
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin 

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and 
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing 
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property 
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR 
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources 
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in 
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal 
conventions. Where specific permission to use material is required, this is identified and such 
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the 
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity 
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising 
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific 
use constraints, details of which may not be explicitly described. It is the responsibility of potential and 
actual users to be aware of such constraints and to abide by them. By making use of material from a 
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the 
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the 
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & 
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from 
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or 
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for 
your research use or for educational purposes in electronic or print form providing the copyright owners 
are acknowledged using the normal conventions. You must obtain permission for any other use. 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has 
been supplied on the understanding that it is copyright material and that no quotation from the thesis 
may be published without proper acknowledgement.



The W eakly Coupled Chiral Schwinger M odel
On A Finite Lattice

by

Carlos Pinto 

M.Sc.

A thesis submitted to 
the University of Dublin 
for the degree of Ph.D.

School of Mathematics 
University of Dublin 

Trinity College

o

October, 1999.



Declaration

This thesis has not been submitted as an exercise for a degree at any other university. Except 
where otherwise stated, the work presented herein has been carried out by the author alone. 
The Library of Trinity College, Dublin may lend or copy this thesis upon request. The 
copyright belongs jointly to the University of Dublin and Carlos Pinto

P \ p- p
Signature of author . . .   '  ......................................................................

Carlos Pinto 
October, 1999



Abstract

The primary aim of this work is the development of a perturbative analysis of the phase 
structure of the lattice Schwinger model. A novel method for implementing this analysis is 
presented.
It is shown analytically that the photon propagators which appear in the solution can be 
specified without ambiguity, provided special boundary conditions are implemented on the 
lattice.
A detailed numerical study is carried out to confirm this analytical work.
The results of the perturbative calculation indicate the absence of a phase transition in the 
weakly coupled Schwinger model, contrary to the findings, based on numerical studies, of 
other groups.
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1. Introduction

The beginner . . .  should not be discouraged i f  .. .he finds
that he does not have the prerequisites for reading the prerequisites.

-  P. Halmos

1. Background

The successful description of the fundamental structure of m atter remains one of the primary 
aims of physics. The most promising approach to this goal at the present tim e is provided 
by relativistic quantum  field theories.
The earliest theories of this type were introduced shortly after the development of quan­
tum  mechanics by, amongst others, Dirac, Born, Jordan, Pauli and Heisenberg. This work 
was motivated by the need to achieve a description for the electrom agnetic field tha t was 
consistent with both  special relativity and the new quantum  mechanics.
Following twenty years of development by many physicists, the theory of quantum  electrody­
namics reached its finished form in the work of Feynman, Schwinger, Tomonaga and Dyson. 
It remains the most successful and accurate theory in physics to  the present day.
Quantum  electrodynamics cannot be solved exactly; indeed very few exact solutions are 
known in quantum  field theory as a whole. It owes its success, rather, to  the fact th a t 
the coupling constant associated with the electromagnetic field is small {a ~  1/137). As a 
consequence, the perturbative expansion of the theory in powers of the coupling constant 
yields highly accurate approximate solutions.

The techniques th a t had proved so efii'ective in the case of quantum  electrodynamics were 
also applied to the other fundam ental interactions. A quantum  field theory of the strong 
interaction, quantum  chromodynamics, (QCD) was developed in the 1970s. QCD describes 
the interactions between quarks and gluons and has the curious property of asymptotic 
freedom] the quarks interact weakly a t short distances w ith the strength of the interaction 
growing w ith separation. As a consequence, the high energy (short distance) features of 
QCD can be analysed with conventional perturbation theory; however this approach fails 
in the low energy regime. Perturbative QCD cannot therefore be used, for example, to 
calculate hadron masses or to  investigate the confinement of quarks. These phenomena are 
fundamentally non-perturbative.
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The most promising current approach to  these non-perturbative problems is a  formulation 
proposed by Wilson, in which spacetime is discretised into a set of finitely spaced points ( a 
lattice). Such a model is in many ways analogous to spin systems in statistical mechanics. 
Lattice field theories possess two im portant advantages as far as non-perturbative studies 
are concerned. Firstly, they adm it strong coupling approximations, which cannot be realised 
in a continuum theory. Secondly, the discrete nature of the lattice means th a t lattice theories 
lend themselves to  numerical investigation. Indeed the potential of this numerical approach 
is limited only by the power of present day computer technology. Numerical studies in lattice 
field theory are today the principal tool in theoretical hadron physics. They are currently 
able to predict low lying hadron masses to an accuracy of a few percent.
The lattice approach is not w ithout its disadvantages, however. On the one hand, the tran ­
scription of continuum fields onto the lattice presents technical problems, most notoriously 
so in the case of fermions, where a doubling of the fermionic degrees of freedom in the lattice 
formulation appears unavoidable. The most natural cure for this problem is to add an extra 
(Wilson) term  to  the lattice fermion action; this term  however raises additional difficulties 

of its own.
The opposite transition, from the lattice to the physical continuum theory presents its own 
difficulties; indeed, only under very special conditions does a lattice theory have a meaningful 
physical continuum limit. The determ ination of these conditions is in general a highly non­
trivial problem.
The complexity of full QCD renders many of these problems intractable. Some insight may 
be gained, however, by a study of simpler ‘toy’ theories and a variety of such theories have 
been investigated. One of the most im portant is the Schwinger model which describes the 
interaction of photons and electrons in 1 4-1 dimensions. A lthough th is model might seem 
grossly unphysical, it actually shares some interesting features w ith QCD, not the least 
of which is confinement of charge. Moreover, the massless version is exactly solvable in 
the continuum and is therefore a useful testbed for the development of numerical methods 
involving dynamical fermions.

A crucial feature of any lattice field theory is its phase structure, since it is only a t the critical 
points in the param eter space of the theory th a t a continuum lim it may be attained. The 
phase diagram of the Schwinger model has not been fully determ ined. There is considerable 
current interest in this problem, since it is believed th a t the phase structure is likely to be 
similar in some respects to th a t of QCD.

It is known th a t the Schwinger model possesses critical points in both the strong and the 
weak coupling lim its; some numerical results have also been obtained a t in te rm ed ia te  values. 

The prim ary aim of this thesis is to complement these numerical approaches with an ana-

§i. Background
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lytical investigation of the phase structure of the Schwinger model.
Our approach will be as follows. The critical behaviour of the theory is governed by the 
behaviour of the zeroes of the partition function as the lattice size goes to infinity. The 
locations of these zeroes must therefore be determined, (for fixed coupling) as a function of 
lattice size. These locations cannot be determined exactly; therefore a perturbative scheme 
in the coupling strength is implemented. The analysis will therefore be restricted to the 
weak coupling regime.
The perturbative expansion yields terms which are functions of expectation values over the 
photon field. It is well known that such expectation values are potentially ill-defined; for 
example the photon propagator exhibits an infra-red divergence at weak coupling in Feynman 
gauge.
A second objective of this work is therefore to develop a scheme for the unambiguous speci­
fication of such expectation values. We will trace the origins of the problem to the vacuum 
degeneracy exhibited by the photon field on a finite lattice, and demonstrate that this de­
generacy can be removed by a suitable choice of boundary conditions.
The gauge of choice in perturbative lattice calculations is Feynman gauge; however the 
propagator cannot be determined exactly in this gauge and it is necessary to use a weak 
coupling approximation.
The third objective of the thesis is to determine expectation values exactly, in order to 
investigate their behaviour under different choices of boundary condition. We find exact 
expressions for quite general classes of expectation values in axial gauge and show, in par­
ticular, that the expectation value of relevance to the main perturbative calculation 
is actually independent of both coupling and lattice size when the usual periodic boundary 
conditions are imposed. This means that axial gauge with periodic boundary conditions can­
not be used for the perturbative calculation. On the other hand acquires the proper 
functional dependence when the proposed new boundary conditions are employed.
The fourth objective of the thesis is to investigate the behaviour of the expectation values 
numerically. We find tha t Monte Carlo simulations reproduce the analytic results obtained 
in axial gauge as well as in Feynman gauge with the proposed new boundary conditions. 
We would expect unusual numerical behaviour in the case of the Feynman propagator with 
periodic boundary conditions in view of the infra-red divergence associated with this object 
and indeed we find enormously long decorrelation times. We present evidence that suggests 
that the simulation in this case is not ergodic.
With these results in hand an unambiguous weak coupling expansion can be implemented 
for the Schwinger model on a finite lattice. The lowest zeroes of the partition function are 
located to first order. Their scaling behaviour indicates the absence of a phase transition in

§ .̂ Background
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the weak coupUng regime. This analytic result contradicts the findings of recent numerical 
findings based on finite size scaling.

2. O utline O f The Thesis

The thesis is structured in the following way.

Chapters 2, 3 and 4 consist mainly of an overview of field theory in the lattice setting. 

Chapter 2 begins with a brief review of the path integral approach to quantum  field theory. 
The concept of the lattice as a regulator of the continuum theory is then introduced and some 
technicalities associated with lattice calculations are discussed. The next part of Chapter 2 
describes how useful physical information can be extracted from the lattice and demonstrates 
th a t such calculations are only valid a t the points of phase transition  of the lattice theory. 
The Chapter concludes with a discussion of the m ethod of Lee and Yang for determining 
the location of such a phase transition from an investigation of the zeroes of the partition 
function.

Gauge fields are introduced in Chapter 3. The discussion is restricted to U (l) fields in 
two dimensions since it is fields of this type th a t appear in the Schwinger model. The 
Wilson action is introduced and the lattice versions of gauge invariance and gauge fixing are 
discussed.

The final part of C hapter 3 addresses the problem of implementing a weak coupling approx­
imation scheme for the pure gauge field. The vacuum degeneracy of the gauge field on a 
finite lattice with periodic boundary conditions is explicitly dem onstrated. The new idea of 
imposing zero boundary conditions is introduced. It is shown th a t such a procedure elimi­
nates the vacuum degeneracy and perm its an unambiguous weak coupling approxim ation to 
be implemented.

Chapter 4 concerns itself w ith fermion fields. After a brief review of the theory of linear 
operators, the continuum fermion field is discretised and the lattice fermion propagator is 
computed. It is shown th a t naive discretisation leads to the well-known fermion doubling 
effect and tha t this doubling can be removed by the addition of a m om entum  dependent 
mass term  (Wilson term ) to the action.

Following these three, mostly introductory. Chapters, the Schwinger model is introduced 
in C hapter 5. The m otivation for the work to be described in subsequent Chapters and 
its relevance to analogous problems in QCD is discussed. The continuum Schwinger model 
is introduced and the corresponding lattice action derived. Previous work on the phase 
structure of the lattice Schwinger model is reviewed.

§^. Outline Of The Thesis
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The analytical determination of the phase structure of the Schwinger model described in 
this thesis is based on an expansion of the partition function around the free fermion field. 
Chapter 6 therefore concerns itself with an analysis of the free field problem. The two- 
dimensional and four-dimensional cases are analogous and are treated in parallel. Although 
the thesis is concerned primarily with the Schwinger model, the results of this Chapter show 
that, as far the fermion field is concerned, similar methods can (in principle at least) be 
applied to four-dimensional QED.
The first important result of this Chapter is that the fermion matrix, although not hermitian, 
does belong to the more general class of normal matrices. Standard perturbative techniques 
can therefore be applied to the free fermion operator. The eigenvalues and eigenvectors of the 
operator are obtained and are shown to be highly degenerate. This degeneracy considerably 
complicates the perturbative expansion of the operator. The Chapter closes with an analytic 
determination, via an investigation of the zeroes of the partition function, of the phase 
structure of the free fermion theory.
The proposed weak coupling expansion requires the calculation of gauge-dependent pure 
gauge expectation values. This presents a serious obstacle to the calculation since such 
objects depend on both the gauge and the boundary conditions. The unambiguous definition 
of the object (0,^) which is required for first-order perturbation theory presents particular 
difficulties. The next four Chapters in the thesis are devoted to a careful investigation, both 
analytical and numerical, of such expectation values.
The major part Chapter 7 is devoted to the analytical evaluation of both gauge-invariant 
and gauge-dependent expectation values. General expressions for a wide class of expectation 
values on a finite lattice in axial gauge are derived. The quantity is shown to be ill- 
defined in both axial gauge (where it is constant) and in the weak coupling approximation in 
Feynman gauge (where it is divergent) as long as periodic boundary conditions are imposed. 
The imposition of zero boundary conditions results results in well-defined expressions in both 
gauges.

The numerical confirmation of these analytical results forms the major content of Chapters 8, 
9 and 10. Chapter 8 introduces the basic technique of Monte Carlo integration and discusses 
the statistical analysis of the results. The technique is then applied to the calculation of 
the plaquette expectation value. The statistical fluctuations and finite size errors occurring 
in a calculation of this type are demonstrated explicitly by comparing the results with the 
analytic value for the expectation value of the plaquette on an infinite lattice.
Chapter 9 focuses on calculations in axial gauge. The additional problems associated with 
numerical calculations in a fixed gauge are discussed in general terms and then demonstrated 
explicitly. The expectation value of is calculated with both periodic and zero boundary

^2. Outline Of The Thesis
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conditions and found to agree with the predicted values in both cases.
The case of Feynman gauge is considered in Chapter 10. The value of {(j)î ) is predicted 
to diverge in this gauge when periodic boundary conditions are imposed. This divergence 
manifests itself as a non-ergodicity in the numerical simulation. The value of (0j^) obtained 
when zero boundary conditions are imposed is in agreement with the theoretical prediction. 
The first part of Chapter 11 is concerned with the implementation of the weak coupling 
expansion in the Schwinger model. Both additive and multiplicative expansions are pre­
sented. Although neither expansion on its own suffices to identify the zeroes of the partition 
function, it is shown that the two expansions taken together do suffice to determine these 
zeroes.
The second part of Chapter 11 consists of an analysis of the first order shifts in the lowest 
zeroes. It is shown that the behaviour of these zeroes indicates the absence of the expected 
phase transition.

2. Outline Of The Thesis



2. The Lattice
Suit the action to the word, the word to the action; with this special observance, 

that you o ’er step not the modesty o f nature: for anything so overdone is from the 
purpose of playing, whose end, both at the first and now, was and is to hold, as 
’twere, the mirror up to nature.

-  Hamlet

This Chapter consists of a review of the lattice formulation of field theory. The path integral approach 
to field theory is described and the lattice introduced as a regulator of the continuum theory. Difference 
operators and Fourier transforms are defined on the lattice. The problem of extracting physically meaningful 
information from the lattice is discussed. It is argued that such information can only be extracted when the 
lattice theory is at one of its critical points and a method for determining such critical points is introduced.

3. P ath  Integrals

In this section we will briefly review some basic elements of field theory in the continuum. 
The path  integral approach as developed by Feynman (1948) will be used throughout. 
Quantum  field theory is concerned with the study of dynamical systems of quantised fields. It 
is essentially a generalisation of quantum  mechanics which is consistent with special relativity, 
in contrast to the original formulation of quantum  mechanics which treated  the dynamics of 
particles and was fundamentally non-relativistic in nature.
The most natural and intuitive approach to quantum  mechanics is the path integral. The 
method can be generalised in a straightforward way to the quantisation of fields and has 
several attractive formal features, not the least of which is manifest Lorentz invariance. 
Details of the path  integral approach can be found in many texts; see, for example, Rivers 
(1987) and Roepstorff (1994).
From our point of view the greatest virtue of the pa th  integral approach is th a t it lends itself 
to a discretised formulation from which numerical results can be obtained.
Consider a spacetime field 4>{x). A particular choice for the function (p corresponds to 
a configuration of the field. The path  integral m ethod assigns a weight e^^ to each such 
configuration. The expectation value of a function of the field is then the value of the 
function averaged over all the weighted configurations, thus

/  F((/.(x))e*^
all  c o n f i g s7

all  c o n f i g s
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which we w ill w rite f m  F{4.(x)) iS

The weight function characterises the particu la r field theory being considered. The quantity  

S occurring in  th is  weight function is the action o f the classical theory

where £(</>), the classical Lagrangian density, is required as an inpu t to  the theory. The in ­

gredients o f the weight function are thus entirely classical— field quantisation enters through 

the defin ition o f the in tegra tion measure [D(j)\.

The expectation value (2.1) is an example o f a functiona l in tegra l (or path integral), the 

integral running over a ll possible functions, or configurations,

A  fundamental quan tity  in  the theory is the tw o-po in t correlation function

J[D(f>](l){xi)(l){x2)e^^
---------

Higher order correlation functions are defined s im ila rly

=  (2,2)
j[D(j)]

The entire content o f the theory resides in  the weight function  and the in tegra tion measure 

[D(j)\. A ll in form ation re la ting to local properties, such as scattering am plitudes and decay 

rates, is contained in the correlation functions (2.2), which connect pa rticu la r points in  

spacetime.

The global structure o f the theory, on the other hand, is determ ined by the physical param ­

eters contained in  the Lagrangian and by the measure. The fundam ental object describing 

th is global structure is the partition function, which is obtained by in tegra ting  out the fields 

using the prescribed measure

Z ( a i . . . a „ )  =  J[D(t)]e^^ (2.3)

where the a ’s are the physical parameters o f the theory.

The m athem atical problem therefore reduces to  the evaluation o f the functiona l integrals 

of the type (2.3) and (2.2). This is by no means a tr iv ia l m a tte r— indeed, the integrals as 

we have so far presented them  are not even properly defined. In  the firs t place, the weight 

factor is complex and strongly oscillating. Secondly we have not yet given a definition o f the 

in tegration measure. Lastly  there is no guarantee th a t the integrals even converge.

§5. Path Integrals
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These issues will be addressed in the following two sections; for the moment let us simply 
define the two actions we will be considering.
The action describing free fermions is given by

Sp = J  Ip — m)ijj (2.4)

where ip and ip are Grassman variables and the 7 ^̂ are defined by the anti-commutation 
relation

The action associated with the electromagnetic field is

Sg = - \  I  d^x (2.5)

where the field strength tensor is given in terms of the vector potential by

The full action describing fermions interacting with photons is

S q e d  =  -  m ) -  \ f ^ .F ^ ‘' d ^ x  (2.6)

where the gauge covariant derivative is defined by

Dp. = df, + igAf,

the parameter g being the fermionic charge, or coupling constant associated with the theory.
The fermion-photon theory is therefore parametrised by two physical constants, the mass m
and the charge g.
We will not discuss here the details of QED in the continuum, but will simply list the main
steps in the analysis. Detailed accounts of QED can be found in standard works; see for
example Peskin and Schroeder (1995) and Kaku (1993)
The two-point correlation functions (or propagators) associated with the free theories (2.4) 
and (2.5) can be computed explicitly. Correlation functions for the interacting theory are 
then calculated via a perturbation expansion in powers of the coupling constant; individual 
terms in this series may be visualised in terms of the well-known Feynman diagrams. The 
higher order terms in the perturbation series are formally divergent, due to the presence of 
interactions at arbitrarily small separation (or, equivalently, at arbitrarily large momentum). 
These ultraviolet divergences are controlled by imposing some sort of regulator on the theory; 
in effect a device to arbitrarily cut off the high momentum contributions to the divergent in­
tegrals. At the end of the calculation the regulator is removed while simultaneously rescaling 
the parameters of the theory so as to keep the results finite [renormalisation).

§5. Path Integrals



2. The Lattice

The theory of perturbative QED in the continuum actually produces results in excellent 
agreement with experiment and is well established and understood. It therefore provides 
a useful standard against which to explore the limiting behaviour of lattice formulations of 

field theory.

4. Field T heory in Euclidean Space

Tn this section we will begin the process of giving meaning to the path  integral (2.1). In 
particular, we address the problem of the complex, strongly oscillating weight function 
which, as we will see, takes on a more tractable form if we trea t time as a pure imaginary 

coordinate.
Before proceeding further let us review some features of Minkowski space where time is 
treated as a real variable. The properties of Minkowski space are encoded in its metric, 
which we will represent (in four dimensions) by

/ I 0 0
0 - 1 0 0
0 0 - 1 0

0 0 - i j
—  9 (11'

with an analogous form in two dimensions. 
The inner product is given by

(2.7)
= t -  Xi -  X2 -  X-i

where the contravariant vector x^ is given by

= {t, x i ,  X2, xs) (2.8)

and the covariant vector by

x^  =  (t, - x i ,  -X2,  -X 3 ) (2.9)

The covariant and contravariant derivatives are defined by

and the Laplacian by

d̂ d̂  = d,d^ = ^ - v ' ^  (2 .11)

Next we change tim e to  an imaginary variable

t = —ixq 3 :0  G R  (2.12)

§^. Field Theory in Euclidean Space
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In order to find the fermion Lagrangian in the new coordinates it is convenient to consider 
first the Klein-Gordon equation. This is given in Minkowski space by

{d^d^ +  = 0

Substituting from (2,14) gives the Euclidean form

^  0 (2.15)

The Dirac equation may be written

+ = 0 (2.16)

where the 7  ̂are now Euclidean gamma matrices. Their algebra is determined by the re­
quirement that solutions to the Euclidean Dirac equation satisfy the Euclidean Klein-Gordon
equation (2.15).

{ludii + m )i) = 0
+  m )i; = 0 

=> +  m ? ) ' i p  =  0

=> { l i i l u d t x d i ,  -  -  0

^  -  m^}tp =  0

This satisfies the Euclidean Klein-Gordon equation provided

= (2.17)

The Lagrangian density that generates the Euclidean field equation (2.16) and its adjoint is 
given by

£  ='0(7^5^ +  m)V' (2.18)

so that the pure fermionic path integral in Euclidean space is

It will occasionally be useful to have an explicit representation of the Euclidean gamma 
matrices. We will use the following form in two dimensions

0 1 \  (Q - i
0

4. Field Theory in Euclidean Space

^ ° = l i  0 0
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while in four dimensions we will use

/ I 0 0 0 0 1 \
0 1 0 0 0 0 1 0

7o = 0 0 - 1 0 7i  = 0 1 0 0
\ 0 0 0 - 1 / VI 0 0 0 /

0 0 /O 0 1 0 \
0 0 i 0 1 0 0 0 1

72 = 0 —i 0 0
73 = 1 0 0 0

V i 0 0 0 / VO - 1 0 0 /

5. The Lattice R egulator

The transition to Euclidean space has converted the weight function from an oscillating phase 
factor to a real exponential factor—to this extent the path integral is somewhat better defined

/1D.A1 FWx))
im j i S

(2.19)

We have yet to give meaning to the measure [D0], however. Let us sidestep this problem 
for the moment by changing the structure on which the theory is defined. Working, for 
concreteness, in four dimensions, let us replace the the continuous Euclidean space by a 
finite lattice with N  lattice sites along each axis. (We will usually assume for simplicity 
of notation that the lattice has the same number of sites along each axis, although this 
restriction is not necessary.)
Objects in the continuum theory can be translated to the lattice setting without difficulty; 
functions on are now defined only at the lattice points, which are finite in number. The 
lattice analogues of standard operators and transforms are discussed in Sections (6) and (7). 
The important point in the present context is that the Euclidean path integral (2.19) imme­
diately acquires an unambiguous meaning. A field configuration on the lattice is specified 
by the field values at a finite number of points; therefore all configurations can be counted 
by integrating over all possible field values at each lattice point

(2 .20)
i=l

The path integral thus reduces to an ordinary multi-dimensional integral.
It should be stressed that the lattice theory is not simply a discretisation of the continuum 
theory. In the first place, the underlying structure is finite rather than infinite in extent.

§5. The Lattice Regulator
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Secondly, any continuous symmetries associated with the underlying Euclidean space are lost 
in the lattice formulation. Indeed the lattice theory as we have so far introduced it is not 
a physical theory at all in the sense that no physical dimension has so far been introduced 
and all quantities are dimensionless. The relationship between the lattice and continuum 
theories will be discussed in Section (8).

6. D iscretisa tion

In this section we will discuss the technicalities involved with working on a discrete lattice 
and establish definitions of lattice operators and transforms. The lattice spacing a will be 
included explicitly for later convenience; for the present it is simply a dimensionless constant 
equal to unity.
Consider a d dimensional hypercubic lattice with N  sites along each axis, containing N ‘̂ sites. 
Each site is represented by its position vector n, relative to the basis {fj, , /j, = 0 . . .  {d— 1)}

— M

The coordinate system is defined symmetrically so that the site coordinates are integers 
lying in the range

N  N
2 “  ^  2

There is some freedom in the choice of a discretised derivative; we shall have occasion to use 
three different operators.
The action of the symmetric difference operator on a lattice function f {n)  is given by

^   (2 -21)

The left and right difference operators are defined by

f {n) -  / ( n - m )

u

We will also require a lattice Laplacian, given in terms of the left and right derivatives by 

V f (n) = a^a;/(n) = d;d;f{n) = ------------------
(X

If the lattice is periodic, the left and right derivatives satisfy the following important identities

i (^?/(^)) 9 i i i )  =
 ̂ -  -  (2 .22 )

/fe)) din) = -J 2
n n

^6. Discretisation



2. The Lattice 15

These follow since

sin) = + -  Z( )̂} 9{n)
n n

=  ^ f { n  +  ^) g{n) -  ^ f { n )  g{n)
n n

Since the lattice is periodic the summation variable in the first term may be shifted from n 
to m = n + [i giving

(̂ /̂(̂ )) 9 { n )  =  f i m )  g { m  d i n )
n m n

= X ] din -  m) -  /(?i) ^(n)
n

=  - ^ f i l l )  (dj;g{n))
H

and similarly for the left derivative.

7. Fourier Transform s on th e Lattice

In this section we will develop a definition of the Fourier transform of a function defined on 
a finite, discrete lattice. We work on a d-dimensional hypercubical lattice with N  sites along 
each axis.The sites are labelled by coordinates n^:

- N  N
< n„ < —

2 -  2

Let us also introduce the dual lattice. The coordinates of points on this dual lattice are 
labelled by real numbers

^  (2-23)

where the values of are determined by the boundary conditions. It is convenient also to 
introduce the parameter kfj, by

K =  ^  (2-24)

Consider now any function /(k ), defined on the lattice sites n. The value of f{n} at each
site is arbitrary; the function therefore has independent degrees of freedom and may
be expanded in terms of N'^ basis functions, 6p(n). These basis functions must satisfy the 
orthogonality condition

Bpin) Bp'in) (X 6pp' (2.25)
all sites

§ 7. Fourier Transforms on the Lattice



2. The Lattice

We will use as our basis functions the discrete version of the standard Fourier basis:

e ,(a )  =  eTE-1 =  (2.26)

Let us now impose periodic boundary conditions on the lattice; that is, we require every 
lattice function to satisfy

-  N) = f{n^) = f{n^  +  N)  V/i 

In particular, the basis functions ep{n) must be periodic. Therefore

^  gSTTip;, =  1 =

which in turn requires that the be integer-valued.
It will occasionally be necessary (for example, in the case of fermions) to impose anti-periodic 
boundary conditions along one or more axes of the lattice. These anti-periodic functions are 
defined by

f{n^  -  N)  = - f { n ^ )  = /{rif, +  N)  

and the basis functions which generate them satisfy

Q^Pn(nn-N) _

g27rip,x =  — 1 =  g -2 7 T ip ^

In the case of anti-periodic functions, therefore, the take on half-integer values.
The basis functions with p^ integer or half-integer can easily be shown to satisfy the orthog­
onality relation (2.25). In one dimension, the sum

^ g ¥ ( p - p ' ) n

is a geometric progression of N  terms with first term  and common ratio
The sum is therefore

[eT^v-vD =

The sum is therefore only non-zero if

p — p' = m N  (m =  0 ±  1, ±2  . . .)

§7. Fourier Transforms on the Lattice
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According to (2.26), the integers p satisfy

N  N
- y  <Pi i<

The only allowed value of m  is therefore zero, leading to the required orthogonality relation:

^ e ¥ i P - P >  =  N5pp>

-==f

This result generalises straightforwardly to d dimensions

iV-l ^-1
^  ^  jv“V  eTta-a') E =  N-'S^.

or

P = ^

" _ i2  ̂ 2

n = = f  P = = f

An arbitrary lattice function /(n )  may therefore be expanded

k
where the expansion coefficients /(^ )  may be regarded as a discrete function defined on the 
dual lattice. To obtain the back transform, note that

E  f ( k )  Y .  -  =  £  /(«)e-* “
k n n

^  (2.28)

Nd
k

n

—iK' .n

n

The real numbers are usually referred to as momenta, by analogy with the continuum 
theory. They form a discrete set lying in the range

—  7T 7T
—  <qt i < -a a

As the lattice spacing a tends to zero, this range increases to infinity. On the other hand, 
the number of elements in the set {q'^} increases with N  so that in the thermodynamic limit 
the momenta become continuous.
Let us now restrict the set of allowable functions /(n )  to those satisfying

§ 7. Fourier Transforms on the Lattice
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f { - N / 2 )  = 0 (2.29)

T hat is, we restrict /(n ^ )  to zero on the boundary of the lattice. These functions form a 
proper subspace of the full space of periodic functions, generated by the basis vectors

{p, ^  0, - N / 2 )

One additional basis vector satisfying the zero boundary condition may be constructed from 
a linear combination of the zero and —N/ 2  momentum modes:

( - l )"e_iv /2(«M) -  eo(n^) =  e” "" -  1

The coefficients in the Fourier expansion of such functions therefore satisfy

{Pn + 0, -iV /2 ) 

/(0) = -(-l)'"/V(-iV/2)
(2.30)

This is the corresponding boundary condition on the dual lattice.
Consider now a two-dimensional periodic lattice, with zero boundary conditions imposed 
along both axes. In particular, we have

/( - iV /2 ,  -iV /2 ) =  0

Using (2.27) we obtain

53/(p)e-‘E.>’.)- = /(-^)= 0
P

which gives

/(Q) =  -  ^(-1)(Sm P»^) f {p)
£#0

The zero momentum mode is therefore independent of n, a fact which will be crucial in 
deriving an unambiguous expression for the gauge field propagator.

W ith these boundary conditions, the Fourier transform  (2.27) may be w ritten

/ f e )  =  E  /(£ )  -  ( - I ) ® - " ' ’) (2.31)
P / 0

§5. Physics From The Lattice
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8. Physics From The Lattice
19

The lattice theory has so far been considered as a construct in itself, without any reference 
to the underlying physics that we are ultimately trying to represent. The objects of interest, 
physical observables, are encoded in the expectation values of the continuum theory.

The expectation values that are numerically computable, on the other hand, are defined on 
a finite discrete lattice with lattice spacing a:

their lattice versions (2.33).
The naive approach is to compute the value of the required observable (0 (a)) from (2.33) for 
successively smaller values of a and then to remove the regulator by attem pting to extrapolate 
to a =  0. There is no a priori reason why this expectation value should tend to a finite value 
in the limit of zero lattice spacing—indeed, we would expect the opposite in general, since 
the regulator has been removed without any renormalisation of the bare parameters of the 
theory (in this case, the mass m  and the coupling g). Moreover, the existence of a finite 
limit for a single observable does not guarantee the existence of a continuum limit for the 
theory; for this, we require that all observables have finite values in the limit of vanishing 
lattice spacing.
A continuum limit, if it exists at all, will exist only for certain special values of the bare 
parameters—the so-called ultra violet fixed points of the theory. The problem is therefore to 
identify these fixed points.
This is actually quite a subtle question; we will give here only a heuristic argument to justify 
our conclusions.

Let us start with a finite d-dimensional lattice L z, embedded in There is no notion of 
lattice spacing and all quantities are dimensionless. It is on this lattice, L z, that numerical 
calculations are actually performed.
Consider now a second lattice, L r endowed with a fixed finite lattice spacing ao and embedded 
in ooZ*̂ , a subset of We will allow the parameters of the L r  theory to depend on the 
lattice spacing, which is the only dimensionful quantity; consequently any quantity Q in the 
L r world must have dimension L® where q is some rational number. In particular, masses 
must have dimension L~^ in order that they take on their proper dimension when the

j m  ojcpix))
(2.32)

(2.33)

The aim is to derive unambiguous values for the continuum expectation values (2.32) from

§5. Physics From The Lattice
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physical constants h and c are eventually introduced. The two point correlation function
between two sites on Lr can be shown to decay exponentially with the distance between the

sites according to
(0 (^ ) 0(h )) oc (2.34)

where Mlr is the physical mass of the lightest particle in the Lr theory. By analogy with the 
corresponding expression in statistical mechanics we define the physical correlation length:

MLR{ao,m{ao),g{ao))

Next, let us consider a series of theories L r {o ) indexed by the lattice spacing a. Each such 
theory is associated with diff'erent values of the bare parameters m{a) and g{a). If the generic 
L r  theory admits of a continuum limit the functional dependence of m  and g on the lattice 
spacing must be such that the lightest mass MiRia) tends to its (finite) continuum physical 
value M e  as the lattice spacing goes to zero. Therefore

lini^R(a) =  r̂ (O) =  (2-35)
a->-0

In other words, the correlation length tends to its finite continuum value. As a consequence, 
as a goes to zero the correlation length extends over an increasing number of sites.
Let us translate this result back to the dimensionless lattice Lz-  The correlation functions 
on Lz  are given by (cf (2.34))

(0(ZZ2;) 0 (21)) cx 

and we define the dimensionless correlation number by
X

iz  =  — —< M Lz{m ,g)

This number represents the number of sites over which correlations extend, in contrast to ^r

I
I which represents the physical length over which they extend; the convergence of ^r as the 

I lattice spacing tends to zero is therefore reflected on by a divergence of ^z- 
■ In other words, the existence of a continuum limit for the L r  theory requires a divergence of 
■ the correlation number in the L z  theory.This implies that the L z  parameters must be chosen 
Iso that the Lz  theory is at one of its points of second (or higher) order phase transition. 
‘'Note, however, that although this conditon is necessary, there is no guarantee that it is 
‘ sufficient.

We now encounter a technical difficulty, in that an infinite correlation number ^z cannot 
be realised on a finite lattice; that is, as long as the lattice dimension N  is finite the Lz

§5. Physics From The Lattice
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theory cannot exhibit the required phase transition. It is therefore necessary to take the 
thermodynamic (large volume) limit before an approach to the continuum is attempted. 
The presents obvious difficulties from the point of view of numerical computations.
Let us list the steps required to extract the values of physical observables from the lattice:

1. Define a finite dimensionless lattice Lz- Expectation values may be explicitly computed on 
this lattice using standard techniques.

2. Construct the phase diagram of the theory; that is, identify the parameter values which give 
rise to critical points in the infinite volume limit.

3. Identify the fixed points on the phase diagram which lead to a continuum limit.

4. Compute the required expectation values on the finite lattice using the appropriate values for 
the bare parameters. If these values lead to singularities in the action (as one would expect, 
in general, since we are effectively computing in the continuum limit), then use neighbouring 
values and attem pt to extrapolate to the required values.

5. Repeat the computation on successively larger lattices and attem pt to extrapolate to the 
thermodynamic limit.

6. The end result of this process is a number representing the physical continuum value of 
the required observable. The final step is to scale and dimension this number by reference 
to some experimentally known quantity. Alternatively, the ratio of two observables (for 
example, the mass ratio of two particles) may be computed.

Note that the lattice spacing never appears explicitly in the entire lattice calculation.

9. Phase Transitions

In this section we will review the basic theory of phase transitions and introduce a technique 
for determining critical points from the zeroes of the partition function.
A phase transition, from the point of view of statistical mechanics, occurs at a point in the 
parameter space where the partition function ceases to be analytic. Such points are char­
acterised by discontinuities in the derivatives of the thermodynamic potentials, for example 
the free energy

F  = - k T \o g Z

.. An n th  order phase transition corresponds to a discontinuity in the nth  derivative. All second 
and higher order phase transitions are classified as continuous transitions; continuous phase 
transitions are associated with a divergent correlation length and are therefore of particular 
interest in the context of lattice field theory.

^9. Phase Transitions
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The idea th a t the location of a phase transition could be determined by an investigation of 
the zeroes of the partition  function was first introduced by Lee and Yang (1952) and further 
developed by Fisher (1968). An elementary discussion can be found in te r Haar (1995).
Let us briefly review the main idea.
Suppose we are interested in the value of some (real, positive) physical param eter y  at which 
a phase transition takes place. Consider the partition function Z  as a function of y. We will 
show later that, for the partition functions and param eters of interest, this function can be 
written as a finite polynomial in y.

M

Z  = ' ^ a i y ' ‘ (2.36)
i=l

where M  is the number of lattice sites and the coefficients a, are all non-negative.
Next we define the lattice analogue of the free energy per site a t constant tem perature

f { y )

where it is understood th a t M  is finite. In view of (2.36), f { y )  is clearly an analytic function 
of y except at the zeroes of Z.  Moreover, since the coefficients in (2.36) are all positive 
there can be no zero for any real positive value of y. Therefore f { y )  is analytic for all real 
positive y. As a consequence there can be no discontinuity in any of its derivatives on the 
real positive y axis and therefore no phase transition.
Let us next consider the lim it of infinite M.  We define

F{y)  = lim f {y)
M-400

It was shown by Lee and Yang (1952) th a t this lim it is well-defined; th a t is, F{y)  exists for 
all real positive y. Moreover f {y)  converges uniformly to F{y)  for all real y as M  tends to 
infinity. It follows th a t F(y) is also analytic everywhere except a t the zeroes of Z.

Now consider a a small bu t finite region R  free of zeroes and containing a point r  on the real 
positive y axis. If, as M  tends to infinity R  continues to be free of zeros then  F{y)  is analytic 
throughout R.  If, on the other hand, no such region R  can be found (in other words, if the 
zeroes approach r  arbitrarily  closely) then F{y)  cannot be analytic at r  and must therefore 
possess a  discontinuous derivative at some order. A phase transition therefore occurs as the 
physical param eter y passes through the value r.
To summarise, the points of phase transition of a lattice theory (with respect to some par­
ticular physical param eter such as the mass) may be determined in the following way. First 
express the partition function as a polynomial in the relevant param eter on a finite lattice. 
Next determine the distribution of zeroes of this polynomial. Finally, analyse the change in 
this distribution as the lattice size tends to infinity and locate those points (if any) on the 
real axis on which the zeroes converge.

§P. Phase Transitions
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In the beginning God created the heaven and the earth
And the earth was without form, and void, and darkness was upon the face o f the deep 
And the Spirit of God moved upon the face of the waters 
And God said. Let there be light and there was light 

-  Genesis

The Srst half of this Chapter consists of a review of U( l )  gauge fields on a plane lattice. The gauge invariant 
lattice action due to Wilson is introduced and the concept of gauge invariance in the lattice context is 
discussed. It is shown that it is not necessary to fix the gauge in order to compute the expectation value 
of a gauge-invariant object; however gauge-fixing is mandatory if  one is to obtain a non-zero value for the 
expectation value of a gauge-dependent object.The second half of the Chapter is concerned with the weak 
coupling approximation for the pure gauge field. It is shown that the vacuum state is degenerate if periodic 
boundary conditions are applied, but that a unique vacuum is obtained if  zero boundary conditions are 
applied.

10. The W ilson A ction

In this chapter and the next we review gauge and m atter fields in their lattice formulation. 
A more detailed discussion of these issues is to be found in several standard  works; see for 
example, Creutz (1983), Montvay and M unster (1994), Rothe (1997) and Callaway (1985). 
Gauge fields may be placed on the lattice in a way which preserves exact gauge invariance, 
(Wilson, 1974). We will consider here the case of Abelian fields—more precisely U (l) fields; 
the discussion can easily be generalised to the non-Abelian case.

The pure gauge action in the continuum is given by

Sg=^\J d̂ x
where the field strength  tensor is defined in term s of the vector potential by

Fnv — di/A^

Let us define link variables on the lattice to be elements of U (l) with the form

U^{n) =  =  e ^ 9 a A A n )

where p is a coupling constant, a is the lattice spacing and A^{n) is the value of the ^ th  com­
ponent of the vector potential a t the lattice site n. The angular variable ^^(«) is understood 
to be restricted to  the range

- 7 T  <  <  7T
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A link variable may be thought of as connecting adjacent sites on the lattice; thus 
connects the site n with the site (n +  ^).

Furthermore, we have

U - ^ , { n )  =  e^SaA- , {n)  ^  ^ - i g a A , {n )  ^  j j - l  ^

Thus Uj^{n) has the opposite orientation to U^{n).
^hese link variables represent the gauge fields on the lattice. The aim is to construct from 

j||them a gauge-invariant action which reduces to the continuum action as the lattice spacing 
g a  approaches zero. The simplest such action is the plaquette action due to Wilson. This is 

defined in terms of the elementary plaquette or square, Up{n, n, v > fj). (Figure (3.1)).

Up{n,fi, p  > j j )  =  ? 7 ^ (n )? 7 ^ (n  +  ^ )L ^ ^ (n  + z / ) C /^ ( n )

The restriction u > fi ensures that each plaquette occurs with only one orientation.

n + v n  + +  V

Figure 3.1: The elementary plaquette

^10. The Wilson Action
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In terms of the continuum fields the plaquette becomes
U  ( j i  JJ, y  y  n )  =  QigaA^(li)Qi9aA^{n+!i)Q-igaAf,{n+u)^-igaAu(n)

=  exp iga{{Au{n + ix) -  A^{n)) -  {Af,{n + E) -  A^{n)))
2 / ~  Af^(n + u ) —A/j,(r]^\

=  exp iga ---------- =------------------- —------- ^
\  a a J

For small a the plaquette is given approximately by

Up{n,^, v >  n) exp iga^{d^,A^ -  d„Af,) = exp igo?Ff,,, =

where 4>p =
Consider now the action

=  E  =  p . l )
^  p fj,,v,v>n ^  p !1,U

Expanding the cosine and retaining the leading term in a gives

P

As a tends to zero we have
hm a = f  da^O ^

P

yielding the correct continuum limit

(3.2)

lim S a =  \  [  d^xa->0 4 / ^

11. G auge Invariance

The elementary plaquette Up{n) is invariant under the transformation

Ulin)

where /  (n) is an arbitrary function of the lattice site:

U'p(n,M, > /x) =

X [/^ (n + fx)

X e f̂{n+!'+E)ul{n +

=  C/^(n)[/^(n +  ^ )t/^ (n  +  z/)[/J(n)

=  Up{n,i£,  u >  jj.)

^11. Gauge Invariance

(3.3)
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Transformations of this type are local gauge transformations and the elementary plaquette 

is said to be gauge invariant.
The transform ation (3.2) can be written

^iagA^{n) ___ ^

In other words the effect of the gauge transform ation is to  add the discrete analogue of 
an arbitrary divergence to  the vector potential. In the lim it of small a the lattice gauge 
transform ation goes over to the usual continuum gauge transform

Af,{x) —  ̂A^{x)  +  d^f {x)

apart from an overall factor of 1/g.  This factor can be absorbed into the definition of / (n )  
as long as g is finite; th a t is, the gauge function f { x )  is the continuum limit of the function 
{ l /g) f {n) ,  except at ^ =  0 (weak coupling limit) and g = oo (strong coupling limit).
It is clear from the construction (3.3) th a t the product of link variables around any closed 
loop is gauge invariant. Moreover, functions of such products are also gauge invariant:

=  / ( U i o o , )

In particular, the action So  proposed in the previous section is gauge invariant.
Let us now assign some arbitrary  value t/^(n) to each link on the lattice. Such a set of link 
variables is term ed a field configuration. Quantisation of the system requires the  calculation 
of expectation values over all possible configurations and for this purpose a measure [dU] 
on the space of configurations must be established. The appropriate measure for the group 
U (l) is well known (Cornwell, 1984):

w=rn^ p-4)
 ̂ l̂,n

where

U^{n) = e  U (l) and -  tt <  <^^(n) <  tt

Each angular variable 0^(n) undergoes a phase shift under a gauge transform ation;

 ̂ (j) ,̂{n) + f {n)  -  f { n  +  ^) =  </>' (̂n)

The gauge function / ( n )  is independent of so tha t we have in addition;

#/x(n) = #|,(zi)

§ ii .  Gauge Invariance
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7T ^ 7 r + / ( n ) - / ( n + ^ )  nn

d(l)i,{n) — /  d(j)'̂ {n) =  /  d(pf,{n)

It follows that the measure [dU\ is invariant under gauge transformations. Since the action 
is also invariant, the expectation value of a gauge-independent function, or ‘observable’, O 
is itself gauge-independent.

=  7 I d ( / ] e ~

It is clear that redundant degrees of freedom exist in this integral since each configuration 
may be replaced by an arbitrary gauge transform of itself without altering the integrand 
or the measure. The integral runs over all configurations, and consequently over all gauge 
transforms of each ‘distinct’ configuration. It is therefore enhanced by a factor equal to 
the volume of the group of gauge transforms. This effect occurs also in the continuum 
gauge theory where the volume of the group is infinite. It is usually dealt with there by 
fixing the gauge] that is, by adjusting the action so that the integral picks out precisely one 
representative from each distinct family of gauge transforms. Gauge fixing is not necessary 
in the lattice theory, however, since the volume of the group of gauge transforms is finite— 
actually unity with the normalisation in (3.4).
This can be demonstrated explicitly by removing the gauge degrees of freedom and showing 
that the integral is unchanged. Let us first write the gauge transform (3.2) in the form

Uij.{n) — )■ A(n)f/^(n)A^(n +  /i)

The gauge freedom associated with the link t/^(n) =  can be removed by defining A(n)
and At (n +  fj,) so that

MllW^{n)A.^{n + [x) =  1

In other words A(n) and A'^(n +  ̂ ) are assigned a dependence on n tha t exactly cancels that 
oiU,{n).
Let us next choose A '̂(n +  /i +  ^) so that

A^(n +  j^ U u { n  +  ^)A^(n +  + Ĵ ) =  1

This process can be continued, fixing an arbitrary number of link variables to unity, subject 
only to the condition that no set of fixed links forms a closed loop. (The last object in a 
closed loop is At(n) which cannot be chosen arbitrarily since A(n) has already been fixed.) 
When all links that can be fixed have been fixed (the so-called maximal tree), all the re­
dundant degrees of freedom have been removed from the integrand in (3.5) and the gauge is 
said to be fixed.

11. Gauge Invariance
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Let us now suppose that k links have been fixed (not necessarily a maximal tree) by an 
appropriate gauge transformation leaving m  free links. The integral (3.5) becomes

Now O, S  and [dU] are all gauge invariant, thus

0 ( t / ; )  =  O 

5(C/;) =  S

m m  = [du]

Moreover the normalisation adopted in (3.4) means that

so that
_  f [ d U ] o e-^

fmidU',]e-^i«~) / W e - "
and the expectation value (3.5) is unaltered.

{ 0 { U J )  = {O)

It follows that the gauge degrees of freedom contribute nothing to the integral and no gauge- 
fixing is required to calculate the expectation value of a gauge invariant object.
Having established the basic idea of gauge invariance, let us introduce a more convenient 
notation. Denote a set of links t/^(n) making up a configuration by Uc- A function of these 
links is a function of the configuration:

g{U^{n)) =  g{Uc)

A gauge transform on a configuration shifts each link by an arbitrary phase :

Uc — ^

Each ’distinct’ configuration is represented by a family of gauge transforms;

=  : - K < 0 c { n , i i ) < n }

W ith this notation the weighted integral of a function over all configurations can be broken up 
explicitly into an integral over distinct configurations and an integral over gauge transforms

I[dU]g{Ua)e~^^ = j j " "  exp ^

§ ii. Gauge Invariance
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Since the action Sc is invariant under gauge transforms this can be w ritten

IldU ]g(U c)e~^‘ = ^  (3.6)

If the function g is also gauge independent, this reduces further to

j[dU]gme-^’ = [sW e-^’ ^
the integral over gauge transform ations just contributing a factor of unity as before.
It is worth noting in passing th a t a constant function g = k is independent of the link 

variables, reducing (3.6) to

I[dU]g{Uc)e-^^ = k 

If g depends on the gauge, the change of variable x  =  gives

j [ d U ]  g(U,)e-><’ =  J °  ig{U,x) ^  = 0

The expectation value of a gauge dependent function is therefore annihilated in the process 
of integrating over all gauges and it is m andatory to  remove at least some of the gauge 
degrees of freedom if we wish to obtain non-zero values for such objects. Two gauges which 
are in common use on the lattice will be introduced in the following sections.

12. Axial Gauge

This is implemented by fixing all timelike link variables to unity. The links fixed in this way 
do not quite form a maximal tree on an infinite lattice, since additional spacelike links can 
be fixed without forming a closed loop.

Some care is required in setting axial gauge on a periodic finite lattice since each string of 
timelike links then forms a closed loop. It is therefore necessary to  leave a t least one timelike 
link in each string unfixed.

13. Feynman Gauge

It is also possible to fix the gauge by modifying the action, as is done in the continuum. The 
modified action is given by

p  ij.,I' P H

^13. Feynman Gauge
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where A^, the left lattice derivative is defined by

Aj/(x) =

and a  is an arbitrary parameter. Lorentz gauge is therefore a family of gauges corresponding 

to different choices of a . Of particular interest is the case a  =  1, the Feynman gauge.

14. W eak C oupling

Our eventual goal will be to determine the phase structure of the lattice Schwinger model in 

the weak coupling regime. In this section we will discuss some important issues associated 

with the implementation of a weak coupling approximation.

Let us consider some generic “pure gauge” expectation value:

f  O e ~ ^ °
(0} =  \  ^

\  f

'We wish to find an approximate form of (O) valid at weak coupling, that is to say at large 

"/?. This expectation value is weighted by the exponential of the negative of the pure gauge 

- action, which is given by

Sg = ~  cos

+ /f) -  +  ^) -  (t>u{p)
Here, the angular link variables are given by

=  gaAf , {p)

A t  first sight it might appear that for large (3 (small g), is sm all and that one can

therefore expand the partition function in powers of (j). This is incorrect; in order to preserve 

the group structure of the theory it is essential that the ^’s are allowed to  take all values in 

the interval [—tt , tt]. It is, instead, the continuum field A^{p) which scales with g:

  <  A^{P) <  —3 ga  ̂ -  ga

: We will show, however, that under certain conditions it is permissible to restrict attention 
to small values of the angular variables.

V Firstly, we note that for large /?, the partition function is largely determined by those con­
figurations which satisfy

p

^14- Weak Coupling
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where the left lattice derivative is defined by

_ /(^ ) -  fix -  /̂ )
a

and a  is an arbitrary param eter. Lorentz gauge is therefore a family of gauges corresponding 
to  different choices of a. Of particular interest is the case a  =  1, the Feynman gauge.

14. W eak C oupling

Our eventual goal will be to  determine the phase structure of the lattice Schwinger model in 
the weak coupling regime. In this section we will discuss some im portant issues associated 
with the implementation of a weak coupling approximation.
Let us consider some generic “pure gauge” expectation value:

(o> = 7 ^
We wish to find an approxim ate form of (O) valid at weak coupling, th a t is to say at large 
/?. This expectation value is weighted by the exponential of the negative of the pure gauge 
action, which is given by

5'g =  -  cos<;6p(//, ly))

u) =  +  (f) {̂p +  ^) -  +  u) -  (f)u(p)

Here, the angular link variables are given by

(f>n{p) =  gaAf,{p)

At first sight it might appear th a t for large /? (small g), (})̂ ,{p) is small and th a t one can 
therefore expand the partition function in powers of 0. This is incorrect; in order to  preserve 
the group structure of the theory it is essential th a t the (/i)’s are allowed to  take all values in 
the interval [—tt , tt]. It is, instead, the continuum field which scales with g\

—  <  ^tl{p) < —ga ^ -  ga

We will show, however, th a t under certain conditions it is permissible to  restrict attention 
to  small values of the angular variables.

Firstly, we note th a t for large (3, the partition function is largely determined by those con­
figurations which satisfy

p
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Each term in the sum over p is non-negative; therefore, for sufficiently large /?, the only 
configurations we need consider are those for which

^  1 — cos0p(/x. I/) «  0 Vp (3.7)
fJ,,U

which implies
i y ) ^ 0  Vp ( - 7 T  <  0p(/i, u) < 7 t)

That is to say, the links associated with each plaquette P  satisfy

+  <t>u{p + ^))) -  +  ^) -  01/b)) ~  0 (3.8)

This condition is clearly satisfied if the value of each individual link 0^(p) is small; each link 
variable (p) is then close to the identity. Let us denote the class of configurations in this 
category by Cq.
If all configurations satisfying (3.8) belonged to Co, we would be justified (for sufficiently 
small coupling) in restricting attention to small values of the angular variables, the so-called 
saddle point approximation.

Unfortunately, there is also a large class of configurations satisfying (3.8) in which the individ­
ual links are not small; we will denote this class by Cl . The existence of these configurations
means that a saddle-point approximation cannot be applied, since certain configurations
with large values of the angular variables will contribute significantly to the integral and 
cannot therefore be neglected.
It is sometimes said that each member of Cl is gauge equivalent to a member of Cq and tha t 
the ‘bad’ configurations in can be eliminated by fixing the gauge.This assumption holds 
on an infinite lattice, as we will now show.
Consider some arbitrary member of Cl - Each plaquette Up, in this configuration can be 
written in the form

Up =

where
01 =  4>n{p)
(j>2 = M l  + n) 
h  = + n)
(pi =  (t)u{p)

Since every plaquette satisfies (3.8) we have

Up Pi I = l - \ - 5 p  ; |(5p| <  1 Vp

§i^. Weak Coupling
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We seek a gauge transformation such tha t

Û  = Up =
=  1 +  ; |5p| <  1 Vp

i
and

(3.9)

Oi{p)=^i{p)  ; k ib ) l <  1 Vi,p (3.10)

Let us now choose a particular plaquette and apply a general gauge transform ation (3.2) to

it:

where

Up = 

^

gifl _  gj/(p) g*0i g-*/(P+/£) 

g ie 2  _  Q i f { p + H )  gi<A2 g - i / ( p + M + E )  

gi03 _  g* /(g+ /i+ 'd ) g*>̂ 3 g - i /(p + < i)  

g i04  _  g j / ( p + i i )  gj</>4 Q - f { P )

Let /(p )  be arbitrary  and define / ( p  +  ^) so th a t =  ei. Similarly, define / ( p  +  ^  +  ^) so

th a t 02 =  £2 and f {p  + K) so th a t 03 =  ^3 -
Now

Û  = U p =  1 +  5p

and hence
=  (1 +

= {l + 5){l + 0{e))  

since |ej( ^  1. Therefore we may write 0^ = w ith |e4 ( <C 1.

It is im portant to note th a t the transformation of th is first plaquette is not completely 
specified because of the arbitrariness of f{p).

Having thus transformed the first plaquette we move to an adjacent plaquette and repeat the 
^procedure w ith the two remaining free sites. Notice th a t there is no phase freedom associated 

>«|^ith the second or subsequent plaquettes.

‘pProceeding in this way we define a gauge transform on the whole configuration to produce 
'^ a  new configuration satisfying the conditions (3.9) and (3.10). For each plaquette in the 

interior of the lattice there is sufficient freedom to force three of the four links to be small; 
the fourth link is then guaranteed small by gauge invariance.

§i5. Vacuum Degeneracy on a Finite Lattice
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15. Vacuum D egeneracy on a F inite Lattice

.In the absence of boundary plaquettes (ie on an infinite lattice) this procedure suffices to 
;^lim inate all configurations in In particular, the action then has a unique minimum 
^'corresponding to all links equal to the identity.
:0 n  a finite lattice, however, the boundary plaquettes are additionally constrained by the 
boundary conditions and the gauge fixing procedure outlined above cannot be implemented. 
The situation is illustrated in (3.2) for a 3 x 3 lattice satisfying periodic boundary conditions.
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Figure 3.2: Minimum energy configurations on a gauge fixed finite lattice with an odd 
number of sites. Bold lines indicate fixed links, dotted lines indicate the periodic boundary. 
Black circles denote the sites whose gauge freedom has been removed. The whites circle is the 
single remaining free site associated with the overall global gauge freedom. Four minimum 
energy configurations are consistent with the boundary conditions.

Periodicity requires only th a t

=  e

[Which is satisfied for a  =  0, tt, /? =  0 ,tt. There are therefore four distinct minimum energy 
configurations, three of which are associated with large values of the angular variables tt).
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These large values are confined to boundary plaquettes; for large lattices their significance 
lies not in their numerical value but rather in the fact that their existence introduces a new 
lass of significant configurations into the integral.
he situation is even worse in the case of lattices with an even number of sites along each

xis, as illustrated in (3.3).
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Figure 3.3: Minimum energy configurations on a gauge fixed finite lattice w ith an 
even number of sites. A continuous double infinity of minimum energy configurations are 
consistent w ith the boundary conditions. As with the odd lattice, there is an overall global 
gauge freedom.

In this case, the boundary condition imposes no restriction on the parameters a  and /S and
there is a continuous double infinity of minimum energy configuration 
In both the even and odd cases the gauge fixing is defined only up to an arbitrary p ase, 

global gauge transform. . ^  ■ „+iv
The difficulty clearly lies in the fact that periodic b o u n d a r y  conditions are 
restrictive; an unambiguous saddle point approximation requires the ' p 
boundary condition on the lattice. The angular variables are constrained to zero on 
boundary. The existence of this fixed boundary then allows all plaquettes to e rea e 
interior plaquettes and fixing the gauge then defines a unique minimum of 
as in the case of an infinite lattice.The scheme is illustrated in (3.4)

§i5. Vacuum Degeneracy on a Finite Lattice
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Figure 3.4: Unique minimum energy configurations on a gauge fixed finite lattice with 
zero boundary conditions. There is no global gauge freedom on a gauge fixed lattice with 
zero boundary conditions.

It is interesting to note th a t the global gauge freedom associated with periodic lattices 
disappears when zero boundary conditions are imposed.
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Clearly this is a subject in which common sense will have to guide 
the passage between the Scylla o f mathematical Talmudism and 
the Charybdis o f mathematical nonsense 

-  J. Bernstein

In this Chapter we review the implementation of fermion fields on the lattice. The Dirac operator appears in 
the lattice setting as a finite dimensional linear operator; therefore we begin with a brief discussion of the 
theory of such operators. The fermion operator is then discretised and the free propagator calculated. It is 
shown that the process of discretisation leads to a doubling of the number of fermions in each dimension and 
that this doubling can be removed by the addition of a momentum dependent mass term to the action.

16. O verview

Most forms of m atter are fermionic. Fermions present special problems on the lattice; most 
particularly, the transcription to the lattice setting results inevitably in a doubling of the 
number of fermions in each dimension. Although this doubling might be tolerable in the free 
case, it cannot be accepted when one is dealing with an interacting theory and the unwanted 
fermions can be pair-produced.
Two principal methods have been proposed to deal with the doubling problem. Kogut and 
Susskind (1975) suggested th a t the fermion field components be distributed over the lattice

I
 sites so tha t only a single component was assigned to each site. The fermion multiplicity is 
reduced, in four dimensions, from sixteen to four; the remaining fermions are then interpreted 
as physical flavours.

Wilson (1975) proposed modifying the lattice fermion action so as to eliminate the extra 
fermions. This modification disappears in the continuum lim it.This is the approach we will 
follow.

Although the Wilson approach is more straightforward to  implement it suffers from a serious 
drawback; the extra Wilson term  in the action destroys the chiral sym m etry which the action 
would otherwise possess a t zero fermion mass and therefore complicates lattice investigations 
of massless physics.

We should mention in passing another peculiarity of fermions on a finite lattice; it proves in 
most cases more convenient to use anti-periodic boundary conditions in the time direction, 
and we will follow this practice. For a further discussion of this point, see Montvay and 
M unster (1994).
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17. Linear Operators

We will see in the following sections that the fermionic operator takes the form of a finite 
dimensional linear operator. Before proceeding, therefore, we will briefly review elementary 
properties of linear operators and establish basic definitions and notation.
Suppose V is a finite dimensional vector space with v ,w  E V. We will define a linear operator 

f^s a mapping from V  to itself, satisfying

T{av  +  bw) =  aT{v) +  bT[w)

 ̂where a and b are scalars. Note that the complete specification of the operator requires that 
i both the action of the operator and the vector space on which it acts be defined.

It follows immediately that
T(0) =  0

.Furthermore, if T  and S  are linear operators and A; is a scalar, then kT, T  +  S  and TS  are 
S^lso linear operators. We can therefore construct polynomials in T  which are themselves 

linear operators

p{T)  =  Go "I" CllT +  0,2T̂  +  • • • +  CLnT̂  

and indeed, T  and S  satisfy the usual algebraic rules:

S ( T  +  T') =  S T  +  ST'  

{S +  S')T =  5T  +  S'T 

k{ST) =  {kS)T =  S{kT)  

{ST)T' =  S{TT')

The identity operator /  maps every vector in V  to itself and is clearly linear; an operator T 
is said to be invertible if there exists an operator T~^ such that

r j i r j ^ — 1 __  r p ^ l r j i  __  j

Note that this commutative property does not hold for linear operators in general.
It can be shown that every linear operator on an n-dimensional vector space can be repre­
sented by an n-square matrix if the action of the operator is defined by the usual matrix-
vector multiplication rule; conversely every such matrix determines a linear operator. In 
particular, the fermion matrix M  determines a linear operator on some vector space.
The operator algebra outlined above translates directly to the algebra of n-square matrices, 
the definition of invertibility corresponding to the usual definition of invertibility for matrices. 
The matrix representation of an operator is not unique, but must be specified relative to 
ome particular basis of the vector space. It can be shown that two matrices P  and Q

^17. Linear Operators
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represent the same operator if and only if they can be transformed into each other by a 
similarity transform:

P = R -^Q R  ; Q = R P R -^

fin particular, if P  represents a linear operator T  and there exists a transformation matrix D 
isuch that D~^PD  is diagonal, then T is said to be diagonalisable. If such a transformation 
'matrix does not exist then T  cannot be diagonalised. It will be essential for our purposes to 
have a criterion for determining whether a given operator is diagonalisable. Before discussing 
this point further, it is convenient to introduce some more terminology.
Consider an operator T on a space V  and suppose that T  satisfies

Tv = Xv (4.1)

‘ where A is a scalar and is a non-zero vector in V. Then v is said to be an eigenvector of T  
I belonging to the eigenvalue A. Indeed the set of vectors satisfying (4.1) forms a subspace of 

V, which we will call the eigenspace associated with the eigenvalue A. The entire set of all 
possible eigenvalues and eigenvectors will be termed the eigensystem. The same terminology 
goes over unchanged to the matrix representation, A, of T.
Note that if ■0 is an eigenvector of A  with eigenvalue A and 5  is a similarity transform of A

B = RA R-^

then R'tp is an eigenvector of B  with the same eigenvalue A. All matrix representations of 
an operator therefore have the same set of eigenvalues—the eigenvalues of the operator they 
collectively represent. This set will usually be referred to as the spectrum of the operator. 
Two useful scalar invariants may be constructed from the spectrum of an operator. We will 
define the trace of an operator T  to be the sum of its eigenvalues

trT  =  ^  Ai
i

and the determinant of T to be the product of eigenvalues

det r
i

The trace and determinant of any matrix representation of T  are defined similarly.
The characteristic polynomial of an n-square matrix A  is defined by

p{A) = de t(^  — XI)

which is a polynomial of degree n in A. The roots of the characteristic polynomial are pre­
cisely the eigenvalues of A. A  root occurring with multiplicity p corresponds to an eigenvalue

§i7. Linear Operators
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of algebraic multiplicity p. The geometric multiplicity of an eigenvalue is the maximum num­
ber of linearly independent eigenvectors associated with it. An eigenvalue is semisimple if 
its algebraic and geometric multiplicities are equal; otherwise it is said to be defective.
Let us now introduce some rather standard matrix terminology. The transpose conjugate 
of a matrix A  is termed its adjoint and denoted A^. The transpose conjugate (or dual) of a 
vector V is similarly denoted . The following identities apply:

{A B y  = B^A^ ; { A v y = v ^ A ^  (4.2)

An alternative notation for vectors, which we will sometimes use, denotes a vector w by |u) 
and its dual, v \  by (w]. The eigenvectors of a matrix will usually be designated ip or x, 
general vectors by or a  or
A number of special matrices will occur repeatedly in the sequel. Their definitions and a 
brief review of their properties are given below.
A hermitian matrix A  is defined as a matrix satisfying

An antihermitian matrix satisfies

A matrix U is unitary if
C/-1 =

and a unitary transformation on a matrix M  is defined by

M ' =  UMU-^ = UMU^

The unitary transforms thus constitute a subset of the similarity transforms.
A normal matrix N  satisfies

N^N = NN^

Hermitian matrices possess a number of useful attributes. In particular, their eigenvalues 
are real, since for any eigenvector -0

'tp̂ Aip = ip̂ {Ail>) =  A'0 '̂0

and also

Hence A =  A* and A is real.
..If, in addition, the eigenvalues are all strictly positive, the matrix is termed positive definite.

^17. Linear Operators
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Hermitian matrices are a special case of normal matrices (that is, matrices that commute 

with their adjoint).
;We are now in a position to state the fundamental results of this section—that is, to give 
necessary and sufficient conditions for a matrix to be diagonalisable. We begin with a useful 

preliminary result:

1. Non-zero eigenvectors belonging to distinct eigenvalues are linearly indepen­
dent.

Next, a special result for normal matrices:

2. A normal m atrix can always be diagonalised by a unitary transform ation. In 
particular, herm itian m atrices can be so diagonalised.

3. If a m atrix can be diagonalised by a unitary transform ation it is necessarily 
normal.

and finally two, equivalent, general criteria for diagonalisability:

4. An n-square m atrix is diagonalisable if and only if it possesses n linearly inde­
pendent eigenvectors.

5. An n-square m atrix is diagonalisable if and only if  all its eigenvalues are sem isim ­
ple.

It follows from (4) that a matrix which is diagonalisable on a vector space V  possesses n 
independent eigenvectors, -tpi, sufficient to span V. Any vector in V  can therefore be written 
as a linear combination of eigenvectors:

n
(4.3)

18. D iscretisation

In this section we discuss the discretisation of the fermion operator, defined in the Euclidean 
continuum (cf (2.18) by

(4.4)

The first step in the process of placing fermions on the lattice is to discretise the field 
derivatives d^ip. We use the symmetric derivative (2.21); that is

(4.5)

118. Discretisation
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It is this use of the symmetric derivative that gives rise to the doubUng problem, by effectively 
doubling the lattice spacing. This difficulty could be avoided by the use of a simple left or 
right derivative, Unfortunately, detailed analysis has shown that such a procedure would 
render the theory non-renormalisable. Further details are given in Sadooghi and Rothe 
(1996).
The lattice action is

C dl /  7Ai ( ' 0m+yi  — , 1

—  '0 m - ^ m n '0 n

where the lattice Dirac operator in position space is defined to be

d f  ~ , r 1 /A >7\M ^n  = ^ ^  +  mS^n  j- (4.7)

19. The Propagator

The free lattice fermion propagator is

(4.8)

This inversion is most conveniently carried out in momentum space, where the operator is 
diagonal.
A consistent definition of the fermion fields in momentum space requires some care. The 
general lattice Fourier transform is defined by (2.27) and (2.28)

'4̂k ~  FkriM̂n '4̂n F nk'^k (4-9)

The corresponding conjugate fields, on the other hand, are related by

^k — Fkni^n==N‘̂ ^nF^^nk = F '̂^nk'^Pk = ^kFkn (4-10)

Note that the conjugate fields are not Fourier transforms of each other; the definition (2.27) 
gives

'^n~ '4̂—k '0fc '4̂—n (4-11)
^19. The Propagator
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Substituting for ipm and in the action (4.6) we find

s  =  “^ E
siiktkL

y j -I- ^  „-ik-(rn-tJ.)

r  ^

=  E  ( ™ +  E  i  ) I  “
m,k,k!_ y II )

=  ^  I ^  sin ak^ i
k,!̂  K tJ. )

g d   ^

k,kL

where the operator

Mgk =  +  X! I
is diagonal.

Substituting for 'ipk and '0^  yields

Comparing this w ith (4.6) we see that

M m n  =  of'F' m̂k’MgkFk, 

We can write down the inverse by observing th a t

Mi2j,nAnp ^mp

where

A n p  — M  n p — n f ^ j ' j F ^ p
—  (Jj --------

or

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

^19. The P ro p a g a to r
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M  rnn — TB.U ^ k 'CL

fc'fc V
kf,=N/2 f ■ ) (4 17)

Qdjyd

k^=-N/2
  ^- ik . (n -rn )  J ^  ^  ^  !Ia  sin ak^

dd]\ Jd i —/ I i  ̂ Q
kKfi— 2

This is the discretised free fermion propagator on a lattice of finite size with finite lattice 

spacing.
In the thermodynamic limit {N oo),  the momenta = k ^ /a  (cf (2.24) become continuous 
and the discrete sum over k^ goes over to the corresponding integral over

1 1 r'K/a
A  V  ^  7— ^  /  (4-18)

k^,=N|2-l  ̂ 7T/a
The position space propagator is then

e - ‘s ‘“- “ I* | m  + s i n a 5 „ |  <f<, (4.19)
—  (27r)4;_^/, y ^  a J

20. Ferm ion D oubling

Let us next investigate the continuum limit of the lattice propagator.
The Dirac propagator in the continuum is given by

S{x) = - - ^  + d^q (4.20)
) J —oo

The integrand tends to zero for large q so th a t high-momentum contributions to the integral 

are suppressed.
The continuum limit of (4.19) is extracted by setting x =  (n -  m )a and allowing a O.We 

obtain
1 ôo /jY

lim S i m n )  — )■ {m  +  d'^Q {Q,i <  - )
a^o (27t)4 a

(4.21)
1 p O O  fjr

<1^0 (27t )4 J _ ^  a

^20. Fermion Doubling
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The continuum limit in this form exhibits the correct behaviour in the low momentum region 
but fails to  provide the required suppression of the integrand at high momenta; in fact the 
second integral in (4.21) is indeterm inate as it stands.
We can find an explicit form for the continuum limit by rewriting (4.19)

S r n n  =  7 ^ - ^  /  A  d ^ q  [  d q o  I r n  +  B  +  y ^ J ^ s i n a q o
( 27T )  J —^ ja  J —Tr/a ^

where
3 .

A  = e-^ )“ 5  =  ^  sin aq^
j=i

The bad high and low energy limits on the qo integral can be removed by defining a new 
momentum variable

qo =  q o -  7 r /a

This gives

I  /■Tr/a

’■// 7 T /a

A  d ^ q

■■Kla

X <; dqo e-*«°'("°-™«)“|m + 5 + ^sina5o
0 r

- iq o .(n o -m o )a  J  ™  , R  _  o i+  ( _ l ) ( " o - m o )  f  ^ - tq o . (n o -m o )a  ^  ^  ^  ^
J —7r / 2a

/
- 3n / 2a _  r ■ ^  - 1

d~qo sin ago j
- 27t /

The second integral on % is equivalent to

nir/2a
(_l)("o-mo) / ^

Jo
iqo.{no-mo)a  1 ™  , R  _

- 1

dqo m +  5  -  —  sin aqo

since the integrand is periodic with period 27t.
Assuming, for concreteness, th a t (no — mo) is even, we obtain

I  r'^IO’

S m n  —  /rf \ 4  I  A  d  q (27rj j

X { r '  dqo | m  +  5  + — sinago
J —7r / 2a  I  ^
/‘7r/2a r  • ~ ^ — 1

, - iq-o .{no-mo)a  J  _  , R  , s i
- 7r / 2a  '  ®

+  /  dqo e ^ m  + B  -\------sin ago

^20. Ferm ion Doubling
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where

fo =  -7 o

Note that the set { 7 ^} satisfies (2.17) and constitutes an acceptable representation of the 7  ̂

in (4.4). We can in fact change the sign of any or all the 7  ̂ and still get a representation 

since the only non-zero terms in (2.17) are of the form
The zeroth component of (4.19) has been split into the zeroth components of two propagators 

associated with the two independent momentum variables go and %. Each momentum  

variable is linked to a different representation of the gamma matrices.
Repeating this procedure with the remaining components leads to more doublings, giving

=  E  sin |  (4.22)V  J - 7 T / 2 a  I „ “ I

The index R  labels the 2  ̂ independent momenta and the 2'̂  corresponding gamma rep­

resentations

7^ =  {±7o, ± 7 i) ±72, ± 73}

Each term in (4.22) has the continuum limit

lim S ^ im n )  J  e '2 '̂  ̂{ m  +  ' d'̂ q  ̂ {q^^ <C ^ )

\im S ^ { m n ) — >■ 0 (?̂ a*
a —>0  2q

(4.23)

This limit has the correct behaviour for both high and low momenta.
We conclude that the correct continuum limit of (4.19) is not one but 2*̂  independent con­

tinuum propagators.

21. W ilson Fermions

This degeneracy in the fermion spectrum can be removed by adding an extra term to (4.13) 

^ k'k  =  I m  smak^ +  " ^ ^ { l  -  cos ak^) I (4.24)

The lattice propagator (4.19) becomes

f>7r/a

t I o

^21. Wilson Fermions

5 '(m n ) = - X -  f  ' i m +  V  —  sinag^ +  ^  ^(1 -  cos ag^) i d^q (4.25)
(2'ErJ_^u [ u  ̂ M )
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The new term, which acts like a momentum-dependent mass, vanishes for small q but pro­
vides the required suppression of the integrand in the high momentum lim it. Note also th a t 
the Wilson term  vanishes in the limit of zero lattice spacing.
We can use (4.15) to  find the modified Dirac operator in coordinate space

=  “  ̂E  ( I  ( ™ + E  ”  + E  ^ I
k,kL J

=  ^  E  I  ( m  +  0  E  {  ^  -  <=“ '•) -  h  }  }

a ' ^  { m  +  ^ )  S ^ n  + a '

Qd—1 ^ 'V

(jna +  da, ) ^ |(T/< ~  J
(4.26)

or

M  jnn — {rna!  ̂+  do!  ̂ ) ^mn 2  'T/i)‘̂ Ti,(m+̂ ) “1“ (l I  (4.27)

This can be cast into a more convenient form by redefining the  fermion fields.

Our modified lattice action is

S  — ' 0 m mn'^n
r o/̂  ^

~  '0m "I {jna^ +  daf  ̂ ^)'0m x “I” 7m)’022i-^}
(4.28)

(4.29)

2

We define a rescaled fermion field by

-0 ^  =  {ma'^ -h

The action is now

-5' =  -  2{ma + d ) { ^ ^  '  yM'rn+n +  ( 1  +  7 / . ) C - h j  j  ( 4  3 3 )

■ '0 m-^ mn^n

where
M''mn  — ^mn ~  ^  “  lti)^n,{m+f )̂ +  (^ +  7/i)<^n,(rn-M) |  (4-31)

and
K =  ^ 7T7  ^  a —>■ 0 (4.32)

2(ma + d) 2d

^21. Wilson Fermions
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Everything should be made as simple as possible but not simpler 
-  A. Einstein

Having introduced the lattice and discussed the lattice implementation of fermionic and gauge Gelds, we 
turn in this Chapter to the main object of interest in this thesis—the Schwinger model. The reasons for the 
widespread interest in this model are discussed in the first section. The Schwinger model in the continuum is 
then introduced and its lattice equivalent developed. Previous work on the phase diagram of the model is 
briefly reviewed.

22 . Chiral Sym m etry And M assless Physics

In the preceding chapters, we developed the lattice formulation of quantum  field theory and 
implemented fermion fields and gauge fields on the lattice. Next, we tu rn  our attention to 
an interacting theory; QED 2 , which describes the interaction of electrons and photons in two 
dimensions.
This investigation of QED 2 is motivated by the striking resemblances which it bears to 
QCD in four dimensions. Before introducing lattice QED 2 , therefore, let us consider some 
of the relevant features of QCD. The issues discussed here are also reviewed by Peskin and 

Schroeder (1995) and Aoki (1989).
Consider QCD restricted to the up and down quarks. These are the  lightest of the quarks 
and may be approximated as massless. If this approximation is made the QCD action 
is invariant under chiral transformations; this symmetry of the action should lead to  an 
associated (approximate) conservation law of the strong interaction. There is however no 
obvious candidate for such a law. It was suggested by Nambu and Jona-Lasinio in 1961 th a t 
chiral symmetry might be spontaneously broken in the strong interactions.
A consequence of such a spontaneously broken symmetry is the appearance of a massless par­
ticle (Goldstone, 1961); the breaking of the symmetry is signalled by a non-zero expectation 

value for the chiral condensate:

{H) ^ 0
The spontaneous breakdown of chiral symmetry in QCD actually corresponds to the break­

down of four continuous symmetries; therefore one would expect four Goldstone bosons. In 
fact, since the up and down quarks are not truly massless, these bosons should have a small
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mass. The observed masses of the three pion states are consistent with those expected for 
the Goldstone bosons but there is no obvious candidate for the fourth boson. While sev­
eral theoretical suggestions have been advanced to account for this lack, the issue remains 
unresolved and indeed the spontaneous breakdown of chiral symmetry itself has not been 
conclusively established in the case of QCD.
These questions are non-perturbative in nature and are the appropriate domain of lattice 
QCD. A fundamental problem arises, however, in the application to massless physics of 
lattice theory with Wilson fermions. The Wilson term itself breaks chiral symmetry even 
when the fermion mass is zero. Although this term goes to zero in the continuum limit, it 
is necessary to tune the mass parameter k to ensure that this limit actually corresponds to 
zero “true mass” physics; the dependence of k on the true mass is not known a priori.
The problem then, is to determine the set of critical points in the parameter space of the 
theory which give rise to zero mass physics, the “line of massless physics” . The existence of 
such a line for all values of the coupling has not been established.
Quantum electrodynamics in two dimensions possesses many of the properties expected in 
QCD and has been the object of intense study since it provides a simpler environment in 
which to gain an insight into QCD. It is to this model that we turn in the next section.

23. Continuum  Theory

The Schwinger model, describing the interaction of electrons and photons in two dimensions 
was first introduced by Schwinger in 1962. It has served as an invaluable laboratory for 
quantum field theorists ever since.
The action for the single flavour Schwinger model with massive fermions is given in the 
continuum by

S{ij, V', A^) = J  cPx -  xp{x) {m + +  ieji,A>^) i;{x)^

This model is exactly solvable in the case m =  0 (see, for example, Zinn-Justin (1993) for a 
discussion of Schwinger’s original work).
The massless Schwinger model bears some remarkable resemblances to QCD in four dimen­
sions. Charges are confined, a property also expected in QCD. The model also exhibits charge 
screening, that is to say, the absence of long-range forces. The mass spectrum consists of 
neutral massive non-interacting bosons.
Perhaps most importantly from the present point of view, the massless Schwinger model is 
known to exhibit spontaneous breakdown of chiral symmetry although there is no associated 

Goldstone boson in two dimensions.

%23. Continuum Theory



5. The Schwinger Model

The model has not been exactly solved for fermions with non-zero mass; it is expected, 
however, th a t the main features of the massless theory are preserved, a t least for fermions 
of small mass.

24. The Lattice Schwinger M odel

Let us now implement the Schwinger model on the lattice. The simplest approach, as in the 
continuum case, is to impose the requirement of local gauge invariance on the fermion field. 
The free fermion action is given by (4.30)

Sp 'ipm {tpm ^ {(1 (1 }■

This action exhibits a global invariance under a constant phase shift of the fields:

The pure gauge action is, from (3.1)

=  R e ( l - U p )  =  ^ 5 ^ J ] ( l - c o s a 2 < / . p )

As discussed in Section (11), this action possesses a stronger, local invariance under the

transform ation ,  ̂  ̂ ^
C/„(n)

U \ ( n )
The full QED action is determined by promoting the global invariance of the fermion ac­
tion to a local gauge invariance; tha t is, the action should be invariant under the set of 

transformations

Û {n) — >

Û M)
The pure gauge action and the mass term in the fermion action autom atically satisfy lo­
cal gauge invariance, but the fermion derivative term  requires modification. We require, 
in fact, the lattice equivalent of the continuum gauge-covariant derivative. The necessary 

modification is easily seen to be

^24- The Lattice Schwinger Model
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The gauge invariant QED action is then given by

where

(5.3)

and

p

25. Current Status Of The Phase Diagram

The phase diagram of the lattice Schwinger model has been the subject of considerable
interest in recent years, since the general belief is that the phase structure of the Schwinger 
model is likely to resemble that of QCD.
Although the phase diagram has not been fully determined, some partial results have been 
obtained.
The Schwinger action contains two parameters, the coupling parameter g and the mass 
parameter m, conventionally represented by the inverse coupling squared /3 and the hopping 
parameter k respectively.
Attention has been focused principally on the location of the chiral phase transition; the line 
representing massless physics in the (/5, k) plane.
It is known (Gausterer and Lang 1995) that there exists a critical point in the strong cou­
pling limit (/? — 0) as well as at ( c x d , \). The question is whether there is a critical line 
corresponding to finite values of /? and k  connecting these points.
It was argued, on the basis of numerical evidence, that the critical line did not in fact exist 
(Gausterer, Lang and Salmhofer, 1992); however the same group have since found evidence 
for critical points at finite values of (3. (Gausterer and Lang, 1994, Hip, Lang and Teppner, 
1998). These results were based on the finite size scaling of Lee-Yang zeroes and chiral 
susceptibility and suggest a critical exponent u 1.
A second group (Azcoiti et al, 1996) have used similar techniques on larger lattices. They 
have located the critical line in roughly the same region, but find a critical exponent u ^  ‘IjZ . 
The present situation then is that there is general consensus as to the existence and approx­
imate location of the critical line, but uncertainty as to the nature of the transition.
It should be borne in mind, however that both of the recent major studies have been based 
on numerical investigations combined with finite size scaling.
We propose to adopt an alternative, analytical approach in this work.

§25. Current Status Of The Phase Diagram
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Gentlemen: there’s lots of room left in Hilbert space! 
-  S. Maclane

In this Chapter we begin our analysis of the phase diagram of the Schwinger model by considering the free 
fermion field. It is shown that the fermion matrix, although not hermitian, is a normal matrix; therefore 
standard perturbation theory techniques may be applied to it. The eigenvalues and eigenvectors of the free 
operator are obtained and are shown to exhibit a high degree of degeneracy. It will therefore be necessary 
to apply the perturbative techniques appropriate to a degenerate operator when the full Schwinger model 
is considered. It is shown that analogous results hold in the four-dimensional case; consequently the same 
perturbative technique can, in principle, be applied to four-dimensional QED. The zeroes of the free fermion 
partition function are calculated explicitly and the phase structure of the free fermion field analysed. It is 
around this solution that the Schwinger model partition function will be expanded.

26. S tructure o f th e  Ferm ion O perator

The fermion operator on the lattice was obtained in the form of a m atrix  in Section (21). In 
order for the operator to be fully determined it is also necessary to specify the vector space 
on which it acts. In this section we will examine the structure of the fermion m atrix  more 
closely and define an appropriate vector space.

The fermion m atrix  is given by

M n m  =  S n m  ~  ^  ~  “I" (1 ( 6 -^ )

We will assume for concreteness th a t the lattice is two dimensional—the argum ent is identical 
for the four dimensional case. The fermion m atrix then has rn = N ‘̂ entries in each row, 
each entry consisting of a sub-matrix of dimension 2, which we will call a spin block. The 
overall dimension of the m atrix is therefore 2iV^. Each row of the m atrix  contains a spin 
block for each lattice site and similarly for each column. A general entry Mij in the m atrix 
therefore contains a spin block linking lattice site i with lattice site j .
The fermion m atrix thus has a rather complex structure, containing a (constant) mass term  
and derivative term  which act on the spacetime vector space (indexed by the spatial indices 
rn,n) as well as a spin-related term which acts on the inner ‘spin space’ associated with 
each lattice site. This spin space is indexed by the gamma m atrix indices, which have been 

suppressed in (6.1).
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Let us now consider the vector space V  on which the fermion operator acts. This is a product 
of the dimensional space acted on by the derivative operator and the two dimensional 
space acted on by the spin operator. That is to say, a vector in V  will have the form cov, to 
being a two component spin vector and v an N ‘̂ component spacetime, or site space, vector. 
It is to be understood that u> is acted on by the spin operators only, while v is acted on 
by the mass and derivative operators.The order in which co and v are written is immaterial, 
thus

\lov) =  \vuj)

and
{u)v\u}'v') = {uj\u)') {v\v')

A set of independent vectors is required to span the site space; a convenient set is the 
set of plane waves

Mk)  =

each independent wave being characterised by a different value of the parameter k. In the 
physical continuum theory k corresponds, of course, to the momentum and we shall continue 
to refer to it as such in the lattice context.
Two independent two-component vectors are required to span the spin space associated with 
each independent plane wave; we shall write these as U{a,k),  a  = 0,1, each basis now being 
parameterised by k.
A basis {e} for V  is then given by the set of 2N ‘̂ independent vectors of the form

en{a,k) =  U{a,k) ipn{k)

In the general case of a d dimensional lattice, dN^  independent vectors are required, with 
the spin space being spanned by d independent d-component vectors and k running over N ‘̂ 
values.
Having defined our vector space and constructed a basis for it, let us next examine the 
structure of the fermion matrix more closely.
The fermion action is local in nature, the derivative term linking neighbouring sites only. As 
a consequence, most spin blocks in the matrix are zero. Furthermore, for realistic lattices, the 
dimension of the matrix will be large. For example a four dimensional lattice with eight sites 
per side will be represented by a matrix of dimension 4x8'^ =  16384. From a computational 
point of view, the fermion matrix is a member of the class of large sparse matrices.
The free fermion matrix is unfortunately not hermitian and it will be convenient at this point 
to define some related operators with nicer symmetry properties. Let us write

M  = l - k A

^26. Structure of the Fermion Operator
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where

A  — {1 — Jfi)^n,{rn-\-ii) +  (1  +  7 / i )^ n ,(m -/ i )  (®-^)

Now the gamma matrices in the representation exhibited in Section (4) are herm itian, thus

%  =

Let us define an additional matrix, 7 5 , by

75 =  n ^ -  {6-3)
fj-

The following properties follow immediately from (6.3) and the definition of the gamma 
matrices (2.17).

7.^ =  1

= - I v l i .

75  ̂ =  1

75 =  - 75  ̂ (6.4)

757/i =  -7/^75 

7 5 (1  +  7,i) =  (1 -  7/i)75 

75(1 -7 /x ) =  ( l  +  7/*)75

Next, note tha t 

and similarly

T̂k{XB.+y)

In addition, the spin and derivative operators act on different objects—the spin operator on 
the d component spin vector and the derivative operator on the N'^ component site space 
vector. The order in which the operators are written is therefore immaterial:

(1 ~  7/i)<̂ n,(m+/i) ~  ~  7/i)

(1 “I" /̂ ) (  ̂ 7/i)

The adjoint of (6.2) can therefore be written

A n r t i}  =  (1 ~  ^

and using the last two identities in (6.4) gives

= 7 5 ^ 7 5  

A  =  75^^75

§36. Structure o f the Fermion Operator
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Therefore A, and hence M , is not hermitian. The operator 75A is herm itian, however, since

75^  =  (75)^^Ws =  ^^75 =  (75-4)^

It follows th a t 75M =  7 5 ( 1  — kA) is hermitian, with real eigenvalues.Moreover

=  (75M 75)M  =  (75M)^

If A is a (real) eigenvalue of 75M then is an eigenvalue of which is therefore positive
definite.
Although A  is not hermitian, it does belong to the more general class of normal matrices— 
th a t is, it commutes with its adjoint. We will show this by direct calculation.
Let us write

where

We then have 

where

Next note th a t

and also

^  P nm  Q n m  j A ^  — R m v ’my

P n m  — ^  ']( f  7/i)^il(m +^)

Q n m  — ^  ^ (1  "t”

Rrnp — ^  ~
u

Sm p  — ^  (̂1 “1“ 7v)^m(p+i^)
V

\A , A^\ = Cl + C2 + C3 + C4 

Ci = [P,i?]

(6 .5)
C^ = [Q, R]

Ci  = [Q, S]

^n{m+f^^m{p--E) ~  ^ q (p + M -£ )

^n{m+j^)^rn{p+E) —

^n{m -^^m .{p+ u) — ^n ip -ii+ k)

^n {m -y)^rn {p -v) ~  ^ n ip - f i-u )

(1  -  7 ,x ) ( l  -  7<v) -  (1 -  l u ) { ^  -  7m) =  [7^., l A

(1 -  7 f . ) ( l  +  Iv) -  (1 +  7^)(1 ~  =  \riu , 7a.]

(1 + 7f.)(l -  l u )  -  (1 -  7z.)(l + 7,.) =  [7  ̂ , 7a.]

(1 +  7m) (1 +  -  (1 +  7 . ) ( 1  +  7m) =  [7m > lA
^26. Structure o f the Fermion Operator
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The commutators (6.5) may therefore be written

y [T m ) ^ a ( p + £ - ' d )
IJLU

2  ^   ̂ ^ n (p + j£ —! )̂ ”1" \ y v  ) 7 /j ]^ n (p + i£ -^ )^
fj.1/

^ 2  ^   ̂ [7*̂  ) 7^ i] ^ n ( p + ^ + i i )

2 ^  ̂ ([7i' ) 7̂ x] ^ n ( p + ^ + i / )  +  [7/i 5 7î ]^n(£+i^+£)  ̂ =  0 
liv

Cz — ^   ̂ ; 7m]
fiv

2  ^   ̂ ^[7i^ ) 7 ^ ] ^ n {v+ !X —t/) "I" [7/x ) 7i^]*^n(p-i /— 0
tiv

C*4 — ^   ̂ [7 ^ 1 l A  ^ n { p - i i + u )

liv

—  2  ^   ̂ ^[7/x ) l u \  ^ n { p - ^ + v )  +  [71  ̂ ) 7/i]<5ri(p-li+M )^
liv

Finally, we have
Cl +  C74 =  0

so tha t
[A, At] =  0

and A  is indeed normal.
It follows th a t M  is also a normal m atrix and commutes w ith M^. It can therefore be diag- 
onalised by a unitary transformation. Furthermore all its eigenvalues m ust be semisimple, 
with their algebraic and geometric multiplicities being equal.
A further consequence of the normality of M  is tha t 7 5  and M ^M  commute, since

-  (7 5 ^ 7 5 ) ^ 7 5  

=  7 5 M ^ M  -  7 5 M (7 5 M 7 s )

=  7 5 ( M t M - M M t )  =  0

It will be convenient to summarise our conclusions about the structure of the fermion operator 

at this point.

1- The fermion m atrix  is a large sparse m atrix of dimension dN^^, It represents a linear operator 
acting on a dN ‘̂ dimensional vector space which is the product of a d dimensional spin space 

and an dimensional site space.

^26. Structure of the Fermion Operator
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2 . The fermion m atrix  is not hermitian, but is normal.

3. Two related herm itian operators may be defined; the operators 7 5 M  and the latter
is, in addition, positive definite.

4. As a consequence of the normality of M,  it is guaranteed to  be diagonalisable.

5 . The eigenvalues of M  are semisimple.

6 . The following commutation relations apply

27. The E igensystem

In this section we find explicit expressions for the eigenvalues and eigenvectors of the operator 
Mmn, its adjoint and some related operators.

The m atrix M  can be written

M  = 1 — kA

where 1 is the identity m atrix 6 ^ ,  k is the hopping param eter and A  is given by

If is an eigenvector of Amn with eigenvalue a{a,k),  it is also an eigenvector of

with eigenvalue A„ =  1 — Ka{a,k).

Consider now a vector of the form

belonging to the space acted on by Amn-

Here U{a,k )  is a d-component basis vector of the inner spin space and is a plane wave 
vector with n  = N^  components. There are thus dk =  independent vectors ipn{ci, k) 

which span the space of A ^ .

The eigenvalues a(^a,k) associated with these eigenvectors may be determ ined from the re-

lation

A^ ip n {a ,  k) = a{a, k) k) (6 .6)

21. The Eigensystem
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which gives
{(1 — 7 )̂ 5m,n+fi +  (1 +  7 )̂ U (a , k)e'‘- -

= E  { e + (1 + 7,) } C/(a, i)
fj-

= Y 1  U{a,k)e^^-^
fj-

=  y^(2cosA:^ +  2z7^sin k^) U{a ,k )e ' -  —
fj-

=  a{a,  k) k)

We thus obtain a homogeneous system of d equations:

K U { a , k )  =  0 (6.7)

where

K  = ^{coskf , )  -  + ^ ( i 7 ^ s i n f c ^ )  (6.8)
n n

The required eigenvalues a{a ,k )  can be determined by observing that the system (6.7) has a 

non-trivial solution if and only if det K  =  0. This implies that det K K '  =  det K  det K '  =  0 

for any arbitrary matrix K'.  Let us define

K '  =  -  ^ ( c o s  k„) +  sin k^)

This gives
a(a,  k)

u u a  ----------—

which is diagonal, with determinant zero provided:

^ ( s i n ^  k̂ ) +  0

2

so that j

a{a,  i )  =  2 ^  (cos k^) ±  2i sin^ k ^  (6.9)

Indeed, when this condition is satisfied, we have

K K '  =  0

Now the spin eigenvectors Ua{k) of satisfy (6.7) so that every column of K '  is in fact 

an eigenvector.

^27. The Eigensystem
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It is convenient to simplify notation at this point. Let us write:

P  =  ^  (cos k^) ^  j  ^  j

The eigenvalues are then given by

a{a,]^ = 2 {P ± iQ )  (6.11)

and the matrix K'  by
K' = i { R ± Q )  (6.12)

and the columns oi R  + Q and R — Q are eigenvectors.
In two dimensions the gamma matrices may be represented as

0 1 \ f  0 - i
^̂  = yi oj ^̂  = v  ̂ 0

and =  SS*, where S  = sin ko + i sin ki. The matrix R  + Q then takes the form

Q S*
> 5  Q

The eigenvectors represented by the columns of this matrix are not independent; indeed, we 
have , ^

«(S)=»(S
A second independent eigenvector may be derived from R  — Q:

- Q  S*

where the columns are related by

^<?(f)=5(_"Q
Taking the first column of R  + Q and the last column R -  Q, two independent normalised 

eigenvectors are :

These vectors are actually orthonormal:

{U{a,k)\U{P,k)) = Ŝ P
§57. The Eigensystem
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These two independent eigenvectors suffice to span the spin space of A m n  in two dimensions. 
The spin eigenvectors in four dimensions may be obtained similarly. The gamma matrices 
in our representation are:

Let us define

Then

/ I 0 0 0 \ 0 0 1 \
0 1 0 0 1 0 0 1 0

70 =
0 0 -1 0 7i = 0 1 0 0

\ 0 0 0 - 1 . / \1 0 0 0 /
0 0 ~ i \ /o 0 1 0 \

0 0 i 0 0 0 0 — 1
72 = 0 —i 0 0 73 = 1 0 0 0

V i 0 0 0 / VO - 1 0 0

T  = sin k i  + i sin h X  =  s i n k 0 w =  sin A)3

W^ + TT* =  {Q + X ) { Q - X )

and the m atrix  R + Q is given by 

R Q =

/ {Q + X) 0 w
0 {Q + X) T - w
w T* { Q - X ) 0

\  T -w 0 {Q-^
The last two columns are linear combinations of the first two, since

W 0
w

\  T

+ T
(  0 \

(Q + ̂ ) 
r*

\ -w )
= (Q + ̂)

/  w \
T

( Q - x )
0

and
f { Q + x ) \  

0
w

\  T  /

w (Q + x )

/  T* \  
- W  

0
\ { Q - X ) J

f  ° \{Q + X)
T*

\ -w J
The two remaining independent eigenvectors may be obtained from the m atrix R - Q

/ ( - Q  +  X)  0 W  T* \

R - Q  =

V
0
w
T

[-Q + X)  T  - W
T* {-Q ~ X )  0

- W  0 { - Q - X ) J
As before, only two of the four columns are linearly independent: 

/ ( - Q  + X ) \  /  0 \  /

W

\

0
w
T

+ T
/  0 \

i - Q  + x)
\ -w /

i - Q + x )

w
T

i - Q - X )
0 /

§S7. The Eigensystem
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and
{-Q + x ) \

- w
/  0 \  /  T* \

\  - W  J  \ ( ^ - Q - X ) /
Let us select the first two columns from R + Q and the last two columns from R  — Q a,s our 
independent spin vectors. These four vectors each have magnitude

{{Q + X y  + W^ + TT*y2 = ^2 Q {Q  + X )

so that the four normalised spin eigenvectors are

U{ 0 , k )
y/2Q{Q + X)

/  (Q + x ) \  
0
w

\  T  J
U{l,k) =

^2 Q {Q  + X )

( 0 \
(Q + ^)

\  - W  J

U{ 2 , k )  =

(  ^  \
T

- {Q  + X )
V o /

U{3, k)
y/2Q{Q + X )

/  T *  ^ 
- W  

0
\ - {Q + X)J

y/2Q{Q +  X)

Next, consider the adjoint operator

^Inn ~  ^  + (1 + 7m) ^m,n+li}

It is not a priori clear that this operator shares the same eigenspace as Am,n', we will show 
that this is indeed the case by explicit calculation.
The eigenvalues of may be computed as before—we assume eigenvectors of the form

Xn{(^,k) = V{a,k) Ak.n

and solve

This time we find

^ L X n  (a, i) = k )  Xm(«>

{(1 -  7^) +  (1 +  7a.) ^mn+n) V («>^)e- -

=  E  { ( ' -  T") +  (! +  > )  } n a , k )

li
=  ^ ( 2  cos k^ -  2ijf, sin k^) V(a, k)e^

=  b ( a , k )  Xm(<^,k)

A k .m

§S7. The Eigensystem



6. The Fermion Matrix 

As before, the homogeneous system

K V { a , k )  = 0

must be solved, but now

b{a,k)
K  =  J ^ (c o s  k ^ )  j  sin k^)

2
M /i

This time vî e define

K '  = -  ^ ( c o s  k^) +  -  ^ ( 27 ,/ sin k^
V V

This gives

K K '  = -  k^) -  I ^ ( c o s  k^)
tj. \  n

. 2
a{a, k)

2

exactly as before.The eigenvalues of are therefore given by

b{a, k) — 2 ^  (cos ±  2i | ^  sin^ kf,
fi \  fj.

and are the same as those of A.  In terms of our simplified notation (6.10), the eigenvalues 
are

b{a,k) = 2 { P ± i Q )

and the m atrix K'  is
K '  = i { - R ± Q )

The columns of — i? +  Q and - R - Q  are therefore eigenvectors of These matrices are 

given explicitly in two dimensions by

t )   ̂ - « - « = ( ; ?  5
As before, the first and second columns of each m atrix are proportional:

This time we select the second column of - R  + Q and the first column - R - Q  to  obtain 
two independent normalised spin eigenvectors of A^

%27. The Eigensystem
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After the trivial redefinition

; V{ \ A ) ^ - V { I A )
the eigenvectors of and A coincide:

V{0,k)  =  U{l,k)

V{l ,k)  = U{0,k)
A  similar result holds in four dimensions. The matrix - i ?  +  Q is

/ { Q - x ) 0 - w - T *  \
0 { Q - X ) - T W

~ w {Q + x ) 0
\  - T W 0 (Q + X)J

/ ( - - Q - X ) 0 - w _
\

0 ~ Q - X ) - T W
- W _ i -Q + x ) 0

V - T w 0 ( - Q + X ) /

- R - Q  =

Selecting the last two columns from - R - \ - Q  and the first two from —R  — Q and changing 
the sign as above yields

V{0,k) = U{2,k)

V{l ,k)  = U{3,k)

V{2,k) = U{0,k)

V{3,k) = U{l,k)
Note that although and A have the same eigenvectors these do not in general correspond 
to the same eigenvalues. In fact if we set

X{0,k )=2{P + iQ) =  \{k)

X{l,k) = 2 { P - i Q )  = X*{k)

and

we find, in two dimensions

'tP{l,k) = U{l,k)e^^^-^^ 

i;{2,k) = U{2,k)e^^^-^^

Ailj{0,k) = X{k)ip{0,k) 

A'ip{l,k) =  X*{k)'ip{l,k)

A^'ip{0,k) = X*{k)'ip{0,k) 

A"''i{j{l,k) = X{k)'ip{l,k)

§S7. The Eigensystem



6. The Fermion Matrix 

while in four dimensions
A'ip{0,k) =  A(fc)'0(O,fc)

A^{2,k) = \*{k)^(2,k)

Axl){Z,k) =  A*(i)V'(3,i)

A^{Q,k) = \*{k)^{fd,k)

A ^ l ^ k )  = A*( )̂ (̂l,i)
A^i)(2,k) = \{k)i^{2,k)

A^'tp{3,k) = X{k)'tp(3,k)

With a complete set of eigenvectors and eigenvalues of A  and A^ in hand, it is now straight­
forward to write down the corresponding objects for the full fermion operators.
Let be any eigenvector of A  and A'  ̂ with eigenvalue X{k) on A  and eigenvalue A*(^)
on A^. Then

A'tp = X'tp = 2{P ±  iQ)ij)

Â il; = X*ip

Mib  =  (1 —  nX)ip =  Xm 'iP 
/  ' '  (6.13)

M̂ 'ip = (1 — KX*)ij) = AjvftV’
~  (1 — k(A* +  a )  +  K,^X*X)'tp =  Aj\^tM"0

~  (1 — k(A +  a ) +  k; AA )'0 =  Ajvf̂ tV̂

The operators A, A^, M, M^M  and MM^  all have the same eigenvectors; the corre­
sponding eigenvalues for each operator are given by (6.13). Furthermore, the eigenvectors 
(though not the eigenvalues) are independent of the value of the hopping parameter k.

28. P roperties of the Eigensystem

In this section we will explore the structure of the free fermion eigenspace, focusing partic­
ularly on those properties which bear on the perturbative analysis to be discussed later— 
namely commutation relations, zero modes and degeneracies.
We note first that the free fermion operator has all the properties anticipated in Section (26). 
It is certainly diagonalisable, by construction. Its eigenvalues are semisimple with algebraic 
and geometric multiplicity d/2 per momentum mode. Moreover, the fact that the fermion 
operator and its adjoint share the same eigenspace, L, has the consequence that that M  and

§^5. Properties of the Eigensystem
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commute. This follows from the fact that any vector in L  can be written as a linear 
combination of eigenvectors:

for any choice ^  in L. It follows that

MM^  -  M^M  =  0

A second consequence is that if a vector -0 is a right eigenvector of M, it is also a left 
eigenvector, since

with a similar result for
This property, which follows automatically from hermiticity, does not hold in general for 
non-hermitian matrices such as M.  It is, however, essential if a perturbation expansion 
around the free fermion field is to be attempted.
The fermion operator exhibits a high degree of degeneracy, since its eigenvalues depend only 
on the magnitudes of the momentum components and not on their ordering or their sign. 
A general eigenvalue of M  is given by

In the worst two-dimensional case, with periodic boundary conditions in both dimensions 
and kQ and ki non-zero and distinct the following set of momentum vectors are all associated 

with the same eigenvalue;

Now letting Xm =  A, we have from (6.13)

M-ipi = Xiipi = X*ipi

and therefore

( M M t  -  M t M ) ^  = Y,Ci[KX* -  X*Xi)A =  0

A M ( ± , i )  =  1 -  2 ac( P ± ^ ( 5 )  =  1 -  2 k ] ( c o s / c ^ ) ± i  ^sin^A:^ (6.14)

(/co,/ci) {kuko)

{ - k o , k i )  { k i , - k o )

{ko,—ki) {—ki,ko)

{ —k o , —k i )  { —k i , —ko)

^28. Properties of the Eigensystem
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This eightfold degeneracy is the maximum possible in two dimensions. If antiperiodic bound­
ary conditions are imposed, as is customary, in the time direction, the maximum degeneracy 
is reduced to four.

The situation is much worse in four dimensions, where there are four components of mo­
mentum to be permuted by position and sign, giving rise to a 384-fold degeneracy in the 
momenta. There is, in the four-dimensional case, an additional spin degeneracy since the 
spin eigenvectors U (0, k) and U{l ,k)  share the same eigenvalue, as do the vectors U (2, and 
U{3,k).  The total degeneracy factor in the general case, where all momentum components 
are non-zero and distinct, is therefore 768.
Note that this momentum degeneracy does not affect the semisimple nature of the eigensys- 
tem, since different momentum modes are still associated with distinct eigenvectors. If the 
moment degeneracy is r], then the algebraic and geometric multiplcities are each t;o?/2 .

The high level of degeneracy in the fermion operator presents a serious obstacle to any 
attempt to construct a perturbative expansion.
Let us next consider the eigenvalues of M  themselves, which are given explicitly by (6.14) 
and are plotted in Figures (6.1) and (6.2)
Although complex in general, they occur in conjugate pairs. As a consequence, the de­
terminant of M,  which is simply the product over all eigenvalues, is always real, as is the 
determinant of
The fact that corresponding eigenvalues of M  and are complex conjugates means, of 
course, that the eigenvalues of the product operators MM^ and M^M  are real and corre­
sponding eigenvalues are equal.
The maximum and minimum eigenvalues of M  follow from (6.14):

^m ax  — 1 “H 2c?AC , ^m in  I 2c?K

The minimum eigenvalue, which occurs at ^ =  0, is of particular interest; it approaches zero 
as K approaches 1 / 2d—that is, as a 0, if the mass is held fixed. That is to say, M  becomes 
increasingly ill-conditioned as the naive continuum limit is approached, the determinant goes 
to zero in this limit and the matrix is no longer invertible.
Although the zero momentum eigenvalue remains well-behaved at zero momentum (for finite 
lattice spacing), a difficulty arises with the zero-momentum eigenvectors. Indeed, at zero 

momentum we have
Q =  S  =  T  =  W  X  =  0

so that all eigenvectors are zero. There is no linearly independent eigenvector associated 

with the zero mode, so that a degree of freedom is missing.

§^5. Properties of the Eigensystem
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lattice s ize  64 

kappa 0.10

CB
1 1.5
real part o f eigenvalue

66

lattice size  64 
kappa 0.15

1 1.5
real part o f e igenvalue

1

kappa 0.200.8

0.6

0.4

0.2

0

•0.2

■0.4

-0.6

-0.8

•1
2.521.5

real part of eigenvalue
0 0.5 1

lattice s ize  64 
kappa 0.25

real part o f e igenvalue

Figure 6.1: : Eigenvalues of the free fermion operator in two dimensions for different 
values of the hopping parameter. Note that a zero eigenvalue appears at the critical value 
H =  0.25; the fermion operator becomes singular.

A closer inspection shows that the problem arises because all the terms Q, S, T, W, X  which 
occur in the expression for the eigenvectors are purely kinetic—there is no mass term. The 
mass term, P, has been eliminated from the eigenvectors via (6.8), (6.11) and (6.12) as a 
direct consequence of the fact that all eigenvalues of the operator are non-zero (except in 
the continuum limit).
It is instructive to compare this with the physical (ie, continuum, Minkowski space) case, 

where we solve the Dirac equation

-  'm )i’ =  0

This is in effect a restricted version of (6.6), where we solve for the particular eigenvalue 
A =  0. The requirement that A be zero leads to the well-known mass-shell condition

u)'̂  = 1^ + (6.15)

^28. Properties of the Eigensystem
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ft O *  «  e  A 0 . 0  
o  0 O ®  ^OO

^  ® O ©

1 1.5
real part of eigenvalue real part o f e igenvalue
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kappa 0.25

lattice s ize  64
kappa 0.25

O <► O O 0 o  o% ®.

1 1.5
il part of e igenvalue real part o f e igenvalue

Figure 6.2: : Eigenvalues of the free fermion operator in two dimensions at the critical 
value of the hopping parameter. The distribution of eigenvalues is shown for several different 
lattice sizes. The eigenvalues are confined to a fixed region, but their density increases with  
increasing lattice size.

The eigenvectors associated with this zero eigenvalue may be derived by methods similar to 
those used in the previous section. In four dimensions the spin eigenvectors take the form

U{2,k)

Lu + m  \  
0

(w +  m) 1
. kx "H iky /

/  kz \
k x  i k y  

Lo + m
\  0 I

U{l,k)
v 2 ^  (u! +  m)

U(3,k)
y/2u>(u> +  m)

( 0 \
UJ -\rm 

h x  zhy

V - k z  J
( kx iky ^

0
\  Lo + m  /

so that a mass term is present. The mass shell condition (6.15) now excludes the possibility 

that all four components of momentum are zero.
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The Dirac equation has no solution on the lattice, as evidenced by the fact that the eigenval­
ues (6.14) can never be zero (except in the continuum lim it).The more general system that 

we have solved imposes no mass shell restriction and consequently allows a zero momentum  
mode.
Let us summarise the situation:

1. The physics resides in the Dirac equation, corresponding to the zero eigenvalue of the Dirac

2. The unphysicality of the lattice formulation manifests itself, in this context, in the fact that 

the lattice Dirac operator has no zero eigenvalue.Nevertheless, the full spectrum of (non-zero) 
eigenvalues and eigenvectors can be obtained.

3. As a consequence of the fact that we deal with non-zero eigenvalues, there is no mass shell 
restriction and all four components of momentum may be zero.

4. The eigenvectors of the operator cease to be well-defined at zero momentum.
5. The minimum value of the lattice Dirac operator attains zero in the continuum limit.

It is clear from the above that the problematical zero momentum mode is intimately linked 

to the physics that we are ultimately trying to extract from the lattice.

29. Phase Structure o f the Free Fermion Field

Let us apply the method of Fisher zeroes to determine the critical points of the free fermion 

lattice theory in two dimensions.
The free fermion partition function is given by

where the dimensionless fermion operator M is given by (6.1) and the eigenvalues Aj by 

(6.14). A zero of the partition function function occurs when any eigenvalue is zero, thus we 

require

operator.

Zp =  det M  =  A:

which occurs for values of k satisfying

2 k  = (6.16)

29. Phase Structure of the Free Fermion Field



6. The Fermion Matrix

0.6

0.6

0.4

0.2

0

■0,2

-0.4

-0.8

-0.8
-0.8 -0.6 -0 .4 -0.2 0ReK 0.2 0 4 0.6 0.8

0.8

0.6

0.4

0.2

0

-0.2

-0.4

■0.6

-0.8

0-6

O.e

0.4

0.2

0

-0.2

-0 .4

-0.6

-0.8

0.8

0.6

0.4

0.2

0

■0 .2

■0.4

-0.8

-0.8
-0 .8  -0 .6  -0 .4  -0 .2 0  0.2 0.4 0.6 0.6 -0.8 -0 .8 -0 .4  -0 .2 0 0 .2  0.4 0.6 0.8

Figure 6.3: Zeroes of the free fermion partition function in the complex kappa plane

The development of this system of zeroes with increasing lattice size is shown in Figure (6.3). 
It is apparent from the figure that the real axis is pinched at the two critical points k =  ± | .  
There are in fact two additional critical points at k = ±oo. These appear explicitly as a 
pinching of the real axis at the origin when the zeroes are plotted in the inverse k plane as 
in Figure (6.4).
The existence of a phase transition requires an accumulation of zeroes in the neighbourhood 
of the critical point as the lattice size increases. This process is demonstrated in Figure (6.5) 
for the critical point Kc = \-

^29. Phase Structure of the Free Fermion Field
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Figure 6.4: : Zeroes of the free fermion partition function in the complex inverse kappa 
plane
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Is mathematical analysis . . .  only a vain play of the m ind ? . . .  Far from  it; 
without this language most of the intimate analogies of things would have 
remained forever unknown to us; and we should forever have been ignorant 
of the internal harmony of the world, which is . . .  the only true objective reality. 

-  H. Poincare

The perturbative expansion of the partition function of the Schwinger model yields expressions containing 
pure gauge expectation values of gauge-dependent objects. This represents a serious obstacle since such 
objects are potentially ill-defined. Indeed, it was shown in Section (15) that the pure gauge vacuum state is 
degenerate if periodic boundary conditions are imposed. In this Chapter we begin a detailed investigation of 
pure gauge expectation values. We obtain exact results in axial gauge with both periodic and zero boundary 
conditions and similar results in Feynman gauge in the weak coupling regime. We show in particular that 
the object is well-defined in Feynman gauge if zero boundary conditions are imposed.

30. O verview

Having analysed the free fermion operator, we now turn to the second ingredient required for 
the perturbative expansion of the Schwinger model; expectation values over the gauge field. 
We will show th a t the imposition of periodic boundary conditions leads to  unsatisfactory 
expressions for the fundamental object, (0^) th a t we require. We will exploit a method 
due to Dosch and Muller (1979) to obtain exact expressions for expectation values in axial 
gauge and demonstrate th a t (0^) is constant and hence unsuitable for perturbative or scaling 

calculations in this gauge.
On the other hand, this expectation value is ill-defined in Feynman gauge at weak cou­
pling. We will dem onstrate th a t with zero boundary conditions imposed, (</)̂ ) acquires an 

unambiguous meaning.

31. T he Partition  Function

The pure gauge partition function is given by

Z a = I  {dU]e-l“^

where S  is the pure gauge action

S  =  ^ R e ( l  -  Up)
p
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and Up is the product of gauge variables around an elementary plaquette.

_ ^iagcpp

We will set ag equal to unity for the moment and rewrite

S — 1 — Re 1 — cos (f)p
P V

The invariant integration measure for U(l) over a lattice L  is given by

<PieL  ̂ '

Putting everything together, the partition function becomes

7T

_  „-l3 \L \ f  T J  f  TT cos 0p(</>i)

Each factor in the integrand may be expanded in a Fourier series

CX)

e^cos^p =  ^  (7.1)
r = —oo

The coefficients ar may be determined by considering the generating function for the modified 

Bessel functions
OO

e ( l ) ( * + t ' )  =  ^  I r { x ) f

r = —oo

Setting t =  gives
00 

r = —00

and comparing (7.1) and (7.2) we identify cij- with Ij- (/?); the modified Bessel function of 

order r.

§52. Axial Gauge
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B1 B2 B3 B4

B8

B7

B6

B5

B8

B7

B6

B5

B1 B2 B3 B4

Figure 7.1: Finite lattice in axial gauge. The thick vertical lines axe the gauge fixed
hnks. No boundary conditions are imposed.

32. A xial Gauge

The discussion so far has been completely general; no gauge has been fixed and the lattice L 
is not necessarily finite. We now consider a finite lattice in axial gauge. The lattice is shown 
in Figure (7.1), which also serves to establish notation. Note th a t the fixed timelike links do 
not form a maximal set; additional spacelike links can still be fixed. In the  infinite volume 
limit, of course, axial gauge does constitute a complete gauge fixing.
We will rewrite the partition function using the expansion (7.1) and distinguishing now 

between boundary and inner links.

Before proceeding to evaluate the integrals it is helpful to introduce some terminology.
We identify three types of link (apart from fixed links):

^32. Axial Gauge
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(1) Boundary links: These are links on the perimeter of the lattice. We define these so that 
they are oriented in an anti-clockwise loop around the lattice (see figure). Corresponding 

links on opposite sides of the perimeter are labelled with the same index; thus each positively 
oriented loop Bi has a negatively oriented partner Bi.

(2) Support links: These are the links on which our functions are defined. Since we consider 

only one and two-point functions there can be at most two such links on the lattice.

(3) Free links: All links which are not support links or boundary links ( or gauge-fixed links) 
are termed free links.

Two plaquettes are called connected if they share a free link. A region of the lattice is a 

maximal set of connected plaquettes. If there are no support links, the lattice as a whole 

forms a connected region, denoted L. If there is one support link, say Aj, there are two 

regions, each of which contains exactly one support link on its boundary. We will call such 

regions single-support-bounded regions, or S'-type regions and write

L =  S i {c!>,)S2{ ,̂)

If the lattice contains two support links, (j)i and (t)j, there are two S-type regions and a region 

containing two support links on its boundary— a double-support-bounded region, or D-type  

region. It is convenient to distinguish between -D-type regions which contain boundary links 

on their perimeter and those that do not (DB-type  regions and Dp- type  regions respectively). 

With two support links on the lattice we write

or
L =  Si{(l)i)DF{(i>i,(l>j)S2{(t>j)

Next we write down an expression for the integral over a single free link

J-T T  V 27T /  r '= - o o  rr '

r

Here p  and p' are the two plaquettes containing (pi while (pp and (j)p are the sums of the 

remaining links around p  and p' respectively.

Integrating all the free links in a region R  gives

^32. A x ia l  Gauge
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where n is the number of plaquettes in R  and Lioop is the sum of links around the perimeter 
of R, taken anticlockwise. These links consist of boundary links, support links and fixed 
links (which are set to zero). Let a  be the set of positive boundary links and a  the set of 
negative boundary links on the perimeter of R.
Define

Bg = y^Bm
m^a

n£(S
Let (j)s be the sum of support links on the perimeter of R. With this notation we can write

J r L i o o p  _  ^ i r { B a + B a ) ^ i r ( f > s

Setting R  = L gives

where
-  -f'-w

If R  is an 5-type region we find

2 N  _
m = l

i r { B a + B a ) ^ ± i r 4 > i

<l>keS^ ^  '  '' r # 0

The negative sign arises if the support link <l)i has negative orientation on the perimeter of 
5.
Setting R  = Dp gives

<PkeDp ^
Note that the boundary links do not appear in this expression. Moreover the support links 

and (j)j necessarily occur with opposite signs.

Setting R  = D b gives

<t>keDs^  ̂ r/O
§52. Axial Gauge
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The negative sign corresponds to negative orientation of (j)j. (We can without loss of gener­
ality assume that (j)i is positively oriented since our gauge-fixing ensures that no region can 
have both support links negatively oriented. )
With these preliminaries out of the way we can write down directly the integrals we require

fui'-t) ( # )  + P-3)
n - l   ̂  ̂  ̂  ̂ ^

>'“ = = ^ f . n { $ ) ( f  )(£)«*.

7 1 = 1

r''7t0
2 Ne - m i  W r  “  ( d B „ \  ( d B „ \  (d<t>i\ f d 4 , , \  , , ,  , ,

r/O

 ̂ 7*/1̂0

X | l  + ^  I
V ■ rrt lUCX '

( 7 .4 )

( 7.5)

(7.6)

Note that we cannot yet carry out the integrals over the boundary links since and 
are not in general free variables but are constrained by the boundary conditions which have 

yet to be specified.

§55. Infinite Volume Limit
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33. Infinite Volum e Limit

In taking the infinite volume limit we will assume that both the lattice size and the distance 
between a support link and the boundary grow to infinity. This implies

\L \— >• oo | 5 | — >■ oo \Db\ — >00

although Dp in general will remain finite.
Also note that

\gr{P)e"^\ < 1  VA e SR, r ^  0

We will assume for the moment that

hm =  0
n —>-oo ^  r̂ O

The infinite volume limits we require are then

l im  Za  =  [ ' f [ ( ^ )

2 N

= 5: ^  r  n  m  ( f ^ )  ( f )  m )
| l | , | S i | , | 5 2 K ~ ^   ̂ Z g  2 tt J \  2 tt J \ 2 tv J

"  I /(* )

l i .
, •5 2 ||-D b |^ 0 0  Z q  J - 7 T  „ _ i  V /  V| L | , |S i | , | 5 2 | | I ? b K o o ..............  ^  J  ̂ 27T /  V 27T

(  d(l)i \  (  d(f)j
27T /  V 27T

Kf  / I  \

2N

(7.7)

- / 3 | L | j  |i . | ^  f  d B n \  ( d B n \  f  d(j)i\ f  d ^ j \   ̂ ^

[Z/|—̂00

X 0 +

(0*
i/r'

^ 0
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All three types of expectation value are therefore independent of the boundary conditions in 
the infinite volume limit.

34. B oundary Conditions

The integrals over the boundary links must now be eliminated. In view of the result obtained 
in the previous section, we are free to specify any boundary conditions; let us first select 
unrestricted periodic boundary conditions. This implies

Before proceeding further it will be convenient to modify our notation. A region R  which 
contains boundary links may contain both a link Bn and its negatively oriented partner Bn- 
Such pairs cancel under the assumption of periodic boundary conditions, leaving a set of 
unmatched links which we will denote by u. We therefore write

The set u may or may not be empty; if it is not, we will extract one link and write

In the case of the partition function the boundary is the whole lattice and there are no 
unmatched links; the general expression (7.3) therefore reduces to

Next we note that an S'-type region must contain at least one unmatched link - the boundary 
link in the same column (row) as its spacelike (timelike) support link. The one-point function 

(7.4) may therefore be written

Ba + B a ^  i±B )^

(±B)„ = i ± B \  {±Bm)

Z g = e

(7.8)

/(0 i)

, i r B v  ^ i r B 1 Q - ir 'B v  ^ir'<t>i ^ - i r 'B ,

r '^ 0

r^O r'^0

§5. .̂ Boundary Conditions



7. Pure Gauge Expectation Values 

Integrating over Bm yields

</(«)=̂ £ n ( f = )
X '1 +

r'̂ O

rT^O r'7^0 (7.9)

/: (t)
This is identical to the infinite volume limit (7.7). We conclude tha t one point functions are 
independent of lattice size under periodic boundary conditions.
Turning next to the two-point function {f{(f>i)g{(t>j))p, each S'-type region again has an 
unmatched link, while the Dp-type region contains no boundary links. As before we expand 
(7.6) and integrate term by term over the unmatched link Bm- The linear terms yield

/ dB m \ ^  ^
V 27T

J - n  V 27T /

27T ' ^
7T \  /

J - T ^  V r^Or»5^0 '■^0

The quadratic terms give

•̂ -TT V 27T /  ,

r'^O  rji^O

§5^. Boundary Conditions
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fdB.
-7 T  \  27T  . r̂ O r"^0r̂ O r"9̂ 0 

r̂ iO r"^0
=  g ^ ( . \ ^ i \ + \ ^ 2 \ )  ^ p ^ ^ - i r { ( l > i - ( l > j )

r  E  E 9 ^ '“ ''('3)«;"'’'(/3)e‘’-"®"e‘<’'"-’''l*'e-'-'*e‘’-"«" 
J-TT \  ^

The cubic terra gives

^dBm
' - 7 T  \  2 7 T  ,7T \  /  ^ ^ O r V O r " 5 ^ 0

^  ^  ^  ^ ^ | S i | ( ^ ) ^ / | i ) f | ( ^ ) ^ / / | S 2 | ( ^ ) g i ( r - r " ) B . g j ( r ' - r ) , A i e i ( r " - r ' ) ^ j g j ( r - r " ) B „  

r̂ O r'^0 r"^0

r'̂ î O r"7̂ 0

= E E
r !̂̂0 r'7̂0

All surviving terms are independent of the remaining unmatched boundary links By, yielding 
the final result

imû ,)}. = £  ( f ) ( t )  /(«9(̂ .)

(7.10)

r^O

r̂ O r'7̂ :0

Lastly we consider the two-point function {/(<?!>i)̂ ((/'j))B- Let us denote the sum of unmatched 
links in the 5 -type regions by and J5„», and the sum of unmatched links in the D^-type 
region by 5 „ /. There are three distinct cases to consider;

(1) Bu = ByBm\ Bu' =  0; B^„ =  { - B y ) { - B j )
This situation arises when both support links are timelike (TT case)

(2) B^ =  B,{Bm)\  B u '=  By ,{ -Bm){±Bn)-  5 „ » = 5 „ » ( t B „ )
This occurs when one support link is timelike and the other is spacelike. (TS case)

^34- Boundary Conditions
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(3) Bu =  ByBm', Bu' =  Byi{±Bn)\ B^n =
Here both support links are spacelike (SS case)

The TT case is identical to the calculation of { f { ( j > i ) g { 4 > j ) ) p ' i  note that (j) j  can only occur 
with negative orientation on the perimeter of D^.

(7.11)

X j 1 +
r'^O

- I -  ĝ i\Si\+\S2\) (̂ p-̂ -̂ir{(t>i-4>j)
r̂ O

+ E E
r̂ Q

Next we deal with the TS case; note that

B u '  = B y i { — B m ) { + B n )  (f)j  is negatively oriented on the perimeter of Db

Bu' =  Byi{—Bm){—Bn) <t)j is positively oriented on the perimeter of D b

Proceeding as before we expand (7.5) and integrate term by term. This time the linear term 
is unity. The first quadratic term gives

r /  dBn\  f  dBm\  ,I^-bI(^)^ \Si\ p̂̂ îrBv̂ ir'B'^̂ -ir<l>i îr'{<pi±(l>j) î{r'-r)Bm̂ Tir'Bn
J - A i ^  j  j  '

fdBr,
\ 27T  ̂ r'^0

The other quadratic terms similarly give zero. 

The cubic term is

J-TT V 27T /  \  27T /
^ girS„ ^ i r ' {4>iT<t>j)^±ir"<Pj ^ i { r - r ' ) B m  ^ ± { r ' - r " ) B n

\  27T7T \  /  r=î O

Boundary Conditions
r̂ Q



7. Pure Gauge Expectation Values

Overall we obtain

(7.12)

This is the same as the infinite volume expression for {f  so that this class of
expectation values is independent of lattice size.

The SS calculation is almost the same (with the minor modification that (j)j is always nega­
tively oriented on the perimeter oi D b ) and gives exactly the same result

We note in passing that these expressions all coincide in the infinite volume limit with the 
results obtained in the previous section

35. Some Useful E xpectation Values

The results obtained above can be used to calculate some standard expectation values ex­
plicitly for a finite lattice with periodic boundary conditions in axial gauge. Let us first 
consider functions of a single link variable.From (7.9) we have

These expectation values are independent of lattice size.
Turning next to functions of two link variables we have from (7.6), (7.11), (7.12) and (7.13)

(7.13)

which yields immediately the following results:

((/i) =  (t /* )  =  0

(7.14)

§55. Some Useful Expectation Values
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=  U (4>,)m )TT = £  (^) (^) S(4>i)s(4>i)

r-5̂0
- j -  y~̂ g î\^A + \S2\) ̂ j^-^Q-ir{<l>i-(l>j) 

rĵ O

+EE
r'7̂ 0

Expectation values of the type {f{(l)i)g{(f>j))^j., {f{(pi)g{(i>j))ss, (/(</'*)^(</'^))r5 > relate to func­
tions defined on links a t the boundary of the lattice; although they can be computed from 
the expressions above, it is links of the type {f{4'i)g{(j)j))pp th a t are of real interest.
Let us first calculate the expectation value of the product of two link variables

-P\L\jJL\

Z g

| i  +  E , ^ o9 .‘" '( «

(7 . 15)

where we have used (7.8) and the fact that
The first term  in (7.15) dominates for large lattices so tha t we have

(U,U])  i \ L \ > \ D p \ )

Of particular interest is the case Dp = I- This quantity is numerically equal to the invariant 

plaquette in axial gauge giving

(U,)^^gA0) ( | i | » l )  P.16)
§55. Some Useful Expectation Values
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which is gauge invariant.
A similar calculation gives

(UiUj)p={ulu})^^(,
With these in hand, we have directly

m - iWi - i)>f = {(u; - i){uj -1))^ = 1 

{(u; - im - 1))  ̂= {(Ui - ml - 1))  ̂= i +

36. A xial Gauge w ith Zero Boundary Conditions

In this section we will compute the finite lattice expectation values for the plaquette and the 
square of a spacelike link in axial gauge with zero boundary conditions.
The general expression we require to compute the plaquette is given by (7.6)

Setting
Ba = Ba = 0 

and carrying out the boundary integrals yields

r̂ O

X
r̂ O

X | l  +
r'5̂0

(7.17)

(7.18)

1 +  ^  9,»'®'l(/3)e""*<
r"^0

\36. Axial Gauge with Zero Boundary Conditions
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This expression yields the plaquette if we set

f i^ i)  =
g{(f)j) =

\Dp\ =  1
Carrying out the integrations as before, we obtain

{Ur) = l+E9rW)W
For large lattices, this reduces as expected to the same infinite volume limit as the plaquette 
calculated under periodic boundary conditions.

\ua (Up) = giip) (7.19)
|I/|->00

Next, we turn to the expectation value of the square of a link. According to (7.4), this is 
given, for arbitrary boundary conditions, by

f d B A  ( d B ; \

n = l

X 1 1 +  I  (7.20)
r̂ O 

r'^O

This reduces, in the case of zero boundary conditions, to

1 + E  Sr(Pr' V 2>r )

l + £ 9 r '* ‘l(/?K ‘'X

r̂ O 

r'^0

Integrating this expression gives

K

r = l (7.21)

+  limK^oo K
r ' = - K  r  
r '5 ^ 0 , r  ’■r^O

r = l

j  (r' — r)
K  ^  ''

1 + 2 E  sM'^'

§S6. Axial Gauge with Zero Boundary Conditions
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37. The A ction  In Feynman Gauge

The bare gauge action is given by

S h a re  ~  ^  2 ~  (7 .22)
R

where is defined by

d f i u i n )  =  (7 .23)

and the are the usual angular field variables. The gauge is fixed by introducing an
additional term  into the action

^9f =

n

Let us also add a (gauge-dependent) mass term for reasons th a t will become apparent

n.

The full action is then the sum of these three components

5  =  S h a re  +  S g f  +  6 ’̂  (7 .25)

38. W eak Coupling Expansion

The aim  is to find an approximate expression for the propagator (^/^(n), 0i/(m))

- s

If the coupling constant g is small, the weight factor e"^ will tend to suppress all contributions 

to the integral except those for which

^ ^ ( 1  -  cos 6>^^(n)) fa 0 (7.26)
n

Note th a t
(1 -  cos0^^(n)) > 0

^38. Weak Coupling Expansion
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so that (7.26) will be valid if

Therefore, the cosine in (7.22) may be expanded to give an approximate version of the 
action, valid for weak coupling. Expanding as far as terms quadratic in the fields yields an 
approximate expression for the bare action

From the definition (7.23) we have

n n

This can be reduced to a more convenient form by making use of the identities (2.22).

=  -  X ]  2 </>//(zi) -  2 (j)^{n) a^a^0^(n )
n  n

= -2^(f)^{n) {5̂  ̂ d^) 0 (̂n)
n

Thus the bare action can be written

Share =  V "  -  dj^  0 ^ )  (j)^ {n )

^  n

Turning next to the gauge term, we have

S g  =  ^ Y ^  d u M n d
^  n

=  0 d̂ dl:(t)̂ {n)
Tk

Lastly, the mass term gives

^  n

The full action is therefore (up to terms quadratic in the fields)

s ^ - Y l ~ ""'̂0
n

=  _  ^  </, (̂n) (V^ -  m^))^ (7.27)
n, m

n, m

§38. Weak Coupling Expansion
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The propagator we require is then given by

( M u ) , = M - X n ,m )

The operator M  is most easily inverted in momentum space where it is diagonal. Let us 
therefore rewrite (7.27), inserting the Fourier transforms of 0^y(n) and 0/i(zzl)

S(k, a  = ^  E  E  ( A-S«('5^ (V"
R,m ^ ^ ^

Carrying out the sum over m  yields

S{k, a  = ^  E  E  (^'5^. (V" -  m")))
k,k!_ iktHi

Now

y2^-ikL.n ^  ^ -y .n  ^  ~  ^  ~  ~  ^  ^ ~

=  1̂ 2 ^ ( 2  cos^ -  1) _  1 j  ^ - 4  ^  sin^ ^  j

The action thus reduces to

5 (fc ,^ ) =  ^  ^ X ] 0 . ^  (^ )
k,kL n ^  ^  \  a )

Summing over the remaining site index gives

S { h  M h ) S k , - ! ^  ^ V ̂
Lastly we sum over ^  to give the final result

S(k) = Y .  M k)  (^^'*->') ('* E Y  + M - k )

= Y , M k ) M ^ { k ) M ~ 0
k

The momentum space propagator M^J-{k) is then given by

( M & M - b ) )  =  (T.29)

§5*5. Weak Coupling Expansion
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That is, we have

The position space representation of the propagator can now be found by inserting the 
Fourier transforms of (f)iy(k) and into (7.28).

s = Y1 Mm)
m,n

= im, n) 0^ (n)
m,n

The propagator is then given by

{ M m ) M a ) )  = M -Jim , n) = e*

This inverse can be written down explicitly:

A„(a,P) = E
j

as can be verified by direct multiplication

im, n) A a ^ p) =  X !  (^) (j)e - - e  -  i ) .
n i,k

= E  " - “(a
i,k

=  E " " » ®

The final result for the propagator in position space at weak coupling is
9^2  ____   A p - i k . ( m - n )

(MlR)(t>M)) =  ^  4 i : 7 s in 2 ^ + m 2
k ‘-^Q. 1

In particular, \i ix — v and m  = nvfe  obtain

I l i t  "nX ^
(0^(nj) = ^ 2 ^  s in 2 ^  +  m2

The reason for adding the mass term (7.24) to the action is now clear—it serves to suppress 

the the infra-red divergence at ^  = 0.

^39. The Feynman Propagator with Zero Boundary Conditions
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39. The Feynm an Propagator w ith Zero B oundary Conditions

The infra-red divergence in the Feynman propagator can be removed by imposing zero bound­
ary conditions on the lattice.

The action (without the mass term) is given in position space by (7.27)

S  4>u{n) 0^(m)
n,m \  y  /

As before, the operator is inverted by transforming to momentum space. Using the Fourier 

transform (2.31), appropriate for zero boundary conditions, we obtain

p,p'^0 n,m

^ (  2^2 ^  ^
X -  ( - i F ' ’ ™ ' ’ )

n

X '*<“' )  '̂ <‘(2 )̂

= E  (2^'*'“')

This is identical to  the result obtained under the assumption of unrestricted periodic bound­

ary conditions, except that the zero momentum mode is now explicitly excluded and no mass 

term is necessary.

§5P. The Feynman Propagator with Zero Boundary Conditions
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God made the integers, all else is the work of man. 
-  L. Kronecker

In this Chapter we commence the numerical investigation of pure gauge expectation values. The technique 
of Monte Carlo integration is introduced and the statistical analysis o f the results is dicussed. As a test case 
we evaluate the expectation value of the plaquette. We demonstrate the agreement between the numerical 
results and the analytical prediction in the infinite volume limit and display explicitly the deviations arising 
from Unite size effects.

40. M onte Carlo Integration

The expectation values obtained in the previous Chapter can also be found by approximate 
numerical evaluation. This serves as a check on the calculation and also as a validation of 
the numerical algorithm, which can then be used to evaluate gauge dependent quantities in 
other gauges.

The problem, then, is to obtain a numerical approximation to  integrals of the type

Jc o n f i g s

In principle, all th a t is necessary is to generate a random set v of configurations large enough 
to be representative of the whole space of configurations and to  evaluate the expectation value 

on this subset:

<0 > ( 8 -2)

There are two practical difficulties with this simple sampling approach. Firstly, the integrand 
in (8.1) is a function of a large number of link variables. Indeed, on a two-dim ensional lattice 
of size N  the dimension of the space of configurations is 2 N ‘̂. Secondly, the integral is not 
distributed uniformly throughout the configuration space bu t is strongly peaked around 
configurations close to the minimum of the action. Most configurations therefore contribute 

a negligible amount to the sum in (8.2).
For both these reasons, the number of configurations required to make v representative of 
the whole space is impracticably large. The naive simple sampling approach is therefore
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inadequate and it is necessary to employ some variety of importance sampling] th a t is, to 
select a set of configurations w which refiect the Boltzmann weighting in (8.2).
To be more specific, suppose tha t the sample set w contains rii configurations w ith action Si 
and rij configurations w ith action S j .  Then the set w  should have the  property th a t

If th is condition is satisfied the required expectation value is given simply by

A simple algorithm for generating the set w is to start w ith some arbitrary  configuration 
and generate each successive configuration Cm+i in w from the preceding one Cm according 
to the following rule:

1. Generate Cm+i from Cm by making a random change.

2. If ^  Sfji add Cjyi-\-\
3. If Sm+i > Sm , generate a random  number p between 0 and 1. If p <  add

Cm+i to w. Otherwise discard Cm+i-

It is straightforward to show th a t the set of configurations generated in this way satisfies
the condition (8.3). Consider two values of the action Si  and S j  such th a t Si  < S j .  Let
the probability of moving from a configuration Ci with action Si to  a configuration Cj with 
action S j  be Pij.  The probability of the reverse transition is then Pji  and the corresponding 
transition rates are Rij and Rji respectively. Let the number of configurations w ith action 

Si be Ni. Then

as required.
Some comments on practicalities are in order here. In the first place Step 1 of the algorithm 
calls for a ‘random  change’ to the current configuration. This may take the form of a change 
to a single link, some subset of links, or indeed every link in the lattice. In making this

W

(8.4)

(no sum m ation implied)

Now in equilibrium, Rij =  Rji. In addition, the proposed algorithm  ensures th a t

Hence
N .

\40. M onte Carlo Integration
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change it is essential to ensure th a t the corresponding change in the action is not excessively 
large, or higher action configurations will almost never be accepted in Step 3. It is therefore 
usual to  restrict the update to a single link at a time and to restrict the maximum possible 
change in this link to some fixed value or step size.

On the other hand a step size which is set too low will result in a very slow evolution of the 
system. The tim e to  reach equilibrium will be correspondingly increased and a large number 
of configurations will be required to explore the whole configuration space. Even worse, the 
system may become trapped in a metastable equilibrium, near some local minimum of the 
action, from which it is unable to escape.
The optimum step size depends on the param eters of the simulation— in th is case the operator 
being investigated and the value of /?. There is no general prescription for determining this 
optim um  and therefore no alternative to tuning by trial and error until a ‘satisfactory’ 
outcome is achieved. In practice an ‘accept/reject’ ratio of about 0.7 is usually acceptable.
The algorithm places no restriction on the initial configuration and therefore implicitly as­
sumes th a t equilibrium can be reached from any starting configuration. It can be shown 
(see, for example, Montvay and Munster 1994) th a t this assum ption is valid provided th a t 
the system is ergodic—th a t is, th a t any configuration can be reached from any other config­
uration in a finite number of steps. This question of ergodicity is quite subtle and it will be 
assumed here th a t ergodicity is satisfied for practical purposes if the step size is sufi[iciently 
small and the number of configurations in the sample sufficiently large. Of course the choice 
of the initial configuration will affect the time taken to reach equilibrium.
The approach to equilibrium is not a m ajor factor in the type of sim ulation being considered 
here, the number of non-equilibrium configurations generally being very small compared 
with the to tal number of configurations in the sample.
A final point concerns the statistical independence of the configurations in the sample set w.
Each configuration is generated from the preceding one and, in general, lies ‘close’ to it in 
the sense th a t the actions associated with the two configurations differ by a relatively small 
amount. The set of configurations forms a Markov chain w ith configurations close together 
in the chain exhibiting a positive statistical correlation. These correlations m ust be taken 
into account when performing any statistical analysis on w.

41. Statistics

W ith an appropriate sample w of configurations in hand, one may proceed to  measure the 
mean value of any operator on the sample set, according to  (8.4). This sample mean O 
provides an approximation to the true expectation value (O).  Let us suppose for the moment

Statistics
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th a t all configurations in the sample are independent. The sample variance is defined by

1 ^  _  _
V arO  =  = {O -  O f

i ~ \

Here N  = |iy|, the number of configurations in w.
The set w is of course only one out of an infinite number of possible sets, each with its own 
sample mean and variance. These means are normally distributed around (O) with variance

® (O -  O)^ (8.5)

The standard deviation in the mean is defined as

Em =  \/V ar O (8.6)

This quantity serves as an estimate of the error associated with the measurement of {O). It
is valid provided the configurations in w are independent or uncorrelated. As we have seen,
however, w is actually a Markov chain, with neighbouring configurations having a significant 
interdependence or autocorrelation. The variance as computed from (8.5) will underestimate 
the error on such a set.
The degree of autocorrelation between configurations is measured by the sample autocorre­
lation coefficient

1 = 1

which is an estimator of the correlation between configurations separated by a distance or 
lag L in the Markov chain. It is normalised so that

Cl = 1 complete correlation

Cl = 0 no correlation

Cl = —I = >  complete anticorrelation

It is possible to derive a corrected version of the error estimator (8.5) which takes the 
effect of autocorrelations into account. If, however, large sample sets can be generated 
at low computational cost, it is preferable to simply select a subset of widely separated 
configurations for analysis.
In other words, if 0 for some value L = L q, one simply selects a subset of the sample 
consisting of configurations separated by a lag L q and so forms a new, uncorrelated sample 
set. This is the approach that will be adopted in the following sections.

§-̂ 2. The Plaquette Without Gauge Fixing



8. Numerical Evaluation of Expectation Values

42. T h e P laq u ette  W ith ou t G auge F ix in g

95

In this section we will apply the techniques outlined in the preceding two sections to the 
com putation of the value of the elementary plaquette for different values of /3.

In some ways the whole process—generation of a configuration set and evaluation of the 
average plaquette—is completely straightforward, and it is therefore tem pting to simply 
compute this quantity and compare it with the analytic value. This, however, yields no 
useful information so far as the computation of unknown quantities is concerned.
The purpose of this exercise is rather to illustrate with a concrete example some of the 
issues which arise with Monte Carlo calculations of this type and to  determ ine the optimum 
param eters to use in subsequent computations.
An analytic expression for the value of an interior plaquette on a finite lattice follows from 
(7.15):

where |L| is the number of plaquettes in the lattice and

im -

W )

|J ,( /3 ) |< 1  V r ^ 0 ; / ? > 0

Note th a t /? =  0 constitutes a special case. Although simulations can be carried out a t this 
value of /? they are not especially useful in the context of a general analysis of the simulation 
algorithm  for arbitrary /? (for example, the accept/reject ratio  is always 1). We will not 
therefore consider this case in the rest of the analysis.
The first step in conducting a numerical experiment of th is type is to  generate a set of 
configurations to analyse. Such a set may be constructed according to the  prescription in 
Section (40). The action we require is the pure gauge action, given by

S' =  ^  1 — cos (8.8)
, p

The update of a single link will only alter the values of the two plaquettes which share this 
link as a common boundary—6>i and 02, say. Under an update  these plaquettes go to 6[ and 

6*2 respectively. The difference between the new action and the old action is

A S  — S ' — S  = (cos 9i + cos 62) — (cos 6[ +  cos 62)

The Plaquette Without Gauge Fixing
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According to the algorithm this change is accepted unconditionally if A S  < 0 and accepted 
with probability otherwise. Each new configuration is then generated from the pre­
vious one by sweeping through all the links in the lattice and attem pting to update each 
one.
A separate set of configurations were generated in this way for each of the following numerical 
experiments. The usual starting configuration was one in which all links were set to unity, 
corresponding to a value of zero for the action (cold start) although randomised starting 
configurations (hot starts) are also considered below.
W ith a set of configurations in hand, the value of the quantity of interest (in this case the 
plaquette) can be computed and the accuracy of the calculation statistically analysed.
The effective sample size can be considerably increased by computing the average plaquette 
value over the lattice; that is, we will actually calculate

' ' 1 = 0

Let us now consider in turn the factors which may affect the accuracy of the calculation and 
the reliability of the error estimate. In the following numerical experiments the Monte Carlo 
step is adjusted to make the accept/reject ratio about 0.7, unless otherwise stated. The step 
sizes required for different values of /3 are given in Figure (8.17)

p step size accept/reject

0.5 5.00 0.719
2.5 0.80 0.699
5.0 0.50 0.712
7.5 0.43 0.694
10.0 0.35 0.708

12.5 0.31 0.710
15.0 0.28 0.712

17.5 0.26 0.710

20.0 0.25 0.703
Figure 8.1 : Monte Carlo steps and accept/reject ratios for different values of (3

The most obvious consideration is the sample size. This is the size of the set w of configura­
tions generated for the statistical analysis. In general only a subset of these configurations 
will be used in the analysis. The first configurations generated before equilibrium has

The Plaquette Without Gauge Fixing
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been reached will be discarded, and a certain proportion of intermediate configurations will 
also be dropped to ensure that the remaining configurations are statistically independent. A 

small sample size will ipso facto  yield a less accurate estimate. However it also has a further, 
less obvious disadvantage— the behaviour of the autocorrelation as a function of lag becomes 

less smooth. This effect is illustrated in Figure (8.2).

0.6

lattice size: 16 
beta: 10.0
Monte Carlo step: 0.35

0.5

sample: 1000 -----
sample; 14000 -----
sample; 29000 .......

0.4

0.3
cg
ra
9 0.2ooo
3
aj

- 0.1

- 0.2
40 50 60 70 80 90 10020 3010

lag

F ig u re  8.2: : Variation of autocorrelation with lag for different sample sizes. The first 
1000 configurations have been dropped from the initial set W  in each case.

A total sample size of 30,000 configurations (29,000 after the removal of the first 1000 config­
urations) gives adequate decorrelation behaviour and was used as a baseline in the following 

experiments except where otherwise stated.
Next, let us consider the effect of the value of /? on the autocorrelation function. If the 

accept/reject ratio is to be kept constant, the step size must increase with decreasing j3\ 

the system therefore evolves more rapidly and configurations in the Markov chain should 

therefore decorrelate more rapidly. In other words we expect the autocorrelation function 

to decay more rapidly with decreasing (5. The results of such an experiment are plotted  

in Figure (8.3). The expected behaviour is observed from j3 =  0.5 up to /? =  5.0. The 

autocorrelation function for ^ =  10.0, however, decays more steeply than that for /? =  5.0. 

The reasons for this behaviour are not clear.
The behaviour of the autocorrelation function with lattice size is shown in Figure (8.4). A 

slow increase in decay rate is observed as the lattice size increases.
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0.3

lattice size: 16

0.25

beta: 0.5 -----
beta: 1.0 -----
beta: 5.0 ......

beta: 10.0 .......
0.2

0.15

ooo
B
ni

0.05

-0.05
10070 80 9030 40 50 6010 20

lag

Figure 8.3: : Variation of autocorrelation with lag for different beta. The step size was 
adjusted to give an accept/reject ratio of about 0.7 for all four cases. The autocorrelation 
function for /? =  10.0 decays more steeply than that for /? =  5.0

0.6
beta: 10
Monte Carlo step: 0.35

0.5

lattice size: 4 -----
lattice size: 8 -----

lattice size: 12 ......
lattice size: 16 .......0.4

co
0.30)

oooa
CO

0.2

6 7 9 10854321

Figure 8.4: : Variation of autocorrelation with lag for different lattice sizes. A sample 
of 30,000 configurations was used in each case.
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Let us next consider the behaviour of the autocorrelation function with Monte Carlo step 
size. The accept reject ratio decays exponentially with increasing step size as shown in Figure 
(8 .6).

lattice size: 16 

beta: 10.0 

cold start

0.8

g 0.6

o
0)

Q.
V
O
O
nl 0.4

0.2

2 2.5 3 3.50.5 1 1.5
Monte Carlo step  size

0
step

Figure 8.5: : Variation of accept/reject ratio with step size

If the step size is very large we would expect most changes to be rejected with a consequent 
slow evolution of the system and slow decay of autocorrelations with lag. On the other 
hand, if the step size is too small, most changes will be accepted but each change will be 
small and successive configurations will lie close to each other in configuration space. We 
would therefore expect slow decay of the autocorrelation function in this regime also. This 
behaviour is demonstrated in Figure (8.6).
The factors which affect the behaviour of the autocorrelation function are summarised in 

Figure (8.7)
The expression (8.7) is exact for a lattice of finite extent.The corrections to the expression 
for the plaquette on an infinite lattice appear as infinite series in powers of g{P). These series 
are “well behaved” in the sense that g{f3) is always less than unity, although we have not 
formally proved that they converge. Figure (8.8) plots ffi(/3) as a function of /3; we see that 
g(/3) decreases with /3 and may therefore expect the correction terms to disappear as /3 —>■ 0. 
Equation (8.7) also implies that the correction terms disappear as the lattice size tends to 
infinity, giving the usual infinite volume limit for the plaquette:
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lattice size: 16 
beta: 10.0 
cold start

Monte Carlo step: 0.035 -----
Monte Carlo step: 0.35 -----

Monte Carlo step: 3.5 .......
0.6

cp
5

0.4
8Q
3
10

0.2

- 0.2
10 20 30 5040 60 70 80 90 100

lag

Figure 8.6 : : Variation of autocorrelation with lag for different step sizes. The optimum 
behaviour for the autocorrelation function is obtained at a step size of 0.35, corresponding 
to an accept/reject ratio of about 0.7

Parameter Decay rate Smoothness

Sample size Unaffected Improves with increasing sample
size

P Best at intermediate values Unaffected
Lattice size Increases slowly with lattice size Unaffected

Monte Carlo step Best at values giving an accept/reject ra- Unaffected 
tio of about 0.7

Figure 8.7: Behaviour of the autocorrelation function as different parameters are
varied.

lim Pi = gi{f3)
TV—> 0 0

It should be noted also that (8.7) applies to plaquettes in the interior  of the lattice. On the 
other hand, all calculations so far have averaged over all the plaquettes in the lattice. In the 
absence of an exact expression for the boundary plaquettes it is not a priori  clear how big 

an inaccuracy is thus introduced.
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1
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0

0 2 4 6 8 10 12 14
beta

Figure 8.8: : Dependence of ^ l( /3 )  on (3

Figure (8.9) compares the measured difference between the computed value and the infinite 
volume analytic value with the predicted errors from statistical fluctuations. The computa­
tion was carried out on a 4 x 4 lattice with /? =  0.5. The boundary plaquettes were included 
in the average in the first experiment and excluded in the second. In both cases the measured 
errors are consistent with those predicted from statistical fiuctuations alone. This suggests 
firstly th a t finite size errors are negligible, even for very small lattices, provided (5 is small. 
Secondly, the results indicate that the boundary plaquette values do not differ significantly 
from those of the inner plaquettes at small /?; indeed, on a 4 x 4 lattice there are eight 
boundary plaquettes and only one inner plaquette so that we are effectively measuring the 
mean value of the boundary plaquettes.
A different picture emerges when the experiment is repeated for large p. The first two 
diagrams in Figure (8.10) are the equivalent of those in Figure (8.9) with /? =  10.0. The 
measured errors significantly exceed those predicted on the basis of statistical fluctuations 
alone. It is notable that the results are essentially the same irrespective of whether or not 
the boundary plaquettes are included, suggesting that the boundary plaquettes do not differ 
significantly in value from the interior plaquettes irrespective of the value of /5. Nevertheless, 
this result may not continue to hold for expectation values other than th a t of the plaquette. 
Boundary links will therefore be excluded from subsequent computations unless otherwise 

stated.
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boundary plaqueflea excluded 
sample size: 270 000
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Figure 8.9: : Finite size errors at (3 — 0.5 The ‘true’ error is the di^ference between 
the measured value and the exact infinite volume value. The errors are consistent with those 
expected from statistical fluctuations alone, suggesting that finite size errors are neghgible 
for small /?. Sample sizes have been normalised to allow for the exclusion of the boundary 
plaquettes in the second experiment

0 006 boundary plaqueUes Indii 
sample size: 750 000

0.004

0.002

0

•0.002

•0.004

0.006 boundary plaquettes excluded 
sample 8lze:8 750 000

0.004
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lag lag

0.006 boundary plaquettes exdi 
sample size: 140 000

0.004

0.002

0

■0.002

-0.004

lattice size: 16 
boundary plaquenes excluded 

sample size: 30 000

1 I

true e rro r-----
standard deviation-----

Figure 8.10: : Finite size errors at j3 =  10.0 A significant systematic error appears 
at this value of (5. The error decreases with increasing lattice size. Sample sizes have been 
normalised to give the same scale on each diagram
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The third and fourth diagrams in Figure (8.10) show the behaviour of the systematic error 
as the lattice size is increased. The error decHnes with increasing lattice size as expected, 
suggesting that it is indeed due to finite size effects. For a 16 x 16 lattice, this finite size 
error has become insignificant compared with statistical fluctuations.
These size dependent errors are shown explicitly in Figure (8.11). They display a damped 
oscillatory behaviour as a function of lattice size and have essentially disappeared into the 
background noise on a 16 x 16 lattice. The parameters used for this simulation are given in 
Figure (8.12)

0.954

0.953

0.952

0.951

® 0.95
0)

D- 0.949 

0.948 

0.947 

0.946 

0.945
0 5 10 15 20 25

lattice size

Figure 8.11: :The graph compares the measured value of the plaquette at different 
lattice sizes with the analytic value for an infinite lattice at /3 =  10. Sample sizes were 
normalised so as to yield comparable accuracies for each lattice size. The error due to the 
finite size of the lattice has decayed to less than the statistical error for a lattice size of 16.

Before concluding that the systematic error is entirely due to finite size effects, we should 
investigate another possible source of systematic error, which is the possibility that the 
exclusion of the first 1000 configurations is insufficient for the system to reach equilibrium. 
The number of updates required before equilibrium is attained will depend in general on the 
starting configuration. We have so far been starting from a “cold” initial configuration; that 

is one in which all links are set to zero.
Figure (8.13) repeats the first and last diagrams of Figure(8.10) with a larger set of ini­
tial configurations excluded. The results are unchanged, suggesting that 1000 updates are
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beta = 10.0
Monte Carlo step 0.35
first 1000 configs excluded
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lattice size sample size

4 6 750 000
6 550 000
8 140 000
10 100 000
12 62 000
14 42 000
16 30 000
18 22 500
20 17 500
22 14 000
24 11 500

lag autocorrelation

100 4.1 X 10-“̂
100 1.7 X 10"^
100 1.7 X 10-^
100 -3 .0  X 10-3
100 -3 .7  X 10-3
100 -1 .5  X 10-®
100 7.6 X 10-3
100 -8 .8  X 10-3
100 1.5 X 10-3
100 4.6 X 10-3
100 -2 .3  X 10-2

Figure 8.12: Paxameters used for the simulation shown in Figure (8.11). Each run
was started cold, at with a step size of 0.35 which yields an accept/reject ratio of 0.71 at 
^  =  10

o.ooe boundaiy plaquettes Included 
total sam ple size: BOO 000 

first 50 000 configs excluded

0.004

0.002

0

■0.002

-0.004

lattice a z e ; 16 
boundary plaquettes exducied 

total sam ple size: 35 000 
first 5000 configs excluded

Figure 8.13: : Equilibration time from a cold start. The two diagrams show the results 
of repeating the first and fourth experiments in Figure (8.10) with a larger number of initial 
configurations excluded. The results are the same.

sufficient for the system to  equilibrate from a cold start.

The same is not true for a “hot” start, in which the initial links are assigned random  values. 
Comparison of Figure (8.14) with Figure (8.10) shows th a t identical results are obtained on 
a 4 X 4 lattice, irrespective of the initial configuration, if the first 1000 configurations are 
excluded. For the larger 16 x 16 lattice, however, an additional system atic error appears if 
the system is started  hot, which is not present if it is s tarted  cold. This additional error
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disappears if the number of initial configurations discarded is increased. We conclude that 
equilibration is significantly slowed down when starting from a hot initial configuration on 
a large lattice.

o.ooe
boundaiy p laquenes included

first 1000 configs exciuded

0 .004
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0
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iattice aize: 4 
boundaiy plaqueO es included 

lotal sam p ie  size: 800 000 

first SO 000 confioa excluded

30 40 50 60 70 80 10 20 3 0  40  50 70 80  90  100

0 .006 boundary plaquettes excluded 
total sam ple size: 30 000 

firat 1000 configs excHuded
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-0.004

70 90 10060 8040 5010 20 30
Jag

0,006 lr>cludedboundary

total sam ple  size: 45 000 
first 1S 000  configs excluded

0 .X 4

0.002

b

I
0

•0.002

•0.004

Figure 8.14: ; Equilibration times from a hot start 1000 updates is sufficient to attain 
equilibrium on a small lattice but a larger number of updates is required for a large lattice. 
This behaviour differs from the cold start scenario.

Before concluding this section we will investigate the extent to which the standard deviation 
as defined in (8.6) provides a good estimate of the errors due to statistical fluctuations.In 
general, the standard deviation will underestimate the error as long as the autocorrelation 
function is significantly greater than zero, but should prove a good estimator when the 
correlation between successive configurations is small. Figure (8.15) compares the predicted 
errors with the measured errors; the step size has been set at a non-optimal value so that 
the autocorrelation function decays slowly.
The first point to note is that a systematic correlation error appears when the lag value is 
small. This error actually depends on the starting point of the simulation; it is positive if 
the system is started cold and negative if it is started hot.
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Secondly, the standard deviation does underestim ate the error for small lag values, as ex­
pected; moreover, in both hot and cold cases the standard deviation becomes a more accurate 
estim ator as the autocorrelation function decreases.
Lastly, in Figure (8.16), we compare the measured value of the average plaquette against 
the infinite volume analytic value over a range of (3, using optim um  param eter values. The 
agreement, as might be expected, is excellent, since we were able to  determ ine the optimum 
param eters of the simulation from an advance knowledge of the analytic solution.

lattice size: 16 
boundary p laquettes  excluded 

total sam ple  size: 30 000 
first 1000 configs excluded

0)
0.8V

3<yro
Q .

0.4

0.2
analytic value for infinite lattice ------

m easu red  va lu es  i-«—i

10 15 2050
beta

Figure 8.16: : Comparison of numerical and analytic results for the average plaquette 
value at different (3. All simulations were started cold. The Monte Carlo step was chosen to 
make the accept/reject ratio approximately 0.7 at each value of /3. The lag value chosen was 
50 in each case; the corresponding values of the autocorrelation function are given in Figure 
(8.17)
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Figure 8.15: : Quality of error estimate w ith increasing lag. The M onte Caxlo step 
was set at 0.07 for each experiment, to  obtain a slow decay of the  correlation function. The 
accept/reject ratio for this step size is 0.94 a t /3 =  10. The top  two diagrams show the 
measured errors for both hot and cold starts; the two diagrams im m ediately below plot the 
corresponding autocorrelation functions. The lowest pair of diagrams compare the absolute 
measured errors with the standard deviation, which measures statistical errors. The standard 
deviation becomes an accurate predictor of the error as the autocorrelation function decays 
to zero.
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/3 autocorrelation

0.5 - 5 .5  X 10-4
2.5 4.1 X 10-3

5.0 8.7 X 10-=̂
7.5 6.1 X 10-3
10.0 9.0 X 10-3
12.5 1.9 X 10-2
15.0 9.4 X 10-3

17.5 - 7 .8  X lQ-4
20.0 - 3 .3  X 10-4

Figure 8.17: Autocorrelation for each data point in (8.16)
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43. Conclusions

109

In general, of course, the result of a simulation is not known in advance. The numerical ex­
periments performed in this section, however, provide us with a basis for assessing the quality 
of the numerical solution. A number of conclusions can be drawn from these experiments.

1 Boundary links should be excluded from the calculation since they will not, in general, yield 
the same answers for the quantity being calculated.

2 A sample large enough to yield a smooth autocorrelation function should be used.

3 The Monte Carlo step size should be adjusted to give the optimum decay rate for the 
autocorrelation function.

4 On the basis of the plaquette computation, finite size effects appear to be negligible on a 
16 X 16 lattice. A lattice of this size should therefore be used as a baseline for subsequent 
experiments, although all results should be checked by repeating them on a larger lattice.

5 The cold start simulations appear to equilibrate more quickly than the hot starts on large 
lattices and should therefore be used as a baseline. However the calculation should be 
repeated with a larger number of initial configurations discarded to ensure that equilibrium 
has in fact been reached.

6 The computation should be produce the same result when the simulation is started hot; 
this provides a useful consistency check on the whole calculation.

43. Conclusions



9. T he Propagator in A xial G auge

“W ould you tell m e please, which w ay I  ought to go fro m  here ?” 
“That depends a good deal on where you w ant to  get to. ”
“I  don’t m uch care w here— ”

“Then it doesn’t m a tte r  which w ay you go. ”
-  Alice in Wonderland

In this Chapter we compute the value of the plaquette and of {(j)i^) in axial gauge. After a discussion of
the issues involved in fixing the gauge in a numerical simulation, the simulations are performed with both
periodic and zero boundary conditions. Agreement with the analytical prediction is demonstrated in both 
cases.

44. C om puting in a Fixed Gauge

In this section we will investigate the numerical behaviour of a  gauge dependent quantity in 
finite axial gauge. An analytic result for the expectation value of the square of a spacelike 
link (SSL) on a finite lattice in finite axial gauge was obtained in Section ((35)):

This is a special case of the pure gauge propagator and is clearly gauge dependent
since any link can be set to an arbitrary constant value by an appropriate gauge fixing. As 
before, we will actually calculate the expectation value of the mean of all SSLs on the lattice:

( ^ )  =  y  (9.1)

Before proceeding with the analysis, some preliminary remarks are in order.
Firstly, working in axial gauge is computationally more expensive since half the links are 
fixed. We would therefore naively expect that the sample size should be doubled in order to 
achieve comparable accuracy with a similar calculation w ithout gauge fixing. In other words 
we might compare working in axial gauge with working on a lattice half the size w ithout 
gauge fixing. This analogy is misleading, however, since the fixed links do not disappear 
from the gauge fixed action, and continue to affect the expectation values we are trying to 
calculate. From a numerical point of view, fixing axial gauge means always rejecting updates 
for the gauge fixed links. This means, in effect, th a t the true accept/reject ratio can never
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lattice size: 16 

beta: 10 
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first 1000 configs excluded0.6
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Figure 9.1: : Autocorrelation functions for the plaquette with and without gauge
fixing. Sample sizes were 30 000 with no gauge and 60 000 in finite axial gauge ( to allow 
for the fact that approximately half the Unks are not updated in this gauge). The first 1000 
configurations were removed in each case. A Monte Carlo step of 0.35 giving an accept/reject 
ratio of about 0.7 was used. The behaviour of the autocorrelation function is significantly 
worse when finite axial gauge is imposed.
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first 1000 configs excluded
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Figure 9.2: : Autocorrelation functions for the plaquette and for (0 ^ ) in finite axial 
gauge. Sample sizes were as in Figure (9.1), with the first 1000 configurations removed.
The Monte Carlo step was adjusted so that the accept/reject ratio was 0.7. The 
autocorrelation function decays extremely slowly by comparison with the plaquette at for 
this value of j3 and is still significant for lag values of 1000

^44- Com puting in a Fixed Gauge



9. The Propagator in Axial Gauge

exceed 0.5. We are therefore forced to work in a numerically non-optimum regime. In fact 
the  same arguments about step size th a t were advanced previously suggest th a t th a t the 
accept/reject ratio for the free links should be set at about 0.7, giving a ‘tru e ’ accept/reject 
ratio  of 0.35.

This effect is dem onstrated in Figure (9.1), which compares the autocorrelation function for 
a gauge free calculation of the plaquette with a similar calculation in finite axial gauge. A 
doubling of the sample size for the latter calculation is not suflScient to  compensate for the 
loss of computational efficiency due to the reduced effective accept/reject ratio.

A lthough the above comments apply to gauges in which a subset of links is explicitly fixed, 
all gauges effectively remove certain configurations from the calculation and hence restrict 
the number of allowable updates. We may therefore anticipate tha t working in a fixed gauge 
will introduce numerical problems not encountered in a gauge free calculation.

Now a gauge invariant quantity can always be calculated w ithout fixing the gauge, hence the 
problem will only arise with gauge dependent quantities. As a general rule of thum b, there­
fore, we may expect th a t computing gauge dependent quantities will introduce difficulties 
not present in the calculation of gauge invariant quantities.

Figure (9.2) illustrates a further difficulty tha t arises for large (5 when a com putation of the 
SSL is attem pted; the decorrelation time is increased dram atically as compared with th a t 

for the plaquette.
The origin of this difficulty may be understood qualitatively as follows. The plaquette is 
a product over four links, two of which (in axial gauge) are updated independently. The 
value of the plaquette changes when either of these links changes. I t therefore evolves more 
quickly and the number of updates required for the memory of its original value to be lost 
is correspondingly reduced. This slow decorrelation is confined to large /3. It is clear from 
Figure (9.3) th a t decorrelation times are reasonably small for /3 <  5. For larger values of 
/5, however, lag times in excess of 300 are necessary. This raises a new difficulty; for a fixed 
initial sample size, the number of independent configurations available for statistical analysis 
becomes very small as the lag time increases. An initial sample of 60 000 yields only 200 
independent configurations for the lag of 300 required at /5 =  5 and the situation becomes 
much worse for larger values of /3. As the number of independent configurations decreases, 
spurious correlations between them appear. The autocorrelation function begins to fluctuate 

can no longer be used as an estim ator of statistical independence. This situation 

is illustrated in Figure (9.4), where the autocorrelation function a t /5 =  10 is plotted out to 
lag values of 15000 for three different Monte Carlo step sizes. The figure also shows th a t, 
as expected, the best performance is obtained for a step size of 0.35 corresponding to an 

accept/reject ratio of about 0.7.
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Figure 9.3: : Autocorre lation functions fo r ( 0 ^ )  at d ifferent /3 in  f in ite  axia l gauge. 
Sample sizes were 60 000 w ith  in  each case, w ith  the firs t 1000 configurations removed. The 
M onte Carlo step was adjusted so th a t the accept/reject ra tio  was 0 .7 . The decorre lation 
tim e increases dram atica lly w ith  /3.
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Figure 9.4: : Autocorre la tion functions fo r (</)^) at different step sizes. The sample size 
was 60 000  and lag values were computed up to  5000 . The standard step size o f 0.35  gives 
the best performance bu t fluctuations due to the small effective sample size set in  before the 

autocorre lation function  has decayed sufficiently.
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The slow decorrelation at large j3 is not due to a slow approach to equilibrium, as the first 
graph in Figure (9.5) demonstrates. The parameters are the same as in Figure (9.4), with a 
step size of 0.35. The initial sample size has been increased to  120 000 and the first 50 000 
configurations discarded. There is no significant reduction in the decorrelation time.

Nor is the slow decorrelation an artefact of the starting configuration. The second graph 
in Figure (9.5) is derived from a simulation in which links in the initial configuration were 
randomised. The decorrelation times are very similar; the fluctuations in the ‘hot s ta r t’ case 
are somewhat smaller, since only the first 1000 configuration were discarded, leading to a 
larger effective sample size.

1.4

1.2 boundary plaqueRes exdudec 
first 50 000 configurations excluded

1

O.e

o.e

0 .4

0 .2

0

-0.2

-0.4

3000010000 15000
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20000 250000 5000

lattice size: 16
beta: 10

boundary plaquettes excluded -
first 1000 configurations excluded

hot start

■

Flgur6 9.5: : The figure on the left shows the decay of the autocorrelation function when 
the first 50 000 configurations are removed. There is no significant improvement, indicating 
that the slow decay is not related to a slow approach to equilibrium. The second figure plots 
the autocorrelation function when the simulation is initiated from a hot start; the same slow 
decay as for a cold start is observed. The initial sample size was 120 000 in each case.

All of this suggests tha t the only solution for a fixed lattice size and fixed (large) (3 is to 
drastically increase the initial sample size. Figure (9.6) shows the results from a simulation 
in which a million configurations were generated at /5 =  10. The behaviour of the autocorre­
lation function is now reasonably smooth but does not decay to  zero until the lag is about 10 
000, yielding only about 100 independent configurations from the initial sample of a million. 

This problem of large sample sizes can be sidestepped for the case we are considering, since by 
(9.1) the  expectation value of the SSL is constant and hence independent of both lattice size 
and /?. It should be emphasised, however, that this circumstance is fortuitous and results 
from an advance knowledge of the analytic solution. In general, pure gauge expectation 
values will be functions of both lattice size and /5 and a complete analysis of such expectation 

values will require simulations on large lattices at large values of (3.

Let us for the moment take advantage of out advance knowledge. The gauge free analysis

^44- Computing in a Fixed Gauge
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Figure 9.6 • : Au1jOcorrGl3.1jioii fuiicljioii for  ̂ w itli ci Sciiiipl6 sizG of 1 000 000.
The function shows smooth behaviour, approaching zero at a lag value of about 10 000.
Fluctuations begin to reappear above a lag value of about 20 000, corresponding to the 
effective sample size falling below fifty configurations.

of the plaquette in Section ((42)) suggests that decorrelation occurs more quickly on smaller 
lattices. Figure (9.7) confirms this picture in the present case; from the point of view of 
rapid decorrelation it is clearly advantageous to work on the smallest possible lattice. If the 
sample size is fixed, of course, then reducing the size of the lattice increases the errors due 
to statistical fluctuations-the magnitude of these errors can, however be reliably predicted. 
Figure (9.8) plots the autocorrelation function out to a lag of 5000 on a 4 x 4 lattice, using 
a total sample size of 500 000. This should be compared with Figure (9.6) which relates to 
a 16 X 16 lattice. The decorrelation length on the small lattice is about a quarter of that on 
the large one even though the sample size has been reduced by a factor of two. The overall 
computational work has been reduced by a factor of about thirty.
Let us summarise our conclusions on the numerical evaluation of the expectation value of 
the SSL in finite axial gauge.

1 Axial gauge simulations may be regarded as gauge free simulations in which configurations 
which require updates to the fixed links are always rejected. One is therefore forced to work 
in a non-optimum simulation regime.

2 An immediate consequence is the fact the decorrelation times will be significantly increased

^44- Computing in a Fixed Gauge
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Figure 9.7: : Autocorrelation function for {(p̂ ) at different lattice sizes. The sample 
size was 60 000 in each case. Configurations decorrelate more quickly on smaller lattices.
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Figure 9.8: : Autocorrelation function for on a 4 X 4 lattice. Effective decorre­
lation has occurred at a lag value of about 2500
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by comparison with the gauge free case.

3 Since any gauge restricts the number of allowed configurations, this increase in decorrelation 
time should be observed when any gauge is fixed.

4 We would expect the SSL to present additional difficulties over and above those related 
to gauge-fixing, since each SSL depends on only a single link. A drastic increase in the 
decorrelation time for the SSL as compared to the plaquette in axial gauge is indeed observed. 
This effect is worst for large j3 and large lattice sizes, precisely the regime in which we are 
interested.

5 This slow decorrelation appears to be unrelated to the starting point of the simulation or 
to the equilibration time (that is, the time for the system to lose its memory of the initial 
configuration). This supports the hypothesis that the decorrelation time is determined by 
the gauge and by the object being evaluated.

6 The only cure for this problem in general is to increase the lag time. This requires the 
sample size to be increased, both to maintain accuracy and to ensure th a t the autocorrelation 
function remains smooth enough to be a reliable estimator of decorrelation. This solution is 
potentially very computationally expensive.

7 For the special case of the SSL in axial gauge, the fact that the expectation value of the SSL 
is independent of lattice size means that simulations can be carried out on a small lattice, 
reducing the computational work. In addition, decorrelation times times are reduced on 
small lattices,yielding a further saving in computational work. Even so, the lag required at 
(3 =  10.0 on a 4 X 4 lattice is around 2500.

45. R esults W ith Periodic Boundary C onditions

Figure (9.9) compares the numerical evaluation of the SSL at different /3 on a 4 x 4 lattice 
with the analytic result. The error bars represent one standard deviation, implying that 
about two thirds of the error bars should overlap the analytic curve. The results agree with 
the exact solution to within this accuracy. .
Figure (9.10) compares the numerical and analytic results for the SSL at /3 =  10.0 at different 
lattice sizes, showing that the expectation value of the SSL is independent of lattice size as 
predicted (at least to within the accuracy of the simulation).
Figures (9.11) and (9.12) show the statistical fluctuations on a small lattice for small and 
large The decorrelation times in the two cases are about 10 and 2500 respectively. This

^45. Results With Periodic Boundary Conditions
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Figure 9.9: : Expectation value of SSL against j3. Numerical data supports the 
prediction that the SSL is independent of /3.
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Figure 9.10: : Expectation value of SSL against lattice size. Results are consistent 
with the prediction that the SSL is independent of lattice size.

means in effect that a calculation of the the SSL at /5 =  10.0 is about 250 times more 
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Figure 9.11: : Error behaviour at small /5 on a small lattice. The statistical perfor­
mance is excellent; configurations decorrelate in a lag time of less than 10 and the standard 
deviation provides a reasonable estimate of the error over almost the whole range.
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Figure 9.12: : At large /3 the decorrelation time is long even on a small lattice and 
the standard deviation does not provide a reliable estimate of the error for lag times of less 
than about 2500.

computationally expensive than one at /5 =  0.5
These results indicate that problems may be anticipated in the numerical investigation of 
gauge dependent quantities, which must of necessity be calculated in a fixed gauge. We 
may expect the accuracy of the calculation and the reliability of the error estimates to be 
extremely sensitive to the regime (in terms of j3 and lattice size) in which the calculation is 

performed.
Unfortunately the numerical experiments carried out in this section suggest that the worst 
results can be expected at large (5 and large lattice size, which is exactly the regime that we 
shall be focusing on in subsequent chapters.
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46. R esults W ith Zero Boundary C onditions

The plaquette in axial gauge with zero boundary conditions is given (in the infinite volume 
limit) by (7.19)

lim {Up) =  ^x(^)
|L |->oo

lattice size 4 
total sample: 100 000 

boundary plaquettes excluded 
first 20 000 configs excluded 

gauge: axial

0.6
beta = 0.5 -----
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beta = 5.0 ......

beta = 10.0 .......0.4

0.2

- 0.2
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Figure 9.13: Decorrelation time for the plaquette in axial gauge with zero boundary
conditions

Figure (9.16) compares this limit with the results from a Monte Carlo computation of the 

plaquette on a 4 x  4 lattice with zero boundary conditions imposed. The results are in 

excellent agreement, despite the small size of the lattice.
The expression for the expectation value of the square of a spacelike link is given by (7.21):

 ̂ 1 +  2 E
r = l

+ l i . — ------{ t  E ̂
i^ -2Y .9r{m  i;'vo,r7.-o"  ̂ ^

r = l

Since
lim gr{(5) =  0

r —̂ oo
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Figure 9.14: Behaviour of the error estimator with incresising lag for the plaquette in 
axial gauge with zero boundary conditions
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Figure 9.15: Finite size errors for the plaquette in axial gauge with zero boundary
conditions. Sample sizes have been normalised to yield comparable accuracies for each lattice 
size.
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plaquene in axial gauge
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Figure 9.16: The plaquette in axial gauge with zero boundary conditions. The
simulation on the left is a hot start while that on the right w eis  started cold. The dotted line 
is the analytical value at infinite volume.

it is reasonable to assume that the series in (7.21) can be approximated by the first few terms. 
This assumption can be confirmed numerically by comparison with Monte Carlo simulation.
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first 20 000 configs excluded 

gauge: axial0.8

cg beta = 0.5 -----
beta = 2.5 -----
beta = 5.0 ......

beta = 10.0 .......
£
ooo 0.4

0.2

- 0.2
100 150

beta
300200 250

Figure 9.17: Decorrelation lengths at different /? for the SSL in axial gauge with zero 
boundary conditions

Figure (9.20) compares the results of such a simulation, with the analytical value (7.21) 
where the series have been summed up to =  10
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Figure 9.18: Behaviour of the error estimator with increasing lag for the SSL in axial 
gauge with zero boundary conditions
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squared link in axial gauge
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gauge: axial
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Figure 9.20: Expectation value of the square of a hnk in axial gauge with zero
boundary conditions on a 4  X 4  lattice. The simulation on the left is a hot sta rt while tha t 
on the right was started cold. The dotted line is obtained from the exact analytical value by 
summing the first ten terms of the power series.
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“On two occasions I  have been asked (by Members o f Parliament!) 
‘Pray, M r Babbage, i f  you put into the machine wrong figures, 
will the right answers come out V
I  am not able rightly to apprehend the kind of confusion of ideas 
that could provoke such a question. ”

-  C. Babbage

In this Chapter we carry out the numerical calculation of the plaquette and of {4>^) in Feynman gauge. 
We present evidence that the simulation is not ergodic if  periodic boundary conditions are imposed. It is 
noteworthy that the correct value is nevertheless obtained for the gauge-invariant plaquette. We show that 
simulation is well-behaved when zero boundary conditions are imposed and that the expectation values 
obtained are in agreement with the analytic prediction.

47. Implementation of Feynman Gauge

The calculations of the last Chapter may be repeated in Feynman gauge. Of particular 
interest is the expectation value of the gauge dependent quantity  (j)j. The value of this 
quantity is not known analytically although an approximate result for large (3 is available. 
Feynman gauge is established by adding an extra term  to the action (8.8) to  give the modified 
or gauge-fixed action:

=  X ]  1 -  cos 0(n) +  ^
n  Ik fJ'

with the left derivative being defined by

Aj/fe) =

No links are fixed in this gauge so th a t all link variables are available for updating.
The update of a link variable will affect three sites:

1. site n  through the plaquette term  and the gauge term.
2. site {n — u) through the plaquette term.

3. site (n +  through the gauge term.
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If we denote the gauge term associated with a site n by p(n) for brevity, the change in the 
action under the update of is given by

A S f = S'p — Sp = (cos 0{n) + cos 9{n — ^)) — (cos 0'{n) + cos 9'(n — u))

+ {g'in) + g'{n + 1̂)) -  {g{n) + g{n + ^))

With this modification to the definition of AS, the generation of a sample set of configura­
tions may in principle proceed as before.

48. R esults W ith Periodic Boundary C onditions

Feynman gauge presents new difficulties not present in axial gauge, however. These are 
signalled by the appearance of enormously long decorrelation times. Figure (10.1) is the 
usual plot of autocorrelation against lag for the plaquette. Decorrelation takes place at a lag 
of about 100 and all appears to be well.

1

lattice size: 16 
sample: 30000 
beta: 10
Monte Carlo step 0.25

0.8

0.6

0.4

0.2

0

cold start -----
hot start -----

- 0.2
150 200 250 300 350100 400 450 50050

Figure 10.1: : Autocorrelation function for the average plaquette.Effective decorrela­
tion has occurred at a lag value of about 100

The SSL, however, presents a very different picture, as is demonstrated in Figure (10.2). 
The decorrelation length is strongly dependent on the starting point of the simulation; a 
randomised initial configuration yields a Markov chain which decorrelates at a rate compa­
rable to that of the plaquette. A cold initial configuration, on the other hand gives rise to

^48. Results With Periodic Boundary Conditions
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Figure 10.2: : Autocorrelation function for the average SSL with sequential link up­
dates. The decorrelation time from a cold start has drastically increased as compared with 
the hot start.

a sequence of very tightly correlated configurations; indeed the autocorrelation coefficient 
exceeds 0.5 at a lag value of 2000.
This effect persists even when the links to be updated are chosen at random rather then in 
sequence as has hitherto been done. Figure (10.3) shows that this modification makes no 
significant difference in either the hot or the cold case.
It appears that the gauge constraint has eliminated a set of configurations which are required 
for the simulation to evolve freely. In other words, certain regions of the phase space are 
inaccessible from a cold starting configuration.
This is demonstrated explicitly in Figure (10.4), which plots the evolution of the value of a 
single link as the simulation proceeds from a cold start. Simulations in both Feynman and 
axial gauge are shown.If the whole configuration space is to be explored, each link should 
take values over the whole interval [—tt, tt]. This behaviour is indeed observed in axial gauge; 
in Feynman gauge, however, the value of the link is confined to a relatively small interval 

around zero.
These simulations were repeated, this time from a hot start. In view of the fact tha t the 
tight correlations observed in the cold start case are absent in the hot case, we might expect 
that the whole configuration space is being explored. Figure (10.5) shows that this is not in 
fact the case; link values are again clustered strongly around the starting point.

§-̂ 5. Results With Periodic Boundary Conditions
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Figure 10.3: : Autocorrelation function for the average SSL with random link updates. 
Choosing the Unks to be updated at random has no significant effect on the decorrelation 
time (cf Figure (10.2) )
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Figure 10.4: : Evolution of the value of a single link from a cold start.This value is 
confined to a subset of the available values in the case of Feynman gauge. In contrast the 
whole space of values is explored in axial gauge.

Let us summarise the situation. When Feynman gauge is imposed on the pure U(l) gauge 
theory in two dimensions we find that the possible values of the link variables are restricted 
to a small interval arount their starting points under Monte Carlo updates. This restriction 
persists irrespective of the starting point or the sequence in which the links are updated. The 
indications from these numerical experiments, therefore, are th a t the system is not ergodic.

§-̂ 5. Results With Periodic Boundary Conditions
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Figure 10.5: : Evolution of the value of a single hnk from a hot start. Despite the fact 
that both the plaquette and SSL decorrelate from a hot start (cf Figure (10.2), the simulation 
explores only a subset of the available volume and the results in Feynman gauge are therefore 
untrustworthy. In axial gauge the whole space is explored

Next, let us consider the evolution of the plaquette as the simulation proceeds. Figure (10.6) 
plots the plaquette value (averaged over the lattice) for each configuration in the Markov 
chain from a cold s ta rt simulation in both Feynman and axial gauge. Figure (10.7) shows the 
equivalent results from a hot start. It is remarkable th a t all four simulations give identical 
results for the plaquette even though, in the case of Feynman gauge, only a subset of the 
configuration space is sampled and indeed, a different subset for the hot and cold s ta rt cases.

lattice size: 16 

sample: 30000

Monte Carlo s te p  0.2S

size: 16 
sample: 30000 
beta; 10
Monte Carlo s tep  0.25

Feynman gauge: coW start axial gauge: oold start ♦

3000010000 15000 20000
configuration number

Figure 10.6: : The plaquette averaged over the lattice for each configuration from a 
cold start. A stable, correct value for this observable is obtained in both Feynman and axial
gauge,

Turning next to the  SSL, we find a very different situation. Figure (10.8) compares the 
evolution of the SSL (averaged, as before, over the lattice) from hot and cold start simulations 
in Feynman gauge. The hot simulation converges to  a stable value, though we have no 
reason to  suppose th a t this value is actually correct. In the case of the cold simulation
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Figure 10.7: : The plaquette averaged over the lattice for each configuration from a 
hot start. A stable, correct value is obtained in both Feynman and axial gauge.

no convergence is apparent even after 30 000 lattice sweeps.Moreover, the range of values 
obtained in this case is significantly lower than the result from the hot simulation.

lattice size: 16 
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Figure 10.8: : The SSL averaged over the lattice for each configuration in Feynman 
gauge. The average converges to different values from hot and cold starts.

The evolution of the SSL in axial gauge shows considerably better behaviour. Although the 
oscillations around the average are larger than in the Feynman gauge hot case, both hot and 
cold simulations converge to roughly the same value.
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Figure 10.9 : : The SSL averaged over the lattice for each configuration in axial gauge. 
Hot and cold starts converge to the same average.
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49. R esults W ith Zero Boundary Conditions

Figure (10.13) compares the infinite volume limit of the analytical expression for the pla- 
quette with the results from a Monte Carlo simulation in Feynman gauge on a 4 x 4 lattice. 
As in the case of axial gauge, the results are in good agreement despite the small size of the 
lattice.
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Figure 10.10: Decorrelation lengths for the plaquette in Feynman gauge with zero
boundary conditions.
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Figure 10.13: The plaquette in Feynman gauge with zero boundary conditions. The 
simulation on the left is a hot start while that on the right was started cold. The sohd line 
is the analytical value at infinite volume.
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Figure 10.11: Behaviour of the error estimator for the plaquette in Feynman gauge
with zero boundary conditions.
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Figure 10.12: Finite size effects for the plaquette in Feynman gauge with zero
boundary conditions.

Figure (10.17) compares the results of such a simulation, with the weak coupling approxi- 

%49. Results With Zero Boundary Conditions
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Figure 10.14: Decorrelation lengths for the SSL in Feynman gauge with zero boundary 
conditions.
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Figure 10.15: Behaviour of the error estimator for the SSL in Feynman gauge with
zero boundary conditions.

mation with zero boundary conditions, valid for large values of (5. 
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Figure 10.16: .Finite size effects for the SSL in Feynman gauge with zero boundary
conditions.
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11. P hase Structure o f th e W eakly C oupled Schwinger 
M odel

“Is there any other point to which you would wish to draw my attention ?”
“To the curious incident of the dog in the night-time. ”
“The dog did nothing in the night-time. ”
“That was the curious incident. ”

~ Sherlock Holmes, in “Silver Blaze”

Having carried out a lengthy analysis o f the free fermion field and the pure gauge field and established that 
the proposed weak coupling expansion is indeed permissible, we turn in this Chapter to the implementation  
of this expansion. In the first section we define an approximate form o f the partition function, valid at weak 
coupling. This approximate partition function is expressed as a sum containing gauge-dependent terms. The 
partition function is next written in an alternative, multiplicative form. It is shown that these two forms 
together sufHce to determine the location o f the partition function zeroes. The behaviour o f  the lowest zeroes 
is analysed to first order. It is shown that the zeroes show different behaviour in the different momentum  
regimes, but in all cases fail to converge onto the real axis. We conclude tha t (at least at this level o f
approximation) the Schwinger model fails to exhibit a phase transition in the weak coupling sector.

50. The Partition Function at W eak Coupling

Our goal is to construct the phase diagram of the lattice Schwinger model and, in particular, 

to identify the points of second order phase transition.
We will apply the method of Fisher zeroes as discussed in Section (9) to this problem. The 

first step in this programme is to analyse the behaviour of the zeroes of the partition function 

on a finite lattice. This is easier said than done, of course, and we will in fact consider a 

restricted version of the problem by confining our attention to the weak coupling (large P) 

sector of the full phase diagram.
The full partition function for lattice QED2 is given by

Z qed , =  j  D [ U ] D [ U ]

The integral over the fermion fields may be carried out to yield a determinant factor, leaving

Zqed2 =  J  D[U]{det MQED2)

=  Z c { d e t  M q e d 2)g

where Z g is the pure gauge partition function, ( )q denotes an expectation value over the 

gauge field and the operator M qed2 is given by
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^ Q E D i  ^nm  ^  '|^(l Tm) T/i) j j j j l  /i) ^

It will prove convenient to extract a factor of ^  and work instead w ith the operator

^Q E D 2  2 ^n{rn+y) /f) *̂2i(zz*—/£) ̂

In other words, the partition function is simply proportional to  (det M q e d 2)g- zeroes of 
Z q e d 2 ^re therefore fully determined by the zeroes of {det MQED2)q- This object is a pure 
gauge expectation value.
Note th a t Z q ed 2 ^-nd Zq  are both gauge invariant by construction. It follows from (11.1) 

th a t {det M q e 0 2 ) 0  S^^uge invariant.
Our strategy in determining the zeroes of {det M q e 0 2 ) 0  follows. We will consider
only the weak coupling regime. The problem of developing an unambiguous weak coupling 
approximation for a two-dimensional U (l) gauge field was considered in C hapter 3. It was 
shown there th a t a simple restriction of the angular variables 4> to  small values would suffice, 
provided th a t a zero boundary condition was imposed on the gauge field. It is therefore 
permissible to expand perturbatively around the free fermion field in powers of the angular 
gauge field variables 4>i. The shift in the free field zeroes due to  the introduction of a weak 
gauge field may thus be determined (in principle) to any required order in 0j. The n th  order 
shift will then be a function of n th  order pure gauge correlation functions ( 0 i . . .  (pn) ■ In 
particular, at second order the shifts will be functions of the pure gauge propagator.
Let us therefore define an approximate pure gauge partition function by

ZwG = I  D [U ]e-^^^  (11.3)

where

and
=  5 ^ (1  -  cos 0p(/x,jy)) ; - e  < (j)p{i^,u)) < e

The partition function (11.3) is effectively Zg  w ith the contributions from large-(^i configu­
rations removed. It may be may be regarded as a family of functions param etrised by the 
the inverse coupling, /?. For large values of /? the integral is strongly peaked around =  0, 

the \s iT g e -( j)  contribution is negligible and we have

ZwG  ~  Z q

§50. The Partition Function at Weak Coupling
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It should be emphasised th a t two approximations are being m ade here. Firstly, we make a 
saddle-point approximation in which the integral is truncated to  run only over small values 
of (j). This approximation in tu rn  is valid only if the integral is strongly peaked around such 
values; we ensure th a t this is the case by choosing a sufficiently small value for the coupling 
constant g.

51. A dditive Expansion Of The Partition Function

In this section we will develop an additive expansion of {dei M qed)g-  
It is convenient at this point to write

^ qed 2 —  ^ 0  + AM

where Mq is the free fermion operator (scaled, as above, by a factor of and A M  contains 
the gauge terms in M qed,  thus

M q — 2 T/i) m) ^
A M  =  ^ |( 1  -  7;,) (1 -  U^im))  +  (1 +  7â ) (1 -  -  m)) <^n(m-^)} (11-4)

Note th a t AM , which is the gauge dependent part of Mqed2 is independent of the hopping 
param eter «. Moreover A M  depends on the gauge field through term s of the form (1 — 

Ufj,{m))] th a t is:

A M  (X i(j) — (f)̂  + . . .

Therefore, in carrying out a perturbative expansion to second order in (j), it is sufficient to 
retain only terms up to second order in AM .
The eigenvalues of the free field operator Mo follow from (6.9) and (6.13):

Afe,a =  ^  -  X !  (sin^^/.)" (11-5)

It is possible to obtain the eigenvalues oi.MqED2 froni those of Mq by means of standard 
perturbation theory ( see for example Schiff, 1949) and thereby to determ ine the zeroes of 
det Mqed2  to any desired order. This does not suffice, however, to determ ine the zeroes of 
the partition function, which is the pure gauge expectation value of det Mqed2 
The first stage in the determination of these zeroes is to express the partition function in 
term s of pure gauge expectation values of AM . Let us therefore write

§5i. Additive Expansion Of The Partition Function
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and hence

^ q e d 2 — {M^qed2 ^ o  (det Mo 7̂  0)

det M q e d 2 — det(Mg£;D2 Mo det Mq 

> (det M q e d 2 )g ~  ^ 0  {^^^{Mqed2 ^ o  ^))g

=  det Mo (det(l +  A M M o“ )̂g.

l̂ t _ MQED2)G ^  ^  A M M o - ^ ) a  (^et Mo +  0)
det Mo

Now if the matrix 1 +  AM M o'^ is diagonalisable its determinant may be written in the form

det(l +  AMMo~^) =  exp (trlog(l +  A M M o“^)) (H-6)

The exponential term in (11.6) may now be evaluated approximately. Since we are working 

to second order in 4> we need only retain terms up to this order in A M . Thus, to order 

(AM)^ we have

tr log (l +  AMMo^^) =  tr(A M M o“ )̂ — -tr (A M M o “ )̂̂

and

exp(tr log (l 4 -AM M o“ ^)) =  l+ tr (A M M o “ )̂ — -tr (A M M o “ )̂̂

+ ^{tr(AMMo-') -  ^tr(AMMo-')2}2 

=  1 + tr (A M M o “ ') -  ^tr(A M M o“ )̂2 +  ^(tr(A M M o-^))2  

The expression (11.6) for (det can therefore be written in the approximate form

QGt M q  ̂ ^
_ (det M w )g 

det Mo
(11.7)

It is essential to note that gauge invariance has been lost in the process of developing this 

perturbative expansion. The expectation values appearing in (11.7) are gauge-dependent 

and will yield a gauge-dependent expression for (detMvi/)(j. We are guaranteed, however, 
that for sufficiently weak coupling (detMp^)^ will approach the gauge invariant quantity 

(d e tMq£;£)2 )g  some gauge-dependent way). Therefore, any convenient gauge may be 

selected— the choice of gauge will determine the manner in which the approximate solution  

approaches the true solution, but not the final result.

§5-/. Additive Expansion Of The Partition Function
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In order to write the traces in (11.7) in a more explicit form, consider an orthonormal set of
basis vectors satisfying:

(x 1 x ‘> =  Ki

Now consider

Xi = P.e ^  xh xi =  Pafx”.
a a

^  E  xi) Xi = .P.«‘
o a

^  X/3 ~  P a ^ X a  ^  PcxP ~

Any set of orthornormal basis vectors therefore satisfies the identity

E(x:)*X?='5a«
a

Next, for any matrix Q, we have

E f e “IOIx“) = ( E  xij «./) = = trq
a \  a /

Now it was shown in Section (27) that the eigenvectors of Mq, |A“) form an orthonormal set. 
We may therefore write

a a

AMii
Xj \ j  Xi

Similarly, we find
i\\9 X—' A M jj(tr(AMM„-')f =  E  /

i \ 9 \ X—  ̂ Z \A /o jtr((AMM„-')^) =  E  , "  /
i*i ■ ’

If we now define the pure gauge expectation values

ti = {AMh)q

Uj = {AMijAMji)^ -  {AMiiAMii)^ 

the additive expansion (11.7) can be written
2N̂  2N'̂

(det MQgo,)g  ̂ ^   ̂  ̂ gN
det Mo ^  Aj 2 ^  XiXj ̂ l=\ '*
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52. M ultiplicative Expansion Of the P artition  Function

The partition function of the Schwinger model may also be expanded perturbatively in 

multiplicative form. To this end, let us rewrite the expression (11.2) for M q e d 2 '

^Q E D 2  ̂̂ nm

where

and
r r  1

Zin m  — 2  ^ iu (— ) ̂ n {m + i^  T^i) [A i B l ^ )  m) ^

Since we are working on a finite lattice, M q e d 2 is of finite dimension and its determinant 

may therefore be written as a polynomial in rj.

2N̂
det M q e d 2 =

T = l

The gauge expectation value of det M q e d 2 is therefore given by

2iV2

{ d e t  M q e d 2 ) g  = 1](^ t (0))g ^̂
r=l

which is again a polynomial in r;. It may therefore be written

i=2N^
(det M q e d 2 )g =  n

i —1

Here the rji are the true zeroes of the partition function; note that they are not zeroes of 

the determinant except when the gauge field vanishes. The expression (11.8) may therefore 

be written in the alternative form

(det M q e d 2 )g _  (^ -  Vi) / 1 -, O',
det Mo {X̂ )  ̂ ’

The free field eigenvalues \  can be written {t] — 77°), where, from (11.5) we have

1

Vi =  cos kf, +  (sin^ k^) ^

§5S. Multiplicative Expansion Of the Partition Function
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The ?7 ° are therefore the zeroes of the free fermion partition function, which is now to be 
regarded as a function of 7 7 . The multiphcative expansion (11.9) can now be w ritten in the
form

i=2N^
{d e t  M q e d 2)g  — T J  ( I -

detM o f j -  V i v - V i )n  1 -  7 ; - ^

Here =  [rji — rfl) represents the shift in the zth zero due to the presence of the gauge field. 
The expression (11.10) is exact; it is the Aj which are to be determ ined perturbatively.

53. T he F irst Order Shift

The partition function of the Schwinger model has now been expressed in two different ways. 
An additive expansion was derived in terms of pure gauge expectation values was derived 
in Section (51). These expectation values are computable; however, the shift in the zeroes 
cannot be directly derived from them.

An alternative, multiplicative expression was obtained in Section (52). This expression 
contains the shift in the zeroes explicitly, but in a form which is not amenable to  direct 
calculation.
We therefore require a relation beween the shifts in the zeroes, Aj and the calculable pure 
gauge expectation values ti and tij. From (11.8) and (11.10) we have

2N^ i=2N^ . . s

where we have used \  = {rj ~  Vi)-
The required relation may be obtained by observing th a t both  sides of (11.11) are analytic 

in 7] with poles at 7 7°.
Before proceeding, let us expand ti, tij and Aj in powers of (j) (or, equivalently, in powers 
of the coupling constant, g). Note th a t is proportional to  {(f)) which is zero. Moreover 
tij depends quadratically on AM ; therefore is also zero. Therefore, to second order, we 

have simply

ti = t^^ + ...
tij = 1 ^  + . . .  (11.12)

Ai =  A f ) +  A f ) +  . . .
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The eigenvalues of the free field operator were shown in Section (28) to be either two-fold 
or four-fold degenerate if antiperiodic boundary conditions are imposed. Consider first the 
case of two-fold degenerate eigenvalues:

^1712 —

Equating residues of the single pole at rj = in (11.11) yields, to second order 

^(2)+^(2)_ y -  ^ !!^L L ± ^  =  _ f A W + A ( 2 ) + A W + A ( 2 ) ' )  h  _  Y "
‘-m i ^  ''7712 (0) _  (0) ^  ^  ^1712 ^  ^ 1712)  I ^  (0) (0)

i j tm i ,m 2  V i ^ m i ,m 2  ~

Comparing the first and second order terms respectively on each side gives

A^i) +  A^’-) =  0ni ' ri2

A(2) _l A(2) =  _f(2) _  +(2) I îrni +  (11.13)
« i  ^  ri2 ''mi ‘'m 2 ~  Z_^  (0) (0)

i ^ m i  ,1712

An analogous result holds for the four-fold degenerate eigenvalues

4 4 4 /  .(2)
V  A(^) =  0 ■ V  a (2̂  =  V  +  V ___^  ) Z _ ^  ^ r u j  2 - ^  1 ' ' m , -  ^  ( 0 )  _  ( 0 )
j = l  j = l  j = l y i^rrij

The first order shifts A-^  ̂ may be determined explicitly by expanding the multiplicative 
expression (11.10) and comparing it with the additive expression (11.8).In the case of the 
two-fold degenerate eigenvalues this yields the additional condition

(A«)^+(AW)^ = 2 e

This, together with (11.13) yields

''77117712

A ( l )  -
m 2  ~  V  ' ' ” » i ” i 2

54. The Lowest Zeroes

The techniques outlined in the preceding sections have been used by Kenna, P into and Sexton 
(1999) to investigate analytically the behaviour of the zeroes of the partition  function of the 
Schwinger model a t weak coupling. They present results up to second order for both two-fold 

and four-fold degenerate zeroes.

§5^. The Lowest Zeroes
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The main features of the analysis can be illustrated by considering the two-fold degenerate 
zeroes associated with momentum

k = {2ttpi/ N  , 0) {~N/2  +  1/2) <  <  (iV/2 -  1/2)

First order effects will dominate for sufficiently large /3 and the following discussion will be 
confined to this order.

According to (11.14) the first order shift in a two-fold degenerate zero of the type we are 
considering is given by

^  , - p ( a ) ,  p ( q )  , g ( a )  ^  ^

^ ( — P l , 0 )  =  —  ^  ( ^ A M p ( ^ c t )  , - p { a ) ,  , p { a ) ^  ^

(11.15)

The two zeroes associated with the degenerate free eigenvalues A (±pi, 0), which coincide in 
the free case therefore become distinct when the gauge field is turned on.

This behaviour is illustrated in Figure (11.1)

free zero —  
positively shitted zero —  

r^egatively sfiitted zero ......

£ 0.025  --------- --

free zero ----
positively shifted zero —  

negatively shifted zero ......

1000  900 700  600 500  400  300  200  100

Figure 11.1: Behaviour of the lowest free zero when a gauge field is turned on. The
free zero splits into two zeroes, which diverge as the field strength is increased.The figure on 
the left shows the imaginary part of the free and shifted zeroes, while that on the left shows 
the real part.
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The general expression at first order for expectation values of the type in (11.15) is given

^54- The Lowest Zeroes
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from perturbation theory by

^  j) |^ )

+

fj'

-  cos{p^ +  q^) 

(_!)«+/?
5̂ i(sinp2sinQ'2 -  cos(pi + qi) sinpi sin^i)

+  (̂ 2̂ (sin Pi sin qi -  cos(p2 +  92) sinp2 sin 52)

+  i
( - 1)“ . ( - 1)^ .

sin(p„ +  ?„)

where
P  =  sin^ Pi +  sin^ p2 

Q =  sin^ qi +  sin^ 92

This rather formidable looking expression reduces, in the case of the special zeroes we are 
considering, to

where we have taken a  = 2.

The correction to the free zero is then given by

V^'\P1,0) =  ((|0i(2p)|"»^

which is pure imaginary, and is simply proportional to a pure gauge expectation value.
Note th a t it is the correction to 1/2k which is pure imaginary; the corresponding correction 
to K will, in general, have a real component. Indeed, according to (6.16), the zeroes of the 
free partition  function occur for

2

J2coskf,±i sin̂
1 \  /i /

^ c o s k f } \
\ fj' /  \  /

If we consider only momenta of the form (pi,0), we may write

A : t i B
K =

2 (A2 +  B 2 )  

where
^  =  1 +  cos ki B  = sin ki

^54- The Lowest Zeroes
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We then have

where

This gives

^  = A ± i B  ^  A ± i { B ± R )

, ^  A ± i { B ^  R)
2 (A2 + (5  +  i?)2)

It is clear from this expression that the shifted zero will fail to converge onto the real axis if
R  remains finite as the lattice size tends to infinity.

55. Partition Function Zeroes in Feynm an Gauge

The shifted zeroes (11.16) may be determined explicitly once a gauge has been fixed. In
Feynman gauge we have from (7.29)

( l < / ' i ( ( 2 p ) |  ^  I s i n ^ l

which gives, in the notation of the preceding section

1 1
R =

2 ^  A T |s in ^ |

It is the dependence of -R on that determines the behaviour of the zeroes at fixed (5 
Let us first consider the case where is small compared with N . Setting pi =  1/2 we obtain

1 1 
2i/2^ N\ sin;||

In the limit of large iV, the A^-dependence disappears from R  and we have simply

r .  1lim R  =

giving, for the shifted zeroes

N ^ oo  2 'K ^ /2^

lim A = 2
JV—>00

lim B =  0
N —̂oo

, 2 ±  zi?
lim K =

N^oo 8 + 2R^

For large /? (small R  ) the imaginary part of the zero is given approximately by:

T ' ^  1lim Im K
N-*oo 8 IG ttv^ ^

§55. Partition Function Zeroes in Feynman Gauge
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0.015 free zero ------
positively shifted zero -----

negatively stiifted zero ......

E 0.01

0.005

- 0.005

- 0.01
200 400 600 800 10000

lattice size

Figure 11.2: Behaviour of the imaginary part of the lowest zero when a weak gauge 
field is turned on. The free zero splits into two new zeroes. As the lattice size is increased 
the lower zero crosses the real axis while the higher one tends to a fixed distance above the 
real axis.

The zero does not therefore converge onto the real axis for finite j3.
Figure (11.2) displays the behaviour of the imaginary parts of each of the shifted zeroes with 
increasing lattice size at /5 =  5.0.
Next let us consider the large momentum limit. Setting pi =  iV/2 -  1/2 gives

2 v ^ -/V I sinTT -  ^1 2 ^ /2 ^ -/VI sin ^  I

The infinite volume limits are now

lim R — ----- ==
iv->oo 27T\/2^
lim A = 0

A f->oo

lim 5  =  0
N ^oo

and hence

lim Im k' =  —  =  7 T \/^
AT->00 ZJri

Note that this zero moves further away from the real axis with increasing /?, indicating that 
zeroes of this type do not accumulate on the real axis even in the absence of a gauge field. 
The behaviour of these high momentum zeroes is exhibited in Figure (11.3).

§55. Partition Function Zeroes in Feynman Gauge
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250

beta: 5.0 
p = (N /2 -1 /2 , 0)200

150

100
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positively shifted zero ------

negatively stiifted zero .......
-150

-200

-250
0 200 400 600 800 1000

lattice size

Figure 11.3 : Behaviour of high momentum zeros when a gauge field is turned on.
The zeroes diverge from the real axis in both the free and interacting cases. Note the sharp 
spike in the lower zero R  =  —B

Lastly, let us consider pi =  iV/4 — 1/2. Then

^ 1 1 
2v/2^ N\ sin I  -

which gives
lim R = 0

Af—>oo

lim ^  =  1
TV—>oo

lim 5  =  1
N-^oo

and this time ^
lim Im -iV—>oo 4

This time the zeroes converge on the free value, the imaginary part of which in this case is 
0.25 in the infinite volume limit. This behaviour is illustrated in Figure (11.4)
The zeroes therefore display very different behaviour in the different momentum regimes. 
At low momenta, the shift in the zeroes decays with increasing (3, but is always sufficient 
to prevent the accumulation on the real axis which occurs in the free case. At moderate 
momenta the shift disappears altogether for large N , and the behaviour is identical to that 
of the free zeroes, which do not, however, condense in this regime. At high momenta the

§55. Partition Function Zeroes in Feynman Gauge
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0.245

beta: 0.01 
p = (N /4-1/2, 0)

0.24

E

0.235

free zero -----
positively shifted zero -----

negatively shifted zero .......
0.23

0.225
120 

lattice size
40 60 80 100 140 160 180 200

F ig u re  11.4: Behaviour of intermediate momentum zeros when a gauge field is turned 
on. The zeroes converge on the free value with increasing lattice size; however the free zeroes 
do not themselves approach the real axis in this regime. A value of /3 =  0.01 was used in 
order to display the zeroes on a reasonable scale.

shift grows with increasing /5, indicating tha t the free zeroes diverge from the real axis in 
this regime.
In all cases the zeroes fail to converge onto the real axis, indicating (at least as far as this 
analysis goes) the absence of a phase transition in the weak coupling regime.
Two further possibilities should be considered, before such a conclusion can be established. 
Firstly, it is possible th a t classes of zeroes, other than  those we have considered, do accumu­
late on the real axis and give rise to a phase transition.
Secondly, it is conceivable th a t higher order term s in the weak coupling expansion are so 
strongly dependent on N  th a t they dominate the first order term  and force an accumulation 
of zeroes for any value of /?, however large. This is simply another way of saying th a t 
perturbation theory cannot be used for this problem; while this objection is undeniable, it 
is one which could be levelled against many if not all perturbative calculations.

§55. Partition Function Zeroes in Feynman Gauge



12. Conclusions

He had softly and silently vanished away—  

For the Snark W A S a Boojum , you see 
-  The Hunting of the Snark

The primary motivation for this thesis has been to investigate the phase structure of the 
Schwinger model analytically. Two ingredients were required for this analysis; the eigen- 
structure of the free fermion operator and an unambiguous specification of the pure gauge 
propagator.
The fermion operator is straightforward to analyse; nevertheless, the degeneracies in its
spectrum  complicate the perturbative analysis of the interacting theory.
The behaviour of the pure gauge propagator is more subtle and a considerable part of this 
thesis has been devoted to its study. The investigation focused prim arily on the expectation 
value or SSL, which is of particular relevance to lowest order perturbation  theory. 
From the analytic point of view, it was shown th a t the unusual behaviour of this object was 
related to the vacuum degeneracy induced by the imposition of periodic boundary conditions 
on a finite lattice. In the case of Feynman gauge, this manifests itself as an infra-red 
divergence. In axial gauge the SSL is a constant.
It was shown analytically tha t these problems can be resolved by the imposition of zero

boundary conditions.
These conclusions were confirmed by a detailed numerical study.
W ith these results in hand, a perturbative analysis of the zeroes of the Schwinger p a rti­
tion function was performed. This analysis, although not completely conclusive, indicates 
strongly th a t the phase transition reported by other groups on the basis of numerical studies 

is in fact absent.
It is planned to extend this work both to higher zeroes of the partition  function and to 
higher orders in perturbation theory. In addition, the novel perturbative scheme introduced 

is likely to  be applicable to other models.
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