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SUMMARY

The electrostatic imaging problem is an inverse electrostatic problem involving the recon­

struction of an inhomogeneous dielectric medium from a set of remote electrostatic field 

measurements. In this thesis we propose and explore a novel application of a capacitive 

sensor array to the electrostatic imaging problem. The capacitive sensor array that we 

investigate is composed of planar conducting electrodes located on and insulated from a 

wider ground plane. The analytical model of the planar capacitive sensor array is proposed 

to be a doublesided boundary.

Inverse problems occur in various areas of physics, yet the corresponding solution unique­

ness theorems are often unproven or have only been recently proven. We found in litera­

ture that an inhomogeneous dielectric medium is uniquely determined by the Dirichlet-to- 

Neumann map on the open subset of the boundary covering the unknown dielectric [99]. 

The measurement methodology employing the planar capacitive sensor array that complies 

with this uniqueness theorem is proposed and incorporated into numerical algorithms.

The 2D electrostatic imaging problem is solved using the distorted Born iterative method 

(DBIM). Unlike existing approaches to the imaging problem where the measurement tools 

are assumed to have a small dimension such that there are no probing errors, the fi­

nite (physical) size of the planar electrodes is incorporated in the DBIM. The forward 

path in the DBIM, which is a set of the Dirichlet boundary electrostatic problems with a 

doublesided boundary, is shown to be ill-posed. This ill-conditioning is circumvented by in­

troducing a novel technique employing a conformal mapping which can also be considered 

as a pre-conditioner. The ill-conditioning of the inverse path of the DBIM, common to all 

inverse problems, is overcome using a novel optimised Tikhonov regularization technique. 

The imaging algorithm is proved to be stable for a variety of simulated dielectric profiles. 

Also the operation of the imaging algorithm is successfully tested using the laboratory 

capacitive sensor array and experimental PC operated hardware.
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Chapter 1 1

INTRODUCTION INTO INVERSE PROBLEM

Remote sensing is a rapidly developing industry nowdays. The demand for novel remote 

sensing techniques encourages industrial companies to invest more and more into devel­

opment and research. Capacitive sensor techniques are attractive with many applications 

which we now discuss.

Capacitive sensor techniques are very low power and short range^ techniques which are well 

suited to many indoor human oriented applications. Max Mathews, Stanford, Cahfornia 

suggested the use of a capacitive sensor technique in the electronic drum where the location 

of a baton (or several batons) on the drum surface is determined from measurements 

made at several planar electrodes [87]. The baton is equipped with an embedded radio 

transmitter^ while the flat capacitor plates of a predefined shape are embedded into the 

drum support surface.

Neil Gershenfeld, Cambridge, Massachusetts suggested to use a capacitive sensor for mea­

suring the position of a point with respect to at least one axis [88]. This application is 

particularly suitable for the electronic violin. The radio transmit electrode embedded into 

the bow has such a property that the transmit signal intensity is monotonically attenuated 

along the bow. The at least one string of the electronic violin, which is a capacitor elec­

trode, operates as a receiver producing a response signal proportional to the transmitter 

intensity allowing to detect the exact position of the bow with regard to the string.

^Although the law of physics does not Hmit the range of sensitivity for the capacitive sensors, in practical 

applications the sensitivity range is usually not greater than several meters. Hence the capacitive sensors 

are often referred as proximity sensors.

^Here, the radio transmitter is a capacitive sensor plate and the electric field is quasi-static (section 

2.8). The term radio transmitter is used in the original document [87] as well as other patent definitions 

and therefore is preserved in the text.
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The capacitive sensor techniques have found application in safety equipment. John Vran- 

ish and Robert McConnel suggested an extended-range capacitive sensor application for 

robot arm safety control in an industrial environment [86]. In this application a transmit 

capacitive electrode is placed on the mobile robot arm while the receive electrodes are rep­

resented by all grounded objects in the vicinity including the humans. The signal in the 

transmit electrode is continuously monitored triggering the safety mechanism to prevent 

the undesired collisions or injury.

The application of capacitive sensors to the determination of the position in space of the 

human limbs is explained, for example, in [1]. The human body in [1] is either a transmit 

electrode with a given electrostatic potential or a floating electrode with an unknown 

electrostatic potential. An application of the capacitive sensor to the three dimensional 

mouse for computer interface is explored in [2].

The capacitive sensor applications presented above are empirical and intuitive and do not 

require complicated numerical calculations. In the course of this thesis we develop a novel 

application of the capacitive sensors to the problem of reconstruction of the unknown di­

electric permittivity distribution. We use a capacitive sensor array to generate the field 

and collect the data. The methods that we develop deal with non-linear electrostatic inte­

gral equations and require precise electrostatic field calculation. The problem of recovering 

the unknown dielectric permittivity from the remote electrostatic field measurements is 

called the inverse electrostatic problem.

During our early study we adopted the terminology and ideas proposed in [l],[2]. In 

particular we widely used the term of “Electric Field Sensing” (EFS) which refers to any 

sensing process involving the measurement of the electric field. After conducting a careful 

investigation we concluded that EFS is rather an alternative, yet less informative, term for 

the sensing using capacitive sensor techniques governed by (2.9). Moreover we concluded 

that the terms “shunt mode” , “transmit mode” and “loading mode” introduced in [1] 

and used later in [3], [2] to describe intuitively the interaction of the human and electric 

fields are not sufficiently precise for our study which is concerned with exact electrostatic 

problem formulations.
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1.1 Problem  T hat M otivated Our Study

Bed Sensor

2ZZ--------
electrode2

 ez
electrodel

Figure 1.1: Two electrodes embedded into a hospital bench illustrate an application of the basic 
capacitive bed sensor.

Our industrial sponsor, the Hotron Co. Ltd. sought to collaborate with us in the investi­

gation of a capacitive bed sensor for detecting the position of a person in a bed. A simple 

capacitive twin electrode bed sensor is illustrated in figure 1.1. Two electrodes are placed 

either beneath or above the mattress. A low frequency electric potential is applied to one 

electrode to establish an electric field that interacts with a person lying on the bed. The 

bed sensor detects the person on the bed by measuring the signal at the other electrode 

and activates or deactivates the alarm on the remote terminal.

The following requirements are typically imposed on the bed sensor:

1. its installation must be simple

2. it should not produce any discomfort to the patient

3. it should be insensitive to the objects underneath the sensor surface (to avoid cali­

bration routines)

The latest bed sensors that we demonstrated to Hotron are flat and flexible having 1mm 

thickness, 5-30cm of sensitivity above the sensor surface and negligible sensitivity beneath 

the sensor. One such sensor is illustrated in figure 1.2. It is composed of two foil elec­

trodes on the upper side of the sensor, a dielectric substrate and a ground plane electrode 

underneath of the sensor. The purpose of the ground plane electrode is to achieve spatial
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iflS lilS

Figure 1.2: A simple capacitive sensor designed and constructed in the Communications Labo­
ratory, Trinity College, Dublin.

selectivity of the sensor. To maximise performance the ground plane covers the entire area 

of the flat capacitive sensor.

The bed sensor in figure 1.2 can be seen as a simple imaging application. It takes only one 

measurement and converts it into a binary single pixel image. Hotron asked us to develop a 

sophisticated multi-electrode bed sensor capable of reconstructing a more elaborate image 

of a person occupying a bed. Optical quality resolution was not required for the bed sensor 

application. It was agreed that the bed sensor would be planar to facilitate installation 

under the mattress. We suggested several configurations for the capacitive sensor array 

shown in figure 1.3. In particular, the 2D and 3D capacitive sensor arrays that comply 

with the bed sensor application are shown in figures 1.3 (a) and (c). For faster prototyping
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a) b)

Figure 1.3: Open and closed capacitive sensor workbenchs in the 2D and and 3D respectively.

and numerical implementation we decided to analyse the bed sensor arrangement in the 

2D although our techniques are applicable in the 3D. The methods that we develop in this 

thesis are also applicable to a wide class of inverse electrostatic problems and, in particular, 

to the problems formulated for enclosed areas as shown in figures 1.3 (b) and (d).

The source free governing equation of electrostatics is fundamental to our study

VeV(/) =  0 , (1.1)

where e is the dielectric permittivity and  ̂is the electrostatic potential. Both the forward^ 

and inverse electrostatic problems are governed by the same equation (1.1). In the next 

Chapter we consider more governing equations of electrostatics.

^We use word ‘forward’ in order to distinguish an electrostatic problem, which is to obtain an electro­

static field in the given dielectric medium, from the inverse electrostatic problem, which is to reconstruct 

dielectric medium from the electrostatic field measurements.
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Iterative methods provide an efficient framework for the solution of the inverse electrostatic 

problem. Popular inverse methods include the Born iterative method (BIM) and the 

distorted Born iterative method (DBIM) [18], [19]. The BIM and DBIM calculate a forward 

electrostatic problem on each iteration and largely depend on the efficiency of the forward 

solver. We investigate the DBIM approach in electrostatics and present both the forward 

and inverse methods in sections 4.2 and 5.2 respectively.

We found that in the existing literature on inverse problems (primarily dealing with the 

inverse electrodynamic problem) the external field is measured at finite number of obser­

vation points and the sensing electrodes (or antennas) are assumed to be so small that 

they do not affect the field distribution [17],[18],[19],[28],[30],[33]. In our analysis of the 

electrostatic inverse problem we consider spatially extended electrodes that have a signif­

icant effect on the total electrostatic field distribution. We incorporate the effect of the 

spatially extended electrodes into the DBIM (section 6.2).

In order to model the bed sensor application we introduce a doublesided boundary. We 

found that an electrostatic problem employing doublesided Dirichlet boundary conditions 

which arises as a part on the DBIM, for example, is ill-posed. To overcome the ill- 

conditioning we propose a set of basis functions that put the electrostatic problem in the 

well posed form. These basis functions can be analytically expressed through a conformal 

mapping in 2D (section 4.3).

We have found that in the strongly inhomogeneous fields that arise near the boundary 

containing the measurement electrodes, a Tikhonov regularization method [5] leads to 

an offset-type distortion. In order to eliminate that distortion we derive an optimised 

Tikhonov regularization method (section 6.2.3).

The electrodynamic imaging problem is similar to the electrostatic imaging problem. How­

ever while the inverse electrodynamic problem is frequently encountered in the current 

literature, the electrostatic inverse problem has not been investigated. This is explained 

by the fact that the electrodynamic field has found many applications in geophysics and 

other areas where long distance sensing is required as opposed to the proximity sensing.
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We have illustrated that many existing methods developed for the inverse electrodynamic 

problem can also be employed in the static case. The convergence rate and precision of 

the inverse methods in the static case yet need to be investigated. The final quality of 

the recovered image is different for the electrostatic and electrodynamic inverse problems, 

for example, because of the time dependency of the electrodynamic field and its ability 

to transfer energy. In section 5.2 we present inverse methods that have been successfully 

applied to the electro dynamic inverse problem and formulate them for the electrostatic 

inverse problem. This is a novel contribution to the inverse electrostatic problem.
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ELECTROSTATIC THEORY

This chapter lays the foundation for the analysis of the forward and inverse electrostatic 

problems th a t are studied in chapters 4, 5 and 6. The basics of electrostatic theory namely 

the mathematical formulation of the electrostatics are the foundation for both forward and 

inverse electrostatic problems. Therefore we do not formulate any particular problem in 

this chapter but rather systematically introduce the minimum background information 

required for understanding the research material presented in the thesis. The material 

presented in this chapter is primarily based on the author’s college background.

The equations of many physical problems can be put in either differential or integral 

form. The differential and integral representations are equivalent from the mathematical 

perspective. The integral representation can be obtained from the differential one and 

vice versa. In electrostatics which is a particular case of electrodynamics the governing 

equation can be expressed in either differential or integral form.

From the numerical perspective the integral and differential representations of the gov­

erning equations lead to different methods with different computational complexity and 

different convergence properties. This is because the differential equations express the 

physical phenomena in terms of local field interactions whereas the integral representation 

primarily deals with global field interactions. A typical numerical approach based on the 

differential governing equations is the Finite Difference Method (FDM) discussed in sec­

tion 4.2.1. The Finite Element Method (FEM) introduced in section 4.2.2 is based on the 

electrostatic integral equation.

In the next section we introduce the differential equations of electrostatics and then in 

section 2.4 we present the corresponding integral representations. In section 2.7.1 we derive 

simple expressions th a t relate the boundary conditions arising on the metal electrodes to 

the electrode measurements. In particular section 2.7.1 explains how the measurements
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obtained using spatially extended electrodes are interpreted and employed in the numerical 

solvers which are central to our research. In section 2.7.2 we discuss the capacitive sensor 

array and relate the electrode potentials to the accumulated charges. A set of linear 

equations presented in this section is a starting point for the hardware design. Section 

2.7.2 also explains the practical limitations of imaging techniques based on capacitive 

sensor arrays. Section 2.8 is a continuation of section 2.7 explaining how the currents and 

voltages (that we measure in our experiments) relate to the static charges and potentials 

that are simulated numerically.

2.1 Differential Governing Equations

In this section we briefly introduce the electrostatic theory using differential equations and 

provide necessary definitions that are used widely in the thesis.

The governing equations for the electrostatic theory can easily be obtained from Maxwell’s 

equations by assuming that ^(-) =  0

V • D =  47TP , (2.1)

V A ^  = 0 , (2.2)

where D is an electric flux density, E  is an electric field intensity and p is the electric 

charge density. Note that equation (2.1) is valid in the 3D and its 2D version should 

read V ■ D = 2ttp. The difference in scaling of the electric field sources by a factor of 2 

does not impact those numerical implementations where these sources are represented as 

unknown functions. In the course of this thesis we deal with cases having unknown source 

distributions and therefore we derive and use analytical expressions in 3D.

By definition the electric flux density D in a linear isotropic medium is proportional to

the electric field intensity E

D = eE , (2.3)
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where e is a dielectric permittivity. In a non-linear medium the dielectric permittivity e is 

a function of local material properties and electric field intensity E

D -  e{E)E . (2.4)

Non-linearity of the medium is usually observed only for very large electric fields E. In our 

work we deal with very weak electric fields of the order of IV /cm . In such low intensity 

fields most known materials behave linearly.

Contrary to (2.3) where the dielectric permittivity e is a scalar many solid materials with 

a non-symmetric crystalline lattice have a tensor dielectric permittivity

D = E  . (2.5)

This tensor dielectric perm ittivity does not reduce to a scalar even in the low intensity 

fields. Reconstructing a tensor e is not a novel inverse problem. For example, the tensor di­

electric permittivity has been successfully reconstructed in the 2D inverse electrodynamic 

case [4]. For many materials the three tensor components tx,ey and Cz in (2.5) are approx­

imately equal. For the methods considered in this thesis the resolution of the recovered 

e values are relatively low^ (Chapter 6) when compared to electrodynamic inverse prob­

lems [95], [32]. Consideration of the non-isotropic effects is an unnecessary complication 

because the materials tha t we investigate satisfy (2.3). Hereafter we assume that e is a 

scalar.

The electrostatic field is a conservative field; this is a direct consequence of (2.2). Along 

with the vector field E  we also use the electrostatic potential cj) which is related to  E  as 

follows

E  =  - V 0  . (2.6)

 ̂We solve the inverse electrostatic problem using a moment method (Chapters 5 and 6). Even when the 

resultant mean squared error (5.29) for the moment method is small (down to 0.05%) the reconstructed 

dielectric distribution may significantly differ from the original dielectric distribution which is inherent to 

the problems we solve.
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Substituting (2.3) and (2.6) into (2 .1 ) gives

- V  • eV0 =  47T/9 . (2.7)

Equation (2.7) is the governing differential equation of electrostatic theory. In homoge­

neous isotropic media e is constant and (2.7) becomes the Poisson equation. The homo­

geneous Poisson equation is called the Laplace equation. We now define two operators

L =  -V ^  , (2.8)

4  =  - V  • eV . (2.9)

We rewrite (2.7) using (2.9)

k(j> =  47TP , (2 .1 0 )

or in the absence of charges p =  0  (2 .1 0 ) gives

=  0 . (2 .11)

If the electrostatic potential (f) is considered in some domain with boundary F (see for 

example figure 2.6) the values of (j) and dcjy/dfi on T must satisfy boundary conditions. 

Otherwise the electrostatic problem may not possess a unique solution. The Dirichlet and 

mixed boundary conditions are defined as follows

0 |p =  a , (2 .1 2 )

d(j)
=  h ,  (2.13)

r

where 7 , a and b are arbitrary functions on F, n  is a normal to F. When 7  =  0 (2.13) 

becomes a Neumann boundary condition.
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In infinite domains an additional (to (2.12) and (2.13)) condition is usually imposed on 

the electrostatic field 4>

=  -2 A lo g (|r l) +  o(log(|rl)) =  O (logdr])) , |fl -> oo, (2.14)

for 2D and

0(0  = ^]^ + 2̂.15)

for 3D domains, where A  is an arbitrary constant. This condition assumes that all field 

sources such as charges and higher order multi-poles have a finite support and that the 

total electrostatic charge Qtotai is given by

Q total ~  •  (2.16)

In (2.14) and (2.15) we use conventional symbolic representations o(.) and 0 ( .)  that are 

defined as follows

hm — =  const, (2.17)f- ôo /(r )  ^

lim =  0 . (2.18)
f-^oo  f [ r)

2.2 G reen’s Function and the R eciprocity Theorem

The Green’s function G (rl,r2 ) for the Laplacian operator L (2.8) is defined as a solution 

of the equation

LG{f[,r"2) =  6 { f l - f i )  (2.19)

satisfying conditions (2.14),(2.15) in 2D and 3D respectively
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G{f[,f2) = ^  00, (2.21)

where 5(rl -  f 2 ) is a Dirac delta function.

The solution of (2.19) is well known and given by

G (n , fi) =  logdn  -  r51) (2.22)
/7 T

and

G(rl , f i )  =  (2.23)An | r i  — r2\

in 2D and 3D respectively.

The Green’s function G(rl, r )̂ is also called a free space Green’s function as it is associated 

with the operator L in the Laplace equation (e =  1). The Green’s function Gf:[f[^f2) for 

operator Lg (2.9) is defined as a solution to the following equation

4  G M .  rV, =  5(rl -  rV) . (2.24)

In the case of infinite domain the same conditions at infinity are imposed on {fl , r̂ )

Ge{fl,r2 ) =  0 (log |r l -  rl|) , \fl -  r̂ l ^  00, (2.25)

Geifl ,r2 ) =  0 {  ^■— ) , In -  ral ^  00, (2.26)
I n - ^ 2!

in 2D and 3D respectively. In the case of boundary electrostatic problems the Green’s

function for an inhomogeneous dielectric is stipulated to the corresponding homogenized

boundary conditions ((2.12) or (2.13)). In general Ge(n, r )̂ does not have a simple analyt­

ical representation. However there is a general property of any Green’ functions regardless 

of e which is expressed in the reciprocity theorem. The reciprocity theorem states that 

if we have two charges q\ and q2 located at f[ and ra having potentials (f)i{f) and (p2 i‘̂  

respectively, then qi(j)2 {fi) =  ?2</’i(^2) or

G e { f l , r 2 )  =  G e ( r 2 , r l ) (2.27)
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Differentiating (2.27) with f{ and r 2 in the arbitrary direction and k  respectively gives

df{df2 df\df2
(2.28)

Equation (2.28) is another representation of the reciprocity theorem which means that if 

we have two dipoles pi  and p 2 located at f \  and and having electric fields Ei(f) and 

E 2 {f) respectively then Ei{f'2 )P2 =  E 2 {fi)pi.

2.3 Conformal M apping and Its Application to Electrostatic Prob­

lem in Inhomogeneous Dielectric

A conformal mapping is an application of complex variable calculus. Conformal mapping is 

a powerful tool which can be used to map the potential (j>\ of one 2D electrostatic problem 

onto the potential (f)2  of another 2D electrostatic problem

L01 =  0 , (2.29)

L(f)2 =  0 , (2.30)

where operator L is the Laplacian operator (2.8). It is less well known that conformal

mapping is also suitable for mapping an electrostatic problem formulated for inhomoge­

neous dielectric e (2.11). In section 2.3.1 we outline the properties of conformal mapping

which are important to our study. In section 2.3.2 we show how conformal mapping can be 

applied to (2.11). Examples of the conformal mappings which we employ in our numerical 

algorithms are presented in section 2.3.3.

2.3.1 Introduction in Conformal M apping

We define two simply connected 2D open domains Z  and Z  in Cartesian planes z — x +  iy 

and z =  X +  iy. In figure 2.1 domains Z  and Z  are presented as finite domains for 

illustration purposes only; we do not impose any finiteness restrictions on these domains.
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z=x+iy

Figure 2.1: Z  and Z  domains.

Consider the analytic function^

z{z) ^  x{z) + iy{z) , (2.31)

where z — x + iy, which establishes a one-to-one mapping between Z  and Z.  The function 

z{z)  also establishes a conformal mapping between the domains and there exists an analytic 

function

z{z) =  x(z) +iy{z )  (2.32)

^An analytic function is a complex function in a complex plane that has a derivative. The function can 

be analytic at a point or in a domain. In this thesis whenever we refer to  an analytic function we imply 

tha t it is analytic at all points where it is defined.
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which is an inverse mapping [9]. The conformal mapping (2.31) and the corresponding 

inverse mapping (2.32) have an alternative representation in the form of real functions

/

z(z):
x = x { i , v ) ,

y  =  y { ^ , y )  ■

, x  =  x ( x , y )  ,
z [ z ) : {   ̂ ’ (2.34)

y = y{x,y)  .

If u{x,y)  is analytic (harmonic^) in Z  then u{x,y)  obtained according to (2.34) is also 

analytic (harmonic) in the domain Z  and vice versa.

The first derivatives of functions in (2.33) and (2.34) satisfy a fundamental relationship

d X _  d_y
d x  -  d y  ’ (2.35)
d X    d ij
d y d X

d X _ dji
d x  -  d y  ’ (2.36)
d  X    9  y
d y d X '

We now derive a transformation procedure for the gradient of an arbitrary function (j) 

which can also be an electrostatic potential. We assume th a t the gradient of is given in 

{x,y)  G Z  and that mapping (2.34) is differentiable but not necessarily conformal. The 

expression for in (a:,y) G Z  can then be obtained as follows

d ( t ) { x { x , y ) , y { x , y ) )  ^ d ( j ) { x , y ) d x { x , y )  d  4>{ x , y )  d  y { x , y )

d  X d  X d  X d  y  d  x  '

d  ( j ) { x { x , y ) , y { x , y ) )  ( j ) { x , y ) d  x { x , y )  d  ( f ) { x, y)  d  y { x , y )

d y d X d y d y d y '

We write (2.37) and (2.38) in a matrix form

d(f> 
d  X
d  4> 
d  y

(2.39)

harmonic function is a real function satisfying Laplace’s equation (2.29), (2.30)
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where J  is a Jacobi matrix of transformation (2.34)

d x  d y

(2.40)
d y  d  y

Equations (2.39) and (2.40) are obtained for an arbitrary differentiable transformation. 

We now assume that the transformation (2.34) is conformal and for illustration purposes 

we denote

^  ^  ’ (2.41)
^  = bd x  ^ ■

According to (2.35) we rewrite (2.40) 

a b .
J  =  I I . (2.42)

-b a

We now demonstrate that (2.42) can be seen as two subsequent operations: a rotation by 

an angle a  and a multiplication by a scaling factor K.  Indeed denoting

= 7 ^  ’ (2.43)
K  =

we rewrite the Jacobi matrix (2.42) as follows 

cos a sin a
J  = K  \ ) . (2.44)

sin —a  cos a

The matrix in (2.44) is a rotation matrix that rotates the vector by an angle a — atan |

counterclockwise. After being rotated by a  the vector is then multiplied by a factor K

which is a square root of the determinant of the Jacobi matrix (2.42)

K  = Vdetl (2.45)



1

2.3. Conformal M apping and Its A pplication  to E lectrostatic Problem  in

Summarizing the conformal mapping transforms the vicinity of any point by rotating and 

scaling. An im portant conclusion for us is th a t the conformal mapping does not change 

the angle between any two vectors at the point. If the electric field is normal to the 

boundary and has been conformally mapped into another domain then the right angle will 

be preserved in the new domain.

2.3.2 A pplication  o f Conform al M apping to  th e 2D E lectrostatic Problem  

Involving an Inhom ogeneous D ielectric  M edium

In this section we illustrate how a conformal mapping can be applied to electrostatic 

problem (2.10). To start with we define the gradient operators in the Z  and Z  domains 

(see previous section, figure 2.1) in a vector form

In the previous section we presented a rule for transforming a gradient of a function from 

Z  domain into Z  or alternatively a rule for transforming a gradient operator. Indeed using 

(2.46),(2.47) and (2.40) we may rewrite th a t rule as follows

where ^^e transpose of the operator in (2.46). We now transform

equation (2.49) into the Z  domain. In order to do so we manipulate with operators. Using

(2.48) gives

Inhom ogeneous D ielectric 18

(2.46)

(2.47)

(2.48)

Let (j) be an electrostatic potential satisfying (2.10) in Z

xy(f> =  47TP (2.49)

-WlyCJVa;y(l) =  4ttp . (2.50)
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The transposed gradient operator in (2.50) can be rewritten as follows (2.48)

V l ,  =  . (2 .51 )

Substituting (2.51) into (2.50) gives

-V%J'^eJV,y(t>  =  47TP . (2.52)

The dielectric perm ittivity e in (2.52) is a scalar factor that can be placed in front of 

the Jacobi m atrix J . Note th a t we can also consider e in (2.52) as a diagonal matrix

I . Of course the alternative representations for e do not change the equation and 
0 e J  

we can write

= Anp . (2.53)

Expression (2.53) is valid for any differentiable transformation between Z  and Z. We now 

show that in a case of conformal mapping a product J  has a form of a scalar function 

i.e. it can be represented as const *1, where I is a unity diagonal matrix. Multiplying J  

gives

/  - I -  (
j T j  ^  y a x )  ^  \ d y j

1 d ^ d _ x  I d  y  d  X
\  d x d x d y d y

According to  (2.35) the non-diagonal components in (2.54) are zero; f f  f f  +  =  0.

The diagonal components in (2.54) are equal to the determinant of the Jacobi matrix 

(2.40) (a Jacobian)

d  y  d  X  I d  x  
d  X  d  X  d  y  d  y

( f f ) + (F (2.54)

det I J | =
d x d  y  d  X d  y
d  x d  y  d  y d  X

1 0 

0 1

(2.55)

(2.56)
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Substituting (2.56) into (2.53) gives

-V^^det IJ1 = 47TP . (2.57)

The operator V^y on the left in (2.57) acts on each factor on its right as follows

-V f^d et I J | eS7iycl> = -eV % {det \J \)V iy< l>  -  det \J\ V |’j^(cV;^0) . (2.58)

It can be shown that

Vij(detVl)V««i = 0 (2.59)

and ultimately combining (2.57),(2.58) and (2.59) gives

(2.60)

Equation (2.60) describes an electrostatic field in Z. Comparing (2.60) and (2.49) we 

formulate a translation procedure for mapping an inhomogeneous electrostatic problem 

involving an inhomogeneous dielectric medium: in order to transform the electrostatic

problem from one domain into another using a conformal mapping we map potential (j) 

and dielectric distribution e without any changes while the field source function p has to 

be scaled by a reciprocal of the determinant of the Jacobi matrix (2.55). If an electrostatic 

charge p in the original equation (2.49) is zero then (2.60) is homogeneous

Note that symbolic representation (2.61) is not affected by the conformal mapping. 

2.3.3 C onfo rm al M ap p in g  E xam ples

formal mapping for Z  and Z. There is a theorem saying th a t a conformal mapping exists 

between arbitrary simply connected 2D domains Z  and Z. However th a t conformal map­

ping usually does not have a simple analytical representation and is, therefore, unsuited 

for practical applications.

(2.61)

In section 2.3.1 we introduced arbitrary domains Z  and Z  (figure 2.1) and defined a con-
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Before tackling an electrostatic problem using conformal mapping we have to study the 

shape of the boundary of the problem. If the boundary of the original electrostatic problem 

is, for example, a circle, a line segment or a semi-infinite strip then there exists a conformal 

mapping having a simple analytical representation that maps that original problem onto 

another electrostatic problem with a boundary also given by a circle, a line segment, a 

semi-infinite strip etc.

Let the previously introduced Z  and Z  domains be associated with a real physical space 

and a virtual space respectively. Recall from section 1.1 that the sensor workbench is flat. 

Therefore we assume th a t the workbench sensor array lies on a line segment. In this case 

define Z  to be an infinite domain with a segment boundary [—1,1]. We have an option 

to choose the Z  domain such that it changes the condition number (section 4.1.2) of a 

numerical implementation of the electrostatic problem.

2.3.4 C onform al m apping exam ple 1

In this example the Z  domain is an inner circle domain with unit radius. Both Z  and Z 

domains are illustrated in figure 2.2. We denote the boundaries for Z  and Z by F and f  

respectively. The following conformal mapping transforms Z  into Z

The complex numbers z and z are often represented in a polar co-ordinate system (r, a ) . If 

point zq has polar co-ordinates (ro, <̂ o) then it is also referred to by {tq, ao +  n2'K), where n

phase angle will never experience a change of a multiple of at the return. The plane cuts 

do not arise in the physical problem and therefore are artificial. In our study a continuity 

condition for the electrostatic potential and its derivative is prescribed on the plane cuts.

(2.62)

The inverse mapping which is also conformal is given by

(2.63)

is an arbitrary integer. To avoid the multiplicity we add plane cuts as shown in figure 2.2. 

If we now select any point in Z or Z and draw a closed curve starting at th a t point then the
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Y

z = x + i y
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F G

z = x + i y

Figure 2.2: Example 1: Outer segment and inner circle domains.

This continuity condition is always satisfied because we do not prescribe field sources on 

the plane cuts. Another advantage of using the plane cuts is to isolate the branches of 

multi-valued functions such as squareroot or logarithm functions. In particular we select 

a branch for the squareroot function in (2.62) such th a t the phase for that squareroot 

function is given by , where angles a \  and are defined in figure 2.3.

An understanding of how conformal mapping works is needed to explain the efficiency of 

the numerical methods employing conformal mapping. For this reason we now present 

a comprehensive yet concise analysis of the mapping (2.62). We first illustrate how the 

boundary is mapped by (2.62). Then we analyse how the electrostatic field intensity is 

mapped. Mapping of the boundary values of the electrostatic field intensity is given special 

attention as these values are required for the sensor response computation.
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-1

Figure 2.3: Selecting the branch for the squaxeroot function in (2.62)

Points (marks) A, B, C, D, E, F and G in figure 2.2 are introduced to illustrate how 

the boundaries F and f  and the plane cuts are mapped onto each other in the conformal 

mapping. The upper and lower sides of F are mapped onto the lower and upper semicircles 

of f  respectively. According to (2.62) the infinity z —>■ oo is mapped onto z = 0.

We now derive an expression mapping F onto F (figure 2.2). Mapping F onto F is more 

difficult to present because of the doublesided boundary. Mapping F onto F does not 

involve such complication. Of course both ways are just alternative aspects of the same 

problem because the conformal mapping is a one-to-one mapping.

Let zq = Xo + iyo be an arbitrary point on F with Zq being a corresponding image on F. 

We recall that f  is a unit circle and hence

corresponding image Zq on F and that image can be obtained by projecting zq onto the X  

axis of the Cartesian co-ordinates. Thus zq can be obtained graphically as shown in figure

2.4. This figure can also be used to map Zq onto Zq.

12ol =  1 ■ (2.64)

We substitute Zq into (2.63) to give

(2.65)

where the bar denotes a complex conjugate. According to (2.65) any point zq on f  has a
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To map a gradient operator (2.48) we need to know the Jacobi matrix (2.40) of transfor­

mation (2.62). The first step in calculating the Jacobi matrix is to calculate the derivative 

of (2.62)

The Jacobi matrix Jz-^z (2-40)

form on the boundary F which we now derive.

We recall that in our analysis G T {zq = xq ^  [—1,1]) is an image of an arbitrary point 

ib € r  and is obtained by projecting zq onto X . We substitute xq into (2.66) to give

To find the value of the squareroot function in (2.68) we need to know whether we approach 

r  from the upper half space yo —̂ +0 or from the lower half space yo —>■ —0. If zq is on 

the lower semicircle of Z  then yo —> +0 and =  tt and Q!2 =  0 (figure 2.3). If zo is on the 

upper semicircle of Z  then yo ~0 and ai = tt and 0 : 2  =  27t. Making either assumption 

we obtain

(2.67)

We implement the general form expression of (2.67) numerically but do not present it in 

this section because it is bulky. At the same time the Jacobi matrix (2.67) has an explicit

(2.68)

/ '  j 2/0 ^  T O  .

V l  - ^ 0
(2.69)

The Jacobi matrix (2.67) is then given by
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Figure 2.4: Mapping boundaries F and F.

According to section 2.3.1 the Jacobi matrix (2.70) contains information about the rotation 

angle and a scaling factor. We can learn about the rotation angle by looking at figure 2.4: 

the gradient of the potential is rotated by the same angle as the normal to the boundary. 

The scaling factor (2.45),(2.70) is given by

K  — y^det] ~  ^  ^ 1] • (2-71)

According to (2.71) the scaling factor is unity for a; =  0 and tends to infinity as x  ap­

proaches the end points of the segment K  —>■ oo, a; —> ±1.

2.3.5 Conformal m apping exam ple 2

In this section we present a conformal mapping similar to the previous example. The Z  

and Z  domains for this example are shown in figure 2.5. Due to similarity we omit the 

details for this example. The analytical expressions for the conformal mapping and the 

inverse conformal mapping in figure 2.5 are given by

z = z + ^/z‘̂ - I  , (2.72)

z = i ( z  +  (2.73)
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Figure 2.5: Example2: Outer segment and outer circle domains.

respectively. The inverse conformal mapping (2.73) has the same form as (2.63). The 

difference is that (2.73) and (2.63) are defined for different Z  domains. The Z  domain 

in the previous example is a finite domain while Z  in figure 2.5 is infinite. When solving 

an electrostatic problem in the infinite domain we impose an additional condition on 

the electrostatic field at infinity while for the finite domain we need not. This affects the 

implementations of the relevant numerical methods. It is worth mentioning th a t according 

to (2.72) the point at infinity z oo is now mapped onto the point in the infinity 5 —>■ oo.

2.4 Integral Governing Equations

In this section we derive two integral equations which are fundamental in electrostatic 

theory. The first integral equation (2.78) is based on the Green’s function of free space
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introduced in section 2.2. The second equation (2.80) employs the Green’s function for an 

inhomogeneous dielectric medium. Both integral equations are further discussed in section 

2.5.

We begin with the generalized second Green’s formula:

J  {uV ■ eVv -  vV  ■ eVu) dV =  J  ’ (2-74)

where T is a boundary of domain V (fig. 2.6), v and u are arbitrary functions having 

second order derivatives and e is an arbitrary function having a first order derivative.

Figure 2.6: Domain V where equation (2.74) holds 

Substituting (2.7) and G[f[ , f 2) for u and v in (2.74) respectively gives
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[  ■ e(ri)VriG'(rl,r2) -  G(rl,r^)Vri • e{n)Vr,(j){f\)) dr^
J v

- a (2.75)

where d r i  is either a volume or boundary differential (according to the type of the integral 

in (2.75)).

We substitute (2.7) into (2.75) to give

[  [0(rl) Vri • e(n) Vri<S'(rI, r )̂ + 47rG{f{, r 2 )Pv{f l ) ]  d n  
J v

-L e(ri)0(n)— 3̂ -̂--------e(ri)G'(ri,r2)
dn,r i dn.ri J

dri , (2.76)

where the subscript for p v  is used to distinguish the volume charge density from the 

boundary charge density.

Now we transform the following integral:

f  H n ) ' ^ n - ^ { r i ) ^ n G { f l , f i ) d r i  
Jv

=  [  ( f > ( f l ) V r ,  ■ (e(ri) -  1 +  l ) V r ^ G { f l , r 2 ) d n  
Jv

=  j  0 (r l)V 2 ^G(rl,rl)dri +  ■ (e(ri) -  l ) V r ^ G { f [ , r 2 ) d n

(see (2.19), we assume that 7^2 ^  V  )
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=  -0(^2) +  [  0(n)V ri • (e(ri) -  l)VriG(n,r^)(iri 
Jv

=  +  [  V r i  • { < ? i ( n ) ( e ( r i )  -  l ) W r , G { f { , f * 2 ) } d r i
Jv

-  [  ( e (n ) - l)V ,,< / .( r l)V ,,G (r l ,r l)d r i  
Jv

(applying the divergence theorem to the first integral)

= -Hri) + [  0(n)(e(n) -
Jr  driri

-  f  (e(n) -  l)Vri<?!»(n)VriG(rI,r2)dri (2.77)
Jv

We now combine (2.76) and (2.77) to give:

-<t>(r2) + X{Kn)G(r„r,)-̂  -
+4it j  G(f l , f i )pv{ f i )dr i  -  J  (c{ri) -  l)V„(t i{f i )Vr,G(f ' i , f2 )dri = 0  (2.78)

The above representation of the electrostatic integral equation is general. It will be used 

later as the starting point for deriving a particular form of the electrostatic integral equa­

tion for a particular electrostatic problem.

We now derive another general electrostatic integral equation which is based on the Green’s 

function for a non-uniform dielectric Substituting 4>{f{) (2.7) and Ge{fl,f^)

(2.19) for u and v in (2.74) respectively gives
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[  ( 0 ( n ) V r i  • e{n)Vr,G, { f [ , r2)  ~  G e(rl,r^)Vri • e{ri)Vn(l>{f[)) dr^
J v

=  *=;;-------- € (n )G ,(r „ r ,)— j  dr,  . (2.79)

where dri  is a either a volume or boundary differential (according to the type of the integral 

in (2.75)). Substituting (2.7) into (2.79) and using the definition of the Green’s function 

(2.24),(2.9) gives

- 0 ( r 2 ) + 4 7 r /  G^{fi,f2)p{f[)drx 
J v

= I  -  e (r ,)G ,(r l ,r - ,) !^ )  d n  . (2.80)

2.5 U nderstanding Integrals in (2.78) and (2.80)

Equation (2.80) is different from (2.78) because, for example, it does not contain e in the 

volume integral. Instead, the e dependency in (2.80) is included in G'e(n,r2 ). Comparing

(2.80) and (2.78) one can conclude that (2.80) is simpler. The reason why (2.80) is not 

widely used for solving electrostatic problems is that C?e( l̂, ^1) is usually unknown. In this 

thesis we employ (2.80) to build a DBIM which is an efficient inversion method explained 

in section 5.2.3. We now explain the meaning of the boundary and volume integrals in 

(2.78) and (2.80).

Equation (2.78) is a Fredholm integral equation of the second kind provided that </)(r̂ ) is 

considered as the unknown function. We now consider (2.78) as an expression for (j){f )̂ 

given by a sum of integrals. Each of these integrals satisfies the Laplace equation in V.  In

(2.80) (j){f*2 ) is also given by a sum of integrals however these integrals now satisfy a more 

general equation (2.7). Despite integrals contributing to </>(r2 ) in (2.78) and (2.80) being 

different they have a similar physical interpretation. Therefore we restrict our discussion 

to the integrals in (2.78).



2.5, U nderstanding Integrals in (2-78) and (2.80) 31

The first volume integral in (2.78)

0i(r-2) =  47T / ” Gin,r2)p{f{)dri (2.81)
J v

defines an electrostatic potential in free space caused by a volume charge density p{f[).  

We now make an important observation regarding p{f)  in (2.81). When we introduced 

the charge density function p(f) in the governing differential electrostatic equation (2.7) 

we did not specify the properties of p(f) .  Very often p{f[)  is considered to be either a 

continuous function or a sum of Dirac delta functions. The Dirac delta function belongs 

to a wide class of functions also known as generalised functions which are defined in the 

form of functionals and very often cannot be represented in a conventional form of f {x) .  

In this thesis we treat p{f  ̂ as a generalized function. In particular p(f) can reduce the 

volume integral (2.81) to a surface integral representing the potential due to a single layer 

(surface charge distribution) or double layer (surface dipole distribution)

47t f G (n,r^)p,(r1)(iri , (2.82)
Js

f  dG'(rl,r^) ^
47T /  — — -------a s [ r i ) d r i  , (2.83)

Js

where S  is any surface in V,  with normal n, Ps{f) and <Ts(f), r G S  are the single and 

double layer densities.

The second volume integral in (2.78)

M^' 2 ) =  -  [  (e(n ) -  (2.84)
Jv

is a potential field due to a volume dipole distribution and can be represented as follows

02 (^2) =  47t f  av{ '^i )^r iG{f [ , f2)dr i  , (2.85)
Jv

where the volume dipole density is given by
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Note that (2.86) represents a fundamental relationship

ATrP +  E = D , (2.87)

where £■ =  — is an electric field intensity, D = eE is an electric flux density (2.3) and 

P = ay is a, polarization vector.

We now consider the boundary integral in (2.78)

(2 .88)

The physical interpretation of (2.88) is not as simple as for the two previous integrals

with we show that (2.88) is a field due to a superposition of both single and double layers. 

Indeed we can rewrite (2.88) as follows

It can be shown that (2.90) and (2.91) are not necessarily physically existing field sources. 

Indeed we can always place T in the electric field beyond the actual field sources. In that 

case (2.90) and (2.91) are nonzero while V is free of charges and dipoles. Hence we cannot 

explain the origin of (2.88) by assuming the presence of actual sources or suggested by

(2.90) and (2.91).

Let y  be a finite domain in the X Y  plane and T be a boundary of V. We assume that 

a charge distribution pv{f)  and a dielectric susceptibility e{f) -  I have a finite support 

in the X Y  plane such that supp{/Ok(0} ^ ^  supp{e(^ — 1} G V. The supports for

(2.81) and (2.84) and requires additional consideration which we now discuss. To start

0 3 ( ^ 2 )  = 4 7 t  J  p r ( n ) G ( r l , r 2 ) r i r i + 4 7 t  J  c r r ( r ! ) ^ ^ ^ ^ ( i r i  , (2.89)

where the single and double layer densities pr(^l), crr(n) are given by

(2.90)

(2.91)
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supp{p} \

Figure 2.7: Domain V where equation (2.74) holds

Pv(f) and t{f) — 1 are shown in figure 2.7. Assuming that r 2 G V̂, as shown in figure 2.7, 

is fixed and then applying (2.78) to V  gives

+47T /  G (n,r^)py(rl)rfri
Jsupp{pv( iO}

-  [  (e(ri) -  l ) V r M n ) ^ r M r ^ r 2)dn  =  0 , r2 G V . (2.92)
^suppwo-i}

Without modifying the charge and dielectric susceptibility distributions we now con­

sider another domain V* (in the same X Y  plane as V") having boundary T* such that 

supp{pv(0} supp{e(r^ -  1} assume that r2 G ^  shown in

figure 2.7. Applying (2.78) to V* gives
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+47T [  G{ri , f2)pv{n)dri
Jsupp{pv{f)}

-  [  ie{n) -  l ) V r M r W r M r l , r 2 ) d r ,  =  0 , fs G V' . (2.93)
J SUDDlc^fl—1)'S U p p { e (f) - l}

Subtracting (2.93) from (2.92) gives

/ {G(ri,r2)-7^------- 0(ri)——-----}dn
Jj' UTlfj

-  f  {G (r1 ,r^ )^ ^ ^  -  =  0 , . (2.94)
J y * CLTlri

Equality (2.94) holds for any F* which means that

i { G (r l,r 3 )^ ^ ^  -  <i!)(rl)^^^^-^}dri =  const , ^ 2  G V . (2.95)

We now prove that if the field in the entire 2D space is caused by a dipole distribution 

having a finite support then the constant in (2.95) is zero. Let (j) be an electrostatic 

potential in the 2D due to the volume dipoles. It can be shown that (j) is asymptotically 

represented as <ji> =  A i / R  +  o{l /R),  R - > o o .  Let F* in (2.95) be a circle domain of radius 

R centred at the origin. Fixing the observation point f 2 and letting R  tend to infinity 

gives the following asymptotic representation for (2.95)

L =  +  ,(2.96)

where C is a constant. The right hand side in (2.96) tends to zero as R tends to infinity. 

At the same time the left hand side in (2.96) is constant according to (2.95). This can 

only hold if the constant in (2.95) is zero.
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If we assume that the electrostatic field (j) is asymptotically represented as a constant 

(j) =  Aq +  0 ( 1 / R) then repeating the same analysis one can show that the constant in 

(2.95) is A q. Analysis of the non-compensated charge distribution is more complicated. In 

that case the potential is increasing, at infinity, as a logarithm. In any given direction (f> 

is given by the following series

Asymptotically representing (2.95) it can be shown that the integral in (2.95) is still given

Since we have not defined the electrostatic potential at infinity we can assume that A q =  0. 

The electrostatic governing integral equation for the problem illustrated in figure 2.7 can 

now be written in the following form

We now consider another electrostatic problem where the support for the dielectric suscep-

supp{e(f^ — l } n ^  =  0; su p p {p (f)}P l^  =  0- Let the observation point be placed in 

V; e  V. We also consider another domain V* having boundary F* such that V C V*, 

supp{e(^ -  1} C V* \  y  and supp{p(f)} C V * \ V .

Applying (2.78) to V  gives

Note that (2.99) does not contain volume integrals. We now apply (2.78) to V*

(2.97)
k=l

by A q. In fact coefficient A q (2.97) is independent of the radial direction and arbitrary.

G{f{,r2)pv{ri)dri
supp{pv(r)}

Lsupp{6(0 -i}
(2.98)

tibility distribution and electric charge density function is outside V  having a boundary F:

Hrh) + j^{e(n)G{ruf2)

supp{pv(r0}

LS U p p { e(r-)- l}
(e(ri) -  l )V ri0 (r l)V rjG (rI ,r l)d r i -  0 . (2 .100)
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supp{p}\$upp{e-l}

Figure 2.8: Domain V where equation (2.74) holds

The electrostatic potential ^(r^) in (2.99) and (2.100) is the same because it is caused by 

the same field sources. Hence the boundary integral in (2.99) gives the same values in V 

as two volume integrals in (2.100) we write

y^{e(r,)G(n,rJ—  -  4 , { n ) ^ ^ ] d r ,

=  Att [  G{ f { , f 2 )pv{ f { )dr i
JsuppW(r)}

-  [  {e{n)- l )Vr,( f>{n)^nG{rl ,r2)dn  • ( 2 . 101)
^ S U p p { e ( f ) - l}

We see that the boundary integral (2.101) is no longer zero. It is given by the sum of two 

volume integrals which have already been explained in this section, one of these integrals 

defines a potential due to isolated charge p(f) and the other represents a field of the 

polarized dielectric. Note that the polarized dielectric and the charge distribution are now 

external to V  while the observation point is inside V .

Summarizing the above examples we now consider the meaning of the boundary integral 

(2.88). Let the dielectric e and charge distribution p be known in the whole X Y  plane.
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As a consequence we know the total electrostatic field in X Y  and the polarization of the 

dielectric. The total electrostatic potential in the X Y  plane is given by the sum of (2.81) 

and (2.84).

Let V be a domain in X Y  with boundary F having a normal n. Representing the elec­

trostatic potential (and its normal derivative) on F as a superposition of two fields due to 

exterior and interior to V sources (f)ext and respectively gives

As we have demonstrated </>3 ,^t(r2 ) is zero and </>3 j„t(r^) is an electrostatic potential in V 

due to external field sources. This accomplishes our analysis of (2.88).

2.6 Formulation o f Dirichlet Type and N eum ann Type Electro-

proach.

Equation (2.78) was obtained in a general form. It contains all integrals that appear in 

the electrostatic problem. In this thesis we study electrostatic problems which are free of 

volume electric charge p. Assuming p = 0 in (2.78) gives

In order to solve an electrostatic problem using an integral equation approach we need well 

conditioned integral formulations. Usually the Predholm integral equation of the second 

kind is more likely to lead to a well conditioned numerical formulation while the Fredholm

— 03e*i(?'2) + 03i„e(^2), 2̂ ^ V , (2 .102)

^ e x t  (^1) (2.103)

(2.104)

static Boundary Value Problem  U sing Integral Equation Ap-

(t>{f2) + j  {c(n)G(rl,r2)

[  (e(ri)-l)V,,0(rl)V,,G(rl,r^2)rfri =  O . (2.105)
Jv
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integral equation of the first kind would usually result in ill-conditioning. We say “usually” 

and “normally” because the Fredholm integral equation of the second kind can be rewritten 

in the form of the integral equations of the first kind with added singularities to the kernel. 

Indeed the Fredholm integral equation of the second kind

/ ( 0  +  J  K{f , f ' ) f { f ' ) dr '  = g{f) , (2.106)

where /  is the unknown function, K  is the continuous kernel of the integral equation and 

g is the known function, is given by

I  K*{ f , f ) f { i ^ )dr '  = g{i^ , (2.107)

where K*{f , i^)  =  +  <5(r — f )  is a new kernel of the integral equation with a

singularity at r  =  given by the Dirac delta function 5 (f  — t̂ ). Therefore before claiming 

that the integral equation is ill/well posed we need to analyse the singularities of the kernel.

The analysis of ill-conditioning of systems of algebraic equations is introduced in section 

4.1.2. Since the algebraic equations are directly related to the integral equations we do 

not provide the same level of detail of the conditioning of integral equations.

We now analyse the problem of posing (2.105) in a well conditioned form. This analysis 

is split into two cases when equation (2.105) is applied to the boundary r 2  G F and to the 

volume domain r 2  G V.

2.6.1 W ell conditioned electrostatic integral equations on the boundary

We now consider a boundary electrostatic problem with boundary F posed in free space 

e = \. The boundary condition on F which may be a Dirichlet or mixed (Neumann) 

condition is specified later. Substituting e =  1 in (2.105) gives

=  0 . (2.108)

The unknowns in the integral in (2.108) are on F which forces us to place an observation 

point T2 also on F. Doing otherwise we create an additional unknown in domain V  where
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the electrostatic problem is posed. This does not violate the consistency of the problem 

but involves redundant computations.

Let the electrostatic problem be a Dirichlet boundary problem with a Dirichlet boundary 

condition given by

=  a(fO, r  e  r  , (2.109)

where a is an arbitrary function on P. Substituting (2.109) into (2.108) gives

- 0 (^2 ) +  J  {G{r i , r 2) - ^  a ( r i)— — ------ } d n = 0  , f 2  G T . (2.110)

The normal derivative of 0 on F is the only unknown in (2.110). Solving (2.110) for 

r  6 r  leads to an ill-conditioned problem since (2.110) is a FYedholm Integral equation of 

the first kind. One way to eliminate the ill-conditioning is to differentiate (2.108) prior to 

substituting the boundary condition (2.109)

d(l){f*2) , f  fdG{f{,r2)d(f){fl) d dG (rl,r^)
dTij‘2

Substituting (2.109) into (2.111) gives

f  ^ d G j r y - j )  d ^ J r , )  _  ^  ^  ^
d f i r 2  J t  d U r ^  d r i r i  d U r ^  drir2

Equation (2.112) is a Predholm integral equation of the second kind. To evaluate the 

condition of (2.112) we need to study the singularities in the boundary integral.

Recall the single and double layers, introduced in section 2.5 (2.82),(2.83)

</».m<,/e(r2 ) =  47t [  G { n , f 2)Ps{f\)dr^ and (2.113)
Js

=  4>r ^  . (2.114)

The potentials due to the single and double layers have singularities on T given by

d ^ s i n g l e i ^  _  d ( j > s i n g l e i ' ^  _   ̂ (2.115)
d f i r  d U r
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^ d o u U e i^  -  h a u b l e i ^  =  47Ta, , ( 2 .H 6 )

where Hr is a normal to F, cr̂  is a projection of on <t>'̂  is an electrostatic potential 

on the side of F where the normal n  is pointing (positive side), (f)~ is the value of potential 

on the opposite side of F (negative side). The first integral in (2.112)

/• dG(n,r2)rf0(rl) _  d  f  d c p j r l )
dn d n  dn  j ^2  ^ (2.117)

is a normal derivative of the potential due to a single layer given by Ps — f* G P.

According to (2.113) and (2.115) integral (2.117) experiences a jump when we cross F

(2.118)
dUr

Removing the singularity from the integral in (2.112) i.e. subtracting the principal value 

for (2.117) for f [  =  and adding that principal value as an individual term gives

1 d(t>{f*2)
2 dTir^i^

J y dThf‘2 uTiri

Equation (2.119) is a Fredholm integral equation of the second kind with no singularities 

in the kernel which means well conditioning.

We now consider a Neumann electrostatic boundary problem. Let the Neumann boundary 

condition be given by

^  = 6 (f), f  € r  , (2.120)
d rir

where b is an arbitrary function. Substituting (2.120) into (2.108) gives

~( f ) {r2)  +  j { G { f { , f 2 ) b { r 2 )  ~  </»(n) — ~ } d r i  =  0 , r2 G F . (2.121)

The only unknown in (2.121) is (^(r^, T. Extracting the principal value from -  /p “

in (2.121) and adding it to that equation for consistency gives
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^ re m o v e d  s in g u la r ity  a t  7*i— T2 fjC~T(7% 7 ^ ^

+  J  {G{r{,r2)b{r2) -   }dri = Q , G T .(2.122)

Integral equation (2.122) is of the second kind having a smooth kernel. Since (2.122) and 

(2.121) are the same we admit (2.121) as being well conditioned.

We presented the well posed integral equations for the Dirichlet and Neumann boundary 

electrostatic problems (2.119), (2.122). These equations are well suited for solving bound­

ary problems, although, there exist more efficient analytical representations of (2.108) 

which we now introduce.

In section 2.5 we explained the meaning of the boundary integral in (2.108). This integral 

represents the electrostatic potential due to electrostatic sources external to V. It can be 

proved tha t for any electrostatic potential cj) in V  produced by sources external to V  there

exists a single/double layer on F th a t establishes the same potential in V.  We now replace

the boundary integral in (2.108) by an unknown single/double layer

-0 (r^ )+ 4 7 r  J  Ps(ri)G (r1,r^)dri =  0 , (2.123)

-(/.(r-̂ 2) +  47t / =  0 . (2.124)
J t  arir^

Equations (2.123), (2.124) are the Predholm integral equations of the first kind. We use the 

derivative of (2.123) to tackle the Neumann electrostatic boundary problem (2.120) while 

(2.124) can be directly applied to the Dirichlet electrostatic boundary problem (2.109)

4 7 t - ^  [  Ps{ri)G{f[, f*2)dri =b{r2) , G F , (2.125)
dur^ J y

4tt [  CTs(rl) — dri  =  o(r2) , G F . (2.126)
Jt dur.

Removing singularities from the integrals in (2.125), (2.126) at r i =  ra &iid adding the 

corresponding principal values to the equation gives

J p rem oved  s in g u la r ity  a t  T i =7*2

27rp5(^2)+47r— -  /  Ps{ri)G{f\, f2)dn = ^ ^ 2 ) , e  F ,(2.127)
dur^ Jr
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^ rem o v ed  s ingu larity  a t n = r a  rlC(f*
27ro-5(r )̂ +  47ry o-s(rl)—  ̂ d n  = a(f^) , 7--̂ ^  T . (2.128)

2.6.2 Well Conditioned Electrostatic Volume Integral Equations

In a non-homogeneous dielectric e the volume integral in (2.105) is nonzero. To simplify 

analysis we replace the boundary integral in (2.105) by a background electrostatic potential 

(j)inc- Assuming r 2 ^  we write

<?!»(rl) +  /"(e(ri) -  l)V ri0 (rI)V r,G (rI,r2)dri =  0 i„c(^2) , r2 ^ V .  (2.129)
Jv

Note th a t (2.129) includes both the value of the potential 0 and its derivatives which 

complicates practical implementation. Applying a gradient operator to (2.129) does not 

add higher order derivatives of (j)

V .,.^(r2)+ V ,, f  (e (ri)-l)V ,,0 (r1 )V ,,G (rl,r^2 )dn  = V ,,0 i„ ,(r2 ) , ^2 G V .(2.130) 
J v

(2.130) is a Fredholm vector integral equation of the second kind with no singularity in 

the kernel and yields two scalar well posed equations in 2D

— ------+  /  ( e ( r i ) - l )  < —r ^ ^  h  ------------ ^ ^ ----- > dri =  — ---- , (2.131)
0x2  Jv  [ a xi  a x i d  X2 a yi a yid X2 J 0x2

f  ( , ( , , ) _ ! )  ( 3 m a ^ G ( ^ S \  +  . (2.132)
dV2 Jv  I  5 xi d x i d  V2 d y i  d yid y2 ) d y2

T 2 e V  .

2.7 Governing Equations for Capacitive Sensor Array  

2.7.1 M etal Electrodes and Boundary Conditions

In order to both measure and establish electrostatic fields we employ an arrangement of 

metal electrodes of a given physical size. The boundary of these electrodes determines the
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boundary of the inverse electrostatic problem that we solve and the corresponding bound­

ary conditions. In this section we relate the boundary conditions to the measurements 

that can be physically observed using metal electrodes.

We consider a solid electrically conducting electrode of an arbitrary shape which we refer to 

as the basic electrode. A set of such electrodes is shown in figure 2.9. Using that electrode 

we have a possibility to both measure and pre-set its electrostatic potential and/or electric 

charge.

The electrostatic potential does not vary along the surface of the basic electrode. Indeed a 

non-zero electric field component along the conductor wall would cause an electric current 

that would violate the static distribution of charges. If the surface of the electrode is Fg 

then a constant Dirichlet boundary condition (2.12) holds =  const^ r  G Fg.

The charge of the conducting electrode is located on its surface. The surface density of 

the electrode charge can be obtained using (2.7)

where Q is the total charge accumulated on the electrode. Equation (2.134) relates the 

Neumann boundary condition to the charge accumulated on the electrode. By measuring 

an electrostatic charge accumulated on the electrode we collect the average of while 

the exact Neumann condition on Fg remains unknown.

2.7.2 C apacitive Array

We now consider N  metal electrodes of arbitrary shape and arrangement in space. We 

assume that the space in between these electrodes is filled with a non-conducting non-

(2.133)

where e is the boundary value of the dielectric permittivity on the electrode surface Fg, n 

is a normal to Fg and p is the surface charge density.

Integrating (2.133) over the electrode’s surface Fg gives

(2.134)



2.7. Governing Equations for Capacitive Sensor Array 44

homogeneous dielectric medium (figure 2.9) characterised by dielectric permittivity e(0^-

Electrode I

Electrode k

Figure 2.9: Capacitive prototype.

Each electrode is represented by its potential and charge n =  1,..., N . According to 

classical electrostatic theory charges and potentials (j)n are related through the following 

set of N  equations

Qk= Y ,  ' k = l , - - - , N , (2.135)

where Ck,i, k ^  I are mutual capacitances between the and electrodes and 

i =  1,..., N  are self capacitances. The capacitances in (2.135) are functions of the dielectric 

permittivity profile and the electrode geometry. The set of equations (2.135) arises from 

applying a principle of superposition of the electrostatic field and it can be obtained by 

integrating the normal derivative of the potential over the electrode surfaces taking into 

account (2.134). According to the reciprocity theorem the mutual capacitances satisfy the

În this project we also refer to the dielectric permittivity e(r) as a dielectric profile. The electrostatic 

inverse imaging problem can be then referred to as a profile reconstruction or profile inversion problem.
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following equality

Ck,i = Q^k ■ (2.136)

The mutual and self capacitances are the only data that can be measured using a capacitive 

sensor array. According to (2.135) we can measure N  self and N {N  — l) /2  mutual capac­

itances. Reconstruction of simple images requires a significant number of electrodes and 

consequently a large number of numerical simulations. In many inverse imaging methods 

such as the Born iterative method (BIM) (section 5.2.3) the contribution of the mutual 

capacitances Cij, i ^  j  into the final dielectric profile image can be individually processed. 

If there are hardware limitations we can exclude any selected mutual or self capacitances 

Cij  from the analysis.

A cross-section of the 2D capacitive sensor array that complies with the bed sensor appli­

cation introduced in section 1.1 is shown in figure 2.10. The sensor array employs N  flat 

electrodes that are used to establish/measure the field, and a Ground plane. The Ground 

plane electrode is included in (2.135) along with other electrodes. It is also characterized by 

an electrostatic potential (which is pre-set to zero), an accumulated charge and a mutual 

capacitance between it and other electrodes. The purpose of the Ground plane electrode 

is to establish a shield that reduces the sensitivity of the mutual capacitance between the 

electrodes placed on the top side of the capacitive sensor arrangement to the underneath 

dielectric medium. This feature is an advantage of the proposed capacitive sensor array.

2.8 Q uasi-Electrostatic theory

So far we have considered purely static fields. It is easier to measure dynamic currents and 

voltages than static charges and potentials and we can significantly simplify the hardware 

requirements if we use low frequency (LF) electric fields instead of the electrostatic fields. 

The governing equations (2.135) for the capacitive sensor array operating at the low fre­

quency are valid at any moment in time if the wavelength A of the electromagnetic wave
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Figure 2.10: A 2D capacitive sensor array.

in free space

A =  c/oj (2.137)

where c and a; are the speed of the light and the radian frequency, is significantly larger than 

the maximum linear dimension of the capacitive sensor array. Our hardware prototypes 

employing capacitive sensor arrays are designed to operate at a; =  300 — 500kHz. The 

corresponding A is of the order of 600-1000 meters. The linear size of the capacitive 

sensor arrays th a t we design varies in the range from 20cm to 2m which justifies the LF 

application. The low frequency electric field is called quasi-electrostatic. The amplitude 

of the quasi-electrostatic field satisfies Laplace’s equation.

We now assume that charges and potentials </>„, n  =  1,...,A^ in (2.135) oscillate at 

frequency ojq. We employ complex arithmetic and assume harmonic excitation Dif­

ferentiating (2.135) and using

I
d t

and

(2.138)
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we obtain

(2.139)
1 = 1 ,.. . ,N

where I k ,  Vk are the complex amplitudes of the current and voltage for the electrode

respectively. The procedure of collecting currents and voltages in (2.139) is the basis of 

the capacitive sensor technique. Recall that all currents in (2.139) lead the voltages by 

7t / 2  phase shift.

We now briefly explain how we measure C k,m  where k  and n  are the indices of the Tx 

and Rx electrodes respectively. We apply a sinusoidal voltage Vk to the k*^ Tx electrode, 

terminate the rest of Tx and Rx electrodes to ground and measure current /„  induced on 

the n** electrode. The n^'^equation in (2.139) then becomes

2.9 Appendix: Conformal M apping and H elm holtz Operator

In section 2.3.2 we presented a technique for applying conformal mapping to electrostatic 

problems in a general form. It is a misleading opinion th a t conformal mapping is conserva­

tive in the sense that it is only suitable for mapping an electrostatic field equation. In this 

section we demonstrate how conformal mapping can be applied to a Helmholtz equation

where operator V x y  is given by (2.46).

We admit that analysis of the Helmholtz equation is beyond the subject of this thesis. 

Although (2.142) cannot be reduced to an electrostatic equation, many 2D inverse electro­

dynamic problems are governed by (2.142). Hence (2.142) is relevant to inverse imaging

(2.140)

which immediately gives the following expression for the mutual capacitance

(2.141)

- ' ^ l y ^ x y U  +  eu  =  f (2.142)
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problem and is indirectly relevant to our study. Being able to apply conformal mapping to 

(2.142) gives an option to substitute the Helmholtz equation for electrostatic field equation 

and to apply electrostatic inversion methods to electrodynamics.

Transforming (2.142) into Z  domain using a conformal mapping gives 

where det] J | is a Jacobian of the conformal mapping (2.40).

According to (2.143) in order to conformally map a Helmholtz operator based problem 

we scale both the source function /  and a dielectric distribution e by Potential

u obtained by a conformal mapping will satisfy the same Helmholtz equation in the new 

domain as in the original domain.
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UNIQUENESS OF THE SOLUTION FOR THE IMAGING PROBLEM

When presented with a problem to solve one must find all of its solutions or prove that 

the problem does not have a solution. This directly applies to systems of algebraic linear 

equations and is valid in general. In practical applications it is often required to find 

the most physical solution. If a problem has a unique solution numerical evaluation is 

simplified.

In section 3.3 we present several existing uniqueness theorems for the inverse electrostatic 

problem and, then, in section 3.6 we explain how the application of the capacitive sensor 

array to an imaging problem complies with the conditions imposed by these theorems. We 

claim this study to be original.

Along with the analysis of uniqueness of the solution for the inverse electrostatic problem 

we present examples of the object models (employed in electrostatic problems) that reveal 

fundamental difficulties arising in the electrostatic inverse problem. Some of our examples 

such as an electrostatic problem of conducting and dielectric cylinders in the homogeneous 

field presented in appendices 3.7 and 3.8 and a problem of artificial dielectric explained later 

come from the author’s college background and have never been applied to the analysis 

of the electrostatic inverse problems. Other examples have already been proposed in 

electrodynamics yet their electrostatic counterparts are new. In this chapter we aim to 

develop a practical understanding of possibilities and limitations of the electrostatic inverse 

imaging techniques.

Is knowledge of the uniqueness theorem required prior to solving the problem? The an­

swer lies, for example, in the inverse electromagnetic problems which have been successfully 

tackled [48], [51], [90], [49] many years before a relevant uniqueness theorem was discov­

ered [81], [68], [99]. Before the uniqueness theorem emerged researchers were primarily
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motivated by their intuition and the success of the existing approaches.

If the data for the inverse problem is obtained experimentally then at least one solution for 

the inverse electromagnetic or electrostatic problem must exist. However if the problem 

is ill-conditioned then new difficulties arise. The electrostatic imaging problem as well 

as other inverse problems in acoustics and electrodynamics is governed by the Fredholm 

integral equation of the first kind [72] which is ill posed [4], [38], [40]. The noise in the 

measured data contributes to distortion of the solution and the distortion does not have 

to become smaller as the noise tends to zero. We now illustrate ill-conditioning for the 

electrostatic inverse imaging problem on a simple practical example. We consider the 

problem of the reconstruction of two objects in 2D having the same geometry (fig. 3.1). 

One object is made of homogeneous dielectric e =  eo (fig. 3.1(a)) and the other one is 

hollow and composed of small metal cylinders of radius ro with density d (figure 3.1(b)) 

such that r^d = . According to appendix 3.7 these two objects produce nearly identical

a) b)

Figure 3.1; A homogeneous dielectric object e =  eo (a) and a hollow artificial object (b) having 
the same geometry as (a) and composed of metal cylinders of radius tq and density d

scattered^ fields. From the inverse electrostatic problem perspective these two objects are

indistinguishable in the presence of noise. For any given precision of measurement and

for any given level of noise it is possible to find large enough d and small enough tq

^Hereafter for convenience we use the term ‘scattered field’ for electrostatic problem. This term is 

originally borrowed from electrodynamics.
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(to hold rfld =  4̂̂ )  such that the two objects in figure 3.1 will be undistinguishable. 

We now compare the objects in figure 3.1 in terms of their dielectric distribution. An 

object in figure 3.1 (a) has a finite homogeneous dielectric distribution e =  eo- An object 

in figure 3.1 (b) is constructed so that it always has metal insertions that can be seen 

as dielectric insertions having an infinitely large dielectric permittivity. Thus while the 

scattered electrostatic fields caused by these objects can be made close to one another to 

any precision, a difference in the dielectric properties for these scatterers remains and is 

, in fact, infinitely large. Thus we have to be careful when talking about the existence of 

solution for the experimentally implemented electrostatic imaging problem.

The uniqueness theorem for the inverse imaging problem is im portant because it gives 

confidence that the problem is consistent and that a numerical solution is unique pro­

vided all assumptions of the theorem are satisfied. In particular the uniqueness theorem 

determines the measurements that have to be made in order to provide a unique solution 

and consequently improve the inversion. Although in many of the existing inverse imaging 

problems[65], [40], [33], [66] the corresponding uniqueness theorem is not referred to, in our 

approach the inverse electrostatic problem complies with a uniqueness theorem obtained 

by Lassas, Cheney and Uhlman [99].

3.1 Inverse Source Problem as a Particular Case of the Inverse 

Imaging Problem

3.1.1 Inverse Imaging Problem.

We define the inverse electrostatic problem as the reconstruction of the properties of the 

surrounding medium, such as a dielectric permittivity distribution, using remote measure­

ments of the electrostatic field. In Chapter 5 we present many successful implementations 

of the inverse imaging problem which can be grouped under the type of the incident^ fields 

used, the location of the points at which the measurements are collected, the a priori

^To avoid the introduction of new terminology we use some of the well understood electrodynamic 

terms in electrostatics.
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information imposed on the unknown profile and other criteria. Thus there are many ways 

to formulate an electrostatic imaging problem. We admit the definition of the inverse 

electrostatic problem as of the reconstruction of the unknown medium until we introduce 

a uniqueness theorem in section 3.5.

3.1.2 Inverse Source Problem

The electrostatic inverse source problem is similar to the electrostatic inverse imaging 

problem. Its objective is to reconstruct the locations and intensities of the unknown 

distribution of electric field sources using electrostatic field measurements. In the older 

literature both the inverse source and inverse scattering problems have been thought of 

as a one large class of inverse problems. Even in periodicals these two problems used to 

appear together [36]. At present the inverse imaging problem is intensively investigated 

in periodicals while the inverse source problem would rarely be encountered. We now give 

more insight into the similarity between these two problems.

Let an electrostatic field be established in some domain Q, which we refer to as an incident 

field E = Einc- If we place a homogeneous dielectric body e =  eo of known permittivity 

in Q then the dielectric material will become polarized producing another field called the 

scattered field Escat- The total field Etot in is given by a superposition of the incident and 

scattered fields Etot = Einc +  Egcat- Polarization of the dielectric results in uncompensated 

immobile charges on the surface of the dielectric body. The inverse scattering problem is to 

find the shape of the dielectric body while the inverse source problem is to find charges that 

produce the scattered field. Thus both problems will have the shape of the unknown body 

as a solution. Summarizing, if the only incident field is used to employ an inverse imaging 

problem then that imaging problem can also be seeing as an inverse source problem.

3.2 N onuniqueness of Solution for Inverse Source Problem

The field 0  of an arbitrary charge distribution p(r  ̂ is given by

(3.1)
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where G is the Green’s function (2.22),(2.23).

If we know 0 in some domain Q, then the charge distribution p m Vl can be immediately 

obtained using the following formula

p =  . (3.2)

Thus the inverse source problem may seem to have a unique solution (3.2) provided we 

require the knowledge of the potential (j> in Q where 17 can be the entire 3D space for 

example. Thus the ability to measure cf) at any point of Q, is similar the ability to measure 

the charge or dielectric constant in Jl. In reality we measure an electrostatic field outside 

the domain containing the field sources of interest. In that case (3.2) does not establish 

the uniqueness of the solution for the inverse source problem.

The nonuniqueness of the solution for the inverse source problem in electrodynamics has 

been proved for example in [35]. Bleisten and Kohen [35] relate the nonuniqueness of the 

solution to the features of the direct radiation problem namely the existence of the non­

radiating sources. We now conduct our own investigation that reveals a nonuniqueness of 

the solution for the electrostatic inverse source problem in the 2D. Assuming that p has a 

finite support^ as shown in figure 3.2 and th a t integral (3.1) is measured on a boundary F 

at N  points 7%, k — 1,..., outside the support of p we write

H n ) \ r =  f  G {n ,7^p{ f)d f  ,k  = l , . . . ,N  , (3.3)
J  Supp(/3)

where Supp(p) denotes the support of p. Note that the Fredholm integral equation (3.3) is 

of the first kind. We now show that a solutions to (3.3) is not unique i.e we present an elec­

trostatic source distribution which is a null space to the integral operator /g^pp^p) drG{fki 

in (3.3).

The 2D cylindrical capacitor shown in figure 3.2 is composed of two cylinders of different 

radii having the same centre. It is well known that a cylindrical capacitor produces a zero 

external field. Thus if p is a solution to (3.3) then we can add the charge of the cylindrical

domain where p  is nonzero
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SUPP{p)

Figure 3.2: The charge of the cylindrical capacitor that gives a null space to the integral in (3.3)

capacitor to p to obtain another solution for (3.3). We have proved that if the inverse 

source problem in electrostatic has a solution then it has infinitely many solutions.

One might expect that since the inverse source problem does not have a unique solution it 

does not have practical applications. In fact the inverse source problem found its applica­

tion in the radar, for example. If we impose some stipulations (which is also called a priori 

knowledge) on the function p then we can eliminate the non-radiating sources and make 

the solution unique [73]. We present another application of the inverse source problem in 

section 5.1.2.
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3.3 Preface to Uniqueness Theorem for Electrostatic Inverse 

Imaging Problem

There are two factors that significantly complicate the proof of the uniqueness of the 

solution of the inverse electrostatic problem. Firstly the inverse problem is ill-conditioned. 

In the introduction to this chapter we demonstrated that significantly different objects can 

produce nearly identical scattered fields. Another factor is the non-linearity of the imaging 

problem. Non-linearity means that if we have superposition of the dielectric permittivity 

distributions, for example, then the corresponding scattered field (sensor measurements) 

is not given by the superposition of the fields due to the presence of these dielectrics 

individually. We now survey the relevant publications that deal with the uniqueness of 

various inverse problems.

An enlightening discussion is presented in [36], 1982. This paper relates to a dispute 

that had occurred just before several important works appeared that convinced people 

of the existence of a unique solution for the inverse imaging problem in electrostatics, 

electrodynamics and acoustics [78] 1986,[79] 1987,[80] 1988, [100] 1988, [85] 1993. Note 

that while the foundation for the uniqueness of the solution for the inverse problems 

had appeared in the middle of 80-ies, there still exist many modern works that further 

that research [99] 1998, [68] 1998, [70] 1998, [81] 1999. The above list of references is 

not complete but does give an insight into how many people are involved in uniqueness 

analysis of the inverse problem and how complicated the problem is.

We now briefly overview issues important to our study i.e. that relate to the uniqueness 

of solution for the imaging problem. In [36] Devaney and Sherman claim that neither 

the inverse source nor the scattering problems possess a unique solution. Firstly they 

consider an electrodynamic inverse source problem for spherically symmetric distribution 

of electromagnetic sources located within the sphere of radius R^. The outer field for these 

sources satisfies the equation

■0(r) =  A   ,
r
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where A is a constant and is the only parameter that can be extracted from measurements. 

Obviously knowing one scalar A  we cannot reconstruct an arbitrary distribution of sources 

p(r) tha t relates to A  as follows

Examples similar to (3.4), (3.5) can be constructed for the electrostatic inverse source 

problem.

Next Devaney and Sherman consider an inverse scattering problem for a small conducting

where — cû /iiô o + is the squared propagation constant inside the sphere. Using

(3.6) it is easy to demonstrate that R q and a  cannot be simultaneously obtained by mea­

suring the scattered field. The fact that we are not able to determine Rq and a  does not 

prove existence of multiple solutions for the inverse scattering problem because we use an 

assumption that the sphere is placed in the uniform field. Despite (3.6) does not prove or 

disprove the uniqueness theorem it illustrates that in reality we are not able to determine 

Rq and a  due to technical limitations.

We now present the 2D electrostatic analogy for the electrodynamic inverse problem (3.6). 

Let an incident electrostatic field Eq at a given point have a curvature radius Tq and 

let a cylindrical dielectric body of radius Rq and dielectric permittivity eo be centred at 

that point. If i?o «  then the incident field can be seeing as a homogeneous electric 

field having intensity ^o- According to appendix 3.8 the scattered field produced by the 

dielectric cylinder in a homogeneous field is given by the field of dipole with dipole moment 

P

(3.5)

sphere having radius R q and conductivity a. Because the conducting sphere is small 

koRo < <  1 it can be seen as being placed in a homogeneous field Ê '̂  ̂ th a t induces current 

J  in it

(3.6)

nP? _  0  d 2  I?P — Ri)Eo 
Co +  i

(3.7)
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Even if employing many incident fields with a local curvature of the field lines not smaller 

than tq then the only parameter that we can measure from the distorted field is
eo+1 ^

Thus the values of eo and R q cannot be obtained individually.

An im portant conclusion to us is that due to ill-conditioning of the inverse problem we 

cannot reconstruct high contrast images wherever the incident field that we establish is 

close to homogeneous. If we move away from the sensor array in figure 2.10 then the 

curvature radius of the electrostatic field lines increases. As a result we must expect that 

the sharpness of the reconstructed image will deteriorate in the outward direction for the 

capacitive sensor array in figure 2.10.

Furthermore, in [36], Bojarski rises an objection to Devany and Sherman saying: “The 

present unresolved issues in the inverse-scattering inverse source problem are the problems 

of what scattering information needs to be known (measured) and which, and how much 

additional a priori known specific information about the source or the scattering potentials 

needed for the determination of what properties of the source or the scattering potential, 

and to which accuracy and/or resolution". Thus in one sentence Bojarski expressed the 

most critical questions th a t needed to be answered for the imaging problem. When we 

first confronted a problem of non-contact sensing and imaging we did not know about the 

existence of the uniqueness theorem. Indeed uniqueness of the solution for the inverse 

imaging problem is rarely referred to in periodicals while the earlier publications claim 

that an imaging problem probably does not posses a unique solution. [35] and [36] were 

the first publications on the uniqueness problem that we found and we are proud that our 

opinion was similar to Bojarki’s rather then Devaney’s and Sherman’s.

One of the first successful imaging applications that we developed during our early research 

was an experimental prototype using a 2D inverse imaging algorithm capable of determin­

ing the position of a metal cylinder of known radius using only one incident field (section 

5.1.2). As we have mentioned in section 3.2 an inverse scattering problem employing only 

one incident field is similar to the inverse source problem and does not possess a unique 

solution. Following Devaney [36] we imposed a priori information on the scattering body 

(we assumed th a t the scatterer is a metal cylinder having predefined radius) and we have
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obtained a unique solution for the inverse problem and stable operation of both the numer­

ical algorithm and the experimental prototype. We employed four measurements of the 

electrostatic field to extract only two unknowns namely x  and y co-ordinates for the metal 

cylinder. Three measurements were sufficient to determine the position of the cylinder 

while the fourth measurement was added to achieve robust operation of the prototype and 

to increase the range of sensitivity for the prototype. Note th a t due to non-linearity of the 

imaging problem two measurements are usually not sufficient to uniquely determine the 

position for the 2D cylindrical scatterer. The prototype array is shown in figure 5.4.

Another important example for our uniqueness study is [48]. In [48] the shape of the arbi­

trary conducting scatterer is uniquely recovered from the scattered electromagnetic field. 

The inversion algorithm employs the 3D analytical continuation of the electromagnetic 

field in the vicinity and inside of the unknown object. Then the extrapolated electromag­

netic field is processed in order to find possible location and shape for the unknown object. 

In the case of the perfectly conducting object the criteria is to find such surface that the 

tangential component of the electric field intensity E  and the normal component of the 

magnetic field H  vanish. One incident field was sufficient to reconstruct the surface of two 

perfectly conducting spheres [48].

The method in [48] can be employed in the electrostatic inverse problem of reconstruct­

ing the shape of a conducting object. Indeed employing analytical continuation of the 

electrostatic potential we can extrapolate the field outside of the measurement domain 

towards the expected unknown object location. Since the object is conducting, its surface 

must lie on the equi-potential surface. In the case of several incident fields the wall of the 

conducting object must lie on the equi-potential surface for each incident field. Increasing 

the number of incident fields we reduce the number of possible solutions to only one.
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3.4 Dirichlet-to-Neumann Map as a Complete Set of Data That 

Can Be Measaured in the Electrostatic Imaging Problem

In this section we introduce a so-called Dirichlet-to-Neumann map. The Dirichlet-to- 

Neumann map incorporates data of infinitely many incident fields and, in fact, yields 

complete information that can be collected in the electrostatic inverse imaging problem.

If the uniqueness theorem for the electrostatic imaging problem exists then the knowledge 

of the Dirichlet-to-Neumann map must be sufficient for obtaining a unique solution.

Let an unknown dielectric distribution be placed in Q and electrostatic field measurements 

be employed in D. We also assume that and D  do not overlap except for the boundary 

r. If Q does not share its boundary with D then we expand Q, or enlarge the support 

for the unknown dielectric distribution until the boundaries for Q. and D  are merged. In 

figure 3.3, D  and are shown as finite and infinite domains respectively for illustrative 

purposes only.

For the sake of simplicity we assume that D  is free of dielectric (e =  1). Let p be a volume 

charge distribution in D  which we use to establish an electrostatic field in Q. According 

to (2.105) the electrostatic potential in D is

0 ( 2̂) =  j  {G{fu  r1) }o?ri+47T J G(fl , f^)p(fl)dri  ,r*2 e  £>(3.8)

The electrostatic potential in D  (3.8) is uniquely determined by the Neumann and Dirichlet 

boundary condition on F. This means that any measurement of the electrostatic field in 

D  is redundant provided (j) and are known on F. If there is more than one incident 

electrostatic field then for each incident field we collect two one-dimensional functions on 

F to constitute the measurement set.

We now consider any selected electrostatic incident field employed in the inverse electro­

static problem. Let the corresponding (f)!/) =  a{r) and ^  =  6(^ be measured on F. We 

remove the incident electrostatic field and consider a boundary electrostatic problem in Q 

with a Dirichlet boundary condition =  a{r^, f  e  V. Since an electrostatic problem 

in has a unique solution the measured value for ^  =  b{f  ̂ on F is the same as in the
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Figure 3.3: Unknown scatterer and boundary F where the potential and its normal derivative
are measiured.

case of the incident electrostatic field excitation. Thus establishing any incident field in 

and D  can be seen as establishing a particular Dirichlet (yet a priori unknown) boundary 

condition on P.

If we are able to pre-set any Dirichlet boundary condition on F then we are also able to 

establish an electrostatic field in corresponding to any electrostatic field source in D 

regardless of the properties of the dielectric in Q. We now introduce a so called Dirichlet-

where e is the boundary value of the dielectric permittivity in Q. We have demonstrated 

that the Dirichlet-to-Neumann map (3.9) includes the entire information tha t can be mea­

sured in the inverse electrostatic problem.

The boundary value of e in (3.9) is defined in Q and is unknown. It arises in (3.9) due to 

continuity of the normal component of the electric flux density on the dielectric boundary 

We recall tha t e = 1 in D.

to-Neumann map on P [67],[70],[74],[81]

(3.9)
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3.5 Various Uniqueness Theorems for Inverse Problem

In this section we show how the boundary value of e in the inverse electrostatic problem 

can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map'^ (3.9). 

Then we present several uniqueness theorems that have been proven by different authors. 

The corresponding proofs are referred to their original locations.

We now assume that (i) F is a boundary of the unknown dielectric, (ii) A is a point on F, 

(ii) t{A) =  eo> (iii) T is smooth at A, (iv) the dielectric permittivity e is continuous at A, 

(v) the Dirichlet-to-Neumann map is known for F. Due to continuity of e and smoothness 

of F at A we can choose a vicinity of A such that F is approximated by a line and e is 

approximated by eo to any precision. The proximity of A  is illustrated in figure 3.4.

E=eo+o(e)

/ \

\
\ \ X

B-^A r

Figure 3.4: A vicinity of point A on a smooth boundajy F and an electrostatic field E  due to 
the Dirichlet boundaxy condition ^(A) = S.

We consider the following Dirichlet boundary condition on F in the neighborhood of A 

(j)(̂ jr)\̂  = S ( f ~  rA) , t G F  , (3.10)

where 5 is the Dirac delta function and ta is the position vector for A.

^During our early study of the inverse electrostatic problem we discovered that the boundary value of 

the unknown dielectric can be uniquely reconstructed from the knowledge of the Dirichlet-to-Neumann 

map. We believed that this result is novel until we found a number of uniqueness theorems having our 

ideas as a consequence. In particular, the uniqueness theorem presented in [101] says that the boundary 

value of both the dielectric permittivity and its higher order derivatives are uniquely determined by the 

Dirichlet-to-Neumann map.
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The electrostatic field intensity Etot in the vicinity of A  is the sum of the dipole field Ed 

(due to (3.10)) and some external field E x̂t which is a function of the boundary shape and 

dielectric distribution e outside the vicinity of A

^ t o t  —  ^ e x t  " I "  ■ (3.11)

Let 5  be a boundary point in the vicinity of A. The dipole field intencity Ê , at B can be 

calculated to give

(3.12)

where r is a distance between A  and B.

The external field E x̂t in (3.11) in the vicinity of A is unknown yet finite. We introduce 

a constant C  such that \E^xt\ <  C in the vicinity of A. The dipole field J?d(3.12) is known

in the proximity of A and does not depend on eo- Using the Dirichlet-to-Neumann map

The values of b and Etot ~  Ed are given by (3.12) and (3.13) respectively. Therefore the 

value of the limit in (3.14) can be directly computed. Thus (3.14) not only illustrates a 

uniqueness of the boundary value of the dielectric permittivity eo but also gives a method 

according to which e can be obtained on T using the Dirichlet-to-Neumann map.

Several uniqueness theorems have been proved in periodicals which we now present.

Let ri C (n > 2) be a bounded domain with smooth boundary F. The Dirichlet integral 

Qe for Lg is defined as follows:

we obtain the value of e ^  corresponding to (3.10) on F 

0 =  • (3.13)

We now calculate a limit for the following ratio

^ ^ 0  - E t o t  E e x t +  E d
(3.14)
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where operator is introduced in section 2.1 (2.9), n is a normal to F and </> is a unique 

solution to the Dirichlet boundary problem:

4  =  0, 0 |r  =  /  . (3.16)

In [101] Kohn and Vogelius prove the following theorem:

T h eo rem  3.5.1 Suppose that a; 6 F and that there exists a neighbourhood B  of x relative 

to such that

Qei i^) — Qt2{4>) for all 4> € with supp (p C B  (3-17)

then

D^€\ = D ^€2 for all k =  {ki,...,kn), fc, > 0 . (3.18)

In the above theorem function (j) is in the Sobolev space defined (in terms of the 

Fourier transform 0) by

H’ = U  - y  WC)l"(l +  I C P ) * d C < o o }  (3.19)

Theorem 3.5.1 says that from the knowledge of the Dirichlet integrals we can determine 

all derivatives of e on F. If e is a priori known to be real analytic then determines e.

In [78] Sylvester and Uhlman prove another theorem that establishes the uniqueness of 

the solution for the inverse electrostatic problem provided we know the Dirichlet integrals 

Qe and provided e is a priori small.

T h e o rem  3.5.2 Let Q be a bounded domain in with smooth boundary F. Then there 

exists e(Q) > 0 such that if
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and if

Qei { ( p )  = Q e 2 {(l>) for all (j) e  , (3.21)

then €i — C2 in

where l|e||* =  maX|j^|^3 \ \ D ^ e \ \ L o o

In theorem 3.5.2 e together with its derivatives are each bounded by 2. In [79] Sylvester 

and Uhlman prove a theorem similar to theorem 3.5.2 but for any large e. Furthermore 

Sylvester and Uhlman [80] introduce a novel (different from Kohn’s) proof of the uniqueness 

theorem using the methods of microlocal analysis. In particular Sylvester and Uhlman [80] 

demonstrate th a t e can be uniquely reconstructed from the knowledge of the Dirichlet-to- 

Neumann map. It can be proven that the knowledge of the Dirichlet-to-Neumann map 

and the knowledge of the Dirichlet integrals are equivalent [100].

It appears that to obtain a unique solution for the inverse electromagnetic problem we 

do not need to know the Dirichlet-to-Neumann map on the entire F. According to Las- 

sas, Cheney and Uhlman [99] e can be uniquely reconstructed from the knowledge of the 

Dirichlet-to-Neumann map on an open subset of F. In the next section we explain the 

measurement methodology that we employ in our numerical algorithm in chapter 6. That 

measurement technique complies with the Dirichlet-to-Neumann map.

3.6 E lectrostatic JVEeasurements That Satisfy the Criteria of the  

Uniqueness Theorem .

In previous section we introduced several theorems on uniqueness of solution for the inverse 

electrostatic problem. The significance of these theorems is that the inverse electrostatic 

problem has a unique solution if we know the Dirichlet-to-Neumann map on the open 

subset of the boundary F covering the unknown dielectric. In this section we explain how 

we measure the Dirichlet-to-Neumann map experimentally. This analysis is novel from the 

electrostatic inverse problem perspective.
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d(j) 
 ̂dn

The Dirichlet-to-Neumann map can be measured directly by recording the Neumann 

boundary condition for all possible Dirichlet boundary conditions. If we follow that method 

we will most probably collect redundant linearly-dependent measurements. We need a 

practical method for collecting the Dirichlet-to-Neumann map.

Let r  be a smooth boundary of the domain (fig. 3.5) having an unknown dielectric 

profile. We also assume that F has a length L and is parameterised using an arc length 

s G [0,L). The Dirichlet and Neumann boundary conditions are now functions of s and 

given by

0lr = »W , (3-22)

=  b(s) . (3.23)
r

where fi — n(s) is the normal to F and e =  e(s) is the boundary value of the dielectric

permittivity on F. The Dirichlet-to-Neumann map (3.9) is

At : o (s ) -> &(s) , s G[0,L). (3.24)

The linearity of (3.24) is a direct consequence of the linearity of the electrostatic field.

For any two functions ai(s),0 2 (s),s G [0, L) and any constants ai ,a 2 the following relation 

holds

Af : o :ia i(s)-I-0 1 2 0 2 (5 ) —>• o:i6 i ( s ) -1-0 :2 6 2 (5 ) , s G [0, L) . (3.25)

Using complete set of base functions /n(s), n =  l,...,oo , s G [0, L) we expand the

Dirichlet boundary condition (3.22) in the following series 

00

^  se [0 , L) .  (3.26)
n = \

Applying the Dirichlet-to-Neumann map K  to (3.26) and taking into account linearity of 

Aj (3.25) gives

0 0

6 (s) =  Ae [a(s)] =  ^  a n K  [/n(s)], s G [0, L) . (3.27)
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If the Dirichlet-to-Neumann map operator can be specified for each of the basis functions 

/nC^)) ^  ~  l,...,o o , s  G [0,L) then the mapping a(s) —>• b[s)  is defined according to 

(3.26), (3.27) for an arbitrary o(s). Such representation of the Dirichlet-to-Neumann map 

eliminates linearly dependent pairs a(s),6(s) and optimises the amount of data to be stored.

/•
/

/

S=Si

Figure 3.5: A domain with parameterised boundary F. The dashed lines represent an electric 
field due to the Dirichlet boundary condition (3.28)

We consider the Dirichlet boundary condition of the form (figure 3.5)

a(s, So) =  5(s -  So) , s , s oG[0, L) , (3.28)

where b is the Dirac delta function. A corresponding Neumann boundary condition b{s,  So)

follows from the Dirichlet-to-Neumann map (3.24)

At : a ( s , S o ) 6 ( s , S o )  , s G[0,L) , soG[0,L) . (3.29)

Using the linearity of Aj (3.25) we multiply both sides of (3.29) by a(so) and then integrate

the result over F using sq as an integration variable to give

r L
A j  : a(s) —>■ /  6(s, so)a(so)c/so sG[0,  L )  . (3.30)

Jo
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Comparing (3.30) and (3.24) and noting that Aj is a singlevalue mapping, we write

b { s ) =  (  6(s,so)a(so)(iso . (3.31)
Jo

Thus once we know b{s, Sq) in (3.29) then we can use (3.31) to obtain b{s) for an arbitrary 

a(s). We have now proved that (3.29) uniquely defines Ag.

In practical implementations of the electrostatic imaging problem we cannot employ a 

boundary condition of the form (3.28). Instead we can employ a Dirichlet boundary 

condition representing a narrow pulse function of width W  and amplitude 1 / W  so that it 

has a unity area

a(s -  So) =
I j W s e l s „ - W ' / 2 , s „  +  Vr/2], 

0 elsewhere .

When W  tends to zero this Dirichlet boundary condition reduces to (3.28).

In reality, a normal derivative of the electrostatic potential cannot be measured at a 

point B, s = Si (figure 3.5). Instead we evaluate the average value of in the vicinity 

of the point B, s G [si — W/2,  Si +  1^/2].

Figure 3.6 represents the same boundary F as figure 3.5 but with two physically extended 

electrodes. These electrodes are placed on F and are electrically insulated from it. Fixing 

the potential at zero and (j) = 1 /W  on F and the first electrode respectively we pre-set 

Dirichlet boundary condition (3.32). The second electrode in figure 3.6 is used to estimate 

an electric field or alternatively a Neumann boundary condition at point B. This electrode 

is kept at the same potential as F and consequently does not violate the distribution of 

the electrostatic field. One can show that when the size of the second electrode tends to 

zero, the corresponding charge induced (2.134) on the electrode is given by

47t an
(3.33)

points

The Neumann boundary condition measured by a small electrode is then given by

d4 ^  (3.34)
dn W
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Z'
/

/

S=So+W/2:trode 1
S=So-W/2

S=Si+W/2\ electrode 2

Figure 3.6: A domain Q , with paxameterised boundary F and two physically implemented elec­
trodes to simulate the Dirichlet boundary condition (3.28)

Charge Q accumulated on the second electrode (3.33) (figure 3.6) can be expressed through 

the mutual capacitance C\2 for the first and second electrodes as follows

Q =  C12V12 , (3.35)

where V12 is a potential difference between the two electrodes V12 = 1/W . An important 

conclusion that we can make from the above discussion (3.33),(3.35) is that the knowledge 

of the Dirichlet-to-Neumann map is equivalent to the knowledge of the mutual capacitances 

between any small segments of F.

3.7 Appendix: Conducting Cylinder in a H om ogeneous Electro­

static Field and Its Application to Artificial D ielectric.

In this appendix we outline a 2D electrostatic problem for a metal cylinder of radius Rq 

in a homogeneous electrostatic field Eq. This problem is not novel and comes from the 

college background, yet the application of this problem to the analysis of the electrostatic
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imaging problem is novel (see introduction to this chapter). Without loss of generality we 

assume that the cylinder is centred at the origin (fig. 3.7 (a)).

a) b)

Figure 3.7: a) metal cylinder in the electrostatic field b) dipole field

To solve this problem one first makes an assumption regarding the solution and then 

proves th a t this solution satisfies the boundary conditions. The field outside the cylinder 

can be represented as the sum of the background homogeneous electrostatic field E q and 

a distorted field Edist- The problem is to find Edist such that the tangential component of 

the electric field Eq +  Egcat on the boundary of the cylinder P is zero. This condition is 

equivalent to the following Dirichlet boundary condition for the scattered potential (j) on

r

{^dist 0mc)lr  ^ ■

The potential due to the homogeneous incident field E q is given by

0 m c  — E qT ,

(3.36)

(3.37)

where r  is a co-ordinate vector (x^y). It can be shown th a t the electrostatic potential for 

the distorted field Edist (3-36), (3.37) must satisfy the following condition

(3.38)
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An electrostatic potential of the dipole having a dipole moment p is given by 

p r
(Pdipole — ^2 _|_ y2 ’ (3.39)

the corresponding electric field intensity lines are illustrated in figure 3.7 (b).

It can be shown that the dipole field (3.39) satisfies the boundary condition (3.38) as 

required for the electrostatic potential cf)̂ ist if the dipole moment p  is given by

P = E o R l ,  (3.40)

where R l = + y' .̂

It is well known that an electrostatic Dirichlet boundary problem has a unique solution. 

Consequently the scattered electrostatic potential given by (3.39),(3.40) solves the electro­

static problem for the cylinder in a homogeneous electrostatic field. It can be shown that a 

conducting 3D sphere in the homogeneous electrostatic field also establishes a dipole field.

Now we consider a hollow body of an arbitrary shape (figure 3.1 (b)) homogeneously filled 

with small metal cylinders of the same radius. Let the density and the radius for these 

cylinders be d and R q respectively and let an electrostatic field E  inside that artificial 

body polarize each cylinder. Since each cylinder contributes into the overall polarization 

P  we can write

P ^ E d R l  . (3-41)

On the other hand if we consider an arbitrary dielectric then the polarization vector P  is 

given by

p  =  ~  . (3.42)
47T

Comparing (3.41) and (3.41) we conclude that the effective dielectric permittivity for the 

object composed of metal cylinders is given by

e = l + A T r d R l  .
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3.8 Appendix: D ielectric Cylinder in the Homogeneous Electro­

static Field.

The previous section presented an electrostatic problem of a metal cylinder in a homoge- 

neous field Eq. We now present a solution to a similar problem where the metal cylinder 

is replaced by a dielectric cylinder of the same radius Rq. This 2D problem is illustrated 

in figure 3.8. While this problem is not novel, its application to the uniqueness analysis of 

the electrostatic inverse problem presented in section 3.3 is original.

Eextemal=Eo+Escattered

Figure 3.8: Dielectric cylinder of radius R q in homogeneous field E q.

The electrostatic field in the above problem must satisfy the boundary conditions on the 

cylinder surface. The tangential component for the electric field intensity E  and the 

normal component for the electric field density cE must be continuous on the surface of 

the cylinder

~  { E e x t ) n  •

(3.44)

(3.45)

We omit the derivation of the solution and present a final result. The total field inside the
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dielectric cylinder is a homogeneous electric field given by 

2 -
E int =  z - - E o  ■ (3.46)1 + e '

The scattered field outside the cylinder is given by a formula for the dipole field

E .cat =  - ^ , + 2 f ^ ^  , (3.47)

where the dipole moment p  is given by

P =  . (3.48)

One can show that fields (3.46) and (3.47) satisfy the boundary conditions (3.44) and 

(3.45). Because a solution to the electrostatic problem is unique, (3.46) and (3.47) solve 

the problem.

One can show that if the dielectric permittivity e tends to infinity then the electrostatic field 

inside the cylinder (3.46) vanishes while the dipole moment for the dipole field representing 

the scattered field (3.48) tends to the one that we have already obtained in the previous 

section for a metal cylinder (3.40). In electrodynamics the dielectric permittivity of the 

metal is approximately given by e ^  and has an imaginary part significantly larger 

than unity. In electrostatics the metal can be seen as a dielectric having infinitely large 

but purely real dielectric permittivity.
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NUMERICAL METHODS IN ELECTROSTATICS

4.1 111 and well conditioned systems of linear equations.

We consider a system of linear equations

A X  = Y  , (4.1)

where is a matrix, F  is a given vector and X is to be calculated. In this section we answer 

the question whether system 4.1 is ill or well conditioned i.e. whether any variations in A 
—* —#

or Y  have a significant impact on the solution X.

This section is divided into three subsections. In subsection 4.1.1 we present the back­

ground linear algebra which is required for understanding the material developed later. 

In subsection 4.1.2 we derive the criteria for ill-conditioning of (4.1). Finally, in subsec­

tion 4.1.3 we present a regularization method which allows to tackle the ill-conditioned 

problems.

4.1.1 Linear algebra background.

We now briefly outline well known facts of linear algebra that will be used in subsequent 

subsections and throughout the thesis. A good reference on the material presented in this 

subsection is ‘Twelve lecture notes on numerical mathematics’ by V. I. Kosarev [7]. This 

book includes a regular 12 lecture course on numerical mathematics which is currently 

arranged for second year students of the Moscow Institute of Physics and Technology. 

Another reference that we recommend is [8].

If the reader is familiar with the basics of linear algebra then we recommend to skip this 

section and proceed with the next one.
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Definition of vector norm. The norm of vector X  is defined as a number denoted by HX| 
satisfying the following conditions

1 .  | | X | | > 0 ,  1 1 X 1 1  =  =

2. llaXII = \oi\ ||X ||, a  is a scalar,

3. ||j? + y | |< | | ; e | |  +

The following are examples of the vector norm

1. | | X t l . = l ] N I .  (4.2)

2. \ \ X \ k  =  (4.3)

3. | | X | | o o  =  l l ^ l l c  =  max|a;i|. (4.4)i

In a finite dimensional space all vector norms are equivalent in the sense that if lim„_voo I l^nl U 

0 then linin^oo l|^n ||/3 =  0, where a  and j3 are used to distinguish different norms.

Definition of matrix norm. The norm of the square matrix is a number denoted by \ \A\\ 

satisfying the following conditions

1. | |> 1 | |> 0 ,  ||A|| =  0 ^ y l  =  0,

2. | | q ;>1 | |  =  l a l  \\A\l a  is a scalar

3. \\A + B\\ < P II  + 1|B||,

4. \\AB\\ < \\A\\ \\B\\.

In this thesis we use a matrix norm definition that is based on the definition of the vector 

norm as follows
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where sup is the supremum or least upper bound. In particular, the matrix norms |1 • Hi,

I I  • lb, I I  • llcx), (4-2), (4.3), (4.4) are defined as

1 =  sup \\AX\\i  , (4.6)

2 =  sup \ \A X \ \2 , (4.7)
l l ^ l | 2 = l

oo =  ll^llc =  sup WAX Woo . (4.8)
l l ^ l | o o  =  l

If the matrix norm is introduced as in (4.5) then the fourth property of the matrix norm

||v4B|| <  11̂ 11 11̂ 11 is valid not only when B is a square matrix but also when S  is a

vector. Indeed according to (4.5) we can write

=  (4 .9 )
I|a : | |  11X11

Multiplying both parts of the relation (4.9) by ||X|1 gives

| | y l j f | |  < 1 M | |  11X11 . (4 .1 0 )

Matrix norm || • ||c. Matrix norm (4.8) is given by

||A||c =  m a x ^  l^yl . (4-11)
3

Indeed assuming that (4.1) is satisfied and using ||^ || =  supj^_  ̂ ll^-^ll (4-5) gives

I I ^ X l I c  =  ||F ||c  =  maxlyi| ^ m a x l ^ A y X j l  , (4.12)
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Substituting (4.13) into (4.12) and taking into account that HX|lc = 1 gives

ll^^llc < m a x ^  \Aij\ . (4.14)
3

  —^ ^

There exists such Xq that the least upper bound in (4.14) is achieved | \AXo 1 |c =  max,- Ylj I  A j I 

Assuming that i = io is the index when the right hand side in (4.14) is maximum we con- 

struct as follows

Xo = {signAioj, i  = 1,2, • • •, /c} , (4.15)

where k is the dimension of A. Note that HXo||c =  1. Substituting (4.15) into (4.14) leads 

to an equality which also means that max, Ylj is the least upper bound or supremum 

of IIAXII,

sup |1y4X ||c =  m a x ^  . (4-16)
l l ^ l | o o  =  l *  j

According to (4.8), (4.16) defines a matrix norm and hence (4.11) is proved.

Eigenvectors and eigenvalues. A vector Xx  that satisfies

AXx = XXx , (4.17)

where A is some scalar, is called an eigenvector for matrix A  and A is the corresponding 

eigenvalue, k-dimensional matrix A  has k linearly independent eigenvectors

, j = 1 , 2 , ( 4 . 1 8 )

Usually all eigenvectors (4.17) are normalised. This helps avoid confusion due to scaling 

the eigenvectors. Scaling the eigenvector results in a new (linearly dependent) eigenvector 

having the same eigenvalue. If detlA| /  0 the rank of A equals to the dimension of A and 

all eigenvalues are nonzero. Different eigenvectors may have equal eigenvalues.

O rth ogona li ty  o f  e igen vec tors  f o r  s y m m e tr ic  m atrix .  If A  is symmetric i.e A = where 

is a transposed A  then the eigenvectors corresponding to different eigenvalues are
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orthogonal. To prove this statement we consider two eigenvectors and Xx.  such that 

Aj ^  Xj. Using the definition of the eigenvector (4.17) gives

X l A X , ,  =  \ X j ; . X , ,  . (4.19)

Transposing the left hand side of (4.19) (which is a scalar) gives

{ ^ A X ^ y  =  X l A ^ X , ,  =  X j X l X , ,  . (4.20)

Transposing (4.20) again gives

X^AX;^ =  \ i X l . X , ,  . (4.21)

Subtracting (4.21) from (4.19) results in the following equation

(Ai -  Ai) XI.X,., =  0 (4.22)

which is only possible if X j . X x i  =  0.

Let X\^ and Xxj  be two linearly independent eigenvectors with equal eigenvalues Aj =  

Xj =  A. Any linear combination of these eigenvectors X \ { a i , a 2 ) =  a\Xxi +  ol^Xx. is 

also an eigenvector having the same eigenvalue A. Because Xx^ and Xx^ are linearly 

independent they can be orthogonalized by seeking Xx{oii,o:2 ) such that Xx(o:i, a 2 )-i~Xxi- 

Replacing by X ^(ai, 0:2) one obtains two linearly independent orthogonal eigenvectors 

for the same eigenvalue. Therefore one can assume that the eigenvectors for a symmetric 

k dimensional A  create a k dimensional orthonormal basis.

Using a basis of  eigenvectors for representing a solution to (4-^) having symmetric A.  If 

eigenvectors for A  are linearly independent then they can be used as a basis to represent 

a solution to (4.1)

X = j 2 a A , ,  (4.23)
i=l
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where a, are unknown coefficients. If A is symmetric and detj^ll 7  ̂ 0 then the eigenvectors 

in (4.23) create an orthonormal basis. Substituting (4.23) into (4.1) and then multiplying 

the resulting expression by on the left gives the following expression for a, in (4.23)

X T y
ai =  ^  , 1 =  1,2, . . - , k  , (4.24)

A i

where the index is adjusted for (4.23). Thus a solution to (4.1) is given by

vT-y
X  =  . (4.25)

i=l *

Matrix norm || • |l2 - If ^  is symmetric then the matrix norm (4.7) based on the vector 

norm (4.3) is given by the maximum absolute value of the eigenvalue for A

|2 =  max|Ail. (4-26)

To prove (4.26) one can expand X  into an orthonormal basis of eigenvectors (4.23). As­

suming that IIXII2 =  1 which is equivalent to ~  where Cj are the coefficients in

(4.23), gives

\\AXW2 = \ \ a i \ X X i \\2 =

Thus max |Ajl is the upper bound for ||^ X l|2 . To demonstrate that max |Ai| is a supremum 

for \ \A X \\2 one can show that there exists Xq such that it results in equality in (4.27). If 

i =  i(j is the index for which max |Aj| is achieved then choosing Xq =  X\.^ and substituting 

Xq into (4.27) results in equality. According to (4.7) (4.26) is a norm for A.

Eigenvalues and eigenvectors for inverse matrix. I f -X̂Ai 2, •••,/£ (4.18) are

the eigenvectors and eigenvalues for matrix A  then
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are the eigenvectors and eigenvalues for matrix A~^. Here A~'  ̂ is an inverse matrix to A 

i.e. A~~^A = E  where £■ is a unity diagonal matrix. Indeed multiplying both sides of (4.17) 

by A~^ on the left gives

X \ i = \ i A  ^X\. , i = . (4.29)

Dividing (4.29) by Aj proves (4.28).

Eigenvalues for positive definite matrix. Matrix A  is called positive definite if for any 

X  ^  0 X '^A X  is positive

X'^A X  > 0 , VX ^  0 . (4.30)

All eigenvalues for a positive definite matrix are positive. Indeed assuming that the eigen-

4.1.2 Criterion for Ill/W ell-Conditioning of a System  of Lineeir Equations.

We now consider a perturbed problem (4.1) i.e. we assume that due to the errors which 

may have numerical or physical origin the matrix A  and the right hand side Y  in (4.1) 

are subject to small variations 5A  and 6Y  respectively [7]. If the reader is familiar with 

the ill/well conditioning analysis of the algebraic systems of linear equations then we 

recommend to proceed with the next section.
—̂

The solution to the perturbed problem is violated by 5X

vectors are normalized ||XaJ12 =  1, i = 1,2, - • ■ ,k  and substituting X\i  into (4.30) gives

(4.31)

(A + 5A)(X + 5X) = F + . (4.32)

Subtracting (4.1) from (4.32) gives

A5X  +  6A5X + 5A X  =  6Y . (4.33)
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—^ ^

Here we assume that the variations 6Â  5Y  and 6X  are small and that the second-order 

small parameter 5A5X can be neglected. Reordering (4.33) and multiplying by A~^ on 

the left gives

5X  =  A~  ̂ (̂ 5Y -  5AX^ . (4.34)

Applying the vector norm to (4.34) and using (4.10) yields

| l « | |  =  | M - ‘ ( 4 f - M x ) | l < | | > l - ' l l  ( | | i ? l l  +  | | M | l l l ^ l l )  ■ (4.35)

Representing (4.35) in the form

ll<SX| |<ll^- ' l l  ( i l l ' l l ! ! ^ . (4-36)

and u sin g  ||5^|1 <  1[A|| ||X |1  (4 .10 ) g ives

(4.37)

Dividing (4.37) by ||X || gives the following expression for the error

, (4.38)
1|X|1 -

where K  is the conditioning factor that determines the ill-conditioning of the problem 

(4.1)

a :  =  I I ^ I I I I - 4 - ‘ | |  . ( ' ‘ ■ 3 9 )

K  is larger than unity K  > 1 .  Indeed

1 =  ||£;|| =  ||y l-M || <  ll^ll =  K  , (4.40)

where E  is a unity diagonal matrix.
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Problem (4.1) is considered to be well conditioned if K  is in the range between 1 and 10 

[7]. If K  is larger than 1000 then (4.1) is considered to be ill-conditioned.

To simplify further analysis of the perturbed problem (4.32) we assume that 6A — 0. In 

that case (4.38) becomes

. (4.41)
ll^ll ■ l|V||

We now prove that the upper bound for the error in (4.41) is not overestimated.Il̂ll
Indeed to obtain (4.41) we use an inequality (4.10) which in turn is obtained as a result 

of the supremum based equation which means that the upper bound can be reached. In 

other words

3^y : ^  . (4.42)
ll̂ ll ll̂ ll

Expression (4.42) is a fundamental criterion that can be used to estimate the maximum 

error that may occur when tackling (4.1). We now study (4.42) and its application to the 

numerical methods implemented in the thesis.

(4.41) is obtained in the most general form. The type of the norm in (4.41) is not specified

which is an advantage of (4.41). If we choose the norm to be || • II2 we may use a more

specific expression for K  (4.39). According to (4.26) | | ^ | | 2  =  max|Ai|. Applying (4.26) to 

an inverse matrix and using (4.28) gives

||A~^||2 =  maxl^ l  =  . , , (4-43)
" " 'Aj mm I Ail

where Aj, i =  1,2, • • •, A: are the eigenvalues for A. Ultimately applying (4.43) and (4.26)

to (4.39) we obtain

^  ^  max I Ail 4̂_44j
min I Ail

If matrix A is positive definite then according to previous section all eigenvalues are also 

positive and we do not need to use the absolute values in (4.44)

^  ^  maxAj (4 .4 5 )

min Ai
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We now present an example illustrating a mechanism resulting in problem (4.1) being ill 

posed. This example is the author’s study of the ill-conditioning mechanism, yet we would 

expect that a similar analysis must have been done by other researchers. In the end of 

this analysis we come to the same criterion as in (4.38) but with more insight into the 

ill-conditioning mechanism. Let the right hand side of (4.1) be given by the eigenvector 

having a maximum absolute value of eigenvalue where imax is a corresponding

index i.e. Y  =  • For simplicity we consider symmetric positive definite A and hence

l̂ imoxl “  îmax- system of Huear equations (4.1) is now given by

AX =  . (4.46)

According to (4.25) a solution to (4.46) is given by

X  =  _ (4.47)
^ i m a x

We now consider a solution to the problem

AX . , (4.48)
''*maa5 ' *m tn

where imin is the index corresponding to the eigenvector having the smallest eigenvalue 

and 7  is a small number. A solution to (4.48) is given by

Y X  ^ im a x  _|_  ̂ (4 .4 9 )
^ i m a x  ^ i m i n

In this example we treat (4.46) as an original unperturbed problem and (4.48) as a cor- 

responding perturbed problem. Within the context of (4.32) Y  = X \ »mox ’

X = s x  =  5 ^ ^ ^ . The error and are now given by
^ im a x  ’ ^ im in  l|l'l|2

II II2  _  (4.50)
llXlb ’

=  . v H i U k  (4.61)
Il?ll2 Il̂ .„..ll2 ■
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Combining (4.50) and (4.51) gives 

Il<̂ l̂l2 A , _ i | 5 r i i 2
(4.52)

11̂112 ||y||2
Equation (4.52) is not only in agreement with the previously obtained criteria (4.41) for 

ill-conditioning of the system of linear equations but also proves the existence of a least 

upper bound in (4.42) for 1| • H2 and symmetric positive definite A.

4.1.3 Solving ill-conditioned problems. Regularization method.

An ill conditioned problem is one with a solution which is very sensitive to numerical

and physical errors. Small perturbation of the coefficients in the ill posed problem (4.1)

may cause significant distortion making the solution useless from the practical point of 

view. Another disadvantage of the ill conditioned problem is a slow convergence of the 

numerical methods. In the example of the previous section we studied the mechanism 

resulting in the problem being ill conditioned. In particular we illustrated that in the case 

of symmetric positive definite A, a solution to (4.1) can be of the order of 1/ max |Aij while 

the distortion is l/m in |A j|. In this section we present a regularization method [5] that 

allows the improvement of the condition of (4.1) i.e. which reduces the condition factor 

max |Aj|/min |Aj|.

A variational approach to solving (4.1) is to build a functional such that its minimum is 

obtained at a solution to (4.1) [13]. In that case the problem of directly solving (4.1) is 

replaced by the problem of minimization of the functional. A simple way to build such a 

functional is to present (4.1) in the form of equation where the right hand side is zero

A X  - Y  = 0 (4-53)

and to take a square of that equation

{AX -  Y)'^{AX -  f ) =  0 . (4-54)

The functional in (4.54) 

F{X)  = {AX  -  Y f (4.55)
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is nonnegative and has an absolute minimum of zero for solutions of (4.1). Thus (4.1) is 

now replaced by a problem of finding X  such tha t F{X)  is minimized

min F {X )  . (4.56)
X

Variational methods [13] are a branch of the mathematical science that deals with (4.56). 

According to variational theory the necessary (but not sufficient) condition for the mini­

mum to F  is

^ = 0 .  (4.57)
d x

For the variational problem (4.56), criterion (4.57) is sufficient when d e t |^ | ^  0. Indeed 

differentiating (4.55) gives

= 2A^ {AX  -  F ) =  0 . (4.58)
d X

Because det|A | ^  0 the inverse of exists, and multiplying (4.58) by (A^)“  ̂ gives (4.1). 

The use of the variational methods does not alleviate the ill conditioning of (4.1). However 

it gives additional flexibility which we now discuss. An artificial method for improving the 

condition number of problem (4.56) is to distort (4.55) by adding a small nonnegative 

functional 'y^P{X)  or a regularizer

Fr {X) = { A X - Y f  + -i^P{X) , (4.59)

where 7 is a small coefficient and P{X)  is referred to as the potential function of the 

regularization method. The whole term 'y‘̂ P[X)  is often referred as the regularization 

function. Replacing the variational problem (4.56) by a problem of minimization of (4.59) 

leads to a new perturbed solution. Indeed, substituting (4.59) into (4.57) gives

=  2 X ^ ( A X  - Y ) + = 0 . (■*•«“)
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where is a vector
a  X

d P j X )
d X

(  d P j X )  \
d x i  

d P ( X )  
d X2 (4.61)

V
Multiplying both sides of (4.60) by |(>1^)“  ̂ gives

A X  = Y -  ^ (4.62) 
2 d X

which is now different from (4.1). We now study a solution to the following variational 

problem

mm Fr {X) = min ^ (^ 1  -  Y f  + 7^P (1 )) , (4.63)
X  X

where tilde stands for a solution to a perturbed problem (4.62), and how it compares to 

the solution of the problem of minimization of (4.59). The “R” in the functional in (4.63) 

stands for “regularization” .

The Tikhonov potential function is the square of X  and was originally proposed by 

Tikhonov and Arsenin [5]

Ffi{X) = {AX -  Y f  +  . (4.64)

We dedicate the rest of this section to the analysis of the Tikhonov regularization method 

(4.64). Many researchers appear to believe that the Tikhonov regularization method (4.64) 

works as a spatial filter [38], [95], removing high order oscillations from the solution X.  

The researchers claim that due to the Tikhonov regularization method the sharp edges 

of the original scatterer that normally occur on the boundary of the dielectric bodies, 

for example, are smoothed in the reconstructed images. Now, although the edges of the 

reconstructed image are indeed smoothed, the nature of such distortion does not lie in 

the Tikhonov regularization method but in the properties of A  in (4.64), (4.1). We now
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conduct our own analysis of the phenomenon of the low pass spatial filtering of the solution 

that arises when solving ill-posed inverse problems using a regularization technique.

To illustrate that the Tikhonov regularization method does not smooth the edges of the so-

We now apply a Tikhonov regularization to (4.65). The functional Fr with Tikhonov 

regularization term (4.64) for (4.65) is given by

Comparing (4.66) and (4.69) we see that the Tikhonov regularization method scales the 

solution of the unperturbed problem by a factor of The spectral representation of 

the solution is also scaled down although no spatial filtering of the higher harmonics is 

performed which confirms that the Tikhonov regularization method does not necessarily 

affect the spectrum of the solution.

lution we consider a problem where the solution is known in both cases with regularization 

and without. Let A  in (4.1) be a unity diagonal matrix I

I X  = Y  . (4.65)

A solution to (4.65) is given by

(4.66)

Ffi{X) = { X - Y f  + ^^X^X , (4.67)

where we already employed I X  = X.  The variational problem (4.63) for (4.67) results in 

the following equation (4.57)

d Fr{X)  ^ 2 { X - Y )  + 2 ' f X  = 0 . 
d X

(4.68)

A solution to (4.69) is given by

(4.69)
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We now perform analytical analysis of the Tikhonov regularization method in a general 

form. Applying (4.60) to (4.64) gives

A ^ A X  + = A Y  . (4.70)

We rewrite (4.70) to give

{A'^A + j ^ E ) X  = A Y  . (4.71)

Denoting A ^A  + by M  we formulate the distorted variational problem in matrix form

M X  = A Y  . (4.72)

If det|yl| ^  0 then A ^A  is positive definite. Indeed

X ^ A ^ A X  =  { A X f { A X )  = \\AX\\l > 0  ,VX. (4.73)

A'^A is also a symmetric matrix and, according to section 4.1.1, A^A  has orthogonal 

eigenvectors. We now prove that if the eigenvectors and eigenvalues for A^A  are given by 

(4.18) then the eigenvectors and eigenvalues for M  are given by

+  (4.74)

where k is the dimension of A. Indeed multiplying M  by any of Xx^ gives

MXxi = + i^E)Xx, = XiXx, + ^^Xx, = {Xi +  7")^a, • (4.75)

Using (4.25) we write a solution for (4.72)

k y T  A T y

If 7 =  0 then the regularization term in Fr vanishes and (4.76) becomes a solution to the 

non-perturbed problem (4.1). We rewrite (4.76) in the form

l  =  , (4.77)
^  A ii=l *
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where G is given by

(4.78)

A solution to the problem without regularization is given by (4.77) with G =  1. W ith 

regularization, for a given i if Aj > > 7 ,̂ then G ^  1 and the corresponding term in the 

sum in (4.77) is only slightly affected by the regularization method. On the other hand 

if Aj < <  7  ̂ then G «  «  1 and the corresponding term in (4.77) is significantly

attenuated by the regularization method. Thus the Tikhonov regularization method scales 

down those terms in (4.77) that correspond to eigenvalues small relative to 7 .̂ In the 

example of section 4.1.2 we demonstrated that the ill conditioned problem is particularly 

sensitive to the terms in (4.77) having small (compared to the maximum) eigenvalues. 

This explains how the Tikhonov regularization method improves the conditioning of the 

problem making it less sensitive to distortions in the right hand side in (4.72) A ^ Y .

If the eigenvectors for A ^ A  corresponding to small eigenvalues are highly oscillatory then a 

solution to A X  =  A ^ Y  will also be corrupted by oscillations^ That situation occurs in 

the electrostatic and electrodynamic inverse imaging problems. Applying a regularization 

method to any of these problems removes the oscillations from the solution making the 

problem more robust i.e well posed. This explains why many researchers reported tha t the 

Tikhonov regularization methods works as a low pass spatial filter. However it is possible to 

construct A  such that the eigenvectors corresponding to small eigenvalues are smooth. 

In that case the Tikhonov regularization will eflfectively attenuate these smooth terms in 

(4.77) leaving oscillating terms. For this contrived problem the Tikhonov regularization 

method will manifest itself as being a high pass spatial filter. We have already constructed 

problem (4.65) where all eigenvectors for A ^A  have the same unity eigenvalue (the problem 

is well posed). Applying (4.77) to (4.65) and analysing factors (4.78) gives G =  which 

is in agreement with (4.69), of course.

We now develop a method for choosing 7  ̂ in the Tikhonov regularization method which

^Here we mean spatial oscillations of the solution io AX =  Y  where X  represents some physical 2D or 

3D distribution such as a dielectric distribution in the inverse imaging problem.
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we later implement numerically in the inverse electrostatic problem. While the method  

that we propose is unlikely to be novel, we have not found it being employed in the existing  

inverse problems (which are ill-conditioned). The condition number for M (4.72) is given 

by

, maxj Aj +  7 ^

Recall that A ^A  is positive definite and the eigenvalues in (4.79) are also positive. Let 

be the condition number for the problem without regularization ( 7  =  0 )

A ^ A X  =  A ^ Y  . (4.80)

Assuming K q =  K{ 0 )  »  1 (or min^ A,- < <  max, Aj) we choose

minAj < <  7  ̂ < <  maxAj (4-81)
i i

in (4.79) we attenuate the noisy terms in (4.77) leaving solution critical terms. The 

condition number (4.79) is approximated by

maxiAi +  7  ̂ maxj Aj +  7  ̂ maxj A* maxj Aj ,
— 2 ~ --------- 2------- ^ -------2------  ̂  ̂~ ------ 2—  ■mmj Aj +  7  ̂ Y 1  7

For practical applications we need to be able to estim ate max, Aj for A'^A. Unfortunately 

ll^^yl | | 2  which is the exact value for maxjAj does not have a simple estimation method. 

At the same time, in order to to choose 7  ̂ =  maxj Xt / K,  where K  is the desired condition 

number for the problem, we do not need to know the precise value of maxj A, because there 

are no strict directions for choosing the desired K  (which has to be in the range of from 

10 to 1000). Hence we need a non-precise but simple estim ation for max, Aj which we now 

derive.

We prove that if Xmax is the maximum eigenvalue for a symmetric positive definite matrix^

^Note that problem A X  -  Y  can always be replaced by A X  =  A ^ Y  where A^A =  B is a positive 

definite symmetric matrix provided det|yl| ^ 0. Hence we consider a symmetric positive matrix without 

loss of generality.
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B  and is the corresponding eigenvector, then any matrix norm ||B || introduced by

(4.5) is greater than or equal to Xmax- Indeed by definition

~  ^tnaxXxmax ' (4.83)

Applying a vector norm to (4.83) gives

I  I I  I  " ^ m a x  | 1 -̂ Amoi! I  I  • (4.84)

Dividing (4.83) by H^A^axll ^^d using (4.5) gives

Knn. =  <  s u p l i ^  =  lIBll . (4.85)

We will use || • Hoo (4-8) as a matrix norm for (4.83). In subsection (4.1.1) we derived an

analytical representation for matrix norm |1 • ||oo which we now substitute into (4.85) to

give

Amax <  m a x y ^  \Bij\ . (4.86)
3

We use (4.86) to derive the criterion for choosing 7 .̂ In our numerical algorithm presented 

in chapter 6, we want to ensure a condition number being not greater than 100. Denote 

B  =  AA^. We use the upper bound for Xmax for B  given by (4.86) as an estimate of Xmax 

and use (4.82) to give

^  m ax iE jIB ijI (4,87)
 ̂ 100

To claim th a t (4.87) is novel we need to conduct a broader survey of literature. In the 

examples of the inverse problems that we know (4.87) has not been implemented.

4.2 Num erical Im plem entation of the Forward E lectrostatic Prob­

lem.

In the introduction part of chapter 2 we mentioned that there are two principal ways of 

formulating the electrostatic problem. One way is to use a differential governing equation
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which is introduced in section 2.1. The other alternative is to employ integral governing 

equations (sections 2.4, 2.5 and 2.6). Both ways are equivalent from the analytical point 

of view but the corresponding numerical implementations are different.

In sections 4.2.1 and 4.2.2 we introduce a Finite Difference Method (FDM) and a Finite 

Elements Method (FEM). These methods cast the differential and integral analytical equa­

tions in the form of a system of algebraic equations suitable for computer implementation. 

Systems of linear algebraic equations are studied in sections 4.1.1, 4.1.2 and some methods 

of tackling these systems are proposed in sections 4.1.3 and 4.4.

4.2.1 Finite Difference M ethod

The Finite Difference Method is a method for discretising functions on a grid. Once the 

discretisation is done the derivatives of the functions are constructed using the values on 

the grid. The approximations of the functions and their derivatives are then substituted 

into the differential governing equation. If the finite difference scheme is chosen properly 

then a stable numerical formulation is obtained. By refining the grid we increase the 

precision of representation of functions and their derivatives hence obtaining a more precise 

representation of the original analytical equations.

There are many implementations of the FDM which differ from each other by the grid 

type and schemes for representing the derivatives [7]. We now consider a classical im­

plementation of the FDM for the electrostatic problem [7] governed by the 2D Laplace’s 

equation

^  ^  =  0 . (4-88)
d d

We assume th a t an electrostatic problem (4.88) is posed in a finite domain D with boundary 

r  shown in figure 4.1. We also assume that potential (f> satisfies a Dirichlet boundary 

condition on F

=

A square grid with step h is probably the simplest grid for representing both the functions
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(m+1 ,n)

(m,n-1) (fjn) (m,n+1)

(m-1,n)

Figure 4 .1 : Rectangular discretisation grid for domain D with boundary F.

and their derivatives. Its implementation in D  is shown in figure 4.1. The problem of

having an irregular T is overcome by placing additional grid nodes at the cross points of

the grid hnes and F.

For simplicity we assume that F is aligned with the grid nodes and hence no additional 

nodes are required. We refer to the grid nodes using two indices (?7i, n) and denote the 

corresponding value of the electrostatic potential by (j>m,n- ^  classical finite difference 

scheme for the first and second order derivatives of at (m, n) is

d 4> _  <j>m,n+l ~  </*m,n-l ( 4 .9 0 )

d X  2h ’

9  ^    (p m + l,n  0 m —l,n  (4 .9 1 )

d y 2h
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^  0    ^m ,n+l +  <l> TTljTl 1
(4.92)d

d  <f>   0 m + l,n  4*'i

(4.93)dy^

To improve precision of (4.90)-(4.93) one can use higher order schemes that converge to 

the true values faster as h 0. The higher order schemes use more points in both the 

vertical and horizontal directions resulting in higher complexity. Substituting (4.92) and 

(4.93) in (4.88) gives the following finite difference equation

A system of equations (4.94) with Dirichlet boundary condition (4.89) has a unique solution 

and is well posed [7]. The uniqueness theorem for (4.94) is a consequence of the lemma 

saying that the minimum and maximum values for are given on the boundary nodes.

We do not employ the FDM to solve our electrostatic inverse imaging problem for several 

reasons. According to our literature survey none of the existing inverse problems employs 

the FDM. This raises a question mark on whether we would succeed in adopting the 

FDM. In contrast the application of the Finite Element Method (section 4.2.2) to the 

inverse problems has been studied by many researchers for several decades. Of course the 

motivation to choose the FEM does not diminish the possible, undiscovered potential of 

the FDM.

However, there are several clear disadvantages of the FDM which we now introduce. The 

FDM is inefficient (as compared to the FEM) for electrostatic problems employing multiple 

sparse objects with free space in between them. In the case of the inverse imaging problem 

this includes the space between the sensor array and the reconstruction domain. The FDM 

is not well suited for the infinite domains that arise in our inverse imaging problem. Also 

the high curvature electrostatic fields arising, for example, near the boundary where a 

step function Dirichlet boundary condition is pre-set as shown in figure 4.2 are difficult to 

represent accurately on the grid of the FDM.

0 m + l ,n  4*m—l,n  “I" 0 m ,n + l  ”1“ ^^m ,n  — 0  . (4.94)
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' (t»=o ,

Figiire 4.2: A step Dirichlet boundary condition for boundary F and the corresponding electric 
field intensity lines.

4.2.2 Finite Element M ethod

A Finite Element Method is a method for representing an integral equation in the form of 

a system of algebraic equations^. Almost all electrostatic and electrodynamic problems are 

now tackled using the FEM [77]. The FEM is also essential to the purpose of this thesis 

as we use it to solve the inverse electrostatic problem. Instead of a general introduction 

to the FEM we start this section with a particular implementation of the FEM.

We consider a Dirichlet boundary electrostatic problem in a finite domain D having a 

single-connected smooth boundary P. In figure 4.3 T is shown as a circle which is an 

example of the simply connected boundary. In section 4.3 we will consider a more com- 

În the case of the boundary integrals the FEM is called a Boundary Element Method.
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s-1

Figure 4.3: A boundary electrostatic problem in the D  domain.

phcated case of the electrostatic problem employing a doublesided boundary. Let the 

Dirichlet boundary condition (2.12) on F be

0|p =  a . (4.95)

We also assume that a nonhomogeneous dielectric e is placed in D. For convenience we 

assume that e =  1 outside the square domain Q as shown in figure 4.3. According to 

section 2.4 the electrostatic potential (f> in D satisfies the electrostatic governing integral 

equations employing a Green’s function for either free (2.78) or non-free (2.79) space. To 

tackle the Dirichlet boundary problem in D we employ a well conditioned electrostatic 

integral equation as proposed in section 2.6. Placing a double layer on F having unknown
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density o  gives

+47T f
J r  OTlr,

-  [  (e(^i) -  l)Vri(/>(r!)VriG(r1,r^)c/ri =  0 ,r^ G Z) , (4.96)
JQ

where the volume integral over D is reduced to the integral over the square Q. The 

unknowns in (4.96) are

a(f)  , f  G r  ,
(4.97)

^0(0 f G Od X  ̂ d y ’’ ^  ■

Equation (4.96) yields a system of three integral equations 

d(f){f*2) , .  d  f  d G { f { , f 2 }d f  dG[f{,f2)
+  47T—  / — —-------a{ri)dri

dx2 dx2 J y dfij-i

-  f  * ,  =  0 , r-. £ Q . (4.98)J o  I d x i d x 2  o y i  o  y i d  X2 }

#(^"2) . A d  f  d G { f l , f 2 )+  47T—  /  — —  (T{ri)dri
dy2 J r  dUr^dv2

_  f  ( , ( ,0 -1 )  (  ^  =  0 . .-3 .  Q , (4.99)
J q  ̂ 1 5a;i d x i d y 2  d yi d yid V2 J 

 ̂ f d G { f u f 2 )  . . . .-a(r2)+47T /  — ^ ------cr{ri)dn
J t ^  ^ri

_  f  (£(n) - 1 )  f 9 '» W )a g W .’-l) + 3 ^ (n )a G (n ,r 2 ) |  ^ q  ̂ r  _ (4100)
JQ \  5 xi d xi d yi d yi J

where (4.98) and (4.99) are the Fredholm integral equations of the second kind giving a 

solution to the electrostatic problem in Q provided the field of the double layer on T is 

treated as an incident field. The final equation (4.100) is a well posed Predholm integral 

equation of the first kind with a singularity in the kernel. This equation employs the
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double layer on F and electrostatic field intensity in Q to satisfy the Dirichlet boundary 

condition on F.

We now obtain a system of linear algebraic equations based on (4.98), (4.99) and (4.100). 

In order to do so we approximate the volume and boundary functions by their piecewise 

constant approximations. Let Q be divided into N  rectangular non-overlapping subdo­

mains Qn, n =  1,2, ■■■ ,N: Q =  Q i U Q 2 l J " ‘U Q ^  F be approximated by a

piecewise linear curve composed of S segments F„, n =  1,2, • • •, S'. We approximate e and 

the derivatives of the electrostatic potential (j) in Q as follows

€{f) =  ,

^  , (4.101)

^  =  r e Q n ,  n = l , 2 , - - - , N ,

where and are constants. We also introduce a piecewise constant represen­

tation of the double layer a  and the Dirichlet boundary condition (4.95) as follows

cr(f) =  , , .
 ̂ ’ ’ (4.102)

a(f^ =  , r e  F„ , n =  1, 2, • • •, 5  ,

where are constants. If we employ a moment method to solve the electrostatic

problem in D  then a piecewise constant approximation of the Dirichlet boundary condition 

on F is not necessary because the moment method only requires the knowledge of the 

Dirichlet boundary condition in a finite number of points on F.

Substituting piecewise constant approximations (4.101), (4.102) into electrostatic integrals 

in (4.98), (4.99), (4.100) gives'̂

^Hereafter we present complete lists of expressions that need to be implemented numerically. We aim 

to provide comprehensive information on our numerical techniques and to skip the demonstration of the 

actual computer codes.
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r r  d d G ( r y , ) ^^^ ^

“2/2 J t driri . J t  (^V2 drtTi
1 = 1

47T f  ^ § 5 ^ < T (r -;)d n  = [  Q g<:‘l^ d r ,  , (4.105)
Jr d « r i ^  yPi ^  « r i

/  (.(r.) -  = ^ ( e »  -  1)^?) /  , (4.106)
7q  5 x i  d x i d x 2  ^  J q , d x i d x 2

f  (.(n) -  i ) 9 | ( n ) a L G ( | ^ , „  ^ f ? ^ ( § ^ d r ,  , (4.107) 
Jq  5 y i  9  2/19x2 ^   ̂ yg .  d y i d x 2

f  ( e ( n )  -  i ) 9 ^ ) , y ,W - ’-^)r f , ,  =  f ^ ( , ®  _ D̂ JO f  . (4.108)
J q d x i  d x i d y 2  ^  7q, d  x i d  V2

7q 9yi d y i d v 2  ^   ̂ J q . d  y i d  y2

/  (e (n ) -  =  f : ( ^ «  -  1 ) < ‘> [  ■ (4111)J q d y i  d y i  ^  *' yg. 9 yi

The integrals under the summation operator in (4.103)-(4.111) are the boundary and 

volume integrals of the Green’s function of free space given by (2.22)

G { f [ , f 2 )  =  “  "̂2 !) ■ (4.112)

These integrals have a simple analytical form for rectangular integration domains. A list 

of integrals of the Green’s function that can be encountered in various 2D formulations of 

the electrostatic problem is presented in appendix 4.5.
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For the sake of simplicity we replace the piecewise constant dielectric perm ittivity  e by a

corresponding dielectric susceptibility x  such tha t: %n =  -  1, n  =  1,2, • • •, AT. We also

denote the integrals in (4.103)-(4.111) as follows^

=  47t /  , f 2 e Q j , l < i < S , l < j < N ,  (4.113)
dx2 duri

= 4 tv [  , T2 ^  Q i , I <  i  <  S  , 1 < j  < N  , (4.114)
yr< dy2 drir,

=  47t /  ^ - ~ 4 ^ d n  , r2 G T,- , 1 <  i <  5  , 1 <  j  <  5  , (4.115)
Jvi d Ur,

V xV x^^ ’̂'> = [  , f 2 e Q j , l < i < N , l < j < N ,  (4.116)
Jq.  a x i d  X2

V yV x^^ ’̂  ̂ =  [  , f2 G Q, , 1 <  z <  iV , 1 <  i  <  iV , (4.117)
Jq . d  y id  X2

VxVy^^'i^ = f , f2 e  Q , , 1 <  i <  iV , 1 <  j  <  iV , (4.118)
J q . a  x i d y 2

, r-2  G Q, , 1 <  z <  iV , 1 <  i  <  iV , (4.119)
jQ i d  y id  y2

VxB^^'^^ =  f  ? - ^ p ^ d r ,  , f2 G r ,  , 1 <  i <  iV , 1 <  i  <  5  , (4.120)
jQ i d  Xi

VyB^^'^^ =  f  ? - ^ p ^ d n  . f2 G r ,  , 1 <  i <  TV , 1 <  i  <  5  . (4.121)
J Q i  ^  2/1

Using piecewise constant approxim ations (4.101),(4.102) and (4.113)-(4.121) we now rewrite 

electrostatic governing equations (4.98), (4.99) and (4.100) in the form of a system of linear 

algebraic equations

iV  AT S

VxVx^^'^h^^(i>'^^ -  Y .  yyVx^^'^h^^< i> f +  Y ,  =  0 , (4.122)
___________ i=l___________________ i=l

®In our nomenclature B and F stand for “boundary” and “volume” respectively and x and y correspond 
to X- and y- differentiation of the electrostatic potential. For example BnVx^''^'> is the x-derivative of the 

electrostatic potential produced by the field sources of the i''* boundary mesh in the j"* volume mesh.
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AT N

-  E
i=l i ~ \

i  =  ,

N N

-  ^  , (4.124)
i=l i=l i=l

We group (4.122), (4.123) and (4.124) to give a single matrix form equation

Ax = y, (4.125)

where X  and V are 2 N  +  S  dimensional vectors

<l> ‘

<̂ r
a(i)

a(2)

V /

Y  =

0

0

0

0

and ^  is a square m atrix that consists of 9 submatrices

yl =

^ -^ 1,1 ^ 1,2 ^ 1,3

^2,1 ^2,2 ^2,3

 ̂ ^3,1 ^3,2 ^3,3 j

(4.126)

(4.127)
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/

-4 i ,2 —

 ̂ —X̂ '̂ ^VyVx̂ ’̂̂  ̂ ••• —x^^^VyVx^ '̂^  ̂ j

^1,3 —

SnVx(^’2)

BnVx^'^’̂  ̂ BnVx^"^’̂ ^

BnVx^^’̂  ̂ \  

BnV

\ BnVx^^'^^ BnVx^^'^^ /

-̂ 2,1 —
_ ^ ( i ) y 3 ; y y ( 2 . i )  —'x̂ ‘̂ )VxVy^^’̂^

.^Wya;Vy(i.^)  ̂

-X^ '̂>VxVy '̂ '̂ '̂>

\

2̂,2 =
_ ; ^ ( l ) y y V y ( 2 . 1 )  - ; ^ ( 2 ) V y y y ( 2 . 2 )  _  1

^2,3 —

BnVy^^'^^ BnVy^^'‘̂̂

BnVŷ '̂ '̂  ̂ BnV

BnVy(i.s) \

BnVy^'^'^^

\ BnVy'^ ’̂̂  ̂ BnVy'̂ '̂'̂  ̂ ••• BnVŷ '̂̂ '>

, (4 .128)

(4 .129)

(4 .130)

(4 .131)

, (4 .132)

(4 .133)



4,2. Numerical Implementation of the Forward Electrostatic Problem. 102

^ 3,1 —

^ 3,2 —

. . .

. . .

- ; ^ ( 2 ) y y 5 ( l , 2 )  . . . - y _ W v y B O - , N )

- ; ^ ( 2 ) y y 5 ( 2 , 2 )  . . .

— . . .

(4.134)

(4.135)

^ 3,3 —

\ /

(4.136)

The condition number K  for (4.125) can be calculated using (4.39). K  depends on many 

parameters and, in particular, on the shape of boundary F. A common practice is to skip 

the condition number analysis for those problems that are expected to be well conditioned. 

We do not test (4.125) for ill/well conditioning directly. Instead we check the speed of 

convergence of our numerical solver. If the numerical algorithm converges rapidly then we 

conclude that we deal with a well posed formulation.

The system of liner equations (4.125) for the electrostatic problem shown in figure 4.3 can 

be tackled using a conjugate gradient method explained in appendix 4.4. According to 

our numerical experiments the cg-method applied to (4.125) converges to a precision of 

10“  ̂ in about 10-20 iterations regardless of the dimension of A. This suggests that (4.125) 

is well-conditioned. We also observed that in the case of ill-posed algebraic equations the 

cg-method may not converge even after the number of iterations equal to the dimension 

of A. It is well known that in the absence of the round-off errors the cg-method converges 

to the exact solution of A X  = Y  after N iterations where is the dimension of A (appendix 

4.4).
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4.3 E lectrostatic Problem Em ploying a Doublesided Boundary

In the 2D physical implementation of the electrostatic imaging problem that we investigate 

the flat metal electrodes are placed just above a ground plane as shown in figure 4.4 (a). Let 

a nonzero potential (pk be applied to the /c-th electrode. If we now approach the capacitive 

sensor array in the directions A and B as shown in figure 4.4 (a), the electrostatic potential 

tends to <pk and zero respectively. We model a capacitive sensor array by introducing a line 

segment boundary with a doublesided Dirichlet boundary conditions on it (figure 4.4 (b)). 

In this analytical model we force the electrostatic potential to tend to the same values as 

in the real physical implementation as we approach the boundary i.e. to the values (j)k 

and zero in the directions A and B  respectively as shown in figure 4.4 (b). We denote the 

upper and lower sides of the line segment boundary by and respectively.

Capacitive sensor array

electrode 1 electrode 2

a)

direction A

ground plane

direction B

Doublesided line segment boundary 

b)

direction A

upper side 1

lower side ^

direction B

Figure 4.4: A 2D capacitive sensor axray and its analytical model.

The ill/well conditioning considerations significantly change when the doublesided bound-
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ary is added to the electrostatic problem. First we demonstrate that in contrast to the 

electrostatic problem with a simply connected boundary the doublesided boundary electro­

static problem cannot be efficiently solved by employing either a single or double unknown 

layer; using both layers leads to an ill-conditioned integral equation. Then we show that 

there is a method employing a conformal mapping th a t allows us to obtain a well posed 

problem. Finally we explain the numerical implementation of the double sided Dirichlet 

electrostatic problem and the advantages of the method.

r r

Figure 4.5: D domain with a doublesided boundary T.

A Dirichlet boundary electrostatic problem with a line segment boundary T is shown in 

figure 4.5. W ithout loss of generality we assume that the left and right ends of F are given 

by X =  - 1  and X = +1. The Dirichlet boundary condition is prescribed on F^^  ̂ and F(“\
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We rewrite boundary condition (4.95) for the doublesided boundary T as follows

> (4.137)

 ̂ =  a(-)(a;) , x  G ( - 1, 1) , (4.138)

where the superscripts (+) and (—) denote the upper and the lower sides and of 

r .  Recall that a('^^(a;) 7̂  a^~\x). We now show th a t approaches to deriving the integral 

equation for electrostatic problem in figure 4.5 that use a single or double layer on F do not 

possess a well conditioned form. Indeed the Dirichlet boundary electrostatic problem is 

commonly approached by placing an unknown double layer on F (section 2.6). Since F in 

figure 4.5 is doublesided placing double layers and on and F^“  ̂ is equivalent 

to placing — â ~'> on segment (—1, 1), where sign arises because of the rotated by 

180 degrees normal n for and F^“ \  This statement can be proved by considering an 

electrostatic field produced by the boundary integrals in (4.98), (4.99) and (4.100). Thus 

it is sufficient to place a =  on (—1, 1) to include both and

a(x) — — a^~^x) , x  € (—1,1) . (4.139)

We now show that the Dirichlet boundary condition (4.137), (4.138) determines a  (4.139) 

uniquely. According to section 2.6.1 (2.116) we write

â +)(a:) — â “ (̂x)
27T

(4.140)

If we now apply the FEM to (4.98), (4.99) and (4.100) then we obtain a numerical for­

mulation where the number of unknowns is less then the number of algebraic equations. 

To obtain a consistent numerical formulation for the electrostatic problem in figure 4.5 we 

place additional electrostatic field sources on F i.e an unknown single layer p

p{x) =  p^^\x)  -  p^~^{x) , X G (-1 ,1 )  , (4.141)

where and p̂ ~̂  are surface charge densities on the upper and lower sides of F re­

spectively. It can be shown that now we have sufficient number of unknowns to solve an
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electrostatic problem. While the double layer is given by (4.140) a single layer (4.141) 

still has to be resolved. The unknown single layer on F in the Dirichlet boundary electro­

static problem leads to a Fredholm integral equation of the first kind with a smooth kernel 

which is ill posed. Summarizing, the Dirichlet boundary electrostatic problem cannot be 

efficiently solved using traditional approaches employing unknown single and double layers 

without preconditioning.

s-1

Figure 4.6: D domain with a simply connected boundary T.

One of the methods to obtain a well posed formulation for the electrostatic boundary 

problem in figure 4.5 is to map domain D  onto another domain D  with a simply connected 

boundary F. Conformal mapping introduced in section 2.3.1 preserves the electrostatic 

equation and therefore is particularly suited for that method. Figure 4.6 illustrates domain 

D having boundary f  obtained from D  and F in figure 4.5 according to the conformal
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mapping example presented in section 2.3.4.

The electrostatic problem in figure 4.6 is now posed in the same type of domain as the 

electrostatic problem presented in section 4.2.2 (figure 4.3). Thus we can directly employ 

equations (4.98), (4.99) and (4.100) in D  with a circle boundary f  and a non-regular 

Q shown in figure 4.6. The fact that Q is not a square domain as compared to figure 

4.3 is not essential for the analytical formulation of the electrostatic problem. Equations 

(4.98), (4.99) and (4.100) in D  are the Fredholm integral equations of the second kind 

with a smooth kernel which means that the electrostatic problem is well posed. Solving 

an electrostatic problem in D  and conformally mapping its solution back onto D  obtains 

a solution in D.

The above approach employing a conformal mapping of the domain exterior to a line seg­

ment onto the interior circle domain has several disadvantages. Firstly the new meshes 

Oil O2 , • ■ ■ 5 Qat figure 4.6 are not rectangular and hence formulae in appendix 4.5 can­

not be directly applied to these meshes. A second disadvantage is that if the doublesided 

boundary in the electrostatic problem consists of several segments which are not necessarily 

aligned or connected as shown in figure 4.7 then a simple form for the conformal mapping 

does not exist and hence the proposed method has a limited applicabihty. Indeed imple­

menting a conformal mapping for one of the segments maps the remaining segments onto 

the doublesided curves resulting in the same difficulty of having a doublesided Dirichlet 

boundary condition as in the original problem.

In this thesis we develop a method for solving a doublesided Dirichlet boundary elec­

trostatic problem free of the above mentioned disadvantages. Instead of mapping the 

electrostatic problem in figure 4.5 (i.e. e and (/> ) onto D  we formulate it in D  as if the 

electrostatic problem did not have a doublesided T. The innovation is to use D  to place a 

double layer ct on f  as if an electrostatic problem was mapped onto D.  The electrostatic 

integral equation (4.96) in our approach becomes a hybrid integral equation given by

-0(r^ ) +  CF[D f  ^
Jr Tin
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Figure 4.7: Boundary electrostatic problem with f  composed of three segments and
f ( 3 ) .

-  [  (e(ri) -  l ) V r M n ) ^ r M r 1 , r - 2 ) d r ,  = 0 , r 2 E D  , e  D  , (4.142)
J q

where CF[D —> D] is an operator th a t conformally maps D  onto D  and a  is a double 

layer density on f  in D.  Note th a t V is not included in (4.142). Instead it is implicitly 

referred to in the conformal mapping operator CF[£> i)] | f | .  The unknowns of the

electrostatic problem  (4.142) are given by |-^  in Q and a  on f .

Employing piecewise constant approximations for in Q and a  on f  in (4.142) in

the same way as (4.101), (4.102) are introduced we reduce (4.142) to  a system of Hnear
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algebraic equations (4.125) where Y  is given in (4.125) and X  is defined as follows

o-(i)
a(2)

(4.143)

Matrix A can still be represented in the form of 9 submatrices (4.127) where Ai î, 

^ 2 ,1 , ^ 2,2 , ^3,1) ^ 3 ,2 , are given by (4.128),(4.129),(4.131),(4.132),(4.134),(4.135) and 

^ 2 ,3 , ^ 3,3 are defined as follows

/

^1,3 —

V

BnV ■■■ BnVx^^'^^

BnVx^" '̂^  ̂ BnV  ••• BnVx^'^'^^

BnVx^^’̂  ̂ • • •  BnVx^^’̂ ^

\

(4.144)

^ 2,3 —

BnVy^ ’̂̂  ̂  ̂

BnVŷ "̂ ’̂ ^

V BnVy^^’̂  ̂ BnVy^^’'̂  ̂ ■ • •  BnVŷ '̂^̂

(4.145)
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^ 3,3 — (4.146)

where coefficients BnVx,  BnVx  and BnB  are given by

BnVx̂ '̂ ’̂  ̂ — 47t

BnVy^^’̂'> =  4tt-^ C F [D  D] [  , fs G Q,- , l < i < S  , l < j < N ,  (4.148)
dV2 J f ,  d U r ,

BnB^^’̂  ̂ =  47rCF[D D] [  , T2 e  Tj , I <  i <  S , I <  j  <  S . (4.149)

In the above equations f 2 G i )  is an image of f  G D.  Formulae (4.147) and (4.148) are 

the X  and y  projections for the Laplace operator placed in front of the conformal mapping

where r2 E Qj , 1 <  * <  *5 , 1 <  j  <  N  . From the computational point of view the 

order of the operators in (4.150) is not desirable. Indeed the conformal mapping operator 

C F  maps the value of the integral at a particular point, further differentiation requires 

the knowledge the value of the integral in the vicinity of that point which is numerically 

inefficient. In section 2.3.2 (2.48) it was shown how the Laplace operator can be moved 

inside the conformal mapping operator

where is the Jacobi matrix of the conformal mapping. Representation (4.151)

is now symbolic: the conformal mapping operator in (4.151) does not scale or rotate the

operator C F

(4.150)

{BnVx^^'^\BnVy^^'^^) -  47tCF[D ^  D]Jf,^^{f2) , (4.151)
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vector on its right, this operation is done by the Jacobi matrix. CF[.D D] in (4.151) 

performs only a mapping function establishing correspondence between D and D.

We now present a consequence of our approach that explains the efficiency of the presented 

method and proposes an approach to a general (including 3D) electrostatic problem having 

a doublesided boundary. We recall that we solve the electrostatic problem in the D domain 

with a doublesided boundary F (given by segment (—1,1)). We use a conformal mapping 

to represent the electrostatic field in D due to the boundary sources represented in D

is fixed in D  and there exist corresponding single and double layers pi{f) and ai{f), f  e V  

such that they establish in D (4.155)

These single and double layer densities pi{7  ̂ and ai{r^ are uniquely given by the following

r2 G £> , f 2  G . (4.152)

Using a piecewise constant representation of a

a ( f j  —  , r G F j ,  l < i < i S (4.153)

and linearity of the conformal mapping operator we rewrite (4.152) as follows

,f2 G D , f 2  G -D . (4.154)

Note that the partial electrostatic potential

Mr2) =  47rCF[D D] , f  2 G Z) , f  2 G Z) (4.155)

formulae
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ai{f) =  27T(/)i(fO+ -  27T(/»i(f) . (4.158)

Equations (4.156), (4.157) and (4.158) can be validated using a uniqueness of the solution 

of the boundary electrostatic problem. We rewrite (4.154) in the form

s s
^(^2) =  =  ^aW 47T f  +  pi{f i )G{f[ , f2)  \  dri  , fa e  D ,(4.159)

i= i i= i >̂ r L o’ nri )

and substitute into (4.142) to give

-H '^2 ) + J  +  Pi(n)G(r1, f 2 ) |  dr I

-  f  (e(n ) -  l)V ri0(rl)V riG (rl,r l)d ri =  0 G D . (4.160)
Jq

Note that now (4.160) is entirely formulated in D  and is well posed because it is an 

alternative form of another well posed problem. This shows that the method employing 

a conformal mapping is not the only efficient method to tackle a boundary electrostatic 

problem having a doublesided boundary. An alternative way is to find and use such pi{f) 

and (Ti{f), f  e  D  and to represent an electrostatic potential in the form of series (4.159) 

such that the electrostatic integral equation (4.96) becomes well conditioned. In order to 

derive (4.160) we first employed the FEM with a piecewise constant approximation of the 

boundary sources. A similar analysis can be done analytically.

Functions Pi{f) and ai(f),  f  G D  obtained above can be developed for a wide range of 

types of the doublesided boundaries including 3D. This suggests methods avoiding the use 

of conformal mapping.



4 .4 . Appendix: C onjugate Gradient A lgorithm  for Solving System s o f Linear 

Equations. 123

4.4 Appendix: Conjugate Gradient Algorithm for Solving Sys­

tems of Linear Equations.

The conjugate gradient method (cg-method) [43] is an elegant iterative method for solving 

a system of k linear equations (4.1)

A X  = Y  , (4.161)

which is guaranteed to converge after k iterations in the absence of the round-off errors 

which is an advantage. The cg-method is originally proposed by Hestenes and Stiefel [43]. 

In this section we briefly outline the main operations involved into the cg-method.

The conjugate directions method or cd-method for solving (4.161) is to find conjugate 

vectors pj, i =  1,2, • • •, A: for A i.e vectors that satisfy

Note that the conjugate directions are linearly independent. Indeed if we assume th a t one

consequence of (4.162) is (Pio,^Pjo) =  0. Since A  is positive definite we obtain — 0 

which contradicts our original assumption. A solution to (4.161) is then given by

Note that the eigenvectors for symmetric A is a particular case of the conjugate directions. 

Formulae (4.163) is similar to (4.25) where the eigenvalues are replaced by p[Api.

The cg-method is a particular type of the cd-method (4.163). On each iteration of the 

cg-method a new conjugate direction p and new value of residual f  are calculated. We 

now assume that A  (4.161) is symmetric and positive definite. The choice of initial values 

for p and r  is based on the initial guess of solution X q for (4.161) which is arbitrary

[Pi, Apj) = ^ A p j  = 0 , j. (4.162)

of the conjugate directions Pi  ̂ 7̂  0 is a linear superposition of the others then a direct

(4.163)

Po = r o ^ Y  -  AXo (4.164)
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The general routine for the cg-method is the following

ai = p ^  , (4.165)
{PuApi)

X i^ i =  Xj +  QiPi , (4.166)

r*+i = r i -  aiApi , (4.167)

iPi,Api) ’  ̂ ^

Pi+i = fi+i + biPi . (4.169)

Repeating (4.165), (4.166), (4.167), (4.168), (4.169) one monotonically decreases the error 

\Xi — Xkl"^, i < k a t each iteration and, in the absence of round-off errors, one obtains 

a solution after k iterations. In reality we cannot calculate the error because the final 

solution is unknown. Instead we use the square of the residual fj, i =  - ,k  as a

measure of the error. Note that that measure of the error is not absolutely reliable since 

it is possible to construct such cases where |rjp  increases after each iteration but after the 

final iteration becomes zero. We now present a conjugate gradient method [43] that allows 

to solve (4.161) where A  is general non-symmetric and non-singular det|yl| ^ 0 .  The first 

iteration of the cg-method employs an initial guess of the solution Xo and is given by

Y - A X „ ,  n  = . (4.170)

The main iteration routine is given by

_ \A^rj\^ (4171)
\Ap,\^ ’

, (4-172)

—  Ti (XiApi 5 (4.173)
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bi = (4.174)

(4.175)

Because the algorithm (4.171)-(4.175) is suitable for any non-singular matrix it can also 

be used in the case of a symmetric matrix. However, from the numerical point of view 

algorithm (4.165)-(4.169) employs only one matrix-vector multiplication which is the most 

computationally intensive operation in the algorithm while (4.171)-(4.175) requires two 

matrix-vector multiplications per iteration. Thus (4.171)-(4.175) is about half speed com­

pared to (4.165)-(4.169). Note that a larger number of matrix-vector multiplications also 

increases the round-off errors in the cg-method.

It is of interest to mention that the Gaussian elimination method of solving a nonsingular 

system (4.161) can also be seen as a particular implementation of the cd-method. From the 

cd-method perspective, the difference between the Gaussian ehmination method and the 

cg-method is that the cg-method is building the conjugate directions using the orthogonal 

set of residual vectors fi,  i = 1,2, - ■■ , k  while the Gaussian elimination method is building 

the conjugate gradients using a set of mutually orthogonal vectors (1,0, • • •, 0), (0,1, • • •, 0), 

•••, ( 0 , 0 , - - - , l ) .

The cg-method is well suited to solving linear systems of algebraic equations arising in 

electrodynamic, electrostatic and other problems. A super linear convergence of the cg- 

method implemented in electromagnetic and other problems has been reported in [44], 

[45], [46], [47]. The cg-method is also employed in many inverse imaging problems [16], 

[17] [33].

4.5 A ppendix: A nalytical representation o f th e  e lectrosta tic  in­

tegrals.

This section presents a list of boundary and volume integrals that can be encountered 

when applying the FEM to an electrostatic problem. These integrals allow calculation of



4.5. Appendix: Analytical representation of the electrostatic integrals. 116

electrostatic field (both an electrostatic potential and an electrostatic field intensity) due 

to a uniform distribution of charge and dipole (single and double layer) on the segment 

boundary and in the rectangular domain. We obtained these integrals and verified their 

applicability to the electrostatic problem. The Green’s Function which we integrate is a 

function of two arguments and is given by

G (rl, r^) =  log[(a;i -  X 2 f  +  (yi -  V2f] (4.176)

where f{ and r l are the locations of the source and the observation point respectively.

4.5.1 Potential of volume charge

J j  Gdxidyi  =  ^  | 3( x i  -  0 :2 )( y i  -  2/2) -  {xi -  X2 f  arctan y\ - V 2
Xi -  X2

- { y i  -  1/2)̂  arctan
Xi -  X2
. y i - V 2 -  {xi -  X2){yi -  2/2 ) log[(xi -  X2Y +  (2/1 -  V2f] M4.177)I  (4.1

4.5.2 Electric field of volume charge

d
dX2

f  f  Gdxidyi  =  ^  |(a :i -  ^2) arctan  ̂

rffe /  /  Gdx.dy ,  =  ^  { (yi -  V2) arctan [

yi-y2
XI  —X2

H  —X2  
yi—2/2

+

+

Ib i -  ŷ ] log[(xi -  X2Y +  [vi -  2̂ )^]}(4.178) 

[̂xi -  0 :2 ] log[(a;i - X 2y  +  (yi -  2̂ )^]}(4-179)

4.5.3 Electric potential of volume dipole

/  /  :^Gdxidyi =  - i  { ( 2 / 1  -  y2) arctan 

11 s:G<‘^ id y i  =  -  i  { (xi -  ^̂ 2) arctan

X I —12  
yi-j/2

V 1 - V 2  
X I —X2

+

+

\[xi -  0 :2 ] log[(a:i - X 2) ^+ {yi -  ^2 )^]}(4.180) 

| b i  -  y2] log[(a:i -  X2)^ +  (yi -  y2)^]I (4.181)

4.5.4 Electric field of volume dipole

—  /* /  — Gdxidyi  - -f- arctan
d y ^ J  J  '

A .

dyi 27T
X l  —  X 2

v i - y 2.

—  [  [  -^ G dxidy i  — —  log[(a:i -  X2Y +  [Vi ~  2/2)̂ ]
dy2 J  J  dxi  47t

(4.182)

(4.183)
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dx-

dx- H i Gdxidyx - —  arctan
Z7T

Vl -  V2 
X i  -  X 2

(4.184)

(4.185)

4.5.5 Electric potential of boundary charge (single layer)

J  Gdxi =  I( y l - y 2 )  arctan +  (a;l -  a ;2)(-l +  |  log[(o;i -  X2 )̂  +  (yi -  1/2) ]̂) j(4.186)

4.5.6 Electric field of boundary charge

J  Gdxi  =  ^  log[(xi -  X2f  +  (yi -  Vif
dx2

- fdy2 J
Gdxi -- —  arctan 27T

X i  -  X 2

L2/I -  V2.

4.5.7 Electric potential o f boundary dipoles (double layer)

Xi - X2I ^ ^ d x i =  — ^  arctan 
dyi 2tt 2/1 -V2

4.5.8 Electric field of the boundary dipole (double layer)

d I d u  . i  y i ~ y 2f  dG , 1
/ ^—dx\ —dx2 J dyi 27t (xi -  X2Y + (yl -  y2f

X i  —  X 2L  _ _ i ______
J dyi 27t (xi -  X2^ + (yl -  V2Ydy2

(4.187)

(4.188)

(4.189)

(4.190)

(4.191)
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EXISTING IMAGING METHODS

The inverse electrostatic problem is to reconstruct the original medium using remote elec­

trostatic field measurements. Another definition of the inverse electrostatic problem is 

to reconstruct the medium whose resultant electrostatic field in the observation points 

matches the measured data. The second definition does not require that the reconstructed 

medium matches the original one. Practical inverse algorithms are based on the second 

definition. If the inverse problem is properly set up then the reconstructed medium resem­

bles the original one which justifies the imaging application. An important observation for 

us is that most inverse algorithms are based on the moment method [4], [39]. An exception 

would be the layer stripping method explained in section 5.2.8 [83], [84] and a method of 

reconstruction of a metal surface based on the analytical continuation of the field [48].

The governing equations for the electrostatic and inverse electrostatic problems are the 

same. They are presented in chapter 2. A principal diflterence between the electrostatic 

and inverse electrostatic problems is linearity. The electrostatic problem is linear. The 

inverse electrostatic problem, as we will see, is strongly non-linear: a distorted field due to 

multiple objects is not given by a superposition of the partial distorted fields and, in fact, 

is obstructed by the object-to-object interactions [38], [49].

At present there is no universal robust technique that can solve a non-linear inverse elec­

trostatic problem for an arbitrary unknown medium. The Newton algorithm is, perhaps, 

the most common technique employed in various non-linear problems including the elec­

trostatic inverse problem. Modifications of the Newton method lead to numerous imple­

mentations of the inverse problem such as a Born approximation [98], [18] or algorithms 

employing the source type integral equations [55], [65].

Since the inverse electrostatic problem is non-linear there is no analysis tool that would 

guarantee convergence of the inverse problem, unless the unknown object is restricted
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to provide one. The non-linear problem is often approached as a black box where the 

researcher relies upon the previous experience and intuition.

Classification of inverse electrodynamic and electrostatic problems is a challenging task. 

The efficiency of the inverse problem depends on many factors such as what type of gov­

erning equation is used and how it is implemented numerically [50]. The type and number 

of the incident fields^, position and number of the sensors also influence the speed and pre­

cision of the inverse method [41], [89], [65], [33]. Finally the a priori information imposed 

on the scattering object and the way the object is modelled [49] are also important and 

are surveyed in section 5.1. Popular inverse methods are presented in section 5.2.

5.1 Various scatterer models employed in the imaging algorithm s

We have stated in previous chapters that an imaging problem has many formulations. 

Even when we limit our discussion to the inverse electrostatic problem and require the 

knowledge of the Dirichlet-to-Neumann map in order to obtain a unique solution, the 

imaging problem may be formulated in various ways which can be classified, for example, 

according to the a priori information known about the scatterer. Very often these a priori 

constraints relating to the scatterer are employed in the scatterer model. In this section 

we introduce various models for the scattering object that have been widely used in the 

imaging problem. Due to the similarity of the inverse problems based on different physical 

effects we do not limit ourselves to the electrostatic case alone.

5.1.1 Conducting Scatterers.

There are several reasons why conductive scatterers have attracted researchers during the

study of the imaging problem in the 1970s and early 1980s. First of all, the uniqueness

of the solution for the perfectly conductive scatterers is easier to prove and can even be

established intuitively (section 3.3). Another reason is, for example, that the 2D or 3D

^In electrodynamics the illuminating fields and measurements are more versatile than in electrostatics. 

An incomplete list involves near and far field measurements, including and excluding the phase from the 

data, multifrequency illumination, plane/non-plane incident waves etc. [54]
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conducting scatterer can be often represented using ID or 2D functions respectively giving 

the profile (boundary) of the scatterer. The low frequency electric field does not penetrate 

deeply into the conductive scatterer which allows one to reduce the analysis of interaction 

between the scatterer and the electric field to boundary effects. Even in electrodynamics 

the Leontovich boundary condition on the surface of a lossy metal accurately describes 

interaction of the electromagnetic field and the scatterer without involving interior field 

analysis of the skin effect. An imaging method tha t seeks to reconstruct the shape of the 

unknown homogeneous scatterer is referred to as a profile inversion problem [48], [92]. The 

possibility of using a lower dimensional model for the scatterer reduces computation time 

and memory demand making the imaging problem more suitable for practical applications.

M ultiple connectiv ity  for the conducting scatterer

a) b) c)

Figure 5.1: The 2D conducting scatterers with different connectivity property.

One of the ways to define the surface of the metal scatterer is to parameterise it analyti­

cally which can be done in different ways. We consider 2D representations for the metal 

scatterers or alternatively a cross-section of infinitely long cylinders. A difficulty encoun-
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tered while representing the surface of the conducting scatterer is multiple connectivity 

of the scatterer. Usually assuming that the scatterer is composed of multiple individual 

parts one employs a scatterer model that

1. simulates the object of a given degree of connectivity,

2. makes an assumption regarding the approximate location of the individual simply 

connected parts of the scatterer.

Figure 5.1 illustrates the simply connected, 2-connected and 3-connected cross-sections for 

the 2D metal scatterer. The model of the simply connected 2D scatterer shown in figure 5.1 

(a) is employed in the inverse problem, for example, in [51], [37]. In more complicated cases 

the surface of the conducting scatterer can be 2-connected or 3-connected (fig. 5.1 (b),(c)). 

Analysis of the imaging problem employing both the simply connected and 2-connected 

scatterers is presented in [48], [38]. The 3-connected model for the metal scatterer is rarely 

encountered in periodicals and is studied, for example, in [40].

Starlike and convex shape for the conducting scatterer

X

Figure 5.2: Non-starlike shaped (a) and star-like shaped (b) boundary for the conducting scat­
terer.

Representation of the boundary for the simply connected parts of the multi-connected 

metal scatterers can be further classified according to complexity. We now explain the 

terms of the starlike and non-starlike (convex) shapes for the simply connected boundary.
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We reduce our discussion to 2D space and consider the shape of the simply connected 

scatterer in the polar co-ordinates. Let the origin of the polar co-ordinates be placed 

inside the scatterer and let 0  be a polar angle indicating a direction in the 2D space. 

If the shape of the scatterer can be given by a real single-valued function of 0  then the 

shape is non-starlike. If the shape of the scatterer cannot be expressed as a single-valued 

function of 0  then the shape is referred to as a starlike shape.

The scatterer having a non-starlike shape [38], [37] is shown in figure 5.2 (a). One can 

see that any vector r starting an the origin will cross the boundary of the object in only 

one point A  which allows to parameterise the boundary in the form (F (0 ) , 0 ) . F (0 )  is a 

real single-valued function of 0  given, for example, by the truncated Fourier expansion as 

follows [38]

N  N

Fi{Qi) =  ^  ain cos(n0i) -h ^  sin(n0j) , (5.1)
n=0 n = l

where i is the index of the simply connected part of the conducting object. The locations 

of the simply-connected parts for the multiple scatterer are usually assumed to be known 

and may be given by (rfi cos(i/>), di sin(^)) and {—d2 cos{ip), —d2 sin(^)) in the xy  Cartesian 

plane [38].

A starlike shaped scatterer is illustrated in figure 5.2 (b) and cannot be represented as a 

single valued function of 0 . Obviously that type of the scatterer is more general and in 

fact requires a more complicated analytical representation. Let the surface of the simply 

connected part of the scatterer be parameterised using s. The following expressions

N  N

x(s) =  X !  cos(ns) + '^ b n  sin(ns) (5.2)
n —O
N  N

y { s )  =  E a'n cos(ns) + E b'n sin(ns) (5.3)
n = 0  n = l

are chosen to represent the boundary in [40]. Cartesian co-ordinate system in (5.2) allows 

to overcome the difiRculty associated with having a multi-valued function F (0 )  that arises 

in polar co-ordinates.
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5.1.2 Low Dimensional Inverse Imaging Applications

We have considered several examples of the inverse problem defined as of reconstruction 

of the boundary of the unknown conducting scatterer. These examples deal with various 

ways of the boundary parameterisation. In the problem of determination of the position 

of the human hand in the 3D [2] the human hand is modelled as a conducting scatterer of 

a known shape. Since the shape and connectivity properties are a priori known, only the 

location of the human hand or, alternatively, three Cartesian co-ordinates are subject to 

reconstruction. We refer to this inverse problem as a positioning inverse problem which is 

a very low dimensional inverse imaging problem.

Uniqueness of the solution for the low dimensional imaging problem

The uniqueness of the solution of the positioning inverse problem is studied in [2]. [2] also 

presents a probabihstic approach to the stability analysis of the positioning techniques in 

the noisy environment. We now explain how the uniqueness of the solution is approached 

in [2],

Consider the problem of the determination of the co-ordinates of a small conducting sphere 

of radius r using electrostatic field measurements. In particular we assume that r is small 

compared to the curvature of the incident field so th a t the sphere can be seen as being 

placed in a quasi-homogeneous field. In that case, the distorted field produced by the 

sphere is given by a dipole field (see appendix 3.7). Let several capacitive sensors (each 

being composed of one transmit and one receive electrodes) be used to establish and 

measure the field. We refer to each capacitive sensor as a TxRx sensor. We also assume 

that the response S(d, 0 )  of the TxRx sensor, where d is the distance between the sensor 

and the sphere and 0  is the polar angle, is known and monotonic in d.

Figure 5.3 shows two TxRx sensors and a metal sphere. The dashed lines in figure 5.3 

show the locus of equal sensor response for a given metal sphere. If the response of two 

sensors in figure 5.3 is experimentally measured to be S° and then the conducting sphere 

must be located on the equi-response curves Si = 5? and 82 = 8^. Intersection of these
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curves gives the location for the sphere of known radius that solves the inverse positioning 

problem. The analysis of uniqueness of solution for the positioning inverse electrostatic 

problem is reduced to the analysis of whether or not there is a single intersection point for 

the corresponding equi-response curves. Properly arranged sensors can allow the avoidance 

of ambiguous or multiple solutions for the scatterer.

Y

0

'61

w  TxRx,

X

Figure 5.3: Two TxRx sensors and a metal sphere.

One of the important applications of the low dimensional imaging problem is human- 

computer interface. A novel mouse for 3D virtual navigation has been designed and as­

sembled in the Media Laboratory, Massachusetts Institute of Technology [2]. In [2] the 

transmit and receive electrodes with the ground plane underneath are approximated by 

the dipole antennas. The human hand in the quasi-electrostatic field of the dipole anten­

nas is approximated by a metal sphere such that when polarized also produces a dipole 

field (section 3.7). Using three sensor readings the location of the hand is calculated with­

out solving Laplace’s equation. The capacitive low dimensional imaging techniques are 

referred to as the Electric Field Sensing (EFS) [1], [2], [3].

The first hardware prototype that was designed in the course of this project was capable 

of collecting data for a low dimensional 2D inverse electrostatic problem and is shown m
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Figure 5.4: A cross-section of the 2D capacitive sensor array.

figure 5.4. In this experiment the sensor data was collected and processed using a numerical 

algorithm which was estimating the x  and y co-ordinates of the scatterer and displaying 

them in real time. The purpose of that prototype was to demonstrate the advantages and 

limitations of the low dimensional imaging techniques to our sponsor the Hotron Company 

Ltd. and to gain experience in EFS techniques.

We now discuss the experiment in more detail. The sensor array that we implemented 

(figure 5.4) consisted of one transmit (Tx), four receive (Rx) and one ground electrodes. We 

employed only one incident field and hence the imaging problem was similar to the inverse 

source problem introduced in section 3.1. We measured mutual capacitance between Tx 

and Rx electrodes sequentially for each Rx using a method presented in section 2.8. In 

particular a low frequency oscillating potential was applied to the Tx electrode (IV pk-pk, 

300kHz) and the current induced in each of the Rx electrodes was rectified, digitised and 

collected by the PC. The 2D scatterer was chosen to be a metal cylinder of a fixed large 

radius such tha t the corresponding distorted field is no longer given by a dipole field.

In order to simplify the imaging problem the cylinder was assumed to be located inside a 

rectangular domain above the sensor array. The centre of the cylinder was constrained to 

be on a grid of 20x40 nodes. In order to calculate the sensor response we employed the BEM
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where the surface of the metal cylinder was approximated by a polygon having 20 edges. 

To overcome the ill-conditioning of the electrostatic problem employing a doublesided 

boundary, the exterior to a line segment domain was conformally mapped onto an interior 

circle domain.

The inverse problem in figure 5.4 is low dimensional and it is feasible to simulate and 

store the sensor response for each cylinder location on the grid. Let i =  1,...,40 and 

j  =  1, ...,20 be the horizontal and vertical indices of the grid nodes and let be the 

sensor response (k =  1,2,3,4.) for the cylinder centred at the (i , j )  grid node. The 

imaging problem was reduced to a problem of minimisation of the mean squared error

where Sk, k =  1 ,2 ,3 ,4  are the experimental measurements. The algorithm minimising

The inverse positioning technique that we implemented reconstructs only the co-ordinates

extended to the radius, dielectric permittivity, elongation and spatial orientation (for the 

ellipse). Adding extra variables to the scatterer’s model increases the complexity of the 

imaging problem making it impossible to pre-store the sensor response. The stability of

(5.4) has local minimum(s) as opposed to an absolute minimum. When there are local 

minima, the numerical solution to the inverse problem largely depends on the initial guess.

5.1.3 R epresentation  of th e  scatterer based on the representation of th e  field

A unique approach to the inverse problem of reconstruction of the metal scatterer is 

proposed in [48]. This approach does not suggest any particular representation of the 

lossy conducting body. Unlike many other inverse methods, the final representation of 

the scatterer in [48] is determined by the representation of the electrodynamic field. In 

order to reconstruct the scatterer analytical continuation of the electrodynamic field is

4

mm
i j

(5.4)

(5.4) estimated ~  for each of the 800 nodes using the pre-stored values of

The minimum was then obtained by a direct comparison of the error.

of the metal cylinder. The list of parameters parameterising the cylindrical object can be

the inverse method based on minimisation of (5.4) is then determined by whether or not



5*1* Various scatterer models employed in the imaging algorithms 127

The electrodynamic field is further analysed by seeking such a surface where 

the Leontovich boundary condition [6] might be satisfied. Once such a boundary is found 

it is admitted as the surface of the unknown metal lossy scatterer.

5.1.4 M ulti-wire representation of the 2D conducting scatterer

The unknown conducting scatterer in the inverse electrodynamic or electrostatic problem 

does not have to be restricted to having a smooth boundary (5.1), (5.2) because the inverse 

problem is ill-posed in such way that small perturbations of the surface of the unknown 

conducting scatterer are hidden in the measured noise.

This suggested a method of representing the unknown conducting object without param- 

eterisation of its boundary [96]. Instead, a decomposition into smaller metal scatterers is 

used. The advantage of this method is that an approximate location of the scatterer is not 

required a priori Let be a 2D reconstruction domain i.e. a domain where the unknown 

scatterer has to be reconstructed. According to [96] we discretise Q on a regular grid with 

grid locations r ,̂ i = 1,2,..., N. In figure 5.5 ^  is shown as a rectangular domain. Let 

the unknown conducting scatterer be approximately decomposed into smaller conducting 

cylinders (or subscatterers) on this grid and its shape be given by the binary local shape

where i is the index on the grid where the wire (subscatterer) is placed. The local shape 

function (5.5) of the original scatterer is a priori binary. In the reconstructed image the 

local shape function does not need to be binary and may vary from 0 to 1 representing 

the cross-section of the wire relative to the size of the corresponding cell.

If we use sufficiently thin wires such that they cover only small part of the corresponding 

cells then according to section 3.7 the model in figure 5.5 will behave as a dielectric. If 

we constrain the imaging algorithm to having a binary representation of the local shape 

function then, obviously, the recovered image will always be high-contrast. A binary local

function 7

1, Tj belongs to the scatterer , 

0, r, elsewhere,
(5.5)



5.1. Various scatterer models em ployed in the imaging algorithm s 128

Figiire 5.5: The domain discretised on a regnlax greed.

shape function may significantly complicate the convergence of the Born Iterative Method 

(section 5.2.3) and is not a good choice.

The type of the local shape function (5.5) is not reported in [96], yet the presented recon­

structed images of the metal scatterer are smooth. Hence we conclude that a continuous 

local shape function has been employed in [96].

Stable operation of an inverse algorithm employing a similar multiwire model is presented 

in [32]. In particular, the multiwire model has been applied to the problem of recon­

struction of a large metal cylinder. The corresponding reconstructed image has a sharp 

boundary aligned with the surface of the original scatterer while the interior area of the 

reconstructed image is almost hollow which we attribute to the regularization method.

5.1.5 M odelling dielectric scatterers

The inverse electrostatic and electrodynamic problems employing low contrast dielectrics 

are quasi-linear. Such inverse problems can benefit from analytical methods and basis
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functions having a large support such as Fourier series, for example. Due to the strong 

non-linearity of the imaging problem employing a high contrast dielectric the use of the 

general basis functions having a large support is ra ther disadvantageous due to  a redundant 

com putational in tensity  Instead, an efficient approach to  modelling the dielectric medium 

is to  choose functions containing a priori inform ation about the object or to use basis 

functions w ith a small support.

We have discussed the possibility of modelling the dielectric perm ittivity  of the medium 

by placing small m etal spheres of radius R q (section 3.7) in free space. The dielectric 

perm ittiv ity  is then given by (3.43)

e =  1 +  AndRl , (5.6)

where d is the density of the m etal insertions. This model is similar to  the previously 

introduced multiwire representation of the conducting objects and it has not been applied 

to the problem of reconstruction of the dielectric medium.

Image representation for Earth exploration problems

A particular case of the piecewise constant distribution of the dielectric perm ittiv ity  when 

the subdom ains containing an unknown homogeneous dielectric are assumed to be very 

large is illustrated in figure 5.6. An electrostatic problem for th a t type of the dielectric dis­

tribution  can be split into several boundary problems each defined for a given subdomain. 

The model in figure 5.6 is particularly suited for the Earth  exploration and representation 

of the stratified medium [23], [20]. There is a special method for solving electrostatic and 

electrodynamic problems in such a medium. This m ethod is called a Numerical Mode 

M atching m ethod or ju st a NMM m ethod [53], [52], [21], [22],[25].

Piecewise constant distribution of dielectrics

The piecewise constant representation of the dielectric perm ittivity  is suitable for almost 

all imaging applications where no a priori information is imposed on the scatterer [41],
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Figure 5.6: A cross-section of the stratified media.

[65], [18], [19], [30], [31], [73], [16]. This model has many advantages. Firstly, it is well 

suited for the Finite Element Method. Secondly this model can be efficiently employed 

in the powerful inversion algorithms such as the Born Iterative M ethod (BIM) and the 

distorted BIM.

5.1.6 M odelling the hybrid metal-dielectric scatterers

A com bination of the piecewise constant representation of the unknown dielectric and 

a known m etal insertion has been successfully employed in the inverse electrodynamic 

problem [89], [4]. The dielectric perm ittivity e in [89] is complex. Using electrodynamic 

measurem ents both the real and imaginary parts of e are reconstructed. In [4] the 3D 

dielectric tensor perm ittivity  is successfully recovered. Note th a t the orientation of the 

axis for the dielectric tensor perm ittivity in [4] is predeterm ined a priori which reduces 

the generality of the inverse problem formulation.

In section 5.1.1 we have discussed electrodynamic inverse problems where the unknown
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surface of the conducting scatterer is parameterised. A similar parameterisation technique 

is apphed to a homogeneous dielectric body in [39]. The dielectric and magnetic constants 

for the unknown shape body in [39] are assumed to be known.

5.2 Existing Inverse Methods

We have not found any examples of the inverse problems employing electrostatic fields^. 

We found few examples of implementation of the magnetostatic^ [23] and resistivity^ 

[17],[52],[53] inverse problems while the number of the electrodynamic inverse problems 

that have been published in various journals is substantial. The electrodynamic inverse 

problems are similar to the electrostatic inverse problems and are therefore important to 

us. Some of the methods employed in the electrodynamic inverse problem such as a Born 

Iterative Method presented in section 5.2.3 can be employed in electrostatics without mod­

ification. There are many electrodynamic inverse methods that do not and, in fact, cannot 

have analogies in electrostatics. To mention a few, these are the problem of reconstruction 

of an unknown object in a waveguide [91], an inverse problem employing multi-frequency 

illumination [94] and X-ray tomography. In this section we present those inverse meth­

ods that are useful (can be employed) or potentially useful (requiring additional study) 

to the electrostatic problem that we study. In order to avoid multiple definitions of the 

electrostatic inverse problem in later sections we formulate it now.

^Here we do not consider low dimensional quasi-electrostatic problems presented in [1], [2], [3] because 

these problems are not based on the study of the electrostatic equations and axe rather empirical.
^The magnetostatic and electrostatic problems are governed by the same equations. In magnetostatics 

the magnetic field is established and measured using current loops or magnetic dipole antennas as opposed

to capacitive arrays in electrostatics.
^The resistivity inversion problem and electrostatic inverse problem are governed by the same equations. 

In the resistivity inversion problem the static potentials and currents are applied, injected and measured 

on the boundary of the unknown object in order to reconstruct its resistivity distribution.
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5.2.1 Electrostatic Inverse Imaging Problem

We consider the 2D inverse electrostatic problem of the reconstruction of an unknown 

dielectric susceptibility x  = e — 1 having a support in a finite domain Q. It is common 

to bound the support for x  in the inverse problem [96], [65] i.e. to assume that e is unity 

outside Q. For convenience let Q be a bounding rectangle of the support of x- Usually Q 

is chosen within the sensor range to ensure good quality of the reconstructed image. We 

call Q the reconstruction domain. Note that the shape of Q does not constrain e in the 

sense that e can be represented in the form of multiple parts having arbitrary position, 

location, shape and local dielectric distribution.

Y

Tx, Tx Tx̂ ., Tx
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X

Figure 5.7: Domain of reconstruction with transmit (Tx) and receive (Rx) electrodes.

We assume that e in Q is sequentially placed in T  electrostatic fields which we call incident 

fields. Here for convenience we inherit the terminology such as incident or distorted field
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from electrodynamics. For illustrative purpose we assume that the incident electrostatic 

fields are produced by charges T x i , T x 2 , ■ ■ • as shown in figure 5.7. The to tal elec­

trostatic potential (ptot inside and outside Q  is given as a superposition of the incident (j)inc 

and distorted (j) îst potentials

When dealing with Dirichlet boundary inverse electrostatic problems having a nonhomoge- 

neous volume dielectric distribution the corresponding governing integral equations employ 

both the electrostatic potential and electrostatic field intensity. In this section we do not 

introduce a boundary in the inverse electrostatic problem (figure 5.7) which gives us an 

opportunity to express the governing integral equations for that problem employing an 

electrostatic field intensity only.

Let the electrostatic field intensity ^^1 (0  be measured at R  points j  -  1, 2, • • •, i? 

using sensors R x i ,  R x 2 , ■■■, R xr as shown in figure 5.7. The total number of measurements 

of is given by T R  2D vectors or 2TR  scalars. We denote the vector sensor data

(5.8) and Ei^c in (5.8) is known. Thus we can use an alternative to (5.10) data represen­

tation

(5.7)

where i is the index for the incident field. The corresponding electric field intensity Etot is 

given by

(5.8)

and is related to <f>tot through

(5.9)

by

(5.10)

The knowledge of Etot and Edist is equivalent because Etot and are related through
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The inverse electrostatic problem is to find a dielectric permittivity distribution e (or x) 

that makes the corresponding sensor readings equal to the original (measured) ones (5.10). 

If the inverse problem is properly set up in terms of the type and position of T x  and Rx  

then the reconstructed e is likely to resemble or closely coincide with the true one. We 

now present analytical governing equations for the inverse problem in figure 5.7 and then 

postulate them in a numerical form by means of the FEM.

Applying the governing electrostatic integral equation (2.78) to the problem in figure 5.7 

gives

an arbitrary dielectric susceptibility distribution in the reconstruction domain Q. Applying 

operator —Vr to (5.12) gives an integral equation that does not contain electrostatic 

potential (j)

where i is the incident field index. We call (5.13) a state equation. Substituting (5.13) in 

(5.10) gives

-  [  x (0 ^ r'4 ? t(^ )V r'G '(/,rO c?^  , Vf
j Q  

(5.12)

where the boundary integral is omitted (zero), the volume integral representing the field 

due to the volume charge pv  is replaced by 0j„c, i is the index of the incident field and x is

j Q
(5.13)

J Q
(5.14)

i = l , 2 , - - - , T  , j =  l , 2,•••,/?

which we refer to as an inversion equation. The names “state” and “inversion” equations 

are justified by the following concept employed in many inverse methods such as the BIM
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[18]: the dielectric susceptibility is given as a solution to (5.14) while the electrostatic 

field Efgi in (5.14) is uniquely related to x  according to (5.13). Substituting x  =  0 in 

(5.14) gives which results in sensor readings * =  1,2, • • •

j  =  1,2, • • • , i? (5.10). Substituting in (5.14) gives

^ H d )  ^  g i i J )  _  f  ^
Jq

i =  l , 2, - - - , T , j  =  l X - - - . R  .

Note tha t S*̂  i =  1,2, • • •, T, j  =  1, 2, • • •, i? and (5.15) has an alternative

form

= -  f  x(f')4»(f')V,.V,G(f',fO))dr- , (5.16)
J Q

i =  l , 2, - - - , T , j = l , 2 , - - - , i ?  .

We now use the FEM in the form explained in section 4.2.2 to put (5.13), (5.15) and (5.16) 

in a numerical form. Dividing Q into N  subdomains AQi, i — 1,2, representing

the electrostatic fields E  and dielectric distribution x  by a constant for each AQi, i =

1,2, • • •, iV and employing a point matching technique we rewrite (5.13), (5.15) and (5.16) 

in the form of the algebraic equations

|b S 1 =  ( C l  +  . (5-17)

[S«l =  |S'ol+  [//„ ,][x lliS ] . (5-18)

where z =  1, 2, • • •, T  is an incident electrostatic field index and

[x] is an iVxiV diagonal matrix composed of the local susceptibility values;

[4 2 ] and [e Î ]̂ are N  dimensional vectors composed of local values of E^t and in Q; 

[5̂ *)] and [5q] are R  dimensional vectors;

[Hint] is a N x N  dimensional matrix having components

h i n t i , j  =  -  f  V r ' V r G { f , 7 ^ d 7 ^  , f  ^  A Q i  , 1 <  i j  <  N  ; (5 -19 )
J A Q i
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[Hext] is an Rx.N dimensional matrix having components

h ex t i,j =  -  Vr'yrG{7^,f)d7^ , r  =  f ^ ^ , l < i < R , l < j < N ,  (5.20)
J A Q j

where i — 1,2, are sensor locations and j  =  1,2, • • •, AT is the incident field

index.

Note that in this section we use advanced linear algebra structures. Each component of the 

N  dimensional vector [E] is a 2D vector representing an electric field intencity (£ i., 

i =  1,2, - •• , N  for the corresponding cell in Q. This allows us to avoid the use of the 

conventional bulky 2N  dimensional vectors given by • • •, Exj ,̂ Ey^, Ey ,̂ • • •, Ey^).

In our nomenclature operator Vr'Vr in (5.19),(5.20) acts upon a scalar resulting in a 2x2 

matrix given by

(8" a" \
(5-21)

d ydx' d ydy' )

Thus [Hint\ and [Hint] define matrices, the components of which are 2x2 matrices.

We now present source type integral equations which are an alternative representation of 

the state and inversion equations (5.13), (5.14). Despite the fact that the source type 

integral equations are analytically equivalent to (5.13), (5.14), they lead to different nu- 

merical implementations of the inverse problem. The electrostatic field ElJ ,̂ i =  1,2, • • •, T 

polarizes dielectric x in Q- The polarization vector is then given by

p{i) ^  X^tot  ̂ (5.22)
47T

where i =  1,2, • • •, T  is the index of the incident field. To obtain source type integral 

equations we substitute (5.22) in (5.13), (5.14) to give

^ 2 ( r )  -  ElZif )  -  47T /  pW (f')V ,,V ,G (r',r)d r ' , (5.23)
Jq
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Substituting (5.13) in (5.10) gives

(5.24)

Note that (5.24) does not include the electrostatic field intensity or dielectric susceptibility 

in Q. Instead (5.24) defines an inverse source problem which is according to section 3.1.2 

does not have a unique solution. The null space to (5.24) is given by sources which produce 

a zero field outside their support^ [35]. Using the FEM (5.23), (5.24) yields the following 

algebraic equations

5.2.2 Resolution of e

The question of what e resolution the inverse method returns does not have a simple 

answer. The total number of the scalar data that can be collected using the measurement 

setup in figure 5.7 is given by 2TR.  In the electrostatic inverse problem we treat K  -  2TR 

as a measure of the effective dimensionality for e that can be achieved by processing the 

sensor data. We refer to that type of resolution constraint as a TR-resolution.

®Non-radiating sources in electrodynamics.

(5.25)

[5W] =  [5o]+47T[/fext][P '̂^] (5.26)

where is an N  dimensional vector and i =  1,2, • • • ,T  is the index of incident field. 

Equation (5.22) in the algebraic form is given by

(5.27)

where [x] is a matrix and [Efgt] ^ vector.
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According to figure 5.7 the FEM employs N  subdomains of Q to model a piecewise constant 

e. Thus a piecewise model for e is obviously another resolution limiting factor which we 

call an FEM-resolution. Usually the FEM-resolution is chosen to be higher than the TR- 

resolution. This is done from the practical point of view to avoid domination of the FEM- 

resolution. However if the incident fields are “similar” then K  =  2TR  may overestimate the 

effective number of the linearly independent input data  for the inversion algorithm. 

In that case the FEM-resolution is made smaller than K  =  2 T R .

N um erical E stim ate o f Error for Inverse E lectrostatic Im aging Problem

The quality of the inverse method is usually judged using a Mean Squared Error (MSE) 

function [18]. However depending on the function that the MSE takes as an argument 

we obtain different criteria for the inverse method precision. We now discuss two ways of 

defining the error of the inverse method.

Applying the relative MSE function to e gives

M S E ,  = J ^^orig-eaj,pro.y  ̂ 28)
y ^orig

where Sorig and €approx are the vectors representing the original and reconstructed dielectric 

distributions respectively. Error (5.28) is useful for theoretical analysis of the quality of 

the inverse method when Corig is known. However in practical applications eorig has to be 

found and hence is unknown. The MSE for e (5.28) is not suited for control of the iterative 

inverse routines presented in later sections.

The use of the M S E ,  as & quality measure for the inverse problem has other disadvantages 

particularly relevant to the electrostatic inverse problems that we solve. In electrodynamic 

inverse problems where the unknown scatterer is, for example, illuminated by sufficiently 

many plane electromagnetic waves approaching from various directions the quality of the 

reconstructed e is relatively homogeneous over the reconstruction domain [89], [95] and 

hence the M S E ,  (5.28) gives good measure of the error. Analysing numerical results of 

chapter 6 we find that the absolute error \eorig -  eapproxl of the reconstructed image in the
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electrostatic inverse problem that we solve is strongly inhomogeneous: the resolution of the 

inverse method particularly deteriorates as we move away from the boundary F containing 

electrodes. The discrepancy between ê rig and eapprox dominates in the far from T area 

and hence the MSE^  is primarily determined by the distortion in that area. While the 

e resolution is high in the area near F (which is also of practical importance) the MSE^ 

gives an inadequate estimate.

An alternative method to evaluate the error is to apply the MSE function to the sensor

struction routine sensor measurements respectively. Note that the problem of minimisation 

of the M SE^  (5.29) leads to the moment method.

The M SEf  as a measure of the error of inversion problem has been used, for example, 

in [17], [18], [50] and [65]. Both the MSE^  and M SE^  have been implemented in [33], 

[19], where the MSE^p is referred to as a relative residual error (RRE). Only the MSE^  is 

employed in [94]. The MSE^  and MSE^  are omitted and only plots of the reconstructed 

dielectric are presented for visual analysis in [16], [23], [96]. Thus the choice of the error 

analysis is left to the researcher’s discretion. We solve the inverse electrostatic problem 

implementing the moment method; because the M SE^  is intrinsic to this method it is also 

fundamental to our algorithms.

The inverse problem is strongly ill-posed in such way that information regarding the high 

order spatial oscillations of e is hidden in the noise of the sensor data [19]. In the example 

in figure 3.1 of chapter 3 we present two dielectric objects producing identical distorted 

fields. These two objects can be seeing as being identical from the imaging perspective 

as they contain identical information about the shape and local average of e. Considering 

objects a and b in figure 3.1 as the original and approximate ones and substituting their

readings S

pd)
'approxMSE, (5.29)

where Sorig and Sapprox are the vectors representing the original and obtained in the recon-
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e and produced sensor data into the formulae for MSE^  and MSE^  respectively gives

5.2.3 Born Approxim ation, Born Iterative M ethod  and D istorted Born Iter­

ative M ethod

The Born Iterative Method [18], [33] is a well tested algorithm for electrodynamic prob­

lems. The first iteration of the Born Iterative Method is given by a first order Born 

approximation or just a Born approximation. The Distorted Born iterative Method [19] is 

a variation of the Born Iterative Method and its first iteration is also given by the Born ap­

proximation. Fast and reliable convergence of the BIM/DBIM based methods is reported 

for electrodynamic inverse problem [33], resistivity inversion problem [17] and inversion of 

induction problem [23]. We employ the DBIM to solve an inverse electrostatic problem in 

chapter 6. Therefore we present the BIM based methods in detail.

Born approxim ation.

We consider an inverse electrostatic problem in figure 5.7 governed by the state equation 

(5.13) and inversion equation (5.14). The unknown dielectric Xarig is illuminated by T  

incident waves and the corresponding total electrostatic field intensity is measured in R  

locations (5.10).

Applying the FEM to (5.13) and (5.14) casts these equations into a system of algebraic 

equations (5.17) and (5.18)

lim MSEe = oo . (5.30)

lim M SE s  =  0 . (6.31)

(5.32)

(5.33)

where z = 1, 2, • • •, T  is the index of the incident electrostatic field.
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Under the Born approximation the dielectric susceptibility Xupd is assumed to be suffi­

ciently small [50] so that we can neglect the second term in (5.32) to give

[^ 2 l =  [ « £ ] .  » =  . (5.34)

Substituting (5.34) into (5.33) gives

~  +  [ êxt][Xupd][Eil ĉ] > * =  1) 2, • • •, T  . (5.35)

Algebraic equations (5.35) are solved for x  by minimising the squared error

T
-  [So] -  [He,t][Xupci][Eli]y . (5.36)mm

X

Matrix [i/ext] in (5.35) is smooth which indicates at ill-conditioning of the system of alge­

braic equations (5.35). Instability of (5.35) becomes worse if matrix is rectangular 

[65], [42]; its dimension is given by RxN.  If i? <  2N  which is common for inverse problems 

a solution to (5.35) has a null space and if i? >  2N  then a solution to (5.36) generally does 

not exist. Note that a solution to (5.36) always exists even when (5.35) does not have a 

solution. The ill-conditioning in (5.36) is usually circumvented by employing a regulariza­

tion technique [98]. We replace problem (5.36) by the following problem of minimisation 

of the cost function

mm -  [-̂ o] -  [Hext][Xupd][^l!c]  ̂ +  l^[Xupd\^ , (5-37)

where 7  is a regularization parameter. On how to choose 7  the reader is referred to section 

4.1.3. A solution to (5.36) or, in practical applications, (5.37) gives a Born approximation 

for the inverse electrostatic problem.

The Born approximation does not update the values of the sensor readings 5„pd =  Sapprox 

required for the MSE^  (5.29). In order to find Supd we first substitute [x„pd] (obtained 

from (5.37)) into (5.32) and solve (5.32) to find an update (a first order approximation)
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of the total electrostatic field intensity in Q  Substituting [xupd]

and [E^t in (5.33) gives for the M S E ^

= [So] +  [ H e A E S t u J iX u p , ]  , i =  1,2,. • • ,T . (5.38)

Born Iterative M ethod

Although the Born approximation is among the oldest inverse methods the Born Iterative 

Method has only relatively recently been proposed by Wang and Chew [18]. The BIM 

starts by making an initial guess for e =  Smi- Once the guess is made we calculate the 

initial electric field intensity for each of the illuminating fields in Q  solving (5.17)

i C  mil =  i C l  +  l« « llX w l(4 '2  i J  . (5.39)

where i  =  1, 2, • • • ,T  is the index of the incident electrostatic field and Xini =  Uni ~  1- 

Then we calculate the sensor response (5.18) for the initial distribution Xmi

[ € i ]  =  [Sol +  W ..I fc ™ )l^ S iJ  . (5.40)

We need to know the sensor readings (5.40) in order to estimate the M S E ^ .  If the M S E ^  

is below a given level (for example 0.01) then the BIM is terminated.

To find the next approximation [xupd] for the dielectric susceptibility one linearises equation 

(5.18) assuming that the total electrostatic field intensity in Q  is given by a solution to 

(5.39)

[Hext][Xupd][EtJtini\ > * ~  1)2, • • • ,T  . (5-41)

For convenience we subtract (5.40) from (5.41) to give

[SS-U -  . i =  1,2, ■ • ■ ,T  , (5.42)

where

^ X u p d  —  X u p d  X in i
(5.43)



5.2. Existing Inverse Methods 143

Problem (5.42) is solved by minimising a cost function and circumventing the ill-conditioning 

by using a regularization technique

-  [Sinil  -  [ H e , t ] S [ X u p d ] [ E S i \ y  +  7"<^[x«pd]'^ , (5.44)

where 7  is a regularization parameter. The updated value of the dielectric susceptibility 

Xupd  in then given by (5.43). This accomplishes the Born iteration. The next Born iteration 

takes the updated value of x  as an initial guess and repeats the same steps starting from 

(5.39). A series of the reconstructed dielectric distributions in the BIM Cjni? Ci? £2, • • • is 

called a Born series.

As we have already mentioned the first iteration in the BIM is a Born approximation. 

This is true if the initial guess for the unknown dielectric permittivity in Q is unity. 

We choose =  1 when there is no a priori information for the initial guess. The 

unity initial value for the dielectric permittivity is beneficial from the computational time 

perspective because avoids solving T  electrostatic problems (5.39) in the first BIM iteration 

by recording the incident electrostatic field (which is a field in a free space) in the memory 

of the computer.

Distorted Born Iterative M ethod

The Distorted BIM [19] is similar to the BIM. It starts with an initial guess of e,„, and 

then the total electrostatic field intensity i =  1,2, is calculated using (5.39) 

for each incident field i. The sensor response is then updated using (5.40). The MSE^ is 

then calculated and a decision is made whether to continue the algorithm.

The next step in the DBIM is different from the one in the BIM. Before we formulate 

the subsequent step in the DBIM we develop a physical interpretation for the linearised 

inversion equation (5.42). Once we have fixed the total electrostatic field intensity as a 

background field in (5.42) the knowledge of 6[Xupd] which we aim to find is equivalent to 

the knowledge of the polarization vector given by

> =  (5.45)
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Substituting (5.45) in (5.42) gives equivalent to (5.45) algebraic equations 

I C , ]  -  [€ 1 ] =  . i =  1 . 2 , - . - , T  . (5.46)

The right hand side in (5.46) represents an electric field intensity

, i = l , 2 , - ; T (5.47)

produced by a volume dipole (given by a volume polarization vector) in a free space. The

left hand side in (5.46) represents the current sensor reading mismatch which is zero in

where matrix [H*̂ ^] is presented later in (5.52).

Let G e(ri,r2) be the Green’s function for a dielectric e =  ei„j. The governing electrostatic 

integral equation employing G e(fi,r2) is derived in section 2.4 (2.80). Applying (2.80) to 

an electrostatic problem in figure 5.7 where the incident electrostatic field is zero and the 

volume dipole is placed in a background dielectric e =  yields

=  -4 ir  f  VrV,,G,(f,  fO JpW (f')*' , i =  1,2, • • ■, r  . (5.50)

The corresponding numerical form for (5.50) within the context of the FEM is given by

the ideal case. This mismatch is compensated by the field produced by (5.47)

(5.48)

While (5.47) gives an electrostatic field intensity S[E^ot\ due to in free space, an 

improved technique would be to use a field in (5.48) established in ei„j which is the latest 

approximation of €or%g at this stage. The DBIM replaces (5.46) by

(5.49)

(5.51)

where components for [i/gxt] defined as

[  V,,V,Ge(r',f<'))d: (5.52)
JAQj
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where are sensor locations and index j  is the index of incident field.

Substituting (5.51) in (5.48) gives (5.49). We now present an efficient method for calcu­

lating coefficients (5.52) in (5.49) [19]. According to the reciprocity theorem (2.28) we can 

swap the arguments for the Greens’s function in (5.52) to give

Kxt  i,j =  -  /  Vr'VrG,{7^\ f ) d f  , l < i < R , \ < 3 < N  , (5.53)
J aq j

The Green’s function f  e Q in (5.53), where is fixed at the ith sensor

electrode location i = 1,2, is an electrostatic potential cpalx of ^  charge in

measured in Q. Thus ^ ), i =  1,2, • • •, i? can be obtained by solving R  electrostatic

problems in Q. This can be accomplished by representing 4>̂alx in piecewise constant form 

in Q and further using the FEM. The operator V^'Vr (5.21) can be calculated employing 

a three point perturbation for and two point finite difference scheme for r  G Q for 

example. This increases the number of auxiliary (additional) electrostatic problems to 3i? 

and is not a preferred way of calculating /igitij-

We now present a method for calculating employing only 2R auxiliary electrostatic

problems [19]. We consider vector VrG'e(f^*\f^), f  E Q. The x and y components of this 

vector are the electrostatic potentials of the x- and y-oriented dipoles with dipole moment 

^  located in Applying — Vr' to these potentials gives the corresponding electrostatic 

field intensities. Thus in order to calculate —'Vr'VrGe{f^‘̂ \f^) we need to find electrostatic 

field intensities Eauxi'f^) and E Q due to the x- and y-oriented ^  dipoles placed

in the ith. sensor location Matrix VrGe(^*\ ^) is then given by

- V  .V  G (f<‘> f )  =  I I

Substituting (5.54) in (5.53) gives coefficients for in (5.49)

(a.55,

1 < i <  R  , 1 < j  < N,  where ||AQj|| is a metric measure of AQj.
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We now proceed with the DBIM algorithm. Similarly to the BIM (5.49)

[ € U - [ € l l  =  Kx,W x.p.il[fi2™ l , i =  (5.56)

are solved for S[xupd] by minimising a cost function employing a regularization method

-  [ H : j 6 [ x u p d ] [ E S i \ y  +  7 % X u p d ? ^  . (5.57)

The updated dielectric susceptibility Xupd is then given by

Xupd — Xini “1“ ^Xupd (5.58)

and is taken as an initial guess for the next DBIM iteration.

Each iteration of the DBIM employs T + 2 R  electrostatic problems while the BIM iteration 

employs only T  electrostatic problems. Despite of the higher computational intensity of 

each iteration, the DBIM has strategic advantages over the BIM. The DBIM method 

converges in fewer iterations than the BIM to a significantly higher precision (more than 

one order of magnitude of improvement) [33]. The BIM is more robust to noise while the 

DBIM reconstructs sharper images [19]. The laboratory experiments conducted within 

the course of this project demonstrated that the hardware noise is significantly below the 

level critical for practical imaging applications. At the same time high precision and sharp 

reconstructed images make the DBIM ideal for our applications.

5.2.4 Inverse Electrostatic Problem Employing Newton-Kantorovich (NK) 

M ethod

In this section we present a Newton-Kantorovich algorithm applied to electrostatic prob­

lem. This algorithm proved to be efiicient in electrodynamic inverse problems [95], [39], 

[38] while, to the best of our knowledge, the electrostatic inverse problem has not been 

tackled using this method.

The unknown object in [39] and [38] is modelled by parametrising the boundary of the ho­

mogeneous dielectric and metal respectively. The a p r i o r i  rough locations of the unknown
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objects are also assumed in [39] and [38]. Parametrising the boundary is not the preferred 

way of modelling a dielectric object in our electrostatic inverse imaging application be­

cause our goal is to solve the inverse problem with the minimum of a priori constraints. 

Contrary to [39], [38] Joaschimovicz et al [95] employ a piecewise constant representation 

of an arbitrary dielectric in the given reconstruction domain. The FEM is then employed 

in [95] to solve integral electromagnetic equations which makes [95] particularly valuable 

for our study. We now re-formulate the method proposed in [95] for an electrostatic case.

Consider an inverse imaging problem in figure 5.7. The unknown dielectric susceptibility 

X has its support in Q and is illuminated by T  electrostatic fields i =  1, 2, • • •, T. The 

corresponding scattered fields ~  I ; 2,• • • , T  are measured in R  points. After the

FEM is employed the electrostatic inverse problem (5.13), (5.13) is reduced to algebraic 

equations (5.17), (5.18)

(5.59)

(5.60)

where [5*̂ *̂ ] =  [5̂ *̂ ] — [5q’ ]̂ and i =  1,2, • • •, T  is the index of illuminating field. Applying 

small variations of the fields in (5.59), (5.60) gives

(5.61)

(5.62)

The first order approximation of 5([x][^tot]) is given by

(5.63)

Substituting (5.61) in (5.63) gives

^([x][-^tol]) — “  M[-^ei«]) <̂ [x][-̂ tot] ) * 1)2, • • • , T , (5.64)
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where /  is a diagonal N x N  dimensional matrix with diagonal components given by 

Substituting (5.64) into (5.62) gives a non-linear inversion equation

(5.65)

Linearizing (5.65) gives

(5.66)

Equations (5.66) are ill-conditioned and can be solved for a least square solution employing 

a regularization approach.

The NK inversion algorithm is given by the following steps

1. Computation of [El t̂] using (5.59);

2. Estimation of the sensor readings using (5.60);

3. Computation of the MSE^,  if the error is satisfactory then quit;

4. Solving (5.66), updating [x] and proceeding with step 1.

5.2.5 Pseudoinverse Transformation M ethod

The pseudoinverse transformation method proposed by Ney, Smith and Stuchly [28] can be 

seeing as an alternative to using Tikhonov regularization [4]. The pseudoinverse transfor­

mation method is applied in [28] to an inverse 2D electrodynamic problem employing TM 

illumination. We found that the pseudoinverse transformation method is rarely employed 

in the inverse problems although the method itself is widely referred to in the literature 

[18], [41], [65]. According to our survey the application of the pseudoinverse transforma­

tion to the electrostatic inverse problem has not been investigated. We now present the 

pseudoinverse transformation method in the electrostatic case.

We approach the inverse problem in figure 5.7 using the same algebraic equations as in 

the previous section (5.59), (5.60)

(5.67)
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, (5.68)

where [5* ] =  [5̂ *̂ ] — [5q and i = 1, 2, • • •, T is the index of illuminating field. Substi­
tuting

l^ “'l =  4^ [x][^21 (5.69)

in (5.67), (5.68) gives

[Efl\ =  [b£1 +  % (ff„,llpB ] , (5.70)

=  47r(He,,](P«>] . i =  l , 2 , . . . , T  . (6.71)

If the resolution of x in the FEM and the locations of the sensor electrodes are chosen 

such that matrix [i^eit] is invertable then a solution to (5.71) is given by

[P®] = , i = l , 2 . - - - , T .  (5.72)

First substituting (5.72) in (5.70) gives the total electrostatic field intensity in Q

[fiSl = [ C l  -  . i = 1,2, • ■ ■, r  . (5.73)

and then substituting (5.73) and (5.72) in (5.69) gives

lH „ ,l-‘IS‘“’l =  W { l C l - l f t " < l l H - < r ‘IS-®]} . (5.74)

Equations (5.74) can then be resolved for a least square solution for [x].

The problem of obtaining an invertable matrix (5.71) is not practical [28]. Instead 

of solving (5.71) directly Ney, Smith and Stuchley proposed an alternative approach of 

finding a solution to the following minimisation problem

min j z =  l , 2, - - - , T ,
[PW ]

(5.75)
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with an additional condition

m i n | | [ P « ] l |  . (5.76)

The procedure of solving (5.75), (5.76) is called a pseudoinverse transformation. The 

unknown dielectric is then obtained using (5.69), (5.70).

5.2.6 Modified Gradient Method

The modified gradient method is a powerful iterative algorithm for solving non-linear 

problems. Application of the modified gradient method to the inverse electrodynamic 

problems is slow but robust and results in high quality reconstructed images [30], [31],

introduced in section 5.2.1 as of reconstruction of the unknown dielectric in Q using T  

incident fields and R  sensors. After the governing integral equations are employed for this 

problem they cast by means of the FEM into the following system of algebraic equations

The total electrostatic field and dielectric susceptibility in the modified gradient method 

are reconstructed simultaneously at each iteration according to the following formulae

[66],

We now formulate the modified gradient method for the electrostatic inverse problem

(5.17), (5.18)

(fiSi = I d + .

. i =  l , 2 , - - - , 7’. (5.78)

(5.77)

(5.79)

[Xn] =  [X n -l] + (5.80)

where [z4*̂ ] and are the update directions and and /?„ are constants to be obtained 

at each iteration. The residual error vectors are defined as

=  (b£1 - 1̂21 +  lH in ,] { X 0 A .\  , (5.81)
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(5.82)

The modified gradient iterative algorithm is constructed to minimise the cost function

The two residual error terms in (5.83) are normalized in such way that they are equal to

method [63].

In [31] and [66] both [ul'^], a„ and [dl,*̂ ], are obtained using the Fletcher-Reeves-Polak- 

Ribiere conjugate gradient method [63].

5.2.7 Inverse Scattering M ethod Based on Reconstruction of Nonmeasurable 

Equivalent Current Density

In section 5.2.5 we presented an inverse method proposed by Ney et al. [28]. In [28] 

the inverse source problem governed by (5.24) is solved prior to calculating the dielec­

tric susceptibility. This is an example of the algorithm that belongs to a larger class of 

inverse methods based on the source type integral equation [55], [40]. The problem of 

ill-conditioning and non-uniqueness of the solution of the inverse source problem is over­

come in [28] by using a pseudoinverse transformation. In this section we present another 

inverse method based on the source type integral equation [65]. This method is not only 

more efficient than a pseudoinverse transformation method but also gives an insight into 

the fundamental difficulties associated with inverse problems. The method that we now 

discuss is originally formulated for the electrodynamic inverse problem and we state it in 

electrostatics.

one for [̂ {*J] =  0, z =  1,2, • • •, T.

In [30] [î *̂ ] and o;„ are chosen to be

(5.84)

and and [rfji*̂ ] are obtained using the Fletcher-Reeves-Polak-Ribiere conjugate gradient



5.2. Existing Inverse Methods 152

We consider the electrostatic inverse problem in figure 5.7. An unknown dielectric medium 

with a support in Q is placed in T linearly independent electrostatic fields and has to be 

reconstructed to match the distorted field measured at R  locations. Using the FEM the 

governing source type integral equations (5.22) (5.23), (5.24) are replaced by the system

of algebraic equations (5.25), (5.26), (5.27)

1P»] =  ^ [ xIIe SI . (5.85)

[b S I =  . (5.86)

=  4x[«„,][P® l , i =  1,2, • • ■, r  , (5.87)

where is an N  dimensional vector, i =  1,2,---,T is the index of incident field and 

is given by [,?(*)] — According to [65] the inverse problem (5.87) is not only

complicated by the existence of the sources which produce a zero field outside their support 

but also by the existence of the sources that create a non-zero field undetectable at the 

sensor locations. A large redundancy in the number of the sensors is impractical since 

they produce data carrying almost the same information, which means ill-conditioning 

and instability [65]. A rigorous study of these complications is done by performing a 

singular value decomposition (SVD) [14], [15] of matrix [Hgj-t], It is now assumed that 

R < N  (we recall that [Hext] (5.87) is an RxN  matrix) and that [Hext] has rank R  which 

means that all measurements are linearly independent. In that case matrix [Hext] can be 

decomposed [15] as follows

\H„,] =  [ ( /IP llV f , (5.88)

where

[[/]== [iiiln2| ••• lwMlO]MxAr ) (5.89)

(5.90)
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and vectors [ŵ ] and create two orthonormal sets; a diagonal matrix [E] has a diagonal 

form

/

[E] =

y  0  • • • ctat y

0 \

(5.91)

iVxAT

where the numbers ai > ct2 > ... > aji > ajt+i = •■•o-jv = 0 are called the singular values 

of matrix We now show the existence of the sources in (5.87) producing a zero field

at the sensor locations. For convenience the polarization vector is represented in the 

form

[PW] =  [V][7] , =

71
(072

(»)
7n

Substituting (5.92) in (5.87) gives

(5.92)

'yfajluj] = i  =  1,2, • • •, iV , z =  1,2, • • • ,T , (5.93)

and

N

J=1

Since

(5.94)

(5.95)

only the first R  components of [ P ^  (in terms of [7 (’)]) are mapped into the sensor data. 

For these components coefficients 7  are given by

7 .
(5.96)



5.2. Existing Inverse Methods 154

and hence can be obtained by substituting (5.96) in (5.92)

(5.97)

Equation (5.97) gives the minimum-norm solution to (5.87). Note that in the inverse prob­

lem employing a pseudoinverse transformation (section 5.2.5) solution (5.97) was obtained 

using a function minimisation approach (5.75), (5.76).

In practice the terms in (5.97) corresponding to a small eigenvalues Uj cannot be 

reconstructed for [Hext] due to the ill-conditioning of the inverse problem. Assuming that 

only M  largest eigenvalues (of R  nonzero terms) are calculated we represent [7 *̂̂ ] (which 

is used to parametrise (5.92)) in the form

0

+
0

0 7m+i

0 7iv

, i =  l , 2 , . . . , T .  (5.98)

Multiplying (5.86) by [x] and substituting [PW] =  [V]([t2] +  [tSĴ -a/]) (5.98), and using 

(5.85) gives

((/] -  +  l7S;l«l) =  M l C l  ■ i =

Equations (5.99) is solved tor [x] and [tJ I j,] by minimising a functional

(̂M, [tS;>-m1) = Y, iKW - wi'ffi«<i)i'"i(i72i+bSi’-Mi) - M[Bj;
i = l

which accomplishes the method.

(5.99)

Slip. (5.100)
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5.2.8 Layer Stripping Algorithm for Profile Inversion

In sections 5.2.3-5.2.7 we presented several inverse methods based on the integral equation 

approach. The FEM was applied to integral equations and the inverse problems were 

reduced to the systems of algebraic equations. These approaches are similar in the sense 

th a t they calculate or update e simultaneously for the whole reconstruction domain Q. In 

this section we introduce the idea of the layer stripping method which is different from the 

previous examples.

a

layers of unknown e

layers of reconstructed e

Figure 5.8: A layer stripping approach to the inverse electrostatic problem.

Let the inverse electrostatic problem be posed in a reconstruction domain Q, with boundary 

r  and the Dirichlet-to-Neumann map be known on T (figure 5.8). The boundary value 

of the dielectric perm ittivity is uniquely determined by the Dirichlet-to-Neumann map 

[101]. In section 3.5 we presented a method of calculation of the boundary value of e. In 

particular, we have shown that if e is continuous at some point v4 on T then employing
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a Dirichlet boundary condition given by the Dirac delta function at A (see figure 3.4) we 

establish a local high intensity electrostatic field that tends to infinity as we approach A. 

This field, established in the vicinity of A, is independent of e. According to the Dirichlet- 

to-Neumann map we know the value of 5” = at any point B on T, where (f> is the 

electrostatic potential and n is the normal at B. The boundary value of the dielectric 

permittivity at B  is then given by e = <5/^, where ^  is known in the vicinity of A. 

Letting B  tend to A gives e at A.

The layer stripping algorithm consists of the following steps. Approximating e by a piece- 

wise constant function in Q we reconstruct e in some layer 1 adjacent to F as shown in 

figure 5.8. Next we reconstruct the electrostatic fields in layer 1 for each Dirichlet bound­

ary condition of the Dirichlet-to-Neumann map on F using, for example, a finite difference 

scheme. As a result we obtain another map of the Dirichlet onto Neumann boundary 

condition on boundary F between layers 1 and 2. If the arising potential functions on 

r  create a complete basis, which is subject to investigation, then the obtained map is 

a Dirichlet-to-Neumann map for F and repeating the same iteration we reconstruct the 

dielectric medium in layer 2. In figure 5.8 F is shown to be in between layers 4 and 5 which 

assumes that the fist four layers have been reconstructed.

A “layer stripping algorithm” is originally introduced [83], [84] for the inverse electrody­

namic problem where each new layer is reconstructed using the Fourier transform of the 

Dirichlet-to-Neumann map on F.

In practical implementations of the layer stripping algorithm the Dirichlet-to-Neumann 

map has to be measured to a high resolution. This imposes challenging yet feasible re­

quirements on the hardware. We expect an accumulation of the error in the layer stripping 

algorithm when proceeding from reconstruction of one dielectric layer to another. Even 

when the dielectric object does not occupy the area close to F the error is still accumulated 

when analytically continuing the electrostatic field in free space. The methods presented 

in sections 5.2.3-5.2.7 do not have such a disadvantage because the integral equations take 

into account field interactions for the distant points.
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5.3 Comparison and Discussion of Imaging M ethods

An important part of the inverse problem is the object model. Usually the object model 

is chosen to represent either a dielectric or metal scatterer. In chapter 1 we presented 

the bed sensor application which motivated our study. In the bed sensor application the 

physical object under reconstruction is a human body. We experimentally observed that 

the human body behaves as a conductor in the low frequency electric fields. During our 

early study of the bed sensor application we believed that the best approach to modelling 

the human body was to introduce an unknown metal object with a parameterised surface. 

A detailed analysis of this approach revealed fundamental difficulties. The human body is 

too complex to be parameterised, which increases the possibility that the inverse algorithm 

minimising the error function might be trapped in a local minimum. We observed multiple 

minima in the example of the simplest inverse problem employing a 2D metal cylinder of 

a given radius. Another difficulty in implementing the metal object model is multiple 

connectivity. The maximum connectivity of the metal object model that we found in 

the existing inverse problems is 3 for an object represented in 2D. The existing inverse 

problems parametrising the surface of the metal scatterer make the following assumptions 

[40],[38]: (i) the connectivity of the object is predetermined and cannot be changed during 

the inversion, (ii) a position of the centre of each simply connected part of the multiply 

connected object is fixed, (iii) the initial guess of the shape of the simply connected part 

is chosen close to the original one in order to achieve stability. From our point of view 

such constraints are impractical.

The piecewise constant representation of the dielectric is suited to many general purpose 

inverse problem applications. The metal can be seen as an extreme case of the dielectric 

medium and hence is included in the model. Also, bearing in mind the bed sensor ap­

plication, we should expect many dielectric objects surrounding the human body such as 

mattress, pillows, clothes and casual gadgets. We decided to employ a piecewise constant 

representation of the dielectric in our inverse methods.

We presented several integral equation based inverse methods namely the BIM and DBIM, 

Newton-Kantorovich method, pseudoinverse transformation method, modified gradient
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method and a method based on the reconstruction of the equivalent current density. These 

methods have originally been applied to the electrodynamic inverse problem but can be 

formulated in electrostatics. We also found that these methods have been applied to 

different types of scatterer using different types of the incident fields and different number 

and position of measurement antennas. It is difficult to compare the efficiency of these 

methods because they have not been tested for the same inverse electrodynamic problem. 

For example, it has been reported that the modified gradient method converges after 128 

iterations for the dielectric scatterer having contrast 1.5 [31], the Newton-Kantorovich 

method converged after 15 iterations for the dielectric scatterer having contrast 1.6 [95], 

the inverse method based on the reconstruction of a nonmeasurable equivalent current 

density which is a non-iterative method demonstrated a good quality of the reconstructed 

image [65] yet the computational intensity of the SVD (singular value decomposition) 

is not reported. It is even more difficult to predict the efficiency of these methods in 

electrostatics. Unfortunately we were not able to test all of these methods in electrostatics 

within the given time/manpower constraint.

Analysing the simulation results presented in the original papers employing inverse algo­

rithms we may note general trends in the performance of the inversion algorithms. Higher 

contrast distributions of the dielectric permittivity are more difficult to reconstruct. We 

can account for this trend by the increased non-linearity of the higher contrast inverse 

problem; as the problem becomes more non-linear the linearisation errors increase result­

ing in slower convergence of the iterative methods. Sharp edges in the unknown dielectric 

scatterers tend to be smoothed, the convergence of the inverse methods in the presence of 

the sharp edges in the original dielectric distribution is also slowed down.

In general the BIM and DBIM, Newton-Kantorovich method, pseudoinverse transforma­

tion method, modified gradient method and the method based on the reconstruction of the 

equivalent current density lead to methods which suit the bed sensor application. In our 

approach to the electrostatic imaging problem the preference was given to the distorted 

BIM since this method had already demonstrated good results in the inversion of induc­

tion [23] and inversion of resistivity [17] tool problems which are similar to the inverse
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electrostatic problem.

The 2D inversion of resistivity tool problem [17] is solved by means of the DBIM and 

NMM (numerical mode matching method). In the case of two small conductive insertions of 

(O.OlS/m) in a homogeneous background profile (0.2S/m), the MSE^ in [17] is reported to 

be 1% and 0.25% after the 5-th and 15-th DBIM iterations. The reconstruction domain for 

this particular profile was chosen to be 15x12 cells each containing medium with unknown 

constant conductivity.

The 2D inversion of induction tool problem [23] is solved using a combination of the DBIM 

and CG-FFHT (conjugate gradient-fast Fourier-Hankel transform) [24] which allows a 

reduction of the computational intensity of each DBIM iteration to A l̂ogA .̂ Due to 

efficient use of the memory resources in [23] a high resolution 64x200 cell reconstruction 

domain is implemented in the inverse algorithm. The errors of the inversion method are 

not reported in [23].

By comparing results presented in the literature we found that the quality of the re­

constructed images in the layer stripping algorithm [83], [84] is significantly degraded as 

compared to the integral equation approaches such as the BIM and DBIM. The layer 

stripping algorithm requires high resolution measurements of the Dirichlet-to-Neumann 

map while the BIM and DBIM benefit from each individual measurement in the inverse 

problem. This discouraged us from adopting layer stripping method ideas.
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SIMULATION OF INVERSE ELECTROSTATIC PROBLEM

6.1 Analytical and Numerical Formulation of the Inverse Bound­

ary Electrostatic Problem

We now define the inverse boundary electrostatic problem. Let Q be a rectangular re­

construction domain where we seek an unknown dielectric distribution C o r i g -  Let F be a

Y

0.7
1 ■ ■ AQn-i AQn

Q

AQi AQ2 0 . 2  1

Exi Ex 2 Exl. i Ex L

AI/2 Al Al Al

1

Figure 6.1: Reconstruction domain Q and boundary T containing electrodes for inverse electro­
static problem.



Analytical and Numerical Formulation of the Inverse Boundary 

Electrostatic Problem

segment domain (—1,1) where the Dirichlet boundary condition is preset. Both Q and 

r  are shown in figure 6.1. Note that F is a doublesided boundary and hence we refer 

to the electrostatic potentials on its upper and lower sides using subscripts and 

respectively.

We generate L  electrostatic fields by applying unity electrostatic potential to L general 

purpose electrodes located on the upper side of F. Each of the general purpose electrodes 

can be either a transmit electrode T x  or & receive electrode Rx  a t a time and hence the 

name. We consider these electrodes as subdomains of F. To distinguish the general purpose 

electrodes from dedicated T x  ox Rx  electrodes we denote them by E L x i ,  E L x 2 , • • • > EL x i .  

The Dirichlet boundary condition for the z-th illuminating field is given by

I 1) f e E L x i ,= { (6.1)
0, f  £ F \  ELxi.

#(rT=0 , f e r  , i = .

Let the size of each of the electrodes ELxi ,  i = 1,2, - ■ ■ ,L  and the spacing between them 

be given by A/ =  1/L as shown in figure 6.1. For symmetry the first and the last electrodes 

with indices 1 and L  are separated from the ends of the segment (—1,1) by Al/2.  This 

parameterisation of electrodes is convenient when implementing the inverse electrostatic 

problem numerically and simplifies the study of different L.

The general purpose electrodes are utilized to measure the electrostatic field. If the «o-th 

electrode is used to establish the field then the response of the jo-th electrode (io ^  jo) is 

given by the following boundary integral

=  f , (6 .2)
J e l x ,„ *

where e(^) is the boundary value of the dielectric permittivity and n is the outward normal 

to F. In particular, for the problem in figure 6.1, the boundary normal in (6.2) is chosen 

to be (0 ,-1 ) . W ithout loss of generality hereafter we assume th a t the boundary value for 

e in (6.2) is unity.
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Ŝ ôdo) in (g_2) is proportional to the mutual capacitance between the io-th and jo-th 

electrodes We now exclude linearly dependent data in (6.2). According

to (2.136) we write

5 (« )  =  g0,0  _ 1 <  i /  j  <  i  . (6,3)

The total number of linearly independent scalar measurements D  available in the inverse 

problem employing L general purpose electrodes is given by

D  =  . (6.4)

Note th a t in (6.4) we excluded the self-capacitance data which, if measured, increases 

D  to The measurement of the self-capacitance is related to hardware difficulties

caused by large mutual capacitance to the ground plane which we do not dwell upon in 

this section. Even if a more sophisticated electrode is designed capable of shielding itself 

from the ground plane the unnecessarily large capacitive link to the ground plane over the 

array significantly shadows the useful data.

The inverse electrostatic problem is to record the sensor data =  i ^

j  for the unknown dielectric Eorig and to find € in Q such that

=  = i j t j  . (6.5)

6.2 Distorted Born Iterative M ethod and Physically Extended 

Electrodes.

The DBIM algorithm is presented in section 5.2.3. For convenience each DBIM iteration 

is split into two parts namely the forward and inverse path. The forward path includes 

all electrostatic problems that arise in the DBIM iteration and hence the name. Usually 

the state electrostatic integral equation (5.13) is employed in the forward path. After 

the electrostatic problems are solved the electrostatic fields are fixed until the end of the 

DBIM iteration to linearise in inversion and then the inversion integral equation (5.14) is
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employed. This part of the DBIM iteration is called the inverse path. We now present the 

forward and inverse path of the DBIM.

6.2.1 Forward Path in the DBIM

The DBIM iteration starts with calculation of the electrostatic fields in the background 

dielectric ej„j. The background dielectric is either a guess or an updated approximation 

for e„rig in Q (obtained from the previous iteration) in the first and subsequent iterations 

respectively. In the first iteration we use = I m  Q. L  electrostatic problems in the 

forward path of the DBIM are governed by (4.98), (4.99), (4.100)

+ D̂]y_

J xUr-)+
' Q

+ 4 -|;C F [0  - ^ a ( H r ^ ) d r

/  X .„ .(0  dr' = 0 , f € Q ,  (6.7)+
'Q

-(/>W(rO + 47tC F [D  -

+  /  +  =  (6.8)

i = l , 2 , - - - , L  ,

where x  =  e -  1 is the dielectric su scep tib ility , (0  in (6-8) is given b y (6.1), z is the 

index of the incident field and 47tC F [^  —> D] is a term explained

in section 4.3. We recall th a t the conventional techniques (section 2.6.1) applied to the
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Dirichlet boundary electrostatic problem with a doublesided boundary lead to ill-posed 

equations.

The governing integral equations (6.6), (6.7), (6.8) are solved using the FEM and a confor- 

mal mapping technique explained in sections 4.2.2 and 4.3. We now proceed with inversion 

path of the DBIM iteration.

6.2.2 Inverse P ath  in the DBIM

We employ spatially elongated electrodes ELx  which is a novel technique (to the best of 

our knowledge) for both electrostatic and electrodynamic inverse imaging problems^. We 

recall that in the existing definitions of the electrostatic problem presented in section 6.1 

the infinitely small radiating and sensing antennas (5.10) are such that their geometries 

are excluded from consideration.

We now incorporate (6.2) into the DBIM. To calculate sensor readings for the back­

ground dielectric Xini in Q we substitute (6.8)^ in (6.2) to give

=  1 , 2 ,  • • • , L  , i ^ j  .

For convenience we first present the inversion path for the BIM and then formulate it for

^The imaging problems are those of reconstruction of complex distributions of metal and dielectric. 

^Provided the total electrostatic field E t o t  is known (6.8) is suitable for calculating an electrostatic 

potential (which is differentiable) at any given point in Q  and its application is not limited to F.

(6.9)

the DBIM. In the BIM (section 5.2.3) we linearise (6.9) by freezing and substitute

(6.10)
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+ d f

i-! j  1,2, • • ■, Z/ , i ^  j  ■ 

Subtracting (6.9) from (6.10) gives

- S g f = f  ^ \ f  5 x . M f ' ) S S ( f ) V r - G ( f ,  r )dr’
J E L x j  U q

dr (6.11)

j  1)2, ••• , / /  , i ^ j  ■

After (6.11) is solved for Sxupd the updated value for the dielectric susceptibility in the 

inverse path of the BIM is obtained using

X u p d  —  X in i  ” t "  ^ X u p d  • (6.12)

To derive the governing equation for the inverse path in the DBIM we rewrite (6.11) in 

the form

4  [ /  T)dT'
J E L x j  U Q

d f  , (6.13)

=  1 , 2 , , i ^ j  ,

where polarization vector is given by

. (6.14)

According to (6.13) the physical meaning of the BIM is to find a volume dipole distribution 

(given by polarization vector (6.14)) such that its field in free space compensates for 

the residual error Ŝ J;pg -  In order to improve (6.13) we take into account that

an electrostatic field is established in dielectric Xini in the presence of boundary T with 

a homogeneous Dirichlet condition on it. Replacing G ( f i , f 2 ) in (6.13) by G'e^„j(^i)^2 )j
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changing the order of integrals in (6.13) and applying a reciprocity theorem to 

(see section 2.2) gives an inversion equation for the DBIM

J  1) 2) ■ ■ ■, /> ,  ̂ ^  j  ■

We recall that the Green’s function in (6.15) satisfies a homogeneous Dirichlet boundary

when crossing the surface. We now consider electrode E L x j  in (6.16) as a segment (with 

a double layer <to on it) electrically isolated from F. The electrostatic potential changes 

by 1 when crossing E L x j  and is zero on F. Since E L x j  lies on F the total electrostatic 

field intensity is given by (6.16) and the corresponding Dirichlet boundary condition on F 

yields

The Dirichlet boundary condition (6.1) and (6.17) are the same. Consequently electrostatic 

field (6.16) is given by a solution to (6.6), (6.7), (6.8)

(6.15)

condition on F. The inner integral in (6.15) can be seen as an electrostatic field E^^ due 

to a double layer density ao =  preset on E L x j

=  47rVr' [  o-o^Ge,„i(f,f^)dr , e  Q  .
JELxi

(6.16)

According to (2.116) the electrostatic potential due to the double layer cr has a step of Air a

(6.17)

(6.18)

Substituting (6.16), (6.18) in (6.15) yields

(6.19)
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hj  — , i ^ j  .

Note that (6.19) has the same form as when point measurements are employed in the 

inverse problem. Applying the FEM to (6.19), resolving it for 6xupd and updating the 

dielectric susceptibility in Q using (6.12) accomplishes the DBIM iteration. Since (6.19) is 

a Fredholm integral equation of the first kind it yields an ill-posed numerical formulation. 

The ill-conditioning is overcome by using an optimised Tikhonov regularization method 

which has been developed in the course if this thesis and is presented in the next section.

6.2.3 Optimisation of Tikhonov Regularisation M ethod

The Tikhonov regularization method [5] is an efficient technique for improving the condi­

tion number of an ill-conditioned system of algebraic equations (section 4.1.3). Since the 

Tikhonov regularization method can be seen as a perturbation of the system of algebraic 

equations it adds an error to the solution. In this section we present an example of a 

simple electrostatic inverse problem having one transmit electrode Tx, one receive elec­

trode Rx and a reconstruction domain such that the dielectric is represented (within the 

approximation of the FEM) as a piecewise constant function in only two cells and then 

study the influence of the Tikhonov regularization method on the solution to this inverse 

problem.

The inverse electrostatic problem is illustrated in figure 6.2. Without loss of generality we 

assume that the transmit electrode Tx  establishes a dipole field and the receive electrode 

is a dipole antenna capable of measuring electrostatic field intensity projected in a given 

direction S = E. Both Tx  and Rx electrodes are small so that their geometries are 

excluded from the problem analysis. The reconstruction domain is composed of two cells 

namely cell 1 and cell 2. The dielectric permittivity within each of these cells is constant 

and denoted by ei and 62 according to the index of the cell. We now reconstruct Ci and €2 

such that the original sensor reading Sorig is matched.

We reconstruct Ci and 62 using the DBIM (section 5.2.3). Without loss of generality we 

assume that several DBIM iterations elapsed, the dielectric has been updated to Cjni 1 and 

€i„i2 , the total electrostatic field is updated for both cells and the corresponding sensor
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cell 2

cell 1

Tx

Rx

Figure 6.2: Inverse electrostatic problem with one To;, one Rx  and a reconstruction domain 
composed of two cells.

reading Smi is computed so that we proceed with the inversion path of the DBIM iteration 

(6.19). The inversion algebraic equation is given by

S ^ i g  -  S i n i  =  5 e J l ^ E ^ M ,  +  6c 2E j ^ E ^ M r  , ( 6 . 2 0 )

where and E '^ ^  is the electrostatic field intensity in cells 1 and 2 established by Tx, 

E ^  and E ^  is the electrostatic field intensity in cells 1 and 2 established by a unit dipole 

having the same location and orientation as Rx  (section 5.2.3) and Mi and M2 are the 

metric sizes of cells 1 and 2 respectively. Equation (6.20) has two unknowns and hence 

cannot be resolved uniquely. Since we reconstruct a general distribution of Ci and 62 the 

preference is given to a condition 6ei =  5e2- Assuming that =  6e2 in (6.20) gives

X .  _  X .  ___________ ■S'orig -  S i n i -----------------  2 1 )

1 + E'^^E^Mi
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Equation (6.20) also yields a unique solution if we assume either 5ei =  0 or 5c2 = 0.

Applying a regularization method in a general form to (6.20) yields the following function 

minimisation problem

mm
Sei,5e2

{S o rig  -  S in i  ~  -  5 e 2E l ^ E ^ M 2 f  +  +  7 2 ^ 6^ ]  ,  ( 6 . 2 2 )

where 71 and 72 are regularization parameters. It can be shown that (6 .22) is minimum 

when

 5ei = - ^ ^ --------5€2 . (6.23)
gTxE^Mi EJ^E^M2

In the case of Tikhonov regularization method 71 =  72 and (6.23) yields

(5ei =  —zrr-------Sc2 • (6.24)
El^E^Mi E^^E^Mi

The Tikhonov regularization method (71 =  72) tacitly imposes an a priori condition that 

distorts the preferred 6ei = Se2 in (6 .20) and rescales (5ci and Sc2 according to the product 

of the field intensities and a cell size E '^ ^ E ^ M .  Summarizing, the Tikhonov regularization 

method reallocates the dielectric from the areas of weaker electrostatic field intensity and 

smaller cell size to the areas of higher electrostatic field intensity and larger cell size. To 

compensate for this type of distortion we rescale the regularization parameter 7  for each 

cell in Q as follows

7i = ^0 (6.25)

7o   ,
EJ^E^M2

where 70 is a propotionality coefficient. Substituting (6.25) in (6.23) gives 6ei =  6e2-

We now optimise the Tikhonov regularization method for the electrostatic inverse prob­

lem in figure 6.1. The FEM cells in the reconstruction domain Q in figure 6.1 have the
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same size. Therefore we exclude the cell size from consideration (6.23). If the unmodi- 

Tikhonov regularization method is employed in the inverse problem in figure 6.1 the 

dielectric distribution will be perturbed in the area near F because the electrostatic field 

intensity significantly increases as we approach the upper side of V.

Assuming that the average of the electrostatic field intensity in the reconstruction domain 

Q over all DBIM illuminating fields can be approximated by the dipole 1/d law, where d 

is a distance between the cell in Q and P, we scale the regularization parameter according 

to

O'n
7(rf) =  ^  • (6.26)

A further improvement of (6.26) would be an adaptive update of the regularization pa­

rameters according to the electrostatic field intensity in Q for each iteration of the DBIM. 

In the course of these thesis we implement (6.26).

6.3 Numerical Results

We now briefly outline the approaches implemented in the 2D inversion numerical al­

gorithm. We solve the inverse electrostatic problem formulated in section 6.1 using the 

DBIM [19]. A conformal mapping (section 2.3) is employed in the forward path of the 

DBIM to overcome difficulties associated with the double sided boundary F (figure 6.1) 

with a Dirichlet boundary condition (6.1) (see also section 4.3). The Dirichlet boundary 

condition on F models the elongated physical electrodes placed on a ground plane (see 

also a configuration of the inverse problem with four Rx and one Tx electrodes in figure 

5.4). The inverse path of the DBIM is derived for spatially elongated electrodes (section 

6.2.2) and employs a novel regularization technique obtained by optimising the Tikhonov 

regularization method (section 6.2.3). The FEM (section 4.2.2) and moment method are 

employed to put integral electrostatic equations in numerical form. We employ a conjugate 

gradient algorithm (section 4.4) to solve algebraic equations arising in the forward and in­

verse paths of the DBIM. The regularization parameter 7 is updated for each iteration of 

the DBIM as proposed in section 4.1.3.
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The rectangular reconstruction domain Q in figure 6.1 is divided into 10x40 square cells 

to represent an arbitrary piecewise constant dielectric distribution. Boundary F is divided 

into 600 cells with a variable cell size. The boundary cells are smaller at the ends of 

the segment (—1,1) and gradually increase towards the centre of the segment. This is 

done primarily to improve the representation of the electrostatic field at the end points 

of r  where the boundary values of the electrostatic field intensity tend to infinity. The 

number of the general purpose electrodes L is 15 (6.1). According to (6.4) the number 

of independent scalar data measurements representing the input to the inverse algorithm 

is D = 105. Summarizing, the number of unknowns in each of 15 electrostatic problems 

in the forward path of the DBIM iteration is 1400 and the number of unknowns in the 

inverse path is 400. The number of unknowns in the inverse path is nearly four times as 

large as the dimension of the input data 400 > 105. We use redundant number of the 

dielectric cells to improve the quality of representation of the electrostatic field in Q. The 

uniqueness of solution for the inverse problem and well conditioning are achieved by using 

a regularization approach. To demonstrate the efficiency of the implemented numerical 

algorithm we now test it for different types of dielectric distributions.

6.3.1 Smooth Edge Dielectric

An original smooth distribution of the dielectric susceptibility is presented in figure 6.3 

(a). A Born approximation for this distribution is obtained as a result of the first iteration 

in the DBIM and is shown in figure 6.3 (b). The DBIM converges after 5 iterations, the 

reconstructed dielectric susceptibility distributions after the 5-th and 15-th iterations are 

presented in figures 6.4 (a) and 6.4 (b). Visually the quality of the reconstructed images 

does not significantly change from iteration to iteration except for the contrast

contrast =  (6.27)
^m in

which improves towards the contrast of the original distribution which equals to two for 

this example. The mean squared error MSE^  ̂ as a function of 14 iterations of the

^Hereafter we use a stricter criteria for MSE^  presented in section 5.2.2. We employ 5* instead of S 

in (5.29) which is obtained from S  by subtracting the sensor response for a free space in Q. This does
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DBIM is shown in figure 6.5. According to this plot the DBIM converges to a precision of 

M SE^  ~  0.05%. We use this plot for comparison in the following numerical experiments.

6.3.2 Low Contrast Dielectric

In a manner similar to the previous experiment the original susceptibility distribution, the 

corresponding Born approximation and the output of the DBIM after the 5-th and 15-th 

iterations for the dielectric medium with low contrast=1.15 are presented in figures 6.6 

(a),(b) and 6.7 (a),(b) respectively. Visually the quality of the Born approximation is sim­

ilar to the quality of the DBIM after the 5-th and 15-th iterations. However analysing the 

convergence of the DBIM using the MSE^  plot in figure 6.8 we see that several subsequent 

iterations following the Born approximation of the DBIM significantly improve the MSE^.  

Comparative analysis of convergence of the DBIM shows nearly identical performance for 

the DBIM for both low contrast and smooth original susceptibility distributions.

6.3.3 High Contrast Sharp Edge Dielectric

The high contrast sharp edge original dielectric distribution is particularly difficult to 

reconstruct since the non-linearity of the inverse problem is higher. The DBIM method 

successfully converges for this type of susceptibility distribution as shown in figures 6.9 

(a),(b) and 6.10 (a),(b). Despite the contrast of the original dielectric distribution is 

^max/^min = 4 (Xmax =  3) the contrast of the reconstructed image is only 2.1 which is 

approximately 50% less. Analysis of the MSE^  (figure 6.11) shows that the mean squared 

error for this example converges to a value of 0.25%. This precision is high compared to the 

inverse problem analysis of other investigators. For example in [77] the smOoth dielectric 

with contrast 2 is reconstructed to a precision of MSE^  ~  2%. In [33] a sharp dielectric 

distribution with contrast 2 is reconstructed to a precision M SE^  10%.

not affect the numerator in (5.29) but significantly reduces the denominator increasing the MSE^ by 

approximately an order of magnitude depending on the original susceptibility distribution in the inverse 

problem.
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6.3.4 M ulti-Part Dielectric

The case of multiple cylinders is particularly interesting from practical application point 

of view. It demonstrates the advantage of the piecewise constant representation of an 

arbitrary dielectric distribution as compared to various techniques of parameterising the 

boundary of the scatterer (section 5.1). The implemented multiple scatterer composed 

of three dielectric cylinders and the corresponding reconstructed images are presented in 

figures 6.12 (a),(b) and 6.13 (a),(b). Note that the cylinders in the reconstructed image 

are well resolved so that the value of the dielectric susceptibility in between the cylinders 

is close to zero. The DBIM converges to a precision of MSE^ 0.15% as compared to 

the case of a single smooth cylinder in figure 6.3 (a) when MSE^ w 0.05%.

6.3.5 Nonsym m etric Dielectric

We now present the DBIM for the problem of reconstruction of a relatively high contrast 

nonsymmetric dielectric distribution with contrast 3. As shown in figure 6.15 (a) the 

original object is composed of two adjacent square cross-section cylinders with contrasts 

2 and 3. The corresponding Born approximation in figure 6.15 (b) hardly resembles the 

original profile and is highly oscillating. The profile improves for the 5-th and 15-th DBIM 

iterations as shown in figure 6.16 (a),(b). Analysis of the MSE^ in figure 6.17 shows 

a slower yet monotonic convergence of the DBIM as compared to the smooth original 

distribution in figure 6.3 (a). The final precision after 14 iterations is 0.09%.
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Figure 6.3: Original dielectric susceptibility distribution (a) and a corresponding Born approxi­
mation (b).
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Figure 6.4: Reconstructed dielectric susceptibility distribution after the 5-th (a) and 15-th (b) 
DBIM iteration for the original profile in figure 6.3 (a).
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Figure 6.5: MSE^ plot for the DBIM method for the original susceptibility distribution in figure 
6.3 (a).
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Figure 6.6: Original dielectric susceptibility distribution (a) and a corresponding Born approxi­
m ation (b).
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Figure 6.7: Reconstructed dielectric susceptibility distribution after the 5-th (a) and 15-th (b) 
DBIM iteration for the original profile in figure 6.6 (a).
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Figure 6.8: M S E ^  plot for the DBIM method. 1 - original susceptibility distribution in figure 
6.6 (a), 2 - original susceptibility distribution in figure 6.3 (a).
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Figure 6.11: MSE^ plot for the DBIM method. 1 - original susceptibility distribution in figure 
6.9 (a), 2 - original susceptibility distribution in figure 6.3 (a).
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Figure 6.14: MSE^ plot for the DBIM method. 1 - original susceptibility distribution in figure 
6.12 (a), 2 - original susceptibility distribution in figure 6.3 (a).
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Figure 6.15: Original dielectric susceptibility distribution (a) and a corresponding Born approx­
imation (b).
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Figure 6.16: Reconstructed dielectric susceptibility distribution after the 5-th (a) 

DBIM iteration for the original profile in figure 6.15 (a).
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Figure 6.17: M S E ^  plot for the DBIM method. 1 - original susceptibility distribution in figure 
6.15 (a), 2 - original susceptibility distribution in figure 6.3 (a).



Chapter 7 1 8 9

OVERVIEW AND CONCLUSIONS

In this project we explored a novel application of capacitive sensor techniques to the inverse 

imaging problem. It is worth mentioning that in the beginning of this project we had a very 

basic understanding of the techniques available to us and our ideas were primarily based 

on a few works done by the MIT Media Laboratory group [1], [2] and [3]. These articles 

discuss empirical results of interaction between the human body and the low frequency 

electric fields and present some ideas of how these fields can be measured. The electric 

field sensing (EFS) principles, introduced and studied in [1], [2] and [3], have not linked us 

to wider sources of information that we needed for the successful accomplishment of the 

project. Summarizing, we started this project in collaboration with our sponsor Hotron 

Co. Ltd. investigating the application of the EFS for the bed sensor.

metal
cylinder

/
/

/
Rx4Rx1 i Rx3 I

Ground Plane

Figure 7.1: A cross-section of the 2D capacitive sensor array.

During the first year of the project we designed and assembled a computer controlled 

hardware prototype capable of operating the simplest 2D capacitive sensor array havmg
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only one transmit electrode as shown in figure 7.1 (see also section 5.1.2). During that 

period we also implemented an efficient direct solver for the quasi-electrostatic problem 

employing the BEM. This algorithm was capable of calculating the response of each of the 

sensing electrodes Rx in figure 7.1 in the presence of the conducting cylinder. Furthermore, 

fixing the radius of the cylinder, we implemented a simple yet efficient inverse algorithm 

explained in section 5.1.2 capable of uniquely determining the position of the cylinder by 

minimising the MSE^ (section 5.2.2). Our inverse method was far more advanced being 

based on the exact electrostatic problem formulation as opposed to the empirical and 

intuitive analysis reported in [1], [2] and [3].

Based on the gained experience, we realized that future capacitive sensor arrays must 

have many transmit and sensing electrodes and be capable of collecting a large amount of 

scalar data. Also we understood that the unknown object model should not be limited to 

parameterisation of the co-ordinates of the centre for predetermined shapes. We decided 

to confront the problem of reconstruction of the shape of the unknown object and to 

replace the inverse positioning problem by an inverse imaging problem. A fundamental 

question for us was whether the inverse imaging problem has a unique solution. Analysing 

this question we discovered that the boundary value of the dielectric permittivity can be 

uniquely measured using a capacitive sensor array. We came to the idea of measuring the 

Dirichlet-to-Neumann map for the inverse imaging problem. Recall that neither of the 

existing inverse methods or uniqueness theorems were known to us at that time.

Searching through periodicals we found a versatile framework of the existing inverse prob­

lems in various areas of physics with new keywords to us such as ‘inverse problem’, ‘profile 

inversion’, ‘profile reconstruction’ etc. with no reference to the ‘EFS’ and ‘electrostatics’. 

One of the physical areas with potentially many advantages to us could be thermal conduc­

tivity. The static distribution of temperature in a medium with inhomogeneous thermal 

conductivity satisfies the same equation as an electrostatic potential in an inhomogeneous 

dielectric medium. Also thermal heat flow is similar to electric flux density. Unfortunately, 

each example of the inverse thermal conductivity problem that we found dealt with dy­

namic temperature distributions (the corresponding boundary conditions on the surface
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of the object with unknown thermal conductivity were dynamic pulses injecting heat into 

the object). Electrodynamic inverse problems, despite wide use of the Helmholtz operator, 

appeared to be particularly beneficial to our study (chapter 5).

During the study of the uniqueness of the solution for the inverse electrostatic problem 

we found th a t the relevant uniqueness theorems already exist. In particular we found 

th a t the knowledge of the Dirichlet-to-Neumann map uniquely determines the dielectric 

distribution in the inverse electrostatic problem [80], [99]. We also found that in many 

existing implementations of the inverse problem the corresponding uniqueness theorems 

are not referred to [65], [40], [33], [66]. The uniqueness theorems for the inverse problems 

appear to be not widely known among the researchers. Dobson and Kaup [73],1999, 

for example, believe that the question of uniqueness of the solution for the low frequency 

electromagnetic inverse problem that they solve is open, yet we found a relevant uniqueness 

theorem in [85],1993. In our analysis of the uniqueness of the solution for the inverse 

electrostatic problem in chapter 3 we presented examples of the dielectric/metal objects 

in electrostatic fields which reveal the practical limitations of the inverse electrostatic 

techniques. This analysis is original and important to our imaging applications.

We found many existing inverse methods namely the Born iterative methods (BIM) and 

distorted BIM (DBIM) [18], [19], [33], Newton-Kantorovich method [95], [39], [38], pseu­

doinverse transformation method [28], modified gradient method [30], [31], [66] and the 

method based on the reconstruction of the equivalent current density [55], [40] which can 

be employed in electrostatics. These methods are originally employed in the inverse elec­

trodynamic problems and we found that only the DBIM has been later applied to the 

resistivity and induction inversion tool problems [23], [17] which are similar to ours. We 

formulated the inverse electrodynamic methods in electrostatics, which is novel, yet the 

numerical implementation and comparison of the performance of these methods requires 

additional study. Implementing the DBIM, which is an advanced version of the BIM, for 

the capacitive sensor array we met several difficulties. In the existing implementations of 

the DBIM in electrodynamics and resistivity and induction inversion tools the transmit 

and receive antennas are assumed to be small so that their physical dimension is excluded
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from the interaction with the object under reconstruction. In practical implementations of 

the capacitive sensor array such an assumption is not justified. We incorporated spatially 

elongated electrodes into the DBIM without making any approximations. This achieve­

ment is novel, to the best of our knowledge. In order to model a flat capacitive sensor 

array with a ground electrode (figure 7.1) we introduced a double sided boundary F such 

that the electrostatic potential tends to different values on F when approaching F from 

the opposite sides (section 4.3). Because the doublesided boundary is rarely encountered 

it is likely to lead to improper use of its concept [34]. We incorporated the double sided 

boundary into the inverse problem, which is novel. The Dirichlet boundary electrostatic 

problems (that arise in the DBIM) employing a doublesided boundary F appear to be 

ill-posed in such way that placing single and double layers on F does not improve the sta­

bility. Employing conformal mapping we overcome that difficulty and suggested a novel 

technique which can be seen as a preconditioner.

The inverse problems in electrodynamics and consequently electrostatics are ill posed [72], 

[4], [38], [40]. A popular technique to overcome the ill-conditioning is to employ a Tikhonov 

regularization method [5], [16], [77], [55]. Regularization is also essential to the DBIM [19]. 

We performed comprehensive analysis of the Tikhonov regularization and its application 

to inverse problems in section 4.1.3. In particular, we demonstrated how the Tikhonov 

regularization method affects the solution of the ill-conditioned problem and explained the 

mechanism of low pass spatial filtering of the solution in the inverse problems. We also 

discovered that in the case of redundancy in dimensionality of the representation of the 

solution of the inverse electrostatic problem the Tikhonov regularization method tends to 

distort the solution increasing and decreasing the dielectric constant in strong and weak 

electrostatic fields respectively. We proposed a novel optimised Tikhonov regularization 

method that compensates for such distortion (section 6.2.3).

We implemented a 2D electrostatic inverse imaging problem by means of the FEM, BEM, 

DBIM and a moment method. The inversion algorithm appeared to be robust for various 

distributions of the dielectric. Thus we demonstrated that the application of the capacitive 

sensor techniques to the imaging problem is feasible and practical. We observed that the
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inverse electrostatic problem is computationally intensive. We see our future goals in incor­

porating fast forward solvers in the implemented DBIM such as a fast multi-pole method 

(FMM) [57], exploration of other inverse methods (modified gradient method, source type 

integral equation based methods etc.) that have not been employed in electrostatics and 

developing real-time imaging applications employing a preconditioner for the doublesided 

boundary in 3D.

Sensor Board
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Figure 7.2: Block diagram of the hardware for the 2D electrostatic imaging problem.

To verify our inverse methods we now present the experimental capacitive sensor array 

employing the idea of the 2D electrostatic inverse imaging problem. The block diagram 

of the experimental hardware is shown in figure 7.2. An oscillator is connected to the 

transmitter switching block operated by the PC so that a low voltage low frequency signal 

(IV pk-pk, 500kHz) can be applied to any pre-selected transmit electrode located on the 

sensor board. A sensor switching block connects any pre-selected sensor electrode to the 

front-end ampHfier. The signal is then rectified using a synchronous detection technique, 

digitised in the D/A converter and sent to the PC where the imaging algorithm is executed. 

Figure 7.3 (a) shows a photograph of the proof-of-concept prototype (designed in the course 

of this project) connected to the PC. Figure 7.3 (b) is a photograph of the experimental
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sensor array. The physical dimension of this sensor array is outlined in figure 7.4. 15 

metal electrodes are located on a dielectric substrate above a wider ground plane. The 

experimental prototype is capable of applying a sinusoidal signal to any of 7 Tx  electrodes 

as marked in figure 7.4. The remaining 8 electrodes are dedicated Rx electrodes used to 

measure the induced signal. The experiment is arranged in such way that the mutual 

capacitance between any selected Txi and Rxj, z = 1, 2, • • •, 7, ji = 1,2, • • •, 8 electrodes 

is collected and stored on the PC resulting in 56 independent scalar data. Figure 7.5 

is a photograph of two dielectric cylinders being placed in the quasi-electrostatic field 

produced by the experimental sensor board. The measured data is then processed by the 

algorithm explained in chapter 6. The reconstructed dielectric susceptibility after the first 

(Born inversion) and 15-th iterations of the DBIM are shown in figures 7.6 (a) and (b) 

respectively. The corresponding plot of the error as a function of the DBIM iteration is 

presented in figure 7.7.
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Figure 7.3: Photographs of the mobile experiment setup (a) and a  15 electrode sensor workbench 
(b).
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Figure 7.4: Implementation of the sensor workbench with 15 electrodes.



Figure 7.5: Two dielectric cylinders of radius 2cm and dielectric perm ittivity e =  3.7 in electro­
static field.
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Figure 7.6: Reconstructed image of the two dielectric cylinders (figure 7.5) after the first (a) and 
15-s (b) iterations of the DBIM.
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Figure 7.7: Error plot as a function of the iteration.
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