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Summary

This thesis is the compilation of two different projects undertaken during my PhD pro-

gramme.

Chapter 2 covers the work on quantum complexity. Quantum complexity of a ther-

mofield double state in a strongly coupled quantum field theory has been argued to be

holographically related to the action evaluated on the Wheeler-DeWitt patch [21]. The

growth rate of quantum complexity in systems dual to Einstein-Hilbert gravity saturates

a bound which follows from the Heisenberg uncertainty principle. This work, published

in [1], considers corrections to the growth rate in models with flavor degrees of freedom.

These are realized by adding a small number of flavor branes to the system.

Holographically, such corrections come from the DBI action of the flavor branes evalu-

ated on the Wheeler-DeWitt patch. After relating corrections to the growth of quantum

complexity to corrections to the mass of the system, it is observed that the bound on the

growth rate is never violated.

Chapter 3 covers the still ongoing project of causality in RG flows of systems with

a Gauss-Bonnet gravity holographic dual. In order for the dual field theory to have no

causality problems the speed of gravitons near the boundary of AdS must be bounded

above by the speed of light. This bound is checked along the RG flow for QFTs that have

AdS Gauss-Bonnet spacetime duals. It is found that, for certain values of the Gauss-Bonnet

parameter, the field theory becomes acausal when sufficiently far away from the UV.
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Chapter 1

Introduction

1.1 The holographic principle

The holographic principle (also known as gauge/gravity duality) is one of the most powerful

tools in the modern theoretical physics arsenal. First introduced by Maldacena in his now

famous 1 paper [2] , it relates gravity and gauge theories. This correspondence originates

from a low energy limit of string theory and can be heuristically understood by doing

some analysis of D-branes physics.

String theory doesn’t only contain strings, but also extended objects called D-branes.

A Dp-brane is a p-dimensional membrane-like object where the end points of open strings

are forced to be attached. As will be elaborated on later, a Dp-brane spans a (p + 1)-

worldvolume, so it is useful to consider D3-branes in order to end up with a 4-dimensional

theory. Consider then a stack of N of these D3-branes in type IIB string theory in 10

dimensions. In the low energy limit we can study this from the point of view of open

strings living on the D3 branes, or from the point of view of closed strings, where a stack

of D3 branes is a background solution in type IIB supergravity. In both cases there are

two decoupled systems:

A - strings point of view: D-branes are the places where open string endpoints are

forced to end. Now, if two open strings lie on a D-brane, their endopoints can meet, forming

a closed string. This is no longer confined to the D-brane (since it has no endpoints) and

is free to move in the bulk of spacetime. This system is then described by an action of

1 so famous it is currently the most cited paper in Physics history, with almost 14.000 citations by

September 2018.
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8 1 Introduction

the type S = Sbulk + Sbrane + Sint, where Sbulk describes the closed string that propagate

through the bulk, Sbrane the open strings stretching between the branes and Sint the

interaction terms between these two. In the low energy limit Sint becomes negligible,

whereas the now decoupled open and closed systems become.

• A1: open strings on the D3-branes. The key idea here is that the lowest states in

the spectrum of strings stretching between two of these branes consist of N2 − 1

interacting massless gauge fields. In the low energy limit then, when these modes

are the only ones that can be excited, the stack of N D3-branes has a SU(N)

gauge theory living in its worldvolume (so d = 4 spacetime dimensions in this case).

Moreover, the original string theory contained 32 supersymmetry generators, but

since the D-branes are BPS objects we are left with just half the supersymmetry.

All together, Sbrane reduces to the SYM lagrangian and so the open strings on the

stack of D3-branes in the low energy limit are equivalent to SU(N) N = 4 SYM in

4 dimensions.

• A2: closed strings in the bulk. Sbulk is the action of 10d supergravity and as such it

reduces to purely free gravity when the low energy limit is taken.

B - supergravity point of view: consider now the supergravity approach, where we

have a p-brane described by

ds2 = H−1/2dx2
// +H1/2

(
dr2 + r2dΩ2

5

)
, H(r) = 1 + R4

r4 , R4 = 4πgsNα′2, (1.1)

where x// denotes the coordinates parallel to the brane. Note that there is a redshift

effect taking place here: the energy Er measured by an observer at some point r is seen

by an observer at infinity as E ∝ √−g00Er. When close to the brane r → 0, so the

energy measured at infinity E ∝ rEp approaches zero. In the low energy limit of this

configuration, from the point of view of an observer at infinity, we can have two different

types of excitations

• B1: particles propagating close to the brane at r << R. In this region one can

approximte H ∼ R4

r3 , and so the metric (1.1) becomes that of AdS5 × S5.

• B2: far away from the brane at r = 0. In this regime gravity becomes free.
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In the low energy limit (α′ → 0, with α′

r2 kept fixed) 2 these systems are also decoupled.

This can be seen from the fact that an excitation near the brane cannot overcome the

gravitational potential and escape to infinity, whereas the low energy absorption cross

section behaves like σ ∼ ω3R8, which implies that excitations far away from the brane

cannot interact with the near brane region.

We thus find the remarkable fact that systems A2 and B2 are the same! It is then

reasonable to conclude that A1 ∼ B1. Since the r → 0 limit of the metric (1.1) is AdS5×S5

we find that N = 4 SYM in 4d is equivalent to weakly coupled gravity in AdS5 × S5.

Now, keep in mind that for the above to be accurate the supergravity limit of string

theory must be valid. This is the case when the curvature l of spacetime is much bigger

than the string length ls =
√
α′, i.e l/ls = (gsN)1/4 � 1. So we need gsN � 1. Also, we

need quantum corrections to string theory to be negligible, so we must require that the

string coupling goes to zero, gs → 0. For these two conditions to be met we must have

N →∞, and gs → 0 while keeping λ = gsN fixed and large. (1.2)

This duality receives stringy corrections of order 1/
√
λ. However, since λ is kept large

one usually does not keeps this corrections. From the Super Yang-Mills point of view,

this amounts to working at strong coupling. The coupling constant in the Yang-Mills

theory is related to the string coupling through g2
YM = gs. This can be understood from

the fact that two open strings, whose interaction is controlled by gYM , can merge to form

one closed string, which is governed by gs. The interesting point to remark here is that

the effective coupling in the SYM theory is given precisely by λ. Since λ� 1 the SYM

is strongly coupled, while the gravity theory is free (gs → 0). This finally gives us the

famous relation

N = 4 planar strongly coupled SYM in 4d is equivalent to weakly coupled gravity in

AdS5 × S5.

The fact that the two elements of this correspondence live in two opposite regimes is

one of the reasons why AdS/CFT is so useful (and, in fact, also the reason why it is called

2 On the one hand, taking α′ to zero decouples the open and closed string sectors we have been talking

about. On the other hand, keeping the ratio α′

r2 fixed allows for arbitrarily excited states to exist in the

near horizon region of the geometry.
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a duality).

The AdS/CFT correspondence is encoded in a dictionary that relates observables in the

CFT to observables in the gravity side. One of the most commonly discussed quantities

are n-point functions, which can be computed using the holographic statement that

ZCFT = Zgrav, (1.3)

where Z above stands for the field theory and gravitational (AdS) partition functions

respectively. In the large-N limit one can use the saddle-point approximation of the

gravitational action to write this as

〈
ei
∫
φ(0)O

〉
= eiSclass(φ|u=0=φ(0)). (1.4)

This equation is usually referred to as the Witten/GKP formula. In the field theory

side (LHS) O is an operator and φ(0) acts as a source, making the LHS of this equation the

usual generating functional for the operator. In the RHS φ is a bulk field which asymptotes

to φ(0) at the AdS boundary (which sits at u = 0). The action in the RHS is just the

classical gravitational action, and since it is on-shell it reduces to a boundary integral

(thus becoming 4D). It is this boundary action what can be used as the generating func-

tional of O instead of the LHS of (1.4) to compute n-point functions in a much simpler way.

One of the major breakthroughs in building up this connection came up when Ryu and

Takayanagi were able to relate entanglement entropy of a region in the CFT with the area

of a given surface in AdS [3]. Why was this so important? Entanglement entropy is a field

theoretical quantity with a simple definition: ”consider a quantum system described by a

density matrix ρ and split it into two subsystems A and B. The entanglement entropy SA
of the region A, with boundary ∂A, with the rest of the system is defined by

SA = TrρAlogρA, (1.5)

where ρA = TrBρ is the reduced density matrix of subsystem A”. The definition is

quite simple 3 but, even with the help of very clever tools like the replica trick, computing

3 This splitting of the system into two spatial regions A and B is indeed simple when one is dealing

with a theory whose physical degrees of freedom are localized. This is not the case when one deals with

gauge theories though, and this splitting of the Hilbert space is much more complicated (check for example

reference [4] ).
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SA can be quite a challenging task even for simple subsystems. On the other hand, the

holographic principle allows us to find SA by finding the minimal area surface in AdS

whose boundary is precisely ∂A. This method is much simpler (although not trivial by

any means), which shows one of the great advantages holography has brought forward:

we can now compute very complicated quantities in a CFT (gravity) by studying their

simpler gravity (CFT) counterparts.

Entanglement entropy is a good example of how AdS/CFT has made possible to

simplify some of the hardest computations one encounters in theoretical physics. Chapter

2 in this thesis shows an example that goes beyond that: holography made it possible to

have (some) access to observables whose CFT definition is still not even fully understood.

Quantum computational complexity is a quantity with a very clear definition for systems

of qbits, but how to generalize it to the continuum QFT case is a task that has not been

fully achieved yet. Some remarkable progress has been recently achieved though [5]-[14]

(to be elaborated on in this chapter). Through a new proposed entry in the holographic

dictionary [21] we now have a tool that allows us to study this concept. The fact that

progress in our understanding of computational complexity is much faster now that it

would have ever been without the gauge/gravity duality showcases why this correspon-

dence has been at the core of the most important discoveries in the recent history of Physics.

Holography is not only the means by which hard computations can be simplified. More

importantly, it is also a tool that has completely changed the way problems are tackled,

providing us with a novel and fundamental understanding of a great variety of systems.

1.2 Classical and quantum computational complexity

Computational complexity is a very important concept in computer science. In classical

computation theory, the complexity of a given problem/task is defined as the time it takes

for the fastest possible algorithm to compute it. Problems are then classified according to

how their complexity scales when the size of the input is increased. In this context, size

refers to bit size i.e. if the input is some number X, then its size is defined as the number

of bits Z = log2X required to store its value.

Although the concept of complexity is, naively, quite simple there are still character-



12 1 Introduction

istics that are not completely understood. The most famous one is problably the P vs

NP problem (which is actually one of the Millennium Problems). On the one hand, tasks

whose complexity scales with some polynomial of Z are called of type P (from polynomial).

On the other hand, tasks whose solutions can be checked to be correct in polynomial time

are called NP. It is clear that P ⊆ NP, but whether P is a subset or actually equal to

NP is still unclear. This is the so-called P vs NP problem.

Note that, if P is not equal to NP, then there exists a class of problems for which

finding a solution takes a non-polynomial time (which, in practice, makes them unsolvable)

but which solutions are verifiable in polynomial time. The factorization of a big number

into its prime factors seems to be one of the problems belonging to this class: no classical

algorithm has been found yet that solves this in polynomial time.

It is for this reason that factorization plays a key role in the most widely used encryption

algorithm used up to date: the RSA encryption algorithm. The underlying principle of

RSA is that Alice can pick two large prime numbers p and q and construct their product

n = pq and the totient function φ(n) = (p− 1)(q − 1) of this product 4 . One then needs

to find a number e fulfilling both that: a) 1 < e < φ(n) and b) e is coprime with both n

and φ(n). Once e is chosen, the last step is to compute d, the multiplicative inverse of e

mod φ(n). This means to solve

ed = 1 mod φ(n)

for d. After this last step in completed, Alice chooses the pair P = (e, n) as the public

key (anyone can know it), whereas the pair S = (d, n) is kept secret. If Bob wants to send

a message M to Alice he computes M ′ ≡M e mod n and sends that instead 5 . Alice can

recover the original message by simply computing (M ′)d mod n, which equals precisely

M modn. The key to this algorithm is that, in order to break it, an eavesdropper Eve

would need to find the number d, for which she first needs to factor the number n of

the public key. Since the factorization problem is not solvable in polynomial time this

4 The Euler totient function φ(n) counts the number of integers smaller than n) that are coprime with

n.
5 With this method there only up to n different messages that can be codified, so it would look like

this is not a very realistic method to implement in real life scenarios. On a daily basis, almost all secured

connections are encrypted with a symmetric key, RSA being used to codify the symmetric key sharing

process that needs to be done during the first interaction between Alice and Bob.
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cryptographic system is then expected to be unbreakable in practice. Note that this is just

an expectation though. Since the P vs NP conjecture has not been solved there is no

guarantee that no algorithm faster than any one we have found so far cannot exist.

A simple example of RSA works is useful to illustrate how it works. Let’s pick the

prime numbers p = 2 and q = 7. This yields n = 14, φ(n) = 6 and 1, 3, 5, 9, 11, 13 as the

6 integers that are coprime with n. To find e we need a number from that list which is

smaller than and coprime with φ(n) = 6. In this simple case, the only choice is to pick

e = 5. The last step then is to find a d satisfying

5d = 1 mod 6. (1.6)

A solution to the equation is d = 11. This means that we end up a public key pair

P = (5, 14) and a private key pair S = (11, 14). If Bob now wants to send Alice the

message ”B”, he can convert that letter in the integer M = 2 by using the A1Z28 coding

and then computing

M ′ = M e mod n→M ′ = 25 mod 14 = 4 mod 14,

so Bob would be sending the letter D (the one corresponding to 4 in the A1Z28 coding)

to Alice. She would then decrypt the message by computing

M ′′ = M ′d mod n→M ′′ = 411 mod 14 = 2 mod 14,

getting back the original message B.

But, besides this elusive classical algorithm, there is another way of theoretically solving

the factorization problem in polynomial time: quantum computation. This prompts the

question of how is complexity defined in a quantum system. If the discussion is restricted

to qubit systems (which would be the ones appearing in a quantum computer) then the

definition is quite simple

• states: given a state |φ〉 and a reference state |0〉, the complexity of |φ〉 is defined

as the minimum number of 2-gates that one needs to apply to obtain |φ〉 from |0〉

• operators: given an operator O, its complexity is defined as the minimum number

of gates one needs to apply in order to implement the action of O.
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Note that these definitions are not unique since there is some arbitrariness in the

choices one can make. First of all, one can choose the reference vacuum state in many

different ways (although there may be some physically motivated candidates which are

more suitable for this role). Second, the set of gates that we can choose is also arbitrary.

It is well known that any unitary operator acting on a set of qubits can be approximated

with arbitrary accuracy using only the set of gates {H,S,T, CNOT}, where

• H is the Hadamard gate: single qubit gate defined by |0〉 → |0〉 + |1〉 and |1〉 →

|0〉 − |1〉

• S is the Phase gate: single qubit gate defined by |0〉 → |0〉 and |1〉 → i |1〉

• T is π/8 gate: single qubit gate defined by |0〉 → |0〉 and |1〉 → eiπ/4 |1〉

• CNOT is the Controlled not gate: 2-gate that performs a NOT operation (i.e.

takes |0〉 to |1〉 and viceversa) on the second qubit if the first one is in the state |1〉,

and does nothing if the first qubit is in the state |0〉.

This is the natural set of gates to consider since every single unitary can be built up

using them 6 , but that doesn’t mean that any unitary can be efficiently implemented. The

reason why these gates form a universal set is because of two results: a) any arbitrary

unitary operation on qubits can be built using single qubit and CNOT gates and, b) any

single qubit operation can be built using the Hadarmard and π/8 gates. Thus, these 3

gates combined allow us to build any unitary operator on the qubits.

Another set of universal gates could be chosen that reduces the size of the circuit

needed to implement a particular operator U , thus modifying its complexity. Even so, to

know the quantum complexity of a given operator is crucial for practical purposes, since it

can make a quantum algorithm relying on it feasible or impracticable.

Another thing worth mentioning is the fact that while in classical computer each

operation performed on the classical bits moves the system from a state to an orthogonal

one (since the states ”0” and ”1” of the bit are orthogonal and a state of N classical bits is

just a product state) this is no longer the case for a quantum computer. Given N qubits

on a particular state, applying a gate to a pair of them will not generally result (and most

likely won’t) in a new state that is orthogonal to the initial one. This then implies that

6 The phase gate is actually not necessary since it can be built using two T gates. The reason it is

included in the list is simply because of the predominant role it plays in error correction constructions.
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it is not too clear how efficiently the computational bounds discussed in Chapter 2 will

apply to a quantum computer.

If one moves outside the scope of qubits into the case of a continuum QFT, how to

define the complexity of a state/operator is not yet very clear. There are however some

promising results. The first attempt to systematically define this concept in field theories

was introduced by Nielsen and collaborators in [5]-[7]. The idea presented therein has been

further developed by Myers and collaborators in [8],[14]. The approach here is to first

introduce an ultraviolet regulator 7 . One then defines a reference state |ψ0〉 and considers

a target state |ψF 〉 which is obtained by the application of some unitary operator U to the

reference state: |ψF 〉 = U |ψ0〉. The idea it is then to find a time dependent Hamiltonian

that determines U through

U =←−P e
∫ 1

0 dtH(t), H(t) =
∑
n

Y n(t)Mn, (1.7)

where Mn is the set of gates (operators) we choose as basis to write down the Hamil-

tonian and ←−P is a time ordering operator that ensures that the operators that apply at

earlier times sit in the rightmost side of the product. The functions Yn are called the

control functions and form a (4n − 1)-dimensional vector space, where we can see

U(t) =←−P e
∫ t

0 dsH(s), H(t) =
∑
n

Y n(t)Mn, (1.8)

as the tangent vector to a given trajectory in the space of unitaries. The objective is

then to introduce a cost functional 8

D[U ] =
∫ 1

0
dtF (U, U̇), (1.9)

and then find out which circuit path U(t) minimises it. The length of this minimal

path would then be equated to the complexity of the state |ψF 〉 obtained using U . The

geometrical approach to computational complexity is still in its very early stages, but

is has already shown some promising agreement [8] with the holographic proposals of

Susskind et al. [21].

7 It is believed no consistent definition of quantum computational complexity can be obtained without

this short-scale cut-offs [55].
8 subject to some physical requirements, like positivity and homogeneity.
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1.3 Renormalization group in field theories

The renormalization group is the framework used in field theories to study how observables

change when the energy/distance scale is modified. This idea was first proposed by

Gell-Mann et al. in [107] and later further developed by Wilson in [108], [109].

The principle underlying the RG is closely related to the averaging of degrees of

freedom we do in thermodynamics. Assume, for example, that we have a well defined and

understood theory in the ultraviolet. This means that we know, among other things, the

coupling constants and interactions at very high energies µUV (or very small distances).

However, if we are not concerned with such small scales but rather want to understand some

macroscopic behaviour we probably are not too interested in the UV coupling constants

but in their lower energy versions. These are obtained by coarse graining our system

and averaging the degrees of freedom that are not accessible at the new scale µIR we are

interested in. In more concrete terms, if one has an effective theory defined up to some

energy scale Λ1, we can obtain the lower energy version, valid up to energy scale Λ2 < Λ1,

by integrating out the degrees of freedom in the region [Λ1,Λ2].

The RG information of a field theory is encoded in its beta function

β(g) ≡ ∂g

∂log(µ) , (1.10)

which expresses how the coupling constant g changes when the energy scale µ is

modified. Note that, in spite of its name, the coupling constant is no longer constant but

it runs with the energy scale. Fixed points of the RG flow are the configurations with a

vanishing beta function and are characterised by the underlying field theory being scale

invariant.

Conformal field theories are theories invariant under the conformal symmetry group,

which involves the usual Poincare group plus dilatations and special conformal transfor-

mations. It can be the case though, that a classically conformal theory doesn’t have the

expected quantum behaviour. Since a CFT is invariant under re-scaling of the metric one

expects that the trace of the energy-momentum tensor Tµν vanishes. However, this is not

the case if the quantum theory is put in a curved background. For example in D = 4,

which is the relevant case in this thesis, one finds that this quantity is proportional to the

Weyl tensor and the Euler density
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< T >∝ cC2 + aE4, (1.11)

where E4 is the Euler density in 4 dimensions and C the Weyl tensor, which is generally

defined as

Cµνρσ = Rµνρσ −
2

d− 2
(
ga[cRd]b − gb[cRd]a

)
+ 2

(d− 1)(d− 2)Rga[cgd]b. (1.12)

The quantities a and c are the conformal anomaly coefficients, which are important

and related to the RG flow. The c-theorem [111],[112] states that, in 2D, the quantity c

monotonically decreases along the RG flow (so that cIR ≤ cUV ). In 4D, a similar theorem

for the a coefficient (called the a-theorem) also exists [110]. These two quantities are

also relevant to determining the causality properties of a given theory, as studied in [118],

where they showed that the value a/c has to be within a specific window for the energy

correlators to behave in the proper way.





Chapter 2

Complexity of holographic flavours

Quantum complexity C is a quantity defined for a quantum system, where unitary opera-

tions, called gates, are applied to pairs of qubits 1 . For a state |ψ〉 complexity is defined as

the minimum number of such gates that have to be applied to a simple reference state to

produce |ψ〉. It has been argued in [16], due to the Heisenberg uncertainty principle, and

in [17], on general quantum dynamics grounds, that quantum complexity obeys a bound

on its growth rate:

dC
dt
≤ 2M

π
, (2.1)

where M is the mass of the system (See references [18]-[21] for some violations of this

bound 2 ). The argument in [17] goes as follows: any quantum mechanical state can be

written as |ψ0〉 = ∑
n an |En〉, where |En〉 are energy eigenstates. If this state is let to

evolve during some time t it will become |ψt〉 = ∑
n ane

−iEnt/~ |En〉. One can then compute

how much time t will at least take for |ψt〉 to become orthogonal to the starting state

by looking at their overlap S(t) = 〈ψ0|ψt〉. Using the inequality cosx ≥ 1− 2
π
(x+ sinx)

(valid for x > 0) one finds out that the overlap

S(t) =
∑
n

|an|2e−iEnt/~, (2.2)

satisfies

Re(S) =
∑
n

|an|2cos
(
Ent

~

)
≥
∑
n

|an|2
[
1− 2

π

(
Ent

~
+ sin

(
Ent

~

))]

= 1− 2E
π~

t+ 2
π
Im(S).

(2.3)

1 We will consider the case of two-gates, but one can easily generalize the discussion to the k-gates.
2 This violations happen before the late time limit is approached. In the references it is shown that

the rate at which complexity changes becomes constant in the late time limit (this is the rate shown in

the equation above), but this is approached from above, thus violating the bound.

19
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Since we want both real and imaginary parts of the overlap S to be zero this then

yields 0 ≥ 1− 2E
π~ , which results in the time to orthogonality fulfilling

t ≥ h

4E . (2.4)

In other words, since each operation in a computer requires the bits to change from one

state to another, its computational speed is limited by the total energy E in the system

(expressed as the mass M of the system, in equation (2.1)).

Recently a holographic recipe has been proposed [22, 21] to compute complexity for

thermofield double states in strongly coupled quantum field theories. (For related work,

including a few lecture notes, see [23]-[75].) The proposal of [22, 21], which we refer to

as Complexity-Action (CA) proposal, makes use of the holographic representation of the

thermofield double state in a strongly coupled quantum field theory in terms of the eternal

asymptotically AdS black hole [76]. On this spacetime one can define the Wheeler-DeWitt

patch, shown in Fig. 2.1. The patch is anchored at boundary times tL and tR, and the

proposal of [22, 21] equates the complexity of the thermofield dual state |ψ(tL, tr)〉 with

the action evaluated on the Wheeler-DeWitt patch SWdW :

C(ψ(tL, tR)) = SWdW

π~
, (2.5)

It was also shown in [22, 21] that for the Einstein-Hilbert action, AdS black holes

saturate the bound (2.1).

In this paper we add massless matter in the fundamental representation to N = 4 super

Yang-Mills and compute the corresponding corrections to dC/dt. We achieve this by adding

a small number of flavor branes to the stack of the D3 branes. At strong ’t Hooft coupling,

we need to study flavor branes propagating in asymptotically AdS5 × S5 background. The

action of D-branes is just the DBI action, and thus the CA correspondence identifies the

correction to quantum complexity with the DBI action evaluated on the Wheeler-DeWitt

patch 3

δC = SDBI,WdW

π~
, (2.6)

Note that the variational problem for the DBI action is well defined and there is no

need to introduce boundary terms in (2.6). We will see that δC can be written as a

3 We consider the action proposal here and not the volume one (check [25]) because there’s no clear

way on how to generalise the latter to introduce flavour fields.
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function of temperature times the contribution of the flavor degrees of freedom to the total

mass of the system, δM . One may wonder whether the growth rate of the total quantum

complexity still obeys the inequality (2.1),

dCtot
dt
≡ dC
dt

+ d(δC)
dt

?
≤ 2Mtot

π
= 2

(
M
π

+ δM
π

)
. (2.7)

We will show that the corrections have the form

d(δC)
dt

= −K(x)δM
π
, x = πLT, (2.8)

with K(x) a monotonically increasing function. It is important to note that this

correction is negative because of the overall minus sign that appears in front of the

Lorentzian DBI action. Hence, the flavor corrections reduce the rate at which complexity

grows and the bound (2.1) is no longer saturated. In our computations we neglected the

back reaction from the flavor branes (which corresponds to the small number of flavors),

focussed only on trivial embeddings and considered the late-time limit. Note that the flavor

corrections are parametrically small and thus the complexification rate cannot become

negative.

The rest of the chapter is organized as follows. In Section 2.1 we review the proposal

of [22, 21]; Section 2.2 covers some generalities of the D3/Dq systems. In section 2.3 we

compute corrections to the complexity growth and to the mass of the system. We conclude

in Section 2.6.

2.1 The complexity-action proposal

A concrete way for computing complexity in QFTs is not yet known. However, for some

strongly coupled QFTs, such as N = 4 super Yang-Mills, an equivalent gravitational

description is available. One may then hope that a geometric prescription for evaluating

complexity will be easier to define. In this article, we will use the proposal of [22, 21] .

The authors of [22, 21] provide a prescription for evaluating the complexity of the

thermofield double state in the dual gauge theory. For a conformal field theory (CFT) with

a holographic dual, the finite temperature state is described by the AdS-Schwarzschild

spacetime.(We are considering temperatures above the Hawking-Page transition [79]) An

important role in the proposal is played by the Wheeler-DeWitt patch, denoted as WdW

patch from now on (see Figure 2.1). The proposal states that the complexity C of the

thermofield double-state is given by (2.5) where SWdW is the Einstein-Hilbert action,
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S = 1
16πG

∫
M

√
−g (R− 2Λ) + 1

8πG

∫
∂M

√
hK, (2.9)

evaluated over the WdW patch. As usual, the Einstein-Hilbert action is supplemented

by the York-Gibbons-Hawking term (YGH), for the variational problem to be well defined.

This proposal allows one to directly compute dC/dt and check whether or not the

bound (2.1) is respected. Differentiating the holographic complexity is straightforward.

Suppose tL evolves for an infinitesimal amount δt. Such an evolution changes the WdW

patch as shown in Figure 2.1. To compute the change in the action, one needs to evaluate

it on the four regions denoted in Figure 2.1. However, as already noted in [22, 21], the

action evaluated on region 2 is cancelled by that on region 3, while region 4 shrinks to

zero in the limit tL � β. We will be interested in precisely this limit (large time behavior

of the complexity growth). So only region 1, the region behind the future singularity,

contributes to the rate of change of the holographic complexity. The result presented in

[22, 21] is the remarkably simple answer

dC
dt

= 2M
π
, (2.10)

which exactly saturates the bound (2.1).
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Figure 2.1: Penrose diagram of an AdS-Schwarzschild black hole. The red lines represent the future and

past singularities, while the black lines crossing the diagram are the event horizons. The area enclosed

by the green lines and the future singularity is the WdW patch at times tL and tR. If tL is let to evolve

infinitesimally the result is the patch shown in blue. This evolution then makes the patch lose regions 3

and 4 while gaining regions 1 and 2.

2.2 Generalities of D3/Dq systems

In this article, we are interested in studying the holographic complexity for a strongly

coupled gauge theory with fundamental matter fields (fields transforming under the

fundamental representation of the gauge group). To this end, we consider D3/Dq systems

[77]. These systems are made out of a stack of Nc D3-branes and a number Nf of Dq-branes

(the flavour branes). Strings stretching between the Nc D3-branes give rise to N = 4 SYM,

while strings stretching between the D3-branes and the flavour Dq-branes introduce fields

that transform in the fundamental representation of the gauge group. To simplify the

discussion, we will focus on the probe limit, where the number of flavor branes is much

smaller than that of the color branes: Nc � Nf . In this limit, the Dq-branes can be

treated as probes, propagating in the spacetime created by the stack of the D3-branes,

i.e., AdS5 × S5, without backreaction.

The Dq-branes span a (q+1)-dimensional worldvolume and thus wrap a (q+1)-subspace
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of AdS5 × S5. There are in principle many ways of embedding an AdSn × Sm (n,m ≤ 5)

into the background AdS5 × S5, i.e., several ways of choosing an Sm inside the S5 or an

AdSn inside the AdS5. The embedding is usually specified by a set of scalar functions

determining how the subspaces are chosen inside the 5-sphere and AdS5. For example, for

the case of the D3/D7 configuration one can consider any of the following embeddings:

AdS5 × S3, AdS4 × S4 or AdS3 × S5.

However, not all possible embeddings preserve supersymmetry. In general, the endpoints

of an open string stretching between a Dp and a Dq-brane will satisfy different boundary

conditions depending on the specific arrangement of these two branes. Specifically, the

endpoints could satisfy NN boundary conditions (both endpoints are Neumann), DD (both

Dirichlet), ND or DN. The brane embedding preserves supersymmetry only if the difference

between the number of ND and DN boundary conditions ν = ND −DN is a multiple of

4. Two such examples are the AdS5 × S3 that arises from the D3/D7 configuration and

the AdS4 × S2 from the D3/D5 (these are the two cases that will be explicitly studied

here). For a longer list of supersymmetric configurations check for example Table 1 in [78].

Note that the AdSn × Sm that arise from these brane embeddings are always such that

|m− n| = 2.

We will be interested in evaluating the complexity of the thermofield double. In the

dual gravitational language, this can be achieved by considering Dq branes propagating

in the AdS-Schwarzschild spacetime, which describes N = 4 Super Yang Mills at finite

temperature. Its metric is given by

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
3 + L2dΩ2

5;

f(r) = 1 + r2

L2 −
M

r2 ,

(2.11)

where M = 8G
3πM. Apart from the dependence on L, the radius of curvature of both

the AdS5 and the S5 spaces, the AdS-Schwarzschild metric also depends on an additional

parameter M which is proportional to the mass of the black hole. The Penrose diagram of

the AdS-Schwarzschild spacetime is depicted in Fig.1.

To evaluate the contribution to the complexity of the state from the flavor degrees of

freedom in the large Nc and large’t Hooft coupling λ limit, we simply need to evaluate the

action for the propagation of the probe Dq branes in the AdS-Schwarzschild background

on the WdW patch. The action which governs the propagation of the Dq branes is the
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DBI action: 4

SDBI = −NfTDq

∫ √
−gDq, (2.12)

where the tension of the Dq-brane is given by

TDq = 1
(2πls)qgsls

. (2.13)

The string length ls and the string coupling constant gs are related to the ‘t Hooft

coupling λ and the colour degrees of freedom Nc through

λ = g2
YMNc = 2πgsNc, L4 = 4πgsNcl4

s , (2.14)

where L denotes the AdS radius of curvature as above. In (2.12) gDq denotes the

determinant of the induced metric of the Dq branes, which depends on the details of the

embedding.

The embeddings we consider in this article, are the trivial embeddings, and correspond

to adding massless flavor matter in the N = 4 SYM Lagrangian. As explained above, the

asymptotic form of the induced metric will be AdSm × Sn. Evaluating the DBI action on

asymptotically AdS geometries leads to divergences which can be treated with holographic

renormalization [80]. Holographic renormalization for the case of D3/Dq systems was

studied in [81]. For technical reasons it is convenient to express the AdS-Schwarzschild

metric in Fefferman-Graham coordinates

ds2 = L2

dz2

z2 + L2

4z2

[
1− z4

L4

(
1 + 4M

L2

)]2
dτ 2

F (z,M) + F (z,M)
4z2 dΩ2

3 + dΩ2
5

 , (2.15)

where

F (z,M) = L2 − 2z2 + z4

L2

(
1 + 4M

L2

)
. (2.16)

The boundary of AdS is now at z = 0, while the horizon is mapped to

zH ≡ z(r = rH) = L2√
L2 + 2r2

H

. (2.17)

4 The Euclidean DBI action has a positive sign. Also, we will denote the Euclidean action as I instead

of S to avoid confusion with entropy. Note that the variation of this action is proportional to just δgµν ,

so no boundary terms are needed here to make the variational problem well defined.
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The radial coordinates (z, r) are related to one another as follows:

z(r) = L2[
L2 + 2r2 + 2

√
r4 + L2r2 − L2M

]1/2 , r2 = L2F (z,M)
4z2 . (2.18)

The trivial embeddings considered in this paper are described by induced metrics with

asymptotics of the form AdSm × Sn, where m+ n = q + 1 and

ds2
Dq = L2

dz2

z2 + L2

4z2

[
1− z4

L4

(
1 + 4M

L2

)]2
dτ 2

F (z,M) + F (z,M)
4z2 dΩ2

n−2 + dΩ2
q−n+1

.
(2.19)

As explained above, we will use Holographic Renormalization in order to deal with the

divergent contributions in
∫ √

gDq. The procedure consists of the following steps: firstly, we

introduce a cutoff surface at z = ε and define covariant counterterms on the z = ε surface

such that the divergences are cancelled. Then, we take the limit ε → 0 to remove the

cutoff. The appropriate counterterms were worked out in [81] and are of two classes; the

ones needed to regulate the volume part of the integral and the ones required to regulate

the contributions from the embedding functions. For trivial embeddings only the former

type of counterterms appear since the embedding functions are zero. As a result, for the

induced metrics quoted in (2.19) the following counterterms are required:

Iren = IDBI + Icount; Icount = NfTDq

∫ √
γ(L1 + L2) = NfTDq

∫ √
γ(−a+ bRγ)

a =



L/4 for AdS5

L/3 for AdS4

L/2 for AdS3

L for AdS2

b =



L3/48 for AdS5

L3/12 for AdS4

0 for AdS3

0 for AdS2

(2.20)

where Rγ is the Ricci scalar associated with the induced metric γ on the constant z

surface.
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2.3 Complexity and Energy of D3/D7 systems

The thermodynamic properties of a system are derived from its Euclidean action, which

in this case is the DBI action, ID7. The correction to the free energy of the black hole is

given by δF = TID7 and the energy is obtained from the thermodynamic relation

δM = δF + TδS, δS = ∂δF

∂T
. (2.21)

In terms of inverse temperature β = 1/T , the above relation can be expressed as

δM = δF − β∂δF
∂β

. (2.22)

To compute δM we thus need to evaluate the Euclidean DBI action on the D7-brane

configuration:

ID7 = NfTD7
L9

16

∫ β

0
dτ
∫
dΩ3

∫
dΩ3

∫ zH

0

F (z)
z5

[
1− z4

L2

(
1 + 4M

L2

)]

= NfTD7
L9

16V
2

Ω3β

[
−L2

4z4 + 1
z2 + (L2 + 4M)z2

L6 − (L2 + 4M)2z4

4L10

]zH

0
.

(2.23)

As anticipated above, the action diverges when z → 0. Introducing a cutoff at z = ε

and evaluating the relevant counterterms from (2.20) yields

Icount = NfTD7V
2

Ω3β

[
− L11

64ε4 + L9

16ε2 +O(ε2)
]
, (2.24)

which exactly cancels the divergences of ID7 without introducing any finite contribution.

The final result is

IrenD7 = NfTD7
L9

16V
2

Ω3β

[
−L2

4z4
H

+ 1
z2
H

+ (L2 + 4M)z2
H

L6 − (L2 + 4M)2z4
H

4L10

]
. (2.25)

To compute the thermodynamic quantities we’re interested in, we need to write IrenD7

as a function of β. To do so we use (2.17) to relate zH with rH , where rH is the position

of the horizon of the AdS-Schwartzchild black hole in the original coordinates (2.11) and

is related to the temperature as [82],

rH(β) = L2π +
√
L4π2 − 2L2β2

2β = L
x+
√
x2 − 2
2 . (2.26)

Note that there is a minimum temperature allowed, namely T =
√

2
πL

. This is the

temperature below which black holes cannot exist.

Solving f(rH) = 0, one finds that
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r2
H = L2−1 +

√
1 + 4M/L2

2 , (2.27)

which, together with (2.17), leads to

zH = L2

(L2 + 2r2
H)1/2 → zH = L(

1 + 4M
L2

)1/4 . (2.28)

Substituting into our result for IrenD7 (zH ,M) results in

IrenD7 =
NfTD7L

7V 2
Ω3β

32

4
(

1 + 2r
2
H

L2

)
−
(

1 + 2r
2
H

L2

)2
 . (2.29)

It is easy to express IrenD7 (β) in terms of the inverse temperature β by using (2.26).

Applying (2.22) then leads to the following expression for the energy of the D7 system

δMD7 =
NfTD7L

7V 2
Ω3

32 HD7(β).

HD7(β) ≡ 6
[
L4π4

β4 −
L2π2

β2 + L2π3√L4π2 − 2L2β2

β4

]
.

(2.30)

In the planar limit, L/β →∞, this agrees with eq. (4.28) in [83] (see also [84] for a

similar computation for massive enbeddings).

Complexity

Here we discuss the complexity computation. The Penrose diagram of the D3/D7 system

is still the one shown in Figure 2.1, so our integral will split into the same 4 regions. The

difference is that now our action is 5

δC = SDBI = −NfTD7

∫
WdW

√
−g. (2.31)

Note that no surface terms are needed since the variation δSDBI contains no terms

depending on δ(∂σgµν)
∣∣∣∣
∂M

. With our action, the integrals from parts 2 and 3 again cancel

each other out, and the region 4 doesn’t contribute either because it shrinks to zero size 6 .

So we are only left with region 1, which is bounded by the surfaces r = 0 and r = rH .

Working with the metric as in (2.11), the integrand is

√
−g = r3L3. (2.32)

5 Recall that the Lorentzian action has negative sign.
6 In the Einstein gravity case studied in [21] a topological argument is needed to rule this part out

because the integrand there is R; since our integral is just a volume for us this argument is trivial.



2.3 Complexity and Energy of D3/D7 systems 29

The time derivative of the action is then simply

dSDBI
dt

= −NfTD7
d

dt

∫ √
−g = −NfTD7L

3
∫
drr3

∫
dΩ3

∫
dΩ3

= −NfTD7L
3V 2

Ω3

r4
H

4 = −NfTD7L
7V 2

Ω3

r4
H

4L4 .

(2.33)

We would like to express our result for the complexity as a function of the temperature

and the energy of the system. To introduce the energy into the last equation we use (2.30)

to write the overall factor in (2.33) as

NfTD7L
7V 2

Ω3 = 32 δMD7

HD7(β) . (2.34)

So, using (2.34) and (2.26) yields

d(δC)
dt

= dSDBI
dt

= −δM
π
KD7(x),

KD7(x) ≡ 8rH(β)4

HD7(β) = 1
12

x2
[
1 +

√
1− 2

x2

]4
x2
[
1 +

√
1− 2

x2

]
− 1

, x = πLT.

(2.35)

Note that there is a minimum value x can take, being xmin =
√

2. The function K(x)

is plotted on Figure 2.2. The function is monotonically increasing, positive and ranging

between the value 1/6 at the minimum and asymptotically approaching 2/3.

Figure 2.2: Plot of the function KD7(x) starting from the minimum value xmin =
√

2. The horizontal

orange line is the value to which it asymptotes, namely 2/3.

Due to the minus sign present in (2.35) the correction lowers the speed at which the system

complexifies, so the bound is respected but not saturated.
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2.4 Complexity and Energy of D3/D5 systems

To compute the correction to the energy of the D3/D5 due to the flavor D5 branes in the

probe limit, we will follow exactly the same steps as in section 4.1. The Euclidean action

is in this case given by

ID5 = TD5Nf

∫ √
g = TD5NfβV

2
Ω2

L7

8

∫ zH

0
dz

[
1− z4

L4

(
1 + 4M

L2

)]
z4

√
F (z)

= −
TD5NfβV

2
Ω2L

7

8

[
F (z)3/2

3L2z3

]zH

ε

,

(2.36)

with divergent terms of the form

IdivD5 = −TD5NfβV
2

Ω2

[
L8

24ε3 −
L6

8ε2 +O(ε)
]
. (2.37)

The relevant counterterms are

Icount = NfTD5

∫ √
γ(L1 + L2) −→ Iren = I + Icount

L1 = −L3 , L2 = L3

12Rγ.

(2.38)

Just as in the D3/D7 case, the holographic renormalization procedure removes the

divergent parts without adding any finite terms. The final result is:

IrenD5 = −
TD5NfβV

2
Ω2L

5

8

[
F (zH)3/2

3z3
H

]
. (2.39)

Using (2.28) it’s immediate to see that

F (zH) = L2 4r2
H/L

2

1 + 2r2
H/L

2 , z3
H = L3

(1 + 2r2
H/L

2)3/2 , (2.40)

which allows us to write the renormalized action as

IrenD5 = −
TD5NfβV

2
Ω2L

5

3
r3
H

L3 . (2.41)

The correction to the free energy of the D3/D5 system is

δFD5 = −
TD5NfV

2
Ω2L

5

3
r3
H

L3 . (2.42)

With the help of (2.26) we obtain the free energy as a function of the inverse temperature,

FD5(β) and use the standard thermodynamic relations (2.22) to obtain
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δM =
TD5NfV

2
Ω2L

5

3 HD5 (x) ,

HD5 (x) = 2x4 + 2x3√x2 − 2− 2x2 − 1
2
√
x2 − 2

, x ≡ πLT.

(2.43)

Complexity

Let’s now see how the complexity is related to the energy in the D3/D5 system. The

arguments made in section 4.1.2 regarding the contribution of the different parts of the

WdW patch are still valid, and clearly the first equality in (2.33) is still true (changing

TD7 ↔ TD5), the only difference being the explicit form of √−g. The induced metric is in

this case asymptotically AdS4 × S2:

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
2 + L2dΩ2

2, (2.44)

with the determinant

√
−g = r2L2. (2.45)

Following exactly the same steps which lead us to (2.33) and dividing by Vx to obtain

a density, leads to

dSDBI
dt

= −
NfTD5V

2
Ω2L

5

3
r3
H

L3 . (2.46)

Similar to the D3/D7 case, the factor multiplying r3
H/L

3 in the equation above can be

expressed in terms of the energy of the system

TD5NfV
2

Ω2L
5

3 = δM

HD5(x) . (2.47)

This together with (2.26) transforms the equation for dSDBI/dt into

d δC
dt

= −δM
π
KD5(x),

KD5(x) =
(
x+
√
x2 − 2
2

)3

H−1
D5(x), with x = πLT.

(2.48)

Note again, that there is a minimum value allowed for x, namely x =
√

2. The function

is positive, monotonically increasing and ranges between 0 at the minimum and the

asymptotic value 1/2.



32 2 Complexity of holographic flavours

Figure 2.3: The function KD5 vs temperature, starting from the minimum value xmin =
√

2. The

horizontal orange line is the value to which it asymptotes, namely 1/2.

2.5 The general case: Complexity and Energy of D3/Dq

systems

Having gained some insight from the detailed study of the D3/D5 and the D3/D7 systems,

we move on to consider the generic D3/Dq system. As we will see, the qualitative features

of the complexity of the thermofield double state in the presence of flavour matter fields,

remain the same for both stable and unstable (non-supersymmetric) configurations.

As discussed above, the different embeddings of the Dq-branes are submanifolds of

the AdS5 × S5 generated by the background D3-branes, with the asymptotic form of

AdSn × Sm where m+ n = q + 1. Regarding the energy computation, all the divergent

parts in the Euclidean action come from the AdSn part of the manifold. The induced

metric on the Dq branes is given in (2.19) and its determinant is equal to:

√
g = Lq+2

2n−1 z
−n
[
1− z4

L4

(
1 + 4M

L2

)]
F (z)n−3

2 . (2.49)

It is straightforward to evaluate the Euclidean DBI action IDq to obtain

IDq = NfTDq

∫ √
g = NfTDq

[
− Lq

2n−1(n− 1)
F (z)n−1

2

zn−1

]zH

0
βVΩn−2VΩq−n+1 (2.50)

To proceed it will be convenient to separately analyze the cases where the AdSn part
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of the embedding is of even or odd dimensionality.

When n is an even integer. As one can see from (2.50), for n even, the Euclidean

action is given in terms of the metric function F (z) elevated to a half-integer power. The

behaviour of IDq for small z can be split into two types of contributions

IevenDq

∣∣∣∣
z→0
→ f (z) + g

(1
z

)
, (2.51)

where f(z) and g(1
z
) represent polynomial functions in z and 1

z
respectively, with

vanishing zeroth order terms. f(z) then vanishes when evaluated at z → 0, while g(1
z
)

is divergent but its divergences are exactly cancelled by the relevant counterterms and

no constant piece is introduced. The result is then given by contributions from just the

horizon as

IDq = −NfTDq
Lq

2n−1(n− 1)
F (zH)n−1

2

zn−1
H

βVΩn−2VΩq−n+1

= −NfTDq
Lq

n− 1

(
rH
L

)n−1
βVΩn−2VΩq−n+1 ,

(2.52)

where we have used (2.40) in the last equality.

We can now write the free energy FDq = TIDq and use (2.22) to obtain the energy of the

system as,

δM = NfTDq
Lq

(n− 1)HDq(x)VΩn−2VΩq−n+1 ,

HDq(x) =
(
rH(x)
L

)n−2 2 + (n− 2)x
√
x2 − 2 + (n− 2)x2

2
√
x2 − 2

,
rH(x)
L

= x+
√
x2 − 2
2 .

(2.53)

When n is an odd integer. In this case F (z) is elevated to an integer power, and the

result is a polynomial in even powers of z, i.e.,

F (z)
n−1

2 = A0 + A2z
2 + · · ·+ A2(n−1)z

2(n−1) , (2.54)

This implies that the quantity F n−1
2 /zn−1 in (2.50) contains a constant term, indepen-

dent from z. Once more the divergent terms at the boundary z = 0 are precisely cancelled

by the relevant counterterms and the Euclidean action is given by

IDq = −NfTDq
Lq

2n−1(n− 1)

F (zH)n−1
2

zn−1
H

− c0

 βVΩn−2VΩq−n+1 . (2.55)
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Clearly the constant term, indicated by c0, is cancelled by the same z-independent

term in F (zH)
n−1

2

zn−1
H

.

In practice, there exist only two non-trivial embeddings in this class: those which

asymptote to AdS3 and those which asymptote to AdS5. The latter case was addressed in

the context of the D3/D7 system, we only need to consider the AdS3 case. From (2.19)

and (2.49) we can see that we are now working with

ds2
Dq = L2

dz2

z2 + L2

4z2

[
1− z4

L4

(
1 + 4M

L2

)]2
dτ 2

F (z,M) + F (z,M)
4z2 dθ2 + dΩ2

m

,
√
gDq = L4

4 z−3
[
1− z4

L4

(
1 + 4M

L2

)]
dz dτ dθ(LmdΩm).

(2.56)

It is straightforward to apply the general result above to the case n = 3 to obtain:

IDq = −NfTDqL
q

4 βVΩ1VΩq−2

(
1 + 2r2

H

L2

)
, (2.57)

where we used the relation between (zH , F (zH)) and rH from (2.17). Evaluating (2.22)

then yields

δM = NfTDqL
2VΩ1

2 HDq(x),

HDq(x) = x3 + x2√x2 − 2√
x2 − 2

.

(2.58)

Complexity of the D3/Dq system.

When n is an even integer. We follow exactly the same steps as in the previous

sections to evaluate the time derivative of the DBI action SDBI = −NfTDq
∫ √
−g, which

is given by

dSDBI
dt

= −NfTDqL
q

n− 1

(
rH
L

)n−1
VΩn−2VΩq−n+1 . (2.59)

As usual, we can solve (2.53) for NfTDqL
q to write this derivative as

d δC
dt

= − δM
πHDq(x)

(
rH
L

)n−1
= −

√
x2 − 2

(
x+
√
x2 − 2

)
2− (n− 2)x

√
x2 − 2 + (n− 2)x2

δM
π
≡ −KDq(x)δM

π
(2.60)
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When n is an odd integer. For odd n we only need to consider n = 3 and focus on

embeddings which asymptote to AdS3 as in 4.3.1. Similarly to the previous sections we

obtain

d δC
dt

= dSDBI
πdt

= −NfTDqL
q

2π

(
rH
L

)2
VΩ1 VΩq−2 , (2.61)

which coincides with equation (2.59) for n = 3. As usual, we can solve the energy

equation to express the numerator as a function of δM . This produces the final result

d δC
dt

= −r
2
H

L2
δM

πHDq(x) = −
√
x2 − 2(x+

√
x2 − 2)

4x2
δM
π

(2.62)

Clearly, the correction to the complexity due to the probe, flavor branes is negative

and monotonically decreasing for all the D3/Dq systems.

2.6 Conclusions

Introducing fundamental matter leads to a correction term to the left-hand side of (2.10),

which is negative. It is interesting that the growth of quantum complexity in systems

with fundamental matter seems to be slower than that with just adjoint matter. It would

be interesting to compare this with a direct computation in field theory. Note that the

presence of extra matter in the bulk was shown to reduce the rate of complexity growth in

[21].

It would be interesting to compute the flavor corrections to the complexification rate

using the complexity-volume proposal [24]. It is not immediately clear to us how to

generalize this proposal to include flavor corrections.

It would also be interesting to study the behavior of the quantum complexity growth in

non-conformal field theories. In gravity, one could investigate asymptotically AdS domain

wall solutions or general Dp/Dq systems.





Chapter 3

Causality in RG flows of QFTs with

a Gauss-Bonnet holographic dual

This chapter covers a still ongoing project [86] where causality constraints in RG flows

of general QFTs are studied through the gauge/gravity duality. The approach here will

be to track the value of a given causally-bounded quantity along the flow from the UV.

This way we will find if a given theory, which is naively consistent in the UV, can become

unphysical at some point. So, what is the scenario we need to study RG flows and which

bound will we analyse?

In a holographic setup renormalization flows are controlled by the holographic (radial)

coordinate, which is the analogue of the energy scale of the associated quantum field

theory (See references [87]-[106] for the early works in holographic RG flows). Since AdS

is the holographic analogue of conformal field theories one cannot consider this spacetime

to study RG flows (the field theory is not conformal outside the fixed points). This is the

reason why domain wall spacetimes need to be introduced, since they are constructed in

such a way that their boundary is that of AdS (and so we have a CFT in the UV) while

the bulk is not AdS (allowing for the description of a general QFT).

Regarding the causality-constrained quantity, we will look at the speed of gravitons near

the boundary. Take any two points in the AdS boundary (and so also in it’s associated

CFT). There two types of trajectories a particle could travel to go from one to the other:

either never leaving the boundary or travelling through the bulk. If the velocity of the

bulk gravitons near the boundary is too fast then this would create a causality violation

from the point of view of a boundary observer (since a graviton would have somehow

travelled between the two points faster than it would have through the boundary). For

this problem to be absent one needs the gravitons to travel slower than the speed of light

37
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through the bulk. This will be the quantity we will look at along the flow, checking if the

gravitons speed exceed this limit at some point.

3.1 The holographic RG flow

Asymptotically AdSd+1 spacetimes can be used to study the renormalization group of the

d-dimensional field theory that lives on the boundary. This flow can be understood as

triggered by either a deformation of the original field theory (given by the introduction of

a relevant operator) or by setting a different vacuum (by introducing some nonzero vev).

For our purposes it is enough to work with the effective field theory of supergravity,

that is, to deal with scalars coupled to gravity. The base idea here is that the radial

holographic coordinate in the bulk works as the rough equivalent of the energy scale in the

boundary field theory. This can be understood from the fact that the two-point function

of primary operators with conformal dimension greater than one in the field theory is

computed by

〈O(xi)O(yi)〉boundary ∼ e−mD(x,y), (3.1)

where D(x, y) is the length of the bulk geodesic that connects the two boundary points

x and y. As one starts separating the two operators apart (and so going to smaller energies

due to the E ∼ 1/δx relation) the geodesic starts probing further and further into the bulk.

It is in this way that the holographic coordinate can be understood as the energy scale

of the field theory, the boundary of AdS representing the UV. Keeping this in mind, the

RG flow is described as a domain-wall metric that interpolates between several different

AdS vacua representing the fixed points of the flow. Several field quantities, like the beta

function or the Weyl anomalies, can be computed through holography as elaborated on in

the next section.

3.1.1 Scalar fields in AdS and Hamilton-Jacobi formalism

Let’s first recap the behaviour of scalar fields in AdS and introduce the Hamilton-Jacobi

formalism. Consider the action of scalars coupled to gravity

S =
∫ √
−g

(
gµν∂µφ∂νφ+m2φ2

)
. (3.2)
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The equation of motion is just the Klein-Gordon equation. Performing a separation

of variables φ(r)φ(x), where r is the holographic coordinate, the r-equation of motion in

AdS reads

[
−rd+1∂r(r−d+1∂r) +m2L2 + k2r2

]
φ(r)k = 0, (3.3)

where k is a constant that appears during the separation of variables process and the

boundary is at r = 0. After some work the solutions can be found in terms of modified

Bessel functions as

φk(kr) = ak(kr)ν/2Kν(kr) + bk(kr)ν/2Iν(kr), ν =
√
d

2 +m2L2. (3.4)

Imposing regularity of the solution in the bulk forces us to set bk to zero since Iν(r) ∼ ekr.

Looking at the boundary now, the remaining Bessel function asymptotic behaviour yields

φ(r) ≈ φ0(k)r∆− + φ1(k)r∆+ ,

∆± = d

2 ± ν = d

2 ±
√
d2

4 +m2L2,

(3.5)

where φ0 and φ1 are constants whose specific form is not relevant for this discussion.

Solutions that asymptote to φ0 correspond to deformations of the field theory, whereas

those that asymptote to φ1 correspond to theories with a different vacuum.

Let’s now discuss why this set-up allows you to analyse RG flows. The idea is to take

the scalars coupled to gravity action, use the Hamilton-Jacobi formalism, determine its

classical version and show that one can derive beta function equations from it (and other

RG flow related quantities, like the Callan-Symanzik equation). Consider scalar fields

φa(x, r) coupled to gravity in a (d+ 1)-dimensional manifold,

S =
∫
M
dd+1x

√
g
(1

2Lab(φ)gµν∂µφa∂νφb −R+ V (φ)
)
− 2

∫
∂M

ddx
√
gK, (3.6)

where K is the extrinsic curvature of the boundary and is needed to make the variational

problem well defined (See the Appendix A for more details on variational problems in

spacetimes with boundaries). For the purpose of this chapter it is helpful to work using

the ADM formalism. That is, spacetime is foliated into a family of spacelike hypersurfaces

and the metric takes the form

ds2 = N(x, τ)dτ 2 + gij(x, τ)
(
dxi + λi(x, τ)dτ

) (
dxj + λj(x, τ)dτ

)
. (3.7)
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Objects with Greek indices e.g gµν live in the (d+ 1)-dimensional bulk spacetime, while

objects with Latin indices e.g. gij live in the d-dimensional hypersurfaces. In this formalism,

the gravity degrees of freedom are encoded in the metric gij of the hypersurfaces and their

conjugate momenta πij , whereas the parameters N and λi function as Lagrange multipliers.

The action now is considered to be a functional of all these: S = S[gij, πij;φa, πa;N, λi].

Variations of the action with respect to the Lagrange multipliers must yield zero, so

0 = 1
√
g

δS

δN
≡ H

0 = 1
√
g

δS

δλi
≡ P i.

(3.8)

These two conditions H = P i = 0 are known as the Hamiltonian and momentum

constraints

H = 1
d− 1(πii)2 − π2

ij −
1
2L

abπaπb + V (φ)−R+ 1
2Labg

ij∂iφ
a∂jφ

b,

P i = 2∇jπ
ij − πa∇iφa,

(3.9)

where ∇ here is the covariant derivative associated with the full (d+ 1)-dimensional

bulk metric. The interesting point is that the classical action is independent of gij and is

completely specified by these two constraints.

Classical quantities will be denoted with a bar above them, so gij for example represents

the classical metric of the hypersurfaces. As it is usual in the Hamilton-Jacobi framework,

the conjugate momenta are related to variations of the action,

πij = −1
√
g

δS

δgij
, πa = −1

√
g

δS

δφa
. (3.10)

This allows us to rewrite the Hamiltonian constraint (3.9) in terms of variations of the

action as

{S, S} = Ld,

{S, S} ≡ 1
g

− 1
d− 1

(
gij

δS

δgij

)2

+
(
δS

δgij

)2

+ 1
2L

ab δS

δφa
δS

δφb

 , (3.11)

where Ld is the Lagrangian in (3.6). This equation is known as the flow equation and

it was introduced in [113]. This will be enough to specify the quantities we are interested in.

In order to solve the flow equation one needs to be careful though. Because AdS

has infinite volume the usual holographic renormalization procedure has to be followed:
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introduce a cut-off infinitesimally close to the boundary, define local counterterms on this

cut-off surface, then push the cut-off to the boundary. The action can then be decomposed

as

1
2κ2

d+1
S[g, φ] = 1

2κ2
d+1

Sloc[g, φ]− Γ[g, φ], (3.12)

where Sloc represent the part containing the local counterterms and Γ the non-local

part that is interpreted as the generating functional of the fields φa in the curved space

given by gij. To solve the flow equation one then expands the local piece of the action by

grouping terms with the same number of derivatives, i.e

Sloc[g, φ] =
∫
ddx
√
g

∑
k=0,2,4,...

[Lloc(x)]k (3.13)

where k represents the number of derivatives of each term. Plugging this expansion

into the flow equation produces a series of equations relating the bulk action (3.6) with

the classical one in (3.12) [114]. The lowest weight equation is given by

Ld = [{Sloc, Sloc}]0 + [{Sloc, Sloc}]2 . (3.14)

If one parametrises the zero weight term as [Lloc]0 = W (φ) and the weight two one

as [Lloc]2 = −Φ(φ)R+ 1
2Mabg

ij∂iφ
a∂jφ

b then the equation above can be solved. Several

relations and constraints among the quantities introduced arise from this, one of them

being

V (φ) = − d

4(d− 1)W (φ)2 + 1
2L

ab∂aW (φ)∂bW (φ). (3.15)

This is precisely the relation between the potential V and superportential W one

uses when dealing with quantum field theories and RG flows. A generalization of this

to Gauss-Bonnet gravity will be used later on in this chapter. Moreover, the weight d

equation that arises from the flow equation

0 = 2 [{Sloc,Γ}]d −
1

2κ2
d+1

[{Sloc, Sloc}]d (3.16)

yields the relation

2
√
g
gij

δΓ
δgij
− βa(φ) 1

√
g

δΓ
δφa

= − 1
2κ2

d+1

2(d− 1)
W (φ) [{Sloc, Sloc}]d . (3.17)
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The quantity βa(φ) can actually be interpreted as the RG beta function of the boundary

theory. Moreover, since the first term is nothing but the vacuum expectation value of the

trace of the energy momentum tensor

〈T ij(x)〉g,φ = 2
√
g

δΓ[g, φ]
δgij(x) , (3.18)

we can then see that choosing the beta functions to vanish (i.e choosing to sit in

a fixed point) then the right-hand side of equation (3.17) computes the Weyl anomaly

Wd = 〈T ij(x)〉β(φ)=0:

Wd = − 1
2κ2

d+1

2(d− 1)
W (φ) [{Sloc, Sloc}]

∣∣∣∣∣
β(φ)=0

. (3.19)

3.2 Gauss-Bonnet gravity and Domain Walls

3.2.1 Gauss-Bonnet gravity

Gauss-Bonnet is a higher derivative generalization of Einstein-Hilbert gravity [115]. The

action of the latter is the integral of one of the simplest invariants we have at our disposal:

the Ricci scalar. On a d-dimensional manifold one can, however, consider more general

actions like

SL ∝
∫ √
−g

R+
[d/2]∑
n=2

λnLn

 . (3.20)

Here Ln is the Euler density of a 2n-dimensional manifold, λn are the different coupling

constants associated with each of these extra terms and [d/2] is the integer part of d/2

(The sum stops at [d/2] because, in d-dimensions, all Euler densities higher than that either

vanish or are total derivatives). This extension is called Lovelock gravity. Gauss-Bonnet

gravity is obtained by adding only L2 and no higher terms. 1 Since L2 is the 4-dimensional

Euler density χ4 the action of Gauss-Bonnet is then

S = 1
κ

∫
dx5√−g

[
R+ λL2

2 χ4

]
.

χ4 = RµνρσRµνρσ − 4RµνRµν +R2
(3.21)

A nice feature of GB gravity is that, although its action includes 4th order derivatives of

the metric, only up to 2nd order derivatives survive in the equations of motion. This means

1 Note that GB gravity coincides with Lovelock gravity in dimensions lower than 6. Also, adding L2 to

the action is only non-trivial in dimensions higher than four.
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no extra degrees of freedom are introduced when considering this extension. Moreover, AdS

spacetime is a solution to Gauss-Bonnet gravity, which allows it to be used in holography.

The main reason Gauss-Bonnet is an interesting holographic setup is because Einstein-

Hilbert gravity only allows us to study CFTs with equal conformal anomalies a = c. The

introduction of the Gauss-Bonnet parameter λ permits the anomalies to be different.

3.3 Domain Wall spacetimes: Equations of motion

and vacua

As explained at the beginning of this chapter, domain wall spacetimes are interesting

set-ups to study because they allow use to understand RG flow in quantum field theories

[87]-[106]. The metric of a DW is of the form

ds2 = dr2 + eA(r)
(
−dt2 + ηijdx

idxj
)
, (3.22)

with the boundary condition that, at infinity, A(r) −→ r/LAdS. One then recovers AdS

at the boundary, which is the holographic dual of a CFT (the UV CFT). The holographic

coordinate r corresponds to the energy scale of the field theory. Moving into the bulk of the

DW spacetime, towards smaller values of the radial coordinate, then takes us away from

conformality. In other words, a radially ingoing trajectory is the holographic equivalent of

the QFT flowing from the CFT in the UV towards the IR.

However, the above pure domain wall metric is not a solution to Gauss-Bonnet gravity

(nor to Einstein-Hilbert, for that matter). To solve this one needs to add matter fields

into the picture. This amounts to consider the following action,

S = 1
κ

∫
dx5√−g

[
R+ λL2

2 χ4 −
1
2g

ab∂aφ∂bφ− V (φ)
]
. (3.23)

Here φ(r) is a dimensionless scalar field, λ the dimensionless Gauss-Bonnet coupling

and χ4 the 4-dimensional Euler density. The quantity L is related to the cosmological

constant Λ through 2Λ = (d−1)(d−2)
L2 . Note that the cosmological constant is not explicitly

written in the action. This is because, when evaluated in the vacua of the system, the

potential V (φ) provides a constant term playing this role .

Extremising this action produces second-order equations of motion. However, one can

introduce an auxiliary function W (φ), known as the superpotential, to transform them

into a system of first-order differential equations (see for example [116]or [93]). The
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superpotential is related to V (φ) through 2 3

V (φ) = 2(W ′)2
[
1− 2λL2

(d− 2)2W
2
]2

− (d− 1)
(d− 2)W

2
[
1− λL2

(d− 2)2W
2
]
, (3.24)

and the equations of motion in term of W (φ) read

dφ

dr
= 2W ′(φ)

[
1− 2λL2

(d− 2)2W (φ)2
]
,

dA(r)
dr

= −W (φ)
d− 2 .

(3.25)

The above relation (3.24) is a manifestation of a Hamiltonian constraint. Taking the

Gauss-Bonnet action, one can introduce an arbitrary lapse-like function multiplying the

time component of the Domain Wall metric. The variation of the action w.r.t to this

lapse function then gives rise to the Hamiltonian constraint in terms of Ȧ and the physical

potential V . If one demands Ȧ to be proportional to W (as it is in the Einstein-Hilbert

case) and plugs that into the Hamiltonian constraint then the relation (3.24) arises.

The vacua of this system are defined as the configurations of constant φ which minimise

the physical potential V (φ).

vacua: φ = φ∗k with V ′(φ∗k) = 0. (3.26)

Note that in these vacua the potential in (3.24) simplifies to 4

V (φ∗k) = −(d− 1)
(d− 2)W (φ∗k)2

[
1− λL2

(d− 2)2W (φ∗k)2
]
. (3.27)

This value of the potential will play the role of the cosmological constant. Note that,

since we want this to equal (d − 1)(d − 2)/L2 at the UV, it will impose some relations

between the parameters of the superpotential.

To determine the length scale of the vacua one can look at the Ricci scalar associated with

the DW metric,

R = −2(d− 1)
[
d

2A
′(r) + A′′(r)

]
= −2(d− 1)

[
d

2(d− 2)2W
2 − 1

d− 2W
′φ̇

]
. (3.28)

2 This superpotential is the same that appears in the Introduction 1 of this thesis.
3 The derivative of the superpotential here is w.r.t the scalar field, W ′(φ) = ∂φW (φ). Derivatives w.r.t

the radial coordinate will be denoted with a dot, e.x φ̇ = ∂rφ(r).
4 As explained below in (3.30), vacua correspond to either W ′ = 0 or C0 = 0 (see (3.32) for its

definition). Either way, the first term in (3.24) vanishes and we are left with the expression shown below.
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The equations of motion have been used in the last equality. Note that the second

term vanishes in the vacua and that in AdS the Ricci scalar has the form R = d(d−1)
L2

AdS
. One

then deduces that the length scale of each of the AdS vacua φk is given by

1
L2
k,AdS

= W (φk)2

(d− 2)2 ≡ fk(φ∗). (3.29)

To find these vacua one needs to minimise the potential V . Differentiating (3.24) yields

V ′(φ) = W ′(φ)C0F , (3.30)

where

C0 = 1− 2λL2

9 W (φ)2, F = 2W ′′C0 −
8λL2

(d− 2)2W
′2W − d− 1

d− 2W. (3.31)

The quantity C0 plays a very important role since it is the coefficient multiplying the

kinetic term of the gravitons when one expands the action [117]. It must be positive in

order to have a ghost-free theory.

There are then three different types of vacua:

1. Solutions of W ′(φ∗) = 0, include the physical solutions and the unphysical ones (not

ghost-free).

2. Solutions of C0 = 0, the so-called topological vacua.

3. Solutions of F = 0, solutions that are not continuously connected to those that exist

in Einstein gravity and will not be considered here.

In order for a vacuum solution φ∗ to be physical it must fulfill:

1. V (φ∗) < 0 or, equivalently, fk > 0. This is the statement that the corresponding

cosmological constant is negative and thus we are in AdS.

2. The function C0(φk) must be positive

C0(fk) = 1− 2λW (φk)2

(d− 2)2 > 0. (3.32)

3. The scalar field fulfills the BF unitarity condition (Breitenlohner-Freedman)

− (d− 1)2

4Lk
≤ m2

φ(φ∗k) = V ′′(φ∗k), (3.33)

which ensures stability with respect to linear fluctuations of the scalar field (this

provides a consistent quantization of the scalar on the AdS background)
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The conditions fk > 0 and C0(fk) > 0 require all physical vacua to have

0 < fk(φ∗k) <
1

2λ. (3.34)

In Gauss-Bonnet, the only solution to C0(f topk ) = 0 is given by

f topk = 1
2λ. (3.35)

This is above the possible physical values of fk, so the topological vacua in Gauss-Bonnet

are not physical. 5 .

3.4 The quartic superpotential: theoretical results

To study the causality of the QFT along the flow it is useful to pick a superpotential

simple enough so that the majority of the computations can be done analytically. One

such choice is given by the quartic superpotential

W (φ) = −B
L

[
(φ2 − x0)2 +D

]
. (3.36)

Keep in mind that one cannot freely chose all three parameters B,D, x0 present

here. Remember that, in each of the vacua, the potential (3.27) plays the role of the

cosmological constant. Requiring that, in the UV, we get a cosmological constant equal to

(d− 1)(d− 2)/L2 imposes the relation

B2D2

(d− 2)2 = 1−
√

1− 4λ
2λ , (3.37)

so the three parameters we can choose are x0, λ and either B or D.

The physical vacua of this potential are the zeros of W ′ and sit at φ2
UV = x0 and φ2

IR = 0.

These are the UV and IR of our RG flow, and their AdS radii are given by (3.29) as

L2

L2
UV

= B2D2

(d− 2)2 ,
L2

L2
IR

= B2(D + x2
0)2

(d− 2)2 . (3.38)

5 Topological vacua can be physical in higher derivative gravities involving cubic terms.
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3.4.1 Solving the EOM

To work out the solutions A(r) and φ(r) for our system we will need equations (3.25).

We will take the ratio of these to find dφ2

dA
and solve for A = A(φ). Afterwards, the

first equation can be solved for r = r(φ). Together they provide an implicit solution for

A = A(r).

The computation actually simplifies if one works with φ2, so the quotient we will look at is

dφ2

dA
= dφ2/dr

dA/dr
= 2φ dφ/dr

dA/dr
. (3.39)

Plugging in (3.25) this is

dφ2

dA
= −12φW

′(φ)
W (φ)

[
1− 2λL2

9 W 2(φ)
]

(3.40)

Note that for our superpotential W 2 and φW ′

W
are functions of φ2 (that being the reason

why we chose this quotient). We can now integrate to get

∫
dA = −1

12

∫ dφ2

φW ′

W

[
1− 2λL2

9 W 2(φ)
] −→ A = A(φ). (3.41)

The other equation we need is

dφ2

dr
= 2φdφ

dr
= 4φW ′

[
1− 2λL2

9 W 2(φ)
]
, (3.42)

which allows us to compute

∫
dr =

∫ dφ2

4φW ′
[
1− 2λL2

9 W 2(φ)
] −→ r = r(φ). (3.43)

λ > 0 case Let’s start by looking at the equation for A = A(φ),

dφ2

dA
= −12φW

′(φ)
W (φ)

[
1− 2λL2

9 W 2(φ)
]
. (3.44)

The difference with the Einstein-Hilbert case is that now we have a factor (1 −

2λL2W 2/9) multiplying the r.h.s of our ODE. This integral can be easily performed if one

takes this polynomial and factorises it, writing it as

1− 2λL2

9 W 2 = const×
4∏
i=1

(φ2 − φ2
i ). (3.45)

Note that this polynomial is precisely C0, so its roots correspond to the topological

vacua. Since they occur at f topk = 1
2λ their AdS scale is given by
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L2

L2
top

= 1
2|λ| . (3.46)

We have introduced an absolute value here preparing for the λ < 0 case. This way we

avoid L/Ltop becoming imaginary, which is traded by the appearance of the imaginary

unit i in several parts of the equations.

Plugging in the explicit form of the superpotential one finds that the roots of C0 sit at the

φi values

φ2
i = x0 + ui, u1 = −u2 ≡ u, u3 = −u4 ≡ ũ

u =
√
D

√
−1 + LUV

Ltop
, ũ = i

√
D

√
1 + LUV

Ltop
.

(3.47)

The function C0 can then be written as

1− 2λB2

9 W 2 = −2λB2

9

4∏
i=1

(φ2 − φ2
i ). (3.48)

With this factorization the EOM for A(φ) becomes

∫
dA = 3

32λB2

∫
dφ2 (φ2 − x0)2 +D

φ2(φ2 − x0)
1∏4

i=1(φ2 − φ2
i )

(3.49)

The integrand can then be separated into several fractions, each of which integrate to

a logarithm. The result from this integral is

A(φ2) = 3
32λB2

 D + x2
0

x0
∏4

1 φ
2
i

logφ2 − D

x0
∏4

1 ui
log(φ2 − x0)

−
4∑

k=1

D + u2
k

ukφ2
k

∏4
i=1(i 6=k)(uk − ui)

log(φ2 − φ2
k)


(3.50)

which can be compactly written as

A(φ) = sIRlog
∣∣∣φ2
∣∣∣+ sUV log

∣∣∣φ2 − x0

∣∣∣+ 4∑
k=1

sklog
∣∣∣φ2 − φ2

k

∣∣∣, (3.51)

Note that this is an indefinite integral, so one has the freedom to add a constant term

C. The constant must be chosen such that in the limit λ→ 0 the Einstein-Hilbert result is

recovered. The tricky part here is that this constant turns out to not be finite, so it is not

possible to deal with it in a numerical setup, as we plan to do. However, this constant term

C drops out of the final result we want to check (to be shown later), so the computation

can be carried out. This means that the A(φ) shown above is not complete (since it lacks

this C term), but since A alone is not used anywhere we are safe to proceed keeping it as
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presented here.

Plugging in the expressions for the topological vacua one can write the coefficients

appearing in A(φ) as

sIR = −9
32λB3x0

L/LIR

(x2
0 +D)2 −D2L

2
UV

L2
top

,

sUV = 9
32λB3x0

L/LUV

D2
(

1− L2
UV

L2
top

) ,
s1,2 = 1

64Bφ2
1,2

LUV
Ltop

L/Ltop
−1 + LUV /Ltop

,

s3,4 = −1
64Bφ2

3,4

LUV
Ltop

L/Ltop
1 + LUV /Ltop

,

(3.52)

It is important to note that, although the coefficients si in front of the topological

vacua are complex, the final result for A(φ) is real-valued.

λ < 0 case Almost all the computations performed in the positive λ case carry-on for

the negative case. The only difference is some sign changes and the appearance of an extra

couple factors of i. The results for negative λ are summarised as

1 + 2|λ|L2

9 W 2 = 2λL2

9

4∏
i=1

(φ2 − φ2
i ). (3.53)

φ2
i = x0 + ui, u1 = −u2 ≡ u, u3 = −u4 ≡ ũ

u =
√
D

√
−1 + i

LUV
Ltop

, ũ = i
√
D

√
1 + i

LUV
Ltop

.
(3.54)

A(φ) = sIRlog
∣∣∣φ2
∣∣∣+ sUV log

∣∣∣φ2 − x0

∣∣∣+ 4∑
k=1

sklog
∣∣∣φ2 − φ2

k

∣∣∣, (3.55)

sIR = 9
32|λ|B3x0λ

L/LIR

(x2
0 +D)2 +D2L

2
UV

L2
top

,

sUV = −9
32|λ|B3x0

L/LUV

D2
(

1 + L2
UV

L2
top

) ,
s1,2 = −1

64Bφ2
1,2

LUV
Ltop

L/Ltop
−1 + iLUV /Ltop

,

s3,4 = 1
64Bφ2

3,4

LUV
Ltop

L/Ltop
1 + iLUV /Ltop

,

(3.56)

The function A(φ) is still real-valued even if now all the topological vacua are complex.
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3.4.2 The causality bounds

As shown in the coming paper [86], causality of the boundary theory imposes some bounds

on the function A(r). These are

1 + 2λ∂rA∂rf
(1− 2λ(∂rA)2)f ≥ 0

1− 2λ∂rA∂rf
(1− 2λ(∂rA)2)f ≥ 0

1− λ∂rA∂rf

(1− 2λ(∂rA)2)f ≥ 0,

(3.57)

where the function f is defined as

f(r) =
∫ ∞
r

e−4A(s)

1− 2λ(∂sA(s))2ds. (3.58)

Defining

Ω ≡ 2λ∂rA∂rf
(1− 2λ(∂rA)2)f (3.59)

the constrains then read

− 1 ≤ Ω ≤ 1. (3.60)

Note how, as announced earlier, the quantity Ω does not depend on the constant C

we have been neglecting since (3.51). Since C appears only inside of A (and not in its

derivatives) it enters the bound as the quotient ∂rf/f . Now, from the definition of f above

it is clear that C just contributes a constant factor, i.e instead of f we should have eCf(r).

Since the r-derivative of f yields just the integrand in (3.58) we see that C enters ∂rf in

the same fashion, i.e we should have eC∂rf instead of ∂rf . The quotient that appears in

Ω then is independent of the constant term C since both exponentials cancel each other

out, and we are free to work out the bound without including C.

All these equations are written in terms of A(r). However, what we computed is A(φ2),

so we’re going to rewrite everything in terms of it. Let’s first look at f(r): The denominator

can be written in terms of the superpotential using the EOM (3.25); the numerator is

already known in terms of φ2, and the integration measure ds can be transformed into

dφ2 using the chain rule ds = ds
dφ2dφ

2. We then have

f(φ2) =
∫ x0

φ2

e−4A(φ2)

1− 2λW (φ)2

(d−2)2

(
dφ

dr

)−1

dφ2. (3.61)
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Note that dφ/dr is also given in terms of W by (3.25). This integral can then be

performed numerically to obtain the function f . On the other hand, the quantity ∂rf is

given by minus the integrand in (3.58), so it is also completely known in terms of W and

A. We then have all we need in order to compute the bound Ω.

3.5 The quartic superpotential: numerical results

Now that we have the general formula for Ω we can compute it for the quartic superpotential

and let the theory flow. Our systems is originally at the UV fixed point (φ2 = x0) and

starts flowing towards the IR (φ2 = 0). The position of the un-physical topological vacua φi
relative to the UV and IR depends on the choice of values for the superpotential parameters

we make. Having a look at equation (3.47) one can easily see that the topological vacuum

φ2 can sit in between the UV and IR for certain choices of these parameters (specifically,

the choice that makes 0 < u < x0 in (3.47)). Since this vacuum is not physical, it is not

good that the system runs into it. Note however that the key results that are presented

here happen regardless of whether this topological vacuum is encountered during the flow

or not. Moreover, even in the cases where it is present at some point during the flow, the

violation shown here kicks in before φ2 is reached 6 .

For this superpotential, every single quantity we have presented so far is analytically

computable except for f(r) in (3.61). Note that every quantity inside this integral is either

explicitly written in terms of A(φ) or W (φ) or it can be related to them through the EOM.

To carry on the numerical computations we need to fix the values of B, x0 and λ.

Changing the values of B and x0 is not too relevant for the matter we’re dealing with.

Among other things it changes up until what point the flow can go (at some point, which

depends on these parameters, the unphysical topological vacua enter into the flow, forcing

it to stop), but in the region where the flow is valid it doesn’t alter the general behaviour

of Ω(φ). Because of this we are going to set B = 1/2 and x0 = 1 7 and study Ω(φ) for

different values of the Gauss-Bonnet parameter. Previous works in AdS Gauss-Bonnet

([118], [119]) showed that the theory does not violate causality if and only if − 7
36 ≤ λ ≤ 9

100 ,

so we will test values within this window. The bound for Ω is saturated in the UV when λ

equals any of these two extreme values (specifically, Ω(φUV ) becomes +1 when λ is set to

6 For the choice of parameters shown here the topological vacuum φ2 does not appear in between the

UV and IR fixed points.
7 The choice is not random. Values around these make the numerical computations more precise.
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it’s lowest allowed value and −1 when set to it’s highest). It is then a good idea to start

with one of these extreme values and check if our numerically computed Ω saturates the

bound in the UV. Setting λ = 9/100 and running the numerics one obtains

Figure 3.1: Values of Ω(φ) for the extreme case λ = 9/100 with the parameter values set to B = 1/2

and x0 = 1.

As we can see the bound is indeed saturated at the boundary φUV = 1. When the

theory is let to flow towards the IR though the bound becomes violated everywhere. Before

drawing any conclusion let’s compute Ω(φ) for non-extremal values of λ. Three of such

cases are shown in the following picture

Figure 3.2: Values of Ω(φ) for two non-extreme values of λ.

We can see that the violation is alleviated when the value of λ is not extremal. If the

Gauss-Bonnet parameter is still big enough causality is still violated when a certain point

in the RG flow is past, but if we keep lowering λ we end up having a consistent flow all

the way down from the UV to the IR.
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For negative values of λ (see graphs in the next page) the situation is basically the

same. In the extreme case λ = −7/36 the bound is saturated at the UV and violated

everywhere else, with bigger values of λ alleviating this behaviour as in the positive case.

Figure 3.3: Values of Ω(φ) for the extreme negative value and two non-extreme ones of λ.

The window of λ where the flow is fully consistent between the UV and IR is not

universal. These values depend on the parameters of the superpotential.

3.6 Conclusions

The above analysis shows that, for some values of the Gauss-Bonnet coupling, a UV-

consistent CFT can become inconsistent when it flows towards the IR. This is not the

usual behaviour one expects, since we tend to assume that the effective field theories in

the IR are well behaved when they are derived from a consistent UV theory. However,

causality is usually understood at the level of 2-point functions, but it is possible that

some higher point function behaves in an undesired way after some deformation is turned

on in the CFT (thus starting the flow). This result shows that it may be necessary to

pay closer attention to other quantities, beyond 2-point functions, in order to properly

understand the behaviour of a theory along its RG flow.
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It would be interesting to generalise this analysis to further superpotentials in order to

check if this is just a feature of this quartic superpotential or it is shared by other flows.



Appendix A

Appendix: The Complexity-Action

proposal and Gauss-Bonnet gravity

This appendix is devoted to bringing up the technical problems that arise when one

tries to generalise the CA proposal to Gauss-Bonnet gravity. When studying the action

functional of a gravity theory it is a well know fact that one needs to include some surface

terms in order for the variational problem to be well defined [120]-[123]. The situation,

however, is a bit trickier when the action is integrated over a finite region with a piecewise

boundary containing lightlike surfaces. This setup was recently analysed, for the case of

Einstein-Hilbert gravity, by Lehner et al. in [124] 1 . As far as I know, how to deal with

this non-smooth lightlike boundaries in the Gauss-Bonnet case has not been tackled yet.

In the section below I will show the difficulties one finds when trying to generalise the

results that appear in the papers cited here.

A.0.1 Variational problems and boundary terms

Consider a variational problem in gravity, where we are given an action functional of the

form

S =
∫
M
L(g)dx, (A.1)

where M is the manifold we are integrating over, x are coordinates on it and L(g) the

Lagrangian of the corresponding gravity theory. The aim here is to find if the variational

problem is well defined. That is, if one can impose δgS = 0 and get the equations of

motion imposing only that δgµν = 0 in the boundary ∂M. It is clear that the action (A.1)

1 this was actually addressed to prove that the less rigorous approach taken in [21] yields the correct

results.
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by itself is not enough, the reason being that the variations of the Ricci scalar and the

Christoffel connection are

δR = ∇ρ

(
gµνδΓσνµ − gµνδΓρνµ

)
δΓαδβ = 1

2g
αλ (∇δδgλβ +∇βδgδλ −∇λδgδβ) .

(A.2)

Thus, even then variation of the simplest gravitational action L = R− 2Λ will involve

terms of the form ∂α(δgµν) and ∂α∂β(δgµν). This immediately shows that the bulk action is

not enough, since to make this to vanish one would also need to impose that the derivatives

of the metric vanish on the boundary. One can, however, remedy this problem. Using

Stokes theorem these kind of terms can be transformed into boundary terms. For example,

terms with one derivative hitting the metric variation become

∫
M
dDxAα µν∇αδg

µν

=
∫
M
dDx

[
∇α

(
Aα µνδg

µν
)
−∇αA

α
µνδg

µν
]

=
∫
∂M

dΣαA
α
µνδg

µν −
∫
M
dDx∇αA

α
µνδg

µν ,

(A.3)

where dΣµ = dΣnµ, nµ and outgoing normal vector to the boundary hypersurface ∂M

and A represents whatever terms arise when taking the variation of the action. The terms

with two derivatives can be subject to the same type of process, but since now we can

apply Stokes twice we will be able to push terms to the boundary of the boundary ∂∂M.

For example, a term of the form ∇α∇βδg
αβ yields a contribution of the form

∫
M
dDxA∇µ∇νδg

µν =
∫
M
dDx∇ν∇µAδg

µν

−
∫
∂M

dΣ [nν∇µA+∇ν (nµA)] δgµν +
∫
∂∂M

dSνnµAδg
µν ,

(A.4)

where dSµ = dSsµ is the outgoing surface element of the boundary of the boundary.

Note that these extra terms are only relevant when the region of integration has a non-

smooth boundary since, otherwise, ∂∂M would be empty. When the boundary is piecewise,

this boundary of the boundary regions are where the different boundary segments join,

and thus terms integrated over ∂∂M will be called joint terms from now on.

Taking all into account one ends up having a variation which, schematically, look as

follows

δS =
∫
M
dDxEµνδg

µν +
∫
∂M

dΣnµAνδgµν +
∫
∂∂M

dSsµBνδgµν . (A.5)
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The variational problem is then well defined if one is able to find quantities A and

B such that their variations precisely match nµAνδgµν and sµBνδµν . If this is the case

then we just need to complement the original bulk action with minus the boundary and

joint integrals of these A and B. Since these new pieces will precisely cancel the unwanted

boundary terms that stem from the bulk action we will end up with a properly defined

variational problem.

This process works for any kind of gravitational theory one could consider, including

Gauss-Bonnet gravity. The challenging and non-trivial part of the process is to find a

quantity which variation has the desired form. This task has been fully completed in

Einstein-Hilbert gravity, where one encounters the well-know boundary term given by the

York-Gibbons-Hawking integral (the extrinsic curvature) and the not so well known joint

terms shown in [122]-[124]. The case including light-like boundaries in EH gravity was

also covered in the last reference.

It also important to mention that dealing with lightlike surfaces (like the ones present

in the WdW patch) introduces several ambiguities in the computation. Specifically, the

choice of parametrization of the null generators of the hypersurface and the function Φ(xi)

that defines it can be arbitrarily changed. It was shown in [124] that these ambiguities

can be dealt with by imposing reasonable conditions (choosing the null generators to be

affinely parametrised, imposing the gravitational action to be additive and choosing a

normalization condition for the normal vector of the null surfaces near the boundary of

AdS), after which one is guaranteed to find a univocal result. Armed with these formal

results, Lehner et al. showed that the less rigorous approach taken by Brown et al. in [21]

still yields the same result.

The case of Gauss-Bonnet gravity with non-smooth boundaries, however, has not been

studied yet. Following the steps above yields a complicated variation with no obvious

candidate A to choose such that δA mimics it. The joint terms, for example, yield

δ
∫
M
dDx
√
−gLGB = · · ·

+
∫
∂∂M

dSnσ

[
2
(
nγg

βσgγα − nλgαβgλσ
)
R− 8nγRβσgγα

+4nρRαβgρσ − 4nγRσγgαβ + 4nγRβσγα
]
δgαβ,

(A.6)

where the dots represent bulk and surface terms that have been omitted. Because we
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don’t have a well-defined variational problem to work with, nor can guarantee that the

less formal approach of Brown et al. will still yield the correct answer when Gauss-Bonnet

is considered, we ended up testing the EH+fundamental matter generalization of the

complexity-action proposal instead of the Gauss-Bonnet one.

As a side remark, note that the DBI action considered in Chapter 2 is free from these

problems even if we are still integrating over a region with a non-smooth boundary. This

is because the action is simply SDBI ∼
∫ √
−g. Since the variation δ√−g only gives rise to

terms proportional to δgµν no boundary term is needed to make this variational problem

well defined.
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