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Summary 

Seeing a speaker’s face as he or she talks can greatly help in understanding what the 

speaker is saying, especially in adverse hearing conditions – a principle known as 

inverse effectiveness. This is because the speaker’s facial movements not only relay 

information about what the speaker is saying, but also, importantly, when the speaker is 

saying it. Studying how the brain exploits this timing relationship to combine 

information from continuous auditory and visual speech has traditionally been difficult 

due to methodological constraints. In contrast, when incongruent auditory and visual 

information are presented concurrently, it can not only hinder a listener’s perception, 

but even cause him or her to perceive illusory information that was not presented 

through either modality. Efforts to determine the neurophysiological underpinnings of 

this phenomenon have also been hampered by out-dated methodological approaches, as 

well as inaccessibility to state-of-the-art modelling techniques. Here, we introduce a 

new system identification (SI) framework for investigating these everyday neural 

processes using relatively inexpensive and non-invasive scalp recordings.  

Chapter 3 begins by describing the application SI techniques for studying 

sensory processing in humans using naturalistic stimuli, specifically in the context of 

neurophysiology. The aim of this chapter is to introduce a new MATLAB-based SI 

toolbox, called mTRF Toolbox, developed as part of this research work. Concrete 

examples demonstrating how to model the relationship between continuous speech 

stimuli and continuous EEG responses are worked through in full. Several key features 

of the toolbox are explored and compared to traditional methods and its applications and 

limitations are discussed. 

Chapter 4 examines the role of temporal and contextual congruency in 

audiovisual (AV) speech processing using the mTRF Toolbox. The development of a 

novel framework for studying multisensory integration is described, yielding new 
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insights into AV speech processing. Specifically, we show that cortical activity tracks 

the acoustic speech signal more reliably during congruent AV presentation, while 

incongruent AV stimuli actually inhibit neural entrainment to speech. The enhancement 

effect produced by congruent AV stimuli is shown to be most prominent at the rate of 

syllabic information (2–6 Hz). Furthermore, we demonstrate that neural entrainment to 

auditory speech during silent lipreading is highly predictive of speech-reading accuracy. 

Chapter 5 examines AV speech processing at an acoustic signal-to-noise ratio 

that maximizes the perceptual benefit conferred by multisensory processing relative to 

unisensory processing. Here we show that the influence of visual input on the neural 

tracking of acoustic speech is significantly greater in noisy than in quiet listening 

conditions, in line with the principle of inverse effectiveness. While envelope tracking 

during audio-only speech is shown to be greatly reduced by background noise at an 

early processing stage, it is markedly restored by the addition of visual speech input. We 

also find that multisensory integration occurs at much lower frequencies in background 

noise and is predictive of the multisensory gain in behavioural performance at a time lag 

of ~250 ms. Critically, we demonstrate that inverse effectiveness in natural audiovisual 

speech processing relies on crossmodal integration over long temporal windows. 

Chapter 6 investigates the temporal dynamics of auditory cortical activation 

associated with silent lipreading by looking at the impact of speech-reading accuracy on 

neural entrainment to the absent acoustic signal. Specifically, this study provides 

moderate evidence to suggest that cortical activity in auditory regions is modulated in a 

way that reflects the temporal dynamics of the absent acoustic information, as if 

synthesising auditory processing by exploiting correlated visual speech input. 

While the non-invasive brain imaging technique implemented in this body of 

research lacks the spatial resolution to definitively elucidate certain aspects of the neural 

mechanisms that underpin AV speech processing, its high temporal resolution allows 

for accurate characterisation of the spectrotemporal dynamics of multisensory 

integration. The findings presented here provide new, valuable insights into this aspect 

of AV speech processing in the human brain. The application of this novel SI 

framework for studying AV speech processing is also considered in the context of 

clinical disorders with impaired multisensory processing and brain-computer interface 

technology. 
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Chapter 1 Introduction 

“The whole is greater than the sum of its parts.” 

-Aristotle 

 

When having a conversation in a noisy environment such as a busy restaurant, it is not 

always possible (or good manners) to lean in close to our interlocutor to better hear 

them. Instead, we instinctively look at their face to disambiguate the acoustic speech 

content. But how can looking at a person’s face help us to better hear them if we are 

unable to lipread them in the absence of auditory speech? For thousands of years, this 

question has puzzled science philosophers, intrigued by how effectively the senses work 

together compared to in isolation. Indeed, this phenomenon is not limited to improving 

how we process speech stimuli. Our experience of the world is predominantly 

multisensory, thus encoding, decoding and interpreting biologically significant 

multisensory events are among the brains most important functions.  

 Of course there are obvious evolutionary advantages to being able to perceive 

our world through multiple senses. Our surroundings are rich with sensory information 

about important biological events such as prey, predators and mates. While individually, 

each sense is effective in specific circumstances, collectively, they increase the 

likelihood of detecting and identifying ecologically relevant events. However, the 

advantage of having multiple senses is further exploited when they are employed 

simultaneously, i.e., in a multisensory context. The integrated product of a multisensory 

percept reveals more about the nature of an event than would be predicted by the 

collective sum of its constituent components. As a result, we perceive events faster and 

more accurately, and can thus act more efficiently in our environment. This type of 

behaviour is ecologically significant for survival in any species. The improvement in 

behaviour observed as a result of multisensory processing arises from synergistic 
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interactions at the neuronal level and is commonly referred to as multisensory 

integration. 

Owing to recent developments in functional brain imaging techniques, it is now 

possible to non-invasively study multisensory integration in the human brain. In 

particular, audiovisual (AV) speech processing has become a popular theme in 

neuroscience research. Aside from furthering our understanding of how the human brain 

works, this growing field has practical applications in clinical research, as impaired 

multisensory processing has been implicated in numerous clinical populations. 

However, efforts to investigate the neural basis of AV speech integration have often 

focused on the special case of discrete AV tokens such as syllables or phonemes due to 

methodological constraints. Such stimuli are not fully reflective of natural speech, 

which is continuous, dynamical and rife with lexical constraint. Fortunately, recent 

electrophysiological studies have demonstrated that cortical response measures to 

continuous auditory speech can be easily obtained using system identification (SI) 

techniques. 

Investigating the neural basis of natural AV speech processing (and to a lesser 

extent silent lipreading) using a newly-developed multisensory SI framework forms a 

common theme throughout the thesis. This chapter provides some background into the 

most relevant clinical research questions that motivate much of the research presented in 

the thesis and the context in which the succeeding chapters may be considered. In 

addition, the overall aims of the thesis are outlined and the chapter structure is described 

in brief. 

1.1 Background 

Multisensory integration is an autonomous neural process, allowing us to locate and 

identify objects more rapidly and accurately, and to perceive ecologically relevant 

stimuli such as speech more reliably. Aside from enhancing our perception of the world, 

it also allows us to make sense of the plethora of multisensory events bombarding our 

senses in everyday life. While most of us take this for granted, we would likely find it 

difficult to function in society if we could not integrate all of this information into 

coherent, meaningful percepts. For example, if we were unable to integrate multiple 

sensory inputs, then our environment, which by nature is multisensory, would become a 

complex and confusing space. As a result, we would be unable to make sense of this 
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space, becoming overwhelmed and withdrawing from it. This idea has led researchers to 

believe that impaired multisensory processing may be a core deficit in 

neurodevelopmental disorders such as autism spectrum disorder (ASD; Foxe and 

Molholm, 2009, Donohue et al., 2012). While multisensory deficits have also been 

reported in other clinical disorders such as dyslexia (Hairston et al., 2005) and 

schizophrenia (Ross et al., 2007b, Stekelenburg et al., 2013), its utility as a ‘biomarker’ 

of ASD has received considerable attention. This is because ASD onsets at a very early 

stage in childhood and developmental outcome can decline significantly if intervention 

does not occur early enough.  

ASD is characterised by deficits in social interaction, communication and the 

presence of restricted and repetitive behavioural patterns (APA, 2013). It is estimated 

that the disorder affects approximately 1 in 68 children aged 8 years old in the United 

States (Wingate et al., 2014) and is frequently comorbid with other psychiatric 

conditions, most notably attention-deficit/hyperactivity disorder (Skokauskas and 

Gallagher, 2012). Autism comes at a high cost to the individual, such that it results in 

poorer employment prospects and reduced societal engagement. Developmental 

outcome can, however, be improved if intervention is provided prior to the age of two 

years (Dawson et al., 2010). Intervention at a young age is hindered by the difficulty 

often encountered in trying to secure a reliable diagnosis of the condition where the 

child’s verbal communication skills are not fully developed, as many of the current 

clinical assessments rely on subjective report of symptoms in addition to third-party 

reports. Thus, it has long been acknowledged that an objective physiological measure of 

symptom and deficit severity is necessary to facilitate early diagnosis and intervention 

in ASD.  

While considerable phenotypic variation exists in ASD, a common deficit across 

the spectrum is atypical behavioural responses to sensory stimuli, with over 96% of 

autistic children reporting abnormal sensitivity across multiple sensory modalities 

(Dunn et al., 2002). Particular sensory stimuli have been shown to induce self-injurious 

and aggressive behaviour in children with autism (Leekam et al., 2007). This emerging 

body of evidence strongly suggests that sensory impairments may be at the very core of 

the disorder, such that they were recently included in the DSM-5 criteria for diagnosing 

ASD in addition to the well-established language, communication, and social deficits 

(APA, 2013). This has resulted in a deluge of research examining the 

neurophysiological correlates of sensory deficits in autism (for reviews, see Marco et 



4 

 

al., 2011, McDevitt et al., 2015). It is considered that understanding the neurobiological 

processes associated with impaired sensory processing in ASD will give rise to neural 

biomarkers of the disorder that could be used to facilitate earlier diagnosis and 

intervention, and to monitor the impact of different therapeutic strategies. 

There is strong empirical evidence to suggest that multisensory integration is 

impaired in children with ASD (Russo et al., 2010, Brandwein et al., 2013, Stevenson et 

al., 2014b). This has been demonstrated at both a low and high level of AV processing 

(Marco et al., 2011) and it is significantly more pronounced for high-level (linguistic) 

AV processing (Bebko et al., 2006). A recent study tracing the developmental trajectory 

of this impairment in AV speech processing demonstrated that it is more pronounced in 

younger children (7–9 years) than in adolescents (13–16 years; Foxe et al., 2015). In a 

recent electrophysiological study (Brandwein et al., 2015), it was demonstrated that 

multisensory integration of low-level AV stimuli was altered in children with ASD and 

that these electrophysiological indices were associated with symptom severity. 

Electrophysiological differences have also been shown in adolescent males using 

higher-level stimuli such as AV speech (Megnin et al., 2012). 

Despite the potential utility of AV speech to probe electrophysiological markers 

of ASD in children, it has not received the proportionate research interest. It is also 

possible that AV speech integration in ASD has not been probed under the right 

environmental conditions – the benefit of multisensory speech is much greater when the 

speech is presented in noisy and distracting environments (Ross et al., 2007a) and it is 

precisely these environments that present the greatest difficulties for individuals with 

ASD. Furthermore, the aforementioned limitations in traditional brain imaging analysis 

methods have meant that the majority of electrophysiological research on multisensory 

speech has examined the brain’s response to discrete, unnaturalistic AV stimuli. The 

development of an SI approach for studying multisensory integration using naturalistic 

AV speech stimuli would therefore have important implications for furthering the utility 

of electrophysiological research in ASD. 

1.2 Aims 

The overall aim of the thesis is to develop an analysis framework for studying how the 

human brain processes and integrates natural, continuous AV speech using 

electrophysiological recordings. The project has three core aims: 
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1. To develop a MATLAB-based SI toolbox for studying sensory processing that is 

easy to use and accessible to the broader neuroscience community. 

2. To establish an SI framework specifically for quantifying multisensory 

integration in natural AV speech processing. 

3. To further our understanding of the neural mechanisms that underpin the manner 

in which the human brain processes and integrates natural AV speech. 

The overarching objective of the thesis is clear and builds incrementally through the 

implementation of the specific aims outlined above. 

1.3 Thesis Outline 

In Chapter 2, the anatomy of speech processing is introduced, with particular focus on 

the auditory system. A brain imaging technique called electroencephalography (EEG) 

and its application in studying speech processing is discussed, as it is used in all the 

studies described in the thesis. Important background information on the role of AV 

speech is also provided, leading into a detailed description of multisensory integration 

in the context of AV speech processing. Particular focus is given to behavioural and 

neurophysiological studies that have investigated AV speech processing using discrete, 

syllabic stimuli. The final section discusses neurophysiological studies that have 

investigated speech processing in a more naturalistic way, as well as several AV speech 

studies that have exploited such an approach. 

Chapter 3 begins by introducing the technique of SI in the context of sensory 

neuroscience. The remainder of the chapter is devoted to a description of a MATALB-

based toolbox, called mTRF Toolbox, which was developed as part of this research 

work to enable easy implementation of an SI approach for studying sensory processing. 

The mathematical background underlying the approach is described in full, followed by 

practical advice on the implementation of the toolbox. Concrete EEG examples are 

given that demonstrate the usage and versatility of the toolbox, as well as a comparison 

with traditional methods. Finally, applications and important considerations of the 

toolbox are discussed in the context of sensory neuroscience. 

In Chapter 4, a framework is developed for quantifying multisensory integration 

in natural AV speech processing using the mTRF Toolbox. Specifically, this study uses 

EEG to examine the role of contextual and temporal congruency in AV speech 

integration. Several carefully designed AV speech conditions are implemented to probe 



6 

 

potential neural mechanisms underpinning AV speech integration in quiet listening 

conditions. The mTRF Toolbox is employed in several complementary ways to address 

these questions. 

Chapter 5 builds on Chapter 4 by examining AV speech integration in degraded 

listening conditions using spectrally-matched noise. The paradigm is designed such that 

the behavioural benefit of multisensory processing is maximised relative to unisensory 

processing. The data from Chapter 4 are also reanalysed and compared with these new 

data to provide a reference with which inverse effectiveness can be examined. Using the 

mTRF Toolbox, new analysis techniques are explored to elucidate the neural 

mechanisms specific to AV speech integration in adverse hearing conditions. The 

relationship between our neural and behavioural indices of multisensory integration is 

also examined.  

Chapter 6 investigates the nature of auditory cortical activation to silent 

lipreading. Specifically, different levels of lipreading performance are examined to 

probe the impact that it has on the temporal dynamics of cortical activation in auditory 

regions. The utility of the mTRF Toolbox for decoding acoustic information during 

silent lipreading is discussed in the context of brain computer-interface (BCI) 

applications. 

 Research in the field of multisensory integration has grown over the past 

number of decades, particularly since the inception of the annual International 

Multisensory Research Forum (IMRF) conference in Oxford in 1999 (Foxe and 

Molholm, 2009). Much of this research has begun to focus on AV speech processing 

because of its clinical relevance and application, not to mention its ecological 

importance to humans. While many of these studies have yielded valuable insight into 

how the human brain integrates multisensory information, it will surely require the 

development of new methodological approaches to further the impact of this work on 

the field. It is hoped that the studies presented in this thesis will make a significant 

scientific contribution to the field of multisensory integration and, in their application, 

to certain clinical fields, including ASD. 
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Chapter 2 The Electrophysiology of 

Audiovisual Speech Processing 

This chapter provides a review of the literature relevant to this thesis and is divided into 

five sections. The first section provides an introduction to the human brain, in 

particular, the human auditory system. The second section describes the brain imaging 

technique, EEG, which is employed in all studies in the thesis. The third section 

discusses the role of visual cues in speech comprehension. The fourth section presents a 

summary of previous behavioural and neurophysiological research on multisensory 

integration in the context of AV speech. The final section gives an EEG account of AV 

speech integration, concluding with recent advances in methodological techniques. 

2.1 The Anatomy of Speech Processing 

2.1.1 The Cerebral Cortex 

The adult human brain accounts for almost 97 percent of the body’s neural tissue 

(Martini and Nath, 2009). The brain consists of several principal structures, each with 

specific functions. The cerebrum, which dominates most of the brain’s mass, can be 

divided into two cerebral hemispheres. Each of these hemispheres is subdivided into 

four lobes: frontal, parietal, occipital and temporal (Bear et al., 2007). The outer layer of 

the human cerebrum is called the cerebral cortex and is highly folded and covered in a 

superficial layer of grey matter known as neocortex. The cerebral cortex forms a series 

of elevated ridges known as gyri which are separated by shallow depressions known as 

sulci or by deeper grooves known as fissures. These fissures bound the different 

aforementioned regions of the cerebrum. The two cerebral hemispheres are almost 

completely separated by a deep interhemispheric or longitudinal fissure. On each of the 
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hemispheres, a deep groove known as the central sulcus divides the anterior frontal lobe 

from the more posterior parietal lobe. The frontal lobe is separated from the more 

inferior temporal lobe by the lateral sulcus (known as the Sylvian fissure) and from the 

more posterior parietal lobe by the central sulcus (Bear et al., 2007). The parietal lobe is 

separated from the even more posterior occipital lobe by the parieto-occipital sulcus.  

Each region of the cerebral cortex is defined not only by its location, but also by 

its functionality, although the entirety of this functionality is still not well established. 

The primary sensory areas, which are the first to receive signals from ascending sensory 

pathways, are each located within a different cerebral lobe (Martini and Nath, 2009). 

The primary somatosensory cortex is located in the parietal lobe and is responsible for 

our conscious perception of touch, pressure, pain, vibration, taste and temperature. 

Primary auditory cortex (A1) is located in the temporal lobe, while primary visual 

cortex (V1) is located in the occipital lobe. Information from these primary sensory 

areas is then passed on via millions of interconnections to secondary sensory areas 

where it is further processed. A third region of cortex consists of motor areas, which are 

concerned with voluntary contraction of skeletal muscles. The primary motor cortex is 

situated along the precentral gyrus of the frontal lobe, just anterior of the central sulcus. 

Distinct areas of the motor cortex control specific parts of the body separate from those 

governing other parts. This spatial arrangement of functionality also occurs in the 

auditory cortex (tonotopic organisation) and the visual cortex (retinotopic organisation). 

The sensory and motor areas are further connected to large regions of cortex known as 

association areas. These areas are responsible for higher-level cognitive processing such 

as interpretation of sensory input and motor response coordination.  

Regions of auditory, visual and even motor cortex are all involved in the 

processing of AV speech stimuli. However, as the main theme of the thesis is how 

visual speech impacts on auditory speech processing (i.e., how the acoustic signal is 

processed), the following section is devoted to a description of the auditory system. The 

reader is directed to Martini and Nath (2009) for a more complete description of the 

anatomical organisation of the visual and motor cortices. 
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2.1.2 The Auditory System  

The Peripheral Auditory System 

The peripheral auditory system can be split into three components: the outer ear, the 

middle ear and the inner ear (see Fig. 2.1; Purves et al., 2008). Hearing begins at the 

outer ear where incoming sound waves are funnelled into the ear canal by folds of 

cartilage and skin known as the pinna or auricle. This intricately designed organ also 

allows us to locate sounds in three-dimensional space. The ear canal is the resonant 

cavity located between the outer and middle ear. It usually has a resonant frequency of 

around 2–5 kHz, thus amplifying sounds within this frequency range. Much of the 

frequency content of speech is contained within this range which is partly why humans 

have a heightened sensitivity to speech (Robinson and Hawksford, 1999). The ear canal 

also increases the sound pressure level by up to 20 dB at certain frequencies. Once the 

sound wave has been funnelled down the ear canal, it reaches the tympanic membrane, 

i.e., the ear drum. The pressure of the sound wave impinges on the membrane causing it 

to vibrate.  

Beyond the ear drum is an air filled cavity known as the middle ear. This 

contains the auditory ossicles which are the three small bones known as the malleus, 

incus and stapes (Fig. 2.1). They are the interface between the outer and inner ear, 

forming a conductive chain from the tympanic membrane to the oval window of the 

cochlea. The ossicles are a mechanical system that acts as an impedance matching 

network, allowing for efficient energy transfer between the outer and inner ear. 

Specifically, they transform a relatively large displacement and small force at the ear 

drum to a small displacement and large force at the oval window. 

The inner ear represents the interface between the auditory and nervous system 

and contains a small coiled tube known as the cochlea (Fig. 2.1). The cochlea 

essentially performs frequency analysis on the incoming mechanical signal by splitting 

it up into multiple frequency bands (Yang et al., 1992). A complex structure within the 

cochlea known as the basilar membrane determines the mechanical wave properties of 

the cochlea. The cochlea is filled with an incompressible liquid and movement of the 

ossicles against the oval window causes a hydrostatic pressure which in turn sets up a 

travelling wave in the cochlear fluid, propagating from the base towards the apex of the 

basilar membrane, growing in amplitude and slowing in velocity until a point of 

maximum displacement is reached (Purves et al., 2008). High frequencies maximally 
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displace the base of the membrane, whilst low frequencies maximally displace the apex, 

giving rise to a tonotopic organisation (i.e., frequency-to-place mapping). A structure 

known as the organ of Corti contains tiny hair like structures which move in response to 

any deformation in the basilar membrane. These 30,000 or so hair cells are connected to 

nerve cells which generate neural signals when they detect movement (Rice, 2009).  

Essentially, the cochlea acts like an analogue filterbank, splitting the soundwave 

into logarithmically-spaced frequency bands and outputting the rectified signal intensity 

at each band. The intensity of the signal at each frequency band is determined by how 

many of the hair cells in the cochlea are stimulated. Slow (<50 Hz) modulations in 

intensity in each frequency band are known as the narrowband envelopes and their 

summation across all frequency bands is known as the broadband envelope (Rosen, 

1992). The envelope of speech can convey important segmental cues to a variety of 

linguistic information such as manner of articulation, voicing, vowel identity and 

prosodic cues (Rosen, 1992). Most of the information in the speech envelope is at 

frequencies below ~8 Hz (Houtgast and Steeneken, 1985). However, envelope 

frequencies critical for speech comprehension are contained between 4–16 Hz 

(Drullman et al., 1994, van der Horst et al., 1999), and some above 16 Hz (Shannon et 

al., 1995). Thus, frequency analysis that is critical for extraction of the speech envelope 

(which is critical for linguistic processing) has already begun by the time the speech 

signal has left the inner ear. 
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Figure 2.1: The auditory periphery (Purves et al., 2008). 

The Central Auditory System 

The inner ear is connected to the central auditory system via the vestibulocochlear nerve 

which, as its name suggests, consist of a vestibular branch and a cochlear branch. As the 

vestibular branch is not concerned with auditory processing, it will not be considered 

further in the thesis. The cochlear branch (i.e., the auditory nerve) monitors the 

receptors in the cochlea and carries information concerned with hearing. These axons 

enter the brainstem at the cochlear nucleus (CN), a structure that preserves the tonotopic 

organisation established by the cochlea. The CN can be subdivided into the left and 

right dorsal and ventral cochlear nuclei (DCN and VCN respectively). The VCN 

extracts information on the firing rate and population activity of the auditory nerve 

fibres, while the DCN performs nonlinear spectral and spatial analyses (Purves et al., 

2008). 

Immediately after the CN, auditory information is projected laterally to the 

superior olivary complex. Here, for the first time, information from both ears converges, 

allowing analysis related to binaural hearing to be computed. Specifically, interaural 

time difference and interaural level difference are computed which determines the 



12 

 

direction from which a sound originates in the azimuth (left/right) plane. From there, 

information ascends to the inferior colliculus (IC) of the mid brain (see Fig. 2.2; Purves 

et al., 2008), a centre that directs a variety of unconscious motor responses to sounds. It 

is thought that neuronal coding of auditory information is transformed in IC and 

representational maps of neuronal response features are formed, from which perception 

of sound may be derived (Ehret and Romand, 1997). These ascending auditory signals 

then synapse in the medial geniculate nucleus (MGN) of the thalamus, which acts as a 

relay between IC and auditory cortex. Please refer to Purves et al. (2008) for further 

reading on the peripheral and central auditory systems. 

Auditory Cortex 

The auditory cortex is located in the superior portion of the temporal lobe, mostly 

hidden within the lateral sulcus. The auditory cortex can be subdivided into three 

regions: the core, belt and parabelt. The core is located deep within the lateral sulcus 

and receives input from MGN via the superior temporal gyrus (STG) or Heschl’s gyrus. 

Like the cochlea, the core is tonotopically organised, although it is thought that the 

majority of low-level (spectrotemporal) acoustic processing has already been carried out 

by the time the signal reaches it (Nelken, 2008). The belt is a narrow band of cortex that 

surrounds the core and also receives input from MGN as well as the core. The belt is 

less responsive to pure tones but exhibits some tonotopic organisation. Belt regions are 

highly interconnected and project primarily to the parabelt. The parabelt adjoins the 

lateral belt area and receives input from the MGN as well as the belt.  

From there, the parabelt projects to several regions in the frontal lobe, as well as 

portions of the parietal and temporal lobes. One such region of particular interest, the 

superior temporal sulcus (STS), will be discussed in detail in section 2.4.4. Speech, 

which is processed primarily in auditory cortical regions, can be organised into a 

hierarchy of perceptual units, i.e., phonemes, words, sentences, etc. (Chomsky and 

Halle, 1968). Linguistic processing is thought to start in posterior STG with phonemic 

analysis, followed by the formation of words in middle STG, eventually projecting to 

anterior STS, where a sentential representation is formed (see meta-analyses in DeWitt 

and Rauschecker, 2012, Davis and Gaskell, 2009, Adank, 2012). However, it has since 

been demonstrated that STG topographically encodes phonetic features, and not 

individual phonemes (Mesgarani et al., 2014). While it is widely considered that 

language is predominantly processed by most people in the left hemisphere (Hickok and 
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Poeppel, 2007), current perspectives suggests that it is processed bilaterally in the early 

stages of linguistic processing, but becomes more and more left-lateralised further up 

the auditory hierarchy (Peelle, 2012). 

Researchers employ a wide variety of functional brain imaging techniques to 

interrogate how the brain processes speech. As all of the studies in this thesis employed 

the method of EEG, the next section is devoted to a description of its functional basis. 

For a more complete discussion on how language is processed in the brain, please refer 

to (Hickok and Poeppel, 2007). 

 

Figure 2.2: The ascending auditory pathway (Purves et al., 2008). 

2.2 Electroencephalography 

The brain contains billions of neurons and their activity elicits electric potentials that 

can be measured from the scalp surface using EEG. These potentials are primarily 

generated by a particular type of cortical cell known as a pyramidal cell. Pyramidal cells 

account for approximately 80 percent of all cortical cells and most of these are 

orientated perpendicular to the cortical surface (Bok, 1959). These cells consist of a set 

of branch-like dendrites that receive input from other neurons, a cell body, and an axon, 

which delivers electrochemical output to receiving neurons (see Fig. 2.3A). The point of 

connection between two neurons is called the synapse. The electrochemical output is an 

Mick
Highlight
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electrical response of fixed duration and amplitude known as an action potential. This 

response works on an all-or-nothing basis, i.e., an action potential will only propagate 

along a cell’s axon if the action potential received by the neuron caused sufficient 

change in membrane potential at the cell body. This synaptic activity causes current 

flow which in turn produces an electric field (shown in Fig. 2.3A). This field pattern 

resembles that produced by a dipole source at distances larger than a few lengths of the 

neuron (Nunez and Srinivasan, 2006). The synchronous activity of these strongly 

interconnected cells is essentially what produces EEG activity at the scalp. 

The potentials generated by these cells can be used to build an image of the 

neural activity across the brain’s surface in response to an event such as speech. Due to 

the use of surface electrodes, spatial resolution is quiet limited; a high-density EEG 

system can have up to 512 electrodes which relates to an inter-electrode distance of 

approximately 11 mm (Gevins et al., 1991). Even this level of electrode density is 

uncommon in research. For instance, the studies presented here employed 128-channel 

EEG, which has four times less spatial resolution. Each electrode is strategically 

positioned according to the standardised ‘International 10–20 System’ (Fig. 2.3B; 

Jasper, 1958) and measures potentials generated by approximately 107 to 109 neurons 

(Nunez, 1995). The electric fields elicited by cortical neurons must first pass through 

several anatomical layers, including cerebrospinal fluid, the meningeal layers (the dura, 

arachnoid, and pia), skull bone, periosteum and skin tissues, before reaching the 

electrode surface. These materials act as spatial filters and attenuate the signal being 

recorded. A high level of amplification is therefore required to detect the signal, which 

is in the order of 20–40 μV. Unfortunately, this also amplifies other unwanted signals of 

greater magnitude such as electrooculogram activity from eye blinking or movement 

(Corby and Kopell, 1972) and electromyogram (EMG) activity from muscle activation 

(Goncharova et al., 2003). The layers of tissue between the brain and the electrodes also 

cause the EEG response to smear across the scalp, an effect known as ‘volume 

conduction’ (Freeman et al., 2003). This further reduces the precision with which neural 

sources can be localised within the brain.  

What EEG lacks in terms of signal-to-noise ratio (SNR) and spatial resolution, it 

makes up for in temporal resolution, which is on the order of milliseconds rather than 

seconds. EEG is typically recorded at sampling rates between 250 and 2000 Hz, but is 

capable of recoding at sampling rates above 20 kHz if necessary. However, the 

aforementioned anatomical layers (i.e., cerebrospinal fluid, meninges, skull, scalp) also 

https://en.wikipedia.org/wiki/Dura_mater
https://en.wikipedia.org/wiki/Arachnoid_mater
https://en.wikipedia.org/wiki/Pia_mater
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act as low-pass filters, attenuating important neural information, particularly that above 

~30 Hz. Fortunately, activity from cortical neurons has been shown to track the 

temporal envelope of natural speech below ~10 Hz (Luo and Poeppel, 2007, Ding and 

Simon, 2012b). Thus, both the temporal resolution and bandwidth of EEG make it a 

very suitable method for investigating how the brain processes speech and, in particular, 

how it tracks the envelope of speech. 

Other brain imaging techniques that will be referred to in this thesis include: 

electrocorticography (ECoG), magnetoencephalography (MEG) and functional 

magnetic resonance imaging (fMRI). ECoG is the most similar technique to EEG in that 

it measures electric potentials elicited by the brain. However, these measures are taken 

directly from the brains surface or in even in single neurons making it a highly invasive 

procedure. Hence, this can only be performed in per-surgical epileptic patients, making 

it inaccessible to most researchers. MEG is also similar to EEG in that it measures the 

magnetic counterpart of the electric fields elicited by neurons and is non-invasive. 

While it affords spatial resolution superior to EEG, it is far more expensive and not 

readily portable. fMRI, on the other hand, is a neuroimaging technique that measures 

changes in blood flow within the brain, thought to reflect the energy used by 

neighbouring cells, i.e., neuronal activity. This technique offers the best spatial 

resolution but very poor temporal resolution (~1 Hz). Furthermore, it is highly 

expensive, immobile and extremely noisy. For a more complete overview of functional 

brain imaging techniques, please refer to Papanicolaou (1998). 

The electrical activity measured by EEG can be organised into two main 

categories: (1) event-related potentials (ERPs), elicited in response to any sort of 

discrete time-locked event or sensation, and (2) spontaneous oscillatory or rhythmic 

potentials, which occur naturally in the brain during both stimulation and resting state. 

The next two sections provide descriptions of these types of EEG activity and their role 

in speech research. 
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Figure 2.3: Measuring neuronal population activity with EEG. 

A, Orientation of pyramidal cells in the outer cortex. B, The international 10–20 system 

for electrode placement (adapted from Sakkalis et al., 2010). 

2.2.1 Event-Related Potentials and the Auditory Evoked Potential 

One of the most common methods for utilizing EEG to study how our brains process 

sensory stimuli is to examine ERPs. When a stimulus is presented, different neuronal 

populations are activated in series and in parallel. This sequence of polarising and 

depolarising cell membranes generates a fluctuating potential which give the ERP its 

characteristic trace. These deflections represent the sum of several relatively 

independent components which are difficult to isolate and measure independently 

(Handy, 2005). However, in recording situations it is even difficult to identify entire 

ERPs because they are generally much smaller than spontaneous EEG, i.e., noise. By 

assuming noise has a zero mean, an averaging technique can be used to eliminate it and 

preserve just the response to the stimulus. This is achieved by extracting a series of 

EEG epochs, which are time-locked to a repeated stimulus, and averaging them. The 

MEG equivalent is known as an event related field (ERF) and is calculated in much the 

same way. In terms of AV speech, most EEG-based research has focused on the ERP 

elicited in response to the auditory modality, known as the auditory evoked potential 

(AEP; Davis, 1939). This response can be subdivided into three sequences of waves 

representing activity among different cell populations of the auditory hierarchy. The 

first two sequences are known as the brain stem response and middle-latency sequence, 

and occur between 8–12 ms and 40–50 ms post-stimulus, respectively (see Fig. 2.4A; 
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Picton, 2013). The latter is thought to be generated by activity in the thalamus and 

primary auditory cortex (Picton et al., 1974).  

The final sequence is of most interest here as it relates to speech-specific 

processing. Known as the long-latency or cortical response, it occurs between 50–500 

ms and is thought to reflect activity in higher-order auditory and association cortex. 

This sequence is made up of two positive peaks (P1 and P2), typically occurring at 

around 50 and 150 ms respectively, and two negative peaks (N1 and N2), typically 

occurring at around 100 and 200 ms respectively (Fig. 2.4A; Picton, 2013). These 

response components have been linked to the different stages of linguistic processing 

outlined in section 2.1.2 (Salmelin, 2007, Picton, 2013). Specifically, it is thought that 

acoustic-phonetic analysis of speech starts around 50–100 ms, generating the P1 

response in primary auditory cortex and the N1 response in non-primary auditory 

cortex. Language-specific phonetic-phonological analysis is thought to occur between 

100–200 ms, generating the P2 and N2 response components. From 200 ms onwards, 

lexical-semantic processing is thought to occur in superior temporal regions (Fig. 2.4B; 

Salmelin, 2007).  

Thus, the temporal profile of AEPs can be useful in studying how the brain 

processes speech. The next section outlines the potential role of cortical oscillations in 

speech processing based on their hierarchically-structured temporal scale. 
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Figure 2.4: The temporal profile of the auditory evoked potential (AEP). 

A, Early-, middle- and long-latency ERP responses (adapted from Picton, 2013). B, 

Timecourse of speech processing in the superior temporal cortex (adapted from 

Salmelin, 2007). 

2.2.2  Neural Oscillations and Speech Processing 

In addition to transient stimulus-evoked responses, the cerebral cortex generates 

oscillatory activity that can be elicited spontaneously (ongoing oscillations) or by an 

external stimulus (evoked and induced oscillations). Spontaneous oscillations have been 

associated with particular states of behaviour and are categorised by the frequency at 

which they occur (see Fig. 2.5; Kent, 2010). Gamma (γ) rhythms are the fastest, 

oscillating at >30 Hz and are thought to represent higher-order processes such as 

consciousness, perception and problem solving. Beta (β) oscillations occur at 12–30 Hz 

and are thought to signal an active cortex. Alpha (α) rhythms are associated with 

relaxed, waking states and oscillate at 8–12 Hz. Next are theta (θ) oscillations, which 

occur during some sleep states at 4–7 Hz. Finally, delta (δ) rhythms are the slowest, 

oscillating at <4 Hz, but have the largest amplitude. These signals are thought to 

indicate deep sleep (Bear et al., 2007, Steriade et al., 1990). 
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 Evoked oscillations, on the other hand, entrain to the phase of periodically 

modulating stimuli. If an auditory stimulus modulates at a constant frequency, the 

oscillation elicited is known as a steady-state auditory evoked potential (SSAEP) and 

will exhibit enhanced power at that specific frequency. If the stimulus is not perfectly 

periodic, like for example natural speech, then the evoked oscillation will entrain more 

loosely to the stimulus spectrum (Luo and Poeppel, 2007). A recent study demonstrated 

that if speech is presented in an artificially periodic manner, it elicits an SSAEP at the 

rate that the words were presented (Ding et al., 2016). More interestingly however, they 

showed that if the words can be grouped into phrases and then sentences with periods 

that are multiples of the words, then they two can induce lower-frequency SSAEPs that 

cannot be induced in a non-native speaker. 

While evoked oscillations certainly play a major role in speech processing, 

recent perspectives have also suggested an active role for the naturally-occurring 

spontaneous oscillations mentioned earlier (Giraud and Poeppel, 2012). Previous work 

has shown that oscillations in auditory cortex are hierarchically organised in a way that 

structures its temporal activity so as to optimise the processing of rhythmic sensory 

inputs such as speech (Lakatos et al., 2005). Specifically, they demonstrated that delta 

phase modulates theta amplitude and that theta phase modulates gamma amplitude. The 

perceptual units of connected speech can be organised in a similar hierarchical structure 

(Poeppel, 2003). Thus, it is thought that low delta oscillations (1–2 Hz) could serve to 

parse the speech signal in a suprasegmental manner, i.e., into lexical and phrasal units. 

Theta oscillations (4–7 Hz) could parse smaller segmental units such as syllables, 

relying on information from the temporal envelope. Finally, low-gamma oscillations 

(30–50 Hz) could parse more fine-grained information at the phonetic scale (such as 

formant transitions), relying on the signal fine structure (Giraud and Poeppel, 2012). 

This parsing of segmental units is thought to be underpinned by a specific neural 

mechanism related to oscillations, known as phase-resetting (Hari and Salmelin, 1997, 

Engel et al., 2001). This theory posits that thalamocortical input resets the phase of theta 

oscillations such that the arrival of upcoming auditory information coincides with a high 

excitability phase of the auditory neuronal population, thus optimising segmentation of 

syllabic units (Luo and Poeppel, 2007). Because theta and gamma generators are 

coupled or nested together (Lakatos et al., 2005), this in turn resets the phase of gamma 

oscillations, initiating phonemic analysis (Giraud and Poeppel, 2012). While it has been 

proposed that ERPs could actually be the result of phase-resetting as opposed to the 
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summation of evoked responses (Sauseng et al., 2007), both mechanisms will be 

considered within the context of the thesis. 

Indeed, temporal processing is undoubtedly a critical part of how our brains 

analyse connected speech. EEG, with its high temporal resolution, is certainly well 

suited to studying these processes. As the focus of this thesis is how visual speech 

impacts the processing of acoustic speech, the next section is devoted to a description of 

multisensory speech and the role played by visual speech. 

 

Figure 2.5: Cortical oscillations in EEG (adapted from Kent, 2010). 

2.3 Human Speech: A Multisensory Experience 

It is often overlooked in the study of human sensory systems that our experience of the 

world is profoundly multisensory and it is likely that multiple temporally overlapping 

sensory systems enable us to process these multimodal events seamlessly (Smith and 

Gasser, 2005). One complex class of multisensory signals that has received increasing 

attention is audiovisual speech, i.e., where a listener can both hear and see their 

interlocutor. In most social contexts, AV speech is the primary mode of speech 
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perception and should not be thought of as a sub-class of auditory speech perception 

(Rosenblum, 2005). By definition, human speech is bimodal, dynamic and forms a large 

proportion of the sensory signals encountered by humans in everyday life 

(Chandrasekaran et al., 2009).  

2.3.1 The Relationship between Auditory and Visual Speech 

When viewing a speaker face-to-face, a wide range of useful information is available to 

the listener in the form of articulator, facial, head and hand movements. Identifying 

which of these signals (or which combinations of them) are most important to speech 

reading has been a topic of recent study (Yehia et al., 2002, Jiang et al., 2002). 

Furthermore, these signals are embedded within a rich statistical structure that is highly 

correlated with the spectrotemporal dynamics of the acoustic signal. It has been 

suggested that the human brain has evolved to encode these statistical regularities in the 

most efficient way possible by exploiting redundancies and correlations of the input 

space (Barlow, 1961).  

Several studies have examined the spectrotemporal characteristics of AV speech, 

demonstrating that the area of the mouth opening and the broadband envelope of the 

acoustic speech signal are highly correlated with each other (Fig. 2.6; Chandrasekaran et 

al., 2009, Grant and Seitz, 2000). This correspondence was shown to be most robust for 

the envelope extracted at frequencies below 1 kHz and between 2–3 kHz, 

commensurate with formant frequencies F1 and F2–F3 respectively. Chandrasekaran et 

al. (2009) also demonstrated that both the broadband envelope and mouth area are 

temporally modulated in the 2–7 Hz range, which overlaps with the timescale of the 

syllable (Kuwabara, 1996). Furthermore, they found that the onset of mouth movements 

consistently preceded the onset of vocalisations by between 100 and 300 ms. This 

particular finding led a number of neuroscience papers to assume that visual speech 

consistently leads auditory speech by ~150 ms (Arnal et al., 2009, Arnal et al., 2011, 

Zion-Golumbic et al., 2013a). However, a recent study by Schwartz and Savariaux 

(2014) highlighted that the temporal relationship between auditory and visual speech is 

indeed more complex, consisting of a range of AV asynchronies that vary from small 

audio leads (20–40 ms) to large audio lags (70–200 ms).  

Moving beyond the kinematics of the mouth, research has shown that facial 

movements, tongue movements and speech acoustics are predictive of each other at the 
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level of syllables as well as sentences (Jiang et al., 2002). A study which attempted to 

predict acoustic speech patterns from the available visual information found that mouth 

and facial movements (particularly eyebrows) contributed more to the synthesis than the 

movements of just the mouth and lips (Yehia et al., 2002). In line with this, it has been 

shown that we are more inclined to focus on a speakers eyes than on their mouth in low 

levels of background noise, and that we only become more biased towards the mouth in 

high levels of noise (Vatikiotis-Bateson et al., 1998). It has also been demonstrated that 

the kinematics of the head are temporally aligned to the spectrotemporal dynamics of 

the speaker’s voice, conveying suprasegmental features of speech such as stress and 

prominence, i.e., prosody (Munhall et al., 2004a). 

 

Figure 2.6: Temporal relationship between mouth area and the acoustic envelope 

(adapted from Chandrasekaran et al., 2009). 

2.3.2 Defining the Role of Visual Speech 

Current perspectives on AV speech argue that it can be characterised in terms of two 

specific modes of multisensory information: ‘correlated’ and ‘complementary’ 

(Campbell, 2008, Summerfield, 1987, Grant and Seitz, 2000). These modes of speech 

are defined by the role that visual cues play in improving speech comprehension in 

noise, in those with impaired hearing and in the case of ambiguous speech features.  

Visual speech assumes a correlated role when there is redundancy between the 

information provided by vision and audition. As discussed above, the visible articulators 

that determine the vocal resonances, such as the lips, teeth and tongue, as well as 

ancillary movements, such as facial, head and hand movements, are temporally 

correlated with the vocalised acoustic signal (Chandrasekaran et al., 2009, Munhall et 

al., 2004a, Yehia et al., 2002, Grant and Seitz, 2000). Thus, in noisy environments, 

these visual cues provide important information pertaining to the timing of the target 
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signal. Based on the “attention in time” hypothesis (Large and Jones, 1999, Jones et al., 

2006, Nobre et al., 2007, Nobre and Coull, 2010), this would allow the listener to 

increase their attentional allocation at the correct moments in time, helping them direct 

auditory analysis to the speech signal of interest, rather than the surrounding 

background noise (Summerfield, 1987, Peelle and Sommers, 2015, Grant and Seitz, 

2000). Tuning into the temporal pattern of continuous speech may also help listeners 

know when to expect certain types of acoustic speech information, thus helping them 

decode segmental (e.g., phonemes, syllables, words) and suprasegmental (e.g., 

intonation, stress, rhythm) categories (Peelle and Sommers, 2015, Peelle and Davis, 

2012, Summerfield, 1987). It has also been suggested that redundancies in AV speech 

could lead to a reduction in the allocation of cognitive resources, enhancing cognitive 

function overall and as a result improving speech comprehension (Alais et al., 2010). 

In addition to providing temporal cues relating to the acoustic signal, visual 

speech also conveys information about the place and manner of articulation. In 

circumstances where acoustic information is ambiguous or degraded, visual cues such 

as the configuration of the vocal tract, mouth opening and closure, mouth shape, as well 

as configurations of the lips, teeth and tongue can provide complementary information 

(Campbell, 2008). For example, place of articulation provides critical distinctions 

between certain consonants such as /d/ and /p/ (Peelle and Sommers, 2015). Given that 

this information is distinguished acoustically by differences in F2 formant space, it is 

highly susceptible to masking in noisy environments (Miller and Nicely, 1955) and in 

those with impaired hearing (Walden et al., 1975). Thus, the availability of place of 

articulation in the visual signal provides a complementary source of information that 

allows us to distinguish between words such as ‘mad’ and ‘map’ (Peelle and Sommers, 

2015). Manner of articulation is also sometimes visible; in the previous example for 

instance, the /p/ in ‘map’ can produce a visible lip-puff, which is absent when ‘mad’ is 

uttered (Campbell, 2008).  

The phoneme is considered the smallest unit of acoustic speech that 

distinguishes one word from another in any language (Chomsky and Halle, 1968). The 

smallest unit of visual speech, the viseme, refers to speech gestures that are commonly 

confused during visual-only speech (Fisher, 1968, Miller and Nicely, 1955). However, 

the mapping from phonemes to visemes is not one-to-one; rather, multiple phonemes 

can map to a single viseme, meaning that visual speech generally presents more 

ambiguity than auditory speech. For example, ‘cap’ and ‘cab’ are readily distinguished 
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acoustically by the voiced nature of /b/ relative to the unvoiced /p/, whereas visually, 

these words are almost identical. While visual speech does not offer complimentary 

information for every phoneme, in many cases it can help disambiguate acoustically 

confusable phonemes, in addition to providing robust temporal cues (Peelle and 

Sommers, 2015). In order to exploit correlated and complementary speech cues, the 

brain must integrate this information together. The next section describes AV speech 

integration in the brain from a behavioural, neurophysiological and theoretical 

perspective. 

2.4 Multisensory Integration in AV Speech Processing 

Multisensory integration is the process by which our brain combines information from 

two or more sensory modalities in order to enhance our perception of the world (Stein et 

al., 2014, Stein and Stanford, 2008). Given that speech (which is biologically significant 

to humans) is naturally a multisensory event, it is unsurprising that our brains exploit 

the correlations and redundancies in these signals to maximise the likelihood of us 

understanding our interlocutor.  

Most of our understanding of how the brain integrates AV information comes 

from electrophysiology in the cat superior colliculus (SC; Stein and Meredith, 1993), a 

subcortical structure common to all mammalian brains. Certain neurons in SC were 

shown to respond to both auditory and visual stimulation, but responded in a non-linear 

manner to simultaneous AV stimuli (Fig. 2.7; Meredith and Stein, 1983, Meredith and 

Stein, 1985). Subsequent work yielded three fundamental principles of multisensory 

integration (Meredith and Stein, 1986a, Meredith et al., 1987): the interaction effect was 

largest when the signals occur at the same location (spatial rule), at the same time 

(temporal rule) and when the signals are minimally effective (principle of ‘inverse 

effectiveness’).  
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Figure 2.7: Multisensory integration in a superior colliculus neuron (adapted from Stein 

and Stanford, 2008). 

2.4.1 Quantifying Multisensory Integration 

One of the challenges in studying multisensory integration is how to isolate and quantity 

contributions from multisensory interactions. There have been numerous models 

developed to quantify multisensory integration based on neurophysiological and 

behavioural data (reviewed in Stevenson et al., 2014a). Most of these models assess 

multisensory integration based on two simple criteria: the maximum criterion or the 

additive criterion (Fig. 2.8A; Peelle and Sommers, 2015). 

The maximum criterion model compares the response to a multisensory stimulus 

with that of the most effective unisensory condition (Meredith and Stein, 1983, 

Meredith and Stein, 1986b). The rationale is that any response measure departing from 

that of the most effective unisensory condition should be attributed to the multisensory 

nature of the stimulus, that is, to interactions between the inputs from the two 

modalities. When measuring behaviour, this model is only suitable when performance is 

either below threshold or near ceiling in at least one of the unisensory conditions 

(Stevenson et al., 2014a). In neurophysiology, this model can be applied when the 

signal being recorded is from a site that is only particularly responsive to unisensory 

stimulation from one modality, but displays enhanced responsiveness during 

multisensory stimulation. The maximum criterion model defines multisensory 

integration (MSI) as follows: 
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                                      ,,maxMSI VAAV                                            (2.1) 

where variables A, V, and AV represent the behavioural/neurophysiological measures 

(e.g., accuracy, spike rate, amplitude) for each stimulus condition. Positive MSI values 

indicate enhancement, negative values indicate reduction and zero values indicate no 

integration (Fig. 2.8B; Meredith and Stein, 1983, Peelle and Sommers, 2015). Of 

course, when examining something like reaction time (RT), this model can be modified 

to compare AV with min(A,V), i.e., the fastest unisensory condition.  

The additive criterion model on the other hand, compares the response to a 

multisensory stimulus with that of the algebraic sum of the unisensory conditions (Stein 

and Meredith, 1993, Barth et al., 1995, Berman, 1961). The rationale here is that the 

response to a multisensory stimulus should be equal to the sum of the responses 

generated separately by the two unisensory stimuli, if the two unisensory signals were 

processed independently. Thus, any departure from the summed response should be 

attributed to multisensory interactions (Besle et al., 2004b). For behavioural measures, 

this model is most suitable when the unisensory response magnitudes from both 

modalities are not near threshold or ceiling (Stevenson et al., 2014a). In 

neurophysiology, this approach is most suited to recording sites that are responsive to 

both unisensory stimuli, particularly when recording from populations of neurons. 

Based on the additive criterion, multisensory integration is defined as follows: 

                                         .MSI VAAV                                               (2.2) 

Here, positive MSI values indicate ‘superadditivity’, negative values indicate 

‘subadditivity’ and zero values indicate no integration (Fig. 2.8C; Stein and Meredith, 

1993, Peelle and Sommers, 2015). The validity of the additive model is well 

established, particularly in the field of electrophysiology (Besle et al., 2004b). This is 

because when measuring electric signals elicited by the brain, their magnitude is 

governed by the law of superposition of electric fields. The principle of superposition 

states that the net response of a linear system (and tissue is a linear conductor at 

macroscopic scales) at a given position and time caused by two or more stimuli is equal 

to the sum of the responses which would have been produced by each stimulus 

individually.  

However, behavioural measurements are sometimes represented as probabilities 

(e.g., detection accuracy, RT), meaning it is necessary to include an expression of the 

joint unisensory probability in the model. For instance, if detection accuracy was being 
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measured, this would account for the probability that a multisensory stimulus was 

detected in both modalities (Stevenson et al., 2014a). Or if RT was being measured, this 

would account for the probability that the stimuli were detected at the same time in both 

modalities. Suppose each variable in Eq. 2.2 represented the probability of detecting a 

stimulus in each condition, the formula could be extended to account for joint 

unisensory probability as follows: 

                                   .MSI VAVAAV                                        (2.3) 

This is equivalent to assuming that an error in the AV condition only occurs if there is 

an incorrect response in both of the unisensory conditions, i.e., 1−AV = (1−A) (1−V) 

(Blamey et al., 1989). The same model can also be applied to RT measurements by 

replacing each variable in Eq. 2.3 with the RT cumulative distribution function (CDF) 

for each condition. This is equivalent to sampling simultaneously from the unisensory 

RT distributions, taking the faster of the two unisensory RTs and then computing the 

CDF, i.e., the ‘race model’ (Raab, 1962). Violation of the race model (i.e., positive MSI 

values) indicates multisensory interactions or ‘co-activation’ (Miller, 1982, Molholm et 

al., 2002). 

To quantify MSI in terms of percentage gain, Meredith and Stein (1983) defined 

an ‘interactive index’ that scaled MSI relative to the magnitude of their model: 

                                          ,100
MSI

Gain 
P

                                              (2.4) 

where P is the multisensory response predicted by the unisensory response values, i.e., 

max(A,V) or [A+V] or [A+V−A×V]. In other words, this represents the percentage gain 

in processing attributable to multisensory interactions relative to independent 

unisensory processing. 
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Figure 2.8: Quantification of multisensory integration.  

A, Integration criteria. B, Multisensory integration based on a maximum criterion 

model. C, Multisensory integration based on an additive criterion model (adapted from 

Peelle and Sommers, 2015). 

2.4.2 Behavioural Correlates 

That visual speech could enhance our perception of auditory speech was first 

demonstrated behaviourally over 60 years ago (Sumby and Pollack, 1954, O’Neill, 

1954). Specifically, it was shown that intelligibility was enhanced in noise, equivalent 

to an increase of up to 15 dB in signal-to-noise ratio (SNR; Sumby and Pollack, 1954), 

with a 1-dB improvement in SNR leading to a 5–10% increase in intelligibility, 

depending on speech materials (Miller et al., 1951). This led to the impression that 

visual speech only enhanced hearing in suboptimal listening conditions and (in line with 

the principle of inverse effectiveness) that this effect was inversely related to SNR and 

hearing ability (Erber, 1969, Erber, 1975, Erber, 1971, McCormick, 1979, Neely, 1956, 

Binnie et al., 1974). However, a re-examination of Sumby and Pollack’s findings 

(Remez, 2005) showed that the benefit of AV speech is not limited to degraded acoustic 

environments. It has also been shown using extended passages of natural speech 

(instead of discrete tokens) that AV speech is beneficial in easy-to-hear (but hard-to-

understand) environments, increasing the speed at which participants could repeat 
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words in real time (Reisberg et al., 1987) as well as improving comprehension (Arnold 

and Hill, 2001). The former finding fits with studies that have observed faster RTs in 

response to AV syllables (Besle et al., 2004a, Klucharev et al., 2003). Note that 

enhanced intelligibility has been demonstrated at every level of speech, including 

syllables (Bernstein et al., 2004b), words (Sumby and Pollack, 1954) and sentences 

(Grant and Seitz, 2000). 

It was recently argued (Ross et al., 2007a) that many of the early behavioural 

studies that demonstrated an inverse relationship between AV enhancement and SNR 

(i.e., inverse effectiveness) may have oversimplified this assumption. Several of these 

studies used a delimited set of word stimuli that were presented to the participants 

beforehand in the form of checklists (Sumby and Pollack, 1954, Erber, 1969, Erber, 

1975). Thus, it is likely that speech-reading scores were artificially high due to 

familiarity, particularly at lower SNRs where intelligibility is more susceptible to 

ceiling effects (Ross et al., 2007a, Holmes, 2009, Bernstein et al., 2004a). Furthermore, 

measures of multisensory gain can be erroneously high depending on how it is 

calculated, i.e., absolute value versus relative percentage (Ross et al., 2007a, Holmes, 

2009), and also by the density of the lexical neighbourhood of the word stimuli (Tye-

Murray et al., 2007). To circumvent these shortcomings, Ross et al. (2007a) conducted a 

word recognition task (as opposed to detection) at multiple SNRs between 0 dB and 

auditory threshold (−24 dB). They presented a much larger set of words so that each 

presentation was unique and there were no checklists available to participants, which 

greatly reduced speech-reading accuracy (< 10%). In doing so, they demonstrated two 

very important behavioural aspects of AV speech: (1) the enhancement conferred by 

AV speech is far greater than that accounted for by speech-reading ability, i.e., it 

reflects multisensory interactions and (2) AV gain is greatest at an intermediate SNR 

(−12 dB), not at threshold (−24 dB). In other words, AV gain does not follow the 

principle of inverse effectiveness beyond a certain SNR.  

Aside from studying how AV speech integration is impacted by background 

noise, many studies have investigated the impact of the sematic congruency between the 

auditory and visual streams. Much of this work was inspired by an influential study that 

accidentally demonstrated an interesting AV speech illusion, known as the McGurk 

effect (McGurk and MacDonald, 1976). The McGurk effect is a phenomenon whereby a 

particular incongruent pairing of auditory and visual syllables can produce the 

perceptual illusion of a syllable that was neither heard nor seen. For example, they 
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found that when an auditory /ba/ was dubbed to a visual /ga/, the syllable perceived by 

participants was consistently /da/. The effect has since been replicated by numerous 

studies and in numerous different languages (Jiang and Bernstein, 2011, Summerfield 

and McGrath, 1984, Green and Kuhl, 1989, Sekiyama and Tohkura, 1991, Massaro et 

al., 1995). The McGurk illusion is even insensitive to knowledge of its basis (Campbell, 

2008), although the nature of the fusion effect has been shown to be subject-dependent 

(Schwartz, 2010). Other than influencing how we perceive speech, incongruent AV 

pairings can alter our performance, delaying RTs relative to congruent AV speech and 

unimodal speech (Klucharev et al., 2003). While the McGurk effect has advanced out 

understanding of how the human brain integrates AV speech, it is usually perceived in a 

controlled experimental setting with well-synchronised AV stimuli and is not an illusion 

typically encountered in everyday life. It has been suggested that the spatial and 

temporal coherence of such incongruent stimuli may be a strong cue to their co-

processing and ‘binding’ (Campbell, 2008). 

The visual component of speech that contributes towards enhanced behaviour is 

not limited to just the mouth, but also movements of the head and eyebrows (Yehia et 

al., 2002, Munhall et al., 2004a, Thomas and Jordan, 2004), and even haptic movements 

(Fowler and Dekle, 1991). Furthermore, it has been shown that humans typically 

perceive desynchronised AV syllables as occurring simultaneously for audio leads of up 

to 90 ms and audio lags of up to 170 ms, and perceive McGurk fusion effects for audio 

leads of up to 30 ms and audio lags of up to 170 ms (Fig. 2.9; van Wassenhove et al., 

2007, Miller and D'Esposito, 2005, Grant et al., 2004). This ~250 ms window of 

integration corresponds roughly to the average length of a syllable, thus it has been 

suggested that syllables may be an important unit of computation in AV speech 

processing (van Wassenhove, 2013). Furthermore, it has been shown that this window is 

narrower and more asymmetric for speech versus non-speech stimuli, in support of the 

notion that this tolerance is fine-tuned to the natural statistics of AV speech (Maier et 

al., 2011). It has also been suggested that the brain tolerates AV asynchronies because 

of the differences in the speeds of sight and sound, as well as differences in transduction 

times and neural latencies (Alais et al., 2010). Although asynchrony detection has not 

been shown to reflect speech reading ability (Grant and Seitz, 1998), it has been shown 

to predict susceptibility to the McGurk effect (Stevenson et al., 2012b). 
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Figure 2.9: Temporal window of encoding and integration in AV speech. 

The temporal encoding window (top) represents the time necessary for speech encoding 

and the temporal integration window (bottom) represents the encoding window plus the 

tolerated temporal noise leading to suboptimal encoding performance (Adapted from 

van Wassenhove, 2013). 

2.4.3 Cortical Brain Regions in AV Speech Processing 

A number of cortical brain regions have been linked to multisensory integration, none 

more so than the posterior STS (pSTS; Peelle and Sommers, 2015, Campbell, 2008, 

Alais et al., 2010). Numerous fMRI studies have implicated the pSTS as a primary 

binding area for multisensory speech processing as it is consistently activated during 

unisensory speech (both auditory and visual) as well as multisensory speech (Calvert et 

al., 1997, Callan et al., 2004, Wright et al., 2003, Arnal et al., 2009, Capek et al., 2004). 

It has been demonstrated that speech-reading tends to elicit both bilateral and left-

lateralised activation (Capek et al., 2004, Calvert and Lewis, 2004, Bernstein et al., 

2008). However, the nature of this activation is quite variable; left pSTS can (but does 

not always) exhibit superadditive activation during congruent AV speech (Calvert et al., 

2000, Wright et al., 2003, Miller and D'Esposito, 2005), while subadditive activation 
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has been reported in other superior temporal regions (Wright et al., 2003), and for 

incongruent AV speech in posterior STS (Calvert et al., 2000). Importantly, 

multisensory activation of pSTS has been demonstrated using both discrete speech 

stimuli (Miller and D'Esposito, 2005, Wright et al., 2003) and extended speech passages 

of natural speech (Yi et al., 2014, Calvert et al., 2000). A recent review highlighted that 

most reports of multisensory interactions in cortical areas are statistically weaker than 

superadditive (Alais et al., 2010). However, similar to the inverse effectiveness 

observed in SC neurons, STS activation becomes more superadditive at lower SNRs 

(Stevenson and James, 2009). 

Other cortical brain regions have been identified as being putatively 

multisensory. Cortical recordings in the cat have shown the ectosylvian sulcus to 

contain multisensory neurons. These neurons exhibit superadditive responses to 

spatiotemporally coherent multisensory inputs, as well as inverse effectiveness and 

depression in response to disparate inputs (Stein and Wallace, 1996). In primates, 

multisensory neurons are commonly identified in posterior parietal cortex (PPC). While 

non-linear responses in PPC also require multisensory inputs to be spatiotemporally 

coincident, they have been shown to exhibit both superadditivity and subadditivity to 

such stimuli (Avillac et al., 2005). As well as caring about spatiotemporal coherence, it 

is likely that many cortical areas also care about the semantic congruency between 

multisensory inputs (Alais et al., 2010). In support of this notion, single-unit recordings 

in macaque STS suggest that sematic congruency is necessary to elicit multisensory 

interactions in certain neurons (Barraclough et al., 2005, Beauchamp et al., 2004). 

While STS is generally considered the “sine qua non” of AV speech integration, other 

studies have demonstrated greater activation in areas such as the left supramarginal and 

angular gyrus (Bernstein et al., 2008). 

In addition to such putatively multisensory areas, single-unit recordings in 

primates have revealed early AV interactions in auditory cortex (Ghazanfar et al., 2005, 

Kayser et al., 2010, Kayser et al., 2008, Chandrasekaran et al., 2013). So too have 

intracranial recordings in humans (Besle et al., 2008, Mercier et al., 2015). fMRI 

research has also demonstrated AV interactions in auditory cortex in both primates 

(Kayser et al., 2007, Kayser et al., 2009) and humans (Okada et al., 2013). This fits with 

previous fMRI studies that have shown activation in human primary auditory cortex 

during silent lipreading (Pekkola et al., 2005, Calvert et al., 1997). In addition to 

sensory cortical areas, speech reading has also been shown to activate motor regions 
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such as Broca’s area (BA 44/45) and anterior parts of the insula (Campbell et al., 2001, 

Watkins et al., 2003, Ojanen et al., 2005, Skipper et al., 2005, Fridriksson et al., 2008). 

It has been suggested that observing a speaker’s articulatory movements may activate 

motor plans than in turn preferentially access phonemic categories, shaping the 

listener’s auditory perceptual experience (Peelle and Sommers, 2015, Tian and Poeppel, 

2012, Möttönen and Watkins, 2009).  

2.4.4 A Multistage Model of AV Speech Processing 

Before there was sufficient evidence to suggest that AV speech was integrated in 

sensory-specific regions, it was thought that auditory and visual information were 

initially processed independently over successive stages within their respective 

unisensory pathways and combined later in higher-order, association areas (Massaro, 

1999, Grant et al., 1998). Recent perspectives on multisensory integration have 

redefined the role of primary sensory areas, suggesting that crossmodal information can 

influence processing in such regions at an early stage (Foxe and Schroeder, 2005, 

Schroeder and Foxe, 2005, Driver and Noesselt, 2008, Kayser and Logothetis, 2007, 

Ghazanfar and Schroeder, 2006). Acceptance of both early and late integration models 

has led to the conception of a new ‘multistage’ integration model (Peelle and Sommers, 

2015). 

Early and late integration models have been linked to different brain regions, 

thus, it is likely that each stage is underpinned by different neural mechanisms and 

serves a complementary role in AV speech perception. It has been suggested that early 

integration serves to increase the sensitivity of auditory cortex to incoming acoustic 

information (Peelle and Sommers, 2015). This theory is supported by the 

aforementioned electrophysiological studies that have observed early AV interactions in 

primate auditory cortex (Ghazanfar et al., 2005, Kayser et al., 2010, Lakatos et al., 

2007, Kayser et al., 2008). This is also supported by the fact that visual speech cues 

reliably precede and predict auditory speech information (Schwartz and Savariaux, 

2014, Chandrasekaran et al., 2009). Furthermore, such natural asynchronies in AV 

communication have been shown to regulate and enhance multisensory interactions in 

auditory cortex (Kayser et al., 2008, Perrodin et al., 2015). Preceding visual information 

could be projected to auditory cortex in several different ways (Fig. 2.10; Peelle and 

Sommers, 2015): directly in a thalamocortical feedforward manner (Foxe and 
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Schroeder, 2005, Besle et al., 2008), laterally in a corticocortical manner (Falchier et al., 

2002, Schroeder et al., 2008, Arnal et al., 2009) or indirectly via supramodal regions 

such as pSTS (Ghazanfar et al., 2005) or frontal regions such as BA 44/45, which has 

specifically been linked to speech-reading (Campbell et al., 2001, Skipper et al., 2005, 

Watkins et al., 2003, Ojanen et al., 2005). Thereafter, visual cues could increase the 

sensitivity of auditory cortex via crossmodal phase-resetting, whereby relatively discrete 

visual landmarks reset the phase of ongoing low-frequency oscillations in auditory 

cortex, such that the arrival of upcoming acoustic information coincides with a high 

excitability phase of the auditory neuronal population (Schroeder et al., 2008, Lakatos et 

al., 2007, Kayser et al., 2008). The efficacy of such a mechanism in the context of 

continuous speech has been linked to the relationship between the temporal scale of 

segmental/suprasegmental speech units and the hierarchically coupled rhythmic 

oscillatory complex in auditory cortex (Schroeder et al., 2008). 

It is believed that late integration serves to constrain the possible candidates in a 

spoken utterance based on visual information about a speaker's articulators (Peelle and 

Sommers, 2015). Late integration models are generally associated with higher-order 

‘multisensory’ areas such as those mentioned in section 2.2.3. Such areas could provide 

a cortical site where feedforward auditory and visual information could converge and 

become ‘bound’ to from a multisensory object, as well as providing feedback to 

unimodal areas (Driver and Spence, 2000). The STS, which responds to both A and V 

inputs, has been suggested as a likely candidate for a binding site and a feedback 

provider to auditory cortex (Calvert and Campbell, 2003, Beauchamp et al., 2004, Arnal 

et al., 2009, Kayser and Logothetis, 2009). Mechanistically, binding of auditory and 

visual speech features could depend on their temporal coherence (Senkowski et al., 

2008, Maier et al., 2008). In auditory scene analysis, it has been hypothesised that 

multi-feature auditory sources are segregated into perceptual streams based on the 

temporal coherence of their acoustic features (Elhilali et al., 2009, Shamma et al., 

2011). Similarly, visual speech cues, being correlated with the spectrotemporal 

dynamics of the auditory speech signal, could result in visual features being bound to 

the auditory features to form a multisensory object. This notion fits within an ‘analysis-

by-synthesis’ framework of speech processing, which proposes that speech is first 

analysed by breaking it up into its constituent spectrotemporal channels and that 

auditory objects (or multisensory objects) are synthesised from those channels that 

modulate together in a temporally coherent manner (Ding et al., 2014, Ding and Simon, 
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2014). As well as projecting forward to higher-order areas, STS could also feedback to 

unisensory cortex. It has been suggested that this process could serve to differentially 

weight auditory and visual information depending on how informative or reliable each 

modality is (Peelle and Sommers, 2015). In support of this, Nath and Beauchamp 

(2011) demonstrated that differentially varying the reliability of the auditory and visual 

streams in AV speech stimuli directly affected the functional connectivity between STS 

and the corresponding unisensory cortex. However, another study showed that 

increasing viseme ambiguity increased functional connectivity between STS and 

motion-sensitive visual areas, as well as increasing connectivity between STS and 

auditory cortex (Arnal et al., 2009). 

In summary, a multistage integration model accounts for both early AV 

interactions in auditory cortex, and a later integration stage that binds crossmodal 

features based on their temporal coherence, as well as differentially weighting each 

modality based on its reliability. Multistage models somewhat explain the difficulty in 

predicting AV speech performance based on a single measure of integration because 

single-stage models cannot account for interactions between multiple integration 

mechanisms (Peelle and Sommers, 2015). 

 

Figure 2.10: Anatomical pathways for routing visual information to auditory cortex 

(adapted from Peelle and Sommers, 2015). 

2.5 An EEG/MEG Account of AV Speech Processing 

Much of our knowledge on the temporal dynamics of AV speech processing comes 

from single-unit recordings in the primate brain. While many primate studies have used 
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naturalistic stimuli such as monkey vocalisations in order to predict how humans 

process and integrate multisensory speech (Ghazanfar et al., 2005, Chandrasekaran et 

al., 2013, Kayser et al., 2008, Kayser et al., 2010), it is not directly comparable to 

human speech as it lacks the lexical complexity of human conversation. Intracranial 

(ECoG) recordings have been used to study AV speech in humans (Besle et al., 2008, 

Mercier et al., 2015), however, this highly invasive technique can only be conducted in 

pre-surgical epileptic patients, hence its literature is limited.  

EEG, and to a lesser extent MEG, have been used to examine the timecourse of 

AV speech processing, mostly in response to discrete speech tokens such as syllables 

and words rather than natural continuous speech (but see Zion-Golumbic et al., 2013a, 

Luo et al., 2010). The reason for this is partly methodological; a reliable technique has 

not yet been developed for quantifying a neural measure of multisensory integration in 

the context of continuous AV speech. The following section is devoted to a review of 

the ERP/ERF-based AV speech literature and is followed by a discussion on the current 

techniques used for studying continuous speech. 

2.5.1 Measuring AV Integration with Evoked Responses 

Much of the EEG/MEG-based literature on AV speech integration has focused on how 

cortical activity responds to discrete, time-locked AV syllables. While MEG can 

approximate the cortical response from localised sources (e.g., auditory cortex, STS), 

EEG is generally studied in sensor space (i.e., at the scalp level), making it more 

difficult to accurately localise AV interaction effects. EEG responses (i.e., ERPs) are 

typically measured at temporal, centro-parietal and fronto-central scalp locations. The 

most common finding amongst EEG studies is that certain ERP components (typically 

the N1/P2 complex) are significantly reduced in amplitude by AV presentation 

compared to audio-only presentation or additive models (Besle et al., 2004a, van 

Wassenhove et al., 2005, Klucharev et al., 2003, Stekelenburg and Vroomen, 2007, 

Pilling, 2009). Similarly, MEG studies have observed reduced amplitude in the M100 

ERF component in response to AV syllables (Arnal et al., 2009). It has also been shown 

that such AV interactions occur earlier in auditory cortex compared to those in STS 

(Möttönen et al., 2004), suggesting that they index non-phonetic and phonetic AV 

interactions respectively (Klucharev et al., 2003). The majority of the aforementioned 

studies report only late (>100 ms) AV interactions (Bernstein et al., 2008, Besle et al., 
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2004a, Möttönen et al., 2004, Stekelenburg and Vroomen, 2007, van Wassenhove et al., 

2005), however this may be a result of EEG/MEG’s insensitivity to early- and middle-

latency response components (Picton, 2013). 

Interestingly, incongruent or McGurk AV pairings have also been shown to 

elicit a similar reduction in ERP/ERF amplitude (Stekelenburg and Vroomen, 2007, van 

Wassenhove et al., 2005, Arnal et al., 2009, Klucharev et al., 2003), further 

demonstrating the autonomous nature of multisensory integration in the context of an 

artificially created McGurk scenario. In support of claims by Campbell (2008), that 

such autonomous integration is mediated by the temporal congruency of McGurk 

stimuli, it was demonstrated that asynchronous AV speech (where A leads V) does not 

elicit a reduction in amplitude (Pilling, 2009). Furthermore, another study showed that 

such interactions only occur if the visual stream precedes the acoustic stream, as is 

typically the case in natural speech (Stekelenburg and Vroomen, 2007). Despite this, 

visual predictability does not modulate the degree of amplitude reduction (van 

Wassenhove et al., 2005, Arnal et al., 2009). It has been suggested that ERP/ERF 

amplitude reduction could be underpinned by a deactivation mechanism that minimises 

the processing of redundant cross-modal information based on an internal prediction 

derived from the preceding visual input (van Wassenhove et al., 2005, Arnal et al., 

2009), an idea known as predictive coding (Friston, 2005). This theory also fits well 

with the idea of a late integration mechanism that constrains lexical selection (Peelle 

and Sommers, 2015). 

 While the aforementioned studies have mainly focused on multisensory 

interactions in auditory ERPs, a more recent study examined the effects of integration 

on visual ERPs for various levels of visual salience and demonstrated some interesting 

effects (Stevenson et al., 2012a). Specifically, they showed that the P1-N1 complex 

became more subadditive as salience decreased and that the N1-P2 complex became 

less subadditive as salience decreased. While they interpreted the latter as evidence for 

inverse effectiveness, in light of the above literature which predominantly identified AV 

interactions by a reduction in amplitude, it could be argued that the former result was 

instead reflective of inverse effectiveness and not the latter. However, they found that 

the multisensory gain across sensory levels in the N1-P2 complex, i.e., 

 VAAV  , was positively (but not significantly) correlated with the 

multisensory gain in RT (as measured by violation of the race model). A neural index of 
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multisensory gain that reliably predicts a behavioural metric of multisensory gain is 

something that has not yet been established. 

Another important effect reported in many of these studies is that of a 

multisensory latency effect. Some of the studies (but not all of them) that reported 

attenuation of ERP/ERF components during AV speech also noted a marked facilitation 

in the latency of the same components (van Wassenhove et al., 2005, Arnal et al., 2009, 

Stekelenburg and Vroomen, 2007). Specifically, they found that the attenuated response 

components peaked at an earlier latency relative to audio-only/additive responses. 

However, these “shifted” components appeared to onset at the same latency and with 

the same slope as those elicited by audio-only speech, except that they peaked earlier. 

Thus, it has been suggested that this earlier peak in amplitude may be a direct 

consequence of the reduction in amplitude, i.e., an artefact (Stekelenburg and Vroomen, 

2007). This can easily be explained by the laws of superposition which govern the 

summation of ERP responses (Handy, 2005). However, this latency effect fits well with 

the fact that visual speech naturally precedes and predicts auditory speech dynamics 

(Chandrasekaran et al., 2009, Schwartz and Savariaux, 2014). Furthermore, it was found 

that the magnitude of this latency shift was proportional to the degree to which the 

visual stimulus predicted the auditory stimulus (van Wassenhove et al., 2005, Arnal et 

al., 2009). This also fits with animal models which have shown that neurons in macaque 

auditory cortex fire earlier in response to AV vocalisations (Chandrasekaran et al., 

2013), as do neurons in the cat SC in response to AV stimuli (Rowland et al., 2007).  

2.5.2 Studying AV Integration Using Continuous Speech  

While ERP/ERF techniques have yielded great insight into the dynamic processing of 

multisensory speech, they have certain limitations which new approaches have sought 

to overcome. Firstly, there is the aforementioned confound of latency versus amplitude 

interactions. Disentangling this issue is problematic because there is no way to separate 

out contributions from different modalities. Secondly, they must be derived by 

averaging the response to discrete, isolated tokens that do not reflect natural, continuous 

speech. Lastly, ERPs/ERFs do not reflect the true temporal dynamics of the auditory 

system’s response because discrete stimuli must have some arbitrary duration which, 

assuming convolution, smears the response over time. 
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 Indeed, a way to circumvent the issues involved in estimating the cortical 

response of the auditory system is to avoid estimating it altogether. One such approach 

that has become popular in recent years (particularly in MEG) is to measure the 

consistency of neural phase patterns over repeated trials of extended speech (Luo and 

Poeppel, 2007). The rational here is that the consistency in phase across repeated trials 

indexes the degree to which the cortical activity tracks the speech signal. This can be 

quantified using an inter-trial (phase) coherence measure (Luo and Poeppel, 2007, 

Howard and Poeppel, 2010, Peelle et al., 2013) or an inter-trial correlation measure 

(Ding and Simon, 2013, Ding et al., 2014). Some of these studies (but not all of them) 

have shown preferential tracking in theta band (4–7 Hz) activity and thus have 

implicated the syllable as a computational primitive in speech processing (Luo and 

Poeppel, 2007, Giraud and Poeppel, 2012, Howard and Poeppel, 2010, Peelle et al., 

2013). However, this effect is likely attributable to the use of short (<5 s duration) 

single-sentence stimuli which do not contain much delta-frequency information below 

~2 Hz, i.e., prosodic content (Ding et al., 2014). It has been shown using longer speech 

stimuli (>30 s in duration) that cortical activity reliably tracks the speech envelope 

below ~10 Hz and even more reliably below ~4 Hz, especially in noise (Ding and 

Simon, 2013, Ding et al., 2014). However, a recent perspective on speech tracking 

suggests that theta entrainment likely encodes speech-specific features, critical for 

intelligibility, while delta entrainment likely encodes non-speech-specific acoustic 

rhythm (Ding and Simon, 2014).  

 As well as being used to study how the human brain processes continuous 

auditory speech, this approach has been applied in AV speech studies using natural 

speech and revealed some important insights into the underlying neural mechanisms of 

AV integration (Zion-Golumbic et al., 2013a, Luo et al., 2010). Specifically, it has been 

demonstrated that auditory cortex tracks both auditory and visual stimulus dynamics in 

delta and theta band responses (Luo et al., 2010). This provides evidence in support of 

the theory that the phase of auditory cortical activity could be reset by ongoing phasic 

variations in visual cortex (see section 2.4.4). In another study that examined AV 

speech in a cocktail party scenario, it was shown that delta and theta band responses in 

auditory cortex tracked the attended speech signal more reliably during AV 

presentation, compared to audio-only presentation (Zion-Golumbic et al., 2013a). 

However, they found that AV speech did not enhance cortical tracking when 

participants only listened to a single-speaker. They admit, however, that inter-trial 
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coherence is an indirect measure of speech tracking and, as such, may be insensitive to 

subtle differences in more easy-to-hear environments.  

This, coupled with the fact that such an approach does not allow for 

characterisation of the auditory system’s response, highlights the need to develop a new 

technique for studying how the brain processes natural, continuous AV speech stimuli. 

The next chapter describes one such approach that was developed as a MATLAB 

toolbox for the purpose of this research work. 
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Chapter 3 The Multivariate Temporal 

Response Function (mTRF) Toolbox: a 

MATLAB Toolbox for Relating Neural 

Signals to Continuous Stimuli 

3.1 Introduction 

As detailed in Chapter 2, much of the previous research on the electrophysiology of AV 

speech processing has focused on the rather special case of isolated, discrete speech 

stimuli (Besle et al., 2004a, van Wassenhove et al., 2005, Arnal et al., 2009, Klucharev 

et al., 2003, Stekelenburg and Vroomen, 2007, Pilling, 2009, Sams et al., 1991, 

Möttönen et al., 2004). While more recent studies have focused on how the phase of 

neural signals reflect the dynamics of ongoing speech (Zion-Golumbic et al., 2013a, 

Luo et al., 2010), the methodological approach involved does not facilitate 

characterisation of the auditory system’s response, and in any case, is an indirect 

measure of speech tracking. 

A more direct way to investigate neural speech tracking is to mathematically 

model a function that describes the way a particular property of the speech stimulus is 

mapped onto neural responses, i.e., the aforementioned technique of system 

identification (Marmarelis, 2004). While there are several classes of models that can be 

implemented for this purpose (reviewed in Wu et al., 2006), the most straightforward 

class are linear time-invariant (LTI) systems. Although the human brain is neither linear 

nor time-invariant, LTI systems can be completely characterised by their impulse 

response (see Fig. 3.1). An SI method known as reverse correlation has become a 

common technique for characterising LTI systems in neurophysiology (Ringach and 



42 

 

Shapley, 2004), an approach that has long been established in both visual and auditory 

animal neurophysiology (Coppola, 1979, Marmarelis and Marmarelis, 1978, De Boer 

and Kuyper, 1968). Analogous to ERP/ERF-based methods, this technique 

approximates the impulse response of the sensory system under investigation, except it 

does not require that the stimulus be discrete in time (e.g., Fig. 3.1, bottom). Moreover, 

it circumvents many of the aforementioned issues related to using ERPs/ERFs (see 

section 2.5.2). Reverse correlation in its simplest form can be implemented via a 

straightforward cross-correlation between the input and output of an LTI system 

(Ringach and Shapley, 2004). While this approach has been used to study how speech is 

encoded in human EEG/MEG (Ahissar et al., 2001, Abrams et al., 2008, Aiken and 

Picton, 2008), it is better suited to stimuli modulated by a stochastic process such as 

Gaussian white noise (see example in section 3.4.5). As such, most instances of this 

approach in animal models have traditionally used white noise stimuli (Coppola, 1979, 

Marmarelis and Marmarelis, 1978, De Boer and Kuyper, 1968, Eggermont et al., 1983, 

Ringach et al., 1997). This work has even inspired researchers to investigate how such 

stochastic signals are encoded in the human brain (Lalor et al., 2006, Lalor et al., 2009).  

That said, the human brain has evolved to process ecologically relevant stimuli 

that rarely conform to a white random process. For example, in the context of human 

neuroscience research, a proper understanding of how the brain processes natural speech 

would surely require that natural speech be used as a stimulus in the laboratory, given 

that neurons respond differently to more complex stimuli (Theunissen et al., 2000). As 

such, researchers using animal models have shifted their focus towards studying the 

brain using more natural stimuli thanks to the development of SI methods such as 

normalised reverse correlation (NRC; Theunissen et al., 2001), ridge regression 

(Machens et al., 2004) and boosting (David et al., 2007). Each of these techniques 

converge on the same theoretical solution but use different priors and, critically, give an 

unbiased impulse response estimate for non-white stimuli. This has inspired researchers 

to characterise the spectrotemporal receptive fields of auditory cortical neurons in 

various animal models (Depireux et al., 2001, Tomita and Eggermont, 2005). As a 

result, researchers interested in how human speech is processed have begun to model 

response functions describing the linear mapping between properties of natural speech 

(such as the envelope or spectrogram) and population responses in both animals 

(Mesgarani et al., 2008, David et al., 2007) and humans (Lalor and Foxe, 2010, Ding 

and Simon, 2012b). There have been similar efforts to model response functions 
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relating more natural visual stimulus properties to neural responses in humans 

(Gonçalves et al., 2014), again inspired by single-unit electrophysiology work (Jones 

and Palmer, 1987, David and Gallant, 2005).  

Most of the aforementioned studies have modelled the stimulus-response 

mapping function in the forward direction (i.e., forward modelling). However, this 

mapping can also be modelled in the reverse direction (i.e., backward modelling), 

offering a complementary way to investigate how stimulus features are encoded in 

neural response measures. Unlike forward models, backward model parameters are not 

readily neurophysiologically interpretable (see Haufe et al., 2014), but can be used to 

reconstruct or decode stimulus features from the neural response, a method known as 

stimulus reconstruction. This approach has several advantages over forward modelling 

approaches, especially when recording from population responses using multi-channel 

systems such as EEG. Firstly, because reconstruction projects back to the stimulus 

domain, it does not require preselection of neural response channels (Mesgarani et al., 

2009). In fact, inclusion of all response channels in the backward model is advantageous 

because the reconstruction method gives zero weight to irrelevant channels whilst 

allowing the model to capture additional variance using channels potentially excluded 

by feature selection approaches (Pasley et al., 2012). Secondly, population responses 

recorded at different channels tend to be highly correlated (especially in EEG) which 

can bias the model. However, this is no longer an issue because the inter-channel 

correlation is removed from the reconstruction model (see section 3.2.4; Mesgarani et 

al., 2009). Thirdly, stimulus features that are not explicitly encoded in the neural 

response may be inferred from correlated input features that are encoded. This prevents 

the model from allocating resources to the encoding of redundant stimulus information 

(Barlow, 1972). The stimulus reconstruction method has previously been used to study 

both the visual and auditory system in various animal models (Bialek et al., 1991, 

Stanley et al., 1999, Rieke et al., 1995). More recently, it has been adopted for studying 

speech processing in the human brain using intracranial and non-invasive 

electrophysiology (Pasley et al., 2012, Mesgarani et al., 2009, Ding and Simon, 2013, 

O'Sullivan et al., 2015). 

While numerous research groups have begun to regularly use different forms of 

SI to study the neural processing of natural speech (Di Liberto et al., 2015, Ding and 

Simon, 2014, Martin et al., 2014, Zion-Golumbic et al., 2013b, Mesgarani and Chang, 

2012), the approach has not yet been widely adopted throughout the neuroscience 
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community because of the challenge associated with its implementation. The goal of the 

present chapter is to introduce a recently-developed SI toolbox that provides a 

straightforward and flexible implementation of the ridge regression approach (Lalor et 

al., 2006, Machens et al., 2004). I begin by summarizing the mathematics underlying 

the approach, continue by providing some concrete examples of how the toolbox can be 

used and conclude by discussing some of its applications and considerations. The work 

from this chapter has resulted in the publication of an open-source MATLAB toolbox, 

known as mTRF Toolbox (http://sourceforge.net/projects/aespa/), which has already 

been downloaded and used by several international labs. The content of this chapter is 

currently being prepared for publication in a scientific methods journal. 

 

Figure 3.1: A linear time-invariant (LTI) system. 

An LTI system can be characterised as the output to a discrete input (top), or by using a 

white noise input and cross-correlating the input and output (bottom; adapted from 

Ringach and Shapley, 2004). 

3.2 The Ridge Regression Approach 

3.2.1 Forward Models: Temporal Response Function Estimation 

Forward models are sometimes referred to as generative or encoding models, because 

they describe how the system generates or encodes information (Haufe et al., 2014). 

Here, they will be referred to as temporal response functions (TRFs; Ding and Simon, 

2012b). There are a number of ways of mathematically describing how the input to a 

http://sourceforge.net/projects/aespa/
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system relates to its output. One commonly used approach – and the one that will be 

described in this chapter – is to assume that the output of the system is related to the 

input via a simple linear convolution. In the context of a sensory system where the 

output is monitored by N recording channels, let’s assume that the instantaneous neural 

response,  ntr , , sampled at times t = 1…T and at channel n consists of a convolution 

of the stimulus property,  ts , with an unknown channel-specific TRF,  nw , . The 

response model can be represented in discrete time as: 

                                      ,,,, nttsnwntr 


                                     (3.1)                                                     

where  nt,  is the residual response at each channel not explained by the model. 

Essentially, a TRF can be thought of as a filter that describes the linear transformation 

of the ongoing stimulus to the ongoing neural response. The TRF,  nw , , describes 

this transformation for a specified range of time lags   relative to the instantaneous 

occurrence of the stimulus feature  ts .  

In the context of speech for example,  ts  could be a measure of the speech 

envelope at each moment in time and  ntr ,  could be the corresponding EEG response 

at channel n. The range of time lags over which to calculate  nw ,  might be that 

typically used to capture the cortical response components of an AEP, e.g., −100 to 400 

ms. The resulting value of the TRF at −100 ms, would index the relationship between 

the speech envelope and the neural response 100 ms earlier (obviously this should have 

an amplitude of zero), whereas the TRF at 100 ms would index how a unit change in the 

amplitude of the speech envelope would affect the EEG 100 ms later (Lalor et al., 

2009).  

The TRF,  nw , , is estimated by minimizing the mean-squared error (MSE) 

between the actual neural response,  ntr , , and that predicted by the convolution,  

 ntr ,ˆ : 

                                       .,ˆ,, min
2

 
t

ntrntrnt                                      (3.2) 

In practice, this is solved using reverse correlation (De Boer and Kuyper, 1968), which 

can be easily implemented using the following matrix operations: 

                                                ,T1T
rSSSw


                                                  (3.3) 

where S is the lagged time series of the stimulus property, s, and is defined as follows: 
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S               (3.4) 

The values min  and max  represent the minimum and maximum time lags (in samples) 

respectively. In S, each time lag is arranged column-wise and non-zero lags are padded 

with zeros to ensure causality (Mesgarani et al., 2009). The window over which the 

TRF is calculated is defined as minmax  window  and the dimensions of S are thus

windowT  . To include the constant term (y-intercept) in the regression model, a column 

of ones is concatenated to the left of S. In Eq. 3.3, variable r is a matrix containing all 

the neural response data, with channels arranged column-wise (i.e., a NT   matrix). 

The resulting TRF, w, is a Nwindow  matrix with each column representing the 

univariate mapping from s to the neural response at each channel. 

One of the important points here is that this analysis explicitly takes into account 

the autocovariance structure of the stimulus. In non-white stimuli, such as natural 

speech, the intensity of the acoustic signal modulates gradually over time, meaning it is 

correlated with itself at different time lags. A simple cross-correlation of a speech 

envelope and the corresponding neural response would result in temporal smearing of 

the impulse response function. A solution is to divide out the autocovariance structure 

of the stimulus from the model such that it removes the correlation between different 

time points. The TRF approach, which does this, is therefore less prone to temporal 

smearing than a simple cross-correlation approach (see section 3.4.5). 

3.2.2 Regularisation 

An important consideration when calculating the TRF is that of regularisation, i.e., 

introducing additional information to solve any ill-posed problems and prevent 

overfitting. The ill-posed problem has to do with inverting the autocovariance matrix, 

SS
T

. Matrix inversion is particularly prone to numerical instability when solved with 
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finite precision. In other words, small changes in SS
T  (such as rounding errors due to 

discretisation) could cause large changes in w if the former is ill-conditioned. This does 

not usually apply when the stimulus represents a stochastic process because SS
T  would 

be full rank (Lalor et al., 2006). However, the autocorrelation properties of a non-white 

stimulus such as speech means that it is more likely to be singular (i.e., have a 

determinant of zero). Typically, numerical treatment of an ill-conditioned matrix 

involves reducing the variance of the estimate by adding a bias term or ‘smoothing 

solution’. Addition of this smoothing term also solves the other main issue, that of 

overfitting. The reverse correlation analysis is utterly agnostic as to the biological nature 

of the data that it is being asked to model. As a result, without regularisation, the 

resulting TRF can display biologically implausible properties such as very high-

frequency fluctuations. Regularisation serves to prevent overfitting to such high-

frequency noise along the low-variance dimensions (Theunissen et al., 2001, Mesgarani 

et al., 2008).  

In practice, both ill-posed problems and overfitting can be solved simultaneously 

by weighting the diagonal of SS
T  before inversion, a method known as Tikhonov 

regularisation or ridge regression (Tikhonov and Arsenin, 1977): 

                                           ,T1T
rSISSw


                                              (3.5) 

where I is the identity matrix and λ is the smoothing constant or ‘ridge parameter’. The 

ridge parameter can be adjusted using cross-validation to maximise the correlation 

between  ntr , , and  ntr ,ˆ  (David and Gallant, 2005). TRF optimisation will be 

described in more detail in section 3.3.2. While this form of ridge regression enforces a 

smoothness constraint on the resulting model by penalising TRF values as a function of 

their distance from zero, another option is to quadratically penalise the difference 

between each two neighbouring terms of w (Lalor et al., 2006): 
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Tikhonov regularisation (Eq. 3.5) reduces overfitting by smoothing the TRF estimate in 

a way that is insensitive to the amplitude of the signal of interest. However, the 
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quadratic approach (Eq. 3.6) reduces off-sample error whilst preserving signal 

amplitude (Lalor et al., 2006). As a result, this approach usually leads to an improved 

estimate of the system’s response (as indexed by MSE) compared to Tikhonov 

regularisation. 

3.2.3 Multivariate Analysis 

The previous section focused on the specific case of relating a single, univariate input 

stimulus feature separately to each of multiple recording channels. However, most 

complex stimuli in nature are not processed as simple univariate features. When 

acoustic speech enters the ear, the signal is transformed into a spectrogram 

representation by the cochlea, consisting of multiple frequency bands which project 

along the auditory pathway (see section 2.1.2; Yang et al., 1992). The auditory system 

maps each of these frequency bands to the neural representation measured at the cortical 

level. This process can be modelled by a multivariate form of the TRF (i.e., mTRF).  

Indeed, it is possible to define an mTRF that linearly maps a multivariate 

stimulus feature to each recording channel (Theunissen et al., 2000, Depireux et al., 

2001). Using the above example, let  fts ,  represent the spectrogram of a speech signal 

at frequency band f = 1…F. To derive the mTRF, the stimulus lag matrix, S (Eq. 3.4), is 

simply extended such that every column is replaced with F columns, each representing a 

different frequency band (i.e., a windowFT   matrix). The resulting mTRF,  nfw ,, , 

will be a NF window  matrix but can easily be unwrapped such that each independent 

variable is represented as a separate dimension (i.e., a NF window  matrix). Here, the 

constant term is included by concatenating F columns to the left of S.  

An important consideration in multivariate TRF analysis is which method of 

regularisation to use. The quadratic regularisation term in Eq. 3.6 was designed to 

enforce a smoothness constraint and maintain SNR along the time dimension, but not 

any other. For high λ values, this approach would cause smearing across frequencies; 

hence it would not yield an accurate representation of the TRF in each frequency band. 

In this case, it will typically be most appropriate to use the identity matrix for 

regularisation (Eq. 3.5) so as to avoid enforcing a smoothness constraint across the non-

time dimension of the mTRF – although, in some cases, this may actually be what is 

desired. 
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3.2.4 Backward Models: Stimulus Reconstruction 

The previous sections describe how to forward model the linear mapping between the 

stimulus and the neural response. While this approach can be extended to accommodate 

multivariate stimulus features, it is suboptimal in the sense that it treats each response 

channel as an independent univariate feature. Backward modelling, on the other hand, 

derives a reverse stimulus-response mapping by exploiting all of the available neural 

data in a multivariate context. Backward models are sometimes referred to as 

discriminative or decoding models, because they attempt to reverse the data generating 

process by decoding the stimulus features from the neural response (Haufe et al., 2014). 

Here, they will simply be referred to as decoders. 

Decoders can be modelled in much the same way as TRFs. Suppose the decoder, 

 ng , , represents the linear mapping from the neural response,  ntr , , back to the 

stimulus,  ts . This could be expressed in discrete time as: 

                                         ,,,ˆ  
n

ngntrts 


                                      (3.7) 

where  tŝ  is the reconstructed stimulus property. Here, the decoder integrates the 

neural response over a specified range of time lags  . Ideally, these lags will capture 

the window of neural data that optimises reconstruction of the stimulus property. 

Typically, the most informative lags for reconstruction are commensurate with those 

used to capture the major components of a TRF, except in the reverse direction as the 

decoder effectively maps backwards in time. To reverse the lags used in the earlier TRF 

example ( ms 100min  , ms 004max  ), the values of min  and max  are swapped but 

their signs remain unchanged, i.e., ms 400min  , ms 001max  . 

The decoder,  ng , , is estimated by minimizing the MSE between  ts  and 

 tŝ : 

                                             .ˆ min
2

 
t

tstst                                           

(3.8) 

Analogous to the TRF approach, the decoder is computed using the following matrix 

operations: 

                                            sRIRRg
T1T 

                                                (3.9) 
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where R is the lagged time series of the response matrix, r. For simplicity, R will be 

defined for a single-channel response system: 
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R        (3.10) 

As before, this can be extended to the multivariate case of an N-channel system by 

replacing each column of R with N columns (each representing a separate recording 

channel). For N channels, the dimensions of R would be windowNT  . The constant term 

is included by concatenating N columns of ones to the left of R. In the context of 

speech, the stimulus variable, s, represents either a column-wise vector (e.g., envelope) 

or a FT  matrix (e.g., spectrogram). The resulting decoder, g, would be a vector of 

windowN  samples or a FN window  matrix, respectively. While interpretation of 

decoder weights is not as straightforward as that of a TRF, one may wish to separate its 

dimensions (e.g., FN window ) to examine the relative weighting of each channel. 

The channel weights represent the amount of information that each channel provides for 

reconstruction, i.e., highly informative channels receive weights of greater magnitude 

while channels providing little or no information receive weights closer to zero. 

 In Eq. 3.9, Tikhonov regularisation is used as it is assumed that the neural 

response data is multivariate. As mentioned in section 3.1, any bias from the correlation 

between the neural response channels is removed in the reconstruction approach. In 

practice, this is achieved by dividing out the autocovariance structure of the neural 

response (Eq. 3.9). As a result, channel weighting becomes much more localised 

because redundancies are no longer encoded in the model, giving it an advantage over 

the TRF method and cross-correlation approaches.   

3.3 mTRF Toolbox: Implementation and Functionality 

This section outlines how the reverse correlation method can be implemented in 

MATLAB using the mTRF Toolbox. Specifically, it describes how to train and test on 
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univariate and multivariate datasets and how the resulting model should be optimised 

for specific purposes. 

3.3.1 Training 

Modelling the stimulus-response mapping of a given dataset is implemented in mTRF 

Toolbox using a simple function called mTRFtrain (Appendix B). This function 

computes univariate or multivariate ridge regression as described in the previous section 

(Eqs. 3.5, 3.6 and 3.9). The model can be trained on the data set in two separate ways: 

(1) by training on each trial separately and averaging over M models, or (2) by training 

on a concatenation of trials. Both of these approaches yield the same results because the 

data are modelled using a linear assumption. Here, the former approach will be 

considered because it affords certain advantages. Firstly, by generating separate models 

for each of the M trials, certain denoising algorithms that require repetition of “trials” 

can be applied to the model coefficients, even if they were modelled on different 

stimuli, e.g., joint decorrelation (de Cheveigné and Parra, 2014). Secondly, artefacts 

from discontinuities between trials are not an issue. Thirdly, cross-validation is much 

more efficient because training models on small amounts of data and averaging across 

trials is much faster than concatenating large amounts of data and training on them (see 

section 3.3.2). 

 For a given trial, the mTRFtrain function trains on all data features (e.g., 

frequency bands, response channels) simultaneously. The only requirement is that the 

stimulus and response data have the same sampling rate (which is specified in Hz) and 

be the same length in time. As described in the previous section, vectors and matrices 

should be organised such that all features are arranged column-wise. The mapping 

direction is specified as ‘1’ (forward modelling) or ‘−1’ (backward modelling). The 

minimum and maximum time lags are entered in milliseconds and converted to samples 

based on the sampling rate entered. It is often useful to include additional time lags such 

as prestimulus lags for visualisation purposes. The user should also account for 

regression artefacts at either extreme of the resulting model. However, when optimising 

models for prediction purposes, it is advisable to use only stimulus-relevant time lags. 

The lag matrix used in the ridge regression is generated by a function called lagGen 

(Appendix F). If the user specifies to map backwards, the lags are automatically 

reversed and the algorithm is changed from Eq. 3.5 to 3.9. If the stimulus entered is 
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univariate (i.e., a vector), the algorithm will automatically switch to Eq. 3.6 to use the 

superior quadratic ridge penalty (see section 3.2.2). The final parameter that must be 

specified is the ridge parameter, λ. For visualisation of model coefficients, λ can be 

empirically chosen as the lowest value such that any increase would result in no visible 

improvement in the plotted estimate (Lalor et al., 2006). For optimising model 

performance, a more systematic approach should be implemented such as cross-

validation, as described in the following section. 

3.3.2 Optimisation 

Optimisation of the stimulus-response mapping can be achieved via cross-validation 

and is implemented using the mTRFcrossval function (Appendix D). Specifically, the 

goal is to identify the value of the ridge parameter that optimises this mapping. Here, 

the entire dataset is entered together, with M stimuli and M response matrices arranged 

in two cell arrays. There is no requirement that the individual trials to be the same 

length in time (although this is preferable for optimisation reasons). Another important 

factor that optimises cross-validation is normalisation of both input and output data. By 

z-scoring the data, the range of values needed to conduct a comprehensive parameter 

search can be greatly reduced, making the processes more efficient. The ridge values 

over which validation is measured can be entered as a single vector. All other 

parameters are entered in the same way as in mTRFtrain.  

The validation approach implemented in mTRFcrossval is that of ‘leave-one-

out’ cross-validation, although this could also be described as M-fold cross-validation. 

First, a separate model is fit to each of the M trials for every ridge value specified. Then, 

the trials are rotated M times such that each trial is ‘left out’ or used as the ‘test set’, and 

the remaining M−1 trials are assigned as the ‘training set’ (see Fig. 3.2). The actual 

models tested are obtained by averaging over the single-trial models assigned to each 

training set. As mentioned earlier, this approach is more efficient than concatenating 

M−1 trials and fitting a model to these data. Each averaged model is then convolved 

with data from the corresponding test set to predict either the neural response (forward 

modelling) or the stimulus signal (backward modelling). This process is repeated for 

each of the ridge values. Validation of the model is assessed by comparing the predicted 

estimate with the corresponding original data. Two different validation metrics are used: 

Pearson’s correlation coefficient and mean squared error (MSE). Once the validation 
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metrics have been obtained, they are averaged across all trials. This approach is 

advisable because each of the models should in theory require the same ridge value for 

regularisation, given that they share M−2 trials of data. This ensures that the models 

generalise well to new data and are not overfit to the test set. However, this approach 

works best if all the trials are the same length. The optimal ridge value is identified as 

that which yields either the highest r-value or the lowest MSE-score on average. 

 

Figure 3.2: Optimisation procedure implemented by mTRFcrossval. 

3.3.3 Testing 

Once the model parameters have been tuned using cross-validation, the optimised 

model can be tested on new data using the mTRFpredict function (Appendix C). This 

can be conducted on data that was held aside from the cross-validation procedure 

(which is considered good practice) or on the same test data used for cross-validation. 

As previously mentioned, because the above cross-validation procedure takes the 

average of the validation metric across trials, the models are not biased towards the test 

data used for cross-validation. Thus, it is legitimate to report model performance based 

on these data because testing on new unseen data will likely yield the same result. 

 While the mTRFpredict function outputs the same performance metrics as 

mTRFcrossval, it also outputs the predicted signal for further evaluation. When 

predicting a multivariate signal such as EEG, a performance measure is calculated for 

every feature (i.e., EEG channel), allowing the user to base evaluation of the model on 

whichever features they deem most relevant. For a summary of the functions in mTRF 

Toolbox, please refer to Table 3.1. 
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Table 3.1: Summary of mTRF Toolbox functions. 

 

3.4 Examples 

The examples presented in this section use data from a published study that measured 

EEG responses of human participants to natural, continuous speech (Di Liberto et al., 



55 

 

2015). The subject listened to an audiobook version of a classic work of fiction read by 

a male American English speaker. The audio was presented in 28 segments (each ~155 

s in duration), of which a subset of five are used in the examples in this chapter. EEG 

data were recorded using a 128-channel ActiveTwo system (BioSemi) and digitised at a 

rate of 512 Hz. Offline, the data were digitally filtered between 1–15 Hz, downsampled 

to a rate of 128 Hz and re-referenced to the left and right mastoid channels. Only 32 of 

the 128 channels recorded are included in the analysis, but crucially, are distributed 

evenly across the head (Mirkovic et al., 2015). Further details can be found in the 

original study (Di Liberto et al., 2015). 

This section details several examples that demonstrate how the mTRF Toolbox 

can be utilised to relate neural data to sensory stimuli in a variety of different ways. 

These include: 

1. Univariate TRF estimation 

2. Optimisation and prediction 

3. Multivariate TRF analysis 

4. Stimulus reconstruction 

5. TRF versus cross-correlation 

3.4.1 Univariate TRF Estimation 

The aim here is to estimate the temporal response function that maps a univariate 

representation of the speech envelope onto the EEG signal recorded at each channel. 

The broadband envelope of the speech signal (Fig. 3.3A) was calculated using: 

                                                 ,ˆ txjtxtxa                                               (3.11) 

where  txa is the complex analytic signal obtained by the sum of the original speech 

 tx  and its Hilbert transform  tx̂ . The envelope was defined as the absolute value of 

 txa . This was then downsampled to the same sampling rate as the EEG data, after 

applying a zero-phase shift anti-aliasing filter. TRFs were calculated between lags of 

−150 and 450 ms, allowing an additional 50 ms at either end for regression artefacts. An 

estimate was computed separately for each of the five trials and then averaged. The 

ridge parameter was empirically chosen to maintain component amplitude (Lalor et al., 

2006). 

A measure of global field power (GFP) was first estimated by calculating TRF 

variance across the 32 channels (Fig. 3.3B). GFP constitutes a reference-independent 
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measure of response strength across the entire scalp at each time lag (Lehmann and 

Skrandies, 1980, Murray et al., 2008). Based on the temporal profile of the GFP 

measure, two dominant TRF components were identified at ~80 and ~140 ms. Fig. 3.3C 

shows the scalp topographies of each of these components. Their latency and polarity 

resemble that of the classic N1 and P2 components of a typical (mastoid-referenced) 

auditory-evoked response (Stekelenburg and Vroomen, 2007). The topography of the 

N1-P2 complex suggests that both components are strongest at fronto-central position 

FCz. The grand average TRF calculated at FCz is shown in Fig. 3.3D, along with the 

TRF measured at occipital location Oz for comparison. 

 

Figure 3.3: Univariate TRF estimation.  

A, A 30-second segment of the broadband speech envelope. B, Global field power 

measured at each time lag. C, Scalp topographies of the dominant TRF components 

occurring at 78 ms and 141 ms. The black markers indicate the locations of fronto-

central channel, FCz, and occipital channel, Oz. D, Grand average TRFs at FCz (blue 

trace) and Oz (red trace). 

3.4.2 Optimisation and Prediction 

The aim here is to use the TRF model to predict the EEG response of unseen data. This 

time, tuning of model parameters was conducted using a more systematic approach, i.e., 
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that of the cross-validation procedure described earlier (see section 3.3.3). Specifically, 

TRFs were calculated for a range of ridge values  2020 2,...,2,2  on each of the 

separate trials. For each ridge value, the TRFs were averaged across every combination 

of four trials and used to predict the EEG of the remaining fifth trial. Here, the data 

were modelled at time lags between 0–200 ms as these lags reflected the most 

information in the global TRF responses (Fig. 3.3B). Inclusion of additional lags (pre-

stimulus or post-stimulus) did not improve the model estimate.  

Fig. 3.4A shows the results of the cross-validation based on the correlation 

coefficient (Pearson’s r) between the original and predicted EEG responses. Critically, 

the r-values were averaged across the five trials to prevent overfitting the model to the 

test data. The r-values were also averaged across the 32 channels such that model 

performance would be optimised in a more global manner. Alternatively, one could 

average across only channels within a specified top percentile or based on a specific 

location. Fig. 3.4B shows the results of the cross-validation based on the mean squared 

error (MSE). The same averaging procedure was used to identify the optimal ridge 

value here. 

 The ridge value was chosen such that it maximised the correlation between the 

original and predicted EEG (David and Gallant, 2005). Note that using MSE as a 

criteria for cross-validation would have yielded the same result. Fig. 3.4C shows the 

correlation coefficient obtained at each channel using the optimised TRF model. The 

topographical distribution of Pearson’s r is very similar to that of the dominant TRF 

components (Fig. 3.3C). Indeed, it is unsurprising that the model performed best at 

channels where the response was strongest. Fig. 3.4D shows two-second segments of 

the EEG response at FCz and the corresponding estimate predicted by the optimised 

TRF model.  
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Figure 3.4: Optimisation of TRFs for EEG prediction.  

A, Cross-validation of model based on the correlation between the original and 

predicted EEG response (Pearson’s r averaged across channels and trials). The filled 

marker indicates the highest r-value, i.e., the optimal ridge value. B, Cross-validation 

based on mean squared error (MSE). The optimal ridge value is identified by the lowest 

MSE-score. C, Test of the optimised TRF model shows the correlation coefficient at 

each channel. The black marker indicates the location of channel FCz. D, Two-second 

segments of the EEG response at FCz (blue trace) and the corresponding estimate 

predicted by the optimised TRF model (red trace). 

3.4.3 Multivariate TRF Analysis 

The aim here is to estimate the TRF for a multivariate (spectrogram) representation of 

speech, i.e., an mTRF. The spectrogram representation (Fig. 3.5A) was obtained by first 

filtering the speech stimulus into 16 logarithmically-spaced frequency bands between 

250 Hz and 8 kHz according to Greenwoods equation (Greenwood, 1990). Filtering the 

data in a logarithmic manner attempts to model the frequency analysis performed by the 

auditory periphery (see section 2.1.2). The energy in each frequency band was 

calculated using a Hilbert transform as above (Eq. 3.11).  
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For visualisation, mTRFs were calculated between lags of −150 and 450 ms and 

model parameters were tuned empirically. Fig. 3.5B shows the mTRF response at 

channel FCz for all frequency bands between 0.25–8 kHz. Visual inspection of Fig. 

3.5B suggests that the dominant N1TRF and P2TRF components encoded speech 

information at nearly every frequency band up to ~6 kHz, which is where most of the 

information was contained in the speech signal (see Fig. 3.5A). Averaging the mTRF 

across frequency bands would yield a univariate TRF measure that closely approximates 

the TRF calculated using the broadband envelope (Fig. 3.3D).  

To predict the EEG response with the mTRF model, the same approach was 

implemented as before. Although the results yielded by the cross-validation (Fig. 

3.5C,D) were similar to those for the univariate TRF approach (Fig. 3.4A,B), the mTRF 

approach appeared to be more sensitive to changes in the ridge value. Further 

investigation revealed that this could not be attributed to using different regularisation 

penalties in univariate and multivariate analyses (see section 3.2.2). Despite this, 

performance of the optimised mTRF model was akin to that of the univariate TRF 

model over the entire scalp (Fig. 3.5E,F). 

While it has been demonstrated that mTRF models are superior to univariate 

TRF models for predicting EEG responses (Di Liberto et al., 2015), it must be taken 

into consideration that multivariate TRF analysis is more sensitive to regularisation 

(certainly for ridge regression) and can involve considerably more computations. 
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Figure 3.5: Multivariate TRF estimation and EEG prediction.  

A, A 30-second segment of the speech spectrogram. B, Grand average mTRF at channel 

FCz. C, Cross-validation of model based on the correlation between the original and 

predicted EEG response (Pearson’s r averaged across channels and trials). The filled 

marker indicates the highest r-value, i.e., the optimal ridge value. D, Cross-validation 

based on mean squared error (MSE). The optimal ridge value is identified by the lowest 

MSE-score. E, Test of the optimised mTRF model shows the correlation coefficient at 

each channel. The black marker indicates the location of channel FCz. F, Two-second 

segments of the EEG response at FCz (blue trace) and the corresponding estimate 

predicted by the optimised TRF model (red trace). 
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3.4.4 Stimulus Reconstruction 

The aim here is to generate a decoder that models the data in the backwards direction 

(i.e., from EEG to stimulus) and to use it to reconstruct an estimate of the univariate 

stimulus input. The advantages of this approach over the forward modelling technique 

are outlined in section 3.1. Tuning of model parameters was conducted using the same 

cross-validation technique described for the TRF models (see section 3.4.2). 

Specifically, decoders were calculated for the same range of ridge values 

 2020 2,...,2,2  at time lags between 0–200 ms. The difference here was that the EEG 

was treated as the “input” and the stimulus as the “output”, and the direction of the lags 

was reversed, i.e., −200 to 0. 

 Fig. 3.6A shows the results of the cross-validation as measured by the 

correlation coefficient between the original and reconstructed speech envelope, while 

Fig. 3.6B represents validation of the model ridge parameter based on MSE. Again, both 

metrics have been averaged across trials to prevent overfitting to the test data. All 32 

EEG channels were included in the model validation procedure to optimise performance 

(see section 3.1). The advantages of the backward modelling approach over forward 

modelling are evidenced by the dramatic reduction in residual error as indexed by both 

the r-values and MSE-scores. This is mainly attributable to the fact that the decoder can 

utilise information across the entire head simultaneously (i.e., in a multivariate sense) to 

determine the speech estimate, whereas when modelling in the forward direction, the 

predicted EEG estimate is based on a single univariate mapping between the stimulus 

and the EEG response at that specific channel (Mesgarani et al., 2009). 

 While the decoder channel weights are not readily interpretable in a 

neurophysiological sense, their weighting reflects the channels that contribute most 

towards reconstructing the stimulus signal (Haufe et al., 2014). Fig. 3.6C shows the 

decoder weights averaged across time lags between 110–130 ms (this was close to 

where weighting was maximal as indexed by GFP). In comparison to the TRF 

topographies (Fig. 3.3C), the distribution of model weight is much more localised and, 

interestingly, right lateralised. Because the decoder is not required to encode 

information at every channel across the scalp as a TRF does, it can selectively weight 

only those channels important for reconstruction, whilst ignoring irrelevant channels by 

giving them zero weight (Haufe et al., 2014). A two-second sample of a reconstructed 

estimate can be seen in Fig. 3.6D. Stimulus reconstruction for a multivariate stimulus is 
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conducted in much the same manner, except model performance must be evaluated for 

every feature (e.g., frequency band) separately or by averaging across features and then 

evaluating. 

 

Figure 3.6: Stimulus reconstruction.  

A, Cross-validation of model based on the correlation between the original and 

reconstructed speech envelope (Pearson’s r averaged across trials). The filled marker 

indicates the highest r-value, i.e., the optimal ridge value. B, Cross-validation based on 

mean squared error (MSE). The optimal ridge value is identified by the lowest MSE-

score. C, Decoder channel weights averaged over time lags between 110–130 ms. D, 

Two-second segments of the original speech envelope (blue trace) and the 

corresponding estimate reconstructed by the optimised decoder (red trace). 

3.4.5 TRF versus Cross-Correlation 

As mentioned earlier, the impulse response of an LTI system can be easily 

approximated via a simple cross-correlation of the input and output. While this 

approach is much more straightforward than using ridge regression, it is only suitable 

for input signals that conform to a stochastic process. To demonstrate this empirically, a 

comparison is made between each of these approaches using both speech and white 
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noise as a stimulus input signal. The speech data presented here are the same as those in 

the previous examples. The non-speech data presented here were published in a study 

that investigated the TRF approach for estimating the response of the auditory system to 

Gaussian white noise (Lalor et al., 2009). The subject listened to ten 120-s segments of 

uninterrupted noise stimuli, of which a subset of six are used in this example. The 

stimuli were Gaussian broadband noise with energy limited to a bandwidth of 0–22.05 

kHz, modulated using Gaussian noise signals with uniform power in the range 0–30 Hz. 

To account for the logarithmic nature of auditory stimulus intensity perception, the 

values of these modulating signals, x , were then mapped to the amplitude of the audio 

stimulus, x' , using the following exponential relationship: 

                                                   .102xx'                                                       (3.12) 

EEG data were recorded and processed using the exact same procedure described in the 

previous examples (see section 3.4). Further details can be found in the original study 

(Lalor et al., 2009). 

 Examples of the speech and noise stimuli used in the experiments are shown in 

Fig. 3.7A and Fig. 3.7B respectively. The autocorrelation of each stimulus reveals that 

the speech stimulus is correlated with itself at different lags (Fig. 3.7C), whereas the 

noise stimulus is only with itself at zero time lag (Fig. 3.7D). Fig. 3.7F shows the 

impulse response for the white noise stimulus calculated at channel FCz using the TRF 

approach and a cross-correlation approach. Visual inspection suggests that the cross-

correlation approximated the impulse response as accurately as the TRF approach. 

However, the same was not true for the speech stimulus, where the cross-correlation 

visibly smeared the impulse response across time compared to the TRF approach (Fig. 

3.7E). This demonstrates the utility of the mTRF method for characterisation of sensory 

systems in response to naturalistic stimuli such as speech.  
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Figure 3.7: Comparison of the TRF and cross-correlation (XCOR) approach.  

A, A 30-second segment of the broadband speech envelope. B, A 30-second segment of 

amplitude modulated noise. C, Autocorrelation of the speech envelope. D, 

Autocorrelation of the noise signal. E, The impulse response to speech at channel FCz 

estimated using the TRF approach (blue trace) and the cross-correlation approach (red 

trace). F, The impulse response to white noise at channel FCz estimated using the TRF 

approach (blue trace) and the cross-correlation approach (red trace). 

3.5 Discussion 

This chapter has described a new MATLAB-based toolbox for modelling the 

relationship between neural signals and natural, continuous stimuli. The previous 

examples demonstrate how this versatile toolbox can be applied to both univariate and 

multivariate datasets, to map in both the forwards and backwards direction. The 
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advantages of using this approach over traditional ERP and cross-correlation methods 

have also been demonstrated.  

3.5.1 Applications 

The mTRF Toolbox has many applications in sensory neuroscience, none more so than 

for studying how natural, continuous speech is processed in the human brain. The 

forward TRF method has already been successfully applied in several human speech 

studies (Lalor and Foxe, 2010, Power et al., 2012, Di Liberto et al., 2015). This work 

has yielded several key findings relating to how the brain selectively attends to a single 

speech stream in a cocktail party scenario (Power et al., 2012) and how spectrotemporal 

and phonetic information are represented in auditory cortical activity (Di Liberto et al., 

2015). Several other groups have implemented similar forward and backward modelling 

approaches to study auditory scene analysis in humans (Ding and Simon, 2012a, 

Mesgarani and Chang, 2012, Zion-Golumbic et al., 2013b). However, there has been 

less focus on studying multisensory speech using an SI approach. One of the main 

reasons for this is the difficulty involved in disentangling contributions from 

multisensory interactions with those of unisensory processing. One study which 

examined AV speech using a forward TRF approach showed that an early MEG 

component at ~50 ms was enhanced by AV speech compared to audio-only speech. 

However, they did not account for unisensory visual contributions in auditory cortex, 

thus the effect may not entirely reflect multisensory processing. There is a need to 

develop a reliable framework for applying SI techniques to multisensory data, 

particularly in the context of a stimulus reconstruction approach. 

Aside from studying speech, the forward TRF approach has been extensively 

applied in vision research to study how the brain processes stimuli that modulate in 

contrast over time (Lalor et al., 2006, Murphy et al., 2012, Frey et al., 2010, Lalor et al., 

2007). This particular approach has also been applied in clinical research to investigate 

visual processing deficits in children with ASD (Frey et al., 2013) and in adults with 

schizophrenia (Lalor et al., 2012, Lalor et al., 2008). More recently, it has been 

extended to studying how the brain processes more natural visual stimuli such as 

coherent motion (Gonçalves et al., 2014). Despite the versatility of this approach and its 

obvious utility in clinical research, there are many aspects of human vision research that 

have not yet been explored in this way, and in particular, using the stimulus 



66 

 

reconstruction method. Although stimulus reconstruction has not been widely used in 

human vision research, it has been successfully used to decode finger movements from 

surface EMG signals (Krasoulis et al., 2015), thus further demonstrating its versatility. 

3.5.2 Considerations 

The linear assumption underlying the reverse correlation method has implications for its 

interpretation. This assumption of a linear relationship between stimulus intensity and 

neural response amplitude likely results in a response measure reflective of feedforward 

activity in a subset of cortical cells (Lalor et al., 2009). Thus, it is possible that such an 

approach is insensitive to cortical responses that relate to the stimulus in a non-linear 

manner including lateral and feedback contributions, which may have implications for 

studying multisensory integration. This is in contrast to the challenge involved in 

disambiguating the myriad feedforward, lateral and feedback contributions to the time-

locked average ERP (Di Russo et al., 2005). 

These linear assumptions will need to be addressed in future work in order to 

accurately characterise populations of neurons that respond in a non-linear way to 

complex stimuli (Theunissen et al., 2000). Previous work has already developed a 

quadratic extension of the linear TRF approach for modelling visual responses to 

contrast stimuli, but did not find any significant improvement in model performance 

relative to that of a linear model (Lalor et al., 2008). However, subsequent studies that 

applied the same quadratic model to the auditory system demonstrated marginal 

improvements in model performance for acoustic white noise stimuli (Power et al., 

2011a, Power et al., 2011b). Expansion of the TRF model into higher orders has also 

been explored using machine learning techniques such as support vector regression 

(Crosse, 2011). However, while such an approach can lead to marginal improvements in 

model performance, the increased computational complexity makes it very unsuitable 

for use on large data sets such as EEG.  

The fact that non-linear models perform only marginally better than linear models 

for population data (e.g., EEG; Power et al., 2011a, Power et al., 2011b), and yet appear 

to be more beneficial for modelling single-unit data (e.g., ECoG; Theunissen et al., 

2000) may imply something fundamental about the nature of EEG data. Each EEG 

electrode measures cortical activity from a large neural population due to the effects of 

volume conduction (and to a lesser extent the electrode surface area; see section 2.2). 
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Thus, it can only detect neural activity that is encoded by the entire (or most of the) 

population it is recording from; everything else becomes “noise” and cancels each other 

out via superposition. It is possible that linear activity is encoded more globally by 

neural populations and that non-linear activity is more localised to smaller sub-

populations of neurons. This theory is supported by the diversity of non-linear responses 

across neurons (Mesgarani et al., 2009). The effect of volume condition would result in 

non-linear activity being cancelled out and thus being undetected by the EEG recording. 

If this were the case, then using a linear model to approximate the response of a neural 

population would be all the more justifiable. 

While the brain certainly does not possess the properties of an LTI system, there 

are distinct advantages to treating it as one in certain circumstances, as evidenced by the 

above examples and the vast neurophysiology literature. The Toolbox described in this 

chapter provides a straightforward way to model any sensory system as if it were LTI 

and is implemented in several AV speech studies in the following chapters of this thesis.  
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Chapter 4 Congruent Visual Speech 

Enhances Cortical Entrainment to 

Continuous Auditory Speech in Noise-Free 

Conditions 

4.1 Introduction 

During natural, everyday conversation, we routinely process speech using both our 

auditory and visual systems. The benefit of viewing a speaker’s articulatory movements 

for speech comprehension has been well documented and has been characterised in 

terms of two specific modes of audiovisual information: ‘complementary’ and 

‘correlated’ (see section 2.3.2; Summerfield, 1987, Campbell, 2008, Grant and Seitz, 

2000). Visual speech assumes a complementary role when it is required to compensate 

for underspecified auditory speech, enhancing perception, for example, in adverse 

hearing conditions (Ross et al., 2007a, Sumby and Pollack, 1954) and in people with 

impaired hearing (Grant et al., 1998). It assumes a correlated role when there is 

redundancy between the information provided by vision and audition, for example, in 

optimal listening conditions where it has been shown to benefit people with normal 

hearing (Reisberg et al., 1987). Specifically, in the latter case, enhanced perception is 

possible because the visible articulators that determine the vocal resonances, such as the 

lips, teeth and tongue, as well as ancillary movements, such as facial, head and hand 

movements, are temporally correlated with the vocalised acoustic signal (see section 

2.3.1; Summerfield, 1992, Jiang and Bernstein, 2011, Grant and Seitz, 2000). However, 

relatively little research has explicitly examined how the temporal correlation between 
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auditory and visual speech impacts upon the neural processing of continuous AV 

speech. 

EEG and MEG studies have demonstrated that auditory cortical activity entrains 

to the temporal envelope of speech (Abrams et al., 2008, Ahissar et al., 2001, Aiken and 

Picton, 2008, Lalor and Foxe, 2010). While many studies have examined the effects of 

attention on envelope tracking (Ding and Simon, 2012a, Power et al., 2012, O'Sullivan 

et al., 2015), less work has examined how this process may be influenced by visual 

speech (but see Zion-Golumbic et al., 2013a, Luo et al., 2010). Traditionally, 

EEG/MEG studies have focused on how the brain responds to discrete AV stimuli such 

as syllables (Sams et al., 1991, Möttönen et al., 2004, Besle et al., 2004a, Möttönen et 

al., 2002), an approach that is limited in what it can say about the role of the temporal 

correlation between continuous auditory and visual speech. Indeed, many EEG/MEG 

studies have reported interesting crossmodal interaction effects on cortical response 

measures, even when the discrete stimuli were phonetically incongruent (Klucharev et 

al., 2003, van Wassenhove et al., 2005, Stekelenburg and Vroomen, 2007, Arnal et al., 

2009). This is unsurprising, given that particular combinations of incongruent AV 

syllables elicit illusory percepts when presented concurrently (McGurk and MacDonald, 

1976). It has been suggested (Campbell, 2008) that because such discrete incongruent 

stimuli are spatially and temporally coherent and coextensive, this may act as a cue to 

their integration (see section 2.4.2). 

In this chapter, natural, continuous speech stimuli were used to examine how 

EEG entrains to temporally and contextually congruent and incongruent AV speech. 

Specifically, it was hypothesised that the benefits of congruent AV speech will be 

detectable in noise-free conditions and indexed by enhanced envelope tracking. Several 

follow-up experiments were implemented to answer the following research questions: 

(1) Is a dynamic human face sufficient to enhance envelope tracking, even when it is 

temporally incongruent? (2) Does contextually incongruent information, such as 

conflicting gender, modulate envelope tracking differently? (3) Is any dynamic visual 

stimulus sufficient to enhance envelope tracking, even if it does not comprise a human 

face? (4) Conversely, does a static human face enhance the tracking of a dynamic 

auditory input? 

To obtain a direct measure of envelope tracking, the stimulus reconstruction 

approach (Mesgarani et al., 2009) was implemented using the mTRF Toolbox. One of 

the main goals of this chapter was to establish a framework for quantifying multisensory 
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interactions using stimulus reconstruction. Within this framework, modulations in 

multisensory integration across different timescales were examined with a view to 

elucidating whether the effects were more prominent at any particular level of speech 

processing (i.e., phonemic, syllabic, word, prosodic; Giraud and Poeppel, 2012). The 

results of this study were presented at the 15th International Multisensory Research 

Forum in Amsterdam in June, 2014 (Appendix G) and published in The Journal of 

Neuroscience (Crosse et al., 2015a).  

4.2 Methods 

4.2.1 Participants 

Twenty-one native English speakers (8 females; age range: 19–37 years) participated in 

the experiment. Written informed consent was obtained from each participant 

beforehand. All participants were right-handed, free of neurological diseases, had self-

reported normal hearing and normal or corrected-to-normal vision. The experiment was 

undertaken in accordance with the Declaration of Helsinki and was approved by the 

Ethics Committee of the Health Sciences Faculty at Trinity College Dublin, Ireland. 

4.2.2 Stimuli and Procedure 

The speech stimuli were drawn from a collection of videos featuring a trained male 

speaker. The videos consisted of the speaker’s head, shoulders and chest, centred in the 

frame (see Fig. 4.1). Speech was directed at the camera and the speaker used frequent, 

but natural, hand movements. There was no background movement or noise. The speech 

was conversational-like and continuous, with no prolonged pauses between sentences. 

The linguistic content centred on political policy and the language was colloquial 

American English. Fifteen 60-s videos were rendered into 1280 × 720-pixel movies in 

VideoPad Video Editor (NCH Software). Each video had a frame rate of 30 frames/s 

and the soundtracks were sampled at 48 kHz with 16-bit resolution. Dynamic range 

compression was applied to each soundtrack in Audacity audio editor such that lower 

intensities of the speech signal could be amplified. Compression was applied at a ratio 

of 10:1 above a threshold of −60 dB. The signal was only amplified above a noise floor 

of −45 dB which prevented the gain increasing during pauses and unduly amplifying 
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breathing sounds. The intensity of each soundtrack, measured by root mean square 

(RMS), was normalised in MATLAB (MathWorks).  

To test the main hypothesis of the study and the four follow-up questions posed 

in the introduction, the same 15 soundtracks were dubbed to five different kinds of 

visual stimulus: (1) Congruent audiovisual stimuli (AVc) were created by re-dubbing 

each soundtrack to its original video, i.e., A1V1, A2V2, etc. Unimodal versions were 

also produced as a control, i.e., audio-only stimuli (A) and visual-only stimuli (V). (2) 

To examine the role of temporal congruency, incongruent audiovisual stimuli (AVi) 

were created by mismatching the same 15 soundtracks and videos, i.e., A1V2, A2V3, 

etc. (3) To examine the role of contextual congruency, the soundtracks were dubbed to 

videos of incongruent female speakers (AVif). The female speakers were centred in the 

frame (head, shoulders and chest) and their speech was directed at the camera. (4) To 

examine the impact of a dynamic (non-human) visual stimulus, incongruent nature 

stimuli (AVin) were created by dubbing the speech soundtracks to wildlife 

documentaries. (5) To examine the role of human-specific visual features, the 

soundtracks were dubbed to still images of the male speaker’s static face (AVsf). For a 

summary of all the stimuli used in the experiment, please refer to Table 4.1. 

Stimulus presentation and data recording took place in a dark sound-attenuated 

room with participants seated at a distance of 70 cm from the visual display. Visual 

stimuli were presented on a 19-inch CRT monitor operating at a refresh rate of 60 Hz. 

Audio stimuli were presented diotically through Sennheiser HD650 headphones at a 

comfortable level of ~65 dB. Stimulus presentation was controlled using Presentation 

software (Neurobehavioral Systems). Each of the 15 speech passages was presented 

seven times, each time as part of a different experimental condition (see Table 4.1). 

Presentation order was randomised across conditions, within participants. Participants 

were instructed to fixate on either the speaker’s mouth (V, AVc, AVi, AVif, AVsf) or 

on a grey crosshair (A, AVin) and to minimise eye blinking and all other motor activity 

during recording.  

To encourage active engagement with the content of the speech, participants 

were required to respond to target words via button press. Before each trial, a target 

word was displayed on the monitor until the participant was ready to begin. All target 

words were detectable in the auditory modality except during the V condition, where 

they were only visually detectable. Hits were counted for responses that were made 

200–2000 ms after the onset of auditory voicing and feedback was given at the end of 
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each trial. A target word could occur between one and three times in a given 60-s trial 

and there were exactly 30 targets in total per condition. A different set of target words 

was used for each condition to avoid familiarity and assignment of target words to the 

seven conditions was counterbalanced across participants. 

 

Table 4.1: Experimental conditions and stimulus content. 

 Stimuli 

Condition Audio Video 

A Male speaker Black screen with grey fixation crosshair 

V None Male speaker 

AVc Male speaker Congruent male speaker 

AVi Male speaker Incongruent male speaker 

AVif Male speaker Incongruent female speakera 

AVin Male speaker Wildlife scenes with fixation crosshair 

AVsf Male speaker Still image of male speaker’s face 

aA different female speaker was used in each of the 15 trials to prevent association with 

the male speaker’s voice. 

4.2.3 Behavioural Data Analysis 

Participants’ performance on the target detection task was examined for multisensory 

effects. Specifically, it was examined whether reaction times (RTs) were facilitated by 

congruent bimodal speech (AVc) compared to unimodal speech (A, V), an effect known 

as a ‘redundant signals effect’ (RSE; Kinchla, 1974). An RSE does not necessarily 

imply multisensory interaction unless it violates the race model (Raab, 1962). The race 

model predicts that the RT in response to a bimodal stimulus is determined by the faster 

of the two unimodal processes. Violation of the race model was examined using the 

following inequality (Miller, 1982): 

                                      ,VAVAAVc tFtFtFtFtF                                   (4.1) 

where FAVc, FA and FV are the cumulative distribution functions (CDFs) based on the 

RTs of the AVc, A and V conditions respectively. CDFs were generated for each 

participant and condition, divided into 9 quantiles (0.1, 0.2,…, 0.9) and group averaged 

(Ulrich et al., 2007).  
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4.2.4 EEG Acquisition and Pre-Processing 

Continuous EEG data were acquired using an ActiveTwo system (BioSemi) from 128 

scalp electrodes and two mastoid electrodes. The data were low-pass filtered online 

below 134 Hz and digitised at a rate of 512 Hz. Triggers indicating the start of each trial 

were recorded along with the EEG. These triggers were sent by an Arduino Uno 

microcontroller which detected an audio click at the start of each soundtrack by 

sampling the headphone output from the PC. Subsequent pre-processing was conducted 

offline in MATLAB; the data were band-pass filtered between 0.3 and 30 Hz, 

downsampled to 64 Hz and re-referenced to the average of the mastoid channels. To 

identify channels with excessive noise, the time series were visually inspected in 

Cartool (http://www.fbmlab.com/cartool-software/) and the standard deviation of each 

channel was compared with that of the surrounding channels in MATLAB. Channels 

contaminated by noise were recalculated by spline-interpolating the surrounding clean 

channels in EEGLAB (Delorme and Makeig, 2004). Trials contaminated by excessive 

low-frequency noise were detrended using a sinusoidal function in NoiseTools 

(http://audition.ens.fr/adc/NoiseTools/). 

4.2.5 Stimulus Characterisation 

Because the aim was to examine how visual information affects the neural tracking of 

auditory speech, the stimuli were characterised using the broadband envelope of the 

acoustic signal (Rosen, 1992). To model the frequency analysis of the auditory 

periphery (see section 2.1.2), the stimuli were first band-pass filtered into 128 

logarithmically-spaced frequency bands between 100 and 6500 Hz using a gammatone 

filterbank (Yang et al., 1992). The upper- and lower-most filter limits captured the first, 

second and third formant spectral regions of the speech signals, known to carry the 

acoustic information that correlates most with visual speech features (Chandrasekaran et 

al., 2009, Grant and Seitz, 2000). The envelope in each of the 128 frequency bands was 

calculated using a Hilbert transform and the broadband envelope was obtained by 

averaging over the 128 narrowband envelopes. 

4.2.6 Stimulus Reconstruction 

To determine how faithfully the cortical activity tracked the speech envelope during 

each condition, an estimate of the speech envelope was reconstructed from the EEG 

http://www.fbmlab.com/cartool-software/
http://audition.ens.fr/adc/NoiseTools/
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data and compared to the original envelope (see Fig. 4.1). Stimulus reconstruction was 

implemented using the mTRF Toolbox described in the previous chapter (see section 

3.2.4). The time lags were set between 0–500 ms, i.e., τmin = −500 and τmax = 0 samples 

(Ding and Simon, 2012b). Leave-one-out cross-validation was used to reconstruct an 

estimate of each of the 15 stimuli per condition. To optimise performance within each 

condition, a parameter search (over the range 214, 215,…, 221) was conducted for the 

ridge value that maximised the correlation between the original and reconstructed 

envelopes. To prevent overfitting, the ridge parameter was tuned to the value that gave 

the highest mean reconstruction accuracy across the 15 trials (see section 3.3.2). 

4.2.7 Quantifying Multisensory Interactions 

The decision to include all 128 channels of EEG in the reconstruction analysis is 

justified because irrelevant filter channels can maintain zero weight whilst allowing the 

model to capture additional variance (Mesgarani et al., 2009, Pasley et al., 2012). 

However, this multi-channel approach required the application of different criteria when 

quantifying multisensory interactions in the congruent and incongruent AV conditions 

(see section 2.4.1). For the incongruent AV conditions (AVi, AVif, AVin, AVsf), a 

maximum criterion model approach was applied, i.e., each multisensory condition was 

compared to the optimal unisensory (A) condition. This was fair because the 

incongruent visual stimuli were not temporally correlated with the speech envelope; 

therefore, information encoded by the visual system in occipital channels did not benefit 

reconstruction of the envelope. However, this was not true for the congruent AV 

condition (AVc), where the dynamics of the visual stimulus were highly correlated with 

those of the speech envelope. This approach would allow the AVc model to infer 

complementary information from correlated visual speech processing as reflected on 

parieto-occipital channels (Luo et al., 2010, Bernstein and Liebenthal, 2014), even 

without ever explicitly quantifying those visual features in the model fitting. Previous 

work has attempted to circumvent this bias by restricting the analysis to only the frontal 

electrodes (Crosse et al., 2013). However, this approach significantly compounds model 

performance and, in any case, would not guarantee that the AVc condition was unbiased 

as volume conduction could still result in visual cortical activity being reflected in 

frontal channels.  
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Instead, multisensory interactions in the AVc condition was examined using the 

additive model criterion (Stein and Meredith, 1993, Barth et al., 1995, Berman, 1961). 

The rationale here is that multisensory interactions can be inferred from differences 

between cortical responses to multisensory stimuli and the summation of unisensory 

responses [i.e., AVc−(A+V); see section 2.4.1]. As previously mentioned, the validity 

of the additive model for the purpose of indexing multisensory integration in 

electrophysiological studies is well established (Besle et al., 2004b). The following 

procedure was used to apply the additive model approach to the stimulus reconstruction 

analysis:  

1. New A and V reconstruction filters were calculated using the A and V data sets, 

respectively (λA = 214, 215,…, 220; λV = 214, 215,…, 234).  

2. We calculated the algebraic sum of the A and V filters (A+V) for every 

combination of λ values.  

3. Critically, each additive model was then assessed using the EEG data from the 

AVc condition – this ensured that the model could decode the envelope from 

channels that encoded both auditory and visual information.  

4. A grid search was conducted to find the combination of λ values that maximised 

reconstruction accuracy across the 15 stimuli.  

The difference between the AVc and A+V models was quantified in terms of how 

accurately each of them could reconstruct the speech envelopes from the AVc data 

using leave-one-out cross-validation. Such differences were interpreted as an index of 

multisensory integration. This multisensory cross-validation approach was implemented 

in mTRF Toolbox using the mTRFmulticrossval function (Appendix E). 

4.2.8 Temporal Response Function Estimation 

To visualise the temporal profile of the neural response to the different stimuli, the 

temporal response function at every channel was calculated (see Fig. 4.1). Unlike the 

stimulus reconstruction approach, it is not a multivariate regression, but represents 

multiple univariate mappings between stimulus and EEG (see section 3.2.1). TRF 

model parameters are neurophysiologically interpretable, i.e., non-zeros weights are 

only observed at channels where cortical activity is related to stimulus encoding (Haufe 

et al., 2014). This allows for examination of the amplitude, latency and scalp 

topography of the stimulus-EEG relationship, complementing the stimulus 
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reconstruction approach. For each 60-s trial, the TRFs were calculated at time lags 

between −100 and 400 ms. 

 

Figure 4.1: SI framework for studying natural AV speech processing. 

Illustration of the working principle of the stimulus reconstruction and temporal 

response unction (TRF) approach implemented in mTRF Toolbox. The TRF approach is 

used for visualisation of the neural response dynamics, but not prediction because of its 

univariate limitations. The stimulus reconstruction approach is used to reconstruct the 

envelope, and model performance is interpreted as an index of envelope tracking. 

However, reconstruction model parameters are not neurophysiologically interpretable as 

in the TRF. 

4.2.9 Multidimensional Scaling 

In an effort to visualise any potentially interpretable differences between the various 

reconstruction models, non-metric multidimensional scaling (MDS) was applied to the 

model channel weights. MDS has been applied to electrophysiological data in previous 

studies to demonstrate the dissimilarity of neural responses elicited to different 

phonemes (Chang et al., 2010, Di Liberto et al., 2015). Given a set of objects, MDS 

works by embedding each object in a multi-dimensional space such that distances 

between objects produce an empirical matrix of dissimilarities. Here, the objects are the 
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different stimulus conditions and the dissimilarities are the standardised Euclidean 

distances between the filter weights. To capture maximal model variance across the 

scalp, weight vectors from all 128 channels were concatenated and group averaged. To 

determine how many dimensions would be maximally required to explain model 

variance, Kruskall stress was measured as a function of dimensions (Kruskal and Wish, 

1978). Two dimensions were sufficient to meet the criteria, i.e., stress < 0.1.   

4.2.10   Statistical Analyses 

Any effects of condition on behaviour or EEG measures were established using one-

way repeated-measures ANOVAs, except where otherwise stated. Where sphericity was 

violated, the Greenhouse-Geisser corrected degrees of freedom are reported. Post hoc 

comparisons were conducted using two-tailed (paired) t-tests, except where one-tailed 

tests were necessary. Multiple pairwise comparisons were corrected for using the Holm-

Bonferroni method. All numerical values are reported as mean ± SD. 

4.3 Results 

4.3.1 Behaviour 

Twenty-one participants performed a target detection task during EEG recording. To 

examine whether the detection of auditory targets was affected by the visual stimulus, 

the reaction times and hit rates across the five AV conditions were compared (AVc, 

AVi, AVif, AVin, AVsf). The visual stimulus had a significant effect on RT (F(4,80) = 

3.13, p = 0.02) but not on hit rate, which was near ceiling (median > 92%; χ2
(4) = 7.49, p 

= 0.11; Friedman test). To test for an RSE, planned post hoc comparisons were made 

between the congruent AV condition (AVc) and the unimodal conditions (A, V; Fig. 

4.2A). RTs for the AVc condition (586 ± 92 ms) were significantly faster than those for 

both the A condition (620 ± 88 ms; t(20) = 2.74, p = 0.01) and the V condition (819 ± 

136 ms; t(20) = 7.9, p = 1.4×10−7), confirming an RSE. To test whether this RSE 

exceeded the statistical facilitation predicted by the race model, we compared the 

bimodal CDFs with the sum of the unimodal CDFs (Fig. 4.2B). Three participants were 

excluded from this analysis as they did not detect enough targets in the V condition to 

allow estimation of the CDF. The race model was violated by > 50% of participants at 

the first two quantiles but the effect was not significant (first quantile: t(17) = 0.01, p = 
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0.5; second quantile: t(17) = 0.16, p = 0.56; one-tailed tests). This is likely due to the 

nature of the task involving, as it did, an easy auditory detection task and much more 

difficult visual detection (lipreading) task. As such, RTs in the AVc condition were 

likely dominated by reaction to the auditory stimulus with minimal contribution from 

the visual modality. None of the incongruent AV conditions (AVi, AVif, AVin, AVsf) 

showed behavioural differences relative to the A condition or each other. 

 

Figure 4.2: Examination of behaviour under the race model.  

A, Mean (N = 21) reaction times for the congruent audiovisual (AVc; green), audio-only 

(A; blue) and visual-only (V; red) condition. Error bars indicate SEM across 

participants. Brackets indicate pairwise statistical comparisons (*p < 0.05, ***p < 

0.001). B, Group-average (N = 18) cumulative distribution functions based on the 

reaction times shown in A. The dashed black trace represents the facilitation predicted 

by the race model (A+V). 

4.3.2 Impact of AV Congruency on Envelope Tracking 

To investigate the impact of AV congruency on the cortical representation of speech, an 

estimate of the speech envelope from the EEG data was reconstructed for each 

condition (Fig. 4.3A). Critically, it was found that the envelope was encoded more 

accurately by congruent AV speech (AVc; Pearson’s r = 0.2 ± 0.05) than could be 

explained by the additive model (A+V; 0.18 ± 0.04; t(20) = 3.84, p = 0.001; Fig. 4.3B). 

This suggests that, even in optimal listening conditions, congruent visual speech 

enhances neural tracking of the acoustic envelope in line with my primary hypothesis.  

As discussed above, quantifying multisensory interactions in the incongruent 

AV conditions (AVi, AVif, AVin, AVsf) simply involved direct comparisons with the 
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A condition. Across these five conditions, there was a significant effect of visual 

stimulus on reconstruction accuracy (F(2,40.3) = 11.84, p = 8.8×10−5; Fig. 4.3B). 

However, post hoc comparisons revealed that envelope tracking was not enhanced by 

incongruent AV speech relative to unimodal speech. This suggests that the neural 

mechanism underlying enhanced envelope tracking in the case of congruent AV speech 

relies on discrete, phasic interactions as opposed an ongoing, tonic process; in other 

words, it is likely that the temporal coherence between auditory and visual speech is of 

paramount importance to this multisensory enhancement. Although an enhancement 

effect was not observed, the data indicate that envelope tracking was actually inhibited 

by incongruent AV speech, but only when the visual stimulus was incongruent both 

temporally and contextually. Relative to the A condition (0.17 ± 0.05), envelope 

tracking was significantly inhibited by the presentation of an incongruent female 

speaker (AVif; 0.15 ± 0.05; t(20) = 3.3, p = 0.004) and incongruent nature scenes (AVin; 

0.16 ± 0.05; t(20) = 2.3, p = 0.03). Unsurprisingly, reconstruction accuracy (of the 

acoustic envelope) was lowest in the V condition (0.13 ± 0.04), yet, it maintained 

accuracy significantly above the 95th percentile of chance level (shaded area, Fig. 

4.3B). This demonstrates the efficacy of the stimulus reconstruction method to infer 

temporally correlated information pertaining to one sensory modality from another. 

Recently, Ding and Simon (2013) demonstrated that the accuracy with which the 

envelope can be reconstructed from MEG data is highly correlated with stimulus 

intelligibility across participants. This could only be demonstrated at a signal-to-noise 

ratio (SNR) where intelligibility scores were at an intermediate level, i.e., ~50%. In the 

present chapter, the V condition was the only one where hit rate was not at ceiling (36.8 

± 18.1%). Under the assumption that hit rate is also reflective of intelligibility, the 

correlation coefficient between each participant’s mean reconstruction accuracy and hit 

rate was calculated using the V data (Fig. 4.3C).This measure of behaviour was 

significantly correlated with reconstruction accuracy across participants (r = 0.7, p = 

6.6×10−4). Participant 13 was excluded from this analysis as an outlier as they reported 

an inability to detect any targets during the V condition (indicated by ‘×’ marker in Fig. 

4.3C). 
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Figure 4.3: Reconstruction of the speech envelope from EEG.  

A, Examples of the original speech envelope (grey) with the group-average neural 

reconstruction (black) superimposed. Signals were filtered below 3 Hz for visualization. 

The mean correlation coefficient between the original and reconstructed envelopes (i.e., 

reconstruction accuracy) is shown to the right. B, Mean (N = 21) reconstruction 

accuracy for all eight models in ascending order. Error bars indicate SEM across 

participants. Dashed lines indicate planned post hoc sub-groups and brackets indicate 

pairwise statistical comparisons (*p < 0.05, **p < 0.01). The shaded area represents the 

95th percentile of chance level reconstruction accuracy (permutation test). C, 

Correlation (N = 20) between reconstruction accuracy and hit rate using visual speech 

data. Each datapoint represents a participant’s mean value and the ‘×’ marker indicates 

the participant that was excluded from the analysis. The grey line represents a linear fit 

to the data. 
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4.3.3 Temporal Scale of AV Speech Integration  

It has been suggested that AV speech perception includes the neuronal integration of 

temporally fine-grained correlations between the auditory and visual speech stimuli, 

even at the phonetic level (Grant and Seitz, 2000, Klucharev et al., 2003). In contrast, 

other work has suggested that, at least in some detection paradigms, neuronal 

integration at this detailed level of granularity is not necessary (Tjan et al., 2014). The 

current chapter aimed to elucidate whether the multisensory effects [i.e., AVc > (A+V)] 

may be occurring on the timescale of phonemes, syllables, words or sentences. To do 

this, the correlation coefficients between the reconstructed and original envelopes at 

every 2-Hz-wide frequency band between 0 and 30 Hz were calculated. Figure 4.4A 

shows reconstruction accuracy as a function of frequency for the AVc and A+V models, 

while Fig. 4.4B shows the multisensory interaction effect [AV−(A+V)] at each 

frequency band. Significant multisensory effects were measured at 2–4 Hz (t(20) = 4.74, 

p = 1.3×10−4) and 4–6 Hz (t(20) = 4.1, p = 5.6×10−4). This suggests that neural tracking 

of the acoustic envelope is enhanced by congruent visual speech at a temporal scale that 

corresponds to the rate of syllables. There was also a significant effect at 16–18 Hz (t(20) 

= 3.8, p = 0.001), although this finding is less compelling given the low reconstruction 

SNR at this frequency range. 

A related question is whether temporal scales that are optimal for reconstructing 

the acoustic envelope from visual speech data can be ascertained. Addressing this issue 

is not entirely straightforward because there are many visual speech features at different 

levels of temporal granularity that correlate with the acoustic envelope (Jiang et al., 

2002, Jiang and Bernstein, 2011, Chandrasekaran et al., 2009). In the stimulus 

reconstruction approach, the model reflects not only activity from auditory cortex that 

tracks the dynamics of the acoustic envelope, but also activity from potentially any 

visual area whose activity is correlated with the acoustic envelope and reflected in the 

EEG (Luo et al., 2010). Indeed, the reconstruction model can also indirectly index 

activity in brain areas whose activity is correlated with the acoustic envelope, even if 

that activity is not reflected directly in the data (Mesgarani et al., 2009). In one way, this 

is an advantage of the approach in that it is sensitive to visual speech processing without 

having to explicitly define specific visual speech features. However, it also makes it 

very difficult to tease apart the details of those visual speech contributions.  
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Bearing this in mind, we examined which frequencies optimised reconstruction 

of the acoustic envelope from the V data and compared it to those that optimised 

reconstruction using the A data (Fig. 4.4C). Reconstruction accuracy was significantly 

higher in the A condition at almost every frequency band (p < 0.05, t-tests; Holm-

Bonferroni corrected; Fig. 4.4D) except at two distinct spectral regions which, 

interestingly, corresponded to the two peaks in multisensory enhancement (2–4 Hz: t(20) 

= 1.8, p = 0.08; 16–18 Hz: t(20) = 0.17, p = 0.87). 

 

Figure 4.4: Reconstruction of the speech envelope at different temporal scales. 

A, Mean (N = 21) reconstruction accuracy as a function of envelope frequency for the 

congruent audiovisual (AVc; blue) and additive (A+V; green) models. B, Multisensory 

interaction effect [AVc−(A+V)] at each frequency band (*p < 0.05, t-tests; Holm-

Bonferroni corrected). C, Mean (N = 21) reconstruction accuracy as a function of 

envelope frequency for the audio-only (A; blue) and visual-only (V; green) models. D, 

Differences in unimodal model performance (A−V) at each frequency band (*p < 0.05, 

t-tests; Holm-Bonferroni corrected). 
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4.3.4 Spatiotemporal Representation of AV Speech 

To examine the temporal profile of our neuronal multisensory effects, the temporal 

response function for each of the seven conditions was determined, as well as the sum 

of the unimodal TRFs (A+V). Figure 4.5A shows the temporal profile of the TRFs for 

the congruent speech conditions at frontal channel Fz (top) and occipital channel Oz 

(bottom), while Fig. 4.5B shows the TRFs for the incongruent speech conditions at the 

same channel locations. Comparing AVc with A+V as before, we see multisensory 

interaction effects in the form of a reduced amplitude over occipital scalp at ~140 ms 

(Oz: t(20) = 2.9, p = 0.01; Fig. 4.5C, top) and over frontal scalp at ~220 ms (Fz: t(20) = 

3.1, p = 0.006; Fig. 4.5C, bottom). The TRFs for the incongruent speech conditions 

were all identical to that of the A condition except for AVin, where the P2TRF 

component was significantly reduced in amplitude at several frontocentral electrode 

sites (p < 0.05; Holm-Bonferroni corrected).  

To relate our late neuronal multisensory effect back to the stimulus 

reconstruction results, the relative channel weightings of each of the reconstruction 

models were examined. The channel weights represent the amount of information that 

each channel provides for reconstruction, i.e., highly informative channels receive 

weights of greater magnitude while channels providing little or no information receive 

weights closer to zero. However, unlike TRF model parameters, significant non-zero 

weights may also be observed at channels where cortical activity is statistically 

independent of stimulus tracking, hence the spatiotemporal distribution of such model 

weights can be difficult to interpret in terms of underlying neural generators (Ding and 

Simon, 2012a, Haufe et al., 2014).  

Figure 4.5D shows the channel weighting for each model averaged over time 

lags that correspond to the neuronal multisensory effects (125–250 ms). Although not 

necessarily reflective of the underlying neural generators, the model weights clearly 

maintain distinct topographic patterns subject to stimulus modality. Channels over left 

and right temporal scalp make large contributions to stimulus reconstruction in the A 

model, while channels over occipital scalp are dominant in the V model. 

Unsurprisingly, channels over both temporal and occipital scalp both make significant 

contributions in the congruent AV model, while only channels over temporal scalp 

make significant contributions in the incongruent AV models. This is because the 

incongruent visual stimuli were not informative of the acoustic envelope dynamics. The 
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A+V model places significant weight on channels over temporal and occipital scalp, 

similar to the AVc model. 

While the AVc and A+V models appeared to have similar channel weightings, 

their ability to decode the speech envelope was significantly different. To better 

visualise the similarity relationships across all eight models, the channel weight 

dissimilarity in a two-dimensional Euclidean space were represented using non-metric 

MDS. Model dissimilarity was examined within two specific time intervals; an early 

interval (0–125 ms; Fig. 4.5E, left), at which latencies there were no multisensory 

effects evident in our TRF measures, and a later interval (125–250 ms; Fig. 4.5E, right), 

at which latencies there were significant multisensory effects evident in the TRFs. 

Visual inspection of the MDS plot for the earlier time interval (Fig. 4.5E, left) suggests 

that the models were organised into two discrete groupings consisting of audio and non-

audio stimuli. The AVc model is not visually discriminable from the other audio 

conditions at this interval, in line with the TRFs. In the later interval however (Fig. 

4.5E, right), the AVc model shows the greatest discriminability relative to the other 

models, indicating that it is capturing neuronal contributions from crossmodal 

interactions that are not well represented in the A+V model, also in agreement with the 

TRF results. 

 

Figure 4.5: Spatiotemporal analysis of neuronal multisensory effects.  
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A, Group-average (N = 21) temporal response functions (TRFs) for congruent speech 

conditions at frontal scalp location Fz (top) and occipital scalp location Oz (bottom). B, 

TRFs for incongruent speech conditions at the same scalp locations as in A. C, 

Topographic maps of multisensory interaction effects [AV−(A+V)] at ~140 ms (top) 

and ~220 ms (bottom). The black markers indicate channels where the multisensory 

effect was significant across participants (p < 0.05, t-tests). D, Group-average (N = 21) 

reconstruction models, highlighting differential channel weightings at time lags 

corresponding to neuronal multisensory effects in C (125–250 ms). E, Visualization of 

filter weight dissimilarity in a two-dimensional Euclidean space obtained using non-

metric multidimensional scaling for time lags between 0–125 ms (left) and 125–250 ms 

(right). Colouring was applied to highlight discrete groupings based on the 125–250 ms 

interval. 

4.4 Discussion 

In this chapter, it has been demonstrated that when visual speech is congruent with 

auditory speech, the cortical representation of the speech envelope is enhanced relative 

to that predicted by the additive model criterion. These crossmodal interactions were 

most prominent at timescales indicative of syllabic integration (2–6 Hz). This was 

reflected in the neural responses by a suppression in amplitude at ~140 ms and ~220 ms 

which corresponded with a late shift in the spatiotemporal profile of our reconstruction 

models, suggesting the involvement of neural generators that were not strongly 

activated during unimodal speech. 

4.4.1 Congruent Visual Cues and Envelope Tracking 

The enhancement in cortical entrainment produced by AVc speech exceeded that 

predicted by the additive model. This fits with recent views on AV speech processing 

which suggest that visual speech increases the accuracy with which auditory cortex 

tracks the ongoing speech signal, leading to improved speech perception (Peelle and 

Sommers, 2015, Schroeder et al., 2008). However, we cannot rule out the possibility 

that attention was enhanced by AV stimulation (Talsma et al., 2010), and the fact that 

enhanced attention leads to more accurate envelope tracking (O'Sullivan et al., 2015, 

Ding and Simon, 2012a). In contrast, a recent MEG study did not demonstrate enhanced 

neural tracking for single-speaker AV speech, but did for competing speakers (Zion-
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Golumbic et al., 2013a). However, their finding was based on inter-trial coherence, an 

indirect measure of envelope tracking, whereas stimulus reconstruction and TRF 

estimation are direct measures and, as such, may be more sensitive to subtle differences 

in tracking elicited during single-speaker AV speech. In support of this, they did in fact 

report enhanced TRF amplitude for single-speaker AV speech compared to single-

speaker A speech (Zion-Golumbic et al., 2013a). Furthermore, their stimuli were shorter 

(~10 s) and were repeated more times (40 per condition), meaning that the contribution 

of the visual stimulus may have varied based on the ability of participants to predict the 

upcoming auditory information.  

Indeed, the effects of being able to predict the acoustic information may also be 

reflected by the fact that TRF amplitude was enhanced as early as ~50 ms (Zion-

Golumbic et al., 2013a). In contrast, the present results suggest that TRF amplitude was 

reduced at the later latencies of ~140 ms and ~220 ms. This finding fits with numerous 

ERP/ERF studies that have demonstrated late multisensory interactions in the form of 

subadditive cortical measures between 100–250 ms (Besle et al., 2004a, Bernstein et al., 

2008, van Wassenhove et al., 2005, Stekelenburg and Vroomen, 2007, Arnal et al., 

2009, Möttönen et al., 2004). Such deactivation effects have been linked to several 

theories such as predictive coding (Arnal et al., 2009, Arnal et al., 2011, van 

Wassenhove et al., 2005), cross-sensory inhibition and dedication of attentional 

resources to the relevant modality (Besle et al., 2004b). However, in keeping with 

recent perspectives on AV speech processing (Peelle and Sommers, 2015), it is 

postulated that this late suppression of cortical activity is reflective of an emergent 

integration stage that utilises the relevant visual speech information to constrain the 

number of possible candidates. Indeed, this notion that emergent neuronal contributions 

may be driving our multisensory effects was also supported by our MDS analysis of the 

reconstruction models which revealed differential AVc versus A+V weight patterns 

only at later time lags (125–250 ms). It has been suggested (Peelle and Sommers, 2015) 

that earlier integration effects are likely reflective of increased auditory cortical 

sensitivity to acoustic information, hence we predict that they may be more evident in 

complementary modes of AV speech such as speech-in-noise. 
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4.4.2 Incongruent Visual Cues and Envelope Tracking 

While envelope tracking was shown to be enhanced by congruent AV speech, it was 

inhibited when the auditory and visual streams were both temporally and contextually 

incongruent. This fits with seminal fMRI work which investigated multisensory 

integration in continuous passages (~30 s) of natural speech (Calvert et al., 2000). 

Specifically, they found that congruent AV speech elicited superadditive activation in 

pSTS, whereas incongruent AV speech elicited subadditive activation. It is therefore 

possible that the effects observed in the envelope tracking measures presented here may 

reflect contributions from pSTS. Whether or not this is specific to incongruent speech 

remains unclear. Related to this, a recent MEG study which used congruent and 

incongruent naturalistic AV videos demonstrated increased inter-trial coherence for 

congruent stimuli relative to incongruent stimuli (Luo et al., 2010). However, as they 

did not examine unisensory speech, it is difficult to determine whether the incongruent 

stimuli actually inhibited neural tracking or just failed to enhance it. 

Another possible explanation relates to the role of attention during incongruent 

stimulation. In the AVin condition, the male speaker’s voice is less relevant to the 

visual stimulus (nature scenes), hence attentional resources dedicated to the auditory 

stimulus may have been reduced, a situation that is known to impact upon speech 

tracking (O'Sullivan et al., 2015, Ding and Simon, 2012a). This is further supported by 

the decrease in P2TRF amplitude (AVin), an effect that has also been linked to reduced 

attention (Power et al., 2012). This notion also fits with the theory that during 

conflicting AV presentation such as the McGurk scenario, directing attention towards a 

particular modality tends to reduce the bias of the unattended modality (Welch and 

Warren, 1980, Talsma et al., 2010). In the AVif condition, attention may have been 

modulated in a slightly different way. According to the “attention in time” hypothesis 

(Large and Jones, 1999, Jones et al., 2006, Nobre et al., 2007, Nobre and Coull, 2010), 

entrainment may have been less effective because attention was being directed towards 

the auditory stream at time points that were acoustically less relevant. However, if this 

were the case, then one would expect to see a reduction in envelope tracking for the 

incongruent male condition (AVi) as well. Given that context seemed to play an 

important role in this inhibitory effect, the former explanation seems the more likely. 
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4.4.3 AV Speech Integration at the Syllabic Timescale 

The present data suggest that envelope tracking is enhanced by congruent visual speech 

at a timescale commensurate with the rate of syllables (2–6 Hz). This fits very well with 

work by Luo et al. (2010) which demonstrated that the phase of auditory cortex tracks 

both auditory and visual stimulus dynamics and that this cross-modal phase modulation 

is most prominent in low-frequency neural information in the delta-theta band (2–7 Hz). 

This also fits with recent data that demonstrated a temporal correspondence between 

facial movements and the speech envelope in the 2–7 Hz frequency range 

(Chandrasekaran et al., 2009). Interestingly, there was no significant difference in the 

contribution from visual and auditory speech at frequencies where multisensory 

integration peaked. This may suggest that multisensory integration is enhanced for 

temporal scales where neither modality is particularly dominant, or at least where visual 

speech provides complementary information. 

 Future paradigms involving manipulations to the SNR of both the acoustic 

signal (e.g., speech-in-noise) and the visual signal (e.g., use of point light stimuli, 

dynamic annulus stimuli, partially occluded faces) may lead to shifts in the spectral 

profile of the multisensory effects and/or the unisensory effects, allowing firmer 

conclusions to be drawn (see Chapter 4 for examination of AV speech-in-noise). This 

endeavour might be aided further by extending the framework in order to reduce the 

reliance on the acoustic envelope by directly incorporating information about phonemes 

and visemes, as has been done recently for auditory speech research (Di Liberto et al., 

2015). In addition, utilizing other approaches to quantify AV correlations such as those 

based on mutual information models (Nock et al., 2002) and Hidden Markov Models 

(Rabiner, 1989) may provide important complementary insights. 
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Chapter 5 Eye Can Hear Clearly Now: 

Inverse Effectiveness in Natural 

Audiovisual Speech Processing Relies on 

Long-Term Crossmodal Temporal 

Integration 

5.1 Introduction 

In the previous chapter, detection accuracy was not enhanced by the presentation of AV 

speech because performance in audio-only speech was already at ceiling. Indeed, the 

behavioural benefits of AV speech are more apparent in acoustic conditions where 

intelligibility is reduced (Bernstein et al., 2004b, Sumby and Pollack, 1954, Grant and 

Seitz, 2000, Erber, 1975, Ross et al., 2007a). Enhanced multisensory processing in 

response to weaker sensory inputs is a phenomenon known as inverse effectiveness 

(Meredith and Stein, 1986a). However, in the context of AV speech processing, there 

are particular audio signal-to-noise ratios (SNRs) at which the benefits of multisensory 

processing become maximized – a sort of multisensory ‘sweet spot’ (see section 2.4.2; 

Ross et al., 2007a). It is likely that when processing AV speech in such conditions, the 

brain must exploit both correlated and complementary visual information in order to 

optimize intelligibility (Campbell, 2008, Summerfield, 1987, Grant and Seitz, 2000). 

This could be achieved through multiple integration mechanisms, occurring at different 

temporal stages (see section 2.4.4). Specifically, recent perspectives on multistage AV 

speech processing suggest that visual speech provides cues to the timing of the acoustic 

signal that could project directly from visual cortex, increasing the sensitivity of 

auditory cortex to the upcoming acoustic information, while complementary visual cues 
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that convey place and manner of articulation could be integrated with converging 

acoustic information in supramodal regions such as superior temporal sulcus (STS), 

serving to constrain lexical selection (see Peelle and Sommers, 2015). 

Indeed, studying how the brain utilizes the timing and lexical constraints of 

visual speech to enhance the processing of acoustic information necessitates the use of 

natural, conversation-like speech stimuli. Recent electroencephalography (EEG) and 

magnetoencephalography (MEG) studies have used naturalistic speech stimuli to 

examine how visual speech effects the cortical representation of the speech envelope 

(Crosse et al., 2015a, Zion-Golumbic et al., 2013a). However, it is not yet known how 

these neural measures of speech processing are affected by visual speech at much lower 

SNRs where the multisensory processing is optimized. In particular, the specific neural 

mechanisms invoked in such situations are poorly understood. A recent MEG study 

examined how different levels of noise affect the cortical representation of audio-only 

speech and demonstrated that it is relatively insensitive to background noise, even at 

low SNRs where intelligibility is diminished (Ding and Simon, 2013). Only when 

intelligibility reached peri-threshold level (e.g., at an SNR of −9 dB), did they find that 

envelope tracking was significantly reduced. Given that AV speech has been shown to 

improve intelligibility in noise equivalent to an increase in SNR of up to 15 dB (Sumby 

and Pollack, 1954), we hypothesized that the addition of visual cues could substantially 

restore envelope tracking in such peri-threshold conditions. 

In this chapter, an AV speech-in-noise paradigm was implemented to study the 

neural interaction between continuous auditory and visual speech at an SNR where 

multisensory processing was of maximal benefit relative to unisensory processing. As 

before, high-density EEG recordings were analysed using the multisensory framework 

introduced in Chapter 4. This chapter provides clear evidence that neural entrainment to 

continuous AV speech conforms to the principle of inverse effectiveness, and that it 

does so specifically by restoring early tracking of the speech signal and integrating low-

frequency crossmodal information over longer temporal windows. These findings 

support the notion that different integration mechanisms contribute to AV speech 

processing over multiple stages (Peelle and Sommers, 2015, van Wassenhove et al., 

2005, Eskelund et al., 2011, Baart et al., 2014, Schwartz et al., 2004). Our results also 

suggest that in degraded listening environments, crossmodal integration of AV speech 

occurs at a more coarse-grained linguistic level. The results of this study were presented 

at the 16th International Multisensory Research Forum in Pisa in June, 2015 (Appendix 
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H) and at the 45th Annual meeting of the Society for Neuroscience in Chicago in 

October, 2015 (Appendix I) and have been accepted for publication in The Journal of 

Neuroscience. 

5.2 Methods 

In order to examine how AV speech processing is affected by SNR, some of the data 

from Chapter 4 were re-analysed along with new ‘speech-in-noise’ data. Both of the 

experiments employed the same target detection task but involved separate participant 

samples. 

5.2.1 Participants 

Twenty-one participants (6 females; age range: 21–35 years) completed the speech-in-

noise experiment. All participants were native English speakers, had self-reported 

normal hearing and normal or corrected-to-normal vision, were free of neurological 

diseases and provided written informed consent. All procedures were undertaken in 

accordance with the Declaration of Helsinki and approved by the Ethics Committee of 

the Health Sciences Faculty at Trinity College Dublin. For details of those that 

participated in the speech-in-quiet experiment, please refer to Chapter 4 (see section 

4.2.1). 

5.2.2 Stimuli and Procedure 

The stimuli used in speech-in-noise experiment were the same videos used in the audio-

only (A), visual-only (V) and congruent audiovisual (AV) conditions in the speech-in-

quiet experiment. Please refer to Chapter 4 for exact video specifications (see section 

4.2.2). For the speech-in-noise experiment, the video soundtracks were mixed with 

spectrally-matched stationary noise to ensure consistent masking across stimuli (see 

Appendix A, Fig. A1; Ding and Simon, 2013, Ding et al., 2014). The noise stimuli were 

generated in MATLAB using a 50th-order forward linear predictive model estimated 

from the original speech recording. Prediction order was calculated based on the 

sampling rate of the soundtracks (48 kHz; Parsons, 1987).  

Behavioural piloting was used to select the SNR value (as measured by RMS) 

such that it maximised the increase in intelligibility produced by AV speech relative to 

A speech (i.e., inverse effectiveness). A subset of participants (N = 3) listened to four 
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60-s passages of A and AV speech at SNRs of −7, −9 and −11 dB. After each passage, 

they were asked to rate in percent how intelligible the speech was. These data indicated 

that an SNR of −9 dB yielded the largest perceptual gain (see Fig. 5.1) and thus was 

chosen for the main experiment. Note that SNR is a relatively unstable measure because 

it is highly dependent on certain characteristics of the speech material such as dynamic 

range and the prevalence of gaps. Therefore, instead of choosing the SNR value based 

on values reported in previous studies, it is better to identify the part of the 

psychometric function of interest and then work backwards. The same spectrally-

matched noise stimuli were also presented in the V condition, but without any speech 

content. 

Task instructions and testing conditions in the speech-in-noise experiment were 

identical to those described in Chapter 4 (see section 4.2.2). In addition to detecting 

target words, participants in the speech-in-noise experiment were required to 

subjectively rate the intelligibility of the speech stimuli at the end of each 60-s trial. 

Intelligibility was rated as a percentage of the total words understood using a ten-point 

scale (0–10%, 10–20%,…, 90–100%). While stimulus presentation order was 

completely random in the speech-in-quiet experiment, this approach was not suitable for 

the speech-in-noise paradigm, because if the same speech passage was presented twice 

in quick succession (albeit in different conditions), it could potentially influence 

intelligibility in the latter condition. Instead, the stimuli were presented such that a 

particular speech passage could not be repeated in another condition within 15 trials of 

the preceding one. Thus, the 15 passages were presented in the same order three times 

but the condition from trial-to-trial was randomised. 

 

Figure 5.1: Pilot data used to identify multisensory ‘sweet spot’.  
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The left panel shows the mean subjectively-rated intelligibility for audio-only (A) and 

audiovisual (AV) speech at each SNR and the right panel shows the multisensory gain 

(AV−A) as a function of SNR. Error bars indicate SEM. 

5.2.3 Behavioural Data Analysis 

To identify a behavioural measure of multisensory integration (MSI), we examined 

whether the probability of detecting a multisensory stimulus exceeded the statistical 

facilitation produced by the unisensory stimuli. False positives were accounted for by 

taking an F-measure of each participant’s detection rate. F-scores (or F1 scores) were 

calculated as the harmonic mean of precision and recall (Rijsbergen and Joost, 1979). 

Thus, our behavioural MSI measure was calculated as follows: 

                                       AVˆAVMSI 11Behav FF                                          (5.1) 

where  AV1F  is the F1 score for the AV condition and  AVˆ
1F  is the predicted F1 score 

based on the values of the unisensory conditions. Although the same detection task was 

implemented in both experiments, two different criteria were used to quantify  AVˆ
1F  as 

outlined in Stevenson et al. (2014a). For speech-in-quiet, detection accuracy was near 

ceiling so a maximum criterion model was used:       V,AmaxAVˆ
111 FFF  . For 

speech-in-noise, accuracy was not at ceiling so a more conservative model was used that 

accounted for statistical facilitation (Blamey et al., 1989): 

         VAVAAVˆ
11111 FFFFF  . Essentially, the term on the right represents the 

detection rate that would be expected when auditory and visual stimuli were presented 

together and processed independently (Stevenson et al., 2014a). To quantify the gain in 

performance produced by AV speech, we calculated MSIBehav as a percentage of  AVˆ
1F

, in other words, as a percentage of independent unisensory processing (see section 2.2.1 

for further details). 

5.2.4 EEG Acquisition and Pre-Processing 

EEG data were acquired using the same high-density recording system and 

experimental protocol described in section 4.2.4. Pre-processing conducted offline, 

including filtering and artefact rejection, was identical to that described in section 4.2.4. 
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5.2.5 Stimulus Characterisation 

In this study, EEG analysis focused on the speech signal below 3 kHz because the 

strongest correlation between the mouth opening and vocal acoustics is between 2–3 

kHz (Chandrasekaran et al., 2009, Grant and Seitz, 2000, Grant, 2001), meaning that 

visual speech provides cues to the timing of less salient auditory events within this 

frequency range (see section 2.3.1). Furthermore, visual speech can offer 

complementary information in the form of place of articulation, which can help 

distinguish ambiguous acoustic content in second formant space. 

The spectrogram representation of each stimulus was generated using a 

compressive gammachirp auditory filterbank that modelled the auditory periphery (Irino 

and Patterson, 2006). Outer and middle ear correction were applied using an FIR 

minimum phase filter before the stimuli were band-pass filtered into 256 

logarithmically-spaced frequency bands between 80 and 3000 Hz. The energy in each 

frequency band was calculated using a Hilbert transform and the broadband envelope 

was obtained by averaging across the frequency bands of the resulting spectrogram. 

The rates of different linguistic units (e.g., words, syllables, vowels, consonants) 

in the speech stimuli were extracted from the audio files using the Forced Alignment 

and Vowel Extraction (FAVE) Software Suite (Rosenfelder et al., 2011). This returns 

the start and end time-points for individual phonemes, enabling detailed characterization 

of the timescale of both segmental and suprasegmental speech units. 

5.2.6 Stimulus Reconstruction 

Neural tracking of the speech signal was measured using the stimulus reconstruction 

technique described in Chapter 3 (see section 3.2.4). Decoders were optimised using the 

same specifications described in Chapter 4 (see section 4.2.6). The objective, still, was 

to reconstruct the underlying speech envelope (as opposed to the actual speech-in-noise 

mixture) because we only care about how the brain processes speech information. In 

any case, previous work has demonstrated that the underlying speech signal can be 

reconstructed from cortical activity with greater accuracy than the actual speech-in-

noise mixture (Ding and Simon, 2013). As with the behavioural data, we define a neural 

measure of multisensory integration: 

                                tstststs ,ˆcorr,ˆcorrMSI VAAVEEG                              (5.2) 
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where ŝAV(t) is the reconstructed envelope for the AV condition and ŝA+V(t) is the 

estimated envelope for the additive unisensory model (see section 4.2.6). Similar to the 

behavioural analysis, we defined multisensory gain by calculating MSIEEG as a 

percentage of     tsts ,ˆcorr VA  (see section 2.4.1 for further details). 

5.2.7 Single-lag Reconstruction Analysis 

When reconstructing the speech envelope, the decoder g(τ,n) integrates EEG over a 500 

ms window. This ensures that we capture important temporal information in the EEG 

that relates to each sample of the stimulus we are trying to reconstruct. To quantify the 

contribution of each time lag towards reconstruction, decoders were trained on EEG at 

individual lags from 0–500 ms, instead of integrating across them (O'Sullivan et al., 

2015). For a sampling frequency of 64 Hz, this equates to 33 individual lags and thus 33 

separate decoders. For each time lag, the solution then becomes:  

                              ,,,ˆ
128

1





n

ngntrts     ms5000                              (5.3) 

where ŝτ(t) is the estimated speech envelope for lag τ. Because the decoders consisted of 

only a single time lag, there was no need for regularization along the time dimension. 

Instead of using ridge regression to compute the decoder, it was approximated by 

performing a singular value decomposition of the auto-correlation matrix (Mesgarani et 

al., 2009, Ding and Simon, 2012b, Theunissen et al., 2000). Here, only those 

eigenvalues that exceed a specific fraction of the largest eigenvalue or peak power are 

included in the analysis. Qualitatively, this approach yields the same result as doing 

ridge regression but. To examine how MSIEEG varied as a function of time lag, it was 

calculated as before (Eq. 5.2) using the single-lag decoders. To investigate whether 

MSIEEG was predictive of MSIBehav at a particular time lag, we calculated the correlation 

coefficient between the two measures across participants. This was examined in speech-

in-noise, where behavioural performance was not at ceiling. 

5.2.8 Statistical Analyses 

All statistical analyses were conducted using two-way mixed ANOVAs with a between-

subjects factor of SNR (Quiet vs −9 dB) and a within-subjects factor of condition (A, V, 

A+V, AV), except where otherwise stated. Where sphericity was violated in factors 

with two or more levels, the Greenhouse-Geisser corrected degrees of freedom are 
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reported. Post hoc comparisons were conducted using two-tailed t-tests and multiple 

comparisons were corrected for using the Holm-Bonferroni method. All numerical 

values are reported as mean ± SD. Outlying participants were excluded from specific 

analyses if their values within that analysis were a distance of more than three times the 

interquartile range. 

5.3 Results 

5.3.1 Behaviour 

Subjectively-rated intelligibility in the speech-in-noise experiment confirmed that 

intelligibility was highest in the AV condition (t(20) = 10.3, p = 1.9×10−9; A+V: 36.9 ± 

18.4%; AV: 63.6 ± 15.8%, Fig. 5.2B). This was reflected in how accurately participants 

could detect the target words, with detection accuracy significantly higher in the AV 

condition compared to that predicted by the unisensory scores (t(20) = 2.6, p = 0.018; 

 AVˆ
1F : 0.7 ± 0.09,  AV1F : 0.76 ± 0.08; Fig. 5.2C, left). In speech-in-quiet, accuracy in 

the A and AV conditions was at ceiling, hence there was no observable multisensory 

benefit. As a result, the AV gain for speech-in-noise was significantly greater than that 

for speech-in-quiet [unpaired t-test: t(39) = 2.8, p = 0.0086; MSIBehav (Quiet): −1.44 ± 

5.61%, MSIBehav (−9 dB): 9.14 ± 15.12%; Fig. 5.2C, right]. For speech-in-noise, both 

intelligibility and detection accuracy varied substantially across participants. 

Importantly, the individual accuracy scores were shown to be significantly correlated 

with intelligibility in both the unisensory conditions (A: r = 0.51, p = 0.02; V: r = 0.55, 

p = 0.01). In the AV condition, accuracy rates were nearer to ceiling, thus, any 

observable correlation with intelligibility was most likely obscured. 
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Figure 5.2: Audio stimuli and behavioural measures.  

A, Spectrograms of a 4-s segment of speech-in-quiet (left) and speech-in-noise (−9 dB; 

right). B, Subjectively-rated intelligibility for speech-in-noise, reported after each 60-s 

trial. The white bar represents the sum of the unisensory scores. Error bars indicate 

SEM across participants. Brackets indicate pairwise statistical comparisons (*p < 

0.05;**p < 0.01; ***p < 0.001). C, Detection accuracy (left) of target words represented 

as F1 scores. The dashed black trace represents the statistical facilitation predicted by 

the unisensory scores. Multisensory gain (right) represented as a percentage of 

unisensory performance. 

5.3.2 Neural Enhancement and Inverse Effectiveness 

Neural tracking of the speech signal was measured based on how accurately the 

broadband envelope could be reconstructed from the participants’ EEG (Fig. 5.3A, left). 

A mixed ANOVA with factors of SNR (Quiet vs −9 dB) and condition (A vs V) 

revealed a significant interaction effect (F(1,40) = 24.1, p = 1.6×10−5), driven by the fact 

that reconstruction accuracy in the A condition fell below that of the V condition at −9 

dB SNR (t(20) = 2, p = 0.055; A: 0.17 ± 0.05, V: 0.13 ± 0.04). Multisensory integration 

was indexed by differences in reconstruction accuracy between the AV condition and 

the A+V model. There was a main effect of condition across SNRs (F(1,40) = 115.1, p = 

2.4×10−13), with significantly higher reconstruction accuracy in the AV condition for 

both speech-in-quiet (t(20) = 7.1, p = 7.3×10−7; AV: 0.2 ± 0.04, A+V: 0.18 ± 0.04) and 
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speech-in-noise (t(20) = 8.1, p = 1×10−7; AV: 0.16 ± 0.05, A+V: 0.14 ± 0.05). Although 

there was no significant interaction between SNR and condition (F(1,40) = 2.5, p = 0.12), 

the multisensory gain (i.e., the AV enhancement as a percentage of A+V)  was 

significantly greater at −9 dB SNR than in quiet [unpaired t-test: t(20) = 2.8, p = 0.008; 

MSIEEG (Quiet): 10.6 ± 6.8%, MSIEEG (−9 dB): 20.7 ± 14.9%; Fig. 5.3A, right]. These 

findings demonstrate that envelope tracking is restored in adverse hearing conditions by 

the addition of visual speech and that this process conforms to the principle of inverse 

effectiveness.  

To examine the time lags that contributed most towards reconstruction, 33 

separate estimates of the speech envelope were reconstructed using single-lag decoders 

between 0–500 ms (Fig. 5.3B). The time lags that contributed the most information 

peaked earlier for speech-in-quiet (~110 ms) than for speech-in-noise (~170 ms). A 

running t-test comparing AV with A+V at each time lag indicated that multisensory 

interactions occurred at multiple stages (p < 0.05, Holm-Bonferroni corrected) and onset 

earlier for speech-in-quiet (~45 ms) than for speech-in-noise (~110 ms). For speech-in-

noise, reconstruction accuracy in the A condition was significantly lower than that of 

the V condition between 0–95 ms (running t-test: p < 0.05, Holm-Bonferroni corrected). 

This suggests that in adverse hearing conditions, the sensitivity of auditory cortex to 

speech is significantly reduced during an early stage of speech processing. 

5.3.3 Neural Enhancement Predicts Behavioural Gain 

In order to investigate the relationship between our neural and behavioural measure of 

multisensory integration, we calculated the correlation coefficient between them using 

the reconstructed estimates from each of the 33 single-lag decoders. The logic here was 

that our behavioural multisensory effect may be reflected in our neural measure at a 

specific latency and integrating across 500 ms may obscure any correlation between 

these measures. Figure 5.3C shows the correlation between MSIBehav and MSIEEG at 

every time lag between 0–500 ms. There is no meaningful correlation for the first 200 

ms, after which it begins to steadily increase until it peaks between 220–250 ms, at 

which latencies there is a significant (and positive) correlation (r = 0.44, p = 0.04; Fig. 

5.3D, left). This correlation is also significant if MSI is represented as percentage gain 

(r = 0.56, p = 0.009; Fig. 5.3D, right). If we calculate a linear fit to these data, the slope 
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of the resulting line is approximately 0.96, meaning that on average, a 50% gain in 

envelope tracking reflects a 52% gain in detection accuracy. 

 

Figure 5.3: Stimulus reconstruction and relationship with behaviour.  

A, Reconstruction accuracy (left) obtained using decoders that integrated EEG across a 

500-ms window. The dashed black trace represents the unisensory additive model. The 

shaded area indicates the 95th percentile of chance-level reconstruction accuracy 

(permutation test). Multisensory gain (right) represented as a percentage of unisensory 

performance. Error bars indicate SEM across participants. Brackets indicate pairwise 

statistical comparisons (**p < 0.01; ***p < 0.001). B, Reconstruction accuracy obtained 

using single-lag decoders at every lag between 0 and 500 ms. The markers running 

along the bottom of each plot indicate the time lags at which MSIEEG is significant (p < 

0.05, Holm-Bonferroni corrected). C, Correlation coefficient (top) and corresponding p-

value (bottom) between MSIEEG and MSIBehav at individual time lags for speech-in-

noise. The shaded area indicates the lags at which the correlation is significant or 

trending towards significance (220–250 ms; p < 0.05). D, Correlation corresponding to 

shaded area in C, with MSIEEG and MSIBehav represented in their original units (left) and 

as percentage gain (right). 
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5.3.4 AV Speech Integration at Multiple Timescales 

As demonstrated in Chapter 4, the timescale of AV speech processing is closely linked 

to the rate at which syllables occur in extended passages of natural speech 

(Chandrasekaran et al., 2009, Luo et al., 2010). To examine the impact of background 

noise on the timescale at which AV speech is integrated, we calculated the correlation 

coefficient between the reconstructed and original envelope at every 1-Hz frequency 

band between 1–30 Hz. Figure 5.4A shows the spectral profile of reconstruction 

accuracy for the AV condition and the A+V model. This spectrum represents the 

contribution of each frequency band to reconstructing the broadband envelope. Because 

the spectrum is consistently low-pass in shape, we defined the cutoff frequency as the 

highest frequency at which reconstruction accuracy was greater than chance level 

(permutation test). For speech-in-quiet, reconstruction accuracy was greater than chance 

at frequencies between 1–8 Hz (Fig. 5.4A, left), whereas for speech-in-noise, 

reconstruction accuracy was only greater than chance between 1–5 Hz (Fig. 5.4A, right). 

Figure 5.4B shows the multisensory enhancement measured at each frequency 

band. To test for significance, paired t-tests were conducted at only the frequencies 

where reconstruction accuracy was greater than chance level (p < 0.05, Holm-

Bonferroni corrected). For speech-in-quiet, there was a significant AV enhancement 

between 1–6 Hz (Fig. 5.4B, top), whereas for speech-in-noise, there was only a 

significant enhancement between 1–3 Hz (Fig. 5.4B, bottom). To relate these findings to 

the temporal scale of natural speech, we summarized the average rate of different 

linguistic units by deriving the durations of the respective speech segments from the 

audio files (Fig. 5.4C). The results suggest that in quiet, AV speech was integrated at 

frequencies commensurate with the rate of suprasegmental information such as 

sentential and phrasal units, as well as smaller segmental units such as words and 

syllables. In background noise, AV integration was only evident at the sentential and 

lexical timescale. 
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Figure 5.4: AV speech integration at multiple timescales.  

A, Reconstruction accuracy for AV (blue) and A+V (green) at each frequency band. The 

shaded area indicates the 5th to 95th percentile of chance-level reconstruction accuracy 

(permutation test). Error bars indicate SEM across participants. B, Multisensory 

enhancement at each frequency band. The markers indicate frequency bands at which 

there was a significant multisensory interaction effect (p < 0.05, Holm-Bonferroni 

corrected). C, Average rate of different linguistic units derived from the audio files of 

the speech stimuli. The brackets indicate the mean ± SD. 
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5.3.5 Long-Term AV Temporal Integration 

Given that background-insensitive speech recognition has been linked to long-term 

temporal integration (Ding and Simon, 2013), we wished to examine the role of 

temporal integration in maintaining AV speech processing in background noise. The 

decoder window size was shortened from 500 to 100 ms in steps of 100 ms, restricting 

the amount of temporal information that each decoder could integrate across when 

reconstructing the stimulus. While this reduced decoder performance in both quiet 

(∆AV: 0.04 ± 0.01) and in noise (∆AV: 0.06 ± 0.03), the effect was significantly greater 

in the latter (unpaired t-test: t(40) = 2.7, p = 0.01; Fig 5.5A). As a result, multisensory 

gain was more sensitive to modulations in temporal window size in noise (F(1.8,36.5) = 

1.4, p = 0.27, one-way ANOVA) than in quiet (F(1.3,26.7) = 0.31, p = 0.87, one-way 

ANOVA). Although the effect was not significant, MSIEEG decreased as the temporal 

window size was reduced (see Fig. 5.5B). Critically, inverse effectiveness (i.e., the 

difference between MSIEEG in quiet and noise) was only significantly greater than zero 

when the decoders integrated EEG over temporal window sizes of >300 ms (unpaired t-

tests: p < 0.05; Fig. 5.5C). 

 

Figure 5.5: AV speech integration by temporal window size.  

A, Model performance by decoder temporal window size. Error bars indicate SEM 

across participants. B, Multisensory gain by decoder temporal window size. The 

markers indicate window sizes at which there was significant inverse effectiveness (i.e., 

−9 dB > Quiet; *p < 0.05; **p < 0.01). C, Inverse effectiveness by decoder temporal 

window size. 
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5.3.6 Left-Dominant Multisensory Interactions 

The stimulus reconstruction approach utilises all 128 channels of EEG in order to 

maximise the variance captured across the scalp. To investigate whether or not our 

multisensory effect was lateralised, we repeated the analysis using channels from only 

the left and right sides of the head separately. Note that the decoders were not trained on 

the left and right channels separately; instead, they were trained on all 128 channels 

together, and during the reconstruction phase they were limited to the 53 left-most and 

53 right-most channels (see Fig 5.6C). Although reconstruction accuracy was reduced 

by training on more channels than were used for reconstruction, the advantage of this 

approach is that the decoder does not allocate resources to the encoding of correlated 

input features from contralateral channels and thus will more likely reveal any 

lateralized effects that may be present. Additionally, the decoders were limited to time 

lags between 0–300 ms, which were shown to contribute most information in our 

single-lag analysis (Fig. 5.6B). 

A three-way mixed ANOVA with a between-subjects factor of SNR and within-

subjects factors of condition and hemisphere found no main effect of hemisphere (F(1,39) 

= 0.01, p = 0.91; Fig 5.6A) or any interaction between SNR and hemisphere (F(1,39) = 

0.4, p = 0.53). Examining multisensory enhancement, a two-way mixed ANOVA (SNR 

× hemisphere) indicated a trend towards a main effect of hemisphere (F(1,39) = 3.7, p = 

0.06; Fig 5.6B) such that there was a marginally greater multisensory enhancement in 

left hemisphere. However, there was a significant interaction between SNR and 

hemisphere (F(1,39) = 5.4, p = 0.025), driven by greater multisensory enhancement in the 

left hemisphere for speech-in-noise (t(20) = 3.3, p = 0.004). 



106 

 

 

Figure 5.6: Multisensory enhancement by left and right hemisphere.  

A, Reconstruction accuracy using the left (blue) and right (red) channels. The shaded 

area indicates the 95th percentile of chance-level reconstruction accuracy (permutation 

test). Error bars indicate SEM across participants. B, Multisensory enhancement by 

hemisphere and condition. Brackets indicate pairwise statistical comparisons (**p < 

0.01). C, Scalp locations of the electrodes chosen to represent the left and right 

hemispheres. Electrodes along the median line were excluded from the analysis. 

5.4 Discussion 

Our findings exhibit three major electrophysiological features of AV speech processing. 

First, the accuracy with which cortical activity entrains to AV speech conforms to the 

principle of inverse effectiveness. Second, visual speech input restores early tracking of 

the audio speech signal in noise and is integrated with auditory information at much 

lower frequencies. Third, inverse effectiveness in natural AV speech processing relies 

on crossmodal integration over long (>300 ms) temporal windows. Our findings suggest 
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that AV speech integration is maintained in background noise by several underlying 

mechanisms, occurring at different temporal stages. 

5.4.1 Quantifying a behavioural measure of MSI 

From our measure of behavioural performance that was shown to reflect intelligibility, 

we sought to obtain an index of multisensory integration. However, isolating 

contributions from multisensory interactions can be obscured by artificially high 

speech-reading scores (Bernstein et al., 2004a, Ross et al., 2007a). Here, we attempted 

to circumvent this by accounting for false alarms and the likelihood that a target was 

detected in both modalities (Stevenson et al., 2014a). Using this probabilistic model, we 

were able to demonstrate that recognition accuracy in background noise was enhanced 

beyond the statistical facilitation predicted by independent unisensory processing 

(Blamey et al., 1989). In contrast, studies that have predicted AV performance based on 

“optimal processing” models typically yield predictions greater than participants’ 

observed AV performance (Grant et al., 2007, Braida, 1991). 

Characterizing multisensory enhancement in terms of perceptual gain can also 

be achieved using a variety of methods (Ross et al., 2007a). Here, we chose to calculate 

gain as a percentage of unisensory performance. In doing so, we demonstrated that the 

gain was significantly greater in noise than it was in quiet, in line with Ross et al. 

(2007a). However, in their study they quantified gain as a percentage of auditory-only 

performance and remark that this approach is constrained by a ceiling effect at lower 

SNRs due to the inverse relationship between gain and auditory-only performance 

(Grant and Walden, 1996). Our approach, which also accounts for visual-only 

performance, is less prone to such ceiling effects. 

5.4.2 Envelope Tracking and Inverse Effectiveness 

In line with seminal work on AV speech-in-noise (Ross et al., 2007a, Sumby and 

Pollack, 1954), we demonstrated that the behavioural benefit produced by AV speech 

was significantly greater in noise than in quiet. This inverse effectiveness phenomenon 

was also observed in our EEG data, which revealed that multisensory interactions were 

contributing to the neural tracking of AV speech to a greater extent in noise than in 

quiet. In support of our neuronal effect, a recent MEG study demonstrated (using a 

phase-based measure of neural tracking) that coherence across multiple neural response 
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trials was enhanced by AV speech relative to A speech when participants listened to 

competing-speakers, but not single-speakers (Zion-Golumbic et al., 2013a). In other 

words, making it more difficult to hear the target speaker by introducing a second 

speaker revealed an enhancement in AV speech tracking that was not detectable in 

single-speaker speech. 

For speech-in-noise, we found that the multisensory enhancement in envelope 

tracking at 220–250 ms accurately predicted the multisensory gain in behaviour. To 

interpret the significance of this temporal locus, we must first consider what these 

multisensory indices reflect. Our behavioural measure (MSIBehav) was derived from the 

accuracy with which participants detected target words. Because the task involved 

identifying whole words, the MSI score may reflect integration at the semantic level 

(Ross et al., 2007a). In support of this, the time course of speech perception in the 

superior temporal cortex has been shown to reflect lexical-semantic processing from 

200 ms onwards (Salmelin, 2007, Picton, 2013). Our neural measure (MSIEEG), on the 

other hand, was derived from how accurately the speech envelope could be 

reconstructed from the EEG data. Specifically, we observed multisensory interactions 

below 3 Hz in noise. Given that this frequency range is commensurate with the average 

rate of spoken words, it fits well with our behavioural task. Furthermore, neural 

oscillations in the delta range (1–4 Hz) are thought to integrate crossmodal information 

over a temporal window of ~125–250 ms (Schroeder et al., 2008), in line with the 

latency of our effect. Together, this suggests that our neural and behavioural measure of 

multisensory integration both reflect processing at the lexical-semantic level and, as 

such, are correlated at a timescale that corresponds to this stage of speech processing. 

5.4.3 Neural Mechanisms in AV Speech-in-Noise 

Our EEG data suggest that cortical activity entrains to AV speech only at lower 

frequencies in background noise. In support of this notion, it has been demonstrated that 

MEG entrains to AV speech at lower frequencies when a competing speaker is 

introduced (Zion-Golumbic et al., 2013a). An MEG study by Ding and Simon (2013) 

that investigated neural entrainment to audio-only speech at different SNRs found that 

the cutoff frequency of the phase-locking spectrum decreased linearly with SNR, but 

that low delta-band neural entrainment was relatively insensitive to background noise 

above a certain threshold. This mechanism of contrast gain control was linked to the 
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M100 component of the temporal response function (TRF), which was shown to be 

relatively robust to noise, unlike the earlier M50 component (Ding and Simon, 2013, 

Ding et al., 2014). Our results, along with these other studies, indicate that low-

frequency speech information is more reliably encoded than higher-frequency linguistic 

content in adverse hearing conditions and that this process is maintained by contrast 

gain control and adaptive temporal sensitivity in auditory cortex (Ding and Simon, 

2013). 

 In addition, we found that auditory and visual information interacted at lower 

frequencies in noise than in quiet, which is unsurprising, given that there is a more 

robust auditory representation encoded at lower frequencies. In line with this, we 

showed that inverse effectiveness relied on longer temporal windows of integration, 

something that is also critical for a noise-robust cortical representation of speech (Ding 

and Simon, 2013). A recent intracranial study that examined AV integration in quiet 

using discrete, non-speech stimuli, observed multisensory enhancement effects 

[AV−(A+V)] in delta and theta phase alignment (Mercier et al., 2015). Interestingly, 

they reported visually driven crossmodal delta-band phase-reset in auditory cortex. It is 

possible that this process could be mediated by delta-frequency head movements, which 

have been shown to convey prosodic information important to speech intelligibility 

(Munhall et al., 2004b). Thus, integration of auditory and visual speech information 

could be maintained in adverse hearing conditions by a combination of delta-frequency 

phase-resetting and long-term temporal integration.  
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Chapter 6 Investigating the Temporal 

Dynamics of Auditory Cortical Activation 

to Silent Lipreading 

6.1 Introduction 

Functional neuroimaging research has demonstrated that observing visual speech (i.e., 

lipreading) in the absence of auditory speech activates primary auditory cortex in 

humans (Calvert et al., 1997, Pekkola et al., 2005). It has also been shown using single-

unit recordings in the primate brain that visually-presented monkey articulations can 

elicit local field potentials in auditory cortex (Kayser et al., 2008). Indeed, fMRI has 

greatly advanced our understanding of multisensory integration in the human brain and, 

in particular, where in the brain it occurs. However, because of its poor temporal 

resolution, fMRI is not well suited to examining the neural response to dynamic speech 

stimuli that rapidly fluctuate over time. Thus, it is difficult to determine what this 

auditory cortical activation during silent lipreading precisely reflects. While single-unit 

recordings in primates offer better temporal resolution, monkey vocalisations are not 

directly comparable to human speech, as they lack the lexical complexity of human 

conversation. Essentially, studying the dynamics of visual speech processing is better 

suited to non-invasive human recording techniques with high temporal resolution such 

as EEG and MEG.  

As discussed previously, such techniques have been instrumental in 

demonstrating that auditory cortical activity tracks the temporal envelope of acoustic 

speech (Lalor and Foxe, 2010, Ding and Simon, 2012b). However, Ding et al. (2014) 

suggest that envelope tracking may actually reflect an analysis-by-synthesis process, 

whereby speech features that are correlated with the envelope are encoded during the 
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synthesis phase, thus leading to what appears to be merely tracking of the speech 

envelope (see section 2.4.4). Given that many of the visual cues that contribute to 

speechreading are also correlated with the acoustic envelope (Chandrasekaran et al., 

2009, Grant and Seitz, 2000), encoding of such features could theoretically manifest in 

a process that also time-locks to the speech envelope. If the temporal dynamics of such 

visual cues are projected to auditory cortical regions during silent lipreading, this could 

elicit envelope tracking in auditory cortex in the absence of acoustic speech. Here, this 

hypothesis is tested by examining the impact of lipreading accuracy on the entrainment 

of EEG to the unheard speech signal. 

In Chapters 3, 4 and 5, we demonstrated that it is possible to reconstruct an 

estimate of the speech envelope from EEG data. While this work has distinct 

applications in brain-computer interface technology, such methods would better serve 

BCIs by decoding the users’ inner thoughts, i.e., covert speech. Such an approach 

presents two main challenges: (1) how do we model the neural representation of an 

internal process, and (2) how do we determine the exact time at which it occurred? 

Recently, Martin et al. (2014) successfully decoded covert speech from ECoG data 

using a decoder that modelled the neural representation of overt speech, while timing 

issues were dealt with using dynamic time warping. The present chapter demonstrates 

how the natural statistics of visual speech can be utilised to overcome these issues: (1) 

assuming that speech perception and imagery share a partially overlapping cortical 

representation, the original acoustic signal can be used as an estimate of what the 

perceiver imagined, and (2) timing issues are naturally circumvented because the 

perceiver is continually prompted to imagine the auditory speech content, time-locked 

to the visual cues. Here, both forward and backward modelling techniques are applied 

as quantitative measures of envelope tracking during silent lipreading. The results of 

this study were presented at the 5th International Conference on Auditory Cortex in 

Magdeburg in September, 2014 (Appendix J) and published in Proceedings of the 7th 

International IEEE/EMBS Conference on Neural Engineering (Crosse et al., 2015b). 

6.2 Methods 

6.2.1 Participants 

Twelve native English speakers (5 females; age range: 22–37 years), none of which 

were trained lipreaders, gave written informed consent. All participants were right-
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handed, free of neurological diseases, had normal hearing and normal or corrected-to-

normal vision. The experiment was undertaken in accordance with the Declaration of 

Helsinki and was approved by the Ethics Committee of the Health Sciences Faculty at 

Trinity College Dublin, Ireland. 

6.2.2 Stimuli and Procedure 

The speech stimuli used for the lipreading experiment were the same videos used in the 

visual-only (V) and congruent audiovisual (AV) conditions in Chapter 4. Soundtracks 

were removed from 14 of the 15 videos used for silent lipreading. The remaining video 

was preserved in AV format and used as a control. Please refer to Chapter 4 for exact 

video specifications (see section 4.2.2). 

Task instructions and testing conditions were identical to those described in 

section 4.2.2. Prior to EEG testing, participants were trained on the AV stimulus to 

ensure familiarity with the speech content. During EEG testing, the same AV stimulus 

was presented 14 times as a control. This known video (Vk) was also presented in 

visual-only format 14 times, for which participants were instructed to lipread. The 

remaining 14 unknown videos (Vu) were presented once each in visual-only format. 

Participants were instructed to lipread the Vu stimuli even though they were not familiar 

with the audio content. Stimulus presentation order was randomised across conditions, 

within participants. During each 60-s trial, participants were required to respond to a 

target word with a button press. A different set of target words was used for each 

condition and the assignment of target words was counterbalanced across participants. 

Each target word occurred between 1 and 3 times per trial and there were 28 targets in 

total per condition. 

6.2.3 EEG Acquisition and Pre-Processing 

EEG data were acquired using the same high-density recording system and 

experimental protocol described in section 4.2.4. Pre-processing conducted offline, 

including filtering and artefact rejection, was identical to that described in section 4.2.4. 

6.2.4 Stimulus Reconstruction 

To obtain a quantitative measure of envelope tracking, stimulus reconstruction was 

conducted as described in Chapter 3 (see section 3.2.4). Decoders were optimised using 



114 

 

the same specifications described in Chapter 4 (see section 4.2.6). The objective, still, 

was to reconstruct the acoustic speech envelope, even though the participants did not 

hear it whilst lipreading. The rational here is that the temporal dynamics of the absent 

acoustic signal might still be reflected in auditory cortical areas due to correlated phasic 

variations projected from visual cortex (Luo et al., 2010). 

For each subject, a separate search of the ridge parameter was conducted (210, 

211,…, 230) such that reconstruction accuracy was optimised within each condition. The 

ridge value with the highest mean reconstruction accuracy over the 14 trials was chosen 

to prevent overfitting (see section 3.3.2). However, in the AV and Vk conditions, the 

same stimulus was repeated over the 14 trials, which may have caused overfitting. An 

additional analysis was included which removed any potential bias by using ‘grand-

average’ decoders as opposed to ‘subject-specific’ decoders (Crosse et al., 2013, 

O'Sullivan et al., 2015). Essentially, instead of conducting a leave-one-out cross-

validation on the 14 trials for each subject, it was conducted across participants for each 

particular trial. While unbiased, this approach yields a more generalised model and 

hence does not perform as well as a subject-specific model. 

6.2.5 Temporal Response Function Estimation 

To examine the relationship between the neural response and the presented stimulus, the 

temporal response function for each of the three conditions was calculated as described 

in Chapters 3 and 4 (see sections 3.2.1 and 4.2.8). Because the TRF mappings between 

the envelope and EEG were estimated in response to visual speech, there was no need to 

model the auditory periphery. Thus, speech envelopes were extracted using a straight 

Hilbert transform as described in Chapter 3 (see section 3.4.1). The subsequent 

envelope estimate was filtered below 25 Hz and downsampled to 512 Hz. 

6.2.6 Statistical Analyses 

All statistical analyses were conducted using one-way repeated-measures ANOVAs and 

Greenhouse-Geisser correction was applied where necessary. Post hoc comparisons 

were made using two-tailed paired t-tests, except where otherwise stated. All numerical 

values are reported as mean ± SD, unless otherwise stated. 
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6.3 Results 

6.3.1 Behaviour 

Twelve participants performed a target detection task during EEG recording. RTs were 

measured from the onset of auditory voicing and hits were counted for responses that 

were made 200–2000 ms after target onset. Condition had a significant impact on both 

hit rate (F(2,22) = 76.2, p < 0.001; Fig. 6.1A) and RT (F(1.3,14.7) = 24.2, p < 0.001; Fig. 

6.1B). Planned comparisons showed that participants were significantly more accurate 

in the Vk condition (74 ± 11%) compared to the Vu condition (33 ± 15%; t(11) = 9.2, p < 

0.001) and that RTs were faster for Vk (532 ± 123 ms) relative to Vu (787 ± 150 ms; 

t(11) = 7.0, p < 0.001). 

 

Figure 6.1: Behavioural performance. 

A, Mean hit rates for AV, Vk and Vu speech. B, Mean reaction times for all three 

conditions. Error bars indicate SEM across participants. Brackets indicate pairwise 

statistical comparisons (*p < 0.05, **p < 0.01, ***p < 0.001, NS = not significant). 

6.3.2 Impact of Lipreading on Envelope Tracking  

Stimulus reconstruction was applied using two different techniques. In the first, 

decoders were averaged across trials (within participants) as in Chapters 3 and 4. A one-

way ANOVA revealed that condition had a significant impact on reconstruction 

accuracy (F(2,22) = 29.5, p < 0.001; Fig. 6.2A). Critically, a post hoc comparison showed 

that reconstruction accuracy in the Vk condition (0.1 ± 0.03) was significantly higher 

than that of the Vu condition (0.08 ± 0.03; t(11) = 2.5, p < 0.05). Although care was 

taken to optimise regularization within each condition, it remains a possibility that the 
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conditions with repeated stimuli (AV and Vk) were somewhat biased. In the second 

analysis, this bias was removed by averaging the decoders across participants but within 

trials (Crosse et al., 2013, O'Sullivan et al., 2015). The main effect of condition on 

reconstruction accuracy was weakened by this approach (F(2,22) = 6.2, p < 0.01; Fig. 

6.2B). There was also no significant difference in reconstruction accuracy between the 

Vk condition (0.041 ± 0.02) and the Vu condition (0.044 ± 0.02; t(11) = 0.5, p > 0.05). 

While mean reconstruction accuracy values were significantly reduced across all three 

conditions, they were still above chance level (see Fig. 6.2B).  

 

Figure 6.2: Reconstruction of the speech envelope during lipreading.  

A, Mean reconstruction accuracy of decoders fit within participants, across trials. B, 

Mean reconstruction accuracy of decoders fit within trials, across participants. The 

shaded area represents the 95th percentile of chance level (permutation test). Error bars 

indicate SEM across participants. Brackets indicate pairwise statistical comparisons (*p 

< 0.05, **p < 0.01, ***p < 0.001, NS = not significant). 

6.3.3 Spatiotemporal Representation of Covert Speech 

The EEG TRF (Lalor and Foxe, 2010) contains two major response components: a 

negativity at ~80 ms (N1TRF) and a positivity at ~130 ms (P2TRF; see Fig. 6.3A). Fig. 

6.3B shows the topography of the N1TRF (left) and P2TRF (right) components. TRF SNR 

was defined as 0 to 250 ms (signal) and −100 to 0 ms (noise). Over fronto-temporal 

scalp, SNR was significantly lower in the Vk condition (1.3 ± 1 dB, mean ± SEM) and 

the Vu condition (0.45 ± 1 dB, mean ± SEM) compared to the AV condition (6.5 ± 1.9 

dB, mean ± SEM; F(2,22) = 4.9, p < 0.05; Fig. 6.3A, top) but was similar for all three 

over occipital scalp (F(2,22) = 0.07, p > 0.05; Fig. 6.3A, bottom). This was reflected in the 
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statistical cluster maps (Fig. 6.3C) which show significant activation across participants 

between 100–200 ms over parieto-occipital scalp in all three conditions and also over 

fronto-temporal scalp in the AV condition (running t-test: p < 0.05; Fig. 6.3C, top). 

 

Figure 6.3: TRF timecourse and topography.  

A, TRFs over left fronto-temporal scalp (top) and right parieto-occipital scalp (bottom). 

B, Topographies of N1TRF components (left) and P2TRF components (right). Black 

markers indicate channel locations plotted in A. C, Statistical cluster maps show where 

and when TRF amplitude is significantly different to zero (p < 0.05; F = frontal, C = 

central, P = parietal, O = occipital). 

6.3.4 Correspondence between TRF Dynamics 

To compare the responses of the visual conditions (Vk and Vu) to those of the control 

condition (AV), a series of Pearson’s correlations were performed on their TRFs 

between 0–250 ms. Fig. 6.4 shows the correlation coefficient (r) at each channel 

location. Channels where r is significantly greater than zero across participants are 

indicated by black markers (paired t-tests: p < 0.05). The comparison between Vk and 

Vu revealed a significant cluster of channels over occipital scalp (Fig. 6.4, right). 

Critically, there was also a cluster over left temporal scalp in the AV-Vk comparison 

(Fig. 6.4, left). The AV-Vu comparison, on the other hand, did not reveal any large 

clusters at channel locations where TRF activation was significant (Fig. 6.4, middle). 



118 

 

 

Figure 6.4: Comparison of TRF dynamics across conditions. 

Mean correlation coefficients (r) between the TRFs (0–250 ms) of each condition at 

each channel location. Black markers indicate channels where r is significantly greater 

than zero across participants (p < 0.05). 

6.4 Discussion 

In this chapter, we tested the hypothesis that, during silent lipreading, auditory cortical 

activity synthesises the dynamics of the unheard speech signal by phase locking to 

inputs from the visual system. Specifically, we showed that envelope tracking during 

silent lipreading may be influenced by how accurately the participant could lipread. We 

also demonstrated that the temporal profile of the neural response to silent lipreading 

was significantly correlated with that of AV speech over left temporal scalp, but only 

when lipreading was accurately perceived. 

6.4.1 Lipreading Accuracy and Envelope Tracking 

The results of the within-subject decoding analysis indicate that successful lipreading 

results in better envelope tracking. This was true when each decoder was optimised 

separately within each condition so as not to bias those with repeated stimuli. However, 

as stated earlier, we cannot be certain that the AV and Vk decoders were not somewhat 

biased as a result of overfitting. Future work could address this issue by assigning a 

different stimulus to each condition (counterbalanced across participants) and 

presenting each one an equal number of times to ensure equal bias. In the absence of 

such experimental manipulations, a within-trial analysis was carried out which removed 

any potential bias from the AV and Vk conditions. However, because this approach 

involved averaging decoders across participants, the decoders were grossly generalised; 

thus, reconstruction accuracies dropped considerably and the effect was no longer 

significant. This is likely caused by the inherent spatiotemporal variability in the neural 
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activity across the twelve participants (O'Sullivan et al., 2013). As such, it is difficult to 

definitively say whether there really was no difference between the Vk and Vu 

conditions, or whether the result was obscured by a floor effect. Furthermore, in support 

of the within-subject analysis, we demonstrated in Chapter 4 that envelope tracking was 

highly correlated with lipreading accuracy during visual-only speech (see Fig. 4.3C). 

6.4.2 Speech-Reading in Auditory and Visual Cortical Regions 

The TRF, which maps a continuous sensory input to the recorded neural response, was 

used as a direct measure of envelope tracking (Lalor and Foxe, 2010, Ding and Simon, 

2012b). We found that, although TRF SNR was relatively low over fronto-temporal 

scalp during silent lipreading, its temporal profile was significantly correlated with that 

of AV speech when lipreading was accurately perceived. This may suggest that accurate 

processing of visual speech features plays a role in envelope tracking, in line with work 

espousing an analysis-by-synthesis framework (Ding et al., 2014). This is also 

supported by numerous studies that have reported attentional effects on envelope 

tracking (e.g., Power et al., 2012, Ding and Simon, 2012a, Mesgarani and Chang, 2012). 

Indeed, it is important to consider the possibility that using the same stimulus in two of 

the three conditions may have had an impact on the similarity of the TRFs. In theory, 

this should not influence the correlation between TRFs because a TRF represents the 

impulse response to a unit change in stimulus intensity (Lalor and Foxe, 2010). This is 

supported by the fact that the TRFs over occipital scalp were very similar in the Vk and 

Vu conditions (see Fig. 6.3, right), even though different visual stimuli were presented. 

During silent lipreading, auditory cortex is not directly stimulated via the 

auditory nerve; hence TRF SNR over fronto-temporal scalp was reduced in the Vk and 

Vu conditions relative to the AV condition. This issue could be addressed in future 

work by presenting audio noise that is spectrally matched to the absent speech signal 

(Ding et al., 2014). This would directly stimulate the auditory nerve which may help 

boost auditory cortical responses. In other words, the visual cues could be used to 

‘shape’ the acoustic noise into the speech signal that is being synthesised. There was no 

difference in TRF SNR over occipital scalp because each condition was matched in 

terms of visual stimulus intensity. The regression analysis is sensitive to this occipital 

activation because instantaneous measures of motion during visual speech are highly 

correlated with the amplitude of the acoustic envelope (Chandrasekaran et al., 2009, 
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Grant and Seitz, 2000). However, in keeping with an analysis-by-synthesis model, this 

occipital activity may in fact reflect the processing of linguistic visual features in visual 

cortex as opposed to just motion tracking. It has been shown that every level of speech 

structure can be perceived visually, thus suggesting that there are visual modality-

specific representations of speech in visual brain areas and not just in auditory brain 

areas (see Bernstein and Liebenthal, 2014). 
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Chapter 7 General Discussion 

Within this body of research work, an intuitive and versatile SI toolbox has been 

developed for studying sensory processing in an electrophysiological context. A 

framework was established for studying multisensory integration in natural AV speech 

and was successfully implemented in three empirical studies. Moreover, this empirical 

work has yielded valuable insights into the neural basis of multisensory speech 

processing and, in particular, the adaptive spectrotemporal nature of AV speech 

integration. 

Specifically, it was demonstrated in Chapter 4 that cortical activity entrains to 

speech more accurately when a listener can also see the speaker’s face, despite the 

speech content being perfectly audible. Multisensory integration was observed at the 

syllabic timescale (2–6 Hz) and occurred at a late stage of speech processing (100–250 

ms). It was also demonstrated that, during silent lipreading, entrainment to the dynamics 

of the absent acoustic signal (through the use of visual speech cues) was predictive of 

behavioural performance, suggesting that this process reflects higher-level speech 

processing and not merely motion tracking. Interestingly, envelope tracking was 

inhibited by AV stimuli that were incongruent both temporally and contextually. This 

effect is likely modulated by an overall reduction in crossmodal attention.  

In Chapter 5, it was shown that neural tracking of the envelope during AV 

speech-in-noise conforms to the principle of inverse effectiveness. While envelope 

tracking during audio-only speech was greatly reduced by background noise at an early 

processing stage, it was markedly restored by the addition of visual speech input. In 

background noise, multisensory integration occurred at much lower frequencies and was 

shown to predict the multisensory gain in behavioural performance at a time lag of ~250 

ms. Critically, we demonstrated that inverse effectiveness in natural audiovisual speech 

processing relies on crossmodal integration over long (>300 ms) temporal windows. 
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These results suggest that AV speech is integrated at a more coarse-grained (i.e., higher) 

linguistic level in adverse hearing conditions. Furthermore, neuronal multisensory 

interactions were predominantly left-lateralised for speech-in-noise. Given that speech 

processing becomes more left-lateralised further up the auditory hierarchy, this finding 

suggests that AV speech is integrated at a higher linguistic level in adverse listening 

environments. Together, my findings indicate that disparate integration mechanisms 

contribute to audiovisual speech processing in adverse hearing conditions over multiple 

stages. 

In Chapter 6, EEG data recorded during silent lipreading suggest that more 

accurate speech-reading leads to improved global entrainment to the speech signal, in 

line with our findings in Chapter 4. Moreover, successful lipreading appeared to 

modulate cortical activity over left temporal scalp (i.e., near auditory cortex) and this 

activation was shown to reflect the dynamics of the absent acoustic speech envelope. 

We contend that silent lipreading may invoke phasic variations in auditory cortex 

reflective of the absent speech signal, akin to a synthesis of the covert auditory 

information. It is likely that such a process would aid cortical entrainment to the 

acoustic speech input in a multisensory context. 

The rest of this chapter will focus on more general discussion that relates to the 

thesis as whole. Specifically, different theoretical frameworks of AV speech integration 

are discussed in the context of the thesis work, as well as the existing literature. The 

chapter concludes with discussion on the significance of this work and its future 

directions in scientific and clinical research. 

7.1 Temporal Coherence as a Mechanism in AV Speech 

Processing 

It has been suggested that the integration of auditory and visual speech may be driven 

by the temporal coherence of crossmodal information (Zion-Golumbic et al., 2013a). 

Computational and theoretical perspectives on stream segregation postulate that multi-

feature auditory sources are segregated into perceptual objects based on the temporal 

coherence of the neuronal responses to the various acoustic features (Elhilali et al., 

2009, Shamma et al., 2011, Ding and Simon, 2012a). Recently, Ding et al. (2014) 

demonstrated that cortical entrainment to the speech envelope does not reflect encoding 

of the envelope per se, as it relies on the spectrotemporal fine structure of speech. They 
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suggest that it may instead index an analysis-by-synthesis mechanism, whereby 

spectrotemporal features that are correlated with the envelope are encoded during the 

synthesis phase (for a review, see Ding and Simon, 2014). In keeping with previous 

work espousing a correlated mode of AV speech (Campbell, 2008), the results 

presented in Chapter 4 indicate that visual speech cues, being correlated with the 

dynamics of the acoustic speech envelope, results in the visual signal being bound to the 

auditory features to form a multisensory object. In support of this notion, Rahne et al. 

(2008) demonstrated that two different tonal sequences separated by frequency were 

reliably perceived as one integrated stream when the accompanying visual stimulus was 

temporally coherent with both of them.  

7.2 Brain Regions and Neural Mechanisms in AV Speech 

Processing 

In terms of the specific neural populations that may facilitate the binding of temporally 

coherent visual and auditory speech, one candidate region is the superior temporal 

sulcus, which, as mentioned above, has previously been linked with multisensory object 

formation (see section 2.4.3; Beauchamp et al., 2004, Kayser and Logothetis, 2009, 

Calvert and Campbell, 2003). Indeed recent research has provided evidence for neural 

computations in this area that underpin auditory figure-ground segregation using stimuli 

that display periods of temporal coherence across multiple frequency channels (Teki et 

al., 2011). That the results presented here may derive from emergent activity during AV 

speech could suggest a role for the supramarginal and angular gyrus (Bernstein et al., 

2008), although this particular study found these effects only in left hemisphere. Of 

course, in addition to such putatively multisensory regions, it remains a possibility that 

information pertaining to the timing of crossmodal stimuli could be projected to classic 

sensory-specific regions in a thalamocortical feedforward manner (Foxe and Schroeder, 

2005, Besle et al., 2008) or laterally from other sensory-specific regions (Schroeder et 

al., 2008, Arnal et al., 2009, Besle et al., 2008). The long latencies of the multisensory 

effects presented in Chapter 4 may make this explanation less likely however, at least in 

the context of a correlated mode of AV speech. 

A possible neural mechanism recently proposed also relates to the correlation 

between the speech envelope and visual motion. This theory suggests that anticipatory 

visual motion could produce phasic variations in visual cortical activity that are relayed 
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to auditory cortex and that correlate with the amplitude envelope of the subsequent 

acoustic speech signal. This notion fits with MEG work which has demonstrated that 

the phase of oscillations in auditory cortex tracks the temporal structure of continuous 

visual speech (Luo et al., 2010) and fMRI work which has demonstrated that the source 

of the visual facilitation of auditory speech processing arises from motion-sensitive 

cortex (Arnal et al., 2009). Another suggestion for how visual speech may impact upon 

auditory speech processing is that this interaction may be driven by relatively discrete 

visual landmarks (e.g., the onset of facial articulatory movements) that elicit a phase-

reset of ongoing low-frequency oscillations in auditory cortex, such that the arrival of 

the corresponding auditory syllable coincides with a high excitability phase of the 

auditory neuronal population (Kayser et al., 2008, Schroeder et al., 2008). The efficacy 

of such a mechanism in the context of continuous speech seems like it would necessitate 

prior knowledge about incoming information at the phonetic level. This process could in 

part be mediated by preceding visual cues which could elicit hierarchically organised 

phasic variations in visual cortex, continually updating auditory cortex prior to the 

arrival of the corresponding acoustic segment (see section 2.4.4). 

7.3 An Analysis-By-Synthesis Perspective of Visual 

Speech Processing 

In Chapter 4, it was demonstrated that it is possible to reconstruct an estimate of the 

acoustic envelope from visual speech data with accuracy well above chance level (Fig. 

4.3B). Although the acoustic envelope was not explicitly encoded in the neural data 

during visual speech, it may still be inferred if some correlated feature of the visual 

speech was encoded (Mesgarani et al., 2009), as discussed above. One possible 

explanation is that instantaneous measures of motion during visual speech are highly 

correlated with the amplitude of the acoustic envelope (Chandrasekaran et al., 2009). 

However, in keeping with an analysis-by-synthesis framework, the data in Chapter 6 

suggest that this occipital activity may in fact reflect the processing of higher-level 

(phoneme-level) visual speech features in visual cortex in addition to just motion 

tracking. It has been demonstrated that every level of speech structure can be perceived 

visually, thus suggesting that there are visual modality-specific representations of 

speech in visual brain areas and not just in auditory brain areas (for a review, see 

Bernstein and Liebenthal, 2014). Furthermore, a strong correlation was observed 
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between behaviour and envelope tracking in the visual speech data (Fig. 4.3C), similar 

to that recently demonstrated in auditory speech-in-noise (Ding and Simon, 2013). As 

such, we tentatively suggest that lipreading accuracy is reflected in the neural tracking 

of the envelope, and that this tracking process includes the synthesis of visual speech 

tokens in visual-specific brain regions. While the challenges associated with using 

stimulus reconstruction to tease this issue apart have been outlined above, the use of 

different paradigms within our framework may yet prove enlightening. 

7.4 Multistage Integration Model 

As mentioned earlier, a growing body of evidence indicates that multisensory 

integration likely occurs over multiple temporal stages during AV speech processing 

(van Wassenhove et al., 2005, Eskelund et al., 2011, Baart et al., 2014, Schwartz et al., 

2004, Peelle and Sommers, 2015). The findings presented in Chapters 4 and 5 and the 

findings of other studies will be interpreted within the context of such multistage 

integration models and, in particular, the role of prediction and constraint as early and 

late integration mechanisms respectively (Peelle and Sommers, 2015). 

The notion that an early integration mechanism increases auditory cortical 

sensitivity seems highly relevant in the context of speech-in-noise. Here, we 

demonstrated that neural tracking of audio-only speech in noise was significantly 

diminished at time lags between 0–95 ms, suggesting that auditory cortical sensitivity 

was reduced at an early stage of speech processing. Although the current data indicate 

that envelope tracking was restored by the addition of visual speech input at this early 

processing stage, because we include the entire head during the reconstruction analysis, 

it is difficult to say whether this is the result of increased auditory cortical sensitivity or 

rather contributions from multisensory areas such as STS or visual cortical areas. 

However, a theory that supports this notion of an early increase in auditory cortical 

sensitivity is that of cross-sensory phase-resetting of auditory cortex (Kayser et al., 

2008, Schroeder et al., 2008, Mercier et al., 2015, Arnal et al., 2009, Lakatos et al., 

2007). While such a mechanism can be difficult to reconcile in the context of extended 

vocalizations given that the time lag between visual and auditory speech is so variable 

(Schwartz and Savariaux, 2014), this can somewhat be explained by the temporal 

correspondence between the hierarchical organization of speech and that of the 

rhythmic oscillations in primary auditory cortex (Schroeder et al., 2008, Giraud and 
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Poeppel, 2012). While intuitively, it may seem more likely that auditory cortex would 

be primed by continuous visual input in a tonic manner, the idea of phasic crossmodal 

priming is supported by the fact that the temporal coherence between the A and V 

streams is critical for enhanced neural tracking during AV speech (Crosse et al., 2015a). 

This is also supported by accounts of enhanced phasic coordination across auditory and 

visual cortices for matched versus mismatched AV stimuli (Luo et al., 2010). 

Evidence of a later integration stage that constrains lexical selection can also be 

found in numerous electrophysiological studies. Both TRF and ERP measures have 

revealed emergent multisensory interaction effects in the form of reduced component 

amplitude (Crosse et al., 2015a, Besle et al., 2004a, Bernstein et al., 2008, van 

Wassenhove et al., 2005). This reduction in cortical activation may well reflect a 

mechanism that constrains lexical computations based on the content of preceding 

visual information. Furthermore, the emergent interaction effect reported in Bernstein et 

al. (2008) was observed in left supramarginal and angular gyrus, in line with our left-

dominant MSI effect. This left-bias could be explained by the fact that our data suggest 

that we integrate AV speech at a higher linguistic level in noise, and it has been 

suggested that speech processing becomes more left-lateralized further up the auditory 

hierarchy (Peelle, 2012). Both our single-lag analysis and temporal window analysis 

further suggest that integrating later temporal information contributes to AV speech 

processing. However, the most compelling evidence that is provided in favour of a late 

integration stage is the correspondence that was observed between the behavioural and 

neural measures at 220–250 ms. Given the likelihood that both of these measures reflect 

integration at the lexical-semantic level fits well with current views on the timecourse of 

such linguistic processing (Salmelin, 2007, Picton, 2013). 

In summary, our results support the theory that visual speech helps increase 

auditory cortical sensitivity early on and constrains lexical processing of an acoustic 

utterance at a late computational stage. We contend that inverse effectiveness, which 

likely occurs as a result of multiple integration mechanisms, relies heavily on our ability 

to integrate crossmodal information over longer temporal windows during AV speech-

in-noise. 
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7.5 Contributions and Future Directions 

The present thesis has established an SI framework for investigating multisensory 

integration in the context of natural, continuous AV speech and, in doing so, yielded 

several significant insights into the neural basis of AV speech processing. Aside from 

furthering our understanding of how the human brain integrates AV speech, this 

naturalistic approach may yet prove useful in research with clinical populations in 

which altered multisensory processing has been reported, e.g., dyslexia (Hairston et al., 

2005), ASD (Brandwein et al., 2013, Stevenson et al., 2014b), and schizophrenia (Ross 

et al., 2007b, Stekelenburg et al., 2013). In particular, neurodevelopmental disorders 

such as ASD, which need to be studied in young, pre-adolescent cohorts, would 

certainly benefit from a framework that facilitates the use of natural, engaging stimuli in 

an experimental context. Furthermore, impaired multisensory processing has been 

shown to be most pronounced in children with ASD for more complex stimuli such as 

AV speech (see section 1.1; Bebko et al., 2006). Future work could apply the SI 

framework developed in this thesis to study natural AV speech processing in children 

with ASD using AV audiobooks of children’s fiction. From a basic scientific 

perspective, such work could enable researchers to investigate whether multisensory 

integration is impaired in ASD populations at an early or late stage of speech 

processing. This could not only further our understanding of the disorder, but inform 

better diagnosis and treatment of ASD. 

 Relating neural measures of multisensory integration to behavioural measures is 

an area that has gained attention due to its potential clinical utility. Previous work has 

tried to relate behavioural measures of multisensory integration, such as RT, to neural 

amplitude measures of integration (Stevenson et al., 2012a). A more recent clinical 

study reported that EEG indices of atypical multisensory processing were associated 

with ASD symptom severity (Brandwein et al., 2015). In Chapter 5, it was demonstrated 

that the neural index of multisensory integration, developed as part of this research 

work, was predictive of the multisensory gain in behaviour. This result, if replicable in 

children, would certainly have important implications in ASD research. Future work 

could look at refining this neural index of MSI and examine its utility as a biomarker for 

determining ASD symptom severity and/or monitoring developmental outcome in 

response to different therapeutic intervention strategies. 
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In Chapters 4 and 6, it was demonstrated that an estimate of the auditory speech 

envelope could be reconstructed from EEG recorded during silent lipreading with 

accuracy above chance level. These findings could have implications for the design of 

future BCI technologies that aim to decode internal speech from the user’s neural 

recordings. As discussed in the previous chapter, decoding extended passages of covert 

speech has successfully been demonstrated using intracranial recordings such as ECoG 

(Martin et al., 2014). Other intracranial BCI approaches have sought to decode 

imagined speech at the level of phonemes, vowels and words (Guenther et al., 2009, 

Leuthardt et al., 2011, Kellis et al., 2010, Martin et al., 2016). The findings presented 

here indicate that EEG could provide a non-invasive, cost-effective solution to decoding 

imagined thoughts and could be further optimised by utilizing the natural statistics of 

visual speech input. Indeed, such technology would also have major implications for 

clinical research in populations that are unable to effectively communicate due to 

suffering from what’s known as a ‘locked-in syndrome’, e.g., amyotrophic lateral 

sclerosis (Lou Gehrig's disease), traumatic brain injuries and spinal cord injuries. 

Moreover, the approach of speech decoding would provide a more naturalistic and user-

friendly way for patients to communicate their thoughts compared to traditional EEG-

based BCI methods that have primarily relied on discrete brain components that can 

only be elicited to specific target stimuli (Oken et al., 2014, Lesenfants et al., 2014, 

Combaz et al., 2013) – such methods can be tedious, time-consuming and ineffective 

(for a review, see Machado et al., 2010). 

The research presented in this thesis highlights the utility of the mTRF Toolbox 

for research on questions relevant to AV speech processing and suggests potential 

applications to research on several clinical questions, including ASD and BCI 

technology. This thesis also reflects how the field of multisensory integration is 

expanding and demonstrates that MSI can be studied in a more naturalistic and 

ecologically valid manner. This is of great importance if we are to further our 

understanding of how the brain integrates multisensory information and, more 

generally, how it functions (or dysfunctions) in everyday situations. 
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Appendices 

Appendix A 

 

Figure A1: Spectral characteristics of the original speech signal and the linear predictive 

model. 

A, Power spectra of the original (top) and modelled (bottom) signals. B, Power spectral 

density of the original (top) and modelled (bottom) signals. The noise used to mask the 

speech signal was generated using a 50th order forward linear predictive model whose 

coefficients were estimated based on the original speech signal. This technique ensured 

that each frequency band was masked in an even manner. In other words, the spectrum 

of the noise was weighted according to the power in each frequency band in the speech 

signal. Hence, there is a clear correspondence between the spectral shape of the original 

and modelled signals. 
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Appendix B 

function [model,t,c] = mTRFtrain(stim,resp,fs,map,tmin,tmax,lambda) 

%mTRFtrain mTRF Toolbox training function. 

%   MODEL = MTRFTRAIN(STIM,RESP,FS,MAP,TMIN,TMAX,LAMBDA) performs ridge 

%   regression on the stimulus property STIM and the neural response data 

%   RESP to solve for their linear mapping function MODEL. Pass in MAP==1 

%   to map in the forward direction or MAP==-1 to map backwards. The 

%   sampling frequency FS should be defined in Hertz and the time lags 

%   should be set in milliseconds between TMIN and TMAX. Regularisation is 

%   controlled by the ridge parameter LAMBDA. 

% 

%   [...,T,C] = MTRFTRAIN(...) also returns the vector of time lags T for 

%   plotting MODEL and the regression constant C for absorbing any bias 

%   when testing MODEL. 

% 

%   Inputs: 

%   stim   - stimulus property (time by features) 

%   resp   - neural response data (time by channels) 

%   fs     - sampling frequency (Hz) 

%   map    - mapping direction (forward==1, backward==-1) 

%   tmin   - minimum time lag (ms) 

%   tmax   - maximum time lag (ms) 

%   lambda - ridge parameter 

% 

%   Outputs: 

%   model  - linear mapping function (MAP==1: feats by lags by chans, 

%            MAP==-1: chans by lags by feats) 

%   t      - vector of time lags used (ms) 

%   c      - regression constant 

% 

%   See README for examples of use. 

% 

%   See also LAGGEN MTRFPREDICT MTRFCROSSVAL MTRFMULTICROSSVAL. 

  

%   References: 

%      [1] Lalor EC, Pearlmutter BA, Reilly RB, McDarby G, Foxe JJ (2006). 

%          The VESPA: a method for the rapid estimation of a visual evoked 

%          potential. NeuroImage, 32:1549-1561. 

%      [2] Lalor EC, Power AP, Reilly RB, Foxe JJ (2009). Resolving precise 

%          temporal processing properties of the auditory system using 

%          continuous stimuli. Journal of Neurophysiology, 102(1):349-359. 

  

%   Author: Edmund Lalor, Michael Crosse, Giovanni Di Liberto 

%   Lalor Lab, Trinity College Dublin, IRELAND 

%   Email: edmundlalor@gmail.com 

%   Website: http://lalorlab.net/ 

%   April 2014; Last revision: 08 January 2016 

  

% Define x and y 

if tmin > tmax 

    error('Value of TMIN must be < TMAX') 

end 

if map == 1 

    x = stim; 

    y = resp; 

elseif map == -1 

    x = resp; 

    y = stim; 

    [tmin,tmax] = deal(tmax,tmin); 

else 

    error('Value of MAP must be 1 (forward) or -1 (backward)') 

end 

clear stim resp 

  

% Convert time lags to samples 

tmin = floor(tmin/1e3*fs*map); 

tmax = ceil(tmax/1e3*fs*map); 

  

% Generate lag matrix 

X = [ones(size(x)),lagGen(x,tmin:tmax)]; 
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% Set up regularisation 

dim = size(X,2); 

if size(x,2) == 1 

    d = 2*eye(dim,dim);d([1,end]) = 1; 

    u = [zeros(dim,1),eye(dim,dim-1)]; 

    l = [zeros(1,dim);eye(dim-1,dim)]; 

    M = d-u-l; 

else 

    M = eye(dim,dim); 

end 

  

% Calculate model 

model = (X'*X+lambda*M)\(X'*y); 

  

% Format outputs 

c = model(1:size(x,2),:); 

model = reshape(model(size(x,2)+1:end,:),size(x,2),length(tmin:tmax),size(y,2)); 

t = (tmin:tmax)/fs*1e3; 

  

end 
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Appendix C 

function [pred,r,p,mse] = mTRFpredict(stim,resp,model,fs,map,tmin,tmax,c) 

%mTRFpredict mTRF Toolbox prediction function. 

%   PRED = MTRFPREDICT(STIM,RESP,MODEL,FS,MAP,TMIN,TMAX,C) performs a 

%   convolution of the stimulus property STIM or the neural response data 

%   RESP with their linear mapping function MODEL to solve for the 

%   prediction PRED. Pass in MAP==1 to predict RESP or MAP==-1 to predict 

%   STIM. The sampling frequency FS should be defined in Hertz and the time 

%   lags should be set in milliseconds between TMIN and TMAX. The 

%   regression constant C absorbs any bias in MODEL. 

% 

%   [...,R,P,MSE] = MTRFPREDICT(...) also returns the correlation 

%   coefficients R between the original and predicted values, the 

%   corresponding p-values P and the mean squared errors MSE. 

% 

%   Inputs: 

%   stim   - stimulus property (time by features) 

%   resp   - neural response data (time by channels) 

%   model  - linear mapping function (MAP==1: feats by lags by chans, 

%            MAP==-1: chans by lags by feats) 

%   fs     - sampling frequency (Hz) 

%   map    - mapping direction (forward==1, backward==-1) 

%   tmin   - minimum time lag (ms) 

%   tmax   - maximum time lag (ms) 

%   c      - regression constant 

% 

%   Outputs: 

%   pred   - prediction (MAP==1: time by chans, MAP==-1: time by feats) 

%   r      - correlation coefficients 

%   p      - p-values of the correlations 

%   mse    - mean squared errors 

% 

%   See README for examples of use. 

% 

%   See also LAGGEN MTRFTRAIN MTRFCROSSVAL MTRFMULTICROSSVAL. 

  

%   Author: Michael Crosse, Giovanni Di Liberto 

%   Lalor Lab, Trinity College Dublin, IRELAND 

%   Email: edmundlalor@gmail.com 

%   Website: http://lalorlab.net/ 

%   April 2014; Last revision: 08 January 2016 

  

% Define x and y 

if tmin > tmax 

    error('Value of TMIN must be < TMAX') 

end 

if map == 1 

    x = stim; 

    y = resp; 

elseif map == -1 

    x = resp; 

    y = stim; 

    [tmin,tmax] = deal(tmax,tmin); 

else 

    error('Value of MAP must be 1 (forward) or -1 (backward)') 

end 

  

% Convert time lags to samples 

tmin = floor(tmin/1e3*fs*map); 

tmax = ceil(tmax/1e3*fs*map); 

  

% Generate lag matrix 

X = [ones(size(x)),lagGen(x,tmin:tmax)]; 

  

% Calculate prediction 

model = [c;reshape(model,size(model,1)*size(model,2),size(model,3))]; 

pred = X*model; 

  

% Calculate accuracy 

if ~isempty(y) 
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    r = zeros(1,size(y,2)); 

    p = zeros(1,size(y,2)); 

    mse = zeros(1,size(y,2)); 

    for i = 1:size(y,2) 

        [r(i),p(i)] = corr(y(:,i),pred(:,i)); 

        mse(i) = mean((y(:,i)-pred(:,i)).^2); 

    end 

end 

  

end 
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Appendix D 

function [r,p,mse,pred,model] = mTRFcrossval(stim,resp,fs,map,tmin,tmax,lambda) 

%mTRFcrossval mTRF Toolbox cross-validation function. 

%   [R,P,MSE] = MTRFCROSSVAL(STIM,RESP,FS,MAP,TMIN,TMAX,LAMBDA) performs 

%   leave-one-out cross-validation on the set of stimuli STIM and the 

%   neural responses RESP for the range of ridge parameter values LAMBDA. 

%   As a measure of performance, it returns the correlation coefficients R 

%   between the predicted and original signals, the corresponding p-values 

%   P and the mean squared errors MSE. Pass in MAP==1 to map in the forward  

%   direction or MAP==-1 to map backwards. The sampling frequency FS should  

%   be defined in Hertz and the time lags should be set in milliseconds  

%   between TMIN and TMAX. 

% 

%   [...,PRED,MODEL] = MTRFCROSSVAL(...) also returns the predictions PRED 

%   and the linear mapping functions MODEL. 

% 

%   Inputs: 

%   stim   - set of stimuli [cell{1,trials}(time by features)] 

%   resp   - set of neural responses [cell{1,trials}(time by channels)] 

%   fs     - sampling frequency (Hz) 

%   map    - mapping direction (forward==1, backward==-1) 

%   tmin   - minimum time lag (ms) 

%   tmax   - maximum time lag (ms) 

%   lambda - ridge parameter values 

% 

%   Outputs: 

%   r      - correlation coefficients 

%   p      - p-values of the correlations 

%   mse    - mean squared errors 

%   pred   - prediction [MAP==1: cell{1,trials}(lambdas by time by chans), 

%            MAP==-1: cell{1,trials}(lambdas by time by feats)] 

%   model  - linear mapping function (MAP==1: trials by lambdas by feats by 

%            lags by chans, MAP==-1: trials by lambdas by chans by lags by 

%            feats) 

% 

%   See README for examples of use. 

% 

%   See also LAGGEN MTRFTRAIN MTRFPREDICT MTRFMULTICROSSVAL. 

  

%   Author: Michael Crosse 

%   Lalor Lab, Trinity College Dublin, IRELAND 

%   Email: edmundlalor@gmail.com 

%   Website: http://lalorlab.net/ 

%   April 2014; Last revision: 31 May 2016 

  

% Define x and y 

if tmin > tmax 

    error('Value of TMIN must be < TMAX') 

end 

if map == 1 

    x = stim; 

    y = resp; 

elseif map == -1 

    x = resp; 

    y = stim; 

    [tmin,tmax] = deal(tmax,tmin); 

else 

    error('Value of MAP must be 1 (forward) or -1 (backward)') 

end 

clear stim resp 

  

% Convert time lags to samples 

tmin = floor(tmin/1e3*fs*map); 

tmax = ceil(tmax/1e3*fs*map); 

  

% Set up regularisation 

dim1 = size(x{1},2)*length(tmin:tmax)+size(x{1},2); 

dim2 = size(y{1},2); 

model = zeros(numel(x),numel(lambda),dim1,dim2); 

if size(x{1},2) == 1 
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    d = 2*eye(dim1,dim1); d([1,end]) = 1; 

    u = [zeros(dim1,1),eye(dim1,dim1-1)]; 

    l = [zeros(1,dim1);eye(dim1-1,dim1)]; 

    M = d-u-l; 

else 

    M = eye(dim1,dim1); 

end 

  

% Training 

X = cell(1,numel(x)); 

for i = 1:numel(x) 

    % Generate lag matrix 

    X{i} = [ones(size(x{i})),lagGen(x{i},tmin:tmax)]; 

    % Calculate model for each lambda value 

    for j = 1:length(lambda) 

        model(i,j,:,:) = (X{i}'*X{i}+lambda(j)*M)\(X{i}'*y{i}); 

    end 

end 

  

% Testing 

pred = cell(1,numel(x)); 

r = zeros(numel(x),numel(lambda),dim2); 

p = zeros(numel(x),numel(lambda),dim2); 

mse = zeros(numel(x),numel(lambda),dim2); 

for i = 1:numel(x) 

    pred{i} = zeros(numel(lambda),size(y{i},1),dim2); 

    % Define training trials 

    trials = 1:numel(x); 

    trials(i) = []; 

    % Perform cross-validation for each lambda value 

    for j = 1:numel(lambda) 

        % Calculate prediction 

        pred{i}(j,:,:) = X{i}*squeeze(mean(model(trials,j,:,:))); 

        % Calculate accuracy 

        for k = 1:dim2 

            [r(i,j,k),p(i,j,k)] = corr(y{i}(:,k),squeeze(pred{i}(j,:,k))'); 

            mse(i,j,k) = mean((y{i}(:,k)-squeeze(pred{i}(j,:,k))').^2); 

        end 

    end 

end 

  

end 
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Appendix E 

function [r,p,mse,pred,model] = 

mTRFmulticrossval(stim,resp,resp1,resp2,fs,tmin,tmax,lambda1,lambda2) 

%mTRFmulticrossval mTRF Toolbox multisensory cross-validation function. 

%   [R,P,MSE] = MTRFMULTICROSSVAL(STIM,RESP,RESP1,RESP2,FS,MAP,TMIN,TMAX, 

%   LAMBDA1,LAMBDA2) performs leave-one-out cross-validation of an 

%   additive model for a multisensory dataset as follows: 

%   1. Separate unisensory models are calculated using the set of stimuli 

%      STIM and unisensory neural responses RESP1 and RESP2 for the range 

%      of ridge parameter values LAMBDA1 and LAMBDA2 respectively. 

%   2. The algebraic sums of the unisensory models for every combination of 

%      LAMBDA1 and LAMBDA2 are calculated, i.e., the additive models. 

%   3. The additive models are validated by testing them on the set of 

%      multisensory neural responses RESP. 

%   As a measure of performance, it returns the correlation coefficients R 

%   between the predicted and original signals, the corresponding p-values 

%   P and the mean squared errors MSE. The time lags T should be set in 

%   milliseconds between TMIN and TMAX and the sampling frequency FS should 

%   be defined in Hertz. Pass in MAP==1 to map in the forward direction or 

%   MAP==-1 to map backwards. The neural responses in all three sensory 

%   conditions must have been recorded for the same set of stimuli STIM. 

% 

%   [...,PRED,MODEL] = MTRFMULTICROSSVAL(...) also returns the predictions 

%   PRED and the linear mapping functions MODEL. 

% 

%   Inputs: 

%   stim   - set of stimuli [cell{1,trials}(time by features)] 

%   resp   - set of multisensory neural responses [cell{1,trials}(time by channels)] 

%   resp1  - set of unisensory 1 neural responses [cell{1,trials}(time by channels)] 

%   resp2  - set of unisensory 2 neural responses [cell{1,trials}(time by channels)] 

%   fs     - sampling frequency (Hz) 

%   map    - mapping direction (forward==1, backward==-1) 

%   tmin   - minimum time lag (ms) 

%   tmax   - maximum time lag (ms) 

%   lambda1- unisensory 1 ridge parameter values 

%   lambda2- unisensory 2 ridge parameter values 

% 

%   Outputs: 

%   r      - correlation coefficients 

%   p      - p-values of the correlations 

%   mse    - mean squared errors 

%   pred   - prediction [MAP==1: cell{1,trials}(lambdas1 by lambdas2 by 

%            time by chans), MAP==-1: cell{1,trials}(lambdas1 by lambdas2 

%            by time by feats)] 

%   model  - linear mapping function (MAP==1: trials by lambdas1 by 

%            lambdas2 by feats by lags by chans, MAP==-1: trials by 

%            lambdas1 by lambdas2 by chans by lags by feats) 

% 

%   See README for examples of use. 

% 

%   See also LAGGEN MTRFTRAIN MTRFPREDICT MTRFCROSSVAL. 

  

%   Author: Michael Crosse 

%   Lalor Lab, Trinity College Dublin, IRELAND 

%   Email: edmundlalor@gmail.com 

%   Website: http://lalorlab.net/ 

%   April 2014; Last revision: 01 June 2016 

  

% Define x and y 

if tmin > tmax 

    error('Value of TMIN must be < TMAX') 

end 

if map == 1 

    x = stim; 

    y = resp; 

elseif map == -1 

    x = resp; 

    y = stim; 

    [tmin,tmax] = deal(tmax,tmin); 

else 
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    error('Value of MAP must be 1 (forward) or -1 (backward)') 

end 

clear stim resp 

  

% Convert time lags to samples 

tmin = floor(tmin/1e3*fs*map); 

tmax = ceil(tmax/1e3*fs*map); 

  

% Set up regularisation 

dim1 = size(x{1},2)*length(tmin:tmax)+size(x{1},2); 

dim2 = size(y{1},2); 

model = zeros(numel(x),numel(lambda1),numel(lambda2),dim1,dim2); 

if size(x{1},2) == 1 

    d = 2*eye(dim1,dim1); d([1,end]) = 1; 

    u = [zeros(dim1,1),eye(dim1,dim1-1)]; 

    l = [zeros(1,dim1);eye(dim1-1,dim1)]; 

    M = d-u-l; 

else 

    M = eye(dim1,dim1); 

end 

  

% Training 

X = cell(1,numel(x)); 

for i = 1:numel(x) 

    % Generate lag matrix 

    X{i} = [ones(size(x{i})),lagGen(x{i},tmin:tmax)]; 

    if map == 1 

        % Calculate unisensory models for each lambda value 

        model1 = zeros(numel(lambda1),dim1,dim2); 

        for j = 1:numel(lambda1) 

            model1(j,:,:) = (X'*X+lambda1(j)*M)\X'*resp1{i}; 

        end 

        model2 = zeros(numel(lambda2),dim1,dim2); 

        for j = 1:numel(lambda2) 

            model2(j,:,:) = (X'*X+lambda2(j)*M)\X'*resp2{i}; 

        end 

    elseif map == -1 

        % Generate lag matrices 

        X1 = [ones(size(resp1{i})),lagGen(resp1{i},tmin:tmax)]; 

        X2 = [ones(size(resp2{i})),lagGen(resp2{i},tmin:tmax)]; 

        % Calculate unisensory models for each lambda value 

        model1 = zeros(numel(lambda1),dim1,dim2); 

        for j = 1:numel(lambda1) 

            model1(j,:,:) = (X1'*X1+lambda1(j)*M)\X1'*y{i}; 

        end 

        model2 = zeros(numel(lambda2),dim1,dim2); 

        for j = 1:numel(lambda2) 

            model2(j,:,:) = (X2'*X2+lambda2(j)*M)\X2'*y{i}; 

        end 

        clear X1 X2 

    end 

    % Sum unisensory models for every combination of lambda values 

    for j = 1:numel(lambda1) 

        for k = 1:numel(lambda2) 

            model(i,j,k,:,:) = model1(j,:,:)+model2(k,:,:); 

        end 

    end 

    clear model1 model2 

end 

clear resp1 resp2 

  

% Testing 

pred = cell(1,numel(x)); 

r = zeros(numel(x),numel(lambda1),numel(lambda2),dim2); 

p = zeros(numel(x),numel(lambda1),numel(lambda2),dim2); 

mse = zeros(numel(x),numel(lambda1),numel(lambda2),dim2); 

for i = 1:numel(x) 

    pred{i} = zeros(numel(lambda1),numel(lambda2),size(y{i},1),dim2); 

    % Define training trials 

    trials = 1:numel(x); 

    trials(i) = []; 

    % Perform cross-validation for every combination of lambda values 

    for j = 1:numel(lambda1) 

        for k = 1:numel(lambda2) 

            % Calculate prediction 

            pred{i}(j,k,:,:) = X{i}*squeeze(mean(model(trials,j,k,:,:))); 

            % Calculate accuracy 
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            for l = 1:dim2 

                [r(i,j,k,l),p(i,j,k,l)] = corr(y{i}(:,l),squeeze(pred{i}(j,k,:,l))'); 

                mse(i,j,k,l) = mean((y{i}(:,l)-squeeze(pred{i}(j,k,:,l))').^2); 

            end 

        end 

    end 

end 

  

end 
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Appendix F 

function xLag = lagGen(x,lags) 

%lagGen Lag generator. 

%   [XLAG] = LAGGEN(X,LAGS) returns the matrix XLAG containing the lagged 

%   time series of X for a range of time lags given by the vector LAGS. If 

%   X is multivariate, LAGGEN will concatenate the features for each lag 

%   along the columns of XLAG. 

% 

%   Inputs: 

%   x    - vector or matrix of time series data (time by features) 

%   lags - vector of integer time lags (samples) 

% 

%   Outputs: 

%   xLag - matrix of lagged time series data (time by lags*feats) 

% 

%   See README for examples of use. 

% 

%   See also MTRFTRAIN MTRFPREDICT MTRFCROSSVAL MTRFMULTICROSSVAL. 

  

%   Author: Michael Crosse 

%   Lalor Lab, Trinity College Dublin, IRELAND 

%   Email: edmundlalor@gmail.com 

%   Website:  

 

://lalorlab.net/ 

%   April 2014; Last revision: 18 August 2015 

  

xLag = zeros(size(x,1),size(x,2)*length(lags)); 

  

i = 1; 

for j = 1:length(lags) 

    if lags(j) < 0 

        xLag(1:end+lags(j),i:i+size(x,2)-1) = x(-lags(j)+1:end,:); 

    elseif lags(j) > 0 

        xLag(lags(j)+1:end,i:i+size(x,2)-1) = x(1:end-lags(j),:); 

    else 

        xLag(:,i:i+size(x,2)-1) = x; 

    end 

    i = i+size(x,2); 

end 

  

end 
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