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“Practical application is found by not looking for it, and one can say that the whole progress of

civilization rests on that principle. ”

Jaques Hadamard





Summary

In quantum chromodynamics (QCD), the static potential V (r) is defined as the energy of

the ground state of the system containing a static quark and a static antiquark, separated

by a distance r. As a consequence of confinement, the energy between the quark-antiquark

pair is contained inside a color flux tube, the string. As soon as the energy is high enough,

the gluonic string connecting the quarks breaks due to creation of a pair of light quarks,

which recombine with the static quarks and form two static-light mesons. This so called

string breaking provides an intuitive example of a strong decay and is one of the defining

characteristics of a confining gauge theory with dynamical matter fields. Since it is a low

energy phenomenon not accessible by perturbative QCD, it can only be examined by non-

perturbative methods. We investigate string breaking using Lattice QCD, a well-established

non-perturbative approach to solving QCD.

In the theory with dynamical quarks, string breaking is manifested as a quantum-mechanical

mixing phenomenon. This means that the two states, the string state and the two meson

state, are both needed to describe the potential. After the string is broken, the meson state

dominates the new ground state of this system. In the neighborhood of the critical separa-

tion, the two states mix. If there is mixing, the ground state and first excited state are su-

perpositions of the string state and the two meson state. The system undergoes an avoided

level crossing, giving rise to an energy gap between the states.

So far, string breaking on the lattice has been observed in the Nf=2 theory, but not for the

Nf=2+1 theory. In the latter case, when the strange quark is included in the sea, two separate

thresholds are expected, one for the decay into two static-light mesons and one for the decay

into two static-strange mesons.

In this work, the phenomenon is investigated with Nf=2+1 flavors of non-perturbatively

O(a)-improved dynamical Wilson fermions using an ensemble of gauge configurations gen-

erated through the Coordinated Lattice Simulations (CLS) effort. The ensemble has an es-

timated isotropic lattice spacing of a ≈ 0.064fm, pion mass mπ = 280MeV and kaon mass

mK = 460MeV. We employ the stochastic LapH method in order to calculate correlation

functions required for string breaking efficiently and perform a variational analysis to ex-

tract the ground state as well as the first and second excited state of the system containing

two static quarks. A large set of off-axis distances is used in order to achieve the spatial
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resolution needed to observe both mixing phenomena.

We see the effect of the strange quark, which results in a second mixing-phenomenon due

to the formation of a strange-antistrange pair. Two avoided level crossings can be resolved

clearly. We employ a simple model to define two distinct string breaking distances for the

light and the strange mixing phenomenon.
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Chapter 1

Introduction

The major goal of physics is to find the "Theory of Everything ", a hypothetical theory that

should describe all physical aspects of the universe. This theory has to describe all elemen-

tary particles and fundamental forces between them. There is an ongoing effort to find can-

didates for such a theory [1]. The "Standard Model of particle physics" (SM) [2,3] emerged in

the 1960s and 1970s and is a unification of three of the four known forces of nature: the weak,

electromagnetic and the strong force. The SM describes all known fundamental interactions

between elementary particles, except gravity. These interactions can be mathematically for-

mulated by gauge theories and derive from one principle: the requirement for local gauge

invariance.

The SM has continually provided experimental predictions and has met every experimental

test so far [4]. With the discovery of the Higgs Boson in 2012 [5], the SM of particle physics

was completed. It leaves some phenomena unexplained and does not include the theory

of the gravitational force. This shows the need for an extension of the SM, but makes its

complete overthrow unlikely.

Quantum chromodynamics (QCD) is the part of the SM describing the theory of strong

interactions [3]. It details the interactions between quarks and gluons, which combine to

form composite particles called hadrons. QCD exhibits very special characteristics, namely

the phenomenon of confinement and dynamical chiral symmetry breaking [6]. The gauge

group of QCD is the non-abelian symmetry group SU(3) and the name "Quantum chromo-

dynamics" derives from the name for the charge in QCD, which is called color.

1.1 QCD: quarks, gluons and string breaking

In the SM, quarks are spin-1
2 Dirac fermions with quark number 1, which is negative for

antiquarks. The known six types of quarks, also called quark flavors, are listed in table 1.1.

While the quark number of an isolated system is conserved, the different types of flavor

can change via weak interactions. The heavy quarks are unstable and decay rapidly into
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TABLE 1.1: Properties of quarks [3]

Quark Electric charge Mass [MeV]
u Up 2

3 1.5 - 4
d Down −1

3 4 - 8
c Charm 2

3 1150 - 1350
s Strange −1

3 80 - 130
t Top 2

3 169000 - 174000
b Bottom −1

3 4100 - 4400

up and down quarks and because of this, up and down quarks are the most common in

nature. Strange, charm, bottom, and top quarks can only be produced in high energy colli-

sions. Quarks, as well as gluons, possess a color charge which can take one of three values,

colloquially called red, blue and green. An antiquark carries the corresponding anticolor

while the gluon color charge is a mixture of two colors. Gluons are spin-1 massless vector

gauge bosons and they mediate the strong force between quarks. A quark may emit or ab-

sorb a gluon, a gluon may emit or absorb a gluon, a gluon may turn into a pair of quark and

anti-quark (and vice-versa), but also direct interaction between gluons is possible. The fact

that the exchange particles of the strong force interact with each other is a special feature

emerging due to the theory being non-abelian.

To date, quarks as well as gluons have never been observed isolated. The reason for this is

that the quantum Yang–Mills theory for a non-abelian Lie group exhibits a property known

as confinement. Because the gluon field is massless, one might expect the color force to

be long range, but the fields are confining and the range of the strong force is effectively

limited to a length scale of about 1fm. In the absence of confinement, one would expect to

find massless gluons, but if they are confined, only color-neutral bound states of gluons can

exist, so called glueballs [7]. Color-charged particles, such as quarks and gluons, can not be

isolated and hence can not be observed directly. The analytic proof of this phenomenon is

one of the seven Millennium Prize Problems defined by the Clay Mathematics Institute 1.

One important feature of a confining gauge theory with dynamical matter fields in the fun-

damental representation of the gauge group, and thus an important phenomenon to study

in QCD, is the so called string breaking. String breaking describes the transition of the static

quark-antiquark string into a static-light meson-antimeson system. It provides an intuitive

example of a strong decay and is one of the defining characteristics of a confining gauge

theory. When a quark-antiquark pair becomes separated, the color fields form a "string", or

"color flux tube" between the quark and the antiquark. The energy of the system is confined

inside the string binding the quarks and rises linearly until it becomes energetically more

favorable to spontaneously create a quark-antiquark pair from the vacuum and thus break

1www.claymath.org/sites/default/files/yangmills.pdf
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the string by forming new hadronic bound states.

Hadrons are composite particles built of quarks and antiquarks. In the SM, at least two types

of hadrons can be classified. Mesons, made up of quark-antiquark pairs and baryons, made

up of three quarks. Both states are color singlets. So called hybrid hadrons, which contain

explicit valence gluon content, and exotic hadrons, which do not have the same quark con-

tent as ordinary hadrons, have also been theorized and candidates have been observed by

multiple experiments, see for example [8–10].

Perturbation theory breaks down for distances close to the confinement length. Only at

very short distances or high momenta, the effective strong coupling constant becomes small

enough for quarks and gluons to be considered approximately asymptotically free, so that

the interactions can be treated perturbatively. Since confinement is a low energy phenomenon,

it is as such not accessible by perturbative QCD. It can only be examined by non-perturbative

methods, for example numerical simulations, which show results compatible with confine-

ment [11].

Because the low energy regime of QCD is not amenable to perturbative treatment, it is very

difficult to predict or respectively postdict the hadron spectrum from first principles. Non-

perturbative methods are needed to determine the low energy properties of QCD. The pri-

mary tool is lattice QCD, a well-established non-perturbative approach. Accordingly, one

of the main goals of lattice QCD is to validate QCD as the correct theory of strong interac-

tions by reproducing the experimentally measured spectrum of hadrons. Furthermore, it

provides a framework for the investigation of other non-perturbative phenomena such as

confinement.

In this thesis we study the phenomenon of string breaking using lattice QCD. The thesis

is organized as follows. Chapter 2 is a brief introduction to the theoretical foundations

of lattice QCD. The subsection on the CLS ensembles provides background about a set of

gauge configurations that contains the ensemble used in this work. Chapter 3 focuses on

the extraction of masses and energies of hadrons from Euclidean correlation functions. The

stochastic LapH method is described, as well as solving the generalized eigenvalue problem,

which can be used to extract excited states of the lattice QCD Hamiltonian.

In the beginning of Chapter 4, a short overview of string breaking in the literature is given,

followed by a theoretical description of static quarks on the lattice and the symmetries of

string breaking. The second part of chapter 4 is a detailed account of the full mixing analysis.

In the final chapters, the numerical results are presented and discussed.
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Chapter 2

Theoretical Background

2.1 Lattice QCD

In this section, some foundations and concepts of lattice QCD necessary to describe the fol-

lowing work are presented. It is not a thorough introduction or an in any way exhaustive

review. Various sources were used to prepare this chapter, as well as chapter 3. For a more

detailed introduction the reader is referred to the main sources [12–15].

Lattice QCD provides a well-established non-perturbative approach to solving QCD from

first principles. There is ongoing progress of improving lattice techniques, especially for

simulations with light dynamical fermions, see for example [16] and references therein.

Lattice gauge theory was introduced by Wilson in 1974, when he published a paper formu-

lating gauge theories on a space-time lattice [17]. In general, lattice calculations are com-

prised of three main steps: the introduction of a finite space-time lattice as an UV regulator,

the computation of the path integral of the discretized theory and finally the removal of the

regulator in order to get the continuum result.

2.1.1 Path integral

The starting point to putting a quantum field theory on the lattice is expressing the partition

function of the Euclidian theory using the path integral formalism:

Z =

∫
DΦ exp(−S(Φ)), (2.1)

where S denotes the action and Φ generically all fields of the theory. One typically intro-

duces periodic boundary conditions in time for bosonic fields, while it is a natural choice

to impose anti-periodic boundary conditions for fermionic fields, a thorough explanation is

given in the appendix of [18].
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Now it is possible to replace the continuous space-time by a 4D Euclidian lattice which in-

troduces a natural ultraviolet cut-off given by the inverse lattice spacing a−1. There is more

than one possible way to discretize space-time. One commonly used way is the isotropic

hypercubic grid with lattice spacing a and size N3
S ×NT . The degrees of freedom Φ are now

field variables living on the lattice. The Euclidian action S(Φ) has to be discretized such that

the continuum action is obtained for a → 0. Restricting the integral to a finite spatial box

with chosen boundary conditions provides an infrared cut-off by the inverse size of this box

L−1. By doing this, the previously infinite-dimensional path integral of the partition func-

tion becomes finite-dimensional, thus amenable to numerical simulations. The path integral

still has to be performed over all field configurations. A suitable way to approximate the

high-dimensional integral is given by Markov Chain Monte Carlo methods (MCMC) [19].

This makes the reason for using the Euclidian action apparent. In quantum mechanics, the

path integral weight is given by exp (iSM ), where SM is the action defined in Minkowski

space-time. This would be unsuitable for applying Monte Carlo (MC) methods, because it

is heavily oscillating. A Wick rotation to imaginary time t → −iτ leads to path integrals

containing a positive weight, manageable using MC methods. The Euclidean action S is

related to the Minkowski action SM via SM = iS. For QCD, a gauge theory with fermions,

the partition function takes the form

Z =

∫
D[U,ψ, ψ̄]e(−SF [U,ψ,ψ̄]−SG[U ]), (2.2)

where ψ are the quark fields, U are the gauge fields, SF and SG are the fermion and gauge

action. The expectation values of observables are given by

〈O〉 ≡ 1

Z

∫
D[U,ψ, ψ̄]O[U,ψ, ψ̄]e−SF [U,ψ,ψ̄]−SG[U ]. (2.3)

The generic observable O is a functional of the fermion fields ψ, ψ̄ and the gauge fields U .

Observables are calculated for each gauge field configuration, weighted with the exponent

of the negative action and then integrated over all possible field configurations; configura-

tions with minimal action contribute most to the path integral.

The integration over the fermion fields ψ and ψ̄ in the path integral can be performed ana-

lytically using rules for Gaussian integrals with Grassmann numbers. After integrating out

the fermion fields in equation (2.3) one finds

〈O〉 =
1

Z

∫
D[U ] det[D[U ]]O[U ]e−SG[U ]. (2.4)

The determinant depends on the gauge fields U . The observable O[U ] can depend on the
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gauge field U explicitly, for example in case of purely gluonic observables, but also implicitly

via the quark propagator D−1[U ] in the gauge background. The determinant gives rise to

virtual fermion or "sea quark" effects. Ignoring this factor results in the so called quenched

approximation. Even though the integral now only has to be taken over the gauge fields,

this is still not feasible analytically but can be performed numerically. These expressions are

usually approximated using Monte Carlo (MC) methods with importance sampling.

Another numerical challenge is the evaluation of the propagator D−1[U ], the inverse of the

large, sparse Dirac matrix, that appears in the fermionic part of the action. The calculation

of all elements of the inverse is only possible on very small lattices. Therefore, one typi-

cally only computes the solution vectors u of the linear system of equations D[U ]u = b for a

handful of source vectors b using for example a variant of the conjugate gradient method. In

some cases, it is necessary to evaluate quark propagators from all spatial sites on a time slice

to all spatial sites on another time slice. This is the case for the string breaking calculation.

It is then necessary to use methods that allow for all-to-all propagation, which is discussed

in the next chapter.

By using the path integral formulation, it becomes possible to numerically evaluate corre-

lation functions and afterwards use it to extract matrix elements of operators and thus the

energy spectrum of the theory, for details see Chapter 3.

2.1.2 Discrete Symmetries of the lattice theory and lattice action

The path integral (2.4) has to be performed over all field configurations. To render it well-

defined, it is regulated on a finite spacetime lattice given by

x ≡ xµ = nµa, nµ ∈ {0, ..., Nµ − 1}, (2.5)

where a is the lattice spacing, which is the same for every direction. Using an isotropic

lattice spacing is the most common case, although it is possible and for some calculations

useful [20] or even necessary [21] to use an anisotropic lattice spacing.

The next step in the discretization of QCD is the lattice description of the field variables. The

fermionic field is represented by anticommuting Grassmann variables defined at each site

of the lattice. The spinors ψ(x), ψ̄(x), where now x = nµa, carry the same color, Dirac and

flavor indices as in the continuum.

It is possible to associate each link with a discrete version of the path ordered product

U(x, x+ µ̂) ≡ Uµ(x) = eiagAµ(x+ µ̂
2

), (2.6)
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TABLE 2.1: The behavior of the gauge and fermion degrees of freedom under
the discrete transformations P, C, T . [12]

P C T

U4(~x, τ) U4(−~x, τ) U∗4 (~x, τ) U−4(~x,−τ)

Ui(~x, τ) U−i(−~x, τ) U∗i (~x, τ) Ui(~x,−τ)

ψ(~x, τ) γ4ψ(−~x, τ) Cψ̄T (~x, τ) γ4γ5ψ(~x,−τ)

ψ̄(~x, τ) ψ̄(−~x, τ)γ4 −ψT (~x, τ)C−1 ψ̄(~x,−τ)γ5γ4

where the average field Aµ is an algebra-valued lattice gauge field. It is defined at the mid-

point of the link, and U is a 3 × 3 unitary matrix with unit determinant. These are the

fundamental variables which are integrated over in the path integral. The link matrices U

are chosen to belong to the same representation of color SU(3) as the fermions, which are in

the fundamental representation. Note that in the continuum, the gluon fields are elements of

the Lie algebra, not the gauge group. These matrix valued variables are oriented. It is possi-

ble to define link variables pointing in negative direction, but they are not independent and

related to the positively oriented links according to

U(x, x− µ̂) ≡ U−µ(x) = e−iagAµ(x− µ̂
2

) = U †(x− µ̂, x) = U †µ(x− µ̂). (2.7)

On the lattice, the rotation group of the continuum theory is reduced to a discrete group.

On a hypercubic lattice only rotations in steps of 90o are possible, so the continuous rotation

group is replaced by the discrete hypercubic group [22]. In this case, the allowed momenta

are discrete and take the following values:

k =
2πn

Ns
n = 0, 1, . . . Ns. (2.8)

Additionally, the lattice action is invariant under parity (P), charge conjugation (C) and time

reversal (T ). The behavior of the field variables under the discrete symmetries is provided

in table 2.1. The gamma matrix conventions used in this work are given in Appendix A1.

The lattice action also has to be invariant under the local gauge symmetry. For a local gauge

transformation Ω(x), where Ω is an element of SU(3) on each lattice site, the fermion fields

ψ(x) and gauge fields U transform according to

ψ(x) → ψ′(x) = Ω(x)ψ(x) (2.9)

ψ̄(x) → ψ̄′(x) = ψ̄(x)Ω†(x) (2.10)

Uµ(x) → Uµ(x)′ = Ω(x)Uµ(x)Ω†(x+ µ̂). (2.11)
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The fermionic part of the action

In the continuum, the fermionic action is given by:

ScF [ψ, ψ̄] =

∫
d4x ψ̄(x)( /D +m)ψ, (2.12)

where D is the covariant derivative, the Feynman slash notation was used /D = γµD
µ. To

discretize the action, not only the path integral needs to be discretized, but the derivatives

also need to be replaced with a discretized version. Using the symmetrized difference, one

finds for the free lattice fermion action

SfF [ψ, ψ̄] = a4
∑
x

ψ̄(x)

 4∑
µ=1

γµ
ψ(x+ µ̂)− ψ(x− µ̂)

2a
+mψ(x)

 . (2.13)

The discretized derivative is not gauge invariant. To see this, consider for instance the fol-

lowing term

ψ̄(x)ψ(x+ µ̂) → ψ̄′(x)ψ′(x+ µ̂) = ψ̄(x)Ω†(x)Ω(x+ µ̂)ψ(x+ µ̂). (2.14)

Using a gauge field Uµ(x), which transforms according to equation (2.11), a corresponding

gauge invariant term ψ̄(x)Uµ(x)ψ(x+ µ̂) can be constructed

ψ̄′(x)Uµ(x)′ψ′(x+ µ̂) = ψ̄(x)Ω†(x)U ′µ(x)Ω(x+ µ̂)ψ(x+ µ̂) (2.15)

= ψ̄(x)Ω†(x)Ω(x)Uµ(x)Ω†(x+ µ̂)Ω(x+ µ̂)ψ(x+ µ̂)

= ψ̄(x)Uµ(x)ψ(x+ µ̂)

The gauge invariant, so called naive fermion action can now be defined as:

SnF [ψ, ψ̄, U ] = a4
∑
x

ψ̄(x)

 4∑
µ=1

γµ
Uµ(x)ψ(x+ µ̂) − U−µ(x)ψ(x− µ̂)

2a
+mψ(x)

 . (2.16)

The doubling problem and Wilson fermions

A problem arising from the naive discretization of the Dirac action as described above is

that in the continuum limit, it gives rise to 2d = 16 flavors rather than one. The action for

one flavor is bilinear in ψ̄ and ψ, so it can be rewritten in the following form

SnF [ψ, ψ̄, U ] = a4
∑
x,y

∑
a,b,α,β

ψ̄(x)αa D(x | y)αβab ψ(y)βb , (2.17)
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where a, b are are color and α, β are Dirac indices. The corresponding naive Dirac operator

amounts to

D(x | y)αβab =

4∑
µ=1

(γµ)αβ
Uabµ (x)δ(x+ µ̂, y) − Uab−µ(x)δ(x− µ̂, y)

2a
+mδαβδabδx,y. (2.18)

The Fourier transform of the free Dirac operator

D̃(p | q) = δ(p− q)D̃(p), (2.19)

is diagonal in the momenta. Thus using the Fourier transform of the free lattice Dirac oper-

ator in momentum space

D̃(p) = m1 +
i

a

∑
µ

γµ sin(pµa), (2.20)

the inverse of D(x | y) can be calculated. It is sufficient to work out the inverse of the 4 × 4

matrix D̃(p) and then invert the Fourier transform, but it is actually more instructive to look

at the momentum space propagator. In the case of massless fermions, it is given by [14]

D̃(p)−1 |m=0=
−ia−1

∑
µ γµ sin(pµa)

a−2
∑

µ sin2(pµa)
. (2.21)

For fixed momentum, this has the correct continuum limit. In the continuum, the massless

fermion propagator has one pole at p = (0, 0, 0, 0) that corresponds to the fermion described

by the Dirac operator. On the lattice, however, there are additional poles, every time all

components are 0 or π/a

p = (π/a, 0, 0, 0), (0, π/a, 0, 0), ..., (π/a, π/a, π/a, π/a). (2.22)

This amounts to 15 unwanted poles, so called fermion doublers. There are ways to remove

the doublers, but there is always a sacrifice. The no-go theorem by Nielsen-Ninomiya [23]

states that it is not possible to define a local, translationally invariant lattice action that pre-

serves chiral symmetry and does not have doublers. Only by violating one of the presup-

positions of the theorem is it possible to get rid of the doublers. One possible solution

to removing the unwanted doublers was suggested by Wilson [17], the so called Wilson

fermions. The idea is to add an extra term in the naive action (2.16) that decouples the dou-

blers in the continuum limit. The Wilson action for QCD with Nf degenerate quark flavors
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is given by

SWF [ψ, ψ̄, U ] = a4
Nf∑
f=1

∑
x

ψ̄f (x)

 4∑
µ=1

γµ
Uµ(x)ψf (x+ µ̂) − U−µ(x)ψf (x− µ̂)

2a
(2.23)

−
Uµ(x)ψf (x+ µ̂)− 2ψf (x) + U−µ(x)ψf (x− µ̂)

2a
+mψf (x)

)
= a4

Nf∑
f=1

∑
x

ψ̄f (x) (DW +m)ψf (x), (2.24)

where DW denotes the Wilson-Dirac operator. The extra term is proportional to the dis-

cretized Laplace operator. Since the additional Laplacian term does not anticommute with

γ5, this explicitly violates chiral symmetry, violating one characteristic of the theory, as is

required by the Nielsen-Ninomiya theorem. But the term does commute with γ5, so that the

Wilson Dirac operator obeys γ5-hermiticity, which implies

γ5D
W = (γ5D

W )† (2.25)

is hermitian. The extra fifteen species get a mass proportional to 2/a, as can be seen in

momentum space. The free Dirac operator (2.20) in momentum space reads

D̃W (p) = m1 +
i

a

∑
µ

γµ sin(pµa) + 1
1

a

∑
µ

(1 − cos(pµa)) . (2.26)

For zero momentum the term vanishes. If pµ = π/a an extra term 2/a is added to the

operator so that the mass term of the doublers is given by m + 2n
a , where n counts the

number of components equal to π/a. The extra term goes to infinity in the continuum limit,

the doublers become very heavy and are effectively removed from the spectrum. This means

all unwanted poles are no longer present in the corresponding propagator D̃(p)−1.

The gluonic part of the action

The link variables are the quantities used for putting the gluon fields on the lattice and

the gauge action has to be constructed in terms of them. In order to do this, gauge invariant

objects built from the link variables are needed. It is possible to construct two types of gauge

invariant objects according to the transformation properties of the fields (2.9) - (2.11).

A path-ordered product of k link variables

C(U, x0, x1) = Uµ0(x0)Uµ1(x0 + µ̂0) ... Uµk−1
(x1 − µ̂k−1) ≡

∏
(x,µ)∈Cx0x1

Uµ(x), (2.27)
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is connecting x0 and x1 along some path Cx0x1 . It is the lattice version of the continuum

gauge transporter and called Wilson-line. A Wilson-line is gauge-covariant, because the

two transformation matrices Ω(x) and Ω†(x) cancel each other at every point x, only the

matrices at the end and start point remain. A gauge invariant object can now be constructed

with a fermion and an antifermion attached at the starting and end point

M(x0, x1) = ψ̄(x0)
∏

(x,µ)∈Cx0x1

Uµ(x) ψ(x1). (2.28)

Another way to construct a gauge invariant quantity from the path-ordered product is clos-

ing the path by forming a loop and taking the trace. The loop is given by

L[U ] = Tr

 ∏
(x,µ)∈L

Uµ(x)

 , (2.29)

where the transformation matrices at the start and end point now cancel when the trace

is taken. Those loops and products of link variables are the gauge invariant objects that

can be used for constructing the gluon action. The action for the lattice is written in such

a way that the limit a → 0 formally reproduces the original continuum action. However,

the formulation is not unique and can differ in cut-off effects, depending on which loops

or products of links are used. Complicated loops can be employed to construct improved

actions, this way it is possible to reduce lattice artifacts and improve scaling towards the

continuum.

The simplest example of a loop is the so called plaquette, a 1× 1 loop,

Uµν = Re Tr
(
Uµ(x) Uν(x+ µ̂) U †µ(x+ ν̂) U †ν (x)

)
. (2.30)

Wilsons original form of the gauge action is a sum over all plaquettes, where each plaquette

p is counted with one orientation

SG[U ] =
6

g2
0

∑
x

∑
µ<ν

Re Tr
1

3
(1− Uµν) =

2

g2
0

∑
p

Tr(1− U(p)) , (2.31)

where g0 is the bare gauge coupling.

2.2 CLS ensembles

This section outlines the most important characteristics of a set of gauge configurations gen-

erated by the Coordinated Lattice Simulations (CLS) effort [24]. One of the ensembles, the
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N200, is used in this work.

The CLS ensembles haveNf = 2+1 flavors of non-perturbatively improved Wilson fermions

[25], where the action is given by

S[ψ,ψ, U ] = SWF [ψ,ψ, U ] + cswa
5
∑
x

∑
µ<ν

ψ̄(x)
1

2
σµνF̂µν(x)ψ(x) (2.32)

csw is referred to as Sheikholeslami-Wohlert coefficient [26] and SWF is the Wilson action as

given in equation (2.23). The simulations are performed using the tree-levelO(a2) improved

Lüscher-Weisz gauge action [27] for the gluons

SGlw [U ] =
β

6

(
c0

∑
p

Tr(1− U(p)) + c1

∑
r

Tr(1− U(r))
)
, (2.33)

with c0 = 5
3 , c1 = − 1

12 and β = 6
g2
0

. In addition to the sum over plaquettes p of the Wilson

gauge action, the action includes a sum over 1× 2 rectangles r.

Twisted-mass reweighting is used to improve stability of the simulations and open bound-

ary conditions are imposed on the gauge field in the temporal direction in order to avoid

topological freezing [28]. The simulations are done on lattices of size N3
S × NT , with open

boundary conditions imposed on time slice 0 and NT . Ensemble details are given in table

2.2. In the identifying label, the letter denotes the geometry, the first digit the coupling and

the final two label the quark mass combination. Using t0
a2 extrapolated to the physical light

quark masses, the estimated lattice spacings are a ≈ 0.086fm, a ≈ 0.064fm and a ≈ 0.05fm

for β = 3.4, 3.55, 3.7, respectively [24].

The simulations were performed using the Hybrid Monte Carlo (HMC) algorithm [29],

which is currently the most commonly used method used for simulations of full QCD on

the lattice. It is called hybrid, because it unifies the Markov chain Monte Carlo algorithm

with molecular dynamics (MD). The MD algorithm would be an exact algorithm if the equa-

tions of motion were solved exactly. However, integration errors occur because a numerical

method is used to solve these equations. Hybrid algorithms which use area-preserving and

reversible integrators, like the HMC algorithm, can be made exact by adding a Metropolis

acceptance step at the end of the MD trajectory, which stochastically corrects for the errors.
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id β Ns Nt mπ[MeV] mK[MeV] mπL

B105 3.40 32 64 280 460 3.9
H101 3.40 32 96 420 420 5.8
H102 3.40 32 96 350 440 4.9
H105 3.40 32 96 280 460 3.9
C101 3.40 48 96 220 470 4.7
D100 3.40 64 128 130 480 3.7

H200 3.55 32 96 420 420 4.4
N200 3.55 48 128 280 460 4.4
D200 3.55 64 128 200 480 4.2

N300 3.70 48 128 420 420 5.1
N301 3.70 48 128 410 410 4.9
J303 3.70 64 192 260 470 4.1

TABLE 2.2: List of Nf = 2 + 1 ensembles [24]

Twisted mass reweighting

Dynamical simulations with light quarks pose a variety of difficulties, one is the possibility

of running into instabilities triggered by accidental near-zero modes of the Wilson Dirac

operator. The operator is not protected against eigenvalues taking values below the quark

mass, due to the breaking of chiral symmetry. In simulations based on the HMC algorithm,

this effect can lead to barriers of infinite action during MD evolution. Indroducing a small

twisted-mass term into the action during the simulation gives a strict lower bound [30], but

has to be compensated for by reweighting. In [31], it was shown that this procedure works

as expected for QCD with Nf=2+1 flavors of Wilson fermions and open boundary conditions

in time. For the CLS simulations, the second version of the reweighting suggested in [30]

was used. Instead of introducing the twisted mass term in the Hermitian Dirac operator

Q = γ5DW as originally proposed, it is introduced to the Schur complement Q̂ = Qee −
QeoQ

−1
oo Qoe of the even-odd preconditioning. This leads to a replacement of the determinant

of the light quark pair

detQ2 = det2Qoo det Q̂2 → det2Qoo det
Q̂2 + µ2

0

Q̂2 + 2µ2
0

det
(
Q̂2 + µ2

0

)
, (2.34)

where µ0 is the twisted mass. The reweighting factor is given by

W0 = det
(Q̂2 + 2µ2

0) Q̂2

(Q̂2 + µ2
0)2

. (2.35)

The twisted mass parameter µ0 > 0 acts as an infrared regulator of the quark determinant

and is usually set to a value of the order of the light quark mass [31]; taking the twisted mass

to infinity amounts to decoupling of the sea quarks and thus the quenched approximation.



2.2. CLS ensembles 15

The heavier strange quark is simulated using the rational hybrid Monte Carlo RHMC al-

gorithm [32]. The reason for using another algorithm for the one-flavor sector is that the

determinant is used as a probability weight for HMC. Thus the determinant has to be real

and non-negative. γ5 hermiticity of the Dirac operator implies that the determinant is real.

Non-negativity is easy to show for the light quarks, assuming degeneracy Du = Dd:

0 ≤ det[Qu] det[Qd] = det[Q] det[Q] = det[Q] det[Q†] = det[QQ†]. (2.36)

In general, for an even number of mass-degenerate quarks, the determinant is raised to an

even power and the combined weight factor is non-negative. det[Q] is positive if the quark

mass is large enough and this is the case for the strange quark. In order to include the

strange quark, a method for HMC simulations with an odd number of dynamical fermions

is needed. One possibility is using RHMC, where the square root of QQ† is approximated.

To correct this approximation, the reweighting factor for the strange quark W1 is implicitly

defined by

detQ = detQoo det

√
Q̂2 = detQoo det

(
A−1

Np∏
i=1

Q̂2 + µ̄2
i

Q̂2 + ν̄2
i

)
×W1 . (2.37)

The parameters A and {µ̄i, ν̄i} are given by Zolotarev’s optimal approximation for the in-

verse square root of the Schur complement of the hermitian Dirac operator Q̂ [33].

Given the twisted mass and RHMC reweighting factors, primary observables can now be

computed from expectation values in the theory with the modified action 〈· · · 〉W and the

reweighting factor W = W0W1 needs to be included according to

〈A〉 =
〈AW 〉W
〈W 〉W

. (2.38)

Open boundary conditions

Simulations with small lattice spacings can get trapped in fixed topological charge sectors

of field space which might lead to an incomplete sampling of the path integral and thus

biased results. It was shown that the problem is ameliorated if open boundary conditions are

imposed in the time direction [28]. With open boundary conditions, the topological charge

can change smoothly along a MD trajectory by flowing in and out of the lattice through its

boundaries.

While periodic boundary conditions are imposed on the fields in spatial directions, time

runs from 0 to T inclusively, the terminal time-slices are called the boundaries of the lattice.
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The Lüscher-Weisz gauge action (2.33) is now given by

SGlw [U ] =
β

6

(
c0

∑
p

w(p)Tr(1− U(p)) + c1

∑
r

w(r)Tr(1− U(r))
)
, (2.39)

where the time coordinate x0 of the corners of all the plaquettes and rectangles must be in

the range 0 ≤ x0 ≤ T . The weights w(p) and w(r) are equal to 1, except for spatial loops

on the boundaries at time 0 and T , where the weights are equal to 1
2cG. The coefficient cG

is required for O(a) improvement for correlation functions close to or at the boundary [28],

with cG = 1 ensuring on-shell improvement at tree-level of perturbation theory.

The Wilson action (2.23) for the fermion fields can be expressed as

SWF [ψ,ψ, U ] = a4
∑
xi

T−a∑
x0=a

ψ̄(x) (DW +m)ψ(x). (2.40)

The quark and antiquark fields ψ(x) and ψ̄(x) need to satisfy the following boundary con-

ditions:

P+ψ(x)|x=0 = P−ψ(x)|x0=T = 0, P± =
1

2
(1± γ4),

ψ̄(x)P−
∣∣
x0=0

= ψ̄(x)P+

∣∣
x0=T

= 0.

(2.41)

Since the action SWF only depends on the quark fields at times 0 < x0 < T , it is allowed to set

all components of the fields at time 0 and T to zero. The dynamical components of the quark

fields are living in the inner part of the lattice. The path integral and correlation functions

are now defined accordingly as before. The Wilson-Dirac operator stays γ5-hermitian with

these boundary conditions.

The downside to using open boundary conditions is that time translational invariance is

lost. Sufficiently far away from the boundaries, local observables are expected to assume

their vacuum expectation values up to exponentially small corrections with a decay rate

equal to the lightest excitation that carries the quantum numbers of the vacuum [28]. Hence,

the boundary effects are expected to decay close to the chiral limit as exp(−2mπx0), so the

region close to the boundaries is large and as a consequence one can lose a lot of statistics.

Additionally, large discretization errors are observed close to the boundary. This means that

when employing open boundary conditions, it is very important to avoid unwanted bound-

ary effects. What portion of the lattice needs to be neglected depends on the observable and

the statistical precision of the data. In order to ensure this, we employ only the central half

of the time slices in our calculations.
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Chapter 3

Methodology

After the gauge field configurations have been generated, Wilson loops, hadron correlation

functions and any other function of the gauge field are calculated on those configurations.

These are the primary observables of the theory, which means all physical quantities are

eventually obtained from them. In this chapter, the extraction of masses and energies of

hadrons, so called hadron spectroscopy, is discussed. There are many approaches to calcu-

lating propagators, which are the building blocks of hadron correlation functions. Smearing

techniques used in this work and the stochastic LapH method are described in subsections

3.2 and 3.3, respectively. In the simplest case, the extraction of masses can be done by fitting

exponentials to the Euclidean correlator. This approach is especially feasible for extracting

the ground state of an observable. In order to access higher lying states, more complicated

methods are needed, such as the variational method, which are discussed in subsection 3.4.

3.1 Correlation functions

For the Wilson formulation of Lattice QCD as presented in section 2.1.2, it was proven that

for the discretization of the Euclidean action, the physical Hilbert space in the Minkowski

theory can be obtained in a constructive way [34, 35]. Since lattice calculations are per-

formed in Euclidean space, it is important to know if the corresponding Minkowski theory

is physical. In general, it is necessary to analytically continue the correlation functions to

Minkowski space in order to yield physical quantities. However, the spectrum remains un-

changed by analytic continuation and can be computed in either Minkowski or Euclidean

space. Therefore, the spectrum can be calculated directly from Euclidean two point func-

tions by analyzing the exponential fall-off of the Euclidean correlator [36].

A hadron spectroscopy calculation using Lattice QCD is usually performed in the following

way [14, 15]. The first step is to find suitable interpolators O, so that the corresponding

Hilbert space operators O create the particle states one wants to analyze. The interpolators

are functionals of the lattice fields, they are contructed using quark and gluon fields to form
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gauge-invariant color singlets. They have to carry the quantum numbers of the states that

one wants to extract.

After choosing the interpolators, the next step is the calculation of the Euclidean correla-

tor. The correlation function contains information on every state that can be created by the

operators used. It is defined by

〈Oi(tf )Oj(t0)〉T =
1

Z
〈Ω|e−(T−tf )HOie

−(tf−t0)HO†je
−t0H |Ω〉, (3.1)

where Z = 〈Ω|e−TH |Ω〉 and H is the Hamilton operator of the system. Ω encodes the chosen

boundary conditions and has the quantum numbers of the vacuum. To evaluate the corre-

lator on the lattice, an expression as a path integral over all possible field configurations, as

given in equation (2.1), is needed. The corresponding relation is given by [14]

1

Z
〈Ω|e−(T−tf )HOie

−(tf−t0)HO†je
−t0H |Ω〉 =

1

Z

∫
D[Φ]Oi[Φ(tf )] Oj [Φ(t0)] e−SE [Φ]. (3.2)

This displays how the operator language of quantum field theory on the left can be trans-

lated into functionals of fields, weighted with the Euclidian action SE . As explained in

chapter 1, the right hand side, and thus the correlator, can be numerically evaluated on the

lattice using MC methods.

After insertion of a complete set of eigenstates of H to evaluate expression (3.1), one finds:

〈Oi(tf )Oj(t0)〉T =
1

Z
∑
n

〈Ω| e−(T−tf )HOie
−tfH |n〉 〈n| et0HO†je

−t0H |Ω〉

=
1

Z
∑
n

e−(T−tf )EΩ 〈Ω|Oi |n〉 e−tfEnet0En 〈n|O†j |Ω〉 e
−t0EΩ .

(3.3)

The correlator depends only on the energies normalized relative to the energy of the vac-

uum, which is arbitrary. Adding a constant term to the Hamiltonian does not change the

expectation values, so only energy differences have physical meaning. If the energy of the

vacuum is normalized to 0, the limit T →∞ for periodic boundary conditions can be ex-

pressed as

lim
T→∞

〈Oi(tf )Oj(t0)〉T = 〈Oi(tf )Oj(t0)〉 =
∑
n

〈0|Oi |n〉 〈n|O†j |0〉 e
−En(tf−t0)〉 , n ≥ 0.

(3.4)

This is a sum of exponentials where each term corresponds to an energy level. Even though

it is impossible to go to asymptotic times on a finite lattice, the contributions of higher en-

ergy states are falling off exponentially in Euclidean time with a value governed by their

energy difference to the ground state as an exponent. This means for large t = tf − t0,
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the excited states are strongly suppressed. Even though it is often achievable to reach a dis-

tance effectively asymptotic even for limited time extents, periodic boundary conditions can

lead to thermal effects due to wrapping around the finite temporal extend, while for open

boundary conditions contributions are added due to states with vacuum quantum numbers

propagating off the temporal boundary [28]

lim
T→∞

t0,T−tf→∞

〈Oi(tf )Oj(t0)〉T = 〈Oi(tf )Oj(t0)〉
(
1 +O(e−E0tbnd)

)
. (3.5)

E0 is the lightest state carrying vacuum quantum numbers and tbnd = min(t0, T − tf ) is

the minimal distance to the boundaries. While correlations functions feel the effect of the

boundaries, the transfer matrix and thus the space of physical states are independent of the

boundary conditions.

If O†j is an operator which creates the state with the right quantum numbers from the vac-

uum andOi the corresponding operator which annihilates this state at a later time t, then the

ground state energy can be extracted from the exponential decay of the Euclidean correlator

Cij(t) = 〈Oi(t)Oj(0)〉 =
∑
n

〈0|Oi |n〉 〈n|O†j |0〉 e
−tEn . (3.6)

The amplitudes are called overlap factors and determine the overlap of the interpolators

with the physical states. If the correlator Cij(t) is hermitian

〈0|Oi |n〉 = 〈n|O†i |0〉
∗ (3.7)

the overlap factors can be defined as

Zi = 〈0|Oi |n〉 (3.8)

Z∗i = 〈n|Oi |0〉 . (3.9)

The correlator can be rewritten as

Cij(t) =
∑
n

ZiZ
∗
j e
−tEn . (3.10)

To analyze at which times the contributions of sub-leading exponentials become negligible,

the effective mass can be defined as

ameff = ln
Cij(t)

Cij(t+ 1)
. (3.11)
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The massmeff becomes a constant at large time separations, once the correlator is dominated

by the ground state and plateaus at E0, but statistical errors grow with t. The onset as well

as the length of the plateau depend onO. The hadron mass can be extracted from fits to data

in this plateau region, as explained in section 3.4.

3.1.1 Symmetries

Eigenstates of the Hamiltonian are simultaneous eigenstates of operators that commute with

the Hamiltonian, these operators generate a symmetry. The eigenstates can be identified by

their symmetries. Since the lattice has a reduced set of symmetries in comparison to the con-

tinuum, it is essential to understand the properties of lattice states under symmetry trans-

formations in order to identify the physical hadrons built by the chosen interpolators.

In the continuum and infinite volume limits, the spacetime symmetries of the QCD action

are given by the Poincaré group P [37]. The spatial symmetries of the QCD Hamiltonian

correspond to a subgroup of P : O(3)× T 3, the semi-direct product of the improper rotation

group and the group of abelian translations. QCD observable states are classified accord-

ing to their transformation properties under the irreducible transformations (irreps) ofO(3),

which are conventionally named JP , where J is the spin, P is parity. On a spatially isotropic

lattice, the continuum symmetry is reduced to Oh × T 3
latt [38], the semi-direct product of

Oh, the octahedral group with only a finite number of rotations and reflections and T 3
latt,

the abelian group of lattice translations. Lattice interpolators must transform according to

the irreps of Oh in order to create eigenstates of the lattice Hamiltonian with well-defined

quantum numbers. The states that transform according to the irreps of Oh are labeled ΛP .

There are ten single-cover lattice irreps: A1g, A2g, Eg, T1g, T2g and A1u, A2u, Eu, T1u, T2u. The

g (gerade) and u (ungerade) label the behaviour under spatial inversion. While for mesons

the single cover of Oh is considered, the double cover of the group ODh is used to describe

baryons [39]. For hadrons with non-zero momentum, the symmetry is further reduced and

the group theory becomes more involved [40, 41].

The interpolators are, as mentioned before, constructed using quark and gluon fields. For

instance, the simplest meson interpolators are color-singlet local fermion bilinears [42]

OM ≡ ψα(x)Γαβψβ(x), (3.12)

where Γ is a gamma matrix, which has to be chosen according to the transformation proper-

ties of the state, i.e. the quantum numbers, one is interested in. These simple local operators

allow access only to a small set of JP , in order to consider higher or exotic spin states or

produce multiple operators within a given symmetry channel on the lattice, one must con-

sider the use of spatially extended, nonlocal operators, see for example [43, 44]. In general,
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the connection between quantum numbers in the continuum and quantum numbers on the

lattice must be assessed carefully.

The reduction of the symmetry on the lattice manifests itself in the possible distribution of

continuum states of the same JP , but different JZ , across different lattice irreps. There is

no one-to-one mapping [45]. The link to the continuum symmetry group and thus the clas-

sification of states by their continuum quantum numbers can be made by subducing the

representations of O(3) into Oh. The single-valued irreps correspond to bosonic and the

double-valued irreps correspond to fermionic states. The simplest case is the subduction of

J = 0, 1, they subduce into theA1 and T1 irrep, repectively. Only spins 0 and 1 are described

by a single octahedral irreducible representation, while other spins have to be described by

two or more [38, 42]. The interpolators and symmetries that are important for string break-

ing, are discussed in section 4.3.

Usually the interpolating operators have to be optimized, because any operator with the

correct quantum numbers contributes to a physical state. Maximizing the overlap for these

operators with the ground state can be achieved by quark and gluon smearing. Different

methods are described in the next subsection.

3.2 Smearing

The goal is to find interpolators which improve the groundstate overlap. One commonly

used technique to achieve this is quark and gauge field smearing. Quark field smearing, for

example Wuppertal-smearing [46], can reduce the contamination by excited states, but it is

important to use the smeared gauge fields when smearing the quark fields [47]. Link smear-

ing, for example Stout- [48], or hypercubic (HYP) smearing [49], also reduces the statistical

errors in the correlators, the details of the smearing techniques used in this project are given

below.

3.2.1 Stout-link smearing

For states containing gluons, a crucial ingredient in constructing operators which couple

more strongly to the states of interest and less strongly to the higher-lying contaminating

states is link smearing. The algorithm most often used in gluonic operator construction is

APE smearing [50], which amounts to replacing each thin spatial link Uj(x) by a weighted

sum of its four neighboring (spatial) staples, projected back into SU(3). Such a fuzzing step

can be iterated to obtain the final so called fat link variables. The projection into SU(3) is an

important part of the smearing and not unique. It must be defined in a way that preserves
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all symmetry properties of the link variables. The problem with such an abrupt way to

stay inside the gauge group is the lack of differentiability. It prevents the application of MC

updating techniques, such as HMC, because they need to know the response of the action

to a small change in a link variable. A link smearing method which is analytic everywhere

in the finite complex plane and thus differentiable, was proposed and tested in [48], the so

called stout smearing. It utilizes the exponential function to remain within SU(3), so that

no projection back into the group is required. According to [48] the smearing is iteratively

defined by an algorithm in which the links U (n)
µ (x) at step n are mapped into links U (n+1)

µ (x)

using

U (n+1)
µ (x) = exp

(
iQ(n)

µ (x)
)
U (n)
µ (x). (3.13)

The matrix Qµ(x) given by

Qµ(x) =
i

2

(
Ω†µ(x)−Ωµ(x)

)
− i

2N
Tr
(
Ω†µ(x)−Ωµ(x)

)
,

Ωµ(x) = Cµ(x) U †µ(x), (no summation over µ) (3.14)

is Hermitian, traceless and an element of the Lie algebra. Cµ(x) represents a weighted sum

of the perpendicular staples which reach from lattice site x to a neighboring site x+µ̂:

Cµ(x) =
∑
ν 6=µ

ρµν

(
Uν(x)Uµ(x+ν̂)U †ν (x+µ̂)

+U †ν (x−ν̂)Uµ(x−ν̂)Uν(x−ν̂+µ̂)

)
, (3.15)

where µ̂, ν̂ are unit vectors in directions µ, ν, respectively and the weights ρµν are tunable

real parameters. It is important to note, that because eiQµ(x) is an element of SU(3), the same

is true for U (n+1)
µ (x) in equation (3.13), eliminating the demand for projecting back into the

gauge group. The stout links retain symmetry transformation properties identical to those

of the original links, given an appropriate choice of the weights ρµν .

3.2.2 HYP-smearing

The HYP fat link [49] mixes gauge links within hypercubes attached to the original link only,

so that the smearing eliminates UV-fluctuations, but remains localized. One level of HYP

smearing consists of three levels of modified APE smearing. The links entering the staples

are projected back into the gauge group SU(3). The links can be constructed in three steps,

the construction can then be iterated:
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1. The first step is the design of decorated links V̄µ;ρ ν(x) using the original thin links with

a modified projected APE blocking

V̄µ;ν ρ(x) = ProjSU(3)[(1− α3)Uµ(x) +
α3

2

∑
±η 6=ρ,ν,µ

Uη(x)Uµ(x+ η̂)Uη(x+ µ̂)†] , (3.16)

where Uµ(x) is the original link. Only the two staples orthogonal to µ, ν and ρ are

being used.

2. The second step is the construction of higher level decorated links Ṽµ;ν(x) from links

decorated according to step 1, V̄µ;ρ ν(x) as

Ṽµ;ν(x) = ProjSU(3)[(1−α2)Uµ(x)+
α2

4

∑
±ρ6=ν,µ

V̄ρ;ν µ(x)V̄µ;ρ ν(x+ρ̂)V̄ρ;ν µ(x+µ̂)†] , (3.17)

where the indices ρ ν indicate that the fat link V̄µ;ρ ν(x) in direction µ is not decorated

with staples extending in the ρ or ν directions.

3. The final step provides the fat HYP link Vµ(x) via

Vµ(x) = ProjSU(3)[(1− α1)Uµ(x) +
α1

6

∑
±ν 6=µ

Ṽν;µ(x)Ṽµ;ν(x+ ν̂)Ṽν;µ(x+ µ̂)†] . (3.18)

The index ν in Ṽµ;ν(x) expresses that the fat link at location x and direction µ is not

decorated with staples extending in direction ν.

FIGURE 3.1: Construction mechanism of HYP-smearing shown in 3d [49]. a)
shows fat link built from four double-lined staples, b) shows how the double-
lined staples are constructed from two staples which stay inside the hypercube

attached to the original link.

The parameters α1, α2 and α3 can be optimized to achieve the smoothest blocked link con-

figuration. The 3d schematic construction is displayed in figure 3.1. It was shown [51], that
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for the static potential extracted using Wilson loops, the statistical precision of the potential

measured with HYP links improves by about an order of magnitude.

3.2.3 Distillation

As mentioned above, using smeared quark fields is a well-established way to reduce high

frequency modes and thus especially important if one wants to extract low-lying energies.

A special quark-field smearing algorithm is distillation [52]. It applies a low-rank operator

to define smooth fields that are to be used in hadron creation operators. The dimension of

the resulting subspace of smooth fields is so small, that all elements of the reduced quark

propagator can be computed exactly in moderately sized lattices. These all-to-all propa-

gators are necessary to calculate definite momentum multi-hadron correlation functions as

well as disconnected Wick contractions of correlation functions, which appear in the string

breaking calculation. In these cases estimates of the quark propagators from all spatial sites

to all spatial sites are needed.

It is desirable for the smeared fields ψ̃ to have the same single time-slice-symmetry proper-

ties as the original fields ψ, which is satisfied by every smearing scheme defined in powers

of the covariant Laplacian acting on the quark field. The three-dimensional lattice Laplacian

is given by:

∆̃ab(x, y;U) =

3∑
k=1

{
Ũabk (x)δ(y, x+ k̂) + Ũ bak (y)∗δ(y, x− k̂)− 2δ(x, y)δab

}
, (3.19)

where x, y are lattice sites, a, b are color indices and Ũabk (x) are the gauge fields, constructed

using stout smeared gauge links [48]. Now, it is possible to define a simple smearing opera-

tor

ψ̃ =

(
1 +

σ∆̃

nσ

)nσ
ψ. (3.20)

σ and nσ are tunable parameters that can be used to change projection properties onto the

states under investigation. If one defines the quark-field smearing kernel as

K =

(
1 +

σ∆̃

nσ

)nσ
, (3.21)

it can be rewritten in terms of the eigenvalues λ, with λ > 0, and eigenvectors v of the

Laplacian:

Kab(x, y) = δx4,y4

∑
k

ωkv
k
a(x)vkb (y)∗, (3.22)
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where ωk are real and positive weights:

ωk =

(
1− σλ(k)(t)

nσ

)nσ
. (3.23)

For large nσ, this tends to

lim
nσ→∞

ωk = exp
(
−σλ(k)

)
. (3.24)

The effect of these smearing weights is the suppression of contributions from the higher

eigenmodes; only a small number of the lowest modes contribute substantially. Assum-

ing that the lowest modes contain the physical information, a smearing operator can be

constructed by forming an eigenvector representation, only taking the lowest modes into

account. The simplest function to facilitate this is the Heaviside-function, the correponding

smearing kernel is:

Sab(x, y) = Θ(σ2 + ∆̃). (3.25)

Since we only want to use spatial smearing, the smearing kernel is diagonal in time:

Sab(x, t;y, t0) ∝ δt,t0 . It is also important to note that the kernel is independent of spin.

Let VM define the matrix of rank M containing all eigenvectors, where M = NtN
3
sNc on a

lattice withNt time slices,Ns sites for each spatial direction andNc quark colors. The quark-

smearing operator is chosen to be of rankN = NvNt, much smaller thenM , whereNv are the

lowest lying eigenvalues on each time slice. The class of these operators is called distillation

operators [52] and the smearing-technique is called Laplacian-Heaviside-smearing (LapH)

[53]. The LapH-smearing truncates the sum in equation (3.22)

Sab(x, y) = δx4,y4

Nv∑
k

vka(x)vkb (y)∗. (3.26)

The eigenvectors are orthogonal

∑
a,x

vka(x)vja(x)∗ = δjk, (3.27)

and sorted by eigenvalue

∑
b,y

∆̃(x, y)vkb (y) = −λk(t)vka(x), λk(t) ≤ λk+1(t)... (3.28)

In matrix notation, the distillation operator or smearing matrix can be written as

S = V V †, with V †V = 1. (3.29)
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It is a product of an M ×N Matrix V and its hermitian conjugate and is the projection oper-

ator into the smaller LapH subspace.

A quark propagator in the distillation subspace D(y, t;x, t0) can now be written as the fol-

lowing product of matrices after applying the distillation operator to each quark field

D(y, t;x, t0) = SΩ−1S = V (V †Ω−1V )V †, (3.30)

where Ω−1 = D−1γ4. Here D is the Dirac matrix, this is conventional to ensure hermiticity

for baryonic correlation matrices. Instead of computing and storing all elements of Ω−1, it

suffices to find the smaller matrix V †Ω−1V .

If Nd = 4 denotes the number of Dirac spin components, define

y
(k,α)
cβ (x) = V (c, x; k) δαβ, (3.31)

where α, β are spin indices, c indicates color and k refers to the column of V , which is the

k-th eigenvector of the Laplacian. Solving the linear system Ωb = y(k,α) for b and all k, α

one finds Ω−1V (k). So in order to find the smaller matrix V †Ω−1V , NvNtNd such inversions

have to be performed for each quark mass and gauge configuration in the ensemble, where

Nd denotes the number of Dirac components. The number Nv of required eigenvectors for

a fixed σ2 cutoff scales with the volume of the lattice [53] and thus the number of inversions

needed is still too high to be feasible for bigger lattices.

One solution to this problem is the stochastic estimation of the quark propagator. The smear-

ing scheme facilitates this in a convenient way, which is shown in the next section. Even

though distillation can be used on its own to find all-to-all propagators on small lattices, it

is often combined with other methods to reduce computational cost.

3.3 Stochastic LapH method

If one wants to evaluate hadron correlation functions, one of the biggest problems is the

inversion of the Dirac-matrix that appears in the fermionic action. Computing all elements

is most of the times impossible. For propagators from one source point to all other points,

there are methods to reduce computational cost. As mentioned above, for multi hadron

states and disconnected diagrams propagators from all spatial sites to all spatial sites have

to be computed, which makes the situation more complicated. One way to handle the prob-

lem is to stochastically estimate the inverse of this large matrix using random noise vectors

and combine this approach with Distillation to facilitate all-to-all propagation and amelio-

rate the volume scaling [53].
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Since the path integrals are being evaluated using a Monte Carlo based method, the statis-

tical errors for the hadron correlators are bound by the statistical fluctuations arising from

sampling the gauge-field. This means that the propagators only have to be estimated to a

comparable accuracy, exact treatment is not necessary and can even be wasteful. The prop-

agator can also be approximated using the Monte Carlo Method.

Random noise vectors η can be used for stochastically estimating the inverse of the large

Dirac matrix. The vectors η satisfy the following properties

E(ηi) = 0

E(ηiη
∗
j ) = δij ,

(3.32)

where E() denotes the expectation value over the random noise sources. For each noise

vector, the following system of linear equations can be solved:

ΩXr = ηr (3.33)

for Xr, where r labels the noise vectors r = 1, 2, · · · , NR. Then Xr = Ω−1ηr and the expec-

tation value is given by

E(Xiη
∗
j ) = E(

∑
k

Ω−1
ik ηkη

∗
j ) =

∑
k

Ω−1
ik E(ηkη

∗
j ) =

∑
k

Ω−1
ik δkj = Ω−1

ij . (3.34)

The left-hand-side can be estimated using the Monte Carlo method, which provides an esti-

mate of Ω−1
ij given by

Ω−1
ij ≈ N

−1
R

NR∑
r=1

Xr
i η

r∗
j . (3.35)

The problem with this expression is that the variances of the stochastic estimates are usu-

ally much too large and hence, the noisy estimates need variance reduction techniques to

separate signal from noise. This is possible through dilution of the noise vectors [54, 55].

Dilution

For every noise vector, one can define:

ηrj =

N∑
b=1

η
r[b]
j , η

r[b]
j = ηrj δjb, where j is not summed over. (3.36)

ηr[b] is an N-component vector where all components are zero except the bth component.
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A dilution scheme amounts to the application of a complete set of projection operators P (b),

which ensure exact zeros for many of the E(ηiη
∗
j ) elements instead of estimates that are

only statistically zero. This reduces the variance dramatically. The dilution projectors P (b)

are products of time dilution, spin dilution, and LapH eigenvector dilution projectors. The

diluted sources are defined as

ηr[b] = P (b)ηr, (3.37)

where the matrices P (b) satisfy

P (a)P (b) = δabP
(a),

Na∑
a=1

P (a) = 1, P (a)† = P (a). (3.38)

Xr[b] is the solution of

ΩXr[b] = ηr[b]. (3.39)

Now the Monte Carlo estimate of Ω−1
ij given in equation (3.35) can be rewritten as

Ω−1
ij ≈

1

NR

NR∑
r=1

Nb∑
b=1

X
r[b]
i η

r[b]∗
j . (3.40)

Although the expectation value is the same, the variance of
∑

a η
[a]
k η

[a]∗

j is smaller than the

variance of ηkη∗j . The effectiveness of the variance reduction depends on the projectors

chosen. The use of ZN noise ensures zero variance in the estimates of diagonal elements

E(ηiη
∗
i ) [56].

It is now possible to introduce the noise on the entire lattice [57], but distillation offers a

more effective way. Noise vectors ρ are being introduced only in the smaller LapH-subspace,

which have spin, time and eigenmode as their indices. The Dilution projectors are matrices

in the subspace and each component of ρ is a random ZN variable with E(ρ) = 0 and

E(ρρ†) = Id. Note that ρρ† is an outer product. Id is the identity matrix. A quark line as in

equation (3.30) can now be written down in the following way

D = SΩ−1S,

= S Ω−1V V †

=
∑
b

S Ω−1V P (b)P (b)†V †

=
∑
b

S Ω−1V P (b)E(ρρ†)P (b)†V †

=
∑
b

E
(
S Ω−1V P (b)ρ (V P (b)ρ)†

)
. (3.41)
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The estimate of a quark line on a given gauge configuration therefore reads

D(ij)
uv (y, t;x, t0) ≈ 1

NR
δij

NR∑
r=1

Nb∑
b=1

ϕ
r[b]
u (y, t)%

r[b]∗
v (x, t0). (3.42)

A quark line is a matrix in space, time, spin and color space. The subscripts u, v are com-

pound indices indicating color and spin, i, j denote the flavor of the source and sink field.

NR and Nb are the number of independent stochastic noise sources and the number of di-

lution projectors corresponding to the chosen dilution scheme, respectively. The smeared-

diluted quark source and quark sink vectors are defined as

%r[b](x, t) = (V P (b)ρr)(x, t), ϕr[b](x, t) = [S Ω−1 V P (b)ρr](x, t). (3.43)

It is now apparent that a quark line factorizes into an outer product of a source vector and

a sink vector. This allows for separate construction of the source and sink hadrons. Source

and sink operators can be correlated after all elements of ϕ[b](ρ) have been computed and

stored once. For an unbiased estimation, it is necessary that each quark line in a hadron cor-

relator has independent noise. For a meson correlator, this means at least two independent

noises per configuration.

As mentioned above, the dilution projectors P (b) used for this work are direct products of

time dilution, spin dilution and LapH eigenvector dilution projectors. So b = (bT , bS , bL) is

a triplet of indices, where bT is the time projector index, bS is the spin projector index and bL
is the LapH eigenvector projector index. The noise-dilution projectors have the form

P
(b)
tαn; t′α′n′ = P

(bT )
t;t′ P

(bS)
α;α′ P

(bL)
n;n′ , (3.44)

where t, t′ refer to time slices, α, α′ are Dirac spin indices, and n, n′ are LapH eigenvector

indices. We use projectors which are diagonal with some or all of the diagonal elements

set to unity and all other elements vanishing. N denotes the dimension of the space of the

dilution type of interest.

P
(b)
ij = δij , b = 0, (no dilution)

P
(b)
ij = δij δbi, b = 0, . . . , N − 1 (full dilution)

P
(b)
ij = δij δb, i mod J b = 0, . . . , J − 1, (interlace-J)

where i, j = 0, . . . , N−1. A triplet (T, S, L) specifies a dilution scheme, where T , S and L de-

note time, spin, and LapH eigenvector dilution, respectively. F stands for full dilution and IJ

for interlace-J . For example, full time and spin dilution with interlace-8 LapH eigenvector

dilution is denoted by (TF, SF, LI8). If full dilution (TF,SF,LF) is used, the exact propagator
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could be computed with using one noise source only. This so called homeopathic limit cor-

responds to distillation.

It is important to note that full spin dilution is needed, as the intended quantum numbers

are only recovered up to stochastic mixing. The interlacing of eigenvectors on the other

hand is very beneficial, it helps to ameliorate the volume scaling of the computational cost

of inversions. Using eigenvector dilution, the required number of inversions is no longer

proportional to Nv and correspondingly the volume.

In [53], different dilution schemes have been tested using different spatial lattice sizes and

pion masses. It was found that (TF, SF, LI8) produces variances near that of the gauge noise

limit for correlators D(y, tF ;x, t0) with tF 6= t0. For these, inversions are usually computed

for a handful of source times only using full time dilution, as correlation functions extracted

using nearby source times tend to be highly correlated. The interlacing in time enables

the evaluation of correlators which involve propagators that originate and terminate on the

same time slice tF = t0, where full dilution in time would not be feasible. The dilution

scheme has to be chosen and tested for each ensemble individually to ensure that the vari-

ances reach the gauge noise limit.

Using the stochastic LapH method, the number of inversions is equal to NρNP , where Nρ is

the number of noises used andNP is the number of dilution projectors. The two key features

of the method are the use of noise dilution projectors that interlace in time and the introduc-

tion of noise in the LapH subspace instead of the entire lattice. Even though the number

of eigenvectors required to span the LapH subspace rises with the Volume, the number of

inversions of the Dirac matrix can be kept almost constant if eigenvectors are interlaced.

Another advantage of stochastic LapH lies in the complete factorization of hadron sources

and sinks, which facilitates the construction of correlation functions a posteriori. For the

calculation of the string breaking diagrams, this is no longer true. The usual workflow is

broken because we do not stochastically estimate the static quark propagators. However, the

method still allows for an effective calculation of the required correlation matrix elements,

which is described in detail in chapter 4.5.
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3.4 Analysis techniques

3.4.1 Extraction of energies

The observables in this work are correlation functions Cij(t) evaluated as path integrals on

the lattice using MC methods. These are, as mentioned above, primary observables. On all

Ncfg configurations, they have a unique value Ccij(t), where c = 1, ..., Ncfg. Assuming mea-

surement on Ncfg statistically independent gauge configurations, a stochastic MC estimate

for the average of a collection of d = 1, ..., Nd primary observables, with measured values acd
is given by

〈Ad〉 ≡
1

Ncfg

Ncfg∑
c

acd. (3.45)

If acd and ace are data corresponding to observables Ad and Ae, the product 〈AdAe〉 is given

by acda
c
e. It is also a primary observable, this is true even for stochastically estimated ob-

servables, if the random sources are included as additional fields in the ensemble of fields

generated [58]. An estimate of the n-point function 〈Ad1 ...Adn〉 can thus be obtained by cal-

culating the average of acd1
...acdn .

The extraction of the effective mass as given in equation (3.11) is useful for a first estimate of

the ground state and to show the plateau region, where a fit is performed. Effective masses

as well as other functions of primary observables, so called derived observables, can be

extracted using best-fit procedures [15], as for example χ2 minimization. To do this for MC

data, the correlated χ2 statistic is needed. Let fa, a = 1, ...,m, be the model predictions and

〈Fa〉 the MC data. If the model functions depend only on the parameters and not on the data

itself, the best-fit estimates of the parameters from statistical estimates of the data are given

by the values of fa that minimize

χ2 =
m∑

a,b=1

(fa − 〈Fa〉)Σ−1
ab (fb − 〈Fb〉) (3.46)

Σab =
〈FaFb〉 − 〈Fa〉 〈Fb〉

N2
cfg

, (3.47)

where Σab is the MC estimate of the covariance matrix between the m observables. The co-

variance between the data is needed to properly treat the correlation between observables

that are measured on the same ensemble of gauge configurations. The entries in this matrix

are again estimated from Monte Carlo data.

The estimate for this large matrix is often hard to determine in practice and especially if the

sample size is is not sufficiently large, statistical fluctuations can lead to small eigenvalues
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destabilizing the fit [59, 60]. By definition, the covariance matrix is a positive semi-definite

symmetric matrix. For real data, it might have close to zero eigenvalues as a symptom of sta-

tistical instability. One solution to this problem is to apply a singular value decomposition

(SVD) to the covariance matrix and remove very small eigenvalues before the inversion is

computed [15]. For each singular value that is removed, the effective value of m is reduced.

In theory, it is possible to take the spectral decomposition of the correlation function in

terms of eigenstates, as given in equation (3.10), and perform a fit to the full correlation

matrix directly in order to extract the lowest lying eigenstates. Since the covariance matrix

is of a high dimension, proportional to the number of time slices and the dimension of the

correlation matrix, instabilities can occur, as mentioned above. Furthermore, in order to

extract excited states, a fit of the data to a sum of exponentials with unknown exponents

and coefficients has to be performed. It is a known problem [61, 62] that this fit may be

very badly conditioned. Small changes in the data can cause large changes in the best-fit

parameters. In order to circumvent these issues, a variational analysis can be performed.

3.4.2 Variational techniques and GEVP

The study of excited states on the lattice is intricate, because the excited states in correlation

functions are exponentially suppressed in comparison to the ground state, as can be seen

in equation (3.4). For the systematic and efficient extraction of excited states, the variational

method is very effective. The main idea is to use a basis of several different interpolators and

exploit the different overlaps onto the states of interest to extract the eigenvalues by solving

the generalized eigenvalue problem (GEVP) [63–65]. The starting point is the matrix of cross

correlations defined on an infinite-time lattice given in equation (3.6)

Cij(t) = 〈Oi(t)Oj(0)〉 =
∞∑
n=1

〈0 | Oi | n〉〈n | O†j | 0〉 e
−Ent, (3.48)

where a set of N basis interpolators Oi, i = 1, ..., N is needed. Note that non degenerate

energy-levels are assumed. As mentioned above, the interpolators must have the quantum

numbers of the state to be examined. They can for instance be built from different Dirac

structures or using different smearings.

The GEVP is defined by

C(t) vn(t, t0) = λn(t, t0)C(t0) vn(t, t0) , n = 1, . . . , N , t > t0, (3.49)

where λn and vn are the eigenvalues and orthonormal eigenvectors of the correlation matrix,
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respectively. The matrix is of dimension Nop × Nop, where Nop is the number of operators.

The GEVP is solved by

λn(t, t0) = exp(−En(t− t0)), (3.50)

so that the energies of interest can now be determined [65]

En = lim
t→∞

Eeff
n (t, t0) (3.51)

Eeff
n (t, t0) =

1

a
ln

λn(t, t0)

λn(t+ a, t0)
. (3.52)

For large times, the contribution of states n > N is small and for fixed t0, the corrections are

given by

Eeff
n (t, t0) = En + ε(t, t0) (3.53)

ε(t, t0) = O(e−∆En t) , ∆En = min
m6=n

|Em − En| . (3.54)

The energy gap ∆En is given by the distance to the nearest neighboring energy in the spec-

trum. So it is possible to obtain excited levels with corrections that vanish in the limit of

large t, keeping t0 fixed. If the next energy level lies close to the one examined, corrections

can be large. So one has to go to larger values of t, which is usually impractical, because the

noise-to-signal ratio increases with t.

Since this situation occurs in the case of string breaking, special attention has to be paid.

Fortunately, it was found that in practice [66, 67] the corrections appeared to be very small

despite the above formula. In [63], it was pointed out, that the situation

t0 ≥
t

2
, (3.55)

is especially useful. It can be shown that under this precondition, the corrections are given

by

ε(t, t0) = O(e−∆Em,n t) , ∆Em,n = Em − En , (3.56)

where ∆Em,n is governed by the first energy value Em,m = Nop + 1 lying above the Nop

lowest states of interest. This large gap can solve the problem for close energy levels and

also speed up the general convergence.

Performing the GEVP on every time-slice may introduce ambiguities between closely spaced

levels at different times. In order to control this, we instead solve the GEVP for a fixed pair

of a reference time separation t0 and another separation td at which the correlation matrix

is diagonalized. Optimal interpolators, designed to have maximal overlap with a single
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eigenstate, can be defined as

Ĉij =
(
vi(t0, td), C(t)vj(t0, td)

)
, (3.57)

where the parentheses denote an inner product over GEVP indices. The diagonalization is

performed on the mean, because otherwise ambiguities might be introduced due to closely

spaced levels on different bootstrap samples. The problem of ambiguities is avoided, but

using the fixed GEVP, a potential source of systematic error is introduced resulting from the

fact that the off-diagonal elements of Cij are not exactly zero. In order to assess and control

this, the GEVP is done using different pairs (t, t0), as well as by including different opera-

tors in the GEVP. Usually, the systematic effects due to varying the fitting range [tmin, tmax],

in particular tmin, are the largest. To ensure stability of the results, we use sliding window

plots, where the fitted mass is plotted as a function of tmin. A plateau region indicates that

the mass is stable as a function of tmin. The plateaus also need to be stable for different tmax

and the chosen [tmin, tmax] needs to have a suitable correlated χ2 per degrees of freedom

(Dof).

The diagonal elements of the rotated correlation matrix are given by single exponentials

up to corrections. Hence, it is possible to obtain the spectrum from a two-parameter corre-

lated fit to a single-exponential ansatz. All fits to correlated data in this work minimize a

correlated χ2. As a means of propagating statistical errors and getting robust estimates of

uncertainties, we use bootstrap resampling [68, 69]. The bootstrap error estimation is used

for all fits and also to estimate the covariance matrix. The estimate of the covariance matrix

is kept fixed on each bootstrap sample. Nb = 800 Bootstrap resamples of the correlation

functions, which are reweighted according to equation (2.38), are employed and the uncer-

tainty quoted for numerical values is given by 1σ Bootstrap error bars.

In the case of the string breaking spectrum, we are interested in the difference between the

energies of the ground, first and second excited state and twice the energy of the static-light

meson. This offers the possibility of using ratio fits in order to extract the energies. If cor-

relations between weakly-interacting two static-light meson and single static-light meson

correlation functions are taken into account, this allows for a more precise extraction of the

energy difference. We find that there are beneficial correlations present, not only for the

states including two static-light as well as containing two static-strange meson correlations.

It is important to do the Bootstrap resampling in exactly the same way for all primary ob-

servables to preserve these correlations and obtain correct error estimates. In order to do
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ratio fits similar to what was done in [70], we define the ratio

Rn(t) =
Ĉn(t)

C2
B(t)

, (3.58)

where CB(t) is the correlation function of the static-light meson and Ĉn(t) is the n-th diago-

nal element of the rotated correlation matrix

Ĉn(t) = (vn(t0, td), C(t)vn(t0, td)). (3.59)

When perfoming the fixed GEVP, the generalized eigenvectors vn are determined for one

combination (t0, td) only. The ratio R(t) is constructed on each bootstrap sample and an

energy difference ∆En is extracted directly using single-exponential fits of the form Rn(t) =

A exp(−∆Ent). The fitted energies typically vary little as diagonalization times (t0, td) or

operator basis are varied. The energy En can be retrieved via

aEn = a∆En + a2EmB (3.60)

with EmB the mass of the static-light meson. Note that the excited state contamination in

ratio fits may be non-monotonic.





37

Chapter 4

String breaking

The first part of this chapter gives a short review of string breaking in the literature and the

second part introduces static quarks on the lattice. In section 4.3 the symmetries of string

breaking on the lattice are discussed. The rest of this chapter focuses on the string breaking

mixing analysis with a detailed description of the mixing matrix in section 4.5.

4.1 A short history of string breaking

Consider the potential between a static quark Q at spatial position x and a static antiquark

Q at position y, separated by a distance r =| y − x |. The static potential V (r) is defined

as the energy of the ground state of this system [14]. As a consequence of confinement, the

energy between the quark-antiquark pair is contained inside a color flux tube, the so called

string.

Q(x, t) Q(y, t)

FIGURE 4.1: Pictorial representation of the string between a quark and an
antiquark.

As will be shown in section 4.5, the temporal correlation function of this string is given by

the Wilson loop W , which thus serves as an observable for the static potential via

〈W (t, r)〉 ∝ e−VQQ̄t. (4.1)

If no pair creation from the vacuum is allowed, a functional form of the static potential is

well described by the Cornell parametrization [71]

V̂ (r) =
B

r
+ σr +A, (4.2)

where A is a constant and the second term is the so called Coulomb term with strength B,

the third contribution is a linearly rising term, where σ is the so called string tension. This

model is only applicable for intermediate distances.
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A linearly rising term in the potential indicates that the energy between the static quark

and static antiquark keeps rising as they are being pulled apart. This suggests that the two

static quarks are confined within a strongly bound meson state. This is only true as long as

no pair creation from the vacuum is allowed. In the full theory with dynamical quarks in

the fundamental representation, processes of pair creation become important. It is expected

that as soon as the energy is high enough, the gluonic string connecting the quarks breaks

due to creation of a pair of light quarks qq, which combine with the static quarks into two

static-light mesons B = qQ and B = qQ. This is the case as when [V (r)− 2EmB ] > 0, where

EmB is the energy of a static-light meson.

To explore string breaking on the lattice, the Wilson loop was used as an observable. The

breaking of the string should manifest itself by rendering the potential constant above a

certain threshold. The potential exhibits screening after the string is broken and saturates

towards 2EmB . But this phenomenon could not be observed, even if the potential was

calculated for distances bigger than the estimated string breaking distance, see for exam-

ple [72, 73]. There are several reasons for this. One problem is the weak signal to noise ratio

for distances greater than 1fm as well as the fundamental problem of lattice size. To observe

where the string breaks, the lattice should have a size L > 2rb, where L is the lattice extent

and rb the string breaking distance. The most important reason for the lack of evidence for

string breaking using Wilson loops is that the Wilson line operator has a very small overlap

with the ground state after the string is broken.

An analysis of the problem suggested that string breaking is a mixing phenomenon. This

means that the two states, the string described by a Wilson line
∣∣QQ〉 and the two meson

state
∣∣BB〉, are both needed to describe the potential. After the string is broken, the meson

state is the new ground state of this system. In the neighborhood of the critical separation,

the two states mix. Without mixing there would occur a plain level crossing of the two

states. If there is mixing, the ground state |1〉 and first excited state |2〉 are superpositions

of the string state
∣∣QQ〉 and the two meson state

∣∣BB〉. The system undergoes an avoided

level crossing, giving rise to an energy gap ∆E between the states |1〉 and |2〉.

A model for SU(n) string breaking on the lattice in terms of strong coupling ideas was for-

mulated in [74], it showed string breaking as a mixing phenomenon between the string and

the two meson state. It was predicted that the width of the mixing region is sensitive to

the mass of the sea quarks, for a lighter quark mass the energy gap becomes larger and the

mixing region broadened. First experiments on the lattice were conducted using the three

dimensional [75] and four dimensional [66, 67] SU(2) Higgs model, because of the cost of
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full QCD calculations. The SU(2) Higgs model has a confinement region that is very similar

to QCD, a linearly rising potential of static color charges and eventual screening through

pair creation. For this model clear evidence of string breaking was found. In [76] the static

potential was analyzed for QCD with Nf=2 quark flavors with the sea quark mass slightly

below the mass of the strange quark and for one lattice spacing. In this case again clear

evidence was found for string breaking.

To examine the ground state and first excited state of the static potential as a mixing phe-

nomenon, their energies are determined by a variational technique from a correlation ma-

trix. If the interpolators OW and OBB correspond to the string state and the state consisting

of two static-light mesons respectively, the matrix is schematically given by

C(t) =

(
CQQ = 〈OW (t)OW (0)〉 CBQ = 〈OBB(t)OW (0)〉
CQB = 〈OW (t)OBB(0)〉 CBB = 〈OBB(t)OBB(0)〉

)

=


√
Nf ×

√
Nf × Nf × +

 . (4.3)

The diagonal entries correspond to the string and the two meson state. There areNf numbers

of mass degenerate sea quark flavors. The wiggly lines correspond to light quark propaga-

tors. Mixing occurs when the physical energy eigenstates are not unit vectors in the original

operator basis, it is shown explicitly by non vanishing off-diagonal elements. The elements

of this matrix, as well as the inclusion of the strange quark, are discussed in more detail

below.

4.2 Static quarks on the lattice

Heavy quark effective theory (HQET) is an effective formulation of QCD describing the

physics of heavy quarks. It starts from the static approximation describing the theory as

mb → ∞, where mb is the heavy quark mass, corrections O(1/mb) are computed using a

1/mb expansion [77, 78]. The action of the static quark is written in terms of the quark Ψh

and antiquark fields Ψh satisfying the following properties under projection

P+Ψh = Ψh, ΨhP+ = Ψh (4.4)

P−Ψh = Ψh, ΨhP− = Ψh,
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with projectors

P± =
1± γ4

2
. (4.5)

We are using the Dirac-Pauli representation for the gamma matrices, see Appendix A1, in

which P+ and P− are diagonal. In this case Ψh and Ψh are four component fields with two

components vanishing.

The leading order term of HQET is called static quark theory, where one assumes that the

heavy quark is infinitely heavy. The static Lagrangian is given by

Lstat = Lstath + Lstat
h

(4.6)

Lstath =
1

1 + aδm
Ψh(m+D4)Ψh,

Lstat
h

=
1

1 + aδm
Ψh(m−D4)Ψh, (4.7)

The static term provides a limit of the theory which is renormalizable.

4.2.1 Static propagator

The static propagator D−1
Q we use is a modification of the static propagator derived by

Eichten and Hill [79]. In [80] it was proven that using actions with HYP-smeared links

improves the signal-to-noise ratio at large Euclidean times. The generalized action for the

quark fields, derived in [80] has the following form

SW
h = a4 1

1 + aδmW

∑
x

Ψh(x)(DW
0 + δmW)Ψh(x) , (4.8)

with the covariant derivative

DW
0 Ψh(x) =

1

a

[
Ψh(x)−W †(x− a0̂, 0)Ψh(x− a0̂)

]
, (4.9)

where W (x, 0) is a gauge parallel transporter with the gauge transformation properties of

the linkU(x, 0) and δmW cancels the divergence in the self-energy of the static quark. Analo-

gous expressions can be written down for the antiquark fields. The static Eichten-Hill action
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is retrieved for W (x, 0) = U(x, 0). The corresponding quark propagator D−1
Q (y, x) and anti-

quark propagator D−1
Q

(y, x) are given by

D−1
Q (y, x) = θ(x4 − y4)δ(x− y) (1 + a δmW)−(x4−y4)/a PW(x, y)† P+ ,

D−1
Q

(y, x) = θ(y4 − x4) δ(x− y) (1 + a δmW)−(y4−x4)/a PW(x, y) P− ,

PW(x, x) = 1,

PW(x, x+Rµ̂) = W (x, µ)W (x+ aµ̂, µ) . . .W (x+ a(R− 1)µ̂, µ)

for R > 0.

(4.10)

δmW is set to 0 in this calculation, which results in an energy-shift for all energy-eigenvalues.

Since the dependence of the correlation function on δmW is known, it could be reinserted at

any point.

The static propagator and anti-propagator are given by a time-like Wilson line projected

onto upper or lower spin, the spatial position of the static quark or antiquark is fixed. We

use HYP-smeared time-like Wilson lines. This amounts to a redefinition of the static action.

In [80] statistically improved actions are proposed including the HYP-action which is used

in our calculations

SHYP2
h : WHYP(x, 0) = VHYP(x, 0), (4.11)

where VHYP(x, 0) is the HYP fat link as described in section 3.2.2 with HYP2 parameters

α1 = 1.0 α2 = 1.0 α3 = 0.5. (4.12)

4.2.2 Renormalized static potential

The static theory with a Lagrangian of the form (4.6) gives rise to the power divergence in

the static quark self-energy. The term ΨD4Ψ has the same quantum numbers as the lower

dimensional mass operator ΨΨ which leads to mixing of the two operators under renormal-

ization with a linearly divergent coefficient [81, 82]. Differences between two energy levels

however do not depend on δmW and have a well defined continuum limit, because the di-

vergences cancel each other. The divergences arising from the time-like Wilson lines affect

the correlation function of the Wilson loop and the static-light meson. Because the Wilson

loop has an exponential coefficient proportional to 2t and the static-light meson proportional

to t, the quantity

∆E = a[V (r)− 2EmB ] (4.13)
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is free of divergences originating from self-energy contributions and defines the renormal-

ized static potential.

Differences between potentials, where the self energy is already eliminated, have been shown

[83] to have O(a2) leading lattice artifacts. Using V (∞) = 2EmB as before, this leads to

V (r)− 2EmB = V (r)continuum − 2Econtinuum
mB

+O(a2). (4.14)

This is true due to the fact that HQET isO(a)-improved without adding additional operators

to the Lagrangian [84]. In a theory with dynamical fermions the statement holds only if the

fermions are also O(a) improved, which is the case for the CLS ensembles.

4.3 Symmetries of string breaking

Two symmetries are present in continuum HQET, which are not symmetries in finite mass

QCD. These are preserved on the lattice [84]. The static action (4.8) is invariant under SU(2)

rotations

Ψh → exp(iαkεijkσij)Ψh , Ψh → Ψh exp(−iαkεijkσij), (4.15)

where σjk are the Pauli matrices and αi is an arbitrary real transformation parameter. This

symmetry is called heavy quark spin symmetry, it means in the static limit there are no in-

teractions involving the heavy quark spin. Mesons that only differ in the spin of their heavy

quark are degenerate.

Furthermore, static quarks can only travel in time, they cannot propagate in space. This

leads to the local conservation of heavy quark flavor number. The action is invariant under

a transformations of this form

Ψh → exp(iη(x))Ψh , Ψh → Ψh exp(−iη(x)), (4.16)

for any local phase η(x). This symmetry leads to the proportionality of the static quark prop-

agator to a lattice delta function in space.

As mentioned above, on a spatially isotropic lattice, the continuum symmetry is reduced to

Oh × T 3
latt. The states transforming irreducibly under the irreps of Oh are labeled ΛP . The

observables we are interested in contain static quarks, their spatial positions are fixed, so the

positions of the static quarks become additional quantum numbers of the system. The sym-

metry for r > 0 is further broken down depending on r. For on-axis distances, the relevant
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symmetry group for string breaking on the lattice is the cylindrical subgroup Dh.

Since we are only interested in states with total spin S = 0, 1 we use the continuum notation.

The irreducible representations of the continuum group are identified by the spin along the

axis Lz , where Lz = 0, 1, 2 are usually named Σ,Π,∆.

In the static limit, the total angular momentum and parity of the light degrees of freedom

become conserved quantities. Therefore, it is common [85,86] to label static-light mesons by

parity P and total angular momentum of the light degrees of freedom j with j = |l ± 1/2|,
where l denotes angular momentum and ±1/2 the spin of the light quark. The total angular

momentum of the static-light meson is either J = j + 1/2 or J = j − 1/2, where both states

have degenerate mass. Charge conjugation is not a good quantum number, since static-light

mesons are made from non-identical quarks. For a system containing a heavy quark and

anti quark, parity alone is not good quantum number, because it interchanges their posi-

tions. The combination of parity and charge conjugation CP however is a good quantum

number, we label it with a superscript g for CP = +, or u for CP = −. The spin 0 represen-

tations get an additional label, which describesR parity, the behavior under reflections on a

plane containing the endpoints, which is labeled ±.

4.3.1 Interpolators

To investigate string breaking using a correlation matrix containing the interpolators for a

Wilson loop as well as for the two static-light meson state, it is essential that the two states

have the same symmetries and thus carry the same quantum numbers.

The four static quark and antiquark creation and annihilation operators, as described in

section 4.2, can be obtained from two four-component spinors, which we name Q = Ψγ4

and Q = Ψ. We consider a system containing a heavy quark Q(x, t) at point(x, t) and a

heavy anti-quark Q(y, t) at point (y, t) in the static approximation. They are separated by a

distance r, x and y are conserved quantum numbers. The interpolator OW corresponding

to the string is given by

OW = Q(y, t)ΓW(y,x, t)Q(x, t), (4.17)

where Γ is an operator that determines the spin structure.

W(y,x, t)
Q(x, t) Q(y, t)

FIGURE 4.2: pictorial representation of a Wilson line
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W(y,x, t) is a Wilson-line, the path-ordered product of spatial, in our case HYP-smeared

links connecting x and y along some path Cx,y with all link variables restricted to time

argument t. The combination (4.17) is gauge covariant and defined by

W(y,x; t) =
∏

(k,i)∈Cx,y

Ui(k, t). (4.18)

There are two possible situations, either the spins of the two quarks couple symmetrically

or anti-symmetrically, corresponding to a total spin of S = 1 and S = 0 respectively. Γ =

γi · r/r represents the symmetric combination, where r is a three-vector. The antisymmetric

combination is given by Γ = γ5 [76]. We use the symmetric spin state. The corresponding

creation and annihilation operators are given by

OW (y,x, t) = Q(y, t)
γ · r
r
W(y,x, t)Q(x, t) (4.19)

OW (y,x, t) = −Q(x, t)
γ · r
r
W(x,y, t)Q(y, t) .

It lies within the ground state representation of the corresponding symmetry group Σ+
g , if it

is combined with a symmetric gluonic stringW(y,x; t). The antisymmetric combination γ5

lies within Σ−u . In the static limit, the quarks spins decouple and thus the two states yield

degenerate energy levels, the symmetric and antisymmetric interpolators lead to the same

expression for the Wilson loop. Note that since the string state does not contain any light

quarks, trivially it has isospin I = 0.

The lightest static-light meson has light quark quantum numbers JP = 1
2

− [87, 88]. In com-

bination with the static quark this yields mass degenerate pseudoscalar and vector states.

Two of these states can be combined to have CP = + and lie within the Σ+
g representation.

Consider mass-degenerate flavors of light quarks qi, i = 1, ..., Nf . The smeared light quark

fields are defined as qiaα(x, t) = ψ̃
(i)
aα, the antiquark fields as qiaα(x, t) = ψ̃

(i)

aαγ4, where a is a

color index, α is a Dirac spin component and i is a quark flavor. ψ̃ are LapH-smeared quark

fields. All indices not immediately important for the calculation are omitted. Using for

example the symmetric string state together with the pseudoscalar state for the static-light

meson, the interpolators for a static-light meson and a two static-light meson state are given

by

OB(x, t) =
1√
Nf

∑
i

Q(x, t)γ5q
i(x, t) (4.20)

OBB(x,y, t) =
1√
Nf

∑
i

Q(y, t)γ5q
i(y, t) qi(x, t)γ4γ5Q(x, t),
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where the sum is taken over degenerate quark flavors. For the two static-light meson state,

the sum amounts to a projection onto the isospin I = 0 channel.

This choice for the string and two static-light meson state yields trial states falling into Σ+
g .

As already noted in [76], choosing to start from the Σ−u sector leads to identical correlation

functions as it should be in the static mass limit. The same is true for the choice of combining

two vector states in the symmetric sector.

4.4 First steps towards string breaking

An estimate of the string breaking distance rb can be calculated utilizing Emb , the mass of

the static-light meson, and the static potential V (r) calculated from Wilson loops only. Emb
is also needed to obtain a renormalized potential as given in equation (4.14). These are the

first steps towards a full mixing analysis.

4.4.1 Static-light meson

Using the interpolators

OB(x, t) =
1√
Nf

∑
i

Q(x, t)γ5q
i(x, t) (4.21)

OB(x, t) =
1√
Nf

∑
i

qi(x, t)γ4γ5Q(x, t),

the correlation function for a static-light meson reads

C(t) =
∑
x

〈[
OB(x, t)OB(x, 0)

]〉
(4.22)

=
1

Nf

∑
i,x

〈[
Q(x, t)γ5q

i(x, t)qi(x, 0)γ4γ5Q(x, 0)
]〉
.

Due to the use of all-to-all propagators, the correlator can be calculated for all spatial sites x

simultaneously to improve statistics by fully exploiting translational invariance . After Wick

contraction one finds

C(t)
Wick
=

∑
x

〈
Trc,d

(
−γ5D(x, t;x; 0)γ4︸ ︷︷ ︸

light propagator

γ5 P(0, t)P−︸ ︷︷ ︸
static propagator

)〉
(4.23)

=
∑
x

〈
Trc,d

(
−D(x, t;x; 0)γ4P(0, t)P+

)〉
,



46 Chapter 4. String breaking

where the trace is taken over color and Dirac indices. P(0, t) is a timelike Wilson-line of

HYP-smeared links from (x, t) to (x, 0), the projector P± is given by equation (4.5). As men-

tioned above, this is a modification of the Eichten-Hill static propagator. For the gamma

matrices the following relations were used:

γ2
5 = 1 (γ5)† = γ5 γ5P+ = P−γ5 (4.24)

γ2
4 = 1 (γ4)† = γ4

The light quark line is stochastically estimated as given in equation (3.42), where
∑

x,r,b

is a shorthand for summation over all spatial sites as well as over NR and Nb, the sets of

independent stochastic noise sources and the number of dilution projectors respectively.

The correlation function written in terms of source and sink is given by

C(t) =
1

NR

∑
x,r,b

〈
Trc,d

(
− [SΩ−1V P (b)ρr](x, t)︸ ︷︷ ︸

sink

(V P (b)ρr)†(x, t)︸ ︷︷ ︸
source

γ4P(0, t)P+

)〉
(4.25)

=
1

NR

∑
x,r,b

〈
Trc,d

(
−ϕr[b](x, t)%r[b]†(x, 0)(γ4P(0, t)P+)

)〉
=

1

NR

∑
x,r,b

〈
−%r[b]∗(x, 0) · (P(0, t)P+ϕ

r[b])(x, t)
〉
.

ϕr[b]

%r[b]∗

P(0, t)

FIGURE 4.3: Pictorial representation of the static-light meson.

Now we have to compute just a scalar product of source and sink vector in spin and color

indices with an inserted timelike Wilson-line, projected onto upper spin components. For

the static-strange quark, the calculation is analogous.
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As already pointed out, using static quarks that are not stochastically estimated means that

we can not contract the source and sink a posteriori, as is usually possible with stochastic

LapH. It is still possible to reuse quark sinks, once computed and stored, in different di-

agrams or for completely different calculations. Furthermore, the outer product structure

allows for an effective evaluation using dot products for the relevant diagrams for string

breaking, similar to the above diagram of the static-light meson.

4.5 Correlation Matrix Cij

As the next step towards performing the full mixing analysis, the correlation matrix Cij as

given in equation (4.3) has to be evaluated, which means the correlators for the different

diagrams have to be calculated. The following sections provide all necessary details for

each diagram. The chosen creation and annihilation operators used to form the correlation

functions lead to a hermitian mixing matrix and yield positive correlators for the diagonal

elements.

4.5.1 Calculation of C11, Wilson-loop

As promised, it is shown now that the time correlation function of the string state yields a

Wilson loop. For the correlation function reads

C11(r, t) =
∑
x

〈
OW (x,y, t)OW (x,y, 0)

〉
(4.26)

=
∑
x

〈
−Q(y, t)

γ · r
r
W(y,x, t)Q(x, t)Q(x, 0)

γ · r
r
W(x,y, 0)Q(y, 0)

〉

The correlator can be calculated for all spatial sites x simultaneously, where we keep r =

x−y fixed. After Wick contraction it becomes apparent that element C(1,1) of the correlation

matrix is a Wilson loop

C11(r, t)
Wick
=
∑
x

〈
Trc,d

(γ · r
r
W(y,x, t)Px(t, 0)P+

γ · r
r
W(x,y, 0)Py(0, t)P−

)〉
(4.27)

=
∑
x

〈
Trc,d

(
γiW(y,x, t)Px(t, 0)P+γjW(x,y, 0)Py(0, t)P−

)〉
=2
∑
x

〈
Trc
(
W(y,x, t)Px(t, 0)W(x,y, 0)Py(0, t)

)〉
,

The trace is taken over color only in the last line, which can be derived by using the identity

Tr(P+γiP−γj) = δijtr(P
2) = 2δij .
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W(y,x, t)

W(x,y, 0)

Px(t, 0) Py(0, t)

FIGURE 4.4: pictorial representation of the Wilson loop

4.5.2 Calculation of C22

The interpolators for the state consisting of two static-light mesons are

OBB(x,y, t) =
1√
Nf

∑
i,x

Q(y, t)γ5q
i(y, t) qi(x, t)γ4γ5Q(x, t) (4.28)

OBB(x,y, t) =
1√
Nf

∑
i,x

Q(x, t)γ5q
i(x, t) qi(y, t)γ4γ5Q(y, t).

The correlation function for the matrix element C22(t) containing two static-light mesons

reads

C22(r, t) =
∑
x

〈OBB(x,y, t)OBB(x,y, 0)〉 (4.29)

=
1

Nf

∑
i,j,x

−〈γ5q
i(y, t)qi(x, t)γ4γ5Q(x, t)Q(x, 0)γ5q

j(x, 0)qj(y, 0)γ4γ5Q(y, 0)Q(y, t)〉.

After Wick-contraction we find

C22(r, t)
Wick
= Nf

∑
x

〈
−Trc,d

(
γ5D(y, t;x; t)γ4γ5Px(t, 0)P+γ5D(x, 0;y; 0)γ4γ5Py(0, t)P−

)〉
(4.30)

+ δij

〈
Trc,d

[
γ5D(y, t;y; 0)γ4γ5Py(0, t)P−

]
Trc,d

[
γ5D(x, 0;x; t)γ4γ5Px(t, 0)P+

]〉

= Nf

∑
x

〈
Trc,d

[
P+D(y, t;x; t)Px(t, 0)P−D(x, 0;y; 0)Py(0, t)

]〉
(4.31)

− δij
〈

Trc,d
[
P+D(y, t;y; 0)Py(0, t)

]
Trc,d

[
P−D(x, 0;x; t)Px(t, 0)

]〉
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The trace is taken over color and Dirac indices. Relations (4.24) were used, as well as

γ4P+ = P+ γ4P− = −P−. (4.32)

The connected part reads

Cconn22 (r, t) =
Nf

NR

∑
x,r,b

〈Trc,d
[
P+ [SΩ−1V P (a)ρr](y, t)︸ ︷︷ ︸

sink

(V P (a)ρr)†(x, t)︸ ︷︷ ︸
source

Px(t, 0)× (4.33)

P− [SΩ−1V P (b)ρr](x, 0)︸ ︷︷ ︸
sink

(V P (b)ρr)†(y, 0)︸ ︷︷ ︸
source

Py(0, t)
]
〉

=
Nf

NR

∑
x,r,b

〈Trc,d
[
P+ϕ

r[a](y, t)%r[a]†(x, t)Px(t, 0)P−ϕ
r[b](x, 0)%r[b]†(y, 0)Py(0, t)

]
〉

=
Nf

NR

∑
x,r,b

〈[%r[a]∗(x, t) · (Px(t, 0)P−ϕ
r[b](x, 0)) %r[b]∗(y, 0) · (Py(0, t)P+ϕ

r[a](y, t))]〉

Similar to the static-light meson case, we find scalar products with insertions of Wilson lines,

projected onto lower or upper spin components.

%r[a]∗ ϕr[a]

ϕr[b] %r[b]∗

Px(t, 0) Py(0, t)

FIGURE 4.5: pictorial representation of the connected part of the correlation
function C22(r,t)
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Now turn to the disconnected part of the correlator, which only contributes for i = j. We

skip diagonal noise combinations to get an unbiased estimate, for equal flavor indices

Cdis22 (r, t) =
1

NR(NR − 1)

∑
x,b1,b2
r1 6=r2

−〈Trc,d
[
P+ [SΩ−1V P (b1)ρr1 ](y, t))︸ ︷︷ ︸

sink

(V P (b1)ρr1)†(y, 0))︸ ︷︷ ︸
source

Py(0, t)
]

(4.34)

× Trc,d
[
P− [SΩ−1V P (b2)ρr2 ](x, 0))︸ ︷︷ ︸

sink

(V P (b2)ρr2)†(x, t))︸ ︷︷ ︸
source

Px(t, 0)
]
〉

=
1

NR(NR − 1)

∑
x,b1,b2
r1 6=r2

−〈Trc,d
[
%r1[b1]†(y, t))Py(0, t)P+ϕ

r1[b1](y, 0))
]

× Trc,d
[
%r2[b2]†(x, 0))Px(t, 0)P−ϕ

r2[b2](x, t))
]
〉

=
1

NR(NR − 1)

∑
x,b1,b2
r1 6=r2

−〈
[
%r1[b1]∗(y, t)) · Py(0, t)P+ϕ

r1[b1](y, 0))
]

×
[
%r2[b2]∗(x, 0)) · Px(t, 0)P−ϕ

r2[b2](x, t))
]
〉

The disconnected part can be expressed in a more advantageous way for coding purposes:

Cdis22 (r, t) =
1

NR(NR − 1)

∑
x,b1,b2
r1 6=r2

〈
[
%r1[b1]∗(y, t)) · Py(0, t)P+ϕ

r1[b1](y, 0))
]

(4.35)

×
[
%r2[b2]∗(x, t)) · Px(0, t)P+ϕ

r2[b2](x, 0))
]†
〉

%
r1[b1]∗
x ϕ

r2[b2]
y

ϕ
r1[b1]
x %

r2[b2]∗
y

Px(t, 0) Py(0, t)

FIGURE 4.6: pictorial representation of the disconnected part for i=j of the
correlation function C22(r,t)
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4.5.3 Calculation of C12, C21

The correlator in the off diagonal matrix elements can be found along the same lines as

shown in detail for matrix element C22(r, t). The interpolators are given by a combination

of a meson creation/annihilation operator and a string annihilation/creation operator.

C12(r, t) =
∑
x

〈
OBB(x,y, t)OW (x,y, 0)

〉
(4.36)

=
1√
Nf

∑
i,x

〈−[Q(y, t)γ5q
i(y, t)qi(x, t)γ4γ5Q(x, t)][Q(x, 0)

γ · r
r
W(x,y, 0)Q(y, 0)]〉

=
√
Nf

∑
i,x

〈Trc,d
(
P−

γ · r
r
D(y, t;x; t)Px(t, 0)W(x,y, 0)Py(0, t)

)
〉

=
√
Nf

∑
i,x,b

〈%r[b]∗(x, t) ·
(
Px(t, 0)W(x,y, 0)Py(0, t)P−

γ · r
r
ϕr[b](y, t)

)
〉.

For the other off-diagonal element C21(r, t) the spacetime points have to be changed accord-

ingly, otherwise the calculation is identical. There is no need to compute both elements

since

C12(t) = 〈OBBOW 〉 = 〈OWOBB〉 = C21(t), (4.37)

this leads to a hermitian mixing matrix.

%r[b]∗ ϕr[b]

W(x,y, 0)

Px(t, 0) Py(0, t)

FIGURE 4.7: Pictorial representation of the off-diagonal element

4.5.4 Including the strange quark

If there is a strange quark included in the sea, the correlation matrix has to be enlarged

accordingly. The strange quark is being treated similar to the other light degrees of freedom,

but one has to keep in mind that there is just one strange quark, whereas the up-and down

quarks are mass degenerate.
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C(r, t) =


CQQ = 〈OWOW 〉 CBQ = 〈OBBOW 〉 CBsQ = 〈OBsBsOW 〉
CQB = 〈OWOBB〉 CBB = 〈OBBOBB〉 CBBs = 〈OBBOBsBs〉
CBQ = 〈OBBOW 〉 CBsB = 〈OBsBsOBB〉 CBsBs = 〈OBsBsOBsBs〉


(4.38)

=



√
2×

√
2× 2× +

√
2×

√
2× +



The diagonal entries correspond to the string, the two static-light and static-strange meson

state. The up and down quark are mass degenerate sea quark flavors. The wiggly lines

correspond to light quark propagators. The correlation matrix can be further extended by

including different levels of smearing.

Possible effects of including the strange quark have been discussed in [76]. The effect of the

third quark flavor on the string breaking distance and mixing region is not a priori clear.

There will be two separate thresholds corresponding to the decay of the string into a pair of

static-light mesons and static-strange mesons, respectively. In general, the string breaking

distance is expected to decrease with the sea quark mass and a lighter mass is expected to

result in a larger gap as well as a broadened mixing region.

String breaking for Nf = 2 + 1 flavors has not yet been investigated on the lattice. The

numerical results of our study of the mixing phenomenon including the strange quark are

discussed in the next chapter.
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Chapter 5

Numerical results for string breaking

5.1 Ensemble details

In this chapter, we present the numerical results of our string breaking investigation using

the stochastic LapH method. The set of ensembles in table 2.2 with Nf = 2 + 1 flavors gen-

erated by the CLS effort [24, 89] provides an ideal playground to study the phenomenon. In

this work, we employ one of the ensembles, the N200, for an exploratory study.

The measurements are done on a subset of evenly-spaced configurations of the N200 en-

semble with Nf = 2 + 1 flavors of non-perturbatively O(a)-improved Wilson fermions. The

lattice-size is Nt × N3
s = 128 × 483 with an estimated isotropic lattice spacing of a ≈ 0.064

fm and pion and kaon mass of mπ = 280 MeV and mK = 460 MeV respectively [24]. Open

temporal boundary conditions are imposed on the gauge field in the temporal direction,

whose imprint on bulk observables is expected to decrease exponentially [90]. Within the

stochastic LapH method, the covariant Laplace operator on each time slice of the lattice is

used to define the smearing of the quark fields in interpolators and hence the correlation

matrix is hermitian. Boundary effects in the Laplace operator effectively change the smear-

ing and could lead to a non-hermitian correlation matrix. Figure 5.1 shows the smallest and

largest eigenvalue retained in our smearing scheme on 26 evenly-spaced configurations of

the N200. We employ sources and sinks far away from the temporal boundary in order to

keep the smearing constant. Furthermore, we perform measurements on the central half of

the lattice only. The specific parameters used for LapH smearing are given in table 5.1. They

are chosen in a way that they result in a similar physical smearing to previous studies [53].

id Nev nρ × ρ line type dilution scheme Nr light/strange source time

N200 192 36× 0.1 fixed (TF,SF,LI8) 5 / 2 32,52

relative (TI8,SF,LI8) 2 / 1 -

TABLE 5.1: Number of eigenvectors, stout-smearing parameters, dilution
schemes, number of noise sources, and source times employed in this work
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FIGURE 5.1: Smallest and largest retained eigenvalue of the three-dimensional
covariant Laplacian on individual time slices of the lattice, normalized with
repect to their plateau value. The normalized smallest eigenvalue is displaced

vertically by 0.2 for visibility. Plot from [91].

The inversions were performed using the DFL_SAP_GCR solver [92–94] implemented in

openQCD 1 embedded in the Chroma-based [95] stochastic LapH codebase. The code used

for the calculation of the diagrams of the mixing matrix was implemented using the stochas-

tic LapH codebase.

5.2 Static potential from Wilson loops

As the first important step towards string breaking on the N200 [96], we calculate an esti-

mate of the string breaking distance using the energy of the static-light quark and the static

potential from Wilson loops. We employ rectangular on-axis Wilson-loops W (t, r) to serve

as an observable for the static potential. Here we map out the static potential using on-axis

distances only.

Following the method presented in [97], as a first step, all gauge-links, including temporal

links, are smeared using HYP2 parameters [49, 80]

α1 = 1.0 α2 = 1.0 α3 = 0.5. (5.1)

This amounts to a change in the static action, as detailed in section 3.2.2. Afterwards, we

construct a variational basis using 15 and 20 levels of HYP smeared spatial links with pa-

rameters

α2 = 0.6 α3 = 0.3. (5.2)

1http://luscher.web.cern.ch/luscher/openQCD/



5.2. Static potential from Wilson loops 55

Using two different levels of smearing renders a 2 × 2 correlation matrix. After solving the

GEVP, the ground state, which corresponds to the static potential V (r), can be extracted.

The potential V (r) is renormalized by subtracting twice the energy of a static-light meson in

order to obtain an estimate of the string breaking distance.

The analysis of the correlation functions of the static-light and static-strange meson is not

only interesting with respect to the renormalization of the potential. The stochastic LapH

method has not been used before for correlation functions involving static quarks. It is

important to show that the method allows for accurate determinations of temporal corre-

lations involving static quarks, as can be seen in Figure 5.2, showing the tmin-plots for the

static-light and static-strange mesons. The individual points are obtained through a corre-

lated fit of the reweighted correlation function to a single exponential within the interval

[tmin, tmax = 30a] using Bootstrap error estimation. Nb = 800 samples are employed and the

uncertainty quoted is given by 1σ Bootstrap errors. The covariance matrix was estimated on

the original data and is kept ’frozen’ on all samples. The fitted mass is calculated as a func-

tion of tmin. Our results for the static-light and static-strange energies show a good precision

with a relative uncertainty of 0.5% and 0.2%, respectively. We find

mB = 0.330(2)a (5.3)

mBs = 0.3434(9)a.

5 10 15
.32

.33

.34

.35

tmin/a

a
E

static-light meson

5 10 15
.33

.34

.35

.36

tmin/a

a
E

static-strange meson

FIGURE 5.2: tmin-plot for the static-light and static-strange meson on 104 con-
figurations of N200. The solid horizontal line indicates the plateau average

and the gray dashed lines its statistical uncertainty.

As a first step towards the full analysis, we analyzed the potential using 100 configurations

of N200 [96]. Assuming string breaking to occur around [V (r) − 2Estat] > 0, we found

rb ≈ 19a as the value for the expected string breaking distance.

If we have a look at the potential using all 1664 Wilson loops calculated for the full mixing
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FIGURE 5.3: Static potential from Wilson loops on 1664 configurations of
N200. The grey line corresponds to twice the static-strange meson mass, the
error is too small to be visible. The error of the static-light meson mass is

automatically taken into account by using the ratio given in equation (3.58)

analysis, this value is confirmed. This step of the analysis is not only important in order to

check if the ensemble is suitable for string breaking, but enables us to choose an appropriate

window for enhancing the spatial resolution. We utilize a set of off-axis distances between

17a and 21.8a to make sure that we are able to map out the first as well as the second ex-

pected avoided level crossing.

As detailed in Chapter 4.1, the Wilson loop does not have good overlap with the ground

state after string breaking. This is the reason why in figure 5.3, the static potential is only

shown for distances before string breaking and in the expected breaking region. We do not

see a flattening of the potential. A look at a tmin-plot for a distance beyond which the string

is supposedly broken, shows no sign of relaxation towards the ground state before the signal

to noise ratio becomes small . This demonstrates the need for the mixing analysis using the

full correlation matrix including the two static-light meson state in order to reliably obtain

the static potential for all distances.
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FIGURE 5.4: The tmin-plot for the Wilson loop at separation 20a shows no
relaxation to the ground state.

5.3 Mixing analysis

The correlation matrix employed for the analysis is a 4 × 4 matrix. It is an extension of the

matrix given in equation (5.1), including 15 and 20 levels of spatial HYP smearing. The di-

agrams involving light and strange quark propagators are measured on a set of 104 evenly

spaced configurations of the N200. It was found in [76] that the limiting factor of the statis-

tical resolution is the precision of the Wilson loop data. An preliminary analysis of smaller

sets of our data corroborated this finding. Because of this, the Wilson loops are determined

on a much larger set of configurations. The diagrams containing only static quarks were

measured on 1664 configurations. In order to consistently take account of correlations be-

tween different matrix elements, the Wilson loop correlators are rebinned into 104 bins, con-

taining 16 configurations each, such that the center of the bin is aligned with one of the 104

configurations.

For each distance r =| y − x |, we average over distinct permutations of components

(r1, r2, r3) in order to increase statistics by exploiting the cubic symmetry of the lattice. For

instance for distance r = 1, we take the average of vectors r = (001), (010), (100). We do not

observe any dependence on the direction in the data. Depending on the number of permu-

tations for a vector, this leads to a difference in statistics for classes of distances.

For the off-axis distances in Wilson loops, it was shown in [98] that it has a large impact how

the path of links connecting the off-axis heavy quark pair is chosen. It was argued that in

order to isolate the ground state potential for off-axis paths, it is important to choose a path-

symmetrized operator over a non-symmetrized one. If two points x and y are separated by

nx, ny, nz sites in the three spatial directions, repectively, the non-symmetrized operators in

that study are defined by first going in direction x, than in direction y and last in direction

z, or permutations of xyz that are not averaged. These operators are susceptible to excited
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state contamination. In order to ameliorate ground state overlap, path-symmetrized oper-

ators could be chosen. However, we follow a different approach to achieve a good ground

state overlap by using paths that stick to the direct connection, the straight line between

quark and antiquark, as closely as possible. This can be achieved by a procedure known

as the Bresenham algorithm [99] in computer graphics, which is described for Wilson loops

in [100]. By sticking to the closest path, the overlap between creation operator and the phys-

ical string state is vastly enhanced. In [100], the closest path was symmetrized as well, but

since we use HYP smearing for the spatial links connecting the static quarks, we get good

ground state overlap without utilizing explicit symmetrization.

For every distance r =| y − x |, a separate variational analysis has to be performed in or-

der to extract the ground state as well as the first and second excited state. We perform a

fixed GEVP, as described in section 3.4.2, for every distance r. The analysis is based on a

Jupyter notebook 2 adapted from [70]. The notebook provides an interface to view system-

atics related to choices of fitting procedure, fitting ranges and GEVP parameters. It enables

extensive comparison of tmin-plots for different (t0/a, td/a) combinations as well as GEVP

operator sets for a systematic consistency check.

We use ratio fits (3.58) in order to extract the energy levels. The fit ranges are chosen in

a way that the systematic errors due to the GEVP parameters and fit ranges are smaller

than the statistical ones. We find that the systematic effects due to varying the fitting range

[tmin/a, tmax/a], especially tmin/a, are the largest. tmin-plots are used to control the tmin/a

dependence. The plots display the fitted mass plotted as a function of tmin/a. We require

the plateaus to be stable for different tmax/a and the chosen [tmin/a, tmax/a] needs to have a

suitable correlated χ2/Dof / 2.

As mentioned above, we are introducing a potential source of systematic uncertainties by

using a fixed GEVP. To investigate the effect, we compare the chosen combination of para-

maters for the fixed GEVP with the full GEVP as given in equation (3.49). For comparison,

we choose one distance smaller and larger than the string breaking distance, as well as one

distance inside the mixing region. The plots show very good agreement between the two

methods.

2https://github.com/ebatz/jupan
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FIGURE 5.5: Comparison of fixed GEVP with t0/a = 5, td/a = 10 to principal
GEVP for distance r/a = 8
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FIGURE 5.6: Comparison of fixed GEVP t0/a = 5, td/a = 10 to principal GEVP
for distance r/a = 20
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FIGURE 5.7: Comparison of fixed GEVP t0/a = 5, td/a = 10 to principal GEVP
for distance r/a = 22

Now we turn to the full mixing analysis for all on-axis and off-axis distances. For all dis-

tances, we use the fixed GEVP with t0/a = 5, td/a = 10. We determine if this GEVP is sta-

ble against varying t0/a, td/a and changing the operator sets in order to determine a good

fit range [tmin/a, tmax/a]. The fit range is different for every distance. Table 5.2 gives an

overview of employed distances, the chosen values for [tmin/a, tmax/a], χ2/Dof and the re-

sults for all three energy levels. The corresponding tmin-plots for all distances can be found

in Appendix A2. In figure 5.8, the result for the static potential normalized with respect

to twice the static-light meson mass is shown. The first and second excited state for the

two smallest distances do not exhibit a plateau, so there are no extracted energies for these

states. Figure 5.8 shows the avoided level crossing between the ground state and the first
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FIGURE 5.8: Static potential determined using the full mixing matrix. The
grey line corresponds to twice the static-strange mass, its error is too small to
be visible. The error of the static-light meson mass is automatically taken into

account by using the ratio given in equation (3.58).

excited state clearly. The expected second avoided crossing due to the formation of two

static-strange mesons is evident for the first time from lattice calculations. The off-axis dis-

tances allow for a good resolution. For distances beyond string breaking, the ground state

tends towards the mass of two noninteracting static-light mesons. This behaviour cannot be

observed if the potential is calculated from Wilson loops only.

Apart from the string breaking region, the plot exhibits interesting features for small and

intermediate distances. The first level lies slightly above 2EB for intermediate distances

smaller than the string breaking distance. For the second extracted energy level, we ob-

serve agreement with 2EBs − 2EB at intermediate distances and beyond string breaking, as

expected. For small distances, there is a deviation from the non interacting energy of two

static-strange mesons. This deviation from the non interacting energy 2EB of two static-light

mesons at small distances can be observed for the first level as well. These deviations could

be indications of interactions between the two static-light or two static-strange mesons, re-

spectively. However, the behaviour at small distances could also occur due to the fact that
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FIGURE 5.9: Static potential, same as figure 5.8, but zoomed into the string
breaking region. The grey line indicates twice the static-strange meson mass.
The error of the static-light meson mass is automatically taken into account by

using the ratio given in equation (3.58)

our operator basis is not large enough. If there is another state with the same quantum num-

bers lying below the energies, no reliable extraction of the states is possible. For instance, a

string plus two pion state QQππ has the same quantum numbers. The energy of this state is

given by the energy of the ground state plus twice the pion mass and for our ensemble the

corresponding energy lies below the two static-light energy up to r/a ≈ 11.

Figure 5.9 shows the string breaking region in more detail. It is apparent that the region

extends over several lattice spacings. Both avoided crossings are visible, the energy gap be-

tween the ground state and first level is larger than the gap between the first and the second

level. Qualitatively, the region of the first mixing appears to be broader, but it is not possi-

ble to determine the difference between the first string breaking distance rc and the second

string breaking distance rcs by eye.
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r/a r/a (r/a)2 tmax/a tmin/a χ2 aE0, aE1, aE2

1.0 (0 0 1) 1 25 13 1.798 0.0638(26)

-

-

2.0 (0 0 2) 4 27 14 1.787 0.1281(17)

-

-

3.0 (0 0 3) 9 25 13 1.791 0.2126(26)

9 0.765 0.638(4)

6 1.819 0.672(4)

4.0 (0 0 4) 16 23 10 2.383 0.2644(30)

7 1.127 0.656(4)

8 1.051 0.679(4)

5.0 (0 0 5) 25 27 12 2.271 0.3080(27)

8 0.681 0.658(4)

7 1.236 0.684(4)

6.0 (0 0 6) 36 25 11 2.373 0.3460(30)

7 1.237 0.662(4)

8 1.411 0.685(4)

7.0 (0 0 7) 49 21 11 2.019 0.3769(31)

7 2.478 0.662(4)

6 0.629 0.687(4)

8.0 (0 0 8) 64 20 10 1.964 0.4038(32)

6 1.361 0.6639(35)

7 0.986 0.688(4)

9.0 (0 0 9) 81 21 10 1.814 0.4296(33)

6 1.864 0.6641(35)

7 1.055 0.689(4)

10.0 (0 0 10) 100 25 10 1.247 0.4535(35)

7 1.91 0.6643(35)

7 1.163 0.689(4)

11.0 (0 0 11) 121 20 12 1.095 0.478(4)

9 2.129 0.665(4)

8 1.774 0.689(4)

12.0 (0 0 12) 144 25 12 0.68 0.500(5)

9 1.397 0.666(4)

8 1.367 0.689(4)

13.0 (0 0 13) 169 20 8 1.663 0.520(4)

6 1.871 0.6647(35)

6 1.297 0.688(4)

14.0 (0 0 14) 196 22 6 1.7 0.544(4)

5 1.395 0.6650(35)

6 0.628 0.688(4)

15.0 (0 0 15) 225 18 6 0.634 0.565(4)

7 1.209 0.666(4)

6 0.599 0.688(4)

16.0 (0 0 16) 256 20 7 0.594 0.587(4)

6 0.653 0.665(4)

6 0.756 0.687(4)

r/a r/a (r/a)2 tmax/a tmin/a χ2 aE0, aE1, aE2

17.0 (0 0 17) 289 20 7 0.81 0.609(4)

6 1.002 0.6663(35)

7 0.47 0.687(4)

17.234 (8 8 13) 297 23 8 0.81 0.613(4)

5 0.796 0.6674(35)

6 1.237 0.688(4)

17.493 (0 9 15) 306 20 8 1.526 0.619(4)

7 1.246 0.6665(35)

6 1.068 0.687(4)

17.692 (0 12 13) 313 20 7 0.57 0.624(4)

7 0.897 0.6673(35)

6 1.196 0.687(4)

17.804 (0 11 14) 317 22 6 0.956 0.626(4)

6 1.065 0.6679(35)

5 1.108 0.687(4)

17.916 (5 10 14) 321 20 6 1.081 0.631(4)

6 0.702 0.6679(35)

6 0.984 0.688(4)

18.0 (0 0 18) 324 18 7 0.693 0.628(4)

7 0.773 0.669(4)

6 0.663 0.687(4)

18.138 (8 11 12) 329 19 6 0.546 0.635(4)

6 0.862 0.670(4)

6 0.997 0.688(4)

18.221 (6 10 14) 332 18 6 1.278 0.636(4)

6 0.632 0.6693(35)

6 0.881 0.688(4)

18.385 (0 13 13) 338 20 7 0.765 0.637(4)

8 1.597 0.669(4)

7 1.486 0.688(4)

18.493 (5 11 14) 342 20 8 0.332 0.638(4)

7 0.903 0.670(4)

6 0.537 0.689(4)

18.601 (0 11 15) 346 18 7 1.89 0.639(4)

8 1.089 0.670(4)

7 1.882 0.688(4)

18.708 (5 10 15) 350 20 6 1.467 0.643(4)

6 0.543 0.6714(35)

6 1.687 0.689(4)

18.868 (0 10 16) 356 20 8 0.856 0.642(4)

7 1.04 0.671(4)

6 1.529 0.688(4)

19.0 (0 0 19) 361 20 8 0.799 0.642(5)

6 0.438 0.674(4)

6 0.607 0.688(4)

19.105 (0 13 14) 365 20 9 1.107 0.648(5)

8 1.415 0.673(4)

6 1.016 0.690(4)
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r/a r/a (r/a)2 tmax/a tmin/a χ2 aE0, aE1, aE2

19.209 (0 12 15) 369 20 9 0.916 0.644(5)

7 1.085 0.674(4)

7 1.2 0.689(4)

19.339 (7 10 15) 374 20 9 1.338 0.650(4)

8 0.422 0.677(4)

7 1.46 0.690(4)

19.416 (0 11 16) 377 20 8 0.756 0.647(4)

8 0.738 0.675(4)

6 1.61 0.690(4)

19.519 (8 11 14) 381 18 8 0.902 0.651(4)

7 0.446 0.680(4)

6 1.387 0.693(4)

19.647 (11 11 12) 386 20 8 1.049 0.653(4)

8 0.644 0.680(4)

6 0.68 0.696(4)

19.799 (0 14 14) 392 18 8 1.344 0.652(4)

7 1.188 0.678(4)

7 0.494 0.694(4)

19.849 (0 13 15) 394 18 8 1.162 0.651(4)

7 1.348 0.678(4)

7 0.701 0.694(4)

19.95 (9 11 14) 398 20 8 1.256 0.6532(35)

7 0.468 0.683(4)

7 0.977 0.698(4)

20.0 (0 0 20) 400 20 7 1.83 0.653(4)

7 0.977 0.681(4)

7 0.753 0.693(4)

20.1 (8 12 14) 404 20 8 0.941 0.6546(35)

6 0.61 0.683(4)

7 1.804 0.702(4)

20.224 (11 12 12) 409 20 7 0.828 0.6563(35)

7 0.66 0.682(4)

7 0.615 0.707(5)

20.469 (9 13 13) 419 20 8 0.546 0.6555(34)

6 1.492 0.684(4)

7 0.983 0.711(5)

20.518 (0 14 15) 421 18 7 1.305 0.6563(35)

8 0.73 0.683(4)

7 0.707 0.702(4)

20.616 (0 13 16) 425 17 9 0.951 0.655(4)

7 0.759 0.682(4)

7 0.801 0.703(4)

20.785 (12 12 12) 432 20 6 0.722 0.658(4)

8 0.738 0.682(4)

7 1.377 0.722(6)

20.833 (11 12 13) 434 17 7 1.016 0.6576(35)

8 0.713 0.683(4)

6 0.646 0.719(4)

r/a r/a (r/a)2 tmax/a tmin/a χ2 aE0, aE1, aE2

21.0 (0 0 21) 441 20 7 1.225 0.657(4)

7 0.893 0.684(4)

7 1.587 0.711(5)

21.119 (9 13 14) 446 20 8 0.963 0.6561(35)

7 1.717 0.685(4)

8 0.486 0.723(7)

21.213 (0 15 15) 450 17 7 1.288 0.6580(35)

7 1.503 0.683(4)

8 0.99 0.712(7)

21.354 (8 14 14) 456 17 7 2.066 0.6573(35)

7 1.501 0.685(4)

8 0.67 0.723(7)

21.401 (0 13 17) 458 18 8 0.354 0.656(4)

6 1.1 0.684(4)

8 0.853 0.718(6)

21.61 (11 11 15) 467 17 7 0.711 0.6586(35)

6 1.298 0.685(4)

7 0.422 0.738(5)

21.794 (9 13 15) 475 18 9 1.458 0.655(4)

7 2.741 0.685(4)

8 0.764 0.738(7)

22.0 (0 0 22) 484 20 6 1.926 0.6580(35)

7 0.816 0.685(4)

7 1.261 0.732(6)

23.0 (0 0 23) 529 18 7 1.721 0.659(4)

7 1.038 0.685(4)

8 1.791 0.747(9)

24.0 (0 0 24) 576 18 7 1.989 0.659(4)

7 0.453 0.685(4)

7 1.596 0.775(7)

25.0 (0 0 25) 625 20 6 1.643 0.659(4)

8 0.401 0.6863(35)

7 1.074 0.804(7)

TABLE 5.2: Table of all dis-
tances, fitting parameters
and three extracted energy

levels
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The quantification of string breaking involving three levels is more complex in comparison

to the two-level situation. For Nf = 2 string breaking, the string breaking distance rc can be

defined as the distance where the energy gap ∆E between the two states becomes minimal,

see [76]. For the Nf = 2 + 1 mixing scenario, a more complex model is necessary to define

the two string breaking distances rc and rcs .

In the next section we try to quantify the Nf = 2 + 1 mixing phenomenon by employing a

simple Hamiltonian model.

5.4 Model for the string breaking spectrum

We describe the string breaking data by a simple model that is an extension of the model for

the nf = 2 given in [15]. Consider a three state system with a Hamiltonian given by:

H(r) =


V̂ (r) g1 g2

g1 E1 0

g2 0 E2

 . (5.4)

The diagonal elements are a function V (r) describing the unbroken string andE1,E2, the en-

ergies of a noninteracting pair of static-light and static-strange mesons, respectively. g1 and

g2 are two coupling constants describing the strength of the mixing between the diagonal

elements. The mixing between static-light and static-strange mesons is assumed to be neg-

ligible and is therefore set to zero. A suitable choice for the function representing the string

state is the Cornell potential, given in equation (4.2). Since we are interested in modeling the

string breaking region and not the potential at small distances, we use only the linear part of

V̂l(r) = σr+V0 to fit our data and include only data points for distances larger than r/a = 11.

The eigenstates of the Hamiltonian H are mixtures between the unbroken string and the two

static-light and two static-strange meson state. The eigenvalues of H correspond to the three

extracted energy levels. After diagonalizing H 3, we fit the model to the data.

As mentioned in section 3.4, problems arise for correlated fits, when the number of config-

urations NCfg is equal to or not much larger than the number of data points Nd one wants

to fit [59, 60], resulting in the appearance of very small eigenvalues in the covariance matrix

that dominate the inverse used in constructing the correlated χ2. The small eigenvalues can

3The eigenvalues and eigenvectors of a hermitian 3× 3 Matrix are known analytically [101]
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increase the correlation in the sample and also bias the fit parameters. In our case, the situa-

tion is even worse, because we measured on 104 configurations, but would like to fit around

140 data points, depending on how many distances we include. In this case there areNd−N
zero eigenvalues.

One possible way to ameliorate the situation is the use of singular value decomposition, as

described in section 3.4. We introduce an SVD cut c in a way that no eigenvalue smaller

than c times the largest eigenvalue is retained, in order to get a reasonable correlated χ2 and

obtain a stable fit. We choose c = 10−3. With this choice, we get χ2/Dof = 1.8, where it

is important to note that now the number of degrees of freedom is reduced by one for each

singular value removed.

We find for our fit paramaters:

aE1 =0.0262(4) (5.5)

aE2 =0.0012(2)

ag1 =0.0079(3)

ag2 =0.0146(3)

a2σ =0.0232(2)

aV0 =− 0.437(3).

Figure 5.10 shows the data as well as the result of the model fit. Figure 5.11 is the same plot,

magnifying the string breaking region. The fits are performed on every bootstrap sample,

the errors are 1σ bootstrap errors. The errorband, displaying the bootstrap errors, is barely

visible in both plots.

In our model, the mixing between light and strange mesons is set to zero and it assumes a

three state system, even though it is possible that the physical eigenstates receive contribu-

tions from higher lying states and in the model. Nevertheless, the plots in figures 5.10 and

5.11 show that our data is described very well by the fit parameters.

While the eigenvalues λ1, λ2, λ3 of our Hamiltonian H model are the energy levels of the

string breaking data, the eigenvectors v1, v2, v3 contain information about the overlaps. In

order to investigate the overlap of the string-like, two static-light and static-strange meson-

like interpolators onto the ground state, we plot the components of eigenvector v1, shown

in figure 5.12.
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FIGURE 5.10: Six parameter fit to the string breaking data. The errorband is
not visible.
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FIGURE 5.11: Same as figure 5.10, but zoomed into the string breaking region.
The errorband is barely visible.
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As expected, for distances smaller than the string breaking distance, the Wilson loop has

large overlap with the ground state while for distances beyond string breaking, the two

static-light meson state has large overlap onto the ground state. In the mixing region, both

operators have a significant overlap with the ground state, the static-strange meson operator

does not contribute considerably to the ground state and shows only a small overlap in the

mixing region.

5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

r/a

Wilson
static-strange

static-light

FIGURE 5.12: Overlap of interpolators onto ground state. The errorband indi-
cating 1σ bootstrap errors is not visible.

We can use the overlap to define the string breaking distance rc as the point where the

Wilson loop and the static-light meson operator have equal overlap onto the ground state,

i.e. the mixing is most pronounced. Using this definition, we find for the string breaking

distance

rc = 18.952(40)a ≈ 1.218(14)fm. (5.6)

The quoted errors for the physical units take into account the uncertainty of a = 0.06426(74)fm.

The scale setting for the CLS ensembles is thoroughly discussed in [89]. A corresponding

definition can be employed to define the second string breaking distance rcs from the over-

lap of the interpolators onto the second excited state, shown in figure 5.13. The intersection

between the Wilson and the two static-strange type operator is given by

rcs = 19.685(36)a ≈ 1.265(15)fm. (5.7)

We can now calculate the energy gap ∆E1 between the ground and first excited state at the

string breaking distance rc, as well as the energy gap ∆E2 between the first and second ex-

cited state for distance rcs . We find ∆E1 = 84(1)MeV and ∆E2 = 42(2)MeV, repectively.

The energy ∆E1 induced by the mixing of the string state and two static-light meson state is
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FIGURE 5.13: Overlap of interpolators onto second excited state. The error-
band indicating 1σ bootstrap errors is not visible.

larger than ∆E2, induced by the mixing of the string state and the heavier two static-strange

meson state. Furthermore, we observe a narrowed mixing region for the second avoided

level crossing in comparison with the first crossing, which can be seen in figure 5.8, but also

by comparing the slope of the overlaps in figures 5.12 and 5.13. This behaviour is expected

and was predicted in [76].

As mentioned before, only one previous study [76] of string breaking forNf = 2 QCD on the

lattice exists with mπ ≈ 640MeV. For the two state system, a different definition of the string

breaking distance was used, so it is not straightforward to compare the result to our findings.

In [76], agreement is found between two definitions of the string breaking distance. The first

definition rc1 gives the distance at which the energy gap between the two states assumes its

smallest value and the second definition rc2 denotes the distance of perfect mixing between

the two states, in terms of a mixing angle of the two state system. They find

rc1 ≈ 1.248(13)fm (5.8)

rc2 ≈ 1.244(16)fm, (5.9)

where the quoted error is purely statistical and does not include the 5% uncertainty of the

Sommer parameter r0 that was used to convert the result into physical units. The definition

of rc2 is similar to our definition applied to the three state system. A comparison of our re-

sults for the static-light and static-strange breaking distance with the results of Bali et al [76]

shows that the string breaking distances are of the same order of magnitude. Their result

rc2 ≈ 1.244(16)fm, even though in this study the pion mass mπ = 640MeV was relatively

heavy, falls between our values rc and rcs . However, due to differing definitions of the string

breaking distance, it is not possible to make a statement on quark mass dependence. In the
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FIGURE 5.14: Overlap of interpolators onto first excited state. The errorband
indicating 1σ bootstrap errors.

case of the three state system, mixing occurs between three states, even though we define

the string breaking distances by looking at the admixture of only two operators at the same

time. To this account, it is interesting to look at the overlap of all operators onto the first

state in Fig. 5.14, which shows sizable mixing of all operators in the string breaking region.

In order to investigate the dependence of the string breaking distance on the sea quark mass,

calculations on Nf = 2 + 1 ensembles with different quark masses need to be performed. We

intend to do so in the future.
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Chapter 6

Discussion and outlook

In this work, we have explored string breaking in QCD on the lattice usingNf = 2+1 flavors

of dynamical quarks. We identified a suitable method for string breaking on large lattices

with small quark masses and to investigate the effect of the inclusion of third, heavier, sea

quark flavor.

The stochastic LapH method yields practical all-to-all propagators and we find it facilitates

accurate determinations of temporal correlation functions involving static quarks. We con-

struct a 4 × 4 correlation matrix in order to properly treat the mixing phenomenon and use

a GEVP to extract the ground state and two excited states of the system containing a static

quark and antiquark.

An exploratory study was carried out for the CLS N200 ensemble. We found that we are

able to observe two avoided level crossings corresponding to the formation of two static-

light and two static-strange mesons. Figure 5.11 displays the three extracted energy levels

in the string breaking region and shows that we can resolve the small energy gap between

the first and second excited state.

We provide a simple model for the mixing scenario that describes the string breaking data

very well. Within the model we provide a definition of the string breaking distance rc cor-

responding to the transition of the string into two static-light mesons and rcs , the distance

corresponding to the transition of the string into two static-strange mesons. Furthermore,

the energy gaps between the respective states at rc and rcs can be calculated. We find the

following values

rc = 1.218(14)fm, ∆E1 = 84(1)MeV (6.1)

rcs = 1.265(15)fm, ∆E2 = 42(2)MeV.
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As a next step towards fully quantifying string breaking, the computation has to be re-

peated on a suitable set of ensembles, varying lattice size, lattice spacing and quark masses.

Ideally, this will allow for an extrapolation to the continuum and a determination of finite

volume errors as well as shed light on the quark mass dependence. Evidence suggests that

the stochastic LapH method facilitates practical all-to-all propagation even in large physical

volumes with spatial extent exceeding 5fm [102], which allows us to consider larger lattices

for the string breaking analysis in the future. As previously mentioned, the landscape of en-

sembles generated by the CLS effort [24] covers a broad range of parameters and is therefore

ideally suited for a continued investigation of string breaking on the lattice.

The next ensemble we will perform the calculations on is the D200, the computations are

already underway.

id Nt ×N3
s a[fm] mπ[MeV] mK[MeV] mπL

N200 128× 483 0.064 280 460 4.4

D200 128× 643 0.064 200 480 4.2

TABLE 6.1

The N200 analyzed in this work and the D200 have the same lattice spacing, but differentmπ

and mK , so the comparison of the two ensembles given in table 6.1 will allow us to explore

the quark mass dependence.
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Appendix

A1 Gamma matrices

We will use the conventions of [53], also used in the stochastic LapH codebase, which em-

ploys the Dirac-Pauli representation for the gamma matrices

γk =

(
0 −iσk
−σk 0

)
γ4 =

(
I 0

0 −I

)
γ5 =

(
0 I

I 0

)
, (6.2)

where the σi are the Pauli matrices. The Euclidean space gamma matrices are related to the

Minkowski gamma matrices by

γ1 = −iγM1 , γ2 = −iγM2 , γ3 = −iγM3 , γ4 = γM0 . (6.3)

where γMµ are the Minkowski matrices. The Euclidean gamma matrices are hermitian and

obey the anti-commutation relation

{γµ, γν} = 2δµν . (6.4)

The fifth gamma matrix is given by

γ5 = γ4γ1γ2γ3, (6.5)

so γ5 anti-commutes with all the other gamma matrices and is hermitian.
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A2 tmin -plots for all energy levels

In this appendix all plots used in the extraction of the three energy levels in section 5.3 are

shown. The corresponding extracted energies and fit parameters are listed in table 5.2. The

solid horizontal line indicates the plateau average and the gray dashed lines display the 1σ

bootstrap error. The left plot corresponds to the ground state, the middle plot to the first

excited state and the right plot shows the second excited state of the system.
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