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S U M M A RY

Nanowire networks have had much attention from the scientific community in the
past two decades due to their potential in numerous technological applications.
Central to these are the superior electrical properties manifested in highly con-
nected networks, which are comprised of nanowires of various materials. In this
thesis, the response of nanowire networks with static and dynamic elements to
electrical stimulus, and their dependence on underlying geometric properties of
the network are examined with computer simulations and mathematical models.
Nanowires can be fabricated from a multitude of materials, and in this thesis those
comprised of a metallic conducting core surrounded by an insulating shell are
studied. A junction between intersecting nanowires is characterised by two metal-
lic cores separated by their insulating shells. These metal-insulator-metal junctions
can be described as static resistors or as memristors (memory resistors) which are
lumped circuit elements whose resistance can change dynamically according to
current-flow. The emergent properties of networks of both static and dynamic ele-
ments are examined in this thesis.

Key to understanding the electrical response of nanowire networks is an appro-
priate mapping onto a node-voltage graph such that Kirchhoff’s circuit laws can
be utilised to calculate equivalent resistances in the network. Two such mappings
are described in this thesis, one mapping considers inter-nanowire junctions as the
sole source of resistance in a network, the second also includes a contribution from
inner-nanowire resistances. The dependence of the sheet resistance of a nanowire
network on several underlying properties such as nanowire length, nanowire den-
sity and characteristic resistance values are calculated using the two node-voltage
mappings. The differences and limitations of these dependencies are highlighted
and contrasted between both node-voltage mappings. Many of these calculations
require the creation of ensembles of nanowire networks for the sake of statistical
significance. Alternatively, a method to digitally capture the nanowire positioning
from experimental images of nanowire networks is detailed, enabling a comparison
between the node-voltage mappings and experimental measurements of networks
with similar geometric layouts.

The image processing scheme used in this work provides a procedure to capture
the spatial configuration of highly disordered nanowire networks. Such disorder
that is a feature of nanowire networks can also be treated with an effective medium
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theory to approximate the average properties of networks, namely their sheet resis-
tance. An effective medium theory particular to nanowire networks is formulated
in this thesis, from which the sheet resistance can be directly related to several
geometric and static resistive parameters of a network. A closed-form expression
that approximates equivalent resistances in a nanowire network is derived with
the effective medium and is shown to accurately estimate results obtained from
numerical simulation and experimental measurements.

To address the dynamic and adaptive aspects of complex nanowire networks,
the nanowire junctions are treated as tunable lumped circuit elements known as
memristors. A memristor is a two terminal circuit element that has a dynamic non-
linear response to the current-flow through the device. Inter-nanowire junctions
are set to evolve from a high resistance state to a low resistance state according to
an empirical relation with the sourced current. The network as a whole is shown
to change in conductance in a similar manner to individual memristive junctions,
and this self-similarity is shown for several material types. In simulations where
current-flow gradually increases from negligible levels, localised conductive path-
ways are shown to emerge in a "winner-takes-all" manner for certain nanowire
materials. These winner-takes-all paths can be used to represent memory states
in a nanowire network. To do so, a proof-of-concept multi-electrode nanowire net-
work architecture is detailed, and independent and associative memory states are
demonstrated in the device. The illustrative multi-terminal architecture highlights
the potential of nanowire network devices for neuromorphic applications.

The last part of this thesis focuses on the response of nanowire networks at their
high resistance state subjected to extremely low current levels. The understand-
ing of such states is crucial to establish the potential for nanowire networks to
develop (or not) winner-takes-all paths. At this regime, nanowire networks can be
modelled as leaky capacitor networks, where capacitive junctions break down into
electrically conductive elements once the potential across it reaches some critical
value. The dynamics of a memristive network are compared with those of a capaci-
tive network, the latter showing a non-local and scale-free activation pattern unlike
the highly-localised current-flow pattern seen in the former. The fault-tolerance
of nanowire networks for both dynamic responses are further examined, with the
capacitive activation depicting a highly sensitive response to junction failure. The
memristive activation of a network on the other hand is shown to be very fault
tolerant, with little change occurring in the networks conductivity after failure of a
highly conductive pathway.

vi



P U B L I C AT I O N S

Publications resulting, partially or wholly, from this work:

- H. G. Manning, C. G. Rocha, C. O’Callaghan, M. S. Ferreira, J. J. Boland

Predicting the Performance and Optimization of Transparent Conducting Ag Nanowire

Networks

In preparation, 2018.

- C. O’Callaghan, C. G. Rocha, H. G. Manning, F. Niosi, J. J. Boland, and M. S.

Ferreira.

Self-Similar and Neuromorphic Properties in Core-Shell Nanowire Network Systems

Conference Proceedings, IEEE Nano Conference, 2018.

- C. O’Callaghan, C. G. Rocha, F. Niosi, H. G. Manning, J. J. Boland, and M. S.

Ferreira.

Collective Capacitive and Memristive Responses in Random Nanowire Networks:

Emergence of Critical Connectivity Pathways

Accepted for Publication, Journal of Applied Physics, 2018.

- H. G. Manning, F. Niosi, C. G. Rocha, A. T. Bellew, C. O’Callaghan, S. Biswas,

P. Flowers, B. J. Wiley, J. D. Holmes, M. S. Ferreira, J. J. Boland.

Emergence of Winner-takes-all Connectivity Paths in Random Nanowire Networks

Nature Communications 9, 3219, 2018.

- J. Jadwiszczak, C. O’Callaghan, Y. Zhou, D. S. Fox, E. Weitz, D. Keane, C.

P. Cullen, I. O’Reilly, C. Downing, A. Shmeliov, P. Maguire, J. J. Gough, C.

McGuinness, M. S. Ferreira, L. Bradley, J. J. Boland, G. S. Duesberg, V. Ni-

colosi, H. Zhang.

vii



Oxide-Mediated Recovery of Field-Effect Mobility in Plasma-Treated MoS2

Science Advances 4, eaao5031, 2018.

- C. O’Callaghan, C. G. da Rocha, H. G. Manning, J. J. Boland, and M. S. Fer-

reira.

Effective Medium Theory for the Conductivity of Disordered Metallic Nanowire Net-

works

Physical Chemistry Chemical Physics 18,27564-27571, 2016.

- J. A. Fairfield, C. G. Rocha, C. O’Callaghan, M. S. Ferreira, J. J. Boland.

Co-Percolation to Tune Conductive Behaviour in Dynamical Metallic Nanowire Net-

works

Nanoscale 8 (43), 18516-18523, 2016.

- C. G. Rocha, H. G. Manning, C. O’Callaghan, C. Ritter, A. T. Bellew, J. J.

Boland, M. S. Ferreira.

Ultimate Conductivity Performance in Metallic Nanowire Networks

Nanoscale 7 (30), 13011-13016, 2015.

viii



A C K N O W L E D G E M E N T S

I have been lucky to work and collaborate with some brilliant and talented people

during my PhD. I would like to thank my supervisor Prof. Mauro Ferreira for his

guidance and patience over the past four years. To my co-supervisor Prof. Claudia

Gomes da Rocha, I am truly grateful for your brilliant advice and insights during

the PhD. You both created a collaborative work environment and I will remember

our many brainstorming sessions with great fondness. I would like to thank my

collaborators, in particular Prof. John Boland. You always managed to ask the one

question I did not think of. I would like to thank my colleagues Dr. Hugh Manning,

and soon-to-be Dr. Fabio Niosi for their superb experiments and ideas. It was a joy

to work with you all over the past four years.

On a personal note, I would like to thank my friends who have always been

a source of support, encouragement, and distraction. In particular, to my fellow

PhDs Robert McGuinness and Christopher Hobbs, we’ll run that Dawson Loungi-

nar some day. To the astros, while our subjects of study were orders of magnitude

apart, we found common ground in Kennedys. To John and Paul whose example I

always tried to emulate. To my oldest and dearest friend Matthew McKenna, we’ve

come a long way from bus Claonadh.

I would not be where I am today if not for the constant love and support of my

family. To Amy and Dave, you have been incredible friends for as long as I can

remember. To my parents, Linda and Brendan, I never would have achieved what

I have today if not for the loving foundations and continuing support I received

from you. It is only now that I am older that I truly appreciate the energy you put

into raising the three of us. You worked so hard in giving us the best possible life,

and in that you succeeded.

ix



To Laura, your love has been an immense support. We navigated our time in

Trinity together, celebrating the successes and helping each other through the tough

times. I could not have done this without you.

x



C O N T E N T S

List of Figures xiv

Acronyms xviii

1 introduction 1

1.1 Nanowire Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Network Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Overview of Percolation Theory . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Memristive Behaviour of Nanowire Networks . . . . . . . . . . . . . . 11

1.4.1 Memristor and Memristive Systems . . . . . . . . . . . . . . . . 12

1.4.2 Resistive Switching Phenomena . . . . . . . . . . . . . . . . . . 16

1.4.3 Potential for Neuromorphic Computing . . . . . . . . . . . . . . 20

1.5 Thesis Goals and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 general theory and mathematical methods 27

2.1 Resistive Network Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Lattice Green’s function for infinite resistive networks . . . . . . . . . . 33

2.3 Effective Medium Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Percolation Theory and Critical Wire Density . . . . . . . . . . . . . . . 46

2.5 Junction density as a function of wire density and length . . . . . . . . 50

2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 computational models for disordered nanowire networks 57

3.1 Graphical Representations of Nanowire Networks . . . . . . . . . . . . 59

3.2 The Impact of Inner-wire Resistance . . . . . . . . . . . . . . . . . . . . 63

3.2.1 The Relationship Between Junction and Network Resistances . 63

3.2.2 The Effect of Nanowire Resistivity and Diameter on Network

Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xi



xii contents

3.2.3 The Impact of Wire Density on Nanowire Network Resistance . 69

3.3 Digital Representation of Physical Nanowire Networks . . . . . . . . . 72

3.4 Impact of Junction Resistance Disorder . . . . . . . . . . . . . . . . . . 80

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 effective medium theory for nanowire networks 87

4.1 Inter-nodal Resistance in a Nanowire Network . . . . . . . . . . . . . . 90

4.2 Effective Medium Theory of a Nanowire Network . . . . . . . . . . . . 92

4.3 Inter-Electrode Resistance in a Nanowire Network . . . . . . . . . . . . 100

4.4 Application of the Effective Square Lattice . . . . . . . . . . . . . . . . 108

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 memristive properties of nanowire networks 117

5.1 Modelling the Memristive Response of a Nanowire Junction . . . . . . 120

5.2 Memristance in a Nanowire Network . . . . . . . . . . . . . . . . . . . 127

5.3 Current Colour Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 Multi-terminal Device for Neuromorphic Applications . . . . . . . . . 140

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 comparison of a capacitive and memristive junction acti-

vation process 147

6.1 Capacitive Junction Model . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Path Formation in Capacitive and Memristive Models . . . . . . . . . . 154

6.3 Scale-Invariant Dynamics in Capacitive Activations . . . . . . . . . . . 161

6.4 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7 summary and future work 175

7.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

a digitised network parameters 183

b additional multi-terminal simulations 185



contents xiii

bibliography 187



L I S T O F F I G U R E S

Figure 1.1 Image: SEM images of nanowire networks reported in the

literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.2 Sketch: A visualisation of percolation in a square lattice

above and below the critical bond value . . . . . . . . . . . . . 9

Figure 1.3 Plot: The memristance of a theoretical circuit element demon-

strated by a hysteresis I-V curve with a tunable memristance,

and a memristive response of a experimental sample. . . . . . 14

Figure 1.4 Sketch: Examples of bipolar and unipolar resistive switching. 17

Figure 1.5 Sketch: Sketches of filament growth in an Ag ECM memris-

tor cell with a corresponding I-V curve. . . . . . . . . . . . . . 19

Figure 1.6 Sketch: Experimental images of filament growth in an Ag/Pt

ECM memristor cell. . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.1 Sketch: An example of a graph. . . . . . . . . . . . . . . . . . . 28

Figure 2.2 Sketch: An example of a weighted graph. . . . . . . . . . . . . 31

Figure 2.3 Plot: Equivalent resistance between nodes in a finite square

lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.4 Plot: Comparison between lattice integral and its approxi-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 2.5 Plot: Comparison between lattice integral approximation and

equivalent resistance in a finite square lattice. . . . . . . . . . . 42

Figure 2.6 Sketch: A simple square lattice for the derivation of an ef-

fective medium theory. . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 2.7 Plot: Effective conductance for a binary resistor distribution

on a square lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xiv



List of Figures xv

Figure 2.8 Sketch: Example of site percolation in a square lattice. . . . . 48

Figure 2.9 Sketch: A sketch of the necessary conditions for a nanowire

intersection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 2.10 Plot: The relationship between junction density with wire

density and a demonstration of finite-size effects. . . . . . . . 53

Figure 3.1 Schematic: Mapping a nanowire network with JDA and MNR

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 3.2 Sketch: Visualisation of a simulated nanowire network. . . . . 64

Figure 3.3 Plot: Relationship between sheet resistance and junction re-

sistance on a fixed network geometry. . . . . . . . . . . . . . . 65

Figure 3.4 Plot: Relationship between sheet resistance and resistivity

parameters on a fixed network geometry. . . . . . . . . . . . . 68

Figure 3.5 Plot: Relationship between sheet resistance and wire density

in a nanowire network. . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 3.6 Schematic: An SEM image of a nanowire network and its

digitised counterpart. . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 3.7 Plot: The relationship between sheet resistance and junction

resistance for a digitised network. . . . . . . . . . . . . . . . . . 76

Figure 3.8 Plot: Comparison of junction resistance distributions for ex-

perimental measurements and simulations. . . . . . . . . . . . 78

Figure 3.9 Plot: Optimisation capacity coefficient for thirty digitised

NWNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 3.10 Plot: The effect of junction resistance dispersion on calcu-

lated sheet resistance. . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 4.1 Sketch: The steps of mapping a NWN image onto an effec-

tive lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 4.2 Sketch: Visualisation of nodal separation. . . . . . . . . . . . . 91

Figure 4.3 Plot: Equivalent resistance between nodes in a NWN. . . . . . 93

Figure 4.4 Sketch: Types of resistors in a NWN. . . . . . . . . . . . . . . . 94



xvi List of Figures

Figure 4.5 Plot: EMT relative fractions of resistors in a NWN. . . . . . . . 96

Figure 4.6 Plot: Inter-nodal Resistance EMT . . . . . . . . . . . . . . . . . 100

Figure 4.7 Plot: Inter-electrode resistance versus electrode nodal sepa-

ration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 4.8 Plot: Dependence of Ny on various underlying parameters. . 104

Figure 4.9 Plot: Nx versus electrode separation and wire density. . . . . . 107

Figure 4.10 Plot: EMT applied to wire density and length scaling. . . . . . 110

Figure 4.11 Plot: Comparison of EMT and resistive parameter simulations.111

Figure 4.12 Plot: Comparison of EMT and wire density simulations. . . . 113

Figure 4.13 Plot: Effective square lattice applied to the calculation of the

Optimization-capacity coefficient. . . . . . . . . . . . . . . . . . 114

Figure 5.1 Sketch: Sketch of a conductive filament formed between two

core-shell nanowires. . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 5.2 Plot: Conductance of a nanowire junction and network ver-

sus increasing current compliance. . . . . . . . . . . . . . . . . 122

Figure 5.3 Plot: Junction memristance with varying prefactor and ex-

ponent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 5.4 Diagram: Workflow diagram of memristive model simulation.130

Figure 5.5 Sketch: SEM and digitised image of a NWN. . . . . . . . . . . 131

Figure 5.6 Plot: NWN memristance for various junction prefactors and

exponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 5.7 Plot: Scaling regimes of a NWN conductance a supra-linear

junction exponent. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Figure 5.8 Plot: Conductance curves and current colour maps for dif-

ference junction exponents. . . . . . . . . . . . . . . . . . . . . . 137

Figure 5.9 Plot: Current colour maps for supra-linear junction exponent. 139

Figure 5.10 Image: A Passive Voltage Contrast image of a NWN evolved

to a plateau in conductance. . . . . . . . . . . . . . . . . . . . . 140



List of Figures xvii

Figure 5.11 Schematic: Visualisation of a multi-electrode device in a

memristive network. . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 5.12 Plot: Memory states in a multi-terminal NWN device. . . . . . 145

Figure 6.1 Sketch: A sketch of MRM and CPM junctions in a NWN

along with PVC images of NWN displaying a capacitive and

memristive response. . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 6.2 Schematic: A work-flow diagram of the capacitive junction

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Figure 6.3 Sketch: An SEM image of a network and alongside its digi-

tised counterpart. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure 6.4 Plot: Wire activation during NWN memristance increase for

supra-linear junction exponent. . . . . . . . . . . . . . . . . . . 155

Figure 6.5 Plot: Wire activation in a NWN during capacitance breakdown.157

Figure 6.6 Plot: Wire activation during memristance increase in a NWN

with sub-linear exponent. . . . . . . . . . . . . . . . . . . . . . 160

Figure 6.7 Plot: Activated junctions in the CPM and MRM in different

exponent regimes. . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Figure 6.8 Plot: Scale-invariant response of NWNs to leakage current. . . 163

Figure 6.9 Plot: Fault-tolerance in a memristive network perturbed from

start of simulations. . . . . . . . . . . . . . . . . . . . . . . . . . 166

Figure 6.10 Plot: Fault-tolerance in a memristive network perturbed dur-

ing simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Figure 6.11 Plot: Fault-tolerance in a capacitive network. . . . . . . . . . . 170

Figure B.1 Plot: Memory states in a multi-terminal NWN device. . . . . . 186



C O M M O N A C R O N Y M S

NWN Nanowire Network

SEM Scanning Electron Microscope

PVP Polyvinylpyrrolidone

GF Green’s Function

LRS Low Resistance State

HRS High Resistance State

MIM Metal-Insulator-Metal

ECM Electromechanical Metallisation

VCM Valence Change Mechanism

JDA Junction Dominated Assumption

MNR Multi-Nodal Representation

EMT Effective Medium Theory

WS Watts-Strogatz

PL Power Law

PL+C Power Law plus Cut-offs

PPL Post-Power Law

TG Transient Growth

xviii



acronyms xix

WTA Winner-takes-all

CPM Capacitive Model

MRM Memristive Model

PVC Passive Voltage Contrast



1
I N T R O D U C T I O N

The ability to manipulate our environment and materials to achieve a desired func-

tionality is a human trait that has driven the ever increasing complexity of our

society for milenia. Over the past several thousand years the pace of societal and

technological innovation has grown rapidly, requiring ever more sophistication to

continue this growth. Today, advancement continues in nearly every aspect of our

lives at a rate unfathomable to our ancestors. Central to our current technologi-

cal development is our ability to create the necessary tools, linking technological

advancement with the current level of material manipulation we are capable of.

That being the case, we are truly living in the nano-materials age, where we have

achieved deliberate control and manipulation of materials on the nanometer scale (1

nm = 10−9m). Nanoscience’s reach is vast1, covering disciplines as diverse as cellu-

lar biology2, catalysis3, energy storage and generation4,5, and information technol-

ogy6–8. Nanomaterials are known to have very different physical properties to their

bulk counterparts, the source of which is essentially due to confinement of electrons

in the material to a small crystal lattice resulting in a behaviour not seen in large

continuous media9. The confined electrons give rise to materials properties that

are ruled by quantum mechanics, and are referred to as nanomaterials or nanopar-

ticles. Nanomaterials with quantum confinement in at least one direction can be

grouped into three classes; pseudo zero-dimensional materials of a small number

of atoms referred to as quantum dots and atomic clusters10,11, one-dimensional

objects that are extended in one dimension and referred to as nanowires or nan-

1



2 introduction

otubes12,13, and two-dimensional objects a few atoms thick such as graphene14 and

planar MoS2 15,16. Much of nanoscience and nanotechnologies are concerned with

engineering novel nanomaterials with enhanced properties, and this may involve

mixing materials of different compositions and dimensionalities. For instance, one

can synthesize highly conductive thin-films with superb optical and electrical prop-

erties by spreading numerous nanowires randomly over a surface in such a way

that they can form a highly interconnected mesh or network. Such material archi-

tecture enables the propagation of electrical signals in a wire-by-wire basis, and

benefits from the collective aspect of a complex many-body system with emergent

properties.

In this thesis, the electrical transport properties of randomly orientated Nanowire

Networks (NWNs) are studied with comprehensive computational and theoretical

models. These models are succesfully used to explain numerous experimentally

observed phenomena and to predict the properties of physical NWNs. Transport

is examined with two main approaches; first the conductive response of NWNs

can be obtained by treating their inter-wire connections as static resistors (this is

discussed in chapters three and four of the thesis). In the second case, the network

contains dynamic components that change in response to an applied potential and

is detailed in chapters five and six.

Due to the random nature of nanowire network connectivity, numerical simu-

lations are necessary to achieve an understanding of the properties of nanowire

networks and feature heavily in this thesis. Although numerical analysis provides

an excellent lens through which the properties of nanowire networks can be ex-

amined, some of the relationships between parameters of a network are best ar-

ticulated with a mathematical framework. As such, this thesis strives to develop

comprehensive theoretical descriptions of nanowire networks where appropriate,

and utilise them in conjunction with numerical simulations to illustrate various

properties of nanowire networks.



1.1 nanowire networks 3

In this chapter, an introduction to nanowire networks is provided by discussing

their fabrication, properties, and applications. A common application of a nanowire

network is to use them as a transparent conductor17,18 and the potential of nanowire

networks in this field is discussed in section 1.1. In section 1.2, an introduction to

graph and network theory19 is presented. A discussion on percolation theory20,21

and its relevance to nanowire networks is given in section 1.3. The potential mem-

ory and computing applications of nanowire networks is then introduced in section

1.4 through a discussion of the exciting field of resistive switching22–24 and mem-

ristive materials25–27, and how these properties have been identified in nanowire

networks. Finally, the scope of the thesis is presented in detail in section 1.5.

1.1 nanowire networks

The first report of a metallic nanowire network was made by Adelung et al12 in

1999, where the ease, speed and scale of the fabrication technique used to cre-

ate the network was described. Networks were formed by adsorbing atoms or

molecules onto areas of induced strain on a surface to form nanowire networks

only bounded by the size of the adsorbing surface12. An image of the network is

shown in Figure 1.1(a). Reports of networks comprised of one-dimensional nano-

materials has grown quickly since then, the variety in the comprising material and

fabrication techniques expanding alongside this. Among the common materials

used in nano-networks are semiconducting nanowires28, metallic core-insulating

shell nanowires29–31, and carbon nanotubes32–34. A scanning electron microscope

(SEM) image of a Ge semiconductor NWN adapted from Wu et al28 is shown in

Figure 1.1(b), and an Ag/PVP core-shell NWN reported in our manuscript35 is

shown in panel (c). The fabrication techniques include, but are not limited to;

spray deposition36–38, drop casting39, spin coating40, Mayer rod coating41, inkjet

printing42, and roll-to-roll printing43. Each technique has its merits but spray coat-
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ing in particular leads to a very homogeneous network in terms of wire distribution;

it is scalable and can be performed under normal atmospheric conditions18. The

Ag/PVP NWN in Figure 1.1(c) was fabricated using spray deposition35. Networks

of different nanomaterials will exhibit unique optimum properties, advantages and

limitations. Depending on their design, NWNs can exhibit enhanced electrical, me-

chanical, optical, thermal, magnetic, and chemical responses44–49 among others,

which make them appropriate for specific applications. In this thesis, we shall fo-

cus on networks comprised of one-dimensional metallic core nanowires, that are

coated with an insulating shell.

A particularly exciting property of nanowire networks is their high transparency

and high attainable conductivity45,46. Thin films that couple high electrical conduc-

tivity and optical transparency are crucial in a number of applications including

flexible electronic displays and touch-screens. Currently this market is dominated

by transparent conducting oxides, in particular Indium and Florine doped Tin ox-

ide50. There are three major drawbacks with incorporating Indium Tin Oxide into

transparent conductors. Firstly Indium itself is relatively scarce. Though it has a

similar abundance in the Earth’s crust as Silver, roughly 50 parts per billion, it has

few naturally occurring minerals and is mainly produced as a by-product of Zinc

refinement51. The second issue with Indium Tin Oxide is brittleness52, a limiting

factor in its inclusion in flexible transparent conductors, a market that is expected

to grow quickly in the coming years. Finally, the deposition of Indium Tin Ox-

ide onto a substrate is performed using sputtering techniques53, where material

is deposited onto a target substrate as a vapour. This requires high temperatures

and results in slow deposition rates53. Furthermore, a large deal of the vaporised

Indium Tin Oxide does not deposit on the target substrate, requiring recapture

methods that further add to the expense and time in transparent conductor pro-

duction54. Nanowire networks are not limited by these issues and have potential

to be the dominant component in future transparent conductors.
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a)

c)

Figure 1.1: (a) Scanning tunneling microscope (SEM) image of an Rb nanowire network
adapted from Adelung et al12. (b) An (SEM) image of Ge semiconducting
nanowires adapted from Wu et al28. (c) An SEM image of an Ag core PVP
shell NWN adapted from O’Callaghan et al35.

Nanowire networks have shown optical transparency and sheet resistances com-

parable with Indium Tin Oxide44,55,56, which demonstrates nanowire networks po-

tential in optoelectrical devices. Fabrication techniques of nanowire networks are

scalable and inexpensive, and nanowire networks have been shown to be very flex-

ible while maintaining their high transparency and conductivity. It is unsurprising

that their potential as transparent conductors has largely driven their development

over the past two decades18,57,58. This development has lead to nanowire networks
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being incorporated into LED displays59,60, and thin-film solar cells46,61–63 where

they have been shown to perform similar to Indium Tin Oxide devices. It has been

shown by Madaria et al64 that Ag NWNs can remain conductive when bent up to

160◦ and returned to their original sheet resistance when the bending stress was re-

moved. Lim et al65 examined various mechanical properties of Ag NWNs. NWNs

were bent, twisted and put under torsional stress with little change in sheet resis-

tance. This flexibility of nanowire networks makes them ideal candidates for the

development of flexible transparent conductors which could be used to develop

flexible displays or incorporated into wearable devices18,58.

Besides their applications as transparent conductors, nanowire networks have

properties that are suitable for various other applications. Many examples of

nanowire network-based transparent heaters, crucial for anti-fog windows, are

found in the literature48,66–68. The scalable fabrication processes such as spray de-

position enable large scale surface coatings of nanowires meaning that large curved

surfaces can be easily coated in nanowires to form a transparent heater. Nanowire

networks have also been successfully applied to non-optical devices such as sen-

sors47,69, fuel cells70–72, and thin-film thermo-acoustic speakers73. The many ap-

plications of one-dimensional nanomaterial networks has necessitated theoretical

descriptions of their properties in order to tune their characteristics. In this thesis,

we shall focus on the resistive properties of a variety of NWN materials, which is

achieved by mapping NWNs into circuit grid models comprised of lumped circuit

elements. For instance, to extract the resistances of a NWN, the system is mod-

eled as a network which responds to voltage/current sources. In the next section,

an overview of network theory is given to illustrate one of the main modeling

approaches used in this thesis.
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1.2 network theory

Network theory has its roots in the early 18
th century where Leonhard Euler played

a key role in its early development. A well known problem of the day was the

"Seven Bridges of Königsberg", where it was questioned if a route was possible

that crossed the seven bridges in the city exactly once. Euler solved the problem

using a method that sowed the seeds to what would become graph theory74, of

which network theory is a subdiscipline75.

A network is a collection of nodes that are connected in some way by edges. The

network may represent some physical entity such as bridges and routes between

them as in the seven bridges of Königsberg problem, or a more abstract construc-

tion such as people and their inter-personal relationships in a social network or

agents and transactions in an economic network75. Network theory is concerned

with the study of these representaions of relations between objects75. Among the

many applications of network theory, we shall focus on transport of an entity or a

signal through a network. In this thesis, the transported entities are current and

charge; the associated mathematics are given in chapter 2 and can be applied to

other transport problems such as the propagation of heat or mass.

A many-body system can be abstracted into a network form where nodes are

individual particles and edges are the inter-body interactions. These class of prob-

lems can be simplified massively by making use of underlying system symmetries.

For example, consider a tight-binding model applied to an infinite periodic lattice

of atoms, the electron density of states of such a system is solved using Fourier

transforms along the directions of symmetry9. The same thinking can be applied

to resistive lattices and in chapter 2, Cserti’s method for calculating the inter-node

resistance in an infinite resistive lattice is presented76.

Network theory can be applied to NWNs to calculate their electrical properties

with an appropriate mapping of the NWN onto a mathematical network. In chap-

ter 3, mappings between a nanowire network and a mathematical network are
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introduced and are then solved using the network transport mathematics layed out

in chapter 2. Due to the spatial randomness associated with disordered nanowire

networks, there are no symmetries to exploit in order to create an analytic function

capable of solving the resistive properties of a network, like the method outlined

by Cserti76. As shown in the previous section, many applications of nanowire

networks require specific sheet resistances and optical transmission values that de-

pend on the length and diameter of the wires, device size, and nanowire densities.

Thus it is necessary to quantitatively understand how the sheet resistance depends

on these physical features. Due to the spatially disordered nature of NWNs, alter-

ing these parameters will change the connectivity, and consequently the resistance,

of a network35. To remove a degree of disorder from analysis, an ensemble of

networks are studied to identify how properties such as the resistance depends on

connectivity altering parameters35,77. Another approach widely used to study the

conduction properties of random NWNs is percolation theory77, which can be used

to relate NWN resistance with numerous network characteristics, and a description

of this is presented in the following section.

1.3 overview of percolation theory

Percolation theory is concerned with the behaviour of connected clusters in a net-

work. In 1957, Broadbent and Hammersley20 introduced the concept of modeling

how a fluid percolates through a porous medium, drawing analogy with electrons

flowing through a lattice or disease through a population. As opposed to a diffu-

sive process, where the particles themselves are a source of stochasticity as they

move through a medium, they defined a percolative process as where the medium

is the source of stochasticity and completely determine the movement of particles

through them20. To model the porous material as a percolative process, consider

a square lattice of size n× n nodes, each node has four nearest neighbours (order
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number z = 4). The nearest neighbour edges were connected with some probability

p, or no connection existed with a probability 1−p. There exists some critical bond

probability pc at which there exists a connecting path between the two extreme ends

of a network, below pc no path exists. Figure 1.2 is a visualisation of a percolative

square lattice where p > pc in panel (a) and p < pc in (b). The thick blue lines

on either side of the two networks represent the two boundaries between which

percolation may occur and the blue lines between nodes are connecting edges.

a) b)

Figure 1.2: (a) A sure lattice with nodes depicted as red circles and connecting edges as
blue lines. The edges between nearest neighbours exist with a probability
p = 0.6 which is greater than the critical probability pc = 0.5 for a square
lattice77. (b) A square lattice where the edges between nearest neighbours
exist with a probability p = 0.3 which is less than the critical value and so a
percolating path across the network does not exist.

In a 1974 paper, Pike and Seager77 extended the concept of percolation theory

to random networks formed by different objects that were randomly distributed

and connected over a defined two-dimensional area77. This is a departure from

previous works where the positioning of nodes and edges were pre-determined

in a grid template and their existence was given by some probability distribution.

Among the many types of objects studied, the percolative characteristics of one di-

mensional objects (sticks) were examined77. Here the requirement for a connection

to form between two sticks requires their centers to lie within a distance L of one

another, L being the length of the sticks, and that their relative orientations are such
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that they intersect. Pike and Seagar used percolation theory to show that the criti-

cal density of two-dimensional randomly oriented sticks ((nw)c) can be calculated

using the expression

(nw)cL
2 = Q (1.3.1)

where Q is a constant. The stick percolation model can be used to estimate the

critical wire density of a nanowire network by considering its wires as ideal one-

dimensional sticks.

Percolation theory has been used to explain the resistive properties of a network

of conducting wires78. A transition from a non-percolating to a percolating net-

work occurs at a critical bond probability pc, and is a simple example of a phase

transition21. At percolation, the conductance of a network will jump from zero to

some low conductance state Γ ′. Where the network has a higher density than the

critical value, the scaling between sheet conductance Γs and the wire density (nw)

can be described with a power law typical in continuous phase transition78

Γs ∝ (nw − (nw)c)
β + Γ ′ (1.3.2)

where (nw)c is a critical wire density below which a percolative path does not form

and so the system is not conductive. This scaling only holds for wire densities near

to the critical value (nw)c. For networks where all wire lengths are identical and

wire densities are in the criticality region, where nw & (nw)c, Li and Zhang have

shown β = 1.280± 0.014. For wire densities beyond the criticality region, Li and

Zhang have shown that the conductivity exponent β depends on both the junction

resistance Rj and the intra-wire resistance Rin = ρ̃L where L is the length of each

wire in the system, and ρ̃ is the resistivity per unit cross sectional area79. Žeželj

and Stanković80 have shown that exponents have a dependence on wire density as

well as the ratio of Rj/Rin and can vary between 1 < β < 2 for sigificantly large

wire densities.
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Percolation theory provides an excellent understanding of the properties of NWNs

near critical wire densities and has been used in our manuscripts and in many

other works35,81,82. In particular, the critical wire density provides an estimate for

the minimum wire density in networks whose constituent wires are all of identi-

cal length35,81. The power law trend of conductivity with wire density provides

a useful qualitative comparison with experimental and simulation results, how-

ever, as previously mentioned, the exponent of which depends on many factors in

a non-transparent way. For many applications, a quantitative expression for the

conductivity of a network that is a function of the relevant nanowire properties is

necessary. This brings us to one of the goals of this thesis, that is to develop an

approximation for the sheet resistance of a nanowire network in terms of all of the

nanowire properties. This approximation that takes into account the physical prop-

erties of a nanowire network and does not require empirical fitting is presented in

chapter 4.

The discussion so far regarding resistive networks, in particular nanowire net-

works, has involved static materials that behave as Ohmic resistors. In the follow-

ing section, materials that have an adapative response to electrical stimulus and

how they are related to nanowire networks are discussed.

1.4 memristive behaviour of nanowire

networks

Until now the discussion of NWNs has considered static networks where the re-

sistive elements are unchanged by current-flow. Recently it was shown that under

certain circumstances, NWNs have a memristive response to current-flow83, that

is their resistance change according to the amount of current-flow through the net-

work. Here is an overview of memristive systems and how they pertain to NWNs.
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1.4.1 Memristor and Memristive Systems

In 1971, Leon Chua introduced the concept of a memristor, a memory-resistor, by

characterising the relationship between the charge q(t) =
∫t
−∞ I(τ) dτ and the mag-

netic flux-linkage φ(t) =
∫t
−∞ V(τ) dτ, where I(τ) and V(τ) are functions describing

the historical applied current and voltage respectively25. Chua argued that by sym-

metry, there ought to be a fourth (nonlinear) fundamental circuit element besides

the resistor, capacitor and inductor. The memristor has an associated memristance

(M) which is related to the voltage and magnetic flux-linkage as

M =
dφ

dq
(1.4.1)

M(q(t)) =
dφ/dt

dq/dt
=
V(t)

I(t)
(1.4.2)

Here, by expanding on the definition of a memristor, one finds that it will take

the form of a resistance in Ohm’s law, but since q(t) and φ(t) are time-dependent

integrals, M is not constant and is in fact a tunable resistance depending on the

history of applied current and voltage. For example84, consider the relationship

between charge and flux in a two terminal memristive device and a sinusoidal

applied current with the following relationship between charge and flux linkage,

φ(q) = q+
q3

3
(1.4.3)

I(t) = A sin(ωt) (1.4.4)

where q is the charge, ω the frequency, and A the amplitude of the input current.

Performing the time integral for the cumulative charge, we obtain

q(t) =

∫ t
−∞A sin(ωτ) dτ =

A

ω
(1− cos(ωt)) (1.4.5)
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The linkage-flux is then obtained by substituting the result of equation 1.4.5 into

equation 1.4.3, i.e.

φ(t) =
A

ω
(1− cos(ωt)(1+

A2

3ω2
(1− cos(ωt))2 (1.4.6)

The voltage across the system is the time derivative of the flux

V =
dφ

dt
=M(q(t))I(t) (1.4.7)

After performing the time derivative the memristance of the circuit element can be

isolated as M(q) = 1+ q2 or

M(q(t)) = 1+

(
A

ω
(1− cos(ωt)

)
(1.4.8)

An I-V curve of a memristive system from this example with ω = A = 1 can be

seen in Figure 1.3(a); the non-constant memristance is captured by the pinched

hysteresis curve. The relationship M(q) = 1 + q2 which is plot in Figure 1.3(b)

shows that memristance is finite for a finite charge or current-flow. Taken in con-

junction with equation 1.4.2, the voltage over a memristor is zero for when there is

no current-flow, giving the pinched hysteresis I-V curve seen in Figure 1.3(a). This

relationship between the memristance and charge also shows that the memristance

can be tuned to any level84. Since charge modulates the memristive response, the

charge is referred to as a state variable. By simply sending current pulses through

the memristor its value can change accordingly. Here the memristance of an ele-

ment can be captured by coupling the response and the state equation as

V =M(w)I (1.4.9)

dw

dt
= I (1.4.10)
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where the state variable w is the charge in the example shown above. An ideal

memristor is one that depends soley on the charge (q).

b)a)

c) d)

Figure 1.3: Top panels adapted from Chua84. (a) An I-V curve for the memristor de-
termined by equations 1.4.3 and 1.4.4 with A = ω = 1 that displays the
pinched hysteresis curve characteristic of memristors. (b) Visualisation of
relationship 1.4.8 (R being the memristance) and shows the tunability of the
memristance. Bottom panels adapted from Strukov et al26. (c) The top panel
is the normalised doped-layer length (w/D) is plot (red) and the voltage re-
ponse (blue) for a simulated memristor that follows the ion drift model in
equation 1.4.11 by Strukov et al26. The bottom panel is the associated I-V
curve. (d) I-V curve of a memristor measured by Stewart et al85 that Strukov
et al compared with the ion-drift model26. A sketch of the Pt-TiO2-Pt device
is visualised in the top left corner.
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Strukov et al26 first reported a physical system that had memristive properties

along with an ion-drift model to capure the dynamics of the device. In their model,

Strukov et al hypothesised that the memristance was modulated by an interfacial

boundary between an undoped TiO2 and a TiO2−x layer doped with oxygen vacan-

cies. The electrical response of such a junction can be modelled as

V(t) =

[
Ron

w(t)

D
+ Roff

(
1−

w(t)

D

)]
I(t)

dw

dt
= µv

Ron

D
I(t) (1.4.11)

where t is time, D is the full length of the TiO2/TiO2−x junction, µv is the mobility

of the ions, I is the current, V is the output potential of the device, and Ron/Roff

are the low/high resistance states. The state variable w is the length of the doped

layer which modulates the resistance of the junction and can vary between 0 and D.

The resistance of the junction clearly varies between Ron and Roff depending on the

value of w. Figure 1.3(c) presents the normalised filament width w/D (red) and the

voltage response (blue) for a sinusoidal current source in the top panel, and an I-V

curve of a device corresponding to the ion-drift model outlined in equation 1.4.11

in the bottom panel. Figure 1.3(d) is an experimental I-V curve of a Pt-TiO2−x-Pt

device reported by Stewart et al85 that Strukov et al succesfully compared with

their ion-drift model, and so classified as a memristor26.

Chua and Kang generalised the concept of a memristor to have a number of

state variables that need not solely be the charge flowing through the system. The

memristance and state equations can be generalised as

V =M(w, I)I (1.4.12)

dw

dt
= f(w, I) (1.4.13)

where w is a set of state variables and the functions M() and f() can be explicit

functions in time86. For example in Strukov et al’s model, the state variable is the
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width of the doped TiO2 layer. With this generalised definition of memristance,

a host of materials undergoing a phenomenon known as resistive switching87–89

were classified as memristive systems84.

1.4.2 Resistive Switching Phenomena

The concept of a non-constant resistive device is not an entirely novel idea in

physics. Resistive switching devices, capable of cycling between a High Resistance

State (HRS) and a Low Resistance State (LRS) is a rich and active field of research.

As shown in Figures 1.3, Strukov et al first identified that a resistive switching

material could be related to a memristor26, thus linking the two fields. The force

driving much of the development of resistive switching research is their potential

for memory devices, which have come to be labeled as Resistive Random Access

Memory (RRAM) devices87. RRAM devices have been shown to have excellent

physical properties for memory applications88,89 such as; high area compaction47,90,

high state switching speeds (<100 ps)91, good state retention times (100’s years)92,93,

high switching endurance (>1012 cycles)94, and low power consumption23,88,89. Per-

haps the most important listed property of the resistive switching, or memristive

devices is their scalability. Traditional silicon transistor technology is fast reaching

the natural barriers that quantum mechanics pose8, thus threatening the exponen-

tial growth in memory storage the industry has strived for over the past decades,

and RRAM devices could overcome these spatial limitations.

A common architecture for a memristor is two metallic layers separated by an

insulating barrier, referred to as a metal-insulator-metal (MIM) device. The mech-

anism that regulates the memristive response depends on the material charac-

teristics of the device. Examples of memristive MIM materials88 are transition

metal oxides26,95, amorphous-to-crystal phase materials such as GeSbTe96, and

polymeric matrices sandwiched by metals (e.g. Ag/PVP plates)83,97. During the

breakdown of a MIM junction, the growth of a conducting filament bridging the
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metal plates takes place and this can be regulated by distinct mechanisms including

thermochemical (TCM), electrochemical metallisation (ECM), and valence change

(VCM)24,27,90,98,99. With the gradual filament growth, a drastic reduction in the char-

acteristic resistance of the junction can be measured. By controlling the current-flow

through the device, the conductive filament can be forced to expand or contract

making the conductive filament reversible97. This reversibility allows devices to be

controllably switched between high and low resistive states97.

Figure 1.4: (a) Sketches of a unipolar switching and (b) a bipolar switching between a
HRS (red) and a LRS (purple) in an I-V sweep. Icc is the current compliance.
Adapted from Lim and Ismail90.

Before discussing the mechanisms that regulate resistive switching devices in

more detail, let us discuss two types of resistive switching dynamics typical in

memristive junctions which are presented in Figure 1.4. Panel (a) is referred to

as unipolar and panel (b) as bipolar resistive switching100. Figure 1.4 presents

sketches of I-V sweeps for ideal unipolar and bipolar switching devices. Unipolar

switching occurs when the transitions between the HRS and the LRS occur with

the same polarity, whereas in bipolar switching, the opposite polarity is required to

rupture the filament. Also shown in Figure 1.4 is the so-called current compliance,

Icc, that is set in experiments as an upper limit to current-flow in I-V sweeps. This



18 introduction

is to protect the device from large current-flows which can cause an irreversible

change in resistance state or damage the device.

In electromechanical metallisation (ECM) memristors24, the conductive filament

is built between the metallic layers by means of cation transport. Various other

names have been associated with this form of memristor, mainly conductive bridge

random access memory101 (CBRAM) and programmable metallisation cell102 (PMC).

Here a highly electromobile metal electrode such as Cu or Ag, known as the active

electrode, acts as the source of material for the conductive filament that nucle-

ates on the opposite electrode and grows back towards the cathode103. Figure 1.5

presents a sketch of an Ag/Pt ECM cell at various stages of conductive filament

growth and the associated I-V sweep for the device24. In panel (a), the electric field

is sufficient to cause Ag cations to begin to migrate through the insulating layer to

the counter electrode and grow a conductive filament back towards the active elec-

trode. This is referred to as the SET procedure. The device is limited to a current

compliance shown as the dashed horizontal line and a conductive filament that has

bridged the inter-electrode insulator is shown in panel (b). The memristor is now

in the ON state. The current is driven at the opposite polarity and the conductive

filament ruptures with some of the Ag atoms returning to the active electrode in

the RESET procedure. A visualisation of this is in panel (c). The pristine memristor

is shown in panel (d) where there is no filament formation and it is labelled as the

OFF state. The observation of a conductive filament growth was reported by Yang

et al97 where Ag filaments were observed in an Ag active electrode and Pt inert

electrode system and are shown in Figure 1.6. In panel (a), the device is imaged

after a forming process. In the insulating gap between electrodes, several distinct

filaments are observed, most notably the top-most filament which appears to span

the entire insulating layer. A zoomed image is presented in the red square of this

particular filament at the inert electrode interface. In panel (b), the filament was

ruptured electrically which is evidenced in the zoomed area of the filament near

the electrode which is no longer connected.
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Figure 1.5: An I-V sweep measurement taken on a bipolar Ag/Pt memristor ECM cell
with a Ge0.3Se0.7 inter-electrode insulator. The panels (a)-(d) are sketches
of the state of the conductive filament at various stages in the I-V curve.
Adapted from Waser24.

In valence change mechanism (VCM) devices, the memristance is mediated by

field-assisted migration of oxygen anions in transition metal oxides and the result-

ing valence change of the cation sublattice24. The active materials are transition

metal oxides, common examples are HfOx, SrTiO3, ZNO, AlO2, and TiO2 23,95. In

fact it was a Ti02 based device that was first linked to memristance by Strukov

et al26. The thermochemical mechanism (TCM) for memristance is based on sto-

ichiometry change and redox reactions in the oxide layer due to current induced

heating104. As it is predominantly Ag nanowire networks that shall be discussed

in this thesis we shall focus on ECM conductive filament formation as the mediator

of a memristive response in a NWN83.
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Figure 1.6: Experimental observations of conductive filament growth in an Ag/Pt mem-
ristive ECM cell. The thin structures highlighted by arrows in (a) are the
Ag filaments growning from the Pt electrode towards the Ag electrode. A
zoomed image of the top filament is shown in the red square showing a
connection with the Pt electrode. (b) The filament after a RESET operation
was performed on the device. The filaments have shrunk, the longest one
has ruptured its connection with the electrodes. The zoomed area shows no
connection with the Pt electrode. The scale bars represent 200 nm. Adapted
from Yang et al97.

1.4.3 Potential for Neuromorphic Computing

Asides from RRAM applications, memristors have potential as central components

in other novel devices such as multi-bit memory storage89,102 and neuromorphic

(brain-like) computation devices105–112 due to their tunable resistance levels. The

brain is a highly complex machine formed by billions of neurons which are disor-

derly interconnected by trillions of synapses111,113. Our brain has unique abilities

that outperform by far the fastest computers on the planet such as ultra-fast sensory

processing, high-level pattern recognition, and the ultimate skill of learning from

experience. Brain activity is also incredibly energy-efficient; it consumes about 20

W, equivalent to a dim light bulb114. To date there has been numerous attempts

to mimic biological computation through simulation on traditional von Neumann

computer architectures112. However this approach is computationally expensive

and thus energy intensive. Another approach to achieve biological computation
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is through the use of neuromorphic computing architectures88,115,116. These can

be decentralized networks of memristors that emulate the behaviour of biological

neurons and synapses117. While these architectures are much more energy efficient,

the fabrication of such devices can be quite difficult, often requiring exact engineer-

ing of individual memristor components and connections. For instance, a common

method of realising networks of memristors is so-called crossbar arrays116,118–121,

in which memristive junctions are arranged in an ordered square grid by pattern-

ing nanowires transversely and longitudinally over the device area. A high level

of component homogeneity and regularity in neuromorphic networks may not be

required as the variability, stochasticity and component reliability which are be-

coming increasingly difficult to overcome in traditional computing technologies do

not pose as big a problem to biological computing systems122. Indeed the vari-

ability of individual synapses and the complexity of the global synapse network

are exploited to perform robust and reliable computations, all while using a frac-

tion of the power that a von Neumann computer would need for similar perfor-

mance. Such attributes have inspired the creation of the so-called neuromorphic

devices that have the potential to revolutionize computing technology with the

next-generation of microprocessors that will mimic brain functions107–111.

A nanowire network is essentially a collection of highly connected metal-insulator-

metal junctions that can exhibit (or not) memristive features. As stated previously,

nanowires are coated in a capping shell that stabilises the particles in solution, pre-

venting agglomerations and oxidation thus aiding their dispersion123. In NWNs

the capping shell represents an insulating barrier for current flow between two con-

nected nanowires, however NWNs can be annealed to remove the insulating bar-

rier separating the metallic nanowire cores in order to maximise the optoelectrical

properties of the network, leaving it at a non-varying high conductance state124,125.

This is suitable for transparent conductor applications, however annealing does not

favour neuromorphic applications that require the adaptive properties of a MIM

cell. Nanowires with a memristive response to current-flow can lead to interesting



22 introduction

collective behaviours in a NWN that resemble those in biological neural networks.

A memristive NWN has much potential for memory devices as discussed above

and in brain-like computing, and their properties are discussed in more detail in

chapters 5 and 6. In the next section the goals of this thesis are presented and the

layout of the thesis is presented.

1.5 thesis goals and scope

A brief overview of several fields related to nanowire networks was presented in

this chapter and provides context for the work that will be discussed in subsequent

chapters. As seen in section 1.1, NWNs have great potential as components in

transparent conductors, an application which is sensitive to the transparency and

sheet resistance of the network. These properties are mediated by the fundamen-

tal resistive and geometric aspects of the network which have been highlighted by

numerous works in the literature, many of those conducted by co-workers at Trin-

ity College Dublin31,82,124,126,127. Percolation theory had been succesfully applied in

these works to understand the connectivity and resistive response of such networks,

however there has always been a lack of a more quantitative computational tool-

box whose outcomes could be directly related to measurable quantities. In other

words, rather than employing qualitative theoretical views to explain trends and

asymptotic behaviours in a given NWN experiment, this work is dedicated to the

development of a wide range of advanced computational and theoretical models

that can acurately describe the properties of highly disordered nanomaterials such

as the NWN.

In this way, one of the first objectives of this thesis was to expand the under-

standing network resistance and connectivity, and how to link it to the complex

connectivity profile these highly-disordered materials can display81,125. Another

goal of this thesis is to derive analytical expressions for various geometrical and



1.5 thesis goals and scope 23

resistive quantities in a NWN which can be used to calculate sheet resistances with

a closed-form expression35. These topics are discussed in chapters 3 and 4 in this

thesis.

In recent publications by prominent experimental groups at Trinity College Dublin

and co-workers, the dynamic response of NWNs to electrical stimulus was re-

ported81,99,125,128–130. Individual electrically contacted nanowires were shown to

have a memristive reponse to optical and electrical stimuli131, and such emer-

gent responses were also found in nanowire network samples99,128,130. Several

curious relationships between the memristance of individual junctions and that of

networks were highlighted, and required computational simulations to fully under-

stand them. Another challenging goal of this thesis is to develop a computational

model to capture the memristive nature of nanowire junctions and to simulate

highly connected networks of such junctions83. The dynamic response of NWNs

at very low current levels had been previously captured using a leaky capacitor

model, in which junctions can respond as a capacitor to charge accumulation and

can undergo breakdown at some critical voltage drop value81,128,129. I applied both

memristive and capacitive pictures in real-world problems which consisted of ex-

plaining and reproducing experimental data gathered by my co-workers in the

Nanoscale characterisation and processing group of Trinity College Dublin83. The

memristive and capacitive dynamic responses of NWNs are addressed in chapters

5 and 6 of this thesis. Below is a more comprehensive outline of the topics covered

in each of the following chapters.

In chapter 2, the background theory and mathematical methods used throughout

this thesis are introduced. The rest of the thesis can be broken into two sections,

the first one deals with annealed networks made of highly conductive junctions,

and is motivated by transparent conductor applications. Chapter 3 presents two

mappings between a nanowire network onto a graphical representation such that

the electrical properties of a network can be calculated using network theory. One

of the mappings only considers inter-wire junctions as a source of resistance in a
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network, while the other also considers the resistance of nanowires themselves and

so its impact on network conductance can be examined. A novel method to digitise

nanowire network geometry is also introduced, reducing the spatial uncertainty

from comparisons between experimental measurements and computer simulations.

These comparisons were used to approximate the junction resistance of Ag/PVP

nanowires. In chapter 4, an original approximation for the sheet resistance of a

nanowire network in terms of many of the nanowire properties is presented. To

achieve this, analytical expressions are derived to determine the number of resistive

elements in a network which is used to calculate an effective medium that describes

the resistance of a NWN. The approximation is successfully used to estimate the

ultimate conductivity attainable if the network junctions are annealed to negligible

resistance values. The effectve medium technique is of particular note as it requires

no data-fitting to achieve accurate results.

The second part to this thesis deals with unannealed nanowire networks whose

inter-wire junctions are extremely resistive in low current regimes but can respond

dynamically to current-flow. In chapter 5, the junctions are shown to behave as

memristive elements in response to regulating currents. The properties of a net-

work of such memristive junctions is shown to behave similarly to the nanowire,

representing an emergent self-similarity between the network and the junctions.

For certain nanowire properties, highly localised current-flows emerge in the net-

work, showing a "winner-takes-all" behaviour where one path dominates network

conductance. A multi-electrode device is simulated operating within the memris-

tive picture and highlights some important properties of winner-takes-all paths

that could be exploited for neuromorphic and memory applications. The memris-

tive response is compared with a capacitive junction model that applies to negli-

gible current ranges in chapter 6. The two models are shown to capture distinct

dynamics in the electrical activation of junctions with the capacitive model dis-

playing scale-invariant complex dynamics and both having different levels of fault
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tolerance. Chapter 7 contains the thesis conclusion as well as future research that

follows the results of this work.





2
G E N E R A L T H E O RY A N D M AT H E M AT I C A L M E T H O D S

In this chapter, the general methodology and theory that will be used to study

nanowire networks throughout this thesis will be introduced. These methods are

all obtained from reported sources, and are used in original research that is dis-

cussed in subsequent chapters. To frame the mathematical description of nanowire

networks, some fundamental aspects of network theory is presented in section

2.1. A method to calculate resistances in electrical networks is also given in this

section. A Green’s function approach is discussed which provides an analytical

calculation method for the equivalent resistance between nodes in ordered infinite

networks in section 2.2. In most cases, the Green’s function approach results in

integrals that are not in a closed form, in particular that of the two-dimensional

square lattice that must be solved numerically. An analytic approximation to the

two dimensional square lattice Green’s function is presented in section 2.2. An

effective medium theory particular to resistive lattices is presented in section 2.3;

it provides a mapping between a lattice with a known resistor distribution and a

homogeneous effective medium lattice. Percolation theory applied to conductive

wire networks is once more addressed in section 2.4. In particular, an expression

for the critical wire density is presented which will assist the analytical models and

interpretations in this thesis. A relationship between wire and junction density is

presented in section 2.5. Finally a chapter summary is given in section 2.6.

27
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2.1 resistive network theory

A graph is defined as a collection of N nodes, also called vertices, connected by E

edges, also called links75. As discussed in chapter 1, graph theory has applications

to a wide range of natural and human-made networks and in this section, the

definitions fundamental to electrical networks are presented. The terms graph and

network will be used interchangeably in this thesis; the latter will refer to graphs

applied to a particular system75, electrical networks in our case. Figure 2.1 shows

a sketch of a simple graph with N = 5 nodes and E = 6 edges.

Figure 2.1: A sketch of a simple graph. Nodes are represented by blue circles and are
numbered from 1 to 5. The six dotted lines connecting nodes represent the
graph edges consisting of links connecting the node pairs (1,2), (2,3), (3,4),
(2,4), (1,4), and (4,5).

The connectivity of a graph can be described by the so-called Adjacency matrix

A, which essentially stores the information of the nearest neighbours of each node.
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The elements of this matrix Aij = Aji = 1 if nodes i and j are connected and zero

otherwise. The Adjacency matrix for the graph shown in Figure 2.1 is

A =



0 1 0 1 0

1 0 1 1 0

0 1 0 1 0

1 1 1 0 1

0 0 0 1 0


(2.1.1)

The degree of each node di is defined as the number of edges, or nodes, to which

it is connected and can be obtained from the Adjacency matrix as

di =

N∑
j=1

Ai j. (2.1.2)

The degrees of a graph can be represented in a diagonal matrix format D as Dii =

di and zero elsewhere. Combining this with the adjacency matrix, the Laplacian

matrix L of a graph is defined as

L = D−A, (2.1.3)

and the Laplacian matrix for the graph displayed in Figure 2.1 is given by

L =



2 −1 0 −1 0

−1 3 −1 −1 0

0 −1 2 −1 0

−1 −1 −1 4 −1

0 0 0 −1 1


(2.1.4)

A weighted edge is one that has a scalar value associated to it, and a weighted

graph is one that contains such edges. Consider a graph where the edges between
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nodes are weighted with unique values that are real numbers. Let gij be the weight

of the edge connecting nodes i and j. Figure 2.2 shows an example of a weighted

graph, the corresponding weighted adjacency matrix Ã for this graph is

Ã =



0 g12 0 g14 0

g12 0 g23 g24 0

0 g23 0 g34 0

g14 g24 g34 0 g45

0 0 0 g45 0


(2.1.5)

The weighted Adjacency matrix contains the connectivity information of the graph

and the weight of each connection. The weighted degree of node i is d̃i =
∑N

j=1 Ãij.

Again, a diagonal matrix D̃ can be constructed such that D̃ii = d̃i. The weighted

Laplacian matrix, K, is then defined as K = D̃ − Ã and is shown below for the

example graph of Figure 2.2.

K =



d̃1 −g12 0 −g14 0

−g12 d̃2 −g23 −g24 0

0 −g23 d̃3 −g34 0

−g14 −g24 −g34 d̃4 −g45

0 0 0 −g45 d̃5


(2.1.6)

The weighted graph Laplacian is commonly referred to as the Kirchhoff matrix.

It is referred to as such because Kirchhoff’s circuit laws for a resistive network are

in this form when written as a system of linear equations. By identifying the edge

weights gij as the conductance between voltage nodes i and j, the Kirchhoff matrix

can be used to solve current transport in an electrical network, a method known as

nodal analysis75,132,133. Consider two nearest neighbour nodes, l and m, separated

by a single conductor with weight gml. Let a voltage Vm be associated with the



2.1 resistive network theory 31

Figure 2.2: A sketch of a simple weighted graph. Nodes are represented by blue circles
and are numbered 1 to 5. The dotted lines connecting nodes represent the
graph edges. The weight of each edge (i, j) is given by gij.

node m and Vl with node l. Using Ohm’s law, the current flowing from node m to

l is

Iml = gml(Vm − Vl) (2.1.7)

For a node where no external current is injected or extracted from the network, the

sum of current flowing in and out of a node must be zero according to Kirchhoff’s

current law. Thus for a node m one has

S∑
j∈n.n

Imj =

S∑
j∈n.n

gjm(Vm − Vj) = 0 (2.1.8)

where the index j is summed over the indices of node m’s nearest neighbours (n.n),

of which there are S in total. At nodes where current is sourced or extracted, the

network must be connected to an external source or drain. This is captured in the
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mathematical network by having a non-zero net current at these nodes. If node m

is connected to a current source Im, then equation 2.1.8 generalises to

S∑
j∈n.n

gjm(Vm − Vj) = Im (2.1.9)

Applying equation 2.1.9 to a network, one obtains a series of equations, one per

node, that can be expressed in the Kirchhoff matrix notation. In this notation

scheme, equation 2.1.9 is written as

S∑
j∈n.n

gjm(Vm − Vj) = KmmVm +

S∑
j∈n.n

Kjm(Vj) = Im (2.1.10)

where the elements Kij belong to the Kirchhoff matrix, or the weighted Laplacian

matrix. Equation 2.1.10 can be written in matrix form as

K~V =~I (2.1.11)

here ~V is the voltage vector containing the voltages at each node and~I is the current

vector whose elements are nonzero only at the nodal sources and sinks.

The equivalent resistance (Req) between two nodes m and n is calculated by in-

jecting a current i0 into node m and extracting i0 at node n. The elements of the

vector ~I are written as Ij = i0(δjm − δjn) where δij is the Kronecker Delta. Equation

2.1.11 is solved for ~V , and the equivalent resistance between the nodes is then

(Req)mn =
1

i0
|Vm − Vn| (2.1.12)

Consider the conductive network shown in Figure 2.2; equation 2.1.6 is the Kirch-

hoff matrix associated with this network. We wish to calculate the resistance

between nodes 1 and 5 for example. Then the current vector ~I is given by ~I =

(i0, 0, 0, 0,−i0) where i0 is the value of current that is injected/drained. The volt-

ages are calculated by solving equation 2.1.11 and the resistance is calculated using
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equation 2.1.12. For example, for a current of i0 = 1 A and the same network as

Figure 2.2 with gij = 1 Ω ∀ (i, j) pair, we obtain an equivalent resistance of 1.625 Ω.

The framework for calculating the equivalent resistances in networks is a special

case of a more general method for calculating nodal potentials and current flows

known as Modified Nodal Analysis132. Modified Nodal Analysis allows one to ex-

amine electrical networks with both current and voltage sources in Direct Current

systems - in this thesis only direct current sources will be considered. Alternating

Current systems that contain inductive, capacitive, and resistive components can

also be accurately described with Modified Nodal Analysis132, however, these sys-

tems are beyond the scope of this work. In this thesis, the Kirchhoff system of linear

equations outlined in this section will be used to calculate resistances in a nanowire

network by means of node-voltage mappings that will be introduced in chapter 4.

We recently applied Kirchhoff’s system of linear equations to simulate the sheet

resistance of planar MoS2 being oxidised16. Our work supported the hypothesis

of the emergence of a highly conductive phase of Molybdenum trioxide that had

been suggested by experimental measurements16. In the next section, a method to

calculate equivalent resistances in infinite lattices using a Green’s function method

is discussed.

2.2 lattice green’s function for infinite

resistive networks

The Kirchhoff matrix technique introduced in the previous section requires a nu-

merical routine to calculate the equivalent resistances between nodes in a network.

This involves the use of linear algebra operations on sparse matrices that can be

computationally expensive. In some systems, an analytical expression can be used

to calculate equivalent resistances between nodes in the network, thus making the

computational routines unnecessary. Cserti developed such a technique to calcu-
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late equivalent resistances of an ordered infinite lattice using its underlying trans-

lational symmetries76, and is discussed in this section.

The equivalent resistance and the separation between nodes in large but finite

sized square lattices were calculated to understand the relationship between the

two. This was performed using two simulated square networks of sizes 300 × 300

and 100 × 100 nodes, where each resistive edge x has a resistance Rx = 1Ω. The

equivalent resistance between a given pair of nodes can be calculated using Ohm’s

and Kirchhoff’s laws outlined in section 2.1. The probing nodes were confined to

central regions of the network in order to minimise finite-size effects caused by

reduced connectivity at the boundaries of the networks. The results are presented

in Figure 2.3. There is a log-like trend as the separation between probing nodes

increases which is highlighted by the black dashed line meant as a guide to the eye

and is proportional to ln(x). At a large nodal separation finite-size effects begin

to cause the equivalent resistances to deviate from the log trend. It is clear the

deviation is a finite-size effect as the smaller lattice with 100× 100 nodes deviates

at a lower separation than the 300× 300 lattice.

In the limit of infinite nodes in the square lattice, one would expect the log-like

trend to continue indefinitely. To derive a mathematical approximation for the

relationship between the equivalent resistance and inter-nodal separation, Cserti

made use of Kirchhoff’s and Ohm’s laws along with the the translational symmetry

of a regular lattice76. Consider an infinite and regular resistive lattice. Points on

the lattice are defined by spatial vectors of the form

~r = l1~a1 + ... + ld~ad (2.2.1)

~ai are the primitive lattice vectors and li ∈ Z. When |~a1| = |~a2| = .. = |~ad| = a, a

d-dimensional hyper-cube with lattice constant a is realised. The primitive vectors

~ai have reciprocal lattice vectors ~ki defined such that ~ai · ~kj = 2πδij where δij is the

Kronecker Delta.
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Figure 2.3: Equivalent resistance (Req) between two nodes on a square lattice for in-
creasing node separation. Two finite sized square lattices are simulated,
300× 300 nodes (blue) and 100× 100 nodes (red). Finite-size effects are ob-
served at the extremes of node separations where the resistance deviates
from the log-like trend that exists for smaller separations. It is clear the
deviation is a finite-size effect as the smaller lattice with 100× 100 nodes
deviates at lower separations. The black dashed line is an offset curve pro-
portional to ln(x) + κ where κ is a constant and is meant as a guide to the
eye.

Let the resistors, the edges connecting nodes in the lattice, have the same value Rx,

and let the potential at the site ~r be V(~r). Current can be injected and extracted at

certain nodes. The injected/extracted current is given by the function I(~r); I(~r) 6= 0

if current is extracted or injected at nodal site ~r similar to the current vector in the

Kirchhoff’s matrix formalism. As in the previous section, in order to measure the
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resistance between two nodes, one injects a current i0 at one site and extract i0 at

another. At site ~r, by combining Ohm’s and Kirchhoff’s laws, one can write

I(~r)Rx =
∑
~n∈n.n

(V(~r) − V(~r+ ~n)) (2.2.2)

~n are the vectors connecting the site at ~r to its nearest neighbours (n.n). The right-

hand side can be described using the Discrete Laplace Operator ∆~r defined as

−∆~rf(~r) =
∑
~n∈n.n

(f(~r) − f(~r+ ~n)) (2.2.3)

Equation (2.2.2) thus becomes

∆~rV(~r) = −I(~r)Rx (2.2.4)

The equivalent resistance between the origin (~0) and point ~r0 is calculated by

injecting current i0 at ~0 and extract i0 at site ~r0. I(~r) can be written as

I(~r) = i0(δ(~r−~0) − δ(~r−~r0)) (2.2.5)

Bringing this together, the equivalent resistance between the two nodes can be

written in terms of the voltages as:

RGF(~0,~r0) =
V(~0) − V(~r0)

i0
(2.2.6)

Equation (2.2.4) is a Poisson-type equation and so can be solved using the lattice

Green’s function.

V(~r) = Rx
∑
~r ′

[G(~r−~r ′)I(~r ′)] = Rx(G(~r−~0) −G(~r−~r0)) (2.2.7)
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where the Green’s function G(~r−~r ′) is defined as follows

∆(~r ′)G(~r−~r ′) = −δ(~r−~r ′) (2.2.8)

Combining equation (2.2.6) and (2.2.7), and the fact that the lattice Green’s function

is even, one can calculate the resistance between the two points as

RGF(~0,~r0) = 2Rx[G(~0) −G(~r0)] (2.2.9)

Consider a hyper-cube with periodic boundary conditions, with L lattice points

along each dimension. The total number of nodes in the d-dimensional hyper-cube

is Ld. The Fourier transform of the system is thus

G(~r) =
1

Ld

∑
~k∈BZ

G(~k)ei
~k·~r (2.2.10)

Due to the periodic boundary conditions, the reciprocal vector ~k is confined to the

first Brillouin zone (BZ), or the primitive cell of the reciprocal lattice given by

~k =
m1

L
~k1 +

m2

L
~k2 + .. +

md

L
~kd (2.2.11)

where mi are integers such that −L/2 6 mi 6 L/2 for i = 1, 2, ...,d. Combining this

with equation 2.2.8 we find

G(~k) =
1

ε(~k)
=

1

2
∑d
i=1(1− cos(~k · ~ai))

(2.2.12)

where ε(~k) is the dispersion relation of the resistive lattice Green’s function propa-

gator. The Green’s function G(~r) now takes the form

G(~r) =
1

Ld

∑
~k∈BZ

ei
~k·~r

ε(~k)
(2.2.13)
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In the limit where the hyper-cube becomes infinite in all directions, the number

of points in the hyper-cube Ld tends to infinity. The summation over the Brillouin

zone becomes an integral in this limit as

1

Ld

∑
~k∈BZ

→ v0

∫
~k∈BZ

d~k

(2π)d
(2.2.14)

where v0 = ad is the volume of the unit cell of the hyper-cube. In the limit of the

infinite hyper-cube, the Green’s function takes the form

G(~r) = v0

∫
~k∈BZ

d~k

(2π)d
ei
~k·~r

ε(~k)
(2.2.15)

Let one of the points be the origin and the other point be described by the vector~r0.

Let the resistance of each edge in the network be Rx. Returning to equation 2.2.9,

the Green’s function for the equivalent resistance in a lattice is

RGF(~0,~r0) = 2Rxv0

∫
~k∈BZ

d~k

(2π)d
1− ei

~k·~r0

ε(~k)
(2.2.16)

Equation 2.2.16 is a general form for the equivalent resistance between nodes in a

d-dimensional hyper-cube. However, this lattice Green’s function method can be

applied to other lattice structures. For some lattices, the resulting Green’s function

can be solved exactly and in others can be approximated quite well. A one dimen-

sional hyper-cube is merely an infinite linear chain of resistors and is the simplest

form of lattice to consider. For illustration purposes, let one of the electrodes be

placed at the origin and another at a site b nodes away. The equivalent resistance

between the two points where each resistor has a value of Rx is

R1D(b) = Rx

∫π
−π

dk

2π

1− eibk

1− cos(k)
(2.2.17)

Using the Residues method to solve the complex integral134, the resistance reduces

to R1D(b) = bRx, which is what one would expect.
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In the case of a two dimensional square lattice with a lattice spacing set to a = 1,

equation 2.2.16 reduces to

R2D(~r0) = Rx

∫
~k∈BZ

d~k

(2π)2
1− ei

~k·~r0

2− cos(b1) − cos(b2)
(2.2.18)

where ~k = b1~k1 + b2~k2. Let ~r = m~a1 + n~a2. The integral above, while being an

elegant formalism, does not have a simple analytical solution. One of the integrals

in equation 2.2.18 can be removed with the method of Residues76,134. The residue

theorem states that
∮
γ f(z)dz = 2πi

∑
ζk
Res(f, ζk) where γ is a closed path and the

function f(ζk) is undefined at all complex poles ζk. The residue of a function at a

simple pole ζ can be calculated as

Res(f, ζ) = lim
z→ζ

(z− ζ)f(z) (2.2.19)

If the function f(z) can be written as a quotient of two other functions, f(z) = g(z)
h(z) ,

the residue at a simple pole can be written as134 Res(f, ζ) = g(ζ)
h ′(ζ) .

Consider the resistance in a square lattice given by R2D(m~a1 + n~a2); here we

derive an approximation to equation 2.2.18 first given by Cserti76. The integral is

of the form Rx
∫π
−π

dy
2π I(y) with I(y) given by

I(y) =

∫π
−π

dx

2π

1− einxeimy

2− cos(x) − cos(y)
(2.2.20)

Introducing a complex variable z = eix, I(y) can be rewritten as

I(y) = −2i

∮
dz

2π

1− zneimy

2z(2− cos(y)) − z2 − 1
(2.2.21)

The path of integration is the unitary circle. The roots of the denominator are

given by z = e±iθ with θ = cos−1(2− cos(y)). Since 2− cos(y) > 1 for y in the

range [−π,π], θ is imaginary. Introduce s such that θ = is, therefore s satisfies the

equation cosh(s) = 2− cos(y). Since cos(is) = cosh(s) in general, the roots can be
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rewritten as z± = e±s. Note that e−s < 1 and es > 1 so there is only one pole of the

integral I(y) inside the unitary circle. Thus the integral can be solved as

I(y) = 4π
1

2π

1− e−nseimy

2(2− cos(y)) − 2e−s
=
1− e−nseimy

sinh(s)
(2.2.22)

The remaining integral is thus

R2D(m,n) = Rx
∫π
−π

dy

2π

1− e−nseimy

sinh(s)
= Rx

∫π
0

dy

2π

1− e−ns cos(my)
sinh(s)

(2.2.23)

This integral cannot be solved exactly but an approximation can be made for large

values of m and n. Breaking the integral into three parts, we get

R2D(m,n) = Rx
∫π
0

dy

2π

{(
1− e−ny cos(my)

y

)
+

(
1

sinh(s)
−
1

y

)
+ (2.2.24)

+

(
e−ny cos(my)

y
−
e−ns cos(my)

sinh(s)

)}

The integral of the second term can be solved exactly with the relation sinh(s) =

sinh(cosh−1(2− cos(y))) =
√

(2− cos(y))2 − 1

∫π
0

dy

2π

(
1√

(2− cos(y))2 − 1
−
1

y

)
=
1

2π

(
ln(8)
2

− ln(π)
)

(2.2.25)

The integrand in the last integral is close to zero for small values of y and s as

sinh(s) ≈ s ≈ y. For large values of y the integrand decays exponentially. Thus the

contribution of the third integral is negligible. The first integral is in the form of

the Ein function, Ein(z) =
∫z
0
1−ex

x dx. For large values of z, one obtains Ein(z) ≈

log(z) + γ where γ = 0.57721... is the Euler-Mascheroni constant. Therefore,

1

2π
Re

(∫π
0
dy
1− eny−imy

y

)
=
1

2π
Re (Ein(π(n− im)))

≈ 1

2π
(ln(

√
n2 +m2) + γ+ ln(π)) (2.2.26)
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The full approximation for the resistance on an infinite square lattice is thus

R2D(m,n) ≈ Rx
π

(
ln(
√
m2 +n2) + γ+

ln(8)
2

)
≈ Rx
π

ln(
√
m2 +n2) +

Rx

2
(2.2.27)

Here the constant term γ+
ln(8)
2 ≈

π
2 .

Figure 2.4: (a) The numerical solution to the resistance lattice Green’s function R2D
given in equation 2.2.18 is shown as black diamonds. All resistors in the
network are identical at 1 Ω. The approximation of the integral given by
equation 2.2.27 is plot as red dashed line. (b) The relative error of the
approximation with respect to the numerical solution of the lattice Green’s
function. The error converges to zero at increasing nodal separation.

Figure 2.4 (a) plots the equivalent resistance between two nodes in an infinite

square resistive network as the separation between nodes is increased according

to the numerical solutions to the lattice integral in equation 2.2.18 (black points),

and the approximation to the lattice integral in equation 2.2.27 (red curve). The

resistance of each resistor in the network is set to 1 Ω. There is excellent agreement
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between the approximation and the numerical solutions to the integral. The rela-

tive error was calculated as the relative error of the approximation with the integral

solution and it is plot in Figure 2.4 (b). As the separation between the nodes is in-

creased, the relative error decreases towards zero. This is due to the approximation

of the integral being best for large electrode separations, as mentioned before.

Figure 2.5: The equivalent resistance versus node separation on a square lattice resistive
lattice using the Kirchhoff method (brown line) and the Green’s function
approximation from equation 2.2.27 (red points). The simulated network
contained 300× 300 nodes in total and the resistance between nodes at the
centre of the network was measured in order to minimise finite-size effects.

A large square resistive network was simulated to calculate equivalent resistances

with the nodal circuit method in order to determine the accuracy of the lattice

Green’s function method. Each resistor in the network has the same resistance

of 1 Ω and the simulated network was made very large (300×300 nodes) and its

the equivalent resistance was calculated between pairs of nodes near the centre of

the network in order to mitigate finite-size effects. The resistance between nodes

is calculated using the Kirchhoff matrix method. Figure 2.5 shows the equivalent
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resistance between two nodes in the simulated network and is compared with the

approximation to the lattice Green’s function in equation 2.2.27. The approximation

does indeed match the values given by the simulated network and accounts for the

log-trend that was identified in Figure 2.3.

While this analysis was focused on square resistive lattices, it can be applied to

d-dimensional hyper-cube lattices and other periodic lattices. In particular Cserti

also derived lattice resistance integrals for triangular and hexagonal lattices76. The

method derived by Cserti assumes an ordered homogeneous lattice. An analytical

procedure for calculating equivalent resistances in a lattice where the resistors are

disordered is to consider an effective medium. The effective medium is constructed

such that it captures the average electrical properties of the network, and this is

discussed in the following section.

2.3 effective medium theory

Here, an overview of resistive lattice effective medium theory and its associated

mathematical framework is presented. A novel effective medium approach for

nanowire networks is derived in chapter 4 that utilises the theory outlined in this

section.

Effective medium theories (EMTs) for resistive lattices have been used extensively

to model their properties for many decades. Kirkpatrick first generalised effective

medium theory, previously used to approximate the conductance of mixed materi-

als such as alloys, for resistive lattices in the 1970’s135. Consider a finite ordered

square lattice whose resistive edges follow a given distribution with an external

voltage applied along one of the primitive axes of the network. The potentials at

each node in the network is then due to the external field (Vext), which increases

incrementally per row of nodes, and a fluctuating local field (V̄) caused by local

deviations in resistors from the distribution mean. The average internal field is
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identical to that of the external, and the local field fluctuations average out to zero.

The average internal field of the network is captured by the effective medium net-

work and is defined such that the internal field of the network is the same as the

external field. To realise the effective medium network, each conductor is replaced

with an effective conductance gm.

Figure 2.6: A sketch of a regular lattice of resistors, each with a conductance of gm.
The conductor between nodes A and B has its conductance changed to g0,
causing a fluctuation in the voltage across it. A fictitious current i0 is in-
jected at A and extracted at B which is tuned to counteract this fluctuation
of the voltage.

In order to calculate the effective conductance, consider a network where the

conductor between nodes A and B has a conductance gAB = g0 and is surrounded

by the effective medium, a visualisation of which can be seen in Figure 2.6. Due

to current conservation, the sum of currents in and out of a node in the network is

zero unless an external source of current is attached to it as discussed previously.

For node A specifically,

∑
l

gAl(VA − Vl) = IA (2.3.1)

and VA−VB is the potential difference between the two nodes A and B. The voltage

between nodes A and B is due to the external field Vext and the fluctuation voltage
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V̄ . Introducing a fictitious current i0 which is injected at node A and extracted at

node B, this counteracts the fluctuating voltage and we can write

Vext(gm − g0) = i0 (2.3.2)

Let Γ ′AB be the equivalent conductance between nodes A and B where the conductor

in Figure 2.6 is gAB = 0. The fluctuating voltage can be written as

V̄ =
i0

g0 + Γ
′

AB
(2.3.3)

The equivalent conductance between nodes A and B in the effective network is

ΓAB = gm + Γ ′AB. ΓAB can be calculated using a superposition of current extrac-

tion/injection. Inject a current i0 at node A and extract it at a large distance away

in all directions such that the current i0
z flows through each of node A’s z edges,

z is the degree of the node. At the same time, one injects a current i0 at infinity

in all directions and extracts it at node B, causing a current i0z flowing through B’s

z edges. Performing both operations simultaneously, the current flowing between

nodes A and B is then 2i0
z and currents at infinity cancel to zero. It follows that the

conductance ΓAB = z
2gm. Thus Γ ′AB = (1− z

2)gm. Combining equations 2.3.2 and

2.3.3, we have

V̄ =
Vext(gm − g0)

g0 + ( z2 − 1)gm
(2.3.4)

We want the average of fluctuations of the potential to go to zero. Since the con-

ductances g0 follow a distribution f(g), we write

∫
dg f(g)

(gm − g)

g+ ( z2 − 1)gm
= 0 (2.3.5)
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For example, consider a square resistive lattice (z = 4), and a binary resistor

distribution where the respective proportions are P1 = P and P2 = 1− P and con-

ductances g1,g2. The conductance distribution is thus

f(g) = P1δ(g− g1) + P2δ(g− g2) = Pδ(g− g1) + (1− P)δ(g− g2) (2.3.6)

where δ() is the Dirac delta function. Solving equation 2.3.5 the effective conduc-

tance gm is given as

(gm)± =
g2 − g1
2

+ 2P(g1 − g2)±
(
4g1g2 + (g1 − g2)

2(1− 2P)2
)1
2 (2.3.7)

Figure 2.7 plots the two roots as a function of P, with g1 = 1 S and g2 = 0.1 S.

Clearly one of the roots is not an appropriate choice as it is negative for every

value of P. This root corresponds to (gm)− and so the solution for the effective

conductance is (gm)+. For P = 0 there are no g1 conductors and so the effective

conductance matches that of g2 = 0.1, the opposite is the case when P = 1.

Note that the effective medium theories work best where the fluctuations in the

current flow through the network are relatively small. Where the current is fun-

neled through a few critical paths, the EMT will not work well. Similarly as the

EMT is an averaging theory, the larger the network the more accurate the EMT. In

the next section, a discussion of percolation theory is given.

2.4 percolation theory and critical wire

density

Earlier in this chapter, the Kirchhoff matrix and Greens’s function methods were in-

troduced to calculate the resistance of a network, however these methods required

the knowledge of the exact layout of the networks. Large-scale nanorod devices

contain countless components making it difficult to accurately capture the layout of
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Figure 2.7: The two solutions (gm)± to the effective medium theory in a binary resistor
distribution, where the relative proportions of the two conductors is given
by the parameter P. In this figure, the two types of conductors have values
g1 = 1 S and g2 = 0.1 S respectively.

the network. Percolation theory20 has been used for many decades to understand

properties of such devices as it is essentially the behaviour of connected nodes in

mathematical graphs34,77–79. Here we study aspects of percolation theory20, and

use it to describe the conductive properties of a nanowire network.

Consider the two dimensional square lattice presented in Figure 2.8 consisting

of 16 sites. Each site is occupied with some probability P, 0 6 P 6 1 (P = 10/16

in the case of Figure 2.8). Percolation theory is concerned with the connectivity of

such a system, and how it depends on the contact probability P for different types

of networks. A cluster of size s is defined as a group of s connected occupied sites.

Returning to the network shown in Figure 2.8, there are four different clusters. The

red sites belong to a cluster of size four, the green sites are a cluster of size three,

the blue of size two and yellow a cluster of size one. For a finite sized lattice,

there is some critical value of P where a cluster will span (or percolate) between
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two boundaries. A definition of the critical value is one were a cluster of infinite

size first appears in an infinite lattice21. This critical probability is known as the

percolation threshold Pc and it establishes a phase transition between a conductive

and a non-conductive network.

Figure 2.8: A 2-D square lattice of size 4× 4. Sites are occupied with a certain proba-
bility P. Each occupied site is represented by different colours, each colour
represents a different cluster. There is a cluster of size 4 (red), 3 (green), 2

(blue), and 1 (yellow). Unoccupied sites appear in white.

Percolation theory can be used to study continuum systems, as well as the lattice

percolation problems discussed above. Continuum percolation problems include

randomly positioned disks, sticks, squares, spheres77 among others. In this work,

we will focus on the percolative properties of widthless conductive sticks as these

best mirror the high aspect ratio nanowires we are concerned with. Similar to

the critical occupancy probability, there exists a critical wire density (nw)c below

which a percolative path will not form between two opposite boundaries. Stick

percolative systems were studied in 1974 by Pike and Seager77, and their work has

been applied extensively in recent years to nanorod systems64,136. Using Monte

Carlo simulations of randomly positioned and orientated sticks with a fixed wire



2.4 percolation theory and critical wire density 49

length, Pike and Seagar determined a relationship between the critical wire length

(Lc) and wire densities (nw)

Lc

(√
πnw

2

)
= 2.118 ⇒ (nw)c = 5.7L−2 (2.4.1)

Percolation can also be expressed in terms of wire aspect ratio λ = L
D and critical

network coverage per area cperc = LD(nw)c, where D is the diameter of a wire137.

cperc =
5.7
λ

(2.4.2)

Balberg and Binenbaum examined percolation thresholds for conductive stick net-

works with preferred wire orientation and wire length distributions138. They showed

that when stick orientations are confined to a small range, the critical wire length

for a fixed wire density increases138. For networks where sticks followed some

length distribution, Balberg and Binenbaum showed that broader distributions re-

quired lower mean wire lengths for percolation138. In this thesis only networks

where nanowires have no preferred orientation are considered, however the discus-

sion of stick length distributions will be discussed further in chapter 3 in relation

to physical NWNs.

Returning to networks with no preferred wire orientation and fixed wire lengths,

Li et al obtained a more accurate estimate of the constant in equations 2.4.1 and

2.4.2 through large-scale computer simulations and by explicitly including finite-

size effects79.

(nw)cL
2 = 5.63726± 0.00002 (2.4.3)

Li et al’s definition of the critical wire density is as follows: given an ensemble

of random stick networks at the critical wire density, percolation occurs in 50% of

the networks. The critical wire density is an important parameter for NWNs; it
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describes the minimum wire density that will result in a conductive network and

is referenced multiple times throughout this thesis.

2.5 junction density as a function of wire

density and length

It is clear that the wire lengths and density play an important role in the resistive

properties of a nanowire network. Collectively, they largely determine the connec-

tivity profile. Nanowire networks are assumed to be random fiber networks, which

follow three criteria as defined by Kallmes and Corte137,139:

• wires are deposited independently of one another,

• wires have an equal probability of landing at all points in the reference area,

• wires have an equal probability of making all angles.

A nanowire network created from such a random process will clearly have a large

degree of disorder, however many properties follow well defined probability dis-

tributions. For example, the number of wires that cover an area of the network

follows a well defined Poisson distribution137, as expected for the random position-

ing of wires. In this section, we are concerned with deriving the connectivity of

such a network, in other words, the average number of inter-wire junctions in a

network, and how this depends on the wire length and density.

Consider two straight wires of length L that have a relative orientation θ, and lie

within an area x2 as seen in Figure 2.9. In order for an intersection to occur between

the two wires, the centre of the wire at an angle θ must lie within the rhombus of

side L that is depicted with dashed lines in Figure 2.9. The rhombus has an area
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Figure 2.9: Two wires of length L are sketched as thick black lines that have a relative
orientation of θ, and are in a reference area of x2. The two wires will
intersect if the centres of both wires, represented by blue dots, lie inside the
rhombus depicted by the dashed lines.

L2 sin(θ), the probability that two wires intersect (P(θ)) is the ratio of the area of

the rhombus to the reference area,

P(θ) =
L2

x2
sin(θ) (2.5.1)

The probability that two wires intersect where they can have any relative orienta-

tion is found by

∫
P(φ)h(φ)dφ (2.5.2)

where h(φ) is the probability distribution of the relative orientation between wires.

Due to symmetry, one only considers relative angles in the range 0 6 φ 6 π
2 . In this
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case, the probability distribution where every possible angle is equally as likely is,

h(φ) = 2
π . Equation 2.5.1 can now be written as

∫
P(φ)h(φ)dφ =

2L2

πx2
(2.5.3)

Wires can intersect with all others except for itself, so the number of pairs of wires

per unit area (npair) in terms of the number of wires (Nw) is written as

npair =
Nw(Nw − 1)

2x2
≈ N

2
w

2x2
(2.5.4)

The number of intersections per unit area (nj) can be calculated using equations

2.5.3 and 2.5.4

nj = npair
2L2

πx2
=
L2N2w
πx4

=
1

π
L2n2w = ωL2n2w (2.5.5)

where nw is the number of wires per unit area, and shall be referred to as the

wire density throughout this thesis. ω = 1
π ≈ 0.318 shall be used from here in

order to simplify the notation. A further addition can be made to equation 2.5.5 by

considering the expected wire length per unit area τ = nwL

nj = ωL
2n2w = ωτ2 (2.5.6)

Thus equation 2.5.6 can be used to calculated the expected number of junctions in

a NWN where the constituent nanowires have different lengths but τ is fixed.

Figure 2.10(a) presents the junction density as a function of wire density, the

curves to equation 2.5.5 and data points corresponding to simulations of the aver-

age nj for an ensemble of nanowire networks with a specified nw. Note that all

simulated nanowire networks in this thesis are simulated according to the three

criteria random stick networks defined by Kallmes and Corte139 at the start of this

section. The blue dashed curve in Figure 2.10(a) uses the value ω = π−1 ≈ 0.318

as derived by Kallmes and Corte137,139, whereas the red solid curve is ω = 0.27.
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a) b)

Figure 2.10: (a) Black data points are average junction density versus wire density ob-
tained from ensemble simulations of NWNs of size 40× 40µm, and wire
lengths of 7µm. Note that ten simulations were performed per wire den-
sity and the resulting 95% confidence interval is also shown. The blue
dashed line corresponds to equation 2.5.5 withω = π−1 ≈ 0.318 as derived
by Kallmes and Corte137,139. The red curve corresponds to equation 2.5.5
with ω = 0.27 and agrees much closer to the ensemble simulations. (b)
The boundary effects on the relationship between junction and wire den-
sity. The orange data points are average junction densities for networks of
side length 30µm (W/L = 4.2), and the green for networks of side 40µm
(W/L = 5.7). Both networks have wires of length 7µm. The blue dashed
line is the analytical expression equation 2.5.5 with ω = π−1 ≈ 0.318.

The red curve provides a more accurate description of the simulation results, sug-

gesting that the contact probability for pairs of wires is lower in this system. The

reason for this is due to the method of generating NWNs in simulations and the

choice of reference area for calculating nj. Nanowire centers are positioned inside

some reference area W ×W, as a result wires that lie a distance of L/2 from the

nearest network edge will experience fewer intersections on average. This is due to

no wires being deposited beyond the reference area of the network.
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To examine the reduced junction density at the periphery of networks, Figure

2.10(b) presents the junction density versus wire density for two NWNs of side

length size W/L = 4.2 (orange) and W/L = 5.7 (green). In both simulations the

length of the wires L = 7µm is fixed and so relative size of the sparse area at the

boundary to the network as a whole is smaller. The larger network has a consis-

tently higher junction density and is closer to the theoretical result with ω = π−1

shown as the blue dashed curve. For finite NWNs in this thesis, one expects those

with smaller values of W/L to have junction densities much lower than the theoreti-

cal value due to the method of network generation. Note that there are methods to

remove the reduced junction density due to network generation. Periodic bound-

ary conditions could be implemented such that there is no area of reduced junction

density. Similarly, one could generate a network of size (W+L)× (W+L) and then

use the reference area W ×W to examine aspects of nanowire networks. In later

chapters, the expression for the junction density in equation 2.5.5 is used exten-

sively in the discussion of nanowire network conductivity, particularly in chapter

4, where it is central to a novel effective medium theory for nanowire networks.

2.6 chapter summary

In this chapter, the necessary background theory and mathematical formalisms to

understand current flow through a nanowire network were introduced, and will

be referred to throughout this thesis. In section 2.1, some fundamental aspects of

network theory were introduced. Network theory was applied to an electrical net-

work and shown to follow Kirchhoff’s circuit laws. It was shown that the electrical

properties of a network can be calculated by solving a system of linear equations

containing the connectivity profile and resistances of the network. In section 2.2, an

analytical method to calculate resistances in an ordered infinite lattice developed

by Cserti76 was presented. An approximation to the lattice Green’s function solu-
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tion to resistances on a square lattice was presented and shown to be very accurate,

particularly at large distances. An effective medium theory for ordered resistive

lattices was presented in section 2.3. An effective medium for a two dimensional

square lattice with a bi-modal resistance distribution was derived as an example. A

brief introduction to percolation theory was given in section 2.4. In particular, the

critical wire density for a conductive stick system in two dimensions was presented,

a density which is the lower bound to ensure an electrically conductive network be-

tween two opposite electrodes. Finally a functional form for the junction density

was presented in section 2.5, relating the junction density with wire density and

wire length.

The methods and general theory layed out in this chapter play a pivotal role in

examining current flow in nanowire networks. The Kirchhoff method to calculate

network resistivity is used throughout this thesis, being crucial to results presented

in every chapter. The Green’s function technique offers an insight into how current

flows through an ordered medium which can act as a template to current-flow in a

disordered one. This will be the foundation to a novel extended effective medium

developed for nanowire networks which will be discussed further in chapter 4. The

critical wire density determined by percolation theory is of vital importance in un-

derstanding limitations of nanowire networks with regards to sparsity and is used

as a lower bound in simulations throughout the thesis. Similarly the expression for

junction density in equation 2.5.5 and in turn the connectivity of a network is of

fundamental importance for understanding the properties of networks and is used

throughout the thesis.





3
C O M P U TAT I O N A L M O D E L S F O R D I S O R D E R E D N A N O W I R E

N E T W O R K S

The conductance of a nanowire network depends on a multitude of underlying

parameters: the length and diameter distributions of nanowires34,77,136,140,141, inter-

wire junction resistances142, resistance of nanowire segments80, wire density78, con-

nectivity profile, and device dimensions129 to name but a few. All of these param-

eters and physical features will impact the conductance of a NWN. A common

method of numerically solving this complex transport problem135 is to map the

NWN onto a node-voltage graphical representation where each nanowire is a node

in the graph and is connected to its nearest neighbours by a resistor correspond-

ing to the inter-wire junction. Kirchhoff’s circuit laws and Ohm’s law are applied

to the node-voltage graph to calculate the conductance of the system as outlined

in chapter 2
19. An implicit assumption is being made in this approach: the junc-

tion resistance is much higher than the nanowire inner resistance and so dominate

the electrical properties of the network. This approach shall be referred to as the

Junction Dominated Assumption (JDA) henceforth.

Monte Carlo simulations of conductive stick networks show that their electrical

properties are highly sensitive to the ratio Rin/Rj, where Rj is the resistance of a

junction and Rin is the inner resistance of a wire segment79,80,141. The JDA model

has successfully calculated the resistive properties of carbon nanotube networks, as

the nanotube resistance is negligible compared with the resistance of a nanotube

junction34,143. Metallic nanowire junctions however have been shown to have rela-

57
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tively low junction resistances124 and, as a result, the nanowires themselves have

a sizable impact on the network conductivity. With the demand for increasing

NWN conductivity for optoelectric device applications18,57,58, Rj is continuously

being minimised by effective annealing techniques44,64,128,144 and so the JDA is not

appropriate for these systems. In this chapter, we introduce a model that includes

both nanowire resistances (Rin and Rj), the Multi-Nodal Representation (MNR),

and show how both MNR and JDA models depend differently on the underlying

parameters mentioned at the start of the chapter.

A fundamental issue with nanowire network simulations is the inherent spatial

randomness of wire positions and their impact on network connectivity. Exper-

imental measurements can only be related to the average results of simulations

with matching underlying parameters in order to obtain meaningful results142. To

directly compare computational simulation with experimental measurements, we

developed an original method to digitally capture the positions and orientations of

nanowires from Scanning Electron Microscope (SEM) images of NWNs. The goal

of this chapter is to compare MNR and JDA simulations using both configurational

averaging and digitised networks from experimental samples to understand the

effect of nanowire resistance on certain network properties.

The layout of this chapter is as follows. In section 3.1, the JDA and MNR models

are presented and the computational simulations are outlined. In section 3.2, MNR

and JDA approaches are applied to simulations of NWNs and the dependence of

sheet resistance on a selection of nanowire properties are explored, highlighting the

impact of inner-wire resistance on these relationships. In section 3.3, an original

technique that digitises images of experimental NWNs is introduced to which the

JDA and MNR are applied. The digitised networks can be used to approximate the

junction resistance of the samples and these results were compared with a distri-

bution of junction resistances that were measured experimentally124. The ultimate

conductivity of a NWN, which can be obtained when junctions are annealed to

their optimum capacities, is then calculated for each of the experimental samples.
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A novel way of quantifying the potential for network conductance improvement

is introduced in section 3.3 and its dependence on several network parameters is

presented125. In section 3.4, the effect of including dispersion in the junction re-

sistances is examined for MNR and JDA mappings. A short chapter summary is

presented in section 3.5.

3.1 graphical representations of nanowire

networks

To calculate the resistive properties of a NWN, the nanowire mesh must be mapped

into a mathematical graph that captures the connectivity information of the net-

work to which node-voltage points are assigned. In this way, Kirchhoff’s system of

linear equations introduced in chapter 2 can be used. In the JDA mapping, each

wire is represented by a circuit node at a common voltage connected to other wires

by junction resistors (edges of the graph). A NWN with Nw wires will result in

a resistive graph with Nw nodes. An off-diagonal element in the Kirchhoff matrix

(Kjdaij ) is the conductance of the inter-wire junction between wires i and j. Figure

3.1(a) is a sketch of a simple NWN (top) with its JDA graphical representation (bot-

tom). There are three nodes in this graphical representation, one for each nanowire,

and two inter-wire junctions with resistance Rj. Note that there is no junction be-

tween wires W1 and W2, thus there is no resistor for this connection in the graph

representation. The locations of the nanowires are irrelevant in the JDA; only the

connectivity profile of the network and Rj determine its electrical properties. As

this mapping only acts on the inter-wire connectivity, the inner-wire resistances of

the nanowire segments are entirely omitted from this model.

While the JDA is suitable for materials with sufficiently large junction resistances,

the nanowire resistance cannot be omitted for materials where it is comparable with

that of the junctions. In order to include the inner wire resistances, a new voltage-
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Figure 3.1: (a) A sketch of a simple NWN with three wires labeled Wi, i = 1, 2, 3
and two inter-wire junctions, one between wires W1 and W2 and another
between wires W1 and W3 125. Underneath the sketch is a circuit represen-
tation of the NWN; there are three nodes corresponding to the three wires
and two inter-wire junction resistors represented by black resistors with re-
sistances Rj. (b) An expanded view of the three wires sketched in panel
(a). The four connection nodes, two for each inter-wire junction, are shown
as the red dots labeled Ci, i = 1, 2, 3, 4. Underneath the sketch is an MNR
circuit representation of the NWN. Connection nodes associated with the
same junction are connected by a junction resistor Rj and shown in black.
The connection nodes that are adjacent on W3, C2 and C4, are connected by
a nanowire segment resistor Rin illustrated by the yellow resistor.

node mapping is needed. Consider a wire that has b intersections with other wires

thus partitioning it into b+ 1 wire sections each with a classical resistance given by

Rin =
ρ`i
Ac

(3.1.1)

where ρ is the wire resistivity, `i is the length of wire section i, and Ac = π(D/2)2 is

the cross sectional area of the wire withD being the diameter of the nanowire. Note

that two of the sections, at either end of the nanowire, play no part in the electrical

properties of the network as they are ‘dead-ends’ for current-flow35. There is the

scenario where the end of the wire may touch another horizontally as opposed to

forming an overlap junction, essentially forming a 90◦ "T" junction. However, this
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has a probability of zero as wire orientations have probability density distribution

P(θ) = 1
π and

∫π
π P(θ)dθ = 0.

The inter-wire connection points, which partition the wire segments, are the

nodes in the new node-voltage mapping which we shall call Multi-Nodal Repre-

sentation (MNR) henceforth. For each inter-wire junction, there are two connection

nodes, one on each wire, and are connected by a junction resistor. Adjacent con-

nection nodes on the same nanowire are joined with an inner-nanowire resistor.

A sketch of a simple NWN and the corresponding MNR graph representation is

presented in Figure 3.1(b). The total number of nodes in this scheme is 2Nj, where

Nj is the total number of junctions in the network. The nanowire resistor between

the nodes C2 and C4 is depicted in yellow and the two junction resistors are shown

in black. Note that contributions from the wires’ dead-ends are not included in

this representation either. Unlike the JDA model, the locations of the wires and

their intersections in the network have to be considered in the MNR model as the

distances between adjacent connection nodes are needed for the calculation of the

nanowire resistances.

In chapter 2, the junction density was related to the wire density in a network

by nj = ωL2n2w meaning that the total number of junctions is Nj = ωL2N2w/B

where L is the length of each wire, B is the total area of the NWN and ω is a

constant (≈ 0.318)35,137,139. The Kirchhoff matrix for the JDA model of a network is

of size Nw×Nw representing a system of Nw linear equations. In the MNR model,

the Kirchhoff matrix is of size 2Nj × 2Nj representing 2Nj = 2ωL2N2w/B linear

equations. As the number of junctions depends on N2w, the number of equations to

be solved is proportional to N2w for the MNR model, compared with Nw equations

for the JDA model. Herein lies a disadvantage of the MNR model as the required

computational memory and power quickly becomes too demanding for relatively

large and dense networks.

In both JDA and MNR, the computational simulations conducted in random

NWNs are performed as follows: a number of nanowires are randomly distributed
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over a predefined area. An inter-wire junction is assigned where two wires inter-

sect; the positions and associated wires of each intersection are recorded. The MNR

and JDA mappings can then be applied to the NWN from the connectivity profile

and the wire positions. The Kirchhoff matrix for both can be formulated and nu-

merically solved to calculate the sheet resistance (Rs) of the network. The same

network can be recreated a number of times by fixing the random number genera-

tor seed used to generate the positions and orientations of wires in the simulations.

This allows the impact of particular network parameters to be assessed on a fixed

geometry. Likewise, a network ensemble can be created by shuffling the wires over

the device area. The two pictures are excellent tools to determine the effect of all

of the underlying properties on the resulting sheet resistance of the NWN.

The parameters of the NWN can be grouped into two main categories: the ge-

ometric and the resistive parameters. The geometric parameters are those that

affect the connectivity profile of the NWN, e.g. the wire density (nw) and the wire

length (L). A change in one of these parameters will alter the connectivity profile

of the NWN. Consider a large NWN with a fixed wire density and length distribu-

tion. Different regions of the network can have very different connectivity profiles

due to the local variability of the network and so have very different local electri-

cal properties. To counter this variability, Monte Carlo simulations are performed

whereby a large number of NWNs are generated for a given wire density and wire

lengths and so the effect of each parameter can be determined. Wire diameters are

not used to determine the intersection of two nanowires as they are represented as

widthless sticks in simulations, and so is not included as a geometrical parameter,

but is considered a resistive parameter. The resistive parameters do not necessarily

alter the connectivity profile of the NWN but change the magnitude of the resistors

in the network. These are the junction resistance (Rj), and the inner-wire resistance

(Rin(ρ, `i,D)). The effect of these parameters are best illustrated by fixing a NWN

connectivity profile and calculating the change in sheet resistance associated with
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changes to these parameters. The relationship between these two categories of pa-

rameters and network sheet resistance will be explored in the proceeding sections.

3.2 the impact of inner-wire resistance

This section will highlight the impact of inner wire resistance on NWN sheet re-

sistance, and is a benchmark for further simulations later in the thesis, namely in

chapter 4, where the accuracy of a novel effective lattice approach for a NWN is

examined. The resistive properties of nanowires are not considered to alter the con-

nectivity of a given NWN geometry but they do impact on their resistance values.

Both JDA and MNR were applied to the same network geometry in order to keep

the connectivity profile fixed and allow for a direct comparison between models.

Figure 3.2 is a visualisation of the simulated network which is of size 20× 20µm,

L = 7µm, and nw = 0.4 nanowires/µm2. Note that the number of junctions in this

network is less than what is expected from equation 2.5.5 as W/L = 2.9. However,

the following analysis is specific to a single NWN geometry and so the reduced

connectivity will have no impact on the discussion. This network will be the bench-

mark geometry used to identify the dependence of the sheet resistance (Rs) on Rin

by changing ρ, D and Rj in this section.

3.2.1 The Relationship Between Junction and Network Resistances

The common resistive parameter between MNR and JDA is the junction resistance.

In this comparison between the models, every junction resistance was assigned

the same value Rj, a homogeneous resistive network. The resistivity and wire

diameters were fixed in the MNR to values typical of Ag/PVP core-shell nanowires,

ρ = 22.6 nΩm and D = 50 nm125. Figure 3.3 shows the effect of increasing Rj on
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Figure 3.2: A visualisation of a simulated network to be used as a fixed geometry to
determine the role of resistive parameters on network conductivity. Wires
(black lines) are 7 µm in length and the wire density is 0.4 nanowires/µm2.
The network has dimensions 20× 20 µm and the electrodes are represented
by the thick vertical red lines located at either sides of the network.

the calculated sheet resistance for both the MNR and JDA models applied to the

network geometry shown in Figure 3.2.

A striking feature of Figure 3.3 is that the sheet resistance predicted by the MNR

and JDA depends linearly on the junction resistance with the same slope as

RJDAs = aRj (3.2.1)

RMNRs = aRj + R0 (3.2.2)

where a = 0.37 for the network shown in Figure 3.2. The MNR result is offset

from the JDA approach by R0 = 21 Ω and it corresponds to the contribution of the

internal resistance of the nanowires. This linear dependence is for an idealised ho-

mogeneous junction resistor distribution and is shown to not hold when a level of

disorder is introduced to the junction resistance distribution as discussed in section
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Figure 3.3: The effect of junction resistance on the sheet resistance of the network
shown in Figure 3.2. The sheet resistance Rs depends linearly on the junc-
tion resistance for both the MNR and JDA models in the case of homoge-
neous junction resistances. In fact, the slope of both lines (a) is approxi-
mately the same for both models with a = 0.37. The effect of the nanowire
resistance in the MNR manifests with the addition of a constant R0 which
corresponds to RMNRs when Rj → 0.125

3.4. The JDA functional form behaves as desired; one expects a sheet resistance of

zero if every junction in the network has an idealised zero resistance. Similarly the

MNR functional behaves as expected; as the junction resistance is brought to zero,

the sheet resistance tends to the nanowire resistance contribution of the network

R0. The inclusion of the nanowire resistance increases the sheet resistance of the

NWN as expected. For example, in the MNR model the Rs → R0 → 21Ω for Rj → 0.

In order to achieve this sheet resistance in the JDA, the junction resistance required

is Rj = 21/a ≈ 60Ω. This difference between the required Rj in both models can
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cause discrepancies when comparing simulations and experiments. This point is

discussed further in section 3.3.

The value of the slope for both models gives an understanding of the nature of

current flow through the NWN. Recently, Ainsworth145 et al modeled a NWN as

a mesh of parallel paths between the two electrodes, all of the same length. Let

there be Y parallel paths of X junction resistors in series, X and Y are characteristic

parameters unique to each network. Assuming that the paths do not superimpose

or interact with each other, the sheet resistance of such a network in the JDA model

is,

Rs =
XRj

Y
(3.2.3)

Comparing this to equation 3.2.1 shows that a = X
Y . Thus for a < 1, we can argue

that the current flow through the NWN is through many parallel paths Y, more

paths than the number of junctions connected in series X. If a > 1, then the current

flows through few paths between electrodes. One expects that a depends on the

connectivity profile, where highly connected NWNs will have a much lower slope

than sparse networks.

A symmetry argument can be made to explain the linear relationship between

Rs and Rj in the JDA. If the only difference between two networks is a constant

shift on every resistor value then the resistance between any nodes in the network

should shift by the same amount. A mathematical proof of this can also be made

by making use of the Kirchhoff Matrix formalism75 defined in chapter 2. If every

resistor in the NWN has the same value R, then the Kirchhoff matrix is

K =
1

R
L = ΓL (3.2.4)

recalling that L is the Laplacian matrix defined in chapter 2 and Γ = 1/R. The

Kirchhoff matrix, along with the current vector (~I) which defines the sourced and

drained current to the network, is used to solve the potential at each node in the
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network. Consider the case where R = 1, Kirchhoff’s system of linear equations are

L~VL =~I (3.2.5)

where ~VL is the solution to this equation. The resistance between the source current

node (m) and the drain current node (n) is

RLmn =
|~VL

m − ~VL
n |

i0
(3.2.6)

where i0 is the amount of current injected and drained from those nodes. Now

consider the case where R 6= 1 and the current vector is the same as before. We

now have

K~V =
1

R
L~Vk =~I (3.2.7)

Using equation 3.2.5, we can equate 1
RL

~VK = L~VL and so the solved voltage vectors

are related by

~VK = R~VL (3.2.8)

The resistance between the two nodes m and n are now

RKmn = R
|~VL

m − ~VL
n |

i0
(3.2.9)

proving that the resistance between two nodes in a network of identical resistors

depends linearly on their resistance assuming that current flow does not alter its

course.
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3.2.2 The Effect of Nanowire Resistivity and Diameter on Network Resistance

The inner-wire resistance only plays a role in MNR, and so JDA simulations cannot

be performed for these parameters. Their effect on Rs was determined by apply-

ing the MNR model to the NWN pictured in Figure 3.2 with Rj = 11 Ω. Figure

3.4(a) shows the effect of changing the resistivity on the sheet resistance. Rs clearly

increases in a linear fashion with respect to increasing resistivity which can be

attributed to the linear dependence of the resistance of wire segments on the resis-

tivity. This increase corresponds to the shifting of R0 in the linear formula for Rs

given in equation 3.2.2.

Figure 3.4: (a) Dependence of Rs on the resistivity of the nanowires, specific to the net-
work geometry shown in Figure 3.2. Rs depends linearly on the resistivity
of the nanowires. (b) Dependence of Rs on the diameter of the nanowires
(D) for a fixed network geometry. This relationship follows that of the
nanowire resistance on D with a D−2 dependence. In the inset, the same
data is replot in green, the x axis has been recast as D−2 highlighting the
linear relationship between Rs and D. Recall Rs = aRj + R0 and so the
sheet resistance tends to a non-zero value determined by the junction re-
sistance for vanishing nanowire resistance. The horizontal dashed line in
both plots represents the sheet resistance with no nanowire resistance with
Rs = aRj ≈ 4.07Ω for Rj = 11 Ω.
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Figure 3.4(b) shows the effect of increasing wire diameter (D) on the sheet resis-

tance of the same network. The sheet resistance decreases as a power law relation-

ship, Rs = cD−2+aRj, which is expected as the nanowire resistance depends on the

wire diameter as Rin ∝ D−2. This inverse squared relationship is clearly evident

in the inset plot which is the same data with the x axis recast as D−2. Note that

a non-zero junction resistance was used in the simulations and so the sheet resis-

tance tends to a non-zero value for vanishing resistivity and infinite wire diameter,

i.e. Rs → aRj as R0 → 0. This asymptotic sheet resistance is represented by the

dashed horizontal line in both plots of Figure 3.4. If one were to consider a NWN

with perfectly conductive junctions (Rj → 0) then a symmetry argument similar to

that used to describe the linear dependence of Rs on Rj can be used to describe the

relationship R0 ∝ ρD−2.

An important note should be raised about these symmetry arguments however;

they assume that current flow does not redistribute through the network as alter-

ations occur in the network. It is not inconceivable that in the MNR, an increase

in junction or nanowire resistances could cause the current flow to alter course,

thus causing a shift in the sheet resistance that does not follow the existing linear

relationship.

3.2.3 The Impact of Wire Density on Nanowire Network Resistance

Altering either the wire density or the wire length of a network results in a fun-

damental change in its connectivity profile. This change is best illustrated by the

expression for the junction density derived in chapter 2, nj = ωL2n2w, as it is the

junctions that determine the connectivity profile. Recall from the definitions of

the JDA and MNR that the junctions are a source of resistance and determine the

graphical circuit representations of the NWNs.

The impact that geometric parameters have on the connectivity profile of the

networks is also described by percolation theory77. As discussed in chapter 2, per-
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colation theory can be used to determine quantities such as the critical wire density,

(nw)c, below which a connective path does not form between two boundaries, or

electrodes. This can be determined using the equation79

(nw)c = 5.63726 L−2 (3.2.10)

Note that equation 3.2.10 holds for networks where all sticks are of equal length L.

This relationship links the wire density and length at the point of criticality, and

shows how the geometric parameters alter fundamental aspects of network systems.

As the connectivity profile is altered in a random manner with a change in wire

density, ensembles of simulations are required. The relationship between sheet

resistance and the geometric parameters are then determined through averaging

quantities and statistical analysis performed on the simulation ensemble.

The effect of wire density on the average < Rs > calculated in JDA (blue) and

MNR (red) for an ensemble of NWNs is displayed in Figure 3.5(a). Other param-

eters were set to values measured for Ag/PVP core shell nanowires125 that were

used in the previous section: L = 7 µm, Rj = 11 Ω, D = 50 nm, and ρ = 22.6 nΩm.

Twenty simulations were performed for a given wire density in order to obtain an

accurate calculation of the average Rs and the associated 95% confidence interval.

From Figure 3.5(a), the MNR model has a higher sheet resistance than for the

JDA model at the same densities. This is due to the inclusion of nanowire resis-

tances for the MNR and the junction resistances being the same in both models.

There is large uncertainty in the average < Rs > for simulations at lower densities

(< 0.2 nanowires/µm2) due to being close to the critical density of (nw)c = 0.11

nanowires/µm2 estimated by equation 3.2.10. A sparse network is susceptible to

the stochastic spatial effects of the network and the large uncertainty in the sheet re-

sistance is a manifestation of this randomness. The general decreasing trend of the

sheet resistance with increasing nanowire density is a result of additional pathways

developing across the network.
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a) b)

Figure 3.5: (a) The effect of changing wire density nw on sheet resistance Rs for net-
works of size 20µm× 20µm and wires of length 7µm. The wire resistivity,
cross sectional area and junction resistance are those measured typical for
Ag/PVP core shell nanowires. 20 random networks were simulated for
each wire density in both MNR and JDA and the average sheet resistance
and 95% confidence interval for each wire density was calculated and plot.
(b) Sheet resistance versus the parameter x = (nw − (nw)c) for compar-
ison with equation 3.2.11. Here the two scaling regimes between Rs and
nw is evident for both models. Power-laws were fit to both models and are
shown as dotted lines. For the MNR model the scaling exponent according
to regression analysis is βMNR = 1.28 and the fitted curve is shown as the
black dashed line. The JDA line has an exponent βJDA = 1.44 and is shown
as the green dashed line.

According to percolation theory77, the sheet conductance, Γs, of a random stick

network scales as a power law with the stick density near the critical value as:

Γs ∝ (nw − (nw)c)
β (3.2.11)

where (nw)c is the critical wire density. This scaling law has been well documented

in simulations77,79,80 and has been used to understand the resistive properties of

carbon nanotube32,34 and metallic nanowire networks136,143. Figure 3.5(b) recasts

the data from panel (a) in a log-scale plot but alters the horizontal axis to (nw −

(nw)c) for comparison with the power law in equation 3.2.11. Both MNR and JDA
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have a power law response to the increase in wire density that is easily identifiable

in this plot and a linear fit is performed to on curves. The two models were found

to have differing exponents in their power law fits, βMNR = 1.28 (black dashed line)

and βJDA = 1.44 (green dashed line). These differing exponents are in line with

those seen in Monte Carlo simulations that have been reported in the literature79.

Li and Zhang showed that this scaling exponent depends on the ratio of junction

resistance (Rj) to nanowire resistance (Rin). By fitting the Error function to Monte

Carlo simulations they found the relationship between the scaling exponent and

ζ = log10(Rj/Rin) was

β = β0 +C erf(ζ) (3.2.12)

where β0 = 1.314± 0.002 and C = 0.108± 0.003. For the MNR model, the resistance

of a nanowire of length 7 µm, D = 50 nm, and ρ = 22.6 nΩm is approximately

80 Ω making βMNR = β0 +C erf(log10(11/80)) = 1.23. This exponent is very close

to that found with regression analysis in Figure 3.5, βMNR = 1.28, and further

illustrates the importance of including nanowire resistance in calculations of the

sheet resistance for networks where Rin is non-negligible.

3.3 digital representation of physical

nanowire networks

A key problem in comparing experimental measurements with computational sim-

ulations for nanowire networks is the need to generate an accurate numerical av-

erage. A large number of laborious simulations are required for a meaningful

benchmark to compare to, and even then a physical sample could have resistances

in the extreme tails of expected outcomes, particularly for sufficiently low junction

density networks. To allow for a more direct comparison with physical samples,
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a method to digitise the geometry of an SEM image of a NWN was developed.

This was achieved by opening the micrograph image of a NWN on an interactive

digital canvas where the start and end positions of each wire were recorded. The

wire is represented as a straight line between these points in the digital version

of the NWN. A computational routine to detect intersections of the digital wires

is performed to determine the positions of junctions, and to create an approxima-

tion of the connectivity profile of the physical NWN. With the positions of each

wire and inter-wire junctions, a ‘top-down’ two-dimensional representation of the

NWN can be created digitally. Figure 3.6(a) shows a typical SEM image of a NWN

comprising of Ag/PVP core-shell nanowires. Here Ag/PVP were spray-deposited

over a predefined network opening and a lift-off procedure was performed such

that nanowires not in the opening were removed. The isolated NWNs were sub-

sequently contacted with silver metallic electrodes using electron beam lithogra-

phy125. The simulated networks are similar to the fabrication method in that there

exists an area of reduced network connectivity or junction density at the periph-

ery of the network. Figure 3.6(b) is the digitised version of the network shown in

panel (a). The latter is in fact an approximation; from the top-down view of the

SEM image, it is impossible to tell if an overlap of wires results in physical contact

between them, particularly in areas of high wire density where a wire may become

suspended above another wire giving the appearance of a junction but in reality

there is none. Kallmes and Corte addressed the probability of wires overlapping

but no physical contact occurring between them by considering a distribution for

network coverage. Coverage is defined as the number of wires crossing a particular

area in a NWN, and is distributed according to a Poisson process137,139 which is

parameterised by the mean coverage c̄.

P(c) =
c̄ce−c̄

c!
(3.3.1)

Here the mean coverage is calculated as the mean coverage per unit area, i.e. c̄ =

nwLDwhere nw is the number of wires per unit area, L is the mean wire length, and
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D is the wire diameter. A coverage of c = 3means the area has three wires covering

it resulting in two wires that do not contact one another but are separated by

another wire. The network displayed in Figure 3.6(a) has parameters;125 nw = 0.37

nanowires/µm2,D = 50 nm, and L = 6.7 µm. The probability of a coverage of c = 3

is calculated with equation 3.3.1 as P(3) ≈ 0.03%, a negligible amount. Therefore

this digital approximation works particularly well for relatively sparse networks in

which there are few wires piling up perpendicular to the NWN, in the Z direction.

Figure 3.6: (a) A SEM of a physical nanowire network that is roughly 20 × 20 µm
in size. Nanowires can be seen against the black background with elec-
trodes seen to the left and right sides of the network. (b) A representation
of the digitised NWN depicted in (a), the network has a wire density of
0.37 nanowires/µm2 and 440 junctions. Black dots mark the positions of
the inter-nanowire junctions and the blue vertical lines represent the elec-
trodes125.

The sheet resistance of the NWN in Figure 3.6(a) was measured experimentally

as REXPs = 42.9 Ω. By analysing the dependence of Rs on Rj for both MNR and

JDA simulations for the digitised network, one can identify a characteristic junc-

tion resistance that will lead to the observed experimental sheet resistance. Each

junction in the digitised NWN was assigned a resistance Rj, and wires in the MNR
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assigned the measured resistivity of ρ = 22.6 nΩm and diameter D = 50 nm for

Ag/PVP nanowires. Rs was calculated for both models and this process was re-

peated for many values of Rj, the results of which are plot in Figure 3.7. Also

shown in Figure 3.7 is the experimental sheet resistance REXPs , which is represented

by the horizontal dashed line. Where it intersects with the JDA sheet resistance

curve (RJDAs ) and the MNR sheet resistance curve (RMNRs ), provides two characteris-

tic junction resistances, RJDAj = 96.9 Ω and RMNRj = 52.9 Ω. The difference between

the characteristic junction resistances is sizable, ∆Rj = 44 Ω, illustrating the large

impact the nanowire resistance has on the sheet resistance of the network.

As seen in section 3.2, the two resistive curves offer much insight into the be-

haviour of the network. Recall that the equations for Rs in terms of Rj for both

models are

RJDAs = aRj

RMNRs = aRj + R0 (3.3.2)

where the fitting parameters are a = 0.44 and R0 = 16.2 Ω for the sample in Figure

3.6. Recall that the slope of the line a can be used to understand how current flows

through the NWN, either through a few or a large number of paths in the network.

In this case a = 0.44 leading to the conclusion that current flows through many

parallel paths, more paths than resistors in characteristic paths between electrodes.

The experimental sheet resistance for thirty electrically stressed samples were

measured and their network geometry were digitised. Rs versus Rj curves were

generated for each of the digitised network geometries in the same manner as in

Figure 3.7. The linear equations for Rs outlined in equation 3.3.2 were applied to

each digitised network and their characteristic junction resistances were obtained

as well as the slope a and R0. These values are listed for each sample in Table

A.1 in Appendix A. Note that the junction resistances appear in the range 2.2 6

RMNRj 6 152 Ω and RJDAj in the range 42.3 6 RMNRj 6 186 Ω, once again showing
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Figure 3.7: The relationship between the sheet resistance of the digitised network in
Figure 3.6(a) using MNR and JDA models with increasing junction resis-
tance (Rj). One finds RMNRs = aRj + R0 and RJDAs = aRj where a = 0.44
and R0 = 16.2 Ω from regression analysis. The horizontal line repre-
sents the sheet resistance that was experimentally measured for this sample,
42.9 Ω. The value for Rj required for the MNR and JDA to obtain a sheet
resistance corresponding to that measured in experiment are identified as
RMNRj = 52.9 Ω and RJDAj = 96.9 Ω.

the sizable impact that the inclusion of inner-wire resistances takes on a network

system. The characteristic junction resistances obtained by the MNR simulations

are taken to be a more accurate estimate for the junction resistances of Ag/PVP

nanowire junctions.

The calculation of the characteristic junction resistance assumes that the resis-

tances in the network are identical which is not the case in reality. The resistances of

several individual Ag/PVP nanowire junctions that had been electrically stressed

or thermally annealed were measured (REXPj ) by Bellew et al124. The nanowires

that were examined be Bellew et al were obtained from the same batch of Ag/PVP
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nanowires used for the experimental samples listed in table A.1, and so are directly

comparable124. The distribution of recorded resistances is shown in Figure 3.8 as

the green dotted bars124. The majority of junctions were found to have resistances

less than 70 Ω, however there were two junctions whose resistance were very high

with values in the range 200− 300 Ω. These two measurements represent 6.25% of

the measured junction resistances. There is a clear spike in frequency of junction re-

sistances in the range 10− 20 Ω and the median junction resistance of 11 Ω occurs

in this bin. Measurements of individual annealed Ag nanowire junctions by Selzer

et al were reported as 25.2± 1.9 Ω146, which is of the same order of magnitude as

Bellew et al’s measurements124.

Figure 3.8 also shows the distribution of the characteristic junction resistances

from the MNR model (RMNRj ) for the experimental samples and are represented

by orange solid bars. The distribution of RMNRj has a mean value of 44.9 Ω and

median value of 38.4 Ω, which is visibly higher than the distribution of REXPj for

individual junctions. While it is higher than the measured results, it does show that

the characteristic junction resistance is of the correct order of magnitude of tens of

Ohms. The inclusion of nanowire resistance in the simulations results in a more

accurate characteristic junction resistance; recall that the MNR resistances values

are always smaller than those found with JDA. Again it should be stressed that the

transport regimes of a single junction and a network of junctions are very different,

and the random connectivity profile of the network will have an impact on the

calculation of RMNRj , meaning that it should be viewed as an estimate only. Both the

experimental NWN and simulations have reduced connectivity at their boundaries

as discussed in section 2.5. The reduced connectivity affects the resistive properties

of the network and contributes to the overestimation of RMNRj .

The contribution of the sheet resistance due to that of the nanowire sections is

captured by the quantity R0, and it represents the ultimate conductivity of a net-

work, where all of the junctions have been annealed to a perfectly conductive state.

R0 is listed for each of the thirty samples in Table A.1, where each network has
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EXP

MNR

Figure 3.8: The distribution of resistances measured for thirty two individual nanowire
junctions are shown by the green dotted bars124. There is a clear spike in
frequency at the median resistance of 11 Ω. The distribution of the char-
acteristic junction resistances that were determined using MNR simulations
are shown as thin solid orange bars. The average resistance is 44.9 Ω and the
median value is 38.4 Ω, of the same order of magnitude as that measured
experimentally. The bin sizes are of size 10 Ω for both distributions.

a contribution in the range of 8.9 Ω 6 R0 6 92.1 Ω. To quantify the potential

for junction annealing in a network, a dimensionless optimisation-capacity coeffi-

cient (γ) was introduced125 that illustrates how close a network is to its ultimately

conductive state,

γ = 1−
R0
REXPs

(3.3.3)

where γ varies between zero and one. Values of γ close to one indicate the con-

ductance of the network can be considerably improved by altering the values of Rj.

When γ is nearer to zero, the network is near its optimum conductivity, i.e. the

skeletal nanowire resistance R0, as all of the junctions in the network have been an-
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nealed into a perfectly conductive state. This metric provides fabricators of NWNs

with an idea of the potential improvement possible in a particular network.

Table A.1 in Appendix A contains the wire density, sheet resistance and other

parameters for all thirty of the processed experimental samples. In this table, the

outcomes of the digitisation techniques on the analysis of network properties are

collected in one database. Looking at the optimisation-capacity coefficient in par-

ticular, no obvious correlation exists between γ and nw, R0, or Rexps . This suggests

that each of the networks had their junctions improved in a consistent manner, i.e.

annealing was not more effective for sparse networks. However a relationship be-

tween γ and RMNRj is expected as it is an estimate to the junction resistances in the

network. Thus γ increases with increasing characteristic junction resistance which

is shown in Figure 3.9.

MNR

Figure 3.9: The optimisation-capacity coefficient (γ) versus the MNR characteristic junc-
tion resistances (RMNRj ) for the thirty experimental NWN samples shown
in Table A.1 in Appendix A125.
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The importance of including nanowire inner resistances in comparisons between

computational simulations and experimental measurements was demonstrated in

this section through the MNR model. Not only does the MNR model more accu-

rately estimate the resistance of electrically stressed junctions, it also identifies the

ultimate conductivity of a network, that which is limited by the skeletal nanowire

resistance. The simulation results, unique to each experimental sample presented

in this chapter, are numerical and take a great deal of sample processing to ob-

tain. In the following chapter, an analytical approximation using methods outlined

in chapter 2 for the sheet resistance in terms of the fundamental properties is pre-

sented, which provides a quick and mathematically transparent method to estimate

various properties of a network.

3.4 impact of junction resistance disorder

Until now, the main source of randomness in a NWN has been the spatial orienta-

tions of nanowires and the resulting connectivity profile of the network. However,

randomness can also arise in the parameters of the nanowires themselves such

as the diameter and resistivity125. In the previous section, we showed that the

resistance of individual annealed junctions took on many different values in the

distribution presented in Figure 3.8, showing that junction resistances are another

source of disorder. In this section, we will examine the effect that fluctuations

in junction resistances can have on the macroscale NWN resistance. Junction re-

sistance distributions are determined by a normal distribution that is confined to

the range [0,∞) with a standard deviation σ and a fixed mean value < Rj > in

simulations. The truncation is applied to the distribution to remove any negative

resistances from simulations. The average of an ensemble of thirty sets of junction

resistance distributions on an identical network geometry were used to calculate

an average sheet resistance and confidence interval for each < Rj > and σ values.
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The network geometry used in these simulations is that of sample #1 from Table

A.1, and it has an experimental sheet resistance of REXPs = 84.4 Ω.

Figure 3.10 presents the results of the simulations, the top panels are the average

sheet resistances Rs for a given < Rj > with three different standard deviations,

σ = 0 (black line), σ = 20 Ω (blue dashed curve), and σ = 40 Ω (green curve).

Panel (a) corresponds to the JDA mapping and panel (b) to the MNR mapping

for simulations. An interesting behaviour is seen for the normal distributions with

σ 6= 0, the relationship between Rs and < Rj > are not linear as is the case for

σ = 0. For small < Rj >, the networks with junction resistance dispersion are much

higher in resistance than the σ = 0 case, but the distributions eventually begin to

converge with the linear trend of σ = 0 for high < Rj > values. This is due to the

removal of negative resistances from the junction distributions, i.e. the asymmetry

of the distribution being relatively greater for small values of < Rj >. Similarly, the

broadness of the distributions are very large at these low junction resistances, the

coefficient of variation, i.e. Rj/σ > 100%.

The bottom panels of Figure 3.10 quantifies the disagreement of Rs for the homo-

geneous and dispersed junction resistance distributions. The relative sheet resis-

tance difference for the two curves representing dispersed distributions are shown

for the JDA model in panel (c), and for the MNR model in panel (d). The relative

difference was calculated by subtracting the curves with and without dispersion,

∆Rs = |Rs(σ) − Rs(σ = 0)|, and dividing by Rs(σ). The σ = 40 Ω simulations dis-

play a higher difference than σ = 20 Ω but both reach similar low values for large

values of < Rj >. The spread in junction resistances alters the value of the char-

acteristic junction resistance RMNRj , the value of < Rj > that gives a simulated Rs

matching with REXPs = 84.4 Ω that was measured experimentally for this particular

network geometry125. The effect of junction resistance dispersion does not have a

large impact in the value of RJDAj ; the three simulation curves agree closely at this

point in Figure 3.10(a). The dispersion does play a large role in MNR estimates of

the characteristic junction resistance however. In Figure 3.10(b), the intersection of
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Figure 3.10: The result of including junction resistance dispersion on the calculated
sheet resistance Rs for increasing mean junction resistance < Rj > for the
JDA model in panel (a) and the MNR model in (b). The digitised geometry
of network sample #1 from Table A.1 is used for each simulation reported
here and REXPs = 84.4 Ω is displayed by the red dashed line in panels (a)
and (b). The junction resistances follow a normal distribution confined to
the range [0,∞) and two standard deviations are shown, σ = 20 Ω (green
curve) and σ = 40 Ω (blue dashed curve). The linear relationships between
Rs and < Rj> for homogeneous resistance distribution, σ = 0, are shown
in black. Only error bars for σ = 40 Ω are shown for ease of viewing.
The relative difference between the mean value of Rs for the distribution
of Rj and the homogeneous simulations are shown in the bottom panels,
(c) corresponding to the JDA and (d) to the MNR125.

the σ = 40 Ω curve, or RMNRj (σ = 40), occurs in the range of 0− 10 Ω compared

with RMNRj (σ = 0) = 27.7 Ω. This demonstrates the impact resistance difference

can have on the sheet resistance of a NWN, the resistance dispersion can lead to a

much lower RMNRj according to the degree of this dispersion. Comparing panels (c)

and (d), one sees that |∆Rs|/Rs drops continuously until it reaches Rj ≈ σ for both

curves in both panels. This is again a manifestation of the asymmetry of the junc-
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tion resistance distributions for coefficients of variation greater than 100%. Note

that the relative difference is much lower for the MNR simulations, this is due to

a larger sheet resistance as a result of the inclusion of inner-wire resistance. There-

fore there is less of a relative difference in sheet resistance due to broad junction

resistance distributions.

It should be noted that here only the junction resistance had a degree of dis-

persion but it has been demonstrated that Ag/PVP nanowires display a certain

variation in wire diameter and resistivity also125. As NWNs are comprised of

many individual components, care must be taken to account for the variability of

different properties of the ensemble of nanowires that collectively form the net-

work. In chapter 4, an approximation for the effective medium lattice of a NWN is

introduced, which can be used to quickly estimate the effect of introducing more

complex resistance distributions on a NWN.

3.5 chapter summary

The importance of including the contribution of nanowire inner resistance when

calculating that of a nanowire network was highlighted in this chapter. Not only

did the inclusion of inner-wire resistances change the dependence of the network

on certain fundamental network properties, it determined the ultimate conductivity

of a network with perfectly annealed junctions.

The electrical properties of NWNs can be calculated by mapping the NWN onto

a node-voltage lattice, the electrical properties of which can be numerically solved

using Ohm’s and Kirchhoff’s laws, as discussed in chapter 2. Two node-voltage

mappings were introduced in section 3.1, the Junction Dominated Approach (JDA)

and the Multi-Nodal Representation (MNR). The JDA model assumes that the elec-

trical properties of the network are dominated by the junction resistances and so

the nanowire resistances are ignored while the MNR model includes them.
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The dependence of the sheet resistance (Rs) on various network parameters were

studied in section 3.2 and there the effect of including the inner-wire resistance on

those dependencies were examined. In the MNR model, wire resistivity (ρ) and

wire diameter (D) were shown to relate to the sheet resistance as Rs = CρD−2+aRj

where C is a constant and aRj is the contribution of the junction resistances for a

homogeneous distribution of Rj’s. A linear relationship between sheet resistance

and junction resistance (Rj) was shown to hold mathematically and in simulations

for JDA models of NWNs such that RJDAs = aRj. The same linear relationship

was shown in simulations of MNR models of NWNs plus a contribution from

the nanowire resistance, RMNRs = aRj + R0. Since networks with the same wire

density can have different connectivity profiles, the need for spatial configurational

averaging arose. A large number of simulations altering the wire density were

performed and the corresponding average sheet resistances were plot for MNR

and JDA. A power law relationship between sheet resistance and wire density was

observed, as one would expect from percolation theory. The inclusion of nanowire

resistance was shown to alter the value of the exponent in the percolative power

laws.

A method to capture the geometrical layout of a physical NWN sample from an

SEM image was presented in section 3.3 which allows for simulations on geome-

tries similar to the experimental samples. Thirty samples whose sheet resistance

had been measured were digitised and they were used to understand the nature

of current flow and junction resistances in real NWN samples. Linear expressions

relating the sheet and junction resistances were found for each sample using MNR

and JDA simulations. These were used to determine a characteristic junction re-

sistance, the value at which the simulated Rs matches the experimental REXPs . The

characteristic junction resistance was found to be lower for MNR model than the

JDA model which can be explained with the sizable impact of nanowire inner re-

sistances on networks. The distribution of MNR characteristic junction resistances

was compared with a distribution of single Ag/PVP junction resistances measured
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experimentally by Bellew et al124. The simulated characteristic resistances overesti-

mated the measured junction resistances, but were found to be of the same order

of magnitude of tens of Ohms. Characteristic junction resistances calculated with

the MNR model which were more realistic than those from the JDA model further

highlighting the need for nanowire resistances to describe metallic NWNs.

The ultimate conductivity of a network was shown to be limited by the contribu-

tion of the nanowire resistances in section 3.3. A measure of how much potential

for conductivity improvement was introduced with the optimisation-capacity co-

efficient (γ). This quantity was calculated for all thirty experimental samples. γ

was shown to depend on the characteristic junction resistance, where NWNs with

higher sheet resistances had higher values of γ, meaning that there was much

room for improvement to their conduction characteristics if somehow Rj could be

decreased.

The impact junction resistance dispersion can have on the sheet resistance of a

NWN was demonstrated in section 3.4. Here it was shown that dispersion can

break the linear relationship between Rs and Rj demonstrated in section 3.2. A digi-

tised network geometry was used to show that the non-linear relationship between

Rs and < Rj > for dispersed junction distributions can shift the characteristic junc-

tion resistance to lower values compared to estimates obtained with homogeneous

simulations.





4
E F F E C T I V E M E D I U M T H E O RY F O R N A N O W I R E N E T W O R K S

A difficulty with NWN adaptability for use in devices at an industrial scale is

their random nature. The random connectivity profile, and varying junction resis-

tances and wire resistivity all conspire to make the fabrication of a NWN with a

desired sheet resistance difficult. Two NWNs comprised of identical wires and of

similar wire densities can have wildly different electrical properties due to the in-

herent network disorder, frustrating reproducibility in experiments. In simulations,

this disorder has two sources: the randomness with which wires are spatially dis-

tributed137,139 and the inherent fluctuations on the characteristics of the individual

wires. This calls for averaging strategies that reduce the impact of these fluctua-

tions in any calculations, requiring a large amount of computational resources to

determine the average sheet resistance for fixed nanowire properties, as was seen

in chapter 3. With that in mind, a novel method that processes Scanning Elec-

tron Microscope (SEM) images of NWNs and captures the precise locations of all

wires of a given sample was presented in chapter 3. An example of an SEM im-

age is presented in Figure 4.1(a), and its digitised form is shown in Figure 4.1(b).

This establishes a benchmark connectivity the NWN possesses and removes the

need for averaging over the wire locations, consequently reducing the fluctuations

induced by spatial disorder. A matching connectivity profile for experiment and

simulations allows for an extraordinary level of simplification in simulation and ex-

periment comparisons. A further simplification can be made through a theoretical

description of the electrical properties of a network giving a method to quickly esti-

87
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mate the characteristics of a real NWN sample. In this chapter, such an expression

is succesfully derived for a NWN by developing a mapping to an effective medium

lattice whose sheet resistance can be calculated with a closed-form expression35.

Contemporary theoretical descriptions of real-world NWNs in which their phys-

ical characteristics are accounted for is typically done by means of robust Monte-

Carlo procedures used to determine universal behaviours of simplified computer-

generated NWNs77,79,80,145,147,148. However, a method to obtain a closed-form ana-

lytical expression for the conductance of infinite ordered homogeneous networks

is known76, and was discussed in chapter 2. Whether this method can be of use

to describe heavily disordered structures, is the strategy adopted in this chapter.

By mapping the disordered structures onto a corresponding effective square lattice

that was discussed in chapter 2 for instance, we can obtain the sheet resistance of a

NWN with an arbitrarily large density of wires. Note that according to the MNR

model that was introduced in the previous chapter, each node has a degree of 3, i.e.

has 3 nearest neighbours. This is different to a square lattice which has a degree

of 4, however a square lattice mapping is shown to accurately capture the resistive

properties of a NWN in section 4.1. In fact, the effective medium theory is used

to identify an appropriate mapping between a disordered nanowire network onto

an ordered lattice and here a square lattice is used for simplicity. The mapping

is visualised in Figure 4.1 where the resistive network graph in panel (c) will be

discussed as an effective square lattice shown in panel (d). Further manipulation

of these representations enables us to describe the conductivity of these films un-

der real experimental conditions. In fact, we show that dense networks composed

of nanowires of non-uniform lengths and diameters contacted by finite-sized elec-

trodes can be described by this approach35.

The sequence of this chapter is as follows. In section 4.1, the equivalent resistance

between two nanowire junctions in a random NWN is shown to behave in a similar

manner to the equivalent inter-nodal resistance in an infinite square lattice that was

discussed in chapter 2, suggesting that a mapping between the two systems can be
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Figure 4.1: (a) SEM micrograph image of a Ag/PVP NWN with hundreds of wires
randomly distributed on top of an insulating substrate. Two electrodes on
both sides of the sample, shown as vertical gray bars, are connected by nu-
merous paths formed by the wires. (b) After the image is processed, the
digitized version of the image records each wire location and provides full
information about the intersection points of each wire125. (c) A mathemat-
ical graph of a digitised network such as that in panel (b) showing voltage
nodes as points and connecting resistors as edges. (d) The simplified graph
of a square lattice representing a regular ordered network35.



90 effective medium theory for nanowire networks

established. An Effective Medium Theory (EMT) is introduced for regular lattices,

and is then used to determine this mapping between a square lattice and a random

NWN in terms of the underlying properties of the constituent nanowires in section

4.2. This is the first reported use of an effective medium theory to calculate the

electrical properties of NWNs. The resistance for a multi-input/output electrode

system is discussed, in particular for a system where the electrodes span opposite

sides of a finite square lattice in section 4.3. By combining the effective lattice

mapping for a NWN with the multi-electrode resistance expression, a closed-form

expression is successfully derived for the resistive properties of a NWN based on

all of the relevant nanowire properties. This expression is then used to determine

various parameters and properties of NWNs that were discussed in chapter 3; this

is presented in section 4.4. Finally a chapter summary is presented in section 4.5.

4.1 inter-nodal resistance in a nanowire

network

In chapter 2, an expression for the equivalent resistance between two nodes in an

infinite resistor lattice was derived using the Green’s function method76. An ap-

proximation to the Green’s function was derived and shown to be highly accurate

for increasing separation between nodes in the lattice. Where two nodes are sep-

arated by the lattice vector ~r, the approximation for the inter-nodal resistance is76

Req(~r) ≈
R

π

(
ln(|~r|) + γ+

ln(8)
2

)
(4.1.1)

where R is the resistance of each edge in the lattice and γ = 0.5772... is the Euler-

Mascheroni constant. Equation 4.1.1 was shown to match the equivalent resistance

calculated numerically for a finite square resistive lattice using Kirchhoff’s and
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Ohm’s laws in chapter 2. With an understanding of the electrical properties of

inter-nodal currents in ordered resistive networks, the question arises if current

flow in NWNs behaves in a similar manner. In Figure 4.2, a sketch of several

nanowires is shown with two electrode nodes represented by red dots. For an accu-

rate comparison with a resistive lattice, the distance metric used will be the nodal

distance, or the number of resistors in the shortest path between two electrodes.

Figure 4.2 is a sketch of a NWN where the shortest nodal path between the two

electrodes is depicted with blue arrows. The path contains three wire segments

and one inter-wire junction making the nodal separation equal to four.

Figure 4.2: A sketch of a NWN with nanowires represented as grey cylinders, and
the source and drain electrodes as red circles. The shortest path between
electrodes is traced with the blue arrows through a single nanowire junction
represented as a black circle and three wire segments, making the nodal
separation between the electrodes equals four.

A large NWN with a wire density of 0.4 nanowires/µm2 with no bounding

electrodes was simulated to calculate the relationship between Req and the nodal

separation for an ensemble of pairs of nodes, using the MNR node-voltage map-

ping to include inner-wire resistances. The simulated nanowires were all of length

L = 7 µm, junction resistance Rj = 11 Ω, wire resistivity ρ = 22.6 nΩm, and wire

diameter D = 60 nm. The average inter-nodal resistance for a given nodal separa-
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tion is shown in Figure 4.3. Immediately one identifies that the resistance between

nearest neighbours is relatively large and uncertain. This large uncertainty is due

to the nearest neighbour being either a junction or an inner-wire segment which

itself has a broad distribution as it depends on the length of that wire segment.

The uncertainty decreases for increasing nodal-separation due to the fluctuations

of inner-wire resistance values and junction resistances being averaged over. At

larger separations, the uncertainty grows once again. This is likely due to finite

sized effects as one or both of the nodes begin to reach the edge of the network.

There is an unmistakable trend between Req and the node separation which ap-

pears log-like but the large error bars in the data points might obscure this. The

green line in Figure 4.3 corresponds to a fit of equation 4.1.1, where the effective

resistance was the fitting parameter and found to be R = 6.09 Ω. This suggests

that the inter-nodal resistance in a random NWN can be approximated using an

expression derived for a regular square lattice, requiring only an appropriate effec-

tive resistance that represents both the wire segment and junction resistances. A

method to calculate an effective resistance is outlined in the following section.

4.2 effective medium theory of a nanowire

network

In chapter 2, the Effective Medium Theory (EMT) for conduction in resistive lat-

tices135 was introduced where a network whose conductor values g follow some

distribution f(g) and can be mapped onto a homogeneous network that has the

same average properties. The effective resistance is calculated such that the av-

erage resistive properties of the homogeneous and inhomogeneous networks are

the same. An effective medium theory requires an understanding of the resistor

distribution f(g), both the resistance values and relative proportions of each. With

several assumptions, patterns can be identified in the types of resistors that make
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Figure 4.3: The inter-nodal resistance (Req) for a given nodal separation in a random
NWN with a wire density 0.4 nanowires/µm2 and wire length 7 µm. The
resistance between nodes is calculated using the MNR model which was
described in chapter 3, thus including the effect of inner-wire resistance.
The red points correspond to the average Req for a given node separation
and the error bars are 95% confidence intervals. The green line is the fitting
of equation 4.1.1 where R = 6.09 Ω is the fitting parameter.

up a NWN. In this section, the different types of resistors in a NWN are established

and analytical expressions to calculate their relative populations are derived.

In the MNR voltage mapping each node has three edges connected to it, one

junction resistor and, either two inner-wire segments or a single wire segment and

a ‘dead-end’35. Dead-ends occur at either end of a nanowire (two per nanowire),

and are represented by an infinite resistance connection Rd → ∞. Mathematically,

the number of dead-ends in a network is Nd = 2Nw, Nw being the total number

of nanowires. The number of junction resistors is Nj and each of their values will

follow some junction resistance distribution σj(Rj). Finally there are current carry-

ing inner-wire segments whose relative fractions can be derived with the following
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logic: consider a network with no inter-wire junctions; the number of wire seg-

ments is clearly the number of wires in the network. For every inter-wire junction

that is added to the network, two wire segments are formed (one on each wire).

Thus the total number of wire segments Ns is

Ns = Nw + 2Nj (4.2.1)

This expression for the number of segments includes dead-ends, and so the number

of current-carrying wire segments is

Ncc = Ns −Nd = 2Nj −Nw (4.2.2)

Figure 4.4 presents a sketch of a simple NWN that identifies the different types of

resistors. In this network, Nw = 5 and Nj = 5, and so there are Nd = 10 dead-

ends which are coloured in blue and there are Ncc = 5 current carrying segments

coloured in red.

Figure 4.4: A sketch of the different types of resistors in a NWN, where each is high-
lighted. In this network, there are five wires (Nw = 5) and the five
junctions (Nj = 5) depicted by black circles. There are ten dead-ends
(Nd = 10) and these are depicted by blue segments. There are five current-
carrying segments, Ncc = 2Nj − Nw, shown in red. In total there are
Nt = Nj +Nd +Ncc = 20 resistors in this network.
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The total number of conductors Nt is the sum of inter-wire junctions Nj and wire

segments including dead-ends as

Nt = Nj +Ncc +Nd = 3Nj +Nw (4.2.3)

The relative fractions of each type of resistor is thus

Pj =
Nj

3Nj +Nw

Pcc =
2Nj −Nw

3Nj +Nw

Pd =
2Nw

3Nj +Nw
(4.2.4)

where Pj is the fraction of junction resistors, Pcc the fraction of current carrying wire

segments, and Pd the fraction of dead-ends. These relative populations can be easily

translated into expressions in terms of junction and wire densities by dividing both

numerator and denominator by the area of the network. In chapter 2, an expression

relating the junction density with the wire density of a nanowire network with

wires of length L was derived as35,137,139 nj = ωL2n2w where ω = π−1 ≈ 0.318.

Following this expression the relative fractions in terms of wire densities and their

lengths are given by

Pj =
ωL2nw

3ωL2nw + 1

Pcc =
2ωL2nw − 1

3ωL2nw + 1

Pd =
2

3ωL2nw + 1
(4.2.5)

Recall that that the number of junctions in the network is constant once nwL is

fixed. However, a change in wire density results in a change in the total number

of wire segments and so alters all of the relative fractions. The relative fractions

in equations 4.2.5 remain constant once L2nw remains fixed, or in other-words, the

number of junctions per wire
(
nj
nw

)
remains constant.
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Equations 4.2.5 allow one to calculate the population of each type of resistor in

a NWN knowing only the total number of wires and their length. This is a more

desirable form for the relative fractions of populations as it does not require one

to explicitly count the number of junctions in a NWN. The nanowire density and

typical wire lengths are predefined parameters in typical Monte Carlo simulations

and are straightforward to measure in physical NWN samples.

Figure 4.5: A plot of the relative fractions of the different types of resistors in a NWN
as a function of wire density for a NWN with wire lengths of 7µm. The
red curve is the fraction of current-carrying wire segments Pcc, the black
curve is the fraction of junctions Pj and the green curve is the fraction of
dead ends Pd. The vertical purple dashed line is the percolative critical
wire density (nw)c at which a percolative path occurs in 50% of randomly
generated networks with this density79.

Figure 4.5 presents a visualisation of these relative fractions as a function of wire

density for a NWN with nanowires of length 7 µm. Note that as the wire density

tends to infinity, the fraction of dead-ends tends to zero, while the number of

junctions tends to 1/3 and the number of current-carrying segments tends to 2/3.



4.2 effective medium theory of a nanowire network 97

As mentioned previously, each node in MNR has three nearest neighbours and is

connected to a junction resistance and either two-current carrying wire segments or

one current-carrying wire segment and a dead end. As the number of wires tends

to infinity, the fraction of dead-ends drops to zero and so the fractions tend to the

1/3 junctions and 2/3 current-carrying segment fractions. On the other extreme,

a critical wire density of sorts can be identified at which the fraction of current-

carrying segments is zero according to the definition of Pcc in equation 4.2.5.

(nw)0 =
1

2ωL2
(4.2.6)

For wire lengths of L = 7 µm, this gives (nw)0 ≈ 0.035 nanowires/µm2. At this

value there are only dead-ends and wire junctions which does not result in a con-

ductive network as there are no conducting wire segments through which current

can flow, i.e. (nw)0 corresponds to 1 junction per nanowire, nj
nw

= 1. (nw)0 is

the minimum wire density that is considered in Figure 4.5 as below this density

Pcc < 0.

The population of each type of resistor is only one of the components to the full

conductance distribution f(g). One also requires the distribution in conductance

values of each type of resistor. Recall from chapter 2 that the effective conductance

gm is calculated using the following equation135

∫
gm − g

g+ (z/2)gm
f(g) dg = 0 (4.2.7)

where z is the degree of each node in the lattice. In general, the distribution for

NWNs to be used in equation 4.2.7 is:

f(g) = Pccσcc(g) + Pjσj(g) + Pdδ(g) (4.2.8)

where σcc(g) is the distribution of inner-wire conductances, σj(g) is the distribution

of junction conductances, and since all dead-ends have a conductance g = 0, its
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distribution is characterised by the Dirac delta function δ(g). While the populations

of each type of resistor have been given in equation 4.2.5, the distributions to be

used for the junction and inner-wire resistances have not. The junction resistances

in Monte Carlo simulations are usually fixed to some homogeneous value gj and

so σj(g) = δ(g− gj). The conductance of a current carrying inner-wire segment

is given by gcc = Ac
ρ` where ρ is the resistivity, Ac the cross sectional area, and

` the length of the wire segment. The inner-wire conductance distribution will

be approximated by the average length of a wire segment l̃s, and is calculated by

dividing the total length of all the wires by the number of wire segments in the

network.

l̃s =
LNw

Ns
=

LNw

Nw + 2Nj
(4.2.9)

where L is the length of each wire. It follows then that the characteristic inner-

wire conductance is gcc = Ac/ρl̃s making the conductance distribution σcc(g) =

δ(g− gcc). Equation 4.2.8 simplifies to

f(g) = Pccδ(g− gcc) + Pjδ(g− gj) + Pdδ(g) (4.2.10)

This approximation of the conductance distribution in NWNs can now be used to

solve for the effective conductance of an ordered square lattice. Solving equation

4.2.7 for a square lattice (degree z = 4) and with the distribution given in equation

4.2.10 the effective conductance is given by35

gm =
gcc(Nj − 3Nw) − gj(Nj +Nw)

6Nj +Nw
+

1

6Nj +Nw
×

×
(
12gccgj(Nj −Nw)(3Nj +Nw) + (gcc(Nj − 3Nw) − gj(Nj +Nw))

2
)1/2
(4.2.11)
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Rewriting the number of junctions in terms of the wire density using the relation-

ship nj = ωL2n2w, the effective conductance can be written as35

gm =
gcc(ωL

2nw−3)−gj(1+ωL
2nw)

2+6ωL2n2w
+ 1
2+6ωL2nw

(
12gccgj(ωL

2nw − 1)(1+ 3ωL2nw) +

+(3gcc + gj +ω(gj − gcc)L
2nw)

2
)1/2

(4.2.12)

Recalling the definition of the characteristic inner-wire resistance, equation 4.2.12 is

an expression in terms of the wire length, density, diameter, resistivity, and junction

resistance which are all predefined parameters of a NWN. This means simulations

are not required to calculate the parameters for the effective conductance.

Revisiting the inter-nodal resistance for a NWN shown in Figure 4.3, the effective

resistance calculated using equation 4.2.12 and parameters matching those of the

simulated network is REMT = 6.01 Ω. Recall that in Figure 4.3, equation 4.1.1 was

fit to the simulation data with the resistance R as the only fitting parameter result-

ing in Rfit = 6.09 Ω. Figure 4.6 presents the data shown in Figure 4.3 alongside

the approximation to the lattice Green’s function given by equation 4.1.1 with the

effective resistance found through regression as the green line, and the effective

resistance calculated using equation 4.2.12 is the blue dashed line. It should be reit-

erated here that no fitting parameter was used in calculating REMT . The agreement

between Rfit and REMT is remarkably close considering that mapping the NWN

onto an effective medium square lattice involved several assumptions in creating

the resistance distributions that represent the disordered nature of the network in

an effective way.
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Figure 4.6: Data points correspond to the inter-nodal resistance that was shown in
Figure 4.3. The green solid line was obtained by fitting equation 4.1.1 to
the data with the resistance R the only fitting parameter which was calcu-
lated as Rfit ≈ 6.09Ω. The blue dashed line represents equation 4.1.1 with
R = REMT = 6.01Ω calculated using equation 4.2.12.

4.3 inter-electrode resistance in a nanowire

network

In the previous section, the inter-nodal resistance in a NWN was successfully cal-

culated by mapping its resistive properties onto an effective medium square lattice.

As seen in Figure 4.1(a), NWNs are usually fabricated with bounding electrodes on

two opposite sides in order to measure the sheet resistance. For a particular NWN,

let H be the height of the electrodes and let W be the separation between the

electrodes. In this section the mapping between NWNs and the effective medium

square lattice is extended to take into account the bounding electrodes such as
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those represented as red vertical lines in the sketch of a NWN in Figure 4.7(a). The

first step for this is to calculate the resistance of a finite homogeneous square lat-

tice that is bounded on either end by an electrode, such as the system sketched in

Figure 4.7(b), where the electrodes are represented Ny = 7 nodes (black square)

separated by Nx = 13 resistor edges. Electrodes are at equipotential and so in a

homogeneous network, by symmetry, each column of nodes are also at equipoten-

tial which varies as one moves from left to right. In this scenario, no current flows

between nodes in the same column due to there being no difference in potential

and so the square lattice can be viewed as Ny parallel paths each containing Nx

resistors in series. The inter-electrode resistance Re is then given by

Re = R
Nx

Ny
(4.3.1)

where R is the resistance of each network edge. Equation 4.3.1 can also be deter-

mined by generalising the Green’s function method outlined in chapter 2 to a finite

square lattice where two opposite network boundaries are completely spanned by

electrodes.

Figure 4.7(a) presents a sketch of a NWN where there are 7 nanowire intersec-

tions with the electrodes on each side and 13 total resistors (including both junction

and inner-wire resistors) in the shortest path between the electrodes. The shortest

paths between electrodes are determined by applying a path finding algorithm to

the graphical representation of the NWN149; it is the same method used in the pre-

vious section to calculate the nodal separation. Figure 4.7(b) is a mapping of the

NWN in panel (a) onto a square lattice that has the same graphical dimensions as

the NWN. In order to compare the mapping between a NWN and a square lattice

with extended electrodes, the dependence of Re on Nx was identified by simulating

a large NWN and calculating Re with electrodes placed at various Nx separations,

keeping the number of electrode intersections at Ny = 7. The relationship between

Re and the calculated nodal separation Nx is plot in Figure 4.7 (c) for the NWN

and its effective square network with a matching Nx and Ny. A clear linear rela-
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tionship exists for the effective medium square lattice which is represented by the

green triangles whereas Re fluctuates around the linear trend for the NWN. The ef-

fective medium square lattice approximates the simulated NWN very well. In this

example the quantities Nx and Ny were explicitly calculated for the NWN shown

in Figure 4.7(a), which is considered a relatively small network. This process can

become a quite intensive calculation process for large and dense networks. An

analytical method to calculate Nx and Ny would remove the necessity of simula-

tions by providing a complete description of NWN sheet resistance formulated in

a closed-form expression.

The number of parallel paths in the effective medium square lattice can be calcu-

lated using a variant of the geometric probability method used in the famous “Buf-

fon’s Needle” problem150. Consider an input electrode with Ny wire intersections,

each intersection opens the possibility of a parallel path between the electrodes. In

this approximation, we will take the number of electrode intersections as the num-

ber of parallel paths between electrodes. Consider a wire of length L, if the centre

point of the wire is a distance x < L
2 from an electrode, the wire will intersect the

electrode if the angle θ is in the range

0 6 θ 6 cos−1
(
2x

L

)
(4.3.2)

where θ is the angle the wire makes with the horizontal. A wire at a distance x

intersects the electrode with a probability 2
πθ. In order to obtain a probability that

a wire intersects a vertical electrode axis once its center is x 6 L
2 from the electrode,

we perform an integration over θ as

2

π

∫1
0
dθ cos−1(θ) =

2

π
(4.3.3)

We now consider how many wires lie in the range that they could potentially inter-

sect the electrode. If wires are distributed homogeneously with a density of nw and

over a vertical width range of H, the relevant area is HL/2 which contains HLnw/2
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Figure 4.7: (a) A simulated NWN with two separate finite-sized electrodes represented
by vertical red lines of length H and a separation of W. (b) Square lattice
with finite-sized electrodes represented as black squares and voltage nodes
are represented by red points. The square lattice is a mapping of the NWN
in panel (a), and has Nx = 13 and Ny = 7 nodes. (c) Equivalent resis-
tance as a function of Nx. Circular dots are the calculated results for the
disordered NWN whereas triangular dots correspond to the results of the
corresponding effective square lattice.

wires. Combining this with the probability of electrode intersection derived in

equation 4.3.3, the expected total number of intersections (Ny) can be written as

Ny =
LHnw

π
(4.3.4)
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Figure 4.8 compares equation 4.3.4 with computer simulations in which Ny was

counted for systems with various wire densities (panel (a)), and lengths (panel (b)).

In both cases, the analytical expression (blue dashed line) shows excellent agree-

ment with simulations but note that equation 4.3.4 overestimates Ny in each case,

particularly for sufficiently high wire densities and lengths. These discrepancies are

due to boundary effects; at the top and bottom parts of the NWN, the constraint

on wire positions increases making electrode intersections in these areas less likely.

At low wire lengths the reduced wire densities at the edges of the network do not

have as much an impact on Ny, hence the agreement between equation 4.3.4 and

simulation is improved.

Figure 4.8: (a) Dependence of Ny on wire densities in a NWN ensemble of size
20 × 20 µm determined using equation 4.3.4 (blue dashed line) and compu-
tational simulations (green data points). Here the wire length was fixed at 7

µm. (b) Dependence of Ny on the wire length in a NWN of size 20 × 20 µm
for equation 4.3.4 (blue dashed line) and simulations (red data points). Here
the wire density was fixed at 0.4 nanowires/µm2. The average of 20 ran-
domly generated NWNs was used in the simulations in both plots (data
points).
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The nodal separation between electrodes is more difficult to approximate. A use-

ful interpretation is to view a NWN as a small-world network151 on short length

scales and a regular network for larger length scales. A Watts-Strogatz (WS) net-

work is an example of a small-world network152. A WS network is created by

taking a regular lattice network where each node has z nearest neighbours. A per-

centage p of links are removed and are then used to connect random pairs of nodes

anywhere else in the network. We assume that NWNs of size L×L behave as small-

world networks, where L is the typical length of a nanowire. The rationale here is

that a current-carrying segment can act as a pathway for current flow and allow

current to move a large distance at a time whereas a junction resistor does not facil-

itate large distance movement, current moves from one wire to another. Therefore

the wire segments act as the random long range connections in a WS model but

only over distances less than the length of a wire. The optimal path between two

nodes in network is one that minimises the total weight. In this thesis, the weight

of a network represents the resistance values and as discussed in the previous sec-

tion; they follow the distribution f(g) in equation 4.2.8. Braunstein et al153 showed

that when weak disorder is introduced to the weight values of links, the length of

the optimal path in terms of the nodal separation (qopt) that minimises the total

weight of the path connecting two nodes scales as

qopt ∝
1

pz2
log(Npz) (4.3.5)

here N is the number of nodes in the network.

Equation 4.3.5 can be used to estimate the length of the optimal path between

electrodes in a NWN. In the MNR model, the number of nodes in an area L× L

in terms of wire density is 2njL2 or 2ωL4n2w using the relationship between wire

length and density outlined in chapter 2
35. Each node is connected to one junction

resistor, a wire segment and either another wire segment or a dead end making

the degree of each node z = 3. p is the fraction of current carrying intra-wire

segments in the network as they can connect two nodes that have a large separation.
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Therefore p = Pcc =
2Nj−Nw
3Nj+Nw

from equation 4.2.5. Subbing this into equation 4.3.5,

qopt scales as

qopt ∝
1

Pcc
log(6ωL4n2wPcc) (4.3.6)

Consider a network of size W×H, W >> L, L being the length of a nanowire, as

in Figure 4.7(a) and one of its nodes labeled A that lies on the electrode of the NWN.

The optimal path between node A and node B that are separated by a distance L is

qopt as defined above. Similarly the distance between node B and another node C

that are again separated by a distance L is qopt and so two electrodes separated by

a distance W is W
L qopt. Using equation 4.3.6, the number of resistors in the shortest

path connecting the two electrodes can be written as35

Nx =
W

L

κ

Pcc
log(6ωL4n2wPcc) (4.3.7)

where κ = 1.1 is a constant of proportionality. In Figure 4.9(a), the dependence of

Nx on the wire density is shown for NWNs of wire lengths 7 µm and a NWN size

of 20 × 20 µm. The results of the simulations are represented by the data points

and equation 4.3.7 by the blue curve. The theoretical curve gives a reasonable

approximation to the nodal separation between electrodes, however it does under-

estimate the path length at low densities. In Figure 4.9(b), the nodal separation for

given wire lengths in a network is presented. Here, simulated NWNs were of size

30 × 30 µm and the wire density was set to 0.4 nanowires/µm2. The results of

the simulations are represented as green data points. Equation 4.3.7 is plot as the

blue curve and again gives a reasonable estimate for Nx. However, a more accurate

expression for Nx is desirable and should be a focus of future additions to the EMT.

Combining the many separate parts derived in this chapter, the formula to de-

scribe the inter-electrode resistance of a NWN by means of an effective square

lattice of electrode height H, electrode separation W, and effective conductance gm

is calculated using the following equations
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a) b)

Figure 4.9: (a) The nodal distance between electrodes Nx is plot versus wire density for
a sample of size 20 × 20 µm and wire lengths of 7 µm. 20 simulations of
random NWNs for a given density are performed for each data point and
are represented by red data points. The blue curve is equation 4.3.7. (b) Nx
versus wire length L for a sample of size 30 × 30 µm and a wire density
of 0.5 nanowires/µm2. The blue curve represents equation 4.3.7. In both
plots, the error bars refer to the 95% confidence intervals.

Re =Rm
Nx

Ny
=

1

gm

Nx

Ny

Ny =
LHnw

π

Nx =
W

L

κ

Pi
log(6ωL4n2wPi)

Pcc =
2ωL2n2w −nw
3ωL2n2w +nw

l̃s =
Lnw

2ωL2n2w +nw

gcc =
Ac

ρl̃s

gm =
gcc(ωL

2nw − 3) − gj(1+ωL
2nw)

2+ 6ωL2n2w
+

1

2+ 6ωL2nw
×

×
(
12gccgj(ωL

2nw − 1)(1+ 3ωL2nw) + (3gcc + gj +ω(gj − gcc)L
2nw)

2
)1
2

(4.3.8)
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Here the parameters needed to calculate the sheet resistance are: the wire density

nw, wire length L, NWN device height H, electrode separation W, the junction con-

ductance gj, the wire resistivity ρ, and cross sectional area Ac. While at face value

the expressions in equation 4.3.8 seems to have many complex constituents, they

all are calculated from the fundamental parameters of the NWN. These expressions

allow for the approximation of several measurable quantities in a NWN all without

the need of additional simulations or image processing techniques.

4.4 application of the effective square

lattice

In this section, the effective square lattice will be used to estimate the sheet re-

sistance of a network using known nanowire properties, and is compared with

Monte Carlo simulations. Equations 4.3.8 are used to calculate the sheet resis-

tance of an effective ordered lattice that incorporates the same characteristics of a

random nanowire network, and while they are relatively complicated they can be

easily coded in an interpreted programming language platform which can perform

calculations instantaneously. This method allows for a quick examination on the

necessary nanowire properties required for a desired sheet resistance. Furthermore,

network parameters as discussed in chapter 3 such as the ultimate conductivity of

a network or the network optimisation coefficient can be estimated very quickly

with equations 4.3.8. In Figure 4.10, the sheet resistance of an effective square

lattice calculated with equations 4.3.8 and is plotted against the wire density of

a NWN. This is compared with the average results of an ensemble of simulated

NWNs. Green data points are the average conductance of 20 simulations with

95% confidence intervals of Monte Carlo simulations of NWNs of size 20× 20 µm,

wires of length 7 µm with other parameters corresponding to those characteristic

of Ag/PVP nanowires used throughout this thesis125. The blue curve is a visualisa-
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tion of equation 4.3.8 and agrees closely with the simulated data, lying within the

confidence interval for each data point. The inset graph presents equation 4.3.8 in

blue with horizontal axis transformed as x = nw − (nw)c alongside a red dashed

curve proportional to x−1.44. Recall from the discussion of percolation theory in

chapter 3 that simulated resistances of Ag/PVP nanowire networks scales as x−1.44.

Here the sheet resistance as calculated by equation 4.3.8 converges onto this scaling

at an approximate density of 0.25 nanowires/µm2, thus agreeing with the appropri-

ate scaling according to percolation theory79. Figure 4.10 shows that the effective

square lattice mapping is particularly accurate at capturing the networks scaling

with nanowire density.

By altering the resistance parameters such as junction resistance and wire re-

sistivity we can analyse the dependence of equations 4.3.8 on these parameters.

The resistive parameters of the NWN, only affect the calculation of the effective

conductance gm as they do not alter the connectivity profile, and their impact is

shown in Figure 4.11. Here parameters were set to values characteristic of Ag/PVP

nanowires that have been used throughout this chapter when not being varied;

L = 7 µm, D = 60 nm, Rj = 11 Ω, ρ = 22.6 nΩm. Panel (a) presents the effect of

changing wire resistivity on the sheet resistance for Monte Carlo simulations as red

data points and for the expression outlined in equation 4.3.8 as the blue curve. The

approximation agrees well with the Monte Carlo in this case. Figure 4.11(b) shows

the dependence of the sheet resistance (Rs) on the junction resistance for Monte

Carlo simulations as red data points and the effective square lattice as the solid

blue curve. Here the approximation gives a good estimate to the sheet resistance

of the networks, however it underestimates it at low values of Rj. In Figure 4.11,

equation 4.3.8 for Rs has a curved relationship with Rj and ρ, unlike the linear rela-

tionships found for a fixed network geometry in chapter 3. Here it is the average

of an ensemble of simulations for a given Rj or ρ that is being compared with the

effective square lattice, and not a fixed network geometry as examined in chapter

3 and so the two relationships are not directly comparable.
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Figure 4.10: Dependence of sheet resistance on wire densities. Data points represent
the average sheet resistance for 20 simulations for each given wire den-
sity performed in a NWN of size 20× 20 µm with wires of length 7 µm.
The junction resistance values and resistivities are those characteristic for
Ag/PVP wires125. The 95% confidence intervals for each nw are also plot.
The theoretical sheet resistance calculated using equation 4.3.8 is repre-
sented by the blue curve. The inset log-log figure presents the theoreti-
cal curve alongside a power law proportional to (nw − (nw)c)

β, and both
curves converge at higher wire densities. The value of the scaling exponent
β = −1.44 was determined in chapter 3 when examining the percolative
scaling of a NWN sheet resistance with respect to the wire density.

Here, the effective square lattice mapping will be applied to the thirty experimen-

tal samples that were discussed in chapter 3 that had their SEM images processed.

Table A.1 in Appendix A lists the sheet resistance and other properties of thirty

experimental Ag/PVP NWN samples that were discussed at length in chapter 3.

Figure 4.12 presents the experimental sheet resistance for each sample versus their

wire density as red data points. The solid blue curve is the sheet resistance calcu-

lated with the effective square lattice method having the nanowire parameters set
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a) b)

Figure 4.11: (a) Effect of changing wire resistivity on the sheet resistance. The data
points correspond to the average and 95% confidence intervals of the sheet
resistance calculated for a set of 10 simulations for a given resistivity and
the curve corresponds to the theoretical expression in equation 4.3.8. (b)
Sheet resistance versus the junction resistance; again data points are from
Monte Carlo simulations for 10 samples and the curve corresponds to equa-
tion 4.3.8. Both (a) and (b) use networks of size 30× 30 µm, wire density
0.4 nanowires/µm2, and wire length of 7 µm.

to those typical of Ag/PVP nanowires, in particular the junction resistance was set

Rj = 11 Ω. The effective square lattice mapping provides a reasonable estimate to

the sheet resistance of the experimental samples, however it does underestimate

the majority of sheet resistances. Recall the characteristic junction resistances RMNRj

from chapter 3, where simulations of digitised networks with a homogeneous junc-

tion resistance distribution had a sheet resistance matching the experimental mea-

surements. The characteristic junction resistances were higher than 11 Ω in most

cases, i.e. they were contained in the range 2.28− 152 Ω. Thus the fact that equa-

tions 4.3.8 underestimate the sheet resistance when Rj = 11 Ω is unsurprising as

RMNRj suggests a higher junction resistance should be used in networks with fixed

junction resistances when comparing with experimental samples, where junction

resistances are not fixed.

In chapter 3, a distribution of junction resistances was shown in Figure 3.8, in

which there exists a small population of high resistance junctions, referred to as
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outliers. The electroforming process that was used to minimise junction resistances

for the experimental samples involves increasing current-flow through the network

slowly to a point where the sheet resistance is in a stable and low resistance state124.

As shall be demonstrated in the next two chapters, this leads to the emergence of

many parallel low resistance pathways between the electrodes which can lead to

some isolated junctions not being electroformed as others124. As stated previously,

the effective lattice requires a relatively homogeneous resistor distribution for accu-

racy but it can be used here to estimate the population of outliers in samples. By

choosing a representative high resistance state of Rhj = 200 Ω that is a percentage χ

of junction resistors, and fixing the remaining 1− χ junction resistors at Rj = 11 Ω,

the effective resistance is calculated as the weighted average of the two. Then, by

tuning χ an estimate for the number of junction outliers can be achieved. In Figure

4.12, the green dashed line corresponds to a χ = 10% percentage of high resistance

junctions and provides a much better agreement between the effective square lattice

and experimental samples.

Further to approximating the sheet resistance, the effective square lattice can

be used to quickly determine the optimization-capacity coefficient125 γ which was

defined in chapter 3 as

γ = 1−
R0
REXPs

(4.4.1)

where REXPs is the experimental sheet resistance and R0 is the contribution to the

sheet resistance from the inner-wire resistances. Recall that values of γ close to 1

represent networks whose conductivities can be considerably improved since their

sheet resistances are far from the optimal value R0. When γ → 0, the network is

close to its optimum conductivity and is unlikely that it can be further optimized.

In chapter 3, R0 was calculated numerically for each sample using the MNR model

with Rj → 0 and using the digitisation method to capture the connectivity profile

of a NWN. The effective square lattice can be used to easily determine the sheet

resistance when Rj = 0 and is shown by the black dotted line in Figure 4.12. Using
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Figure 4.12: Sheet resistance (Rs) versus wire density measured for thirty experimental
Ag/PVP NWNs listed in Table A.1 are plot as red data points. The blue
curve is the sheet resistance versus wire density calculated using the effec-
tive square lattice summarised in equation 4.3.8 with a junction resistance
of 11 Ω and other parameters typical to Ag/PVP nanowires125. The green
dashed curve includes the effect of outlier junction resistances and corre-
sponds to an effective square lattice with 10% of the junctions at 200 Ω and
the remaining junctions at 11 Ω. The black dotted line is the ultimate con-
ductivity of a NWN for a given wire density as calculated by the effective
square lattice where all junctions have a perfect resistance Rj = 0 Ω.

these theoretical values for R0, γ is calculated for each experimental sample and is

plot against RMNRj in Figure 4.13 as black data points. The green triangular data

points are the numerical results obtained with the digitised network geometries

that were plot in Figure 3.9. The theoretical approach tends to overestimate the

optimization-capacity coefficient but it does reproduce the trend seen in numerical

simulations quite well.

It is in the application of the effective square lattice mapping for experimental

results that its usefulness is properly illustrated. In chapter 3, the different node-
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Figure 4.13: Optimization-capacity coefficient obtained with numerical simulations for
the thirty experimental samples listed in Table A.1 are plot as green trian-
gular points. The black data points correspond to γ where the ultimate
conductivity R0 was calculated using the effective medium square lattice
(EMSC).

voltage mappings, JDA and MNR, were combined with digitised SEM images of

NWNs in order to estimate quantities such as the characteristic junction resistance

and the optimization capacity coefficient. The effective square lattice is an instanta-

neous method to estimate different properties of a NWN that only requires funda-

mental network parameters and is a welcome tool for understanding the resistive

properties of NWNs.
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4.5 chapter summary

In summary, here a method that establishes the correspondence between the sheet

resistance of a heavily disordered NWN with that of an ordered network was out-

lined. To do so, the current-flow between junctions in a NWN was shown to scale

with their separation logarithmically in the same manner as a regular square lat-

tice in section 4.1. Expressions for the relative fractions of types of resistors in a

NWN were derived, those being inter-wire junctions, current-carrying wire seg-

ments, and dead-ends in section 4.2. These expressions can be used to determine a

wire density where no current carrying wire segments are present in the network,

thus making a percolating path between electrodes impossible. This wire density is

much less than the one calculated with percolation theory. In the same section, the

expressions for relative resistor fractions were used to create an effective medium,

one which maps the resistive properties of a random NWN onto a regular square

lattice. This mapping was used to show that the equivalent resistance and the

nodal separation between pairs of junction intersections in a random NWN scaled

logarithmically.

In section 4.3, the sheet resistance of a finite square lattice where two opposite

sides are bounded by electrodes was shown to be caused by several identical paths

of resistors connected in series. To apply this behaviour and the effective square lat-

tice mapping to a NWN, expressions to approximate the number of parallel paths

and their lengths were derived and gave reasonable estimates when compared with

simulations. After combining the effective square lattice with the expressions for its

size a closed form approximation for the sheet resistance of a NWN in terms of its

underlying geometrical and electrical properties was obtained and is summarised

at the end of section 4.3.

The effective lattice was shown to approximate the sheet resistance well for

changing fundamental parameters in the NWN, and this is depicted in section 4.4.

The scaling between sheet resistance and wire density as calculated by the effective
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lattice agreed closely with simulations, converging on a power law with an expo-

nent that was theoretically calculated in chapter 3. The effect of junction resistance

and wire resistivity on the sheet resistance was estimated with the effective lattice

and gave similar results to simulations.

The true advantage of the effective lattice method is the ease of estimating the

sheet resistance of a NWN while varying different parameters. To demonstrate this

the effective lattice was applied to thirty experimental samples and used to gauge

the percentage of high resistance junctions that were present in the samples. The

effective lattice was also used to estimate the ultimate conductivity of a network

which was then used to calculate the optimization coefficient instantaneously. The

effective medium lattice approximation is best applied to networks where wire seg-

ments and junctions have similar resistances and do not have a dynamic response

to current-flow. In the next chapter, experimental evidence for a dynamic evolution

of junction conductance is presented. A model that captures this dynamic junction

response is introduced, and the response of a network as a whole is examined.
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Until now, the conductive properties of a NWN have been examined for static

nanowire junctions that have been annealed in some manner into a low resistance

state. The surface layer in individual nanowires - a polymer, native oxide or some

other surfactant - are a necessity to stabilise the nanowires during synthesis123.

Surface layers act as an insulating barrier between the highly conductive metallic

cores of the nanowires which has traditionally been seen as an undesirable feature

in NWNs that are incorporated in transparent conductor devices, as a minimal

resistance is required for many applications142. In fact, the preceding two chapters

had a large focus on understanding the effect of junction resistance on annealed

NWNs and their upper-limit sheet conductance where the inter-wire junctions are

annealed to low values. The potential exploitation of these insulating, unannealed

barriers has thus gone largely unexplored.

A popular annealing method for NWNs is electrical stressing124,125, where an

applied current is gradually increased from small current ranges until the resis-

tance of the NWN is decreased, but not so high as to cause wire failures due to

melting from Joule heating154,155. Nirmalraj et al showed that electrical annealing

can be controlled to tune the conductivity of a NWN, gradually increasing the con-

nectivity of the NWN by increasing the annealing current flow128. This gradual

increase in NWN conductivity is akin to a class of materials known as memristors

(memory resistors) that were introduced in chapter 1. As discussed in chapter 1,

memristors were first hypothesised in 1971 by Chua and their defining behaviour

117
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is a non-constant, non-linear, reversible resistance that is mediated by some tunable

internal state variable25. The internal state variable corresponds to some physical

phenomenon that can be controlled via some external means. For example, many

memristors are mediated by an ion-doped layer or a conductive filament, the size of

which is controlled by current-flow to cause various resistance states23,26,156. Since

the first experimental realisation of a memristor in 2008
26, many examples of mem-

ristors have been demonstrated, one such device is a planar metal-insulator-metal

(MIM) tri-layer junction. The MIM architecture that is common in memristors are

found in un-annealed nanowire junctions, the metals being the cores of the NWNs

and the two surface layers acting as the insulating barrier, a sketch of such a system

is given in Figure 5.1. This means that a NWN contains many highly connected

MIM junctions, and offers a rich new area of potential applications as memristive

and neuromorphic (brain-like computing) devices. In chapter 1, in a discussion of

Ag MIM junctions, it was shown how a conductive filament forms between elec-

trodes and mediates the memristive response of the device97. In Ag/PVP nanowire

junctions, a conductive filament should also mediate their memristance83, and is

depicted between metallic cores in Figure 5.1.

To date, there has been numerous attempts to mimic biological computation

through simulations on traditional von Neumann computer architectures112. How-

ever, this approach is computationally expensive due to von Neumann bottlenecks,

essentially the limit of how quickly data can be moved from memory to a process-

ing unit in a computer. Another approach to achieve biological computation is

through the use of neuromorphic computing architectures88,116. These can be de-

centralised networks of memristor units capable of mimicking analogue synapses.

While these architectures are much more energy efficient, the fabrication of such de-

vices can be quite difficult, often requiring exact engineering of individual memris-

tor components and connections. A high level of component homogeneity and reg-

ularity in neuromorphic networks may not be required as the variability, stochastic-

ity, and component reliability which are becoming increasingly difficult to improve
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Figure 5.1: Sketch of a conductive filament formed between the metallic cores (silver)
of two intersecting Ag/PVP nanowires. The shaded blue regions represent
the insulating shells of the nanowires, and the system as a whole is viewed
along the direction of the bottom nanowire.

in traditional computing technologies do not pose as big a problem to biological

computing systems122. Indeed the variability of individual synapses and the com-

plexity of the global synapse network are exploited to perform robust and reliable

computations, all while using a fraction of the power that a von Neumann com-

puter would need for similar performance. The spatial stochasticity of the NWN

coupled with the memristive properties of inter-wire junctions results in a random

memristor network that is capable of performing neuromorphic computations. The

random connectivity may actually be beneficial for memory storage and neuromor-

phic computing as a highly connected NWN has no hierarchical structure and thus

should have a high fault-tolerance, a topic that is examined in chapter 6.

The aim of this chapter is to introduce an original memristive model for nanowire

junctions, and to report results of a computational routine that simulates the prop-

erties of a NWN with a memristive response. This goal is motivated by recent

experiments that reported a memristive response of individual nanowire junctions

and NWNs83,99,130; some relationships were noted between junction and network
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memristance that required a computational model to fully explain them83. The lay-

out of this chapter is as follows: experimental evidence for a memristive response

of individual nanowire junctions, and a global memristive response of a NWN is

presented in section 5.1. An empirical model for individual junctions is also intro-

duced in this section. In section 5.2, a computational routine to simulate a large

network of memristive junctions is introduced and the memristive responses of a

network to increasing current-flow are presented. The conductance of both junc-

tions and nanowire networks are shown to scale as a power-law with increasing

current levels in section 5.2. The exponent of the network’s power-law is shown to

be the same as the individual junctions, revealing for the first time a self-similarity

between the individual and the collective. The activation patterns of nanowire

networks is shown to vary according to certain measurable parameters of the mem-

ristive junction model. In section 5.3, a mapping technique is presented that allows

for the visualisation of current flow through a network at any stage in its junction

evolution. This mapping shows that for certain nanowire parameters the current

flows through a single pathway between electrodes in a winner-takes-all manner.

This behaviour had not been reported previously in the literature and was later

confirmed with experimental measurements. The existence of localised current

flows has potential application in neuromorphic computing, and a novel method

to achieve independent and associative conductive states in a NWN is presented in

section 5.4. Finally a chapter summary is presented in section 5.5

5.1 modelling the memristive response of a

nanowire junction

Figure 5.2(a) presents experimental measurements of the conductance of individual

Ag/PVP nanowire junctions for increasing current compliance, explained in chap-

ter 1, as triangular data points. Also plot in Figure 5.2(a) is the conductance of an
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Ag/PVP NWN as circular data points83. Recall in chapter 1, a memristor is a device

where its conductance is tuned according to the current-flow through it. In Figure

1.3(b) the conductance of the device is tuned according to the cumulative charge

through the device or the time integral of the applied current. In Figure 5.2 both

the individual junctions and the NWN respond to increasing current compliance

making it a memristor. These measurements reveal that the conductivity of junc-

tions and NWNs increases in a power law manner, the NWN scales with a power

law over three decades of current compliance signified by the red line through the

data points. Remarkably, the fitted power law to the NWN has the same exponent

as the power laws fitted to the individual nanowire junctions, meaning their re-

spective conductances (Γnt and Γj) scale in a self-similar manner. The scaling of an

individual junction is described with the power law

Γj = AjI
αj (5.1.1)

where the values of Aj and αj are material dependent and determine the memris-

tive response of the material. While the memristive scaling presented in Figure

5.2(a) is particular to Ag/PVP nanowires, the self-similar scaling between junc-

tions and networks was seen for a range of nanowire materials: Ni/NiO, core-shell

Ag/TiO2 and Cu/CuO83.

Another intriguing phenomenon is observed in the NWN conductance curve

where it no longer scales as a power law and reaches a plateau. Figure 5.2(b) is

a magnified view of this region where the fine detail can be seen. Three distinct

plateaus in the network conductance can be seen, each represented by the horizon-

tal orange and brown lines. The conductance of the network has been normalised

by the quantum of conductance (Γ0 = 2e2/h), the conductance of a single atomic

channel that can transport a single spin degenerate pair of electrons, where e is

the charge of an electron and h is Planck’s constant. The plateaus have an approx-

imate normalised conductance of Γnt/Γ0 ≈ 1/8 (bottom), Γnt/Γ0 ≈ 1/6 (middle),

and Γnt/Γ0 ≈ 1/5 (top). Conductance plateaus were not seen for all of the exam-
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a) b)

Figure 5.2: (a) Experimental measurements of the conductance of individual Ag/PVP
nanowire junctions (triangles) and an Ag/PVP NWN with increasing cur-
rent compliance levels. Both systems display a power law scaling of the
conductance; in the case of the NWN, this holds until a point at which the
conductance reaches a plateau. (b) A magnified view of the memristive
response of the NWN in (a) in the vicinity of the plateau where the conduc-
tance of the network Γnt has been normalised by the quantum of conduc-
tance Γ0. Here several smaller plateaus are observed with a conductance Γp
that are fractions of Γ0 83.

ined NWN materials mentioned above meaning that specific material properties

are required to observe them. In this section, a memristive model for individual

nanowire junctions is introduced and used in the next section in a computational

model of a memristive NWN. The computational model is implemented to explain

the self-similar scaling between junctions and NWNs, and to understand the cause

of plateaus in NWN conductance.

Nanowire junctions are described using the scaling law presented in equation

5.1.1. The memristive response of a NWN is then determined through the collective

response of the connected nanowire junctions. The set of parameters [Aj,αj] deter-

mines the response of each nanowire junction and are obtained from experimental

measurements, αj was found to fluctuate around 1 depending on the materials in-

volved in the junction83. We assume that the resistance of the junctions are bounded

by an initial high resistance state (HRS), or the off state, where Roff = 104 kΩ was

chosen as a suitably high value. The low resistance state (LRS) was assumed to
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correspond to the quantum of conductance Ron = 12.9 kΩ (equivalent to 1/Γ0). In

planar MIM devices, the physical process responsible for decreasing resistance, of-

ten referred to as the state variable, is the formation of a conductive filament from

electromobile atoms or ions that originate in the electrodes97. The growth of the

conductive filament is regulated by distinct mechanisms including thermochemical,

electrochemical metallization, and valence change24,27,90,98,99. Where a conductive

filament mediates the resistance of the junction, one can assume that once it spans

the entire insulating barrier between metallic cores that the conduction is through

a single channel. A single conducting channel is a quantum of conductance and

so approximates the conductance of a fully formed filament in our model. Thus,

this empirical model referred to as power law plus cut-off (PL+C) describes the

junctions whose conductance can vary with equation 5.1.1 but only in the range

[Γoff, Γ0].

Figure 5.3 presents the scaling of the conductance of a single junction with ac-

cording to PL+C for distinct values of Aj and αj. Note that the current is in units

of current (u.c.) which are arbitrary units. The effect of Aj on junction conductance

is plot in Figure 5.3(a) where the scaling exponent is set αj = 1. Several effects of

changing Aj are seen in this plot, most notably increasing values shift the conduc-

tance curve to the left meaning that the junction begins to evolve at lower current

levels but also reaches its ultimate conductance at a lower current. The current (Ith)

at which a junction reaches its ultimate conductance Γ0 is calculated as

Γ0 = Aj(Ith)
αj → Ith =

(
Γ0
Aj

) 1
αj

(5.1.2)

The inverse relationship between Ith and Aj is visualised as the purple curve cor-

responding to the largest value of Aj reaching Γ0 first. Similarly, the current level

where the junction conductance begins to increase (Ib) is obtained as

Ib =

(
Γoff
Aj

) 1
αj

(5.1.3)
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Here the inverse relationship between Ib and Aj is seen as the curve with Aj = 0.5

begins to increase in conductivity first.

The effect of different scaling exponents on the evolution of the junctions con-

ductance is best understood by considering the derivative of equation 5.1.1, which

is the so-called strengthening rate νj

νj =
dΓj

dI
= AjαjI

αj−1 (5.1.4)

According to equation 5.1.4, there are three distinct regimes of NWN scaling ex-

ponents. For a sub-linear exponent αj < 1, νj decreases with current meaning

that further increasing the conductance becomes more difficult. For supra-linear

exponents αj > 1, νj increases with current meaning that further strengthening the

junctions becomes easier as they become more conductive. Finally the linear expo-

nent case αj = 1 has a constant strengthening rate. Each of these exponents give

rise to unique conductance curves and are presented in Figure 5.3(b) where the

prefactor is set to Aj = 0.1. As both axis are in log-scale, the difference in junction

conductance scalings for the power-law exponents are clear. The change in critical

current flow Ib is also evident as the smaller exponent requires less current to begin

conductance improvement.

Drawing an analogy with the ion-drift model first proposed by Strukov et al26,

Aj and αj can be related to the mobility of the diffusing charge-carriers in the

junction and to the nonlinear effects caused by the strong electric fields present in

the dielectric layer83 respectively. In their model, Strukov et al hypothesised that

the memristance was modulated by an interfacial boundary between an undoped

TiO2 and a TiO2−x layer doped with oxygen vacancies. The electrical response of

such a junction can be described as

V(t) =

[
Ron

w(t)

D
+ Roff

(
1−

w(t)

D

)]
I(t)

dw

dt
= µv

Ron

D
I(t) (5.1.5)
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Figure 5.3: (a) Effect of changing the prefactor Aj on the evolution of the conductance
of a single nanowire junction with scaling exponent αj = 1 for increasing
current levels given in units of current (u.c.) which are arbitrary units. (b)
Effect of changing the scaling exponent on the conductance evolution for a
nanowire junction with Aj = 0.1. The differing Ith and Ib are seen in both
plots. Note that all junctions begin at a conductance of Γoff = 10−4 µS and
finish at a conductance Γ0 ≈ 0.0775 µS, the upper and lower bounds for
junction conductance.

where t is time, D is the full length of the TiO2/TiO2−x junction, µv is the mobility

of the ions, I is the current, and V is the output potential of the device. The state

variable w is the length of the doped layer which modulates the resistance of the

junction and can vary between 0 andD. The resistance of the junction clearly varies

between Ron and Roff depending on the value of w.

According to the PL+C model for the conductance scaling of a nanowire junction,

the conductance is a dynamical quantity controlled by the current-flow. For each

current value the corresponding cumulative charge through the junction is Qc =∫t
−∞ I(τ)dτ. Experimental measurements typically involve increasing the current

from zero to some current compliance Ic, before decreasing the current to zero

again83, as seen in the pinched hysteresis curves that were shown in chapter 1.
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Therefore a small increment in Ic yields a similar increment in the cumulative

charge such that Qc ∝ Ic, or Qc = BIc with B being a constant. Therefore, without

loss of generality, we can write the power law equation in terms of the cumulative

charge

Γj = AjI
αj
c = AjB

αjQ
αj
c = ÃjQ

αj
c (5.1.6)

Consider the case of a linear scaling exponent, αj = 1. Where a junction has

not reached its ultimate high conductance state the stable current flow is a result

of non-resonant electron tunnelling where the conductance follows an exponential

dependence on the tunnelling gap

Γj = Γ0e
−β(D−w(t)) (5.1.7)

where β is a decay parameter that characterises the tunnelling barrier. As discussed

in chapter 1, the state variable w(t) in the case of an electrochemical metallisation

(ECM) memristive junction represents the length of the conductive filament bridg-

ing the inter-wire junction such that Γ0e−βD = Γoff. Using the fact that dw
dt ∝ I(t)

and an approximation for the exponential with small separations D−w(t)

dΓj

dt
= Γ0β

dw

dt
= Ãj

dQ

dt
= ÃjI(t) (5.1.8)

The state equation that determines the growth of the filament is thus

dw

dt
=
Ãj

βΓ0
I(t) (5.1.9)

Since Γ0 = 1/Ron we obtain the following relationship for Ãj by comparing equa-

tions 5.1.7 and 5.1.8.

Ãj =
µvβ

D
(5.1.10)
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This relates the prefactor Ãj (and consequently Aj) with the ion mobility, the elec-

tron decay parameter and the width of the junction.

The derivation up to now has assumed αj = 1, the effect of non-linearity in the

charge carrier drift is manifested through αj 6= 1. Returning to equation 5.1.8, and

not performing an expansion on the exponential in equation 5.1.7, the general form

of the state equation is

Γj = Γ0e
−β(D−w(t)) = AjQ

αj

dΓj

dt
= Γ0βe

−β(D−w(t))dw

dt
= Aj

d

dt
(Q)αj = AjαjQ

αj−1I(t)

dw

dt
=
µv

DΓ0
I(t)e−β(D−w(t))αj(Q(t))αj−1 =

µv

DΓ0
I(t)f(W/D,αj,Qc(t))) (5.1.11)

The non-linearity of the scaling exponent is captured by the additional functional

f(αj,W/D,Qc(t)). Thus αj can be interpreted as the non-linearity of the derivative

of the state variable w, the length of the doped layer, on the driving current. While

this analysis was particular to a TiO2 material, the length of the doped layer. w can

be associated with the length of the conductive filament links the interpretation of

Aj and αj to the conductive filament model.

In this section, experimental evidence for the memristive nature of nanowire

junctions and NWNs was presented, and the PL+C model for nanowire junction

memristance was introduced. In the next section, a computational routine to simu-

late networks of such junctions is described and used to understand the self-similar

scaling and conductance plateaus in the NWN memristance.

5.2 memristance in a nanowire network

The PL+C model can be applied to a NWN by allowing the conductance of each

junction in the network to vary with respect to current flowing through them. By

solving Kirchhoff’s set of linear equations, the potential of each wire Vi in the JDA
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or each connection node in the MNR mappings is obtained, and using Ohm’s law

the current-flow through the junction is calculated. Consider a junction connecting

nodes m and n. Its conductance is given by Γmnj , and the current-flow between the

nodes (Imn) is calculated as

Imn = |Vm − Vn|Γ
mn
j (5.2.1)

Knowing the current-flow, an updated junction conductance Γ̄mn
j can be calculated

using the PL+C

Γ̄mn
j = AjI

αj
mn (5.2.2)

This updating scheme must be applied recursively to every junction in the network

once a change in sourced current through the network has occurred.

Before the computational routine is discussed in more detail, the different node

voltage mappings MNR and JDA must be discussed in the context of memris-

tive junctions. Recall that the MNR model scheme includes junction resistance

(Rj = 1/Γj) and inner wire resistance (Rin) contributions interacting in a voltage-

node network frame. While Rj characterises a dynamical quantity in accordance

to equations 5.1.1 and 5.2.2, Rin is fixed and it is given by Rin = ρ`/Ac where ρ

is the wire resistivity, ` is the wire segment length and Ac is the cross sectional

area of the wire. The inclusion of inner-wire resistance is not entirely necessary for

these simulations of an Ag/PVP NWN, as the junction resistances will be between

107 − 104 Ω compared with the resistance of inner-wire resistance which is of the

order of tens of Ω. Therefore, as Rj >> Rin the JDA model will suffice in produc-

ing Γnt × Ic curves. In the next section however, a method to visualise current-flow

through the network is introduced. The visualisations are of current-flow through

nanowire segments, and so the MNR model is required in this case. This point will

be discussed further in the following section.
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Simulations begin with the sourced current at some minuscule value and iterat-

ing it up to some predefined maximum value of Imax. At each current-step, the

potential of each node in the network is calculated with Kirchhoff’s matrix equa-

tion. The current flow through each junction is calculated according to equation

5.2.1 and the junction resistances are then updated with equation 5.2.2. After each

junction has been updated and the values stored in the Kirchhoff matrix (MR), the

conductance of the entire network (Γnt) is then calculated. Following this the cur-

rent is iterated to a new value and the junction update routine is repeated. For

the first iteration, Γnm
j = Γoff ∀ (n,m) internode pairs and junctions are updated

until they reach their maximum conductance Γ0. The work-flow diagram of the

computational model can be seen in Figure 5.4.

In order to remove random connectivity profile effects from determining the role

of different Aj and αj combinations on the evolution of a network conductance, an

identical digital NWN geometry was used for each simulation. An experimental

sample of size 20 × 20 µm with wires of average length 6.7 µm and of density

0.49 nanowires/µm2 was digitised using the method outlined in chapter 3. Figure

5.5(a) is an SEM image of said sample. Figure 5.5(b) is a digitised version of the

NWN where wires are represented by grey sticks and the electrodes as thick ver-

tical yellow lines. Figure 5.5(c) is a visualisation of the connectivity profile that is

obtained from the digitised geometry of the NWN. Black dots represent memris-

tive nanowire junctions and the two yellow dots are the two electrodes. Note all

dots are connected by straight lines which correspond to current carrying nanowire

segments.

Figure 5.6 presents the effect on the conductance curve evolution for different

combinations of the parameters Aj and αj. Even though the junction characteristics

are well defined, how current will flow though a collective of these junctions and

the resulting macro scale network conductance is not clear. As discussed in the

previous section, there are three distinct parameter spaces that are determined

by the exponent value; sub-linear, linear, and supra-linear exponents, and each are
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Figure 5.4: Workflow diagram of the computational implementation of PL+C junction
model onto macroscopic networks. The algorithm obtains the conductance
evolution of NWNs subjected to an electrical current source. See main text
for detailed explanation of the algorithm.

expected to have varying evolution characteristics. In Figure 5.6(a), the conductance

curves for exponent αj = 0.9 are shown for three different values of Aj. The left-

most curve has the highest value of Aj = 0.5 and it decreases for each curve as

one moves to the right. All panels have a common legend which is displayed

at the top of panel (b). This behaviour is of course expected as recalling from

equation 5.1.3, Ib ∝ A
−1
αj

j and so the greater Aj is, the lower the current a junction

will begin to improve conductance at. Recall Aj can be interpreted as the ease of

conductive filament formation for the MIM material. Notice that the conductance
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Figure 5.5: (a) An SEM image of a NWN made of Ag/PVP core-shell nanowires that
have a mean length of 6.7 µm and a network size of 20×20 µm. This sample
has a wire density of 0.49 nanowires/µm2. The bottom scale bar represents
10 µm. (b) Digitised version of the NWN in (a), the grey lines represent
nanowires and the thick vertical yellow lines represent the electrodes. (c) A
graphical representation of the digitised NWN geometry from (b). The elec-
trodes are represented by the two yellow dots on either sides of the figure.
Black dots are nanowire junctions and the straight black line segments that
connect junctions are current carrying wire segments.

curve gradually decreases in slope with higher current levels; the Aj = 0.5 curve

in particular saturates at I = 10 u.c meaning that the majority of junctions are

reaching the LRS.

Figures 5.6 (b) and (c) present the conductance curves for exponents αj = 1 and

1.1 respectively, also with varying Aj values in each case. The same behaviour

is seen as before where systems with higher Aj values begin to strengthen first.

However, for linear and supra-linear junction dynamics, the smooth conductance

growth seen for the sub-linear case is lost. In particular, for exponent αj = 1.1 in

panel (c) after an initial power law scaling phase, the conductance growth is charac-

terised by plateaus in Γnt corresponding to an Ohmic response to increasing current

punctuated by sudden increases in NWN conductance which shall be discussed in

more detail later in this section. Similar to the sub-linear case the network conduc-

tance begins to saturate at high currents for Aj = 0.5 meaning that this behaviour

applies to the three exponent regimes.
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Figure 5.6: The conductance versus current plots for the memristive response model
applied to the network geometry outlined in Figure 5.5. Simulations with
different values of Aj and αj = 0.9 (Figure (a)), αj = 1 (Figure (b)), αj =
1.1 (Figure (c)), < αj >= 1.05 (Figure (d)). In the latter case the junction
exponents in the NWN follow a truncated normal distribution with a mean
value of < αj >, a standard deviation of 0.1, and is truncated at [1,1.1].
The black dotted lines represent fitted power laws to the PL regime of the
Aj = 0.01 case for each exponent value and is slightly offset to the curve for
ease of viewing. The prefactor and exponent for these power laws, along
with these parameters for fits to each of the other conductance curves are
presented in Table 5.1. The horizontal purple lines shown in each figure
represents the conductance of the optimal path between electrodes, where
there are 4 junctions in their low resistance states connected in series Γ =
1/4Γ0. The number of junctions in the optimal path between electrodes were
determined by Network analysis of Figure 5.5(c).83

In panels (a)-(c) in Figure 5.6, a dotted line representing a fitted power law is

visible, slightly offset to the Aj = 0.01 curve for each exponent for visualisation

purposes. This fitted curve has a slope of αnt = 0.892 in panel (a), extremely close

to that of the exponent of individual junctions, i.e. αj = 0.9. In fact, this self-similar

scaling between networks and junctions is seen for each Aj,αj shown in Figure
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Aj 0.01 0.05 0.1 0.5
αj = 0.9 {0.0027,0.892} {0.0133,0.896} {0.0266,0.9} {0.1407,0.925}
αj = 1 {0.0025,1.0} {0.0125,1.0} {0.0251,1.0} {0.13071,1.024}
αj = 1.1 {0.0024,1.115} {0.0125,1.115} {0.0251,1.113} {0.13941,1.159}

< αj >= 1.05 {0.0025,1.054} {0.0125,1.049} {0.0251,1.051} {0.1323,1.071}

Table 5.1: Network prefactor (Ant) and scaling exponent αnt for each combination
of Aj and αj obtained from fitting power laws Γnt = AntI

αnt to the con-
ductance curves shown in Figure 5.6. The prefactors and exponents are
presented as {Ant,αnt} in this table83.

5.6, where the exponent of the network power law (Γnt) in each case agrees closely

with the exponent of the junctions. This supports the experimental evidence for

self-similar scaling presented in section 5.1. The prefactors Ant and exponents αnt

taken from numerical fittings to the conductance curves in Figure 5.6 is given in

Table 5.1.

The horizontal purple dashed line represents conductance of four junctions in

series that are in the low resistance state Γp = Γ0/4. According to the graphical

representation of the NWN sample the memristive model was applied to, which

is shown in Figure 5.5 (c), there are precisely four junctions in the shortest path

between the two electrodes. This fact gives a clue as to the networks behaviour

during and after the power law scaling. For the sub-linear and linear exponent sim-

ulations, the conductance curves begin to diverge away from the initial power law

scaling in a gradual manner. In the supra-linear case, a plateau is seen at precisely

Γp suggesting that the network conductance is dominated by four low resistance

state junctions in series. In this scenario all of the current in the NWN may be fun-

nelled through a single low-resistance path, or a winner-takes-all (WTA) pathway.

Further evidence of localised current-flow is that Ant ≈ Aj/4 for exponents αj > 1

in table 5.1, except for the Aj = 0.5 case. This can be explained as four conductors

in series scaling in unison with increased current flow

Γp(I) =
Aj

4
Iαj = AntI

αnt (5.2.3)



134 memristive properties of nanowire networks

This relationship for localised current-flow is manifested by the self-similar scaling

and the fact that Ant ≈
Aj
4 for each of the simulations where αj > 1 bar the case

with Aj = 0.5. The exact nature of current-flow through the network is further

examined in the following section.

Finally, in Figure 5.6(d), the sheet conductance is calculated where a level of dis-

order is incorporated in the assignment of the junction exponents. Each junction

in the NWN is assigned a scaling exponent from a normal distribution centred at

< αj >= 1.05, with a standard deviation of 0.1 and confined to the range [1,1.1].

Figure 5.6(d) is the average conductance of an ensemble of ten NWNs whose junc-

tions were randomly assigned scaling exponents, and similar to panels (b) and (c),

there is a clear power-law scaling regime. The first plateau takes place at Γp ≈ Γ0/4,

again suggesting the emergence of a WTA between electrodes. The black dashed

line is the fitted power law Γnt = AntI
αnt to the Aj = 0.01 simulation and it was

found to have an exponent of αnt = 1.054, very close to the average junction ex-

ponent. The fitted parameters obtained for the power-law in the other prefactor

simulations are shown in Table 5.1 and all have exponents close to 1.05.

In the linear and supra-linear scaling simulations in Figures 5.6(b)-(d), distinct

conduction regimes are evident for the studied networks. The different regimes

are identified in Figure 5.7 for a simulation with Aj = 0.05 and αj = 1.1. The OFF

regime is the initial Ohmic response of a NWN to low current levels where current

flowing through junctions in the NWN are too low to begin the process of junction

evolution. and so most of the junctions are still in the Roff state. Following this is

the initial evolution of the junctions in the transient growth (TG) regime which is

characterised by a varying network strengthening rate corresponding to a varying

non-linear increase in sheet conductance that tends to a power-law. The power-

law (PL) regime is the portion of the networks behaviour where it scales with an

exponent similar to that of the junction. The behaviour following the PL regime

is known as the post-power-law (PPL) regime and appears as a divergence of the



5.3 current colour maps 135

network conductance away from the power law and towards saturation. These

conducting regimes are further explored in the following section.

Figure 5.7: Network conductance (Γnt) versus current for a network with αj = 1.1 and
Aj = 0.05. There are four regimes of network conductance evident in this
plot: the OFF regime corresponds to current levels that are not sufficiently
large to begin junction evolution. The transient growth (TG) occurs where
the network has a varying strengthening rate until it reaches the power-
law (PL) regime that is characterised by a power-law with an exponent
approximately that of the junctions. The first plateau occurs immediately
after the PL regime and heralds the beginning of the post-power-law (PPL)
regime.

5.3 current colour maps

A useful tool in understanding the nature of emergent memristance in a NWN is

to calculate the current flow through every individual wire segment and plot it

as a ’heat-map’, where colour intensity corresponds to the amount of current-flow.

Using the MNR model the current flowing through a wire segment bounded by
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connection nodes m and n is simply the voltage difference between the node pair

divided by the resistance of that segment.

Imn =
|Vm − Vn|

(Rin)mn
(5.3.1)

At every iteration of the computational model, the current through each wire seg-

ment was recorded and used to generate the current colour maps. Figure 5.8

presents conductance for a network in three scaling regimes plus their correspond-

ing current colour maps at three probing states. The current colour maps are linked

to the conductance curve to the left via the symbols located at the top right of each

map (star, triangle, and circle). Figure 5.8(a) is the conductance curve for a network

with αj = 0.9 with its current colour mappings to the right. The first mapping (I =

1.0 u.c.), linked with the star symbol, is set in the PL regime of this network. Here

one can identify several paths through the network that are carrying the sourced

current as the lighter paths set against the blue background. As the source current

is increased to I = 3 u.c. (triangle), the current-flow intensifies through these main

paths and additional paths begin to form through the network also. At I = 9.3

u.c. (circle), the network is well into the PPL regime and several paths are carrying

the current across the network. Figure 5.8(b) contains the conductance curve and

current colour maps for a network with αj = 1. Here a similar behaviour to the

sub-linear scaling simulation is seen; the current flow is distributed through several

paths between the electrodes.

In the supra-linear simulation, Figure 5.8(c), a striking difference is clear between

it and simulations with smaller scaling exponents. In the PL regime, the current

is predominantly flowing through a single pathway as opposed to the more dis-

tributed current-flow seen for αj 6 1. The single path that emerges in the PL

regime taken in conjunction with the fact that the first plateau occurs at a conduc-

tance Γ0/n where n is the number of junctions in the path suggests the emergence

of the winner-takes-all behaviour of supra-linear scaling NWNs. As the current is

increased and the network enters the PPL regime, the origin of additional plateaus
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Figure 5.8: (Far left panels) Network conductance (Γnt) versus sourced current (I)
curves taken for a Ag NWN made with PL+C junctions of Aj = 0.05 and
distinct exponents: αj = 0.9 (top), αj = 1.0 (middle), and αj = 1.1 (bot-
tom). The currents are expressed in units of current (u.c.). The symbols
mark points in the curves in which current colour maps were taken. (Three
right panels) Current colour maps calculated over each wire segment of the
network. Snapshots were taken for three current values specified on the top
of each current map and distinguished by the symbols: star (set in the PL
regime), triangle, and circle (both set in a PPL regime)83.

are associated with the emergence of additional paths between the electrodes. At

the second plateau for instance, the network creates a second path that is entirely

independent from the first. At I = 7 u.c. which is well into the PPL, other paths

emerge and note that they overlap. The emergence of WTA paths leads to a unique

behaviour in the network memristive response with the sequential emergence of

highly conductive pathways across the network. Figure 5.9 is a closer examination

of the current colour maps of a different network geometry at different points in

the networks conductance strengthening. This figure presents the response of a

NWN with memristive parameters, Aj = 0.05 and αj = 1.1. The network conduc-
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tance is shown in Figure 5.9(a) and conductance maps at various current levels are

in panels (b)-(e). Each current scan is labelled with a different symbol (square, star,

triangle, and circle) which is then connected with a position on the conductance

curve. The square symbol on the conductance curve is at I = 0.07 u.c. and the

corresponding current scan is visible in Figure 5.9(b) which is a visualisation of the

TG regime. The current-flow is spread throughout the network in order to trans-

port current in the most energy efficient manner. In contrast, the power-law regime

sees the emergence of a highly localised current flow through the network, which

shows that the self-similar scaling between the junction and network conductance

is indeed a consequence of the the current-flow confined to a single path between

electrodes. The transient growth region can be understood as the network seeking

out a particular path which emerges in the PL regime through which the majority

of current flow occurs in a WTA manner. The current mapping for the first plateau

is labelled with the triangle symbol and shows that the WTA path still dominates

the conductance of the junction at this point. The constant conductance at this

stage of the network’s evolution means no junctions are increasing in conductance,

i.e. they are temporarily Ohmic. The conductance of the NWN at this current

level is approximately Γ0/4 due to there being four junctions in their final high con-

ductance state. The PPL current mapping shows that several other pathways have

emerged in the network at higher current levels (circle). Here the paths in the PPL

are not all independent a number of paths share a junction.

The winner-takes-all response shown for supra-linear junctions has been demon-

strated in many simulations of different geometries alongside the two examples

shown here83. In fact, an experimental technique to image electrically grounded

nanowires in a network was performed on an Ag/PVP NWN that had been electri-

cally driven into a plateau state83,157. Known as a Passive Voltage Contrast image,

the wires that have a stronger electrical contact with either electrode in Figure 5.10

appear as dark areas in the image while the lighter coloured ones are not well con-

nected electrically to the mesh83. Here the localised dark wires indicate that this
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Figure 5.9: (a) Conductance versus sourced current (I) calculated for an Ag-PVP NWN
made with power law junctions of Aj = 0.05 and αj = 1.1. The black
dotted line is a power law with αnt ≈ 1.1 displaying self-similarity between
the NWN and junction. The symbols mark points in the curves in which
current maps were taken, a mapping was made in four different scaling
regimes of the NWN; the transient growth (square), the power law (star),
the first plateau (triangle), and the post power law (circle) regimes83.

pathway is significantly more conductive than the surrounding nanowires which

further evidences the winner-takes-all response of Ag/PVP NWNs.

Thus far, the memristance response of a NWN has been shown for a two terminal

electrode geometry, in which two electrodes span the network at its opposite ends.

In the following section, a multi-electrode architecture is presented that allows for

a greater exploration of a network response to winner-takes-all pathways.
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Figure 5.10: A Passive Voltage Contrast image157 of an Ag/PVP NWN of size 100×
100 µm that has been electrically driven to a stable conductive state at a
current compliance of 50 µA. The dark wires indicate a strong electrical
connection with the electrodes seen to the top and bottom of the image.
Scale bar represents 2 µm83.

5.4 multi-terminal device for neuromorphic

applications

The emergence of WTA paths as highlighted in Figures 5.9 and 5.10 demonstrates

the possibility of activating distinct conductance states in a complex network sys-

tem and this phenomenon has potential for neuromorphic applications. To fully

realise the potential of memristive NWNs as a neuromorphic device, an architec-

ture that facilitates multiple input signals, i.e. rather than a 2-probe interrogation

method, is required. A neuromorphic network requires numerous electrical signals

of distinct modulations and amplitudes inputted via a multi-terminal configuration

such as that shown in Figure 5.11. Here the four terminals are represented by thick

red vertical lines and the nanowires (grey sticks) are randomly dispersed over a
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Figure 5.11: Visualisation of a multi-terminal network to enable the formation of mul-
tiple WTA paths on the network. The four terminals are represented by
thick vertical red lines and the nanowires as grey lines dispersed through-
out the device. Four electrodes creates 6 unique electrode pairs between
which WTAs can be formed.

reference area. The four terminal architecture is used as a means to study the

effect that the formation of a WTA has on other areas of the network. This will

be achieved by developing a WTA path between a given pairs of electrodes and

then calculating its impact on the conductance of other paths formed between the

other electrode pair combinations. The same multi-terminal device of Figure 5.11

is shown in Figure 5.12(a) along with sketches of the six possible paths between the

four electrodes, represented by lines of various colours and in two cases as dashed

lines. Current is sourced and drained between two electrodes only; in this case

these were electrodes A and C and the path being evolved will be referred to as

AC. Junctions were set to evolve with a supra-linear exponent αj = 1.1 in order to

facilitate the emergence of a WTA between A and C. After each increment in the

sourced current along the path AC, the conductance of every junction in the NWN
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is recalculated according to PL+C junction model and the resistance of probed by

every electrode pair in the network is then calculated.

Figure 5.12(b) plots the conductance of each electrode pair in the NWN that was

shown in Figure 5.12(a) while the current sourced at electrode A and drained at

electrode C is incremented. The main path AC sees its conductance increase in a

manner typical to two-terminal networks seen in previous section, a well defined

PL regime and plateaus that indicative of WTA behaviour. While the other paths

in the network were not explicitly evolved by running current through them, their

conductances changed as a result of the WTA path AC nonetheless. The paths

AB and BC saw an increase in their conductance by over 100% while the paths

CD and AD saw an approximately 30% increase in conductance. The path BD

which is represented by the green line saw hardly any change in its conductance

which is interesting as it is the only path in the NWN that is independent of the

electrodes A and C. The negligible change in the path BD also explains the change

of conductance observed in the other non-driven paths. The evolution of the main

path between the electrodes A and C causes a change in conductance for any other

path containing these electrodes. The same simulation was performed for each

other pair of electrodes in the network, i.e. a WTA was created between a pair

of electrodes and its effect on the remaining conductive paths were calculated. In

each case the same behaviour was seen, paths that shared an electrode with one of

the those in the main WTA path saw a significant change in their conductance. The

results of two such simulations are discussed in Appendix B.

While the multi-terminal device simulated in Figure 5.12 is a proof-of-concept, it

does offer valuable insights into the potential of NWNs as a neuromorphic device.

The contamination of non-driven paths by the evolution of a memory state in other

paths is undesirable in memory storage devices and device architecture would

need to mitigate this. This could be achieved through a large number of electrodes

orientated in such a way so that shared junctions in their WTA is unlikely and

when it does occur, contamination is minimal. The cross-contamination between
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memory states does have a novel application in neuromorphic devices as they are a

means to achieve associative memory states158, for example two paths, AB and BC,

doubled in conductance as a result of the formation of the WTA in AC. Associative

memory states means that the development of one memory state has an impact on

another, leading to a computational system of high complexity and computational

capabilities. This point will be discussed further in the Conclusions and Future

Work chapter.

5.5 chapter summary

In section 5.1, a model was introduced that empirically captured the memristive

properties of a nanowire junction named as power-law plus cut-off (PL+C). This

model was developed based of experimental measurements of nanowire junctions

which showed a power law relationship between their conductance (Γj) and the

current compliance such that Γj = AjI
αj where the parameters Aj and αj are de-

termined from the experimental measurements. The upper bound for a junctions

conductance was taken as the quantum of conductance, the conductance of a single

channel connecting the nanowires, while the lower bound for conductance was set

as 10−7 S. These bounds are not fixed parameters and can be changed in accordance

with the system being studied, here they were motivated by experimental data. The

dynamics of the conductance evolution of a nanowire junction was shown to de-

pend sensitively on the parameters Aj and αj, mainly through the current level at

which their conductance starts increasing from Γoff and when it ceases evolution at

Γon.

A method to incorporate the dynamical junction resistance into the Kirchhoff’s

circuit equations was presented in section 5.2 resulting in the capability of simulat-

ing the macro-scale memristance of a NWN based on the underlying memristive

junctions. The network memristance was shown to have three main scaling dy-
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namics depending on the value of the junction scaling exponent αj: sub-linear,

linear or supra-linear. In all three cases a self-similar power law was identified

between the scaling of junctions and networks comprised of these junctions. For

supra-linear cases the emergence of highly conductive paths that display a winner-

takes-all behaviour was evidenced by the appearance of a steady-state of the NWN

conductance. Here the network entered a period of inactivity at a conductance cor-

responding to a single path of fully evolved junctions funnelling all of the current

along it. Current colour mappings were introduced in section 5.3 as a means to

visualise the current-flow through a NWN and further suggested the emergence

of WTA paths during network evolution. Passive Voltage Contrast SEM images

of a physical NWN that had undergone memristive evolution highlighted areas of

highly conductive pathways that shows the winner-takes-all behaviour predicted

by simulations.

A multi-electrode architecture for a NWN was introduced in section 5.4 such

that several addressable inter-electrode paths could be interrogated while one of

the paths was driven to a high conductance state. as expected, the main path

saw an increase of over two orders of magnitude in its conductance as a winner-

takes-all path was formed between the two driven electrodes. Other paths in the

NWN did not see such a dramatic increase in conductance, no more than a factor of

two. One pathway did not increase in conductance whatsoever meaning that it was

unaffected by the formation of the high conductance winner-takes-all. These results

suggest that several independent addressable memory states could be stored in a

NWN. The results also hint at a process to achieve associative memory states in a

NWN through the use of shared electrodes, a remarkable property of a randomly

connected set of nanowires. More tests and simulations need to be performed in

order to exploit the full potential of this proof-of-concept neuromorphic random

NWN device.



5.5 chapter summary 145

Figure 5.12: (a) A sketch of a multi-terminal NWN with 4 electrodes depicted by verti-
cal red lines (labelled A-D), and light gray lines representing the nanowires.
The paths between the terminals are depicted by thick lines of different
colours. (b) The inter-electrode terminal for each of the 6 paths depicted in
(a). The path between A and C is matured to a high conductance state cor-
responding to a new memory state while the memory states of the other
paths change very little.





6
C O M PA R I S O N O F A C A PA C I T I V E A N D M E M R I S T I V E

J U N C T I O N A C T I VAT I O N P R O C E S S

In the previous chapter, the memristive activation of a NWN undergoing electrical

stressing was introduced. This junction activation is a current driven process that

requires increasing current levels through the NWN, causing the conductance of

each junction to change in an analogue manner up until their final high conduc-

tance state. It was also shown that the PL+C model has activation patterns that are

highly dependent on the properties of the junction; for supra-linear junction scaling

the emergence of highly localised current flows through the networks takes place

in a ‘winner-takes-all’ (WTA) manner, while for linear and sub-linear exponents,

current-flow deviates from the WTA behaviour by distributing the current through-

out the network. The PL+C is not the only contemporary model that describes

the dynamical activation of nanowire networks however. In recent publications

the inter-wire junctions have been treated as a capacitor which breaks down when

the potential across the junction reaches some critical value, causing an electrical

connection between the nanowires81,128,129. The capacitive model (CPM) for junc-

tions has been used to identify the activation voltage of the network, i.e the voltage

required to begin current flow through the network. At the point of network acti-

vation, a shorting path between two electrodes is fully formed, facilitating current

flow between sources. From here on, the PL+C model shall be referred to as the

memristor model (MRM).

147
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Figure 6.1: (Top panels) Circuit sketches representing a NWN being described by a (a)
capacitive model (CPM) and a (b) memristive model (MRM). Each lumped
circuit element is assigned to model the electrical characteristics of the inter-
wire junctions in their respective formation (capacitors) and adaptive con-
ducting (memristors) modes. Horizontal green lines represent metallic elec-
trodes. (Bottom panels) PVC SEM images of Ag NWN samples subjected to
distinct electrical characterizations. In (c), the image was taken by holding
the source voltage at 2 Volts and setting a leakage current of few hundreds
of pA. The network dimensions are 200× 200 µm and the white scale bar
corresponds to 20 µm. In (d), the image was taken from a full I-V sweep
with a limiting current compliance of 500 nA. The network dimensions are
100× 100 µm and the white scale bar corresponds to 2 µm. Darker wires
are grounded to the electrodes meaning that their junctions were optimized
in response to the given excitation. Almost the whole network is featured in
the capacitive/formation regime whereas a single WTA path is contrasted
in the memristive/conducting regime159. More details on this experiment
can be found in our publication159.

The expected response of the network to a capacitive junction breakdown ac-

tivation model is hinted at in Passive Voltage Contrast (PVC) images performed

at low leakage current levels. Figure 6.1 (c) presents a PVC image of a nanowire
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network exposed to very low leakage current (hundreds of pA). In this image the

dark wires represent those that have the strongest electrical connection with the

electrodes. This leakage current is too low to begin the memristive evolution of

the junctions which remain in their pristine insulating state, equivalent to a paral-

lel plate capacitor. Figure 6.1(d) is a PVC image performed at 500 nA, a level at

which memristive evolution has begun and here a localised electrical connection is

depicted by the dark wires and is a manifestation of the WTA behaviour discussed

in the previous chapter. These images suggest that networks will behave differently

in the CPM and MRM. These behaviours will be compared in this chapter.

The aim of this chapter is to introduce and characterise certain traits associated

with the CPM and contrast this with the dynamics of networks undergoing mem-

ristive activation. This is achieved by applying the CPM and MRM to an identical

network geometry, as sketched in Figures 6.1(a) and (b). Nanowires connected by

either capacitive or memristive junctions are complementary models whose appli-

cability depends on how the networks are interrogated. The capacitive response is

dominant when the network is interrogated by extremely low currents (∼ pA); in

this regime, each junction is represented by a capacitor which breaks down if the

voltage drop across it exceeds its characteristic threshold voltage making an electri-

cal contact between the wires. Once this occurs, the junction becomes a memristor

at a high-resistance state (HRS) and sufficiently small currents can flow through it.

As more current is adiabatically sourced onto the network, the memristive state of

these junctions can be continuously evolved up to their respective low-resistance

state (LRS).

This chapter will highlight for the first time the main difference between the acti-

vation of a network with binary state junctions (CPM) and analogue state junctions

(MRM). The layout of this chapter is as follows. The capacitive junction model

along with the computational framework to apply it to a NWN is introduced in

section 6.1. The activation patterns of the CPM is illustrated in section 6.2 and here

it is contrasted with that of the MRM by applying both to an identical network
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geometry. In section 6.3, the CPM is shown to have a scale-invariant response to

network perturbation resulting in mass junction activation events that can propa-

gate across the entire network. Accurate simulations capturing this scale-invariance

are performed and reported for the first time in this section. The fault-tolerance at-

tribute of networks in both activation models are contrasted in section 6.4, which

has not been previously reported in the literature. This was achieved by examining

junction activations and network performance after a junction that is central to the

network performance ‘fails‘, or is removed from the mathematical graph describing

the NWN. There is a chapter summary presented in section 6.5.

6.1 capacitive junction model

The capacitive model is relevant to negligible current flows through the network

such that the capacitive response of junctions dominates the network properties.

In this scheme, the nanowires are treated as equipotential wire segments and their

connections as binary capacitors. This modeling scheme is similar to the JDA ap-

proach introduced in chapter 3 in that the junctions define the connectivity profile

of the network. This assumption was taken as charge can easily move through the

conductive nanowire but not across the insulating barrier in a junction. Depending

on the voltage drop across the capacitive junction, it can be either non-activated (|0〉)

or activated (|1〉). The capacitance state of a junction can flip from |0〉 → |1〉 if the

voltage drop across it is larger than its associated breakdown voltage (Vb), hence a

given junction connecting a pair of wires (n,m) can be activated if |Vn − Vm| > Vb

where Vn (Vm) is the potential at wire n (m). In physical systems this activation

is reversible as it represents a critical voltage that is required to allow current-flow

through a junction. In simulations, the potential across the capacitive network is

only ever increased and so the junction switch |1〉 → |0〉 is not considered. The ca-

pacitor activation is characterized by a modification in the capacitance value of the
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junction as C0nm → C1nm where C0nm is an estimated quantity determined uniquely

by the characteristics of the wires and C1nm → 0 meaning that the junction has lost

its capacitive properties and charge will start to flow through it. The values of C0nm

are estimated by considering interwire junctions as parallel-plate capacitors with

C0nm = C0 = εrε0A/d ∀ (n,m) pairs for the sake of simplicity. In the equation, εr

is the relative permittivity of the dielectric, ε0 is the permittivity of the air, A is

the plate area, and d is the plate separation. For our PVP coated Ag nanowires,

we used εr ≈ 2.5, d ≈ 8 nm and the area of the plates can be estimated from the

nanowire diameters which range D ∼ 60− 80 nm. Assuming an ideal square area

projected from two superimposed soft-body wires, A = D2 resulting in C0 ≈ 18

attoFarads (aF). The capacitance of wire sections is not considered by the CPM due

to it being negligible for metallic core nanowires. If the CPM was applied to non-

metallic wires the CPM should be extended to account for the coupling capacitance

of the wires themselves.

CPM simulation81 begins by placing the whole capacitor network in contact with

electrodes that source and drain a certain amount of charge Q, representing the

charge that builds up due to the applied bias voltage. The applied charge is in-

cremented from an initial value Qi up to a pre-defined maximum value of Qmax

in steps of ∆Q. At Qi, all junctions are set at |0〉-state, and at each charge incre-

ment the electric potential of each wire is calculated and the potential difference

across each junction is checked against the breakdown voltage. A capacitance ma-

trix M̂c is built taking into account the network connectivity and the potential on

each wire is obtained by solving the system of equations M̂cV̂ = Q̂ self-consistently.

This means that charge on the electrodes is only incremented once all |0〉 → |1〉 tran-

sition activity on the network ceases. A work-flow schematic of the recursive CPM

is shown in Figure 6.2.

The MRM follows the algorithm that was laid out in Chapter 5. For the sake of

consistency, CPM and MRM were employed on the same NWN skeleton. By using

an identical network geometry for both MRM and CPM simulations, the spatial
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Figure 6.2: A workflow diagram of the capacitive junction model. Refer to the main
text for details on the algorithm.

fluctuations can be removed allowing a more direct comparison between the acti-

vation dynamics of both models. Figure 6.3(a) is a SEM image of a NWN sample

made with Ag/PVP core-shell nanowires. This NWN has a wire density of 0.47

nanowires/µm2 and the average length of the wires is approximately 7µm. Af-

ter digitally capturing the geometry of this network using the method introduced

in chapter 3, we estimate that this network contains a total of 963 junctions. Fig-

ure 6.3(b) shows a stick representation of (a) which was built from the resultant

graph125.

The CPM model is meant to capture the dynamics of the network at extremely

low current levels while the MRM is applicable at higher levels. That being said, the

two models are mutually exclusive in this thesis, they do not interact and there is no



6.1 capacitive junction model 153

Figure 6.3: (a) SEM image of an Ag NWN with a wire density of 0.47 nanowires/µm2

and average wire length of 7 µm. Electrodes are located at either sides of
the network and the white scale bar at the bottom represents 10 µm. (b)
Stick representation of the Ag NWN sample taken from (a). Black sticks
represent the Ag nanowires whereas the vertical thick green lines represent
the electrodes159.

consideration of a dual memcapacitive and memristive response. There are reports

of a memcapacitive and memristive response existing on nanoscale junctions160–163

but as the models are applied to current regimes orders of magnitude in difference,

they were studied in isolation in this work. The dual memcapacitive/memristive

properties of a nanowire junction is a potentially fruitfull area worth investigating

and will be a subject of future work.
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6.2 path formation in capacitive and

memristive models

Recall from chapter 5 that the hallmark of supra-linear junction scaling was the

emergence of winner-takes-all paths between the electrodes. The network geom-

etry shown in Figure 6.3 was set to evolve in accordance to the MRM outlined

in chapter 5 from which Γnt × I curves were obtained. Figure 6.4(a) presents the

evolution of the network conductance with junctions scaling according to equation

5.1.1 with Aj = 0.05 and αj = 1.1. The four scaling regimes identified in chapter 5

are labeled in this plot, the initial OFF state, the transient growth (TG) where the

network identifies the winner-takes-all path and begins its power-law (PL) scaling.

As discussed in chapter 5, the network conductance scales as Γnt = AntI
αnt in a

self-similar manner to the junctions, i.e. αnt ≈ αj. Finally the network enters the

post-power-law (PPL) regime where the winner-takes-all path is fully developed

and additional paths are fully activated as the current flowing through the network

continues to increase.

A visualisation of the activated wires at the end of the PL regime is shown in

Figure 6.4(b). An activated wire is one that has a junction driven to the quantum

of conductance and is highlighted as a black thick wire compared with the light

gray thin wires that have no activated junctions associated with them. This WTA

path contains 7 junctions evolved to the LRS meaning that just 0.72% of the junc-

tions handle most of the current-flow workload in the PL regime. As more current

is sourced onto the electrodes, other conducting paths are enabled in a discrete

fashion. The device gradually acquires a two-dimensional character due to the for-

mation of parallel conductive paths. About 80 supra-linear junctions reach their

optimum conductive state at I = 30 u.c. allowing the network to distribute the

input current through multiple conducting paths. This is roughly 8.3% of the junc-
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Figure 6.4: (a) Simulated conductance versus current obtained for the image processed
Ag NWN shown in Figure 6.3. The curve was calculated with the MRM.
All four distinct transport regimes discussed on the main text is depicted
on panel and highlighted in different colours: (OFF) OFF-threshold, (TG)
transient growth, (PL) power law, and (PPL) post-power-law. Currents are
expressed in units of current (u.c.). The junction characteristics are set at
αj = 1.1 and Aj = 0.05. The blue circle marks the point in the curve in which
the junctions comprising the WTA paths are fully optimised at I = 1.77 u.c.
and Γnt = 0.013 mS. This point marks the disruption of the PL conducting
regime. (b-c) NWN skeleton in which nanowires connected by junctions at
the LRS are highlighted in black and in light grey otherwise. The NWN
snapshot depicted in (c) was taken at the PPL stage at I = 30 u.c.. The OFF
conductance region is characterised by no junction resistance change and
so this is the region that the CPM is applied to. Once the junctions begin to
change, the network is best described by the MRM159.
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tions taking part in the conduction process. A visualisation of the activated wires

at I = 30 u.c. is depicted in Figure 6.4(c).

As stated in the previous section, the CPM applies to low current levels that

are not strong enough to begin the memrisitive evolution of the junctions. This

is the OFF regime of a network which is depicted in Figure 6.4(a) and is labeled

as "capacitive" at the top of the plot. At low current levels, corresponding to the

OFF regime, one can expect to find a capacitive response from the individual NW

junctions coupled with some leakage current since their dielectric coating are not

expected to be an ideal insulator; a small DC current can always leak through the

dielectric material. For example in the passive voltage contrast image in Figure

6.1(c) the leakage current was of the order of hundreds of pA (10−7A)159. To ac-

count for this dual response, CPM is modified to incorporate leakage current in

capacitive networks by considering a parallel RC circuit as a proxy for low current

flow in NWNs. A potential difference that is placed across both elements then links

the charge accumulated on the NWN with a leakage current through the resistor.

The size of the leakage resistor is chosen in order to give leakage currents of the

order of hundreds of pA.

Figure 6.5(a) shows the gradual breakdown of a capacitive network by visualising

the leakage current flow required to cause an increasing charge build-up across

the capacitor that is in a parallel circuit with the leakage resistor of 1010 Ω. One

can identify a sudden increase in the required leakage current flow at 6.22 aC. A

visualisation of activated wires in the NWN at this point is presented in Figure

6.5(b) where black wires represent those with an activated junction thus giving the

wire an electrical connection with either of the electrodes. Junctions that are in

contact or are near the electrodes activate easily as the potential difference builds

quickest in these areas. Figure 6.5(c) shows the activated wires at the point when

a continuous electrical path between the two electrodes has formed. The current

levels through the resistor at this point is 1.3× 10−7 A.
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Figure 6.5: (a) Leakage current through the parallel RC circuit as a function of the
charge accumulation of the capacitive NWN. Steep jumps in current levels
are clear at certain charge values and correspond to sudden activations of
capacitive junctions. (b) Visualisation of the network at the first set of junc-
tion activations at 6.22 aC and leakage current of 4.2× 10−8 A. Wires with
an activated junction are in black and inactivated wires are in light grey.
Figure (c) presents the activated wires when an electrical path between the
electrodes is formed at 1.3× 10−7 A and 11.78 aC. (d) Activated wires at
a relatively high leakage current level at 5.7× 10−7 A and 30 aC. Almost
all junctions in the network underwent breakdown and the system is now
memristive at the HRS159.
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A striking difference between the CPM and MRM can be seen here; the number

of junctions that are activated before path formation in CPM is much greater than

in path formation in MRM. In the CPM, there are 61 junctions activated at path

formation, i.e. 6.33% of junctions compared with 0.72% of junctions in the WTA

path captured in MRM. Not only are activated junctions less concentrated in the

CPM at path formation, the regions of activations are slightly different. CPM seems

to favour the lower half of the network for activations while the WTA emerges in

the centre of the network in the MRM. It may be that the effects of reduced net-

work connectivity at the edge of the NWN discussed in section 2.5 makes it more

favourable for network activation in the CPM. Figure 6.5(d) is a visualisation of the

network at a late stage of activation. A large swathe of the network has been acti-

vated at this stage, much like the MRM PPL regime depicted in Figure 6.4(c). Note

the sudden jumps in the required leakage-current flow associated with clusters of

breakdown events that are crucial for the development of the memristive properties

of the NWN during its adiabatic electrical stress. These jumps correspond to the

sudden activation of wires in the network causing the effective capacitance of the

network to drop suddenly. The current level through the resistor during capacitive

activation is in the order of 10−7 A which compares favourably with current levels

of hundreds of pA measured in the PVC image shown in Figure 6.1(c) and yet well

below the current levels required for junction evolution in the memristive regime.

As with the memristive response of a NWN, the junctions that are activated and the

order in which they do so are determined by the network connectivity. CPM can-

not be applied to NWNs where percolation has not occurred as a continuous line

of junctions between electrodes are required to induce voltage differences across

NWN junctions.

The dynamics of linear and sub-linear are different to the supra-linear and are

presented in Figure 6.6 for completeness. Figure 6.6(a) is the conductance curve

for the linear exponent simulation on the network geometry presented in Figure

6.3. The same initial low resistance path that emerged in the supra-linear case is
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activated along with additional junction activations along a second low resistance

path connecting the electrodes at the bottom of the network in Figure 6.6(b). Fig-

ure 6.6(c) represents the activated junctions at 30 u.c. in the linear exponent case

and shows much less activated junctions than in the supra-linear simulation shown

in Figure 6.4(c). The sub-linear exponent simulations result in the smoothest con-

ductance curve out of the three and is shown in Figure 6.6(d). The low resistance

path that emerges in the supra-linear and linear case is evident in the sub-linear

regime at path formation in Figure 6.6(e). The activated wires for the supra-linear

exponent at 30 u.c. are shown in Figure 6.4(f).

Qualitatively, the regions that are activated in the CPM are also activated in the

MRM, however the overlap between the two is not perfect. This non-perfect over-

lap is essentially a manifestation of the different activation processes, binary in the

case of CPM and analogue for the MRM. The difference in activation patterns for

path formation is a key contrast between the two models that have been applied

to the exact same network geometry, and has been seen in all other networks that

both MRM and CPM have been applied to. Interestingly, both models do not ac-

tivate many junctions at the top of the NWN, a region one expects a low number

of junctions in, as discussed in section 2.5. We see that both models have a similar

sensitivity to network geometry, a theme that is examined further in section 6.4.

For a more quantitative comparison between the models, the amount of activated

junctions (Φ) in all network diagrams appearing in Figure 6.4 & 6.6 and at path

activation in the CPM, Figure 6.5(b), can be found in Figure 6.7. Note that the

net difference ∆Φ = Φ(PPL) −Φ(PL) increases with respect to αj, meaning that

the higher exponent systems are more efficient at creating isolated low resistance

paths. But more importantly, this result captures the essence of the experimental

observations presented in Figure 6.1(c-d); it contrasts the highly selective activation

pattern of memristive (supra-linear) NWNs with the more distributed activations

obtained when the capacitive properties of these materials are probed. The number

of activations needed for path formation in the CPM is much greater predicted by
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Figure 6.6: (a) Magnified Γnt× I curve for the network depicted in Figure 6.3 with a lin-
ear scaling exponent αj = 1. (b) The activated wires at the moment where
the electrodes are bridged by a path of fully activated nanowire junctions.
Note that this path lies in the centre of the network, the WTA path that
emerged in the supra-linear simulation in Figure 6.4 and a second path has
begun to emerge but is not fully activated at this point. (c) Activated wires
at I = 30 u.c. occupy a large swath of the network, slightly less wires are
activated here than in the supra-linear simulation Figure 6.4(c). (d) Mag-
nified Γnt × I curve for the sub-linear simulation αj = 0.9. The activated
wires at path formation are visualised in (d), a large amount of activations
are required for a fully activated path to emerge. The activated wires at
I = 30 u.c. are shown in (e), again there are less activated wires than in the
linear case.

the MRM, pointing to the network wide participation of the CPM in path forma-

tion.
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Figure 6.7: Number of activated junctions (Φ) predicted by the capacitive (CPM) and
the memristive (MRM) descriptions. Note that an activated junction in the
CPM picture corresponds to a capacitor having its state flipped as |0〉 → |1〉
whereas in the MRM picture it corresponds to a memristor reaching its most
optimized conductive state at the quantum of conductance. 61 capacitors
were activated in order to create a shorting path between the electrodes.
The activated junctions in the MRM is determined by those that reach their
ultimate conductivity state at the moment of path formation (red) and at
I = 30 u.c. (blue) for each of the distinct exponents αj.

6.3 scale-invariant dynamics in capacitive

activations

The sudden and large amount of junction activations, also referred to as avalanches,

that give rise to the steps in leakage current in Figure 6.5(a) offers much insight into

the scale-invariant response of NWNs according to CPM. Of particular interest is

the distribution in avalanche sizes and their respective relaxation times recorded

during the CPM evolution, which is shown in Figure 6.8. The size of an avalanche

(s) is defined as the number of junctions that break down at a given input charge

Q. When at least one junction breaks down, the network self-organizes by redis-
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tributing its built-up charge throughout its remaining capacitive elements which

can trigger subsequent avalanche events at the same input charge. The amount

of iteration steps the network takes to relax its avalanche activity up to the point

where s = 0 is defined as the avalanche lifetime or relaxation time (τ). Figure

6.8(a) and (b) are the normalised avalanche (fs) and lifetime (fτ) distributions taken

for an ensemble containing 3000 randomly generated NWN samples, each with a

fixed wire density of 0.4 nanowires/µm2 and lengths of 7 µm. Three difference

network sizes are simulated to investigate if finite sized effects have an impact on

the scaling of fs and fτ: 55 × 55 µm (blue diamonds), 60 × 60 µm (green squares),

and 70 × 70 µm (orange triangles). One can observe that both distributions have

a power-law trend which is indicative of scale-invariant critical behaviour, where

a small perturbation can cause changes across the entire network, and is found in

many complex models such as the sandpile, game of life, and cellular automata

systems164. The fs and fτ power-laws agree for the three system sizes, but at large

times and avalanche sizes the data becomes noisy due to the finite size of the sim-

ulated networks. Yet, we can say that nanowire meshes operating in the capacitive

mode exhibit a collective integrated response to electrical stimuli that is indepen-

dent of the device size, i.e. the emerging collective dynamics of capacitive NWN

systems is scale-invariant at least within certain length scales. MRM dynamics do

not give rise to scale-invariant network wide perturbations as current perturbations

propagate through the network immediately and critical states do not occur.

In addition to the avalanche characterization provided by the computational

model, experimental evidence of the collective dynamics of NWNs operating at

minimal leakage currents was found, similar to works of Avizienis et al165 and

Demis et al166. The experiment consists of measuring time traces of leakage cur-

rent in a NWN sample experiencing a DC bias voltage for a large period of time.

By performing a Fourier transform on the measured fluctuations in current, one

can unveil complex emergent behaviours related to the activation process of the

network and its recurrent connectivity structure. An Ag/PVP NWN of dimensions
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Figure 6.8: (a) Avalanche (s) and its respective (b) lifetime (τ) frequency distributions
in log-log scale taken for a random NWN ensemble containing over 3000

network samples of fixed wire density of 0.4 nanowires/µm2 and distinct
sizes of 55 × 55, 60 × 60, and 70 × 70 µm. Note that for this result to
acquire statistical significance, it needs to be taken for a large ensemble of
random NWN samples rather than applying CPM onto the solely image-
processed NWN sample of Figure 6.3. The dashed lines are power law
fittings that give exponents of βs = −1.25 for the avalanche distribution
sizes and βτ = −1.42 for the lifetime distribution. Finite size effects play an
important role in cutting off the power law trend specially in the lifetime
results. (c) Time traces of current response to 10.5 V DC bias measured in
an Ag NWN sample of dimensions 1 × 1 mm. The network experiences
this DC voltage for 20 hours in total but the plot only depicts the first three
hours of measurement. (d) Fourier transform (in log-log scale) of the time
traces of DC current response shown on panel (c). The power-law fit (red
dashed line) gives a 1/fβ scaling with an exponent β = 1.159.

1 × 1 mm was connected to a 10.5 V bias for 20 hours in total, recording the cur-

rent throughout. Only the first three hours of current data is required to analyse

the leakage-current response of the sample because, after three hours of measure-
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ment, sufficiently high currents levels were recorded indicating that the network

had surpassed leakage conduction. These results are shown in Figure 6.8(c-d).

The presence of a power-law trend in the power spectrum points to a network-

wide activation that is scale-invariant with a 1/fβ noise scaling with β = 1. As

argued by Avizienis et al.165, such persistent current fluctuations at DC bias indi-

cate the capacity of the network in avoiding the formation of a single dominant

high-conductivity pathway between electrodes. This view agrees with the picture

captured by our CPM (with a leakage term) of a scale-invariant clustering activa-

tion process in NWNs operating at a sufficiently low-current domain.

The CPM bears similarity to the circuit-breaker model developed by Chae et al167

in which the resistance of elements in a lattice switch ON and OFF instantaneously

with an applied voltage crossing a certain threshold. Unlike the CPM however the

change in resistance was reversible, able to switch between high and low resistance

states depending on its current state and the associated critical voltage. They too re-

ported avalanche behaviour but did not report the power-law analysis such as that

presented in Figures 6.8(a) and (b). This suggests that the scale-invariant avalanche

behaviour is a result of the binary nature of junctions and will be a focus of future

work as it has important implications to the neuromorphic computing capabilities

of NWNs.

6.4 fault tolerance

As so far demonstrated, disordered NWNs can exhibit scale-invariant capacitive

activation or self-similar selective memristive dynamics depending on which cur-

rent range the network is being probed. In particular, such memristive random net-

works are very attractive for probing collective features that are typical of biological

neural systems such as adaptability, parallel processing, and fault-tolerance capabil-

ities. Contrary to regular patterned devices - such as crossbar arrays116,168 - where
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each unit has a singular role, computation in random memristive networks relies

on the non-deterministic action of their nonlinear elements distributed in a highly

disordered manner. The disordered and dynamical natures of these networks

make them ideal candidates to probe novel fault-tolerant computing paradigms. In

other words, the massively parallel processing power characteristic of disordered

interconnects combined with the adaptability of their building-blocks enables self-

organization, reconfiguration, and self-healing to mitigate device shortcomings169.

To illustrate such robustness to variability in random memristive NWNs, the role

played by defects on their conduction and capacitive response is presented in this

section.

A defect is made on a network composed of supra-linear junctions exhibiting

WTA conduction by the removal of a junction from this key path before any cur-

rent is applied to the network and junction evolution begins. This is a striking

perturbation to consider since in principle it can destroy the current flow through

the most important network path. MRM simulations were carried out to moni-

tor the network conductance as a function of current for the defective system and

compared with the original Γnt × I curve shown in Figure 6.4(a). Figure 6.9(b) is a

visualisation of the WTA path in the unperturbed network, identical to that shown

in Figure 6.4(b). Figure 6.9(c) depicts the new WTA path that is formed in the

perturbed network with the destroyed junction represented by the red star. The

conductance evolution for both original and defective NWN is almost identical

at least until the first stages of the PPL regime as shown in Figure 6.9(a). The

self-healing properties embedded in the dynamics of memristive NWNs are clear

in this example; the disruption of paths forces the junctions to re-adapt and this

causes a redistribution of current across the network frame. The system then recon-

figures into another least-resistance path that does not aversely impact its overall

conductance using hence just a little extra power to stress this second WTA path.

A second type of junction failure was also simulated where the network evolves

unperturbed until the formation of the WTA path and at a point in the first plateau



166 comparison of a capacitive and memristive junction activation process

Figure 6.9: (a) Γnt × I curves obtained for the original (black dashed line) and the de-
fective network (red line). The junction characteristics in these simulations
are αj = 1.1 and Aj = 0.05. The curves only differ at the PPL regime. (b)
Network diagram depicting wires in the WTA (black sticks) at I = 1.77 u.c.
obtained using MRM in the original NWN from Figure 6.3. (c) A junction
in this path was deleted and it is highlighted by a red star symbol. The net-
work self-organizes the current transmission to another WTA path located
at its bottom part. This path contains the same amount of junctions as in
the original network, i.e. 7 junctions. Wires carrying residual or no current
at all appear in light grey. Vertical green lines represent the electrodes that
source current onto the network159.

the junction ‘fails‘ and is removed from the Kirchhoff matrix. When the junc-

tion fails, the magnitude of the applied current will not alter but the current
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flow through the network will dramatically reorder itself. Associated with this

re-ordering, two junction responses to decreased current-flow are examined. In the

first, the conductance of each junction will be allowed to either decay to a value

given by Γj = AjI
αj
j representing a memristive junction that responds quickly to

decreased current-flow. In the second set of simulations, junctions will not be al-

lowed to decay to a lower conductance, representing a system with very slow or

no decay of the memristive state. Figure 6.10(a) presents the Γnt × I curves for the

system with memristive junctions that can decay. The black dashed line depicts the

conductance curve of the original NWN, i.e. with no defect. The red line is the

conductance curve of the defective NWN. The dramatic spike downwards in con-

ductance seen at I = 2 u.c. corresponds to the point at which the defective junction

failed. Immediately after the spike the conductance recovers to a value just below

that before the junction failure. The conductance oscillates around a steady state

until I = 2.7 u.c. where there is a spike in conductance. The rise and subsequent

fall in conductance corresponds to the gradual reduction in current flow through

the junctions in the original WTA, reducing their conductance. A visualization of

the NWN at I = 3 u.c presents the activated junctions and the wires involved in the

new WTA path. None of the junctions in the old WTA path remain in their fully

optimised state.

Figure 6.10(c) presents the conductance curve of the faulty network where no de-

cay in conductance occurs in the original WTA junctions apart from the failed junc-

tion. Again an immediate spike downwards is seen after junction failure at I = 2 u.c

and current flow is redistributed through the NWN. Incredibly, the conductance of

the NWN actually increases beyond its conductance prior to junction failure. This

may due be to the development of new junctions joining the original WTA and a

second WTA path emerging. The conductance then increases at a steady rate after-

wards towards the second plateau. Interestingly in the visualisation of the activated

junctions in at I = 3 u.c. there are no additional junctions activated meaning that a

new WTA has not fully developed yet. This means that the the majority of current
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is still being funneled through the remnants of the original WTA path. At the point

of the failed junction it then flows through the undeveloped network. Both junc-

tion failure simulations show that there is an abrupt redistribution of current-flow

through a NWN where a junction in the WTA fails soon after its formation. The

abrupt redistribution of current-flow when a junction fails under a current load is a

clear indication of the potential fault-tolerance of random NWNs. The conduction

levels return to near the unperturbed system levels and their subsequent evolution

is much in line with the pristine networks.

It should be noted that here the MRM is meant to capture the gradual increase

in conductance levels associated with an adiabatic increase in sourced current on

the network. The sudden junction failures presented in Figure 6.10 cause a sudden

redistribution of current flow that may not be properly captured by the MRM.

Future investigation of the fault-tolerance of memrsitive networks will require the

implementation of a modeling schemes that account for the materials response to

large current-flow changes at an atomistic level103,170,171.

In the capacitive regime, it was demonstrated that small perturbations can have

a significant effect on the network dynamics as depicted in Figure 6.8(a-b). Here

the network is perturbed by deleting a key junction that is involved in forming the

path between electrodes in the CPM before any charge has begun accumulating on

the electrodes. In Figure 6.11(a), the unperturbed network is presented when the

leakage path between electrodes has been formed for the first time and this occurs

at the charge of 11.77 aC. Figure 6.11(b) shows the activated wires at the moment of

path formation for the perturbed network with one of its crucial junctions being de-

stroyed from the start of the simulation (represented by the red star). This junction

plays a pivotal role in the dynamics of path formation in the capacitive network

which is evident when we compute the number of activated wires for both pristine

and perturbed cases. The unperturbed network activates 61 wires and junctions

whereas the defective one mobilizes 95 wires and 126 junctions, an increase of 56%

of activated wires and over 100% for junctions with respect to the benchmark pris-
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Figure 6.10: (a) Γnt × I curves obtained for the original (black dashed line) and the de-
fective network (red line) where the defect was introduced during the first
plateau and junction conductances are allowed to decay. (b) Network di-
agram depicting activated wires at I = 3 u.c. with junction conductance
decay. The defective junction is represented by a red star, and wires with
activated junctions are in black. (c) Γnt × I curves obtained for the original
(black dashed line) and the defective network (red line) where the defect
was introduced during the first plateau and junction conductances cannot
decay. (d) Network diagram depicting activated junctions at I = 3 u.c.
with no junction conductance decay. The defective junction is represented
by a red star, activated junctions are blue dots and wires with activated
junctions on them are in black. When junction conductances cannot decay,
no shift in WTA takes place.

tine system. The charge required to form the electrode-electrode path also points

to the sensitivity of the network to perturbations: 13.05 aC for the defective NWN

compared with 11.77 aC for the unperturbed one.
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Figure 6.11: (a) Network diagram depicting activated wires (black sticks) in the origi-
nal NWN described as a capacitive system via CPM. The simulation ends
when a continuous path of grounded wires is formed between the elec-
trodes. 61 wires and junctions are activated in this simulation. (b) The
same activation simulation as in (a) but with a defective junction marked
with a red star symbol. The defective junction does not play any role in
the simulation as it is a failed junction from the start. The simulation
ends when a path is formed between electrodes, requiring 126 junction
activations and 95 wire activations. (c) The same activation simulation
as in (a) but with a defective junction that fails immediately after path
formation. 124 junction activations or 95 wire activations occur for path
reformation159.

A second failure method was simulated which is the failure of a key junction

immediately after a continuous path is formed for the first time. The same junction

as that failed in 6.11(b) was taken as the failure point. The junction was chosen to

fail at Q = 11.77 a.c, the same point at which a path is formed in the pristine NWN.

The junction is then removed from the capacitance matrix but both wires remain

activated and the simulation continuous until a new path is formed between the

two electrodes. Here the path reforms at 12.06 u.c, less than that required for the

network in 6.11(b). Again 95 wires are activated in this network but there are 124

junctions activated, two less than in the case shown in panel (b). A visualisation of

the activated wires is shown in Figure 6.11(c) and looks very similar to panel (b).
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The fact that both failure mechanisms provide very similar activation behaviours

may be due to the fact that the CPM is a network wide activation procedure, unlike

the MRM. Contrasting the fault-tolerant results captured by CPM and MRM, one

can conclude that the CPM shows a greater sensitivity to network geometry and

connectivity profile. Perturbations to the connectivity profile results in wildly dif-

ferent activation patterns in the NWN and the destruction of key junctions involved

in path formation results in a large increase in the required junction activations and

acquired electrode charge. The MRM however is much more robust; while the WTA

path may completely re-route when a fault is encountered it does so in an efficient

manner with little change in the global conductance of the network.

6.5 chapter summary

In this chapter, a model that describes nanowire junctions as a binary state capac-

itor that transitions to an activated state once a critical potential difference across

the junction was introduced in section 6.1. A computational routine to apply the

capacitive model to a nanowire network with an incrementally increasing applied

voltage was described in section 6.1. This chapter also addresses the path forma-

tion dynamics, scale-invariant response to network perturbations, and the fault-

tolerance of the CPM was compared with the MRM that was introduced in chapter

5.

In section 6.2, path formation in the CPM was compared with that of the mem-

ristive junction model. The two successfully model the leakage capacitive and

memristive responses of NWNs perturbed at distinct transport regimes: the capac-

itive to extremely low current levels (∼ pA) and the memristive to currents in the

range of ∼ nA-µA. By applying both models to an identical network geometry, the

contrasting dynamics of both models were highlighted. The MRM was previously

shown to develop highly selective current-flow paths in a winner-takes-all manner
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for certain junction parameters. The CPM on the other hand displayed a network

wide activation pattern before a continuous path of activated junctions existed be-

tween electrodes. Not only were the activation patterns different between the two

descriptions, the emergent paths between electrodes were located in entirely differ-

ent areas of the network.

The CPM was shown to move between periods of idleness to abrupt cascades

of mass activations of junctions in the network as the potential difference across

the device was increased in section 6.3. The size frequency distribution of these

activation events, or avalanches of activations, were shown to follow a power-law

relationship which is indicative of scale-invariant complex network dynamics, i.e.

the effect of perturbations to the network is only limited by the size of the network.

Experimental evidence for the complex dynamics of a physical nanowire network

with negligible current flow was presented and corroborates the scale-invariant

nature predicted by CPM simulations.

The fault-tolerance of the CPM and MRM models was shown through demon-

strating the response of the network to a junction failure in the main inter-electrode

path in section 6.4. In the MRM, two types of failures were simulated. First a key

junction in the WTA was destroyed before any current was sourced on the network

and the current level and sheet conductance required to achieve a new WTA path

were obtained. It was found that only a slight drop in sheet conductance occurred

at the formation of a WTA and a negligible increase in required current was ob-

served in the perturbed network. A second failure simulation saw a key junction

in the WTA path fail when the network had already achieved a WTA path, while

continuing to increase the current sourced through the network. Two junction re-

sponses to the redistribution of current through the NWN were simulated, either

the junction conductance state was allowed to decay to a lower conductance value

or it was not allowed to decay but only increase with increasing current levels. In

both simulations, the network experienced a large and sudden drop in conductivity

but quickly recovered as a new WTA was formed. Where junction conductivities
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were able to decay, the networks conductivity recovered to a level just below the

unperturbed network’s. The simulation with irreversible conductive states saw that

the conductance of the networks actually increases after the failure. This highlights

the robustness of massively parallel memristive networks in the MRM regime.

The sensitivity of the CPM to junction faults was also presented in section 6.4,

with two junction failure types similar to those examined for the MRM. Again a

key junction in the formation of the shorting path in the CPM was destroyed from

the beginning of the simulation and the number of activation processes required to

reestablish an electrode-electrode connection was recorded. In this particular exam-

ple, 126 junctions were activated at the formation of the shortening path compared

with the 61 activations that occurred in the unperturbed network. The second junc-

tion failure simulation saw the same key junction fail once the shortening path

between electrodes was formed. Here the reconstruction of the path occurred with

124 junction activations, two less than the network perturbed from the start of the

simulation. The perturbed capacitive required more than double the junction ac-

tivations to reform a shorting path between the electrodes showing that junction

failure in the CPM has a large effect in the capacitive properties of a network com-

pared to the response of the memristive model where failures had a minor effect

on the network conductivity.





7
S U M M A RY A N D F U T U R E W O R K

In this thesis, many aspects of the electrical transport properties of nanowire net-

works and their dependence on underlying nanowire parameters have been exam-

ined. The main goal of this thesis was to develop mathematical models and com-

puter simulations to succesfully capture these transport properties of NWNs, and

to explain and predict experimentally measured responses of NWNs. Networks

were studied with two main inter-nanowire junction elements; where junctions

have a static, and a dynamic response to electrical stimulus. Here a summary is

presented that reiterates the key points of this thesis as well as highlighting possible

extensions to this body of work.

7.1 thesis summary

In chapter 1, a general overview to the thesis was presented that provided context

to the material that was reported in the following chapters. Here, an introduction to

nanowire networks was given, and some of their many cutting-edge applications

were discussed; from efficient transparent conductors to a highly connected net-

works of memristive elements for neuromorphic devices. Mathematical techniques

and models that are used to accurately analyse aspects of NWNs in this thesis were

introduced. The main goal of the thesis was outlined here and motivated the theme

of the reported research to follow.
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Chapter 2 details the necessary background theory and mathematical formalisms

to understand current-flow through a nanowire network. It was shown that the

electrical properties of a network can be calculated by solving a system of linear

equations containing the connectivity profile and resistances of the network corre-

sponding to Kirchhoff’s circuit law. Then, an analytical method to calculate resis-

tances in an ordered infinite lattice was discussed. An effective medium theory for

ordered resistive lattices was then derived, and was applied to a two dimensional

square lattice with a bi-modal resistance distribution. A brief introduction to perco-

lation theory was also given, in particular the critical wire density for a conductive

stick system in two dimensions was discussed. Finally a functional form for the

number of junctions in a NWN was derived that relates the number of junctions

with the number of wires and wire lengths.

In chapter 3, a method to calculate equivalent resistances in a nanowire net-

work using the Kirchhoff set of linear equations were introduced; the Junction

Dominated Approach (JDA) and the Multi-Nodal Representation (MNR). The JDA

model only considers nanowire junctions as resistive elements, the MNR model

also includes a contribution of inner nanowire resistance. Using both models, the

inclusion of inner-wire resistances was shown to significantly alter the dependence

of the sheet resistance on various network parameters compared to when only

junction resistances are considered. Sheet resistances were shown to have a linear

dependence on nanowire junction and inner nanowire resistances for both MNR

and JDA models. Then, a power law relationship between sheet resistance and

wire density was observed as one would expect from percolation theory in sim-

ulations of ensembles of NWNs. The inclusion of inner nanowire resistance was

shown to alter the value of the exponent in the percolative power laws. Follow-

ing this, a method to capture the geometrical layout of a physical NWN sample

from an SEM image was presented, and was used to simulate NWNs on geome-

tries similar to an experimental sample. These simulations were used to identify

characteristic junction resistances for annealed Ag/PVP nanowires, estimating the
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junction resistances to be of the order of tens of Ohms, which was later experimen-

tally confirmed by Bellew et al124. Then, the ultimate conductivity of a network

was shown to be limited by the contribution of the inner nanowire resistances. To

understand how much potential for conductivity improvement a network has, the

optimisation capacity coefficient (γ) was defined to capture this, and was shown to

depend on the characteristic junction resistance of experimental samples. Finally,

the impact junction resistance dispersion has on the sheet resistance of a NWN

was demonstrated. It was shown that dispersion can break the linear relationship

between sheet and junction resistance, which can shift the characteristic junction

resistance to lower values compared to estimates obtained with a homogeneous

resistor distribution.

In chapter 4, an effective medium theory was used to establish a mapping be-

tween the sheet resistance of a heavily disordered NWN with that of an ordered

square lattice. To achieve this, expressions for the relative percentages of types of

resistors in a NWN were derived. These expressions can be used to determine a

quantitative critical wire density at which a percolating path between electrodes is

impossible, which is much less than the one suggested by percolation theory. The

expressions for relative resistor percentages were then used to create an effective

medium, one which maps the resistive properties of a random NWN onto a regu-

lar square lattice. This mapping was used to approximate the equivalent resistance

for different nodal separation between pairs of junction intersections in a random

NWN, and was shown to match simulations closely. The sheet resistance of a finite

square lattice where two opposite sides are bounded by electrodes was shown to

be caused by several identical paths of resistors connected in series. To apply this

behaviour and the effective square lattice mapping to a NWN, expressions to ap-

proximate the number of parallel paths and their lengths were derived, and gave

reasonable estimates when compared with simulations. After combining the effec-

tive square lattice with the expressions for its size, a closed-form approximation

for the sheet resistance of a NWN in terms of its underlying geometrical and elec-
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trical properties was then derived. The effective lattice was shown to approximate

the sheet resistance well for changing fundamental parameters, the scaling between

sheet resistance and wire density as calculated by the effective lattice agreed closely

with simulations. The effect of junction resistance and wire resistivity on sheet re-

sistance was also estimated with the effective lattice and gave similar results to the

simulations. The effective lattice was then applied to thirty experimental samples

and used to gauge the percentage of high resistance junctions that were present in

the samples. The effective lattice was also used to estimate the ultimate conductiv-

ity of a network which was then used to calculate the optimization coefficient in-

stantaneously, a calculation that comprises of several simulations when performed

with the MNR model.

The memristive response of nanowire junctions to increasing current flow through

a NWN was modeled using a bottom-up approach in chapter 5. This was achieved

by describing the individual junction response as a power-law plus cut-offs (PL+C)

and using this to simulate the collective response of a network of such junctions.

The PL+C model was developed based on experimental measurements of nanowire

junctions which showed a power law relationship between their conductance and

the current compliance. A self-similar scaling between the conductance evolution

of a NWN and an individual junction was found in simulations, confirming exper-

imental measurements of NWNs where junctions had measured exponents αj ≈ 1.

The network memristance was shown to have three main scaling dynamics depend-

ing on the value of the junction scaling exponent αj, whether it is sub-linear, linear

or supra-linear. In all three cases, a self-similar power law was identified between

junctions and networks. In other words, the network was found to scale as a power

law with an exponent similar to that of the junctions. For supra-linear junctions,

the emergence of highly conductive paths that display a winner-takes-all behaviour

was shown. Evidence for this was the appearance of a steady-state of the NWN

conductance for increasing current-flow, where the network entered a period of in-

activity at a conductance corresponding to a single path of fully evolved junctions.
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Current colour mappings were introduced as a means to visualise the current-flow

through a NWN, and showed that the winner-takes-all paths did indeed emerge.

The emergence of winner-takes-all paths could be used in devices for neuromor-

phic applications, and so a multi-electrode architecture for a NWN was designed

as a proof-of-concept. The device had several addressable inter-electrode paths that

could be interrogated while one of the paths was driven to a high conductance state.

Simulations suggest that several independent addressable memory states could be

stored in a NWN, and point to a process to achieve associative memory states in a

NWN through the use of shared electrodes.

A model that describes nanowire junctions as a binary state capacitor that tran-

sitions to an activated state once a critical potential difference across the junction

was introduced in chapter 6. The capacitive model (CPM) was contrasted with the

memristive model (MRM) outlined in chapter 5. The two successfully model the

capacitive and memristive responses of NWNs at distinct transport regimes; the

capacitive to extremely low current levels (∼ pA) and the memristive to currents

in the range of nA-µA. By applying both models to an identical network geom-

etry, the contrasting dynamics of both models were highlighted. Following this,

the CPM displayed a network-wide activation pattern before a continuous path

of activated junctions existed between electrodes. This contrasts with the highly

localised path that evolved in supra-linear junctions in the MRM. The CPM was

shown to move between periods of idleness to abrupt cascades of mass activations

of junctions in the network as the potential difference across the device was in-

creased. The size frequency distribution of these activation events, or avalanches

of activations, were shown to follow a power-law relationship which is indicative

of scale-invariant complex network dynamics, i.e. the effect of perturbations to the

network is only limited by the size of the network. Experimental evidence for the

complex dynamics of a physical nanowire network with negligible current-flow

was presented and corroborates the scale-invariant nature captured by the CPM

simulations. Finally, the fault-tolerance of NWNs modeled with CPM and MRM
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were probed by analysing the response of the network to a junction failure in the

main inter-electrode path. It was found that networks modeled with the MRM

were very robust with respect to fault-tolerance. Sheet conductances were slightly

perturbed with the failure of a junction in the WTA path for supra-linear junc-

tion exponent simulations. On the other hand, NWNs modeled with CPM were

shown to be very sensitive to junction failure. A junction failure greatly perturbed

the activation dynamics of the network, more than double the junction activations

to reform a shorting path between the electrodes were required after the junction

failure.

7.2 future work

In this thesis, many aspects of the resistive properties of nanowire networks have

been presented. The discussion included networks with static internal parameters,

i.e. those that did not change in response to electrical perturbations. Dynamic

responses of networks were also presented, a memristive and capacitive junction

response manifested a rich range of physical phenomena in nanowire networks.

Both static and dynamic features in the NWN systems have a vast potential to

yield fascinating results from future investigations. In this section, some future in-

vestigations that naturally follow the results presented in this thesis are discussed.

First we shall address the effective medium lattice that was developed in chapter

4. There are several investigations that follow from this approach. Very recently,

He et al reported an effective medium model for NWN sheet resistance172 similar

to that derived in chapter 4. In their manuscript, He et al removed clusters of elec-

trically inactive nanowires from the effective medium description and described

the relationship between sheet resistance and the underlying network parameters.

The removal of unconductive sections was performed numerically in the simula-

tions and corresponded to clusters of nanowires isolated from the main conduct-
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ing clusters and sections where only one electrical connection to the cluster existed,

thus creating a dead-end for current flow. The non-conducting sections are more

prevalent at low wire densities according to He et al; at low densities the effective

square lattice approximation tended to underestimate the sheet resistance in chap-

ter 4. By extending the first principles derivation of the three types of resistors

that occur in a NWN that was presented in chapter 4, a correction that accounts

for non-conducting clusters of the network will improve the accuracy of our model,

particularly at sufficiently low densities.

In chapter 1, an overview of the many applications of nanowire networks was

given, in particular their application as transparent conductors. Many of these de-

pend on nanowire networks not only having specific conductivities but transparen-

cies as well. Several models have been succesfully applied to linking transparencies

and sheet resistances, however most are empirically based and require experimen-

tal measurements to properly link the two136,142,146,173. Very recently, Ainsworth

et al145 reported a refined relationship between sheet resistance and transparency

that incorporated inner-wire resistances and inter-wire junction resistance contri-

butions as fitting parameters. Ainsworth et al demonstrated the accuracy of their

model by succesfully fitting it to reported measurements found in the literature145.

Mie scattering theory was applied to nanowire networks by Khanarian et al148 and

Ainsworth et al145, and used to calculate the transmission of a network as a func-

tion of wire diameter, and surface fraction. By associating this analytic theory with

the effective medium lattice derived in chapter 4, a closed form expression linking

network transparency with sheet resistance could be derived. Such an expression

would be a major aid to developing industrial applications of nanowire networks

as it would incorporate all of the relevant nanowire parameters, including inner-

wire resistance, which as we saw in chapters 3 and 4 plays a vital role in network

conductivity.

In chapter 5, the memristive properties of nanowire networks was presented.

This property in particular offers a rich new area for future research in nanowire
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networks. One of the more immediate projects is to apply the analytical models

developed for resistive switching in ECM and VCM devices to a network of such

elements, as is the case in nanowire networks. There are models in the literature

that capture the dynamics of migrating ions in VCM and ECM cells; these have

been shown to accurately reproduce the behaviours of their experimental counter-

parts103,170,171. A method to incorporate these models with Kirchhoff’s system of

linear equations must be developed to simulate complex networks of such junctions.

Such nanoscale models will enable a quantitative description of many of the device

parameters relevant to memristive and ReRAM devices in NWNs such as the SET

voltage, and switching speed. A further addition to be made to a nanoscale model

of junction memristance is to include a memcapacitive element162. A memcapaci-

tor has a tunable capacitance that is mediated by some internal physical property

of the system. In nanowire junctions, this could be mediated by varying conduc-

tive filament length, thus coupling the memristive response of a device with its

capacitance. This extension to a nanoscale junction model would allow a nanowire

network to be modeled at leakage current levels as well as conductive filament

growth levels.

In chapter 5, a multi-electrode device that could facilitate multiple winner-takes-

all pathways in a nanowire network was presented. Associative and independent

states were demonstrated in a proof-of-concept network by exploiting the 2 × 2

electrode layout. This property needs to be further explored and an understand-

ing as to how a dependence on wire length and density affects these properties.

Similarly new electrode architectures are to be developed that further utilise these

properties to create memory devices or even logic elements. Central to this process,

simulated nanowire network devices of various material properties and electrode

architectures will play a vital role in designing neuromorphic applications.



A
D I G I T I S E D N E T W O R K PA R A M E T E R S

The calculated parameters for thirty experimental samples of Ag/PVP nanowire

networks are listed in Table A.1. The wire density (nw) was obtained by digitising

SEM images of the physical sample as described in chapter 3, the experimental

sheet resistance was physically determined and listed under REXPs , and the remain-

ing parameters were obtained through applying JDA and MNR simulations to the

digitised network geometry as outlined in chapter 3. The contribution of inner-

wire resistances to the network resistance was isolated in simulations and listed

under R0. The contribution of junction resistances to that of the network is cap-

tured by ∆ = REXPs − R0. The slope of the linear relationship between junction

resistance and sheet resistance outlined in equations 3.2.1 and 3.2.2. The charac-

teristic MNR junction resistance RMNRj = ∆/a and the characteristic JDA junction

resistance RJDAj = REXPs /a represent the simulated junction resistance to achieve the

measued sheet resistance for each sample. The optimization-capacity coefficient (γ)

for each sample is also listed. See section 3.3 for a further discussion of the listed

parameters.
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Network nw REXPs R0 ∆ a RMNRj RJDAj γ

1 0.28 84.4 46.4 38 1.37 27.7 61.6 0.45

2 0.16 160 92.1 67.9 2.47 27.5 64.83 0.42

3 0.16 177.1 61 116.1 1.93 60.1 91.6 0.65

4 0.49 18.8 12.9 5.9 0.44 13.4 42.4 0.31

5 0.64 23.8 12.1 11.7 0.27 43.4 88.4 0.49

6 0.35 180.5 32.9 147.6 0.97 152 185.9 0.82

7 0.63 14.9 8.9 6 0.17 35 87.6 0.4
8 0.47 29.9 9.3 11.6 0.22 52.5 135.6 0.55

9 0.17 56.2 37.9 18.3 1.20 15.3 47 0.32

10 0.39 67.3 32.9 34.4 1.01 34 66.4 0.51

11 0.2 233.2 71.4 161.8 2.31 69.9 100.8 0.69

12 0.57 51.1 20.9 30.2 0.59 51 86.4 0.59

13 0.17 220.5 52.1 168.4 1.34 125.9 164.9 0.76

14 0.37 34 22 12 0.53 22.7 64.6 0.35

15 0.14 194.3 77.2 117.1 1.90 61.6 102.1 0.6
16 0.26 54.5 26.4 28.1 0.73 38.3 74.3 0.51

17 0.24 50.4 28.2 22.2 0.83 26.6 60.4 0.44

18 0.12 109.1 42.7 66.4 0.98 67.5 110.9 0.61

19 0.21 61.9 58.7 3.2 1.40 2.3 44 0.05

20 0.29 42.2 20.8 21.4 0.56 38.3 75.5 0.51

21 0.28 54.2 35.4 18.8 0.80 23.3 67.5 0.34

22 0.14 103.6 70.5 33.1 2.10 15.8 49.3 0.32

23 0.35 34.7 22 12.7 0.42 29.9 81.8 0.36

24 0.29 41.5 19.2 22.3 0.51 43.7 81.3 0.54

25 0.37 58.3 19.8 38.5 0.68 56.8 86 0.66

26 0.36 42.9 17.7 25.2 0.48 53 90.2 0.59

27 0.43 39.3 16.2 23.1 0.48 48.2 82 0.59

28 0.35 56.1 32 24.1 1.10 21.9 51 0.43

29 0.19 188 66.5 121.5 2.35 51.6 80.1 0.65

30 0.22 76.7 38.0 38.7 1.00 38.5 76.5 0.5

Table A.1



B
A D D I T I O N A L M U LT I - T E R M I N A L S I M U L AT I O N S

Figure B.1 presents the conductance of each path in the multi-terminal device

shown in Figure 5.12(a) while a WTA path is formed between one pair of elec-

trodes. Here simulations involve injecting current in one terminal and extracting

it at another such that one WTA path is formed between these electrodes. The de-

velopment of the WTA path has an effect on the equivalent conductance between

each other pair of terminals. In Figure B.1(a) the WTA path is created between

electrodes B and C (purple dashed curve), and this path sees a large increase in its

conductance. As was discussed in section 5.4, the conductance of each path sharing

an electrode with the main WTA path, i.e. electrodes B and C, also see an increase

in their conductivity. The conductance between the independent pair of electrodes,

A and D, has no change of conductance during simulations. Figure B.1(b) presents

the conductance between each pair of electrode where the WTA path is developed

between electrodes A and B (yellow curve). Similar results are seen here where

the only path that does not increase in conductance (CD) is independent of the

electrodes A and B.
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a)

b)

Figure B.1: The inter-electrode conductance for each of the 6 paths depicted in Figure
5.12(a) where path between electrodes B and C is matured to a high con-
ductance in panel (a) and where the path between electrodes A and B is
matured to a high conductance in panel (b). In each case, the main path
that is matured increases dramatically in conductance corresponding to a
significant change in the memory state of that path. The independent paths
see little change in their conductance, being path AD in panel (a) and path
CD in panel (b). Note that line-colours and styles represent the paths de-
picted in Figure 5.12(a).
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[80] M. Žeželj and I. Stanković, “From percolating to dense random stick net-

works: Conductivity model investigation,” Phys. Rev. B, vol. 86, p. 134202,

Oct 2012.

[81] J. A. Fairfield, C. G. Rocha, C. O’Callaghan, M. S. Ferreira, and J. J.

Boland, “Co-percolation to tune conductive behaviour in dynamical metal-

lic nanowire networks,” Nanoscale, vol. 8, p. 18516, 2016.

[82] S. De and J. N. Coleman, “The effects of percolation in nanostructured trans-

parent conductors,” Mrs Bulletin, vol. 36, no. 10, pp. 774–781, 2011.

[83] H. G. Manning, A. T. Bellew, C. G. Rocha, F. Niosi, C. O’Callaghan, S. Biswas,

P. Flowers, B. J. Wiley, J. T. Holmes, M. S. Ferreira, and J. J. Boland, “Emer-

gence of winner-takes-all connectivity paths in random nanowire networks,”

Nature Communications, vol. 9, no. 3219, 2018.

[84] L. Chua, “Resistance switching memories are memristors,” Applied Physics A,

vol. 102, no. 4, pp. 765–783, 2011.

[85] D. Stewart, D. Ohlberg, P. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen,

K. Nielsen, and J. F. Stoddart, “Molecule-independent electrical switching

in pt/organic monolayer/ti devices,” Nano Letters, vol. 4, no. 1, pp. 133–136,

2004.



bibliography 197

[86] L. O. Chua and S. M. Kang, “Memristive devices and systems,” Proceedings of

the IEEE, vol. 64, no. 2, pp. 209–223, 1976.

[87] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, “Recent progress in resis-

tive random access memories: materials, switching mechanisms, and perfor-

mance,” Materials Science and Engineering: R: Reports, vol. 83, pp. 1–59, 2014.

[88] J. J. Yang, D. B. Strukov, and D. Stewart R., “Memristive devices for comput-

ing,” Nature Nanotechnology, vol. 8, p. 13, 2013.

[89] I. Valov and M. N. Kozicki, “Cation-based resistance change memory,” Jour-

nal of Physics D: Applied Physics, vol. 46, no. 7, p. 074005, 2013.

[90] E. W. Lim and R. Ismail, “Conduction mechanism of valence change resistive

switching memory: a survey,” Electronics, vol. 4, p. 586, 2015.

[91] B. J. Choi, A. C. Torrezan, K. J. Norris, F. Miao, J. P. Strachan, M.-X. Zhang,

D. A. A. Ohlberg, N. P. Kobayashi, J. J. Yang, and R. S. Williams, “Electri-

cal performance and scalability of pt dispersed sio2 nanometallic resistance

switch,” Nano Letters, vol. 13, no. 7, pp. 3213–3217, 2013. PMID: 23746124.

[92] W.-C. Chien, Y.-C. Chen, F.-M. Lee, Y.-Y. Lin, E.-K. Lai, Y.-D. Yao, J. Gong,

S.-F. Horng, C.-W. Yeh, S.-C. Tsai, et al., “A novel ni/wox/w resistive random

access memory with excellent retention and low switching current,” Japanese

Journal of Applied Physics, vol. 50, no. 4S, p. 04DD11, 2011.

[93] X. Wang, Z. Fang, X. Li, B. Chen, B. Gao, J. Kang, Z. Chen, A. Kamath,

N. Shen, N. Singh, et al., “Highly compact 1t-1r architecture (4f 2 footprint) in-

volving fully cmos compatible vertical gaa nano-pillar transistors and oxide-

based rram cells exhibiting excellent nvm properties and ultra-low power op-

eration,” in Electron Devices Meeting (IEDM), 2012 IEEE International, pp. 20–6,

IEEE, 2012.



198 bibliography

[94] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J.

Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, and K. Kim, “A fast, high-

endurance and scalable non-volatile memory device made from asymmetric

ta2o5-x/tao2-x bilayer structures,” Nat Mater, vol. 10, pp. 625–630, 2011.

[95] E. Gale, “Tio2-based memristors and reram: materials, mechanisms and mod-

els (a review),” Semiconductor Science and Technology, vol. 29, no. 10, p. 104004,

2014.

[96] M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data stor-

age,” Nature materials, vol. 6, no. 11, p. 824, 2007.

[97] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, “Observation of

conducting filament growth in nanoscale resistive memories,” Nature commu-

nications, vol. 3, p. 732, 2012.

[98] D. S. Jeong, R. Thomas, R. Katiyar, J. Scott, H. Kohlstedt, A. Petraru, and C. S.

Hwang, “Emerging memories: resistive switching mechanisms and current

status,” Reports on Progress in Physics, vol. 75, p. 076502, 2012.

[99] H. G. Manning, S. Biswas, J. D. Holmes, and J. J. Boland, “Nonpolar resistive

switching in ag/tio2 core-shell nanowires,” ACS Applied Materials & Interfaces,

vol. 9, no. 44, pp. 38959–38966, 2017. PMID: 29027461.

[100] D. Ielmini and R. Waser, Resistive switching: from fundamentals of nanoionic

redox processes to memristive device applications. John Wiley & Sons, 2015.

[101] J. Jameson, P. Blanchard, C. Cheng, J. Dinh, A. Gallo, V. Gopalakrishnan,

C. Gopalan, B. Guichet, S. Hsu, D. Kamalanathan, et al., “Conductive-bridge

memory (cbram) with excellent high-temperature retention,” in Electron De-

vices Meeting (IEDM), 2013 IEEE International, pp. 30–1, IEEE, 2013.

[102] U. Russo, D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki,

“Study of multilevel programming in programmable metallization cell (pmc)



bibliography 199

memory,” IEEE transactions on electron devices, vol. 56, no. 5, pp. 1040–1047,

2009.

[103] S. Menzel, “Comprehensive modeling of electrochemical metallization mem-

ory cells,” Journal of Computational Electronics, vol. 16, no. 4, pp. 1017–1037,

2017.

[104] D. Ielmini, R. Bruchhaus, and R. Waser, “Thermochemical resistive switching:

materials, mechanisms, and scaling projections,” Phase Transitions, vol. 84,

no. 7, pp. 570–602, 2011.

[105] M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, and

H. Kohlstedt, “An electronic version of pavlov’s dog,” Advanced Functional

Materials, vol. 22, no. 13, pp. 2744–2749, 2012.

[106] C. Riggert, M. Ziegler, D. Schroeder, W. Krautschneider, and H. Kohlstedt,

“Memflash device: floating gate transistors as memristive devices for neu-

romorphic computing,” Semiconductor Science and Technology, vol. 29, no. 10,

p. 104011, 2014.

[107] A. Calimera, E. Macii, and M. Poncino, “The human brain project and neuro-

morphic computing,” Functional Neurology, vol. 28, p. 191, 2013.

[108] Z. Ye, S. H. M. Wu, and T. Prodromakis, “Computing shortest paths in 2d

and 3d memristive networks,” in Memristor Networks, pp. 537–552, Springer,

2014.

[109] P. Gkoupidenis, D. A. Koutsouras, and G. G. Malliaras, “Neuromorphic de-

vice architectures with global connectivity through electrolyte gating,” Nature

Communications, vol. 8, p. 15448, 2017.

[110] S. Kumar, J. P. Strachan, and R. S. Williams, “Chaotic dynamics in nanoscale

nbo 2 mott memristors for analogue computing,” Nature, vol. 548, no. 7667,

p. 318, 2017.



200 bibliography

[111] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H.-S. P. Wong, “Stochastic learning

in oxide binary synaptic device for neuromorphic computing,” Frontiers in

neuroscience, vol. 7, p. 186, 2013.

[112] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and T. Pro-

dromakis, “Integration of nanoscale memristor synapses in neuromorphic

computing architectures,” Nanotechnology, vol. 24, p. 384010, 2013.

[113] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,

“Nanoscale memristor device as synapse in neuromorphic systems,” Nano

Letters, vol. 10, p. 1297, 2010.

[114] B. Sengupta and M. B. Stemmler, “Power consumption during neuronal com-

putation,” Proc. IEEE, vol. 102, p. 738, 2014.

[115] F. Zahari, M. Hansen, T. Mussenbrock, M. Ziegler, and H. Kohlstedt, “Pat-

tern recognition with tiox-based memristive devices,” AIMS Mater. Sci, vol. 2,

pp. 203–216, 2015.

[116] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev,

and D. B. Strukov, “Training and operation of an integrated neuromorphic

network based on metal-oxide memristors,” Nature, vol. 521, p. 61, 2015.

[117] D. S. Jeong, I. Kim, M. Ziegler, and H. Kohlstedt, “Towards artificial neu-

rons and synapses: a materials point of view,” Rsc Advances, vol. 3, no. 10,

pp. 3169–3183, 2013.

[118] M. Hu, H. Li, Q. Wu, and G. S. Rose, “Hardware realization of bsb recall

function using memristor crossbar arrays,” in Proceedings of the 49th Annual

Design Automation Conference, pp. 498–503, ACM, 2012.

[119] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J. Yang,

W. Wu, X. Li, W. M. Tong, D. B. Strukov, et al., “Memristor- cmos hybrid inte-

grated circuits for reconfigurable logic,” Nano letters, vol. 9, no. 10, pp. 3640–

3645, 2009.



bibliography 201

[120] J. Joshua Yang, M.-X. Zhang, M. D. Pickett, F. Miao, J. Paul Strachan, W.-D.

Li, W. Yi, D. A. Ohlberg, B. Joon Choi, W. Wu, et al., “Engineering nonlinear-

ity into memristors for passive crossbar applications,” Applied Physics Letters,

vol. 100, no. 11, p. 113501, 2012.

[121] J. Borghetti, Z. Li, J. Straznicky, X. Li, D. A. Ohlberg, W. Wu, D. R. Stewart,

and R. S. Williams, “A hybrid nanomemristor/transistor logic circuit capable

of self-programming,” Proceedings of the National Academy of Sciences, vol. 106,

no. 6, pp. 1699–1703, 2009.

[122] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to device varia-

tions in a spiking neural network with memristive nanodevices,” IEEE Trans-

actions on Nanotechnology, vol. 12, pp. 288–295, May 2013.

[123] P. S. Shah, T. Hanrath, K. P. Johnston, and B. A. Korgel, “Nanocrystal and

nanowire synthesis and dispersibility in supercritical fluids,” 2004.

[124] A. T. Bellew, H. G. Manning, C. G. Rocha, M. S. Ferreira, and J. J. Boland,

“Resistance of single ag nanowire junctions and their role in the conductivity

of nanowire networks,” ACS Nano, vol. 9, p. 11422, 2015.

[125] C. G. Rocha, H. G. Manning, C. O’Callaghan, C. Ritter, A. T. Bellew, J. J.

Boland, and M. S. Ferreira, “Ultimate conductivity performance in metallic

nanowire networks,” Nanoscale, vol. 7, p. 13011, 2015.

[126] P. E. Lyons, S. De, J. Elias, M. Schamel, L. Philippe, A. T. Bellew, J. J. Boland,

and J. N. Coleman, “High-performance transparent conductors from net-

works of gold nanowires,” The Journal of Physical Chemistry Letters, vol. 2,

no. 24, pp. 3058–3062, 2011.

[127] P. E. Lyons, S. De, F. Blighe, V. Nicolosi, L. F. C. Pereira, M. S. Ferreira, and

J. N. Coleman, “The relationship between network morphology and conduc-

tivity in nanotube films,” Journal of Applied Physics, vol. 104, no. 4, p. 044302,

2008.



202 bibliography

[128] P. N. Nirmalraj, A. T. Bellew, A. P. Bell, J. A. Fairfield, E. K. McCarthy, C. J.

O’Kelly, L. F. C. Pereira, S. Sorel, D. Morosan, J. N. Coleman, M. S. Ferreira,

and J. J. Boland, “Manipulating connectivity and electrical conductivity in

metallic nanowire networks,” Nano Letters, vol. 12, p. 5966, 2012.

[129] J. A. Fairfield, C. Ritter, A. T. Bellew, E. K. McCarthy, M. S. Ferreira, and J. J.

Boland, “Effective electrode length enhances electrical activation of nanowire

networks: Experiment and simulation,” ACS Nano, vol. 8, no. 9, pp. 9542–

9549, 2014. PMID: 25153920.

[130] A. T. Bellew, A. P. Bell, E. K. McCarthy, J. A. Fairfield, and J. J. Boland, “Pro-

grammability of nanowire networks,” Nanoscale, vol. 6, no. 16, pp. 9632–9639,

2014.

[131] C. J. O’Kelly, J. A. Fairfield, D. McCloskey, H. G. Manning, J. F. Donegan, and

J. J. Boland, “Associative enhancement of time correlated response to het-

erogeneous stimuli in a neuromorphic nanowire device,” Advanced Electronic

Materials, vol. 2, no. 6, p. 1500458, 2016.

[132] G. Strang, Introduction to Applied Mathematics. Wesley-Cambridge Press, 1986.

[133] I. Vágó, Graph theory: application to the calculation of electrical networks, vol. 15.

Elsevier Publishing Company, 1985.

[134] C. Berg, Complex analysis. Department of Mathematical Sciences, University

of Copenhagen, 2014.

[135] S. Kirkpatrick, “Percolation and conduction,” Rev. Mod. Phys., vol. 45, p. 574,

1973.

[136] S. M. Bergin, Y. H. Chen, A. R. Rathmell, P. Charbonneau, Z. Y. Li, and

B. J. Wiley, “The effect of nanowire length and diameter on the properties of

transparent, conducting nanowire films,” Nanoscale, vol. 4, p. 1996, 2012.



bibliography 203

[137] W. Sampson, “Unified theory for structural statistics of flocculated and ran-

dom fibre networks,” Journal of Pulp and Paper Science, vol. 34, no. 2, pp. 91–98,

2008.

[138] I. Balberg and N. Binenbaum, “Computer study of the percolation thresh-

old in a two-dimensional anisotropic system of conducting sticks,” Physical

Review B, vol. 28, no. 7, p. 3799, 1983.

[139] O. Kallmes and H. Corte, “The structure of paper, i. the statistical geometry

of an ideal two dimensional fiber network,” Tappi J, vol. 43, no. 9, pp. 737–752,

1960.

[140] S. Sorel, P. E. Lyons, S. De, J. C. Dickerson, and J. N. Coleman, “The de-

pendence of the optoelectrical properties of silver nanowire networks on

nanowire length and diameter,” Nanotechnology, vol. 23, no. 18, p. 185201,

2012.

[141] J. Hicks, A. Behnam, and A. Ural, “Resistivity in percolation networks of one-

dimensional elements with a length distribution,” Physical Review E, vol. 79,

no. 1, p. 012102, 2009.

[142] R. M. Mutiso, M. Sherrott, A. Rathmell, B. Wiley, and K. Winey, “Integrating

simulations and experiments to predict sheet resistance and optical transmit-

tance in nanowire films for transparent conductors,” ACS Nano, vol. 7, no. 9,

pp. 7654–7663, 2013.

[143] P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, and J. J. Boland, “Electrical

connectivity in single-walled carbon nanotube networks,” Nano letters, vol. 9,

no. 11, pp. 3890–3895, 2009.

[144] B. Hwang, H. A. S. Shin, T. Kim, Y. C. Joo, and S. M. Han, “Highly reliable ag

nanowire flexible transparent electrode with mechanically welded junctions,”

Small, vol. 10, p. 3397, 2014.



204 bibliography

[145] C. A. Ainsworth, B. Derby, and W. W. Sampson, “Interdependence of resis-

tance and optical transmission in conductive nanowire networks,” Advanced

Theory and Simulations, vol. 1, no. 2, p. 1700011, 2018.

[146] F. Selzer, C. Floresca, D. Kneppe, L. Bormann, C. Sachse, N. Weiß, A. Ey-

chmüller, A. Amassian, L. Müller-Meskamp, and K. Leo, “Electrical limit of

silver nanowire electrodes: Direct measurement of the nanowire junction re-

sistance,” Applied Physics Letters, vol. 108, no. 16, p. 163302, 2016.

[147] A. Behnam and A. Ural, “Computational study of geometry-dependent resis-

tivity scaling in single-walled carbon nanotube films,” Phys. Rev. B, vol. 75,

p. 125432, Mar 2007.

[148] G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O’Connell, and

P. Trefonas, “The optical and electrical properties of silver nanowire mesh

films,” Journal of applied physics, vol. 114, no. 2, p. 024302, 2013.

[149] J. Y. Yen, “An algorithm for finding shortest routes from all source nodes

to a given destination in general networks,” Quarterly of Applied Mathematics,

vol. 27, no. 4, pp. 526–530, 1970.

[150] J. F. Ramaley, “Buffon’s noodle problem,” The American Mathematical Monthly,

vol. 76, no. 8, pp. 916–918, 1969.

[151] D. J. Watts, “Networks, dynamics, and the small-world phenomenon,” Amer-

ican Journal of sociology, vol. 105, no. 2, pp. 493–527, 1999.

[152] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-

world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[153] L. A. Braunstein, S. V. Buldyrev, R. Cohen, S. Havlin, and H. E. Stanley, “Op-

timal paths in disordered complex networks,” Physical review letters, vol. 91,

no. 16, p. 168701, 2003.



bibliography 205

[154] M. Lagrange, T. Sannicolo, D. Muñoz-Rojas, B. G. Lohan, A. Khan, M. Anikin,

C. Jiménez, F. Bruckert, Y. Bréchet, and D. Bellet, “Understanding the mecha-

nisms leading to failure in metallic nanowire-based transparent heaters, and

solution for stability enhancement,” Nanotechnology, vol. 28, no. 5, p. 055709,

2016.

[155] J. Zhao, H. Sun, S. Dai, Y. Wang, and J. Zhu, “Electrical breakdown of

nanowires,” Nano letters, vol. 11, no. 11, pp. 4647–4651, 2011.

[156] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Electrochemical met-

allization memories-fundamentals, applications, prospects,” Nanotechnology,

vol. 22, no. 25, p. 254003, 2011.

[157] Z. Gemmill, L. Durbha, S. Jacobson, G. Gao, and K. Weaver, “Sem and fib pas-

sive voltage contrast,” Microelectronic Failure Analysis Desk Reference,, pp. 431–

437, 2004.

[158] Y. V. Pershin and M. Di Ventra, “Experimental demonstration of associative

memory with memristive neural networks,” Neural Networks, vol. 23, no. 7,

pp. 881–886, 2010.

[159] C. O’Callaghan, C. G. Rocha, H. G. Manning, F. Niosi, J. J. Boland, and

M. S. Ferreira, “Collective capacitive and memristive responses in random

nanowire networks: emergence of critical connectivity pathways,” Journal of

Applied Physics, Accepted for Publication.

[160] F. Hartmann, P. Maier, M. R. S. Dias, S. Göpfert, L. K. Castelano, M. Em-

merling, C. Schneider, S. Höfling, M. Kamp, Y. V. Pershin, G. E. Marques,

V. Lopez-Richard, and L. Worschech, “Nanoscale tipping bucket effect in a

quantum dot transistor-based counter,” Nano Letters, vol. 17, p. 2273, 2017.

[161] P. Maier, F. Hartmann, M. R. S. Dias, M. Emmerling, C. Schneider, L. K.

Castelano, M. Kamp, G. E. Marques, V. Lopez-Richard, L. Worschech, and



206 bibliography

S. Hofling, “Mimicking of pulse shape-dependent learning rules with a quan-

tum dot memristor,” Journal of Applied Physics, vol. 120, p. 134503, 2016.

[162] T. Wakrim, C. Vallée, P. Gonon, C. Mannequin, and A. Sylvestre, “From

memristor to memimpedance device,” Applied Physics Letters, vol. 108, no. 5,

p. 053502, 2016.

[163] S. Liu, N. Wua, A. Ignatiev, and J. Li, “Electric-pulse-induced capacitance

change effect in perovskite oxide thin films,” Journal of Applied Physics,

vol. 100, p. 056101, 2006.

[164] P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality,” Physical review

A, vol. 38, no. 1, p. 364, 1988.

[165] A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, H. H. Shieh, M. Aono, A. Z.

Stieg, and J. K. Gimzewski, “Neuromorphic atomic switch networks,” PLoS

One, vol. 7, p. e42772, 2012.

[166] E. C. Demis, R. Aguilera, K. Scharnhorst, M. Aono, A. Z. Stieg, and J. K.

Gimzewski, “Nanoarchitectonic atomic switch networks for unconventional

computing,” Japanese Journal of Applied Physics, vol. 55, p. 1102B2, 2016.

[167] S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin,

D.-W. Kim, C. U. Jung, S. Seo, M. Lee, and T. W. Noh, “Random circuit

breaker network model for unipolar resistance switching,” Advanced Materi-

als, vol. 20, no. 6, pp. 1154–1159, 2008.

[168] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa,

and W. Lu, “A functional hybrid memristor crossbar-array/cmos system for

data storage and neuromorphic applications,” Nano Lett., vol. 12, p. 389, 2012.

[169] G. S. Snider, “Self-organized computation with unreliable, memristive nan-

odevices,” Nanotechnology, vol. 18, p. 365202, 2007.



bibliography 207

[170] M. Hansen, M. Ziegler, L. Kolberg, R. Soni, S. Dirkmann, T. Mussenbrock,

and H. Kohlstedt, “A double barrier memristive device,” Scientific reports,

vol. 5, p. 13753, 2015.

[171] S. Menzel, U. Böttger, M. Wimmer, and M. Salinga, “Physics of the switching

kinetics in resistive memories,” Adv. Funct. Mater., vol. 25, p. 6303, 2015.

[172] S. He, X. Xu, X. Qiu, Y. He, and C. Zhou, “Conductivity of two-dimensional

disordered nanowire networks: Dependence on length-ratio of conducting

paths to all nanowires,” Journal of Applied Physics, vol. 124, no. 5, p. 054302,

2018.

[173] C.-H. Chung, T.-B. Song, B. Bob, R. Zhu, and Y. Yang, “Solution-processed

flexible transparent conductors composed of silver nanowire networks em-

bedded in indium tin oxide nanoparticle matrices,” Nano Research, vol. 5,

no. 11, pp. 805–814, 2012.


	Declaration
	Abstract
	Publications
	Acknowledgements
	Contents

	List of Figures
	List of Figures

	Acronyms
	Acronyms

	1 Introduction
	1.1 Nanowire Networks
	1.2 Network Theory
	1.3 Overview of Percolation Theory
	1.4 Memristive Behaviour of Nanowire Networks
	1.4.1 Memristor and Memristive Systems
	1.4.2 Resistive Switching Phenomena
	1.4.3 Potential for Neuromorphic Computing

	1.5 Thesis Goals and Scope

	2 General Theory and Mathematical Methods
	2.1 Resistive Network Theory
	2.2 Lattice Green's function for infinite resistive networks
	2.3 Effective Medium Theory
	2.4 Percolation Theory and Critical Wire Density
	2.5 Junction density as a function of wire density and length
	2.6 Chapter Summary

	3 Computational Models for Disordered nanowire networks
	3.1 Graphical Representations of Nanowire Networks
	3.2 The Impact of Inner-wire Resistance
	3.2.1 The Relationship Between Junction and Network Resistances
	3.2.2 The Effect of Nanowire Resistivity and Diameter on Network Resistance
	3.2.3 The Impact of Wire Density on Nanowire Network Resistance

	3.3 Digital Representation of Physical Nanowire Networks
	3.4 Impact of Junction Resistance Disorder
	3.5 Chapter Summary

	4 Effective Medium Theory for Nanowire Networks
	4.1 Inter-nodal Resistance in a Nanowire Network
	4.2 Effective Medium Theory of a Nanowire Network
	4.3 Inter-Electrode Resistance in a Nanowire Network
	4.4 Application of the Effective Square Lattice
	4.5 Chapter Summary

	5 Memristive Properties of Nanowire Networks
	5.1 Modelling the Memristive Response of a Nanowire Junction
	5.2 Memristance in a Nanowire Network
	5.3 Current Colour Maps
	5.4 Multi-terminal Device for Neuromorphic Applications
	5.5 Chapter Summary

	6 Comparison of a Capacitive and Memristive Junction Activation Process
	6.1 Capacitive Junction Model
	6.2 Path Formation in Capacitive and Memristive Models
	6.3 Scale-Invariant Dynamics in Capacitive Activations
	6.4 Fault Tolerance
	6.5 Chapter Summary

	7 Summary and Future Work
	7.1 Thesis Summary
	7.2 Future Work

	A Digitised Network Parameters
	B Additional Multi-Terminal Simulations
	bibliography

