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Abstract 

Single instruction, multiple data (SIMD) is a class of parallel computing that involves 

executing a single operation across multiple pieces of data. A common type of SIMD 

is vector processing which involves executing a single instruction across 1-dimensional 

arrays of data called vectors. A category of compiler optimization called automatic 

vectorization has been developed since the introduction of vector processing to allow 

“vectorizing compilers” to target such processor capabilities without direct 

intervention from application programmers. 

Convolution is a fundamental concept in image processing. It involves the application 

of a matrix called a kernel to weight the sum of a pixel and its adjacent pixels, for all 

pixels in an image. This process is used to perform tasks like image blurring, edge 

detection and noise reduction. 

In this thesis, we explore the challenges of automatic vectorization of image 

convolutions implemented in C and C++. We describe the fundamentals of 

vectorization and image convolutions and propose an approach for the effective 

vectorization of these convolutions. Our approach combines vectorization through 

Superword Level Parallelism with tentative loop unrolling, loop shifting, and the 

reordering of associative and commutative chains of instructions. 

Most modern optimizing compilers are capable of vectorizing 3x3 image convolutions, 

but tend to fail at vectorizing larger sized convolutions, like 5x5. The vectorizer we 

describe in this thesis, with the aid of its combined optimizations, is designed to 

vectorize such larger convolutions. 

Through this combination of optimizations, we have measured performance 

improvements for 5x5, 7x7, and 9x9 image convolutions. For convolutions operating 

on integer data types we measured performance improvements between 2.01x and 

6.97x, and for floating-point types, between 2.19x and 5.34x.  
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Chapter 1 Introduction 

Single instruction, multiple data (SIMD) is a class of parallel computing described in 

Flynn’s Taxonomy [1]. It involves the execution of a single operation across multiple 

pieces of data at once. One common type of SIMD is vector processing which has been 

prevalent in computing since its introduction in the 1970s and 1980s in vector 

supercomputers. In modern processor architectures, this class of computing is 

typically made available through vector extensions. 

Since their introduction, the programmability of these vector processors has been 

much debated. High-level programming languages were often extended to include 

vector support to prevent the need for direct assembly programming. In 1982, a 

method for automatically translating applications written in earlier versions of Fortran 

into a newer form of the language with vectorization support was developed [2]. Since 

then, programming languages like C and C++ have been extended by various third 

parties to include vector programming support [3]. 

The topic of automatic vectorization of applications by “vectorizing compilers” has 

also been discussed in detail. This kind of vectorization can come in the form of loop 

vectorization [4], Superword Level Parallelism [5], whole function vectorization [6], 

and more. 

A convolution is a common mathematical operation which expresses the overlap 

between two functions, as one is shifted over the other [7]. It has applications in the 

likes of image processing, signal processing, and convolutional neural networks. In 

image processing, a convolution is applied on an image using a kernel to perform tasks 

like blurring, edge detection, and noise reduction. 

In this thesis, we discuss each of the forms of vectorization mentioned above and how 

they pertain to the automatic vectorization of image convolutions. In particular, we 

describe the challenges involved in automatic vectorization of these convolutions. 

Most modern optimizing compilers are capable of vectorizing 3x3 image convolutions, 

but tend to fail at vectorizing larger sized convolutions, like 5x5, 7x7 and 9x9. 
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In Chapter 2, we provide a discussion of the background information and literature 

associated with this thesis. We begin by describing Very Long Instruction Word 

architectures and the Movidius SHAVE processor. We then move on to describe the 

various methods that can be used to perform vectorization, both manual and 

automatic. We provide a description of image convolutions and how each of the 

previously mentioned automatic vectorization approaches can be applied to them. 

We also provide a brief description of Clang, LLVM, and LLVM’s intermediate 

representation, LLVM-IR. 

In Chapter 3, we describe our approach to Superword Level Parallelism (SLP) which 

we have implemented as an automatic vectorizer in LLVM. This vectorizer serves as a 

base implementation on which further optimizations are built. 

These optimizations are described in Chapter 4. In this chapter, we describe three 

additional optimizations: 

• The first optimization is a tentative loop unroller which is designed to discover 

vectorization opportunities in loops for our SLP vectorizer. 

• The second optimization reorders chains of associative and commutative 

operations to allow them to be vectorized. 

• The third and final optimization is based on loop shifting and seeks to 

restructure loops and move memory load instructions to take advantage of 

data re-use between iterations of the loop. 

In Chapter 5, we describe how these optimizations work in tandem to vectorize image 

convolutions, using a practical example. 

In Chapter 6, we evaluate the performance results generated by each of the 

optimizations. We start by examining each optimization individually and then examine 

all optimizations together using a set of image convolutions. We examine convolution 

tests using integer and floating-point types of various bit-sizes. 

We conclude this thesis in Chapter 7 by discussing some possible future work and 

presenting some final thoughts on our approach to vectorization.  
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Chapter 2 Background and Literature Survey 

2.1. Very Long Instruction Word Architectures 

Very Long Instruction Word (VLIW) architectures were first developed as a means of 

achieving significant performance improvements by exploiting instruction level 

parallelism in applications [8] [9]. VLIW architectures achieve these improvements by 

simplifying the hardware implementation, but at the cost of more complex compiler 

support [10]. VLIW architectures typically contain multiple, discrete functional units 

which are independently programmable. For example, consider the theoretical VLIW 

processor architecture shown in Figure 1. It contains two register files and twelve 

discretely programmable functional units, including: 

• Four load/store units for accessing memory 

• Two floating-point arithmetic logic units (ALUs) for performing floating point 

operations, operating on values in the floating-point register file 

• Two integer ALUs for performing integer operations on values in the integer 

register file 

• A copy/convert unit for copying values between registers in the same register 

file, and converting copies between the two register files 

• A compare unit and predication unit which together are used to predicate the 

execution of instructions based on values stored in either register file 

• A branch unit for performing jumps, procedure calls and returns. 

Unlike many modern processors which leverage “out-of-order” instruction execution 

techniques [11], VLIW processors are statically scheduled [12]. This means that the 

compiler (or assembly programmer) is solely responsible for deciding which functional 

units will execute which operations on any given cycle. If there is no operation for any 

given functional unit in a VLIW instruction, then that functional unit will remain idle 

for that cycle (i.e. it will execute no operation or a NOP). 
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Figure 1 Theoretical VLIW processor architecture with twelve functional units 

Each instruction encoded in an application contains a field for each functional unit in 

the processor. A functional unit will execute operations encoded in its own field in the 

instruction word. For our example architecture in Figure 1, each instruction contains 

twelve fields, one for each functional unit. This is shown in Figure 2. The field for each 

of the functional units contains the specific operation that that unit should execute 

for this instruction. 

Figure 2 Instruction word for our theoretical VLIW architecture 

An early example of a VLIW machine is the ELI-512 [9]. The ELI-512 was a VLIW 

architecture with 16 functional units and a 512-bit instruction word. The architecture 

of the ELI-512 was developed alongside the Bulldog compiler [13], which introduced 

the concept of trace scheduling. Trace scheduling is an instruction scheduling 

technique used in compilers which exploits instruction level parallelism between 
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multiple basic blocks of a program. This technique enabled the use of the ELI-512, as 

previously it was not feasible to program such a VLIW machine [9]. 

Another compiler technique which can be used to efficiently schedule instructions for 

VLIW architectures is software pipelining [14] [15]. Software pipelining allows for 

multiple iterations of a loop to be at different stages of their execution 

simultaneously. Essentially, this means that multiple iterations of a loop partially 

overlap and are executed on different functional units via the same instruction word.1 

Techniques like trace scheduling and software pipelining enable compilers to 

effectively target VLIW architectures.  

2.2. Movidius SHAVE 

The Movidius Myriad 2 Vision Processing Unit (VPU) incorporates a multitude of 

interconnected hardware components targeted at supporting computer vision and 

visual awareness in low power environments [16]. One of these components is the 

SHAVE processor. Myriad 2 incorporates twelve SHAVE cores [17]. A simplified 

overview of SHAVE is shown in Figure 3. 

 

Figure 3 Simplified overview of the SHAVE architecture 

                                                      
1 Software pipelining can also be used to exploit thread-level parallelism in multi-core processor 
architectures. Huang et al. [55] discuss one method of software pipelining as an “enabling 
transformation” for other loop parallelization techniques in multi-threaded platforms. 
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SHAVE is a VLIW processor with eight functional units and a variable length instruction 

word. One of the functional units on SHAVE is a 128-bit Vector Arithmetic Unit (VAU) 

with support for 8, 16, and 32-bit integer operations and 16, and 32-bit floating point 

operations. Through this functional unit (and the associated instructions in the two 

Load-Store Units (LSU) and Compare Move Unit (CMU)) SHAVE has single instruction, 

multiple data (SIMD) capabilities as well as the multiple instruction, multiple data 

(MIMD) capabilities inherent in a VLIW processor. SHAVE also contains a Predicated 

Execution Unit (PEU), a Branch and Repeat Unit (BRU), Integer Arithmetic Unit (IAU), 

and a Scalar Arithmetic Unit (SAU) which provides support for both integer and 

floating-point operations. The two LSUs shown in Figure 3 are used to access the 2MB 

of shared on-chip Connection Matrix (CMX) memory, as well as the larger stacked 

DRAM [16]. 

2.3. Manual Vectorization 

With the advent of the mainstream success of vector processors in the 1970s and 

1980s, there was a need for the introduction of vector operations in high-level 

programming languages [18]. Since then, several techniques have been developed to 

allow programmers to manually generate vector operations in their applications 

without the need for writing assembly code. 

With Fortran 90, the language was introduced to the concept of array processing. 

Array processing allowed programmers to specify operations on entire arrays as a 

single operation, a kind of large vector processing [19]. This new feature was 

accompanied by several intrinsic functions that operate on array values, 

supplementing the ability of the programmer to manually vectorize their applications. 

As mentioned by Allen and Kennedy [18], features of this new Fortran standard came 

as a result of the standards committee desire to provide programmers a way to 

“explicitly specify vector and array operations”. 

While the C programming language does not provide any capabilities for manual 

vectorization of code, there are language extensions provided by compilers that do.  
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For example, GCC provides a method for creating vector types of constant size for any 

of the integer and floating point primitive types in C [3]. This is made available via the 

vector_size attribute that can be attached to type definitions. Vector types 

declared in this manner can be used with some standard C operators. GCC also 

provides some built-in functions for performing more complex vector operations, like 

vector element shuffling. Clang provides support for the GCC vector extensions, as 

well as the OpenCL, AltiVec and NEON vector extensions [20]. 

Although there have been significant advances in automatic vectorization in compilers 

in recent years, there are still many cases where manual vectorization provides far 

greater performance improvements [21]. However, these generally come at the cost 

of more complex source code and a more involved development process [22]. 

2.4. Automatic Vectorization 

2.4.1. High-Level Programming Language Translators 

Since the introduction of vector processing in mainstream processors, there have 

been many different approaches to automatic vectorization developed. An early 

approach to vectorization was to provide translators from older versions of a language 

without vector processing support into a newer form with vector support [2]. As 

mentioned in section 2.3, with Fortran 90 the concept of array processing was 

introduced to the language. In 1982, John R. Allen and Ken Kennedy developed a 

method for translating Fortran 66 or 77 to Fortran 90 (then called Fortran 8x) with 

minimal effort required by the programmer [2]. This approach allowed the 

programmer to further hand-tune the generated Fortran 8x for any opportunities the 

translator missed. The approach was further developed and in 1987 Randy Allen and 

Ken Kennedy published their approach to a new version of this translator [18].  

2.4.2. Vectorizing Compilers 

A more common approach to automatic vectorization in modern times is to develop 

vectorizing compilers. Vectorizing compilers are designed to take scalar source code 

and automatically transform it to vector form, without any additional input from the 
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programmer. Approaches to automatic vectorization in compilers can be broadly 

separated into two groups: loop vectorization and basic block vectorization. There are 

however, other, less common approaches to vectorization like whole-function 

vectorization [6] which attempts to exploit vectorization across entire functions in 

data-parallel programming languages. While many automatic vectorization 

techniques like these were developed to target programming languages like Fortran, 

they have since been adapted and supplemented to target more recent languages like 

C [23]. 

In 2011, Maleki et al. performed an evaluation of vectorizing compilers available at 

the time [24]. They examined the capabilities of GCC, the Intel C Compiler (ICC) and 

IBM XLC. They found that each of these compilers could automatically vectorize 

between 45 and 71% of their synthetic benchmarks, although collectively they could 

vectorize around 83.05% of these benchmarks. However, they also found that these 

compilers could only vectorize between 18 and 30% “of the loops extracted from the 

PACT and Media Bench II codes” [24]. 

2.4.3. Loop Vectorization 

Loop vectorization can come in one of two forms: inner-loop vectorization and outer-

loop vectorization. As discussed earlier, many modern C and C++ compilers contain 

inner-loop vectorization support, including GCC, Clang/LLVM, Intel ICC, and IBM XLC 

[24]. This kind of loop vectorizer was first introduced to GCC in early 2004 [25], 

although they have existed in optimizing compilers for a much longer time [26]. 

Inner-loop vectorization typically centres around grouping instances of the same 

operations from multiple, consecutive iterations of a loop together to form equivalent 

vector operations. Early implementations often required memory accessing 

operations to access consecutive memory locations to be vectorized [25], however 

more advanced implementations can handle interleaved memory accesses through 

the use of scatter/gather vector instructions [27]. 

Outer-loop vectorization deals with vectorization of loops other than the inner-most 

loop of a group of nested loops. This approach is more beneficial in applications where 
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an outer loop provides a greater opportunity for vectorization than the inner-most 

loop through a higher availability of data-level parallelism and data locality [28]. 

2.4.4. Superword Level Parallelism 

Superword Level Parallelism (SLP) was a concept first introduced as a form of basic 

block vectorization by Larsen and Amarasinghe in 2000 [5]. SLP is designed to exploit 

vectorization opportunities in a single basic block by grouping sequences of the same 

operations in the same order together. Such sequences are often referred to as 

isomorphic instruction sequences. Such sequences can be vectorized through SLP by 

inserting equivalent operations from each chain into individual vector lanes. This 

transformation forms a new, equivalent vector sequence of operations in which each 

vector lane corresponds to one of the original scalar operation sequences. Despite 

targeting basic block parallelism specifically, SLP can be combined with loop unrolling 

techniques to perform inner-loop vectorization [29]. 

SLP has been expanded in subsequent years to create vectorization opportunities in 

the presence of control flow (i.e. SLP beyond a single basic block) [30]. This is achieved 

by leveraging instruction predication to flatten simple control flow patterns (e.g. an 

if-statement) into a single basic block. SLP can then be used to vectorize the 

predicated instruction sequences. 

One major drawback of SLP was identified to be the absence of isomorphic instruction 

sequences in real-world applications [31]. Porpodas et al. proposed a solution 

whereby “padding” instructions could be inserted into sequences to force non-

isomorphic sequences into isomorphic ones. This transformation is performed only 

when the cost of adding these padding instructions is outweighed by the benefits of 

SLP vectorization. 

2.4.5. Restrictions on Automatic Vectorization 

Regardless of the vectorization strategy employed, there are certain restrictions 

which can significantly complicate vectorization or prevent it outright. 
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Memory alignment has been identified as one such restriction [32]. Depending on the 

target architecture, unaligned vector memory accesses may be significantly slower 

than their aligned counterparts or may even be an outright error. In 2004, 

Eichenberger et al. proposed a solution whereby unaligned vector memory accesses 

are replaced by aligned memory accesses and a sequence of data reorganization 

operations to maintain the original semantics of the vectorized instruction sequences 

[32]. 

Non-contiguous and interleaved data also present a problem for automatic 

vectorization [33]. Generally, processors with vector capabilities require data to be 

packed together in vector registers to be processed. This presents a problem when 

the data to be processed is stored in non-contiguous memory locations. In 2006, 

Nuzman et al. proposed a technique which supported the automatic vectorization of 

applications with non-contiguous, power-of-2 constant strides. This was later 

generalized to include non-power-of-2 constant strides due to their prevalence in 

real-world use [27]. 

Control flow can also present problems for not only vectorization [34], but parallelism 

in general [35]. As mentioned in section 2.4.4, Shin et al. proposed a method for 

performing SLP vectorization in the presence of control flow by flattening certain 

patterns into a single basic block using instruction predication [30]. They do this, in-

part, using a technique called if-conversion [36]. If-conversion transforms control 

dependencies into data dependencies by in-lining the body of an if-statement, 

predicating the execution of each operation individually. If-conversion can be used 

more generally to enable other forms of vectorization as well. 

Pointer aliasing is another problem which can seriously impact automatic 

vectorization [37]. When vectorizing applications written in languages like C and C++, 

there can be limited information at compile-time pertaining to where in memory 

pointers may be pointing. More importantly, whether or not two or more pointers 

alias the same locations in memory is often ambiguous. This is a common problem 

which extends beyond the context of automatic vectorization. Many different 

approaches to alleviate this problem have been proposed over the years [38] [39]. 
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2.5. Clang and LLVM 

LLVM is a compiler infrastructure comprised of “a collection of modular and reusable 

compiler and toolchain technologies” [40] [41]. Throughout this thesis, we will use the 

name LLVM to refer to the LLVM Core libraries which includes the target-independent 

optimizer and the group of target architecture backends which provide support for 

assembly code generation. 

All optimizations in the LLVM Core operate on a common intermediate representation 

called LLVM-IR [42]. An example of LLVM-IR is shown in Figure 4. LLVM-IR is a Static 

Single Assignment (SSA) representation. A representation is in SSA form when each 

variable in a function is the target of one, and only one assignment operator [43].  

 

Figure 4 LLVM-IR example function multiply 

define void @multiply(i32* noalias nocapture %out, 

             i32* noalias nocapture readonly %inA, 

             i32* noalias nocapture readonly %inB, 

             i32 %size) local_unnamed_addr #0 { 

entry: 

  %cmp = icmp eq i32 %size, 0 

br i1 %cmp, label %for.cond.cleanup, 

            label %for.body 

 

for.body: 

  %i = phi i32 [ %inc, %for.body ], 

               [ 0, %entry ] 

  %idx0 = getelementptr inbounds i32, i32* %inA, i32 %i 

  %load0 = load i32, i32* %idx0, align 4, !tbaa !1 

  %idx1 = getelementptr inbounds i32, i32* %inB, i32 %i 

  %load1 = load i32, i32* %idx1, align 4, !tbaa !1 

  %mul = mul nsw i32 %load1, %load0 

  %idx2 = getelementptr inbounds i32, i32* %out, i32 %i 

  store i32 %mul, i32* %idx2, align 4, !tbaa !1 

  %inc = add nuw i32 %i, 1 

  %exitcond = icmp eq i32 %inc, %size 

  br i1 %exitcond, label %for.cond.cleanup, 

                   label %for.body 

 

for.cond.cleanup: 

  ret void 

} 
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When translating a function to LLVM-IR (i.e. to SSA form), there is often a need to 

introduce PHI instructions at the beginning of basic blocks. PHI instructions are 

responsible for choosing between multiple values on entry to a block depending on 

which control flow path was taken into the block. For example, consider the loop 

iterator variable %i shown in Figure 4 which starts at zero. When first entering the 

block representing the body of the loop, the iterator value should be assigned zero. 

On subsequent iterations of the loop, when the back-edge of the loop is taken, the 

iterator value should be assigned the result of the iterator increment instruction from 

the previous iteration (i.e. the value %inc). A PHI instruction is responsible for 

choosing which of these values should be assigned to the iterator value based on 

which control flow edge is taken into the block. This is necessary to prevent the need 

for more than one assignment operation to the iterator value. 

Functions like multiply shown in Figure 4 are organized into basic blocks in LLVM-

IR. A basic block is a contiguous section of code with no branches out except at the 

end, and no branches in except at the start. LLVM requires that each basic block ends 

with a “terminator” instruction. Terminator instructions determine which basic block 

should be executed at runtime following the current block. Examples of terminators 

in LLVM-IR are br, LLVM’s branch instruction, and ret, which returns control flow 

from this function to its caller [42]. Due to LLVM’s requirement that all basic blocks 

must end in a terminator instruction, fall-through control flow is achieved using an 

unconditional branch instruction. 

Each value in LLVM-IR is produced by a single instruction. Instructions in LLVM 

typically produce a single value (including “void” values), are defined by an opcode 

and use one or more values as operands. As an example, consider the 

getelementptr instruction used in the function multiply. This instruction is 

responsible for memory address computation in LLVM-IR [44]. The first operand to a 

getelementptr instruction is the array type of the second operand, which is 

always a pointer operand. The third, and subsequent operands are used to index the 

operands which came before. Depending on the complexity of the address 

computation and the target architecture, a getelementptr instruction may not 
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map directly onto any specific instruction in the eventual generated machine code. It 

may be implicitly rolled into the attached load or store instruction (e.g. a load with a 

variable base pointer and constant index). 

Clang is a frontend for LLVM which provides compilation support for C, C++, Objective-

C, and Objective-C++ [45]. At the time of writing this thesis, Clang supports all 

published ISO C++ standards. Clang provides us with a mechanism for producing 

equivalent LLVM-IR for C and C++ programs. 

All the example functions which we use throughout this thesis were written in either 

C11 or C++11. As of the C99 standard [46], restrict is a keyword in C which can be 

used as a qualifier on pointer declarations. An object in memory that is accessed 

through a restrict-qualified pointer is only ever accessed through that same pointer 

within the scope of that pointer. The restrict keyword provides a mechanism for 

the programmer to tell the compiler that certain pointers will never alias the same 

locations in memory [47]. Clang allows the use of the keyword __restrict with 

both C11 and C++11 in place of restrict. Because C++11 does not include support 

for the restrict keyword [48], we will use __restrict for all examples for the 

sake of simplicity. This keyword is translated to the noalias attribute on LLVM-IR 

function arguments, as shown in Figure 4. 

2.6. Image Convolutions 

In image processing, a two-dimensional convolution is the application of a square 

matrix called a kernel to produce a weighted sum of clusters of pixels in an image [49]. 

Consider the image shown in Figure 5. It shows the convolution of a section of an 

image using a 3x3 kernel. 
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Figure 5 Application of a 3x3 kernel to a section of an image 

The value r0 is assigned its value by producing a weighted sum of all the pixels 

highlighted in blue. The value r0 is calculated using the equation: 

𝑟0 = (𝑎0 ∗ 𝑘0) + (𝑎1 ∗ 𝑘1) + (𝑎2 ∗ 𝑘2) + 

           (𝑏0 ∗ 𝑘3) + (𝑏1 ∗ 𝑘4) + (𝑏2 ∗ 𝑘5) + 

           (𝑐0 ∗ 𝑘6) + (𝑐1 ∗ 𝑘7) + (𝑐2 ∗ 𝑘8) 

This approach is taken to compute the convolution for all other pixels in the image. 

The convolution of a pixel is computed using each of its neighbouring pixels, where 

the current pixel always maps to position k4 in the kernel. 

Convolutions like this can be used to apply image processing techniques such as edge 

detection, image sharpening, image blurring and noise reduction [50]. 

The output image generated in Figure 5 is smaller than the input image on the left. 

This is because the pixels on the edge of the input image have no surrounding pixels 

on all sides. There are several methods that can be used to combat this and produce 

an output image of the same size as the input image. These methods usually involve 

artificially extending the size of the input image by inserting new values along the 

image’s edge. Some common approaches to this include duplicating edge values, 

wrapping around to values on the far edge of the image, and padding with zeros [49]. 

Throughout this thesis, we assume that all input images to convolutions have been 

pre-extended so that the output image is the same size as the original input image. 
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2.7. Vectorization of Convolutions 

Convolutions provide opportunities for several of the vectorization strategies 

discussed in section 2.4. The pseudo-code snippet shown in Figure 6 is for a 3x3 

convolution with an input image called input and an output image called output. 

This code snippet can be vectorized using various strategies, including the following 

three: 

1. Inner-loop vectorization 

2. Outer-loop vectorization 

3. SLP vectorization 

For each of these vectorization strategies, we will assume that the input and output 

images are represented using 32-bit integer values and that we are targeting an 

architecture with support for both 64-bit and 128-bit vector operations. 

 

Figure 6 Pseudo-code implementation for a 3x3 convolution 

2.7.1. Inner-loop Vectorization 

Inner-loop vectorization involves vectorization across the back-edge of the inner-most 

for loop with iterator j. Consider the images shown in Figure 5 to be the input and 

output images in our example code snippet. For the first iteration of the outer-loop 

(i=0) and the first iteration of the vectorized inner-loop (j=0), there are four values 

being written to the output image. These values are r0, r1, r2, and r3. 

for i = 0; i < input_height; i += 1 

  for j = 0; j < input_width; j += 1 

    output[i][j] = input[i-1][j-1] * kernel[0][0] + 

                   input[i-1][j]   * kernel[0][1] + 

                   input[i-1][j+1] * kernel[0][2] + 

                   input[i][j-1]   * kernel[1][0] + 

                   input[i][j]     * kernel[1][1] + 

                   input[i][j+1]   * kernel[1][2] + 

                   input[i+1][j-1] * kernel[2][0] + 

                   input[i+1][j]   * kernel[2][1] + 

                   input[i+1][j+1] * kernel[2][2] 
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Figure 7 Pseudo-code implementation for a 3x3 convolution with inner-loop vectorization 

To compute these values, each of the multiply sub-statements (shown one per line in 

Figure 6) are vectorized, as shown in Figure 7. For the first statement, the vector {a0, 

a1, a2, a3} is loaded from the input image, as indicated by the range [j-

1..j+2] in Figure 7. For the second statement, the vector {a1, a2, a3, a4} 

is loaded. For the third statement, the vector {a2, a3, a4, a5} is loaded. For 

the fourth statement, the vector {b0, b1, b2, b3} is loaded, and so on. 

The value loaded for the kernel values in each sub-statement is the same for each 

value of j in that sub-statement. This means that the scalar value is loaded from the 

kernel, and it is subsequently copied into every lane of a vector value (via a splat 

operation) for use in the vectorized loop. In fact, the values loaded from the kernel 

are the same for all iterations of both the inner and outer loops, meaning they are 

loop invariant for both loops. This makes them eligible for a compiler optimization 

called loop-invariant code motion (LICM) [51]. This is a common optimization that is 

present in many modern optimizing compilers like GCC and LLVM. 

In the 3x3 convolution example, the use of LICM provides a significant speedup when 

used in conjunction with inner-loop vectorization since it hoists nine memory load 

instructions out of the loop body. Thereafter, each of the nine kernel values (k0 

through k8 in Figure 5) is stored in its own vector register. Because of this 

transformation, there are nine vector registers live across the back-edge of both 

loops. This presents a problem for larger convolutions however. With a 5x5 

for i = 0; i < input_height; i += 1 

  for j = 0; j < input_width; j += 4 

    output[i][j..j+3] =  

                 input[i-1][j-1..j+2] * kernel[0][0] + 

                 input[i-1][j..j+3]   * kernel[0][1] + 

                 input[i-1][j+1..j+4] * kernel[0][2] + 

                 input[i][j-1..j+2]   * kernel[1][0] + 

                 input[i][j..j+3]     * kernel[1][1] + 

                 input[i][j+1..j+4]   * kernel[1][2] + 

                 input[i+1][j-1..j+2] * kernel[2][0] + 

                 input[i+1][j..j+3]   * kernel[2][1] + 

                 input[i+1][j+1..j+4] * kernel[2][2] 
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convolution, the number of live vector registers across the loop back-edges is 25. With 

a 7x7 convolution, this jumps to 49. This presents a serious problem when targeting a 

processor like SHAVE which only has 32 vector registers [16]. The joint efforts of inner-

loop vectorization and LICM force the register allocator into a position in which 

register spilling and reloading is unavoidable. Inner-loop vectorization becomes 

unprofitable for larger convolutions because of this register pressure problem. 

2.7.2. Outer-loop Vectorization 

Outer-loop vectorization is possible for image convolutions. However, convolutions 

suffer from poor data locality in the outer loop which iterates over each row of the 

image. When performing outer-loop vectorization, we produce four values together 

that are each assigned to the same column in consecutive rows of the output image, 

as shown in Figure 8. This means the generated vector values on each iteration of the 

loop are deconstructed and stored individually as scalars. Outer-loop vectorization 

also suffers from the same register pressure problem as inner-loop vectorization for 

larger convolution sizes. 

 

Figure 8 Pseudo-code implementation for a 3x3 convolution with outer-loop vectorization 

2.7.3. SLP Vectorization 

SLP vectorization involves vectorizing only the instructions for one iteration of the 

inner-for loop. In the case of the 3x3 convolution in Figure 6, there are only three 

groups of three sub-statements that can be vectorized. The first three multiply sub-

statements can be vectorized together, the second group of three together, and the 

for i = 0; i < input_height; i += 4 

  for j = 0; j < input_width; j += 1 

    output[i..i+3][j] =  

                 input[i-1..i+2][j-1] * kernel[0][0] + 

                 input[i-1..i+2][j]   * kernel[0][1] + 

                 input[i-1..i+2][j+1] * kernel[0][2] + 

                 input[i..i+3][j-1]   * kernel[1][0] + 

                 input[i..i+3][j]     * kernel[1][1] + 

                 input[i..i+3][j+1]   * kernel[1][2] + 

                 input[i+1..i+4][j-1] * kernel[2][0] + 

                 input[i+1..i+4][j]   * kernel[2][1] + 

                 input[i+1..i+4][j+1] * kernel[2][2] 

 



24 
 

third three together as shown in Figure 9. Although there is a problem with this, since 

generally vector processors do not operate on vectors with an odd number of 

elements. As a result, traditional SLP vectorizers will only vectorize the first two sub-

statements in each group together, leaving the third alone. The values produced by 

the generated vector operations also need to be deconstructed to scalars for the 

accumulation to the final scalar result.  For the example in Figure 9, this means that 

the value temp would be generated as a vector of two elements instead of three. The 

third value for each line (i.e. the value generated by the multiply operation with 

kernel[x][2]) would be performed as a scalar. The vector part and the scalar part 

would need to be added together before storing to the output array. This approach 

can produce small performance improvements, but they are dwarfed by the inner-

loop vectorizer for the 3x3 convolution. 

However, SLP vectorization does not suffer from the register pressure problems 

created by LICM that are present with both inner and outer loop vectorization. For a 

5x5 convolution, SLP produces five vector values for the kernel values, and five 

scalar values. This means that there are only five vector registers and five scalar 

register live across the loop back-edges when combined with LICM. 

 

Figure 9 Pseudo-code implementation for a 3x3 convolution with SLP vectorization 

On a processor like SHAVE, there is an additional benefit to choosing SLP for 

vectorization of image convolutions. With SLP, the vector values produced by the 

grouped multiply instructions are deconstructed for the scalar accumulation 

sequence. However, on SHAVE there is an efficient vector horizontal sum instruction 

[52] which can mitigate the deconstruction cost for certain types and convolution 

sizes. 

for i = 0; i < input_height; i += 1 

  for j = 0; j < input_width; j += 1 

    temp = input[i-1][j-1..j+1]  * kernel[0][0..2] 

    temp += input[i][j-1..j+1]   * kernel[1][0..2] 

    temp += input[i+1][j-1..j+1] * kernel[2][0..2] 

 

    output[i][j] = temp[0] + temp[1] + temp[2] 
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2.7.4. Proposed Approach 

In this thesis, we propose an SLP vectorizer which leverages this lower register 

pressure to produce efficient vector code for larger sized convolutions. This vectorizer 

also includes some additional features designed to maximize the vectorization 

potential in these convolutions. 

As mentioned previously in section 2.7.3, one of the reasons SLP vectorization is 

generally not profitable for convolutions is that the vectorized multiply results are 

deconstructed to scalars for the output accumulation. One of the features proposed 

by our vectorizer leverages the associativity and commutativity of the integer add 

operation to reorder operations in the accumulation chain to vectorize a significant 

portion of it. This is discussed in detail in section 4.2. In Chapter 6, we discuss how this 

approach compares to using the horizontal sum instructions on SHAVE to deconstruct 

the multiply results. 

There is another aspect of convolutions that can be taken advantage of by our 

vectorizer. On each iteration of the inner-loop, there is re-use of data from the input 

image from the previous iteration of the loop. With a traditional SLP vectorizer, this 

data would simply be reloaded on each iteration. We propose a method that utilises 

a simple form of software pipelining [15] called loop shifting to completely re-use 

overlapping data between iterations and only load data that is new on each iteration. 

Loop shifting involves the movement of operations from the beginning of a loop to 

the end of the loop via the loop back-edge [53]. To maintain the original semantics of 

the loop, moved operations are also copied into the prologue or header of the loop. 

This optimization is described in greater detail in section 4.3.  

Through these additional optimizations, our SLP vectorizer can produce significant 

performance improvements in 5x5, 7x7, and 9x9 convolutions without the drawbacks 

generated by LICM and inner-loop vectorization.  
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Chapter 3 Superword Level Parallelism 

In this chapter, we describe the design and implementation of our Superword Level 

Parallelism (SLP) vectorizer. This vectorizer serves as a foundation on which the 

Tentative Loop Unrolling (section 4.1), Associative Chain Reordering (section 4.2) and 

Loop Shifting (section 4.3) described in the next chapter are built. 

This chapter is split into two sections. The first section describes what transformation 

is being performed and the second part describes how the transformation is achieved. 

3.1. Transformation 

Superword Level Parallelism (SLP) is a type of vectorization which is performed at a 

basic block level. It involves grouping multiple scalar operations from a single basic 

block together to form equivalent vector operations. SLP is described in this section 

with the aid of two example functions: add4 (Figure 10) and 

maskAndAccumulate4 (Figure 13). A general description of SLP was provided in 

section 2.4.4. However in this section, we describe our own interpretation of SLP 

vectorization. 

 

 

Scalar operations are grouped together into a single vector instruction in two different 

ways. The first way involves scalar memory accesses (either load or store instructions, 

but never both together) which access contiguous addresses and share the same type 

(e.g. int, float). These can be grouped together into a vector instruction. In add4, we 

can see three examples of this. The memory loads from a with indexes zero through 

three are grouped together into a single vector load instruction as shown in Figure 11 

and Figure 12. In both Figures, the loads from a are shown in purple, the loads from 

void add4 (int * __restrict a, int * __restrict b,  

           int * __restrict c) { 

  c[0] = a[0] + b[0]; 

  c[1] = a[1] + b[1]; 

  c[2] = a[2] + b[2]; 

  c[3] = a[3] + b[3]; 

} 

Figure 10 add4 example function 
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b in blue and stores to c in orange. The second way is by grouping instructions 

together based on other instructions already grouped together. For example, the add 

instructions shown in peach in Figure 11 are grouped together in Figure 12 due to the 

load and store groups. 

 

Figure 11 add4 original scalar instruction chains 
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Vector operations which are built by our vectorizer to replace a group of scalar 

operations use three different categories of values as input operands: 

1. Values produced by vector instructions generated by the vectorizer by 

grouping other scalar instructions together. 

2. Values that are manually built by the vectorizer using a sequence of vector 

element insert instructions from multiple independent scalar source values 

when those sources are not vectorizable by our design. These can also be 

generated using a vector splat instruction. 

3. Constant vector values 

Similarly, the output of vector instructions can be used in two different ways. Firstly, 

the output value of a vector instruction may be used by another vector instruction 

that has been generated by the vectorizer. Alternatively, a group of vector element 

extract instructions may be generated to deconstruct the output vector into scalar 

values. 

 

Figure 12 add4 vectorized instruction chain 
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Our design attempts to build as many vector instructions as possible and minimise the 

need for vector element insert and vector element extract instructions. For example, 

in add4 the four add operations are grouped together into a single, equivalent vector 

add instruction. This new vector add instruction serves as an intermediary for the 

vector load and vector store instructions. The output from the two loads are used as 

the inputs to the add instruction, and the output from the add instruction is used as 

the input to the store instruction, as shown in Figure 12.  

 

However, this is not always feasible for our design. There are times when constructing 

or deconstructing a vector value is the only available option. We can see an example 

of both in the function maskAndAccumulate4. 

 

Figure 14 maskAndAccumulate4 original scalar instruction chain 

int maskAndAccumulate4 (int * a, int mask) { 

  int result = 0; 

  result += a[0] & mask; 

  result += a[1] & mask; 

  result += a[2] & mask; 

  result += a[3] & mask; 

  return result; 

} 

Figure 13 maskAndAccumulate4 example function 
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Consider the value mask in the function maskAndAccumulate4, as shown in 

Figure 14. The value mask is an input for the four logical and instructions. The series 

of load instructions from a are usual candidates for vectorization, as are the logical 

and instructions as a result. However, the value mask is not since it is a single value 

with no matching equivalent operations. It is still used as the input to a vector 

operation as shown in Figure 15. The vectorized logical and instructions requires a 

second vector input. This means that a scalar to vector “splat” instruction is 

generated. This instruction creates a new vector value, with each element assigned 

the value of mask. This is a special case of the default behaviour which is to create a 

new vector and generate vector element insert instructions for every element of that 

vector (category 2 in the list outlined earlier). 

 

Figure 15 maskAndAccumulate4 vectorized instruction chain 

Similarly, if the value of mask were constant and not a variable, then the vectorizer 

could create a new vector constant value, which would not require any additional 

instructions to be generated. 
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There is a similar problem present for the output value of the vectorized logical and 

instruction. We are unable to vectorize the series of add instructions as there are 

inter-dependencies between them, and as a result the vector output of the logical 

and instruction has scalar uses. The vectorizer can generate vector element extract 

instructions for such a case, as shown in Figure 15. This effectively deconstructs the 

vector to maintain the original scalar use chains of the function. This is not limited to 

vector instructions at the end of the vectorized chain. There can exist cases where 

individual elements of vector instructions in the middle of a chain may have additional 

scalar uses outside of the chain. In these cases, a vector element extract instruction is 

also generated. 

3.2. Design and Implementation 

There are five stages involved in our SLP vectorizer design. In order, these stages are: 

1. Generate groups of available instructions 

2. Generate starting groups 

3. Generate vector chains 

4. Check memory dependencies 

5. Vectorize chains 

Each of these stages is described in the five following subsections. Each stage of the 

vectorization process relies on the output of the previous stage. 

 

Figure 16 addRange example function 

void addRange (int * __restrict out,  

               int * __restrict in,  

               unsigned int size) { 

  for (unsigned int i = 0, j = size; 

       i < size; 

       i+=4, ++j) { 

    out[i]   = in[i]   + in[j]; 

    out[i+1] = in[i+1] + in[j]; 

    out[i+2] = in[i+2] + in[j]; 

    out[i+3] = in[i+3] + in[j]; 

  } 

} 
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Our SLP vectorizer takes a single basic block as input. This block does not necessarily 

need to be the body of a loop; the vectorizer is run on every basic block in a function. 

Every basic block in a function is vectorized independently of all other blocks in that 

function. Throughout this section, we will use the function addRange shown in 

Figure 16 as an example to aid the description of each stage of the vectorizer. 

Figure 17 addRange for loop body as LLVM-IR 

define void @addRange(i32* noalias nocapture %out, 

                      i32* noalias nocapture readonly %in, 

                      i32 %size) local_unnamed_addr #0 { 

; ... 

for.body:   ; preds = %for.body.preheader, %for.body 

  %j = phi i32 [ %incj, %for.body ], 

               [ %size, %for.body.preheader ] 

  %i = phi i32 [ %inci, %for.body ], 

               [ 0, %for.body.preheader] 

  %idxl0 = getelementptr inbounds i32, i32* %in, i32 %i 

  %load0 = load i32, i32* %idxl0, align 4, !tbaa !1 

  %idxl1 = getelementptr inbounds i32, i32* %in, i32 %j 

  %load1 = load i32, i32* %idxl1, align 4, !tbaa !1 

  %add0 = add nsw i32 %load1, %load0 

  %idxs0 = getelementptr inbounds i32, i32* %out, i32 %i 

  store i32 %add0, i32* %idxs0, align 4, !tbaa !1 

  %or1 = or i32 %i, 1 

  %idxl2 = getelementptr inbounds i32, i32* %in, i32 %or1 

  %load2 = load i32, i32* %idxl2, align 4, !tbaa !1 

  %add1 = add nsw i32 %load1, %load2 

  %idxs1 = getelementptr inbounds i32, i32* %out, i32 %or1 

  store i32 %add1, i32* %idxs1, align 4, !tbaa !1 

  %or2 = or i32 %i, 2 

  %idxl3 = getelementptr inbounds i32, i32* %in, i32 %or2 

  %load3 = load i32, i32* %idxl3, align 4, !tbaa !1 

  %add2 = add nsw i32 %load1, %load3 

  %idxs2 = getelementptr inbounds i32, i32* %out, i32 %or2 

  store i32 %add2, i32* %idxs2, align 4, !tbaa !1 

  %or3 = or i32 %i, 3 

  %idxl4 = getelementptr inbounds i32, i32* %in, i32 %or3 

  %load4 = load i32, i32* %idxl4, align 4, !tbaa !1 

  %add3 = add nsw i32 %load1, %load4 

  %idxs3 = getelementptr inbounds i32, i32* %out, i32 %or3 

  store i32 %add3, i32* %idxs3, align 4, !tbaa !1 

  %inci = add i32 %i, 4 

  %incj = add i32 %j, 1 

  %cmp = icmp ult i32 %inci, %size 

  br i1 %cmp, label %for.body, 

              label %for.cond.cleanup.loopexit 

} 
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The input array in is split logically into two sections. The first section contains size 

elements which are indexed using the iterator i. The second section contains 

size/4 elements which are indexed using the iterator j. The output array out 

contains size elements and is also indexed using the iterator i. 

The LLVM-IR for the main loop body is shown in Figure 17. The other basic blocks in 

the function are not relevant for this section as they are not vectorizable. The basic 

block with label %for.body.preheader is the entry block for the loop, and the 

basic block with label %for.cond.cleanup.loopexit is the exit block for the 

loop. 

3.2.1. Generate Groups of Available Instructions 

The first step taken by the vectorizer is to generate groups of instructions that exist in 

the basic block we are vectorizing. Instructions are grouped together based on their 

opcode. Each of these groups is a listing of all instructions with the corresponding 

opcode that are available for vectorization. When an instruction has been vectorized, 

it is removed from its corresponding list. We do this so that when we are generating 

the vectorizable instruction chains in section 3.2.3 we do not re-use instructions (i.e. 

to ensure each instruction is only vectorized once). Most instructions in the input basic 

block are placed into Groups of Available Instructions. We generate Groups of 

Available Instructions only for opcodes that we consider to be "vectorizable". 

In no particular order, the list of vectorizable instructions is: 

• memory load instructions 

• memory store instructions 

• "binary operator" instructions, e.g. add, sub, mul, and, or, xor 

• type cast instructions 

• select instructions 

• compare instructions 

• a subset of compiler intrinsics, e.g. llvm.ctpop which counts the number 

of bits set to one in a value 
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As the name suggests, only instructions which are a member of one of these Groups 

of Available Instructions are available for vectorization. 

 

Figure 18 Groups of Available Instructions generated for the basic block %for.body in the 
function addRange 

In our example basic block %for.loop, Groups of Available Instructions are 

generated for the opcodes add, or, load, store, and icmp as shown in Figure 18. 

There are some notable omissions from these groups. 

The function arguments %out and %in are missing as they are not instructions, they 

are values.  

None of the getelementptr instructions are included either. These instructions 

are used in LLVM to compute addresses for memory accessing instructions (i.e. loads 

and stores) as described in section 2.5. These instructions are a special case since 

Group of Available add Instructions: 

  %add0 = add nsw i32 %load1, %load0 

  %add1 = add nsw i32 %load1, %load2 

  %add2 = add nsw i32 %load1, %load3 

  %add3 = add nsw i32 %load1, %load4 

  %inci = add i32 %i, 4 

  %incj = add i32 %j, 1 

 

Group of Available or Instructions: 

  %or1 = or i32 %i, 1 

  %or2 = or i32 %i, 2 

  %or3 = or i32 %i, 3 

 

Group of Available load Instructions: 

  %load0 = load i32, i32* %idxl0, align 4, !tbaa !1 

  %load1 = load i32, i32* %idxl1, align 4, !tbaa !1 

  %load2 = load i32, i32* %idxl2, align 4, !tbaa !1 

  %load3 = load i32, i32* %idxl3, align 4, !tbaa !1 

  %load4 = load i32, i32* %idxl4, align 4, !tbaa !1 

 

Group of Available store Instructions: 

  store i32 %add0, i32* %idxs0, align 4, !tbaa !1 

  store i32 %add1, i32* %idxs1, align 4, !tbaa !1 

  store i32 %add2, i32* %idxs2, align 4, !tbaa !1 

  store i32 %add3, i32* %idxs3, align 4, !tbaa !1 

 

Group of Available icmp Instructions: 

  %cmp = icmp ult i32 %add21, %size 
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address computation will be completely regenerated for memory accesses which are 

vectorized later. They are used in section 3.2.2 when grouping load and store 

instructions together. They are not vectorizable, but they enable the vectorization of 

these other instructions. 

The SSA PHI instructions at the start of the basic block are also not included. These 

instructions provide a mechanism for assigning a different value to a variable 

depending on which basic block branched to this basic block at runtime. For example, 

the second phi instruction which produces the variable %i is assigned the value 

%inci when the loop back-edge is taken at runtime, and the constant value zero 

when the loop entry block %for.body.preheader branches into the loop. The 

value %inci is produced by the add instruction near the end of the loop body. This 

is the equivalent of the initialization and update statements for the iterator i in the 

original C function. Since these instructions use values from outside of the current 

basic block, they go beyond the scope of the single block vectorization performed by 

our base SLP vectorizer implementation. Therefore, they are excluded from the 

Groups of Available Instructions. 

Finally, the br instruction is also missing. This is LLVM’s branch instruction. Much like 

ret (LLVM’s equivalent of the C keyword return), br cannot be vectorized as it is 

a basic block terminator instruction which affects the control flow of the function. It 

is not possible to vectorize this kind of instruction. 

3.2.2. Generate Starting Groups 

A subset of the Groups of Available Instructions is used as the starting point for 

building vectorizable chains. The Groups of Available Instructions used are the load 

and store groups. In our example, we will focus on the load group here. 

For each instruction in the Group of Available Instructions (e.g. all the load instructions 

in the basic block), the vectorizer inserts them into a subgroup based on the base 

pointer for each memory access. This means that each subgroup contains instructions 

with either variable or constant offsets from the same base address pointer. In our 
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example, all the load instructions use the same base pointer %in so they are all 

inserted into the same subgroup as shown in Figure 19. 

 

Figure 19 Base pointer subgroups for the load instructions in %for.body 

Instructions are split into these subgroups by inspecting the pointer operand to the 

load (or store) instruction. If the pointer operand is not a getelementptr 

instruction, then the value of the operand is used as the base pointer. If the pointer 

operand is a getelementptr instruction, then the first input operand of that 

instruction is used as the base pointer. 

These subgroups are then split up again into smaller subgroups. Each of these smaller 

subgroups contain memory accessing instructions which have a common base pointer 

and a common variable base index. A common example of a common variable base 

index is a loop iterator. Instructions that have no variable base index are inserted into 

a subgroup of their own. In Figure 20, we can see there are now two subgroups for 

the load instructions in the basic block %for.body. Both subgroups share the base 

pointer %in, but one group is indexed using the iterator %i, and the other using the 

iterator %j. 

 

Figure 20 Base pointer and variable index subgroups for the load instructions in %for.body 

These new subgroups are generated by inspecting the second input operand of the 

getelementptr instruction associated with each load instruction. If the value of 

Subgroup with base pointer in: 

  %load0 = load i32, i32* %idxl0, align 4, !tbaa !1 

  %load1 = load i32, i32* %idxl1, align 4, !tbaa !1 

  %load2 = load i32, i32* %idxl2, align 4, !tbaa !1 

  %load3 = load i32, i32* %idxl3, align 4, !tbaa !1 

  %load4 = load i32, i32* %idxl4, align 4, !tbaa !1 

Subgroup with base pointer in and variable index i: 

  %load0 = load i32, i32* %idxl0, align 4, !tbaa !1 

  %load2 = load i32, i32* %idxl2, align 4, !tbaa !1 

  %load3 = load i32, i32* %idxl3, align 4, !tbaa !1 

  %load4 = load i32, i32* %idxl4, align 4, !tbaa !1 

 

Subgroup with base pointer in and variable index j: 

  %load1 = load i32, i32* %idxl1, align 4, !tbaa !1 
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the second input operand is produced by a logical or instruction or an add instruction 

with a constant second input operand, then the first input operand of that or/add is 

used as the base variable index. Otherwise, the second input operand of the 

getelementptr instruction is used as the base index. We only process logical or 

instructions in this way due to a transformation that is performed by another pass in 

LLVM. It replaces add instructions that have a constant second input operand with a 

logical or instruction if it can prove the least significant bits of the first operand are 

guaranteed to be zero. We describe this in more detail later in this section. 

In our example, consider the subgroup with common variable base index %i. The 

getelementptr instruction for %load0 has a first input operand of %i. However, 

the first input operands for %load2, %load3 and %load4 are all logical or 

instructions with constant second input operands. In each of these cases, the first 

input operand for the or is %i. 

The elements of these subgroups are finally either removed or reordered based on 

their constant offset from the common base index. This is done by inspecting the 

second input operand of the or/add instruction associated with each 

getelementptr instruction. If a load instruction doesn’t have a corresponding 

getelementptr instruction or if the second input operand of the 

getelementptr instruction is not an or/add instruction, then the constant offset 

is zero. 

In our example, the getelementptr instruction associated with the load that 

produces the value %load0 has a second input operand that is the variable base 

index. Therefore, the constant offset for %load0 is zero. The second input operand 

for the logical or associated with %load2 is one, therefore the constant offset is one. 

For %load3, it is two and for %load4, it is three. 

We perform this process with logical or instructions only when it is provably safe to 

do so. In our example, the iterator %i is initialized by the phi instruction on first entry 

to the loop to zero. The increment instruction for the iterator, %inci adds constant 

four to the iterator on each iteration of the loop. Since the least significant bits of the 
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iterator are initialized to 0000b and the increment instruction only ever adds 0100b, 

the two least significant bits are always 00b. The values listed in Figure 21 are 

therefore guaranteed to be always consecutive since the constant values used in the 

logical or operations only modify these two least significant bits. 

Value Least significant bits 

%i xx00 

%or1 = or i32 %i, 1 xx01 

%or2 = or i32 %i, 2 xx10 

%or3 = or i32 %i, 3 xx11 
Figure 21 Least significant bits for the %i offset instructions 

Once this has been completed, we are left with groups of memory accessing 

instructions which share a common type and access consecutive memory locations. 

We require that these groups contain at least two elements each. If a group does not 

contain at least two elements, then it is discarded. In our example, the first group for 

iterator %i contains four instructions so it can be used as a starting point for 

vectorization. However, the group for iterator %j only contains one instruction, so it 

must be discarded. 

If the size of a group exceeds the natural vectorization factor for the contained type, 

it may be split up into multiple groups. The natural vectorization factor for a type is 

the number of values of that type that need to be brought together to fill all lanes of 

a vector on the target architecture. For example, if a group of i32 loads contains 16 

instructions and the natural vectorization factor for i32 on our target architecture is 

four, then this group will be split up into four separate groups each containing four 

instructions. In our example, we assume that the target architecture has a 128-bit 

vector unit, so this step is not necessary for the starting group which contains four 32-

bit instructions. We do this to facilitate the Association Chain Reordering optimization 

described in section 4.2. This optimization requires multiple independent vector 

nodes as inputs to chains of associative instructions to vectorize them. It does not 

work with a single, large vector value. This is described in more detail in that section. 

This process is also completed in our example for the Group of Available store 

Instructions. After this process is complete, there are two starting groups. One is the 
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load group described above, and the other is a group containing the store instructions 

for the values %add0, %add1, %add2, %add3. These groups are used as the starting 

point for building chains of vectorizable instruction groups. 

3.2.3. Generate Vector Chains 

Vectorizable sets of instructions are grouped together and linked in definition-use 

chains. A chain is represented as a directed acyclic graph (DAG). Each vertex, or node 

in the graph represents a set of vectorizable instructions. Each edge in the graph 

represents a definition-use relationship between two nodes. If an edge exists in a 

graph going from node A to node B, then node A produces a value which is consumed 

or used by node B. This is the case for all instructions in both nodes (i.e. there is an 

all-to-all relationship between nodes connected by an edge). The instructions 

contained in a node are strictly ordered. The position of an instruction in a node 

corresponds to its lane position in the vector. Throughout this section, when we talk 

about nodes, edges and DAGs, we are referring to this specific implementation. 

 

Figure 22 The starting nodes for the DAG of vectorizable nodes in %for.body 

Each basic block can contain one or more DAGs of vectorizable nodes. The starting 

groups are the first nodes which are placed into a DAG of their own. Continuing with 

our example basic block %for.body from Figure 17 on page 32, Figure 22 shows the 

two starting points for the DAGs. Both nodes are placed into their own DAG to begin 

with and act as the root nodes for their respective DAGs. If a def-use chain exists 

between these nodes, an edge will not be added between the nodes at this point. This 

will be done later in the process. After all nodes have been built, a post-pass is 
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performed over each DAG to create edges between nodes that should be linked but 

which were built independently of each other. 

When building the DAGs in this section, the Groups of Available Instructions remaining 

for the current basic block are those which were not used to build the starting groups. 

For our example, of the groups shown in Figure 18 on page 34, the remaining Groups 

of Available Instructions are shown in Figure 23. 

 

Figure 23 Groups of Available Instructions for vectorization in %for.body 

Each DAG is built node by node in two directions. First, we consider the users of the 

instructions in a node (i.e. other instructions in the basic block which use the value 

produced by a node instruction). 

Starting with the first instruction in the node, we find another instruction in the basic 

block which uses its produced value. If this user instruction is in a Group of Available 

Instructions, then we can use it as a starting point for building a new node. In 

%for.body, we start by looking at the first instruction in the load group shown in 

Figure 22 in yellow. The value %load0 is used by the instruction “%add0 = add 

nsw i32 %load1, %load0”. This instruction is part of the Group of Available 

add Instructions, so it can be used as the starting point for building a new node. 

We search the corresponding Group of Available Instructions for instructions which 

are users of each other instruction in the node. If we find a matching user instruction 

Group of Available add Instructions: 

  %add0 = add nsw i32 %load1, %load0 

  %add1 = add nsw i32 %load1, %load2 

  %add2 = add nsw i32 %load1, %load3 

  %add3 = add nsw i32 %load1, %load4 

  %inci = add i32 %i, 4 

  %incj = add i32 %j, 1 

 

Group of Available or Instructions: 

  %or1 = or i32 %i, 1 

  %or2 = or i32 %i, 2 

  %or3 = or i32 %i, 3 

 

Group of Available icmp Instructions: 

  %cmp = icmp ult i32 %add21, %size 
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from the Group of Available Instructions for each node instruction, then we can build 

a new node with these user instructions. In this case, the Group of Available 

Instructions is the add group and we are looking for instructions which use the values 

%load2, %load3, and %load4 from the load node. The following instructions all 

match this requirement: 

%add1 = add nsw i32 %load1, %load2 

%add2 = add nsw i32 %load1, %load3 

%add3 = add nsw i32 %load1, %load4 

The value produced by each instruction in the original node must be the same 

operand number in their corresponding user in the new node (e.g. they must all be 

operand zero, one, etc.). In our example, each of the values produced by the original 

node instructions (shown in yellow in Figure 22) are used as the second input operand 

of their corresponding add instruction. We do this to ensure that all lanes for a single 

input operand are produced by the same, single vector instruction. 

We use these instructions to construct a new node in the DAG. The new node is added 

as a successor to the original node, and the original node is added as a predecessor of 

the new node. 

This approach is used to build the graph from all types of nodes, except for nodes that 

contain store instructions. These instructions do not produce a value as output, so 

they cannot be used by other instructions. Our vectorizer only considers register 

dependencies (value def-use dependencies) when building edges between nodes.  

Next, we look at each of the operands to the first instruction in the node. Similar to 

above, we check whether the operand value is produced by an instruction that is in a 

Group of Available Instructions. If it is, then we look at the corresponding operand in 

each other instruction in the node for an instruction in the same Group of Available 

Instructions (e.g. all operands zero). If we find a matching use instruction for every 

instruction in the node, then we can build a new node using these instructions. The 

new node is added as a predecessor of the existing node, and the existing node is 

added as a successor of the new node. 



42 
 

This approach is used to build the graph from all types of nodes, except for nodes that 

contain load instructions. The values used by load instructions have already been 

examined during the starting group generation step in section 3.2.2. 

 

Figure 24 Generated DAG for %for.body 

In our example, there are no nodes which can take advantage of this approach. The 

node of add instructions which we built uses %load1 as the other input operand in 

every instruction. This value is not in a Group of Available Instructions, so we cannot 

use it as a starting point for building a new node. Similarly, for the store node, the 

used values %add0, %add1, %add2, and %add3 have already been added to a node 

for vectorization. This means they have been removed from their Group of Available 

Instructions and are no longer available. 
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When all instructions for a node have been gathered together, we perform a 

dependency check between the instructions before constructing the node. If any of 

the instructions we have gathered together depend on the output of another 

gathered instruction, then the node is not constructed, and the instructions are placed 

back into their Group of Available Instructions. 

This process is completed for every node in the graph. Once it is complete, a final pass 

over every node is performed to add edges between nodes which were built 

independently of each other, but which match the criteria above for being related. 

The generated DAG for %for.body is shown in Figure 24. This final pass over every 

node creates the edge between the add node to the store node since the store node 

uses the values produced by the add node. 

3.2.4. Check Memory Dependencies 

Once all chains have been generated for the basic block, each node in the DAG must 

pass the memory check step before any chain can be vectorized. This step involves 

checking for memory alias dependencies between every memory access in a node and 

every other memory access in the basic block. 

If a memory store instruction in a node may alias any other store or load instruction 

in the basic block, then vectorization is considered unsafe for every chain in this block. 

Similarly, if any load instruction in a node may alias any store instruction in the basic 

block, then vectorization is considered unsafe. Every DAG must be discarded since the 

vectorization of one DAG may cause instructions not in the DAG to be reordered. This 

could potentially lead to aliasing memory accesses to be reordered in relation to each 

other. This restriction does prevent code which reads from a memory location and 

writes another value back to it in the same statement from being vectorized. This is 

currently a limitation of our implementation that can be removed in future work. 

In the DAG generated for the basic block labelled %for.body as shown in Figure 24, 

there are two nodes of memory accessing instructions. Starting with the load node, 

each instruction in the node is compared to every store instruction in the basic block. 

There are four store instructions in %for.body. Each store instruction uses out as 
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a base pointer which was declared in the original C code with the __restrict 

keyword, which we described in section 2.5. Each load instruction uses in as a base 

pointer which was also declared with the __restrict keyword. Therefore, the load 

instructions in the node are guaranteed to not alias any of the store instructions in 

the basic block because they use discrete pointers each declared with __restrict. 

The same can be said for the store instructions in the store node and the five load 

instructions in the basic block. 

Our vectorizer implementation uses LLVM’s Memory Alias Analysis pass for this 

memory dependency checking step. This pass provides a function that takes two 

pointers as arguments and returns one of four values, NoAlias, MayAlias, 

PartialAlias or MustAlias. If the function returns anything other than 

NoAlias then to avoid performing an unsafe transformation, we conservatively 

assume that the pointers might alias. 

If there are no memory aliasing problems, then each of the DAGs may be vectorized. 

3.2.5. Vectorize Chains 

The node generator described in section 3.2.3 does not enforce any rules on the size 

of the nodes it is generating beyond ensuring that all nodes in a chain are the same 

size. We use this restriction to ensure that all lanes of a vectorizable node have a 

corresponding input operand from one of the node’s predecessors. Because of this 

restriction, the size of nodes will often not match the natural vectorization factor for 

the target architecture. The vectorizer must take this into account. Before generating 

any vector instructions, if necessary the vectorizer resizes all nodes down to the 

closest natural vector size for the contained type for the target. This means removing 

the last N-VF instructions from each node, where N is the node size and VF is the 

natural vectorization size chosen for the target. In our example, this is not necessary 

since each node contains four instructions each which is the natural vector size for 

our target. An alternative approach is to resize nodes upwards and ignore values in 

unused lanes. We use this approach in our loop shifting optimization described in 

section 4.3. 
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Each chain of instructions is vectorized independently, one after the other. The nodes 

in each chain are vectorized in a top-down breadth-first fashion, starting with the root 

nodes of the chain. A root node is any node which does not have any predecessor 

nodes in the chain. A node is only vectorized once all its predecessors have been 

vectorized. In %for.body, we start vectorizing with the load node since it has no 

predecessors. We then move on to the add node and finish off with the store node. 

If any input operands for a node are not produced by a node in the chain, then a new 

vector node must be generated for that input operand through a legalization process. 

Depending on the type of input operands, the legalization can take one of three forms 

1. If this operand for all instructions in the node are constant, then a new 

constant vector value is created and used as the corresponding operand in the 

vector instruction. 

2. If this operand for all instructions in the node is the same non-constant value, 

then a vector splat instruction is created for the vector operand. 

3. If there is no constant pattern or single variable operand, then a new vector 

value is created and the operand value for each instruction is inserted into the 

new vector one by one. 

In %for.body, we must create a new input vector operand for the add node shown 

in blue in Figure 24. The second input operand value for each instruction is generated 

by the load node, however the first input operand has no corresponding vector value. 

Every first input operand in the node is the same value %load1. This means we need 

to use method 2 for generating the vector node. A vector splat node is generated as 

shown in Figure 25. 

LLVM-IR does not have a vector splat instruction so we must construct the same 

functionality using a vector element insert instruction and vector shuffle as shown in 

Figure 26 by the instructions that generate the values %splatinsert and %splat. 

The value %load1 is first inserted into element zero of an undefined vector value. A 

vector shuffle instruction then replicates the value in element zero into every other 

element of the vector. This effectively splats the value %load1 into a new vector. 



46 
 

 

Figure 25 Final DAG for %for.body 

Once all the input operands have a corresponding node in the graph, the node is 

vectorized by creating a new vector instruction of the same opcode as the scalar 

instructions with all predecessor nodes as the input operands. 

Once all nodes in the chain have been vectorized, we need to tidy up any references 

to values which were previously produced by scalar instructions which have now been 

vectorized. This involves creating vector element extract instructions for each 

reference and replacing the old value with this new extracted value. In %for.body 

from Figure 17 on page 32, there are no references to any of the vectorized values, so 

this step is not necessary. 
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Finally, all the vectorized scalar instructions are deleted and the vectorizer moves on 

to the next DAG. 

Figure 26 Vectorized for loop body for addRange 

In %for.body, the original instructions in the load node are replaced by the 

instruction sequence 

%idx0 = getelementptr inbounds i32, i32* %in, i32 %i 

%bitcast0 = bitcast i32* %idx0 to <4 x i32>* 

%loadv0 = load <4 x i32>, <4 x i32>* %bitcast0, align 4 

This sequence takes the pointer of the first load instruction in the node, bitcasts it to 

the required type (v4i32 *) and then performs the vector load using this pointer. 

This same approach is used for the store node as well. 

The input basic block to our SLP vectorizer has now been successfully vectorized. In 

the following chapter we will describe a set of optimization techniques which build 

upon this SLP vectorizer. 

  

define void @addRange(i32* noalias nocapture %out, 

                      i32* noalias nocapture readonly %in, 

                      i32 %size) local_unnamed_addr #0 { 

; ... 

for.body:   ; preds = %for.body.preheader, %for.body 

  %j = phi i32 [ %incj, %for.body ], 

               [ %size, %for.body.preheader ] 

  %i = phi i32 [ %inci, %for.body ], 

               [ 0, %for.body.preheader ] 

  %idx0 = getelementptr inbounds i32, i32* %in, i32 %i 

  %bitcast0 = bitcast i32* %idx0 to <4 x i32>* 

  %loadv0 = load <4 x i32>, <4 x i32>* %bitcast0, align 4 

  %idx1 = getelementptr inbounds i32, i32* %in, i32 %j 

  %load1 = load i32, i32* %idx1, align 4, !tbaa !1 

  %splatinsert = insertelement <4 x i32> undef,  

                               i32 %load1, i32 0 

  %splat = shufflevector <4 x i32> %splatinsert,  

                          <4 x i32> undef, 

                          <4 x i32> zeroinitializer 

  %addv = add <4 x i32> %splat, %loadv0 

  %idx2 = getelementptr inbounds i32, i32* %out, i32 %i 

  %bitcast1 = bitcast i32* %idx2 to <4 x i32>* 

  store <4 x i32> %addv, <4 x i32>* %bitcast1, align 4 

  %inci = add i32 %i, 4 

  %incj = add i32 %j, 1 

  %cmp = icmp ult i32 %inci, %size 

  br i1 %cmp, label %for.body, 

              label %for.cond.cleanup.loopexit 

} 
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Chapter 4 Additional Vectorizer Optimizations 

In this chapter, we describe three additional optimizations which are built on top of 

the SLP vectorizer described in Chapter 3. These additional optimizations include 

Tentative Loop Unrolling (section 4.1), Associative Chain Reordering (section 4.2) and 

Loop Shifting (section 4.3). 

Each section is split into two parts. The first part of each section describes the 

transformation that is being performed and the second part describes how the 

transformation is achieved. 

4.1. Tentative Loop Unrolling 

4.1.1. Transformation 

Loop unrolling is a technique which can be used to create SLP vectorization 

opportunities where they otherwise do not exist. Consider the example function 

multiply that is shown in Figure 27. The for loop with iterator i and bound size 

contains only three memory accessing operations and one multiply operation. None 

of the memory accessing instructions are to consecutive regions in memory. This loop 

is not a candidate for optimization through SLP because of this. However, by unrolling 

the loop we can manufacture an opportunity for SLP vectorization. 

 

The control flow graph (CFG) for this function is show in Figure 28. It contains only 

three basic blocks. The blocks shown in blue are the entry and exit blocks for the 

function. The block shown in green is the for loop which we are interested in. The 

edge from the entry block to the exit block is taken when the value of size is zero. 

void multiply(int * __restrict out, int * __restrict inA, 

              int * __restrict inB, unsigned int size) { 

  for (unsigned int i = 0; i < size; ++i) 

    out[i] = inA[i] * inB[i]; 

} 

Figure 27 multiply example function 
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Loop unrolling involves duplicating the body of a loop N times and adjusting the 

iterator increment on each iteration of the loop. For our example function 

multiply, there is a manually unrolled version in Figure 29. In this case, N is four.  

The first for loop in this function is the unrolled version of the original loop. The loop 

iterator update statement has been changed from ++i to i+=4 to allow for the 

unrolling. The statement which read elements from inA and inB, multiplies the 

values together and stores the result to an element of out has been duplicated four 

times in the unrolled loop body. The original loop performed this action for all 

elements of inA, inB and out between indexes 0 and size. The unrolled loop body 

must preserve the semantics of the original loop. To allow this, the uses of i in the 

original statement are updated for each copy in the unrolled loop body. The first copy 

of the statement has uses of i replaced with i+1, the second copy with i+2, and the 

third copy with i+3. This ensures that when we increment i by four on each iteration 

of the unrolled loop, no elements of inA, inB or out are skipped. 

 

Figure 28 Control flow graph for the example function multiply 

There is an additional concern when unrolling a loop like this. When the upper loop 

bound size is not a multiple of the unroll factor N, then we must include an 

additional loop to perform our loop action for the remaining elements of the arrays. 
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For example, if the value of size in the function multiply is 19 then we will 

perform four iterations of the unrolled loop. This only accounts for the first 16 

elements of the arrays. We must perform the multiply and store for the remaining 

three elements for this transformation to be considered safe. This is performed by the 

additional for loop at the end of the function. The loop executes three times, for 

iterator values 16, 17 and 18. The unrolled version of the loop therefore completes 

the exact same actions as the original loop. 

 

Figure 29 multiply example function manually unrolled by 4 

In this example, the upper loop bound for the unrolled loop is “size & 

0xFFFFFFFC”. This can be read as the largest multiple of four that is less-than or 

equal to the value of size. However, the starting value of the iterator of the for loop 

may not always be zero and the loop iterator is not always incremented by one on 

each iteration. We must account for this by using the following formula to calculate 

the new upper bound for any loop. 

𝑠𝑖𝑧𝑒 − 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝐼

𝑠𝑡𝑟𝑖𝑑𝑒
× 𝑠𝑡𝑟𝑖𝑑𝑒 

Where stride is the unroll factor N multiplied by the original loop stride, 

startingI is the starting value for the loop iterator and size is the upper loop 

bound of the original loop. 

void multiply(int * __restrict out, int * __restrict inA, 

              int * __restrict inB, unsigned int size) { 

  unsigned int i = 0; 

  if (size >= 4) { 

    for (; i < (size & 0xFFFFFFFC); i+=4) { 

      out[i+0] = inA[i+0] * inB[i+0]; 

      out[i+1] = inA[i+1] * inB[i+1]; 

      out[i+2] = inA[i+2] * inB[i+2]; 

      out[i+3] = inA[i+3] * inB[i+3]; 

    } 

  } 

   

  for (; i < size; ++i) 

    out[i] = inA[i] * inB[i]; 

} 
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This equation uses these values to calculate the largest multiple of the new loop stride 

that is less-than or equal to the upper bound of the loop. 

 

Figure 30 Control flow graph for the unrolled version of the example function multiply 

The CFG for the unrolled version of the loop in the function multiply is shown in 

Figure 30. The entry and exit blocks for the function shown in blue remain the same 

in the unrolled version of the function. As seen in Figure 29, there are three new basic 
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blocks inserted into the CFG which are shown in yellow. These blocks are a header 

block, the unrolled for loop and a footer block. An additional copy of the original loop 

at the end of the function is shown in green. This copy serves as a fall-back loop. When 

size is non-zero, the edge from the entry block to the header block is taken. 

The header block is responsible for checking that the number of iterations to be 

performed is greater-than or equal to the unroll factor. In the example, the header 

block performs the check “size >= 4”.  When this evaluates to true, the edge to 

the unrolled loop is taken and the unrolled loop is executed iterations/N times, 

where iterations is the number of times the original loop would have been 

executed before unrolling. When it evaluates to false the unrolled loop is skipped, and 

the original loop is executed iterations times. In this case, we do not need to 

perform the check "i < size” since we can prove that it always evaluates to true. 

In this case, size is guaranteed to be non-zero and the value of i is zero which means 

i is always less than size. This check is still performed at the end of each iteration 

of the loop. 

The footer block is responsible for performing the check "i < size” when exiting 

the unrolled loop. If this check evaluates to true, there are additional iterations that 

must be performed so the edge to the fall-back loop is taken. When it evaluates to 

false, there are no additional iterations to perform so we can safely branch to the exit 

block. 

The starting value of the iterator in the fall-back loop in the unrolled version of the 

function is dependent on which edge is taken on entry to the loop. When coming from 

the header block, the iterator starts at zero. When coming from the footer block, the 

iterator starts at the last iterator from the unrolled loop (as shown in Figure 29). 

4.1.2. Design and Implementation 

In this section, we will continue to use the function multiply as an example. The 

LLVM-IR for the main loop body is shown in Figure 31. The other basic blocks in the 

function are not relevant for this section as they are not vectorizable. The basic block 
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%for.body.preheader is the entry block for the loop, and the basic block 

%for.cond.cleanup.loopexit is the exit block for the loop. 

There are two main steps involved in the tentative loop unroller. The first step is to 

determine if unrolling is feasible for the current basic block, and if it is, to provide a 

suitable unroll factor for the unroller. The second step duplicates the loop and unrolls 

that duplicate by the calculated unroll factor. 

 

Figure 31 multiply for loop body as LLVM-IR 

4.1.2.1. Calculate Unroll Factor 

Before calculating the unroll factor for a given basic block, we must first ensure that 

it is a loop. If the current basic block is not a loop, it cannot be unrolled. Similarly, if 

the basic block already contains vector instructions then we assume that the loop has 

already been vectorized. It is possible that there are still vectorization opportunities 

in the loop, but we ignore them in our implementation due to potential problems with 

the existing vector instructions. We do this due to an implementation detail in LLVM’s 

optimizer that causes the same optimization pass to be performed multiple times on 

define void @multiply(i32* noalias nocapture %out, 

             i32* noalias nocapture readonly %inA, 

             i32* noalias nocapture readonly %inB, 

             i32 %size) local_unnamed_addr #0 { 

; ... 

for.body: 

  %i = phi i32 [ %inc, %for.body ], 

               [ 0, %entry ] 

  %idx0 = getelementptr inbounds i32, i32* %inA, i32 %i 

  %load0 = load i32, i32* %idx0, align 4, !tbaa !1 

  %idx1 = getelementptr inbounds i32, i32* %inB, i32 %i 

  %load1 = load i32, i32* %idx1, align 4, !tbaa !1 

  %mul = mul nsw i32 %load1, %load0 

  %idx2 = getelementptr inbounds i32, i32* %out, i32 %i 

  store i32 %mul, i32* %idx2, align 4, !tbaa !1 

  %inc = add nuw i32 %i, 1 

  %exitcond = icmp eq i32 %inc, %size 

  br i1 %exitcond, label %for.cond.cleanup, 

                   label %for.body 

} 
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the same source code function. As a result, our optimization could inadvertently 

unroll the same block multiple times, causing a cascading sequence of fall-back loops.  

In section 4.3, we describe a technique called loop shifting which restructures the loop 

to facilitate the movement of instructions between iterations. We use this technique 

to attempt to re-use data that is shared between iterations of a vectorizable loop. If a 

loop already contains vectorizable instruction groups which re-use data between 

iterations, then loop unrolling is not performed. In these cases, unrolling a loop would 

only reduce the potential re-use of data between iterations. 

Some loops may already be unrolled, either manually by the user or automatically by 

LLVM’s own loop unrolling optimization pass. In these cases, if there are vectorizable 

groups of instructions with sizes that are equal to or greater than the natural vector 

size for the target architecture, loop unrolling is not performed here. Loop unrolling 

is still possible for these kinds of loops but we made the decision in our 

implementation to not attempt to unroll them. 

When calculating the unroll factor for any given loop, the goal is to provide the 

vectorizer with the opportunity to utilize the full natural vector size of the target 

architecture. We use a heuristic in our implementation to achieve this. The equation 

that performs this calculation is 

𝑈𝐹 = 2 
⌈log2(

𝑁𝑉𝐹
𝑉𝐹 )⌉

 

Where UF is the unroll factor that is being calculated, NVF is the natural vectorization 

factor for the target architecture and VF is the existing vectorization factor of the 

loop. Once loop unrolling has been performed, the new vectorization factor for the 

loop becomes UF x VF. 

To calculate the value of VF, the unroller performs the first two stages of the 

vectorizer as described in sections 3.2.1 and 3.2.2 with a few minor alterations. 

Instead of generating Groups of Available Instructions for all vectorizable opcodes, 

the unroller only generates load and store groups. These are the only two groups that 
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are needed to perform the starting group generation step. When used by the 

vectorizer, the starting group generator imposes a minimum group size of two 

instructions on vectorizable groups. This minimum is reduced to one for the unroller. 

We do this so that we can gather as much information about the load and store 

instructions in the loop. 

The number of generated groups for each vectorizable type is counted and the 

maximum group size for each type is also tracked. We do this to find the type that is 

most commonly used in the loop and what group size exists in the loop for that type. 

This is important as the number of elements in the natural vector size (NVF) for the 

target will vary based on type. We want to choose the value of NVF that suits the 

most used type in the loop. The value of VF is the maximum group size for this type. 

For example, in the function multiply there are two load instructions and one store 

instruction in the basic block %for.body. The starting group generator will place 

each of these instructions into their own groups since they all use different base 

pointers. There are now three groups of one instruction each that have the type i32. 

This means i32 is the most common type used in the loop and the maximum value 

for VF is one. Our target architecture has a natural vector size of 128-bits or 4x32-bit. 

When we plug these values into our equation we get 

𝑈𝐹 = 2 
⌈log2(

4
1)⌉

 

𝑈𝐹 = 22 

𝑈𝐹 = 4 

So, in the case of the function multiply, the loop %for.body has an unroll factor 

of four. 

Consider another example function which has been manually partially unrolled by the 

user. This other loop operates on values of type i16 and has been unrolled already 

by two. In this case, the starting group generator will generate groups of two 
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instructions each. These groups all operator on values of type i16. Once again, our 

target has a natural vector size of 128-bits, which is also 8x16-bit. When we use these 

values in our equation we get 

𝑈𝐹 = 2 
⌈log2(

8
2)⌉

 

Which once again can be reduced to an unroll factor of 4. 

4.1.2.2. Perform Unrolling 

If the unroll factor that has been calculated is greater than one, then we can unroll 

the loop.  

Before we start unrolling the loop, we first need to gather some information about 

the iterator that is used by the loop. We need to find 

• the iterator update instruction 

• the iterator’s PHI instruction at the beginning of the loop 

• the compare instruction attached to the loop’s branch instruction 

• the upper loop bound 

There are several requirements attached to these pieces of information that must be 

met to allow safe unrolling: 

1. The iterator must be an integer value (of any bitsize) and the compare 

instruction must be an integer compare with an integer equality predicate. If 

the predicate is any other (e.g. integer less-than) then there is no guarantee 

that the calculation of the new upper loop bound will return the correct value. 

This is because we do not know by how much the iterator may overrun the 

original loop bound at runtime. 

2. The iterator update instruction must be either an integer add or subtract 

instruction in which the first input operand is produced by the iterator PHI 

instruction and the second input operand is an integer constant. If the loop 

stride is a variable, then we cannot safely unroll. 
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3. The iterator PHI instruction must take the iterator update instruction 

described in requirement 2 as its operand for the back-edge of the loop, 

creating a simple dependency loop of PHI to update to PHI across iterations. 

Once all this information has been gathered and the conditions have been met, we 

can begin the loop unrolling process. 

First, we create a clone of the original loop body. This clone will serve as the fall-back 

loop as shown in Figure 30 and in Figure 32. LLVM provides a function for cloning a 

basic block which we use here. This function duplicates all the instructions in a basic 

block in a new block but it does not replace references to the original instructions 

within the new block. This means we need to do a pass over all instructions in the new 

basic block and replace all references to instructions in the original block with 

references to their corresponding instruction in the new block. The cloning function 

provides a “Value to Value” map to facilitate this. 

The next step is to create the unrolled loop body. We do this by creating UF clones of 

the original loop basic block. Just like the fall-back loop body, we need to tidy up 

references to instructions within each of the cloned basic blocks. This is done for all 

instructions except for uses of the iterator. Uses of the iterator must be replaced with 

a new set of instructions. Uses of the iterator in the first cloned basic block can be left 

as they are, since the iterator value is correct. Uses in subsequent blocks must be 

replaced with a new instruction for each block. In the first subsequent block, we 

create an instruction which generates what the iterator value would be during the 

corresponding iteration of the original loop. In our example function, we need to 

create an add instruction for this block that adds constant one to the loop iterator. In 

the next block, we need an instruction that adds constant two to the loop iterator, 

and so on.  

The only exception to this is the loop iterator update instruction in the final block 

which uses the iterator PHI instruction from the very first block as its input. Similarly, 

we need to update this PHI instruction to take the iterator update instruction from 

the final block as its input for the loop back edge. 
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Figure 32 Control flow graph for the example function multiply after loop unrolling 
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Finally, we need to delete the compare and terminator instructions from all cloned 

basic blocks except for the last basic block in the chain. At this point all cloned blocks 

are merged together to form a single unrolled loop body. The terminator instruction 

(branch instruction) for this block must be updated to branch to the start of the block. 

The next step is to create the header and footer blocks shown in yellow in Figure 32. 

Into the header instruction, we insert a few calculations. The first set of calculations 

are for the loop bound of the new unrolled loop. The calculation described in the 

previous section is used for this purpose. This new bound is inserted into the unrolled 

loop’s compare instruction, in place of the original loop bound. This new bound is also 

used as a pre-check in this block to ensure we can safely enter the unrolled loop at 

runtime. If the loop iterator is incremented in the loop body, then we substract the 

starting iterator value from the new loop bound and compare that value with the new 

loop stride. If the new loop stride exceeds the value of the distance between the 

starting iterator and the new loop bound, then we cannot enter the unrolled loop 

without overflowing. In this case, the header branches to the fall-back loop. If the loop 

iterator is decremented in the loop body, then we subtract the new loop bound from 

the starting iterator to calculate the distance between them. 

The PHI instructions at the beginning of the unrolled loop must be updated to reflect 

the new incoming edge from the header block. 

Into the footer block we need to add compare and branch instructions to check if the 

unrolled loop completed all iterations of the original loop. This is done by comparing 

the last iterator value (after the update) to the original loop bound. If the iterator is 

less-than the bound, then we must branch into the fall-back loop to complete the final 

iterations. Otherwise we branch to exit block. 

Once this has been completed, the unrolled loop body is handed over to the SLP 

vectorizer for vectorization. If the vectorizer fails to vectorize the unrolled loop, then 

the created basic blocks are all deleted, and the original loop body is maintained in 

the function. We unroll the loop only because it may be beneficial to vectorization, 
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unrolling the loop for the potential benefits to the scalar loop is beyond the scope of 

this optimization. Therefore, if vectorization fails we revert all changes. 

4.2. Associative Chain Reordering 

4.2.1. Transformation 

Associative Chain Reordering (ACR) is the name we have given to a technique which 

takes advantage of the associativity of certain operations to reorganize or reorder a 

sequence of such operations to make them suitable candidates for vectorization. 

Throughout this section, we will consider ACR within the context of the example 

function accumulate as shown in Figure 33. This function accumulates N integer 

values from the input array in and stores the result to an element of the output array 

out. This is performed size times. For our purposes, we will assume that the inner 

for loop which accumulates into the value sum has been fully unrolled before 

vectorization begins. 

 

Figure 33 accumulate<N> example function 

Consider the function accumulate<8>. This version of the accumulate function 

accumulates eight values from the input array in and stores the result to the output 

array out. The original scalar instruction chains for this function are shown in Figure 

34. The part of this instruction chain that we are particularly interested in for ACR is 

the add instruction chain shown in peach. 

template <unsigned int N> 

void accumulate (int * __restrict in, 

                 int * __restrict out, 

                 unsigned int size) { 

  for(unsigned int i = 0; i < size*N; i+=N) { 

    int sum = 0; 

    for(unsigned int j = 0; j < N; ++j) 

      sum += in[i+j]; 

    out[i/N] = sum; 

  } 

} 
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Figure 34 accumulate<8> original scalar instruction chain 

For a chain of instructions to be considered a candidate for reordering there are 

several requirements that must be met. All instructions in the chain must contain the 

same opcode, and the chain must not be interrupted by any instruction of a different 

opcode. The opcode that is common throughout the chain must be both associative 

and commutative. Associativity enables us to rearrange the order of these operations 

only if the sequence of the operands is not changed. When this is coupled with the 

commutativity property, we can reorder both the operations themselves and the 

sequence of operands. Signed integer add instructions are both associative and 

commutative, so we can transform the chain of instructions in our example. 

Conceptually, we can consider a sequence of instructions like those shown in Figure 

34 as a single multiple input instruction with the same opcode as shown in Figure 35. 

This single multi-input instruction is a black-box which produces the sum of all its 

inputs. There is no defined ordering for the sequence of operations or the operands 

with this instruction. 
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Figure 35 accumulate<8> instruction chain with multi-input add instruction 

As described in section 3.1, scalar load instructions can be grouped together into 

vector instructions when they access consecutive locations in memory. Because of 

this, we can group the loads from in with offsets zero through three together (shown 

in yellow) and the loads from in with offsets four through seven together (shown in 

green). The vectorized chain for accumulate<8> is shown in Figure 36. These new 

vector instructions are now the only two input operands to the multi-input add 

instruction. This allows us to vectorize this add instruction as well. We start by 

creating a vector add instruction which takes the two generated vector instructions 

as inputs. This produces a single v4i32 vector as a result. However, a single scalar 

value must be produced as the input to the store instruction to the array out. This 

scalar value is the sum of the four values in the result of the vector add instruction. 

To do this, we produce a horizontal vector add instruction which adds all the 

elements in a vector value together and produces a single scalar result. 
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Figure 36 accumulate<8> vectorized instruction chain 

There is one element of the transformation that is not evident in accumulate<8>. 

Not all input operands to the multi-input instruction will necessarily be vectorized. It 

is possible that after vectorization has been completed, there are input operands to 

the original scalar chain that are not present in the vector chain. We generate a new 

scalar chain of instructions which takes these remaining operands as their inputs. The 

result of this scalar chain is “joined” with the result of the horizontal operation 

through an additional scalar operation. The value produced by this final operation is 

the result of the chain. 

4.2.2. Design and Implementation 

While describing the design and implementation of the ACR transformation, we will 

use the example function accumulate<17>. This function gathers 17 values from 

the input array in, accumulates them and stores the result to the output array out. 

The diagram in Figure 37 shows the original scalar instruction chain for this function. 

Once again, we are interested primarily in the chain of add instructions shown in 

peach. 
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Figure 37 accumulate<17> original scalar instruction chain 

In section 3.2 we described the design and implementation of the SLP vectorizer in 

the following five steps: 

1. Generate groups of available instructions 

2. Generate starting groups 

3. Generate vector chains 

4. Check memory dependencies 

5. Vectorize chains 

The ACR transformation requires modification to steps one, three, and five. We will 

describe the transformation design and implementation here in relation to these 

three steps independently in each of the three following subsections. 
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4.2.2.1. Generate Groups of Available Instructions 

This step which is responsible for generating Groups of Available Instructions for the 

vectorizer is actually left unmodified for the ACR transformation. Instead, the 

information generated in this step is supplemented with additional information. 

All instructions are placed into their respective groups as before, including all 

instructions that are part of instruction chains that are candidates for ACR. The 

instructions that are part of these chains are placed into additional groups as well. 

Each chain of instructions is placed into a group of its own. Each group for a chain 

contains all instructions in that chain, with no exceptions. Unlike the Groups of 

Available Instructions that are usually generated, there can be multiple associative 

groups for each opcode. Each instruction can only exist in one associative group. 

We place chains of instructions into individual groups like this to allow for a safe 

transformation when vectorizing. It is possible that not all input operands to an 

associative chain will be vectorized. In these cases, the vectorizer must be able to 

generate an additional scalar chain to include these remaining operands that were 

not vectorized. This is explained in greater detail later in section 4.2.2.3. 

4.2.2.2. Generate Vector Chains 

Before generating chains, we need a starting point. The starting group generator 

produces four starting groups for the loop in accumulate<17>. These groups are 

made up of four load instructions each. The groups of instructions generated are for 

the load instructions shown in yellow, green, purple and orange in Figure 37. These 

starting nodes for the DAG are shown in Figure 38. 

Under normal circumstances, the chain generator will search for matching operands 

for one of these groups to grow the vectorizable graph. This is not possible for 

associative chains since they usually begin with a single operation with both operands 

coming from the same vectorized node as shown in Figure 37. The chain generator 

will also ensure that there are no inter-dependencies between instructions in the 

same node. In this context, dependencies refers to flow-dependencies. This means 
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that any chain of instructions will never be vectorized since each instruction in the 

chain is dependent on the output of the previous instruction in the chain. 

Because of this, we must handle associative chains independently of other instruction 

sequences. The vectorizer generates vectorizable nodes for associative chains only 

when all other vectorizable nodes have been generated. We wait until all other nodes 

have been generated so we can maximize the number of vector inputs to the 

associative chain. In accumulate<17> there are no other nodes to be generated, 

so we can jump straight into generating nodes for the associative chain. 

 

Figure 38 The starting nodes for the DAG of vectorizable nodes in accumulate<17> 

All instructions in an associative chain are split into two separate groups, those with 

a vectorized input operand and those without. The group of instructions which have 

a vectorized input operand are further split up into subgroups of instructions which 

have a matching vector input node. As with the function accumulate<17>, the first 

instruction in a scalar associative chain can be a special case where both operands 

come from the same vector input. This is not always the case however. For example, 

if the accumulation happens across the outer loop bound then one of the operands 

to the first instruction in the chain will be a PHI node. Both of these possibilities must 

be handled when generating the vectorized chain. 



67 
 

Any instructions that can't be placed into a subgroup of instructions which have a 

matching vector input node are added to the group of instructions without a 

vectorized input operand. In the case of accumulate<17>, the last add instruction 

in the chain is the only member of this group. The subgroups generated for 

accumulate<17> are shown in Figure 39. 

 

Figure 39 Associative subgroups generated for the add chain in accumulate<17> 

These generated subgroups are now used to generate new nodes in the DAG. All 

groups that are generated are used to create a new chain of vector associative 

operations. This means that except for the first node in the new chain, each node in 

the chain must take another node in the chain as one of its inputs. The other input 

will come from an additional node in the DAG that is not part of the associative chain.  
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Figure 40 Generated DAG for the function accumulate17 

For the first node in the chain, we merge two of the subgroups into a single node. As 

mentioned above, unlike every other node in the chain, the first node has two inputs 

that come from nodes in the DAG that are not in the chain. As a result, instead of N 

instructions being associated with the node, where N is the vectorization factor, there 
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are either N*2 or (N*2)-1 instructions associated with the first node. In the case of 

accumulate<17>, the top two subgroups shown in Figure 39 are merged together. 

This means there are seven ((N*2)-1) instructions associated with the first node, 

instead of four (N) as shown in Figure 40. The number of instructions associated with 

the first node is N*2 when the first instruction in the original chain of instructions has 

an input operand that is not a member of a vectorizable node in the DAG. As an 

example, as mentioned previously, this can happen when an associative chain is 

accumulating across the back-edge of a loop (i.e. the “starting value” of the 

accumulation in this iteration comes from the previous iteration of the loop). 

The group of instructions that were not added to vectorizable nodes in the DAG (as 

shown in red in Figure 39) is maintained for use during vectorization of the DAG in the 

next section. 

4.2.2.3. Vectorize Chains 

For the most part, the vectorization of associative chain vector nodes is the same as 

every other type of node. However, there are some important differences which 

should be noted. 

Vectorization of non-associative nodes requires strict enforcement of the number of 

instructions in each node. Specifically, each node must contain the same number of 

instructions as every other node in the DAG. However, the number of instructions in 

an associative chain node can be ignored. The size of the node will not always match 

the size of other nodes in the graph. For example, the first add node in the vectorized 

associative chain in Figure 40 has seven scalar instructions associated with it. These 

seven instructions are the first seven instructions in the associative chain in Figure 37. 

However, the next add in the vector chain only has four scalar instructions. 

The node resizing step still applies to the associative chains. When resizing these 

nodes, we still remove instructions from the "end" of the group. However, we can't 

just leave the original scalars in place like we do for all other node types. We must 

keep track of these instructions by adding them to the group of non-vectorized 
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instructions for the entire associative chain. This is the same group shown in red in 

Figure 39. 

 

Figure 41 accumulate<17> vectorized instruction chain 

The vector element insert step can be skipped for associative chain nodes. All inputs 

for these nodes are guaranteed to be already built vector nodes. When building the 

vectorizable nodes in section 4.2.2.2, each vectorizable node takes two full vector 

nodes as its input operands. Except in the case of the very first node in the chain, one 

of these operand nodes is another vectorized set of instructions from the original 

scalar chain and the other is some other node that was generated independently. Any 

instructions that don't have a corresponding vector input are not inserted into 

vectorizable nodes and are reserved for the additional scalar chain. 
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Once all nodes have been vectorized, the element extract step is performed to tidy 

up any remaining references to instructions in each of the nodes. It is during this step 

that the horizontal operation at the end of associated vector chain shown in Figure 41 

is generated. 

This is also the point at which we tidy up any remaining scalar instructions which are 

in the non-vectorized instruction groups for the associative chain. This is the red group 

of instructions we saw previously in Figure 39. We gather together all input operands 

from outside the chain for each of these instructions. These input operands are then 

used to create a new scalar associative chain of instructions. In the case of 

accumulate<17>, there is only one instruction in this set which has only one input 

operand that is generated outside of the chain. This operand is the remaining load 

operation from the input array in, shown in grey in Figure 41. We generate the new 

add instruction shown in red to tidy up this final reference from the original chain. 

The second operand to this new instruction is the result of the horizontal add 

instruction. The value produced by this add instruction is used to replace all 

references to the old value that was produced by the scalar accumulation chain. 

4.3. Loop Shifting 

4.3.1. Transformation 

Loop shifting is an optimization technique that involves the movement of operations 

from the beginning of a loop to the end of that loop via the loop’s back-edge. 

Operations which are moved in this way are duplicated in the loop’s prologue to 

maintain the original semantics of the loop. In this section, we describe an 

optimization technique based on loop shifting that is designed to take advantage of 

data re-use across loop iterations, a sort of rotating partial loop invariance. We do this 

by shifting memory read instructions from the first iteration of a loop and 

restructuring the remaining loop body to minimise the number of memory accesses 

required on subsequent iterations. 

Throughout this section, we will use the function averages<N> shown in Figure 42 

as an example. This function computes a rolling average of N elements from the input 
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array in and stores the result to the output array out. This action is performed size 

times. For our purposes here, we assume that the inner for loop with bounds N is fully 

unrolled so that it becomes part of the body of the outer for loop. 

 

Figure 42 averages<N> example function 

The primary goal of our loop shifting optimization is to maximise the amount of data 

re-use between iterations and minimise the use of memory reading instructions. We 

do this to optimize important loops which load the same data from memory on 

consecutive iterations of the loop. To achieve this goal, we shift the load instructions 

for the first iteration into the loop prologue. At the end of each iteration, we load the 

extra data that is required for the next iteration of the loop only and re-use the rest 

of the data from the current iteration. 

 

Figure 43 Control flow graph for the function averages<N> 

Consider the control flow graph (CFG) for the function averages<N> shown in 

Figure 43. The basic block labelled Entry performs a value check for the argument 

size. If the value of size is zero, then the edge to the basic block labelled Exit is 

template <unsigned int N> 

void averages (int * __restrict in, int * __restrict out, 

               unsigned int size) { 

  for (unsigned int i = 0; i < size; ++i) { 

    int sum = 0; 

    for (unsigned int j = 0; j < N; ++j) 

      sum += in[i+j]; 

    out[i] = sum/N; 

  } 

} 
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taken. Otherwise the edge into the loop body is taken. The main loop body shown in 

green is the basic block that we will be transforming. This CFG is the same for all 

averages<N> functions. 

The function averages<4> provides an opportunity for shifting the load 

instructions from the first loop iteration to re-use data between iterations. The 

diagram in Figure 44 demonstrates the overlap present between each iteration of the 

loop. On the first iteration, the body of the loop accesses elements zero through three 

of the array in. On the next iteration, elements one through four are accessed. This 

iteration shares elements one, two and three with the previous iteration. Rather than 

reloading them on this iteration, we should use the data that was already loaded on 

the previous iteration. 

 

Figure 44 Overlapping regions of memory accessed on each iteration of averages<4> 

To take advantage of this overlap in data use between iterations, we restructure the 

body of the loop. To shift instructions from the first loop iteration, we need to create 

two new basic blocks. The first of these blocks is the basic block labelled Preload 

shown in yellow in Figure 45. This is the block into which we will move load 

instructions from the first iteration of the loop. There are four scalar load operations 

which are to be moved into this block. These four scalar loads (shown in blue in Figure 

44) are vectorized and inserted into the block labelled Preload as a single vector 

load of four elements. The Preload block serves as the loop’s prologue. 
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Figure 45 Control flow graph for the function averages<4> after loop shifting 

A PHI instruction is inserted at the beginning of the Loop block (shown in green). This 

PHI instruction produces the value of the vector load instruction in the Preload 

block when the edge from that block is taken, or the modified vector value produced 

on the previous iteration when the back-edge of the loop is taken. This modified 

vector value contains the three overlapping elements from the previous iteration, plus 

the next value in the array that is “new” in this iteration. 
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Figure 46 Stripped down version of averages<4> as LLVM-IR 

At the end of the Loop block, we insert the instructions that produce this modified 

vector value. We do this using a sequence of three instructions as shown in Figure 46. 

The first instruction is a vector shuffle instruction (the instruction which produces the 

value %shuf) that shifts the elements of the vector left by one. This effectively 

replaces element zero with the value from element one, element one with the value 

from element two, and element two with the value from element three. The new 

value in element three is undefined. We replace this undefined value with the next 

value in the input array in. This new value is the value stored in the array at index i+4 

(i.e the value in the array immediately after the last value accessed in the current 

for.preload: 

  %newbound = add i32 %size, -1 

  %preidx = bitcast i32* %in to <4 x i32>* 

  %prevec = load <4 x i32>, <4 x i32>* %preidx, align 4 

  %boundcheck = icmp eq i32 %size, 1 

  br i1 %boundcheck, label %for.final, label %for.body 

 

for.body: 

%vector = phi <4 x i32> [ %insert, %for.body ], 

                        [ %prevec, %for.preload ] 

%i = phi i32 [ %add, %for.body ], 

             [ 0, %for.preload ] 

; ... 

  %nextidx = getelementptr i32, i32* %arrayidx.3, i32 1 

  %next = load i32, i32* %nextidx, align 4 

%shuf = shufflevector <4 x i32> %vector, 

                      <4 x i32> undef, 

        <4 x i32> <i32 1, i32 2, i32 3, i32 undef> 

%insert = insertelement <4 x i32> %shuf, 

                        i32 %next, i64 3 

  %add = add nuw i32 %i, 1 

  %exitcond = icmp eq i32 %add, %newbound 

  br i1 %exitcond, label %for.final, label %for.body 

 

for.final: 

%finalvec = phi <4 x i32> [ %prevec, %for.preload ], 

                          [ %insert, %for.body ] 

%i.final = phi i32 [ 0, %for.preload ], 

                   [ %add, %for.body ] 

  ; ... 

  br label %exit 
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iteration). We do this by issuing a scalar load from the desired address (the instruction 

producing the value %next), followed by a vector element insert instruction into 

element three of the vector value that was produced by the shuffle. The value 

produced by this vector element insert instruction (%insert) is the incoming value 

for the PHI instruction at the beginning of the block for the back edge of the loop. 

The basic block labelled Final in Figure 45 contains the instructions for the last 

iteration of the loop. All instructions, except for those moved into the Preload block 

are copied into the Final block. At the beginning of this block, we insert a PHI 

instruction. This PHI instruction produces the value of the vector load instruction in 

the Preload block when the edge from that block is taken. When the edge from the 

Loop block is taken, this PHI instruction produces the value of the vector element 

insert instruction described above. All uses of the values loaded from in in the Final 

block are replaced with the value that is produced by this PHI instruction. The Final 

block essentially serves as the loop’s epilogue. 

The edge between the Preload block and the Final block is taken when there is 

only one loop iteration to be performed (i.e. the value of size is one). 

4.3.2. Aggressive Transformation 

The function averages<4> is well-suited to this loop shifting optimization as it 

contains four consecutive scalar i32 loads from memory and our target architecture 

has a 128-bit vector unit. However, consider the case of the function averages<2>. 

With this function, there are only two consecutive scalar i32 loads from memory. To 

vectorize in cases like this, we could use the smaller vector size of 64-bits. 

Alternatively, we can use the full 128-bit vectors available on the target and only 

operate on the first two elements of the loaded values. This is the approach we will 

use for the aggressive form of the transformation. 
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Figure 47 Control flow graph of the function averages<2> with aggressive pre-loading 

As with the function averages<4>, in averages<2> we create two new basic 

blocks called Preload and Final to act as the loop’s prologue and epilogue. 

However, we must take extra care as there are additional considerations when 

preloading more than one iteration like this. 
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We introduce a third additional block when performing this more aggressive 

preloading. Since we are shifting more than one iteration from the loop body, to 

maintain the original semantics of the loop and to prevent reading memory that is out 

of bounds, we check that there are enough iterations to be performed before entering 

the transformed loop. If there are not enough iterations, then we branch to the 

Fall-back Loop block shown in green in Figure 47. The following equation is used 

to determine how many iterations are being shifted from the loop body. 

𝑆𝐼 =  (𝑁𝑉𝐹 − 𝑉𝐹) + 1 

Where SI is the number of iterations we are preloading data for, NVF is the natural 

vectorization factor for the type being loaded and VF is the existing vectorization 

factor in the block. 

When the value of size is less than SI, the branch to the Fall-back Loop block 

is taken. Otherwise, the branch into the shifted loop via the Preload block is taken. 

The Preload block is now responsible for loading data for more than one iteration 

of the loop. In the case of averages<2>, NVF is four and VF is two. Therefore, the 

number of iterations we are preloading for in the Preload block (i.e. SI) is three. At 

the end of the Preload block, the conditional logic for the branch instruction is 

different. If the value of size is SI, then the branch to the Final block is taken. 

Otherwise, the branch to the Loop block is taken. 

The Loop block performs the same vector shuffle and insert operations as in the 

general case described previously. The only difference is that instead of loading the 

data that is new for the next iteration in the loop (i.e. iteration i+1), the value loaded 

is for iteration i+SI. 

Since we are shifting more than one iteration from the loop body, the Final block is 

now a loop itself. The number of iterations of this loop is determined by how much 

extra data is loaded in the Preload block (i.e. the value of SI). In the case of 

averages<2>, it performs the final three iterations of the loop. Like the Loop 

block, we insert vector shuffle instructions at the end of the Final block to shift the 
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elements to the left for the next iteration of the loop. However, since all the data for 

these final iterations has already been loaded there are no additional load instructions 

or vector element insert instructions necessary. With each shuffle, the “last” element 

in the vector becomes undefined. It does not matter what value is inserted into this 

element of the vector since it won’t ever be used. 

4.3.3. Design and Implementation 

In this section, we will describe the design and implementation of the loop shifting 

optimization using the example function maskedSum shown in Figure 48. This 

function applies a mask to four elements of the input array in and stores the sum of 

these values to an element of the output array out. This is performed size times. 

The mask for each element is stored in the array mask and is the same on each 

iteration of the loop. 

 

Figure 48 maskedSum example function 

The loop shifting optimization requires modifications to be made to two of the steps 

in the original SLP vectorizer. The following steps are modified: 

• Generate starting groups 

• Vectorize chains 

void maskedSum (int * __restrict in, 

                int * __restrict mask, 

                int * __restrict out, unsigned int size) 

{ 

  for (unsigned int i = 0; i < size; ++i) { 

    int sum = 0; 

    for (unsigned int j = 0; j < 4; ++j) 

      sum += in[i+j] & mask[j]; 

    out[i] = sum; 

  } 

} 
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4.3.3.1. Generate Starting Groups 

The process involved in generating starting groups is unchanged for the loop shifting 

optimization. However, we do add an additional post-pass on the generated groups 

to annotate each group with information pertaining to the “iteration overlap” of that 

group. 

Figure 49 LLVM-IR for the for loop in the function maskedSum 

for.preheader: 

  %mask1 = getelementptr inbounds i32, i32* %mask, i32 1 

  %mask2 = getelementptr inbounds i32, i32* %mask, i32 2 

  %mask3 = getelementptr inbounds i32, i32* %mask, i32 3 

  br label %for.body 

 

for.body: 

  %i = phi i32 [ %add1, %for.body ], 

               [ 0, %for.preheader ] 

  %arrayidx0 = getelementptr inbounds i32, i32* %in, i32 %i 

  %load0 = load i32, i32* %arrayidx0, align 4, !tbaa !1 

  %load1 = load i32, i32* %mask, align 4, !tbaa !1 

  %and0 = and i32 %load1, %load0 

  %add1 = add nuw i32 %i, 1 

  %arrayidx1 = getelementptr inbounds i32, i32* %in, i32 %add1 

  %load2 = load i32, i32* %arrayidx1, align 4, !tbaa !1 

  %load3 = load i32, i32* %mask1, align 4, !tbaa !1 

  %and1 = and i32 %load3, %load2 

  %accumulate0 = add nsw i32 %and1, %and0 

  %add2 = add i32 %i, 2 

  %arrayidx2 = getelementptr inbounds i32, i32* %in, i32 %add2 

  %load4 = load i32, i32* %arrayidx2, align 4, !tbaa !1 

  %load5 = load i32, i32* %mask2, align 4, !tbaa !1 

  %and2 = and i32 %load5, %load4 

  %accumulate1 = add nsw i32 %and2, %accumulate0 

  %add3 = add i32 %i, 3 

  %arrayidx3 = getelementptr inbounds i32, i32* %in, i32 %add3 

  %load6 = load i32, i32* %arrayidx3, align 4, !tbaa !1 

  %load7 = load i32, i32* %mask3, align 4, !tbaa !1 

  %and3 = and i32 %load7, %load6 

  %accumulate2 = add nsw i32 %and3, %accumulate1 

  %arrayidx7 = getelementptr inbounds i32, i32* %out, i32 %i 

  store i32 %accumulate2, i32* %arrayidx7, align 4, !tbaa !1 

  %exitcond = icmp eq i32 %add1, %size 

  br i1 %exitcond, label %for.loopexit, 

                   label %for.body 
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Starting with the LLVM-IR shown in Figure 49, we generate two starting groups for the 

basic block labelled %for.body. These groups (with VF equal to four) are: 

 Load Group 0: 

%load0 = load i32, i32* %arrayidx0, align 4, !tbaa !1 

%load2 = load i32, i32* %arrayidx1, align 4, !tbaa !1 

%load4 = load i32, i32* %arrayidx2, align 4, !tbaa !1 

%load6 = load i32, i32* %arrayidx3, align 4, !tbaa !1 

 Load Group 1: 

 %load1 = load i32, i32* %mask, align 4, !tbaa !1 

 %load3 = load i32, i32* %mask1, align 4, !tbaa !1 

 %load5 = load i32, i32* %mask2, align 4, !tbaa !1 

 %load7 = load i32, i32* %mask3, align 4, !tbaa !1 

Load Group 0 contains the load instructions from the input array in. Load 

Group 1 contains the load instructions from the input array mask. There are three 

methods that we can use to calculate the memory access overlap between iterations 

for each group of instructions. Each method involves inspecting the pointer operand 

to the first LLVM-IR load instruction in the group (e.g. inspecting the instructions 

which generate the value %arrayidx0 for the first load group). We only consider 

the pointer operand of the first instruction since the remaining instructions in the 

group are part of the group only because they access consecutive regions of memory. 

Therefore, by inspecting the first pointer operand, we are implicitly inspecting the 

other pointer operands as well. 

The first method is applied when the pointer operand is generated by a 

getelementptr instruction that is in the loop body, with a variable value for its 

index operand. This is the method that is used for the first load group in our example. 

Consider the instruction that generates the pointer value for the first load in this 

group. 

%arrayidx0 = getelementptr inbounds i32, i32* %in, i32 %i 

This instruction has a base pointer of %in, which is indexed using the value %i. For 

the index operand, we are looking for one of two things. We require that the index 

operand is either the value produced by the PHI instruction for the loop’s iterator or 

the value produced by an integer add instruction with its first input operand being 
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the PHI instruction for the loop’s iterator. If the instruction that generates the index 

operand is an add instruction, then we require that it have a constant integer value 

as its second input operand. These conditions are a hard requirement because we 

want to ensure the indexing on each iteration of the loop is some constant value offset 

from the loop’s iterator value. If the “base” index value is not one of the loop’s 

iterators, then we are unable to calculate a constant overlap between iterations. If 

the index operand is an integer add instruction with a variable second input operand, 

once again we cannot calculate a constant overlap between iterations. 

If these requirements are met, then the overlap between iterations for this group is 

the difference between the size of the group and the constant value by which the 

iterator is updated on each iteration. We can use this approach since we do not 

support groups of data accesses with a stride greater than one. In our example, the 

size of Load Group 0 is four instructions, and the iterator %i is updated by one on 

each iteration of the loop by the instruction that generates the value %add1. 

Therefore, the iteration overlap for this group is three. This means that on each 

iteration of the loop, there are three elements in the group which were already loaded 

from memory on previous iterations. 

The second method is applied when the pointer operand is generated by a 

getelementptr instruction with a constant value for its first index operand. If the 

pointer operand is not generated by an instruction, or if it is generated by an 

instruction that is not executed as part of the loop, then the overlap between 

iterations is the full size of the group. We know this as neither the pointer operand or 

the index operand will change value between iterations of the loop. 

The third and final method is applied when the pointer operand of the first load 

instruction in the group is not generated by an instruction or is generated by an 

instruction that is not executed as part of the loop. This is the method we apply for 

the second load group in our example. The pointer operand for this load group is 

%mask. This value is a function argument that remains the same value throughout 

the lifetime of the entire function. Because of this, we can say that the iteration 

overlap is the full size of the group (i.e. the group is loop invariant).  
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This final method is also applied when the pointer operand of the first instruction in 

the group is generated by another group of instructions which are also loop invariant. 

This is worth noting as loading pointer values from consecutive memory locations can 

be vectorized, as well as the uses of those pointers. This is a common occurrence 

when vectorizing instructions that operate on 2D arrays in C and C++.  

4.3.3.2. Vectorize Chains 

Before we can begin vectorizing instruction chains with loop shifting, we need to 

create the Preload and Final basic blocks. As described in section 4.3.1, these 

blocks are responsible for preloading data for the first iteration of the loop and all 

other instructions in the last iteration of the loop respectively. The LLVM-IR for the 

vectorized versions of these blocks are shown in Figure 50 and Figure 51. 

We create these blocks by duplicating the loop body in full. We use the same LLVM 

function here to clone the loop body as we did in section 4.1.2.2 for the loop unroller. 

This function duplicates all the instructions in a basic block into a new block but it does 

not replace references to the original instructions within the new block. Because of 

this we need to do a pass over all instructions in the new basic block and replace all 

references to instructions in the original block with references to their corresponding 

instruction in the new block. The cloning function provides a “Value to Value” map to 

facilitate this. We will use the maps for both the Preload and Final blocks 

extensively when vectorizing each node in the DAG. 

When these blocks have been created we fix up the branch instructions at the end of 

each affected block in the function’s CFG. The branch instruction at the end of the 

original loop predecessor block (e.g. %for.preheader in Figure 49) is redirected 

to the Preload block instead of the loop body. The Preload block is set to branch 

to either the Final block or the loop body, depending on the number of iterations 

there are to be performed. An integer compare instruction is generated to drive this 

conditional branch. When exiting the loop body, the new branch target is the Final 
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block. At the end of the Final block, we insert an unconditional branch to the 

previous target block of the loop exit. 

Figure 50 LLVM-IR for the vectorized maskedSum function (blocks preload and body) 

At this stage, we also adjust the loop bound of the loop body. We do this by creating 

a sub instruction in the Preload block, which subtracts the stride of the loop 

iterator from the original loop bound. The value produced by this sub instruction 

for.preload: 

  %newbound = add i32 %size, -1 

  %invpt = bitcast i32* %in to <4 x i32>* 

  %inpreload = load <4 x i32>, <4 x i32>* %invpt, align 4 

  %maskvpt = bitcast i32* %mask to <4 x i32>* 

  %vectormask = load <4 x i32>, <4 x i32>* %maskvpt, align 4 

  %5 = icmp eq i32 %size, 1 

  br i1 %5, label %for.final, 

            label %for.body 

 

for.body: 

  %inphi = phi <4 x i32> [ %next, %for.body ], 

                         [ %inpreload, %for.preload ] 

  %i = phi i32 [ %add1, %for.body ], 

               [ 0, %for.preload ] 

  %andvectorized = and <4 x i32> %vectormask, %inphi 

  %extract0 = extractelement <4 x i32> %andvectorized, i64 0 

  %extract1 = extractelement <4 x i32> %andvectorized, i64 1 

  %extract2 = extractelement <4 x i32> %andvectorized, i64 2 

  %extract3 = extractelement <4 x i32> %andvectorized, i64 3 

  %add1 = add nuw i32 %i, 1 

  %accumulate0 = add nsw i32 %extract1, %extract0 

  %accumulate1 = add nsw i32 %extract2, %accumulate0 

  %add3 = add i32 %i, 3 

  %arrayidx3 = getelementptr inbounds i32, i32* %in, 

                                           i32 %add3 

  %accumulate2 = add nsw i32 %extract3, %accumulate1 

  %arrayidx7 = getelementptr inbounds i32, i32* %out, i32 %i 

  store i32 %accumulate2, i32* %arrayidx7, align 4, !tbaa !1 

  %exitcond = icmp eq i32 %add1, %newbound 

  %nextidx = getelementptr i32, i32* %arrayidx3, i32 1 

  %load4 = load i32, i32* %nextidx, align 4 

  %shuffle = shufflevector <4 x i32> %inphi, <4 x i32> undef, 

                  <4 x i32> <i32 1, i32 2, i32 3, i32 undef> 

  %next = insertelement <4 x i32> %shuffle, i32 %load4, 

                                            i64 3 

  br i1 %exitcond, label %for.final, 

                   label %for.body 
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becomes the new loop bound. In our example function maskedSum, the iterator 

stride is one, so the new loop bound is size-1.  

We also take this opportunity to tidy up any references to basic blocks in PHI 

instructions that have been affected by the introduction of the two new blocks in the 

CFG. 

Figure 51 LLVM-IR for the vectorized maskedSum function (block final) 

Once these changes to the CFG have been made, we are ready to begin vectorizing 

individual nodes in the vectorizable DAG. This is the DAG described in section 3.2 that 

contains nodes which represent groups of vectorizable LLVM-IR instructions. As 

before, the nodes in the DAG are vectorized one at a time, in a top-down breadth-first 

fashion, starting with the root nodes of the graph. We make a distinction here 

between nodes with a non-zero iteration overlap, and those with an iteration overlap 

of zero. 

Nodes with a non-zero iteration overlap are first inserted into the Preload block. 

The “Value to Value” map that was generated during the block cloning process earlier 

is used to determine the appropriate insert point in the Preload block for the 

vectorized instruction. In our example, the original load groups fall into this category. 

for.final: 

  %infinal = phi <4 x i32> [ %inpreload, %for.preload ], 

                           [ %next, %for.body ] 

  %ifinal = phi i32 [ 0, %for.preload ], 

                    [ %add1, %for.body ] 

  %andvectorizedfinal = and <4 x i32> %vectormask, %infinal 

  %16 = extractelement <4 x i32> %andvectorizedfinal, i64 0 

  %17 = extractelement <4 x i32> %andvectorizedfinal, i64 1 

  %18 = extractelement <4 x i32> %andvectorizedfinal, i64 2 

  %19 = extractelement <4 x i32> %andvectorizedfinal, i64 3 

  %accumulate0final = add nsw i32 %17, %16 

  %accumulate1final = add nsw i32 %18, %accumulate0final 

  %accumulate2final = add nsw i32 %19, %accumulate1final 

  %arrayidx7final = getelementptr inbounds i32, i32* %out, 

                                                i32 %ifinal 

  store i32 %accumulate2final, i32* %arrayidx7final, 

                               align 4, !tbaa !1 

  br label %for.loopexit 
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The loads from %in are vectorized and inserted into the Preload block as the 

following instruction in Figure 50: 

%inpreload = load <4 x i32>, <4 x i32>* %invpt, align 4 

Depending on the value of the iteration overlap, we take one of two actions: 

1. If the iteration overlap is the same value as the number of instructions in the 

node (as is the case for the loads from %mask) then we only insert the 

vectorized instruction into the Preload block and use it for all uses of the 

original values in subsequent blocks (the loop body and the Final block). 

2. If the iteration overlap is any other value (like with the loads from %in), we 

also insert additional instructions into the loop body to load the appropriate 

values and setup the vector value for the next iteration of the loop. In our 

example in Figure 50, this action is performed by the following sequence of 

instructions. 

%nextidx = getelementptr i32, i32* %arrayidx3, i32 1 

%load4 = load i32, i32* %nextidx, align 4 

%shuffle = shufflevector <4 x i32> %inphi, <4 x i32> undef, 

                 <4 x i32> <i32 1, i32 2, i32 3, i32 undef> 

%next = insertelement <4 x i32> %shuffle, i32 %load4, 

                                          i64 3 

The first step in this sequence of instructions is to calculate the pointer for the next 

value that is required to be inserted into the vector for the next loop iteration. To do 

this, we use the pointer for the last load instruction in the group as a base pointer and 

index it with a constant index value for the next value in the array (in this case, the 

value is one). In our example, there is only one scalar value to be loaded for the next 

loop iteration, but depending on the iteration overlap value, this could be any value 

greater than zero. When performing the more aggressive loading optimization, scalar 

values for the Nth iteration after this iteration are loaded, where N is the number of 

iterations shifted from the loop. 

Next, we shuffle the vector value used in the current loop iteration to effectively shift 

the elements to the left by however many scalar values are being loaded. In our 

example, there is only one scalar, so we shift the elements left by one. This creates an 
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undefined “hole” in the vector into which we can insert our new values. The values 

are inserted, and the produced vector value is used for the next iteration of the loop. 

Finally, a PHI instruction at the start of the loop body is created for this node. When 

entering the loop block from the Preload block, the value produced by the vector 

instruction inserted into that block is used. When entering from the back-edge of the 

loop, the value produced by the final vector element insert instruction is used. 

Similarly, a PHI instruction is also inserted into the Final block for this node. When 

entering the block from the Preload block, the value produced by the vector 

instruction inserted into that block is used. When entering from the loop body, the 

value produced by the last vector element insert instruction is used. 

For nodes with an iteration overlap of zero, the vectorized instructions are inserted 

into both the loop body and the Final blocks. The “Value to Value” map for the 

Final block is used to determine the appropriate position in the block to insert new 

vector instructions. In our example, there are a group of logical and instructions 

which are vectorizable with no iteration overlap as shown in Figure 49. The vector 

instruction in the loop body is created in the same fashion as before. When an input 

operand to the vectorized instruction is produced by a node with a non-zero iteration 

overlap (that is not loop invariant), the PHI instruction at the start of the loop body 

for that node is used as the value for that input operand. The same rules apply to the 

vector instruction inserted into the Final block, the PHI instruction at the start of 

the block for that node is used. 

Once all nodes have been vectorized, we delete any unused scalar instructions in all 

three blocks and all scalar instructions that have been vectorized in all three blocks. 

Any scalar store instruction that have been inserted into the Preload block are also 

deleted at this point. They were duplicated into the Preload block during the 

cloning step and should not persist there. 

This optimization, along with all other optimizations described in this chapter are 

demonstrated working together in tandem in the following chapter using the example 

of an image convolution.  
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Chapter 5 Vectorization of Image Convolutions 

In this chapter, we bring together all aspects of the vectorizer and its additional 

optimizations described in Chapter 3 and Chapter 4. We do this through an example 

function. Our example function is a 5x5 image convolution that operates on 32-bit 

integer values. The code for this function is shown in Figure 52. 

 

Figure 52 convolution5x5 example function 

For the function convolution5x5 we know that the input arrays image and 

kernel, and the output array output are all non-overlapping since they are 

declared with the __restrict keyword as described in section 2.5. This function 

assumes that the input array image has been pre-padded with appropriate values on 

all sides so that we can negatively index the array in the first iterations of both the 

inner and outer for loops. This is also so we can safely read over the end of the image 

for the final iterations of both loops. This is necessary since we read more values from 

the image array than are written to the output array, as discussed in section 2.6. 

Effectively, when the output array is 𝑁 × 𝑀, the image array is pre-padded to 

(𝑁 + 𝐾 − 1) × (𝑀 + 𝐾 − 1), where K is the size of the kernel. 

void convolution5x5 (int * __restrict * __restrict image, 

                     int * __restrict * __restrict kernel,  

                     int * __restrict * __restrict output, 

                     unsigned int width, 

                     unsigned int height ) { 

  for (unsigned int i = 0; i < height; ++i) { 

    for (unsigned int j = 0; j < width; ++j) { 

      int sum = 0; 

      #pragma unroll 5 

      for (unsigned int x = 0; x < 5; ++x) { 

        #pragma unroll 5 

        for (unsigned int y = 0; y < 5; ++y) { 

          sum += image[i+x-2][j+y-2] * kernel[x][y]; 

        } 

      } 

      output[i][j] = sum; 

    } 

  } 

} 
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Figure 53 convolution5x5 original scalar instruction def-use chain 
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The original scalar instruction chain for the function is shown in Figure 53. The 

instructions in this function have been grouped into sections in this image. Load 

instructions accessing the image input array are highlighted in the purple groups. 

Load instructions from the kernel input array are highlighted in blue. Integer 

multiply instructions are shown in green and the accumulation chain (using the 

variable sum in Figure 52) is shown in peach. 

When vectorizing this function, the SLP vectorizer, the Associative Chain Reordering 

and the loop shifting optimizations all work together in tandem.  

We start by generating starting groups for the body of the inner-for loop. There are 

ten starting groups for this basic block. They are the five groups of load instructions 

from the image array shown in purple in Figure 53, and the five groups of load 

instructions from the kernel array shown in blue. Each of these groups has a non-

zero iteration overlap, for the purposes of the loop shifting optimization. The index 

operands for the kernel accessing instructions are all constant integer values. This 

means that each of these five groups is loop invariant since neither the index values 

nor the pointer values change between iterations of the loop. Each of the image 

accessing groups have an iteration overlap of four. This is because each group in the 

5x5 convolution accesses five consecutive locations of memory from their respective 

rows of the image array on each iteration of the loop using the iterator j as a base 

index value. The iterator j is updated on each iteration of the loop by constant one. 

Therefore, four of the memory locations accessed on iteration j were already 

accessed on iteration j-1, for all iterations j>0. 

From these starting groups, we build the rest of the DAG for the basic block. The rest 

of the DAG is made up of two parts. The first part contains the integer multiply 

instructions shown in green in Figure 53. These instructions are brought together into 

five groups of five instructions each. The instructions are grouped based on their input 

operands from the image and kernel load groups using the process described in 

section 3.2.3. The second part of the DAG contains the multiple-input add instruction 

corresponding to the accumulation chain shown in peach in the graph. The output 
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value of this mutliple-input add instruction is a scalar value which is used as the input 

operand to the final store instruction to the output array shown in yellow. We 

flatten this accumulation chain to a single multiple-input instruction to break the data-

dependencies between the individual add instructions and allow them to be 

vectorized. 

With this graph built, we can move on to vectorizing each individual group of 

instructions. The final vectorized instruction chain is shown in Figure 54. It should be 

noted that the image and kernel groups shown in this graph are not load instructions. 

They are only there to show which values are being used by which nodes in the graph. 

Where the load instructions are inserted is explained later using Figure 55. 

There is one issue which we resolve before producing any vector instructions. The size 

of our groups of instructions is five. This means we would have v5i32 vectors if we 

Figure 54 convolution5x5 vectorized instruction def-use chain 
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began vectorizing them immediately. Our target architecture does not support this 

vector type, but it does support v4i32 vectors. Therefore, we remove the last 

instruction from each group and so that their original scalar instructions remain in the 

block and we vectorize only the first four as shown in Figure 54. 

Reducing the size of the groups of instructions in this way presents a problem for the 

multiple-input add instructions which we generated for the chain of scalar add 

instructions in the original function. All input operands to this instruction no longer 

come from vectorized nodes. Because of this, we generate two separate chains of 

add instructions, one scalar and one vector, and join them together at the end. The 

vector part of the add chain contains four vector add instructions. The scalar part of 

the add chain contains four scalar add instructions. The number of instructions in 

both chains is determined by the convolution size. These two chains are joined 

together using an additional four (VF) scalar add instructions. First, we extract each 

of the elements from the value produced by the last instruction in the vector chain 

and produce three add instructions to accumulate them. These instructions may be 

lowered to a horizontal add instruction by the target backend. The result of this 

accumulation is added to the result of the scalar chain to produce the final, scalar 

output of the entire chain. This value is used as the input operand to the store 

instruction to the output array. 

These chains of instructions do not exist in only one basic block. With the loop shifting 

optimization, parts of the chain are duplicated and split between the loop body, the 

Preload block, and the Final block. The structure of the final instruction chain as 

it exists across all three of these basic blocks is shown in Figure 55. 

As we mentioned previously, the groups of load instructions from the kernel array 

are loop invariant. Because of this, we can hoist all of these loads into the Preload 

block and replace all uses of the original scalar loads with the values produced by 

these hoisted instructions. The uses of these values are shown by the blue edges in 

the graph in Figure 55. 



93 
 

The groups of load instructions from the image array also have data re-use between 

iterations. We start here by shifting the loads for the first iteration of the loop into the 

Preload block. Even though we are only vectorizing four of the instructions from 

the original group, we still hoist the last scalar instruction left over since it is also re-

used between iterations. We insert two PHI instructions per group into the loop body, 

a vector PHI and a scalar PHI. These PHI instructions are responsible for choosing the 

Figure 55 convolution5x5 instruction def-use chain snippet across the Preload, Loop Body, and Final blocks 
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correct value for this iteration of the loop (depending on which edge we took to enter 

the block). On the first iteration the value loaded in the Preload block is produced 

by the PHI, and on each subsequent iteration the value produced on the previous 

iteration is used. 

 

Figure 56 Instruction sequence that prepares the input data for the next loop iteration 

On each iteration of the loop, there are four values already loaded from the image 

array that we can re-use on the next iteration of the loop. In order, to re-use the data 

we need to move it into the correct position in the vector register in which it is stored. 

As shown in Figure 56, this involves shuffling the vector value that we used on this 

iteration to shift the elements to the left by one. We then insert the scalar value we 

used into last element position of the shuffled vector. This is the vector value which 

we will use on the next iteration of the loop and is passed along the back-edge of the 
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loop using the vector PHI instruction we inserted earlier. Now, we only need to load 

the extra piece of data for the next iteration that was not used in this iteration. This 

involves inserting an additional scalar load instruction at the end of the loop body that 

is passed along the back-edge of the loop using the scalar PHI instruction we inserted 

earlier. 

For the final iteration of the loop which is executed in the Final basic block, in this 

example all data has already been loaded so there is no need to insert any additional 

load instructions. We only need to insert two PHI instructions per group to distinguish 

between the values used when entering the block from the Preload block and when 

entering from the loop body. 

The multiply instructions and the accumulation instructions shown in Figure 54 are 

duplicated in both the loop body and the Final block. 

With this process complete, we have effectively vectorized the inner-for loop of the 

function convolution5x5. Our technique leverages the associativity and 

commutativity of the integer add instruction to maximize the number of vector 

instructions that we can produce for the loop body. We also used a loop shifting 

technique to re-use data across loop iterations to prevent excessive reading from 

memory. In the following chapter, we will discuss the performance improvements 

that are achieved through these techniques in the case of image convolutions and 

several other example benchmarks. 
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Chapter 6 Evaluation 

6.1. Evaluation Setup 

Our vectorizer was implemented and integrated into the LLVM 4.0.0 version of the 

Movidius SHAVE C/C++ Compiler. This is the implementation we will use to evaluate 

the correctness and performance of our optimizations. 

All functional and performance results which are presented here were generated by 

running each test on a single SHAVE core of a Movidius Myriad 2 MA2150 SoC, 

operating on data contained in the 2MB of CMX memory described in section 2.2. 

SHAVE has a 128-bit vector unit with support for 8, 16, and 32-bit integer operations 

and 16, and 32-bit floating point operations. We will consider the performance gains 

and losses generated by our vectorizer in relation to each of these types. 

The implementation of our vectorizer was functionally verified using two groups of 

different test suites. First, a group of correctness-oriented tests were used: LLVM’s 

own libc++ test suite and the GCC test suite. In total, approximately 11,200 tests from 

these test suites were used to verify correctness. These are the same tests that are 

among those used to ensure the correctness of every release Clang/LLVM and GCC. 

The second group of tests consist of purpose-built image processing tests which we 

created for this thesis. These tests were used both for ensuring correctness of each 

individual optimization and measuring their performance. A subset of these purpose-

built image processing tests is also used to gauge the changes in performance 

generated by our vectorizer in the next section. The tests used to verify the 

functionality of the implementation are shown in the table in Figure 57. 

The image convolutions listed operate on all natively supported types on the target 

architecture. In total, there are 194 of these tests, accounting for all permutations of 

the input and output types. The box blur tests also operate on all natively supported 

types, with a 1:1 mapping of input and output types. There are 15 of these tests in 

total. 
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All the example functions used in the previous chapters of this thesis were also used 

to verify the correctness of the implementation. 

Test Input types Output Types 
Input size 
(elements) 

5x5 image 
convolution 

int8_t, int16_t, int32_t, 
uint8_t, uint16_t, uint32_t, 
half, float 

int8_t, int16_t, int32_t, 
uint8_t, uint16_t, uint32_t, 
half, float 1080 

7x7 image 
convolution 

int8_t, int16_t, int32_t, 
uint8_t, uint16_t, uint32_t, 
half, float 

int8_t, int16_t, int32_t, 
uint8_t, uint16_t, uint32_t, 
half, float 1080 

9x9 image 
convolution 

int8_t, int16_t, int32_t, 
uint8_t, uint16_t, uint32_t, 
half, float 

int8_t, int16_t, int32_t, 
uint8_t, uint16_t, uint32_t, 
half, float 1080 

5x5 image 
box blur 

int8_t, int16_t, int32_t, half, 
float 

int8_t, int16_t, int32_t, half, 
float 1080 

7x7 image 
box blur 

int8_t, int16_t, int32_t, half, 
float 

int8_t, int16_t, int32_t, half, 
float 1080 

9x9 image 
box blur 

int8_t, int16_t, int32_t, half, 
float 

int8_t, int16_t, int32_t, half, 
float 1080 

Absolute 
difference int8_t int8_t 1024 

Accumulate 
squared uin8_t uint8_t 1920 

White 
balance uint16_t uint16_t 1920 

Hamming 
distance 

[uint8_t x 32], [uint8_t x 64], 
[uint8_t x 128] uint32_t 512 

Substring 
search int8_t 

[int8_t x 7], [int8_t x 11], 
[int8_t x 16], [int8_t x 21] 8192 

Figure 57 table of purpose-built image processing tests 

All tests in both groups of test suites were compiled using the same set of compiler 

options on the command-line: 

 -Wall -O3 {vectorizer enable/disable options} 

The final set of options are those used to selectively enable and disable our vectorizer 

implementation. 
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6.2. Functional Results 

For both the first group of 11,200 tests and the second group listed in Figure 57, there 

were performance changes detected in many of the tests, however there were no 

functional changes across all tests when the vectorizer was enabled compared to 

when it was disabled. This means that tests which passed with the vectorizer disabled 

also passed when the vectorizer was enabled, for all tests in each of the test suites. 

Passing this very large number of tests is a strong indication that the novel 

optimizations preserve the semantics of the compiled code. 

6.3. Performance Results 

In this section we will consider the performance gains and losses generated by our 

vectorizer implementation using a subset of the image processing tests mentioned in 

the previous section. We will evaluate the performance of each component of the 

vectorizer individually, and then in the final subsection consider the performance of 

all components working together as described in Chapter 5. 

Throughout this section, we describe the performance changes in each test case in 

terms of “operations per cycle”. Within this context, operations refer to the 

operations directly involved in computing the results of the test. They do not include 

the likes of loop iterator updates, branch instructions, and any other “boiler-plate” 

instructions that are part of the test. We are only interested in the operations that 

directly perform the relevant work. 

Since SHAVE is a VLIW architecture, the code generated by the compiler is a cycle by 

cycle listing of the instructions that will be executed at runtime, in the exact order 

they will be executed. There is no instruction re-ordering or pipeline changes made 

by the processor at runtime. Because of this, the number of cycles executed is an 

accurate and reliable measure of the efficacy of compiler optimizations. We use 

“operations per cycle” as a measure of performance in this thesis because of this.  

In each subsection, we present the performance results and code-size changes for a 

set of tests chosen specifically for the optimization being discussed in that subsection. 
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This is followed by an analysis of these results. The tests were chosen based on how 

well they demonstrate the associated optimization. For example, the tests used to 

benchmark ACR do not have data re-use between iterations, so they are not used to 

benchmark the loop shifting optimization. 

6.3.1. Superword Level Parallelism 

To evaluate the performance of our Superword Level Parallelism (SLP) vectorizer 

(described in Chapter 3) on its own, we will consider the three following test cases: 

• Absolute difference 

• Accumulate squared 

• White balance 

The operations per cycle for each of these functions with and without the vectorizer 

enabled are shown in Figure 58. The code size changes generated by the vectorizer 

are shown in Figure 59. 

 

Figure 58 SLP vectorizer operations per cycle results with NVF of 16, 16, and 8 respectively 
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The absolute difference implementation computes the pixel-by-pixel absolute 

difference between two RGB images with an input and output type of unsigned 

char. With the vectorizer disabled, this implementation runs at rate of 0.355186 

operations per cycle. When the vectorizer is enabled this jumps up to 4.331641 

operations per cycle, a 12.1954x improvement. This comes at the cost of an increase 

in code size of 3.25x.  

The accumulate squared implementation computes the square of each pixel in an 

input image and adds this value to the equivalent pixel of an output image. With the 

SLP vectorizer disabled, this implementation achieves an operations per cycle rate of 

2.797619. With the vectorizer enabled, the implementation runs at 7.767258 

operations per cycle, a 2.7763x improvement. This improvement is accompanied by 

an improvement in code size. The code size is nearly halved. 

Finally, the white balance test case produces a white balanced version of an input RGB 

image. With the vectorizer enabled, there is a 4.8244x improvement in the operations 

per cycle, going from 0.687968 with the vectorizer disabled to 3.319053 with it 

enabled. This comes at the cost of a 1.0867x increase in code size. 

While all three test cases examined here see an improvement in operations per cycle, 

the code size results are less consistent. The accumulate squared test can be 

vectorized without the need for loop unrolling. This is not the case for the absolute 

difference and white balance tests however. Both of these tests require loop unrolling 

for the SLP vectorizer to be able to vectorize them. The increase in code size is caused 

by the additional scalar loop that is generated for when the number of iterations of 

the loop is not a multiple of the unroll factor. 
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Figure 59 SLP vectorizer code size results 
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When evaluating the performance of the SLP vectorizer with the Associative Chain 

Reordering (ACR) optimization enabled, we will consider a group of Hamming distance 

functions, operating on three different string sizes. 

Hamming distance computes the number of points at which two strings of equal 

length have different bit values. Our Hamming distance implementation performs this 

operation for an array of byte strings, comparing each individual string in the array to 

a single reference string. Each string in the array and the reference string have the 

same length. The result for each string is stored to an output array of Hamming 

distance values. 

We will consider the performance benefits of ACR in the context of 32, 64, and 128-

byte string sizes. The operations per cycle results are shown in Figure 60, and the code 

size results are shown in Figure 61. 
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Figure 60 SLP vectorizer with ACR operations per cycle results, with NVF of 16 

Starting with the 32-byte Hamming distance implementation, we see some decent 

performance improvements with both SLP and ACR enabled. With only SLP enabled, 

the operations per cycle jumps from 2.981439 to 3.969313, a 1.3313x performance 

improvement. With ACR enabled as well, there is a further increase to 4.139464 

operations per cycle, a 1.3884x improvement on the original function. With SLP 

enabled, the code size remains the same for this test. However, with ACR enabled as 

well, there is a small reduction in code size from 208 bytes to 192 bytes. 

Moving on to the 64-byte Hamming distance implementation, there is a more 

significant improvement in performance. With SLP enabled, the operations per cycle 

increases from 5.79247 to 9.342533, a 1.6128x improvement. With ACR enabled as 

well, this increases again to 10.58466 operations per cycle, a 1.8273x improvement. 

For this implementation, we also see a more significant reduction in code with SLP 

enabled on its own, and with both SLP and ACR enabled.  
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Figure 61 SLP vectorizer with ACR code size results 
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number of cycles required to perform those operations increases by a smaller 

amount. 

The performance improvements achieved through ACR also increase with string size. 

This is due to a longer accumulation chain which is used to sum all of the population 

count operations which are performed for each 4-byte section of the string (using 

LLVM’s llvm.ctpop.32 intrinsic). There are static costs associated with generating 

vector accumulation chains (e.g. retrieving the scalar result at the end). As the size of 

the chain increases, the relative cost of these to the rest of the chain decreases. 

There is also a notable reduction in code size as the size of the strings increases. As 

we mentioned previously, as the size of the strings increase, so too does the 

availability of higher instruction level parallelism (ILP). On a VLIW architecture like 

SHAVE, a higher ILP can often equate to denser VLIW instructions (i.e. more 

operations encoded per instruction) and fewer “No Operation” or NOP instructions. 

This has the effect of reducing code size. 

6.3.3. Data Re-use through Loop Shifting 

When evaluating the performance of the SLP vectorizer with the Loop Shifting (LS) 

optimization enabled, we will use a set of substring search tests, each operating on 

different substring sizes. For each test, we will consider both the “basic” loop shifting 

optimization which performs at most one iteration of look-ahead and the more 

aggressive optimization which can perform more than one iteration of look-ahead. 

There are four substring search tests in total, operating on seven, eleven, sixteen and 

twenty-one character strings respectively. Each of these tests finds the index of each 

instance of the specified substring in a single string of 8,192 characters. The generated 

performance results are shown in Figure 62, and the code size results are shown in 

Figure 63. 

Each of these tests can be broadly split into three categories: undersize, native size 

and oversize. The 7-byte and 11-byte are undersize tests since they operate on 

substrings which have a length that is less than the native vector width of our target 
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architecture. The 16-byte test is native size, and the 21-byte test is oversize since it 

operates on substrings larger than the native vector width. 

 

Figure 62 SLP vectorizer with LS operations per cycle results, with NVF of 16 

Starting with the two undersize tests, we see some decent improvements when SLP 

is enabled. With it enabled, the 7-byte test improves in performance, going from 

1.179427 operations per cycle to 1.652561 operations per cycle. This is a 1.4012x 

improvement. Similarly, the 11-byte test increases from 1.519055 operations per 

cycle to 2.16041 operations per cycle, a 1.4222x improvement. 

With the data re-use optimization enabled, there are some modest improvements on 

the performance in each case. With basic loop shifting, the 7-byte test achieves a 

performance of 1.695184 operations per cycle, while the aggressive approach 

achieves 1.772855 operations per cycle. These represent a 1.4373x and a 1.5031x 

improvement respectively. The basic approach for the 11-byte test reaches 2.249568 

operations per cycle, while the aggressive approach achieves 2.422804 operations per 

cycle. These represent a 1.4809x and a 1.5949x improvement respectively. 
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The performance improvement for loop shifting on these undersize tests may appear 

lower than one might expect. This optimization can be a double-edged sword for 

certain types of functions. While we do get the benefits of data re-use between 

iterations and the full native vector width for the target, we do not get the benefit of 

horizontal vector instructions to produce scalar results. This is because the horizontal 

vector instructions operate on all lanes of the specified vector value. In the case of the 

undersize tests, some of the lanes contain undefined values that will lead to undefined 

behaviour in the tests if we were to use them. Functions which have a high number 

of vertical vector instructions can mitigate the cost of expensive scalarizing epilogue 

code like this through the performance gained by those vertical instructions. 

However, as is the case in the substring search, there is a low number of vertical vector 

instructions generated. As a result, the absence of 7-byte and 11-byte horizontal 

vector instructions reduce the performance gains of data re-use and native vector 

sized memory accesses. 

The absence of these horizontal vector instructions is also the reason why we see 

significant code size increases for these undersized tests. With SLP enabled on its own, 

there is a reduction in code size due to replacing multiple scalar instructions with 

single vector instructions. When LS is enabled, this is undone by the scalarizing vector 

element extract instructions at the end of the vectorized instruction chains. There is 

also an increase in code size caused by the duplication of instructions in the preload 

and final basic blocks that are generated by the optimization. The additional increase 

in code size in the aggressive LS optimization is caused by the introduction of the 

vector shuffle instructions inserted into the final block to shift the input vectors to the 

left, and into position for the next iteration. 
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Figure 63 SLP vectorizer with LS code size results 
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per cycle to 4.007509 operations per cycle, a 2.0334x improvement. Moving to loop 

shifting, the performance once again improves to 5.123593 operations per cycle for 

the basic approach, and 5.348280 operations per cycle for the aggressive approach, a 

2.5997x and a 2.7137x improvement respectively. 

The 21-byte test suffers from the same problem as the 7-byte and 11-byte tests. The 

21-byte operations performed by this test are seen as 16+5 by the vectorizer. This 

means we get the full benefit of horizontal vector instructions for the first 16-bytes of 

the data, but the remaining 5-bytes do not, even though they are stored in a 16-byte 

vector as well (along with the data for the next eleven iterations of the loop). 

Once again, the scalarizing epilogue code in place of the horizontal vector instructions 

is the reason why we see a greater increase in code size for this test, when compared 

to the 16-byte test. Similar to the undersized tests, the additional increase in code size 

with the aggressive LS optimization enabled is caused by the additional vector shuffle 

instructions that are inserted at the end of the final block to shift the input vector 

values to the left for the next iteration of the final loop. 

6.3.4. SLP with Chain Reordering and Data Re-use 

We use a set of 5x5, 7x7, and 9x9 image convolutions as our benchmarks for all our 

vectorization optimizations together. In this section, we will discuss the performance 

changes generated by each of the optimizations individually, as well as working 

together. We start by examining the performance results for the 5x5, 7x7, and 9x9 

integer convolutions, followed by a brief examination of the results for the floating-

point convolutions. We finish this section with an analysis of all results.  

6.3.4.1. Integer Convolutions 

The integer convolution performance results are shown in Figure 64. The code size 

results for these tests are shown in Figure 65. 
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Figure 64 Operations per cycle results for integer image convolutions 

With SLP enabled, the convolution tests see improvements of anywhere between 

1.3941x and 3.774x when compared to the original scalar version of the function. The 

improvement fluctuates based on the convolution size and data type involved. The 

largest improvement is seen on the 9x9 16-bit test since the vectorizer can produce a 

v8i16 vector and a single scalar for each operation. The compiler for our target 

architecture also supports 64-bit vector operations [54], which is why the 5x5 and 7x7 

16-bit convolution achieve a significant performance improvement as well. 

Every test receives an improvement in code size with SLP enabled. The reduction seen 

in each test depends on the number of vectorizable scalar operations in the original 

“unoptimized” version of the test and the vectorization factor that is used by the 

vectorizer. As the kernel size increases, so too does the improvement in code size. 

With ACR enabled, the integer convolution tests see improvements between 1.6870x 

and 3.0561x when compared to the original scalar version of the function. When 

compared to the code generated by the SLP vectorizer on its own, the performance 

changes range from 0.9049x to 1.2102x. 
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Figure 65 Code size results for integer image convolutions 

There is one slowdown with ACR enabled over the SLP vectorizer on its own in the 9x9 

16-bit convolution. In this case, the SLP vectorizer produces vector multiply 

instructions, the results of which are deconstructed into scalar values that are fed into 
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in this way is faster than using the vector accumulation chain generated by ACR. It is 
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functional unit to the vertical vector multiplies. This means the horizontal add for one 

row of the convolution can be performed alongside the multiply instruction for 

another row, signifying an increase in instruction level parallelism. 

The use of these horizontal add instructions in the SLP version of the 9x9 16-bit 

convolution is also the reason for the more significant reduction in code size 
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enabled, there is a moderate improvement in code size. This is caused by a small 

reduction in the total number of instructions in the function. 

For all other tests, there is a reduction in code size with ACR enabled that is caused by 

the removal of the scalarizing vector element extract instructions and the scalar 

accumulation chain. These instructions are all replaced by the shorter vector 

accumulation chain. 

Moving on to the data re-use optimization (LS), we see improvements in the integer 

convolution tests in the range 1.5089x to 4.1612x over the original scalar version of 

the function. When compared to the version generated by the SLP vectorizer on its 

own, we see performance changes between 0.7984x and 1.5013x. These ranges are 

the same for both the basic and aggressive approaches to LS. 

In all tests, the data re-use optimization causes an increase in code size. This is an 

expected cost in performing this optimization. The increase in code size is caused by 

the duplication of instructions that is inherent in shifting one or more iterations from 

the body of a loop. There are also additional boiler-plate instructions introduced that 

ensure the safety of the optimization at runtime (e.g. the loop bounds check in the 

preload basic block). 

6.3.4.2. Floating-point Convolutions 

The floating-point convolutions are implemented using the same template C++ 

function as their integer counterparts, only with floating-point types. All of the tests 

have been compiled with the Clang flag “-ffast-math” which tells Clang and LLVM 

that it may perform aggressive floating-point optimizations that may change the 

result of floating-point calculations. Our ACR implementation is one such 

optimization. The performance results for the 5x5, 7x7 and 9x9 floating-point 
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convolutions are shown in Figure 66. The associated code size results are shown in 

Figure 67. 

 

Figure 66 Operations per cycle results for floating-point image convolutions 

When comparing the integer performance results in Figure 64 with the performance 

results for the equivalent floating-point tests in Figure 66, the results are largely the 

same. The values of the operations per cycle are different but the relationships 

between the results are very similar. One notable exception to this is the 9x9 16-bit 

convolution with the data re-use optimization enabled. As mentioned previously, the 

9x9 16-bit integer convolution takes advantage of an optimization in the target 

backend that reduces the scalar accumulation chains to horizontal vector add 

instructions. This optimization is not performed on the equivalent 16-bit floating-

point operations. 

Because of this, the floating-point version of this convolution does not benefit as 

much from LS on its own. In fact, with LS enabled, the 9x9 16-bit floating-point 

convolution uses an excessive number of registers with the scalar accumulation chain. 
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This causes a more significant increase in code as shown in Figure 67, when compared 

with the integer version in Figure 65. 

 

Figure 67 Code size results for floating-point image convolutions 

Overall, the floating-point convolutions have a lower operations per cycle value than 

their integer counterparts. In general, floating-point operations are more 

computationally intensive than the equivalent integer operations which means they 

have a higher instruction latency. The operations per cycle results are lower because 

of this. The number of operations for each test is the same as the equivalent integer 

test, but the number of cycles required to execute them is higher. 

6.3.4.3. Performance Analysis 

With the data re-use optimization (LS) enabled, there are two slowdowns when 

compared to the SLP vectorizer on its own. These are in the 5x5 and 9x9 32-bit 

convolutions. When performing the LS optimization, the vectorizer hoists memory 
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instructions and scalar loads for the values required for the next iteration of the loop. 
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Unit (LSU) and replacing them with instructions executed on the Compare Move Unit 

(CMU). In the case of the 5x5 32-bit integer convolution, the CMU is already under 

heavy use by the vector element extract instructions required for extracting the 

multiply results for the scalar accumulate chain. As a result, we are moving many 

operations off an idle functional unit (the LSU) and creating new instructions on a busy 

functional unit. This means there is reduced instruction level parallelism available in 

the produced code, which increases the overall number of cycles required to execute 

the vectorized loop. 

This is a difficult problem to solve in a code optimization like ours. Our vectorizer 

operates on LLVM-IR, the target independent intermediate representation used by 

LLVM. At this stage in compilation, there is no functional unit attached to any 

instructions in the function. This information is only available once LLVM-IR has been 

lowered to SHAVE assembly code in the backend. We cannot know what decisions the 

backend will make when lowering LLVM-IR to assembly code, multiple IR instructions 

may be squashed into a single assembly instruction, or a single IR instruction may be 

expanded to multiple assembly instructions. 

The 9x9 32-bit integer convolution suffers from a different problem. When vectorizing 

this convolution, the vectorizer produces two v4i32 vector operations and one 

scalar operation for each row of nine operations. As mentioned in Chapter 3, when 

vectorizing these convolutions, the LS optimization hoists all loads from the kernel 

into a preload block which is executed before entering the loop body. The image 

values for the first iteration of the loop are also hoisted into this block. In the case of 

the 9x9 32-bit integer convolution, this means hoisting 36 v4i32 vector and 36 i32 

scalar loads out of the loop body and into the preload block. Our target architecture 

has a scalar register file which contains 32 32-bit registers and a vector register file 

which contains 32 128-bit registers. Since we have hoisted 36 values out of the loop 

body, there are 36 registers in both register files live across the back-edge of the loop. 

The LS optimization has therefore created a situation where register spilling to the 

stack is inevitable in the register allocator implementation. Naturally, the introduction 
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of these register spills also causes a significant increase in code size due to the 

additional instructions required. 

This problem may be solved by building an estimation of the number of registers that 

are live at any given point in the loop. This estimate could be used to limit the number 

of values that are hoisted out of the loop. However, this is a difficult process that 

would be prone to inaccuracies since (similarly to above) we do not know how LLVM-

IR instructions will be lowered in the backend or how values will be mapped to 

physical registers. 

Most of the slowdowns in performance we have listed here that are caused by either 

ACR or LS are alleviated when both optimizations are enabled together. With both 

enabled, the vectorizer achieves performance improvements between 2.0050x and 

6.9656x over the original scalar versions. Compared to the SLP vectorizer on its own, 

we see performance improvements in the range 1.1215x to 3.0392x. 

The only test that doesn’t recover its performance slowdown is the 9x9 32-bit integer 

convolution. Unfortunately, the high register pressure exhibited in this test cannot be 

relieved by any current component of our vectorizer. 

For the 9x9 16-bit integer convolution, the benefits of the horizontal add without ACR 

are lessened by the data re-use optimization. The number of cycles per loop iteration 

has been reduced to a point where using the regular vertical add instructions 

outweighs the benefits of the horizontal add instructions since there are less 

instruction cycles to alleviate their higher latency. 

With LS enabled, the 5x5 32-bit convolution suffered a performance slowdown caused 

by creating new instructions on the already busy CMU functional unit. With ACR 

enabled as well, the pressure on the CMU is greatly reduced since we no longer need 

to extract every single scalar result from the vector multiply values. As a result, this 

convolution can utilize the full benefits of both ACR and LS and the performance 

increases to match this. 
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In all test cases, enabling ACR alongside LS caused a reduction in code size compared 

to just LS enabled. This is due to a reduction in the number of instructions that needed 

to be duplicated from the loop body into the final basic block. 

This concludes our evaluation of the performance results generated from our 

benchmarks. In the next chapter, we provide details on some possible future work 

and conclude this thesis with some final thoughts.  
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Chapter 7 Conclusion 

7.1. Future Work 

There are many ways in which the vectorization strategy we described in this thesis 

can be expanded. In this section we will describe some possible directions for future 

work that could supplement and improve our approach to vectorization. 

Add support for more complex memory access patterns: Currently, our approach to 

SLP vectorization uses a relatively simple technique for finding groups of instructions 

that access contiguous regions of memory. It is capable of grouping instructions which 

use a common base pointer, a common variable base index (or no base index) and 

contiguous constant offsets. This technique could be expanded to include more 

complex, or indirect memory access patterns like accessing C struct members, multi-

dimensional arrays, or multiple levels of common variable base indexes. 

Our approach is also only capable of vectorizing accesses to contiguous memory 

locations. Memory accessing strides greater than one are common in many real-world 

applications that are vectorizable [33]. Our SLP vectorizer, as well as the loop shifting 

optimization could be expanded to take advantage of these opportunities. 

Tentative loop unrolling should be aware of associative chain reordering: The 

tentative loop unroller we have designed seeks to provide vectorization opportunities 

up to the natural vectorization factor for the target architecture. However, for loops 

that accumulate values across iterations, it may be beneficial to perform more 

aggressive unrolling to allow the associative chain reordering optimization to 

vectorize the accumulation. Our unroller could be expanded to consider the potential 

chain reordering in a loop when calculating the unrolling factor for that loop. 

Operand shuffling when building vectorizable chains: The vectorizable chain builder 

in our approach to SLP vectorization requires a one-to-one match for all lanes in a 

vector in order to link two vectorizable nodes together. However, it is possible that 

two or more nodes could be linked (via a def-use chain) using a sequence of vector 

shuffle operations. Using vector shuffle operations to link existing nodes and build 
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new nodes in an optimal fashion could be difficult because any number of 

independent values could be shuffled together in many different ways. An algorithm 

to find the “best” solution could be very complex. 

Cost model: The optimizations described in this thesis are performed for all eligible 

loops, regardless of the effects they will have on performance. In some cases, like we 

saw in section 6.3.4.3, the cost of constructing and deconstructing vector values can 

outweigh the benefits of vectorization. For cases like these, a cost model could be 

built to selectively enable each individual optimization only when it is deemed 

beneficial to do so. Such a cost model would be heavily dependent on the target 

architecture, as the costs involved in constructing and deconstructing vector values 

can vary significantly from target to target. 

7.2. Final Thoughts 

Convolutions are a common and important operation in image processing. Despite 

their importance, modern optimizing compilers are often incapable of effectively 

vectorizing them. Existing approaches to vectorization fall victim to problems such as 

excessive register pressure and poor data locality when targeting convolutions. 

In this thesis, we described an approach to vectorization that can effectively optimize 

convolutions and convolution-like functions. Our approach combines Super Level 

Parallelism (SLP) with some additional optimizations: 

• Tentative loop unrolling is used to create vectorization opportunities for SLP 

in loops which previously had none 

• Loop shifting provides a mechanism for re-using overlapping data across loop 

iterations 

• Chain reordering is used to remove data dependencies between instructions 

by exploiting the associative and commutative properties of certain 

operations. 

We evaluated our approach by implementing it in a version of LLVM targeting the 

Movidius SHAVE processor architecture. Through our evaluation, we found that the 
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combination of all the optimizations outlined above was a good technique for 

automatic vectorization of image convolutions. When enabled individually, each 

optimization achieved speedups in some tests but slowdowns in others. However, 

when combined they provided a reduction in execution time in all convolution tests, 

with speedups ranging from 2.01x to 6.97x for convolutions operating on integer data 

types, and speedups ranging from 2.19x to 5.34x for the equivalent floating-point 

convolutions. 

These improvements in performance are not limited to image convolutions. In 

Chapter 6, we demonstrated the efficacy of each of our techniques individually when 

used to optimize other code examples. These examples included common 

applications like image white balancing, Hamming distance and sub-string searching. 

Through our evaluation and analysis of these examples, and the set of convolution 

tests, we have demonstrated that our approach to automatic vectorization is 

profitable for certain families of applications. We have proven our approach can 

produce significant gains in performance, but with room to improve through potential 

future work.  
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