrium Ward identity in Chapter 2. 

Specifically, we obtained Eq. (2.176)

n  V. n

{ A j n { x , t ) Y [ i ’ a i { x i , t i ) )  =  ^ ' ^ Q i K { x  -  X i  -  Vc{t -  t i ) ) Y Y [ ' 4 ’a i i x i , t i ) )  (D.5)
i = l  i = l  i = l

where the propagator^ is given by

T  irT
K i x  +  Vet) =  — co t(— (<5 +  i {x  +  Vet))) . (D.6)

2 ' Uc

Here Qi =  is the normalized charge carried by the quasiparticle operators ipat- In

Eq. (D.5) we do not require an expression for the Â ’-quasiparticle correlator appearing on 

the right hand side. The Ward identity follows from the commutation relations of the current 

operator j n  and the quasiparticle operators ipai and these relations are independent from the 

specific structure o f the neutral channel. The Ward identity therefore applies to general edge 

theories, provided the edge contains a single chiral boson that decouples from the remaining 

channels. We comment on the multichannel case below.

Non-equilibrium Ward identity

The Ward identity (D.6) applies to correlators in which the time evolution o f the operators 

is due to the equilibrium Hamiltonian. The operators that enter the expression o f J', see 

Eq. (D.4), are in the interaction representation. We therefore need to extend the Ward identity 

to this interaction picture. To accomplish this we expand the correlators using the series 

expansion o f the time evolution operators U  and apply the Ward identity term-by-term. The 

final result of these manipulations is Eq. (D.18). We recall the series expansion for hi

OO  / f t  ^

U { t , - ^ )  =  J2-^U d t , T [ H H T { t
n = 0  i = l  i = l

(D.7)

Both the tunnelling Hamiltonian and tunnelling current H r  and are given in terms of 

V and Furthermore, V oc and so the operator V (V^) carries a charge o f - Q  (Q)

with respect to Jr . Therefore, whenever the correlator contains a tunneling Hamiltonian H r  

we have

{ A j n i t )  • • • H r i t ' )  ■ ■ ■ ) =  i K ( t  -  t ' ) { -  ■ • /s ( t ')  • • •) -f . . .  (D.8)

Here the dots represent the remaining contractions. A similar expression holds for the tun­

nelling operator /^ ( t )  in which case is replaced by - i Q ^ H x i t ) .  We now apply this result

'We use a slightly different definition of K( t )  compared to Chapter 2.8.
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to (D.4). First we expand the operators U and This results in

OO / n  ^0 /'O fE *.n/ (Ai(i)r[nffT(*i)]/fl(i))r[n"T(t')
n , m= 0  ■ ■ I, i =l  j = l  y

(D.9)

with T[-] and T[-] time and reversed-time ordering operators. Applying the Ward identity 

results in

1 = 1

n m

' ' j= i
71 m

-  i Q ^ K { t ) { f \ ^  H T { 0 ) r [ Y l  Hr{t '
1=1 j=i

n n m

+  i Y ,  K { t  -  t k ) { f [ l B { t k )  n  H T { h ) ] i B i O ) r \ j l  H r i t ' ) ] )
k=l 1=1 j=li^k
rn n  m

: ^ K { t - t',){f[YlHr{U)]iB{0)T[lB{t'k) n+  I
k=l t =l j=l

(D.IO)

The first term  comes from the contraction of Jr with The other two terms are the

contractions of j n  w ith the H j  appearing in the time evolution operators. We plug the total 

expression Eq. (D.IO) back into the summations and integretions in Eq. (D.9). Our next goal 

is to show that this step results in the following non-equilibrium Ward identity

T i t )  = - i Q ^ K { t ) { H i i O ) ) -  r  K { t - t ' ) { [ i U t ' ) J h m ) d t '  . (D .ll)
J  — OO

W'e are interested in the summation and integration over Eq. (D.IO), i.e.

/„-\n ( „-\m p ”  /-O ™ /-O ,  _H n / b < ,.(d ,:o )
n,m=0 i=l j = l

Consider the first term appearing in Eq. (D.IO) (proportional to Q'^). It should be straightfor­

ward to see that this term results in the first term of Eq. (D .l l) .  Next we consider the second 

term of Eq. (D.IO). The integration over dt' and summation over m  results inU{Q, —oo). What 

remains is

1-1 , “ rO
< "* 1 E  K {t  -  t k) { f \ lB{ tk) nH r { t i ) \ i B { m { ^ , - o o ) )  (D.12)

■ f c = in = l 1 = 1  ' 1 = 1i^k
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By changing integration variables -> t' and some additional relabeling) v̂ re can write this 

expression as

-1 ""1 /-o
dti

The final integration and summation results in

n—1

2 =  1

( f  n  Hiit i)  /b(0)ZY(0, -c» )) (D.13)

° °  ( , ; \n  ”  rOE^n/
„=0 1 = 1

f \ l B { t ' ) U \ Q , - o o ) \ ^  = U\t\-OQ)iB{t')U\<d,t') . (D.14)

Finally, combining this result with Eq. (D.12) results in

[2"d term] — > -  T  dt'K{t -  (D.15)
J — OO

The manipulation of the third and final term in Eq. (D.IO) is done along the same hnes and 

results in

rO
[3rd f  (0) / / (t'))

J  —00

(D.16)

Putting everything together results in the non-equilibrium Ward identity Eq. (D .ll) .

Next we look at the Fourier transform of T{i). To obtain this we require K{uj). This can 

be obtained for instance through a contour integral. The result is

!■
eT

eT

The frequency representation of the non-equilibrium Ward identity is then (taking 5 J, 0)

nuj) = ^N{u;)[iQ̂ {HU0)) + f  /^(0)])di' (D.18)

Note also the appearance of the antisymmetric noise, in the expression for 7". For A S  

we use Eq. (D.3) and obtain

AS{uj) = N{u;)R!^{lo) .

This proves the relation (4.81). We also note the real and imaginary parts of J'

2Re[.F(cj)] =  A5(o;)

2Im[j^(w)] = Q^N{u){Hi {̂0)) .

(D.19)

(D.20)

(D.21)
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Multichannel case

We also comment on the multichannel case. In this case we have a non-equilibrium Ward 

identity for each channel. The difference is that the current operator of the i’th channel only 

measures a fraction of the total charge of the tunnelling operator V. In particular, expression 

(D.8) becomes

{ A m  • ■ • HHt' )  ■■■)= -  t'){- ■ ■ i s i t ' )  •■•) +  ■■• (D-22)

The final identity Eq. (D.18) is scaled down by the same factor of KiQilQ. In the treatment of 

the multichannel case we also encounter the following cross correlation which mixes velocities 

of different channels

ASij{t) =  {Aji{x, t  + 7]jx/vj)is{Q)) +  {i[^{0)Aji{x, - { t  + rjjx/vj))) . (D.23)

This requires a bit more care, as v/e encounter the velocity Vj instead of Vi (compare this to 

Eq. (D.2)). Using the KMS relation Eq. (4.87) we obtain

AS«(<) =  -  x ( |  -  | ) )  + -  $ )  -  , / t ) (D.24)

and its Fourier transform

. (D.25)
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